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THE MODULI SPACE OF LOCALLY HOMOGENEOUS
SPACES AND LOCALLY HOMOGENEOUS SPACES
WHICH ARE NOT LOCALLY ISOMETRIC
TO GLOBALLY HOMOGENEOUS SPACES

KAZUMI TSUKADA

ABsTRACT. Contrary to a natural expectation, there exist locally homogeneous
spaces which are not locally isometric to any (globally) homogeneous spaces. Such
examples were found by Kowalski. In this paper we try to understand these mys-
terious examples well. We denote by £ (n) the set of local isometry classes of n-
dimensional locally homogeneous spaces. We can introduce the topology on LH(n)
by imbedding it in the space of abstract curvature tensors and covariant derivatives.
We show that the set of local isometry classes of n-dimensional locally homogeneous
spaces which are locally isometric to homogeneous spaces are dense in LH(n).

1. Introduction

A Riemannian manifold M is said to be (globally) homogeneous if for any two
points p,q € M there exists an isometry of M which maps p to ¢. On the other
hand, it 1s called to be locally homogeneous if for any two points p,q € M there
exist a neighbourhood U of p and a neighbourhood V of ¢ and an isometry of U
onto V' which maps p to ¢. It is natural to expect that for a locally homogeneous
space M | there exists a homogeneous space M to which M is locally isometric.
It is well-known that if we change a locally homogeneous space to a locally sym-
metric space, the statement holds. Contrary to this, O.Kowalski ([5]) found the
examples of locally homogeneous spaces which are not locally isometric to any ho-
mogeneous spaces. This phenomenon is interesting and mysterious. If collecting
pieces of a locally homogeneous space and attaching them, we can extend it to a
complete one, then its universal covering space is homogeneous owing to a theo-
rem of I.M.Singer (Theorem 2.1°). But the examples found by Kowalski cannot
be extended. Since Kowalski found these examples, several authors have tried to
clarify this phenomenon (cf. Kowalski [6], A.Spiro [11], [12], and F.Tricerri [13]
etc).
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In this paper we will investigate the structure of the pair of Lie algebras as-
sociated with a locally homogeneous space which is not locally isometric to any
homogeneous space (section 4). In section 3, slightly rewriting the theory by
Singer [10] and Nicolodi-Tricerri [9], we will imbed the set LH(n) of local isome-
try classes of n-dimensional locally homogeneous spaces in the space of abstract
curvature tensors and covariant derivatives. Thus we can introduce the topology
on LM (n). Our main result is the following.

Theorem 4.1. The set of local isometry classes of n-dimensional locally homo-
geneous spaces which are locally isometric to homogeneous spaces are dense in

LH(n).

Moreover, we will show the curvature properties of a locally homogeneous space
which is not locally isometric to any homogeneous space (Proposition 4.4) and show
that a five-dimensional locally homogeneous space which is not locally isometric
to any homogeneous space is locally isometric to one of the examples found by
Kowalski in [5] and [6] (Proposition 4.7).

Finally the author would like to express his thanks to the referee for his useful
comments.

2. Preliminaries

At first we recall the theory of infinitesimally homogeneous spaces by I. M. Singer
[10]. Tt gives a sufficient condition of a Riemannian manifold to be homogeneous
or locally homogeneous.

Given a Riemmanian manifold M, we consider the following condition:

P(l) : for every p,q € M there exists a linear isometry ¢ : T, M — T, M such
that

¢*(V'R), = (V'R), fori=0,1,..,1.

If M is locally homogeneous, then M obviously satisfies P({) for any [. Tt is enough
to set ¢ = the differential of a local isometry which maps p to g.

We denote by so(7,M) the Lie algebra of the skew-symmetric endomorphisms
of T, M. For a non-negative integer [, we define a Lie subalgebra g;(p) of s0(7, M)
by

gp)={A€so(T,M) | A-(V'R), =0, i=0,1,...1},

where A acts as a derivation on the tensor algebra on T, M. Since g;(p) D gi41(p),
there exists a first integer k(p) such that g, (p) = 8r(p)+1(p). Namely, we have

s0(T, M) D go(p) 2 01(p) 2 92(p) 2+ 2 8k (P) = Br(p)41(p) -

Following Singer, we say that M is wnfinitesimally homogeneous if M satisfies
P(k(p) + 1) for some point p € M. If M satisfies P(l), then the linear isometry
¢ induces a Lie algebra isomorphism of g;(p) to gi(¢q) for ¢ = 0,1, ...,[. Therefore
if M is infinitesimally homogeneous, k(¢) does not depend on ¢ € M. We put
ky = k(p) and call it the Singer invariant of an infinitesimally homogeneous
space M. If M is locally homogeneous, then M obviously satisfies P(l) for any {
and in particular M 1s infinitesimally homogeneous. Singer proved the converse.
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Theorem 2.1. A connected infinitestmally homogeneous space is locally homo-
geneous.

The global version of the theorem above is the following:

Theorem 2.1°. A connected, simply connected, complete infinitesimally homo-
geneous space is homogeneous.

Singer’s original statement is Theorem 2.1°. However by his proof it immediately
follows that Theorem 2.1 holds. L. Nicolodi and F.Tricerri reproved Theorem 2.1
by a more direct approach ([9] Theorem 2.1). Moreover, the proof of Theorem 2.1
implies the following:

Theorem 2.2. Let M and M’ be two locally homogeneous spaces and p € M and
P € M’ be their points. Suppose that there exists a linear isometry ¢ - T, M —
Ty M’ such that

¢*(VIR)p = (V'R), fori=0,1,... ky+1.

Then there exists a local isometry ¢ of a neighborhood of p onto a neighborhood
of p' which satisfies (p) = p' and pyp = ¢.

For a detailed argument, see [9] Theorem 2.5.

Secondly we will show a method of the construction of locally homogeneous
spaces. We consider a Lie algebra £ and its Lie subalgebra . m is a complement

of yin € which is invariant by the adjoint representation ad restricted to . Namely
we have

t=h+m (adirect sum as a vector space),

adh(m) C m.

We denote by adwh the representation of § on m. () is an inner product on m
which 1s invariant by adybh. That is,

(adw X (Y), Z) 4 (Y,adnX(Z)) =0 for X €h,Y,Z €m.

We call (¢,h,m,(,)) in the above an infinitesimal homogeneous pair. In addi-
tion, if an ideal of ¢ which is contained in h is {0}, we say that an infinitesimal
homogeneous pair is effective. To each effective infinitesimal homogeneous pair
(¢, h,m, (,)) corresponds a locally homogeneous space M (see the proof of Theo-
rem 4.1 in F.G. Lastaria and F. Tricerri [7]). Moreover, it is uniquely determined
up to local isometries. Similarly to the usual theory of a reductive homogeneous
space with an invariant Riemannian metric (see S.Kobayashi and K. Nomizu [4]
Chapter 10), we can express the Riemannian connection and the curvature tensor
of M in the terms of Lie algebras ¥ and h. We identify the tangent space T, M at
the origin 0 € M with m. For X € £, we denote by Xy and X, the h-component
and the m-component of X, respectively. Then the Riemannian connection is given
by
1

An(X)Y = J[X.V]w + U(X,Y) for XY €m,
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where U(X,Y) is the symmetric bilinear mapping of m x m into m defined by
AU(X,Y),Z) =7, X]a,Y)+(X,[Z,Y]m) for XV, Z €m.

For the curvature tensor R and its i-th covariant derivative V'R, we have for
X, Yem

R(X,Y) = —adn[X, Y]y + [An(X), An (V)] = A ([X, Y]m),
I(X)VIR=An(X) V'R,

where i(X) is the inner product and An(X) acts as a derivation.

Let K be a connected and simply connected Lie group whose Lie algebra is ¢
and H be its connected Lie subgroup corresponding to h. If H is closed in K, by
the usual way we obtain a reductive homogeneous space K/H equipped with a K-
invariant Riemannian metric induced by the inner product (, ) on m and the locally
homogeneous space M is locally isometric to K/H. Conversely, given a locally
homogeneous space M, we can associate an effective infinitesimal homogeneous
pair (& b, m, (,)) to it by the canonical way (see A.Spiro [11], F. Tricerri [13]). We
denote by K a connected and simply connected Lie group whose Lie algebra is £
and by H its connected Lie subgroup corresponding to f. Then we have

Theorem 2.3. A locally homogeneous space M 1is locally isometric to a homo-
geneous space if and only if H is closed in K.

For the proof, see [11] and [13].

3. The moduli space of locally homogeneous spaces

Slightly rewriting the theory by Singer [10] and Nicolodi-Tricerri [9], we will
express the set of local isometry classes of n-dimensional locally homogeneous
spaces using their curvature tensors and covariant derivatives.

We denote by £LH(n) the set of local isometry classes of n-dimensional locally
homogeneous spaces. We explain more precisely. We consider a pair (M, p) of
an n-dimensional locally homogeneous space M and its point p. If for such pairs
(M,p) and (M',p'), there exists an isometry f of a neighborhood of p onto a
neighborhood of p’ such that f(p) = p/, we put (M,p) ~ (M’',p') and introduce
an equivalence relation ~. We fix the dimension n and denote by £H(n) the set
of all equivalence classes of such pairs. To such a pair (M,p), we add a linear
isometry u : R” — T, M (i.e., an orthonormal frame at p). For such triples, we
define (M, p,u) ~ (M',p',u') by the existence of a local isometry f which satisfies
f(p) = p' and fiu = «'. We denote by FLH (n) the set of all equivalence classes of
such triples. Corresponding (M, p,u) to (M, p), we define the natural projection
n: FLH(n) — LH(n). Moreover,the orthogonal group O(n) naturally acts on
the right on FLH(n) as follows:

[(M,p, u)]a = [(M,p, ua)]
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for [(M,p,u)] € FLH(n) and a € O(n). Then LH(n) is the orbit space of this
action and 7 is just the corresponding projection.

We introduce the space of abstract curvature tensors and their covariant deriva-
tives. Let R be an n-dimensional vector space with a usual inner product () and
T} be the space of tensors of type (1,1) on R™. O(n) acts on T} on the left in the
usual manner. We denote by R° the space of curvature tensors on R”, i.e., tensors
R of type (1,3) which satisfy the following identities:

R(x,y)z = —R(y, z)z,
<R(x,y)z,w> —<R(a:,y)w,z>,
R(x,y)z+ R(y, 2)e + R(z,2)y = 0.

Similarly we define R! by the space of tensors of type (1,4) which satisfy

R(v,---) €R" for any v € R",
R(w,y,z;w) + Ry, 2, 2;w) + R(z, 2, y;w) = 0.

Further, we inductively define R® (i > 2) as follows :
R'={R€T5,; | R(v,---) €R'™" for any v € R"}.

Then R is an O(n)-invariant subspace of T3,
For a sufficiently large integer d, we define the map @ as follows:

®:FLH(N) — R OR @ - &R
(M, p,w)] — @([(M,p,uw)]) = («"Rp,u*(VR)p, - ,u*(VR),).

If (M,p,u) ~ (M’',p',u"), then we have w*(V'R'),, = u*(V'R),. Therefore ® is
well-defined. Tt is easily seen that & is an O(n)-equivariant map, which means
that ®([(M, p, u)]a) = a1 ®([(M, p, u)]). Hence we have the following diagram:

FLHn) —2— R @R '@ @R

l l

LHMN) —— R°@R' & ---dRY/O(n)
P

How large should we take the integer d? We consider the longest decreasing
sequence of Lie subalgebras g; of so(n) which may occur:

so(n) Dgo g1 2D D0k

Then we put k(n) = k. This number k(n) is important in Singer’s theory of in-
finitesimally homogeneous spaces. Therefore it is an important and basic problem
to determine or estimate k(n) for each n. M.Gromov says that k(n) < %n —1in
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his book ([3] p.165). We take d > k(n) + 1. Then by Theorem 2.2, ® is injective
and hence ® is injective. On RY @R @ --- @ RY, the usual topology is defined.
Therefore we can introduce the topology on LH(n) through ®.

We take d > k(n)+2. Then the image of ® is expressed by algebraic conditions
owing to the theorem which was announced without proof by Singer [10] and was
completely proved by Nicolodi and Tricerri [9]. We prepare the notation. Given

(RO RY,... R eR DR D ---®RY, we define the maps p and v as follows:
pso(n) — R &R @ - pRI?
Ar— p(A)=(A-R°,A-R' ... A R,
vR" R &R G RT!
X +—v(X) = (RY(X, ), R¥(X,--),--- ,RYX,---)).
Theorem 3.1 (Singer-Nicolodi-Tricerri). For (R®, R',..., R e R°aR' @ @
RE (d>k(n)+2), (R°, R, ...  R?) is contained in the image of ® if and only if
the following conditions hold:
(1) R*2(z,y; ) — R 2(y,z;- ) = RO(=,y) - R' (i=0,1,...,d—2),
(i) #(2") C p(so(n)).

We remark that the conditions (i) and (ii) are algebraic ones. The condition (i)
is a system of quadratic equations with respect to (R, R, ..., R?). The condition
(i) means the existence of a solution A € so(n) for a system of the following linear
equations defined for each X € R™:

AR =4(X)R
A RY=i(X)R?

AR =i(X)R?.

It will be an interesting problem to investigate the geometric description of the
image of ® or the image of ®.

4. Locally homogeneous spaces which are not locally
isometric to homogeneous spaces

We consider the following problem. How many locally homogeneous spaces exist
which are not locally isometric to homogeneous spaces in LH(n)? An answer we
obtained 1is the following:

Theorem 4.1. The set of local isometry classes of n-dimensional locally homo-
geneous spaces which are locally isometric to homogeneous spaces are dense in

LH(n).

Let M be an n-dimensional locally homogeneous space which is not locally
isometric to any homogeneous space. We will show that there exist locally ho-
mogeneous spaces which are locally isometric to homogeneous spaces arbitrarily
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near M. As stated in section 2, we associate an effective infinitesimal homoge-
neous pair (¢, h,m, (,)) to M. Let K be a connected and simply connected Lie
group whose Lie algebra is € and H be its connected Lie subgroup corresponding
to h. By Theorem 2.3, H is not closed in K. Using this fact, we investigate the
structure of Lie algebras ¢ and h. We denote by H the closure of H in K. Then
H is a connected closed subgroup of K. We denote by h the Lie algebra of H.
By our assumption, we have h C f. It is known that [h, h] = [h, h] C h. We put
m; = hNm. Then dimm; > 1 and h = h+ my (a direct sum). We denote by
my the orthogonal complement of my in m with respect to (,) and denote by Xy,
X, and Xy, the h-component, the my-component and the my-component of X
respectively.

Lemma 4.2. The following relations hold:
(1) [haml] = {0}7 [hamZ] C ms.
(2) [m1, mi] = {0}.
(3) [my, me] C ma, and moreover, we have

(adX(V), 2y + (Y,adX(Z)) =0 for X em,Y, 7 €m;y.

(4) M2, ma]ym, =my .

Proof of Lemma 4.2. (1). Evidently, [h,my] C [h,m] C m. On the other
hand, [h,m] C [h,h] C h. Therefore we have [h, m;] = {0}. This implies that
[ha mZ] C my.

(2), (3). We define a subset J of K by

J={a€eK

Ad(a)(m) Cm, (Ad(a) X, Ad(a)Y) =(X,Y) for X, Y €m }.

Then J is a closed subgroup of K. J contains H and hence H, too. Therefore
we have [h, m] C m and the representation ady,h leaves the inner product (,) on m
invariant. Since [my, my] C [h,h] C h and [my,my] C [h,m] C m, [my, my] = {0}.
For X € my, aduX leaves the inner product {,) on m invariant and hence (3)
holds.

(4) We assume that [mo, Ma]m, # my. We put ¥ = h + [ma, mo]n, + me. Then
¥ is an ideal of ¢. Let K’ be a connected Lie subgroup of K which corresponds
to ¥’. Since K’ is a normal subgroup of K, K’ is closed in K. K’ contains H and
hence H, too. Therefore ¥ O h = h 4 my and in particular my C [ms, ma]y,. This
is contrary to our assumption.

From Lemma 4.2 (1), we immediately obtain the following.

Corollary 4.3. Let (8, h,m,{(,)) be an effective infinitesimal homogeneous pair
such that the representation of adwh is wrreducible. Then a locally homogeneous
space which corresponds to it is locally isometric to a homogeneous space.

We introduce a symmetric bilinear form (,) on h as follows:

(A, B) = —tr(adnwAadyB) for A,B €.
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Because of the effectiveness, the homomorphism ady : h — so(m) is injective.
Therefore (,) is an adh-invariant (positive-definite) inner product. Let 3 be the
center of h and s be an orthogonal complement of 3 in h with respect to (,). Then
5 1s an 1deal of h and a compact semi-simple Lie algebra. We denote by S the
connected Lie subgroup of K corresponding to s. S is a compact subgroup and
hence closed in K. In particular dim3 > 1. S is a normal subgroup of H and a
factor Lie group of H/S is a connected Abelian group. By Lemma 4.2, 5 is an
ideal of b and hence S is a normal subgroup of H. Moreover, a factor group H /S
is a connected Abelian group. By a natural inclusion, H/S is a connected Lie
subgroup of H/S and the closure of H/S in H/S coincides with H/S.

We denote by a and a the Lie algebras of H/S and H /S, respectively and
by exp : @ — H/S the exponential map. It is easily seen that there exists a Lie
subalgebra o of @ arbitrarily near a such that exp(a’) is a closed subgroup of H/S.
We denote by 7 : h — @ the homomorphism of Lie algebras which corresponds
to a natural projection 7 : H — H/S. We put i’ = 7=(a’). Then b’ is a Lie
subalgebra of h. A connected Lie subgroup H’ of H which corresponds to h’ is
closed in H and hence in K. Since ' is sufficiently near b in b, b’ " m = {0}.
Since [h, m] C m, we see that [h’,m] C m and adnyb’ leaves the inner product (,)
invariant. Moreover, adn : h' — so(m) is injective. Thus we obtain an effective
infinitesimal homogeneous pair (¢, 5, m, (,)).

A locally homogeneous space M’ which corresponds to (¢,h’,m,(,)) is locally
isometric to a homogeneous space, since H’ is closed in K. The curvature tensor
R and its i-th covariant derivative VIR’ of M’ are sufficiently near R and V'R of
M | respectively. We will explain this assertion, below. Let X and Y be vectors of
m. We have the decompositions

[XaY] = [XaY]b + [XaY]m
= [XaY]U' + [Xay]in

according to the decompositions ¢ = fj + m and £ = ' + m, respectively. Since b’
is sufficiently near b, [X, Y]y is sufficiently near [X, Y]y in h and [X, Y], is suf-
ficiently near [X, Y]y, in m. Noticing the formulas of the Riemannian connection,
the curvature tensor, and its covariant derivatives stated in section 2, we see that
our assertion holds.

Thus Theorem 4.1 has been proved.

Next, we will investigate the curvature properties of a locally homogeneous
space which is not locally isometric to any homogeneous space. In addition to
the assumption in the proof of Theorem 4.1, we assume that Adw(H) is closed
in SO(m). This assumption is satisfied by the effective infinitesimal homogeneous
pair associated with a locally homogeneous space by the canonical way. Then we
have Adw(H) = Adw(H). From this it follows that ady(h) = ady(h). We put n =
the kernel of ady, in h. Because of the effectiveness, h Nn = {0}.Therefore we have
the direct sum decomposition h = b+ n as a vector space. Since n is an ideal of ,
[h,n] C n. On the other hand, [h,n] C [h, h] C h. Hence [h,n] = {0}. In particular
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n is contained in the center of ¥. It is easily seen that we may replace my by nin
Lemma4.2. That is, we may assume that m = n+m;, (an orthogonal direct sum).
Then the Riemannian connection Ay, stated in section 2 satisfies that

Am(Xl)Xz =0 for X1, X2 €En,
An(X)Y = Ap(Y)X for X €n,Y €my,

1
(Am(X)Y.Z) = —5([V. Z)w. X) for X €nY,Z € m.

Moreover for a non-zero vector X € n, Ap(X) # 0. In fact, if (An(X)Y,7) =
—%([Y, Zlm, X) = 0 for any Y, 7 € my, we have [my, ma]n C n. It is contrary
to Lemma 4.2 (4). For X € m, we define the Jacobi operator Rx by the map
Y — R(Y, X)X. The Jacobi operator Rx is a symmetric linear operator of m.
Straightforward computing the formula of the curvature tensor given in section 2,
we have the following.

Proposition 4.4. Let X be a non-zero vector of n. Then

Rx(X"y=0 for X' en,
Rx(Y) = —An(X)?Y forY €ms.

In particular, all the eigenvalues of Rx are non-negative and at least one eigen-
value is positive. Moreover, the Ricei curvature p(X, X) is positive.

From the proposition above, we immediately obtain the following.

Corollary 4.5 (Spiro [12]). If M is a locally homogeneous space whose Ricei
curvature tensor is non-positive, then it is locally isometric to a homogeneous
space.

Corollary 4.6. If M is an even dimenstonal locally homogeneous space which has
positive sectional curvature, then it is locally isometric to a homogeneous space.

Proof of Corollary 4.6. Suppose that M is not locally isometric to any homo-
geneous space. By Proposition 4.4, dimn = 1. Let X be a nono-zero vector of n.
Since the dimension of ms i1s odd, there exists a non-zero vector Y in ms such that
Aw(X)Y = 0. The sectional curvature of the plane spanned by X and Y is zero.
It is contrary to our assumption.

Finally we will determine five-dimensional locally homogeneous spaces which
are not locally isometric to globally homogeneous spaces. Here we remark that
a locally homogeneous space whose dimension is not greater than four is locally
isometric to a homogeneous space (G.D.Mostow [8]).

Proposition 4.7. Let M be a five-dimensional locally homogeneous space which
1s not locally isometric to a homogeneous space. Then M s locally isometric to

one of the examples found by Kowalski in [5] (see also [6]).

Proof. Let (t,h,m,{,)) be an effective infinitesimal homogeneous pair associated
to M. We denote by K a connected and simply connected Lie group whose Lie
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algebra is € and by H its connected Lie subgroup corresponding to . Let S be
the compact semi-simple Lie subgroup of H defined in the proof of Theorem 4.1.
Then applying Theorem 1 in M. Goto [2], we can prove the following lemma. We
omit its detailed argument.

Lemma 4.8. K has a torus subgroup of dimension at least 2 + rank(S).

As before we assume that Ady(H) is closed in SO(m) and have the decomposi-
tions: h = h+n, m = n+ m,. Since nis contained in the center of €, n is an ideal
of €. We denote by N a connected Lie subgroup of K corresponding to n. Since
N is a normal subgroup of K, it is closed in K and simply connected.

Lemma 4.9. The center of ) is of dimension at least 1 + dimn.

Proof of Lemma 4.9. We recall the proof of Theorem 4.1. A factor group
H/S is isomorphic to a product group T x R% of a d;-dimensional torus T%
and a dy-dimensional vector group R4, N is contained in H and isomorphic to
R, The natural projection H — H/S restricted to N is injective. Therefore
ds > dimn . Since the closure of H/S coincides with H/S = T% x R% we have
dim(H/S N T%) > 1 and the natural projection H/S — R% restricted to H/S is
surjective. In particular dim of the center of h = dim H/S > 1 +d2 > 1 + dimn.

We denote by K; and H; the factor groups K/N and H /N, respectively and
by p: K — K; the natural projection. £; and h; are the Lie algebras of K7 and
Hy, respectively. Then dp : ¢ — ¥ is a Lie algebra homomorphism. dp|y is an
isomorphism of h onto h;. We put dp(ms) = m and define an inner product {,)
on m such that dp|n, : ma — m is a linear isometry. Then we have an effective
infinitesimal homogeneous pair (¢1, 1, m,(,)). Let T be a torus subgroup of K.
Since N is isomorphic to RY, TAN = {e}. Therefore p restricted to T is injective.
This, together with Lemma 4.8, implies that A7 has a torus subgroup of dimension
at least 2 4+ rank(.5).

From now on we assume that dimM = 5. We will show that dimn = 1.
Since Am : 1 — s0(my) is injective, dimn < 2. Suppose that dimn = 2. Then
by Lemma 4.9, dim of the center of h > 1 4+ dimn = 3. On the other hand,
ad : h — so(my) = s0(3) is injective. This does not occur. Thus we see that
dimn = 1. In particular K;/H; is a four-dimensional homogeneous space. In the
classification list of four-dimensional homogeneous spaces (cf. L.Bérard Bergery
[1]), we find the ones which satisfy the following two conditions:

(1) by has the center of dimension at least 1 +dimn = 2,

(i) K1 has a torus subgroup of dimension at least 2+rank of s, where 5 denotes
a semi-simple part of h.

Then we have ; = su(2) + su(2), hy = s0(2) + s0(2). Consequently, ¢ = su(2) +
s5u(2) + R and h is a Lie subalgebra of € such that dp|, is an isomorphism of h onto
50(2) + 50(2). Therefore there exists a linear map f : 50(2) + s0(2) — R such that

h={X+ f(X) | X €50(2) +50(2) C su(2) +su(2) }.

It is sufficient to find a map f such that the connected Lie subgroup H of K
which corresponds to b is not closed. The effective infinitesimal homogeneous pair
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(¢, h,m, (,)) obtained in the above is associated to one of the examples found by
Kowalski.
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