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Preface

This book is an extended version of lectures given by the first author in 1995–1996
at the Department of Mechanics and Mathematics of Moscow State University. We
believe that a major part of the book can be regarded as an additional material to the
standard course of Hamiltonian mechanics. In comparison with the original Russian
version1 we have included new material, simplified some proofs and corrected mis-
prints.

Hamiltonian equations first appeared in connection with problems of geometric
optics and celestial mechanics. Later it became clear that these equations describe a
large class of systems in classical mechanics, physics, chemistry, and other domains.
Hamiltonian systems and their discrete analogs play a basic role in such problems as
rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation
in quantum mechanics, cosmological models, dynamics of particles in an acceler-
ator, billiards and other systems with elastic reflections, many infinite-dimensional
models in mathematical physics, etc.

In this book we study Hamiltonian systems assuming that they depend on some
parameter (usually ε), where for ε = 0 the dynamics is in a sense simple (as a rule,
integrable). Frequently such a parameter appears naturally. For example, in celestial
mechanics it is accepted to take ε equal to the ratio: the mass of Jupiter over the
mass of the Sun. In other cases it is possible to introduce the small parameter arti-
ficially. For example, if we are interested in trajectories near an invariant manifold,
where the dynamics is known (in the simplest case the manifold is an equilibrium of
the system), we can take as such a parameter the distance to the manifold. In some
systems it is possible to use as a small parameter the quantity inverse to the total en-
ergy. In particular, the problem of the motion of a particle on a compact Riemannian
manifold M in a potential force field for large values of the energy is close to the
problem of geodesic lines on M .

A standard example of a Hamiltonian system depending on a small parameter is
presented by the equations

1 D. Treschev. Introduction to the perturbation theory of Hamiltonian systems. Moscow, Phasis
1998 (in Russian).
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ẋ = ∂H/∂y, ẏ = −∂H/∂x, (1)

H(x, y, ε) = H0(y) + εH1(x, y) + ε2H2(x, y) + · · · . (2)

Here y belongs to some domain in R
m and x mod 2π is a point of the m-dimensional

torus T
m. The Hamiltonian H can depend explicitly on time t . The dependence on

time is usually periodic. We assume that the function H is infinitely smooth in all
arguments. Systems of form (1)–(2) are below called close to integrable or near-
integrable.

Poincaré called the studying of near-integrable systems the basic problem of
the dynamics. At present Poincaré’s “basic problem of the dynamics” continues to
occupy one of the most important places in the theory of dynamical systems.

Frequently it is more convenient to consider instead of Hamiltonian systems
their discrete analogs, symplectic maps, i.e., self-maps of the phase space that pre-
serve the symplectic structure (in the classical situation the form dy ∧ dx). Near-
integrable symplectic maps have the form

(
x

y

)
�→

(
x + ∂f/∂y

y

)
+ O(ε), (3)

where f = f (y) is a smooth function. The perturbation theory for such systems is
parallel to the corresponding theory for Hamiltonian systems (1)–(2).

The basic problems considered in the book are integrability of systems (1)–(2)
and (3), existence of invariant tori, and the description of chaos for small values of
the parameter ε. Chapter 7 is unusual from this point of view since there we study
systems which are, on the contrary, very far from integrable ones.

Naturally, we are not able to discuss all methods and problems of the Hamil-
tonian perturbation theory. In particular, Hamiltonian systems with an infinite num-
ber of degrees of freedom, systems with a degenerate Poisson bracket, the theory of
normal forms, and the theory of singular perturbations are not presented here.

The first chapter can be regarded as a technical introduction. A reader familiar
with such concepts as symplectic structures, Poisson brackets, Hamiltonian vector
fields, the Poincaré maps, and Liouville integrability, can skip the first two sections.
In Sect. 1.3 the problem of the representation of a given diffeomorphism as the
Poincaré map for some non-autonomous system of ordinary differential equations is
discussed. In Sect. 1.4 we present the procedure of the classical perturbation theory
and the Poincaré theorem on nonintegrability.

In Chap. 2 we discuss basic ideas and results of the Kolmogorov–Arnold–Moser
(KAM) theory. KAM theory is a collection of theorems on the preservation of quasi-
periodic motions after a perturbation of the system.2 Such motions lie on invariant
tori in the phase space. We present results about the preservation of Lagrangian and
lower-dimensional tori. Special attention is devoted to hyperbolic tori which play an
important role in the perturbed dynamics. We prove convergence of the KAM pro-
cedure in one of the simplest model examples, where the problem of small divisors

2 KAM-theory also contains reversible, volume-preserving, and dissipative versions which are not
discussed here.
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appears. KAM theory explains many dynamical effects in perturbed systems. Some
of these effects are shortly discussed in Sect. 2.6.

In Chap. 3 we present the Poincaré–Melnikov theory of the splitting of as-
ymptotic manifolds (separatrices), including both traditional and multidimensional
cases. Separatrix splitting is known as one of fundamental dynamical phenomena,
generating chaos in perturbed systems.

In Chap. 4 we construct the separatrix map for a two-dimensional symplectic
map and for a Hamiltonian system with one and a half degrees of freedom. The
separatrix map is the main tool which is used in Chap. 5, where we analyze the
stochastic layer appearing in the vicinity of separatrices, generated by a hyperbolic
fixed point of a two-dimensional symplectic diffeomorphism. We present several
asymptotic formulas describing quantitatively stochastic layers in systems close to
integrable.

In Chap. 6 a special averaging procedure is described. This procedure was orig-
inally invented for the analysis of exponentially small effects in near-integrable
Hamiltonian systems. Later it turned out to be effective in other problems, and even
outside the Hamiltonian perturbation theory. We apply the procedure in the proof of
the theorem on an inclusion of a diffeomorphism into a flow and in the analysis of
one-frequency slow-fast systems.

In Chap. 7 we consider systems far from integrable. We prove a generalized
version of the Aubry–Abramovici theorem on the anti-integrable limit. Probably,
the anti-integrable limit can be regarded as methodically the simplest introduction
to symbolic dynamics.

In Chap. 8, written jointly with Serge Bolotin, we discuss various versions of
the Hill formula. This formula connects geometric and dynamical properties of a
periodic solution of a Lagrangian system. The first ones are determined by the char-
acteristic polynomial of the monodromy matrix while the second by the determi-
nant of the corresponding Hesse matrix, its generalizations and regularizations. As
a corollary we obtain sufficient conditions for dynamical stability or instability of
the solution in terms of its Morse index.

We present also several number-theoretic statements concerning the Diophan-
tine properties of the frequency vectors. The corresponding results are gathered in
Sect. 9.1. In Sect. 9.2 we prove two theorems on the coincidence of closures of
the stable and unstable separatrix in a two-dimensional area-preserving map. Sec-
tion 9.3 contains results on the difference of frequency vectors on two KAM-tori, sit-
uated from two different sides with respect to a resonance. In Sect. 9.4 we show that
separatrix lobes of near-integrable systems can contain stability islands. In Sect. 9.5
we gather some facts from functional analysis necessary for proofs dealing with the
continuous averaging method. The main technical tools we need are the Schauder
and Nirenberg–Nishida theorems.

Chapters 2–8 of the book can be regarded independent with the following ex-
ception: methods used in Chap. 5 are based on results of Chap. 4.

Now several words about the notation. The sets of complex, real, rational, inte-
ger, and natural numbers are as usual denoted C, R, Q, Z, and N respectively. The
one-dimensional torus T = R/(2πZ) (sometimes we assume that T = R/Z). If we
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want to indicate the coordinate used on a given set, we write this coordinate as a
subscript. For example Ry is the real line with the coordinate y.

Vectors appearing below are regarded as columns. To obtain a row we use the
operation of matrix transposition T . For example, v ∈ R

m is a column vector and
vT is a row vector.

The standard inner product in R
m is denoted 〈 , 〉: for any two vectors u =

(u1, . . . , um)T , v = (v1, . . . , vm)T we have 〈u, v〉 = ∑m
j=1 ujvj . Note that a more

careful consideration shows that u and v in expressions like 〈u, v〉 are usually ele-
ments of dual vector spaces, so 〈 , 〉 can be regarded as the operation of pairing of a
vector and a covector.

Functions of order n with respect to the variable y for small |y| are denoted
On(y). A dot denotes differentiation with respect to time t . For example, ẏ = dy/dt .

We usually reserve the letter i to denote of the imaginary unit and the symbol �
to denote the end of a proof.

Section n of Chapter m is called Section m.n. Theorems and other statements
are numerated as follows:

the number of the chapter . the number of the statement.

Formulas also have double numbers:

(the number of the chapter . the number of the formula).

During the work on the book we benefited much from communications with our
friends and colleagues Valery Kozlov, Serge Bolotin, Anatoly Neishtadt, and Gena
Piftankin. We are grateful to them and to many other people, forming the dynamical
systems community, inside which the results presented below were born. The work
was supported by Russian Foundation of Basic Research grant 08-01-00681-a.

Moscow Dmitry Treschev
Oleg Zubelevich
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Chapter 1
Hamiltonian Equations

1.1 Hamiltonian Systems: Geometric Point of View

It is well known that the form

q̇ = ∂H/∂p, ṗ = −∂H/∂q (1.1)

of the Hamiltonian equations is preserved only by canonical (symplectic) changes
of variables. On the other hand it is clear that specific properties of Hamiltonian
systems should be presented independently of local coordinates on the phase space.
In this section we discuss the invariant nature of Hamiltonian equations. Since the
corresponding material is essentially standard, see for example [1, 9]; we usually
skip proofs.

Hamiltonian vector fields. Recall that a smooth manifold M , dim M = 2m, en-
dowed with a nondegenerate closed differential 2-form ω (a symplectic structure) is
called a symplectic manifold. In local coordinates

ω =
∑

1≤j<k≤2m

ajk(z) dzj ∧ dzk, ajk = −akj , dω = 0. (1.2)

According to the definition of the symplectic structure, the matrix A = (ajk) is
nondegenerate and skew-symmetric. The condition dω = 0 is equivalent to the
equations

∂ajk

∂zl

+ ∂akl

∂zj

+ ∂alj

∂zk

= 0

for any three indices 1 ≤ j < k < l ≤ 2m.
According to the Darboux theorem (see for example [10]), in a neighborhood

of any point of a symplectic manifold there exist local coordinates (q, p) such that
ω = ∑m

j=1 dpj ∧ dqj . The matrix A takes the form A = (
0 −I
I 0

)
, where I is the

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_1, © Springer-Verlag Berlin Heidelberg 2010
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2 1 Hamiltonian Equations

identity (m × m) matrix. Such coordinates are called canonical or symplectic.1 The
coordinates p and q are called canonically conjugate to one another.

The diffeomorphism f : M1 → M2 of two symplectic manifolds (M1, ω1) and
(M2, ω2) is called symplectic (or a symplectomorphism) if it maps one symplectic
structure to another: f ∗ω2 = ω1. Hence, the Darboux theorem asserts that any two
symplectic manifolds of the same dimension are locally symplectomorphic.

Let N be an m-dimensional manifold and T ∗N the corresponding cotangent bun-
dle. In local coordinates the symplectic structure has the form ω = dp ∧ dq, where
q = (q1, . . . , qm) are coordinates on N and p = (p1, . . . , pm) are coordinates on
the fiber T ∗

q N dual to the coordinates dq1, . . . , dqm on the fiber TqN of the tangent
bundle T N . Such symplectic manifolds play an important role in classical mechan-
ics.

Recall that the Legendre transform of the Lagrangian system

d

dt

∂L

∂q̇
− ∂L

∂q
= 0, L = L (q, q̇, t),

where the Lagrangian function L is convex in the velocities q̇ and the configu-
rational space is N , is a Hamiltonian system whose phase space is the symplectic
manifold (T ∗N, dp ∧ dq).

It is generally accepted to regard the Hamiltonian presentation of the dynam-
ics as more perfect in comparison with the Lagrangian presentation. The reason
is as follows. In the Lagrangian presentation we can simplify the coordinate form
of the Lagrangian function L by using only changes of coordinates on the con-
figurational space N : the corresponding transformation of the velocities q̇ is then
uniquely determined. In the Hamiltonian presentation we usually want to preserve
the canonical form of the symplectic structure dp ∧ dq. However even this class of
admissible (canonical) coordinate changes is much wider than the extension to the
phase space of coordinate changes on the configurational space. This circumstance
is especially important in the theory of integrable systems as well as in the perturba-
tion theory. However it is necessary to keep in mind one important advantage of the
Lagrangian formalism: convenient variational principles, primarily the Hamilton’s
principle δ

∫ t1
t0

L (q, q̇, t) dt = 0. Due to this in some situations the Lagrangian
presentation is more adequate. We will see this in Chaps. 7 and 8.

Now let us return to the geometry of the phase space in the Hamiltonian formal-
ism. The submanifold L in a symplectic manifold is called symplectic if the restric-
tion of the form ω to L is nondegenerate. If ω|L = 0 then L is called isotropic. An
isotropic m-dimensional submanifold is called Lagrangian. For example, for any
smooth S : N → R the manifold

LS = {(q, p) ∈ T ∗N : p = ∂S/∂q}
1 Note that in the literature there is no unique tradition concerning definitions of canonical form of
the symplectic structure and of the Poisson bracket: in different textbooks these objects can differ
by sign.
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is Lagrangian. If S ≡ 0, LS is the zero section of the cotangent bundle T ∗N . Below
we need two generalizations of the Darboux theorem (see for example [10]).

Theorem 1.1. A small neighborhood of the Lagrangian submanifold L in the sym-
plectic manifold (M,ω) is symplectomorphic to a neighborhood of the zero section
in the bundle T ∗L.

Theorem 1.2. Let ω0, ω1 be two symplectic structures on M and let their restric-
tions to a submanifold N ⊂ M coincide. Suppose that ω0 can be continuously
deformed to ω1 in the class of symplectic structures on M coinciding on N with
ω0|N = ω1|N . Then there exist neighborhoods U0 and U1 of N and a diffeomor-
phism g : U0 → U1 identical on N which transforms ω1|U1 to ω0|U0 : g∗ω1 = ω0.

The condition about the possibility to deform ω0 to ω1 is satisfied for example if
ω0 and ω1 coincide on any pair of vectors from T M issuing from a point of N (this
is a stronger condition than ω0|N = ω1|N ). In this case the forms ω0 + (1 − s)ω1,
0 ≤ s ≤ 1, do not degenerate in a neighborhood of N .

By (1.2) for any point z ∈ M and any two vectors u, v ∈ TzM

ω(u, v) = 〈u,Av〉, A = (ajk(z)) = −AT .

Then A can be regarded as a linear operator acting from the tangent space TzM at
an arbitrary point z ∈ M to the cotangent space T ∗

z M:

v �→ Av = ω(·, v), v ∈ TzM,

where the covector ω(·, v), applied to the vector u, yields ω(u, v). Since A is non-
degenerate, it is a linear isomorphism of the spaces TzM and T ∗

z M . Let J be the
inverse isomorphism:

〈f, u〉 = ω(u, Jf ) for any u ∈ TzM, f ∈ T ∗
z M,

where 〈f, u〉 is the action of the covector f on the vector v.
Let H be a function on M . Then the 1-form dH defines vH = JdH , which

is called the Hamiltonian vector field associated with the Hamiltonian function H .
Then

〈dH, ·〉 = ω(·, vH ).

Thus a Hamiltonian system is determined by the triple (M,ω,H) and m is said to be
the number of degrees of freedom. It is easy to check that in canonical coordinates
p, q the Hamiltonian equations ż = vH (z) have the usual form (1.1).

For any system (M,ω,H) the function H is a first integral, i.e., it preserves its
value on any solution. Indeed,

Ḣ = 〈dH, vH 〉 = ω(vH , vH ) = 0.

Usually H is called the energy integral.
Below we frequently consider nonautonomous systems. Their Hamiltonians de-

pend explicitly on time. The extended phase space of such a system is the direct
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product of the manifold M and the real time axis R or M × T if the dependence on
time is periodic. In the latter case we say that the system has m + 1/2 degrees of
freedom.

Any autonomous system (M,ω,H) can be locally reduced on the level of the
energy integral H = h to a nonautonomous system (isoenergetic reduction). The
main idea of this procedure is to decrease the dimension of the phase space. In
canonical local coordinates (q, p) near a nonsingular point (q0, p0) this reduction
looks as follows. Let pj be the coordinate such that ∂H/∂pj �= 0. Without loss
of generality j = m. Taking qm as a new time qm = τ , d/dτ = (·)′ and putting
q̃ = (q1, . . . , qm−1), p̃ = (p1, . . . , pm−1), we define the new Hamiltonian function
K(q̃, p̃, τ, h) as a solution pm = −K of the equation H = h with respect to pm.
Then the system (M,ω,H), H = h, is locally equivalent to the nonautonomous
system

˙̃q = ∂K

∂p̃
, ˙̃p = −∂K

∂q̃
.

The nonautonomous case can be reduced to the autonomous one with the help
of the following standard trick, called the autonomization. Introduce the new phase
variable E and the new independent variable τ = t + const, d/dτ = (·)′. We
assume that E is the momentum canonically conjugate to the time variable t . The
value of the constant in the definition of τ plays no role. In particular, it is possible
to take this constant equal to zero and to identify τ and t . The system (M × Rt ×
RE, ω + dE ∧ dt,H + E) has the form

q ′ = ∂H

∂p
, p′ = −∂H

∂q
, t ′ = 1, E′ = −∂H

∂t
, (·)′ = d

dτ
. (1.3)

Therefore it implies (M,ω,H) in the sense that trajectories of system (1.3), being
projected to the space M × Rt , give solutions of the system (M,ω,H).

We see that it is possible to consider only the autonomous case. However some
formulas and statements look simpler for nonautonomous systems.

Theorem 1.3. For any pair of real numbers τ1, τ2 the shift g
τ2
τ1 along solutions of a

(may be, nonautonomous) Hamiltonian system, when the time passes from t = τ1 to
t = τ2, preserves the form ω on the phase space.

In the autonomous case the maps g
τ2
τ1 = g

τ2−τ1
0 form a one-parameter transfor-

mation group of M . This group is called the phase flow gt or gt
H .

Corollary 1.1. The phase flow gt
H of an autonomous Hamiltonian system preserves

the symplectic structure: (gt
H )∗ω = ω.

Corollary 1.2. The transformations g
τ2
τ1 preserve the forms ω(k) = ω ∧ · · · ∧ ω︸ ︷︷ ︸

k times

.

In particular, the maps g
τ2
τ1 preserve the canonical volume form dp1 ∧· · ·∧dpm ∧

dq1 ∧ · · · ∧ dqm, since it is proportional to ω(m).
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In general not all closed 1-forms are exact. Primitives of such forms are multi-
valued functions. If we take such a function as a Hamiltonian, the corresponding
Hamiltonian vector field is obviously single-valued. Vector fields obtained in this
way are called locally Hamiltonian. It is easy to notice that Theorem 1.3 remains
true if we assume that the system is locally Hamiltonian. Due to this observation the
following theorem can be regarded as inverse to Theorem 1.3.

Theorem 1.4. Suppose that for any finite time interval the corresponding shift along
solutions of the systems ż = v(z, t), z ∈ M , preserves the symplectic structure. Then
the vector field v is locally Hamiltonian.

The Poisson bracket. Recall that the vector space L together with the bilinear skew-
symmetric operation (the commutator) [ , ] : L × L → L satisfying the Jacobi
identity

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0, A,B,C ∈ L,

is called a Lie algebra.
The simplest example of a Lie algebra is the space of square matrices of a fixed

order, where [A,B] = AB − BA.
The Lie algebra of smooth vector fields on M is a more important example for

us. Here the commutator is introduced as follows. Any vector field v determines
on the space C∞(M) the differential operator ∂v . The coordinate definition of ∂v is∑

vj ∂/∂zj . Conversely, any differential operator of the first order uniquely deter-
mines a vector field.

For any two smooth vector fields u, v the differential operator [∂u, ∂v] = ∂u∂v −
∂v∂u is of first order. Therefore, it determines a vector field. This vector field is
called the commutator of u and v.

Theorem 1.5. Let u, v be smooth vector fields on M and gt
u, g

s
v their phase flows.

Then gt
u and gs

v commute2 if and only if [u, v] = 0.

If the vector fields u and v commute, v is called the symmetry field for the system
ż = u(z) and vice versa. As a corollary we obtain that the phase flow of a symmetry
field maps solutions of a system of ordinary differential equations to solutions of the
same system.

For any smooth function H on the symplectic manifold M we put ∂H = ∂vH
,

where vH is the Hamiltonian vector field with Hamiltonian H .
Let F and H be two smooth functions on M . The Poisson bracket of these func-

tions is defined as follows:

{H,F } = ∂H F = (dF, vH ).

(The first equation is a definition while the second one is an identity.) The functions
H and F , satisfying the equality {H,F } = 0, are said to commute or to be in
involution.

2 I.e., gt
u ◦ gs

v = gs
v ◦ gt

u.



6 1 Hamiltonian Equations

There are several properties of the Poisson bracket which follow directly from
the definition.

1. The smooth function F is a first integral of the system with Hamiltonian H if
and only if {H,F } = 0.

2. {H,F } = ω(vH , vF ). Indeed, from the definition of vH we have: (dF, vH ) =
ω(vH , vF ).

3. The operation { , } is bilinear and skew-symmetric.
4. In canonical coordinates ∂H = ∂H

∂p
∂
∂q

− ∂H
∂q

∂
∂p

. Therefore

{H,F } =
∑
j

(
∂F

∂qj

∂H

∂pj

− ∂F

∂pj

∂H

∂qj

)
.

5. The Poisson bracket satisfies the Jacobi identity

{{F,G},H } + {{G,H }, F } + {{H,F },G} = 0.

Hence, the space (C∞(M), { , }) is a Lie algebra.
Note that any Poisson bracket generated by a symplectic structure is non-degene-

rate, i.e., for any z ∈ M and any function F such that dF(z) �= 0 there exists a
function G such that {F,G}(z) �= 0. In some physical models degenerate Poisson
brackets appear, but below we do not consider such cases.

Theorem 1.6. For any two smooth functions F and G on M

[vF , vG] = v{F,G}.

Proof. Let ϕ be an arbitrary function on M . Then

∂{F,G}ϕ = {{F,G}, ϕ} = −{{G,ϕ}, F } − {{ϕ, F },G}
= {F {G,ϕ}} − {G{F, ϕ}}
= ∂F ∂Gϕ − ∂G∂F ϕ = [∂F , ∂G]ϕ. ��

The Liouville theorem on integrability. Let the system (M,ω,H) have m first
integrals in involution:

F1, . . . , Fm, {Fj , Fk} = 0, 1 ≤ j, k ≤ m.

Usually it is assummed that F1 = H . We assume that flows of the vector fields vFj

are complete.
Consider the manifold

Mf = {z ∈ M : Fj (z) = fj = const, j = 1, . . . , m}. (1.4)

Theorem 1.7 (Liouville-Arnold). Suppose that on Mf the functions Fj are inde-
pendent. Then
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(1) Mf is a smooth manifold invariant with respect to the system ż = vH .
(2) Each compact connected component of Mf is diffeomorphic to the m-dimension-

al torus T
m.

(3) In some coordinates (ϕ1, . . . , ϕm) mod 2π on T
m the Hamiltonian equations

have the form ϕ̇ = ν = ν(f ).

Systems satisfying the conditions of Theorem 1.7 almost everywhere on Mf are
called Liouville integrable.

Remark 1.1. Any Liouville integrable system is integrable by quadratures in a neigh-
borhood of the invariant manifold Mf . Initially it is this fact which was called the
Liouville theorem. Arnold has discovered that Liouville integrable systems possess
the geometric structure described in Theorem 1.7.

Proof. Assertion (1) obviously follows from the implicit function theorem. Con-
sider the Hamiltonian vector fields vj = vFj

, j = 1, . . . , m. They are tangent to
the manifold Mf since for any j, k ∈ {1, . . . , m} we have: ∂vj

Fk = {Fj , Fk} = 0.
Moreover, these vector fields are linearly independent at any point of Mf and com-
mute. The independence follows from the independence of the covectors dFj and
from the nondegeneracy of the operator J . Commutators of the fields v1, . . . , vm

satisfy the equations
[vj , vk] = v{Fj ,Fk} = 0.

To finish the proof of Theorem 1.7 we use the following geometric lemma (see
for example [9]). ��
Lemma 1.1. Suppose that on a compact connected m-dimensional manifold there
are m everywhere linearly independent commuting vector fields with complete flows.
Then the manifold is diffeomorphic to the m-dimensional torus T

m. Moreover, there
are angular coordinates (ϕ1, . . . , ϕm) mod 2π on the manifold such that all these
vector fields have constant components.

Remark 1.2. The restriction of the form ω to Mf vanishes, i.e., Mf is a Lagrangian
manifold. Indeed, the vector fields v1, . . . , vm are pairwise skew-orthogonal (ω(vj ,

vk) = {Fj , Fk} = 0) and form bases in tangent spaces to Mf .

Invariant Lagrangian tori of Liouville integrable systems are called Liouville tori.
In a neighborhood of a Liouville torus on the phase space it is possible to intro-
duce convenient canonical coordinates: the action-angle variables (I, ϕ). The coor-
dinates ϕ are the same as in Lemma 1.1, and I = (I1, . . . , Im) are functions of the
first integrals F1, . . . , Fm. In the new variables the Hamiltonian function H = H(I)

does not depend on the angles ϕ. As a result the Hamiltonian equations can be eas-
ily solved explicitly. Action-angle variables play an essential role in the perturbation
theory. Below we use the notation x for angles and y for actions.
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1.2 Symplectic Maps

Systems with discrete time occupy an important place in the world of dynamical
systems. Such systems are generated by self-maps of a manifold which is usually
called the phase space. The discrete analog of a Hamiltonian system is a symplectic
map i.e., the phase space is a symplectic manifold and the map preserves ω.

One of the simplest examples is the standard Chirikov map:
(

x mod 2π

y

)
�→

(
X mod 2π

Y

)
=

(
x + Y

y + ε sin x

)
. (1.5)

In this case the phase space is (M,ω) = (Tx ×Ry, dy ∧dx) while ε is a parameter.
According to Theorem 1.3 the shift g

τ2
τ1 along trajectories of a Hamiltonian sys-

tem is a symplectic map. In particular, the time-τ map gτ
0 in a nonautonomous sys-

tem with τ -periodic in time Hamiltonian is symplectic. Below we call it the Poincaré
map.

Poincaré maps corresponding to autonomous Hamiltonian systems form another
important class of symplectic maps. The construction is as follows. Let (M,ω,H)

be an autonomous Hamiltonian system, gt its phase flow, Mh = {z ∈ M : H(z) =
h} an energy level, and let S ⊂ Mh be a (2m − 2)-dimensional surface transversal
to the vector field vH . The Poincaré map P acts on the surface S in the following
way. It associates to the point z ∈ S the point gt (z) ∈ S with the minimal positive t .
In other words P associates to z ∈ S the point at which the positive semitrajectory
of the system with the initial condition z intersects S for the first time (Fig. 1.1).

Fig. 1.1 The Poincaré map.
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Note that in general the map P is not defined on the whole surface S. Usually
it is considered in a neighborhood of some invariant set (a fixed point, an invariant
torus, etc).

Theorem 1.8.

(1) The vector field vH is an annihilator of the form ω|MH
, i.e., ω(u, vH ) = 0 for

any vector u ∈ T Mh.
(2) The form ω|S is nondegenerate.
(3) The map P preserves the symplectic structure ω|S .

Proof. Assertion (1) follows from the equations

ω(u, vH ) = ∂uH = 0 for any u ∈ T Mh.

(2) Let the vector w ∈ TzS be an annihilator of the form ω|S (i.e. for any vector
u ∈ TzS we have ω(u,w) = 0). Let L(vH ) ⊂ TzMh be the line spanned by the
vector vH (z). Then the tangent space TzMh is the direct sum TzS ⊕ L(vH ) and
therefore, w is an annihilator of the form ω|Mh

.
The form ω is nondegenerate on M . Hence for some α ∈ TzM the quantity

ω(α, vH ) does not vanish. Since α /∈ TzMh, we have TzM = TzMh ⊕ L(α), where
L(α) is the line spanned by the vector α. The vector

β = w − ω(α,w)

ω(α, vH )
vH

is an annihilator of ω|Mh
, because it is a linear combination of w and vH . Further-

more, since ω(α, β) = 0, the vector β is an annihilator of ω. Nondegeneracy of the
symplectic structure implies β = 0. Therefore w ‖ vH . Now we get w = 0 because
S is transversal to the field vH .

(3) Let Λ0 ⊂ S be an arbitrary 2-dimensional disk in S and Λ1 = P(Λ0) ⊂ S.
The boundaries ∂Λ0 and ∂Λ1 of the disks are joined by the tube of trajectories Σ .
The trajectories, beginning on Λ0 and finishing on Λ1 form a 3-dimensional mani-
fold Γ ⊂ M with the boundary Λ0 ∪ Λ1 ∪ Σ . By the Stokes formula

∫
Γ

dω =
∫

Λ0

ω −
∫

Λ1

ω +
∫

Σ

ω. (1.6)

(The minus sign is taken for compatibility of the orientations.) The left-hand side of
(1.6) vanishes because dω = 0. The third term on the right-hand side vanishes be-
cause ω|Σ = 0.3 Finally we obtain:

∫
Λ0

ω = ∫
P(Λ0)

ω. This implies that P ∗ω = ω.
��

Note that the Poincaré map in a nonautonomous Hamiltonian system (M,ω,H)

with periodic in time Hamiltonian can be regarded as the Poincaré map for the

3 Indeed, the vector field vH is tangent to Σ ⊂ Mh. It remains to use the fact that vH is an
annihilator of ωMh

and Σ is 2-dimensional.
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corresponding autonomous system (M × Tt × RE, ω + dE ∧ dt,H + E) (see
Sect. 1.1). Indeed, consider the energy level M0 = {H +E = 0} and the transversal
S = M0 ∩ {t = const} to the Hamiltonian flow. In this case (S, (ω + dE ∧ dt)|S)

is symplectomorphic to (M,ω), and the map, corresponding to the surface S, is
conjugated to the Poincaré map in the original nonautonomous system.

If the symplectic structure ω is an exact form: ω = dω1, then for any symplectic
diffeomorphism the 1-form ω̃ = ω1 −T ∗ω1 is closed, because its differential equals
dω̃ = ω − T ∗ω = 0. If ω̃ is exact, T is called an exact symplectic map.

Proposition 1.1. Suppose that the form ω is exact and T is the Poincaré map cor-
responding to the system (M,ω,H). Then T is an exact symplectic map.

Corollary 1.3. The Poincaré map in a system with exact symplectic structure and
periodic in time Hamiltonian is exact symplectic.

Proof (of Proposition 1.1). Let the map T be defined on the surface S ⊂ M . Let l

be an arbitrary closed curve on S. Then by the definition of the Poincaré map and
the Stokes formula ∫

l

(T ∗ω1 − ω1) =
∫

T (l)

ω1 −
∫

l

ω1 =
∫

Σ

ω,

where Σ is the two-dimensional surface formed by segments of trajectories of the
Hamiltonian system which begin on the curve l and finish on T (l). As in (1.6) we
have:

∫
Σ

ω = 0. Therefore
∫
l
ω̃ = 0 for any l. ��

A coordinate interpretation of a symplectic map is a canonical change of vari-
ables. If (q, p) are canonical local coordinates on (M,ω) and T : M → M is a sym-
plectic map, the coordinates (Q, P ) = T (q, p) are also canonical: ω = dp ∧ dq =
dP ∧ dQ. For any H : M → R the Hamiltonian vector field vH has the form

∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
= ∂H

∂P

∂

∂Q
− ∂H

∂Q

∂

∂P
,

where H (Q, P ) = H(q, p), i.e., H ◦ T = H .
If the system is non-autonomous (H = H(q, p, t)), it is natural to deal with

non-autonomous changes of variables, i.e., symplectic maps parametrized by time:
T : M × Rt → M . In this case the Hamiltonian vector field on the extended phase
space M × Rt again preserves its canonical form:

∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
+ ∂

∂t
= ∂H

∂P

∂

∂Q
− ∂H

∂Q

∂

∂P
+ ∂

∂t

in the new coordinates (Q, P ) = (Q(q, p, t), P (q, p, t)) = T (q, p, t), but the
connection between H and H becomes more complicated.

Proposition 1.2. The form ν = − ∂P
∂t

dQ + ∂Q
∂t

dP on M is closed for any value of
the parameter t .

If ν = dΦ then H ◦ T = H + Φ.
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Proof. The first statement of Proposition 1.2 follows from the equation

dν = − ∂

∂t
(dP ∧ dQ) = − ∂

∂t
(dp ∧ dq) = 0.

By using the autonomization (Sect. 1.1) we reduce the situation to the autonomous
case. To this end we put E = E − Φ. Then

dP ∧ dQ + dE ∧ dt

= dp ∧ dq + ∂P

∂t
dt ∧ dQ + ∂Q

∂t
dP ∧ dt − dΦ ∧ dt + dE ∧ dt

= dp ∧ dq + dE ∧ dt.

Therefore the change of coordinates

M × R
2 → M × R

2, (q, p, t, E) �→ (Q, P, t,E ),

is canonical and the new Hamiltonian H ◦ T + E = H + E = H + Φ + E . ��
Symplectic maps can be locally determined with the help of generating functions.

For example the map (q, p) �→ (Q, P ) = T (q, p, t),

p = ∂W

∂q
, Q = ∂W

∂P
, W = W(q, P, t),

is locally defined if det( ∂2W
∂qj ∂Pk

) �= 0. In this case the Hamiltonian is transformed as
follows:

H (Q, P, t) = H(q, p, t) + ∂W

∂t
(q, P, t).

Usually the same map T can be obtained from another generating function S:

p = −∂S

∂q
, P = ∂S

∂Q
, S(q,Q, t) = QP − W(q, P, t),

H (Q, P, t) = H(q, p, t) − ∂S

∂t
(q,Q, t).

(1.7)

If T is considered from the viewpoint of the dynamics (in this case T does not
depend on time), the functions W(q, P ) and S(q,Q) are called the discrete Hamil-
tonian and the discrete Lagrangian respectively. They are connected by the Legendre
transform (1.7). For example, for the standard map (1.5) we have:

W(x, Y ) = xY + 1

2
Y 2 + ε cos x, S(x,X) = 1

2
(X − x)2 − ε cos x.

If the dynamics is determined by a discrete Lagrangian S, the system is called a
discrete Lagrangian system. Discrete Lagrangian systems admit a variational prin-
ciple:
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the sequence (q̂k, p̂k), k ∈ Z, is a trajectory (i.e., (q̂k+1, p̂k+1) = T (q̂k, p̂k) for
all k) if and only if the sequence q̂ = (. . . , q̂−1, q̂0, q̂1, . . .) is an extremal of the
formal functional

A(q) =
∞∑

k=−∞
S(qk, qk+1). (1.8)

Series (1.8) in general diverge. The statement “q̂ is an extremal of the formal
functional A(q)” by definition means that, for any sequence λk ∈ R

m such that
λk �= 0 only for a finite number of indices k,

d

dε

∣∣∣∣
ε=0

∞∑
k=−∞

S(qk + ελk, qk+1 + ελk+1) = 0.

The left-hand side is the sum of only a finite number of nonzero terms. Chapters 7
and 8 contain more information on discrete Lagrangian systems.

Let the symplectic self-map T of the 2m-dimensional manifold M possess m

commuting first integrals F1, . . . , Fm.4

Theorem 1.9. Suppose that on the common integral level Mf , see (1.4), the func-
tions Fj are independent. Then the following assertions hold:

(1) Mf is a smooth manifold invariant with respect to the map T .
(2) Each compact connected component of Mf is diffeomorphic to T

m.
(3) In some canonical coordinates (I, ϕ) in a neighborhood of the torus T

m ⊂ Mf

T (I, ϕ) = (I, ϕ + ν(I )), ν(I ) = ∂Φ(I)/∂I, (1.9)

where Φ is a smooth function.

Theorem 1.9 follows from the ordinary Liouville theorem and from the theorem
on the existence of action-angle coordinates in a Liouville integrable Hamiltonian
system. Indeed, assertion (1) of Theorem 1.9 is obvious, and assertion (2) can be
proved in the same way as in Theorem 1.7. The action-angle variables are deter-
mined by a complete involutive set of first integrals rather than by the Hamiltonian
system itself. Therefore they can be determined in the discrete situation as well. We
just need to prove formulas (1.9).

By construction the coordinates (I, ϕ) are canonical. The variables I are func-
tions of the first integrals F1, . . . , Fm and therefore they are also first integrals. Let
T (I, ϕ) = (J, ψ). Then J = I and

dI ∧ dϕ = dJ ∧ dψ = dI ∧ dψ(I, ϕ).

We put ψ(I, ϕ) = ϕ + ν(I, ϕ). Then the 2-form dI ∧dν vanishes. This implies that
the functions ν do not depend on the angles ϕ and the 1-form ν(I )dI is closed. The
function Φ is its (local) primitive.

4 The function F : M → R is called a first integral for T if it is preserved by the map: F ◦T = F .
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1.3 Inclusion of a Diffeomorphism into a Flow

In the previous section we noted that the Poincaré map in a nonautonomous Hamil-
tonian system, where the Hamiltonian is periodic in time, is symplectic. Naturally
the inverse problem appears: to present a given symplectic self-map of a manifold as
the map for a period (the Poincaré map) in some Hamiltonian system with periodic
in time Hamiltonian function.

This problem is called the problem of the inclusion of a diffeomorphism into a
flow in the symplectic set up. The problem can be formulated for other classes of
maps and the corresponding vector fields. For example, it is possible to consider
generic maps and vector fields, reversible ones with respect to some involution, pre-
serving a volume, etc. One should distinguish also smooth and analytic situations.
Here we mean that for a smooth map it is natural to search for an inclusion into a
smooth flow, and for analytic into an analytic flow.

The following construction is well-known. Given a diffeomorphism T of a smooth
manifold M onto itself, consider the direct product M × [0, 1] with the vector field
∂/∂t , where t is the coordinate on [0, 1]. The map T generates the identification

M × {0} ∼ M × {1}, (z, 0) ∼ (T (z), 1).

This identification converts M × [0, 1] into a smooth manifold M (the class of
smoothness remains the same). Let π : M × [0, 1] → M be the natural projec-
tion. The smooth vector field ∂/∂t generates on the section π(M × {0}) ⊂ M the
Poincaré map coinciding with T .

This construction, traditionally called a suspension, does not solve the above
problem because it is not clear if M is diffeomorphic to M × T

1. Nevertheless,
sometimes this can be proven [74, 76]. Below we use another method.

There are obvious topological obstacles to the inclusion of a map into a flow.
Consider for example, the diffeomorphism

T : T
2 → T

2, T (ϕ1, ϕ2) = (−ϕ2, ϕ1).

This map can not be included into any flow. Indeed, T transforms the cycle {ϕ1 = 0}
onto {ϕ2 = 0}. These cycles are not homotopic (i.e., they can not be continuously
deformed to one another). But any shift along solutions of differential equations
transforms a cycle onto a homotopic cycle. Generalizing this simple observation we
see that any map which is not isotopic to the identity5 cannot be included into a
flow.

Douady [39] constructed inclusions of smooth symplectic maps defined by gen-
erating functions into smooth flows.

5 Two smooth maps Tj : M ′ → M ′′, j = 0, 1 (M ′ and M ′′ are manifolds) are called isotopic

if there exists a family of maps T̂s : M ′ → M ′′ of the same smoothness class continuous in the
parameter s ∈ [0, 1], such that T̂0 = T0 and T̂1 = T1. In other words, if T0 can be continuously
deformed into T1.
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The case of smooth general maps is almost trivial. Indeed, let T : M → M be a
diffeomorphism, where the manifold M is compact. If T is isotopic to the identity,
the isotopy T̂t can be chosen to be smooth in t . Moreover, it is easy to take T̂t so
that the vector field v(x, t) = ( d

dt
T̂t ) ◦ T̂ −1

t is 1-periodic and smooth (including the
points t ∈ Z).

The analytic case turns out to be more complicated. Douady, Kuksin, and Pös-
chel [40, 74, 76] solved the problem in the symplectic set up for maps which are
close to integrable. Trifonov [143] solved the problem for generic maps. The proofs
in [40, 76, 143] use the Grauert theorem on the inclusion of an analytic manifold
into Euclidean space. In [74] KAM-technique is used.

Theorem 1.10, formulated below, solves the problem of the inclusion of a map
into a flow in an analytic set up. Here instead of the Grauert theorem the main tool
is a special averaging method.

We begin with some definitions and notation. Let M be an m-dimensional real-
analytic manifold. Then M is a real part of a complex analytic manifold M̃s . Below
we assume that M is compact (otherwise one should deal with a compact domain
in M).

We also assume that M̃s , the closure of M̃s is a compact manifold (with a bound-
ary). Then M̃s can be covered with a finite collection of charts {Ui} with coordinate
bijections ϕi : Ui → D̃s

i . The domains D̃s
i ⊂ C

m have the following structure.
There exist domains Di ⊂ R

m such that

D̃s
i = {

x + w : x ∈ Di, w ∈ C
m, ‖w‖ < sr

}
D̃i = D̃1

i

for some positive r and 0 < s ≤ 1. Moreover the manifold M can be covered with
a collection of charts Vi ⊆ Ui ∩ M such that the mappings ϕi |Vi

: Vi → Di are
the coordinate bijections. We shall say that M̃s is a complex neighborhood of the
real-analytic manifold M , M̃1 = M̃ .

Remark 1.3. Sometimes when convenient we cover the domains D̃i with polydiscs

Bw0(r) = {w ∈ C
m | ‖w − w0‖ < r}.

These polydiscs form another atlas of M̃ with the charts A = {ϕ−1
i (Bw0(r)) | w0 ∈

Di}. In the sequel we develop local theory in each chart of A, where without loss of
generality we assume that w0 = 0.

Denote by O(M̃) the space of real analytic functions f : M̃ → C, f (M) ⊆ R.
Being equipped with the collection of norms

‖f ‖s = sup
z∈M̃s

|f (z)|, 0 < s < 1,

the space O(M̃) becomes a locally convex space (see Sect. 9.5).

Let g = (gi,j (z, z)) be a Hermitian metric on M̃ with continuous components.
Then, for the space of real-analytic vector-fields v(z) = (v1, . . . , vm)(z) ∈ T M̃z,
we shall use the following collection of norms:
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‖v‖s = sup
z,z∈M̃s

√
gi,j (z, z) vi(z) vj (z).

The space of real-analytic vector-fields V (M̃) is also a locally convex space with
respect to this collection of norms. It is not hard to show that another metric tensor
g generates the same topology in V (M̃).

Let χ be a closed (with respect to the topology of V (M̃)) subalgebra in the Lie
algebra (L , [ , ]). The basic examples are as follows.

(a) χ = L ,
(b) M is a symplectic manifold and χ is the algebra of Hamiltonian (or locally

Hamiltonian) vector fields,
(c) χ is the algebra of volume-preserving vector fields.

Let X be the subset of all analytic diffeomorphisms of M obtained as a result of
the time-2π shift along solutions of the system

ż = u(z, t), u(·, t) ∈ χ, t ∈ [0, 2π], z ∈ M. (1.10)

We assume that the vector field u is C2-smooth in time. This smoothness condition
is technical. It can be weakened in the Hamiltonian and general cases with the help
of the following lemmas.

Lemma 1.2. If a real-analytic map T is continuously isotopic to the identity map in-
side the set of real-analytic maps, the isotopy gt can be chosen to be smooth in time.

Lemma 1.3. If a real-analytic symplectic map T is continuously isotopic to the
identity map inside the set of real-analytic simplectic maps, the isotopy gt can be
chosen to be smooth in time.

We present proofs of these lemmas at the end of this section.
Below it is convenient to continue the vector fields u by 2π-periodicity to the

whole the real axis of time. The obtained vector fields are in general discontinuous
in t for t = 2πn, n ∈ Z. However, we can achieve smoothness by changing time.
Indeed, let us perform the change t �→ t ′. The function t (t ′) (Fig. 1.2) is smooth,
odd, strictly monotone, t (0) = 0, t (2π + t ′) = 2π + t (t ′), and the derivatives
dlt/(dt ′)l , l = 1, 2, 3, vanish at the points t ′ = 2πk, k ∈ Z. We put û(z, t ′) =
u(z, t (t ′)) dt/dt ′. Then û(z, ·) is C2-smooth in time on all the real axis and the
time-2π shifts corresponding to u and û coincide. Below we deal with the function
û and drop the prime in t ′ for brevity.

Reversible vector fields. Consider the space C(T,V (M̃)) of nonautonomous vector
fields u(z, t), t ∈ T. Now we give a definition of a reversible vector field. Let
I : M̃ → M̃ , I (M) ⊆ M be a real-analytic involution (I 2 is the identity map).
The vector field u(z, t) ∈ C(T,V (M̃)) is said to be reversible with respect to I (or
I -reversible) if

u(z, t) = −dI u(Iz,−t). (1.11)
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Fig. 1.2 Graph of the function t (t ′).

In particular, in the autonomous case the involution I transforms the vector field u

to −u.6 The space of reversible vector fields is a closed subspace of C(T,V (M̃)).
We define the set XI as a subset of X generated by I -reversible vector fields u.

Obviously, all diffeomorphisms from X (XI ) are isotopic to the identity inside X

(XI ).

Theorem 1.10 ([110]). Suppose that the map T belongs to X (respectively, to XI ).
Then there exists a vector field (respectively, an I -reversible vector field)

U = U(z, t), U(·, t) ∈ χ, t ∈ R, z ∈ M,

which is analytic in z and t , 2π-periodic in t , and such that the time-2π shift along
its trajectories coincides with T .

As a corollary we obtain the possibility of the inclusion of analytic maps into
analytic flows in the general, symplectic, volume-preserving and reversible cases.

Remark 1.4. The vector field U is not uniquely defined.

Remark 1.5. In the symplectic case U is in general locally Hamiltonian. The sys-
tem can be made globally Hamiltonian provided the vector field u that defines T is
globally Hamiltonian.

Remark 1.6. Suppose that the map T is close to T0 (dist(T , T0) = ε in M̃),7 where
T0 has already been included into the flow generated by a periodic analytic vector

6 The Hamiltonian system with Hamiltonian H(q, p), which is even in the momenta p is a stan-
dard example of a reversible system of classical mechanics. The corresponding involution has the
form (q, p) �→ (q,−p).
7 The distance can be defined for example as follows:

dist(T , T0) = sup
z∈M̃

ρ(T (z), T0(z)),

where ρ is some metric on the closure of M̃ . The choice of the metric plays no role.
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field U0. Then the vector field U can be chosen close to U0 (|U − U0| = O(ε) in a
smaller complex neighborhood of M).

In particular, in the symplectic case if T is close to an integrable map, a Hamil-
tonian system associated with T also can be chosen close to an integrable one and
the orders of closeness are the same.

We prove Theorem 1.10 in Chap. 6. Now let us prove Lemmas 1.2 and 1.3.

Proposition 1.3. Lemmas 1.2 and 1.3 hold if T is close to the identity.

This proposition easily implies the lemmas. Indeed, suppose that, Proposition 1.3
is valid. Let gt be the initial (continuous) isotopy. We divide the interval (0, 2π) by
the points 0 = t0 < t1 < · · · < tK = 2π into a large amount of small intervals
(tk−1, tk), 1 ≤ k ≤ K . We have:

T = QK ◦ · · · ◦ Q1, Qk = gtk ◦ g−tk−1 , 1 ≤ k ≤ K, Q0 = id.

All the maps Qk are close to the identity. Hence, there exist smooth isotopies φt
k

which link Qk with the identity map. The isotopy Tt = φt
k ◦ · · · ◦ φt

1 belongs to the
desired smoothness class.

Proof (of Proposition 1.3). First, consider the case of general maps. Fix some Rie-
mannian metric on M . Since M is compact and T is close to the identity, for any
z ∈ M the points z and T (z) are joined by a unique shortest geodesic γz. We can
parameterize γz by a natural parameter s so that γz(0) = z and γz(1) = T (z). Then
the maps z �→ γz(s) form the required smooth isotopy.

Now turn to the symplectic case. Consider the graph G of T in the direct product
M × M . The set G consists of the pairs (z, T (z)) ∈ M × M . Since M is compact
and T is close to the identity, G lies in a small neighborhood N of the diagonal

D = {(z1, z2) ∈ M × M : z1 = z2}.
The manifold M × M is endowed with the natural symplectic structure Ω =

π∗
1 ω − π∗

2 ω, where πj : M × M → M , j = 1, 2, is the projection on the j -th
multiplier. The manifolds D and G are Lagrangian with respect to Ω because the
identity map and T are symplectic.

According to Theorem 1.1, the neighborhood N is symplectomorphic to a neigh-
borhood of the zero section M0 of the cotangent bundle (T ∗M,dp ∧ dz). Let f :
(N ,Ω) → (T ∗M,dp ∧ dz) be this symplectomorphism and Λ = f (G ) ⊂ T ∗M .
We can assume that f (D) = M0. The manifold Λ projects one-to-one onto M0
under the natural projection (p, z) �→ (0, z). Therefore, Λ can be determined by
the equation p = p(z). Since Λ is Lagrangian, p(z) = ∂S(z)/∂z, where S is a (in
general multivalued) real-valued function on M .

Consider the family Λt , t ∈ [0, 1] of Lagrangian manifolds in T ∗M deter-
mined by the equation p = (2π)−1t ∂S/∂z. Obviously, Λ0 = M0, Λ2π = Λ.
The Lagrangian manifolds Gt = f −1(Λt ) ⊂ N can be presented in the form
Gt = {(z1, z2) : z2 = Tt (z1)}, where Tt are some symplectic maps. Obviously, Tt

are smooth with respect to t and
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G0 = D, G2π = G , T0 = id, T2π = T .

Hence, Tt is the isotopy we are looking for. ��

1.4 The Classical Perturbation Theory

Recall that Hamiltonian systems (1)–(2) are called close to integrable or near-integr-
able. The unperturbed (ε = 0) equations are

ẋ = ν(y) = ∂H0/∂y, ẏ = 0.

They can be easily solved:

x = x0 + tν(y0), y = y0.

Hence, the phase space of the unperturbed system is foliated by invariant m-dimens-
ional tori Ny = {(x, y) : y = const}. The motion on the torus Ny is quasiperiodic
with the frequencies ν(y). Its properties depend on arithmetic properties of the
frequency vector ν. The vector ν ∈ R

m (as well as the corresponding torus Ny)
is called nonresonant if for any nonzero vector k ∈ Z

m the quantity 〈k, ν〉 does
not vanish. Otherwise the frequency vector (and the corresponding torus) is called
resonant. If the vector ν(y) is nonresonant, any trajectory lying on Ny fills the torus
densely. If the frequencies are resonant, a trajectory lying on the invariant torus fills
densely some torus, which lies on Ny and has a smaller dimension. In particular, if
the vector ν(y) is collinear to an integer one, all trajectories on Ny are periodic.

Proposition 1.4. Suppose that the unperturbed system is nondegenerate, i.e.,
det(∂2H0/∂y

2) �= 0 almost everywhere in D. Then nonresonant tori are dense in
the phase space of the unperturbed system.

Proof. Obviously, it is sufficient to check that the set

{y ∈ D : ν(y) is a nonresonant vector}
is dense in D. According to the nondegeneracy assumption, the map y �→ ν(y)

is a local diffeomorphism almost everywhere in D. Since the set of nonresonant
frequencies ν is dense in R

m
ν , its preimage in the domain D is also dense. ��

According to the main idea of the classical perturbation theory, let us try to elim-
inate the angular variables from the Hamiltonian by the canonical change

(x mod 2π, y) �→ (X mod 2π, Y ).

In the new variables the system will be easily integrated. The change will be deter-
mined by the generating function
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S(x, Y ) = 〈x, Y 〉 + εS1(x, Y ) + · · · ,

X = ∂S/∂Y, y = ∂S/∂x.

Let H = H0(Y )+εH1(Y )+· · · be the Hamiltonian function in the new variables.
Then

H (Y, ε) = H0(Y + ε∂S1/∂x + · · · ) + εH1(x, Y + · · · ) + · · · .
In the zero approximation with respect to the small parameter we have: H0 = H0.
The first approximation is

〈ν, ∂S1/∂x〉 + H1(x, Y ) = H1(Y ). (1.12)

To solve this equation we expand the functions S1 and H1 into the Fourier series

S1(x, Y ) =
∑
k∈Zm

Sk
1(Y )ei〈k,x〉, H1(x, Y ) =

∑
k∈Zm

Hk
1 (Y )ei〈k,x〉.

Equating coefficients of the Fourier series in (1.12), we get

H1 = H 0
1 , Sk

1 = − Hk
1

i〈k, ν〉 , k �= 0.

The function S0
1 is arbitrary. It is usually assumed that S0

1 = 0.
The next approximations are essentially analogous. The functions Sj and Hj

satisfy equations of the form

〈ν, ∂Sj /∂x〉 − Hj (Y ) = Φj(x, Y ),

where the function Φj is known from previous steps of the procedure. Therefore,
Sj and Hj are well-defined provided that the mean value in x of any function Sj

vanishes.
Thus, on a formal level the change of variables is determined. However, the series

in the classical perturbation theory as a rule diverge. The reason for this phenom-
enon is that systems (1)–(2) in general are nonintegrable. Formally the series for
the functions S and H diverge because of the presence of “small divisors” 〈k, ν〉.
Here we mean the following. The functions Sj can be presented as fractions with
denominators in the form of products

〈k1, ν(Y )〉 · · · 〈kl, ν(Y )〉, l ∈ N,

with integer vectors k1, . . . , kl . Any multiplier 〈kr , ν(Y )〉 vanishes on a certain hy-
persurface in the space of the variables Y . The function S is not defined on such
hypersurfaces even formally (provided there is no cancelation in the fractions S). It
remains to note that as a rule, the union of these surfaces is dense in the domain D.

To present a formal version of this argument, we introduce the following defini-
tion.
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Definition 1.1. The set B is said to be a secular set if it consists of points y ∈ D

satisfying the following conditions. For some nonzero vector k ∈ Z
m

(1) 〈k, ν(y)〉 = 0;
(2) Hk

1 (y) �= 0.

Poincaré has proved that, if the secular set is dense in D, the perturbed system
is nonintegrable [105]. The conditions of the following theorem are slightly less
restrictive.

Theorem 1.11 ([105]). Suppose that the following assumptions hold.

(1) The Hamiltonian H is real-analytic.
(2) The unperturbed system is nondegenerate.
(3) The set B is such that any real-analytic function vanishing identically on B

also vanishes everywhere on D.8

Then the perturbed system does not have first integrals

F (j) = F
(j)

0 (x, y)+εF
(j)

1 (x, y)+ε2F
(j)

2 (x, y)+· · · , j = 1, . . . , m, (1.13)

independent for ε = 0, where the coefficients F
(j)
l are real-analytic.

Remark 1.7. The series (1.13) are not supposed to converge, i.e., if assumptions of
the theorem hold, there is no complete set of first integrals even presented by formal
series (1.13).

Remark 1.8. If the series (1.13) converge then it would be more natural to deal with
integrals independent for small ε �= 0. This condition is weaker than the indepen-
dence for ε = 0 which we have in the theorem. A theorem with such an assumption
has been proved only for m = 2 (see [70, 105]).

Remark 1.9. In Theorem 1.11 we do not assume that the first integrals are in invo-
lution. However, it is possible to show [126] that if a nondegenerate system (1)–(2)
has m first integrals (1.13) independent for ε = 0 then they are in involution.

The proof of Theorem 1.11 is based on the following auxiliary statement.

Lemma 1.4. Suppose that conditions of Theorem 1.11 hold. Then

(1) The functions F
(j)

0 do not depend on x.
(2) For any y ∈ B we have

det
∂(F

(1)
0 , . . . , F

(m)
0 )

∂(y1, . . . , ym)
= 0.

8 For example, B is dense in an open subset of D. It is easy to present much weaker sufficient
conditions.
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Proof (of Lemma 1.4). (1) The functions F
(j)

0 are first integrals of the unperturbed
system. Let the torus Ny0 be nonresonant. Then any trajectory fills this torus densely.

The functions F
(j)

0 (y0, x) do not depend on x, because the integral is constant on
trajectories. According to Proposition 1.4, nonresonant tori are dense in the phase
space. Hence F

(j)

0 do not depend on x.
(2) The functions F (j) satisfy the equations

{H,F (j)} = {H0, F
(j)

0 } + ε({H1, F
(j)

0 } + {H0, F
(j)

1 }) + · · · = 0.

Therefore, {H0, F
(j)

1 } = {F (j)

0 ,H1}. Let us expand this equation into Fourier series.
Putting

F
(j)

1 (x, y) =
∑
k∈Zm

F
(j)k

1 (y) ei〈k,x〉,

we obtain the equations

〈k, ν〉F (j)k

1 = 〈k, ∂F
(j)

0 /∂y〉Hk
1 , k ∈ Z

m. (1.14)

If y ∈ B, for some k �= 0 we have 〈k, ν〉 = 0 and Hk
1 �= 0. Then by (1.14)

〈k, ∂F
(j)

0 /∂y〉 = 0, j = 1, . . . , m.

Since the m vectors ∂F
(j)

0 /∂y are orthogonal to some vector k �= 0, they are linearly
dependent. The lemma is proved. ��

According to condition (3) of Theorem 1.11, the Jacobian det(∂F
(j)

0 /∂y) van-
ishes identically on the domain D. This concludes the proof of Theorem 1.11.

Poincaré used Theorem 1.11 to prove nonintegrability of the restricted three-
body problem. Later this theorem turned out to be one of the most convenient tools
for the proof of nonintegrability of near-integrable Hamiltonian systems. Sometimes
the set B is not big enough for application of Theorem 1.11. Then obstacles to
integrability can be constructed, by considering secular sets which appear on higher
steps of the perturbation theory (details can be found in [72]).

Unfortunately, the statement on nonintegrability presented in Theorem 1.11 is
in a sense formal, i.e., it gives almost no information about the dynamics.9 In this
sense nonintegrability proofs based on a complicated behavior of solutions of the
perturbed system are more interesting. Here basic ideas also belong to Poincaré.
Dynamical obstacles to integrability include the existence of a sufficiently large set
of nondegenerate periodic solutions (or lower-dimensional invariant tori) and the
splitting of separatrices (or of invariant surfaces asymptotic to hyperbolic tori in a
general situation).10 The problems of integrability and nonintegrability in Hamil-
tonian dynamics are discussed in detail in [72] (see also [70]).

9 It is just possible to assert that resonant tori of the unperturbed system with the frequencies ν(y),
y ∈ B are destroyed by the perturbation.
10 Some multidimensional results are presented in [44].



Chapter 2
Introduction to the KAM Theory

The Kolmogorov–Arnold–Moser theory showed that quasi-periodic motions are
generic in Hamiltonian systems. Moreover, they usually form a set of a positive
measure in the phase space. This changed considerably the generally accepted idea
of the dynamics in Hamiltonian systems close to integrable. Earlier such systems
were supposed to be as a rule ergodic on compact energy levels.1 In the present
chapter we discuss basic facts and ideas of the KAM theory and prove one of the
simplest theorems of this type.

2.1 The Kolmogorov Theorem

Consider the Hamiltonian system with real-analytic Hamiltonian

H(x, y, ε) = H0(y) + εH1(x, y, ε) (2.1)

in the canonically conjugate variables x, y, where x = (x1, . . . , xm) mod 2π be-
longs to the m-dimensional torus T

m, and y = (y1, . . . , ym) lies in an open domain
of R

m. Usually it is enough to have a finite smoothness in ε.
The frequencies ν = ν(y0) = ∂H0/∂y(y0) on the invariant torus

Ny0 = {(x, y) : y = y0}

of the unperturbed system are said to be Diophantine2 if there exist positive con-
stants c, γ such that

|〈k, ν〉| ≥ 1

c‖k‖γ
for any nonzero vector k ∈ Z

m. (2.2)

1 A dynamical system is called ergodic with respect to an invariant probability measure on the
phase space if the measure of any invariant set equals zero or one.
2 The Diophantine property is discussed in Appendix 9.1.
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The meaning of conditions (2.2) is that the “small divisors” 〈k, ν〉 are not too small.
The norm ‖ · ‖ does not play an important role here. Usually it is taken as ‖v‖ =
maxj |vj |. The torus Ny0 with Diophantine frequencies ν(y0) is called Diophantine.

Theorem 2.1. Suppose that the unperturbed system is nondegenerate at the point y0:

det
∂2H0

∂y2
(y0) �= 0

and the torus Ny0 is Diophantine. Then Ny0 survives the perturbation. It is just
slightly deformed and as before carries quasiperiodic motions with the frequen-
cies ν.

Theorem 2.1 was formulated by Kolmogorov [68]. Kolmogorov is also the au-
thor of the idea that a success in the struggle with small divisors, appearing in series
which determe the perturbed tori, can be achieved with the help of a rapidly con-
verging method similar to Newton’s method. A complete proof of Theorem 2.1 is
given by Arnold [6] for real-analytic H . Moser proved a theorem on the preservation
of quasiperiodic motions for reversible systems [93] and showed that Theorem 2.1
remains true also in the case of sufficiently smooth dependence of the Hamiltonian
on phase variables.3

In the remarks presented below, we formulate some generalizations of the Kol-
mogorov theorem.

1. The deformation of an individual torus after a perturbation has the order O(ε).
Moser [93] noticed that, for a Hamiltonian (2.1) which is analytic in ε, the invari-
ant tori are analytic in the small parameter. Expansions of perturbed quasiperiodic
solutions in the small parameter can be constructed explicitly. Proofs of the conver-
gence of these series need special technics, [30, 46, 50]. As is well known, the usual
majorant method fails because of the existence of small denominators. However,
as Eliasson noted [46], the most dangerous terms in these series compensate each
other. This fact is used to establish the convergence.

2. KAM-tori can be also obtained by the method of renormalization [65, 69].
The renormalization technic was applied in [81] in the problem of the destruction
of KAM-curves in 2-dimensional area-preserving maps.

3. The Kolmogorov tori form a smooth family [77, 107, 127]. In the case of an
analytic nondegenerate system, tori with frequencies which satisfy the Diophantine
conditions (2.2) with a fixed γ survive for some c ∼ 1/

√
ε. Let Ω(c) denote this

set of frequencies and let Ω = Ων be the set of all unperturbed frequencies. Then
there exists a diffeomorphism4

Ψ : Ων × T
n
ϑ → R

n
y × T

n
x,

3 Takens [129] constructed an example of a one-parameter family of two-dimensional symplectic
maps C1-close to integrable which have no invariant curves close to the unperturbed ones. This
means that for the KAM theory a sufficiently large smoothness is necessary. Smoothness of class
C2m is known to be sufficient [106].
4 For simplicity we assume that the map y �→ ν(y) is a global diffeomorphism.
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such that the image of the Cantorian set of Diophantine tori Ω(c) × T
n belongs to

the set of the Kolmogorov tori. In the variables ν, ϑ for ν ∈ Ω(c) the equations of
motion can be written in the form

ν̇ = 0, ϑ̇ = ν.

For an analytic Hamiltonian (2.1) the diffeomorphism Ψ is analytic in ϑ and infi-
nitely differentiable in ν. Nonintegrability of the perturbed system prevents analyt-
icity of Ψ in all arguments.

4. The condition of nondegeneracy can be weakened considerably if we look not
at an individual torus, but at the whole family of nonresonant tori. In particular, the
following theorem was anounced by Rüssmann (the proof is given in [121, 122]).

Let the system be analytic and suppose that the image of the map y �→ ν(y)

does not belong to any hyperplane in R
m
ν . Then for small ε the perturbed system has

invariant tori. Moreover, in any compact domain of the phase space the measure of
the set lying outside these tori tends to zero as ε → 0.

5. The Diophantine condition can be also weakened. A continuous function Ω :
[1,∞) → R is called approximating if

(1) Ω is non-decreasing and Ω(1) = 1;
(2)

∫ ∞
1 t−2 log Ω(t) dt < ∞.

Rüssmann [115] has proved that in the Kolmogorov theorem the Diophantine con-
dition for the vector ν can be replaced by the following one.

For some approximating function Ω

|〈k, ν〉| ≥ 1/Ω(|k|) for all nonzero k ∈ Z. (2.3)

In particular, the functions Ω(t) = tγ are approximating for any γ > 0. In this case
(2.3) coincides with the ordinary Diophantine conditions. If we take an approximat-
ing function in the form Ω(t) = exp(tλ − 1), 0 < λ < 1, conditions (2.3) are much
weaker than the usual ones.

A detailed discussion of various aspects of KAM theory is presented in [33].
Theorem 2.1 admits several different formulations. Below we present its nonau-

tonomous, isoenergetic and discrete versions.

The nonautonomous version. Consider a nonautonomous Hamiltonian system with
Hamiltonian

H(x, y, t, ε) = H0(y) + εH1(x, y, t, ε) (2.4)

in the canonical coordinates x = (x1, . . . , xm) mod 2π , y = (y1, . . . , ym). The
function (2.4) is assumed to be 2π-periodic in time t . Consider the unperturbed
torus

N̂y0 = {(x, y, t) : y = y0}.
In the nonautonomous case t should be considered as an additional angular variable
and the corresponding frequency should be taken into account when we define the
frequency vector ν̂(y) on the torus N̂y0 . Hence
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ν̂(y) =
(

ν

1

)
, ν = ν(y0) = ∂H0

∂y
(y0).

Theorem 2.2. Let the unperturbed system be nondegenerate at the point y0 and let
the frequency vector ν̂ = ν̂(y0) ∈ R

m+1 be Diophantine. Then the invariant torus
N̂y0 of the unperturbed system survives the perturbation. It is just slightly deformed
and as before carries quasiperiodic motions with the frequencies ν̂.

The isoenergetic version. Again consider the system with Hamiltonian (2.1).

Theorem 2.3. Suppose that the invariant torus Ny0 of the unperturbed system lies
on the energy level {H0 = h}, the unperturbed system is isoenergetically nondegen-
erate at y0:

det

(
∂2H0/∂y

2(y0) ν(y0)

νT (y0) 0

)
�= 0,

and the frequencies ν(y0) are Diophantine. Then on the energy level {H = h}
of the perturbed system there is an invariant torus close to the original one. The
frequencies on this torus are λν(y0), where λ = 1 + O(ε).

The discrete version. Now we formulate an analog of the Kolmogorov theorem for
near-integrable symplectic maps. Consider the symplectic map

(x, y) �→ (X, Y ) = T (x, y),

x = (x1, . . . , xm) mod 2π, X = (X1, . . . , Xm) mod 2π, y, Y ∈ R
m,

X = x + ∂f (y)

∂y
+ O(ε), Y = y + O(ε).

The vector

ν∗ =
(

ν

2π

)
, ν = ∂f

∂y
(y0),

is said to be the frequency vector on the invariant torus {y = y0} of the unperturbed
system.

Theorem 2.4. Suppose that the unperturbed (integrable) map is nondegenerate at
the point y0:

det
∂2f

∂y2
(y0) �= 0

and the frequency vector ν∗ ∈ R
m+1 is Diophantine. Then the perturbed system has

an invariant torus close to the original one with the same frequencies.

2.2 A Reduction of Theorems 2.2–2.4 to the Standard Version

We do not prove Theorem 2.1 in this book. The reader can find the proof in, for
example, [33, 93]. We will use the KAM-technique in Sect. 2.7 in a simpler problem.
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Now we show that Theorems 2.2–2.4 follow from Theorem 2.1. The plan is as
follows:

1. Theorem 2.1 ⇒ Theorem 2.2.
2. Theorem 2.2 ⇒ Theorem 2.3.
3. Theorem 2.2 ⇒ Theorem 2.4.

1. Let us check the first implication. To this end we assume that the condi-
tions of Theorem 2.2 hold. Consider the autonomous system with Hamiltonian
H(x, y, t, ε)+E, where the function H satisfies (2.4), and the variable E is canoni-
cally conjugate to time t (autonomization, Sect. 1.1). The projections (x, y, t, E) �→
(x, y, t) of solutions for this system coincide with solutions of the nonautonomous
system with Hamiltonian H . The unperturbed Hamiltonian equals H0(y) + E. The
frequency vector corresponding to the torus {y = y0, E = 0} is ν̂.

The only obstacle for the application of Theorem 2.1 is a degeneracy of the un-
perturbed system. It is possible to remove the degeneracy by considering the sys-
tem with Hamiltonian eH+E . Indeed, trajectories of the systems with Hamiltonians
H + E and eH+E are the same, since the passage from one Hamiltonian to another
is equivalent to a change of time.5

Without loss of generality we can put y0 = 0, H0(0) = 0. Then the new unper-
turbed Hamiltonian is as follows:

eH0+E = exp
(〈ν, y〉 + 〈H ′′

0 y, y〉/2 + O3(y) + E
)

= 1 + 〈ν, y〉 + E + 1

2
〈H ′′

0 y, y〉 + 1

2
(E + 〈ν, y〉)2 + O3(y, E),

where H ′′
0 = ∂2H0/∂y

2(0). Hence, we have:

det
∂2eH0+E

∂(y,E)2
= det

(
H ′′

0 + ννT ν

νT 1

)
= det H ′′

0 �= 0.

The degeneracy is thus removed.
According to Theorem 2.1 the system with Hamiltonian eH+E has an invariant

torus with the frequencies ν̂. Therefore, the system with Hamiltonian H + E has an
invariant torus with frequencies ν̃, proportional to the ν̂. Since the time frequency
equals one, we have ν̃ = ν̂.

2. Assume that the conditions of Theorem 2.3 hold. Take the m-th component of
the vector ν = ν(y0). According to the Diophantine conditions it does not vanish.
Let us reduce the order of the system on the energy level {H = h} (isoenergetic
reduction). To this end we solve the equation H(x, y, ε) = h with respect to ym:

ym = −F(x̃, ỹ, xm, ε, h), ỹ = (y1, . . . , ym−1)
T , x̃ = (x1, . . . , xm−1)

T .

5 Poincaré used this trick in the restricted three-body problem.
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Since ẋm = ∂H/∂ym �= 0, it is possible to perform the change of time t �→ τ = xm,
d/dτ = (·)′. Solutions (x̃(τ ), ỹ(τ )) satisfy the equations

x̃′ = ∂F/∂ỹ, ỹ′ = −∂F/∂x̃.

Let us obtain the new Hamiltonian F explicitly. Again we can assume that y0 = 0.
The Taylor expansion of H has the form

H(x̃, xm, ỹ, ym, ε) = H0(0) + 〈ν̃, ỹ〉 + νmym + 〈Πy, y〉/2 + O3(y) + O(ε),

where ν̃ = (ν1, . . . , νm−1)
T and Π = ∂2H/∂y2(0). Recall that h = H0(0) accord-

ing to the conditions of Theorem 2.3. Therefore,

ym = −〈ν̃, ỹ〉/νm + O2(ỹ) + O(ε). (2.5)

Let us put

Π =
(

Π̃ p

pT Πmm

)
,

where Π̃ is an (m − 1) × (m − 1) matrix and p ∈ R
m−1. Then the solution ym =

ym(ỹ, ε) (2.5) can be made more precise:

ym = − 1

νm

(
〈ν̃, ỹ〉+ 1

2
〈Π̃ỹ, ỹ〉−〈p, ỹ〉 〈ν̃, ỹ〉

νm

+ Πmm

2

( 〈ν̃, ỹ〉
νm

)2)
+O3(ỹ)+O(ε).

(We have obtained this equation, looking for a solution of the equation H = h in
the form ym = −〈ν̃, ỹ〉/νm + Φ(ỹ) + O3(ỹ) + O(ε), where Φ is quadratic in ỹ.)
Hence,

∂2F

∂ỹ2
(0) =

(
1

νm

Π̃ − 1

ν2
m

(pν̃T + ν̃pT ) + Πmm

ν3
m

ν̃ν̃T

)
.

The proof of the following identity is a simple exercise in linear algebra:

ν1+m
m det

(
1

νm

Π̃ − 1

ν2
m

(pν̃T + ν̃pT ) + Πmm

ν3
m

ν̃ν̃T

)
= −det

(
Π ν

νT 0

)
.

Thus we have checked that the conditions of Theorem 2.2 hold for the unperturbed
torus ỹ = 0 of the system with Hamiltonian F . The invariant torus of the perturbed
system with Hamiltonian F corresponds to the invariant torus we search for in the
original system on the energy level {H = h}.

3. Theorem 2.4 can be reduced to the nonautonomous version of the Kolmogorov
theorem with the help of an inclusion of the map into a flow. Indeed, the map T can
be regarded as the Poincaré map in the system with Hamiltonian H = f (y)/(2π)+
O(ε). If T is smooth, H can be taken smooth; if T is analytic, H can be also taken
analytic by Theorem 1.10 and Remarks 1.5–1.6. It remains to apply Theorem 2.2.
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2.3 Lower-Dimensional Tori

In this section we consider autonomous Hamiltonian systems and study invariant
tori whose dimension is less than the number of degrees of freedom: the so called
lower-dimensional tori. By using methods of the previous section it is easy to con-
struct isoenergetic, non-autonomous and discrete versions of results presented be-
low.

Some results concerning lower-dimensional KAM theory can be found in [25,
47, 108]; finite-dimensional tori for near-integrable partial differential equations are
studied in [64, 75] (see also references therein).

Let a 2m-dimensional symplectic manifold (M,ω) be the phase space of an au-
tonomous Hamiltonian system with Hamiltonian H . The torus N ⊂ M is called
a reducible lower-dimensional (invariant) torus of the system (M,ω,H) if n < m

and there exist local coordinates

x = (x1, . . . , xn) mod 2π, y = (y1, . . . , yn), z = (z1, . . . , z2l ),

n + l = m,

on M such that

ω =
n∑

j=1

dyj ∧ dxj +
l∑

q=1

dzl+q ∧ dzq,

N = {(x, y, z) : y = 0, z = 0},
H = 〈ν, y〉 + 1

2
〈Ay, y〉 + 1

2
〈Qz, z〉 + O3(y, z), A = AT , Q = QT .

Hence x are coordinates on N while y and z are coordinates in transversal directions.
Consider the linear system (R2l ,

∑l
q=1 dzl+q ∧ dzq, 1

2 〈Qz, z〉):

ż = JQz, J =
(

0l Il

−Il 0l

)
, (2.6)

where Il and 0l are the unity and zero l × l matrices. Since (2.6) are Hamiltonian,
the characteristic polynomial f (μ) = det(JQ−μI2l ) is even: f (μ) = f (−μ). Let
±μ1, . . . ,±μl be the eigenvalues of JQ.

Definition 2.1. The reducible lower-dimensional torus N is said to be (partially)
hyperbolic if the imaginary axis does not contain any μj , j = 1, . . . , l.

The problem of the survival of a lower-dimensional torus after a perturbation of
the system belongs to KAM theory. In comparison with the case of m-dimensional
tori in addition to 〈k, ν〉 new “small divisors”

(I) iμj + 〈k, ν〉 and (II) i(μj − μq) + 〈k, ν〉
appear.
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Expressions of type (I) can be small if there exists μj ∈ iR (the torus is not
hyperbolic). Small expressions of type (II) correspond to resonances between the
frequences ν and Im μj . They do not only appear in the case when all μj are real
and pairwise distinct.

Because of the presence of a new group of variables z and new small divisors,
KAM theory for lower-dimensional tori is more complicated than the traditional
one. In the general situation one has to assume that the system depends on some
additional (exterior) parameters. Then it is possible to prove the existence of lower-
dimensional tori which are close to the unperturbed ones for the majority of values
of the parameters.

The situation becomes simpler in the case of hyperbolic tori. Here the divisors
of type (I) are not small and the small divisors of type (II) can only spoil the com-
plete reducibility which is not crucial in the hyperbolic case. Below in Sect. 2.4 we
consider this case in more detail.

Examples. Lower-dimensional tori appear in the following situations.
A. Consider a neighborhood of an equilibrium of an autonomous Hamiltonian

system with m degrees of freedom. Assume that the characteristic exponents of
the equilibrium are pairwise distinct. Then the Hamiltonian of the system can be
reduced to the following normal form (see, for example, [9]):

H =
J∑

j=1

νj

2
(α2

j + β2
j ) +

K∑
k=1

λkpkqk

+
L∑

l=1

(al(u2l−1v2l−1 + u2lv2l ) − bl(u2l−1v2l − u2lv2l−1))

+ O3(α, β, p, q, u, v),

ω = dα ∧ dβ + dp ∧ dq + du ∧ dv.

(2.7)

Here the equilibrium is situated at the origin:

α = β = 0, p = q = 0, u = v = 0,

the quantities ±iνj , ±λk , ±al ± ibl are characteristic exponents of the equilibrium,
and J + K + 2L = m.

Neglecting the terms O3, we obtain the Hamiltonian of the linearized system.
This system has the invariant tori

T
n
c = {(β, α, q, p, v, u) : α2

j + β2
j = cj ≥ 0, p = q = 0, u = v = 0}.

The dimension n of T
n
c is equal to the number of nonzero constants cj . For definite-

ness suppose that c1, . . . , cn �= 0 and cn+1 = · · · = cJ = 0.
It is possible to assume that the quantities λk and al are positive. Consider the

variables (x, y, β̂, α̂, zu, zs) determined as follows:
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αj = √
yj/2 cos xj , βj = √

yj/2 sin xj , j = 1, . . . , n,

β̂ = (βn+1, . . . , βJ ), α̂ = (αn+1, . . . , αJ ), zs = (p, u), zu = (q, v).

Then the quadratic part of the Hamiltonian (2.7) takes the form

H =
J∑

j=1

νjyj +
J∑

j=n+1

νj (α
2
j + β2

j ) + 〈zs,Ωzu〉,

where the square (K + 2L) × (K + 2L) matrix Ω is as follows:

Ω =
(

Ω1 0
0 Ω2

)
, Ω1 = diag(λ1, . . . , λK),

Ω2 =

⎛
⎜⎜⎜⎜⎜⎝

a1 b1 . . . 0 0
−b1 a1 . . . 0 0

...
...

. . .
...

...

0 0 . . . aL bL

0 0 . . . −bL aL

⎞
⎟⎟⎟⎟⎟⎠

.

Eigenvalues of the matrix Ω have positive real parts. The torus T
n
c is hyperbolic iff

n = J .
Note that, to prove that lower-dimensional tori close to T

n
c exist in the original

(nonlinear) system, further preparatory work (including nonlinear normalization of
the Hamiltonian) is needed.

B. Consider a Hamiltonian system which has a certain set of involutive first inte-
grals. More precisely, we suppose that, in some canonical coordinates x, y, q, p,

x = (x1, . . . , xn) mod 2π, y = (y1, . . . , yn),

q = (q1, . . . , ql), p = (p1, . . . , pl), n + l = m,

the Hamiltonian of the system has the form H = H(y, q, p). Let us fix y, say y = 0.
Suppose that the point (q, p) = (q0, p0) is critical for the function H(0, q, p). It
is possible to assume that q0 = p0 = 0. Then the expansion of the Hamiltonian H

into the Taylor series is as follows:

H = H(0) + 〈ν, y〉 + 1

2

〈(
q

p

)
,G

(
q

p

)〉
+ O2(y) + O3(q, p) + O(y)O(q, p).

The n-dimensional torus N = {y = 0, q = p = 0} is invariant.
The terms O(y)O(q, p) in this equation can be reduced to O(y′)O2(q

′, p′) by a
canonical change (x, y, q, p) �→ (x′, y′, q ′, p′). Indeed, suppose that in the Hamil-
tonian H

O(y)O(q, p) = 〈p,G1y〉 + 〈q,G2y〉 + O(y)O2(q, p) + O2(y)O(q, p),
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where G1,G2 are constant l × n matrices. Then as a result of the change with the
generating function

S = 〈x, y′〉 + 〈q, p′〉 + 〈p′,Ω−1G1y
′〉 + 〈q,−(ΩT )−1G2y

′〉,
we obtain:

H = const + 〈ν, y′〉 + 〈y′, Ay′〉/2 + 〈p′,Ωq ′〉 + O3(y
′, q ′, p′),

where A is some constant n × n matrix.
C. As is well-known, any resonant Liouville torus of an integrable Hamiltonian

system is foliated by nonresonant tori of a smaller dimension. It turns out that after
a generic perturbation some (finite) number of these tori survive. To formulate the
rigorous result, consider the Hamiltonian system with m degrees of freedom in the
canonical coordinates x mod 2π, y with the real-analytic Hamiltonian

H(x, y, ε) = H0(y) + εH1(x, y, ε). (2.8)

The phase space of the unperturbed system is foliated by invariant m-dimensional
tori Nm

y0 = {(x, y) : y = y0} with the frequencies ν(y) = ∂H0/∂y.

We put ν = ν(y0), ν = (ν1, . . . , νm)T . Consider the subgroup gν of the com-
mutative group (Zm,+) such that for any vector k ∈ gν we have 〈ν, τ 〉 = 0. It is
natural to call gν the resonant group. Let rank gν denote the number of generators
of gν .

Proposition 2.1. Suppose that rank gν = l, n = m − l. Then any trajectory of the
unperturbed system lying on the torus Nm

y0 , fills densely some n-dimensional sub-

torus of Nm
y0 . Moreover, Nm

y0 is smoothly foliated by such nonresonant n-dimensional
tori.

Indeed, it is known from the theory of Abelian groups that there exists a set
k∗

1 , . . . , k∗
n, k1, . . . , kl of vectors from Z

m such that the (m × m) matrix K0, having
these vectors as rows, is unimodular (i.e. det K0 = 1), and the vectors k1, . . . , kl

generate gν . Let K and K∗ respectively be the (m × l) and (m × n) matrices such
that the vectors k1, . . . , kl and k∗

1 , . . . , k∗
n respectively are their rows. Obviously,

rank K = l, rank K∗ = n, KT ν = 0.
Let us perform the change of the angular variables: q = KT

0 x. Since the matrix
KT

0 is unimodular, the variables q mod 2π are coordinates on Nm
y0 . The equation

ẋ = ν on the torus T
m
y0 in the new coordinates has the form q̇ = KT

0 ν. The last l

components of the vector KT
0 ν vanish, and the first n components form the vector

ν∗ = KT∗ ν.

The resonant group gKT
0 ν contains the subgroup Z

l
0 = {j ∈ Z

m : j1 = · · · =
jn = 0}. Since the groups gν and gKT

0 ν are isomorphic to one another, we have:
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rank gKT
0 ν = l and gKT

0 ν = Z
l
0. Therefore, the frequencies ν∗ = (ν∗

1 , . . . , ν∗
n) are

rationally independent.
Any trajectory γ ∈ Nm

y0 of the unperturbed system fills densely a torus

{q mod 2π : (qn+1, . . . , qm) = const}, (2.9)

and any point q ∈ Nm
y0 belongs to one of the tori (2.9).

In the coordinates x, y the torus (2.9), containing the point x0, has the form

Nn
x0,y0 = {(x, y) : KT (x − x0) = 0 mod 2π, y = y0}. (2.10)

Below we present sufficient conditions under which Nn
x0,y0 survives a perturba-

tion of the system. Let us introduce the operation 〈·〉gν of the averaging correspond-
ing to the subgroup gν . For any continuous function f : T

m → R we define

〈f 〉gν (x) = lim
T →∞

1

T

∫ T

0
f (x + νt) dt.

Proposition 2.2. Let the Fourier expansion of the function f have the form

f (x) =
∑
j∈Zm

fj e
i〈j,x〉. (2.11)

Then
〈f 〉gν (x) =

∑
μ∈Zl

fKμei〈Kμ,x〉 =
∑
j∈gν

fj e
i〈j,x〉. (2.12)

Proof. Putting ϕ(q) = f ((KT
0 )−1q), we have:

1

T

∫ T

0
f (x + νt) dt = 1

T

∫ T

0
ϕ(KT

0 x + KT
0 νt) dt.

Since KT
0 ν = (

ν∗
0

)
and the frequency vector ν∗ ∈ R

n is nonresonant, by the Weil
theorem on the equality of the time and space averages [9], we get:

〈f 〉gν (x) = 1

(2π)n

∫
Tn

ϕ

(
KT

0 x +
(

q ′

0

))
dq ′,

q ′ ∈ T
n,

(
q ′

0

)
∈ T

m.

(2.13)

Since the Fourier expansion of ϕ has the form

ϕ(q) =
∑
j∈Zm

fj e
i〈j,(KT

0 )−1q〉 =
∑

μ∈Zm

fK0μei〈μ,q〉,
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the integral (2.13) equals

∑
μ∈Z

l
0

fK0μei〈μ,KT
0 x〉 =

∑
μ∈Zl

fKμei〈Kμ,x〉.

The first equation (2.12) is proved. The second equation (2.12) follows immediately
from definition of the matrix K . ��

Below we assume that the vector ν∗ is Diophantine. The Diophantine condition
for ν∗ can be expressed in terms of the original frequency vector ν. Namely, we call
the vector ν gν-Diophantine if there exist positive constants c, γ such that

|〈k, ν〉| ≥ 1

c|k|γ for any k ∈ Z
m \ gν.

This notion is discussed in Sect. 9.1.
Now we present a theorem on the existence of invariant tori close to Nn

x0,y0 for
small ε > 0 in the hyperbolic case. The general case is more complicated, see for
example, [28].

Theorem 2.5 ([132]). Suppose that the following conditions hold.

1. The unperturbed system is nondegenerate, i.e.,

det Π �= 0, Π = ∂2H0

∂y2
(y0).

2. The frequency vector ν is gν-Diophantine and rank gν = l.
3. The point x0 is critical for the function h(x) = 〈H1(y

0, x, 0)〉gν and the Hesse
matrix W = ∂2h/∂x2(x0) is such that the matrix WΠ has l eigenvalues6 off the
semiaxis R+ = {λ ∈ R : λ ≥ 0}.
Then for small ε ≥ 0 there exist an analytic in ε for ε > 0, smooth in

√
ε for

ε ≥ 0, family of n-dimensional hyperbolic tori Nn
y0(ε) of the system filled by quasi-

periodic solutions with the frequencies ν∗, where Nn
y0(0) = Nn

x0,y0 .

Invariant asymptotic manifolds (see below) Γ s,u(ε) of the hyperbolic torus Nn
y0(ε)

are close to one another: their local pieces contained in a neighborhood of the torus
Nm

y0(ε) can be transformed to each other by a deformation of order
√

ε.
Bolotin proved [20, 21] that, if the matrix Π is positive definite, the manifolds

Γ s,u(ε) intersect outside Nn
y0(ε) along several doubly asymptotic (homoclinic) tra-

jectories. Note that in the vicinity of the torus Nn
y0(ε) the system is exponentially

(in ε) close to an integrable one. In particular, the rate of the splitting of the mani-
folds Γ s,u(ε) is exponentially small.

6 The matrix W is degenerate: rank W ≤ l. Hence at least n eigenvalues of WΠ vanish.
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2.4 Hyperbolic Tori

The notion of a hyperbolic torus is widely used in the literature (see for example [28,
55, 104, 132, 148]). The concept of hyperbolicity first appeared in the general theory
of dynamical systems, where a hyperbolic set is defined in terms of the so called
stable and unstable foliations. However, traditionally in the KAM theory hyperbolic
tori are defined with the help of coordinates. Here, following [24], we will show that
under certain natural conditions the definition of a hyperbolic torus conventional for
the general theory of dynamical systems is quite suitable for needs of the KAM
theory.

Consider the system (M,ω,H). We use the notation vH for the corresponding
Hamiltonian vector field on M and gt for the phase flow of the system. Let N ⊂ M

be an invariant n-dimensional torus with frequency vector ν ∈ R
n. Thus N is the

image of a smooth embedding

Φ : T
n → M (2.14)

and the equation
∂νΦ = vH ◦ Φ, ∂ν = 〈ν, ∂/∂x〉,

is satisfied. Equivalently, Φ(x+νt) = gt (Φ(x)). Consider the linearized phase flow

Dgt : TNM → TNM, v ∈ TxM �→ Dgt(x) v ∈ Tgt (x)M.

It is defined by a linear differential equation which is called the variational equation
for the invariant torus N . The following definition was suggested in [23]. A slightly
different invariant definition is used in [21].

Definition 2.2. The torus N is called hyperbolic7 if n < m and there exist two
smooth l-dimensional (l = m − n) subbundles Es,u of the bundle TNM such that

1. Es,u are invariant for the linearized phase flow:

Dgt(w)Es,u
w = E

s,u
gt (w)

, w ∈ N, t ∈ R.

2. The linearized flow is contracting on Es and expanding on Eu, i.e., for some
positive constants C and λ, we have

‖Dgt(w)|Es
w
‖ ≤ Ce−λt , w ∈ N, t ≥ 0,

‖Dg−t (w)|Eu
w
‖ ≤ Ce−λt , w ∈ N, t ≥ 0.

Here ‖ · ‖ is any reasonable norm for the operators Dgt
∣∣
Es,u : Es,u

w → E
s,u
gt (w)

.
Passing to a finite covering of the torus N , without loss of generality we can assume

7 In the general theory of dynamical systems such a torus would be called partially normally
hyperbolic, because Eu

x ⊕ Es
x ⊕ TxN �= TxM . Here we follow the traditions of Hamiltonian

dynamics and KAM theory.
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that the bundles Es,u are oriented. The bundle Es is called stable (or contracting),
and Eu unstable (or expanding).

Definition 2.3. If the vector ν is nonresonant, the corresponding hyperbolic torus is
called nonresonant. If ν is Diophantine, the torus is called Diophantine.

Definition 2.4. A hyperbolic torus N is called nondegenerate if all bounded solu-
tions of the variational equation are tangent to N . Thus ‖Dgt(x)v‖ ≤ C for all t

implies that v ∈ TxN .

Let L(Rl ) be the set of linear operators R
l → R

l . For a smooth function Λ :
T

n → L(Rl ) consider a skew product system on T
n × R

l :

ẋ = ν, v̇ = Λ(x)v, x ∈ T
n, v ∈ R

l . (2.15)

Its phase flow has the form

(x, v) �→ (x(t), v(t)) = (x + νt, φt (x)v), (2.16)

where φt : T
n → L(Rl ), φ0(x) = I , is the fundamental matrix. Hence,

φs+t (x) = φs(x + νt)φt (x) for all s, t ∈ R and x ∈ T
n. (2.17)

Definition 2.5. The function Λ : T
n → L(Rl ) is said to be ν-positive definite if

there exist positive constants C, λ such that ‖φ−t (x)‖ ≤ Ce−λt for all x ∈ T
n and

t ≥ 0. The function Λ is said to be ν-negative definite if ‖φt (x)‖ ≤ Ce−λt , t ≥ 0.

In other words, Λ is ν-positive or ν-negative definite if the Lyapunov exponents
of the skew product system (2.15) are positive or negative respectively.

Remark 2.1. The duality of the systems
{

v̇ = Λ(x)v,

ẋ = ν,
and

{
u̇ = −ΛT (x)u,

ẋ = ν

implies that Λ is ν-positive definite if and only if −ΛT is ν-negative definite.

The simplest example of a ν-positive definite function is Λ = const, where the
eigenvalues of Λ have positive real parts. An equivalent condition is: Λ+Λ∗ is pos-
itive definite with respect to some Euclidean metric on R

l , where the operator Λ∗ is
conjugate to Λ with respect to the same metric. Here the property of ν-positive def-
initeness does not depend on ν. For l = 1 equations (2.15) can be solved explicitly.
Then, for ν nonresonant, ν-positive definiteness of Λ is equivalent to the condition∫

Tn Λ(x) dx > 0.
As a model example, consider a system on P = T

n
x × R

n
y × R

l
zu

× R
l
zs

with
Hamiltonian

H(x, y, zu, zs) = 〈ν, y〉 + 〈Ay, y〉/2 + 〈zs,Ω(x)zu〉 + O3(y, z) (2.18)
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and the symplectic structure

ω = dy ∧ dx + dzs ∧ dzu,

where the symmetric (n × n) matrix A is constant, and the matrix function Ω is
ν-positive definite.

Proposition 2.3. The invariant torus N = {(x, y, zu, zs) : y = 0, zs,u = 0} is
hyperbolic.

Indeed, the Hamilton equations have the form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = ν + Ay + O2(y, z),

ẏ = O2(y, z),

żu = Ω(x)zu + O2(y, z),

żs = −ΩT (x)zs + O2(y, z).

(2.19)

The variational equations on

TNP = T
n
x × R

n
ξ × R

n
η × R

l
ζu

× R
l
ζs

take the form ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ = ν,

ξ̇ = Aη,

η̇ = 0,

ζ̇u = Ω(x)ζu,

ζ̇s = −ΩT (x)ζs .

(2.20)

The subbundles Eu = T
n × R

l
ζu

and Es = T
n × R

l
ζs

are obviously invariant.
They satisfy Definition 2.2 of a hyperbolic torus due to the condition of ν-positive
definiteness of Ω .

Definition 2.6. Symplectic coordinates (x, y, zu, zs) in a finite covering of a neigh-
borhood of a hyperbolic torus N are said to be canonical for N if H satisfies (2.18),
up to a constant. If there exist smooth canonical coordinates for a hyperbolic torus,
the torus is said to be weakly reducible. A hyperbolic torus is said to be reducible if
it is weakly reducible with a constant matrix Ω .

A simple exercise is to check that this definition of a reducible hyperbolic torus
is equivalent to Definition 2.1.

Proposition 2.4. A weakly reducible hyperbolic torus is nondegenerate if and only
if det A �= 0.

Indeed, for any bounded solution of the variational equations (2.20), ζs,u = 0
and Aη = 0. All these solutions are tangent to N if and only if the matrix A is
nondegenerate.
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In [55, 132, 148] a hyperbolic torus was defined in terms of canonical coordi-
nates, where the matrix Λ(x) + ΛT (x) is positive definite for any x ∈ T

n. Up to a
change of variables, this is equivalent to the weaker condition that, for some positive
definite matrix G, the matrix GΛ(x) + ΛT (x)G is positive definite for any x ∈ T

n.
The condition of ν-positive definiteness is weaker.

Proposition 2.5. The function Λ : T
n → L(Rl ) is ν-positive definite if and only if

for some smooth family of positive definite matrices G : T
n → L(Rl ) the matrix

∂νG + GΛ + ΛT G is positive definite for all x ∈ T
n. (2.21)

The metric defined by G is called the Lyapunov metric.

Corollary 2.1. A small perturbation of a ν-positive definite function is again ν-
positive definite.

Proof (of Proposition 2.5). This proposition is a version of a result of Lyapunov
(a more general statement is presented in [116, 117]). Suppose that Λ is ν-positive
definite. Take any family K : T

n → L(Rl ) of symmetric positive definite matrices
and put

G(x) =
∫ 0

−∞
φT

s (x)K(x + νs)φs(x) ds,

where φs is the fundamental matrix of system (2.15). The integral converges expo-
nentially due to the property of ν-positive definiteness. By (2.17)

〈
G(x + νt)φt (x)v, φt (x)v

〉

=
∫ 0

−∞
〈
K(x + ν(s + t))φs(x + νt)φt (x)v, φs(x + νt)φt (x)v

〉
ds

=
∫ 0

−∞
〈
K(x + ν(s + t))φs+t (x)v, φs+t (x)v

〉
ds

=
∫ t

−∞
〈
K(x + ντ)φτ (x)v, φτ (x)v

〉
dτ.

Therefore

d

dt

∣∣∣∣
t=0

〈
G(x + νt)φt (x)v, φt (x)v

〉 = 〈K(x)v, v〉 > 0 for any v �= 0.

This implies (2.21). On the other hand, if condition (2.21) holds, then

d

dt

∣∣∣∣
t=0

〈
G(x + νt)φt (x)v, φt (x)v

〉 ≥ λ〈v, v〉 for any v �= 0,

where λ is a positive constant. This implies the required ν-positive definiteness. ��
Recall that a torus N is said to be isotropic if ω|N = 0.
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Theorem 2.6. Any Diophantine isotropic hyperbolic torus is weakly reducible. If
n = m − 1 or n = 1, it is reducible. In the analytic case the canonical coordinates
are analytic.

Of course, this trivially holds also for n = 0 and n = m. Herman [59] proved that,
if the symplectic form ω is exact, then any nonresonant invariant torus is isotropic.
Theorem 2.6 gives a relation between the dynamical definition of a hyperbolic torus
and the definition conventional for the KAM theory. We present a proof of the the-
orem in Sect. 2.5.

The variational system (2.20) has two invariant isotropic subbundles

Eu = T
n
x × R

l
ζu

= {η = 0, ζs = 0},
Es = T

n
x × R

l
ζs

= {η = 0, ζu = 0}.
Solutions which belong to the first (respectively, to the second) one, approach the
hyperbolic torus exponentially when t → −∞ (respectively, t → +∞). Manifolds
with analogous properties exist in system (2.19) as well. Graff proved [55] that in an
analytic system with Hamiltonian (2.18), where Ω + ΩT is positive definite, there
are stable and unstable invariant Lagrangian manifolds Γ s,u containing N such that
TxΓ

s,u = TxN⊕E
s,u
x for any x ∈ N . They can be represented as Γ s,u = fs,u(E

s,u),
where fs,u : Es,u → T

n
x × R

n
y × R

l
zu

× R
l
zs

are analytic maps of the form

fu(θ, ζ ) = (θ + O2(ζ ),O2(ζ ), ζ,O2(ζ )),

fs(θ, ζ ) = (θ + O2(ζ ),O2(ζ ),O2(ζ ), ζ ).

The Hamiltonian system restricted to Γ s,u has the form

ϑ̇ = ν, ζ̇ = Λu(ϑ, ζ )ζ on Γ u,

ϑ̇ = ν, ζ̇ = −Λs(ϑ, ζ )ζ on Γ s,

where the matrices Λu + (Λu)T and Λs + (Λs)T are positive definite for small |ζ |.
Conjecture 2.1. Manifolds Γ s,u exist and are unique for a weakly reducible Dio-
phantine torus. For an analytic system, they are analytic.

In this case, the matrices Λs,u are ν-positive definite for small |ζ |.
In the Ck category with large k, the existence (not uniqueness) of the stable and

unstable manifolds is easy to prove by using Theorem 2.6 and standard hyperbolic
technique. Let H be smooth. Fix a large integer k.

Theorem 2.7 ([24]). Let N be a Ck-smooth isotropic Diophantine hyperbolic torus.
Then N has m-dimensional Lagrangian stable and unstable manifolds Γ s,u of
class Ck .

For analytic H , this theorem does not imply that the manifolds Γ s,u are analytic.
Graff [55] (see also [148]) proved that reducible nondegenerate Diophantine hy-

perbolic tori of a real-analytic system survive a small perturbation. They just slightly
deform and remain hyperbolic and real-analytic.
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Conjecture 2.2. The Graff theorem holds for weakly reducible Diophantine tori.

We believe that the proof of both conjectures is straightforward and standard;
however, the detailed argument is not short. Again, in the Ck category with large k,
Conjecture 2.2 is an easy theorem.

Theorem 2.8 ([24]). Let k be sufficiently large. Then an isotropic nondegenerate
Diophantine hyperbolic torus survives a small Ck perturbation of the Hamiltonian.

In the analytic case Theorem 2.8 doesn’t imply that the perturbed torus is ana-
lytic. To prove this, one needs KAM theory.

Eliasson [48] obtained the following normal form for an analytic system near a
hyperbolic torus for n = m − 1.

Theorem 2.9. Let N be a reducible nondegenerate (m−1)-dimensional Diophantine
hyperbolic torus. Then there exist analytic canonical coordinates (x, y, zu, zs) in a
neighborhood of N such that

H = 〈ν, y〉 + λzszu + O2(y, zszu).

According to Theorem 2.6, the assumption of the reducibility for the torus N

always holds if the form ω is exact.
The proof of Theorem 2.9 is of KAM nature: it is based on a Newton-type itera-

tive procedure. The Eliasson coordinates are convenient for studying the dynamics
in a neighborhood of N .

2.5 Hyperbolic Tori: Weak Reducibility

In this section we prove Theorem 2.6. The proof is based on several auxiliary propo-
sitions.

Proposition 2.6. Suppose that the form ω is exact. Let N be a nonresonant hyper-
bolic torus. Then

1. The torus N is isotropic, i.e., ω|N = 0.
2. For any w ∈ N the subspaces TwN ⊕ Es,u

w are Lagrangian.
3. The form ω defines a nondegenerate bilinear form on Eu

w × Es
w: if vu ∈ Eu

w and
ω(vu, vs) = 0 for all vs ∈ Es

w, then vu = 0.

Proof. The first statement follows from the Herman theorem [59]. The argument is
as follows. The form ω0 = Φ∗ω (see (2.14)) on T

n is preserved by the differential
equation ẋ = ν. Let us put

ω0 =
∑
j<k

αjk(x) dxj ∧ dxk.
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The vector field 〈ν, ∂/∂x〉 is a restriction of the Hamiltonian vector field vH to N .
Therefore the derivative of ω0 along 〈ν, ∂/∂x〉 vanishes. Moreover, since ν is non-
resonant, the coefficients αjk are constant. Since ω is exact, ω0 is also exact. There-
fore, αjk = 0.

To prove the second statement, take any two vectors v, v′ ∈ TwN ⊕ Eu
w. Then

ω(v, v′) = ω(Dgtv,Dgtv′) → 0, t → −∞.

Indeed, for any vector v ∈ TwN ⊕ Eu
w let u ∈ TwN be the component of v tangent

to the torus. Then

‖Dgtv − Dgtu‖ → 0, ‖Dgtu‖ ≤ C.

The last statement follows from the first two and the nondegeneracy of ω. Indeed,
suppose that for some vu ∈ Eu

w we have ω(vu, vs) = 0 for any vs ∈ Es
w. From

statement 2 we have: ω(vu, v) = 0 for any v ∈ TwN . Hence, the space spanned by
TwN ⊕ Es

w and vu is isotropic. If vu �= 0, the dimension of this space equals m + 1.
This contradicts the nondegeneracy of ω. ��
Proposition 2.7. In a finite covering Ũ of a neighborhood U of N in M there exist
coordinates (x, y, zu, zs) ∈ T

n × R
n × R

l
u × R

l
s such that:

1. Φ(x) = (x, 0, 0, 0) for any x ∈ T
n,

2. ω = dy ∧ dx + dzu ∧ dzs ,
3. Eu = T

n × R
l
u, Es = T

n × R
l
s .

Here to avoid misunderstandings R
l
s and R

l
u denote two copies of conjugate

spaces R
l . Thus R

l
u = (Rl

s )
∗.

Proof. By definition, N = Φ(Tn). Let x be the standard coordinate in T
n. After

passing to a finite covering, the bundles Es and Eu become trivial. Since the bundle
Es is trivial, for any w = Φ(x) we have an isomorphism Es

w = R
l
zs

smoothly
depending on x ∈ T

n. We fix this isomorphism. By Proposition 2.6, V = Eu
w ⊕

Es
w is a symplectic space. Hence Eu

w = (Es
w)∗ with the isomorphism given by the

symplectic form ω. Thus V = R
l
u ⊕ R

l
s with the standard symplectic structure

dzs ∧ dzu. Let

V ⊥ = {v ∈ TwM | ω(v, u) = 0 for any u ∈ V }
be the symplectic complement of V . Then V ⊥ is a symplectic space of dimension
2n, and it contains the Lagrangian subspace TwN = R

n. Hence there exists a sym-
plectic isomorphism V ⊥ = TwN⊕T ∗

wN = R
n⊕(Rn)∗ with the standard symplectic

structure dy∧dx. Thus, for any w = Φ(x) ∈ N , we have a symplectic isomorphism

TwM = V ⊥ ⊕ V = R
n
x ⊕ R

n
y
∗ ⊕ (Rl

u)zu ⊕ (Rl
s )zs

smoothly depending on x ∈ T
n. The bilinear form ω|TwM equals dy∧dx+dzs∧dzu.

Using the exponential map TwM → M , we obtain a smooth map
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f : T
n
x × R

n
y × (Rl

u)zu × (Rl
s )zs → M

defining the coordinates x, y, zu, zs in a tubular neighborhood of the torus N such
that

f ∗ω = dy ∧ dx + dzu ∧ dzs + O(y, z).

Put
Ω = dy ∧ dx + dzu ∧ dzs.

The symplectic structures f ∗ω and Ω coincide on the torus T
n and are homotopic

in a neighborhood of T
n in the class of symplectic structures. For example, the ho-

motopy can be chosen as af ∗ω+ (1−a)Ω , 0 ≤ a ≤ 1. According to Theorem 1.2,
there exists a diffeomorphism g in a neighborhood of the torus, such that g and Dg

equal the identity on T
n and g∗(f ∗ω) = Ω .

The map f ◦ g defines the coordinates we need. ��
Proposition 2.8. Suppose that for some vector ν ∈ R

n the function Λ : T
n →

L(Rl) is ν-positive definite or ν-negative definite. Then for any smooth function
v : T

n → R
l there exists a unique smooth solution u : T

n → R
l of the equation

∂νu(x) − Λ(x)u(x) = v(x). (2.22)

For Λ ≡ 0 equation (2.22) has a unique solution provided that the mean values of
u and v over the torus T

n vanish and the vector ν is Diophantine.
If v and Λ are real-analytic, the function u is also real-analytic.

Proof. Consider the case of a ν-negative definite function Λ. Let φt (x) be the fun-
damental matrix of system (2.15). Since Λ is ν-negative definite, the norm of φt (x)

satisfies the estimate
‖φ−1

t (x)‖ ≤ Ce−λt , t > 0, (2.23)

for some positive constant λ. We will show that

u(x) =
∫ 0

−∞
φ−1

s (x)v(x + νs) ds. (2.24)

Indeed, equation (2.22) is equivalent to the following one:

u̇(x + νt) − Λ(x + νt)u(x + νt) = v(x + νt).

Searching for a solution in the form u(x + νt) = φt (x)θ(x, t), we get

θ(x, t) =
∫ t

−∞
φ−1

τ (x)v(x + ντ) dτ.

Putting t = 0, we obtain (2.24). The integral converges exponentially due to (2.23).
The solution (2.24) is unique since all nontrivial solutions of the homogeneous

equation ∂νu(x) − Λ(x)u(x) = 0 are unbounded on T
n.
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If v and Λ are real-analytic, φt (x) is also real-analytic in both x and t . The
integral (2.24) converges exponentially in a complex neighborhood of T

n. Hence,
u(x) is also real-analytic.

The case of a ν-positive definite function Λ is analogous. For Λ ≡ 0 and ν

Diophantine, equation (2.22) can be easily solved by using Fourier expansions. ��
Proposition 2.9. The coordinates (x, y, zu, zs) from Proposition 2.7 can be trans-
formed to canonical ones for the torus N .

Proof. Since y = zs = zu = 0 is an invariant torus with frequency ν, in the
coordinates (x, y, zu, zs) the Hamiltonian H = 〈ν, y〉 + O2(y, z) has the form

H = 〈ν, y〉 + 〈A(x)y, y〉/2 + 〈zu, Bu(x)y〉 + 〈zs, Bs(x)y〉
+ 〈zs, Cs(x)zs〉/2 + 〈zs, C(x)zu〉 + 〈zu, Cu(x)zu〉/2

+ O3(y, zs,u),

where the n×n matrix A, the l ×n matrices Bs,u, and the l × l matrices C,Cs,u are
functions of x ∈ T

n. The matrices A and Cs,u are symmetric.
The corresponding differential equations are as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = ν + Ay + BT
u zu + BT

s zs + O2(y, z),

ẏ = O2(y, z),

żu = Cszs + Czu + Bsy + O2(y, z),

żs = −CT zs − Cuzu + Buy + O2(y, z).

By Proposition 2.7 the manifolds {y = 0, zs = 0} and {y = 0, zu = 0} are invariant
in linear approximation. This means that Cs ≡ Cu ≡ 0. According to the definition
of a hyperbolic torus the function C is ν-positive definite.

To eliminate the terms containing Bs and Bu, we perform the canonical change
(x, y, zu, zs) �→ (x̂, ŷ, ẑu, ẑs) with the generating function

S(x, zu, ŷ, ẑs) = 〈x, ŷ〉 + 〈zu, ẑs〉 + 〈zu, bu(x)ŷ〉 + 〈zs, bs(x)ŷ〉,
where the matrices bs,u(x) are solutions of the equations

∂νbs,u(x) ± C(x)bs,u(x) + Bs,u(x) = 0.

In the new variables

H = 〈ν, ŷ〉 + 〈Â(x̂)ŷ, ŷ〉/2 + 〈ẑs , C(x̂)ẑu〉 + O2(ŷ, ẑs,u)

with some matrix function Â.
The change (x̂, ŷ, ẑu, ẑs) �→ (x, y, zu, zs) with the generating function

S(x̂, ẑu, y, zs) = 〈x̂, y〉 + 〈ẑs , zu〉 + 〈a(x̂)y, y〉,
where the matrix a is a solution of the equation
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∂νa(x) + Â(x) = A, A = 1

(2π)n

∫
Tn

Â(x) dx,

defines coordinates canonical for N . Indeed,

H = 〈ν, y〉 + 〈Ay, y〉/2 + 〈zs, C(x)zu〉 + O2(y, z). ��
Now suppose that l = 1. Then positive definiteness of C is equivalent to the

condition
∫

Tn C(x) dx = C > 0. Let us perform the change (x, y, zu, zs) �→
(X, Y,Zu, Zs) with generating function S = 〈x, Y 〉 + u(x)zuZs , where

∂νu(x) + u(x)(C(x) − C) = 0.

This equation has a positive solution on the torus T
n. In the new variables

H = 〈ν, Y 〉 + 〈AY, Y 〉/2 + CZuZs + O2(Y, Z).

This implies reducibility of N for l = 1. The reducibility in the case n = 1 follows
from the Floquet theorem.

2.6 Applications of the KAM Theory

1. The Kolmogorov theorem implies the existence of a large set Qε of quasiperiodic
motions in near-integrable systems. Since the measure of this set is positive, the
systems cannot be ergodic neither in the whole phase space nor on a non-singular
energy level. Let Nε be the subset of the phase space complementary to Qε. It is
interesting to establish an asymptotic estimate for the measure of the set Nε for
ε → 0.

Let D be an open domain in the phase space such that its closure D is compact
and any point of the set D lies on an invariant torus of the unperturbed system.
Suppose that the unperturbed system is non-degenerate in D. Then according to
[94, 107] the measure of the set D ∩ Nε is O(

√
ε).

If we do not include into Nε only points lying on tori existing according to the
ordinary Kolmogorov theorem then, in general, the measure of D∩Nε has order not
less than O(

√
ε). This estimate follows from the fact that the perturbation generates

“holes” of area ∼√
ε in the vicinity of resonant unperturbed tori (see Figs. 2.1–

2.2, where about 180 trajectories of the Standard Chirikov Map (1.5), Chap. 1, are
presented for ε = 2π · 0.1 and for ε = 2π · 0.14. As usual, the coordinate y is
vertical and x is horizontal).

However, it is easy to see that these “holes” in turn are filled with invariant tori
rather densely. Taking this phenomenon into account, one can be quite sure that in
the case of 2 degrees of freedom the measure of the set D ∩ Nε is exponentially
small in ε, but as far as we know this statement has not been proved yet. In the case
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Fig. 2.1 Phase portrait of the standard map for ε = 2π · 0.1.

Fig. 2.2 Phase portrait of the standard map for ε = 2π · 0.14.

of 3 and more degrees of freedom the estimate of the measure must be polynomial
in ε because of the influence of multiple resonances.

As is well-known, in near-integrable systems chaos develops essentially in the
vicinity of separatrices of the unperturbed system. In particular, if the domain D has
a nonempty intersection with asymptotic manifolds of the unperturbed system, the
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measure of the set D ∩ Nε in general is expected to have the order ε| log ε| (see
Chap. 5).

2. In 1994 the first author learned from V.I. Arnold about the following problem.
Consider a continuous family of invariant curves of an integrable two-dimensional
exact symplectic map, and a resonant curve from this family. Take a perturbed map,
which is also exact symplectic. Generically the resonant curve is destroyed, and
in its neighborhood a domain of chaotic motions—the so called stochastic layer—
appears. The boundary of the stochastic layer contains a pair of nonresonant curves
which appear as a result of a deformation of curves from the initial family. What is
the difference of frequencies on these boundary curves if the perturbation has the
order 0 < ε � 1?

The answer turns out to be not trivial, although it can be obtained as a combina-
tion of standard facts; see Sect. 9.3. If the system is analytic, the difference of the
frequencies is of order ε. This result can not be obtained directly from the analysis of
the Taylor expansion of the map in the perturbing parameter. It is well known that the
boundary invariant curves we discuss go essentially on the distance ∼√

ε from each
other, but in some places this distance is exponentially small. Formally speaking, the
answer is obtained as a result of the following calculation:

√
ε/ log(e−c/

√
ε) ∼ ε.

If the system has a finite order of smoothness, the frequency difference is of order√
ε/ log ε, because the argument of the logarithm above should be replaced by εN ,

where N is the order of smoothness.
3. The KAM theory gave a tool to prove the Lyapunov stability for typical el-

liptic periodic solutions in autonomous Hamiltonian systems with two degrees of
freedom.8 Indeed, let us reduce the order of such a system on the energy level Mh in
a neighborhood of an elliptic periodic trajectory γ . Passing on to the (linear) normal
form, we obtain the nonautonomous system with Hamiltonian

H(x, y, t) = μ(x2 + y2)/2 + O3(x, y), (2.25)

where x and y are real canonically conjugate variables. The function (2.25) is 2π-
periodic in time t , and the constant μ is positive and distinct from 2πk for any
integer k. The trajectory γ has the form {(x, y, t mod 2π) : x = y = 0}.

In a neighborhood of the curve γ the term O3 in the Hamiltonian H can be
regarded as a small perturbation. Degeneracy of the unperturbed integrable linear
system with Hamiltonian μ(x2 + y2)/2 can be removed by the normalization in
H of the third and fourth order terms. More precisely, suppose that the following
conditions hold:

μ �= 2πn/3, μ �= πk/2, n, k ∈ Z. (2.26)

Then by the Birkhoff transformation Hamiltonian (2.25) can be reduced to the form

H(x, y, t) = μ(x2 + y2)/2 + μ∗(x2 + y2)2 + O5(x, y). (2.27)

8 Recall that a periodic solution of a Hamiltonian system is called elliptic if all its multipliers are
not real and lie on the unit circle.



2.6 Applications of the KAM Theory 47

Fig. 2.3 Invariant tori surrounding the curve γ on Mh.

Here μ∗ is a constant and the new canonical variables are again denoted by x, y.
Now we can consider the system with the Hamiltonian μ(x2 +y2)/2+μ∗(x2 +y2)2

as the unperturbed integrable system. In the case μ∗ �= 0 we have nondegeneracy
for small values of (x2 + y2).

Note that the existence of a large number of invariant tori in the system with
Hamiltonian (2.27) does not follow directly from theorems formulated in previous
sections. However, by using the usual methods of the KAM theory, it is possible to
prove that for arbitrary small r > 0 there are two-dimensional invariant tori of the
form

T
2
r = {(x, y, t mod 2π) : x2 + y2 + O5(x, y) = r2}.

Now return to the original system with two degrees of freedom. The tori T
2
r , like

the periodic solution γ , lie on the energy level Mh. Each torus divides the three-
dimensional manifold Mh into two invariant sets: the interior of the solid torus (con-
taining, in particular, the curve γ ) and its exterior (see Fig. 2.3). Since for r → 0 the
tori T

2
r come arbitrary close to γ = γh, the periodic solution γ is orbitally Lyapunov

stable on the energy level Mh.
Since the solution γ is nondegenerate, on neighboring energy levels Mh′ the

picture is analogous: the periodic solutions γh′ close to γ are surrounded by invariant
tori. This implies the orbital stability of the solution γ for the full system.

Note that, if either the nonresonant conditions (2.26) do not hold or μ∗ = 0, the
solution γ can be unstable (see [11, 86]).

An analogous idea can be used to prove the Lyapunov stability of elliptic equi-
librium positions in Hamiltonian systems with two degrees of freedom9 [7].

4. Consider the problem of the evolution of the action variables in near-integrable
Hamiltonian systems, known also as the problem of Arnold diffusion. Discussion of
the Arnold diffusion as a dynamical phenomenon was initiated by the famous pa-
per [8]. However, by the present time the term has no precise meaning. It expresses
the general idea that, in Hamiltonian systems with more than 2 degrees of freedom
trajectories have no generic obstacles to travel in the phase space except (in the
autonomous case) the energy conservation.

9 In this case the problem of the stability is nontrivial only when the equilibrium is not a strict
extremum of H , in other words if the Hamiltonian is not a Lyapunov function.
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According to [60] the Arnold conjecture about the transitivity10 of generic mul-
tidimensional Hamiltonian systems on compact connected components of generic
energy levels is false. However, in these examples Hamiltonians are not presented
as a sum of kinetic and potential energies and can not be regarded as perturbations
of Liouville integrable ones. Hence, the situation is still unclear in the “physical”
case.

Usually the Arnold diffusion is discussed for real-analytic near-integrable sys-
tems.11 Here one should distinguish various settings:

(1) the unperturbed Hamiltonian depends only on the action variables,
(2) the unperturbed system contains a family of hyperbolic tori,12

(3) the problem usually becomes much simpler if the system contains two or more
(may be, dependent) small parameters.

In [31] cases (1) and (2) are called a priori stable and a priori unstable respec-
tively. A system of the third type can be regarded as either a priori stable or a priori
unstable depending on what system is called unperturbed.

The existence of the Arnold diffusion in the strong sense, i.e., transitivity on an
energy level, has not been proved in any example of type (1)–(3). However, there
are some results [8, 14, 85] where an evolution of a slow (action) variable has been
established. All these results concern systems of type (3).

The mechanism of the Arnold diffusion contains both local and global aspects.
The local aspect means that a neighborhood of a hyperbolic torus and of some (not
small) pieces of the corresponding asymptotic surfaces should be considered. The
splitting of these surfaces as a rule generates chaotic dynamics in the neighborhood.
The global aspect means that one needs to join different neighborhoods into a tran-
sition chain which takes a diffusion trajectory far from the initial state.

Trying to realize this (in fact, Arnold’s) program, one meets problems of a differ-
ent kind. On the local stage the problem of splitting the asymptotic surfaces appears.
For systems of type (2) the splitting is given by the standard Poincaré–Melnikov
method (see Sect. 3.3). In systems of the first type hyperbolic tori appear only after
the perturbation. The splitting is exponentially small with respect to the perturba-
tion rate, and the standard technics fail. To get round this difficulty, an additional
small parameter is frequently introduced which moves the system to class (3). Usu-
ally after this the set up becomes less natural. There are several attempts to estimate
how large the additional small parameter can be in the splitting problem, where the
splitting can be analyzed [35, 85]. It was found that if the additional small parame-
ter does not exceed a positive power of the main one, the naive application of the
Poincaré–Melnikov theory usually gives correct asymptotics of the splitting. The
problem of asymptotic surface splitting in the multi-frequency case looks hopeless
if the naive Poincaré–Melnikov integral does not give the correct asymptotics of

10 A dynamical system is called transitive if it has a dense trajectory.
11 The smooth case is simpler, see [41].
12 A typical example of such an (unperturbed) system is a direct product of a system of type (1)
with a pendulum. Hyperbolic tori are generated by the hyperbolic equilibrium position of the pen-
dulum.
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the splitting. Here we mean that, apparently, in this case the asymptotics can not be
obtained in a form suitable for further application.

Another (simpler) local problem is to find a trajectory passing through a neigh-
borhood of asymptotic surfaces. Usually this is almost equivalent to constructing a
hyperbolic invariant set in this neighborhood.

Concerning the global aspect, the problem of gaps appears. It is connected with
the well-known fact that hyperbolic tori generically form a Cantor set on an energy
level. So, if between two “neighboring” tori there is a large gap, it is difficult to
pass from a neighborhood of one torus to a neighborhood of the other. In other
words, it is difficult to establish a heteroclinic connection. Some ideas and results
on overcoming the large gap problem are presented in [37].

There are several attempts to avoid the cumbersome KAM technique in the prob-
lem of diffusion. A variational approach was proposed in [29], where the genericity
of the diffusion in a priori unstable systems with two and a half degrees of freedom
was established.

In [139–141] (see also [103]) the approach based on the method of the separa-
trix map was used. The main result of these papers is that the diffusion in a priori
unstable systems with two and a half degrees of freedom is generic, and moreover
there are orbits along which the average velocity of the slow variable drift is of order
ε/ log |ε|. It can be proved that “faster orbits” do not exist.

There are still no results on genericity of the diffusion in systems with more than
one slow variable even in the a priori unstable case. Here the result should be as
follows.

For a generic system let γ be an arbitrary smooth curve in the space of slow
variables. Then there exists an orbit whose projection to this space goes in a small
tubular neighborhood of γ with average velocity along γ of order ε/ log |ε|.

For a priori stable systems there are estimates from above for the maximal veloc-
ity of the diffusion. In real-analytic systems the estimate is exponentially small with
respect to the rate of the perturbation [80, 96, 109].

5. J. Mather suggested a general variational method for constructing connecting
orbits for invariant sets of positive definite time periodic Hamiltonian systems [89].
He conjectured that the following statement is true.

Let M be a compact Riemannian manifold with Riemannian metric ‖·‖. Consider
a classical Hamiltonian system with smooth time-periodic Hamiltonian

H(q, p, t) = 1

2
‖p‖2 + V (q, t) (2.28)

on T ∗M×T. Then, for a generic potential V , there exists a trajectory with ‖p(t)‖ →
∞ as t → ∞.

In an unpublished manuscript [89] Mather obtained the following result.
Let M be a two-dimensional torus. Then there exists a minimizing closed geo-

desic σ in an arbitrary simple homotopy class Γ of closed curves in M . If the min-
imizing geodesic in Γ is unique, it follows from the results of Morse [91] that σ
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possesses a homoclinic13 trajectory γ . Suppose that σ is nondegenerate, and the
homoclinic trajectory γ is transversal.14 There exist a, b ∈ R such that

dist(γ (t), σ (t + a)) → 0 as t → −∞, and

dist(γ (t), σ (t + b)) → 0 as t → ∞.

The numbers a, b are defined mod l, where l is the period of the geodesic σ . Without
loss of generality suppose that the average of V over σ vanishes:

∫ l

0 V (σ(τ), t) dτ =
0 for all t . Then the Poincaré function

I (t) = lim
T →∞

( ∫ T

−T

V (γ (τ), t) dτ −
∫ T +b

−T +a

V (σ (τ), t) dτ

)
, t ∈ T, (2.29)

is well-defined, i.e., it doesn’t depend on the choice of a, b. Mather proved that, if
I is nonconstant, then there exists an orbit such that ‖p(t)‖ → ∞ as t → ∞. Note
that for a generic metric and a generic potential all these conditions are satisfied.

The proof is of the variational nature and is based on a combination of the Peierls
barrier method of [88] and the classical Poincaré–Melnikov method.

In [23] a multidimensional version of this result is presented. Hamiltonians of
a more general form compared with (2.28) are studied, and the periodic orbit is
replaced by a hyperbolic torus. Instead of the variational methods, a more traditional
approach, based on KAM theory and the classical Poincaré–Melnikov method, is
used. Analogous ideas were applied to the Mather problem in [36]. A proof, partially
using the original Mather’s variational ideas, is presented in [63]. In fact, there is
nothing magic in these results: a small parameter naturally appears as a ratio of
potential and kinetic energy.

There is an obvious upper estimate for the diffusion velocity. It is based on the
equation dH/dt = ∂H/∂t ∼ 1. By using a multidimensional version of the separa-
trix map, Piftankin [102] (see also [103]) constructed orbits in the Mather problem
in which the average velocity of the energy growth is of order 1.

2.7 Perturbations of a Quasi-Periodic Flow on a Torus

In this and in the next sections we present some technical details of the traditional
KAM method. The problem to be considered on the reduction of a flow on a torus is
taken from [5]. Choosing this model problem we intended to eliminate technicalities
from the procedure of quadratic convergence. It is this procedure that forms a core
of the traditional KAM method. We hope that a reader who understands the proof
of Theorem 2.10 will not have big problems in an analysis of other KAM-type
theorems performed by the method of quadratic convergence.

13 I.e., doubly asymptotic to σ .
14 The last assumption means that stable and unstable asymptotic manifolds of σ intersect along
γ transversely.
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Consider the ordinary differential equation

ẋ = ν + ε(f (x, ε) + λ), (2.30)

where x = (x1, . . . , xm) mod 2π is a point of the m-dimensional torus T
m, the

function f is periodic in x, the vectors ν, λ ∈ R
m are constant, and ε is as usual a

small parameter. The problem is to reduce system (2.30) to the form

ξ̇ = ν (2.31)

by the change of the variables

x = ξ + εQ(ξ, ε) (2.32)

where Q is periodic in ξ .
First, let us clear up the role of the parameters λ. It is easy to see that without

these parameters the problem, as a rule, has no solution. Indeed, let us put λ ≡ 0 and
f = const �= 0. Then for small ε systems (2.30) and (2.31) can not be transformed to
each other because of the difference in the topological structure of their solutions.15

Therefore, to have a positive solution for the problem we have to seek a change of
variables (2.32) together with the function λ(ε), for which this change exists.16

Recall that the frequencies ν are called Diophantine if

|〈k, ν〉| ≥ α‖k‖−γ for all 0 �= k ∈ Z
m. (2.33)

Theorem 2.10. Suppose that the frequency vector ν is Diophantine and the function
f is analytic in x and ε. Then there exist analytic functions λ(ε), Q(ξ, ε) such that
for small ε the system (2.30)|λ=λ(ε) is transformed to (2.31) by the change (2.32).

The change of variables (2.32) is constructed below as a composition of an infi-
nite number of changes. After each change the system approaches closer to (2.31).
It is possible to organize the procedure so that at each step the perturbation (an ana-
log of the function f obtained at a given step of the procedure) has a rate which
is, roughly speaking, the square of the previous perturbation rate. This provides the
convergence of the composition.

The quadratic convergence is usually associated with the Newton method for
solving the equation F(y) = 0, where F : D → R

m is a smooth function, D ⊂ R
m.

Recall the construction of the Newton method. Let y∗ be the solution we search for,
where the Jacobi matrix ∂F/∂y is supposed to be nondegenerate at the point y∗.
Suppose also that the solution y∗ is known approximately, i.e., for a given y = y0
the approximate equality y0 ≈ y∗ holds. Then consider the sequence

15 For example, if the vectors ν and f are not parallel, for arbitrary small ε the groups of reso-
nances for the frequency vectors ν and ν + εf have different ranks.
16 Usually in KAM-type theorems, analogs of the parameters λ can be found among inner para-
meters of the system. For example, in the ordinary Kolmogorov theorem, λ appear when one uses
the possibility to shift the action variables y �→ y + ελ.
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y0, y1, . . . (2.34)

such that for any nonnegative j ∈ Z

yj+1 = yj −
(

∂F

∂y
(yj )

)−1

F(yj ).

Simple estimates show that the sequence (2.34) converges to y∗ and moreover, for
some constant C, the following inequalities hold:

|yj+1 − y∗| < C|yj − y∗|2, j = 0, 1, . . . .

The convergence speed for this procedure is quadratic. It is considerably faster than
(an exponential) convergence speed of the contraction method.

Now we show how it is possible to provide fast convergence in the problem of
the reduction of a flow on a torus. As we have mentioned above, the change of
variables (2.32) x �→ ξ is constructed as a limit of the composition

x ≡ x0 �→ x1 �→ x2 �→ · · · , ξ = x∞.

Below it is convenient to present the function λ(ε) as the sum

λ =
∞∑

j=0

λj , λj = λj (ε).

We will regard λj as the piece of the function λ(ε), used for the j -th change of
variables. We put

f = f0, λ̂n =
∞∑

j=n

λj , n = 0, 1, . . . .

Suppose that after n changes system (2.30) takes the form

ẏ = ν + ελ̂n + εfn(y, ε, λ̂n), (2.35)

where y ≡ xn are new variables. The (n + 1)-st change is constructed as follows:

y = η + εqn(η, ε, λ̂n). (2.36)

The function qn will be defined below. The change (2.36) transforms (2.35) in the
following way:

η̇ + ε

m∑
j=1

(qn)ηj
η̇j = ν + ελ̂n + εfn(η + εqn, ε, λ̂n). (2.37)
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Here the symbols (qn)ηj
denote the partial derivatives ∂qn/∂ηj . We want the equa-

tion (2.37) to be of the form η̇ = ν. Hence, we should take qn and λ̂n satisfying the
equation

∂νqn = λ̂n + fn(η + εqn, ε, λ̂n), (2.38)

where the differential operator ∂ν is as follows:

∂ν = 〈ν, ∂/∂η〉 =
m∑

j=1

νj ∂/∂ηj .

Equation (2.38) is nonlinear and can not be solved at once.17 Hence, consider instead
of it the simpler one:

∂νqn = λn + fn(η, ε, λn). (2.39)

This equation is called homologic. Before we solve it and pass to rigorous estimates,
we show on an informal level that the sequence of the variable changes we construct
really converges quadratically.

Indeed, since λ̂n = λ̂n+1 + λn then as a result of the change (2.36) and (2.39),
the system (2.37) takes the form

η̇ = (I + ε(qn)η)
−1(ν + ελ̂n + εfn(η + εqn, ε, λ̂n))

= ν + ελ̂n+1 + εfn+1(η, ε, λ̂n+1),

where I is the identity m × m matrix and

fn+1(η, ε, λ̂n+1) = (I + ε(qn)η)
−1

× (−ε(qn)ηλ̂n+1 + fn(η + εqn, ε, λ̂n) − fn(η, ε, λn)). (2.40)

Let us estimate (roughly) the function fn+1. Since qn and λn are solutions of the
linear equation (2.39), we can expect that qn, λn, and fn have the same order of
smallness: qn ∼ fn, λn ∼ fn. Since the functions fn are bounded (and moreover
are small beginning from n = 1) then (I + ε(qn)η)

−1 ≈ I . Therefore λ̂n+1 is of the
order |λn+1| < |λn| and (qn)ηλ̂n+1 ∼ f 2

n . We also have:

fn(η + εqn, ε, λ̂n) − fn(η, ε, λn) ∼ ε(fn)ηqn + (fn)λλ̂n+1 ∼ f 2
n .

Thus, fn+1 ∼ f 2
n , which means that we have quadratic convergence.

2.8 Proof of the Theorem on the Reduction of a Flow

In this section we establish the convergence of the procedure which reduces the
system (2.30) to the form (2.31). To this end we show that the sequences fn(η, ε, 0),

17 Solving equation (2.38) is equivalent to the original problem of reduction of the flow on a torus.
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qn and λ̂n rapidly converge to zero. Actually the convergence of these sequences is
not quadratic as was promised above. However, it is very close to quadratic in the
sense that in each of these sequences the norm of a term does not exceed a constant
multiplied by the norm of the previous term to a power κ , where the quantity κ ∈
(1, 2) is arbitrary. Below we take κ = 3/2.

The proof uses essentially the analyticity of the original system. To make esti-
mates we need some notation. Let Dρ ⊂ C

m be the following domain:

Dρ = {η ∈ C
m : |Im ηj | ≤ ρ, j = 1, . . . , m}.

Let | · | be the modulus of a scalar. In the case of a vector argument v = (v1, . . . , vm)

we put |v| = ∑
j |vj |. If the argument of | · | is a matrix A = (ajk), we assume that

|A| = maxj,k |ajk|. These conventions are not really important. They are accepted
only for convenience. Note that for any vector v ∈ R

m and any (m × m) matrix A

|Av| ≤ m|A||v|.
For any scalar, vector, or matrix function ϕ(η) analytic and 2π-periodic in Dρ ,

we put
‖ϕ‖ρ = max

Dρ

|ϕ|.

Below we will have to estimate the norm ‖ · ‖ρ of the derivative of an analytic
function in terms of the norm of the function itself. The main tool for this is the
following lemma.

Lemma 2.1 (The Cauchy estimate). Let the function g(z) be analytic in the ball
Bs ⊂ C of the radius s > 0:

g : Bs → C, Bs = {z ∈ C : |z| ≤ s}
and let |g| ≤ G in Bs . Then for any positive u < s and any l ∈ N the derivative
g(l) = dlg/dzl satisfies the estimate

|g(l)(z)| ≤ l!G/ul for any z ∈ Bs−u.

Corollary 2.2. For any z0 ∈ Bs−u consider the Taylor expansion of the function g:
g(z) = ∑∞

l=0 gl(z− z0)
l . Then the coefficients gl satisfy the inequality |gl | < G/ul .

The proof of the lemma is based on the Cauchy integral formula. For any z ∈
Bs−u

g(l)(z) = l!
2πi

∫
γ

g(ζ ) dζ

(ζ − z)l+1
,

where g(l) = dlg/dzl and γ = {ζ ∈ C : |ζ − z| = u}. We have the estimate

|g(l)(z)| ≤ l!
2π

∫
γ

G dζ

ul+1
≤ l!G

ul
.
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Note that Lemma 2.1 and its proof remain true also in the case of vector- and
matrix-valued functions g.

The following assertion allows us to estimate Fourier coefficients of an analytic
function in terms of the norm of the function in the domain Dρ .

Lemma 2.2. Let the function ϕ : Dρ → C be analytic, 2π-periodic, and let ‖ϕ‖ρ =
M . Suppose that its Fourier expansion has the form ϕ(η) = ∑

k∈Zm ϕke
i〈k,η〉. Then

|ϕk| ≤ e−|k|ρM, |k| =
m∑

j=1

|kj |.

Proof. Let us put σ = (σ1, . . . , σm)T , σj = sign kj . We have the equations

ϕk = 1

(2π)m

∫
Tm

e−i〈k,x〉ϕ(x)dx = 1

(2π)m

∫
Tm

e−i〈k,x−iσρ〉ϕ(x − iσρ) dx.

Since |ϕ| does not exceed M and 〈k, σ 〉 = |k|, we get |ϕk| ≤ e−|k|ρM . ��
Now we turn to an analysis of the sequence of changes (2.36). First, note that the

functions fn are linear in λ̂n. This fact can be easily proved by induction. Indeed,
the function f0 = f does not depend on λ̂0 = λ. Suppose that fn depends on λ̂n

linearly. Equation (2.39) does not contain λ̂n+1. Hence, the function qn does not de-
pend on λ̂n+1. According to the induction assumption, equation (2.40) generates the
function fn+1 which depends on λ̂n+1 linearly. Note that linearity of the functions
fn with respect to λ̂n is not very important. It only makes estimates slightly simpler.

Some properties of solutions of the homologic equation are presented in the fol-
lowing lemma.

Lemma 2.3. Suppose that fn(η, ε, λ) = f ′(η, ε) + f ′′(η, ε)λ, where ‖f ′‖ρ = δ′,
‖f ′′‖ρ = δ′′ < a, and a is a small positive constant.18 Then there exists a solution
of (2.39) satisfying the estimates

|λn| ≤ 2mδ′, ‖qn‖ρ−σ ≤ cδ′

ασγ+m
,

where the constant c depends only on the dimension m.

Proof. Let us drop the subscript n in qn and λn for brevity. We put

f ′ =
∑
k∈Zm

f ′
(k)e

i〈k,η〉, f ′′ =
∑
k∈Zm

f ′′
(k)e

i〈k,η〉,

q =
∑
k∈Zm

q(k)e
i〈k,η〉, q(0) = 0.

18 Not exceeding 1/(2m2) and such that for any (m × m) matrix A with norm |A| ≤ a the
inequality |(I + A)−1| < 2 holds.
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Then by using (2.39) we get λ− (I +f ′′
(0))

−1f ′
(0) = 0. Since the constant a is small,

we can assume that |(I + f ′′
(0))

−1| < 2. Therefore,

|λ| = |(I + f ′′
(0))

−1f ′
(0)| ≤ 2mδ′.

The Fourier coefficients q(k) can be obtained as follows:

q(k) = f ′
(k) + f ′′

(k)λ

i〈ν, k〉 .

Since the constant a is small, we have 2m2δ′′ ≤ 1. By using Lemma 2.2 and the
Diophantine conditions (2.33), we obtain the estimate

|q(k)| ≤ e−|k|ρ δ′ + 2mδ′′δ′

|〈ν, k〉| ≤ e−|k|ρ 2δ′|k|γ
α

.

Suppose that η ∈ Dρ−σ . Then

|q(η, ε)| ≤
∣∣∣∣
∑
k �=0

2δ′|k|γ
α

e−|k|ρei〈k,η〉
∣∣∣∣ ≤

∑
k �=0

2δ′|k|γ
α

e−σ |k|.

The last sum can be estimated with the help of an integral: it does not exceed

2m

∫
Rm

2δ′

α
|k|γ e−σ |k| dk ≤ cδ′

ασγ+m
.

for some c = c(m). ��
The passage from the n-th to n + 1-th step is described by the following lemma.

Lemma 2.4 (Inductive Lemma). Suppose that

fn(x, ε, λ̂n) = f ′
n(x, ε) + f ′′

n (x, ε)λ̂n, ‖f ′
n‖ρ = δ′, ‖f ′′

n ‖ρ = δ′′ < a.

Assume also that for some small constant b < 1, depending only on m,

εcδ′

ασγ+m+1
< b. (2.41)

Then fn+1(η, ε, λ̂n+1) = f ′
n+1(η, ε) + f ′′

n+1(η, ε)λ̂n+1 satisfies the estimates

‖f ′
n+1‖ρ−2σ ≤ 2m2c

α

ε(δ′)2

σγ+m+1
, ‖f ′′

n+1‖ρ−2σ ≤ δ′′ + 4m2c

α

εδ′

σγ+m+1
.

Proof. The functions f ′
n+1, f ′′

n+1 can be obtained from (2.40):

f ′
n+1 = (I + εqη)

−1(f ′
n(η + εq, ε) − f ′

n(η, ε)),

f ′′
n+1 = (I + εqη)

−1(−εqη + f ′′
n (η + εq, ε)).

(2.42)
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Here again for brevity we write q instead of qn. In particular,

f ′′
n+1(η, ε) − f ′′

n (η + εq, ε) = −(I + εqη)
−1 · εqη · (I + f ′′

n (η + εq, ε)). (2.43)

According to Lemma 2.3 and inequality (2.41) we have

‖εq‖ρ−σ ≤ εcδ′

ασγ+m
< bσ < σ.

Therefore, η + εq ∈ Dρ for η ∈ Dρ−σ .
By using the Cauchy estimate we obtain the inequality

‖εqη‖ρ−2σ ≤ εcδ′

ασγ+m

1

σ
< b.

Hence, for sufficiently small b

‖(I + εqη)
−1 − I‖ρ−2σ ≤ 1,

‖f ′
n(η + εq, ε) − f ′

n(η, ε)‖ρ−2σ ≤ ‖(f ′
n)η‖ρ−σ ‖εq‖ρ−2σ ≤ m

δ′

σ

εcδ′

ασγ+m
.

These inequalities and equations (2.42) imply the estimate

|f ′
n+1|ρ−2σ ≤ 2m2 εc(δ′)2

ασγ+m+1
.

By using (2.43) we estimate the function f ′′
n+1:

‖f ′′
n+1‖ρ−2σ − ‖f ′′

n ‖ρ−2σ ≤ 2m2 εcδ′

ασγ+m+1
(1 + a).

It remains to use the inequality a < 1. ��
We see that the sequences δ′

n, δ′′
n satisfy the inequalities

δ′
n+1 ≤ c′

α

ε(δ′
n)

2

σ
γ+m+1
n

, (2.44)

δ′′
n+1 ≤ δ′′

n + c′′

α

εδ′
n

σ
γ+m+1
n

, (2.45)

where the constants c′ and c′′ depend only on m,

δ′
0 = ‖f ‖ρ0, δ′′

0 = 0, ρn+1 = ρn − σn.

Lemma 2.5. Suppose that

σn = π2ρ0

12(n + 1)2
.

Then for sufficiently small ε
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ρn > ρ0/2, (2.46)

δ′
n ≤ δ′

0ε
(3/2)n−1, (2.47)

δ′′
n+1 − δ′′

n ≤ 2−1−na. (2.48)

Lemma 2.5 implies Theorem 2.10, since the estimates (2.46)–(2.48) guarantee
the convergence of the infinite sequence of coordinate changes we construct. For
n → ∞ we have:

δ′
n → 0, δ′′

n → δ′′∞ ≤ a, ρn → ρ∞ ≥ ρ0/2.

In particular, the change ξ = x∞ �→ x0 is defined and real-analytic in the domain
{|Im ξ | ≤ ρ0/2}.
Proof (of Lemma 2.5). Inequality (2.46) follows from definition of σn and from the
equation ρn+1 = ρn − σn.

To verify the estimates (2.47)–(2.48), we use induction in n. For n = 0 the
inequalities obviously hold. Suppose that they are valid for n = l. By using (2.44)
and the induction assumption, we get

δ′
l+1 ≤ c′

α
ε(δ′

0)
2ε2(3/2)l−2

(
π2ρ0

12(l + 1)2

)−γ−m−1

.

For small ε this expression does not exceed δ′
0ε

(3/2)l+1−1.
By using (2.45), we obtain

δ′′
l+1 − δ′′

l ≤ c′′

α
δ′

0ε
(3/2)l

(
π2ρ0

12(l + 1)2

)−γ−m−1

.

The last expression does not exceed 2−1−la for small ε. ��



Chapter 3
Splitting of Asymptotic Manifolds

The behavior of manifolds which are asymptotic to equilibriums, to periodic so-
lutions, or in general to hyperbolic tori determines many features of chaos in dy-
namical systems. In the present chapter we present the Poincaré–Melnikov theory
of splitting of asymptotic manifolds (separatrices) in Hamiltonian systems with one
and a half degrees of freedom and in two-dimensional symplectic maps. Then we
discuss the multidimensional version of this theory.

3.1 Normal Coordinates

Consider the system with Hamiltonian H(x, y, t), where (x, y) ∈ D ⊂ R
2 are

canonically conjugated variables and the function H is τ0-periodic in time: H(x, y,

t) = H(x, y, t + τ0). At the time moment τ0, let the solution with initial conditions
(x, y, 0) have the form (T (x, y), τ0). Then T is called the first return map, the time-
τ0 map, or the Poincaré map. It is symplectic, i.e., it preserves the area form dy∧dx.
Below we denote z = (x, y) ∈ D.

Let σ(t) = (x(t), y(t)) be a τ0-periodic solution. Then T (σ (0)) = σ(0). Stabil-
ity properties of the fixed point σ = σ(0) in the linear approximation are determined
by the monodromy matrix M = ∂T /∂z|z=σ , because the linear part of the map T

near σ is the multiplication by M . Eigenvalues of the monodromy matrix are called
the multipliers of the solution σ(t). Since T preserves the area, det M = 1. There-
fore, the characteristic polynomial for M has the form μ2 − μ tr M + 1.

There are four possibilities.

• |tr M| > 2: the multipliers are real and distinct. The periodic solution is called
hyperbolic.

• |tr M| < 2: the multipliers are distinct and lie on the unit circle. The solution is
called elliptic.

• tr M = −2: the multipliers equal −1. The solution is called parabolic.
• tr M = 2: the multipliers equal 1. The solution is called degenerate.

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_3, © Springer-Verlag Berlin Heidelberg 2010
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Proposition 3.1. A small perturbation of the system (in the class of systems with
Hamiltonians which are τ0-periodic in t) does not destroy a nondegenerate solution.
The solution is just slightly deformed.

Formally, this statement is similar to a KAM-type theorem. Its proof is however
much simpler because of the absence of small divisors. Indeed, suppose that the
system depends on a parameter c and the unperturbed system is determined by the
equation c = 0. The Poincaré map also depends on the parameter: T = Tc(z).
The initial condition z = zc for a τ0-periodic solution should satisfy the equation
z − Tc(z) = 0. This equation has the solution (z, c) = (σ, 0). The Jacobi matrix

∂(z − Tc(z))

∂z

∣∣∣∣
(z,c)=(σ,0)

= I − M

is nondegenerate due to the nondegeneracy of the periodic solution σ(t). Therefore,
according to the implicit function theorem, the function zc is defined for small |c|.

Below in this chapter we consider only hyperbolic periodic solutions. We assume
that the corresponding multipliers are positive.1 In the vicinity of such a solution
there exist the so-called normal coordinates.

Theorem 3.1. Let σ be a hyperbolic fixed point of a smooth symplectic map T . Then
there are smooth symplectic coordinates (q, p) and a function M (qp) in a neigh-
borhood of the point σ such that σ = (0, 0) and T has the form

(q, p) �→ (qM (qp), p/M (qp)), (3.1)

where μ = M (0) > 1 and μ−1 are the multipliers of σ .

Consider a Hamiltonian system with one and a half degrees of freedom, the phase
space D ⊂ R

2 and the Hamiltonian H(z, t), z ∈ D, t ∈ T = R/(τ0Z). The
following theorem is an analogue of Theorem 3.1.

Theorem 3.2. Let (σ (t), t) be a hyperbolic periodic solution of the Hamiltonian
system with Hamiltonian H , and let σ(0) = σ(τ0). Then in a neighborhood of the
curve (σ (t), t) on the extended phase space D × Tt there are smooth symplectic
coordinates (q, p, t) such that

(1) the time t coincides with the original time;
(2) the periodic solution is (σ (t), t) = {q = 0, p = 0, t};
(3) the Hamiltonian depends only on the product qp: H = H (pq).

Remarks.

(1) The coordinates defined in Theorems 3.1–3.2 are said to be normal. The ex-
istence of a transformation to normal coordinates was established by Birkhoff
on a formal level [16]. The convergence of the transformation was proved by

1 The case of negative multipliers can be reduced to the previous one by considering z(t) as a
2τ0-periodic solution which implies the replacement of the multipliers by their squares.
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Moser in the real-analytic case [92]. The case of finite smoothness was treated
in [13].

(2) The smoothness of the normal coordinates and of the functions M depends
linearly on the smoothness of T . It follows from [13] that, if T is of class Cr,
then the map defining the change of coordinates can be taken to be Cs-smooth,
where s ≤ (r − 3)/2.

(3) The curves Γ s = {(q, p) : q = 0} and Γ u = {(q, p) : p = 0} are invariant
for the system (3.1). Every solution located on Γ s (respectively, on Γ u) tends
exponentially to σ as n → +∞ (respectively, as n → −∞). The asymptotic
curves Γ s and Γ u are called the separatrices.

(4) In normal coordinates the Hamiltonian equations have the form

q̇ = H ′(qp) q, ṗ = −H ′(qp) p, H ′(ρ) = dH (ρ)/dρ. (3.2)

In particular, the function qp is a first integral and e±τ0λ (λ = H ′(0)) are
multipliers of the periodic solution γ . We can assume that λ > 0. Indeed, λ 
= 0
due to the nondegeneracy of γ , and in the case λ < 0 we can perform the change
q �→ p, p �→ −q, λ �→ −λ.
The surfaces Γ s = {(q, p, t mod τ0) : q = 0} and Γ u = {(q, p, t mod τ0) :
p = 0} are invariant for the system (3.2). Any solution lying on Γ s (respec-
tively, on Γ u) tends exponentially to γ when t → +∞ (respectively, when
t → −∞). The asymptotic surfaces Γ s,u are called the separatrices.

(5) The normal coordinates (q, p) are not uniquely defined. For example, the co-
ordinates (q ′, p′) = (−p, q) are also normal. Moreover, for any smooth func-
tion r(ρ) (r(0) 
= 0) the coordinates q ′ = q/r(qp), p′ = pr(qp) are normal.

(6) If the map T depends (smoothly or analytically) on the parameter ε, then while
the fixed point σ = σε remains hyperbolic, normal coordinates also can be
regarded as depending (respectively, smoothly or analytically) on ε.

(7) Theorems 3.1 and 3.2 are equivalent to each other. Indeed, Theorem 3.2 can be
reduced to Theorem 3.1 by using the Poincaré map, while Theorem 3.1 can be
reduced to Theorem 3.2 by using inclusion of the map T into a Hamiltonian
flow.

3.2 The Poincaré–Melnikov Method: Traditional Aspect

Consider a nonautonomous system with smooth Hamiltonian H = H(x, y, t, ε),
where the pair of canonically conjugate coordinates (x, y) determines a point of
the two-dimensional domain D, and H is 2π-periodic in t . The domain D can be
regarded as a subset of a plane. If the variable x is angular: x = x mod 2π , then D

is a subset of the cylinder R × T.
We assume that the unperturbed (ε = 0) system is integrable. The integrability

is understood in the sense of the existence of a smooth locally nonconstant first in-
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tegral. For simplicity we assume that the unperturbed Hamiltonian does not depend
explicitly on time. Then we can take as an integral the function H0.

Let σ = (x0, y0) be a hyperbolic equilibrium of the unperturbed system. The
matrix determining the linearization of the system at the point σ has nonzero real
eigenvalues ±λ, λ > 0. In the extended phase space D × T = {x, y, t}, instead of
the equilibrium σ , we have the 2π-periodic solution γ0 = {x, y, t} = {x0, y0, t mod
2π}. Its multipliers are e±2πλ.

The hyperbolic periodic solution γ0 generates the two-dimensional asymptotic
surfaces (the separatrices)

Γ
s,u

0 ⊂ {(x, y) : H0(x, y) = H0(x0, y0)} × Tt .

If the energy level {H0 = H0(x0, y0)} is compact, the stable and unstable separatri-
ces, as a rule, coincide: Γ s

0 = Γ u
0 .

According to Proposition 3.1, for small ε 
= 0 the system has a hyperbolic peri-
odic solution γε close to γ0. However, the corresponding asymptotic surfaces Γ s,u

ε ,
in general, no longer coincide because of nonintegrability of the perturbed system.

In this section we introduce the main tool for studying separatrix splitting in near-
integrable systems, the Poincaré–Melnikov integral [90, 105]. Suppose that the set
(Γ u

0 ∩ Γ s
0 ) \ γ0 is nonempty. Let Γ0 be one of its connected components. Then Γ0

is a two-dimensional surface diffeomorphic to a cylinder. The surface Γ0 is foliated
by homoclinic2 solutions of the form

(x̂(t + τ), ŷ(t + τ), t mod 2π),

where τ is a parameter, specifying the solutions, and (x̂(t), ŷ(t)) is a solution of the
autonomous system with Hamiltonian H0, (x̂(t), ŷ(t)) → σ as t → ±∞.

The perturbed separatrices3 are foliated by solutions of the form
(
x̂s,u
ε (t + τ, τ ), ŷs,u

ε (t + τ, τ ), t mod 2π
)
,

x̂
s,u
0 (t, τ ) = x̂(t), ŷ

s,u
0 (t, τ ) = ŷ(t),

(3.3)

where t is again the time on a solution and τ is a parameter.
Solutions (3.3), corresponding to the index “u” (respectively, “s”), are asymptotic

to γε for t → −∞ (respectively, for t → +∞).
Consider the following differential operators on Γ0:

∂s,u =
(

∂

∂ε

∣∣∣∣
ε=0

x̂s,u
ε

)
∂

∂x
+

(
∂

∂ε

∣∣∣∣
ε=0

ŷs,u
ε

)
∂

∂y
.

They associate with any smooth function in a neighborhood of Γ0 a smooth function
on Γ0. The operators ∂s,u correspond to the differentiation along the vector fields
that to the first approximation in ε, transform the surface Γ0 to Γ s,u

ε .
Putting H = H0(x, y) + εH1(x, y, t) + O(ε2), we define the function

2 I.e., doubly asymptotic to γ0.
3 More precisely, their branches appearing as a result of the perturbation of the surface Γ0.
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I (τ ) =
∫ ∞

−∞
{H0,H1}(x̂(t + τ), ŷ(t + τ), t) dt, (3.4)

called the Poincaré–Melnikov integral. The integral converges rapidly due to the
hyperbolicity of the periodic solution γ0. The function I is 2π-periodic in τ . This
can be easily checked with the help of the change of the variable t = t̃ − τ in the
integral.

Theorem 3.3. For any real τ and ϑ

(∂sH0 − ∂uH0)(x̂(ϑ + τ), ŷ(ϑ + τ), ϑ) = I (τ ). (3.5)

The left-hand side of (3.5) can be regarded as ε−1 multiplied by the first ap-
proximation of the distance between the perturbed separatrices in a neighborhood
of the point (x̂(ϑ + τ), ŷ(ϑ + τ), ϑ mod 2π). The distance is measured by the
function H0. Figure 3.1 presents a part of the section of the extended phase space
D × T = {x, y, t} by the plane t = ϑ = const. The bold curves correspond to the
separatrices Γ0 and Γ s,u

ε . The thin horizontal lines are level lines of the function H0.
The coordinates of the presented points are as follows:

A = (x̂(ϑ + τ), ŷ(ϑ + τ)), As,u
ε = (x̂s,u

ε (ϑ + τ, τ ), ŷs,u
ε (ϑ + τ, τ )).

Hence, we have

1

ε
(H0(A

s
ε) − H0(A

u
ε )) = (∂sH0 − ∂uH0)(A, ϑ) + O(ε) = I (τ ) + O(ε).

Here the first equation follows from the definition of the differential operators ∂s,u,
and the second one follows from (3.5).

Corollary 3.1. If I (τ ) 
≡ 0, the separatrices Γ s,u
ε split in the first order in ε.

Proof (of Theorem 3.3). Let d/dt be the derivative along solutions of the perturbed
system. Then

d

dt
H0(x, y, t, ε) = {H,H0}(x, y, t, ε). (3.6)

Fig. 3.1 Perturbed separatrices and level lines of the energy.
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Let us take (x̂u
ε (t + τ, τ ), ŷu

ε (t + τ, τ ), t) as arguments of the functions (3.6) and
differentiate equation (3.6) with respect to ε at the point ε = 0:

d

dt

d

dε

∣∣∣∣
ε=0

H0(x̂
u
ε (t+τ, τ ), ŷu

ε (t+τ, τ ), t) = {H1,H0}(x̂(t+τ), ŷ(t+τ), t). (3.7)

The left-hand side of (3.7) reads

d

dt
(∂uH0)(x̂(t + τ), ŷ(t + τ), t).

Integrating (3.7) with respect to time, we get

(∂uH0)(x̂(ϑ + τ), ŷ(ϑ + τ), ϑ) = −
∫ ϑ

−∞
{H0,H1}(x̂(t + τ), ŷ(t + τ), t) dt. (3.8)

Here we have used the equation

lim
t→−∞ ∂uH0(x̂(t + τ), ŷ(t + τ), t) = 0,

which holds for any τ because

lim
t→−∞(x̂(t + τ), ŷ(t + τ)) = (x0, y0) and dH0(x0, y0) = 0.

Analogously we have

(∂sH0)(x̂(ϑ + τ), ŷ(ϑ + τ), ϑ) =
∫ +∞

ϑ

{H0,H1}(x̂(t + τ), ŷ(t + τ), t) dt. (3.9)

Combining equations (3.8) and (3.9), we obtain (3.5). �
Simple zeros of the function I correspond to homoclinic solutions of the per-

turbed system. More precisely, the following proposition is valid.

Proposition 3.2. Suppose that I (τ0) = 0 and dI
dτ

(τ0) 
= 0. Then for small ε 
= 0 the
system has a solution of the form

γ̂ε,τ0(t) = (x̂(t + τ0), ŷ(t + τ0), t mod 2π) + O(ε),

which is doubly asymptotic to γε. Moreover, the surfaces Γ u
ε and Γ s

ε intersect along
γ̂ε,τ0 transversely, and the angle between them at a point of the curve γ̂ε,τ0 is of
order4 ε.

4 To define an angle between the separatrices, one should fix a metric. In the phase space D × T
1

there is no natural metric. Therefore, an angle between the separatrices is not a good measure of the
splitting. Note also that the quantity (an angle between Γ u

ε and Γ s
ε )/ε is not uniformly bounded

on the whole curve γ̂ε,τ0 for ε → 0. On the other hand, the statement “an angle is of order ε” does
not depend on choice of the metric.
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Proof. To construct γ̂ε,τ0 , we will find the constants τ s,u = τ s,u(ε) such that solu-
tions of the perturbed system

(x̂s,u
ε (t + τ s,u, τ s,u), ŷs,u

ε (t + τ s,u, τ s,u), t mod 2π)

coincide. Putting t = 0, we obtain the vector equation

(x̂u
ε (τu, τu), ŷu

ε (τu, τu)) = (x̂s
ε (τ

s, τ s), ŷs
ε (τ

s, τ s)). (3.10)

Consider these vectors in a convenient local coordinate system (ρ, h) on D in a
neighborhood of the separatrix Γ0.

We take the function H0 as the coordinate h, and take ρ canonically conjugate
to h, i.e., dh ∧ dρ = dy ∧ dx. This condition does not determine ρ uniquely. We
specify the coordinate ρ in the following way. Let C ∈ D be a curve passing through
the point A0 = (x̂(ϑ), ŷ(ϑ)) and transversal to level lines of the function H0. Let
B ∈ D be any point lying sufficiently close to A0. Consider the solution zB(t) of
the system with Hamiltonian H0 having initial condition at the point B. A certain
interval of the solution zB(t) lying in a small neighborhood of the point A0 intersects
the curve C . We denote this intersection point by B ′ and put

ρ(B) = ϑ + the time of the motion along zB(t) from B ′ to B.

In particular,
ρ|C = ϑ, ρ(x̂(t), ŷ(t)) = t. (3.11)

Then (3.10) is equivalent to the pair of scalar equations:

Φ1(τ
u, τ s, ε) = 0, Φ2(τ

u, τ s, ε) = 0,

Φ1 = ρ(x̂s
ε (τ

s, τ s), ŷs
ε (τ

s, τ s)) − ρ(x̂u
ε (τu, τu), ŷu

ε (τu, τu)), (3.12)

Φ2 = 1

ε

(
h(x̂s

ε (τ
s, τ s), ŷs

ε (τ
s, τ s)) − h(x̂u

ε (τu, τu), ŷu
ε (τu, τu))

)
.

The function Φ2, extended by continuity to the point ε = 0, is smooth in ε.
According to the definition of the coordinate ρ and to equations (3.3), (3.11), we

have

Φ1 = ρ(x̂(τ s), ŷ(τ s)) − ρ(x̂(τu), ŷ(τu)) + O(ε) = τ s − τu + O(ε).

The function Φ2 can be presented as follows:

Φ2 = 1

ε

(
H0(x̂

s
ε (τ

s, τ s), ŷs
ε (τ

s, τ s)) − H0(x̂(τ s), ŷ(τ s))
)

− 1

ε

(
H0(x̂

u
ε (τu, τu), ŷu

ε (τu, τu)) − H0(x̂(τu), ŷ(τu))
)

= ∂sH0(x̂(τ s), ŷ(τ s), 0) − ∂uH0(x̂(τu), ŷ(τu), 0) + O(ε)

= I (τu) + O(τs − τu) + O(ε).
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Hence, system (3.12) takes the form

τ s − τu + O(ε) = 0, I (τu) + O(τs − τu) + O(ε) = 0. (3.13)

For ε = 0 system (3.13) has the solution τu = τ s = τ0. Moreover,

∂(Φ1, Φ2)

∂(τu, τ s)

∣∣∣∣
(τu,τ s ,ε)=(τ0,τ0,0)

= −dI

dτ
(τ0) 
= 0.

Therefore, the existence of the homoclinic solution γ̂ε,τ0 follows from the implicit
function theorem.

In any independent of ε metric on D we obtain that the separatrix splitting (for
example, an angle between them at a point of the curve γ̂ε,τ0 ) is of order ε. �

It is convenient to measure the splitting of the asymptotic surfaces Γ s,u
ε by some

symplectic invariant which does not require for its definition additional structures
on the phase space. Such invariants can be introduced in different ways (see for ex-
ample [53, 135]).5 One of the simplest possibilities is as follows. Consider a section
Σϑ of the extended phase space D × T by the plane

Πϑ = {(x, y, t) : t = ϑ mod 2π}.
Let Dϑ(ζ ) ⊂ Σϑ be the domain bounded by segments of the curves Γ

s,u
ε,ϑ = Γ s,u

ε ∩
Πϑ , from a homoclinic point ζ ∈ Σϑ to the neighboring homoclinic point ζ ′ (see
Fig. 3.2). Here we assume that the direction of motion along the curve Γ

s,u
ε,ϑ from ζ

to ζ ′ is positive in the sense of the natural (dynamical) orientation of the curves.
Let A (ζ ) be the oriented area of Dϑ(ζ ):

A (ζ ) =
∫

Dϑ (ζ )

dx ∧ dy = −
∫

Dϑ (ζ )

ω.

The quantity A (ζ ) is positive if the orientation of the boundary of the domain
Dϑ(ζ ) in the positive direction along the curve Γ u

ε,ϑ and in the negative direction
along the curve Γ s

ε,ϑ is consistent with the orientation of the domain D. Otherwise,
A (ζ ) < 0.

Proposition 3.3. The area A (ζ ) does not change if ϑ and ζ are continuously shifted
along a homoclinic solution.

Proof. Let the points ζ1 ∈ Σθ1 and ζ2 ∈ Σϑ2 lie on the same homoclinic so-
lution. Then the corresponding points ζ ′

1 ∈ Σϑ1 and ζ ′
2 ∈ Σϑ2 also lie on the

same homoclinic solution. Hence, the domain D1 = Dϑ1(ζ1) can be obtained from
D2 = Dϑ2(ζ2) by the shift gϑ2−ϑ1 : D × T → D × T along solutions of the system
by the time t = ϑ2 − ϑ1.

The symplectic structure ω = dy ∧ dx can be continued from the domain D

to the closed 2-form ω̃ = dy ∧ dx on the whole extended phase space.6 The map

5 In the second paper the multidimensional case is considered.
6 ω̃ = pr∗ω, where pr : D × T → D is the projection to the first multiplier.
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Fig. 3.2 Homoclinic points ζ , ζ ′ and Tϑ(ζ ).

gϑ2−ϑ1 preserves ω̃. Therefore,
∫

D1

ω̃ =
∫

D1

(gϑ2−ϑ1)∗ω̃ =
∫

gϑ2−ϑ1 (D1)

ω̃ =
∫

D2

ω̃. �

Let Tϑ : Σϑ → Σϑ be the Poincaré map.

Proposition 3.4. Suppose that the symplectic structure is an exact form. Consider
the intersection of the segments of the curves Γ s

ε,ϑ and Γ u
ε,ϑ between ζ and Tϑ(ζ ).

Let this intersection consist of the homoclinic points ζ = ζ0, ζ1, ζ2, . . . , ζk = Tϑ(ζ ).
Suppose that k < ∞. Then

∑k−1
j=0 A (ζj ) = 0.

Corollary 3.2. k > 1.

Proof. By Proposition 1.1, the map Tϑ is exact symplectic. This means that the
primitive ν of the symplectic structure ωϑ = ω̃|Σϑ is transformed as follows: T ∗

ϑ ν =
ν + dS, S : Σϑ → R.

The point zϑ = (γε(ϑ), ϑ) ∈ Σϑ is fixed for Tϑ . Consider the closed curve Λ0
that comprises the piece of the unstable separatrix Γ u

ε,ϑ from the point zϑ to ζ and
the piece of the curve Γ s

ε,ϑ from ζ to zϑ (see Fig. 3.2). The image of the curve Λ0
under the map Tϑ is the curve Λ that comprises the piece of the unstable separatrix
Γ u

ε,ϑ from the point zϑ to Tϑ(ζ ) and the piece of the curve Γ s
ε,ϑ from Tϑ(ζ ) to zϑ .

Therefore,
∫

Λ0

ν =
∫

Λ0

(ν + dS) =
∫

Λ0

T ∗
ϑ ν =

∫
Tϑ (Λ0)

ν =
∫

Λ

ν.

Hence,
∫
Λ0

ν − ∫
Λ

ν = 0. According to the Stokes formula, this difference is equal

(possibly up to the sign) to the sum
∑k−1

j=0 A (ζj ). �
If the angles between the curves Γ

s,u
ε,ϑ at the points ζ and ζ ′ on Σϑ are of order ε

then according to Proposition 3.2 the coordinates of the points ζ and ζ ′ on Σϑ can
be presented as follows:
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ζ = (x̂(ϑ + τ), ŷ(ϑ + τ))+ O(ε), ζ ′ = (x̂(ϑ + τ ′), ŷ(ϑ + τ ′))+ O(ε), (3.14)

where τ < τ ′ are two neighboring nondegenerate solutions of the equation I = 0.
Here the nondegeneracy is understood in the sense that the derivative dI/dτ does
not vanish at these points.

Proposition 3.5. For small values of the parameter ε

A (ζ ) = ε

∫ τ ′

τ

I (t) dt + O(ε2).

Proof. We use notation introduced in the proof of Theorem 3.3. The curves Γ
s,u
ε,ϑ

have the form

(x, y) = (x̂s,u
ε (ϑ + τ, τ ), ŷs,u

ε (ϑ + τ, τ )), τ ∈ R, (3.15)

(see (3.3)). We define τs,u, τ
′
s,u as follows:

ζ = (x̂s,u
ε (ϑ + τs,u, τs,u), ŷ

s,u
ε (ϑ + τs,u, τs,u)),

ζ ′ = (x̂s,u
ε (ϑ + τ ′

s,u, τ
′
s,u), ŷ

s,u
ε (ϑ + τ ′

s,u, τ
′
s,u)).

In the coordinates (ρ, h), the curves Γ
s,u
ε,ϑ look as follows:

(
ϑ +τ +O(ε),H0(x̂(ϑ +τ), ŷ(ϑ +τ))+ε∂s,uH0(x̂(ϑ +τ), ŷ(ϑ +τ), ϑ)

)+O(ε2).

According to (3.14) τs,u = τ + O(ε) and τ ′
s,u = τ ′ + O(ε). Hence,

A (ζ ) = ε

∫ τ ′

τ

(∂s − ∂u)H0(x̂(ϑ + λ), ŷ(ϑ + λ), ϑ) dλ + O(ε2)

= ε

∫ τ ′

τ

I (t) dt + O(ε2). �

3.3 The Poincaré–Melnikov Method: Multidimensional Aspect

Most of the examples where the splitting of asymptotic manifolds was studied deal
with Hamiltonian systems with one and a half or two degrees of freedom and with 2-
dimensional symplectic maps. However, people working in Hamiltonian dynamics
always understood that analogous phenomena take place in the multidimensional
situation. Here one has to study manifolds asymptotic to hyperbolic tori. The di-
mensions of such tori can be any integer between zero and the number of degrees
of freedom (including zero). First attempts to present a multidimensional analog
of the Poincaré–Melnikov integral (3.4) [62, 146] were not quite satisfactory be-
cause in general an integral along a trajectory homoclinic to a hyperbolic torus does
not converge. Hence some tricks or non-generic assumptions were used. In [133]
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the convergence is achieved by adding to the integral a certain quasi-periodic func-
tion. Below in this section we present the corresponding constructions from [133]
and [34].

Let F1, . . . , Fm be first integrals in involution of a Liouville integrable Hamil-
tonian system (M,ω,H0), let M0 = {F1 = · · · = Fm = 0} ⊂ M be their
common zero level, and let N ⊂ M0 be an n-dimensional non-degenerate Dio-
phantine hyperbolic torus (see Definitions 2.2–2.4). Below we use canonical coor-
dinates x, y, zu, zs , see Definition 2.6. In canonical coordinates it is easy to see that
the integrals F1, . . . , Fm are dependent at points of N ; hence M0 is a critical level.

The torus N lies in the intersection of the invariant Lagrangian asymptotic man-
ifolds Γ s, Γ u ⊂ M0 such that any trajectory on Γ u(Γ s) tends to N exponentially
as t → −∞ (t → +∞) (Sect. 2.4). Let Γ ⊂ Γ u ∩ Γ s be a connected Lagrangian
manifold, doubly asymptotic to N . Existence of Γ means that the asymptotic mani-
folds Γ u and Γ s are doubled. We assume that F1, . . . , Fm are independent at points
of Γ \N . This condition is equivalent to the linear independence of the Hamiltonian
vector fields vFs , 1 ≤ s ≤ m, on Γ \N . All these vector fields are tangent to Γ .

Let H = H0 + εH1 + O(ε2) be the perturbed Hamiltonian. Then (see The-
orem 2.8) for small ε there exists a hyperbolic torus Nε of the perturbed system
near N such that Nε lies in the intersection of two asymptotic Lagrangian manifolds
Γ s,u

ε .
For ε 
= 0 the set Γ s

ε ∩ Γ u
ε in general does not contain any Lagrangian mani-

fold. To formulate the corresponding result, for any homoclinic solution γ (t) ⊂ Γ

consider the quantity

I = lim
T →+∞

(
−

∫ T

−T

(H1(γ (t)) − h1) dt + χ(γ (−T )) − χ(γ (T ))

)
, (3.16)

where

h1 = 1

(2π)n

∫
Tn

H1(x, 0, 0, 0) dx, (3.17)

and the function χ = χ(x), expressed in the canonical coordinates for N , satisfies
the equation

∂νχ(x) + H1(x, 0, 0, 0) = h1, ∂ν =
〈
ν,

∂

∂x

〉
. (3.18)

If H1 is sufficiently smooth, then there exists a solution of (3.18) unique up to an
additive constant.

We see that I can be regarded as a function on Γ , invariant with respect to the
unperturbed dynamics:

I : Γ → R, vH0I = 0.

Derivatives along other directions on Γ are given by the formulas
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vFj1
· · · vFjk

I = lim
T →+∞

(
−

∫ T

−T

{Fj1 · · · {Fjk
,H1} · · · }(γ (t)) dt

+ {Fj1 · · · {Fjk
, χ} · · · }(γ (−T ))

− {Fj1 · · · {Fjk
, χ} · · · }(γ (T ))

)
, (3.19)

where { , } denotes the Poisson bracket associated with the symplectic structure ω.
The vector fields vFj1

, . . . , vFjk
commute because the functions F1, . . . , Fk are in

involutions.
The function I is called the Poincaré–Melnikov potential.

Theorem 3.4.

(1) Limit (3.16) exists.
(2) If any of the quantities (3.19) does not vanish, then for small ε the manifolds Γ s,u

split, i.e., their intersection does not contain a doubly asymptotic Lagrangian
manifold.

(3) If for some ζ 0 ∈ γ ⊂ Γ we have vF1I (ζ 0) = · · · = vFmI (ζ 0) = 0 and the
rank of the matrix (vFj

vFr I (ζ 0)) equals m − 1, then for small ε the manifolds
Γ u

ε and Γ s
ε are transversal at the energy level along a homoclinic trajectory γε,

where γε → γ as ε → 0.

Remarks.

1. In [18] there is an analog of Theorem 3.4 for n = 1.
2. In [18, 44, 132] some results are presented on non-integrability, generated by the

splitting of multidimensional asymptotic manifolds.
3. By using autonomization it is easy to obtain a non-autonomous version of Theo-

rem 3.4.

Proof (of Theorem 3.4). First recall that by Theorem 1.1

in a neighborhood U of any point on a Lagrangian submanifold L of a symplectic
manifold (M,ω) there exist coordinates p, q such that ω = dp ∧ dq and the set
L ∩ U is given by the equations p = 0.

Let p, q be such coordinates, associated with L = Γ . The perturbed asymptotic
manifolds Γ s,u

ε are Lagrangian. Therefore they can be presented as graphs

p = εf s,u(q, ε), df ∧ dq = ε−1ω|Γ s,u
ε

= 0.

Since U can be assumed to be simply connected, by the Poincaré lemma we have
f s,u = ∂Ss,u(q, ε)/∂q.

Lemma 3.1. The functions S
s,u
0 = Ss,u|ε=0 : Γ �→ R are well defined, i.e., they do

not depend on the choice of the local coordinates p, q.

We postpone the proof of Lemma 3.1 to the end of this section.
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The manifolds Γ s,u
ε lie on the same energy level, so that the functions Ss,u(q, ε)

satisfy the Hamilton-Jacobi equation

Hε

(
ε
∂Ss,u

∂q
, q, ε

)
= h(ε). (3.20)

In the first approximation in ε we have

∂H0

∂p
(0, q)

∂S
s,u
0

∂q
(q) + H1(0, q) = h1, h1 = d

dε

∣∣∣∣
ε=0

h. (3.21)

We get: d
dt

S
s,u
0 (γ (t)) + H1(γ (t)) = h1, where d

dt
is the derivative along the unper-

turbed system. Hence,

S
s,u
0 (γ (t2)) − S

s,u
0 (γ (t1)) = −

∫ t2

t1

(H1(γ (t)) − h1) dt. (3.22)

Lemma 3.2. In the canonical coordinates (x, y, z) for N , the constant h1 in (3.21)
satisfies (3.17) and

S
s,u
0 − χ = const + O(ε, y, z).

The proof of Lemma 3.2 also appears at the end of this section.

Necessary conditions for coincidence of the manifolds Γ u
ε and Γ s

ε are

∂l

∂qj1 · · · ∂qjl

(Ss
0 − Su

0 ) = 0. (3.23)

The Hamiltonian fields vFj
, 1 ≤ j ≤ m, are independent on Γ . Therefore equations

(3.23) are equivalent to the following ones:

vFk1
· · · vFkl

(Ss
0 −Su

0 ) ≡ {Fk1 · · · {Fkl
, Ss

0 −Su
0 } · · · } = 0, 1 ≤ kj ≤ m. (3.24)

From (3.22) and Lemma 3.2 it follows that

−Su
0 (γ (0)) = −

∫ T

0
H1(γ (t)) dt − Su

0 (γ (T ))

= lim
T →+∞

(
−

∫ T

0
H1(γ (t)) dt − χ(γ (T ))

)
.

Analogously

Ss
0(γ (0)) = lim

T →+∞

(
−

∫ 0

−T

H1(γ (t)) dt − χ(γ (−T ))

)
.

Thus,
(Ss

0 − Su
0 )(γ (0)) = I, (3.25)
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the limit I exists and conditions (3.24) take the form vFk1
· · · vFkl

I = 0. State-
ments 1 and 2 of Theorem 3.4 are proved.

The proof of statement 3 is based on the implicit function theorem. Let us find
the solution q0 of the equations

∂Ss

∂qj

(q0, ε) = ∂Su

∂qj

(q0, ε), 1 ≤ j ≤ m. (3.26)

The functions Ss and Su satisfy the same Hamilton-Jacobi equation (3.20). Hence,
one of the equations (3.26) depends on the others.

Equations (3.26) are equivalent to the following ones:

vFj
(Ss − Su)(q0, ε) = 0, 1 ≤ j ≤ m. (3.27)

From (3.25) it follows that for ε = 0 equations (3.27) have the form vF1I = · · · =
vFmI = 0 at the point (0, q0). Existence of a solution of equations (3.27) for small
ε depends on the properties of the Jacobian matrix

J =
(

∂

∂qk

vFl
(Ss

0 − Su
0 )

)
(q0).

Equations (3.27) are dependent. Therefore J is degenerate. On the other hand,
the condition rank J = m− 1 guarantees the existence of a one-parameter family of
solutions to (3.27). This family is the curve γε. Since rank J = rank(vFj

vFl
I ), the

proof of Theorem 3.4 is complete. �
If F1 = H0, then for any homoclinic solution γ we have vF1 I = 0, and hence

vF1vFl
I = vFl

vF1 I = 0, 1 ≤ l ≤ m.

Corollary 3.3. If F1 = H0, then the condition rank (Ijr ) = m−1; j, r = 1, . . . , m,
is equivalent to the condition det(Ijr ) 
= 0; j, r = 2, . . . , m.

Finally we prove Lemmas 3.1 and 3.2.

Proof (of Lemma 3.1). Let U be a connected, simply connected domain in M . Let
p, q and p̂, q̂ be two coordinate systems in U such that

ω|U = dp∧dq = dp̂∧dq̂ and Γ ∩U = {(p, q) : p = 0} = {(p̂, q̂) : p̂ = 0}.
Suppose that the Lagrangian manifold Γε is given by the equations

p̂ = ε∂Ŝ0(q̂)/∂q̂ + O(ε2) or p = ε∂S0(q)/∂q + O(ε2).

Let us show that
Ŝ0(q̂) = S0(q) + const, (3.28)

where the points (p̂ = 0, q̂) and (p = 0, q) coincide.
Indeed, the coordinates (p, q) and (p̂, q̂) are related by the equations
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p = ∂W

∂q
, q̂ = ∂W

∂p̂
, W = W(p̂, q).

Since the equations p = 0 and p̂ = 0 are equivalent, we have ∂W(0, q)/∂q = 0.
Hence

W(p̂, q) = const +
m∑
1

al(q) p̂l + O2(p̂).

The manifold Γε is given by the equations

p = ∂W

∂q

(
ε
∂Ŝ0(q̂)

∂q̂
, q

)
+ O(ε) = ε

m∑
l=1

∂Ŝ0

∂q̂l

∂al

∂q
+ O(ε2)

= ε

m∑
l=1

∂Ŝ0

∂q̂l

∂q̂l

∂q

∣∣∣∣
p̂=0

+ O(ε2) = ε
∂S0

∂q
+ O(ε2).

Since Γ is connected, the constant in (3.28) is a global constant on Γ . �
Proof (of Lemma 3.2). In a neighborhood U of the torus N the manifolds Γ s,u =
Γ

s,u
0 can be parameterized as follows:

Γ u : y = V̂ u(x, zu), zs = Ŵu(x, zu),

Γ s : y = V̂ s(x, zs), zu = Ŵ s(x, zs).

Since the manifolds y = 0, zs = 0 and y = 0, zu = 0 are tangent at N to Γ u and
Γ s respectively (see Chap. 2, Sect. 2.4), the functions V̂ s,u and Ŵ s,u are of order
O2(zs,u). In the coordinates

p = (ȳ, z̄s), q = (x, zu), ȳ = y − V̂ u(x, zu), z̄s = zs − Ŵu(x, zu),

we have Γ u = {(p, q) : p = 0} and ω = dp ∧ dq. Indeed, the first equation is
evident and the second one follows from the fact that Γ u is Lagrangian. Thus, the
manifold Γ u

ε has the form

Γ u
ε =

{
(p, q) : p = ε

∂Su
0

∂q
(q) + O(ε2)

}
,

and in the original coordinates we obtain

Γ u
ε =

{
(x, y, z) : y = ε

∂Su
0

∂x

∣∣∣∣
N

+ O2(ε, zu), zs = ε
∂Su

0

∂zu

∣∣∣∣
N

+ O2(ε, zu)

}
.

Similarly,

Γ s
ε =

{
(x, y, z) : y = ε

∂Ss
0

∂x

∣∣∣∣
N

+ O2(ε, zs), zu = ε
∂Ss

0

∂zs

∣∣∣∣
N

+ O2(ε, zs)

}
.



74 3 Splitting of Asymptotic Manifolds

Since Nε ⊂ U ∩ Γ u
ε ∩ Γ s

ε , we obtain

Nε =
{
(x, y, z) : zu = ε

∂Ss
0

∂zs

∣∣∣∣
N

+ O(ε2), zs = ε
∂Su

0

∂zu

∣∣∣∣
N

+ O(ε2),

y = ε
∂Su

0

∂x

∣∣∣
N

+ O(ε2) = ε
∂Ss

0

∂x

∣∣∣∣
N

+ O(ε2)

}
.

This implies that
∂

∂x
(Su

0 − Ss
0)

∣∣∣∣
N

= 0.

Recall that H = 〈ν, y〉 + 〈Ay, y〉/2 + 〈zs,Ω(x)zu〉 + O3(y, z). Thus the condition
H |Nε = const. in the first approximation in ε has the form

∂νS
s,u
0 (x, 0) + H1(x, 0, 0, 0) = h1,

and so the equations for the functions S
s,u
0 |N and χ (see (3.18)) coincide and h1

satisfies (3.17). �



Chapter 4
The Separatrix Map

The separatrix map was invented to study dynamical systems near asymptotic man-
ifolds. It was introduced by Zaslavsky and Filonenko [147] (see also [32, 49]) for
near-integrable Hamiltonian systems with one-and-a-half degrees of freedom and
independently by Shilnikov [123] in generic systems. The main difference between
these two approaches is as follows. The Zaslavsky separatrix map determines the
dynamics globally near the unperturbed separatrices, but needs the system to be
near-integrable. The Shilnikov separatrix map does not need any closeness to inte-
grability, but deals with the dynamics in a neighborhood of a homoclinic orbit.

In the present chapter we obtain explicit formulas for the Zaslavsky separatrix
maps. These results are used in Chap. 5 for studying of the dynamics in the stochas-
tic layer.

4.1 Definition and Formulas

4.1.1 Two-Dimensional Symplectic Map

Consider a symplectic map T̂ , defined on a two-dimensional domain D ⊂ R
2
z . We

assume that T̂ satisfies the following conditions I–IV.

I. The map T̂ has a hyperbolic fixed point σ .
II. T̂ is integrable, i.e., there is a smooth locally non-constant function F : D → R

such that F ◦ T̂ = F .

The dynamics of the unperturbed map T̂ is simple. The domain D is fibred into
invariant level curves of the integral F . The hyperbolic fixed point gives rise to four
asymptotic branches (separatrices) Γ u± and Γ s±, two unstable and two stable. The
separatrices lie on the same level curve of the integral F .

III. Γ s± = Γ u± = Γ ±; thus Γ + ∪ Γ − ∪ σ is a figure-eight curve (Fig. 4.1, left
part).

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_4, © Springer-Verlag Berlin Heidelberg 2010

75
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Fig. 4.1 The phase planes of the unperturbed and perturbed systems.

The curves Γ + and Γ − are said to be the upper and lower loops of the figure-
eight, respectively. Without loss of generality we may assume that F(σ) = 0. It
is simple to show that dF |z=σ = 0. We assume that σ is a non-degenerate critical
point of F , i.e.,

IV. det ∂2F

∂z2 (σ ) �= 0.

Let μ > 1 be the larger multiplier of the fixed point σ and let λ = log μ. Consider
the perturbation Tε : D → D, T0 = T̂ . For small ε, Tε has a hyperbolic fixed
point σε, σ0 = σ , smoothly depending on ε. Let Γ u±

ε and Γ s±
ε be the separatrix

branches of σε. These branches need not coincide for ε �= 0 (Fig. 4.1, right part).
When studying the dynamics in a neighborhood of the separatrices, it is convenient
to use the separatrix map. Below we give the definition of this map.

Consider a neighborhood of the separatrices Uc = {z ∈ D : |F | < c} with small
c > 0. Let Λ+ and Λ− be curves going from one component of the boundary to
another and transversal to the upper and lower separatrix loop respectively. Let Δ±

ε

be the subdomain of Uc between the curves Λ± and Tε(Λ
±) (Fig. 4.2). We write

Δε = Δ+
ε ∪Δ−

ε . For small c we have Tε(Δε)∩Δε = ∅. For any z ∈ Δε we define1

nr(z) = min{n ∈ N : Tε(z), . . . , T
n−1
ε (z) ∈ Uc, T n

ε (z) ∈ Δε},
Δr

ε = {z ∈ Δε : nr(z) is defined}.
The separatrix map SM ε is defined as follows:

SM ε : Δr
ε → Δε, SM ε(z) = T nr

ε (z).

We write Δ
±
ε = Δ±

ε ∪ Λ± ∪ Tε(Λ
±) and note that SM ε, extended by continuity

to Δ
±
ε , satisfies SM ε(z) = SM ε(Tε(z)), z ∈ Λ±. Therefore, it is natural to as-

1 The index r in the symbols nr and Δr
ε stands for return.
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Fig. 4.2 Definition of the separatrix map. The left part of the figure is represented in the coordi-
nates (z1, z2) and the right part in the coordinates (x, y, s).

sume that the separatrix map is defined on a subset of the cylinders Δ
±
ε /∼, where

the factorization by ∼ means the identification of the points z ∈ Λ± and Tε(z) ∈
Tε(Λ

±).
The map SM ε is convenient for studying the dynamics in a neighborhood of the

separatrices, because long “uninteresting parts” of the trajectory passing near the
point σ are automatically omitted. An important fact is that the separatrix maps SM ε

admit simple formulas in convenient coordinates for small values of ε.

Theorem 4.1. Suppose that T̂ = T0 satisfies conditions I–IV. Then on Δ
±
ε /∼ there

are coordinates x ∈ T = R/Z, y ∈ R, s ∈ {±}, depending smoothly on ε, such
that:

(1) Δ
+
ε /∼ = {s = +}, Δ

−
ε /∼ = {s = −}, x is the angular coordinate on the

cylinders Δ
±
ε /∼, and the geometric meaning of the variable εy is the (signed)

distance to the unstable separatrix;
(2) the symplectic structure is dz2 ∧ dz1 = ε dy ∧ dx;
(3) there are smooth functions ν±(x) and constants α± > 0 such that for any

(x+, y+, s+) = SM ε(x, y, s) we have
⎧⎪⎪⎨
⎪⎪⎩

x+ = x + 1+O(ε)
λ

(
log ε

α2
s λ

+ log |y+|),
y+ = y + λνs(x) + O(ε),

s+ = s · sign(y+),

(4.1)

where Δr
ε = {(x, y) ∈ Δε : y+ �= 0};
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(4) {y = 0, s = ±} ⊂ Γ u±
ε and {y+ = 0, s = ±} ⊂ Γ s±

ε .

The separatrix map is not defined on the circles y+(x, y,±) = 0 (the inverse
map is not defined on the circles y = 0). Indeed, for instance, the points lying
on the separatrices Γ s±

ε do not return to Δ
±
ε but tend to σε under the iterations

of the map Tε. Thus, the dynamics for the map SM ε can be considered only for
points on whose trajectories the variable y never vanishes (in other words, away
from the separatrices). The complement of this set (the trace of the separatrices
in Δ

±
ε ) consists of countably many smooth curves and therefore has zero measure.

A surprising property of the separatrix map is that the dependence on log ε turns
out to be periodic in the leading approximation. Indeed, neglecting the small terms
of the form O(ε), we obtain a map which does not change when ε is replaced by
εμn = εeλn for any integer n.

For large values of the variable y, SM ε is close to an integrable map. Indeed,
putting y = y0(1 + v), where |y0| is a large parameter and the variable v is small,
we obtain

x+ = x + 1 + O(ε)

λ

(
log

εy0

α2
s λ

+ log |1 + v+|
)

,

v+ = v + O(|y0|−1 + |ε|),
s+ = s · sign(y0).

For ε = y−1
0 = 0 this map has the first integral v.

Corollary 4.1. As a simple application we show that the perturbed system in gen-
eral has no real-analytic first integral. Suppose that Tε is real-analytic and has
a real-analytic first integral. One can easily show (see Corollary 4.3 below) that
every analytic first integral in normal coordinates is a function of y. Hence, every
integrable map SM ε preserves y. Thus, according to (4.1), the equations ν± ≡ 0
are necessary integrability conditions for the perturbed map Tε (cf. [149]).

4.1.2 Hamiltonian System with One and a Half Degrees
of Freedom

Consider a Hamiltonian system with one and a half degrees of freedom in a neigh-
borhood of the surfaces asymptotic to a hyperbolic periodic solution. We assume
that t ∈ R/Z and the solution is 1-periodic. In this case the separatrix map is de-
fined naturally by passing to the period-1 map, but it can also be defined directly as
the Poincaré map in the extended phase space. Namely, consider the Hamiltonian
system

ż1 = ∂H

∂z2
, ż2 = −∂H

∂z1
, H(z, t, ε) = H0(z)+εH1(z, t, ε), z ∈ R

2. (4.2)



4.1 Definition and Formulas 79

For ε = 0 we have a system with one degree of freedom and Hamiltonian H0 (the
unperturbed system). Suppose that:

(1) the unperturbed system has a hyperbolic equilibrium state σ , dH0|z=σ = 0;
(2) the separatrices issuing from the point σ form a figure-eight (see Fig. 4.1).

Let λ > 0 be the Lyapunov exponent of the unperturbed hyperbolic 1-periodic
solution (z(t), t) = (σ, t) and let Γ ±(t) be the separatrix solutions of the unper-
turbed system. We call one of the loops of the figure-eight the upper loop and the
other the lower loop. Let Λ+,Λ− ⊂ R

2
z be curves transversal to the upper and lower

separatrix loops, respectively. Let gt
ε : R

2
z ×Tt ←↩ be the phase flow of system (4.2).

The separatrix map is the Poincaré map of the surface Δ = (Λ+ × Tt )∪ (Λ− × Tt )

in the extended phase space D × Tt . More precisely, for any point (z, t) ∈ Δ we
have

tr (z) = min{t > 0 : gt
ε(z) ∈ Δ}, Δr

ε = {(z, t) ∈ Δ : tr (z) < +∞}.
Then by definition,

SM ε : Δr
ε → Δ, SM ε(z) = gtr

ε (z).

Without loss of generality we may assume that the separatrix loop is the zero level
of the Hamiltonian H0.

Theorem 4.2. On the surface Δ there are coordinates (h, t, s) ∈ R × T × {+,−}
such that:

(1) Λ+ × Tt = {s = +} and Λ− × Tt = {s = −};
(2) H0(z) = εh + O2(ε);
(3) t is the time;
(4) the separatrix map has the form (h+, t+, s+) = SM ε(h, t, s) with

⎧⎪⎨
⎪⎩

h+ = h + Is(t) + O(ε),

t+ = t + 1+O(ε)
λ

(
log ε

α2
s λ

+ log |h+|),
s+ = s · sign(h+),

(4.3)

where α± > 0 are constants, the functions I± are periodic and can be expressed
in terms of the Poincaré–Melnikov integral:

Is(t) = −
∫ +∞

−∞
{H0,H1}

(
Γ s

(
t − log α±

λ
+ τ

)
, τ

)
dτ.

Theorems 4.1 and 4.2 are in fact equivalent. Indeed, Theorem 4.2 can be obtained
by applying Theorem 4.1 to the period-1 map gt

ε|t=1. Conversely, since one can
embed any 2-dimensional symplectic map isotopic to the identity map into the flow
of a Hamiltonian system with one and a half degrees of freedom, one can reduce
Theorem 4.1 to Theorem 4.2.
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4.2 Proof of Theorem 4.1

Note that equations similar to (4.1) and (4.3) are widely used in the physical litera-
ture, but without error terms. A rigorous upper estimate of these terms presents the
main feature of our approach.

Gluing maps: definition. Let (q, p) = (qε, pε) be the normal coordinates, defined
in Theorem 3.1. In these coordinates Tε has the form

Tε(q, p) = (qMε(pq), p/Mε(pq)), (4.4)

where σε = (0, 0) and με = Mε(0) > 1.

Remark 4.1. In what follows we assume that the normal coordinates are chosen in
such a way that q > 0 and p > 0 inside the upper loop of the “figure-eight” (see
Fig. 4.3).

The normal coordinates, which were initially defined only in a small neighbor-
hood of the hyperbolic point, can be extended along the separatrices by using the
following inductive procedure. Let the coordinates of a point z ∈ D be known and
equal to (q, p). Then we define the coordinates of the points Tε(z) and T −1

ε (z) to
be Tε(q, p) and T −1

ε (q, p), respectively. Far from the fixed point σε we obtain two
distinct extensions of the normal coordinates, namely, along the stable and unstable
separatrices. The identification of coordinates thus obtained is called the gluing map.
More formally, this construction is as follows.

Let Uε be a neighborhood of σε in which the normal coordinates (q, p) are ini-
tially defined. Let Nε : Uε → Uε be the map introducing the normal coordinates,
Uε ⊂ R

2
q,p. We fix positive integers nu, ns and define

Uns,nu
ε =

⋃
−ns≤n≤nu

T n
ε (Uε), U ns ,nu

ε =
⋃

−ns≤n≤nu

T n
ε (Uε). (4.5)

Fig. 4.3 The gluing map.
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We extend the map Nε to U
ns,nu
ε in such a way that the following diagram is com-

mutative:

Uε

T n
ε−−−−→ T n

ε (Uε)

Nε

⏐⏐ ⏐⏐Nε

Uε

T n
ε−−−−→ T n

ε (Uε)

(4.6)

This extension is well defined because Nε ◦ Tε = Tε ◦ Nε on Uε.
For large values of ns and nu the map Nε is no longer injective. We choose ns

and nu in such a way that Nε determines a two-sheeted covering of the fundamental
domains Δ±

ε .
Let Δu±

ε and Δs±
ε be the preimages of Δ±

ε that are contained in a neighborhood
of the unstable and stable separatrices respectively:

Δu±
ε ⊂ {(q, p) : c < ±q < c−1, |p| is small},

Δs±
ε ⊂ {(q, p) : q is small, c < ±p < c−1}.

The definition of the gluing map becomes

G ±
ε : Δu±

ε → Δs±
ε , G ±

ε = (Nε|Δs±
ε

)−1 ◦ Nε|Δu±
ε

.

If (qu, pu) and (qs, ps) denote the normal coordinates of a point z ∈ Δ±
ε obtained

by the extensions along the unstable and stable separatrices respectively, i.e.,

Nε(qu, pu) = z, (qu, pu) ∈ Δu±
ε and

Nε(qs, ps) = z, (qs, ps) ∈ Δs±
ε ,

then these coordinates are identified by the gluing map, G ±
ε (qu, pu) = (qs, ps).

Having explicit formulas for G ±
ε , one can study the dynamics of the map Tε in

a neighborhood of the separatrices in the normal coordinates. Indeed, the normal
coordinates define a smooth map of the cross-shaped domain shown to the left in
Fig. 4.3 onto a neighborhood of the separatrices of the point σε. Let the initial con-
ditions be given in normal coordinates. To construct the trajectory of the system,
we first apply the hyperbolic rotation Tε several times. The iterations of the point
begin moving away along the northeast or southwest branch of the cross and even-
tually fall into the domain of one of the gluing maps. After applying the map G +

ε

or G −
ε , we apply the map Tε again, and so on. It is clear here that almost all infor-

mation about the dynamics is contained in the gluing maps because the formulas for
a hyperbolic rotation differ unessentially for different systems.

Gluing maps: formulas.

Proposition 4.1. Let a C2-smooth function F be a first integral of the hyperbolic
rotation T (q, p) = (qM (pq), p/M (pq)). Then F(q, p) = F0 + O(qp), F0 =
const.
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Proof. Obviously, F = F0 = const on the separatrices {q = 0} and {p = 0}.
Therefore, F = F0 + O(qp). ��
Corollary 4.2. If F is a C4-smooth first integral of T , then

F(q, p) = F0 + F1qp + O2(qp), F0, F1 = const. (4.7)

Indeed, qp is a first integral of T . Hence by Proposition 4.1 F = F0+qp Φ(q, p),
where Φ ∈ C2 is a first integral. The equation Φ = const. + O(qp) implies (4.7).
Inductive application of this argument proves the following corollary.

Corollary 4.3. If both T and the first integral F are real-analytic, then F(q, p) =
F (qp).

The gluing maps corresponding to integrable systems have a rather simple form.

Proposition 4.2. Suppose that T̂ = T0 satisfies conditions I–IV with a C4-smooth
first integral F . Then the gluing maps G ±

0 are of the form (qs, ps) = G ±
0 (qu, pu)

with ⎧⎪⎨
⎪⎩

qs = q2
upu

α2±
+ O2(qupu),

ps = α2±
qu

+ O(qupu),

(4.8)

where α± are positive constants.

Proof. Let G +
0 (qu, pu) = (qs, ps). Then

F(qs, ps) = F(qu, pu), dps ∧ dqs = dpu ∧ dqu, (4.9)

where the first integral F satisfies (4.7). Condition IV implies F1 �= 0. Hence,

qsps = qupu + O2(qupu). (4.10)

Substituting the equation qs = (qupu + O2(qupu))/ps in (4.9), we obtain the fol-
lowing partial differential equation:

pu

∂ps

∂pu

− qu

∂ps

∂qu

= ps(1 + O(qupu)).

The solutions ps = ps(qu, pu) smooth at pu = 0 are ps = q−1
u (a0 + O(qupu)).

The inequality a0 > 0 follows from the convention in Remark 4.1 about the choice
of normal coordinates. This implies the second equation in (4.8). The first equation
in (4.8) now follows from (4.10). ��

The gluing maps G ±
ε are obtained as perturbations of (4.8).

Proposition 4.3. Suppose that T̂ = T0 satisfies conditions I–IV with F ∈ C4. Then
G ±

ε are of the form (qs, ps) = G ±
ε (qu, pu) with



4.2 Proof of Theorem 4.1 83

⎧⎨
⎩

qs = qu
qupu+εν±(log |qu|/ log μ)

α2±
+ O2(qupu, ε),

ps = α2±
qu

+ O(qupu, ε),

(4.11)

where ν± are periodic functions with period 1.

Proof. Indeed,

G ±
ε (qu, pu) = G ±

0 (qu, pu) + ε(f±(qu, pu, ε), g±(qu, pu, ε)),

where f± and g± are smooth functions. By (4.6) f±(μqu, 0, 0) = μf±(qu, 0, 0).
We define ν± : R → R by the equation

f±(qu, 0, 0) = qu

ν±(log |qu|/ log μ)

α2±
.

Then the functions ν± are smooth and periodic with period 1. Hence,

G ±
ε (qu, pu) = G ±

0 (qu, pu) + ε

(
qu

ν±(log |qu|/ log μ)

α2±
+ O(pu), g±(qu, pu, ε)

)

=
(

qu

qupu + εν±(log |qu|/ log μ)

α2±
,
α2±
qu

)

+ (O2(qupu, ε),O(qupu, ε)).

This completes the proof of Proposition 4.3. ��
Convenient coordinates on Δ±

ε . On the domains Δ±
ε we have two coordinate sys-

tems (qs, ps) and (qu, pu) given by the maps Nε|Δs±
ε

and Nε|Δu±
ε

respectively. In
the latter coordinate system the separatrix map by definition has the form

SM ε = T nr
ε ◦ Gε, (4.12)

where, we recall, nr(z) stands for the number of iterations of the point z ∈ Δr
ε under

the map Tε until the first return to Δε. In the normal coordinates nr = nr(q, p),
(q, p) ∈ Δs±

ε , is the number of iterations of the map Tε until the trajectory falls
into the domain Δu±

ε .
Away from the stable separatrix {q = 0}, the following variables are defined:

x = log |q|
log Mε(qp)

= log |q|
λ

(1 + O(qp, ε)),

y = 1

ε

∫ qp

0
log Mε(ξ) dξ = 1

ε
qp(λ + O(qp, ε)).

(4.13)

Then dy ∧ dx = ε−1dp ∧ dq. In the variables (x, y) the hyperbolic rotation Tε

becomes
Tε(x, y) = (x + 1, y). (4.14)
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Therefore, the map Nε|Δu±
ε

(x, y) defines smooth coordinates (x mod 1, y) on the

cylinders Δ
±
ε /∼. To recover the information about the sign of the variable q (lost

in (4.13)), we adjoin the sign s = sign(q) to the coordinate system (x, y). If s = +
(s = −) then (x, y) ∈ Δu+

ε (respectively, (x, y) ∈ Δu−
ε ). The separatrix map is

represented in the coordinates (x mod 1, y, s).
Assuming that x is defined modulo 1, we see from (4.12) and (4.14) that the

separatrix map SM ε is determined solely by Gε. It remains to represent the gluing
map in the variables (x, y). Inverting equations (4.13), we obtain

qp = εy

(
1

λ
+ O(ε)

)
, q = seλx(1+O(ε)).

Let (xu, yu) ∈ Δ
u±
ε and (xs, ys) = G ±

ε (xu, yu). By (4.11) we obtain:

qsps = qupu + εν±
(

log |qu|
log μ

)
+ O2(qupu, ε) = 1

λ
εyu + εν±(xu) + O2(ε),

ys = ε−1qsps(λ + O(qsps, ε)) = yu + λν±(xu) + O(ε),

xs = − log |ps | + log |qsps |
λ

(1 + O(qsps, ε))

= 1

λ

(
log

∣∣∣∣ qu

α2±
+ O(ε)

∣∣∣∣ + log
ε|ys |

λ + O(ε)

)
(1 + O(ε))

= xu + 1 + O(ε)

λ

(
log

ε

α2±λ
+ log |ys | + O(ε)

)
,

sign(qs) = sign(ys) · sign(qu).

Finally, writing SM ε(x, y, s) = (x+, y+, s+), we obtain (4.1).

4.3 Poincaré–Melnikov Integral

In this section we obtain formulas for the parameters α± and the functions ν±.
Let F be a first integral of the map T0, F(σ) = 0. We suppose that the critical

point σ of F is non-degenerate. Let Γ ± : R → {z ∈ D : F(z) = 0} be the upper
and lower loops of the unperturbed separatrix parametrized in the natural way:

T0 ◦ Γ ±(t) = Γ ±(t + 1). (4.15)

In a neighborhood of the point σ there are symplectic coordinates (u, v) such
that the curves Γ ±(t) satisfy the equations

(u, v) = (c±
u μt + O(μ2t ), O(μ2t )) as t → −∞,

(u, v) = (O(μ−2t ), c±
s μ−t + O(μ−2t )) as t → +∞,

(4.16)
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where c+
s , c+

u > 0 and c−
s , c−

u < 0. These coordinates can be obtained by a linear
change of variables from any symplectic coordinates defined in a neighborhood of
the point σ . The constants c±

s and c±
u are not uniquely determined; however, only

one of these constants can be chosen arbitrarily.

Proposition 4.4.

(a) The quantities c+
s c+

u , c−
s c−

u , and c+
s /c−

s do not depend on the choice of the vari-
ables (u, v).

(b) The quantities c+
s c+

u and c−
s c−

u are preserved under changes of the parametri-
zations t �→ t + ĉ± on the curves Γ ±.

(c) α2± = c±
s c±

u .

Corollary 4.4. The constants α± can be computed if the natural parametrization of
the unperturbed separatrices is known.

Proof (of Proposition 4.4). Let (u′, v′) be another coordinate system satisfying
(4.16) (may be, with other constants c±

s,u). Then

u′ = uc′ + O(u2 + v2), v′ = v/c′ + O(u2 + v2)

with some positive c′. These equations imply assertion (a).
Changing the parameterization of Γ + (or Γ −), we multiply c+

s (respectively, c−
s )

by a positive constant and divide c+
u (respectively, c−

u ) by the same constant. This
implies assertion (b).

To prove assertion (c) we note that the normal coordinates (q, p) also satisfy
equations (4.16). Moreover, in normal coordinates

(i) Γ ± = (c±
u μt , 0),

(ii) Γ ± = (0, c±
s μ−t ).

The gluing maps G ±
0 (4.11)|ε=0 transform parameterizations (i) into (ii):

(0, c±
s μ−t ) = G ±

0 (c±
u μt , 0) = (0, α2±/(c±

u μt )).

These equations imply assertion (c). ��
Remark 4.2. Given normal coordinates (q, p) there exist unique natural parameter-
izations on Γ ± such that these curves are as follows:

(i) Γ ± = (±α±μt , 0),

(ii) Γ ± = (0, ±α±μ−t ).
(4.17)

The functions ν± can be obtained from a discrete analogue of the Poincaré–
Melnikov integral. We put

w(T0(z)) = d

dε

∣∣∣∣
ε=0

Tε(z). (4.18)
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Then w is a Hamiltonian vector field on D which controls the perturbation Tε in the
first approximation in ε. We define

ν∗±(t) =
∞∑

n=−∞

〈
dF,w(Γ ±(t + n))

〉
, (4.19)

where the expression 〈dF,w(A)〉 denotes application of the covector dF to the
vector w at the point A ∈ D. Since the critical point σ is non-degenerate, we have

F(u, v) = F0uv + O3(u, v), F0 �= 0.

Proposition 4.5. The following equations hold:

ν±(t) = 1

F0
ν∗±

(
t − log α±

log μ

)
.

Proof. Let Aε, −ε0 < ε < ε0 be a smooth curve on D. Then
〈
dF,

d

dε

∣∣∣∣
ε=0

T n
ε (Aε)

〉
−

〈
dF,

d

dε

∣∣∣∣
ε=0

Aε

〉
= sign n ·

∑
k

〈
dF,w(T k

0 (A0))
〉
, (4.20)

where k ∈ {1, . . . , n} if n > 0, and k ∈ {0,−1, . . . , n + 1} if n < 0. This equation
can be obtained by a direct calculation with the help of the identities

d

dε

∣∣∣∣
ε=0

T n
ε (Aε) = dT n

0
d

dε

∣∣∣∣
ε=0

Aε + sign(n) ·
∑

k

dT n−k
0 w(T k

0 (A0)),

where

{
1 ≤ k ≤ n if n > 0,

n + 1 ≤ k ≤ 0 if n < 0,
(4.21)

〈dF, dT m
0 v〉 = 〈dF, v〉, where v is a vector at a point A ∈ D.

Identity (4.21) can be obtained by differentiation of F ◦ T m
0 = F along v.

Now suppose that the point As+
ε (respectively, Au+

ε ) lies on the upper stable sep-
aratrix Γ s+

ε (respectively, on the upper unstable one Γ u+
ε ) and As+

0 = Au+
0 = A0.

By using (4.20), we have for any natural n:

〈
dF,

d

dε

∣∣∣∣
ε=0

As+
ε

〉
=

〈
dF,

d

dε

∣∣∣∣
ε=0

T n
ε (As+

ε )

〉
−

n∑
k=1

〈
dF,w(T k

0 (A0))
〉
,

〈
dF,

d

dε

∣∣∣∣
ε=0

Au+
ε

〉
=

〈
dF,

d

dε

∣∣∣∣
ε=0

T −n
ε (Au+

ε )

〉
+

0∑
k=1−n

〈
dF,w(T k

0 (A0))
〉
.

Hence,
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〈
dF,

(
d

dε

∣∣∣∣
ε=0

Au+
ε − d

dε

∣∣∣∣
ε=0

(As+
ε )

)〉
=

+∞∑
k=−∞

〈
dF,w(T k

0 (A0))
〉
. (4.22)

Here we have used the equation

lim
n→∞

d

dε

∣∣∣∣
ε=0

T n
ε (As+

ε ) = lim
n→∞

d

dε

∣∣∣∣
ε=0

T −n
ε (Au+

ε ).

Now let us compute the left-hand side of (4.22) in another way. In the normal
coordinates (q, p) = (q(ε), p(ε)) the curves As+

ε and Au+
ε have the following form:

Au+
ε = (ju(ε), 0), ju(ε) > 0,

As+
ε = (0, js(ε)), js(ε) > 0.

These equations give coordinate presentations of Au+
ε and As+

ε in different domains:
Δu+

ε and Δs+
ε respectively (see Fig. 4.3). To compare these two curves, we use the

coordinate presentation of Au+
ε in Δs+

ε by using explicit form of G +
ε (see (4.8)):

Au+
ε = G +

ε (ju(ε), 0) =
(

εju(0)

α2+
ν+

(
log ju(u)

log μ

)
+ O(ε2),

α2+
ju(0)

+ O(ε)

)
.

Since As+
0 = Au+

0 , we have: ju(0)js(0) = α2+.
The normal coordinates (q, p) depend on ε. We must take into account this fact

when evaluating in these coordinates any of the vectors dAu,s+
ε /dε. However, we

can forget about this when evaluating the difference

d

dε

∣∣∣∣
ε=0

Au+
ε − d

dε

∣∣∣∣
ε=0

As+
ε .

The difference equals

d

dε

∣∣∣∣
ε=0

(
εju(0)

α2+
ν+

(
log ju(u)

log μ

)
+ O(ε2),

α2+
ju(0)

+ O(ε) − js(ε)

)

=
(

ju(0)

α2+
ν+

(
log ju(u)

log μ

)
, ĵ

)
, (4.23)

where the value of ĵ is not essential.
In coordinates (q, p) = (q(ε), p(ε)) the first integral F satisfies the equation

F(q, p) = F0qp + O(ε) + O(q2p2).

Hence, according to (4.23),



88 4 The Separatrix Map

〈
dF,

(
d

dε

∣∣∣∣
ε=0

Au+
ε − d

dε

∣∣∣∣
ε=0

As+
ε

)〉

= F0

〈
(js(0), 0),

(
ju(0)

α2+
ν+

(
log ju(u)

log μ

)
, ĵ

)〉

= F0 ν+(log ju(0)/ log μ). (4.24)

We take A0 = Γ +(t). Then

T m
0 (A0) = Γ +(t + m), m ∈ Z. (4.25)

According to (4.17),

ju(0) = α+μt , js(0) = α+μ−t . (4.26)

By using (4.22)–(4.26) we obtain

F0 ν+(t + log α+/ log μ) =
+∞∑

k=−∞

〈
dF · w(Γ +(t + k))

〉 = ν∗+(t).

Analogously we get F0 ν−(t + log α−/ log μ) = ν∗−(t). ��

4.4 Hamiltonian System

Here we derive Theorem 4.2 from Theorem 4.1.
Let Tε be the period-1 map in the system with Hamiltonian H(z, t, ε). The nor-

mal coordinates (q, p) = (qε, pε) of the map Tε in Theorem 3.1 generate normal
coordinates for the Hamiltonian system (see Theorem 3.2). Indeed, it suffices to let
the normal coordinates of gt

ε(z) be (qM t
ε , pM −t

ε ), where (q, p) are normal coor-
dinates of the point z and gt

ε is the phase flow on the extended phase space D × Tt .
In the normal coordinates the phase flow has the form

gt
ε(q, p) = (qeH ′

ε (pq)t , pe−H ′
ε (pq)t ). (4.27)

Comparing gt
ε|t=1 and (3.1), we see that the functions Mε(pq) and Hε(pq) in

Theorems 3.1 and 3.2 are connected as follows:

dHε(ξ)

dξ
= log Mε(ξ). (4.28)

Since the unperturbed Hamiltonian H0 does not depend on the time, the normal-
izing change of coordinates depends on time only in terms of order ε. Therefore, the
new Hamiltonian is Hε = Hε + O(ε).

Away from the stable separatrix {q = 0} on R
2
q,p we introduce the “energy-time”

coordinates (h, t) in the following way. We take t = 0 for q = ±1. Assuming that
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Hε(0) = 0, we see from (4.28) and (4.27) that

t = log |qε|
log Mε

, h = ε−1Hε = ε−1
∫ qεpε

0
log Mε(ξ) dξ.

Thus, the coordinates (h, t) coincide with the coordinates (y, x) (see (4.13)). There-
fore, it follows from (4.1) that SM ε(h, t, s) = (h+, t+, s+), with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h+ = h + λνs(t) + O(ε),

t+ = t + 1+O(ε)
λ

(
log ε

α2
s λ

+ log |h+|),
s+ = s · sign(h+).

(4.29)

Proposition 4.6. In equations (4.29) ν±(t) = 1
λ
ν∗±(t − log α±

log μ
), where

−ν∗±(t) =
∫ +∞

−∞
{H0,H1|ε=0}(Γ ±(t + ξ), ξ) dξ. (4.30)

Proof. Let zε(t) = z0(t) + εz′(t) + O(ε2) be a solution of the system with Hamil-
tonian H and initial conditions zε(0) = (u, v). Then

Tε(u, v) = zε(1). (4.31)

Below we assume that the point (u, v) does not depend on ε. Differentiating (4.31)
with respect to ε at the point ε = 0, we obtain

w(T0(u, v)) = z′(1). (4.32)

Differentiating the equation d
dt

H0(zε(t)) = ε{H1,H0}(zε(t), t, ε) with respect to ε

and setting ε = 0, we get

d

dt

〈
dH0(z0(t)), z

′(t)
〉 = {H1,H0}(z0(t)). (4.33)

Integrating (4.33) with z0(t) = Γ +(t0 + t), we have

〈
dH0(Γ

+(t0 + 1)), z′(1)
〉 − 〈

dH0(Γ
+(t0)), z

′(0)
〉

=
∫ 1

0
{H1,H0}(Γ +(t0 + t), t) dt.

Using equations (4.32) and z′(0) = 0, we get

dH0 · w(Γ +(t0 + 1)) =
∫ 1

0
{H1,H0}(Γ +(t0 + ξ), ξ) dξ.
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The corresponding equation for Γ − can be found in a similar way. Proposition 4.6
follows from these equations and the definition of the function ν∗+ in (4.19). ��

4.5 Separatrix Map for a Pendulum

As an example we consider a pendulum whose suspension point oscillates periodi-
cally along the vertical. The Hamiltonian of the system has the form

H(û, v̂, t, ε) = v̂2/2 + Ω2 cos û + εθ(ωt) cos û. (4.34)

Here û = û mod 2π is the angle between the pendulum and the vertical, v̂ is
the corresponding momentum, Ω > 0 is the “intrinsic frequency” of the system
(Ω2 is equal to the gravitational acceleration divided by the length of the pendu-
lum), ω is the frequency of oscillation of the suspension point, and the parameter ε

is proportional to the amplitude of the oscillations multiplied by ω2. The law of os-
cillation of the suspension point is determined by the 2π-periodic function θ . We
suppose that the parameter ε is small and the other parameters in the system are of
order 1.

We make the system 1-periodic in time by a symplectic change of variables.
Let τ = ωt/(2π) be the new time and H = 2πH/ω the new Hamiltonian. The
Poincaré map in this system has the hyperbolic fixed point û = v̂ = 0. One can
easily compute the multiplier: μ = e2πΩ/ω. In this case, λ = log μ = 2πΩ/ω. The
separatrices Γ ± have the form

(û, v̂) =
(

4 arctan e±2πΩτ/ω,± 2Ω

cosh(2πΩτ/ω)

)
.

The variables (u, v) (see (4.16)) are as follows:

u = û
√

Ω/2 + v̂/
√

2Ω, v = −û
√

Ω/2 + v̂/
√

2Ω.

We get: c±
s = c±

u = ±4
√

2Ω . Hence by Proposition 4.4 α2± = 32Ω .
Using Proposition 4.6, we obtain

ν∗±(τ ) =
(

2π

ω

)2 ∫ +∞

−∞
θ(2πξ)(v̂ sin û)

∣∣
Γ ±(τ+ξ)

dξ.

Direct computations lead to the equation

ν∗±(τ ) = −4π2iω

Ω2

∑
m∈Z\{0}

m2θm

sinh(πmω/(2Ω))
e−2πimτ , (4.35)

where the Fourier expansion of the function θ has the form
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θ(s) =
∑
m∈Z

θmeims.

In particular, ν∗± �≡ const for θ �≡ const. Hence (Corollary 4.1) for θ �≡ const. the
perturbed system has no analytic first integral for any small ε �= 0.

The equation ν∗+ = ν∗− appears because the Hamiltonian is invariant with respect
to the symmetry

(û, v̂) �→ (−û,−v̂)

which exchanges the upper and lower separatrix loops.
If we increase in (4.35) the value of the parameter ω/Ω (the case of a large fre-

quency of the oscillation of the suspension point), the functions ν∗± tend to zero
exponentially fast. This phenomenon of exponentially small separatrix splitting was
discovered by Poincaré. However this observation is somewhat formal because, if
we put ω/Ω = 1/εα , α > 0, the above proof of the fact that ν∗± are responsible for
the rate and the form of the separatrix splitting is no longer correct. Analysis of ex-
ponentially small separatrix splitting requires a much more complicated argument.
This problem is discussed in Chap. 6.

4.6 Some Generalizations

The aim of this section is to indicate a unified scheme for constructing separatrix
maps in the systems which satisfy conditions I–IV (Sect. 4.1), as well as in the sys-
tems Tε for which T0 is the identity map, and therefore there is no hyperbolic fixed
point for ε = 0. A system of the second type appears when a resonance curve of an
integrable map is disintegrated by a perturbation. Another example is a pendulum
with a rapidly oscillating suspension point.

In systems of the second type the multiplier με of the hyperbolic fixed point σε

tends to zero as ε ↘ 0, and the separatrix splitting is exponentially small2 with
respect to ε. Using methods of averaging theory, one can approximate the perturbed
system by an integrable map which also has a hyperbolic fixed point. Moreover,
in the case of analytic symplectic maps, one can make the difference between these
systems exponentially small with respect to ε. This difference is characterized below
by a small parameter δ = δε. Hence, if one regards the perturbed system as a δ-
deformation of an integrable system, then the construction of the separatrix map is
similar to the case presented above.

Let Tε, 0 < ε < ε0, be a smooth family of two-dimensional symplectic maps
close to an integrable map T0. Suppose that

(A) there is a smooth family of integrable maps T̃ε such that, for any ε ∈ (0, ε0),
the map T̂ = T̃ε satisfies conditions I–IV and |Tε − T̃ε| ≤ δε, where δε → 0 as
ε → 0.

2 Provided the system is real-analytic.
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If the map T̂ = T0 itself satisfies conditions I–IV, one can take T̃ε ≡ T0 and
δε = ε.

Since the maps T̃ε satisfy conditions I–IV, the gluing maps for T̃ε satisfy (4.8),
where α± = α±(ε). Then the gluing maps for Tε have the form

⎧⎪⎨
⎪⎩

qs = q2
upu

α2±(ε)
+ δεquf±(qu, pu, ε) + O2(qupu),

ps = α2±(ε)

qu
+ δεpug±(qu, pu, ε) + O1(qupu).

(4.36)

Here (q, p) = (q(ε), p(ε)) are normal coordinates for Tε in a neighborhood of
the hyperbolic fixed point σε, and as before (qu, pu) and (qs, ps) are the extended
coordinates along the unstable and stable separatrices of σε, respectively.

Let με = Mε(0) be a multiplier of the hyperbolic fixed point σε of the map Tε

and let Mε(qp) be the function defining Tε in the normal coordinates (see Theo-
rem 3.1). We put

f±(q, 0, ε) = α−2± ν̂±
(

log |q|
log με

, ε

)
. (4.37)

The functions ν̂± are periodic with respect to the first argument, with period 1.
Below we assume the condition

(B) limε↘0
δε

log με
= 0.

Introducing the symplectic coordinates (x, y),

x = log |q|
log Mε(qp)

= log |q|
log με

(1 + O1(qp)),

y = δ−1
ε

∫ qp

0
Mε(ξ) dξ = δ−1

ε qp log με(1 + O1(qp)),

(4.38)

and adjoining to them the index s = sign(q), we obtain the following formulas for
the separatrix map: SM ε(x, y, s) = (x+, y+, s+), where

⎧⎪⎪⎨
⎪⎪⎩

x+ = x + 1
log με

[
log δε

α2
s log με

+ log
∣∣y+ + δε log με · O

(
1 + y

log με

)2∣∣],
y+ = y + log με · ν̂s (x, ε) + δε log με · O

(
1 + y

log με

)2
,

s+ = s · sign(y+).

(4.39)
We also assume that

(C) the functions ν̂± have the form

ν̂±(ξ, ε) = ν±(ξ) + o(1) as ε → 0, (4.40)

where ν± are not identically zero.

As was to be expected, formulas (4.39) coincide with (4.1) in the “standard”
situation μ0 > 1, δε = ε, y ∼ 1.



Chapter 5
Width of the Stochastic Layer

In this chapter we use the separatrix map to study the stochastic layer, appearing in
the vicinity of separatrices of near-integrable systems.

5.1 Definitions and Results

This section can be regarded as an informal introduction. Here we present a defini-
tion of the stochastic layer and the main results on its size.

Let T be an exact symplectic near-integrable self-map of a two-dimensional do-
main. We assume that T has a hyperbolic fixed point σ whose asymptotic curves
(separatrices) look as shown in Fig. 5.1. Three invariant curves γ± and γ0 closest
to the separatrices form the boundary of the stochastic layer. The width w of the
stochastic layer is one of important quantities characterizing chaotic properties of T

in the vicinity of the separatrices.
Below in this chapter we show that under some natural assumptions

w/d ∼ 1/ log μ. (5.1)

Here d is the width of a lobe domain D bounded by segments of the separatrices
and μ > 1 is the larger multiplier at the hyperbolic fixed point σ . The symbol ∼
means that, if we have a smooth family Tε of analytic symplectic maps, where T0 is
integrable, then for sufficiently small ε

C1/ log μ(ε) < w(ε)/d(ε) < C2/ log μ(ε),

where C1 and C2 are positive constants. The constants C1 and C2 can be estimated
(see Sect. 5.2).

If log μ(ε) ∼ 1 as ε → 0, we see that w and d are of the same order. However,
if the stochastic layer appears when a resonant invariant curve of an integrable map
disintegrates, the multiplier μ is close to 1. Hence, in this case w is much greater
than d . This situation is typical for exponentially small separatrix splitting.

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_5, © Springer-Verlag Berlin Heidelberg 2010

93
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94 5 Width of the Stochastic Layer

Fig. 5.1 A neighborhood of the separatrices of a hyperbolic point σ : d is the width of the lobe and
w is the width of the stochastic layer.

Consider for example a resonant invariant circle {y = const.} of an integrable
self-map

T0(x, y) = (x + ν(y), y)

of a cylinder Z = {x mod 2π, y}. Take for simplicity the simplest resonance, i.e.,
the circle determined by the condition y = y0, ν(y0) = 0. Consider also the per-
turbed map

Tε(x, y) = (
x + ν(y) + εf (x, y), y + εg(x, y)

) + O(ε2).

Without loss of generality we assume that ε ≥ 0. In the variables (x mod 2π, η),
y = y0 + √

εη the map Tε has the form

(x, η) �→ (
x + √

εν′
0, η − √

εu(x)
) + O(ε), (5.2)

where ν′
0 = dν/dy|y=y0 and u = −g(x, y0). The condition of exact symplecticity

implies that the average of the function u with respect to x vanishes. Therefore,
u(x) = ∂V (x)/∂x for a certain 2π-periodic V (x). Map (5.2) differs from the time-√

ε shift along solutions of the Hamiltonian system with Hamiltonian ν′
0η

2/2+V (x)

only in terms of order O(ε).
Let ν′

0 > 0 and let x0 be a nondegenerate local maximum of the potential V .
Then (5.2) has the hyperbolic fixed point (x, η) = (x0, 0) + O(

√
ε). The multiplier

μ > 1 at this point is as follows:

μ = exp
(√

−ν′
0V

′′
0 ε + O(ε)

)
, V ′′

0 = ∂2V/∂x2
∣∣
x=x0

< 0.

Hence, in this situation log μ ∼ √
ε and w is much greater than d .

It turns out that in the case of multipliers close to unity, the width of the stochastic
layer can be estimated more sharply. In particular, if T satisfies a certain symmetry
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condition (Condition (S) below) and Conjecture 5.2 about properties of the standard
map is true, the following estimate holds:

lim
ε→0

w(ε) log μ(ε)

d(ε)
= 4π

k0
, (5.3)

where

k0 = inf

{
k′ : for all k > k′ the standard map

(
I

ϕ mod 2π

)
�→

(
J

ψ mod 2π

)
=

(
I + k

2π
sin(2πϕ)

ϕ + J

)

has no invariant curve homotopic to the circle I = 0

}
.

The constant k0 = 0.971635 . . . was evaluated numerically in [57, 84, 101].
It is possible to present another version of (5.1). Let A be the symplectic area of

the stochastic layer S L and AD the area of a lobe.1 Then

A

AD log A −1
D

∼ 1

log2 μ
. (5.4)

The corresponding analog of (5.3) (under the same assumptions) is

lim
ε→0

A log2 μ

AD log A −1
D

= 8π2

k0
. (5.5)

In the general (non-symmetric) case the fractions

w(ε) log μ(ε)

d(ε)
,

A (ε) log2 μ(ε)

AD(ε) log A −1
D (ε)

generically do not have limits as ε → 0 but oscillate between two positive constants.
Formulas (5.1), (5.3)–(5.5) can be regarded as relations between w, A and the

quantities μ, d,AD . The latter are standard to evaluate: to obtain the functions d(ε)

and AD(ε) one can use the Poincaré–Melnikov theory or its generalizations to the
case of exponentially small splitting; μ(ε) in the main approximation is usually
evaluated easily.

Below in this chapter we formulate conditions under which estimates (5.1), (5.3)–
(5.5) hold. Asymptotic formulas (5.1) and (5.4) follow from Theorem 5.1. Equations
(5.3) and (5.5) follow from Corollaries 5.1–5.4 provided Conjecture 5.2 is valid.

Particular cases of (5.1) were discovered in [32, 49, 147], but no rigorous proofs
were presented. The estimate w/d ≤ const. is proved in [43] provided log μ ∼ 1.

1 Below we regard the quantities A and AD as positive, i.e., A = | ∫S L ω| and AD =
| ∫D ω|, where ω is the symplectic structure.
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In [3] the estimate w/d ≥ const was established in the same case. Lazutkin [79] has
obtained estimate (5.1) for separatrices of the standard map. Our exposition below
follows [138].

5.2 Theorems on the Stochastic Layer

Consider a smooth family Tε, 0 < ε < ε0, of smooth symplectic maps for which
conditions (A)–(C) (Sect. 4.6) are satisfied. In particular, formulas (4.39) hold for
these maps.

Below we sometimes need the following additional symmetry condition:

(S) The map S M ε commutes with the “central symmetry” (x, y, s) �→ (x, y,−s).

Theorems 5.1, 5.2, and 5.3 and also Lemma 5.1 formulated in this section will
be proved in Sect. 5.4.

By the stochastic layer we mean the domain SL (ε) ⊂ D bounded by the con-
tinuous invariant curves γ± and γ0 (see Fig. 5.1) which are the closest to the hy-
perbolic point σε. The width of SL (ε) is measured in terms of the function qp,
where, as usual, (q, p) = (q(ε), p(ε)) are normal coordinates corresponding to σε.
More precisely, we introduce the following quantities:

w∗ = min
(q,p)∈γ∗

|qp|, w∗ = max
(q,p)∈γ∗

|qp|,

where ∗ stands for a symbol +, −, or 0. It is natural to say that the width w of the
stochastic layer is contained in the interval (w • + w 0, w• + w0), where

w • = min{w+, w−}, w• = max{w+, w−}.
The width d of the domain D (see Fig. 5.1) is defined by

d = max
D

qp − min
D

qp. (5.6)

Since the function qp does not depend on the choice of normal coordinates, it fol-
lows that the quantities w∗, w∗, and d are well defined.

Lemma 5.1. For ε ↘ 0 (and therefore, δ = δ(ε) ↘ 0) the following estimates hold:

(1) d ∼ δ, AD ∼ λδ;
(2) if the domain D is located on the upper (lower) loop and ν+(ξ) =

a sin(2π(ξ − ξ+)) (ν−(ξ) = a sin(2π(ξ − ξ−)), respectively), then d = δ(a +
o(1)) and AD = λδ(a/π + o(1));

(3) A ≤ A ≤ A , where



5.2 Theorems on the Stochastic Layer 97

A = 2|w 0 log w−1
0 + O(w 0)| +

∑
∗∈{+,−}

|w∗ log w−1∗ + O(w∗)|,

A = 2|w0 log w −1
0 + O(w0)| +

∑
∗∈{+,−}

|w∗ log w −1∗ + O(w∗)|.

Theorem 5.1. If Tε satisfies conditions (A)–(C), then there exist constants c1, c2 > 0
such that for small ε > 0

c1δ(ε)/ log μ(ε) ≤ w± ≤ w± ≤ c2δ(ε)/ log μ(ε),

w 0 ≤ w0 ≤ c2δ(ε)/ log μ(ε).

Moreover, if Tε satisfies Condition (S), then

w0 ≥ c1δ(ε)/ log μ(ε). (5.7)

Remark 5.1. By Theorem 5.1, if conditions (A)–(C) hold, the width of the stochas-
tic layer varies in the interval [c1δ/ log μ, 2c2δ/ log μ]. Since by Lemma 5.1 the
width d of the domain D is of order δ, we obtain (5.1).

Conjecture 5.1. Estimate (5.7) remains valid without assumption (S).

Remark 5.2. By Lemma 5.1 and Theorem 5.1, for some positive constants c̃1 and c̃2,
we have

c̃1δ(ε)

log μ(ε)
log

log μ(ε)

δ(ε)
≤ A ≤ c̃2δ(ε)

log μ(ε)
log

log μ(ε)

δ(ε)
.

Consider the case limε→0 μ(ε) = 1 (i.e., T0 = id) in more detail. The compu-
tation of the function ν± in this case is complicated. However, the analysis of the
separatrix map turns out to be simpler for the following two reasons. First, the new
small parameter log μ appears. Second, the experience in the investigation of ex-
ponentially small separatrix splitting shows that, in the leading approximation, the
1-periodic functions ν± contain only the lower harmonics, that is,

ν̂±(ξ, ε) = ν±(ξ) + O(ε), ν±(ξ) = a± sin(2π(ξ − ξ±)), (5.8)

where a± > 0 and ξ± ∈ R/Z are constants.2

Theorem 5.2. Suppose that conditions (A)–(C) hold and

lim
ε→0

μ(ε) = 1, lim
ε→0

δ(ε)/ log2 μ(ε) = 0.

Then
w∗ − w∗ = O(δ(ε)), ∗ ∈ {+,−}.

Moreover, if condition (S) holds, then w0 − w0 = O(δ).

2 There is good reason to expect that equations (5.8) hold for generic systems with exponentially
small separatrix splitting.
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Corollary 5.1. If conditions (A)–(C) and (S) hold, then by Theorem 5.1 w∗, w∗ ∼
O(δ/ log μ), and hence w∗/w∗ = 1 + O(1/ log μ), ∗ ∈ {+,−, 0}.

Below we need the following definitions. Let Ca,ω,λ be the symplectic map

Ca,ω,λ(x, y) = (x+, y+) = (x + ω + y+, y + λ−1a sin(2πx))

of the cylinder (x mod 1, y) onto itself. The map C1,0,ε−1 coincides with the stan-
dard map.

A closed curve on the cylinder is said to be topologically horizontal (a TH-curve)
if it is homotopic to the circle {y = 0}.3 A closed curve γ invariant with respect to
a symplectic self-map Q of the cylinder is said to be rigid if every smooth symplec-
tic map close to Q has an invariant curve close to γ . We introduce three functions,

m(a, ω), m(a, ω), m0(a
′, a′′, ω′, ω′′),

as follows:

m = inf{λ0 > 0 : for any λ ≥ λ0 the map Ca,ω,λ

has an invariant rigid TH-curve},
m = sup{λ0 > 0 : for any 0 < λ < λ0 the map Ca,ω,λ

has no invariant TH-curve},
m0 = inf{λ0 > 0 : for any λ ≥ λ0 the map Ca′,ω′,λ ◦ Ca′′,ω′′,λ

has an invariant rigid TH-curve}.
Since ω can be eliminated from Ca,ω,λ by a change of the variable y, the func-

tions m and m do not depend on ω. Moreover, it is clear that

m = ca, m = ca

for some constants c and c, 0 < c ≤ c.
The sharpest estimates for the constant c were obtained numerically in [57, 81,

101]. The “last” TH-curve4 is believed to have the golden mean as the rotation
number. In our notation, the result is as follows:

c = 2π/0.971635 . . . .

Conjecture 5.2. The constants c and c coincide.

The function m0 also depends on its arguments in a special way. One can readily
verify the following assertions.

3 The word horizontal is chosen here for the following reason: one can imagine the cylinder em-
bedded in the space R3 in such a way that its axis is vertical. Then the circle {y = 0} belongs to
the horizontal plane.
4 I.e., the one which exists for λ arbitrarily close to m.
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(1) 0 < m0 < ∞.
(2) m0(a, a, ω, ω) = ca for any a and ω.
(3) The function m0 can be presented in the form

m0(a
′, a′′, ω′, ω′′) = af (η, ω′ − ω′′),

a′ = a cos(2πη), a′′ = a sin(2πη),

where f is 1-periodic in both arguments and satisfies the identities

f (η, ω) = f (−η, ω) = f (1/2 − η, ω) = f (1/4 − η,−ω), η, ω ∈ T.

Theorem 5.3. Suppose that conditions (A)–(C) are satisfied,

lim
ε→0

μ(ε) = 1, lim
ε→0

δε/ log2 με = 0,

and equations (5.8) hold. Then

(a) w± and w± satisfy the inequalities

a±c(1 + o(1)) ≤ log μ · w±/δ ≤ log μ · w±/δ ≤ a±c(1 + o(1)); (5.9)

(b) log μ · w 0/δ ≤ log μ · w0/δ ≤ supω′,ω′′ m0(a+, a−, ω′, ω′′)(1 + o(1));
(c) if condition (S) holds, then w 0 and w0 have estimates similar to (5.9):

a+c(1 + o(1)) ≤ log μ · w 0/δ ≤ log μ · w0/δ ≤ a+c(1 + o(1)). (5.10)

Corollary 5.2. If conditions (A)–(C) and (S) hold, then the upper bound w and the
lower bound w for the width of the stochastic layer,

w = max{w+ + w0, w− + w0}, w = min{w+ + w 0, w− + w 0},
satisfy the inequalities

2a+δc(1 + o(1)) ≤ w log μ ≤ w log μ ≤ 2a+δc(1 + o(1)). (5.11)

Corollary 5.3. If Conjecture 5.2 holds, then (5.9) and (5.10) imply that

lim
ε→0

(log μ · w∗/δ) = a+c = a+c, ∗ ∈ {+,−, 0}. (5.12)

Estimates (5.11) and (5.12) imply (5.3). Indeed, w(ε) and d(ε) have the form

w(ε) − w = o(1), w − w(ε) = o(1), d(ε) = δa+ = δa−.

The last two equations follow from Lemma 5.1. Lemma 5.1 also implies the follow-
ing corollary.

Corollary 5.4. If conditions (A)–(C) and (S) are satisfied and Conjecture 5.2 holds,
then
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A = 4ca+δε

log με

log δ−1(ε)(1 + o(1)), (5.13)

AD = a+δε log με

π
(1 + o(1)). (5.14)

Estimate (5.5) follows from (5.13) and (5.14).

5.3 Stochastic Layer for a Pendulum

Consider the Poincaré map for the pendulum with periodically oscillating suspen-
sion point. The quantities α± and ν± were computed in Sect. 4.5. The separatrix map
satisfies the symmetry condition (S), because the involution (û, v̂) �→ (−û,−v̂) pre-
serves the Hamiltonian (4.34). By Theorem 5.1, the width of the stochastic layer in a
neighborhood of the separatrix figure-eight with center at the point û = v̂ = 0 is of
order ε provided θ,Ω,ω ∼ 1 and θ is non-constant. Under the same assumptions,
the area A of the stochastic layer is of order ε log ε−1.

Equation (4.35) holds for ω/Ω ∼ 1. In the case ω/Ω ∼ ε−1 the standard
Poincaré–Melnikov theory is no longer valid, and one has to use methods suitable
for studying exponentially small effects.

The first non-trivial rigorous results quantitatively describing exponentially small
separatrix splitting were obtained in [78]. At present, there are at least two parallel
theories that are effective in the investigation of a broad circle of problems of this
type. The first theory was created by Lazutkin and his co-authors [51–53]. The sec-
ond theory was developed in [134, 137].

Consider a system with Hamiltonian (4.34) under the following assumptions:5

Ω = 1, ω = 1/ε, θ(s) = 2ε−1B cos s. (5.15)

The leading multiplier of the hyperbolic fixed point û = v̂ = 0 of the corresponding
Poincaré map equals μ = e2πε+O(ε2).

The separatrix map satisfies condition (S). Following [137], one can show that
there is a symplectic change of coordinates û, v̂ �→ ũ, ṽ which is

(i) close to the identity,
(ii) 2π-periodic in time t ,

(iii) real-analytic in a complex neighborhood of the separatrices Γ ± of the system
with Hamiltonian H0 = v̂2/2 + cos û,

(iv) such that the new Hamiltonian function takes the form

H̃ (̃u, ṽ, t, ε) = H0(̃u, ṽ) + εH̃1(̃u, ṽ, ε) + exp(−c̃/ε)H̃2(̃u, ṽ, t, ε).

5 Equations (5.15) mean that the amplitude and the period of the oscillations of the suspension
point are of order ε2 and ε respectively.
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Here H0 = ṽ2/2 + cos ũ, the constant c̃ ∈ [0, π/2) is arbitrary, the functions H̃1
and H̃2 are real-analytic with respect to ũ and ṽ in a neighborhood of Γ ± and smooth
with respect to ε > 0, and the function H̃2 is 2π-periodic in t .

For any positive c̃ ∈ (π/4, π/2) the usual methods of the Poincaré–Melnikov
theory applied to this system give the correct asymptotic behavior of the separatrix
splitting because the error term6 ∼e−2c̃/ε is much less than the answer (∼ε−2 ×
e−πε−1/2). By this method it is possible to prove that

ν±(t) = −2πε−2e−πε−1/2Bf (B2) sin(2πt),

where f is an entire real-analytic function and f (0) = 2 [137]. Numerical analysis
of this function gives f (z) = ∑∞

0 fnz
n, where f0 = 2 and

f1 = 0.65856738 . . . , f2 = 6.651741 . . . × 10−2,

f3 = 3.21010 . . . × 10−3, f4 = 9.03367 . . . × 10−5,

f5 = 1.6620 . . . × 10−6, f6 = 2.1534 . . . × 10−8,

f7 = 2.070 . . . × 10−10, f8 = 1.53 . . . × 10−12.

According to Theorem 5.3, the width of the stochastic layer near the separatri-
ces Γ ± satisfies estimate (5.11) with

a+δ = 2πε−2e−πε−1/2Bf (B2), log μ = 2πε.

The area of the stochastic layer can be estimated as follows:

2πc

ε4
e−πε−1/2Bf (B2)(1 + o(1)) ≤ A ≤ 2πc

ε4
e−πε−1/2Bf (B2)(1 + o(1)).

5.4 KAM Theory and the Birkhoff Theorem

In this section we prove Theorems 5.1, 5.2, and Lemma 5.1.

Proof (of Lemma 5.1). By (4.39), the unstable separatrix is given by the equation
y = 0 and the stable separatrix by y+ = y+(x, y) = 0. The last equation can be
reduced to the form

y = −(ν̂s(x, ε) + O(δ)) log μ = −(νs(x) + o(1)) log μ as ε → 0.

Thus, simple zeros of the functions ν±(x) correspond to homoclinic points. The
domain D is determined by two neighboring simple zeros x1 and x2 of νs .

Suppose that x1 and x2 determine D . The function νs preserves its sign on the
interval (x1, x2). By (5.6) and (4.38), we get

6 By the Poincaré–Melnikov theory its order is the square of the perturbation.
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d = δ
(

max
x1≤x≤x2

νs(x) + o(1)
)

as ε → 0. (5.16)

The area AD = A s
D , s = ±, is defined as the absolute value of the integral∫

D dp ∧ dq = δ
∫
D dy ∧ dx. Hence, we have

A s
D = δ log μ

∣∣∣∣
∫ x2

x1

νs(x) dx + o(1)

∣∣∣∣. (5.17)

Assertions (1) and (2) of Lemma 5.1 follow from the equations (5.16) and (5.17).
Let us prove assertion (3). In the normal coordinates q, p the stochastic layer

occupies a domain L such that D ⊂ L ⊂ D , where

D =

⎧⎪⎨
⎪⎩(q, p) : q2 + p2 < r2, |qp| <

⎧⎪⎨
⎪⎩

w+ if q > 0 and p > 0,

w− if q < 0 and p < 0,

w0 if qp < 0

⎫⎪⎬
⎪⎭ ,

D =

⎧⎪⎨
⎪⎩(q, p) : q2 + p2 < r2, |qp| <

⎧⎪⎨
⎪⎩

w+ if q > 0 and p > 0,

w− if q < 0 and p < 0,

w0 if qp < 0

⎫⎪⎬
⎪⎭

and r and r , 0 < r ≤ r , do not depend on ε. The desired estimate for A follows
from the inequalities area(D) ≥ A , area(D) ≤ A . This completes the proof of
Lemma 5.1. ��

In view of (4.38), Theorems 5.1 and 5.2 result from the following assertion.

Theorem 5.4. Suppose that ε > 0 is sufficiently small, 1 < μ < μ0, and

lim
ε→0

δ(ε)/ log2 μ(ε) = 0.

Then there are two constants 0 < ymin < ymax (depending only on the functions ν±)
such that the following assertions hold.

(1) |y| < ymax on the invariant curves γ± and γ0.
(2) The curves γ+ and γ− do not enter the domain |y| ≤ ymin.
(3) ymax − ymin < 2yminμ

2 log μ.
(4) If condition (S) holds, the curve γ0 also does not enter the domain |y| ≤ ymin.

Proof (of Theorem 5.4). 1. The curves γ+, γ−, and γ0 are located in the domains
{y > 0, s > 0}, {y > 0, s < 0}, and {y < 0}, respectively. It is convenient to
introduce the new variables u and u+ determined by the formulas

y = y0(1 + u log μ), y+ = y0(1 + u+ log μ), y0 = const.

The separatrix map (4.39) takes the form
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x+ = x + ωs + 1

log μ
log

∣∣∣∣1 + u+ log μ + y−1
0 δ log μ · O

(
1 + y0

log μ

)2∣∣∣∣,

u+ = u + y−1
0 ν̂s(x, ε) + y−1

0 δ · O

(
1 + y0

log μ

)2

,

s+ = s · sign(y0) · sign

(
1 + u+ log μ + y−1

0 δ log μ · O

(
1 + y0

log μ

)2)
,

(5.18)

where the quantities ωs are given by

ωs = 1

log μ
log

|y0|δ
α2

s log μ
.

The main parameters in the system (5.18) are δ and y−1
0 . The first one is small.

The parameter y0 (the “unperturbed action”) is responsible for the type of the dy-
namics (regular or chaotic). Formally setting y−1

0 = δ log μ · O(1 + y/ log μ) = 0,
we obtain the integrable map

x+ = x + ωs + 1

log μ
log |1 + u+ log μ|,

u+ = u,

s+ = s · sign(I0).

This map is non-degenerate, because ∂x+(x, u)/∂u = (1 + u log μ)−1 �= 0.
Suppose that7

|y−1
0 | ≤ ĉ −1

1 � 1, δ ≤ ĉ −1
2 � ĉ1

log μ · (1 + ĉ1/ log μ)2
.

Then by KAM theory system (5.18) has an invariant curve u = u(x) = u0 +
O(y−1

0 ), where u0 is such that the “unperturbed” frequency ωs + (log μ)−1 log |1 +
u log μ| is Diophantine. (Obviously, one can take |u0| < 1/(2 log μ).) In fact we
obtain 3 families of invariant curves: one for y0 < 0 and two for y0 > 0. This
completes the proof of assertion (1) because we can set ymax = maxx |y0|(1 +
u(x) log μ).

2. We prove assertion (2) for the curve γ+. (The case of the curve γ− is analo-
gous.) For small ε > 0 (5.18) is a twist map. This means that ∂x+(x, y)/∂y > 0.
Following Lazutkin’s idea [79], we use the following result of Birkhoff [15] (see
also [58]).

Lemma 5.2. Let γ be a continuous invariant curve of a twist symplectic self-map
of the cylinder {x mod 1, y}. If γ is homotopic to the curve {y = 0}, then γ is the
graph of a Lipschitz function y = r(x).

7 Here the relation a � b means that |a/b| < c, where c > 0 is a sufficiently small constant.
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The Lipschitz constant of the function r(x) can be estimated as follows. Let
Q = ∂(x+, y+)/∂(x, y) be the Jacobi matrix of the map Tε. Since Tε is a twist map,
there are constants η1, η2 > 0 such that, for any point (x, y) on the curve,

(1, 0) Q

(−1
η1

)
> 0, (1, 0) Q−1

(
1
η2

)
< 0.

Lemma 5.3 ([58]). For any two points x1 and x2 such that 0 ≤ x2 − x1 < 1/2

−η1(x2 − x1) ≤ r(x2) − r(x1) ≤ η2(x2 − x1). (5.19)

Indeed, assuming that at least one of the inequalities (5.19) fails, where 0 ≤
x2 − x1 < 1/2, we have the inequality x̃2 < x̃1 for the images (̃x1, r(̃x1)) and
(̃x2, r(̃x2)) of the points (x1, r(x1)) and (x2, r(x2)) under the map Tε (or T −1

ε ). This
contradicts Lemma 5.2.

Let γ+ = {(x, y) : y = r+(x)}. We show that the quantity

rmax = max
x

r+(x)

is bounded below by a positive constant (Proposition 5.1) and, moreover, r+(x) >

rmaxμ
−2 (Proposition 5.2).

Propositions 5.1 and 5.2 imply assertion (2) in Theorem 5.4 for the curve γ+.
Assertion (3) also follows from Proposition 5.2. Indeed, we have: ymax < yminμ

2.
Using the inequality

μ2 < 1 + 2μ2 log μ, μ > 1,

we obtain the desired estimate.
The function r+ is positive, 1-periodic, and Lipschitz. Let us estimate the Lip-

schitz constant for small values of the parameter ε by using Lemma 5.3. We first put
ε = 0 (therefore δ = 0). The Jacobi matrix Q takes the form

Q =
(

1 + x−1+ ν′+(x) (x+ log μ)−1

log μ · ν′+(x) 1

)
,

where x+ = r+(x)+log μ·ν′+(x) = r+(x+) and ν′+ = dν+/dx. By direct computa-
tions we obtain η2 ≥ rmax log μ. The estimate is slightly weaker for small non-zero
values of δ. One can put

η2 = 2rmax log μ. (5.20)

We define the constant

ν′
min + = min

x
dν+/dx.

Since ν+ is periodic and non-constant (assumption (B)), we have ν′
min + < 0.

Proposition 5.1. Suppose that ε > 0 is sufficiently small. Then
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rmax ≥ −ν′
min +/7. (5.21)

Proof (of Proposition 5.1). We first put ε = 0. Suppose that (5.18) maps the points
(xj , r+(xj )) into (̃xj , r+(̃xj )), j = 1, 2.

Suppose that x1 < x2 are close points. Then x̃1 and x̃2 are also close to each
other and x̃1 < x̃2. Using equations (5.18), we obtain

Δx̃ = Δx + 1

log μ
log

(
1 + Δr+ + log μ · Δν+

r+(x1) + log μ · ν+(x1)

)
, (5.22)

where

Δx̃ = x̃2 − x̃1, Δx = x2 − x1 > 0,

Δr+ = r+(x2) − r+(x1), Δν+ = ν+(x2) − ν+(x1).

We take x1 such that ν′+(x1) = ν′
min +. For small positive values of Δx we have

the estimates

Δr+ ≤ η2Δx ≤ 2rmax log μ · Δx, Δν+ ≤ ν′
min +Δx/2 < 0.

Here we have used (5.19) and (5.20). Suppose now that rmax < −ν′
min +/6. Then

equation (5.22) implies the estimate

Δx̃ < Δx + 1

log μ
log

(
1 + 2rmax + ν′

min +/2

rmax
Δx log μ

)

< Δx + (2rmax + ν′
min +/2)Δx

rmax
<

3rmax + ν′
min +/2

Δx/rmax
< 0.

This contradicts the inequality Δx̃ > 0. The estimates are preserved for small
values of ε (possibly with slightly different constants). This is why we took ν′

min +/7
instead of ν′

min +/6 in (5.21). Proposition 5.1 is proved. ��
Proposition 5.2. For any x ∈ T, rmax/r(x) < μ2.

Proof (of Proposition 5.2). We put ε = 0 and assume that there is a point x̂ ∈ T

such that rmax ≥ r(x̂)μ. We can assume that 0 < x̂ − x0 < 1, where x0 is such that
r(x0) = rmax. Let θ0, θ̂ ∈ T be a pair of points such that (5.18)|ε=0 maps the points
(θ0, r(θ0)) and (r(θ̂ ), θ̂ ) to (r(x0), x0) and (r(x̂), x̂), respectively.

Let us show that θ̂ − θ0 > 1 in the sense that the image of the segment

{(y, x) : y = r(x), θ̂ ≤ x ≤ θ0}
covers the entire circle under the natural projection (y, x) �→ x onto T. After prov-
ing this fact, we arrive at a contradiction to Lemma 5.2, and this will prove Propo-
sition 5.2.

The quantity θ̂ − θ0 is estimated by (5.18)|ε=0 as follows:
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x̂ − x0 = θ̂ − θ0 + 1

log μ
log

r(x̂)

r(x0)
.

Hence,

θ̂ − θ0 = x̂ − x0 − 1

log μ
log

r(x̂)

rmax
> 1.

The estimates are somewhat weaker in the case of small non-zero values of ε. This is
why we assumed in Proposition 5.2 that rmax/r(x) < μ2. Proposition 5.2 is proved.
��

A similar proof of assertion (4) in Theorem 5.4 can be obtained with the help of
condition (S). ��



Chapter 6
The Continuous Averaging Method

6.1 Description of the Method

There are several problems in perturbation theory, where standard methods do not
lead to satisfactory results. We mention as examples the problem of an inclusion of
a diffeomorphism into a flow in the analytic set up, and the problem of quantitative
description of exponentially small effects in dynamical systems. In these cases one
possible approach is based on the continuous averaging. The method appeared as
an extension of the Neishtadt averaging procedure [95], effectively working in the
presence of exponentially small effects.

To present the general idea let us transform the system of ordinary differential
equations

ż = û(z), (6.1)

by using the change of variables

z �→ Z(z,Δ). (6.2)

Here z is a point of the manifold M , û is a smooth vector field on M , Δ is a non-
negative parameter, and change (6.2) is defined as a shift along solutions of the
equation1

Z′ = f (Z, δ), Z(z, 0) = z, 0 ≤ δ ≤ Δ, (6.3)

where the prime denotes the derivative with respect to δ.
Let the change z �→ Z transform (6.1) to the following system:

Ż = u(Z, δ). (6.4)

Differentiating equation (6.4) with respect to δ, we have

ḟ (Z, δ) = uδ(Z, δ) + ∂f u(Z, δ) or uδ = [u, f ].
1 Such a construction for a change of variables is called the Lie method. The corresponding Hamil-
tonian version is called the Deprit–Hori method.

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_6, © Springer-Verlag Berlin Heidelberg 2010
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Here ∂f is the differential operator on M corresponding to the vector field f , the
subscript δ denotes the partial derivative, and [·,·] is the vector commutator: [u1, u2]
= ∂u1u2 − ∂u2u1. Putting f = ξu, where ξ is some fixed linear operator, we obtain
the Cauchy problem

uδ = −[ξu, u], u|δ=0 = û. (6.5)

The equation f = ξu is crucial for our method. Traditionally the vector field f in
the Lie method is constructed as a series in the small parameter. The choice of the
operator ξ depends on the form to which we want to transform the initial equations.
We call (6.5) an averaging system.

If (6.1) is a Hamiltonian system with Hamiltonian Ĥ = Ĥ (z) and the symplectic
structure ω, it is natural to search for the change (6.2) among symplectic ones, and
to regard equation (6.3) as Hamiltonian with some Hamiltonian function F(z, δ).
Under these assumptions systems (6.4) are also Hamiltonian. Their Hamiltonian
functions H satisfy the equation H(Z, δ) = Ĥ (z). Differentiating this equation
with respect to δ, we get

Hδ(Z, δ) + ∂f (Z,δ)H(Z, δ) = 0 or Hδ = −{F,H }
because ∂f H = {F,H }. Putting F = ξH for some linear operator ξ , we obtain

Hδ = −{ξH,H }, H |δ=0 = Ĥ . (6.6)

Now let us present a nonautonomous analog of (6.6). To obtain such an analog,
assume that the functions Ĥ and F depend explicitly on time. Then the Hamiltonian
H also depends explicitly on t . We obtain an equation for H by the reduction to the
autonomous case. Let E be a variable, canonically conjugate to time t . Consider the
autonomous system with Hamiltonian H +E and the symplectic structure ω+dE∧
dt . Let { , }∗ be the new Poisson bracket and F = ξH . Then (6.6) takes the form:

(H + E)δ = −{ξH,H + E}∗, H |δ=0 = Ĥ .

It is equivalent to the following one:

Hδ = (ξH)t − {ξH,H }, H |δ=0 = Ĥ (z, t). (6.7)

This is a nonautonomous analog of system (6.6).
Analogously a nonautonomous analog of (6.5) can be constructed:

uδ = (ξu)t − [ξu, u], u|δ=0 = û(z, t). (6.8)

Properties of the averaging system can be illustrated by the following example.
Consider the Hamiltonian system with one and a half degrees of freedom

ẏ = −ε∂Ĥ/∂x, ẋ = ε∂Ĥ/∂y, Ĥ = Ĥ (x, y, t). (6.9)
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Here y ∈ R, x ∈ T; the function Ĥ is real-analytic in x, y, and 2π-periodic in t .
The system contains two slow variables x and y (ẋ = O(ε), ẏ = O(ε)) and one fast
variable t ∈ T.

Let us try to weaken the dependence of Ĥ on time with the help of the canonical
change

(x, y) �→ (X(x, y, t,Δ), Y (x, y, t,Δ)), Δ > 0,

where

X′ = ∂F/∂Y, Y ′ = −∂F/∂X, F = F(X, Y, t, δ) = ξH. (6.10)

We put2

ξH(x, y, t, δ) =
∑
k∈Z

iσkH
k(x, y, δ)eikt , σk = sign k, (6.11)

where Hk are the Fourier coefficients in the expansion

H(x, y, t, δ) =
∑
k∈Z

Hk(x, y, δ)eikt .

Equation (6.7) takes the form

Hk
δ = −|k|Hk − ε{ξH,H }k, k ∈ Z. (6.12)

Here { , }k denotes the Fourier coefficient corresponding to the number k. The more
detailed form of system (6.12) is as follows:

Hk
δ = −|k|Hk + iεσk{H 0,Hk} − 2iε

∑
l+m=k,m<0<l

{Hl,Hm},

Hk|δ=0 = Ĥ k, k ∈ Z.

The terms ε{ξH,H }k in (6.12) are proportional to the small parameter. There-
fore, in zero approximation they are negligible. By putting ε = 0, we obtain

Hk
δ = −|k|Hk.

For k 	= 0 their solutions rapidly tend to zero as δ → ∞.
A more precise approximation for system (6.12) is obtained if we take into ac-

count the terms iεσk{H 0,Hk}. We have the following system:

Hk
δ = −|k|Hk + iεσk{H 0,Hk}.

The solution has the form

Hk = e−|k|δĤ k ◦ giεσkδ, (6.13)

2 Such an operator ξ is called the Hilbert transform.
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where gs is the time-s shift (x, y)|t=0 �→ (x, y)|t=s along solutions of the system

ẋ = ∂H 0/∂y, ẏ = −∂H 0/∂x.

The complex singularities of the functions Ĥ k ◦ gs of the complex variable s

prevent an unbounded continuation of solutions (6.13) to all the set of positive δ.
Nevertheless, the functions (6.13) can be made exponentially small in ε since δ can
be chosen of order ∼1/ε.

Certainly, these arguments cannot be regarded as a proof of the fact that sys-
tems of the type (6.12) can be used for an averaging. The rigorous statements and
estimates are presented below in this chapter.

6.2 Majorants

The main tool we use in the analysis of equations (6.5)–(6.8) is the majorant method.
This section contains some simple properties of majorants.

Let two functions f (z), g(z) z = (z1, . . . , zm) ∈ C
m be analytic at the point

z = 0:

f (z) =
∑
β

fβzβ, g(z) =
∑
β

gβzβ,

β = (β1, . . . , βm), βj ≥ 0, zβ = z
β1
1 · · · zβm

m .

Then g is said to be a majorant for f (f � g) if for any multi-index β we have
gβ ≥ |fβ |. In the case when f and g are vector-valued functions we say that f � g

if any component of the vector g is a majorant for the corresponding component
of f .

Lemma 6.1. The relation � satisfies the following properties:

(1) If f1 � g1 and f2 � g2 then f1 + f2 � g1 + g2 and f1f2 � g1g2.
(2) If f � g then ∂f/∂zj � ∂g/∂zj for any j = 1, . . . , m.
(3) If f (z, λ) � g(z, λ) for any value of the parameter λ ∈ [a, b] then

∫ b

a

f (z, λ) dλ �
∫ b

a

g(z, λ) dλ.

(4) Let |f (z)| ≤ c in the domain

{z = (z1, . . . , zm) : |zj | ≤ b, j = 1, . . . , m}.
Then f (z) � c/w, where w = b−m(b − z1) · · · (b − zm).

Assertions (1)–(3) of Lemma 6.1 are obvious. Assertion (4) follows from the
Cauchy formula
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f (z) = 1

(2πi)m

∮
dζ1 · · ·

∮
dζm−1

∮
f (ζ )dζm

(ζ1 − z1) · · · (ζm − zm)
,

where the integration is performed along the circles {|zj | = b}. Indeed, we have the
estimates

∣∣∣∣ ∂β1+···+βmf

∂z
β1
1 · · · ∂z

βm
m

(0)

∣∣∣∣ =
∣∣∣∣ 1

(2πi)m

∮
dζ1 · · ·

∮
dζm−1

∮
β1! · · · βm!f (ζ )dζm

ζ
β1+1
1 · · · ζ βm+1

m

∣∣∣∣
≤ β1! · · · βm! c

bβ1+···+βm
= ∂β1+···+βm

∂z
β1
1 · · · ∂z

βm
m

∣∣∣∣
z=0

c

w
.

Below we use majorants to estimate solutions of initial value problems. The main
idea is as follows. Let

f = f (z, δ) = (. . . , f −1(z, δ), f 0(z, δ), f 1(z, δ), . . .), z ∈ C
n, δ ∈ R

be an infinite-dimensional vector-function, where each component f k , k ∈ Z, is
analytic in z and takes values in C

m. Consider the Cauchy problem for the system
of ordinary differential equations

f k
δ (z, δ) = Fk(f (z, δ), z, δ), f k(z, 0) = f̂ k(z), (6.14)

with some known functionals Fk and initial data f̂ k .
We call the system

fkδ(z, δ) = Fk(f(z, δ), z, δ), fk(z, 0) = f̂k(z), (6.15)

a majorant system associated with (6.14) if

(a) f̂ (z) � f̂(z) for any k ∈ Z and
(b) Fk(g(z), z, δ) � Fk(g(z), z, δ) for any k ∈ Z, δ ≥ 0, and g � g.

Below we use a version of the following principle.

Majorant principle. Suppose that f(z, δ), 0 ≤ δ ≤ δ0 is a solution of a majorant
system associated with (6.14). Then system (6.14) has a solution and

f k(z, δ) � fk(z, δ) for any δ ∈ [0, δ0], k ∈ Z.

Moreover, in (6.15) it is possible to replace “=” by “�”.

The same principle is true if we rewrite systems (6.14)–(6.15) in the integral form

f k(z, δ) = f̂ k(z) +
∫ δ

0
Fk(f (z, s), z, s) ds,

fk(z, δ) = f̂k(z) +
∫ δ

0
Fk(f(z, s), z, s) ds,

where again in the majorant equations “=” can be replaced by “�”.
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These statements look very natural: however their rigorous proof is not straight-
forward, see [150]. The proofs are based on some statements which generalize the
classical Cauchy–Kovalevskaya theorem from the space of analytic functions to the
general scales of Banach spaces. Now we formulate a version of the Nirenberg–
Nishida theorem [97, 98] which gives such a generalization. Readers unacquainted
with the concept of a scale of Banach spaces can find the necessary definitions in
Sect. 9.5.

The Nirenberg–Nishida theorem. The scales of Banach spaces arise as the axiom-
atization of the set of analytic functions. As in the Cauchy theorem for ordinary
differential equations the main point of the Nirenberg–Nishida theorem is the Lip-
schitz type conditions (6.16) for the right-hand side of (6.17).

Let {(Es, ‖ · ‖s)}0<s<1 be a scale of Banach spaces with

‖ · ‖s′ ≤ ‖ · ‖s , s′ < s.

Suppose that for some η,R > 0 for all 0 < s′ < s < 1 the mapping

f : {u ∈ Es : ‖u‖s ≤ R} × {δ ∈ R | 0 ≤ δ < η} → Es′

is continuous. Furthermore, suppose that for ‖u‖s, ‖v‖s < R and for all δ ∈ [0, η)

‖f (u, δ) − f (v, δ)‖s′ ≤ C
‖u − v‖s

s − s′ . (6.16)

The function f (0, ·) : [0, η) → Es is continuous for all 0 < s < 1 and

‖f (0, δ)‖s ≤ K

1 − s

with some constant K > 0. Consider the following Cauchy problem:

uδ(δ) = f (u(δ), δ), u(0) = 0. (6.17)

Theorem 6.1. Under the above assumptions, problem (6.17) has a unique solution

u(δ) ∈ C1([0, a(1 − s)), Es

)
, 0 < s < 1

with some constant a > 0, and this solution satisfies the inequality ‖u(δ)‖s ≤ R.

Remark 6.1. The zero initial condition in problem (6.17) does not restrict the gener-
ality: if u(0) 	= 0 then one can change the variable u = u(0) + v.

6.3 An Inclusion of a Map into a Flow

In this section we present a proof of Theorem 1.10 from Chap. 1 on an inclusion of a
real-analytic map into a real-analytic flow in the case when no additional structures
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are presented (the map and the flow are general). The main idea is a smoothing of
the dependence of the initial isotopy gt on time with the help of the continuous
averaging method.

Here we present a general plan of the argument. The absent technical details are
contained in Sect. 9.5.

Recall that T is the time-2π map corresponding to a vector field û(ẑ, t) which
is real-analytic in ẑ, C2-smooth and 2π-periodic in t (see Lemmas 1.2, 1.3). The
system generated by U(z, t) (see the statement of Theorem 1.10) will be a result of
the application of the averaging procedure to the system generated by û(ẑ, t). Thus
the new vector will satisfy

U(z, t) = u(z, t,Δ),

where u(z, t, δ) is a solution of the Cauchy problem (6.8) and Δ is positive. We
choose the operator ξ in the following way:

ξu = i
∑
k∈Z

σku
k(z, δ)eikt , σk = sign k,

u =
∑
n∈Z

un(z, δ)eint .
(6.18)

Putting vj = uj e|j |δ we transform (6.8) into the infinite system

vk
δ = iσk[v0, vk] − 2i

∑
l,n

[vl, vn]e−(|l|+|n|)δ, (6.19)

vk(z, 0) = ûk(z), k ∈ Z, (6.20)

where ûk(z) are the Fourier coefficients of the function û(z, t), and the indices l, n

in the sum satisfy the condition

l + n = k, n < 0 < l. (6.21)

Problem (6.19)–(6.20) is the Cauchy–Kovalevskaya type problem. But unlike the
classical Cauchy-Kovalevskaya problem, (6.19)–(6.20) consists of an infinite num-
ber of equations and an infinite number of unknown functions vk .

Our next goal is to establish the existence theorem for (6.19)–(6.20).
By truncation of the system (6.19):

vk
δ = iσk[v0, vk],

it is easy to obtain informal evidence that one should expect the existence of a solu-
tion to (6.19) on some interval δ ∈ (0,Δ), Δ > 0. Then uj (z,Δ) would decrease
exponentially as |j | → ∞.

Since the system is infinite dimensional, the classical technique which has been
employed by Kovalevskaya does not suit, so we have to use some modern abstract
version of the Kovalevskaya theorem, namely the Nirenberg–Nishida theorem. By
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using the Nirenberg–Nishida theorem we prove that the system (6.19) has a solution
and therefore provides smoothing with respect to t . (The precise formulation of the
existence result is contained in Lemma 6.2.)

Now we turn to the technical part of our argument. Choose a positive number R

such that all the functions ûk(z) are analytic in the polydisk

D(2R) = {z ∈ C
m | ‖z‖ < 2R}.

For the domains Ds we take the following polydisks:

Ds = D(sR).

Full details of the construction built below are given in Sect. 9.5.
Let Hs be a set of functions f : Ds → C analytic in Ds and continuous in the

closure Ds . Being endowed with the norm

‖f ‖H
s = sup

z∈Ds

|f (z)|,

the set Hs becomes a Banach space. The spaces Hs , 0 < s < 1, form a scale of
Banach spaces.

Now let us introduce a scale (Fs, ‖ · ‖F
s ). The Banach spaces Fs consist of the

sequences u = {uk(x)}k∈Z, uk ∈ Hs , and the norms are

‖u‖F
s =

√∑
k∈Z

(1 + |k|2)(‖uk‖H
s )2.

Lemma 6.2. There exist positive constants Δ, s such that the Cauchy problem
(6.19)–(6.20) has a unique solution

vj (z, δ) = {vk
j (z, δ)}k∈Z ∈ C1([0,Δ], Fs), j = 1, . . . , m, δ ∈ [0,Δ].

Corollary 6.1. The vector field U(z, t) = u(z, t,Δ) is real-analytic in both z and t .

Remark 6.2. Let us take any point z̃ ∈ M with a complex chart Uz̃ such that z̃ has
zero coordinates and Uz̃ = Ds (see Remark 1.3). Lemma 6.2 states the local exis-
tence theorem for (6.19)–(6.20) in every chart Uz̃, z̃ ∈ M . Due to the compactness
of M we have a finite cover of M with such charts. Equations (6.19)–(6.20) are de-
fined independently on coordinate systems, and thus the solutions from all the charts
form a global solution on the whole manifold M .

Now let us prove Lemma 6.2. The function û(z, t) is C2-smooth in t , and thus
for all z ∈ D(R) we have

|ûn(z)| ≤ c1(|n| + 1)−2, n ∈ Z. (6.22)

This is a standard estimate for the Fourier coefficients of a C2-smooth periodic
function. Moreover, due to the compactness of the set D(R), the constant c1 can be
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chosen independently of z. By (6.22)

{ûk
j (z)}k∈Z ∈ Fs, j = 1, . . . , m, 0 < s < 1.

Lemma 6.2 is a direct consequence of the Nirenberg–Nishida theorem. For-
mally speaking, to apply this theorem, following Remark 6.1, we present the system
(6.19)–(6.20) in the form (6.17), i.e., the initial conditions (6.20) become zero.

The change of variables from Remark 6.1 does not bring any serious problems
in our argument. So for simplicity’s sake we do not make this change but verify the
conditions of the Nirenberg–Nishida theorem for the right-hand side of (6.19).

There is only one nontrivial condition to check. Let us verify that the right-hand
side of the system (6.19) satisfies (6.16). This right-hand side contains terms of the
type ∑

l,n

vl
j

∂vn
r

∂zj

e−(|l|+|n|)δ, r = 1, . . . , m.

It is sufficient to check that these terms satisfy (6.16). But this follows from Corol-
lary 9.14 if, in Proposition 9.9, we put bl,n = e−(|l|+|n|)δ for n < 0 < l and bl,n = 0
otherwise.

To show that the right-hand side of (6.19) is continuous in δ and v, introduce the
notation

g(δ, v) =
{∑

l,n

[vl, vn]e−(|l|+|n|)δ
}
.

Take δ, δ0 ≥ 0. Then we have

(‖g(δ, v) − g(δ0, v)‖F
s

)2

=
∑
k∈Z

(1 + |k|2)
(∥∥∥∥

∑
l,n

[vl, vn](e−(|l|+|n|)δ − e−(|l|+|n|)δ0)

∥∥∥∥
H

s

)2

. (6.23)

By the Cauchy estimate, the right-hand side of this formula is estimated from above
by

∑
k∈Z

(1 + |k|2)
(∑

l,n

‖[vl, vn]‖H
s

)2

≤ c

(s′ − s)2

∑
k∈Z

(1 + |k|2)
(∑

l,n

‖vl‖H
s′ ‖vn‖H

s′

)2

. (6.24)

Here c is an inessential positive constant and s < s′ < 1. By formula (9.59) the last
term of (6.24) is estimated as follows

c

(s′ − s)2
(‖v‖F

s′ )4.



116 6 The Continuous Averaging Method

Consequently the sum (6.23) converges uniformly in δ and we can take the termwise
limit as δ → δ0. Thus

‖g(δ, v) − g(δ0, v)‖F
s → 0 (6.25)

as δ → δ0.
As we have already stated, the right-hand side of (6.19) satisfies the inequality

(6.16) and this inequality is uniform in δ. By this observation and formula (6.25) we
obtain the desired continuity.

Lemma 6.2 is proved.

6.4 The Case of Arbitrary Algebra χ

In this section we finish the proof of Theorem 1.10, i.e., we consider the case of an
arbitrary algebra χ , and prove Remarks 1.5–1.6 from Chap. 1.

The domains Ds are the same as in Sect. 6.3 and thus the spaces Hs, Fs are
also the same. Introduce the following locally convex spaces (for the details see
Sect. 9.5):

H =
⋂

0<s<1

Hs, F =
⋂

0<s<1

Fs.

Let L be a closed subspace of F . Suppose that for all δ ≥ 0 the right-hand side of
the system (6.19) takes the space L to itself and the initial conditions (6.20) also
belong to the space L. In other words, the system (6.19)–(6.20) is defined on L.

By Theorem 9.15 the space L is associated with the scale {Ls}. Therefore, apply-
ing the Nirenberg–Nishida theorem to the system (6.19)–(6.20) in the scale {Ls}, we
obtain the same assertion as in Lemma 6.2 where the spaces Fs are replaced with Ls .

Below we verify that the role of the space L can in particular be taken by the
space XI or the algebra χ . That is, the right-hand side of the system (6.19)–(6.20)
is defined on the corresponding space.

Lemma 6.3. Suppose that û ∈ χ . Then the vector field u(z, t, δ) also lies in χ .
Moreover, if û is I -reversible, u is also I -reversible.

The lemma follows from the next proposition.

Proposition 6.1. If u(z, t, δ) ∈ χ , the right-hand side of (6.8) also belongs to χ .
Moreover, if û is I -reversible, the right-hand side of (6.8) is also I -reversible.

Proof (of Proposition 6.1). First, consider the case when no reversibility is assumed.
Note that u(z, t) ∈ χ for any t ∈ T if and only if any Fourier coefficient uk(z)

belongs to χ . This implies that for u ∈ χ we have ξu ∈ χ and [ξu, u] ∈ χ .
Now consider the reversible case (T ∈ XI ). Let us call a vector field v(z, t) on

M symmetric with respect to the involution I (or I -symmetric) if

v(z, t) = dI v(Iz, −t) (6.26)
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(cf. with (1.11), Chap. 1). Let S be the set of I -symmetric vector fields on M . (Recall
that the set of I -reversible fields is denoted by R.)

Proposition 6.2. For any two vector fields v ∈ R and w ∈ S

ξv ∈ S, wt ∈ R, (6.27)

[v,w] ∈ R. (6.28)

This proposition implies Proposition 6.1 in the reversible case. To prove Propo-
sition 6.2, we note that for any v ∈ R and w ∈ S with Fourier series

v(z, t) =
∑
n∈Z

vn(z)eint , w(z, t) =
∑
n∈Z

wn(z)eint ,

the Fourier coefficients vn and wl satisfy the equations

vn(z) = −dI v−n(Iz), wl(z) = dI w−l(I z). (6.29)

These equations can be obtained from Fourier expansions of equations (1.11), Chap. 1,
and (6.26) of the present chapter. Equations (6.27) easily follow from (6.29).

Obviously, it is sufficient to prove (6.28) for the case

v = vn(z)eint + v−n(z)e−int , w = wl(z)eilt + w−l(z)e−ilt .

We have

[v,w] = [vn,wl]ei(n+l)t + [v−n,w−l]e−i(n+l)t

+ [vn,w−l]ei(n−l)t + [v−n,wl]e−i(n−l)t .

By using (6.29), we get

dI [vn,wl](z) = [dI vn(z), dI wl(z)]
= [−v−n(Iz), w−l (I z)] = −[v−n,w−l](Iz).

The equation dI [vn,w−l](z) = −[v−n,wl](Iz) can be checked analogously. Propo-
sition 6.2 is proved.

Remark 1.5 follows from the observation that, if u is Hamiltonian with a single-
valued Hamiltonian function, the same is true for the vector fields ξu and [ξu, u].

Finally we discuss the proof of Remark 1.6. Let the map T be a perturbation of
order ε of the map T0. Then the map Q = T ◦ T −1

0 is such that

(1) in some Riemannian metric dist(Q(z), z) ≤ (const.)ε,
(2) T = Q ◦ T0.

According to Proposition 1.3, Q is smoothly isotopic to the identity. Let the
isotopies gt

0 and gt
Q, t ∈ [0, 2π], link the identity map with T0 and Q respectively.

It is possible to assume that the vector fields
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û0 =
(

d

dt
gt

0

)
◦ g−t

0 and ûQ =
(

d

dt
gt

Q

)
◦ g−t

Q

are 2π-periodic and C2-smooth in t , analytic in z, and ûQ = O(ε) on M . The

isotopy gt = gt
Q ◦ gt

0 links the identity map with T . The vector field û = dgt

dt
◦ g−t

is smooth and O(ε)-close to û0:

û(z, t) = û0(z, t) + εû∗(z, t, ε).

Let us put

u(z, t, δ) = û0(z, t) + εu∗(z, t, δ), u|δ=0 = û, u∗|δ=0 = û∗.

We assume that u satisfies the averaging system (6.8) with the operator ξ of the form

ξu = εi
∑
k∈Z

σku
k(z)eikt .

By using the Nirenberg–Nishida theorem, it is possible to verify that the averaging
system has a solution for small values of δ ≥ 0. For any small positive δ the vector
field u is analytic in both z and t . Moreover, u = û0 + O(ε). ��

6.5 Fast Phase Averaging

Many physical models are represented by systems of ODE which contain an angular
variable changing much faster than the other variables. Taking the fast phase as a
new time, we can rewrite the equations in the form

ż = εv̂(z, t, ε), z ∈ M, (6.30)

where M is the m-dimensional phase space of the system, and ε is a small parameter.
Here ε is the ratio of a typical velocity of slow variable change to a typical velocity
of phase rotation. The vector field v̂ is assumed to be smooth3 and to depend on
time 2π-periodically.

It is well known that, by a change of the variables, it is possible to weaken the
dependence of the system (6.30) on time. In particular, by using the standard averag-
ing method (see for example [17]), it is easy to construct a 2π-periodic in t change
of the variables z �→ z∗ such that the equations (6.30) take the form

ż∗ = εv̄0(z∗) + ε2v̂∗(z∗, ε) + εṽ(z∗, t, ε). (6.31)

3 Actually, in the averaging problem only smoothness in z is important. It is enough to have con-
tinuity in t and sometimes even this requirement can be weakened.
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Here the only term on the right-hand side depending explicitly on time is εṽ =
O(εK). The natural number K is arbitrary and

v̄0(z) = 1

2π

∫ 2π

0
v̂(z, t, 0) dt

is the time average of v̂(z, t, 0).
Now suppose that the functions v̂ depend analytically on the phase variables. In

this case Poincaré noted the existence and divergence of power series in the small
parameter presenting a change of variables eliminating time from the equations:
terms at εk in these series are of order k!. In a general situation this statement has
been proved in [118].

Neishtadt [11, 95] noted that, in the case of functions v̂ which are analytic in
phase variables, it is possible to obtain in (6.31)

ṽ = O(e−α/ε), (6.32)

where α > 0 is some constant (the parameter ε is assumed to be nonnegative).
Hence, explicit dependence of the equations on time can be made exponentially
small. The method Neishtadt used to prove this assertion is based on a large (of order
1/ε) number of successive changes of variables. These changes gradually weaken
the dependence of the equations on time. Ramis and Schafke [111] obtained analo-
gous results analyzing diverging series, produced by the standard averaging method.

It is also known that in general a constant A > α exists such that it is impos-
sible to construct a change of the variables z �→ z∗ which is 2π-periodic in t and
such that ṽ = O(e−A/ε). This statement follows, for example, from an estimate of
the separatrix splitting rate in Hamiltonian systems of type (6.30) with one and a
half degrees of freedom. In this section, following paper [136], we obtain realistic
estimates for a “maximal” α for which the estimate (6.32) is possible.

Let gt be the phase flow of the averaged system4

ż = v̄0(z). (6.33)

Suppose that the manifold M is real-analytic. We fix its complex neighborhood MC.
Let Q be compact in M and VQ ⊂ MC its complex neighborhood. For example one
may assume that M = R

m and Q is a closure of some bounded domain. Then it is
natural to take

MC = {z ∈ C
m : z = x + ia, x ∈ R

m, a ∈ R
m, |a| < c},

VQ = {z ∈ C
m : z = x + b, x ∈ Q, b ∈ C

m, |b| < c̃}.
It is reasonable to assume that c̃ is small.

Suppose that, for any real s ∈ (−α, α) and for any point z ∈ VQ, the map gis is
analytic at the point z and moreover gis(z) ∈ MC. We define the set

4 It would be more correct to call (6.33) the first approximation averaged system in the fast time.
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UQ,α =
⋃

−α<s<α

gis(VQ).

Theorem 6.2. Let the positive constants α, ρ, ε0 be such that

(1) UQ,α ⊂ MC.
(2) The vector field v̂ is real-analytic in z and C2-smooth in t, ε on UQ,α × T ×

[0, ε0].
Then for sufficiently small ε0, there exists an open set V ′

Q ⊂ VQ and a map

F : V ′
Q × T × (0, ε0) → MC, Q ⊂ V ′

Q,

which is 2π-periodic in t real-analytic in z and such that

(a) F(z, t, ε) = z∗ = z + O(ε).
(b) The map F × idt transforms the vector field

(
εv̂
1

)
on the extended phase space

M × Tt into
(
εv∗
1

)
, where

v∗(z, t, ε) = v̄0(z) + εv̂∗(z, ε) + ṽ(z, t, ε). (6.34)

(c) The time-dependent remainder ṽ is estimated as follows:

|ṽ(z, t, ε)| ≤ Ce−α/ε, z ∈ V ′
Q, t ∈ Σρ, ε ∈ [0, ε0). (6.35)

Theorem 6.2 means in particular that, in the case when components of v̂ are entire
functions of z, the quantity α in (6.35) can be an arbitrary positive number such that
for all s ∈ [−α, α] the maps z �→ gis(z) are holomorphic at any point z ∈ Q.

Theorem 6.2 will be obtained below as a corollary of its local version (The-
orem 6.3). To formulate the latter we consider instead of the compact Q a point
z0 ∈ M . Let V ⊂ MC be its neighborhood.

Suppose that, for any real s such that s ∈ (−α, α) and for any point z ∈ V , the
map gis is analytic at the point z and moreover gis(z) ∈ MC. We define the set

Uα =
⋃

−α<s<α

gis(V ).

Theorem 6.3. Let the positive constants α, ρ, ε0 be such that

(1) Uα ⊂ MC.
(2) v̂ is analytic in z and C2-smooth in t, ε on the set Uα × T × [0, ε0].

Then for sufficiently small ε0 there exists a map f : V ′ ×T× (0, ε0) → V which
is 2π-periodic in t and real-analytic in z, where V ′ ⊂ V is a neighborhood of the
point z0, and the following assertions hold.

(a) f (t, z, ε) = z∗ = z + O(ε).
(b) In coordinates z∗, t the vector field εv̂ takes the form εv∗ (see (6.34)), where for

some constant C0
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|ṽ(z, t, ε)| ≤ C0e
−α/ε, z ∈ V ′, t ∈ T, ε ∈ [0, ε0). (6.36)

Theorem 6.2 can be deduced from Theorem 6.3 if we take into account the fact
that the averaging system we use in the proof of Theorem 6.3 is defined indepen-
dently of the neighborhood V and of the point z0. Hence, the maps f we construct
in Theorem 6.3, pasted together, produce the map F . We can put V ′

Q = ⋃
z V ′(z),

where z ∈ Q and the neighborhoods V ′(z) are defined in Theorem 6.3. Due to the
compactness of Q we can assume that the union is taken over a finite system of
sets. The constant C in (6.35) can be taken as the maximum among the constants
C0 corresponding to the sets V ′(z) from this system.

The proof of Theorem 6.3 is based on the continuous averaging. Namely, we
solve the Cauchy problem (6.8), where instead of u and û we write εv and εv̂:

vδ = (ξv)t − ε[ξv, v], v|δ=0 = v̂(z, t, ε). (6.37)

The operator ξ is defined as before. Let

v(z, t, ε, δ) =
∑
k∈Z

vk(z, ε, δ)eikt .

Then we put
ξv(z, t, ε, δ) =

∑
k∈Z

i sign k vk(z, ε, δ)eikt (6.38)

(cf. (6.11)). According to an informal argument analogous to the those presented in
Sect. 6.1, one can hope that the system (6.37)–(6.38) really performs an averaging
in time t . The required change of variables corresponds to the value δ = α/ε. An
analysis of a solution for the system (6.37) on the interval δ ∈ [0, α/ε] is contained
in the next section.

Remark 6.3. According to the definition, the averaging procedure possesses the fol-
lowing important property. Suppose that the vector field v̂ for all fixed t and ε be-
longs to a certain subalgebra χ in the Lie algebra of vector fields on M . Then for
fixed t , ε and δ the vector field v(z, t, ε, δ) also lies in χ . Therefore, the diffeo-
morphism f belongs to the corresponding Lie group. Moreover, if v̂ is reversible
with respect to some involution I : M → M , the vector field v(z, t, ε, δ) is also
I -reversible. In particular, if the initial vector field v̂ is Hamiltonian then v∗ =
v(z, t, ε, α/ε) is also Hamiltonian, and the corresponding change of variables F is
symplectic.

As an example consider a pendulum with a periodically vertically oscillating
suspension point. The Hamiltonian of the system is presented in Sect. 4.5. Let the
oscillation period of the suspension point be small. More precisely, equations (5.15)
from Sect. 5.3 hold. Then the Hamiltonian function is as follows:

H = y2/2 + cos x + 2B cos(t/ε) cos x. (6.39)

By using the change t = ετ , H = ε−1H , we get
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H = ε(H0 + H1), H0 = y2/2 + cos x, H1 = 2B cos x cos τ.

The system with the Hamiltonian H is of form (6.30), where the dot denotes
the derivative with respect to the new time τ . The corresponding first approximation
averaged system (6.33) is also Hamiltonian: the Hamiltonian function is H0.

Solutions of the averaged system are elliptic functions of τ . The positions of
their complex singularities can be expressed in terms of elliptic integrals. Consider
the energy level L1 = {(x, y) ∈ R

2 : H0(x, y) = 1}, corresponding to separatrices
of the unperturbed pendulum. The distance from the real axis Re τ to a singularity
of a solution with initial conditions, lying on L1, equals π/2. Hence, according to
Theorem 6.2, if Q lies in a small neighborhood of the separatrices, the constant α

in the exponential estimate of the perturbation ṽ can be chosen close to π/2.
Analogous arguments have been used to solve the problem of separatrix splitting

in the system with Hamiltonian (6.39), see [134, 137].

6.6 Analytic Properties of the Averaging Procedure

We divide the analysis of the problem (6.37)–(6.38) into two parts. First we con-
struct the majorant estimates for the solution to this problem as if this solution exists.
Such estimates are called a priori estimates. It is a heuristic part of the proof.

In the second part we give a formal proof of Theorem 6.3.
We use the spaces of functions which are analytic in polydiscs. These local ob-

servations are justified by the same argument as in Remark 6.2.
Our method is a version of the method of a priori estimates on the space of

countably dimensional vectors of analytic functions. This technique is a generaliza-
tion of the classical majorant method which goes back to Cauchy, Weierstrass and
Kovalevskaya.

Below for brevity we do not write ε among arguments of the functions we deal
with.

A priori estimates. Putting v̄ = v̂0|ε=0,

v0(z, δ) = w0(z, δ) + v(z), vk(z, δ) = wk(z, δ)e−|k|δ, k 	= 0,

we write the system (6.37)–(6.38) in the form

w0
δ = −2iε

∑
l>0

[wl,w−l]e−2lδ,

wk
δ = iσkε[v + w0, wk] − 2iε

∑
l,n

[wl,wn]e(|k|−|l|−|n|)δ,
(6.40)

w0(z, 0) = v̂0(z) − v(z), wk(z, 0) = v̂k(z), k 	= 0, (6.41)

where l, n in the sum
∑

l,n satisfy (6.21).
For any vector field u(z) on M we put
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gsu(z) = Dgsu ◦ g−s(z), s ∈ C, (6.42)

where Dgs is the differential of the phase flow gs with respect to z. For any z ∈ M ,
gs : TzM → TzM is a linear operator. Hence u �→ gsu is a linear operator on the
space of smooth (or analytic) vector fields on M .

The operators gs form a one-parametric group: gs1gs2 = gs1+s2 . Moreover,

gs[u1, u2] = [gsu1, gsu2].
Proposition 6.3. Let the vector field w(z, δ) on M be the solution of the initial value
problem

wδ = iσε[v,w] + η(z, δ), w(z, 0) = ŵ(z)

with some known η and ŵ. Then

w(z, δ) = giσ εδŵ(z) +
∫ δ

0
giσ ε(δ−s)η(z, s) ds.

The proof follows from the identity

d

ds
gsu = [v̄, gsu]. (6.43)

According to Proposition 6.3, (6.40) is equivalent to the system

w0(z, δ) = v̂0(z) − v(z) + iε

∫ δ

0
η0(z, s) ds,

wk(z, δ) = giσkεδv̂k(z) + iε

∫ δ

0
giσkε(δ−s)ηk(z, s) ds,

(6.44)

η0(z, s) = −2
∑
l>0

[wl,w−l](z, s)e−2ls ,

ηk(z, s) = σk[w0, wk] − 2
∑
l,n

[wl,wn](z, s)e(|k|−|l|−|n|)s .
(6.45)

Lemma 6.4. For any real s ∈ [−α, α] the Fourier coefficients v̂k satisfy the majo-
rant estimates

gis(v̂0(z) − v(z)) � εβκ

(κ − ζ )
1, gis v̂k(z) � βκ

k2(κ − ζ )
1, k 	= 0,

where ζ = z1 + · · · + zm, 1 = (1, . . . , 1)T ∈ R
m and β, κ are positive constants.

Proof. According to assumption (2) of Theorem 6.3, for any small ε and s ∈
[−α, α] the vector field gis v̂(z, t) is analytic in z ∈ V and C2-smooth in t ∈ T.
We put V ′ = {z ∈ C : |z| ≤ κ} ⊂ V for some positive κ . Let
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β ′ = max
s∈[−α,α],(z,t)∈V ′×T

∣∣∣∣ d2

dt2
gis v̂(z, t)

∣∣∣∣.
Then obviously

max
s∈[−α,α],z∈V ′

∣∣k2gis v̂k(z)
∣∣ ≤ β ′, k 	= 0.

By using assertion (4) of Lemma 6.1, for any s ∈ [−α, α] and k 	= 0 we obtain the
estimate

gis v̂k(z) � β ′κm

k2(κ − z1) · · · (κ − zm)
1 � β ′κ

k2(κ − ζ )
1. (6.46)

The last inequality follows from the obvious estimate

κm

(κ − z1) · · · (κ − zm)
� κ

κ − z1 − · · · − zm

.

Note that v̂0 − v(z) = O(ε). Therefore for some positive β ′′

max
s∈[−α,α],z∈V0

∣∣gis(v̂0(z) − v(z))
∣∣ ≤ εβ ′′.

This implies that

gis(v̂k(z) − v(z)) � εβ ′′κ
κ − ζ

1. (6.47)

Lemma 6.4 follows from the estimates (6.46)–(6.47). ��
Define the function

ϕ(δ) = 32mβκ

∫ δ

0
(ε2K + K−1e−2s) ds.

It depends on the parameters β, κ,K .

Lemma 6.5. Let the positive constant K be such that

ϕ(δ) < κ2 for any δ ∈ [0, α/ε]. (6.48)

Then for any δ ∈ [0, α/ε] and τ ∈ [−α + εδ, α − εδ]
giτw0(z, δ) � εKw(ζ, δ)1, giτwk(z, δ) � k−2w(ζ, δ)1, k 	= 0, (6.49)

where the scalar function w satisfies the initial value problem

wδ = 8m(ε2K + K−1e−2δ)wwζ , w(ζ, 0) = βκ

κ − ζ
. (6.50)

Lemma 6.5 implies Theorem 6.3. Indeed, the function w can be found explicitly:
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w(ζ, δ) = 2βκ

κ − ζ + √
(κ − ζ )2 − ϕ(δ)

.

Due to (6.48), w is analytic at the point z = 0 for δ ∈ [0, α/ε]. Hence

v0(z, α/ε) − v(z) � εKw(ζ, α/ε)1, vk(z, α/ε) � e−|k|α/εw(ζ, α/ε)1.

These estimates imply Theorem 6.3.

Now let us prove Lemma 6.5. First, note that according to (6.44) the functions

giτwn(z, δ), 0 ≤ δ ≤ α/ε, −α + εδ ≤ τ ≤ α − εδ, n ∈ Z

satisfy the equations

giτw0(z, δ) = giτw0(z, 0) + iε

∫ δ

0
giτ η0(z, s) ds,

giτwk(z, δ) = gi(τ+σkεδ)v̂k(z) + iε

∫ δ

0
gi(τ+σkε(δ−s))ηk(z, s) ds,

(6.51)

where the ηn are defined by (6.45) and σk = sign k. Hence, the vector fields on the
right-hand sides are combinations of the vector fields

giτ ′
wn′

(z, δ′), 0 ≤ δ′ ≤ α/ε, −α + εδ′ ≤ τ ′ ≤ α − εδ′, n′ ∈ Z.

Consider the system

w0(ζ, δ) = w0(ζ, 0) + ε

∫ δ

0
ρ0(ζ, s) ds,

wk(ζ, δ) = wk(ζ, 0) + ε

∫ δ

0
ρk(ζ, s) ds, k 	= 0,

(6.52)

ρk(ζ, s) = 2m
∑

n<0<l, l+n=k

(wl
ζ wn + wlwn

ζ )(ζ, s) ds,

w0(ζ, 0) = εK
βκ

κ − ζ
, wk(ζ, 0) = 1

k2

βκ

κ − ζ
, k 	= 0.

(6.53)

Now, assuming that the solutions to both systems exist, we give an informal ex-
planation why the solution to the system (6.52), (6.53) majorates the solution to the
system (6.44), (6.41). In this sense we say that the system (6.52), (6.53) is a majo-
rant system for the system (6.44), (6.41). The reader should regard all the argument
of this section only as a heuristic method to obtain the system (6.52), (6.53) from
(6.44), (6.41). For now we summarize the argument above as the following

Proposition 6.4. The system (6.52), (6.53) is a majorant system for (6.44), (6.41).

Now let us check the majorant estimates (6.49). First, we note that according to
Lemma 6.4, they are satisfied for δ = 0. We replace the left- and right-hand sides
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of (6.51) by the corresponding majorants according to the assertions of Lemma 6.5
and show that after this operation (6.51) remain true if we replace “=” by “�”.

We use the simple remark that, for any two vector fields u′, u′′ such that u′(z) �
w′(ζ )1 and u′′(z) � w′′(ζ )1,

[u′, u′′](z) � m
(
w′

ζ (ζ )w′′(ζ ) + w′(ζ )w′′
ζ (ζ )

)
1.

We begin with majorants for

Q0 = giτ η0(z, s) and Qk = gi(τ+σkε(δ−s))ηk(z, s).

Lemma 6.5 predicts the estimate

Q0 �
∑
l>0

4me−2ls

l4
w(ζ, s)wζ (ζ, s)1 � 4me−2sw(ζ, s)wζ (ζ, s)

∑
l>0

1

l4
1

� 8me−2sw(ζ, s)wζ (ζ, s)1 = e−2sws(ζ, s)

ε2K + K−1e−2s
1 � Kws(ζ, s)1.

Analogously

Qk � 2mεK

k2
w(ζ, 0)wζ (ζ, 0)1 +

∑
l,n

4me(|k|−|l|−|n|)s

l2n2
w(ζ, s)wζ (ζ, s)1

� 2m

k2
w(ζ, s)wζ (ζ, s)

(
εK + 2e−2s

∑
l,n

k2

l2n2

)
1.

Here we used w(z, 0) � w(z, s) for any s ∈ [0, α/ε]. Recall that l, n in the sum
satisfy (6.21). Hence,

∑
l,n k2l−2n−2 <

∑∞
j=1 j−2 = π2/6 and

Qk � 2m

k2
w(ζ, s)wζ (ζ, s)(εK + π2e−2s/3)1

= εK + π2e−2s/3

4(ε2K + K−1e−2s)

ws(ζ, s)

k2
1 � ws(ζ, s)

εk2
1.

Now according to our plan we check the majorant analogs of (6.51):

εKw(ζ, δ) � εKw(ζ, 0) + ε

∫ δ

0
Kws(ζ, s) ds,

k−2w(ζ, δ) � k−2w(ζ, 0) + ε

∫ δ

0

ws(ζ, s)

εk2
ds.

Both these relations follow from (6.50).

The existence theorem. Let R > 0 be a number such that the function w(ζ, α/ε) is
analytic in the disk {‖ζ‖ < R}.
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To construct the spaces Hs,Gs, Fs (see Sect. 9.5), we replace the domain D in
(9.53) by the polydisk ‖z‖ < sR with 0 < s < 1.

We then obtain the following definitions of our spaces.
The space Hs is a set of functions f : Ds → C which are analytic in Ds and

continuous in the closure Ds . This space is endowed with the norm

‖f ‖H
s = sup

z∈Ds

|f (z)|.

The space Gs is the space of the sequences u = {uk(x)}k∈Z, uk ∈ Hs , with the norm

‖u‖G
s = sup

k∈Z

{(1 + |k|2)‖uk‖H
s }.

The Banach spaces Fs consist of the sequences u = {uk(x)}k∈Z, uk ∈ Hs , and the
norm is

‖u‖F
s =

√∑
k∈Z

(1 + |k|2)(‖uk‖H
s )2.

Recall that
F =

⋂
0<s<1

Fs, G =
⋂

0<s<1

Gs.

Let V stand for the set of functions

w(z, δ) = {wk(z, δ)}k∈Z ∈ C([0, α/ε], F )

which satisfy the following conditions.

(1) For any δ ∈ [0, α/ε] and τ ∈ [−α + εδ, α − εδ], the estimates (6.49) hold.
(2) For any δ′, δ′′ ∈ [0, α/ε] and 0 < s < 1

‖w(·, δ′) − w(·, δ′′)‖F
s ≤ Ks |δ′ − δ′′|. (6.54)

The positive constants {Ks} are the same for all w(z, δ) ∈ V ; these constants will
be defined in the sequel. Observe that V is a convex set.

Let C([0, α/ε], F ) stand for the space of continuous mappings from the interval
[0, α/ε] to the space F with the topology defined in Sect. 9.5.

Theorem 6.4. With a suitable choice of the constants {Ks}s∈(0,1), the system (6.44)–
(6.45) has a solution in the set V .

Remark 6.4. If a solution to the integral equations (6.44)–(6.45) belongs to the space
C([0, α/ε], F ) then it is a differentiable function in the variable δ and it also solves
the system (6.40)–(6.41). This observation follows from Proposition 6.3 and the
standard argument on the connection between initial value problems and corre-
sponding integral equations.

We introduce the set W which consists of functions
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w(z, δ) = {wk(z, δ)}k∈Z ∈ C([0, α/ε], F )

such that the estimate (6.54) holds and

w0(z, δ) � εKw(ζ, δ)1, wk(z, δ) � k−2w(ζ, δ)1, k 	= 0. (6.55)

Since (6.55) is the special case of (6.49) when τ = 0, it follows that

V ⊆ W. (6.56)

Define a mapping P [w] by the formula

P 0[w](z, δ) = v̂0(z) − v(z) + iε

∫ δ

0
η0(z, s) ds,

P k[w](z, δ) = giσkεδv̂k(z) + iε

∫ δ

0
giσkε(δ−s)ηk(z, s) ds, k 	= 0.

We describe the domain of P [w] below.
Now we prove Theorem 6.4. The plan is as follows. First we show that the set W

is compact in C([0, α/ε], F ). Then observing that the set V is closed, we conclude
that it is compact as a closed subspace of W . Finally we show that P [V ] ⊆ V and
P ∈ C(V, V ). Due to these facts, by the Schauder–Tikhonov theorem, there exists
a fixed point w̃ ∈ V of the mapping P : P [w̃] = w̃. This finishes the proof.

Lemma 6.6. The set W is compact in C([0, α/ε], F ).

Proof. Consider the set Wu ⊂ F which consists of functions w(z, δ) ∈ W with
δ = u. By Propositions 9.10, 9.11 and formula (6.55) the sets Wu, u ∈ [0, α/ε], are
bounded in G and closed in F .

By Corollary 9.13 the sets Wu, u ∈ [0, α/ε], are compact in F .
Now by (6.54) the proof of the lemma follows from Theorem 9.13. ��
The operator giτ , defined by (6.42):

giτw(z, δ) = {giτwk(z, δ)}k∈Z,

is a continuous operator from V to W .

Lemma 6.7. The set V is compact in C([0, α/ε], F ).

Proof. By Lemma 6.6 and inclusion (6.56) it is sufficient to check that V is closed
in C([0, α/ε], F ).

Consider a sequence {wj } ∈ V such that wj → w in C([0, α/ε], F ) as j → ∞
and w ∈ C([0, α/ε], F ). Then we have

giτw0
j (z, δ) � εKw(ζ, δ)1, giτwk

j (z, δ) � k−2w(ζ, δ)1, k 	= 0. (6.57)

The convergence in C([0, α/ε], F ) implies pointwise convergence with respect to
the variable δ. Therefore in formulas (6.57) we pass to the limit as j → ∞ at every
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point δ ∈ [0, α/ε] and for every τ ∈ [−α + εδ, α − εδ]. Then, using the continuity
of the operator giτ and Proposition 9.11, we obtain

giτw0(z, δ) � εKw(ζ, δ)1, giτwk(z, δ) � k−2w(ζ, δ)1, k 	= 0.

Thus w ∈ V . ��
Lemma 6.8. Define a set of constants {Ks}s∈(0,1) such that

Ks = c5

(s′ − s)

(
1 + sup

ξ∈[0,α/ε]
(‖w(·, ξ)‖H

s′ )2
)
, s′ = 1 + s

2
.

Then the mapping P takes the set V (see (6.54)) to itself.

Proof. From the majorant argument above it follows that if a function w(z, δ) ∈ F

satisfies the relations (6.49) then P [w](z, δ) also satisfies these relations. This fol-
lows from the formulation and proof of Lemma 6.5 and Proposition 6.4.

So it remains to choose the constants {Ks}s∈(0,1) such that for any w ∈ V the
function P [w] satisfies formula (6.54).

Let us estimate the terms P k with k 	= 0. Putting for definiteness δ′′ > δ′, by the
Mean Value Theorem we have

‖P k[w](·, δ′) − P k[w](·, δ′′)‖H
s ≤ sup

ξ∈[δ′,δ′′]
‖P k

δ [w](·, ξ)‖H
s · |δ′ − δ′′|, k 	= 0.

(6.58)
Formula (6.43) gives

P k
δ [w](z, ξ) = iε

(
σk[v̄(z), P k[w](z, ξ)] + ηk(z, ξ)

)
, k 	= 0. (6.59)

We know that P [w] ∈ W . Thus, due to the properties of the relation “�” (see
Lemma 9.10) and by the Cauchy estimate (9.54), it follows that

‖[v̄, P k[w]](·, ξ)‖H
s ≤ c

k2(s′ − s)
‖v̄‖H

s′ ‖ w(·, ξ)‖H
s′ , 0 < s < s′ < 1. (6.60)

The positive constant c is independent of s, s′, k and w.
Consider the term ηk . By the same argument as above we have

‖ηk(·, ξ)‖H
s ≤ ‖[w0, wk](·, ξ)‖H

s + 2
∑
l,n

‖[wl,wn](·, ξ)‖H
s

≤ c1(‖w(·, ξ)‖H
s′ )2

s′ − s

(
1

k2
+

∑
l,n

1

n2l2

)
, 0 < s < s′ < 1.

(6.61)

The positive constant c1 depends only on m. Recall that the summation in this for-
mula is taken over all integers n, l such that n < 0 < l, l+n = k 	= 0. Consequently
we obtain the estimate
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∑
l,n

1

n2l2
≤ 1

k2

∑
l>0, l 	=k

1

l2(1 − l/k)2
≤ c2

k2

with some constant c2 > 0. Combining the formulas (6.59), (6.60), (6.61), and
substituting them into (6.58) we get

‖P k[w](·, δ′) − P k[w](·, δ′′)‖H
s

≤ c3

k2(s′ − s)

(
1 + sup

ξ∈[δ′,δ′′]
(‖w(·, ξ)‖H

s′ )2
)

· |δ′ − δ′′|, k 	= 0. (6.62)

Analogously

‖P 0[w](·, δ′) − P 0[w](·, δ′′)‖H
s

≤ c4

(s′ − s)
sup

ξ∈[δ′,δ′′]
(‖w(·, ξ)‖H

s′ )2 · |δ′ − δ′′|. (6.63)

By (6.62) and (6.63) we obtain

‖P [w](·, δ′) − P [w](·, δ′′)‖F
s ≤ Ks · |δ′ − δ′′| (6.64)

with Ks defined above. ��
The mapping P : V → V is a Lipschitz mapping in the following sense

sup
ξ∈[0,α/ε]

‖P [w′](·, ξ) − P [w′′](·, ξ)‖F
s ≤ c6

s′ − s
sup

ξ∈[0,α/ε]
‖w′(·, ξ) − w′′(·, ξ)‖F

s′ ,

w′, w′′ ∈ V, 0 < s < s′ < 1.

As done in Sect. 6.3, this formula is derived with the help of Corollary 9.14. Thus
the mapping P : V → V is continuous and, by the Schauder–Tikhonov theorem
(see Sect. 9.5), it has a fixed point w̃:

P(w̃) = w̃, w̃ ∈ V.

This fixed point is the desired solution to problem (6.44)–(6.45).
Theorem 6.4 is proved.



Chapter 7
The Anti-Integrable Limit

7.1 Perturbation of the Standard Map

We have seen in the previous chapters that the dynamics in near-integrable Hamilto-
nian systems and symplectic maps remains quite regular: stochastic regimes exist,
but are located in small domains. It is natural to expect that chaotic properties be-
come more pronounced when the “distance to the set of integrable systems” in-
creases.

Consider as an example the standard map (1.5) from Chap. 1, where the parame-
ter ε is not small but, on the contrary, very large. The limit as ε → ∞ in systems of
such a type is called the anti-integrable limit [12].

Let us rewrite the map SM in the “Lagrangian form”. To this end suppose that
(

x−
y−

)
SM�→

(
x

y

)
SM�→

(
x+
y+

)
.

Then x−, x, x+ satisfy the equation

ε−1(x+ − 2x + x−) = sin x. (7.1)

The standard map written in this form is defined on the cylinder Z = R
2
(x−,x)/ ∼,

where the equivalence relation ∼ is as follows:

(x′
1, x

′
2) ∼ (x′′

1 , x′′
2 ) if and only if x′

1 − x′′
1 = x′

2 − x′′
2 ∈ 2πZ.

In the other words, the cylinder Z is the quotient space of the plane R
2
(x−,x) with

respect to the action of the group of shifts

(x−, x) �→ (x− + 2πl, x + 2πl), l ∈ Z.

The standard map sends the point (x−, x) ∈ Z to (x, x+) ∈ Z , where x−, x, x+
satisfy (7.1).

D. Treschev, O. Zubelevich, Introduction to the Perturbation Theory
of Hamiltonian Systems, Springer Monographs in Mathematics,
DOI 10.1007/978-3-642-03028-4_7, © Springer-Verlag Berlin Heidelberg 2010
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Infinite sequences . . . , x−1, x0, x1, . . . such that the triple (x−, x, x+) = (xl−1,

xl, xl+1) satisfies (7.1) for any integer l, are called trajectories of the standard map.
The Lagrangian form of the standard map admits a variational formulation.

Namely, trajectories of the system are extremals of the formal sum

∞∑
l=−∞

L(xl, xl+1), L(x′, x′′) = 1

2ε
(x′ − x′′)2 − cos x′′. (7.2)

The extremality means that, for any trajectory . . . , x0
−1, x

0
0 , x0

1 , . . . and any inte-
ger n,

∂

∂xn

∞∑
l=−∞

L(xl, xl+1) = 0 for . . . , x−1, x0, x1, . . . = . . . , x0
−1, x

0
0 , x0

1 , . . . .

If ε = ∞, the standard map is meaningless because x+ cannot be found in terms
of x and x− from equation (7.1)|ε−1=0. However, the corresponding variational prob-
lem is well-defined. Its solutions are sequences of the form

. . . , πk−1, πk0, πk1, . . . , kj ∈ Z. (7.3)

For large values of the parameter ε the standard map has many trajectories close to
sequences (7.3). More precisely the following Theorem 7.1 holds [12]. Let SK be
the set of all sequences (7.3) such that |kl − kl+1| ≤ K for any l ∈ Z.

Let us introduce on the set of infinite sequences the metric ρ, corresponding to
the uniform convergence norm, i.e., for any two sequences

X′ = . . . , x′−1, x
′
0, x

′
1, . . . , X′′ = . . . , x′′−1, x

′′
0 , x′′

1 , . . . ,

we put
ρ̂(X′, X′′) = sup

l∈Z
|x′

l − x′′
l |.

(For some pairs X′, X′′ the last expression can be equal to infinity).

Theorem 7.1 ([12]). For any K > 0 and any σ > 0 there exists a (sufficiently large)
ε0 > 0 such that, for any X′ ∈ SK and any ε > ε0, the standard map has a unique
trajectory X′′ with ρ(X′, X′′) < σ .

Theorem 7.1 means that for large values of ε some trajectories of the standard
map turn out to be in a one-to-one correspondence with elements of the set SK .
Sequences from SK can be regarded as codes of the corresponding trajectories. This
possibility to code trajectories by elements of a sufficiently large set is typical for
chaotic systems.

Theorem 7.1 was generalized by MacKay and Meiss [83] to multidimensional
symplectic maps with configurational space T

m. Below we present a proof of a
theorem on the anti-integrable limit in a more general situation.
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7.2 A General Construction

Suppose that a discrete group G acts on an m-dimensional smooth manifold M .1

Below we assume that any point x ∈ M has a neighborhood U such that the sets
g(U), g ∈ G, do not intersect: g′(U) ∩ g′′(U) = ∅ for g′ �= g′′. This means that the
quotient space M/G is a smooth manifold.

The action of G on M generates the “diagonal” action of G on the direct product
M × M: for any pair x, y ∈ M and g ∈ G we have

g(x, y) = (g(x), g(y)).

Let the smooth function L : M × M → R be invariant with respect to the action
of G:

L(x, y) = L(g(x), g(y)), x, y ∈ M, g ∈ G.

We assume also that the function L satisfies the following nondegeneracy property:
for any x ∈ M the map Θx : M → T ∗

x M defined by

y �→ Θx(y) = ∂L

∂x
(x, y)

is a diffeomorphism. The functions L satisfying these properties are called discrete
Lagrangians.

The assumption that the maps Θx are global diffeomorphisms can be weakened.
We will frequently assume that the inverse maps Θ−1

x exist not everywhere on T ∗
x M .

In this situation the dynamics in the system is, in general, not defined globally.
However this does not mean that such systems are not interesting. It is sufficient to
recall that the Poincaré map in an autonomous system almost never defined globally.

The quotient spaces M/G and (M × M)/G will be said to be respectively the
configurational and phase spaces of the discrete Lagrangian system.2

The dynamics in the system with Lagrangian L is defined as follows: (x−, x) �→
(x, x+), where x−, x, x+ ∈ M are such that

∂

∂x

(
L(x−, x) + L(x, x+)

) = 0. (7.4)

Trajectories of a discrete Lagrangian system are extremals of the formal sum (7.2)
in the same sense as this was explained in the previous section for the standard map.

A discrete Lagrangian is defined up to a constant multiplier, i.e., the Lagrangians
L(x′, x′′) and cL(x′, x′′), where c �= 0 is a constant, determine the same dynamical
system. The dynamics are also preserved after adding to the Lagrangian a term of
the form f (x′) − f (x′′).
1 I.e. a homomorphism of the group G to the group of diffeomorphisms of the manifold M is
defined. Diffeomorphisms corresponding to elements of the group G are denoted below by the
same letters. In the case of the standard map M = R, and G is the group of shifts: x �→ x + 2πl,
l ∈ Z.
2 In the case of the standard map these spaces are the one-dimensional torus T and the cylinder Z .
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As an example assume that the manifold M is Riemannian and the group G acts
on M by isometries. Let dist(· , ·) be the distance induced by the Riemannian metric.
Then the Lagrangian L(x′, x′′) = dist2(x′, x′′) is a smooth function for any pair of
sufficiently close points x′, x′′. It is invariant with respect to the diagonal action
of G. The corresponding functions Θx have inverses in the vicinity of zero of the
space T ∗

x M . Hence any pair of sufficiently close points x−, x determines a unique
point x+ satisfying equation (7.4).

The function x+ = x+(x−, x) in this example has a simple geometric meaning.
Since the points x−, x are close to one another, there exists a unique shortest geo-
desic linking x− with x. Then x+ is situated on the same geodesic, x lies (locally)
between x− and x+ and

dist(x−, x) = dist(x, x+) = 1

2
dist(x−, x+).

Let L : M ×M ×U → R, where U ⊂ R is a neighborhood of zero, be a smooth
function invariant with respect to the diagonal action of G on M × M:

L(x, y, μ) = L(gx, gy, μ), x, y ∈ M, μ ∈ U, g ∈ G.

Suppose that the maps Θx , corresponding to the function L(x, y, 0) are invertible
(everywhere or locally in the domains which appear below) and f : M → R is a
smooth function invariant with respect to the action of G on M:

f (x) = f (gx) for all x ∈ M, g ∈ G.

Then the functions

Lλ = Lλ(x, y) = L(x, y, 1/λ) + λf (y), λ ∈ R

also determine certain discrete Lagrangian systems. We define the anti-integrable
limit in these systems as the limit λ → ∞.

Suppose that the configurational space M/G is compact and all critical points of
the function f are isolated. Let Cr ⊂ M be the set of nondegenerate critical points
of f . The action of G preserves the set Cr. Moreover, Cr can be regarded as a finite
union of disjoint orbits Ol :

Ol =
⋃
g∈G

g(yl), yl ∈ Cr .

Let SK , K > 0, be the set of all sequences

. . . , x−1, x0, x1, . . . , xj ∈ Cr, ρ(xj , xj+1) ≤ K, j ∈ Z,

where ρ is the distance in some G-invariant Riemannian metric on M . As in the
previous section, let us introduce a metric on the set of infinite sequences
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. . . , x−1, x0, x1, . . . , xj ∈ M.

For any two sequences

X′ = . . . , x′−1, x
′
0, x

′
1, . . . , X′′ = . . . , x′′−1, x

′′
0 , x′′

1 , . . . ,

we put
ρ̂(X′, X′′) = sup

l∈Z

ρ(x′
l , x

′′
l ) ≤ ∞.

Theorem 7.2. For any K > 0 and any σ > 0 there exists λ0 > 0 such that, for any
X′ ∈ SK and any λ > λ0 the discrete Lagrangian system with Lagrangian Lλ has
a unique trajectory X′′ with ρ̂(X′, X′′) < σ .

The proof of Theorem 7.2 is based on the contraction principle. Let us introduce
local coordinates in neighborhoods of points x ∈ Cr so that the coordinates of any
two points x′, x′′ such that x′ = g(x′′), g ∈ G, coincide. To this end, for any orbit
Ol we take a point x ∈ Ol and introduce arbitrarily coordinates in a neighborhood
of x. Coordinates in neighborhoods of other points of Ol are obtained as translations
of this coordinate system by the maps g ∈ G.

The map x �→ ∂f/∂x is invertible in a neighborhood of any point x′ ∈ Cr. This
fact follows from the nondegeneracy of the critical point x′ and from the implicit
function theorem. The inverse map Φx′ : B → Vx′ acts from a neighborhood B

of zero in R
m to a neighborhood Vx′ of the point x′. We can assume that the set B

does not depend on x′. Hence, due to the invariance of the coordinate systems with
respect to the action of the group G, for any two points x′, x′′ contained in the same
orbit Ol , we have Vx′ = g(Vx′′) for some g ∈ G.

Let Ωσ (X′) be a neighborhood of the sequence X′ ∈ SK in the set of all se-
quences on M:

Ωσ (X′) = {X : ρ̂(X,X′) ≤ σ }.
Consider the map F of the metric space Ωσ (X′) to the space of sequences . . . , x−1,

x0, x1, . . . on M such that the sequence X̂ = F (X) is defined as follows:

x̂j = Φx′
j

(
−1

λ

∂

∂xj

(
L(xj−1, xj , 1/λ) + L(xj , xj+1, 1/λ)

))
. (7.5)

The fixed points of F are trajectories of the system with Lagrangian Lλ lying in
a σ -neighborhood of the code X′. Indeed, for X = X̂ equation (7.5) implies that

∂

∂xj

(
Lλ(xj−1, xj ) + Lλ(xj , xj+1)

) = 0.

Hence, to prove Theorem 7.2, it is sufficient to check that for large λ the following
two statements hold:

(a) F (Ωσ (X′)) ⊂ Ωσ (X′),
(b) the map F is contracting.
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For any y ∈ Cr let Bσ (y) ⊂ Vy be the ball

Bσ (y) = {x ∈ Vy : ρ(x, y) < σ }.
The metric ρ, the function f , and the local coordinates we use are invariant with
respect to the action of G. Hence the set

⋂
y∈Cr

∂f

∂x
(Bσ (y)) ⊂ R

m (7.6)

is open and nonempty. Indeed, since for any y1, y2 ∈ Cr such that y1 = g(y2),
g ∈ G, we have

∂f

∂x
(Bσ (y1)) = ∂f

∂x
(Bσ (y2)),

it follows that (7.6) is an intersection of a finite number of nonempty open sets. In
particular, the set (7.6) contains an open ball Br ⊂ R

m centered at zero with a radius
r > 0. Taking if necessary smaller r , we can assume that Br ⊂ B. According to the
definition, Φ−1

y (Br) ⊂ Bσ (y) for any Cr.
Since X′ ∈ SK , K < ∞, for sufficiently small μ0 > 0 we have

sup
X∈Ωσ (X′),|1/λ|≤μ0

∣∣∣∣ ∂

∂xj

(
L(xj−1, xj , 1/λ) + L(xj , xj+1, 1/λ)

)∣∣∣∣ = C < ∞.

Let λ > max{C/r, 1/μ0}. Then for any X ∈ Ωσ (X′) the argument of the function
Φxj

in (7.5) lies in Br . Hence, X̂ ∈ Ωσ (X′).
To check that the map F is contracting, we put

c1 = sup
ρ(Φy(b1),Φy(b2))

|b1 − b2| ,

where the supremum is taken over all y ∈ Cr and b1, b2 ∈ Br , and | · | denotes the
standard norm in R

m. The constant c1 is obviously finite.
For any two sequences X, X̂ ∈ Ωσ (X′) and |1/λ| ≤ μ1 (the positive constant

μ1 ≤ μ0 is sufficiently small) we have
∣∣∣∣ ∂

∂xj

(
L(xj−1, xj , 1/λ) + L(xj , xj+1, 1/λ)

)

− ∂

∂x̂j

(
L(x̂j−1, x̂j , 1/λ) + L(x̂j , x̂j+1, 1/λ)

)∣∣∣∣ ≤ c2 ρ̂(X, X̂),

with some constant c2. By putting X∗ = F (X), X̂∗ = F (X̂), we obtain the esti-
mate

ρ(x∗
j , x̂∗

j ) ≤ c1c2

λ
ρ̂(X, X̂).

Hence, the map F is contracting for λ > max{2c1c2, 1/μ1}.
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It is easy to show that the set of trajectories constructed in Theorem 7.2 forms a
uniformly hyperbolic set. Although this set is uncountable, its measure and even the
Hausdorff dimension vanish.

The absence of an analytic integral in systems close to the anti-integrable limit is
intuitively obvious. However, a formal proof of this fact needs some work.3

On the other hand one should not think that an unbounded growth of chaos in
the anti-integrable limit leads to ergodicity of the system. An elementary straight-
forward calculation shows that

For arbitrarily large values of the perturbing parameter the standard map has
an elliptic periodic trajectory of period 2.

This observation is a trivial particular case of beautiful results, contained in [45],
which show that the number of elliptic periodic points can be arbitrarily large for
large values of the perturbing parameter and moreover, for an increasing sequence
of the parameter, these periodic points can be asymptotically dense on the phase
torus.

Since in a general situation elliptic periodic trajectories are surrounded by stabil-
ity islands, the standard map does not become ergodic in the anti-integrable limit.
However, in principle, the standard map can be ergodic for some large values of ε.

7.3 Further Examples

1. Consider a particle with a small mass μ which moves in the space R
m in the

force field with potential V (x, t). Suppose that the potential is 2π-periodic in the
variables x1, . . . , xm and t . Moreover, we assume that

V (x, t) = 1

2π
v(x)δ(t), (7.7)

where δ(t) is the periodic δ-function:

δ(t) =
{

∞, t ∈ 2πZ,

0, t ∈ R \ 2πZ,

∫ 2πk+σ

2πk−σ

δ(t) dt = 1

for any k ∈ Z, σ ∈ (0, 2π).
The Hamiltonian of the system has the form

H = |p|2
2μ

+ 1

2π
v(x)δ(t),

where p = (p1, . . . , pm) is the momentum canonically conjugate to the coordi-
nates x. The Hamiltonian equations read

3 In the case of two-dimensional phase space: nonintegrability follows from the existence of
transversal homoclinics to periodic solutions.
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ṗ = − 1

2π

∂v

∂x
(x)δ(t), ẋ = p/μ.

Therefore p gets increments equal to −(2π)−1∂v/∂x at the time moments 2πl,
l ∈ Z. During the remaining time the particle is free.

The Poincaré map can be written down explicitly. For any integer l we put
x(2πl − 0) = xl , p(2πl − 0) = pl . Then

(
xl

pl

)
�→

(
x(2πl + 0)

p(2πl + 0)

)
=

(
xl

pl − 1
2π

∂v
∂x

(xl)

)

�→
(

xl+1

pl+1

)
=

(
xl + 2πpl+1/μ

pl − 1
2π

∂v
∂x

(xl)

)
.

The quantities xl−1, xl, xl+1 satisfy the equation

xl+1 − 2xl + xl−1 = 1

μ

∂v

∂x
(xl).

The discrete Lagrangian of this system has the form

L(x′, x′′) = |x′ − x′′|2
2

− 1

μ

∂v

∂x
(x′′).

In this case M = R
m, G = Z

m and for any x ∈ R
m, k ∈ Z

m, we have k(x) =
x + 2πk. The Lagrangian L is invariant with respect to the action of the group Z

m

by shifts. The limit μ → 0 is anti-integrable. Therefore for small μ the system has
an uncountable hyperbolic set, carrying a chaotic dynamics.

Note that for small μ the system remains close to the anti-integrable limit if the
potential V is an ordinary periodic function close (as a distribution) to (7.7).

If a light particle travels in a potential force field, where the potential V (x, t)

does not satisfy (7.7), the theory of the anti-integrable limit (μ → 0) exists, but
becomes technically more complicated [22].

2. Consider a plane billiard system in a strip bounded by graphs of two periodic
functions. We assume that a particle moves in the domain

D = {(x, y) ∈ R
2 : f1(x) ≤ y ≤ f2(x) + d},

where f1,2 are 2π-periodic functions (Fig. 7.1) and the parameter d is large. The
motion inside the domain is assumed to be free. Reflections from the boundary are
elastic.

This is a discrete Lagrangian system, where the function L is the length of the
line segment between two subsequent points of the impact with the boundary. We
will consider motions such that the particle collides alternately with the upper and
lower walls. In other words, we are interested in trajectories whose links do not
deviate much from the verticals x = const.
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Fig. 7.1 Billiard in a wide strip.

Let x1 be the coordinate on the lower boundary and x2 on the upper one. The
length of the corresponding line segment is

L(x1, x2) =
√

(x2 − x1)2 + (d + f2(x2) − f1(x1))2.

In this case M = R, G = Z, the group Z acts on R by the shifts x �→ x + 2πk,
k ∈ Z. The Lagrangian is invariant with respect to these shifts, and for large d

L(x1, x2) = d + f2(x2) − f1(x1) + 1

2d
(x2 − x1)

2 + O(d−2).

Thus the limit d → ∞ is anti-integrable provided the functions f1 and f2 do not
coincide.

It is easy to construct also a multidimensional analog of this system.
3. In conclusion we present a system whose configurational space is not a torus.

Suppose that on the Lobachevski plane L the discrete group of motions G acts, and
L /G is a compact manifold. Recall that in this case L /G is diffeomorphic to a
sphere with n > 1 handles. The Lobachevski metric induces on L /G a metric of a
constant negative curvature. For any function f : L → R invariant with respect to
the action of the group G, the function L : L × L → R defined by

L(x′, x′′) = dist2 (x′, x′′) + λf (x′′)

is a discrete Lagrangian. Here the distance is taken in the Lobachevski metric. The
limit λ → ∞ is anti-integrable.

Note that the system corresponding to the value λ = 0 has a first integral
dist(x′, x′′) = const ≥ 0. The system is ergodic on nonzero levels of this integral.
On the other hand, for large λ, apparently, there is neither integral, nor ergodicity.
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7.4 Anti-Integrable Limit in the Separatrix Map

It turns out that, in the vicinity of separatrices area-preserving maps behave simi-
larly to maps near the anti-integrable limit. Here we discuss this phenomenon for
model (4.1), Chap. 4

⎛
⎝I

ϕ

σ

⎞
⎠ �→

⎛
⎝I+

ϕ+
σ+

⎞
⎠ ,

I+ = I + λνσ (ϕ),

ϕ+ = ϕ + ωσ + 1

λ
log |I+|,

σ+ = σ sign I+, σ, σ+ ∈ {−1, 1}.
(7.8)

Recall that, in the main approximation, the map (7.8) determines the dynamics near
separatrices of a hyperbolic fixed point of any area-preserving map close to an inte-
grable one. The functions ν±1 are periodic and their average vanishes.

The map (7.8) can be represented in the form

I = ∂W/∂ϕ, ϕ+ = ∂W/∂I+, σ+ = σ sign I+, (7.9)

where the generating function

W = W(I+, ϕ, σ ) = ϕI+ + λVσ (ϕ) + (ωσ + λ−1 log |I+| − λ−1) I+.

Here the “potentials” Vσ are primitives of the functions −νσ . The primitives are
periodic in ϕ since the mean values of νσ vanish. The first two equations (7.9) can
be written as follows:

ϕ+dI+ + Idϕ = dW(I+, ϕ, σ ).

Now let us represent (7.8) in the Lagrangian form. To this end consider another
generating function (the Legendre transform of W ) h = ϕ+I+ − W . By using this
function, we write down the separatrix map in the following way:

I+dϕ+ − Idϕ = dh. (7.10)

It is easy to obtain an explicit formula for h:

h = h(ϕ, ϕ+, σ, ϑ+) = ϑ+λ−1eλ(ϕ+−ϕ−ωσ ) − λVσ (ϕ), ϑ+ = sign I+.

The Lagrangian form of the separatrix map is as follows:
⎛
⎜⎜⎝

ϕ−
ϕ

σ−
ϑ

⎞
⎟⎟⎠ �→

⎛
⎜⎜⎝

ϕ

ϕ+
σ

ϑ+

⎞
⎟⎟⎠ ,

σ = σ−ϑ,

∂

∂ϕ
(h− + h) = 0,

(7.11)

where
h− = h(ϕ−, ϕ, σ−, ϑ), h = h(ϕ, ϕ+, σ, ϑ+).
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The first equation (7.11) is generated by the definition of ϑ (ϑ = sign I ) and by the
last equation (7.8). The second equation (7.11) follows from (7.10) since, according
to (7.10) and to the analogous equation Idϕ − I−dϕ− = dh−, we have

I = −∂h/∂ϕ = ∂h−/∂ϕ.

It is easy to check that the quantities ϕ+ σ and ϑ+ are computed uniquely from
(7.11) in terms of ϕ−, ϕ, σ−, and ϑ .

Now we can present a variational principle for the separatrix map (7.8). Any
sequence

f = {fj }, fj =
⎛
⎝ϕj

σj

ϑj

⎞
⎠ , σj+1 = σjϑj+1,

is said to be a path. Let Π be the set of all paths.
In general the index j takes all integer values. However, it is possible to consider

also semifinite and finite paths. Paths finite from the left begin with a triple fj ,
where ϕj = +∞. Paths finite from the right end with fj , where ϕj = −∞. Paths
finite from the left and from the right are called finite.

The action S is defined as the formal sum

S = S(f ) =
∑
j

h(ϕj , ϕj+1, σj , ϑj+1).

The path f 0 is said to be an extremal iff ∂S/∂ϕj |f =f 0 = 0 for any j .

Proposition 7.1. The path f is an extremal if and only if the sequence

(ϕj , ϕj+1, σj , ϑj+1)
T

is a trajectory of (7.11).

The proof is straightforward. Below we identify extremals with Lagrangian tra-
jectories of the separatrix map.

Note that semifinite trajectories belong to separatrices. Finite ones belong to both
stable and unstable separatrices, and therefore they are homoclinic trajectories.

We define the distance ρ on Π in the following way. Let f ′ and f ′′ be paths,
where

f ′
j =

⎛
⎝ϕ′

j

σ ′
j

ϑ ′
j

⎞
⎠ , f ′′

j =
⎛
⎝ϕ′′

j

σ ′′
j

ϑ ′′
j

⎞
⎠ .

We put ρ(f ′, f ′′) = ∞ if the sequences σ ′
j , ϑ

′
j do not coincide with σ ′′

j , ϑ ′′
j or if

for some j only one of the triples is defined. Otherwise we put

ρ(f ′, f ′′) = sup
j

|ϕ′
j − ϕ′′

j |.

Here we put | − ∞ − (−∞)| = | + ∞ − (+∞)| = 0.
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Let Cr(σ ) denote the set of nondegenerate critical points of the function Vσ . The
set Π contains the subset of simple paths (codes). By the definition a path f is
simple if ϕj ∈ Cr(σj ) for any j .

Theorem 7.3. Suppose that the sets Cr(±1) are finite and the constants c1, c2 =
c2(c1) are sufficiently large. Then, for any simple path f ∗ such that ϕ∗

j −ϕ∗
j+1 > c1

for all j , there exists a unique trajectory f̃ in the c−1
2 -neighborhood of f ∗.

Theorem 7.3 is similar to Theorems 7.1–7.2 about the anti-integrable limit. The
simple path f ∗ can be regarded as a code corresponding to the trajectory f̃ .

The proof of Theorem 7.3 conceptually coincides with the proof of Theorem 7.2.
Here again the main tool is the contraction principle. We only present the contracting
operator F having f̃ as a fixed point. All details of the proof can be restored easily.
Any path f which belongs to the c−1

2 -neighborhood of the simple path f ∗ is mapped
to f̂ = F(f ), where the sequences σj , ϑj and σ̂j , ϑ̂j coincide, and

ϕ̂j = (V ′
σj

)−1(ϑjλ
−1e

λ(ϕj −ϕj−1−ωσj−1 ) − ϑj+1λ
−1e

λ(ϕj+1−ϕj −ωσj
))

.

Here V ′
σj

is the derivative of Vσj
and the local inverse (V ′

σj
)−1 is assumed to act

from a neighborhood of zero to a neighborhood of the point ϕ∗
j .

Theorem 7.3 establishes a symbolic dynamics in a neighborhood of separatrices
of an area-preserving map. Recall that we deal only with the main approximation of
the separatrix map. The same result can be easily obtained in the general situation.

The traditional approach to symbolic dynamics near separatrices is presented in
[4, 16, 99]. The multidimensional separatrix map and the corresponding symbolic
dynamics is discussed in [139, 140].



Chapter 8
Hill’s Formula

8.1 General Remarks

In 1886, in his study of stability of the lunar orbit, Hill [61] published a formula
which expresses the characteristic polynomial of the monodromy matrix for a sec-
ond order time periodic equation in terms of the determinant of a certain infinite
matrix. Here is a slightly modified version of this result. Consider the Hill equation

ẍ = a(t)x, x ∈ R, t mod 2π,

where

a =
+∞∑

k=−∞
ake

ikt, ak ∈ C,

is a 2π-periodic function. The stability of the zero solution is determined by the
eigenvalues of the monodromy matrix (the multipliers) ρ and ρ−1. Consider the
infinite matrix

H = (hjk), hjk = k2δjk + ak−j

k2 + 1
, j, k ∈ Z, (8.1)

where δjk is the Kronecker symbol. Hill showed that

ρ + ρ−1 − 2

e2π + e−2π − 2
= det H. (8.2)

Hill computed the determinant approximately replacing H by a 3 × 3 matrix which
gave quite a good approximation. He used equation (8.2) to find the multipliers
approximately. Astronomical tables obtained by this method are well-known in as-
tronomy.

Hill’s argument was not rigorous because he did not prove convergence for the
infinite determinant det H . Several years later Poincaré [105] explained an exact
meaning of the Hill’s infinite determinant and presented a rigorous proof of Hill’s
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formula. Hill’s beautiful result entered textbooks on differential equations, but was
almost forgotten by the dynamical systems community until the end of XXth cen-
tury when an analog of formula (8.2) appeared for discrete Lagrangian systems in
[82] and independently in [131]. Here H was finite and turned out to be the Hessian
matrix associated with the action functional at the critical point, generated by the
periodic solution. In [19] (see also [73]) a general form of the Hill formula was ob-
tained for a periodic solution of an arbitrary Lagrangian system on a smooth man-
ifold. In this case H has a meaning of a properly regularized Hessian of the action
functional at the critical point determined by a periodic solution. Both discrete and
continuous versions of Hill’s formula give non-trivial information on the dynamical
stability of the periodic orbit in terms of its Morse index.

We consider two similar but formally different cases:

• Continuous Lagrangian systems with configuration space M and time periodic
Lagrangian L (x, v, t) on T M × R. Then τ -periodic trajectories x(t) are critical
points of the action functional

A[x] =
∫ τ

0
L (x(t), ẋ(t), t) dt, x(0) = x(τ).

• Discrete Lagrangian systems with Lagrangian L(x, y) on M×M . Then n-period-
ic trajectories are sequences xj = xn+j which are critical points of the action
functional

A(x) =
n∑

j=1

L(xj , xj+1), x = (x1, . . . , xn), xn+1 = x1.

Usually one case can be reduced to the other, but this reduction may be cumber-
some. Hence it makes sense to consider both cases separately.

All versions of Hill’s formula look as follows:

ρ−m det(P − ρI) = β det Hρ, (8.3)

where P is the monodromy 2m × 2m matrix of the periodic solution, Hρ is the
modified Hessian matrix which coincides with the ordinary Hessian for ρ = 1, and
β is a nonzero scaling factor, usually with known sign.

We start with the discrete case since it is technically simpler.

8.2 Discrete Case

Discrete Lagrangian systems (DLS). Let M be a smooth m-dimensional manifold
and L : M2 = M ×M → R a smooth function. Let ∂1, ∂2 be the differentials in the
first and second variables:
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∂1L(x, y) = ∂L(x, y)

∂x
, ∂2L(x, y) = ∂L(x, y)

∂y
, (8.4)

and let
B(x, y) = −∂1∂2L(x, y) = −∂12L(x, y).

In local coordinates,

B(x, y) = −
(

∂2L

∂yj ∂xi

)
(8.5)

is the matrix of mixed partial derivatives of L. In invariant terms, this is a linear
operator B(x, y) : TxM → T ∗

y M . We say that L is a discrete Lagrangian if B is
nondegenerate, i.e.,

det B(x, y) �= 0, x, y ∈ M. (8.6)

Due to condition (8.6) L locally defines a map T : M2 → M2, T (x, y) = (y, z),
where z = z(x, y) is determined by the equation

∂

∂y
(L(x, y) + L(y, z)) = ∂2L(x, y) + ∂1L(y, z) = 0. (8.7)

In general T is a multivalued map with the graph

Γ = {(x, y, y, z) ∈ M2 × M2 : ∂2L(x, y) + ∂1L(y, z) = 0}.
The dynamical system determined by T is called the discrete Lagrangian system
(DLS) with configurational space M and Lagrangian L.

Remark 8.1. We deal with a small neighborhood of a periodic orbit of T . Hence it
is sufficient to assume that condition (8.6) holds in this neighborhood.

It is easy to check (see e.g. [145]) that T is symplectic with respect to the sym-
plectic 2-form ω = B(x, y) dx ∧ dy,

ω(u, v) = 〈B(x, y)u1, v2〉 − 〈B(x, y)v1, u2〉,
u = (u1, u2), v = (v1, v2).

(8.8)

Remark 8.2. Let us pass to Hamiltonian variables by the map S : M2 → T ∗M ,
(x, y) 
→ (x, px), px = −∂1L(x, y). It is locally invertible and replaces T by a
locally defined map T̃ = ST S−1 : T ∗M → T ∗M . The map T̃ is symplectic with
respect to the standard symplectic form dpx ∧ dx on T ∗M , and L is the generating
function of T ∗:

T̃ (x, px) = (y, py), px = −∂1L(x, y), py = ∂2L(x, y).

Such a symplectic map T ∗ is usually called a twist map.

The map T remains the same after multiplication of the Lagrangian by a constant,
after addition of a constant to L and after the so-called gauge transformation
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L(x, y) 
→ L(x, y) + f (x) − f (y)

with an arbitrary smooth f : M → R.
A typical example of DLS is the standard map with its multidimensional gener-

alizations

M = R
m, L(x, y) = 1

2

〈
B(x − y), x − y

〉 − 1

2
(V (x) + V (y)), (8.9)

where B is a constant symmetric nondegenerate m×m matrix. Obviously B satisfies
(8.5). Note that one can replace the potential 1

2 (V (x)+V (y)) by V (x) because they
are gauge-equivalent.

Consider a billiard system in a domain in R
m+1 bounded by a smooth m-dimen-

sional connected oriented hypersurface M . Let l(x, y) = |x −y| be the length of the
segment [x, y] joining x, y. Then the billiard system is a DLS with the Lagrangian l.
First consider a plane billiard system in a domain D ⊂ R

2. For simplicity we assume
that D is homeomorphic to a disk. Then we can use for a coordinate on the boundary
∂D = M the arc length, counted counter-clockwise. Then it is well known (see e.g.
[73]) that

∂2l(x, y)

∂x∂y
= sin α sin β

l
= (n(y) − n(x), e)

l
,

where α, β are the angles between [x, y] and the corresponding tangent lines (see
Fig. 8.1), n is the outer unit normal vector, and e = −→

xy/l. Thus

∂2l(x, y)

∂x∂y
> 0. (8.10)

It is convenient to replace l by L(x, y) = −l(x, y) and to assume that B(x, y) =
−∂12L(x, y) : TxM → TyM (we use the Euclidean metric to identify T M

Fig. 8.1 A piece of a billiard trajectory.
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with T ∗M . Then we obtain

〈B(x, y)v,Πv〉 > 0, Πv := −Π0v, (8.11)

where Π0v is the parallel transport of v in the ambient space R
2.

In more dimensions, we define a linear isomorphism Π(x, y) : TyM → TxM as
the parallel projection along the segment [x, y] composed with ι : v 
→ −v.

Proposition 8.1. 〈B(x, y)v,Π(x, y)v〉 > 0 for all v ∈ TxM . In particular B(x, y) :
TxM → TyM multiplies orientation by (−1)m, i.e., taking any two local coordi-
nate systems which determine the same orientation on M near x and y, we have:
sign(det B) = (−1)m.

Proof. Take two points x0, y0 ∈ M = ∂D and their small neighborhoods U,V

in M . Let π : V → U be the projection along lines parallel to [x0, y0], and let
Π = −Dπ(y0) : Ty0M → Tx0M . We claim that the quadratic form Q(v) =
〈B(x, y)v,Πv〉 is positive definite. Indeed, let Γ be the plane containing the seg-
ment [x0, y0] and v. Then u = Πv also lies in this plane. Consider the billiard
system in the 2-dimensional domain D ∩ Γ . By the inequality for a planar bil-
liard system, we obtain that 〈Bv,Πv〉 > 0. The statement about the determinant is
proved as follows: the operator G = Π∗B+B∗Π is positive definite and hence pre-
serves orientation. Hence Π∗B preserves orientation (the sum of a positive definite
and antisymmetric matrix has positive determinant). �

In [145] the reader can find other examples of DLS (mostly integrable) including
multivalued ones.

For a continuous Lagrangian system (CLS) with Lagrangian L (x, v), an analog
of the operator B(x, y) is the matrix ∂22L (x, v) of second partial derivatives. In-
deed, consider a DLS with the Lagrangian L(x, y) = L (x, (y − x)/ε). Then in
the limit ε → 0, orbits of DLS converge to orbits of CLS with the Lagrangian L .
A computation shows that

ε2B(x, y) = DvvL (x, v) + O(ε), v = (y − x)/ε.

In particular, for an analog of a positive definite Lagrangian system,

det B(x, y) > 0.

Unfortunately for m ≥ 2 there is no clear discrete analog of positive definite
continuous Lagrangian systems, i.e., of the condition DvvL (x, v) > 0. Indeed, in
general the matrix B is not symmetric and, moreover, its symmetry does not have
an invariant meaning.

The Poincaré and Hesse matrices. Let (xi)i∈Z be a periodic trajectory of a DLS,
i.e., T (xj−1, xj ) = (xj , xj+1) and xj+n = xj for all j . The number n is said to
be the period of the trajectory. The periodic orbit is determined by a point x =
(x1, . . . , xn) ∈ Mn. A cyclic permutation of x gives the same periodic trajectory.
Thus x should be viewed as an element of M = Mn/Zn. By (8.7),
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∂2L(xj−1, xj ) + ∂1L(xj , xj+1) = 0, j = 1, . . . , n, (8.12)

where by definition x0 = xn and x1 = xn+1. Thus x is a critical point of the function
(the action functional)

A (x) = L(x1, x2) + L(x2, x3) + · · · + L(xn, x1), x ∈ Mn.

The point p = (x1, x2) is a fixed point of the map T n : M2 → M2. The perturbed
dynamics near the trajectory is determined by the map T n in a neighborhood of p.
The linear approximation is determined by the linear Poincaré map P = DT n(p) :
TpM2 → TpM2. In local coordinates, P becomes the monodromy matrix

P = ∂T n(x, y)

∂(x, y)

∣∣∣∣
(x,y)=(x1,x2)

.

It is defined uniquely up to a similarity P 
→ S−1PS. Eigenvalues of P are called
multipliers of the periodic orbit x. They determine dynamical properties of the peri-
odic trajectory in the linear approximation.

Let

H = ∂2A (x)

∂x2

be the Hessian matrix of A at the critical point x. Denote

Bk = B(xk, xk+1), xn+1 = x1.

Theorem 8.1 (Hill’s formula).

det(P − I ) = (−1)m det H∏n
k=1 det Bk

. (8.13)

Invariant version of Hill’s formula. The left-hand side of (8.13) obviously does
not depend on the choice of local coordinates in M . However an invariant meaning
of the right-hand side

Δ = det H∏n
k=1 det Bk

is a priori not clear. To explain why Δ is coordinate independent, note that, for any
critical point x ∈ Mn, the Hessian of A at x determines a symmetric bilinear form
h on X = TxM

n = Tx1M × · · · × TxnM:

h(u, v) =
n∑

j=1

(〈Ajuj , vj 〉 − 〈Bj−1uj−1, vj 〉 − 〈B∗
j uj+1, vj 〉),

u0 = un, un+1 = u1,

where u = (u1, . . . , un), v = (v1, . . . , vn). Here
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Aj = ∂22L(xj−1, xj ) + ∂11L(xj , xj+1)

is the Hessian of the function x 
→ L(xj−1, x) + L(x, xj+1) at x = xj , i.e., a sym-
metric operator Aj : Txj

M → T ∗
xj

M , and Bj = B(xj , xj+1) can be viewed as a
linear operator Txj

M → T ∗
xj+1

M . As usual, 〈 , 〉 is the canonical pairing of a vector
and covector.

The form h is represented by a symmetric operator H : X → X∗:

h(u, v) = 〈Hu, v〉, u, v ∈ X,

where
(Hu)j = Ajuj − Bj−1uj−1 − B∗

j uj+1, j = 1, . . . , n.

Remark 8.3. The variational system of the periodic trajectory x is defined as

Ajuj − Bj−1uj−1 − B∗
j uj+1 = 0, j ∈ Z. (8.14)

This is the linear approximation to the system (8.12) near the periodic trajectory. If
uj is any solution of the variational system, then P(uj , uj+1) = (uj+n, uj+n+1).

Define a symmetric linear operator A : X → X∗ and a nonsymmetric linear
operator B : X → X∗ by

(Au)j = Ajuj , (Bu)j = −Bj−1uj−1, (B∗u)j = −B∗
j uj+1.

Then
H = A + B + B∗.

If we introduce local coordinates, then B becomes an mn × mn matrix, and it is
easy to see that

det B =
n∏

k=1

det Bk.

By (8.4), B is non-degenerate. Thus B−1H : X → X and (B∗)−1H : X → X are
well-defined operators, and

Δ = det(B−1H) = det((B∗)−1H).

Another way to give an invariant meaning to (8.13) is to regard det H and det B
as linear operators

∧mnX → ∧mnX∗.

Since these spaces are 1-dimensional, det H/ det B is a well defined scalar.
The third way to give an invariant meaning to Δ is to introduce on M a Rie-

mannian metric ( , ) which defines a scalar product on X = TxM
n. Then H is re-

placed by a self-adjoint operator H : X → X defined by (Hu, v) = 〈Hu, v〉. The
linear operators Bj : Txj

M → T ∗
xj+1

M are replaced by Cj : Txj
M → Txj+1M ,

where (Cju, v) = −〈Bju, v〉. Define an operator C : Tx1M → Tx1M by C =



150 8 Hill’s Formula

CnCn−1 · · ·C1. Then
Δ = det H/ det C.

The numerator and denominator depend on the Riemannian metric, but not the ratio.

Generalized Hill determinant. Let us define a generalization of the Hessian H
as follows. Let X be the infinite dimensional space of all complex vector fields
(vj )j∈Z, vj ∈ Txj

M . For any ρ ∈ C, consider the subspace Xρ ⊂ X of complex
quasiperiodic vector fields (vj )j∈Z such that vj+n = ρvj . If |ρ| = 1, the Hessian h

defines a Hermitian form hρ on Xρ :

hρ(u, v̄) =
n∑

j=1

(〈Ajuj , v̄j 〉 − 〈Bj−1uj−1, v̄j 〉 − 〈B∗
j uj+1, v̄j 〉), un+j = ρuj .

Since v = (v1, . . . , vn) determines (vj )j∈Z uniquely, hρ can be viewed as a Her-
mitian form on X = X1.

We have hρ(u, v̄) = 〈Hρu, v̄), where

(Hρu)j = Ajuj − Bj−1uj−1 − B∗
j uj+1, u0 = ρ−1un, un+1 = ρu1.

The operator Hρ makes sense also for |ρ| �= 1, but then it is non-Hermitian. We
usually regard Hρ as an operator in X, defining Hρu, u = (u1, . . . , un), by setting
u0 = ρ−1un, un+1 = ρu1.

In coordinates, Hρ is an mn × mn matrix which coincides with H with two
exceptions: in the upper right m × m block −Bn is replaced by −ρ−1Bn and in the
lower left m × m block −B∗

n is replaced by −ρB∗
n . In particular, H1 = H.

Here is a generalization of Hill’s formula:

Theorem 8.2 ([82, 131]). For any ρ ∈ C

ρ−m det(P − ρI) = (−1)m
det Hρ

det B
. (8.15)

Taking ρ = 1 in (8.15), we obtain (8.13).

Proposition 8.2. Both sides in (8.15) are polynomials of degree m in the variable
χ = (ρ + ρ−1)/2 with coefficient at χm equal 1.

Indeed, the characteristic polynomial F(ρ) = det(P − ρI) of the symplectic
operator P is reciprocal: F(ρ) = ρ2mF(ρ−1). Therefore

G(ρ) = ρ−m det(P − ρI) = G(ρ−1)

is a symmetric polynomial in ρ and ρ−1. Thus G is a function of χ .
It is more natural to represent Hρ in a different way. Define an operator H :

X → X by

(H u)j = Ajuj − Bj−1uj−1 − B∗
j uj+1, j ∈ Z.
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Then Hρ is the restriction of H to the finite-dimensional space Xρ of quasiperiodic
vector fields. We identify X∗

ρ with the set of p = (pj ) ∈ E∗
j , j ∈ Z, such that

pj+n = ρ−1pj . The pairing is

〈p, u〉 =
n∑

j=1

〈pj , uj 〉.

Then Hρ : Xρ → X∗
ρ−1 . Let us make a change of variables Cρ : X = X1 → Xρ ,

C∗
ρ : X∗

ρ → X∗
1 ,

(Cρw)j = ρj/nwj , (C∗
ρp)j = ρj/npj .

The operator Hρ : Xρ → X∗
ρ−1 is replaced by Ĥρ = C∗

ρ−1 HρCρ , where

(Ĥρw)j = Ajwj − ρ−1/nBj−1wj−1 − ρ1/nB∗
j wj+1, wn+j = wj .

Hence
Ĥρ = A + ρ−1/nB + ρ1/nB∗.

Thus
lim|ρ|→∞ ρ−1/nĤρ = B∗.

We obtain
lim|ρ|→∞(ρ−m det((B∗)−1Hρ)) = 1.

Hill’s formula (8.15) follows immediately. Indeed, both ρm det((B∗)−1Hρ) and
det(P −ρI) are polynomials in ρ of order 2m with leading coefficient 1. Both vanish
precisely when the variational system (8.14) of the periodic trajectory has a nonzero
solution such that uj+n = ρuj .

Applications. Identity (8.13) implies the following corollary.

Corollary 8.1. The dynamical non-degeneracy of a periodic trajectory det(P−I ) �=
0 is equivalent to the geometric non-degeneracy det(H) �= 0.

Below in this section we suppose that det B(x, y) is positive for all x, y ∈ M .
Then (8.13) gives

(−1)m det(H) det(P − I ) > 0.

Corollary 8.2. Suppose that m is odd and ind H is even (for example, ind H = 0,
i.e., x is a non-degenerate local minimum of the action A ). Then x is dynamically
unstable: there is a real multiplier ρ > 1. When m is even, the same holds when
ind H is odd.

Corollary 8.3. Suppose that m is odd, n is even and x is a non-degenerate local
maximum of the action A . Then x is dynamically unstable: there is a real multiplier
ρ > 1.
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Indeed, it is sufficient to use the following result.

Proposition 8.3. If det(P − I ) < 0, there is a real multiplier ρ > 1.

Proof. Consider the characteristic polynomial F(ρ) = det(P − ρI). Its roots are
the multipliers of the periodic solution x. We have F(+∞) = +∞ and F(1) =
det(P − I ) < 0. Then there exists a real root ρ > 1. �
Corollary 8.4. If ind H−1 is odd, there is a real multiplier ρ < −1.

Indeed, for ρ = −1 the Hill formula (8.15) gives

det(H−1) det(I + P) > 0.

Corollary 8.5. Suppose the iterate x2 of a periodic trajectory x has ind H(x2) not
of the same evenness as ind H(x). Then x is unstable.

Proof. Since 2n-periodic vector fields along x2 are split into n-periodic and n-
antiperiodic ones,

ind H(x2) = ind H(x) + ind H−1(x).

If ind H−1(x) is odd, x is unstable by Corollary 8.4. Otherwise ind H(x) and
ind H(x2) are even and odd simultaneously. �

In the case m = 1 there is a possibility to identify hyperbolicity or ellipticity of
a periodic trajectory in terms of the index.

Corollary 8.6. Suppose that m = 1. Then a nondegenerate periodic trajectory x is
hyperbolic iff ind H(x2) is even and elliptic iff ind H(x2) is odd.

For a straightforward application of the Hill formula consider the plane convex
billiard system (m = 1). If l(x, y) is the length of the line segment [x, y], where
x is a global cyclic coordinate on the billiard curve, then by (8.10) B(x, y) < 0.
Corollaries 8.2–8.6 can be used if we take as a Lagrangian L(x, y) = −l(x, y). We
obtain the following two corollaries.

Corollary 8.7. Suppose that x is a non-degenerate local maximum of the plane bil-
liard length functional (i.e., a minimum of the action). Then x is hyperbolic by Corol-
lary 8.2.

Corollary 8.8. Let x be a non-degenerate local minimum of the plane billiard length
functional and let n be even. Then x is hyperbolic by Corollary 8.3.

In particular, by the Birkhoff theorem [16] (see also [73], any convex billiard sys-
tem has (at least) two periodic trajectories of period n with rotation number k < n,
where one of them has a maximum length, and hence is generically hyperbolic. The
other has index 1, and so has no positive multipliers > 1.

The requirement for n to be even in Corollary 8.8 at the first glance looks some-
what strange because the billiard trajectory minimizing A is naturally associated
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Fig. 8.2 Deformation of a parabolic periodic orbit.

with a locally shortest closed geodesic on a two-dimensional Riemannian manifold.
Such geodesics due to Poincaré [105] are known to be hyperbolic. However one
should keep in mind that this Poincaré’s result is valid only for orientable geodesics
(see details in Sect. 8.3) while a periodic billiard trajectory with an odd period is not
orientable.

A simple example of an elliptic action minimizing billiard trajectory with odd pe-
riod can be constructed as follows. Let the billiard curve be an acute-angled triangle
ABC. Then by a well-known theorem from planimetry the projections A′, B ′, C′
of vertices to the opposite sides form a triangle (the orthotriangle) which presents a
local non-degenerate minimum of the billiard action (Fig. 8.2a). The corresponding
periodic trajectory is parabolic: its multipliers are ρ1,2 = −1.

A small deformation of the billiard curve does not destroy the periodic trajectory
A′B ′C′ and just slightly deforms it. If the boundary curve becomes concave, we
obtain a Sinai billiard [27]. In this case the trajectory is hyperbolic (Fig. 8.2b). If the
boundary curve becomes strictly convex (the curvature gets positive: (Fig. 8.2c))
then the trajectory becomes elliptic still having a locally minimal action provided
the deformation is small.

8.3 Continuous Case

Let a smooth m-dimensional manifold M be the configuration space of a Lagrangian
system. The Lagrangian L (x, ẋ, t), x ∈ M , ẋ ∈ TxM , is defined on the extended
phase space T M × R. We assume it to be smooth, strictly convex in the velocity
v and τ -periodic in time. According to Hamilton’s principle, τ -periodic trajectories
of the Lagrangian system are critical points of the action functional

A (γ ) =
∫ τ

0
L (γ (t), γ̇ (t), t) dt

on the loop space Ω of smooth τ -periodic curves γ : [0, τ ] → M such that γ (0) =
γ (τ).
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The goal of this section is to prove an analog of Theorem 8.1 for continuous
Lagrangian systems.

Remark 8.4. A continuous Lagrangian system generates a discrete Lagrangian sys-
tem as follows. Let γ (t), 0 ≤ t ≤ τ , be a solution joining the points x and y. If
these points are not conjugate along γ , then γ = γx,y is locally determined by x, y

and it depends smoothly on them. This defines a function

L(x, y) = A (γx,y)

on an open set U ⊂ M2. In general L is multivalued. It is easy to see that solutions
x(t), 0 ≤ t ≤ nτ , of the Lagrangian system correspond to trajectories of DLS
defined by L.

Remark 8.5. Suppose that DLS is generated by a continuous Lagrangian system
with an autonomous Lagrangian on T M . Define a vector field w on M2 by w(x, y) =
(ẋ(0), ẋ(τ )), where x : [0, τ ] → M joins x, y, and let hs : M2 → M2 be
the corresponding transformation group (the phase flow). Then T = hτ , and so
T ◦ hs = hs ◦ T . In general the group hs does not preserve the discrete Lagrangian.
However, DLS has a first integral—the energy of the continuous Lagrangian system.

Let
Bt = D2

ẋL (x, ẋ, t)
∣∣
x=γ (t),ẋ=γ̇ (t)

be the Hessian of L with respect to the velocity. This is a positive definite quadratic
form on Et = Tγ (t)M and it defines a scalar product ( , ) on Et by (u, v) = 〈Btu, v〉.

The second variation of the functional A at the critical point γ is a bilinear form
h(ξ, η) on the set of smooth τ -periodic vector fields along γ . It has the form

h(ξ, η) =
∫ τ

0

(
(∇ξ(t),∇η(t)) + (W(t)ξ(t),∇η(t)) + (V (t)ξ(t), η(t))

)
dt.

Here ∇ξ(t) is a covariant derivative of the vector field ξ(t) ∈ Et , i.e. a linear differ-
ential operator on the set of smooth vector fields ξ(t) ∈ Et which is consistent with
the metric:

d

dt
(ξ(t), η(t)) = (∇ξ(t), η(t)) + (ξ(t),∇η(t)), ∇(f (t)ξ(t)) = ḟ ξ + f ∇ξ

for any smooth vector fields ξ(t), η(t) ∈ Et and a smooth function f (t).1 Here
V (t),W(t) are linear operators in Et .

Without loss of generality it may be assumed that V is self-adjoint with respect to
the metric V (t) = V ∗(t). For ξ = η, the integrand in h is the quadratic Lagrangian
for the variational system. It is defined up to adding a full derivative.

By integration by parts, h can be represented in the form

1 The covariant derivative is not uniquely defined: for an antisymmetric operator A(t), ∇̃ = ∇ +
A(t) is also a covariant derivative.
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h(ξ, η) =
∫ τ

0

(
(Dξ(t),Dη(t)) + (U(t)ξ(t), η(t))

)
dt,

where
Dξ = ∇ξ + W − W ∗, U = V − W − W ∗.

Here D is a modified covariant derivative:

(Dξ, η) + (ξ,Dη) = d

dt
(ξ, η).

Thus D is skew-symmetric relative to the L2 scalar product

(ξ, η) =
∫ τ

0
(ξ(t), η(t)) dt.

Therefore
h(ξ, η) = ((−D2 + U)ξ, η).

The variational system of the trajectory γ (linearized Lagrange system) has the form

−D2ξ(t) + U(t)ξ(t) = 0. (8.16)

We extend the bilinear form h to a Hermitian form h(ξ, η̄) on the space X of
complex vector fields ξ(t) from the Sobolev space2 W 1,2 such that ξ(0) = ξ(τ ):

h(ξ, η̄) =
∫ τ

0

(
(Dξ(t),Dη(t)) + (U(t)ξ(t), η(t))

)
dt. (8.17)

Thus
h(ξ, η̄) = (Hξ, η), H = −D2 + U : X → X∗.

We define on X the structure of a complex Hilbert space by setting

〈〈ξ, η̄〉〉 = (Dξ,Dη) + (ξ, η) = ((−D2 + I )ξ, η̄) = (Bξ, η̄), B = −D2 + I.

Then
h(ξ, η̄) = 〈〈Hξ, η̄〉〉,

where

H = B−1H = (−D2 + I )−1(−D2 + U) = I + (−D2 + I )−1(U − I )

is a self-adjoint bounded operator H : X → X.
The operator (−D2 +I )−1 is compact, and the operator U −I is bounded. Hence

H − I is compact, and it is easy to see that the trace of H − I is finite. Thus, the
operator H − I is of trace class and hence the determinant det H exists (see e.g.
[112]). We call it the Hill determinant of the trajectory γ .

2 By definition ξ(t) ∈ W 1,2 iff
∫ τ

0 ((∇ξ,∇ξ) + (ξ, ξ)) dt < ∞.
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Let p = (γ (0), γ̇ (0)) and let P : Tp(T M) → Tp(T M) be the linear Poincaré
mapping of the periodic trajectory γ . Using the covariant derivative, we identify
Tp(T M) with E0⊕E0. Then P is the monodromy operator of the variational system

P(ξ(0),Dξ(0)) = (
ξ(τ ),Dξ(τ)

)
.

Let Q : E0 → E0 be the monodromy operator of the equation of parallel transport
Dξ(t) = 0, i.e. Qξ(0) = ξ(τ ). Let σ = det Q. Note that Q is orthogonal, and so
det Q = ±1. This is a purely topological quantity: σ = ±1 depending on whether
the trajectory γ preserves or reverses the orientation. If M is orientable, then σ = 1
always.

Theorem 8.3. For any τ -periodic trajectory γ

det H = σ(−1)m
emτ det(I − P)

det2(eτ I − Q)
. (8.18)

Since Q is an orthogonal operator, the denominator in (8.18) does not vanish.

Remark 8.6. The definition of the Hill determinant is similar to that given in the
discrete case. Indeed, define a quadratic form b on X by

b(ξ, η̄) = (Dξ,Dη) + (ξ, η) = ((−D2 + I )ξ, η̄).

Then h and b both define operators H, B : X → X∗, where H = −D2 + U and
B = −D2 + I . Then H = B−1H, as in the discrete case. Note that the choice of b is
very natural for DLS, but not for CLS. This is the reason for a strange denominator
in (8.18).

The following generalization of the Hill determinant is essentially contained in
Hill’s work [61]. For a given ρ ∈ C, |ρ| = 1, let Xρ be the space of complex quasi-
periodic W 1,2 vector fields ξ(t) ∈ Et , 0 ≤ t ≤ τ , along γ such that ξ(τ ) = ρξ(0).
We define on Xρ an index form [67] by the formula of second variation (8.17).

Let μ = τ−1 ln ρ. Then μ ∈ iR is defined up to addition of ω = 2πi/τ . For
definiteness we choose μ so that 0 ≤ μτ/i < 2π . We identify X and Xρ , assigning
to a vector field ξ ∈ X the vector field eμt ξ(t) in Xρ . We obtain a Hermitian form
hρ on X which is a generalization of the second variation and has the form

hρ(ξ, η̄) = h(eμt ξ, eμtη) = ((D + μI)ξ, (D + μI)η) + (Uξ, η̄)

= −((D + μI)2ξ, η̄) + (Uξ, η̄) = (Hρξ, η),

where Hρ = −(D + μI)2 + U . We used the facts that μ̄ = −μ and D is real and
antisymmetric. Next define an operator Hρ by

hρ(ξ, η̄) = 〈〈Hρξ, η̄〉〉.
Then

Hρ = B−1Hρ = (−D2 + I )−1(−(D + μI)2 + U)
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is a bounded operator in X.
We henceforth assume that ρ may take any complex values. Note that Hρ is self-

adjoint for |ρ| = 1, but not in general. Although the operator Hρ is not of trace
class for ρ �= 1, it is possible to define the Hill determinant det Hρ as follows.
Define det Hρ by means of the finite-dimensional approximation

det Hρ = lim
N→∞ det PNHρP ∗

N, (8.19)

where PN : X → XN is the orthogonal projection onto the finite-dimensional
eigenspace of the operator D corresponding to the eigenvalues ν ∈ Λ such that
|ν| ≤ N , and P ∗

N : XN → X.

Theorem 8.4. The determinant is well defined and

det Hρ = σ(−1)m
emτ det(ρI − P)

ρm det2(eτ I − Q)
. (8.20)

For ρ = 1 we obtain (8.18).
In the one-dimensional oriented case M = R, we have m = 1, σ = 1, Q = 1,

det(eτ I − Q) = eτ − 1, and

ρ−1 det(ρI − P) = ρ + ρ−1 − 2 + det(I − P).

Hence (8.20) gives

det Hρ = det H − ρ + ρ−1 − 2

eτ + e−τ − 2
. (8.21)

Hence multipliers of the periodic orbit are roots of the equation

ρ + ρ−1 − 2

eτ + e−τ − 2
= det H.

This result was obtained by Hill [61].

Example (The Hill determinant for the Hill equation). Consider the Hill equation

ξ̈ − a(t)ξ = 0, a(t) =
∑
n∈Z

ane
int.

Here Dξ = ξ̇ and Uξ = a(t)ξ . Let us represent the operator Hρ in the basis {eint}.
If

ξ(t) =
∑
n∈Z

ξne
int,

then

(−D2 + I )−1(−(D +μI)2 +U) ξ(t) =
∑
n∈Z

ξn

n2 + 1

(
−(in+μ)2 +

∑
k∈Z

ake
ikt

)
eint,
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and so Hρ is represented by the infinite matrix (hjk(ρ)), where

hjk(ρ) = −(ik + μ)2δjk + ak−j

k2 + 1

(compare with (8.1)). The determinant of this matrix is given by (8.21) and it is a
variation of the determinant computed by Hill. The original Hill’s determinant was
defined in a slightly different way: instead of (n2 + 1)−1, Hill used regularizing
multiplier (n2 − u0)

−1. This regularization does not work well in many dimensions
due to the possibility of a resonance.

Some applications. We mention a few easy corollaries of Theorem 8.4.
Suppose that the Lagrangian is quadratic in the velocity and does not depend

explicitly on time. Then it defines a Riemannian metric ( , ) on M , and the periodic
orbit γ is a closed geodesic of this metric. A closed geodesic γ always has two unit
multipliers, and so det H = det(I − P) = 0. Let H⊥

ρ be the restriction of Hρ to the
invariant subspace

Y = X⊥ = {ξ ∈ X : (ξ(t), γ̇ (t)) ≡ 0}
of vector fields orthogonal to γ . Let P ⊥ be the monodromy operator corresponding
to the restriction of the variational equation to the set Y of vector fields orthogonal
to γ . Then the initial condition satisfies ξ(0) ⊥ γ̇ (0), ξ̇ (0) ⊥ γ̇ (0) (here ξ̇ is the
covariant derivative, so that (d/dt)(ξ, γ̇ ) = (ξ̇ , γ̇ )). Let Q⊥ be the mapping of
parallel transport along γ of vectors orthogonal to γ . Then we have the following
corollary.

Corollary 8.9. In the autonomous case

det H⊥
ρ = σ(−1)m−1 e(m−1)τ det(ρI − P ⊥)

ρm−1 det2(eτ I − Q⊥)
. (8.22)

Indeed, det Hρ can be represented in the form of the product of det H⊥
ρ and the

determinant Δ of the restriction of Hρ to the set Z = {ξ ∈ X : ξ(t) = λ(t)γ̇ (t)}
of vector fields parallel to γ . We restrict the Lagrangian to the two-dimensional
subspace T γ ⊂ T M and apply Theorem 8.4 to the system obtained. On the left
side of (8.20) in this case will be the determinant Δ. Thus by (8.21),

Δ = −eτ (ρ − 1)2

ρ(eτ − 1)2
.

But
det(ρI − P) = (ρ − 1)2 det(ρI − P ⊥),

det(eτ I − Q) = (eτ − 1) det(eτ I − Q⊥),

which was required to prove.
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Remark 8.7. The investigation of any autonomous natural Lagrangian system in a
potential force field reduces to the investigation of the problem of geodesics in the
Jacobi metric. However, the period will not then be fixed, and the Morse index is not
preserved in general. To eliminate nondegeneracy with fixed period, we need more
work.

A periodic trajectory of a Lagrangian system (respectively, a closed geodesic on a
Riemannian manifold) is called nondegenerate in the Poincaré sense if the spectrum
of the matrix P (respectively, P ⊥) does not contain unity. A periodic trajectory
(respectively, a closed geodesic) is called nondegenerate in the sense of Morse if the
determinant det H (respectively, det H⊥) is nonzero. It follows easily from (8.20)
that nondegeneracy in the sense of Poincaré is equivalent to nondegeneracy in the
sense of Morse.

Let |ρ| = 1. Define the ρ-index indργ of a periodic trajectory (a closed geodesic)
as the index of the Hermitian form hρ . Then ind γ = ind1γ is the Morse index of γ .
It is equal to the number of negative eigenvalues of the operator H (or H⊥). Suppose
that the trajectory γ is nondegenerate. Then

(−1)indρ γ = sign det Hρ = σ(−1)m sign(ρ−m det(ρI − P)).

In the geodesic case we have

(−1)indρ γ = sign det H⊥
ρ = σ(−1)m−1 sign(ρ1−m det(ρI − P ⊥)).

The argument of the sign function is real for |ρ| = 1, since the characteristic poly-
nomial is reciprocal.

Suppose that the periodic trajectory (or closed geodesic) is nondegenerate and
such that σ(−1)m+ind γ < 0 (σ(−1)m+ind γ > 0). Then det(I − P) < 0 (det(I −
P ⊥) < 0), so that the characteristic polynomial F(ρ) = det(λI −P) has a real root
λ > 1. Therefore, the trajectory γ is unstable. In particular, nondegenerate closed
geodesics of locally minimal length on an even-dimensional orientable manifold are
unstable.

Suppose that m = 1 and the 2τ -periodic trajectory γ 2 is γ traversed twice. If γ 2

is nondegenerate, then γ is of hyperbolic (elliptic) type if and only if ind γ 2 is even
(odd).

Indeed, the multipliers λ1 = λ−1
2 of γ 2 are equal to the squares of the multipliers

of γ . Hence, hyperbolicity of γ 2 is equivalent to the conditions that λ1, λ2 are real
and positive or, equivalently, the condition sign(det(I − P 2)) = (−1)1+ind γ 2 = −1
(γ 2 always preserves orientation). Similarly, ellipticity of γ 2 is equivalent to the
condition (−1)1+ind γ 2 = 1. It remains to use the fact that γ and γ 2 are simultane-
ously elliptic or hyperbolic.

The corresponding assertion for geodesics is as follows. Let γ be a closed geo-
desic on a 2-dimensional Riemannian manifold. If γ 2 is non-degenerate, then γ has
hyperbolic (elliptic) type if and only if ind γ 2 is even (odd).

Suppose now that ρ = −1. We have (−1)ind−1 γ = σ sign F(−1), where F is
the characteristic polynomial. Thus if ind−1 γ is odd, there exists a real multiplier
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ρ < −1. Note that, for ρ = −1, the space Xρ corresponds to antiperiodic vari-
ations ξ(τ ) = −ξ(0). Since 2τ -periodic vector fields are sums of τ -periodic and
τ -antiperiodic, we obtain

ind−1 γ = ind γ 2 − ind γ.

Proof (of Theorem 8.4). The proof follows the proof of Hill’s result [61]. The real
skew-Hermitian operator D = D = −D∗ has compact resolvent (D + μI)−1. Its
spectrum Λ ⊂ iR coincides with the set of characteristic exponents of the equation
Dξ(t) = 0, i.e., with the set of ν ∈ C such that det(eντ I − Q) = 0. Thus

Λ = {νj + ωZ, j = 1, . . . , m}, ω = 2πi/τ.

If ν ∈ Λ, then −ν and ν + ω belong to Λ.
We have Hρ = ST , where

S = −(−D2 + I )−1(D + μI)2, T = I − (D + μI)−2U.

Suppose that μ /∈ Λ = −Λ. Since PND = DPN , we have

det Hρ = det S det T .

The finite-dimensional approximation (8.19) of the determinant

f (μ) = det T = lim
N→∞ det PNT P ∗

N

converges absolutely for μ /∈ Λ, since the operator (D + μI)−2U is of trace class.
Thus, f is a holomorphic function on C \ Λ having at points of Λ poles of mul-
tiplicity no greater than double the multiplicity of the corresponding points of the
spectrum of D [112].

The function f is periodic with period ω = 2πi/τ : f (μ + ω) ≡ f (μ). Indeed,
if ξ ∈ X, then eωt ξ ∈ X and

(I − (D + μI)−2U)eωt ξ = eωt (I − (D + (μ + ω)I)−2U)ξ.

Thus we can write f (μ) = F(eμτ ), where F is a holomorphic function having
poles ρ = eμt at the roots of det(ρI − Q).

The poles of F are contained among the poles of det−2(ρI − Q). It is therefore
possible to choose a polynomial g(ρ) of degree no higher than 2m − 1 such that
the functions F(ρ) and g(ρ) det−2(ρI − Q) have the same principal parts of the
Laurent expansion at each pole. Since F(ρ) → 1 as |ρ| → +∞, by Liouville’s
theorem,

F(ρ) = 1 + g(ρ) det−2(ρI − Q). (8.23)

The determinant det S converges conditionally, but it can be computed explicitly.
By (8.19),
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det(−(−D2 + I )−1(D + μI)2) = lim
N→∞

∏
ν∈Λ,|ν|≤N

(ν + μ)2

ν2 − 1

= lim
N→∞(−μ2)k

∏
ν∈Λ,|ν|≤N,iν>0

(
ν2 − μ2

ν2 − 1

)2

= (−1)k
∏
ν∈Λ

ν2 − μ2

ν2 − 1
,

where k is the multiplicity of zero in the spectrum of D. We have used the fact that
Λ = −Λ.

From the form of the spectrum of the operator D it follows that the last product
converges absolutely. Let us show that

∏
ν∈Λ

ν2 − μ2

ν2 − 1
= emτ det2(ρI − Q)

ρm det2(eτ I − Q)
.

We will use the formula (see [54])

∏
n∈Z

(
1 − μ2

(ν + ωn)2

)
= cosh μτ − cosh ντ

1 − cosh ντ
, ν /∈ ωZ.

Let ρ1, . . . , ρm be the roots of the characteristic polynomial det(ρI − R). Then
νj = τ−1 ln ρj , j = l, . . . , m. Suppose first that νj /∈ ωZ. We have

∏
ν∈Λ

ν2 − μ2

ν2 − 1
=

∏
ν∈Λ

(
1 − μ2

ν2

)(
1 − 1

ν2

)−1

=
m∏

j=1

∏
n∈Z

(
1 − μ2

(νj + ωn)2

)(
1 − 1

(νj + ωn)2

)−1

=
m∏

j=1

cosh μτ − cosh νj τ

cosh τ − cosh νj τ
=

m∏
j=1

ρ + ρ−1 − ρj − ρ−1
j

eτ + e−τ − ρj − ρ−1
j

= emτ det2(ρI − Q)

ρm det2(eτ I − Q)
.

By continuity this holds also for νj ∈ ωZ. Thus

det T = (−1)k emτρ−m det2(ρI − Q)

det2(eτ I − Q)
.

By (8.19) and (8.23),
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det Hρ = (−1)k
emτ (det2(ρI − Q) + g(ρ))

ρm det2(eτ I − Q)
.

Thus, ρm det Hρ is a polynomial of degree 2m in ρ with leading coefficient equal to
(−1)kemτ det−2(eτ I − Q).

Let us show that, if the operator Hρ is nonreversible, then det Hρ = 0. For ρ = 1,
when H is of trace class, the determinant is uniformly convergent; this follows from
the general properties of the determinant [112]. In general additional arguments are
needed. Suppose first that μ /∈ Λ. Then Hρ = ST , where S is reversible and T of
trace class. If Hρ is nonreversible, then so is T , and so det T = 0. Then it follows
that det Hρ = 0. If μ ∈ Λ, we can repeat the same computation replacing S by
S = −(−D2 + I )−1((D +μI)2 +αI), and similarly for T . Then S is reversible for
an appropriate choice of α, so the same argument works.

The kernel of the operator Hρ consists of τ -periodic vector fields ξ such that
(−D2 +U)eμtξ(t) = 0. Therefore, the roots of the polynomial ρmdet Hρ and of the
characteristic polynomial det(ρI − P) of the variational equation coincide. Thus,

ρm det Hρ = (−1)k
emτ det(ρI − P)

det2(eτ I − Q)
.

We remark that k is the dimension of the subspace on which the orthogonal operator
R is the identity, while σ = (−1)l , where l is the dimension of the subspace on
which R is a reflection. Since the dimension m−k−l of the complementary subspace
is even, formula (8.20) has been proved. �



Chapter 9
Appendix

9.1 Diophantine Frequencies

In this appendix we consider some problems related to the resonant, Diophantine
and other arithmetic properties of frequency vectors. Here we deal with expressions
of the form 〈k, ν〉, where k ∈ Z

m and ν ∈ R
m is a constant frequency vector. In the

perturbation theory these expressions appear as small denominators. Below for any
vector v = (v1, . . . , vm)T we put

‖v‖ = max
1≤j≤m

|vj |.

1. Only a few of the small denominators are really small. The majority of them
are of order ‖k‖. Nevertheless, for any vector ν the set of small denominators con-
tains zero among limit points. Indeed, the following assertion holds.

Theorem 9.1 (Dirichlet). Given ν ∈ R
m, for any K ∈ N there exists a nonzero

vector k ∈ Z
m with ‖k‖ ≤ 2K , such that

|〈k, ν〉| ≤ m‖ν‖2−mK−m+1. (9.1)

Corollary 9.1. There exist infinitely many vectors k ∈ Z
m such that |〈k, ν〉| ≤

m‖ν‖ ‖k‖−m+1.

Proof (of Theorem 9.1). For any K ∈ N we put BK = {k ∈ Z
m : 0 �= ‖k‖ ≤ K}.

The set BK contains (2K + 1)m − 1 elements. For any k ∈ BK we have

|〈k, ν〉| ≤ m ‖k‖ ‖ν‖ ≤ mK‖ν‖.
Therefore, there exist two vectors k′, k′′ ∈ BK such that

|〈k′, ν〉 − 〈k′′, ν〉| ≤ mK‖ν‖
(2K + 1)m − 2

≤ m‖ν‖
2(2K)m−1

.

The vector k = k′ − k′′ ∈ B2K satisfies (9.1). 	
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2. We define the sets

Dm(c, γ ) ⊂ R
m, c > 0, γ ≥ 0,

as follows: ν ∈ Dm(c, γ ) if for any nonzero k ∈ Z
m we have

|〈k, ν〉| ≥ 1

c ‖k‖γ
. (9.2)

Vectors lying in at least one set Dm(c, γ ), are called Diophantine.
Obviously, for c′ ≤ c and γ ′ ≤ γ

Dm(c′, γ ′) ⊂ Dm(c, γ ).

The Dirichlet theorem (see Corollary 9.1) implies that the sets Dm(c, γ ) are empty
for γ < m − 1.

Let us show that the sets Dm(c,m−1) are not empty for sufficiently large c > 0.
Recall that Z[x] denotes the space of polynomials

p(x) = alx
l + · · · + a1x + a0, l ∈ N,

with rational coefficients. If p does not vanish identically, the coefficient al is as-
sumed to be nonzero. The quantity l is called the degree of the polynomial: l =
deg p. A polynomial with unit leading coefficient is called unitary. A polynomial
p(x) ∈ Z[x] is called prime if it is not divisible by any q ∈ Z[x], 0 < deg q <

deg p. For example, any polynomial of degree two or three is prime over Z[x] if it
has no rational roots.

Proposition 9.1. Let α be a root of a prime polynomial p ∈ Z[x], deg p = m. Then,
for any q ∈ Z[x] such that q(α) = 0, either q is divisible by p or q ≡ 0.

Proof. Suppose that q is not divisible by p and q �≡ 0. Then the largest common
divisor d of p and q lies in Z[x] and has the degree deg d ∈ {1, . . . , deg p−1}. This
contradicts to the assumption that p is prime. 	

Theorem 9.2 (Lagrange). Let α1, . . . , αm be roots of a unitary1 prime polynomial
p of degree m with integer coefficients. Consider the vectors

νj = (1, αj , α
2
j , . . . , α

m−1
j )T , j = 1, . . . , m.

Then for any j ∈ {1, . . . , m}

νj ∈ Dm(c,m − 1), c = mm−1

‖νj‖
m∏

j=1

‖νj‖.

1 The assumption that p is unitary is taken for simplicity. In [119] more general statements are
contained. For example, the following one. Let the numbers 1, α1, . . . , αm form a basis of a real
number field of degree m + 1. Then (1, α1, . . . , αm)T ∈ Dm+1(c,m) for some c > 0.
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Proof. Let us fix a nonzero vector k ∈ Z
m.

Lemma 9.1. The polynomial fk(x) = ∏m
s=1(x−〈k, νs〉) is unitary. It has a nonzero

constant term and integer coefficients.

Proof (of Lemma 9.1). The unitarity of fk is obvious. According to Proposition 9.1
the quantities 〈k, νs〉 do not vanish. Therefore, the constant term of fk is nonzero.

Since fk depends on α1, . . . , αm polynomially, it is possible to write

fk = Fk(x; α1, . . . , αm),

where Fk is a polynomial of m + 1 variables with integer coefficients. Obviously,
F is symmetric in α1, . . . , αm. Hence, according to the theorem on symmetric poly-
nomials, is can be represented in the form

Fk(x; α1, . . . , αm) = Gk(x; σ1, . . . , σm),

where Gk is a polynomial of m + 1 variables with integer coefficients and

σ1 =
∑

s

αs, σ2 =
∑
s1 �=s2

αs1αs2,

σ3 =
∑

s1 �=s2, s2 �=s3, s3 �=s1

αs1αs2αs3, . . . , σm = α1 · · · αm.

Recall that by the Vieta theorem

p(x) = xm − σ1x
m−1 + σ2x

m−2 − · · · + (−1)mσm.

Therefore, the quantities σ1, . . . , σm are integers. Hence,

Gk(x; σ1, . . . , σm) ∈ Z[x]
is a polynomial with integer coefficients. The lemma is proved. 	


The following corollary is a result of the application of the Vieta theorem to the
polynomial fk .

Corollary 9.2. For any k �= 0

|〈k, ν1〉 · · · 〈k, νm〉| = |σm| ≥ 1. (9.3)

Now we turn to the proof of Theorem 9.2. Since the inequality |〈k, νs〉| ≤ m ‖k‖×
‖νs‖ holds for any s ∈ {1, . . . , m} then according to (9.3) we have

|〈k, ν1〉| ≥ 1

|〈k, ν2〉| · · · |〈k, νm〉| ≥ 1

mm−1 ‖ν2‖ · · · ‖νm‖‖k‖m−1
.

This is the required estimate. In the case j �= 1 the proof is analogous. 	
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As an example consider the positive root αg of the polynomial x2 + x − 1. The
number αg = (

√
5 − 1)/2 is called the golden mean. Since

αg = (1 + αg)
−1 = (1 + (1 + αg)

−1)−1 = · · · ,

we have the continued fraction expansion

αg = 1

1 + 1

1+. . .

.

The Lagrange theorem implies that νg = (1, αg) ∈ D2(c, 1) for some positive c.
Moreover, it is proved in the theory of continued fractions (see, for example, [66])
that for k ∈ Z

2 \ {0}
|〈k, νg〉| ≥ 1√

5 ‖k‖ ,

i.e., νg ∈ D2(
√

5, 1). In a sense, the golden mean is the best irrational number from
the viewpoint of the theory of rational approximations.

3. The measure of the set of Diophantine frequencies is estimated in the following
theorem.

Theorem 9.3. Let μ be the Lebesgue measure on R
m, let γ > m − 1, and let C be

the cube {ν ∈ R
m : ‖ν‖ ≤ 1}. Let S be the (m−1)-dimensional area of the maximal

section of the cube C by a hyperplane. Then

μ(C \ Dm(c, γ )) ≤ 4Sm3m−1

c

(
1 + 1

γ − m + 1

)
.

Corollary 9.3. For any γ > m − 1 the measure of the set C \ ⋃
c>0 Dm(c, γ )

vanishes.

Proof (of Theorem 9.3). For any nonzero vector k ∈ Z
m we define the set

Πk =
{
ν ∈ R

m : |〈ν, k〉| <
1

c ‖k‖γ

}
.

Then the following estimate holds:

μ(C \ Dm(c, γ )) ≤
∑

k∈Zm\{0}
μ(C ∩ Πk).

Any set Πk is a “strip”, bounded by the two hyperplanes 〈ν, k〉 = ± 1
c ‖k‖γ . The

distance ρ between these planes equals the distance between the points ±(c ‖k‖γ ×
|k|2)−1k. Therefore, ρ = 2/(c ‖k‖γ |k|). Hence,

μ(C ∩ Πk) ≤ 2S

c ‖k‖γ |k| ≤ 2S

c ‖k‖γ+1
,
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because |k| ≥ ‖k‖. We also note that the number of points in the set Z
m lying on

the surface ‖k‖ = l satisfies the inequality #{k ∈ Z : ‖k‖ = l} ≤ 2m(2l + 1)m−1.
As a result we obtain

μ(C \ Dm(c, γ )) ≤
∑

k∈Zm\{0}

2S

c ‖k‖γ+1
=

∞∑
l=1

∑
‖k‖=l

2S

clγ+1

≤
∞∑
l=1

2S 2m(2l + 1)m−1

clγ+1
<

∞∑
l=1

4Sm3m−1

clγ−m+1
.

The last sum can be estimated with the help of an integral:

∞∑
l=1

1

lγ−m+2
≤
(

1 +
∫ ∞

1

dl

lγ−m+2

)
= 1 + 1

γ − m + 1
.

This implies the required estimate. 	

4. Now we discuss the Diophantine properties for resonance frequency vectors.

Let gν ⊂ Z
m be the set of resonances, corresponding to the vector ν ∈ R

m:

gν = {k ∈ Z
m : 〈ν, k〉 = 0}.

The set gν is a subgroup of the Abelian group (Zm,+). We put

Dm,l(c, γ ) = {ν ∈ R
m : rank gν = l and for any k ∈ Z

m \ gν

conditions (9.2) hold}.
Let K0 be an integer unimodular (det K0 = 1) square (m × m) matrix and

let k∗
1 , . . . , k∗

n, k1, . . . , kl , l + n = m be its columns. We assume that the vectors
k1, . . . , kl generate gν . The existence of such a matrix follows from the theory of
Abelian groups.2 The last l components of the vector KT

0 ν vanish. Since the groups
gν and gKT

0 ν are isomorphic, the vector ν∗ ∈ R
n, formed by the first n components

of KT
0 ν, is non-resonant.

Proposition 9.2. The vector ν∗ is Diophantine if and only if ν ∈ Dm,l(c, γ ) for
some c, γ > 0.

Proof. (a) Let the vector ν∗ be Diophantine. Putting ν′ = KT
0 ν = (

ν∗
0

)
, we have

gν′ = Z
l
0 = {j ∈ Z

m : j1 = · · · = jn = 0}. Let us show that the inequality
|〈ν′, j 〉| ≥ c‖j‖−γ holds for any j ∈ Z

m \Z
l
0. Indeed, let j∗ = (j1, . . . , jn)

T . Then

2 In the case m = 2 the matrix K0 can be easily constructed directly. Indeed, in the case l = 0
or l = 2 it is possible to take as K0 the identity matrix. In the case l = 1 we choose a vector
(b, d)T ∈ gν whose components are relatively prime. (It is impossible to do this only in two cases:
either (1, 0)T ∈ gν , then we put (b, d) = (1, 0), or (0, 1)T ∈ gν , then we put (b, d) = (0, 1).)
There exist integer numbers a, c such that ad − bc = 1. The matrix K0 = (

a b
c d

)
is the one we

seek.
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|〈ν′, j 〉| = |〈ν∗, j∗〉| ≥ c‖j∗‖−γ ≥ c‖j‖−γ .

For any j ∈ Z
m \ gν we have K−1

0 j ∈ Z
m \ Z

l
0. Therefore

|〈ν, j 〉| = |〈ν′,K−1
0 j 〉| ≥ c‖K−1

0 j‖−γ ≥ c′‖j‖−γ

for some constant c′.
(b) Suppose that for any j ∈ Z

m \ gν we have |〈ν, j 〉| ≥ c′‖j‖−γ . Then for any
nonzero j∗ ∈ Z

n

|〈ν∗, j∗〉| =
∣∣∣∣
〈
KT

0 ν,

(
j∗

0

)〉∣∣∣∣ ≥ c′
∥∥∥∥K0

(
j∗

0

)∥∥∥∥
−γ

,

because K0
(
j∗
0

) ∈ Z
m\gν . The estimate |K0

(
j∗
0

)‖ ≤ c′′‖j∗‖ implies the Diophantine
property for the vector ν∗. 	


For the sets Dm,l(c, γ ) an analog of Theorem 9.3 holds. In particular, let

Cl = {ν ∈ R
m : ‖ν‖ ≤ 1, rank gν = l = m − n}.

Then the n-dimensional measure of the set Cl \ ⋃c>0 Dm,l(c, γ ) vanishes for any
γ > n − 1.

9.2 Closures of Asymptotic Curves

1. Theorems on closures of asymptotic curves. Let T be a smooth area-preserving
diffeomorphism3 of a two-dimensional manifold M and ẑ ∈ M a hyperbolic fixed
point of T . The point ẑ generates 4 asymptotic curves (separatrix branches): the
stable branches Γ s

1,2 and the unstable ones Γ u
1,2. By definition, the point ẑ does not

belong to Γ
s,u

1,2 .
The separatrices generically form a complicated network. The dynamics in the

vicinity of this network is highly unstable and irregular. Because of this it is ac-
cepted to call this vicinity the stochastic layer and to characterize the dynamics in
the stochastic layer by the word “chaos”.

The structure of such a chaos is weakly understood. It is well-known that in the
stochastic layer there exists an invariant hyperbolic set on which T is isomorphic to
the Bernoulli shift. However, the measure of this set vanishes and the question of
what behavior is typical for trajectories in the stochastic layer, remains open.

We mention here two questions. Suppose that stable and unstable separatrices do
not coincide: Γ s

1 ∪ Γ s
2 �= Γ u

1 ∪ Γ u
2 .

• Is the measure of the separatrix closure Γ = Γ
s

1 ∪ Γ
u

1 ∪ Γ
s

2 ∪ Γ
u

2 positive?

3 It is sufficient to require C1-smoothness.
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• If the answer to the first question is positive, is the map T restricted to this set
ergodic?

For the hyperbolic automorphism of a torus

T
2 → T

2, T
2 � z �→ Az ∈ T

2, A =
(

2 1
1 1

)
,

we have Γ = T
2 and the answers to both questions are positive. The same is true for

small deformations of this map. In the general situation the answers are unknown.4

Theorem 9.4. Suppose that the following conditions hold.

(1) The set Γ s
1 ∩ Γ u

1 is not empty.
(2) The curves Γ s

1 and Γ u
1 lie in an invariant domain D ⊂ M , where the closure D

is compact.

Then the closure of the unstable branch Γ
u

1 contains the stable one Γ s
1 .

Corollary 9.4. Since conditions of the theorem are symmetric with respect to Γ s
1

and Γ u
1 , the inclusion Γ u

1 ⊂ Γ
s

1 holds. Hence, the sets Γ
s

1 and Γ
u

1 coincide.

Corollary 9.5. If conditions of the theorem hold for two pairs

Γ s
j and Γ u

j , j ∈ {1, 2},

the sets Γ
s

1, Γ
s

2, Γ
u

1 , Γ
u

2 coincide.

Indeed, it is easy to show that if Γ s
j ∩Γ u

j �= ∅, j ∈ {1, 2}, then Γ s
1 ∩Γ u

2 �= ∅ and
Γ s

2 ∩ Γ u
1 �= ∅. Hence, the conditions of Theorem 9.4 hold for any pair Γ s

i and Γ u
j ,

i, j ∈ {1, 2}.
Let p and q be hyperbolic periodic points of T and let i and j respectively be

their periods. Since p and q are hyperbolic fixed points for the maps T i and T j , we
can define the branches Γ

s,u
1,2 (p) and Γ

s,u
1,2 (q). We put

W
s,u
1,2 (p) =

2i−1⋃
k=0

T k(Γ
s,u

1,2 (p)), W
s,u
1,2 (q) =

2j−1⋃
k=0

T k(Γ
s,u

1,2 (q)).

Theorem 9.5. Suppose that the following conditions hold.

(1′) The set Ws
1 (p) ∩ Wu

1 (q) is not empty.
(2′) The set Ws

1 (q) ∩ Wu
1 (p) is not empty.

(3′) The asymptotic manifolds Ws
1 (p), Wu

1 (p), Ws
1 (q), Wu

1 (q) belong to an invari-
ant domain D ⊂ M , where the closure D is compact.

4 These questions have the same nature as the question on the positiveness of the metric entropy
of the map T .
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Then the following inclusions hold

Ws
1 (p) ⊂ W

u

1(q) ∪ W
s

1(q), (9.4)

Ws
1 (p) ⊂ W

u

1(q) ∪ W
u

1(p). (9.5)

Remark 9.1. In the case p = q conditions (1′) and (2′) coincide.

Corollary 9.6. Interchanging q and p in Theorem 9.5 and (or) replacing T by T −1

we get the same conditions (1′)–(3′). Instead of (9.4) we obtain the inclusions

Ws
1 (q) ⊂ W

u

1(p) ∪ W
s

1(p),

Wu
1 (p) ⊂ W

u

1(q) ∪ W
s

1(q),

Wu
1 (q) ⊂ W

u

1(p) ∪ W
s

1(p).

In particular, (1′)–(3′) imply that W
u

1(p) ∪ W
s

1(p) = W
u

1(q) ∪ W
s

1(q).

Corollary 9.7. If p = q and conditions (1′)–(3′) hold, according to (9.5) and to the
corresponding symmetric inclusion, we have W

s

1(p) = W
u

1(p).

Recall that points of the sets

(Ws
1 (p) ∪ Ws

2 (p)) ∩ (Wu
1 (q) ∪ Wu

2 (q)), (Ws
1 (q) ∪ Ws

2 (q)) ∩ (Wu
1 (p) ∪ Wu

2 (p))

are called homoclinic if p and q lie on the same periodic trajectory, and heteroclinic
otherwise.

Takens proved [130] that, if M is compact, there exists a residual subset R in the
topological space of area-preserving C1-smooth diffeomorphisms of M such that,
for any T ∈ R and any hyperbolic periodic point p of T , the set of homoclinic
points is dense on W

s,u
1,2 (p). Note that methods of [130] are essentially restricted to

the C1-topology.
The following conjecture was in fact formulated (in a weaker form) by Poincaré.

Conjecture 9.1. If p = q and the conditions of Theorem 9.5 hold, the set of homo-
clinic points is dense on Ws

1 (p) and on Wu
1 (p).

Mather [87] proved that if M is compact, for a Ck-generic (k ≥ 4) area-preserving
map, any two branches of a hyperbolic periodic point have the same closure. The
word “generic” is understood in the sense of Baire category.

Oliveira [100] obtained the following results related to the problems in question.
Let T be a C1 area-preserving diffeomorphism of a compact orientable surface.
Assume that L and K are branches of a hyperbolic fixed point with either L = K or
L ∩ K = ∅. If K ∩ ω(L) �= ∅ then K ⊂ ω(L). (Here as usual, ω(L) is the ω-limit
set of L.)

This result implies the following assertion [100]. Let M be a compact orientable
surface and 1 ≤ k ≤ ∞. Then L ⊂ ω(L) for any branch L of a Ck-generic area-
preserving map.
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Note that the manifold M in Theorems 9.4–9.5 can be neither compact nor ori-
entable. It can even have a boundary. The further constructions depend on a certain
integer r . The reader who is satisfied by the case when M is a sphere or a plane
can put r = 0 and not pay any attention to geometric objects (homology groups,
intersection indices, etc.) appearing below. The basic geometric fact we use in the
case r = 0 is very simple: two closed curves transversal to one another on a sphere
or on a plane cannot have exactly one common point.

In the general situation we consider the homology group H1(M, ∂M) of the man-
ifold M with respect to the boundary ∂M with coefficients from Z2. Let G be the
subgroup in H1(M, ∂M) generated by curves lying in D. We put r = rank G. Since
according to (2) or (3′) the closure D is compact, we have 0 ≤ r < ∞.

Below we can assume that in the case of Theorem 9.4 the map T preserves each
branch and, in the case of Theorem 9.5, T preserves each of the eight manifolds
W

s,u
1,2 (p), W

s,u
1,2 (q). Indeed, if T does not satisfy this condition, we just change T

to T 2.

2. Proof of Theorem 9.4. Let U ⊂ D be any open set such that U ∩ Γ s
1 �= ∅.

Suppose that
U ∩ Γ u

1 = ∅. (9.6)

Then Theorem 9.4 is proved if we are able to obtain a contradiction under its con-
ditions. Considering if necessary instead of U a smaller domain (we will keep for it
the same notation U ), we can assume that U = U+ ∪U0 ∪U−, where U± are open,
connected, and U0 ⊂ Γ s

1 is a connected interval (see Fig. 9.1). Let Î be the minimal
connected piece of Γ s

1 such that ẑ is its endpoint and U0 ⊂ Î . We can assume that

U ∩ T (Î ) = ∅, (9.7)

U ∩ T −r−1(Î ) = U0. (9.8)

These equations hold for sufficiently small U .

Fig. 9.1 The domain U and the intervals Î and T (Î ).
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Fig. 9.2 The curve γ ′.

Lemma 9.2. There exists a natural number l > r + 1 such that

U+ ∩ T l(U+) �= ∅, U− ∩ T l(U−) �= ∅.

Proof (of Lemma 9.2). Consider the map

T × T : M × M → M × M, T × T (z1, z2) = (T (z1), T (z2)).

This map preserves the measure σ × σ , where σ is the area on M . The set U+ ×
U− lies inside the compact invariant set D × D. Hence, according to the Poincaré
recurrence theorem,

(T × T )l(U+ × U−) ∩ (U+ × U−) �= ∅
for infinitely many l ∈ N. The lemma is proved. 	


There exists a smooth closed curve γ ′ satisfying the following properties.

(a) γ ′ ⊂ U ′, U ′ = U ∪ T l(U).
(b) The set γ ′ ∩ T l(U0) consists of a single point z′ and the curves γ ′ and T l(U0)

intersect at z′ transversely.

The curve γ ′ goes along the set T l(U+) from the point z′ to the set U+. Then
γ ′ passes through the interval U0 to the set U−, goes to the set T l(U−) and finally
returns to the point z′ (see Fig. 9.2).

According to property (a) and equation (9.6) we have

γ ′ ∩ Γ u
1 = ∅. (9.9)

Lemma 9.3. There exists an interval I ⊂ Γ s
1 satisfying the following two proper-

ties.
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(A) The endpoints of I are ẑ and z0, where z0 is homoclinic.
(B) I ∩ U ′ = T −r (I ) ∩ U ′ = T l(U0).

Proof (of Lemma 9.3). The interval I ′ = T l−1(Î ) \ T l(Î ) contains a homoclinic
point. Indeed, otherwise we have a contradiction to assumption (1) because of the
equation Γ s

1 = ⋃
k∈Z

T k(I ′). Let z0 be this homoclinic point and let I be defined
by (A). Then I ⊂ T l−1(Î ).

Equations (B) follow from the three inclusions

T l(U0) ⊂ (I ∩ U ′) ⊂ (T −r (I ) ∩ U ′) ⊂ T l(U0).

The first two are obvious. Let us check the third one. Since I ⊂ T l−1(Î ), we have:
T −r (I ) ⊂ T l−r−1(Î ). This relation together with the inequality l > r + 1 (see
Lemma 9.2) imply that

T −r (I ) ∩ U ⊂ T l−r−1(Î ) ∩ U ⊂ T (Î ) ∩ U = ∅
due to (9.7). Analogously,

T −r (I ) ∩ T l(U) ⊂ T l−r−1(Î ) ∩ T l(U) ⊂ T l(T −r−1(Î ) ∩ U) = T l(U0).

Here we have used assumption (9.8). Lemma 9.3 is proved. 	

According to property (A) the points ẑ and z0 can be connected by an interval Iu

of the unstable separatrix branch Γ u
1 . The curve σ0 = I ∪ Iu is closed. According to

the definition of γ ′ and property (B) the curves I and γ ′ have exactly one common
point (the point z′) and intersect at z′ transversely. The curves Iu and γ ′ do not
intersect because of (9.9). Hence, the intersection index (modulo 2) is

ind2(σ0, γ
′) = 1. (9.10)

Proposition 9.3. In the case r = 0, the intersection index of any two closed curves
on D vanishes.

Since the equality (9.10) contradicts to Proposition 9.3, Theorem 9.4 is proved
for r = 0. Proposition 9.3 is a simple corollary of the following lemma.

For any closed curve a ⊂ M let {a} be the corresponding element of the homol-
ogy group H1(M, ∂M).

Lemma 9.4. The intersection index of any two closed curves a1, a2 ⊂ M is deter-
mined by the elements {a1}, {a2}:

ind2(a1, a2) = α({a1}, {a2}), α : H1(M, ∂M) × H1(M, ∂M) → Z2.

The function α is bilinear.

Lemma 9.4 is a standard geometric fact. The proof can be found in [38].

3. Continuation of the proof: the case r > 0. The map T is defined on the invariant
domain D ⊂ M . Hence, the automorphism T∗ of the homology group H1(M, ∂M)
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Fig. 9.3 The L-loop ϑ(z).

can be restricted to an automorphism of the invariant subgroup G ⊂ H1(M, ∂M).
(Recall that the subgroup G is generated by closed curves lying in D.)

For any closed curves u, v ⊂ M

α({u}, {v}) = α(T∗{u}, T∗{v}). (9.11)

Lemma 9.5. Let σk = T −k(σ0), 0 ≤ k ≤ r . Then α({σk}, {γ ′}) = 1.

Proof (of Lemma 9.5). Any curve σk is a union σ s
k ∪ σu

k , where σ s
k ⊂ Γ s

1 and
σu

k ⊂ Γ u
1 . Let 0 ≤ k ≤ r . Then I ⊂ σ s

k ⊂ T −r (I ). Hence, by Lemma 9.3, σ s
k ∩

γ ′ = z′ and the intersection is transversal. Because of (9.9) we have: σu
k ∩ γ ′ = ∅.

Lemma 9.5 is proved. 	

For any homoclinic point z ∈ Γ s

1 ∩ Γ u
1 the closed curve formed by segments of

Γ s
1 and Γ u

1 , confined by z and its preimage T −1(z) (see Fig. 9.3) will be called an
L-loop ϑ(z). We put ϑ0 = ϑ(z0) and ϑk = T −k(ϑ0). Then for any natural number q

{σq} = {σ0} +
q−1∑
k=0

{ϑk}. (9.12)

Lemma 9.6. Let ϑk , k ∈ Z, be an L-loop. Then α({ϑk}, {γ ′}) = 0.

Proof (of Lemma 9.6). According to Lemma 9.5 and (9.12) we have

α({ϑk}, {γ ′}) = 0, 0 ≤ k ≤ r − 1.

Note that G can be regarded as a vector space over Z2 and T∗|G : G → G as a
linear operator. Consider the maximal m such that the vectors

{ϑ0}, {ϑ1}, . . . , {ϑm} ∈ G (9.13)

are linearly independent. Obviously, m ≤ r − 1.
Let L be the linear hull of vectors (9.13). Then {ϑk} ∈ L for any k ∈ Z. For

any vector {v} from the vector space L we have α({v}, {γ ′}) = 0. Lemma 9.6 is
proved. 	
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According to identity (9.11) we have

α(T l∗{σ0}, T l∗{γ ′}) = α({σ0}, {γ ′}) = 1.

Since T l∗{σ0} − {σ0} equals a sum of L-loops {ϑk},
α(T l∗{σ0}, {γ ′}) = 1.

Hence,
α(T l∗{σ0}, {γ ′} + T l∗{γ ′}) = 0. (9.14)

The curves γ ′ and T l(γ ′) go through the same connected open set T l(U). Hence,
inside the set U ′′ = U ∪ T l(U) ∪ T 2l (U) there exists a closed curve γ ′′ of the
homology class {γ ′} + T l∗{γ ′} which differs from γ ′ ∪ T l(γ ′) only inside the set
T l(U). Since U ′′ ∩ Γ u

1 = ∅, we have

γ ′′ ∩ Γ u
1 = ∅. (9.15)

Note that

T l(σ0) = T l(Iu) ∪ T l(I ), T l(Iu) ⊂ Γ u
1 , T l(I ) ⊂ Γ s

1 .

According to Lemma 9.3 and the obvious equation U ∩T l(I ) = ∅, we have T l(I )∩
U ′′ = T 2l (U0). Hence, T l(I ) ∩ γ ′′ = T l(z′) and the intersection is transversal. On
the other hand, T l(Iu) ∩ γ ′′ = ∅ because of (9.15). Thus, ind2(T

l(σ0), γ
′′) = 1,

which contradicts (9.14). Theorem 9.4 is proved.

4. Separatrices of periodic points. Now we prove Theorem 9.5. Let U ⊂ D be an
open set such that U ∩ Ws

1 (p) �= ∅. Suppose that at least one of the equations

U ∩ (Wu
1 (q) ∪ Ws

1 (q)) = ∅, (9.16)

U ∩ (Wu
1 (q) ∪ Wu

1 (p)) = ∅, (9.17)

holds. Then Theorem 9.5 will be proved when we obtain a contradiction under its
conditions.

Considering the map T i instead of T , we define the sets U±, U0 and the inter-
val Î . In particular, we again assume that U satisfies (9.7)–(9.8) with T i instead
of T .

We can obviously assume that U ∩ Γ s
1 (p) �= ∅. (Otherwise we take T k(U) with

a proper k ∈ {1, . . . , i − 1} instead of U .) The closed curve γ ′ ⊂ U ′ is defined in
the same way as above. We can assume that γ ′ does not pass through points of the
form T k(p) and T k(q), k ∈ Z.

By using condition (1′) we get Γ s
1 (p) ∩ Wu

1 (q) �= ∅. Hence, Lemma 9.3 remains
true if in its statement z0 ∈ Γ s

1 (p) ∩ Wu
1 (q).

For some ju, j s ∈ {0, . . . , j − 1} we have

z0 ∈ T ju

(Γ u
1 (q)) ∩ Γ s

1 (p), Γ u
1 (p) ∩ T js

(Γ s
1 (q)) �= ∅.
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Fig. 9.4 The curves Λ′ and Λ′′.

Let Λ′ be the curve that goes from T ju
(q) to p and is formed by the segment of

the branch T ju
(Γ u

1 (q)) from the point T ju
(q) to the point z0 and by the segment of

the branch Γ s
1 (p) from z0 to p. Analogously, let Λ′′ be the curve that goes from p

to T js
(q) and is formed by the segment of the branch Γ u

1 (p) from p to some point
z̃ ∈ Γ u

1 (p) ∩ T js (Γ s
1 (q)) and by the segment of the branch T js (Γ s

1 (q)) from z̃ to
T js (q) (see Fig. 9.4).

Let ν be the least common multiple of the numbers j and Δ = j s −ju. If Δ = 0,
we put ν = 0. The curve

Λ′ ∪Λ′′ ∪T Δ(Λ′)∪T Δ(Λ′′)∪T 2Δ(Λ′)∪T 2Δ(Λ′′)∪· · ·∪T ν−Δ(Λ′)∪T ν−Δ(Λ′′)

is closed. The same is true for the curve

σ0 = σ0(k
′, k′′) = Λ′ ∪ T ijk′′

(Λ′′) ∪ T ijk′+Δ(Λ′) ∪ T ijk′′+Δ(Λ′′) ∪ · · ·
∪ T ijk′+ν−Δ(Λ′) ∪ T ijk′+ν−Δ(Λ′′),

where k′, k′′ are arbitrary integers. Obviously,

σ0 ∈ Ws
1 (p) ∪ Wu

1 (p) ∪ Ws
1 (q) ∪ Wu

1 (q).

We choose k′ > 0 so large that

γ ′ ∩ σ0 ∩ Ws
1 (p) = γ ′ ∩ I = z′. (9.18)

(We can do this because the set (σ (k′, k′′) ∩ Ws
1 (p)) \ I for large k′ > 0 is situated

in a small neighborhood of the trajectory generated by p and the curve γ ′ does not
contain points of this trajectory.)

Suppose that equation (9.16) holds. Then choose k′′ < 0 so large in absolute
value that

γ ′ ∩ σ0 ∩ Wu
1 (p) = ∅. (9.19)

(In the case (9.17) we take k′′ > 0 such that γ ′ ∩σ0 ∩Ws
1 (q) = ∅ and use analogous

arguments.)
According to (9.16), (9.18), and (9.19) we have σ0 ∩ γ ′ = z′, where the inter-

section is transversal. Hence, ind2(σ0, γ
′) = 1. In the case r = 0 this index should
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vanish and we obtain the required contradiction. In the case r > 0 the arguments
are the same as in 3: a contradiction is obtained as a result of the evaluation of the
intersection index for the curves T il(σ0) and γ ′′, where {γ ′′} = {γ ′} + T il∗ {γ ′}.

9.3 Invariant Tori in a Neighborhood of a Resonance

In this section, following [142], we study the difference of frequency vectors on two
invariant tori, which bound a resonance.

Two degrees of freedom. Consider the system with Hamiltonian

H(I, ϕ, ε) = H0(I ) + εH1(I, ϕ, ε). (9.20)

Here I ∈ R
2 and ϕ = (ϕ1, ϕ2) mod 2π are canonically conjugated coordinates. The

function H is assumed to be real-analytic in the phase variables and smooth in the
parameter ε ≥ 0.

For ε = 0 the phase space is foliated by two-dimensional tori {(I, ϕ) : I =
const}, filled with quasi-periodic solutions:

ϕ = ν(I )t + ϕ0, ν(I ) = ∂H0

∂I
(I ).

Recall that an invariant torus of the unperturbed (ε = 0) system is called reso-
nant if 〈k, ν〉 = 0 for some nonzero vector k ∈ Z

2. A nonresonant torus is called
Diophantine if there are α, γ > 0 such that for any nonzero k ∈ Z

2

|〈k, ν〉| ≥ 1

α|k|γ . (9.21)

For small ε > 0 resonant tori are as a rule destroyed, and Diophantine ones just
slightly deform.

Suppose that the unperturbed system is isoenergetically non-degenerate, i.e.,

Δ = det

⎛
⎝ ∂2H0

∂I 2 (I 0) ν(I 0)

νT (I 0) 0

⎞
⎠ �= 0,

and on the energy level h there is a Diophantine torus

T
2
κ

(0, h) = {(I, ϕ : I = I 0, H(I 0) = h, ν1(I
0)/ν2(I

0) = κ}.
Then (Theorem 2.3) for small ε > 0 on the same energy level

Σ(ε, h) = {(I, ϕ) ∈ M : H(I, ϕ, ε) = h}
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there exists a KAM-torus T
2
κ

(ε, h) with the same frequency ratio. The family of tori
T

2
κ

(ε, h) ⊂ Σ(ε, h) is smooth in ε.

Theorem 9.6. Suppose that H0(I
0) = h and the following conditions hold.

(1) ν(I 0) = λ(m, n)T , λ �= 0, n �= 0, where m and n are either relatively prime
integers, or (m, n) = (0, 1).

(2) The function5

νa(q) = 1

2πΔ

∫ 2π

0
H1

(
I 0,mt + q

n
, nt, 0

)
dt (9.22)

has a unique global minimum on the circle q mod 2π , and this minimum is
non-degenerate.

Then for small ε > 0 there are two KAM-tori T
2
κj

(ε, h) ⊂ Σ(ε, h), j = 1, 2,
such that

(a) the action variable I , restricted to T
2
κj

, satisfies the inequality |I − I 0| ≤ C
√

ε,
(b) κ1 < m/n < κ2,
(c) |κ1 − κ2| < c ε.

The positive constants c and C do not depend on ε. The function νa is 2π-
periodic. The periodicity becomes obvious after the change t �→ τ = t + γ

n
q,

where γ ∈ Z and δn + γm = 1 for some δ ∈ Z.
The assumption on the analyticity of the Hamiltonian (9.20) is essential: in the

case of a finite smoothness estimate (c) is much weaker:

|κ1 − κ2| < c

√
ε

log ε
.

One-and-a-half degrees of freedom. Consider the system with Hamiltonian

H(p, q, t, ε) = H0(p) + εH1(p, q, t, ε), (9.23)

where the scalar variables p ∈ R and q = q mod 2π are canonically conjugated
and t = t mod 2π . The function H is assumed to be real-analytic on the extended
phase space M = D × T

2 and smooth in ε.
For ε = 0 the phase space M is foliated by two-dimensional invariant tori

{(p, q, t) : p = const}. The motion on the tori is quasi-periodic:

q = κ(p)t + q0, κ(p) = ∂H0

∂p
.

Theorem 9.7. Suppose that for some p = p0 the following conditions hold:

(1) κ(p0) = m/n, n �= 0, where m, n ∈ Z are either relatively prime, or m = 0,
n = 1.

5 The subscript “a” is from “autonomous”.
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(2) The function6

νn(q) = 1

2π

(
∂2H0

∂p2
(p0)

)−1 ∫ 2π

0
H1

(
p0,mt + q

n
, nt, 0

)
dt (9.24)

has a unique global minimum on the circle q mod 2π , and this minimum is
non-degenerate.

Then for small ε > 0 there are two KAM-tori with frequencies κ1 and κ2 such
that

(a) the variable p on these tori satisfies the inequality |p − p0| < C
√

ε,
(b) κ1 < m/n < κ2,
(c) |κ1 − κ2| < cε.

Theorem 9.7 follows from Theorem 9.6. Indeed, let us put p = I1, q = ϕ1,
t = ϕ2. Then the projection (I1, I2, ϕ1, ϕ2) �→ (I1, ϕ1, ϕ2) = (p, q, t) maps trajec-
tories of the system with Hamiltonian

Ĥ = H0(I1) + I2 + εH1(I1, ϕ1, ϕ2, ε), (9.25)

to solutions of the system with Hamiltonian (9.23). The function (9.25) satisfies the
conditions of Theorem 9.6.

Discrete case. Consider a family of symplectic self-maps Pε of the cylinder

Z = {(I, ϕ) : I ∈ R, ϕ ∈ T
1}.

The maps Pε are determined by the generating function S(J, ϕ, ε) = f (J ) +
εW(J, ϕ, ε):

Pε(I, ϕ) = (J, ψ), J = I − Sϕ(J, ϕ, ε), ψ = ϕ + SJ (J, ϕ, ε).

The function S is real-analytic in J and ϕ, 2π-periodic in ϕ, and smooth in ε. The
map P0 has the form:

J = I, ψ = ϕ + f ′(I ).

The variable I enumerates circles (one-dimensional tori) invariant with respect to
the action of P0. We put

Tκ = {
(I, ϕ) : I = I 0, f ′(I 0) = 2πκ, ϕ ∈ T

}
.

Recall that in the discrete case the resonant and Diophantine conditions should
be considered for the vector (κ, 1)T .

Theorem 9.8. Suppose that for I = I 0 the following conditions hold:

(1) κ(I 0) = m
n

, where m and n are either relatively prime integers, or m = 0,
n = 1.

6 The subscript “n” is from “nonautonomous”.
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(2) The function7

νd(q) = 1

f ′′(I 0)

n−1∑
k=0

W

(
I 0,

2πkm + q

n
, 0

)

has a unique minimum on the circle q mod 2π .

Then for small ε > 0 there exist two invariant circles with frequencies κ1 and κ2
such that

(1) the variable I on these circles satisfies the inequality |I − I 0| < C
√

ε, C > 0,
(2) κ1 < m

n
< κ2,

(3) |κ1 − κ2| < c ε, c > 0.

Proof of Theorem 9.8 can be obtained in the following way. According to The-
orem 1.10, Pε can be regarded as a time-2π map in some non-autonomous Hamil-
tonian system with real-analytic Hamiltonian H = H(J, ψ, t, ε), 2π-periodic in
ψ and t . Moreover, we can assume that H(J, ψ, t, 0) = 1

2π
f (J ). To reduce Theo-

rem 9.8 to Theorem 9.7, it is sufficient to check conditions 1) and 2) for the Hamil-
tonian H .

Let us represent H in the form

H(J, ψ, t, ε) = 1

2π
f (J ) + εH1(J, ψ, t) + O(ε2).

The time-2π map in this system is as follows:

ψ = ϕ + f ′(J ) + O(ε),

J = I − ε

∫ 2π

0

∂H1

∂ψ

(
I,

f ′(I )

2π
ξ + ϕ, ξ

)
dξ + O(ε2).

Here O(ε) and O(ε2) are 2π-periodic in ϕ, real-analytic in ϕ and I , and smooth
in ε. Comparing this map with the one generated by the function S:

ψ = ϕ + f ′(I ) + O(ε),

J = I − εWϕ(I, ϕ, 0) + O(ε2),

we obtain W(J, ϕ, 0) = ∫ 2π

0 ∂H1(I,
f ′(I )

2π
ξ + ϕ, ξ) dξ + C(J ). Here C(J ) is a

real-analytic function. Condition (1) of Theorem 9.7 obviously holds. Condition (2)
follows from the equation νn(q) = 1

2πn
νd(q).

Proof (of Theorem 9.6). Without loss of generality we assume that H0(I
0) = 0. Let

us perform the canonical change of the variables (I, ϕ) �→ (J, ψ), I = I 0 + ΛT J ,
ϕ = Λ−1ψ , where

7 No comment.



9.3 Invariant Tori in a Neighborhood of a Resonance 181

Λ =
(

n −m

γ δ

)
, det Λ = nδ + mγ = 1, δ, γ ∈ Z, (9.26)

and reduce the order on the level of the energy integral

H(I 0 + ΛT J,Λ−1ψ, ε) = 0. (9.27)

Solving equation (9.27) with respect to J2, we get

−J2 = Δ

2λ
J 2

1 + ε

λ
H1(I

0,Λ−1ψ, 0) + f (J1, ψ, ε). (9.28)

The function f is real-analytic in J1 and ψ and 2π-periodic in ψ . Moreover, f =
O(J 3

1 , ε2, εJ1) as J1 → 0, ε → 0. The function −J2 = −J2(J1, ψ1, ψ2, ε) is the
Hamiltonian of the system on the zero energy level, where ψ2 should be regarded
as the new time, and the variables J1 and ψ1 are canonically conjugated. After the
change of variables J1 = √

εp, ψ1 = q, ψ2 = t, J2 = −√
εĤ , the Hamiltonian

(9.28) takes the form

Ĥ (p, q, t, ε) = Δ
√

ε

λ

(
p2

2
+ V1(q, t)

)
+ εV2(p, q, t, ε),

V1(q, t) = 1

Δ
H1(I

0, δq + mt, nt − γ q, 0).

(9.29)

The function V2 is real-analytic and 2π-periodic in q and t , and smooth in
√

ε.
In the new variables the resonance we study takes the simplest form: the first

frequency vanishes and the second one (corresponding to time) equals 1. Hence, it
is now sufficient to find two invariant tori whose first frequencies are of order ε and
have different signs.

The system with Hamiltonian (9.29) contains two slow variables p, q (ṗ, q̇ ∼√
ε) and one fast variable t (ṫ = 1). Since Ĥ is real-analytic, we can apply Theo-

rem 6.2 and Remark 6.3. As a result we obtain the following proposition.

Proposition 9.4. There exists a canonical real-analytic, near-identical change of
the coordinates (p, q) �→ (p̃, q̃) which is 2π-periodic in x̃ and t , such that in the
new coordinates (p̃, q̃) the Hamiltonian (9.29) has the form:

H̃ (p̃, q̃, t) = √
εH̃0(p̃, q̃, ε) + ψ̃(p̃, q̃, ε, t),

H̃0 = Δ

λ

(
p̃2

2
+ νa(q̃)

)
+ √

εU2(p̃, q̃, ε), |ψ̃ | ≤ c exp

(
− α√

ε

)
,

c, α > 0.

(9.30)

The function H̃ is 2π-periodic in q̃ and t , and real-analytic in p̃, q̃.

If we put formally ψ̃ = 0 then according to assumption (2) of Theorem 9.6 the
remaining integrable part of the Hamiltonian (9.30) has for small ε > 0 a hyperbolic
2π-periodic solution z(t) = (p̂, q̂, t). Here (p̂, q̂) = (0, q0) + O(

√
ε), where q0
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is the global minimum of the function νa on T. Note that without loss of generality
H̃0(p̂, q̂, ε) = 0, i.e., the unperturbed Hamiltonian vanishes on the unperturbed
separatrices.

The domain in the space {p̃, q̃, t}, bounded by surfaces asymptotic to z(t), cor-
responds to the resonance. The solution z(t) projects from the extended phase space
{p̃, q̃, t} to the space {p̃, q̃} into a hyperbolic equilibrium, and the asymptotic sur-
faces to the corresponding separatrices. When the perturbation ψ̃ is taken into ac-
count, the solution z(t) deforms slightly, and the asymptotic surfaces split.

Our further argument is shortly as follows. In the unperturbed (ψ = 0) system it
is possible to introduce action-angle variables (y, x) so that y → 0 when a point ap-
proaches the separatrices. Since the perturbation is exponentially small, from both
sides of the resonance domain there exist invariant tori on which the action is expo-
nentially small: |y| < e−c/

√
ε. Unfortunately, this almost obvious fact is not a direct

consequence of standard theorems from KAM theory. The reason is that frequencies
on these tori are not quite usual: the frequency corresponding to the angle variable
ϕ is small and tends to zero as ε ↘ 0. However, the situation can be reduced to
standard by passing to the separatrix map. When it is proven that on some pair of
invariant tori |y| < e−c/

√
ε, it remains to use the fact that the frequency ratio on

invariant tori close to separatrices is of order −1/ log |y| (Lemma 9.7).
Consider the time-2π map in the system with Hamiltonian (9.30):

Tε : N → N, N = Dỹ × Tx̃ , ε > 0.

In Fig. 9.5 the fixed point ẑε = zε(0) and the corresponding separatrices of Tε

are represented. The map Tε satisfies conditions (A)–(B) from Sect. 4.6 with δε =
exp(−α/

√
ε). Hence by (4.39) the corresponding separatrix map Sε satisfies the

equations Sε : (y, x, σ ) �→ (y′, x′, σ ′),

y′ = y + O(δε),

x′ = x + ω(ε) + log |y′ + O(δε)|
log με

, (9.31)

σ ′ = σ sign(y′),

where y = y(p̃, q̃, ε) coincides with the “unperturbed” energy:

y = H̃0 + O(H̃ 2
0 ). (9.32)

We look for invariant KAM curves of the separatrix map. To this end we perform
in (9.31) the change

y = e−α/(2
√

ε)(1 + uλ), y′ = e−α/(2
√

ε)(1 + u′λ).

Here we assume that u, u′ ∈ [−1/2, 1/2]. The map (9.31) takes the form
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u′ = u + a1(x, u, ε), x ′ = x + κ(u, ε) + a2(ϕ, u, ε), σ ′ = σ = σ0, (9.33)

κ = − α

2λ
√

ε
− 1

λ
log(α2λ) + 1

λ
log(1 + λu). (9.34)

The functions ai are 1-periodic in ϕ, real-analytic in u, x, and satisfy the estimate
|a1| + |a2| = O(e−α/(2

√
ε)). Theorem 2.4 in this situation can be formulated as

follows.

Theorem 9.9. Suppose that for some u0 ∈ [−1/2, 1/2] the frequency vector
(κ0, 1)T , κ

0 = κ(u0, ε) is Diophantine. Then for small ε > 0 there exist real-
analytic, 1-periodic functions P(s), Q(s) such that the curve

ϑ = {(x, u) : (x, u) = (s + P(s), u0 + Q(s)), s ∈ T}
is invariant with respect to the map (9.33), and on ϑ the map is a rigid shift: s �→
s + κ

0. Moreover, |P | + |Q| ≤ δe−α/(2
√

ε), δ = const > 0.

It is easy to show that for some u0 ∈ [−1/2, 1/2] the frequency (9.34) is Dio-
phantine. The curve ϑ corresponds to a closed invariant curve of the map (9.31),
where |y| < c e−α/(2

√
ε), and σ = σ ′. This implies that the map Tε has a closed

invariant curve l, on which by (9.32)

|H̃0(p̃, q̃, ε)| ≤ c e−α/(2
√

ε). (9.35)

The equation σ = σ ′ means that the curve l comes close to the hyperbolic fixed
point ẑ only once; in other words, it is outside the resonant domain.

Now it remains to estimate the frequency corresponding to l in terms of the vari-
ables (p̃, q̃). Putting in (9.30) formally ψ̃ = 0, we introduce the action-angle vari-
ables (K,Θ). Then the full system (9.30) takes the form

H = √
εH0(K, ε) + e−α/

√
εH1(K,Θ, ε, t), H0(K, ε) = H̃0(p̃, q̃, ε).

(9.36)
The variables (K,Θ) are introduced in domains not containing separatrices of

the system (9.30)|ψ̃=0. We can assume that K → 0 when a point approaches the
separatrices. The curve l corresponds to an invariant torus in the system with Hamil-
tonian (9.36).

The function K(p̃, q̃, ε) is a continuous first integral of this system provided
e−α/

√
ε = 0. Outside the separatrices {H̃0(p̃, q̃, ε) = 0} it is real-analytic. Ac-

cording to Lemma 9.7 (see below), K = O(K log K) as K → 0. Therefore, due
to (9.35), the invariant torus is situated in the domain |K| < K0ε

−1e−α/(2
√

ε). The
frequency on this torus is |κ| = |√ε

∂H0
∂K

|. For small ε > 0 by Corollary 9.8,
|κ| ≤ 4αε. Theorem 9.6 is proved. 	

Frequencies on invariant curves, close to separatrices. Consider an autonomous
Hamiltonian system with one degree of freedom in the domain D ⊂ R × T. The
Hamiltonian H̃0 : D → R, H̃0 = H̃0(p̃, q̃) is assumed to be real-analytic. Suppose
that there is a hyperbolic equilibrium ẑ ∈ D, and the corresponding separatrices
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Fig. 9.5 Level lines of the function H̃0, the curve l, and the square Kτ .

are doubled (Fig. 9.5). Three families of invariant closed curves have the separatrix
loops of the point ẑ as limit curves. For one of these families both loops form a limit
curve, and for other two only one of the loops is limit. Consider one of the latter two
families. Following the standard procedure, we assign to each curve a value of the
action variable I , where I → 0 as the curve approaches the separatrix.

Lemma 9.7. There exists a function F , real-analytic at the point (0, 0, 0) ∈ R
3 with

F(0, 0, 0) = 1, such that

H̃0 = H0(I ) = λ I

log |I |F
(

1

log |I | ,
log | log |I‖

log |I | , I

)
. (9.37)

Differentiating equation (9.37), we obtain the following corollary.

Corollary 9.8. For I close to zero

∂H0

∂I
= λ

log |I |R
(

1

log |I | ,
log | log |I‖

log |I | , I

)
,

where R is real-analytic at the point (0, 0, 0), and R(0, 0, 0) = 1.

Corollary 9.9. For I close to zero

∂H0

∂I
= λ

log |H0/λ|
(

1 + O

(
log log H0

log H0

))
.

Proof (of Lemma 9.7). Let (x, y) be real-analytic normal coordinates in a neigh-
borhood of the hyperbolic point ẑ. The function H̃ has the form H̃ = Ĥ (ξ) =
λξ + O(ξ2), ξ = xy. Solving the equation h = Ĥ (ξ) with respect to ξ , we have
ξ = 1

λ
hf (h), where f is real-analytic at the point h = 0, and f (0) = 1.

Consider the family of invariant curves, where x > 0, y > 0 (other cases are
analogous). Let

l ⊂ {(p̃, q̃) ∈ D : H̃0(p̃, q̃) = h}
be the limit curve for this family. Consider also the square Kτ = {(x, y) ∈ R

2 :
x, y ∈ [0, τ ]}, where τ > 0 is a small number.
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The closed curve l can be broken into two parts: l1 = l ∩ Kh and l2 = l\Kh.
The canonical coordinates (p̃, q̃) and (x, y) are related as follows: p̃dq̃ =

ydx+dS, where the function S = S(x, y) is real-analytic in x, y at zero. Therefore,

2πI =
∫

l

p̃ dq̃ =
∫

l1

y dx +
∫

l1

dS +
∫

l2

p̃ dq̃.

We have:
∫

l1

y dx =
∫ τ

λ−1hf (h)/τ

hf (h)

λx
dx = hf (h)

λ

(
log

τ 2λ

f (h)
− log |h|

)
.

The family of curves l2 = l2(h) is real-analytic in h at zero. Therefore,
∫
l2

pdq

is real-analytic at zero. Hence, to find the function H0(I ) = h, we should solve the
equation

I = −1

λ
hf (h) log |h| + hg(h),

with respect to h, where f and g are real-analytic at zero. We put h = − λI
log |I |χ .

The new unknown function χ(I) satisfies the equation

G(χ, I, 1/ log |I |, log | log |I‖/ log |I |) = 0,

where G is real-analytic at the point (1, 0, 0, 0), G(1, 0, 0, 0) = 0, and ∂G
∂χ

(1, 0, 0, 0)

�= 0. Now Lemma 9.7 follows from the implicit function theorem. 	


9.4 Stability Islands in Separatrix Lobes

Let Tε : D → D be a family of symplectic maps of a two-dimensional domain D

onto itself. The map T0 is assumed to be integrable, i.e., there is a smooth locally
non-constant function F : D → R such that F ◦ T0 = F . We assume that T0 has
a hyperbolic fixed point σ0 generating two separatrix loops. The point σ0 is critical
for the first integral F . We assume that this critical point is non-degenerate.

The map Tε has a hyperbolic fixed point σε smoothly depending on ε. Generically
for ε �= 0 the separatrices of σε split and their segments form two-angular domains,
the lobes. The vicinity of the split separatrices (especially the union of the lobes) is a
zone where the chaos is most visible. It is well-known in particular that the lobes are
responsible for transport phenomena in the stochastic layer [114]. However chaos
in lobes is not uniform. One piece of evidence for this is the existence of stability
islands inside lobes.

Sinai [125] discovered that the elliptic periodic trajectories can visit separatrix
lobes (Fig. 9.6). We call these trajectories EPL trajectories (elliptic, periodic, pass-
ing through lobes). In [125] the map is not near-integrable.

One can obtain many periodic solutions near the separatrices of the point σε by
the methods of symbolic dynamics, but all these solutions are unstable.
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Fig. 9.6 The simplest type of periodic trajectory intersecting a separatrix lobe.

Kozlov showed that, if the Poincaré–Melnikov integral (3.4), Sect. 3.2, does
not vanish identically, then the unperturbed resonance curves, located near the un-
perturbed separatrices, destruct. As a result, non-degenerate periodic solutions oc-
cur [71]. (For a multidimensional generalization of this observation, see [133].) All
these solutions make exactly one full rotation inside the separatrix loop. Some of
them are stable. Stable periodic trajectories obtained in this way can exist only out-
side the

√|ε|-neighborhood of the separatrices [42], and hence cannot intersect the
separatrix lobes, because the width of the latter is of order ε.

In this section, following [124], we show that EPL-trajectories typically appear
in near-integrable systems.

To each periodic trajectory in a neighborhood of separatrices one can assign its
type: the number of times it passes near the point σε. In other words, a trajectory of
type n is a periodic trajectory of period n for the separatrix map.

The simplest example of an EPL trajectory is shown in Fig. 9.6. The trajectory
makes a full revolution inside the upper loop of the figure-eight separatrix and passes
once along the whole figure-eight. According to our classification, the type n = 3.
One can easily see that the type of an EPL trajectory is always at least three.

Let ε0 > 0 be sufficiently small and let J = J (Tε) ⊂ (−ε0, ε0) be the set of
values of the parameter ε, |ε| < ε0, for which the map Tε has an EPL trajectory.
We assume that T0 is fixed, and write T ′ = dTε/dε|ε=0. Then T ′ is a Hamiltonian
vector field.

Let Tε have smoothness8 Cr, r ∈ {r0, r0 + 1, . . . ,∞, ω}, and let A be the space
of Cr-smooth vector fields on N . We equip the space A with the C2-topology.

Theorem 9.10. There is an open set S ⊂ A such that for any T ′ ∈ S the relative
measure of the set J on the interval (−ε, ε) exceeds a positive constant independent
of ε ∈ (0, ε0).

Conjecture 9.2. The set S can be chosen dense in A .

8 It is possible to take r0 = 13.
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Theorem 9.10 follows from the corresponding result for reversible families Tε.
Let Iε : N → N be a Cr-smooth family of involutions (I 2

ε = id) such that
Iε(σε) = σε. The maps Tε are said to be reversible with respect to Iε (or Iε-rever-
sible) if

Tε ◦ Iε = Iε ◦ T −1
ε .

If T0 is reversible, then I0 maps the separatrix figure-eight onto itself. We assume
that I0 preserves the loops of the figure-eight, that is, it maps each loop onto itself.
Informally speaking, this involution acts as a symmetry with respect to the vertical
symmetry axis of the figure-eight.

Theorem 9.11. Suppose that Tε is reversible with respect to a family of loop-pre-
serving involutions Iε and at least one pair of separatrices of the point σε splits in
the first approximation with respect to ε. Then the relative measure of the set J on
the interval (−ε, ε) exceeds a positive constant independent of ε ∈ (0, ε0).

As a rule, elliptic periodic trajectories generate stability islands. We assert that
the area of such an island for a generic EPL trajectory is of the order of the area
of the separatrix lobe. This means that, in principle, these islands can be observed
on pictures obtained as a result of numerical simulation of the dynamics. However,
naive attempts to observe stability islands in separatrix lobes usually fail. This hap-
pens for two reasons. First, the measure of the set J corresponding to ‘not too small’
islands is not large (although this depends strongly on the parameters of the map).
If μ0 stands for the leading multiplier of T0 at the point σ0, then rough numerical es-
timates show that this measure varies from 0.004 to 0.3 as μ0 varies from 1.1 to 10.
Second, the mean relative measure of a ‘not too small’ island in a lobe usually varies
from 10−8 to 10−4 in the same interval of μ0. For more detailed information about
the numerical investigation of the problem, see [124].

Separatrix map in a reversible system. Consider a family of two-dimensional Iε-
reversible symplectic near-integrable maps Tε.

Lemma 9.8. Let the hyperbolic rotation

T (q, p) = (qM (pq), p/M (pq)), M (0) = μ > 1,

be reversible with respect to an involution I preserving the first and the third quad-
rants of R

2
q,p. Then there are normal coordinates (̃q, p̃) in which

I (̃q, p̃) = (p̃(1 + O(̃q p̃)), q̃(1 + O(̃q p̃))). (9.38)

Proof. Consider the function Φ(p, q) = qp. Let us show first that

Φ ◦ I = Φ + O(Φ2). (9.39)

Indeed, it follows from the definition of reversibility that

I ◦ T = T −1 ◦ I . (9.40)
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Since Φ is a first integral of T , we have

Φ ◦ I ◦ T = Φ ◦ T −1 ◦ I = Φ ◦ I .

This implies that Φ ◦ I is also a first integral of T . It follows from Proposition 4.1
that Φ ◦ I = c0 + c1Φ + O(Φ2). Moreover, c0 = 0 because I (0) = 0. Then

Φ = Φ ◦ I ◦ I = c1Φ ◦ I + O(Φ ◦ I )2 = c2
1Φ + O(Φ2).

Hence, c1 = ±1. In fact, c1 = 1, because I preserves the first and the third quad-
rants of R

2
q,p. This implies (9.39).

Let I (q) and I (p) be the first and second components of the image of I .
Since I interchanges the stable and unstable separatrices, we have

I (q)(q, 0) = 0, I (p)(0, p) = 0.

Hence, we can put

I (q)(q, p) = p a(p, q), I (p)(q, p) = q b(p, q), (9.41)

where a and b are smooth functions. Using (9.40), we obtain

a(qμ, p/μ) = a(p, q) + O(qp), b(qμ, p/μ) = b(p, q) + O(qp).

Therefore,

a(q, p) = a(0, 0) + O(qp), b(q, p) = b(0, 0) + O(qp).

By (9.39) we have a(0, 0)b(0, 0) = 1. Since the involution I preserves the first
and third quadrants, it follows that a(0, 0) > 0. Putting p = p̃

√
a(0, 0) and q =

q̃/
√

a(0, 0), we obtain (9.38). 	

Let the maps Tε be Iε-reversible, where Iε is a family of involutions preserving

the loops. Then it follows from Lemma 9.8 and Remark 4.1 that in a neighborhood
of the hyperbolic fixed point σε there are normal coordinates (q, p) = (qε, pε) in
which the involution Iε satisfies (9.38).

Below it is convenient to replace the variable x defined in (4.13), Chap. 4, by
x − (log α±)/λ. In the new coordinates the separatrix map (4.1), Chap. 4, becomes

S M ε

⎛
⎝x

y

s

⎞
⎠ =

⎛
⎝x+

y+
s+

⎞
⎠ =

⎛
⎜⎝

x + 1+O(ε)
λ

(log ε

α2
s λ

+ log |y+|)
y + λνs(x − (log αs)/λ)O(ε)

s · sign(y+)

⎞
⎟⎠ . (9.42)

We also write out the formulas for the inverse map S M −1
ε ,
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S M −1
ε

⎛
⎝x

y

s

⎞
⎠ =

⎛
⎝x−

y−
s−

⎞
⎠ =

⎛
⎜⎝

x − 1+O(ε)
λ

(log ε

α2
s−λ

+ log |y|)
y − λνs−(x− − (log αs−)/λ) + O(ε)

s · sign(y)

⎞
⎟⎠ .

Proposition 9.5. The reversibility of the map Tε induces the reversibility of the sep-
aratrix map. The corresponding involution has the form

Iε

⎛
⎝x

y

s

⎞
⎠ =

⎛
⎝ −x + 2(log αs)/λ + O(ε)

y − λνs(−x + (log αs)/λ) + O(ε)

s

⎞
⎠ . (9.43)

The functions ν± are odd: ν±(x) = −ν±(−x).

Proof. The separatrix map is determined by equation (4.12) (Chap. 4). Therefore

S M −1
ε = G −1

ε ◦ T −nr
ε = G −1

ε ◦ Iε ◦ T nr
ε ◦ Iε

= G −1
ε ◦ Iε ◦ T nr

ε ◦ Gε ◦ G −1
ε ◦ Iε

= G −1
ε ◦ Iε ◦ S M ε ◦ G −1

ε ◦ Iε.

Since Iε ◦ G −1
ε = Gε ◦ Iε, we see that in the normal coordinates the map S M ε

is reversible with respect to the involution Iε ◦ G −1
ε .

Using (4.11) (Chap. 4) and (9.38), we get

(Gε)
−1 ◦ Iε

(
q

p

)
=
(

α2
s /q + O(ε, p)

pq2α−2
s − εqνs(log |q|/λ) + O2(ε, p)

)
. (9.44)

Writing this system in the coordinates (x mod 1, y, s), we obtain (9.43). The fact
that the functions ν±(x) are odd follows from the identity I 2

ε = id. 	

Symmetric trajectories of period three. To use the reversibility, we seek EPL
trajectories symmetric with respect to the involution Iε. Let z0 = (x0, y0,−1) be
the initial condition for a periodic trajectory of period 3 of the map S M ε. Suppose
that z0 belongs to the symmetry axis, that is, Iε(z0) = z0. Then by (9.43) we have
x0 = λ−1 log α− + O(ε).

We write the periodicity condition in the form S M −1
ε (z0) = S M 2

ε(z0):

⎧⎪⎪⎨
⎪⎪⎩

log α+
λ

− γ + O(ε) = γ + 1
λ
(log ε

α+λ
+ log(y0 + λν+(γ ))) + O(ε) − m,

y0 − λν+(−γ ) + O(ε) = y0 + λν+(γ ) + O(ε),

0 < − sign(y0) = − sign(y0) sign(y0 + α2+ν+(γ )).

Here m ∈ N is the period of the corresponding trajectory of the map Tε, and

γ = 1

λ
log

ε|y0|
α−α+λ

.
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The reversibility of the map and the symmetry of the trajectory imply that the
first two equations are dependent. They are equivalent to the equation

1 + μκ−m−3χ = μrν+(χ) + O(ε), (9.45)

where
y0 = −λμ−r , ε = α2+μχ−r+κ , α+/α− = μκ. (9.46)

Stability conditions. The ellipticity condition has the form | tr M| < 2, where the
monodromy matrix M is the differential of the map S M 3

ε at the point z0. Neglect-
ing terms of the form O(ε), we put

z1 = S M ε(z0) =
⎛
⎜⎝

1
λ

log ε|y0|
α−λ

y0
1

⎞
⎟⎠ , (9.47)

z2 = S M 2
ε(z0) = S M −1

ε (z0) =
⎛
⎜⎝

− 1
λ

log ε|y0|
α−α2+λ

y0 + λν+(γ )

1

⎞
⎟⎠ . (9.48)

The differential of the map S M ε is

DS M ε(z) =
(

1 + λν′
s(x − log αs/λ)/y+ 1/y+

λν′
s(x − log αs/λ) 1

)
, (9.49)

where z = (x, y, s) and y+ = y + λνs(x − log αs/λ).
By (9.45)–(9.49), the equation tr M = tr(DS M ε(z2)DS M ε(z1) ×

DS M ε(z0)) can be written in the form

tr M = −2 + δΛ + O(ε),

Λ = μr−κ+m+3χν′−(0) + (2 − μrν′−(0))(2 + μr−κ+m+3χν′+(χ)),

δ = 1 − μrν′+(χ).

EPL trajectories exist. The existence condition for a symmetric EPL trajectory of
period 3 is

1 + μκ−m−3χ = μrν+(χ) + O(ε), (9.50)

|−2 + δΛ + O(ε)| < 2. (9.51)

Proposition 9.6. Suppose that the variables (m, r, χ), m ∈ N, satisfy (9.50)–(9.51)
with the terms O(ε) omitted. Then (m + 3, r, χ − 1) also satisfy this system.

Corollary 9.10. The set of ε > 0 for which there is an EPL trajectory given by
(9.50)–(9.51) is asymptotically invariant under the contraction ε �→ ε/μ.
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Corollary 9.11. To prove Theorem 9.11, it suffices to establish the existence of at
least one solution of the system (9.50)–(9.51)|O(ε)=0.

Corollary 9.10 is obvious. To prove Corollary 9.11, we assume that the system
(9.50)–(9.51)|O(ε)=0 has a solution (m0, r0, χ0). Since (9.51) is an inequality, it fol-
lows that for m = m0 the system (9.50)–(9.51)|O(ε)=0 has a curvilinear interval of
solutions on the (r, χ)-plane. In particular, there is an interval (ε1, ε2) lying in J .
According to Corollary 9.10, the set J contains a large portion (in the sense of mea-
sure) of the points in the set

⋃∞
n=0(μ

−nε1, μ
−nε2). This implies Theorem 9.11.

Since the separatrices of Tε split in the first approximation in ε, at least one of
the functions ν± does not vanish identically. We assume that ν+ �≡ 0. (Otherwise
we interchange the symbols + and − in the above formulas.)

Proposition 9.7. For any κ ∈ R the system (9.50)–(9.51)|O(ε)=0 has a solution.

Proof. We fix κ and put O(ε) = 0 in (9.50)–(9.51). We recall that the periodic func-
tions ν± have zero mean value.

For any m ∈ Z there is a smooth curve Φm ⊂ {(χ, r) ∈ R
2 : χ ∈ [0, 2π]},

a solution of (9.50). The curves Φm can be assumed to be oriented. Let ∂ be the
operator of differentiation along Φm. One can prove in an elementary way that

(a) on each of the curves Φm there is a point (χm, rm) at which δ = 0,
(b) the equation Λ(χ, r) = 0 holds at most at finitely many points (χm, rm),
(c) the equation ∂δ(χ, r) = 0 also holds at most at finitely many points (χm, rm).

Let (χm, rm) ∈ Φm be a point at which Λ �= 0 and ∂δ �= 0. Then by (9.51)

tr M(χm, rm) = −2, ∂(tr M)(χm, rm) �= 0.

Hence, in a small neighborhood of the point (χm, rm) on Φm there are points at
which |trM| < 2. 	

Proof (of Theorem 9.10). Every integrable map T0 is reversible with respect to some
loop-preserving involution. Let us include the map T0 in a family Tε which is re-
versible with respect to an involution preserving the loops. Consider a family of
symplectic maps T̂ε such that

T0 = T̂0,
∣∣dTε/dε|ε=0 − dT̂ε/dε|ε=0

∣∣ = Δ

for some small Δ > 0. The separatrix map corresponding to T̂ε also satisfies (9.42),
but the periodic functions ν̂± playing the role of the functions ν± are no longer odd
in general. However, they are O(Δ)-close to odd functions ν±:

|ν̂+ − ν+| ∼ Δ, |ν̂− − ν−| ∼ Δ.

If Δ is small, then any EPL trajectory of Tε can be extended to an EPL trajectory
of the map T̂ε. Since the set J for the maps Tε consists of intervals, there is an
interval (ε̂1, ε̂2) such that the map T̂ε has an EPL trajectory for any ε ∈ (ε̂1, ε̂2).
Theorem 9.10 is now a consequence of the following simple assertion.
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Suppose that the map Tε has an EPL trajectory for some small number ε. Then
the map Tε/μ also has an EPL trajectory (with a larger period).

This assertion is similar to Corollary 9.10 and follows from equations (9.42). 	

The area of the stability island around an EPL trajectory has the same order of

smallness as the area of the separatrix lobe, because both areas turn out to be of
order 1 in the variables (x, y).

9.5 Elements of Analysis on Scales

The continuous averaging method produces initial value problems for countable
systems of partial differential equations. These systems are the generalization of the
standard Cauchy–Kovalevskaya problem to the case when the vector of the unknown
functions is infinite dimensional.

The Nirenberg–Nishida theorem (see below) guarantees that the solution to such
a system exists provided the evolution variable belongs to a small interval. But in
the applications of the continuous averaging method it is important to know good
estimates for the length of this interval from below. Such estimates follow neither
from the Nirenberg–Nishida theorem nor from other general results, and they rest
heavily on the precise nature of the equations.

In this section we develop a technique required for the analysis of these problems.
This technique is based on the theory of locally convex spaces [113]. The main
cause for such a choice is the properties of the differentiation operation on the set
of analytic functions. We provide the set of analytic functions with the topology of
compact convergence and obtain a locally convex space. The differentiation is not a
bounded operator in any reasonable Banach space but in this locally convex space it
is. Fortunately most fundamental theorems for Banach spaces have generalizations
for locally convex ones.

9.5.1 Locally Convex Spaces

A linear topological space is called a locally convex space if it has a basis that
consists only of convex neighborhoods of the origin. In this section we study a
special class of locally convex spaces.

Let S be an arbitrary set. Let E stand for a linear space. Suppose the space E

is endowed with a collection of seminorms {‖ · ‖s}s∈S , where for any non-zero
element u ∈ E there exists a seminorm ‖ · ‖s such that ‖u‖s �= 0.

Taking the sets

Uε,s1,...,sn =
{
u ∈ E : max

s∈{s1,...,sn} ‖u‖s < ε
}

(9.52)
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for a basis of neighborhoods of the origin, we provide the space E with topology.
Here ε is a positive number and {s1, . . . , sn} ⊂ S is an arbitrary finite set.

The topology of any Hausdorff locally convex space can be described in such a
way. But we will study locally convex spaces with an extra hypothesis: suppose that
the topology of the space E can be defined equivalently if in (9.52) we take indices
{s1, . . . , sn} not from the whole set S but only from a countable subset S ′ ⊆ S .
If E satisfies this hypothesis we say that E is countably normed.

For example, if S = (0, S) is an interval and the seminorms of the space E

satisfy the inequality

‖ · ‖s ≤ ‖ · ‖s′ , 0 < s < s′ < S,

then we can take S ′ = (0, S)∩Q and the space E turns out to be countably normed.
Below all topological spaces are countably normed.

Definition 9.1. We say that a sequence {uj }j∈N ⊂ E converges to u ∈ E if for any
s ∈ S

lim
j→∞ ‖uj − u‖s = 0.

All the topological notions on a countably normed space can be described in
terms of sequences.

Theorem 9.12 ([113]). A set K ⊂ E is compact iff any sequence {uk}k∈N ⊂ K

contains a subsequence that is convergent to an element from K .

A set K ⊆ E is called relatively compact if the closure K is compact.

Definition 9.2. A set U ⊂ E is said to be bounded if supu∈U {‖u‖s} < ∞ for all
s ∈ S .

Now consider the space C([a, b], E) of continuous functions on [a, b] with val-
ues in E. The space is locally convex with respect to a collection of seminorms

‖u(·)‖c
s = max

t∈[a,b] ‖u(t)‖s , s ∈ S .

Definition 9.3. A set G ⊆ C([a, b], E) is said to be equicontinuous if for any s ∈
S and for any ε > 0 there exists a constant δ > 0 such that supu∈G ‖u(t1) −
u(t2)‖s < ε for all t1, t2 ∈ [a, b], |t1 − t2| < δ.

Theorem 9.13 (Ascoli [120]). Suppose that a set W ⊂ C([a, b], E) is equicontin-
uous and the set

Wt = {u(t) | u(t) ∈ W } ⊂ E

is compact for any t ∈ [a, b]. Then W is compact in C([a, b], E).

Now let us formulate a locally convex space generalization of the Schauder fixed
point theorem [56] (see also [26]).
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Theorem 9.14 (Schauder–Tikhonov Theorem).9 Let K ⊂ E be convex and com-
pact. Then any continuous mapping F : K → K has a fixed point û = F(û) ∈ K .

9.5.2 Scales of Banach Spaces

Many problems of partial differential equations can not be described satisfactory in
a single Banach space. These problems require the consideration of some specially
organized sets of Banach spaces, the so called scales.

Definition 9.4. A set of Banach spaces {(Es, ‖·‖s)}0<s<1 is called a scale of Banach
spaces if the following conditions hold

Es′ ⊆ Es, ‖ · ‖s ≤ ‖ · ‖s′ , 0 < s < s′ < 1.

As an example we put

‖w‖ = max
j

|wj |, w = (w1, . . . , wm) ∈ C
m.

Let D ⊂ R
m be a bounded domain and let

Ds = {z = x + w | x ∈ D, w ∈ C
m, ‖w‖ < sR}, 0 < s < 1 (9.53)

be a complex neighborhood of this domain. Let Hs be a set of functions f : Ds → C

analytic in Ds and continuous in the closure Ds . Being endowed with the norm

‖f ‖H
s = sup

z∈Ds

|f (z)|

the set Hs becomes a Banach space. The spaces Hs, 0 < s < 1, form a scale of
Banach spaces.

Consider the differentiation operator

∂

∂xk

: Hs′ → Hs, 0 < s < s′ < 1, k = 1, . . . , m.

By the Cauchy estimate (see Lemma 2.1)
∥∥∥∥ ∂

∂xk

∥∥∥∥
Hs′→Hs

≤ C

s′ − s
. (9.54)

Here the constant C does not depend on s and s′.
Now let us return to the general construction. Let us associate with a scale

{(Es, ‖ · ‖s)}0<s<1 a locally convex space

9 Theorems 9.13 and 9.14 remain valid not only for the case of a countably normed space E but
also if E is an arbitrary locally convex space.
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E =
⋂

0<s<1

Es

with the collection of norms ‖ · ‖s , s ∈ (0, 1).

Theorem 9.15. Let L be a closed subspace of E and let Ls be the closure of L in Es .
Then

L =
⋂

0<s<1

Ls, Ls′ ⊂ Ls, for all s′ > s.

This theorem shows that, if a locally convex space is associated with a scale of
Banach spaces, then its closed subspace is also associated with a scale of Banach
spaces.

Proof. The inclusions L ⊂ ⋂
0<s<1 Ls , Ls′ ⊂ Ls , are obvious. To verify that⋂

0<s<1 Ls ⊆ L, we assume the converse: there exists a point x ∈ E such that x ∈⋂
0<s<1 Ls, x /∈ L. Then there are sequences {xs

k}k∈N ⊂ L such that ‖xs
k−x‖s → 0

as k → ∞.

Take an increasing sequence sj → 1 as j → ∞ and construct the following
neighborhoods of the point x in E:

Uj =
{
y ∈ E : ‖y − x‖sj <

1

j

}
.

Now pick from the sequence {xsj
k }k∈N an element xj which belongs to Uj , j ∈ N.

Then the sequence {xj } ⊂ L converges to the element x in E. Indeed, take any
ε > 0 and s ∈ (0, 1). Choose a number N such that 1/N ≤ ε and sN ≥ s. Then for
all xk , k ≥ N , we have

‖xk − x‖s ≤ ‖xk − x‖sk <
1

k
≤ ε.

Thus x ∈ L. The contradiction proves the theorem. 	

Introduce a locally convex space H = ⋂

0<s<1 Hs with the collection of norms
{‖ ·‖H

s }. This space is associated with the scale {Hs} but it can be described directly.
Consider an open neighborhood

D(R) = {z = x + w | x ∈ D, w ∈ C
m, ‖w‖ < R}

of the domain D. Then H is the space of holomorphic functions f : D(R) → C.
Recall some notation. If z = (z1, . . . , zm) ∈ D(R) and j = (j1, . . . , jm) ∈ Z

m+
then

zj = z
j1
1 · · · zjm

m , |j | = j1 + · · · + jm, ∂zj = ∂z
j1
1 · · · ∂z

jm
m .

By (9.54) the n-th order differential operator
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Dn =
∑
|j |≤n

aj (z)
∂ |j |

∂zj
: H → H, aj ∈ H

is continuous. One consequence of this fact is as follows. The set ker Dn is a closed
subspace of H , and thus by Theorem 9.15 the space ker Dn is associated with the
corresponding scale.

Let T1, T2 be locally convex spaces. Recall that the embedding T1 ⊆ T2 is com-
pletely continuous if any bounded set of T1 is relatively compact in T2.

Theorem 9.16 (Montel).10 The embedding Hs′ ⊂ Hs , s < s′, is completely contin-
uous.

Theorem 9.17. Let {(Es, ‖·‖E
s )}0<s<1 and {(Vs, ‖·‖V

s )}0<s<1 be two scales of Ba-
nach spaces. Assume that for any s there exists s′ such that the embedding Es′ ⊆ Vs

is completely continuous. Then the embedding

E ⊆ V =
⋂

0<s<1

Vs

is also completely continuous.

Proof. Enumerate a countable set Q = (0, 1) ∩ Q in the following way:

Q = {sj }j∈N.

Take a bounded set U ⊂ E and let a number s be such that the embedding Es ⊂ Vs1

is completely continuous. Then by Definition 9.2 U is bounded with respect to the
norm ‖·‖E

s . Thus U contains a sequence {uk} convergent with respect to the norm
‖·‖V

s1
. Then pick s̃ such that the embedding Es̃ ⊂ Vs2 is completely continuous.

The sequence {uk} is bounded with respect to the norm ‖·‖E
s̃

. Then this sequence
contains a subsequence, say {ukl

} ⊂ {uk}, that is convergent with respect to the norm
‖·‖V

s2
, and so on. The diagonal sequence is convergent in all the norms ‖·‖V

sj
, j ∈ N.

This implies that this sequence is convergent in all the norms ‖·‖V
s , s ∈ (0, 1).

By Theorem 9.12, Theorem 9.17 is proved. 	

Corollary 9.12. Every bounded subset of the space H is relatively compact.

Indeed, by the Montel theorem the embedding Hs′ ⊂ Hs , s < s′, is completely
continuous. Therefore by Theorem 9.17 the embedding H ⊆ H is also completely
continuous.

9.5.3 Other Examples of Scales

Now we introduce two scales of analytic functions and study their properties.

10 The general version of the Montel theorem is contained in [120].
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The first scale consists of Banach spaces (Gs, ‖ · ‖G
s ). The space Gs is the space

of the sequences u = {uk(x)}k∈Z, uk ∈ Hs , with the norm

‖u‖G
s = sup

k∈Z

{(1 + |k|2)‖uk‖H
s }. (9.55)

For any s < s′ and j = 1, . . . , m, we have the operation

∂

∂xj

: Gs′ → Gs,
∂

∂xj

u =
{

∂

∂xj

uk(x)

}
k∈Z

.

Now let us introduce a scale (Fs, ‖ · ‖F
s ). The Banach spaces Fs consist of the

sequences u = {uk(x)}k∈Z, uk ∈ Hs , but the norm is

‖u‖F
s =

√∑
k∈Z

(1 + |k|2)(‖uk‖H
s )2. (9.56)

As a direct consequence of formula (9.54) we have the inequality

∥∥∥∥ ∂

∂xj

u

∥∥∥∥
F

s

≤ C

s′ − s
‖u‖F

s′ , 0 < s < s′ < 1. (9.57)

The constant C > 0 does not depend on u, s, s′.

Proposition 9.8. The embeddings Gs′ ⊂ Fs , 0 < s < s′ < 1, are completely
continuous.

Proof. Consider the projector Pnu = {uk}|k|≤n, u ∈ Fs .
Let a set W ⊂ Gs′ be bounded. That is, there exists M > 0 such that

‖w‖G
s′ ≤ M for any w = {wk}k∈Z ∈ W.

This implies that

‖wk‖H
s′ ≤ M

1 + |k|2 . (9.58)

The set Pn(W) is an ε-net for W in Fs . Indeed, take an element w ∈ W . Then by
(9.58)

(‖w − Pnw‖F
s )2 =

∑
|k|>n

(‖wk‖H
s )2(1 + |k|2) ≤ M2

∑
|k|>n

1

1 + |k|2 .

The last expression of this formula is arbitrarily small if n is big enough.
By the Montel Theorem the set Pn(W) is relatively compact in Fs . Therefore W

is relatively compact in Fs . 	

Theorem 9.17 implies the following corollary.
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Corollary 9.13. The embedding

G ⊂ F, G =
⋂

0<s<1

Gs, F =
⋂

0<s<1

Fs,

is completely continuous.

Now we endow the space Fs with an algebraic structure. Let u = {uk(x)}k∈Z ∈
Fs and v = {vk(x)}k∈Z ∈ Fs .

Proposition 9.9. If a set of constants {bm,n}m,n∈Z ⊂ C is bounded:

sup
m,n∈Z

|bm,n| ≤ c1 < ∞

then the space Fs is a Banach algebra with respect to the multiplication

uv =
{ ∑

m+n=k

bm,nunvm

}
k∈Z

,

so that
‖uv‖F

s ≤ c ‖u‖F
s ‖v‖F

s ,

where the constant c > 0 depends only on c1.

Remark 9.2. Note that this multiplication is distributive but in general it is not com-
mutative nor associative. Such algebraic properties depend on the constants bm,n.
But in our applications the constants bm,n are such that this multiplication is com-
mutative and associative.

Proof. To prove the proposition, we introduce two 2π-periodic functions

U(t) =
∑
k∈Z

‖uk‖H
s eikt , V (t) =

∑
k∈Z

‖vk‖H
s eikt .

These functions belong to the Sobolev space11 H 1(T) and

‖u‖F
s = ‖U‖H 1(T), ‖v‖F

s = ‖V ‖H 1(T).

Since the space H 1(T) is a Banach algebra with respect to the standard multiplica-
tion [2] we have:

11 The Sobolev space H 1(T) is the Banach space of the Fourier series u(x) = ∑
k∈Z

uke
ikx with

finite norm ‖u‖2
H 1(T)

= ∑
k∈Z

(1 + |k|2)|uk |2 [128].
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(‖uv‖F
s )2 =

∑
k∈Z

(1 + |k|2)
(∥∥∥∥

∑
m+n=k

bm,nunvm

∥∥∥∥
H

s

)2

≤
∑
k∈Z

(1 + |k|2)
( ∑

m+n=k

|bm,n|‖un‖H
s ‖vm‖H

s

)2

≤ c2
1 ‖UV ‖2

H 1(T)
≤ c2 ‖U‖2

H 1(T)
‖V ‖2

H 1(T)

= c2 (‖u‖F
s )2(‖v‖F

s )2. 	
 (9.59)

Corollary 9.14. For any 0 < s < s′ < 1 and u, v, u′, v′ ∈ Fs

∥∥∥∥u ∂v

∂xj

− u′ ∂v′

∂xj

∥∥∥∥
F

s

≤ c max{‖v‖F
s′ , ‖u′‖F

s′ }
s′ − s

(‖u − u′‖F
s′ + ‖v − v′‖F

s′ ).

The positive constant c depends only on c1.

Indeed, this estimate easily follows from the identity

u
∂v

∂xj

− u′ ∂v′

∂xj

= (u − u′) ∂v

∂xj

+ u′
(

∂v

∂xj

− ∂v′

∂xj

)

and formula (9.57).
To conclude this section let us make an important remark on the spaces Gs

and Fs .

Remark 9.3. We mainly use sequences w(z) = {wj(z)}j∈Z which consist not of the
scalar functions wj(z) but of the vector functions wj(z) = (wj,1, . . . , wj,q)(z).

The spaces of such sequences are also denoted by Gs and Fs . We also use for-
mulas (9.55) and (9.56) with ‖wj‖H

s = supz∈Ds
‖wj(z)‖, where ‖ · ‖ is any norm

in C
q .

Another way to consider the vector-valued sequence w = {wj }j∈Z as an element
of Gs or Fs is to stretch it into the scalar sequence

(. . . , w−1,1, . . . , w−1,q , w0,1, . . . , w0,q , w1,1, . . . , w1,q , . . .).

In both cases all the theorems about the spaces Gs and Fs remain valid.

9.5.4 Majorant Functions

Here we state two functional analytic facts on the relation “�”. (See Sect. 6.2.)
Suppose formally that the domain D consists of a single point 0 ∈ R

m and put

Ds = {z ∈ C
m : ‖z‖ < sR}.

Thus the set Ds becomes a polycircle of radius sR.
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Proposition 9.10. Suppose that u,U ∈ Hs , where u � U . Then ‖u‖H
s ≤ ‖U‖H

s .

Proof. Let u(z) = ∑
j∈Z

m+ uj z
j , U(z) = ∑

j∈Z
m+ Ujz

j . Then |uj | ≤ Uj . There

exists a point ẑ ∈ Ds such that

‖u‖H
s = |u(ẑ)| ≤

∑
j∈Z

m+

|uj | |ẑj | ≤
∑
j∈Z

m+

Uj (sR)|j | = U(z̃), z̃ = sR · 1. 	


Proposition 9.11. The set V = {u | u � U ∈ Hs} is closed in Hs .

Proof. Let {uk} ⊂ V and uk = ∑
j∈Z

m+ uk,j z
j → u = ∑

j∈Z
m+ uj z

j in Hs as
k → ∞. Evidently, it is sufficient to check that uk,j → uj . But this follows from
the Cauchy estimate

∣∣∣∣ ∂
|j |(uk − u)

∂z
j1
1 · · · ∂z

jm
m

(0)

∣∣∣∣ ≤ c|j |,s‖uk − u‖H
s .

Here c|j |,s > 0 is a constant independent of u, uk . 	

The properties of the spaces Hs and particularly formula (9.54) prompt the idea

of generalizing the classical Cauchy–Kovalevskaya theorem from the space of an-
alytic functions to general scales of Banach spaces. This generalization in its final
form has been accomplished by Nirenberg [97] and Nishida [98]. The corresponding
theorem is formulated in Sect. 6.2.
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