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Preface

The aim of this book is to teach you the essentials of spectral collocation
methods with the aid of 40 short MATLAB® programs, or “M-files.”* The
programs are available online at http://www.comlab.ox.ac.uk/oucl/work/
nick.trefethen, and you will run them and modify them to solve all kinds
of ordinary and partial differential equations (ODEs and PDEs) connected
with problems in fluid mechanics, quantum mechanics, vibrations, linear and
nonlinear waves, complex analysis, and other fields. Concerning prerequisites,
it is assumed that the words just written have meaning for you, that you have
some knowledge of numerical methods, and that you already know MATLAB.

If you like computing and numerical mathematics, you will enjoy working
through this book, whether alone or in the classroom—and if you learn a few
new tricks of MATLAB along the way, that’s OK too!

Spectral methods are one of the “big three” technologies for the numeri-
cal solution of PDEs, which came into their own roughly in successive decades:

1950s: finite difference methods
1960s: finite element methods
1970s: spectral methods

Naturally, the origins of each technology can be traced further back. For
spectral methods, some of the ideas are as old as interpolation and expan-

*MATLAB is a registered trademark of The MathWorks, Inc., 3 Apple Hill Drive, Na-
tick, MA 01760-2098, USA, tel. 508-647-7000, fax 508-647-7001, info@mathworks.com,
http://www.mathworks.com.
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sion, and more specifically algorithmic developments arrived with Lanczos as
early as 1938 [Lan38, Lan56] and with Clenshaw, Elliott, Fox, and others in
the 1960s [FoPa68]. Then, in the 1970s, a transformation of the field was
initiated by work by Orszag and others on problems in fluid dynamics and
meteorology, and spectral methods became famous. Three landmarks of the
early modern spectral methods literature were the short book by Gottlieb and
Orszag [GoOr77], the survey by Gottlieb, Hussaini, and Orszag [GHO84], and
the monograph by Canuto, Hussaini, Quarteroni, and Zang [CHQZS88]. Other
books have been contributed since then by Mercier [Mer89], Boyd [Boy00]
(first edition in 1989), Funaro [Fun92|, Bernardi and Maday [BeMa92], Forn-
berg [For96], and Karniadakis and Sherwin [KaSh99].

If one wants to solve an ODE or PDE to high accuracy on a simple domain,
and if the data defining the problem are smooth, then spectral methods are
usually the best tool. They can often achieve ten digits of accuracy where a
finite difference or finite element method would get two or three. At lower
accuracies, they demand less computer memory than the alternatives.

This short textbook presents some of the fundamental ideas and techniques
of spectral methods. It is aimed at anyone who has finished a numerical
analysis course and is familiar with the basics of applied ODEs and PDEs. You
will see that a remarkable range of problems can be solved to high precision
by a few lines of MATLAB in a few seconds of computer time. Play with the
programs; make them your own! The exercises at the end of each chapter will
help get you started.

I would like to highlight three mathematical topics presented here that,
while known to experts, are not usually found in textbooks. The first, in
Chapter 4, is the connection between the smoothness of a function and the
rate of decay of its Fourier transform, which determines the size of the aliasing
errors introduced by discretization; these connections explain how the accu-
racy of spectral methods depends on the smoothness of the functions being
approximated. The second, in Chapter 5, is the analogy between roots of poly-
nomials and electric point charges in the plane, which leads to an explanation
in terms of potential theory of why grids for nonperiodic spectral methods
need to be clustered at boundaries. The third, in Chapter 8, is the three-way
link between Chebyshev series on [—1, 1], trigonometric series on [—m, 7|, and
Laurent series on the unit circle, which forms the basis of the technique of
computing Chebyshev spectral derivatives via the fast Fourier transform. All
three of these topics are beautiful mathematical subjects in their own right,
well worth learning for any applied mathematician.

If you are determined to move immediately to applications without paying
too much attention to the underlying mathematics, you may wish to turn
directly to Chapter 6. Most of the applications appear in Chapters 7-14.

Inevitably, this book covers only a part of the subject of spectral meth-
ods. It emphasizes collocation (“pseudospectral”) methods on periodic and on
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Chebyshev grids, saying next to nothing about the equally important Galerkin
methods and Legendre grids and polynomials. The theoretical analysis is very
limited, and simple tools for simple geometries are emphasized rather than
the “industrial strength” methods of spectral elements and hp finite elements.
Some indications of omitted topics and other points of view are given in the
Afterword.

A new era in scientific computing has been ushered in by the development
of MATLAB. One can now present advanced numerical algorithms and so-
lutions of nontrivial problems in complete detail with great brevity, covering
more applied mathematics in a few pages than would have been imaginable a
few years ago. By sacrificing sometimes (not always!) a certain factor in ma-
chine efficiency compared with lower level languages such as Fortran or C, one
obtains with MATLAB a remarkable human efficiency—an ability to modify
a program and try something new, then something new again, with unprece-
dented ease. This short book is offered as an encouragement to students,
scientists, and engineers to become skilled at this new kind of computing.
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A Note on the MATLAB Programs

The MATLAB programs in this book are terse. I have tried to make each one
compact enough to fit on a single page, and most often, on half a page. Of
course, there is a message in this style, which is the message of this book: you
can do an astonishing amount of serious computing in a few inches of computer
code! And there is another message, too. The best discipline for making sure
you understand something is to simplify it, simplify it relentlessly.

Without a doubt, readability is sometimes impaired by this obsession with
compactness. For example, I have often combined two or three short MATLAB
commands on a single program line. You may prefer a looser style, and that
is fine. What’s best for a printed book is not necessarily what’s best for one’s
personal work.

Another idiosyncrasy of the programming style in this book is that the
structure is flat: with the exception of the function cheb, defined in Chapter 6
and used repeatedly thereafter, I make almost no use of functions. (Three fur-
ther functions, chebfft, clencurt, and gauss, are introduced in Chapters 8
and 12, but each is used just locally.) This style has the virtue of emphasiz-
ing how much can be achieved compactly, but as a general rule, MATLAB
programmers should make regular use of functions.

Quite a bit might have been written to explain the details of each program,
for there are tricks throughout this book that will be unfamiliar to some read-
ers. To keep the discussion focused on spectral methods, I made a deliberate
decision not to mention these MATLAB details except in a very few cases.
This means that as you work with the book, you will have to study the pro-
grams, not just read them. What is this “pol2cart” command in Program 28

XV
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(p- 120)? What’s going on with the index variable “b” in Program 36 (p. 142)7
You will only understand the answers to questions like these after you have
spent time with the codes and adapted them to solve your own problems. I
think this is part of the fun of using this book, and I hope you agree.

The programs listed in these pages were included as M-files directly into
the KTEX source file, so all should run correctly as shown. The outputs
displayed are exactly those produced by running the programs on my machine.
There was a decision involved here. Did we really want to clutter the text
with endless formatting and Handle Graphics commands such as fontsize,
markersize, subplot, and pbaspect, which have nothing to do with the
mathematics? In the end I decided that yes, we did. I want you to be able
to download these programs and get beautiful results immediately. Equally
important, experience has shown me that the formatting and graphics details
of MATLAB are areas of this language where many users are particularly
grateful for some help.

My personal MATLAB setup is nonstandard in one way: I have a file
startup.m that contains the lines

set (0, ’defaultaxesfontsize’, 12, ’defaultaxeslinewidth’,.7,...
’defaultlinelinewidth’, .8, ’defaultpatchlinewidth’,.7).

This makes text appear by default slightly larger than it otherwise would, and
lines slightly thicker. The latter is important in preparing attractive output
for a publisher’s high-resolution printer.

The programs in this book were prepared using MATLAB versions 5.3
and 6.0. As later versions are released in upcoming years, unfortunately, it is
possible that some difficulties with the programs will appear. Updated codes
with appropriate modifications will be made available online as necessary.

To learn MATLAB from scratch, or for an outstanding reference, I recom-
mend SIAM’s new MATLAB Guide, by Higham and Higham [HiHi00].



Think globally. Act locally.






1. Differentiation Matrices

Our starting point is a basic question. Given a set of grid points {z;} and
corresponding function values {u(z;)}, how can we use this data to approxi-
mate the derivative of u? Probably the method that immediately springs to
mind is some kind of finite difference formula. It is through finite differences
that we shall motivate spectral methods.

To be specific, consider a uniform grid {zi,...,zn}, with z;.; —z; = h
for each j, and a set of corresponding data values {ui,...,uy}:
Uy Uz un

T i) N

Let w; denote the approximation to u'(x;), the derivative of u at z;. The
standard second-order finite difference approximation is

Uj+1 — Uj—1
_ 1.1
2h ) ( )

’(Uj:

which can be derived by considering the Taylor expansions of u(x;41) and
u(xj_1). For simplicity, let us assume that the problem is periodic and take
ug = uy and u; = uyy1. Then we can represent the discrete differentiation
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process as a matrix-vector multiplication,

[ o) [ [

N[
N =
N +—

I
=

(1.2)

O Nl

\ wx / \ ) \uw /

(Omitted entries here and in other sparse matrices in this book are zero.)
Observe that this matrix is Toeplitz, having constant entries along diagonals;
i.e., a;; depends only on 7 — j. It is also circulant, meaning that a;; depends
only on (i — j) (mod N). The diagonals “wrap around” the matrix.

N[ —
N | —

An alternative way to derive (1.1) and (1.2) is by the following process of
local interpolation and differentiation:

Forj=1,2,...,N:

e Let p; be the unique polynomial of degree < 2 with p;(z;-1) = uj_1, pj(x;) =
uj, and p;(T41) = Ujy1.

e Set w; = pi(z;).

It is easily seen that, for fixed j, the interpolant p; is given by

pj(x) = uj_la_l(x) + ’U,ja()(.’E) + uj+1a1 (.T),

where a_1(@) = (¢ — 2,)(@ - 701)/202, ag(2) = —(z — ;. 1)(@ — @101) /2
and a;(z) = (z — x;_1)(z — z;)/2h*. Differentiating and evaluating at z = x;
then gives (1.1).

This derivation by local interpolation makes it clear how we can generalize
to higher orders. Here is the fourth-order analogue:

Forj=1,2,...,N:

e Let p; be the unique polynomial of degree < 4 with pj(xji2) = Ujio,
pi(Tj+1) = ujz1, and pj(z;) = uj.

o Set w; = p;(xj)

Again assuming periodicity of the data, it can be shown that this prescription



1. Differentiation Matrices 3

amounts to the matrix-vector product

[0 ( Loz (")
oo 1 1
12 12
%
= h! 0 (1.3)
_2
3
_1 1 -
12 12 :
% _ﬁ ) \'U«N}

\ wy / \

This time we have a pentadiagonal instead of tridiagonal circulant matrix.

The matrices of (1.2) and (1.3) are examples of differentiation matrices.
They have order of accuracy 2 and 4, respectively. That is, for data u; ob-
tained by sampling a sufficiently smooth function u, the corresponding discrete
approximations to u'(z;) will converge at the rates O(h?) and O(h*) as h — 0,
respectively. One can verify this by considering Taylor series.

Our first MATLAB program, Program 1, illustrates the behavior of (1.3).
We take u(z) = e5™(®) to give periodic data on the domain [—, 7]:

—T T1 X9 Ny =T

The program compares the finite difference approximation w; with the exact
derivative, e58@i) cos(z;), for various values of N. Because it makes use of
MATLARB sparse matrices, this code runs in a fraction of a second on a work-
station, even though it manipulates matrices of dimensions as large as 4096
[GMS92]. The results are presented in Output 1, which plots the maximum
error on the grid against V. The fourth-order accuracy is apparent. This is
our first and last example that does not illustrate a spectral method!

We have looked at second- and fourth-order finite differences, and it is
clear that consideration of sixth-, eighth-, and higher order schemes will lead to
circulant matrices of increasing bandwidth. The idea behind spectral methods
is to take this process to the limit, at least in principle, and work with a
differentiation formula of infinite order and infinite bandwidth—i.e., a dense
matrix [For75]. In the next chapter we shall show that in this limit, for an
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Program 1

% pl.m - convergence of fourth-order finite differences

Nvec = 2.7(3:12);
clf, subplot(’position’,[.1 .4 .8 .5])
for N = Nvec

% For various N, set up grid in [-pi,pi] and function u(x):

h = 2%pi/N; x = -pi + (1:N)’x*h;

u = exp(sin(x)); uprime = cos(x).*u;
% Construct sparse fourth-order differentiation matrix:
e = ones(N,1);
D = gsparse(1:N,[2:N 1],2*e/3,N,N)...
- sparse(1:N,[3:N 1 2],e/12,N,N);
D = (D-D’)/h;

% Plot max(abs(D*u-uprime)):
error = norm(D*u-uprime,inf);
loglog(N,error,’.’, markersize’,15), hold on
end
grid on, xlabel N, ylabel error
title(’Convergence of fourth-order finite differences’)
semilogy(Nvec,Nvec. (-4),’--")
text (105,5e-8,’N~{-4}’, ’fontsize’,18)

Output 1

Convergence of fourth—order finite differences

10° T T T T T T T T T —

- o g o

. s L
S - . o
5 SHE 8
- LI 2
10 °F S °o 3
10—15' R R i § .
10° 10" 10° 10° 10

N

Output 1: Fourth-order convergence of the finite difference differentiation pro-

cess (1.3). The use of sparse matrices permits high values of N.
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infinite equispaced grid, one obtains the following infinite matrix:

( | s )

O = N W

(1.4)

I
—_

Wl N

\ S

This is a skew-symmetric (DT = —D) doubly infinite Toeplitz matrix, also
known as a Laurent operator [Hal74, Wid65]. All its entries are nonzero except
those on the main diagonal.

Of course, in practice one does not work with an infinite matrix. For a
finite grid, here is the design principle for spectral collocation methods:

e Let p be a single function (independent of j) such that p(z;) = u; for all j.
o Set w; = p'(;).

We are free to choose p to fit the problem at hand. For a periodic domain, the
natural choice is a trigonometric polynomial on an equispaced grid, and the
resulting “Fourier” methods will be our concern through Chapter 4 and inter-
mittently in later chapters. For nonperiodic domains, algebraic polynomials
on irregular grids are the right choice, and we will describe the “Chebyshev”
methods of this type beginning in Chapters 5 and 6.

For finite NV, taking N even for simplicity, here is the N X N dense matrix
we will derive in Chapter 3 for a periodic, regular grid:

S \
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Program 2

% p2.m - convergence of periodic spectral method (compare pl.m)

% For various N (even), set up grid as before:
clf, subplot(’position’,[.1 .4 .8 .5])
for N = 2:2:100;

h = 2%pi/N;
x = -pi + (1:N)’*h;
u = exp(sin(x)); uprime = cos(x).*u;

% Construct spectral differentiation matrix:
column = [0 .5*(-1)."(1:N-1).*cot((1:N-1)*h/2)];
D = toeplitz(column,column([1 N:-1:2]));

% Plot max(abs(D*u-uprime)):

error = norm(D*u-uprime,inf);

loglog(N,error,’.’, markersize’,15), hold on
end
grid on, xlabel N, ylabel error
title(’Convergence of spectral differentiation’)

Output 2

o Convergence of spectral differentiation

10 14 — T
: e e
° .
S| : L .
10° F : S A AR E ARt R SERPITR .
9] )
5
1o : S . ]
107 : S R RS R e
10751 : S
10 10
N

Output 2: “Spectral accuracy” of the spectral method (1.5), until the rounding
errors take over around 10~'*. Now the matrices are dense, but the values of
N are much smaller than in Program 1.
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A little manipulation of the cotangent function reveals that this matrix is
indeed circulant as well as Toeplitz (Exercise 1.2).

Program 2 is the same as Program 1 except with (1.3) replaced by (1.5).
What a difference it makes in the results! The errors in Output 2 decrease
very rapidly until such high precision is achieved that rounding errors on the
computer prevent any further improvement.* This remarkable behavior is
called spectral accuracy. We will give this phrase some precision in Chapter 4,
but for the moment, the point to note is how different it is from convergence
rates for finite difference and finite element methods. As N increases, the
error in a finite difference or finite element scheme typically decreases like
O(N~™) for some constant m that depends on the order of approximation
and the smoothness of the solution. For a spectral method, convergence at
the rate O(N ™) for every m is achieved, provided the solution is infinitely
differentiable, and even faster convergence at a rate O(c") (0 < ¢ < 1) is
achieved if the solution is suitably analytic.

The matrices we have described have been circulant. The action of a
circulant matrix is a convolution, and as we shall see in Chapter 3, convolutions
can be computed using a discrete Fourier transform (DFT). Historically, it was
the discovery of the fast Fourier transform (FFT) for such problems in 1965
that led to the surge of interest in spectral methods in the 1970s. We shall see
in Chapter 8 that the FF'T is applicable not only to trigonometric polynomials
on equispaced grids, but also to algebraic polynomials on Chebyshev grids.
Yet spectral methods implemented without the FF'T are powerful, too, and in
many applications it is quite satisfactory to work with explicit matrices. Most
problems in this book are solved via matrices.

Summary of This Chapter. The fundamental principle of spectral collocation
methods is, given discrete data on a grid, to interpolate the data globally,
then evaluate the derivative of the interpolant on the grid. For periodic prob-
lems, we normally use trigonometric interpolants in equispaced points, and for
nonperiodic problems, we normally use polynomial interpolants in unevenly
spaced points.

Exercises

1.1. We derived the entries of the tridiagonal circulant matrix (1.2) by local poly-
nomial interpolation. Derive the entries of the pentadiagonal circulant matrix (1.3)
in the same manner.

* All our calculations are done in standard IEEE double precision arithmetic with €machine =
2753 & 1.11 x 10~ '6. This means that each addition, multiplication, division, and subtrac-
tion produces the exactly correct result times some factor 1 + § with |§] < €machine- See
[Hig96] and [TrBa97].
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1.2. Show that (1.5) is circulant.

1.3. The dots of Qutput 2 lie in pairs. Why? What property of ¢™#) gives rise to
this behavior?

1.4. Run Program 1 to N = 2'6 instead of 2'2. What happens to the plot of the
error vs. N7 Why? Use the MATLAB commands tic and toc to generate a plot of
approximately how the computation time depends on N. Is the dependence linear,
quadratic, or cubic?

1.5. Run Programs 1 and 2 with e5™(%) replaced by (a) ¢5°(®) and (b) sin(@)/sin(@)|
and with uprime adjusted appropriately. What rates of convergence do you observe?
Comment.

1.6. By manipulating Taylor series, determine the constant C for an error expansion
of (1.3) of the form w; —u'(z;) ~ Ch*u® (z;), where u(®) denotes the fifth derivative.
Based on this value of C' and on the formula for (%) (z) with u(z) = €5*(*), determine
the leading term in the expansion for w; — u/(z;) for u(z) = ™). (You will have
to find max,e(_x, |u®)(z)| numerically.) Modify Program 1 so that it plots the
dashed line corresponding to this leading term rather than just N ~*. This adjusted
dashed line should fit the data almost perfectly. Plot the difference between the two
on a log-log scale and verify that it shrinks at the rate O(h°®).



6. Chebyshev Differentiation Matrices

In the last chapter we discussed why grid points must cluster at boundaries
for spectral methods based on polynomials. In particular, we introduced the
Chebyshev points,

z; = cos(jm/N), j=0,1,...,N, (6.1)

which cluster as required. In this chapter we shall use these points to construct
Chebyshev differentiation matrices and apply these matrices to differentiate a
few functions. The same set of points will continue to be the basis of many of
our computations throughout the rest of the book.

Our scheme is as follows. Given a grid function v defined on the Chebyshev
points, we obtain a discrete derivative w in two steps:

e Let p be the unique polynomial of degree < N with p(x;) = v;, 0 < j < N.
o Set w; = p'(z;).

This operation is linear, so it can be represented by multiplication by an
(N +1) x (N + 1) matrix, which we shall denote by Dy:

w = DN’U.

Here N is an arbitrary positive integer, even or odd. The restriction to even
N in this book (p. 18) applies to Fourier, not Chebyshev spectral methods.

To get a feel for the interpolation process, we take a look at N = 1 and
N = 2 before proceeding to the general case.

51
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Consider first N = 1. The interpolation points are zo = 1 and z; = —1,
and the interpolating polynomial through data vy and vq, written in Lagrange
form, is

p(z) = 3(1+ 2)vg + 3(1 — z)vs.
Taking the derivative gives
p'(z) = 3vo — 1.

This formula implies that D; is the 2 X 2 matrix whose first column contains
constant entries 1/2 and whose second column contains constant entries —1/2:

Dlz( )

Now consider N = 2. The interpolation points are zy = 1, z; = 0, and
T9 = —1, and the interpolant is the quadratic

N|—= N
N|— N

p(z) = %x(l +2)vo+ (1+2z)(1 —x)vy + %x(x — 1)wvs.
The derivative is now a linear polynomial,
P (z) = (z + 3)vo — 2zv1 + (z — 3)vo.

The differentiation matrix D, is the 3 X 3 matrix whose jth column is obtained
by sampling the jth term of this expression at x =1, 0, and —1:

3 1
3 2 3
D, = : 0 -1 (6.2)
1 3
—2 2 —3

It is no coincidence that the middle row of this matrix contains the coefficients
for a centered three-point finite difference approximation to a derivative, and
the other rows contain the coefficients for one-sided approximations such as
the one that drives the second-order Adams—Bashforth formula for the numer-
ical solution of ODEs [For88]. The rows of higher order spectral differentiation
matrices can also be viewed as vectors of coeflicients of finite difference for-
mulas, but these will be based on uneven grids and thus no longer familiar
from standard applications.

We now give formulas for the entries of Dy for arbitrary N. These were
first published perhaps in [GHO84| and are derived in Exercises 6.1 and 6.2.
Analogous formulas for general sets {x;} rather than just Chebyshev points
are stated in Exercise 6.1.
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Theorem 7 Chebyshev differentiation matrix.

For each N > 1, let the rows and columns of the (N +1) x (N +1) Chebyshev
spectral differentiation matriz Dy be indexed from 0 to N. The entries of this
matriz are

2N?% 41 2N? +1

(DN)OO = ) (DN)NN = - ) (6'3)
6 6

(Dn);i=——2 _ j=1,...,N—1 (6.4)

.7] 2(1_{1;?)7 ) 7 7

C; (—1)i+j . . .o

Dy), = 277 =0,....N 6.5
(Dn)y; P —— i#j, 4,j=0,...,N, (6.5)

where

2, 1=0o0rN,
C;, =
1, otherwise.

A picture makes the pattern clearer:

2N? +1 —1)7
6 1-— Zj 2
(_1)i+j
Ty — Ty
1 (1) —; 1 (=)™
Dy = 21— 2(1 — 22) 2 1+uz;
(_1)i+j
Ty — Ty
1 —1)N+i 2N? +1
— = (=1)N _QL _ANTF
2 1+ Z; 6

The jth column of Dy contains the derivative of the degree N polynomial
interpolant p;(z) to the delta function supported at x;, sampled at the grid
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- < pj(z)

Fig. 6.1. Degree 12 polynomial interpolant p(x) to the delta function supported
at xg on the 13-point Chebyshev grid with N = 12. The slopes indicated by the
dashed lines, from right to left, are the entries (Di2),g, (Di2)gg, and (Di2)g g
of the 13 x 13 spectral differentiation matriz D1s.

points {z;}. Three such sampled values are suggested by the dashed lines in
Figure 6.1.

Throughout this text, we take advantage of MATLAB’s high-level com-
mands for such operations as polynomial interpolation, matrix inversion, and
FFT. For clarity of exposition, as explained in the “Note on the MATLAB
Programs” at the beginning of the book, our style is to make our programs
short and self-contained. However, there will be one major exception to this
rule, one MATLAB function that we will define and then call repeatedly when-
ever we need Chebyshev grids and differentiation matrices. The function is
called cheb, and it returns a vector x and a matrix D.

cheb.m

% CHEB compute D = differentiation matrix, x = Chebyshev grid

function [D,x] = cheb(N)
if N==0, D=0; x=1; return, end

x = cos(pi*(0:N)/N)’;

¢ = [2; ones(N-1,1); 2].*(-1).~(0:N)’;

X = repmat(x,1,N+1);

dX = X-X’;

D = (cx(1./c)?’)./(dX+(eye(N+1))); % off-diagonal entries
D =D - diag(sum(D’)); % diagonal entries

Note that this program does not compute Dy exactly by formulas (6.3)—
(6.5). It utilizes (6.5) for the off-diagonal entries but then obtains the diagonal
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entries (6.3)—(6.4) from the identity

N
(Dn)y = — Z(DN)z’j' (6.6)

§=0

J#i
This is marginally simpler to program, and it produces a matrix with bet-
ter stability properties in the presence of rounding errors [BaBe00, BCM94].
Equation (6.6) can be derived by noting that the interpolant to (1,1,...,1)7
is the constant function p(z) = 1, and since p'(z) = 0 for all z, Dy must map

(1,1,...,1)T to the zero vector.

Here are the first five Chebyshev differentiation matrices as computed by

cheb. Note that they are dense, with little apparent structure apart from the
antisymmetry condition (Dy);; = —(Dy)n—i,n—;-

>> cheb(1)
0.5000 -0.5000
0.5000 -0.5000

>> cheb(2)
1.5000 -2.0000 0.5000
0.5000 -0.0000 -0.5000
-0.5000 2.0000 -1.5000

>> cheb(3)
3.1667 -4.0000 1.3333 -0.5000

1.0000 -0.3333 -1.0000 0.3333
-0.3333 1.0000 0.3333 -1.0000
0.5000 -1.3333 4.0000 -3.1667

>> cheb(4)
5.5000 -6.8284 2.0000 -1.1716 0.5000
1.7071 -0.7071 -1.4142 0.7071 -0.2929
-0.5000 1.4142  -0.0000 -1.4142 0.5000
0.2929 -0.7071 1.4142 0.7071 -1.7071
-0.5000 1.1716 -2.0000 6.8284 -5.5000

>> cheb(5)
8.5000 -10.4721 2.8944 -1.5279 1.1056 -0.5000
2.6180 -1.1708 -2.0000 0.8944 -0.6180 0.2764
-0.7236 2.0000 -0.1708 -1.6180 0.8944 -0.3820
0.3820 -0.8944 1.6180 0.1708 -2.0000 0.7236
-0.2764 0.6180 -0.8944 2.0000 1.1708 -2.6180
0.5000 -1.1056 1.5279 -2.8944 10.4721 -8.5000

Program 11 illustrates how Dy can be used to differentiate the smooth,
nonperiodic function u(z) = €®sin(5z) on grids with N = 10 and N = 20.
The output shows a graph of u(z) alongside a plot of the error in u/(z). With
N = 20, we get nine-digit accuracy.
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Program 11

% pll.m - Chebyshev differentation of a smooth function

xx = -1:.01:1; uu = exp(xx).*sin(b*xx); clf
for N = [10 20]
[D,x] = cheb(N); u = exp(x).*sin(5*x);
subplot (’position’,[.15 .66-.4*(N==20) .31 .28])
plot(x,u,’.’, ’markersize’,14), grid on
line (xx,uu)
title([’u(x), N=’ int2str(N)])
error = Dxu - exp(x).*(sin(5*x)+5*cos(5*x));
subplot (’position’,[.55 .66-.4*(N==20) .31 .28])
plot(x,error,’.’, ’markersize’,14), grid on

line(x,error)
title([’ error in u’’(x), N=’ int2str(N)])
end
Output 11
u(x), N=10 error in u’(x), N=10

2 ; 0.02 ; ;

0] 0 '
-2 -0.02¢

>

-4 : : : -0.04 : : :

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

u(x), N=20 x 107° errorin u’(x), N=20
2 ; 10 ; ; ;
[ ]
0 5
[ ]
-2 0
«

— . N . -5 ; ; :

-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Output 11: Chebyshev differentiation of u(x) = e*sin(5x). Note the vertical
scales.
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Program 12

% pl2.m - accuracy of Chebyshev spectral differentiation
h (compare p7.m)

% Compute derivatives for various values of N:

Nmax = 50; E = zeros(3,Nmax);

for N = 1:Nmax;
[D,x] = cheb(N);
v = abs(x)."3; vprime = 3*x.*abs(x); % 3rd deriv in BV
E(1,N) = norm(D*v-vprime,inf);
v = exp(-x.7(-2)); vprime = 2.*v./x.”3; % C-infinity
E(2,N) = norm(D*v-vprime,inf);

v =1./(1+4x.72); vprime = -2*x.*v."2; % analytic in [-1,1]
E(3,N) = norm(D*v-vprime,inf);
v = x.710; vprime = 10%x."9; % polynomial
E(4,N) = norm(D*v-vprime,inf);
end

% Plot results:

titles = {’1x73|7,’exp(-x"{-2})7,’1/(1+x~2)’,’x~ {10}’ }; clf

for iplot = 1:4
subplot (2,2,iplot)
semilogy(1:Nmax,E(iplot,:),’.’, ’markersize’,12)
line(1:Nmax,E(iplot,:))
axis([0 Nmax le-16 1e3]), grid on
set(gca,’xtick’,0:10:Nmax, ’ytick’, (10) .7 (-15:5:0))
xlabel N, ylabel error, title(titles(iplot))

end

Program 12, the Chebyshev analogue of Program 7, illustrates spectral
accuracy more systematically. Four functions are spectrally differentiated:
|23, exp(—272), 1/(1+2?), and £'°. The first has a third derivative of bounded
variation, the second is smooth but not analytic, the third is analytic in a
neighborhood of [—1,1], and the fourth is a polynomial, the analogue for
Chebyshev spectral methods of a band-limited function for Fourier spectral
methods.

Summary of This Chapter. The entries of the Chebyshev differentiation matrix
Dy can be computed by explicit formulas, which can be conveniently collected
in an eight-line MATLAB function. More general explicit formulas can be
used to construct the differentiation matrix for an arbitrarily prescribed set
of distinct points {z,}.
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Output 12
X’ exp(-x?)
100 \‘M 100 Wh\\
-5 - -5
§ 10 : §10 :
) )
10—10 10—10
10—15 10—15
0 10 20 30 40 50 0 10 20 30 40 50
N N
1/(1+x%) x0
10° 10°
-5 -5
§ 10 §10
o o
107" 10"
10—15 10—15
0 10 20 30 40 50 0 10 20 30 40 50
N N

Output 12: Accuracy of the Chebyshev spectral derivative for four functions
of increasing smoothness. Compare Output 7 (p. 36).

Exercises
6.1. If zp,z1,...,zn € R are distinct, then the cardinal function p;(z) defined by
LN N
pi(z) = — [T —=2),  aj=]](;— =) (6.7)
I k=0 k=0
k] k#i

is the unique polynomial interpolant of degree N to the values 1 at x; and 0 at =y,
k # j. Take the logarithm and differentiate to obtain

N

Pi(@) = pi(@) Y (e —ax) Y,
k=0
k#j

and from this derive the formulas
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and

for the entries of the N x N differentiation matrix associated with the points {z;}.
(See also Exercise 12.2.)

6.2. Derive Theorem 7 from (6.8) and (6.9).

6.3. Suppose 1 =zg > x1 > -+ > xnx = —1 lie in the minimal-energy configuration
in [-1,1] in the sense discussed on p. 49. Show that except in the corners, the
diagonal entries of the corresponding differentiation matrix D are zero.

6.4. It was mentioned on p. 55 that Chebyshev differentiation matrices have the
symmetry property (Dn)ij = —(Dn)n—in—j- (a) Explain where this condition
comes from. (b) Derive the analogous symmetry condition for (Dy)?. (c) Taking
N to be odd, so that the dimension of Dy is even, explain how (Dy)? could be con-
structed from just half the entries of Dy. For large N, how does the floating point
operation count for this process compare with that for straightforward squaring of
Dy?

6.5. Modify cheb so that it computes the diagonal entries of Dy by the explicit
formulas (6.3)—(6.4) rather than by (6.6). Confirm that your code produces the same

results except for rounding errors. Then see if you can find numerical evidence that
it is less stable numerically than cheb.

6.6. The second panel of Qutput 12 shows a sudden dip for N = 2. Show that in
fact, E(2,2) = 0 (apart from rounding errors).

6.7. Theorem 6 makes a prediction about the geometric rate of convergence in the
third panel of Output 12. Exactly what is this prediction? How well does it match
the observed rate of convergence?

6.8. Let Dy be the usual Chebyshev differentiation matrix. Show that the power
(Dy)N*! is identically equal to zero. Now try it on the computer for N = 5 and 20
and report the computed 2-norms ||(D5)8||2 and ||(Dag)?!||2. Discuss.
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Spectral methods are powerful tools for the computation of eigenvalues of dif-
ferential and integral operators and their generalizations for strongly nonsym-
metric problems, pseudospectra. Indeed, it was Orszag’s 1971 computation of
the critical Reynolds number R = 5772.22 for eigenvalue instability of plane
Poiseuille fluid flow, a problem we shall discuss in Chapter 14, that did as
much as anything to establish spectral methods as an important tool in sci-
entific computing [Ors71]. Perhaps the reason why spectral methods are so
important for eigenvalue computations is that these are applications where
high accuracy tends to be crucial.

So far in this book we have seen two examples of eigenvalue calculations.
Program 8 (p. 38) solved the harmonic oscillator problem

—Ugy + T?Uu = Au, z € R,

by a Fourier spectral method, taking advantage of the exponential decay of
the eigenfunctions to replace the real line R by the periodic interval [—L, L].
Program 15 (p. 66) solved the even simpler problem

Uggy = AU, —l<z<1, u(£l)=0

by a Chebyshev spectral method that imposed the homogeneous Dirichlet
conditions explicitly. In this chapter, we will develop such methods further
with the aid of four additional examples. In each case we apply spectral ideas
via matrices rather than the FF'T, since it is so convenient to take advantage
of the standard powerful algorithms for matrix eigenvalue and generalized
eigenvalue problems embodied in the MATLAB commands eig and eigs.

87
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Our four examples and the special features they illustrate can be summarized
as follows:

Program 21: Mathieu equation, periodic domain;
Program 22: Airy equation, generalized eigenvalue problem;
Program 23: membrane oscillations, two-dimensional domain;

Program 24: complex harmonic oscillator, pseudospectra.

We begin with the Mathieu equation, an ODE that arises in problems of
forced oscillations. (This example has been taken from Weideman and Reddy
[WeRe00].) The equation can be written

—Ugy + 2qcos(2z)u = Au, (9.1)

where ¢ is a real parameter, and we look for periodic solutions on [—m,7|. For
g = 0, we have the linear pendulum equation of Program 15, with eigenvalues
n?/4 for n = 1,2,3,.... The scientific interest arises in the behavior of these
eigenvalues as ¢ is increased.

To compute eigenvalues of the Mathieu equation by a spectral method,
Program 21 discretizes (9.1) in a routine fashion. Translating the equation
from the domain [—m, 7] to [0, 27] leaves the eigenvalues unaltered, so our
discretization takes the form

Ly = —Dz(g) + 2¢ diag(cos(2z1), - . ., cos(2zy)),

where Dg) is the second-order Fourier differentiation matrix. The computa-
tion is straightforward, and with N = 42, we get about 13 digits of accuracy.
Output 21 presents the plot generated by this program, showing the curves
traced by the first 11 eigenvalues as ¢ increases from 0 to 15. Producing this
image took about half a second on my workstation. As shown in the figure, it
is almost identical to Figure 20.1 on p. 724 of the classic Handbook of Mathe-
matical Functions published by Abramowitz and Stegun in the 1960s [AbSt65].
(A few imperfections in the Handbook plot can be discerned, for example in
the slope of the ap curve at ¢ = 0.) We do not know how many seconds it
took Gertrude Blanch, the author of the chapter on Mathieu functions in the
Handbook, to produce that figure.

For our second example we turn to another classical problem of applied
mathematics, the Airy equation [AbSt65, BeOr78|. Traditionally, the Airy
equation is posed on the real line,

Ugy = TU, z € R. (9.2)

This is the canonical example of an ODE that changes type in different parts
of the domain. For x < 0, the behavior is oscillatory, while for z > 0, we get
growing and decaying exponential solutions. Being an ODE of second order,
the Airy equation has a two-dimensional linear space of solutions, and the
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Program 21

% p21.m - eigenvalues of Mathieu operator -u_xx + 2qcos(2x)u
% (compare p8.m and p. 724 of Abramowitz & Stegun)

N = 42; h = 2%pi/N; x = h*(1:N);
D2 = toeplitz([-pi~“2/(3*h"2)-1/6 ...
-.5%(-1).~(1:N-1)./sin(h*(1:N-1)/2) .~21);
qq = 0:.2:15; data = [];
for q = qq;
e = sort(eig(-D2 + 2*qg*diag(cos(2*x))))’;
data = [data; e(1:11)];
end
clf, subplot(1,2,1)
set(gca,’colororder’, [0 O 1],’linestyleorder’,’-|--’), hold on
plot(gq,data), xlabel q, ylabel \lambda
axis([0 15 -24 32]), set(gca,’ytick’,-24:4:32)

Output 21

-20

-24 -

FIGURE 20.1. Characteristic Values a,, b, r=0,1(1)6

Output 21: The first 11 eigenvalues of the Mathieu equation (9.1). Left, Fig-
ure 20.1 from Abramowitz and Stegun (1965). Right, output from Program 21.
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standard basis for this space is the pair of Airy functions Ai(x), which decays
exponentially as © — oo, and Bi(x), which grows exponentially.

To solve the Airy equation numerically on the real line by spectral meth-
ods is not entirely straightforward, because there are an infinite number of
oscillations that decay only algebraically in amplitude; there is an essential
singularity at —oo. Instead, in Program 22 we consider a slightly different
eigenvalue problem posed on a finite interval,

Ugy = ATU, u(xl)=0, —l<z<l. (9.3)

This differs from our previous eigenvalue problems in a basic way: rather than
being of the form (in linear algebra notation) Au = Au, it is a generalized
eigenvalue problem of the form Au = ABu. If B is nonsingular, then a gener-
alized eigenvalue problem can be reduced mathematically to a standard one,
B~ Au = \u. However, this is not necessarily a good idea in practice, and if
B is singular, it is impossible even in principle. Instead, alternative numerical
methods are generally used that deal with the generalized problem directly.
The most standard is known as the QZ algorithm [GoVa96]. In MATLAB
one calls upon the QZ algorithm by writing eig(A,B) instead of eig(A). We
shall not give details.

To discretize (9.3), we use a standard Chebyshev formulation for the second
derivative and a diagonal matrix for the pointwise multiplication:

Au = ABu, A= D%, B=diag(zo,...,zn).

The computation is straightforward, and it is evident from Output 22 that
we have spectral convergence, with ten or more digits of accuracy in the fifth
eigenvector.

Figure 9.1 makes the connection back to Airy functions. In solving (9.3)
we have imposed the condition u(—1) = 0 and looked for the fifth positive
eigenvalue. This is equivalent to computing Ai(z) on the interval [—L, L],
where —L = —7.944133 . .. is the location of the fifth zero of Ai(z). A rescaling
back to [—1, 1] then introduces a power L? = 501.348 ..., and that is why our
eigenvalue came out as L3. Actually, what we have just said is not exactly
true, for it assumed Ai(+L) = 0, whereas in fact, Ai(L) ~ 5.5 x 107%. What
we have computed is actually a spectrally accurate approximation of a linear
combination of Ai(Lx) plus a very small multiple, of order 10!, of Bi(Lx).
The coefficient 10 1* arises because Bi(L) ~ 109.

Our third example is a Laplace eigenvalue problem in two space dimen-
sions,

—Au+ f(z,y)u = Au, —-1<z,y<1, u=0on the boundary. (9.4)

For f = 0, we have a familiar problem easily solvable by separation of variables:
the eigenfunctions have the form

sin(kz(z + 1)) sin(ky(y + 1)),
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Program 22

% p22.m - 5th eigenvector of Airy equation u_xx = lambda*x*u

clf
for N = 12:12:48
[D,x] = cheb(N); D2 = D°2; D2 = D2(2:N,2:N);
[V,Lam] = eig(D2,diag(x(2:N))); % generalized ev problem
Lam = diag(Lam); ii = find(Lam>0);
V = V(:,ii); Lam = Lam(ii);
[foo,ii] = sort(Lam); ii = ii(5); lambda = Lam(ii);
v = [0;V(:,ii);0]; v = v/v(N/2+1)*airy(0);
xx = -1:.01:1; vv = polyval(polyfit(x,v,N),xx);
subplot (2,2,N/12), plot(xx,vv), grid on

title(sprintf (’N = %d eig = %15.10f’,N,lambda))
end
Output 22
N=12 eig=1060.0971652568 N=24 eig= 501.3517186350
6 1
4 0.5
2
0
0
_2 05
_4 L L L _1 N N :
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
N=36 eig= 501.3483797471 N =48 eig= 501.3483797111
1 1
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Output 22: Convergence to the fifth eigenvector of the Airy problem (9.3).
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Airy function Ai(7.94413359z)

-0.5 : : :
-1 -05 0 0.5 1
7.94413359% = 501.3484

Fig. 9.1. A rescaled solution of the Airy equation, Ai(\'/3x). This differs from
the solution of Output 22 by about 10~5.

where k, and k, are integer multiples of 7/2. This gives eigenvalues

71.2

4(z'2+j2), i,j=1,2,3....

Note that most of the eigenvalues are degenerate: whenever ¢ # j, the eigen-
value has multiplicity 2. For f # 0, on the other hand, (9.4) will have no
analytic solution in general and the eigenvalues will not be degenerate. Per-
turbations will split the double eigenvalues into pairs, a phenomenon familiar
to physicists.

To solve (9.4) numerically by a spectral method, we can proceed just as in
Program 16 (p. 70). We again set up the discrete Laplacian (7.5) of dimension
(N —1)? x (N —1)? as a Kronecker sum. To this we add a diagonal matrix
consisting of the perturbation f evaluated at each of the (N —1)? points of the
grid in the lexicographic ordering described on p. 68. The result is a large ma-
trix whose eigenvalues can be found by standard techniques. In Program 23,
this is done by MATLAB’s command eig. For large enough problems, it
would be important to use instead a Krylov subspace iterative method such
as the Arnoldi or (if the matrix is symmetric) Lanczos iterations, which are
implemented within MATLAB in the alternative code eigs (Exercise 9.4).

Output 23a shows results from Program 23 for the unperturbed case, com-
puted by executing the code exactly as printed except with the line L. = L +
diag(...) commented out. Contour plots are given of the first four eigen-
modes, with eigenvalues equal to 72/4 times 2, 5, 5, and 8. As predicted,
two of the eigenmodes are degenerate. As always in cases of degenerate eigen-
modes, the choice of eigenvectors here is arbitrary. For essentially arbitrary
reasons, the computation picks an eigenmode with a nodal line approximately
along a diagonal; it then computes a second eigenmode linearly independent
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Program 23

% p23.m - eigenvalues of perturbed Laplacian on [-1,1]x[-1,1]
yA (compare p16.m)

% Set up tensor product Laplacian and compute 4 eigenmodes:
N = 16; [D,x] = cheb(N); y = x;
[xx,yy] = meshgrid(x(2:N),y(2:N)); xx = xx(:); yy = yy(:);
D2 = D°2; D2 = D2(2:N,2:N); I = eye(N-1);
L = -kron(I,D2) - kron(D2,I); % Laplacian
L = L + diag(exp(20*(yy-xx-1))); % + perturbation
[V,D] = eig(L); D = diag(D);
[D,ii] = sort(D); ii = ii(1:4); V = V(:,ii);

% Reshape them to 2D grid, interpolate to finer grid, and plot:
[xx,yy] = meshgrid(x,y);
fine = -1:.02:1; [xxx,yyy] = meshgrid(fine,fine);
uu = zeros (N+1,N+1);
[ay,ax] = meshgrid([.56 .04],[.1 .5]1); clf
for i = 1:4
uu(2:N,2:N) = reshape(V(:,i),N-1,N-1);
uu = uu/norm(uu(:),inf);
uuu = interp2(xx,yy,uu,XxX,yyy,’ cubic’);
subplot (’position’, [ax(i) ay(i) .38 .38])
contour (fine,fine,uuu,-.9:.2:.9)
colormap([0 O 0]); axis square
title([’eig = ’ num2str(D(i)/(pi~2/4),°%18.12f’) ’\pi~2/4°])
end

of the first (though not orthogonal to it), with a nodal line approximately on
the opposite diagonal. An equally valid pair of eigenmodes in this degenerate
case would have had nodal lines along the z and y axes.

A remarkable feature of Output 23a is that although the grid is only of
size 16 X 16, the eigenvalues are computed to 12-digit accuracy. This reflects
the fact that one or two oscillations of a sine wave can be approximated to
better than 12-digit precision by a polynomial of degree 16 (Exercise 9.1).

Output 23b presents the same plot with the perturbation in (9.4) included,
with

f(z,y) = exp(20(y — z — 1)).

This perturbation has a very special form. It is nearly zero outside the upper
left triangular region, one-eighth of the total domain, defined by y — x > 1.
Within that region, however, it is very large, achieving values as great as
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Output 23a
eig = 2.0000000000007¢/4 eig = 5.0000000000031¢/4
1 1
0.5 0.5
0 0
0.5 0.5
-1 -1
1 05 0 05 1 1 05 0 05 1
eig = 5.0000000000041¢/4 eig = 8.0000000000071/4
1 1
0.5 0.5 @ @
0 0
-1 -1
1 05 0 05 1 1 05 0 05 1

Output 23a: First four eigenmodes of the Laplace problem (9.4) with f(z,y) =
0. These plots were produced by running Program 23 with the “+ perturbation”
line commented out.

4.8 x 108. Thus this perturbation is not small at all in amplitude, though it is
limited in extent. It is analogous to the “barrier functions” utilized in the field
of optimization of functions with constraints. The effect on the eigenmodes
is clear. In Output 23b we see that all four eigenmodes avoid the upper left
corner; the values there are very close to zero. It is approximately as if we had
solved the eigenvalue problem on the unit square with a corner snipped off.
All four eigenvalues have increased, as they must, and the second and third
eigenvalues are no longer degenerate. What we find instead is that mode 3,
which had low amplitude in the barrier region, has changed a little, whereas
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Output 23b
eig = 2.1164236521531/4 eig = 5.0235853983031%/4
1 1
05 05
0 0
05 05
-1 -1
1 05 0 05 1 1 05 0 05 1
eig = 5.5489081018341%/4 eig = 8.6428044497901%/4
1 1
05 05 .
0 0
-05 -05 @ D
-1 -1
1 05 0 05 1 1 05 0 05 1

Output 23b: First four eigenmodes of the perturbed Laplace problem (9.4) with
f(z,y) = exp(20(y—x—1)). These plots were produced by running Program 23
as written.

mode 2, which had higher amplitude there, has changed quite a lot. These
computed eigenvalues, by the way, are not spectrally accurate; the function
f varies too fast to be well resolved on this grid. Experiments with various
values of N suggest they are accurate to about three or four digits.

All of our examples of eigenvalue problems so far have involved self-adjoint
operators, whose eigenvalues are real and whose eigenvectors can be taken to
be orthogonal. Our spectral discretizations are not in fact symmetric matrices
(they would be, if we used certain Galerkin rather than collocation methods),
but they are reasonably close in the sense of having eigenvectors reasonably
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close to orthogonal so long as the corresponding eigenvalues are distinct. In
general, a matrix with a complete set of orthogonal eigenvectors is said to be
normal. Normal and nearly normal matrices are the ones whose eigenvalue
problems are unproblematic, relatively easy both to solve and to interpret
physically.

In a certain minority of applications, however, one encounters matrices or
operators that are very far from normal in the sense that the eigenvectors, if a
complete set exists, are very far from orthogonal-—they form an ill-conditioned
basis of the vector space under study. In highly nonnormal cases, it may be
informative to compute pseudospectra* rather than spectra [Tre97, TTRD93,
Wri00]. Suppose that a square matrix A is given and || - || is a physically
relevant norm. For each € > 0, the e-pseudospectrum of A is the subset of the
complex plane

A(A) = {z€C: ||(zf =AY >t (9.5)

(We use the convention ||(2I — A)™'|| = oo if z is an eigenvalue of A.) Alter-
natively, A¢(A) can be characterized by eigenvalues of perturbed matrices:

Ac(A) = {z € C: zis an eigenvalue of A + E for some E with || E|| < €}.
(9.6)

If || - || is the 2-norm, as is convenient and physically appropriate in most
applications (sometimes after a diagonal similarity transformation to get the
scaling right), then a further equivalence is

A(A) ={z € C: opn(zl — A) <€}, (9.7)

where o,;, denotes the minimum singular value.

Pseudospectra can be computed by spectral methods very effectively, and
our final example of this chapter illustrates this. The example returns to the
harmonic oscillator (4.6), except that a complex coefficient ¢ is now put in
front of the quadratic term. We define our linear operator L by

Lu = —ugy + cx’u, z € R. (9.8)

The eigenvalues and eigenvectors for this problem are readily determined ana-
lytically: they are \/c (2k-+1) and exp(—c'/222/2) Hy(c/*x) for k = 0,1,2,. ..,
where Hy is the kth Hermite polynomial [Exn83]. However, as E. B. Davies
first noted [Dav99], the eigenmodes are exponentially far from orthogonal.
Output 24 shows pseudospectra for (9.8) with ¢ = 1 + 3i computed in a

*Pseudospectra (plural of pseudospectrum) are sets in the complex plane; pseudospectral
methods are spectral methods based on collocation, i.e., pointwise evaluations rather than
integrals. There is no connection—except that pseudospectral methods are very good at
computing pseudospectra!
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straightforward fashion based on (9.7). We discretize L spectrally, evaluate
Omin(2] — L) on a grid of points z;;, then send the results to a contour plotter.

For the one and only time in this book, the plot printed as Output 24 is
not exactly what would be produced by the corresponding program as listed.
Program 24 evaluates oy,i,(2] — L) on a relatively coarse 26 x 21 grid; after
546 complex singular value decompositions, a relatively crude approximation
to Output 24 is produced. For the published figure, we made the grid four
times finer in each direction by replacing 0:2:50 by 0:.5:50 and 0:2:40
by 0:.5:40. This slowed down the computation by a factor of 16. (As it
happens, alternative algorithms can be used to speed up this calculation of
pseudospectra and get approximately that factor of 16 back again; see [Tre99,
Wri00].)

One can infer from Output 24 that although the eigenvalues of the complex
harmonic oscillator are regularly spaced numbers along a ray in the complex
plane, all but the first few of them would be of doubtful physical significance
in a physical problem described by this operator. Indeed, the resolvent norm
appears to grow exponentially as |z| — oo along any ray with argument be-
tween 0 and argc, so that every value of z sufficiently far out in this infinite
sector is an e-pseudoeigenvalue for an exponentially small value of e.

We shall see three further examples of eigenvalue calculations later in the
book. We summarize the eigenvalue examples ahead by continuing the table
displayed at the beginning of this chapter:

Program 28: circular membrane, polar coordinates;
Program 39: square plate, clamped boundary conditions;
Program 40: Orr—-Sommerfeld operator, complex arithmetic.

Summary of This Chapter. Spectral discretization can turn eigenvalue and
pseudospectra problems for ODEs and PDEs into the corresponding problems
for matrices. If the matrix dimension is large, it may be best to solve these
by Krylov subspace methods such as the Lanczos or Arnoldi iterations.

Exercises

9.1. Modify Program 23 so that it produces a plot on a log scale of the error
in the computed lowest eigenvalue represented in the first panel of Output 23a as
a function of N. Now let 7 > 0 be fixed and let Ey = inf, ||p(z) — sin(72)||oo,
where || f[loo = supge_1,17[f(2)[, denote the error in degree N minimax polynomial
approximation to sin(rz) on [—1,1]. It is known (see equation (6.77) of [Mei67])
that for even N, as N — oo, Exy ~ 27NN+ /(N 4+ 1)!. Explain which value
of 7 should be taken for this result to be used to provide an order of magnitude
estimate of the results in the plot. How close is the estimate to the data? (Compare
Exercise 5.3.)
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Program 24

% p24.m - pseudospectra of Davies’s complex harmonic oscillator
% (For finer, slower plot, change 0:2 to 0:.5.)

% Eigenvalues:
N = 70; [D,x] = cheb(N); x = x(2:N);
L =6; x=Lxx; D=D/L; % rescale to [-L,L]
A =-D"2; A = A(2:N,2:N) + (1+3i)*diag(x."2);
clf, plot(eig(A),’.’, ’markersize’,14)
axis([0 50 0 40]), drawnow, hold on

% Pseudospectra:

x = 0:2:50; y = 0:2:40; [xx,yy] = meshgrid(x,y); zz = xx+lixyy;
I = eye(N-1); sigmin = zeros(length(y),length(x));
h = waitbar(0,’please wait...’);

for j = 1:length(x), waitbar(j/length(x))

for i = 1:length(y), sigmin(i,j) = min(svd(zz(i,j)*I-A)); end
end, close(h)
contour(x,y,sigmin,10."(-4:.5:-.5)), colormap([0 0 0]);

40 T T

Output 24

35

30

25

20

15F

10

0 Il Il Il Il Il Il Il Il Il
0 5 10 15 20 25 30 35 40 45 50

Output 24: Figenvalues and e-pseudospectra in C of the complex harmonic
oscillator (9.8), c=1+3i, e =107%5 1071, 10715 ... 10~
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9.2. A® (BRC)=(A®B)Q®C: True or false?

9.3. Modify Program 23 so that it finds the lowest eigenvalue of the Laplacian on
the cube [—1,1]® rather than the square [—1,1]%2. For N = 6 and 8, how big is the
matrix you are working with, how accurate are the results, and how long does the
computation take? Estimate what the answers would be for N = 12.

9.4. In continuation of Exercise 9.3, you can solve the problem with N = 12 if you
use MATLAB’s iterative eigenvalue solver eigs rather than its “direct” solver eig.
Modify your code further to use eigs, and be sure that eigs is given a sparse matrix
to work with (putting speye instead of eye in your code will ensure this). With
N =12, how long does the computation take, and how accurate are the results?

9.5. Consider a circular membrane of radius 1 that vibrates according to the

second-order wave equation y,;, = 7' (ry,), + "2y, y(1,t) = 0, written in po-
lar coordinates. Separating variables leads to consideration of solutions y(r,6,t) =
u(r)e™l et with u(r) satisfying r—(ru,), + (W? — r2?m?)u = 0, u,(0) = 0,

u(1) = 0. This is a second-order, linear ODE boundary value problem with homo-
geneous boundary conditions, so one solution is u(r) = 0. Nonzero solutions will
only occur for eigenvalues w of the equation

rru,), —r imPu = —w?u, u,(0) = u(1) = 0. (9.9)

This is a form of Bessel’s equation, and the solutions are Bessel functions J,, (wr),
where w has the property J,,(w) = 0. Write a MATLAB program based on a
spectral method that, for given m, constructs a matrix whose smaller eigenvalues
approximate the smaller eigenvalues of (9.9). (Hint. One method of implementing
the Neumann boundary condition at » = 0 is described on p. 137.) List the ap-
proximations to the first six eigenvalues w produced by your program for m = 0,1
and N = 5,10, 15, 20.

9.6. In continuation of Exercise 9.5, the first two eigenvalues for m = 1 differ nearly,
but not quite, by a factor of 2. Suppose, with musical harmony in mind, we wish to
design a membrane with radius-dependent physical properties such that these two
eigenvalues have ratio exactly 2. Consider the modified boundary value eigenvalue
problem

Tﬁl(p(r)’rur)'r —r *mPu = _w2ua U’I’(O) = u(l) =0,

where p(r) = 1+ asin?(nr) for some real number o. Produce a plot that shows the
first eigenvalue and % times the second eigenvalue as functions of a. For what value
of a do the two curves intersect? By solving numerically an appropriate nonlinear
equation, determine this critical value of a to at least six digits. Can you explain
why a correction of the form ap(r) modifies the ratio of the eigenvalues in the
direction required?

9.7. Exercise 6.8 (p. 59) considered powers of the Chebyshev differentiation matrix
Dp. For N = 20, produce a plot of the eigenvalues and e-pseudospectra of Dy for
e=10"2,10"3,...,10~ . Comment on how this plot relates to the results of that
exercise.
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9.8. Download the MATLAB programs from [Wri00] for computing pseudospectra
and use them to generate a figure similar to Output 24. How does the computation

time compare to that of Program 247



