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Preface

An Experimental Approach to Nonlinear Dynamics and Chaos is a textbook and a
reference work designed for advanced undergraduate and beginning graduate stu-
dents. This book provides an elementary introduction to the basic theoretical and
experimental tools necessary to begin research into the nonlinear behavior of me-
chanical, electrical, optical, and other systems. A focus of the text is the description
of several desktop experiments, such as the nonlinear vibrations of a current-carrying
wire placed between the poles of an electromagnet and the chaotic patterns of a ball
bouncing on a vibrating table. Each of these experiments is ideally suited for the
small-scale environment of an undergraduate science laboratory.

In addition, the book includes software that simulates several systems described
in this text. The software provides the student with the opportunity to immedi-
ately explore nonlinear phenomena outside of the laboratory. The feedback of the
interactive computer simulations enhances the learning process by promoting the
formation and testing of experimental hypotheses. Taken together, the text and
associated software provide a hands-on introduction to recent theoretical and ex-
perimental discoveries in nonlinear dynamics.

Studies of nonlinear systems are truly interdisciplinary, ranging from experimen-
tal analyses of the rhythms of the human heart and brain to attempts at weather
prediction. Similarly, the tools needed to analyze nonlinear systems are also inter-
disciplinary and include techniques and methodologies from all the sciences. The
tools presented in the text include those of:

theoretical and applied mathematics (dynamical systems theory and perturba-
tion theory),

theoretical physics (development of models for physical phenomena, application
of physical laws to explain the dynamics, and the topological characterization
of chaotic motions),

experimental physics (circuit diagrams and desktop experiments),

engineering (instabilities in mechanical, electrical, and optical systems), and

computer science (numerical algorithms in C and symbolic computations with
Mathematica).

xi
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A major goal of this project is to show how to integrate tools from these di�erent
disciplines when studying nonlinear systems.

Many sections of this book develop one speci�c \tool" needed in the analysis
of a nonlinear system. Some of these tools are mathematical, such as the appli-
cation of symbolic dynamics to nonlinear equations; some are experimental, such
as the necessary circuit elements required to construct an experimental surface of
section; and some are computational, such as the algorithms needed for calculat-
ing fractal dimensions from an experimental time series. We encourage students to
try out these tools on a system or experiment of their own design. To help with
this, Appendix I provides an overview of possible projects suitable for research by
an advanced undergraduate. Some of these projects are in acoustics (oscillations
in gas columns), hydrodynamics (convective loop|Lorenz equations, Hele-Shaw
cell, surface waves), mechanics (oscillations of beams, stability of bicycles, forced
pendulum, compass needle in oscillating B-�eld, impact-oscillators, chaotic art mo-
biles, ball in a swinging track), optics (semiconductor laser instabilities, laser rate
equations), and other systems showing complex behavior in both space and time
(video-feedback, ferrohydrodynamics, capillary ripples).

This book can be used as a primary or reference text for both experimental
and theoretical courses. For instance, it can be used in a junior level mathematics
course that covers dynamical systems or as a reference or lab manual for junior
and senior level physics labs. In addition, it can serve as a reference manual for
demonstrations and, perhaps more importantly, as a source book for undergraduate
research projects. Finally, it could also be the basis for a new interdisciplinary
course in nonlinear dynamics. This new course would contain an equal mixture of
mathematics, physics, computing, and laboratory work. The primary goal of this
new course is to give students the desire, skills, and con�dence needed to begin their
own research into nonlinear systems.

Regardless of her �eld of study, a student pursuing the material in this book
should have a �rm grounding in Newtonian physics and a course in di�erential
equations that introduces the qualitative theory of ordinary di�erential equations.
For the latter chapters, a good dose of mathematical maturity is also helpful.

To assist with this new course we are currently designing labs and software,
including complementary descriptions of the theory, for the bouncing ball system,
the double scroll LRC circuit, and a nonlinear string vibrations apparatus. The
bouncing ball package has been completed and consists of a mechanical apparatus
(a loudspeaker driven by a function generator and a ball bearing), the Bouncing Ball
simulation system for the Macintosh computer, and a lab manual. This package
has been used in the Bryn Mawr College Physics Laboratory since 1986.

This text is the �rst step in our attempt to integrate nonlinear theory with easily
accessible experiments and software. It makes use of numerical algorithms, symbolic
packages, and simple experiments in showing how to attack and unravel nonlinear
problems. Because nonlinear e�ects are commonly observed in everyday phenomena
(avalanches in sandpiles, a dripping faucet, frost on a window pane), they easily
capture the imagination and, more importantly, fall within the research capabilities
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of a young scientist. Many experiments in nonlinear dynamics are individual or
small group projects in which it is common for a student to follow an experiment
from conception to completion in an academic year.

In our opinion nonlinear dynamics research illustrates the �nest aspects of small
science. It can be the e�ort of a few individuals, requiring modest funding, and often
deals with \homemade" experiments which are intriguing and accessible to students
at all levels. We hope that this book helps its readers in making the transition from
studying science to doing science.

We thank Neal Abraham, Al Albano, and Paul Melvin for providing detailed
comments on an early version of this manuscript. We also thank the Department
of Physics at Bryn Mawr College for encouraging and supporting our e�orts in this
direction over several years. We would also like to thank the text and software
reviewers who gave us detailed comments and suggestions. Their corrections and
questions guided our revisions and the text and software are better for their scrutiny.

One of the best parts about writing this book is getting the chance to thank all
our co-workers in nonlinear dynamics. We thank Neal Abraham, Kit Adams, Al Al-
bano, Greg Alman, Ditza Auerbach, Remo Badii, Richard Bagley, Paul Blanchard,
Reggie Brown, Paul Bryant, Gregory Buck, Jose�na Casasayas, Lee Casperson, R.
Crandall, Predrag Cvitanovi�c, Josh Degani, Bob Devaney, Andy Dougherty, Bonnie
Duncan, Brian Fenny, Neil Gershenfeld, Bob Gilmore, Bob Gioggia, Jerry Gollub,
David Gri�ths, G. Gunaratne, Dick Hall, Kath Hartnett, Doug Hayden, Gina Luca
and Lois Ho�er-Lippi, Phil Holmes, Reto Holzner, Xin-Jun Hou, Tony Hughes,
Bob Jantzen, Raymond Kapral, Kelly and Jimmy Kenison-Falkner, Tim Kerwin,
Greg King, Eric Kostelich, Pat Langhorne, D. Lathrop, Wentian Li, Barbara Litt,
Mark Levi, Pat Locke, Amy Lorentz, Takashi Matsumoto, Bruce McNamara, Tina
Mello, Paul Melvin, Gabriel Mindlin, Tim Molteno, Ana Nunes, Oliver O'Reilly,
Norman Packard, R. Ramshankar, Peter Rosenthal, Graham Ross, Miguel Rubio,
Melora and Roger Samelson, Wes Sandle, Peter Saunders, Frank Selker, John Selker,
Bill Sharpf, Tom Shieber, Francesco Simonelli, Lenny Smith, Hern�an Solari, Tom

Solomon, Vernon Squire, John Stehle, Rich Super�ne, M. Tarroja, Mark Taylor, J.
R. Tredicce, Hans Troger, Jim Valerio, Don Warrington, Kurt Wiesenfeld, Stephen
Wolfram, and Kornelija Zgonc.

We would like to express a special word of thanks to Bob Gilmore, Gabriel
Mindlin, Hern�an Solari, and the Drexel nonlinear dynamics group for freely sharing
and explaining their ideas about the topological characterization of strange sets. We
also thank Tina Mello for experimental expertise with the bouncing ball system,
Tim Molteno for the design and construction of the string apparatus, and Amy
Lorentz for programing expertise with Mathematica.

Nick would like to acknowledge agencies supporting his research in nonlinear
dynamics, which have included Sigma Xi, the Fulbright Foundation, Bryn Mawr
College, Otago University Research Council, the Beverly Fund, and the National
Science Foundation.

Nick would like to o�er a special thanks to Mom and Dad for lots of home
cooked meals during the writing of this book, and to Mary Ellen and Tracy for
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encouraging him with his chaotic endeavors from an early age.
Tyler would like to thank his own family and the Duncan and Dill families for

their support during the writing of the book.
Jeremy and Tyler would like to thank the exciting teachers in our lives. Jeremy

and Tyler dedicate this book to all inspiring teachers.



Introduction

What is nonlinear dynamics?

A dynamical system consists of two ingredients: a rule or \dynamic,"
which speci�es how a system evolves, and an initial condition or \state"
from which the system starts. The most successful class of rules for de-
scribing natural phenomena are di�erential equations. All the major
theories of physics are stated in terms of di�erential equations. This

observation led the mathematician V. I. Arnold to comment, \conse-
quently, di�erential equations lie at the basis of scienti�c mathematical
philosophy," our scienti�c world view. This scienti�c philosophy began
with the discovery of the calculus by Newton and Leibniz and continues
to the present day.

Dynamical systems theory and nonlinear dynamics grew out of the

qualitative study of di�erential equations, which in turn began as an

attempt to understand and predict the motions that surround us: the
orbits of the planets, the vibrations of a string, the ripples on the
surface of a pond, the forever evolving patterns of the weather. The �rst

two hundred years of this scienti�c philosophy, from Newton and Euler

through to Hamilton and Maxwell, produced many stunning successes
in formulating the \rules of the world," but only limited results in

�nding their solutions. Some of the motions around us|such as the
swinging of a clock pendulum|are regular and easily explained, while

others|such as the shifting patterns of a waterfall|are irregular and

initially appear to defy any rule.

The mathematician Henri Poincar�e (1892) was the �rst to appreci-
ate the true source of the problem: the di�culty lay not in the rules,

but rather in specifying the initial conditions. At the beginning of this

1



2 Introduction

century, in his essay Science and Method, Poincar�e wrote:

A very small cause which escapes our notice determines

a considerable e�ect that we cannot fail to see, and then

we say that that e�ect is due to chance. If we knew ex-

actly the laws of nature and the situation of the universe at

the initial moment, we could predict exactly the situation

of that same universe at a succeeding moment. But even
if it were the case that the natural laws had no longer any

secret for us, we could still only know the initial situation
approximately. If that enabled us to predict the succeed-
ing situation with the same approximation, that is all we
require, and we should say that the phenomenon had been
predicted, that it is governed by laws. But it is not always
so; it may happen that small di�erences in the initial con-

ditions produce very great ones in the �nal phenomena. A
small error in the former will produce an enormous error in
the latter. Prediction becomes impossible, and we have the
fortuitous phenomenon.

Poincar�e's discovery of sensitive dependence on initial conditions in
what are now termed chaotic dynamical systems has only been fully

appreciated by the larger scienti�c community during the past three
decades. Mathematicians, physicists, chemists, biologists, engineers,
meteorologists|indeed, individuals from all �elds have, with the help
of computer simulations and new experiments, discovered for them-

selves the cornucopia of chaotic phenomena existing in the simplest

nonlinear systems.

Before we proceed, we should distinguish nonlinear dynamics from
dynamical systems theory.1 The latter is a well-de�ned branch of
mathematics, while nonlinear dynamics is an interdisciplinary �eld that
draws on all the sciences, especially mathematics and the physical sci-

ences.

1For an outline of the mathematical theory of dynamical systems see D. V.
Anosov, I. U. Bronshtein, S.Kh. Aranson, and V. Z. Grines, Smooth dynamical
systems, in Encyclopaedia of Mathematical Sciences, Vol. 1, edited by D. V. Anosov
and V. I. Arnold (Springer-Verlag: New York, 1988).
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Scientists in all �elds are united by their need to solve nonlinear

equations, and each di�erent discipline has made valuable contribu-

tions to the analysis of nonlinear systems. A meteorologist discov-

ered the �rst strange attractor in an attempt to understand the un-

predictability of the weather.2 A biologist promoted the study of the

quadratic map in an attempt to understand population dynamics.3 And

engineers, computer scientists, and applied mathematicians gave us a

wealth of problems along with the computers and programs needed

to bring nonlinear systems alive on our computer screens. Nonlinear
dynamics is interdisciplinary, and nonlinear dynamicists rely on their
colleagues throughout all the sciences.

To de�ne a nonlinear dynamical system we �rst look at an example
of a linear dynamical system. A linear dynamical system is one in

which the dynamic rule is linearly proportional to the system variables.
Linear systems can be analyzed by breaking the problem into pieces
and then adding these pieces together to build a complete solution.
For example, consider the second-order linear di�erential equation

d2x

dt2
= �x:

The dynamical system de�ned by this di�erential equation is linear be-
cause all the terms are linear functions of x. The second derivative of x
(the acceleration) is proportional to �x. To solve this linear di�erential
equation we must �nd some function x(t) with the following property:

the second derivative of x (with respect to the independent variable t)

is equal to �x. Two possible solutions immediately come to mind,

x1(t) = sin(t) and x2(t) = cos(t);

since
d2

dt2
x1(t) = � sin(t) = �x1(t)

and
d2

dt2
x2(t) = � cos(t) = �x2(t);

2E. N. Lorenz, Deterministic nonperiodic ow, J. Atmos. Sci. 20, 130{141 (1963).
3R. M. May, Simple mathematical models with very complicated dynamics, Na-

ture 261, 459{467 (1976).



4 Introduction

that is, both x1 and x2 satisfy the linear di�erential equation. Because

the di�erential equation is linear, the sum of these two solutions de�ned

by

x(t) = x1(t) + x2(t)

is also a solution.4 This can be veri�ed by calculating

d2

dt2
x(t) =

d2

dt2
x1(t) +

d2

dt2
x2(t)

= �[x1(t) + x2(t)]

= �x(t):
Any number of solutions can be added together in this way to form a

new solution; this property of linear di�erential equations is called the
principle of superposition. It is the cornerstone from which all linear
theory is built.

Now let's see what happens when we apply the same method to
a nonlinear system. For example, consider the second-order nonlinear

di�erential equation
d2x

dt2
= �x2:

Let's assume we can �nd two di�erent solutions to this nonlinear dif-
ferential equation, which we will again call x1(t) and x2(t). A quick
calculation,

d2x

dt2
=

d2x1

dt2
+
d2x2

dt2

= �(x21 + x22)

6= �(x21 + x22 + 2x1x2)

= �(x1 + x2)
2

= �x2;
shows that the solutions of a nonlinear equation cannot usually be

added together to build a larger solution because of the \cross-terms"

(2x1x2). The principle of superposition fails to hold for nonlinear sys-

tems.

4The full de�nition of a linear system also requires that the sum of scalar products
x(t) = a1x1(t) + a2x2(t), where a1 and a2 are constants, is also a solution.
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Traditionally, a di�erential equation is \solved" by �nding a func-

tion that satis�es the di�erential equation. A trajectory is then de-

termined by starting the solution with a particular initial condition.

For example, if we want to predict the position of a comet ten years

from now we need to measure its current position and velocity, write

down the di�erential equation for its motion, and then integrate the

di�erential equation starting from the measured initial condition. The

traditional view of a solution thus centers on �nding an individual orbit

or trajectory. That is, given the initial condition and the rule, we are
asked to predict the future position of the comet. Before Poincar�e's
work it was thought that a nonlinear system would always have a so-
lution; we just needed to be clever enough to �nd it.

Poincar�e's discovery of chaotic behavior in the three-body problem

showed that such a view is wrong. No matter how clever we are we won't
be able to write down the equations that solve many nonlinear systems.
This is not wholly unexpected. After all, in a (bounded) closed form
solution we might expect that any small change in initial conditions
should produce a proportional change in the predicted trajectories. But

a chaotic system can produce large di�erences in the long-term trajec-
tories even when two initial conditions are close. Poincar�e realized the
full implications of this simple discovery, and he immediately rede�ned
the notion of a \solution" to a di�erential equation.

Poincar�e was less interested in an individual orbit than in all pos-

sible orbits. He shifted the emphasis from a local solution|knowing
the exact motion of an individual trajectory|to a global solution|

knowing the qualitative behavior of all possible trajectories for a given

class of systems. In our comet example, a qualitative solution for the
di�erential equation governing the comet's trajectory might appear eas-
ier to achieve since it would not require us to integrate the equations of

motion to �nd the exact future position of the comet. The qualitative

solution is often di�cult to completely specify, though, because it re-
quires a global view of the dynamics, that is, the possible examination

of a large number of related systems.
Finding individual solutions is the traditional approach to solv-

ing a di�erential equation. In contrast, recurrence is a key theme in

Poincar�e's quest for the qualitative solution of a di�erential equation.
To understand the recurrence properties of a dynamical system, we
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need to know what regions of space are visited and how often the orbit

returns to those regions. We can seek to statistically characterize how

often a region of space is visited; this leads to the so-called ergodic5

theory of dynamical systems. Additionally, we can try to understand

the geometric transformations undergone by a group of trajectories;

this leads to the so-called topological theory of dynamical systems em-

phasized in this book.

There are many di�erent levels of recurrence. For instance, the
comet could crash into a planet. After that nothing much happens
(unless you're a dinosaur). Another possibility is that the comet could
go into an orbit about a star and from then on follow a periodic motion.

In this case the comet will always return to the same points along the
orbit. The recurrence is strictly periodic and easily predicted. But there
are other possibilities. In particular, the comet could follow a chaotic
path exhibiting a complex recurrence pattern, visiting and revisiting
di�erent regions of space in an erratic manner.

To summarize, Poincar�e advocated the qualitative study of di�er-
ential equations. We may lose sight of some speci�c details about any
individual trajectory, but we want to sketch out the patterns formed

by a large collection of di�erent trajectories from related systems. This
global view is motivated by the fact that it is nonsensical to study
the orbit of a single trajectory in a chaotic dynamical system. To un-
derstand the motions that surround us, which are largely governed by
nonlinear laws and interactions, requires the development of new qual-

itative techniques for analyzing the motions in nonlinear dynamical

systems.

What is in this book?

This book introduces qualitative (bifurcation theory, symbolic dynam-

ics, etc.) and quantitative (perturbation theory, numerical methods,

etc.) methods that can be used in analyzing a nonlinear dynamical

system. Further, it provides a basic set of experimental techniques re-
quired to set up and observe nonlinear phenomena in the laboratory.

5V. I. Arnold and A. Avez, Ergodic problems of classical mechanics (W. A.
Benjamin: New York, 1968).
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Some of these methods go back to Poincar�e's original work in the last

century, while many others, such as computer simulations, are more

recent. A wide assortment of seemingly disparate techniques is used

in the analysis of the humblest nonlinear dynamical system. Whereas

linear theory resembles an edi�ce built upon the principle of superposi-

tion, nonlinear theory more closely resembles a toolbox, in which many

of the essential tools have been borrowed from the laboratories of many

di�erent friends.

To paraphrase Tolstoy, all linear systems resemble one another, but
each nonlinear system is nonlinear in its own way. Therefore, on our
�rst encounter with a new nonlinear system we need to search our tool-
box for the proper diagnostic tools (power spectra, fractal dimensions,
periodic orbit extraction, etc.) so that we can identify and characterize

the nonlinear and chaotic structures. And next, we need to analyze and
unfold these structures with the help of additional tools and methods
(computer simulations, simpli�ed geometric models, universality the-
ory, etc.) to �nd those properties that are common to a large class of
nonlinear systems.

The tools in our toolbox are collected from scientists in a wide
range of disciplines: mathematics, physics, computing, engineering,
economics, and so on. Each discipline has developed a di�erent di-
alect, and sometimes even a new language, in which to discuss nonlinear
problems. And so one challenge facing a new researcher in nonlinear

dynamics is to develop some uency in these di�erent dialects.
It is typical in many �elds, from cabinet making to mathematics, to

introduce the tyro �rst to the tedious elements and next, when these

basic elements are mastered, to introduce her to the joys of the celestial
whole. The cabinet maker �rst learns to sweep and sand and measure
and hold. Likewise, the aspiring mathematician learns how to express

limits, take derivatives, calculate integrals, and make substitutions.

All too often the consequence of an introduction through tedium is
the destruction of the inquisitive, eager spirit of inquiry. We hope to

diminish this tedium by tying the eagerness of the student to projects
and experiments that illustrate nonlinear concepts. In a few words:

we want the student to get her hands dirty. Then, with maturity and

insight born from �rsthand experience, she will be ready to �ll in the
big picture with rigorous de�nitions and more comprehensive study.
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The study of nonlinear dynamics is eclectic, selecting what appears

to be most useful among various and diverse theories and methods. This

poses an additional challenge since the skills required for research in

nonlinear dynamics can range from a knowledge of some sophisticated

mathematics (hyperbolicity theory) to a detailed understanding of the

nuts and bolts of computer hardware (binary arithmetic, digitizers).

Nonlinear dynamics is not a tidy subject, but it is vital.

The common thread throughout all nonlinear dynamics is the need

and desire to solve nonlinear problems, by hook or by crook. In-
deed, many tools in the nonlinear dynamicist's toolbox originally were
crafted as the solution to a speci�c experimental problem or applica-
tion. Only after solving many individual nonlinear problems did the
common threads and structures slowly emerge.

The �rst half of this book, Chapters 1, 2, and 3, uses a similar exper-
imental approach to nonlinear dynamics and is suitable for an advanced
undergraduate course. Our approach seeks to develop and motivate the
study of nonlinear dynamics through the detailed analysis of a few spe-
ci�c systems that can be realized by desktop experiments: the period

doubling route to chaos in a bouncing ball, the symbolic analysis of
the quadratic map, and the quasiperiodic and chaotic vibrations of a
string. The detailed analysis of these examples develops intuition for|
and motivates the study of|nonlinear systems. In addition, analysis
and simulation of these elementary examples provide ample practice

with the tools in our nonlinear dynamics toolbox. The second half of
the book, Chapters 4 and 5, provides a more formal treatment of the

theory illustrated in the desktop experiments, thereby setting the stage

for an advanced or graduate level course in nonlinear dynamics. In
addition, Chapters 4 and 5 provide the more advanced student or re-
searcher with a concise introduction to the mathematical foundations

of nonlinear dynamics, as well as introducing the topological approach

toward the analysis of chaos.
The pedagogical approach also di�ers between the �rst and second

half of the book. The �rst half tends to introduce new concepts and
vocabulary through usage, example, and repeated exposure. We believe

this method is pedagogically sound for a �rst course and is reminiscent

of teaching methods found in an intensive foreign language course. In
the second half of the book examples tend to follow formal de�nitions,
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as is more common in a traditional mathematics course.

Although a linear reading of the �rst three chapters of this text is

the most useful, it is also possible to pick and choose material from dif-

ferent sections to suit speci�c course needs. A mixture of mathematical,

theoretical, experimental, and computational methods are employed in

the �rst three chapters. The following table provides a rough road map

to the type of material found in each section:

Mathematical Theoretical Experimental Computational

1:5 1:2; 1:3; 1:4 1:1 1:6
2:2; 2:3; 2:4; 2:7; 2:8; 2:1 2:6
2:5; 2:9; 2:11 2:10; 2:12 Mathematica usage

3:3; 3:4; 3:6;3:7 3:2; 3:5; 3:8 3:8:3; 3:8:4;3:8:5
Appendix B Appendices

A;C;D;E;F;G

The mathematical sections present the core material for a mathe-

matical dynamical systems course. The experimental sections present
the core experimental techniques used for laboratory work with a low-
dimensional chaotic system. For instance, those interested in experi-
mental techniques could turn directly to the experimental sections for
the information they seek.

Some Terminology:

Maps, Flows, and Fractals

In this section we heuristically introduce some of the basic terminology
used in nonlinear dynamics. This material should be read quickly,

as background to the rest of the book. It might also be helpful to

read Appendix H, Historical Comments, before delving into the more

technical material. For precise de�nitions of the mathematical notions

introduced in this section we highly recommendV. I. Arnold's masterful
introduction to the theory of ordinary di�erential equations.6 The goal

in this section is to begin using the vocabulary of nonlinear dynamics

even before this vocabulary is precisely de�ned.

6V. I. Arnold, Ordinary di�erential equations (MIT Press: Cambridge, MA,
1973). Also see D. K. Arrowsmith and C. M. Place, Ordinary di�erential equations
(Chapman and Hall: New York, 1982).
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Figure 0.1: (a) The surfaces of the three-dimensional objects are two-

dimensional manifolds. (b) Examples of objects that are not manifolds.

Flows and Maps

A geometric formulation of the theory of di�erential equations says that

a di�erential equation is a vector �eld on a manifold. To understand
this de�nition we present an informal description of a manifold and a
vector �eld.

A manifold is any smooth geometric space (line, surface, solid). The
smoothness condition ensures that the manifold cannot have any sharp
edges. An example of a one-dimensional manifold is an in�nite straight
line. A di�erent one-dimensional manifold is a circle. Examples of

two-dimensional manifolds are the surface of an in�nite cylinder, the

surface of a sphere, the surface of a torus, and the unbounded real plane
(Fig. 0.1). Three-dimensional manifolds are harder to visualize. The

simplest example of a three-dimensional manifold is unbounded three-
space, R3. The surface of a cone is an example of a two-dimensional

surface that is not a manifold. At the apex of the cone is a sharp point,

which violates the smoothness condition for a manifold. Manifolds are
useful geometric objects because the smoothness condition ensures that

a local coordinate system can be erected at each and every point on
the manifold.

A vector �eld is a rule that smoothly assigns a vector (a directed
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line segment) to each point of a manifold. This rule is often written

as a system of �rst-order di�erential equations. To see how this works,

consider again the linear di�erential equation

d2x

dt2
= �x:

Let us rewrite this second-order di�erential equation as a system of

two �rst-order di�erential equations by introducing the new variable v,
velocity, de�ned by dx=dt = v, so that

dx

dt
= v;

dv

dt
= �x:

The manifold in this example is the real plane, R2, which consists of
the ordered pair of variables (x; v). Each point in this plane repre-
sents an individual state, or possible initial condition, of the system.
And the collection of all possible states is called the phase space of the

system. A process is said to be deterministic if both its future and
past states are uniquely determined by its present state. A process is
called semideterministic when only the future state, but not the past,
is uniquely determined by the present state. Not all physical systems
are deterministic, as the bouncing ball system (which is only semide-

terministic) of Chapter 1 demonstrates. Nevertheless, full determinism

is commonly assumed in the classical scienti�c world view.
A system of �rst-order di�erential equations assigns to each point

of the manifold a vector, thereby forming a vector �eld on the manifold

(Fig. 0.2). In our example each point of the phase plane (x; v) gets

assigned a vector (v;�x), which forms rings of arrows about the origin

(Fig. 0.3). A solution to a di�erential equation is called a trajectory

or an integral curve, since it results from \integrating" the di�erential
equations of motion. An individual vector in the vector �eld deter-

mines how the solution behaves locally. It tells the trajectory to \go
thataway." The collection of all solutions, or integral curves, is called

the ow (Fig. 0.3).

When analyzing a system of di�erential equations it is important
to present both the equations and the manifold on which the equations
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Figure 0.2: Examples of vector �elds on di�erent manifolds.

Figure 0.3: Vector �eld and ow for a linear di�erential equation.

are speci�ed. It is often possible to simplify our analysis by transferring
the vector �eld to a di�erent manifold, thereby changing the topology
of the phase space (see section 3.4.3). Topology is a kind of geometry

which studies those properties of a space that are unchanged under

a reversible continuous transformation. It is sometimes called rubber
sheet geometry. A basketball and a football are identical to a topologist.

They are both \topological" spheres. However, a torus and a sphere
are di�erent topological spaces as you cannot push or pull a sphere into

a torus without �rst cutting up the sphere. Topology is also de�ned

as the study of closeness within neighborhoods. Topological spaces
can be analyzed by studying which points are \close to" or \in the

neighborhood of" other points. Consider the line segment between 0
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Figure 0.4: Typical motions in a planar vector �eld: (a) source, (b)
sink, (c) saddle, and (d) limit cycle.

and 1. The endpoints 0 and 1 are far away; they aren't neighbors. But
if we glue the ends together to form a circle, then the endpoints become
identical, and the points around 0 and 1 have a new set of neighbors.

In its grandest form, Poincar�e's program to study the qualitative be-
havior of ordinary di�erential equations would require us to analyze the
generic dynamics of all vector �elds on all manifolds. We are nowhere

near achieving this goal yet. Poincar�e was inspired to carry out this

program by his success with the Swedish mathematician Ivar Bendixson
in analyzing all typical behavior for di�erential equations in the plane.

As illustrated in Figure 0.4, the Poincar�e-Bendixson Theorem says that
typically no more than four kinds of motion are found in a planar vector

�eld, those of a source, sink, saddle, and limit cycle. In particular, no

chaotic motion is possible in time-independent planar vector �elds. To
get chaotic motion in a system of di�erential equations one needs three

dimensions, that is, a vector �eld on a three-dimensional manifold.
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The asymptotic motions (t!1 limit sets) of a ow are character-

ized by four general types of behavior. In order of increasing complexity

these are equilibrium points, periodic solutions, quasiperiodic solutions,

and chaos.

An equilibrium point of a ow is a constant, time-independent so-

lution. The equilibrium solutions are located where the vector �eld

vanishes. The source in Figure 0.4(a) is an example of an unstable

equilibrium solution. Trajectories near to the source move away from

the source as time goes by. The sink in Figure 0.4(b) is an example of
a stable equilibrium solution. Trajectories near the sink tend toward it
as time goes by.

A periodic solution of a ow is a time-dependent trajectory that
precisely returns to itself in a time T , called the period. A periodic

trajectory is a closed curve. Like an equilibrium point, a periodic tra-
jectory can be stable or unstable, depending on whether nearby trajec-
tories tend toward or away from the periodic cycle. One illustration of
a stable periodic trajectory is the limit cycle shown in Figure 0.4(d).
A quasiperiodic solution is one formed from the sum of periodic solu-

tions with incommensurate periods. Two periods are incommensurate
if their ratio is irrational. The ability to create and control periodic
and quasiperiodic cycles is essential to modern society: clocks, elec-
tronic oscillators, pacemakers, and so on.

An asymptotic motion that is not an equilibrium point, periodic,

or quasiperiodic is often called chaotic. This catchall use of the term
chaos is not very speci�c, but it is practical. Additionally, we require

that a chaotic motion is a bounded asymptotic solution that possesses

sensitive dependence on initial conditions: two trajectories that begin
arbitrarily close to one another on the chaotic limit set start to diverge
so quickly that they become, for all practical purposes, uncorrelated.

Simply put, a chaotic system is a deterministic system that exhibits

random (uncorrelated) behavior. This apparent random behavior in
a deterministic system is illustrated in the bouncing ball system (see

section 1.4.5). A more rigorous de�nition of chaos is presented in section
4.10.

All of the stable asymptotic motions (or limit sets) just described

(e.g., sinks, stable limit cycles), are examples of attractors. The unsta-
ble limit sets (e.g., sources) are examples of repellers. The term strange
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attractor (strange repeller) is used to describe attracting (repelling)

limit sets that are chaotic. We will get our �rst look at a strange at-

tractor in a physical system when we study the bouncing ball system

in Chapter 1.

Maps are the discrete time analogs of ows. While ows are speci�ed

by di�erential equations, maps are speci�ed by di�erence equations.

A point on a trajectory of a ow is indicated by a real parameter t,

which we think of as the time. Similarly, a point in the orbit of a

map is indexed by an integer subscript n, which we think of as the
discrete analog of time. Maps and ows will be the two primary types
of dynamical systems studied in this book.

Maps (di�erence equations) are easier to solve numerically than
ows (di�erential equations). Therefore, many of the earliest numerical

studies of chaos began by studying maps. A famous map exhibiting
chaos studied by the French astronomer Michel H�enon (1976), now
known as the H�enon map, is

xn+1 = � � x2n + �yn;

yn+1 = xn;

where n is an integer index for this pair of nonlinear coupled di�er-
ence equations, with � = 1:4 and � = 0:3 being the parameter values

most commonly studied. The H�enon map carries a point in the plane,
(x0; y0), to some new point, (x1; y1). An orbit of a map is the sequence
of points generated by some initial condition of a map. For instance, if

we start the H�enon map at the point (x0; y0) = (0:0; 0:5), we �nd that
the orbit for this pair of initial conditions is

x1 = 1:4� (0:0 � 0:0) + 0:3 � 0:5 = 1:55;

y1 = 0:0;

x2 = 1:4� (1:55 � 1:55) + 0:3 � 0:0 = �1:0025;
y2 = 1:55;

and so on to generate (x3; y3), (x4; y4), etc. Unlike planar di�eren-

tial equations, this two-dimensional di�erence equation can generate
chaotic orbits. In fact, in Chapter 2 we will study a one-dimensional
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Figure 0.5: A Poincar�e map for a three-dimensional ow with a two-
dimensional cross section.

di�erence equation called the quadratic map, which can also generate
chaotic orbits.

The H�enon map is an example of a di�eomorphism of a manifold (in
this case the manifold is the plane R2). A map is a homeomorphism if
it is bijective (one-to-one and onto), continuous, and has a continuous

inverse. A di�eomorphism is a di�erentiable homeomorphism. A map
with an inverse is called invertible. A map without an inverse is called

noninvertible.

Maps exhibit similar types of asymptotic behavior as ows: equi-

librium points, periodic orbits, quasiperiodic orbits, and chaotic orbits.
There are many similarities and a few important di�erences between

the theory and language describing the dynamics of maps and ows.
For a detailed comparison of these two theories see Arrowsmith and

Place, An introduction to dynamical systems.

The dynamics of ows and maps are closely related. The study of

a ow can often be replaced by the study of a map. One prescription

for doing this is the so-called Poincar�e map of a ow. As illustrated

in Figure 0.5, a cross section of the ow is obtained by choosing some
surface transverse to the ow. A cross section for a three-dimensional
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ow is shown in the illustration and is obtained by choosing the x{y

plane, (x; y; z = 0). The ow de�nes a map of this cross section to itself,

and this map is an example of a Poincar�e map (also called a �rst return

map). A trajectory of the ow carries a point (x(t1); y(t1)) into a new

point (x(t2); y(t2)). And this in turn goes to the point (x(t3); y(t3)).

In this way the ow generates a map of a portion of the plane, and an

orbit of this map consists of the sequence of points

(x1; y1) = (x(t1); y(t1); z = 0; _z < 0);

(x2; y2) = (x(t2); y(t2); z = 0; _z < 0);

(x3; y3) = (x(t3); y(t3); z = 0; _z < 0);

and so on.

There is another reason for studying maps. To quote Steve Smale

on the \di�eomorphism problem,"7

[T]here is a second and more important reason for study-
ing the di�eomorphism problem (besides its great natural
beauty). That is, the same phenomena and problems of
the qualitative theory of ordinary di�erential equations are

present in their simplest form in the di�eomorphism prob-
lem. Having �rst found theorems in the di�eomorphism
case, it is usually a secondary task to translate the results
back into the di�erential equations framework.

The �rst dynamical system we will study, the bouncing ball system,

illustrates more fully the close connection between maps and ows.

Binary Arithmetic

Before turning to nonlinear dynamics proper, we need some familiarity
with the binary number system. Consider the problem of converting a

fraction between 0 and 1 (x0 2 [0; 1]) written in decimal (base 10) to a

binary number (base 2). The formal expansion for a binary fraction in

7S. Smale, Di�erential dynamical systems, Bull. Am. Math. Soc. 73, 747{817
(1967).
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powers of 2 is

x0 =
�1

2
+
�2

22
+
�3

23
+
�4

24
+
�5

25
+ � � � (decimal)

=
�1

2
+
�2

4
+
�3

8
+
�4

16
+
�5

32
+ � � �

= 0:�1�2�3�4�5 : : : (binary)

where �i 2 f0; 1g. The goal is to �nd the �i's for a given decimal
fraction. For example, if x0 = 3=4 then

x0 =
3

4

=
1

2
+
1

4
+
0

8
+

0

16
+

0

32
+ � � �

= 0:11 (binary):

The general procedure for converting a decimal fraction less than
one to binary is based on repeated doublings in which the ones or
\carry" digit is used for the �i's. This is illustrated in the following
calculation for x0 = 0:314:

2� 0:314 = 0:628 �! �1 = 0

2� 0:628 = 1:256 �! �2 = 1

2� 0:256 = 0:512 �! �3 = 0

2� 0:512 = 1:024 �! �4 = 1

2� 0:024 = 0:048 �! �5 = 0

2� 0:048 = 0:096 �! �6 = 0

so

x0 = 0:010100 : : : (binary):

Fractals

Nature abounds with intricate fragmented shapes and structures, in-

cluding coastlines, clouds, lightning bolts, and snowakes. In 1975

Benoit Mandelbrot coined the term fractal to describe such irregular
shapes. The essential feature of a fractal is the existence of a similar
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Figure 0.6: Construction of Cantor's middle thirds set.

structure at all length scales. That is, a fractal object has the property
that a small part resembles a larger part, which in turn resembles the
whole object. Technically, this property is called self-similarity and is
theoretically described in terms of a scaling relation.

Chaotic dynamical systems almost inevitably give rise to fractals.
And fractal analysis is often useful in describing the geometric structure

of a chaotic dynamical system. In particular, fractal objects can be
assigned one or more fractal dimensions, which are often fractional;
that is, they are not integer dimensions.

To see how this works, consider a Cantor set, which is de�ned re-
cursively as follows (Fig. 0.6). At the zeroth level the construction of
the Cantor set begins with the unit interval, that is, all points on the

line between 0 and 1. The �rst level is obtained from the zeroth level

by deleting all points that lie in the \middle third," that is, all points
between 1=3 and 2=3. The second level is obtained from the �rst level

by deleting the middle third of each interval at the �rst level, that is,
all points from 1=9 to 2=9, and 7=9 to 8=9. In general, the next level

is obtained from the previous level by deleting the middle third of all

intervals at the previous level. This process continues forever, and the
result is a collection of points that are tenuously cut out from the unit

interval. At the nth level the set consists of 2n segments, each of which
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has length ln = (1=3)n, so that the length of the Cantor set is

lim
n!1

2n
�
1

3

�n
= 0:

In the 1920s the mathematician Hausdor� developed another way

to \measure" the size of a set. He suggested that we should examine

the number of small intervals, N(�), needed to \cover" the set at a scale

�. The measure of the set is calculated from

lim
�!0

N(�) =

�
1

�

�df
:

An example of a fractal dimension is obtained by inverting this equa-
tion,

df = lim
�!0

0
@ lnN(�)

ln
�
1
�

�
1
A :

Returning to the Cantor set, we see that at the nth level the length of

the covering intervals are � =
�
1
3

�n
, and the number of intervals needed

to cover all segments at the nth level is N(�) = 2n. Taking the limits
n!1 (�! 0), we �nd

df = lim
�!0

0
@ lnN(�)

ln
�
1
�

�
1
A = lim

n!1

ln 2n

ln 3n
=

ln 2

ln 3
� 0:6309:

The middle-thirds Cantor set has a simple scaling relation, because

the factor 1=3 is all that goes into determining the successive levels. A

further elementary discussion of the middle-thirds Cantor set is found

in Devaney's Chaos, fractals, and dynamics. In general, fractals arising
in a chaotic dynamical system have a far more complex scaling relation,

usually involving a range of scales that can depend on their location
within the set. Such fractals are called multifractals.
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Chapter 1

Bouncing Ball

1.1 Introduction

Consider the motion of a ball bouncing on a periodically vibrating ta-
ble. The bouncing ball system is illustrated in Figure 1.1 and arises
quite naturally as a model problem in several engineering applications.
Examples include the generation and control of noise in machinery such
as jackhammers, the transportation and separation of granular solids

such as rice, and the transportation of components in automatic assem-
bly devices, which commonly employ oscillating tracks. These vibrating
tracks are used to transport parts much like a conveyor belt [1].

Assume that the ball's motion is con�ned to the vertical direction
and that, between impacts, the ball's height is determined by Newton's

laws for the motion of a particle in a constant gravitational �eld. A
nonlinear force is applied to the ball when it hits the table. At impact,

the ball's velocity suddenly reverses from the downward to the upward

direction (Fig. 1.1).
The bouncing ball system is easy to study experimentally [2]. One

experimental realization of the system consists of little more than a ball
bearing and a periodically driven loudspeaker with a concave optical

lens attached to its surface. The ball bearing will rattle on top of
this lens when the speaker's vibration amplitude is large enough. The

curvature of the lens is chosen so as to help focus the ball's motion in
the vertical direction.

23
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Figure 1.1: Ball bouncing on an oscillating table.

Impacts between the ball and lens can be detected by listening to

the rhythmic clicking patterns produced when the ball hits the lens. A
piezoelectric �lm, which generates a small current every time a stress
is applied, is fastened to the lens and acts as an impact detector. The
piezoelectric �lm generates a voltage spike at each impact. This spike
is monitored on an oscilloscope, thus providing a visual representation

of the ball's motion. A schematic of the bouncing ball machine is
shown in Figure 1.2. More details about its construction are provided
in reference [3].

The ball's motion can be described in several equivalent ways. The
simplest representation is to plot the ball's height and the table's height,

measured from the ground, as a function of time. Between impacts, the
graph of the ball's vertical displacement follows a parabolic trajectory

as illustrated in Figure 1.3(a). The table's vertical displacement varies

sinusoidally. If the ball's height is recorded at discrete time steps,

fx(t0); x(t1); : : : ; x(ti); : : : ; x(tn)g; (1.1)

then we have a time series of the ball's height where x(ti) is the height

of the ball at time ti.
Another view of the ball's motion is obtained by plotting the ball's

height on the vertical axis, and the ball's velocity on the horizontal axis.

The plot shown in Figure 1.3(b) is essentially a phase space represen-

tation of the ball's motion. Since the ball's height is bounded, so is

the ball's velocity. Thus the phase space picture gives us a description
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Figure 1.2: Schematic for a bouncing ball machine.

of the ball's motion that is more compact than that given by a plot of
the time series. Additionally, the sudden reversal in the ball's velocity
at impact (from positive to negative) is easy to see at the bottom of
Figure 1.3(b). Between impacts, the graph again follows a parabolic

trajectory.
Yet another representation of the ball's motion is a plot of the ball's

velocity and the table's forcing phase at each impact. This is the so-
called impact map and is shown in Figure 1.3(c). The impact map goes

to a single point for the simple periodic trajectory shown in Figure 1.3.

The vertical coordinate of this point is the ball's velocity at impact and

the horizontal coordinate is the table's forcing phase. This phase, �,

is de�ned as the product of the table's angular frequency, !, and the
time, t:

� = !t; ! = 2�=T; (1.2)

where T is the forcing period. Since the table's motion is 2�-periodic

in the phase variable �, we usually consider the phase mod 2�, which
means we divide � by 2� and take the remainder:

� mod 2� = remainder(�=2�): (1.3)
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Figure 1.3: Simple periodic orbit of a bouncing ball: (a) height vs. time,
(b) phase space (height vs. velocity), (c) impact map (velocity and

forcing phase at impact). (Generated by the Bouncing Ball program.)

A time series, phase space, and impact map plot are presented to-
gether in Figure 1.4 for a complex motion in the bouncing ball system.
This particular motion is an example of a nonperiodic orbit known as

a strange attractor. The impact map, Figure 1.4(c), is a compact and

abstract representation of the motion. In this particular example we
see that the ball never settles down to a periodic motion, in which it
would impact at only a few points, but rather explores a wide range

of phases and velocities. We will say much more about these strange

trajectories throughout this book, but right now we turn to the details

of modeling the dynamics of a bouncing ball.
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Figure 1.4: \Strange" orbit of a bouncing ball: (a) height vs. time,
(b) phase space, (c) impact map. (Generated by the Bouncing Ball

program.)

1.2 Model

To model the bouncing ball system we assume that the table's mass

is much greater than the ball's mass and the impact between the ball

and the table is instantaneous. These assumptions are realistic for the
experimental system described in the previous section and simply mean
that the table's motion is not a�ected by the collisions. The collisions

are usually inelastic; that is, a little energy is lost at each impact. If no

energy is lost then the collisions are called elastic. We will examine both
cases in this book: the case in which energy is dissipated (dissipative)

and the case in which energy is conserved (conservative).
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1.2.1 Stationary Table

First, though, we must �gure out how the ball's velocity changes at

each impact. Consider two di�erent reference frames: the ball's motion

as seen from the ground (the ground's reference frame) and the ball's

motion as seen from the table (the table's reference frame). Begin by

considering the simple case where the table is stationary and the two

reference frames are identical. As we will show shortly, understanding

the stationary case will solve the nonstationary case.
Let v0k be the ball's velocity right before the kth impact, and let

vk be the ball's velocity right after the kth impact. The prime nota-
tion indicates a velocity immediately before an impact. If the table
is stationary and the collisions are elastic, then vk = �v0k: the ball

reverses direction but does not change speed since there is no energy
loss. If the collisions are inelastic and the table is stationary, then the
ball's speed will be reduced after the collision because energy is lost:
vk = ��v0k (0 � � < 1), where � is the coe�cient of restitution. The
constant � is a measure of the energy loss at each impact. If � = 1,

the system is conservative and the collisions are elastic. The coe�cient
of restitution is strictly less than one for inelastic collisions.1

1.2.2 Impact Relation for the Oscillating Table

When the table is in motion, the ball's velocity immediately after an
impact will have an additional term due to the kick from the table. To
calculate the change in the ball's velocity, imagine the motion of the

ball from the table's perspective. The key observation is that in the

table's reference frame the table is always stationary. The ball, however,
appears to have an additional velocity which is equal to the opposite

of the table's velocity in the ground's reference frame. Therefore, to
calculate the ball's change in velocity we can calculate the change in

velocity in the table's reference frame and then add the table's velocity
to get the ball's velocity in the ground's reference frame. In Figure 1.5

we show the motion of the ball and the table in both the ground's and

the table's reference frames.

1The coe�cient of restitution � is called the damping coe�cient in the Bouncing
Ball program.
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Figure 1.5: Motion of the ball in the reference frame of the ground (a)
and the table (b).

Let uk be the table's velocity in the ground's reference frame. Fur-
ther, let �v0k and �vk be the velocity in the table's reference frame imme-
diately before and after the kth impact, respectively. The bar denotes

measurements in the table's reference frame; the unbarred coordinates
are measurements in the ground's reference frame. Then, in the table's
reference frame,

�vk = ���v0k; (1.4)

since the table is always stationary. To �nd the ball's velocity in the
ground's reference frame we must add the table's velocity to the ball's
apparent velocity,

vk = �vk + uk; v0k = �v0k + uk;

or equivalently,
�vk = vk � uk; �v0k = v0k � uk: (1.5)

Therefore, in the ground's reference frame, equation (1.4) becomes

vk � uk = ��[v0k � uk]; (1.6)

when it is rewritten using equation (1.5). Rewriting equation (1.6)
gives the velocity vk after the kth impact as

vk = [1 + �]uk � �v0k: (1.7)

This last equation is known as the impact relation. It says the kick
from the table contributes [1 + �]uk to the ball's velocity.
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1.2.3 The Equations of Motion: . Phase

and Velocity Maps

To determine the motion of the ball we must calculate the times, hence

phases (from eq. (1.2)), when the ball and the table collide. An impact

occurs when the di�erence between the ball position and the table posi-

tion is zero. Between impacts, the ball goes up and down according to

Newton's law for the motion of a projectile in a constant gravitational
�eld of strength g. Since the motion between impacts is simple, we will
present the motion of the ball in terms of an impact map, that is, some

rule that takes as input the current values of the impact phase and
impact velocity and then generates the next impact phase and impact
velocity.

Let2

x(t) = xk + vk(t� tk)� 1

2
g(t� tk)

2 (1.8)

be the ball's position at time t after the kth impact, where xk is the
position at the kth impact and tk is the time of the kth impact, and let

s(t) = A[sin(!t+ �0) + 1] (1.9)

be the table's position with an amplitude A, angular frequency !, and
phase �0 at t = 0. We add one to the sine function to ensure that the

table's amplitude is always positive. The di�erence in position between
the ball and table is

d(t) = x(t)� s(t); (1.10)

which should always be a non-negative function since the ball is never

below the table. The �rst value at which d(t) = 0, t > tk, implicitly
de�nes the time of the next impact. Substituting equations (1.8) and

(1.9) into equation (1.10) and setting d(t) to zero yields

0 = xk+ vk(tk+1� tk)� 1

2
g(tk+1� tk)

2�A[sin(!tk+1+ �0)+ 1]: (1.11)

2For a discussion of the motion of a particle in a constant gravitational �eld see
any introductory physics text such as R. Weidner and R. Sells, Elementary Physics,
Vol. 1 (Allyn and Bacon: Boston, 1965), pp. 19{22.
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Equation (1.11) can be rewritten in terms of the phase when the iden-

ti�cation � = !t+ �0 is made between the phase variable and the time

variable. This leads to the implicit phase map of the form,

0 = A[sin(�k) + 1] + vk

�
1

!
(�k+1 � �k)

�

�1

2
g

�
1

!
(�k+1 � �k)

�2
�A[sin(�k+1) + 1]; (1.12)

where �k+1 is the next � for which d(�) = 0. In deriving equation
(1.12) we used the fact that the table position and the ball position are
identical at an impact; that is, xk = A[sin(�k) + 1].

An explicit velocity map is derived directly from the impact relation,
equation (1.7), as

vk+1 = (1 + �)!A cos(!tk+1 + �0)� �[vk � g(tk+1 � tk)]; (1.13)

or, in the phase variable,

vk+1 = (1 + �)!A cos(�k+1)� �

�
vk � g

�
1

!
(�k+1 � �k)

��
; (1.14)

noting that the table's velocity is just the time derivative of the table's
position, u(t) = _s(t) � ds=dt = A! cos(!t + �0), and that, between
impacts, the ball is subject to the acceleration of gravity, so its velocity
is given by vk � g(t � tk). The overdot is Newton's original notation

denoting di�erentiation with respect to time.
The implicit phase map (eq. (1.12)) and the explicit velocity map

(eq. (1.14)) constitute the exact model for the bouncing ball system.
The dynamics of the bouncing ball are easy to simulate on a computer

using these two equations. Unfortunately, the phase map is an implicit

algebraic equation for the variable �k+1; that is, �k+1 cannot be iso-
lated from the other variables. To solve the phase function for �k+1 a

numerical algorithm is needed to locate the zeros of the phase func-
tion (see Appendix A). Still, this presents little problem for numerical

simulations, or even, as we shall see, for a good deal of analytical work.

1.2.4 Parameters

The parameters for the bouncing ball system should be determined

before we continue our analysis. The relevant parameters, with typical
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Parameter Symbol Experimental values

Coe�cient of restitution � 0.1{0.9

Table's amplitude A 0.01{0.1 cm

Table's period T 0.1{0.01 s

Gravitational acceleration g 981 cm=s2

Frequency f f = 1=T
Angular frequency ! ! = 2�f

Normalized acceleration � � = 2!2(1 + �)A=g

Table 1.1: Reference values for the Bouncing Ball System.

experimental values, are listed in Table 1.1. In an experimental system,
the table's frequency or the table's amplitude of oscillation is easy to
adjust with the function generator. The coe�cient of restitution can
also be varied by using balls composed of di�erent materials. Steel

balls, for instance, are relatively hard and have a high coe�cient of
restitution. Balls made from brass, glass, plastic, or wood are softer
and tend to dissipate more energy at impact.

As we will show in the next section, the physical parameters listed in
Table 1.1 are related. By rescaling the variables, it is possible to show

that there are only two fundamental parameters in this model. For
our purposes we will take these to be �, the coe�cient of restitution,
and a new parameter �, which is essentially proportional to A!2. The
parameter � is, in essence, a normalized acceleration and it measures

the violence with which the table oscillates up and down.

1.3 High Bounce Approximation

In the high bounce approximation we imagine that the table's displace-

ment amplitude is always small compared to the ball's maximumheight.

This approximation is depicted in Figure 1.6 where the ball's trajectory
is perfectly symmetric about its midpoint, and therefore

v0k+1 = �vk: (1.15)
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Figure 1.6: Symmetric orbit in the high bounce approximation.

The velocity of the ball between the kth and k + 1st impacts is given
by

v(t) = vk � g(t� tk): (1.16)

At the k + 1st impact, the velocity is v0k+1 and the time is tk+1, so

v0k+1 = vk � g(tk+1 � tk): (1.17)

Using equation (1.15) and simplifying, we get

tk+1 = tk +
2

g
vk; (1.18)

which is the time map in the high bounce approximation.
To �nd the velocity map in this approximation we begin with the

impact relation (eq. (1.7)),

vk+1 = (1 + �)uk+1 � �v0k+1

= (1 + �)uk+1 + �vk; (1.19)

where the last equality follows from the high bounce approximation,
equation (1.15). The table's velocity at the k + 1st impact can be

written as

uk+1 = !A cos(!tk+1 + �0)

= !A cos[!(tk + 2vk=g) + �0]; (1.20)

when the time map, equation (1.18), is used. Equations (1.19) and

(1.20) give the velocity map in the high bounce approximation,

vk+1 = �vk + !(1 + �)A cos[!(tk + 2vk=g) + �0]: (1.21)
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The impact equations can be simpli�ed somewhat by changing to

the dimensionless quantities

� = !t+ �0; (1.22)

� = 2!v=g; and (1.23)

� = 2!2(1 + �)A=g; (1.24)

which recasts the time map (eq. (1.18)) and the velocity map (eq.
(1.21)) into the explicit mapping form

f = f�;�

(
�k+1 = �k + �k;

�k+1 = ��k + � cos(�k + �k):
(1.25)

In the special case where � = 1, this system of equations is known as the

standard map [4]. The subscripts of f�;� explicitly show the dependence
of the map on the parameters � and �. The mapping equation (1.25)
is easy to solve on a computer. Given an initial condition (�0; �0), the
map explicitly generates the next impact phase and impact velocity as
f1(�0; �0) = (�1; �1), and this in turn generates f

2(�0; �0) = f1(�1; �1) =
f �f(�0; �0) = (�2; �2), etc., where, in this notation, the superscript n in

fn indicates functional composition (see section 2.2). Unlike the exact
model, both the phase map and the velocity map are explicit equations
in the high bounce approximation.

The high bounce approximation shares many of the same qualita-
tive properties of the exact model for the bouncing ball system, and it

will serve as the starting point for several analytic calculations. How-
ever, for comparisons with experimental data, it is worthwhile to put

the extra e�ort into numerically solving the exact equations because

the high bounce model fails in at least two major ways to model the
actual physical system [5]. First, the high bounce model can generate

solutions that cannot possibly occur in the real system. These unphys-
ical solutions occur for very small bounces at negative table velocities,

where it is possible for the ball to be projected downward beneath the
table. That is, the ball can pass through the table in this approxi-

mation. Second, this approximation cannot reproduce a large class of

real solutions, called \sticking solutions," which are discussed in sec-

tion 1.4.3. Fundamentally, this is because the map in the high bounce
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approximation is invertible, whereas the exact model is not invertible.

In the exact model there exist some solutions|in particular the stick-

ing solutions|for which two or more orbits are mapped to the same

identical point. Thus the map at this point does not have a unique

inverse.

1.4 Qualitative Description of Motions

In specifying an individual solution to the bouncing ball system, we
need to know both the initial condition, that is, the initial impact
phase and impact velocity of the ball (�0; v0), and the relevant system
parameters, �, A, and T . Then, to �nd an individual trajectory, all we

need to do is iterate the mapping for the appropriate model. However,
�nding the solution for a single trajectory gives little insight into the
global dynamics of the system. As stressed in the Introduction, we
are not interested so much in solving an individual orbit, but rather
in understanding the behavior of a large collection of orbits and, when

possible, the system as a whole.
An individual solution can be represented by a curve in phase space.

In considering a collection of solutions, we will need to understand the
behavior not of a single curve in phase space, but rather of a bundle of
adjacent curves, a region in phase space. Similarly, in the impact map
we want to consider a collection of initial conditions, a region in the

impact map. In general, the future of an orbit is well de�ned by a ow
or mapping. The fate of a region in the phase space or the impact map

is de�ned by the collective futures of each of the individual curves or

points, respectively, in the region as is illustrated in Figure 1.7.
A number of questions can, and will, be asked about the evolution

of a region in phase space (or in the impact map). Do regions in the
phase space expand or contract as the system evolves? In the bounc-

ing ball system, a bundle of initial conditions will generally contract in
area whenever the system is dissipative|a little energy is lost at each

impact, and this results in a shrinkage of our initial region, or patch, in

phase space (see section 4.4.4 for details). Since this region is shrink-

ing, this raises many questions that will be addressed throughout this

book, such as where do all the orbits go, how much of the initial area
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Figure 1.7: (a) Evolution of a region in phase space. (b) Recurrent
regions in the phase space of a nonlinear system.

remains, and what do the orbits do on this remaining set once they get
to wherever they're going? This turns out to be a subtle collection of
questions. For instance, even the question of what we mean by \area"
gets tricky because there is more than one useful notion of the area,
or measure, of a set. Another related question is, do these regions in-

tersect with themselves as they evolve (see Figure 1.7)? The answer
is generally yes, they do intersect, and this observation will lead us to
study the rich collection of recurrence structures of a nonlinear system.

A simple question we can answer is: does there exist a closed,
simply-connected subset, or region, of the whole phase space (or impact

map) such that all the orbits outside this subset eventually enter into it,
and, once inside, they never get out again? If such a subset exists, it is

called a trapping region. Establishing the existence of a trapping region

can simplify our general problem somewhat, because instead of consid-
ering all possible initial conditions, we need only consider those initial

conditions inside the trapping region, since all other initial conditions
will eventually end up there.

1.4.1 Trapping Region

To �nd a trapping region for the bouncing ball system we will �rst �nd

an upper bound for the next outgoing velocity, vk+1, by looking at the
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previous value, vk. We will then �nd a lower bound for vk+1. These

bounds give us the boundaries for a trapping region in the bouncing

ball's impact map (�i; vi), which imply a trapping region in phase space.

To bound the outgoing velocity, we begin with equation (1.13) in

the form

vk+1 � �vk = (1 + �)!A cos(!tk+1 + �0) + �g(tk+1 � tk): (1.26)

The �rst term on the right-hand side is easy to bound. To bound the
second term, we �rst look at the average ball velocity between impacts,
which is given by

�vk = vk � 1

2
g(tk+1 � tk):

Rearranging this expression gives

tk+1 � tk =
2

g
(vk � �vk):

Equation (1.26) now becomes

vk+1 + �vk = (1 + �)A! cos(!tk+1 + �0)� 2��vk + 2�vk: (1.27)

Noting that the average table velocity between impacts is the same as

the average ball velocity between impacts (see Prob. 1.14), we �nd that

vk+1 � �vk � (1 + 3�)A!: (1.28)

If we de�ne

vmax =
1 + 3�

1� �
A!; (1.29)

and let vk > vmax, then vk+1 � �vk < (1� �)vk, or

vk+1 < vk:

In this case it is essential that the system be dissipative (� < 1) for a

trapping region to exist. In the conservative limit no trapping region

exists|it is possible for the ball to reach in�nite heights and velocities
when no energy is lost at impact.
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To �nd a lower bound for vk+1, we simply realize that the velocity

after impact must always be at least that of the table,

vk+1 � �A! = vmin: (1.30)

For the bouncing ball system the compact trapping region, D, given

by

D = f(�; v) j vmin � v � vmaxg (1.31)

is simply a strip bounded by vmin and vmax. To prove that D is a
trapping region, we also need to show that v cannot approach vmax

asymptotically, and that once inside D, the orbit cannot leaveD (these
calculations are left to the reader|see Prob. 1.15). The previous cal-

culations show that all orbits of the dissipative bouncing ball system
will eventually enter the region D and be \trapped" there.

1.4.2 Equilibrium Solutions

Once the orbits enter the trapping region, where do they go next? To
answer this question we �rst solve for the motion of a ball bouncing on
a stationary table. Then we will imagine slowly turning up the table
amplitude.

If the table is stationary, then the high bounce approximation is

no longer approximate, but exact. Setting A = 0 in the velocity map,
equation (1.21), immediately gives

vk+1 = �vk: (1.32)

Using the time map, tk+1� tk = (2=g)vk, the coe�cient of restitution is

easy to measure [6] by recording three consecutive impact times, since

� =
tk+2 � tk+1

tk+1 � tk
: (1.33)

To �nd how long it takes the ball to stop bouncing, consider the sum

of the di�erences of consecutive impact times,

� =
1X
n=0

�n = �0 + �1 + �2 + � � � ; �k � tk+1 � tk: (1.34)
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Since �k+1 = ��k, � is the summation of a geometric series,

� = �0+�1+�2+� � � = �0+��0+�
2�0+� � � =

1X
n=0

�0�
n =

�0

1� �
; (1.35)

which can be summed for � < 1. After an in�nite number of bounces,

the ball will come to a halt in a �nite time.

For these equilibrium solutions, all the orbits in the trapping region

come to rest on the table. When the table's acceleration is small, the
picture does not change much. The ball comes to rest on the oscillating
table and then moves in unison with the table from then on.

1.4.3 Sticking Solutions

Now that the ball is moving with the table, what happens as we slowly
turn up the table's amplitude while keeping the forcing frequency �xed?
Initially, the ball will remain stuck to the table until the table's maxi-
mum acceleration is greater than the earth's gravitational acceleration,
g. The table's acceleration is given by

�s = �A!2 sin(!t+ �0): (1.36)

The maximum acceleration is thus A!2. When A!2 is greater than
g, the ball becomes unstuck and will y free from the table until its
next impact. The phase at which the ball becomes initially unstuck

occurs when

�g = �A!2 sin(�unstuck) =) �unstuck = arcsin

�
g

A!2

�
: (1.37)

Even in a system in which the table's maximum acceleration is

much greater than g, the ball can become stuck. An in�nite number of
impacts can occur in a �nite stopping time, �. The sum of the times

between impacts converges in a �nite time much less than the table's
period, T . The ball gets stuck again at the end of this sequence of

impacts and moves with the table until it reaches the phase �unstuck.

This type of sticking solution is an eventually periodic orbit. After its

�rst time of getting stuck, it will exactly repeat this pattern of getting

stuck, and then released, forever.
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Figure 1.8: Sticking solutions in the bouncing ball system.

However, these sticking solutions are a bit exotic in several respects.
Sticking solutions are not invertible; that is, an in�nite number of initial
conditions can eventually arrive at the same identical sticking solution.
It is impossible to run a sticking solution backward in time to �nd the
exact initial condition from which the orbit came. This is because of
the geometric convergence of sticking solutions in �nite time.

Also, there are an in�nite number of di�erent sticking solutions.

Three such solutions are illustrated in Figure 1.8. To see how some of
these solutions are formed, let's turn the table amplitude up a little so
that the stopping time, �, is lengthened. Now, it happens that the ball

does not get stuck in the �rst table period, T , but keeps bouncing on

into the second or third period. However, as it enters each new period,
the bounces get progressively lower so that the ball does eventually get

stuck after several periods. Once stuck, it again gets released when
the table's acceleration is greater than g, and this new pattern repeats

itself forever.
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Figure 1.9: Convergence to a period one orbit.

Figure 1.10: Period two orbit of a bouncing ball.

1.4.4 Period One Orbits and Period Doubling

As we increase the table's amplitude we often see that the orbit jumps
from a sticking solution to a simple periodic motion. Figure 1.9 shows
the convergence of a trajectory of the bouncing ball system to a period

one orbit. The ball's motion converges toward a periodic orbit with a
period exactly equal to that of the table, hence the term period one

orbit (see Prob. 1.1).

What happens to the period one solution as the forcing amplitude
of the table increases further? We discover that the period one orbit

bifurcates (literally, splits in two) to the period two orbit illustrated
in Figure 1.10. Now the ball's motion is still periodic, but it bounces

high, then low, then high again, requiring twice the table's period to
complete a full cycle. If we gradually increase the table's amplitude still

further we next discover a period four orbit, and then a period eight

orbit, and so on. In this period doubling cascade we only see orbits of

period

P = 2n = 1; 2; 4; 8; 16 : : : ; (1.38)
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Figure 1.11: Chaotic orbit of a bouncing ball.

and not, for instance, period three, �ve, or six.
The amplitude ranges for which each of these period 2n orbits is

observable, however, gets smaller and smaller. Eventually it converges
to a critical table amplitude, beyond which the bouncing ball system
exhibits the nonperiodic behavior illustrated in Figure 1.11. This last
type of motion found at the end of the period doubling cascade never

settles down to a periodic orbit and is, in fact, our �rst physical example
of a chaotic trajectory known as a strange attractor. This motion is
an attractor because it is the asymptotic solution arising from many
di�erent initial conditions: di�erent motions of the system are attracted
to this particular motion. At this point, the term strange is used to

distinguish this motion from other motions such as periodic orbits or
equilibrium points. A more precise de�nition of the term strange is
given in section 3.8.

At still higher table amplitudes many other types of strange and
periodic motions are possible, a few of which are illustrated in Fig-

ure 1.12. The type of motion depends on the system parameters and
the speci�c initial conditions. It is common in a nonlinear system for

many solutions to coexist. That is, it is possible to see several di�erent
periodic and chaotic motions for the same parameter values. These

coexisting orbits are only distinguished by their initial conditions.

The \period doubling route to chaos" we saw above is common to

a wide variety of nonlinear systems and will be discussed in depth in

section 2.8.
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Figure 1.12: A zoo of periodic and chaotic motions seen in the bouncing
ball system. (Generated by the Bouncing Ball program.)

1.4.5 Chaotic Motions

Figure 1.13 shows the impact map of the strange attractor discovered

at the end of the period doubling route to chaos. This strange attractor
looks almost like a simple curve (segment of an upside-down parabola)

with gaps. Parts of this curve look chopped out or eaten away. However,
on magni�cation, this curve appears not so simple after all. Rather, it

seems to resemble an intricate web of points spread out on a narrow

curved strip. Since this chaotic solution is not periodic (and hence,
never exactly repeats itself) it must consist of an in�nite collection of

discrete points in the impact (velocity vs. phase) space.
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Figure 1.13: Strange attractor in the bouncing ball system arising at

the end of a period doubling cascade. (Generated by the Bouncing Ball
program.)

This strange set is generated by an orbit of the bouncing ball system,
and it is chaotic in that orbits in this set exhibit sensitive dependence

on initial conditions. This sensitive dependence on initial conditions is

easy to see in the bouncing ball system when we solve for the impact
phases and velocities for the exact model with the numerical procedure
described in Appendix A. First consider two slightly di�erent trajecto-

ries that converge to the same period one orbit. As shown in Table 1.2,

these orbits initially di�er in phase by 0.00001. This phase di�erence

increases a little over the next few impacts, but by the eleventh impact

the orbits are indistinguishable from each other, and by the eighteenth
impact they are indistinguishable from the period one orbit. Thus the

di�erence between the two orbits decreases as the system evolves.
An attracting periodic orbit has both long-term and short-term pre-

dictability. As the last example indicates, we can predict, from an ini-
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Hit Phase Phase

0 0.12001 0.12002
1 0.119553 0.119563
2 0.123625 0.123613
3 0.119647 0.119657
4 0.122627 0.122620
5 0.120645 0.120650
6 0.121893 0.121890
7 0.121140 0.121142
8 0.121584 0.121583
9 0.121327 0.121328
10 0.121474 0.121473
11 0.121391 0.121391
12 0.121437 0.121437
13 0.121412 0.121412
14 0.121426 0.121426
15 0.121418 0.121418
16 0.121422 0.121422
17 0.121420 0.121420
18 0.121421 0.121421

19 0.121421 0.121421

20 0.121421 0.121421

Table 1.2: Convergence of two di�erent initial conditions to a period one

orbit. The digits in bold are where the orbits di�er. At the zeroth hit
the orbits di�er in phase by 0.00001. Note that the di�erence between
the orbits decreases so that after 18 impacts both orbits are indistin-

guishable from the period one orbit. The operating parameters are:

A = 0:01 cm, frequency = 60 Hz, � = 0:5, and the initial ball velocity
is 8.17001 cm/s. The impact phase is presented as � = (� mod 2�)=(2�)

so that it is normalized to be between zero and one.
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Hit Phase Phase

0 0.12001 0.12002
1 0.119575 0.119585
2 0.203686 0.203667
3 0.044295 0.044330
4 0.245370 0.245382
5 0.979140 0.979114
6 0.163451 0.163401
7 0.151935 0.152045
8 0.133956 0.133762
9 0.170026 0.170343
10 0.106407 0.105836
11 0.210176 0.210911
12 0.034337 0.033041
13 0.240314 0.239475
14 0.989893 0.991636
15 0.183346 0.186362
16 0.108543 0.102037
17 0.202784 0.211096
18 0.048083 0.033369
19 0.245904 0.239552
20 0.977588 0.991442
21 0.160466 0.186034
22 0.158498 0.102743
23 0.122340 0.210230

24 0.188441 0.034893
25 0.073121 0.240520

Table 1.3: Divergence of initial conditions on a strange attractor il-
lustrating sensitive dependence on initial conditions. The parameter

values are the same as in Table 1.2 except for A = 0:012 cm. The bold

digits show where the impact phases di�er. The orbits di�er in phase
by 0.00001 at the zeroth hit, but by the twenty-third impact they di�er

at every digit.
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tial condition of limited resolution, where the ball will be after a few

bounces (short-term) and after many bounces (long-term).

The situation is dramatically di�erent for motion on a strange at-

tractor. Chaotic motions may still possess short-term predictability,

but they lack long-term predictability. In Table 1.3 we show two dif-

ferent trajectories that again di�er in phase by 0.00001 at the zeroth

impact. However, in the chaotic case the di�erence increases at a re-

markable rate with the evolution of the system. That is, given a small

di�erence in the initial conditions, the orbits diverge rapidly. By the
twelfth impact the error is greater than 0.001, by the twentieth impact
0.01, and by the twenty-fourth impact the orbits show no resemblance.
Chaotic motion thus exhibits sensitive dependence on initial conditions.
Even if we increase our precision, we still cannot predict the orbit's fu-

ture position exactly.
As a practical matter we have no exact long-term predictive power

for chaotic motions. It does not really help to double the resolution of
our initial measurement as this will just postpone the problem. The
bouncing ball system is both deterministic and unpredictable. Chaotic

motions of the bouncing ball system are unpredictable in the practical
sense that initial measurements are always of limited accuracy, and
any initial measurement error grows rapidly with the evolution of the
system.

Strange attractors are common to a wide variety of nonlinear sys-

tems. We will develop a way to name and dissect these critters in
Chapters 4 and 5.

1.5 Attractors

An attracting set A in a trapping region D is de�ned as a nonempty

closed set formed from some open neighborhood,

A =
\
n�0

fn(D): (1.39)

We mentioned before that for a dissipative bouncing ball system the

trapping region is contracting, so the open neighborhood typically con-
sists of a collection of smaller and smaller regions as it approaches the

attracting set.
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Figure 1.14: A periodic attractor and its transient.

An attractor is an attempt to de�ne the asymptotic solution of a

dynamical system. It is that part of the solution that is left after the
\transient" part is thrown out. Consider Figure 1.14, which shows the
approach of several phase space trajectories of the bouncing ball system
toward a period one cycle. The orbits appear to consist of two parts:
the transient|the initial part of the orbit that is spiraling toward a
closed curve|and the attractor|the closed periodic orbit itself.

In the previous section we saw examples of several di�erent types
of attractors. For small table amplitudes, the ball comes to rest on
the table. For these equilibrium solutions the attractor consists of a
single point in the phase space of the table's reference frame. At higher

table amplitudes periodic orbits can exist, in which case the attractor

is a closed curve in phase space. In a dissipative system this closed
curve representing a periodic motion is also known as a limit cycle. At

still higher table amplitudes, a more complicated set called a strange
attractor can appear. The phase space plot of a strange attractor is a

complicated curve that never quite closes. After a long time, this curve

appears to sketch out a surface. Each type of attractor|a point, closed
curve, or strange attractor (something between a curve and a surface)|
represents a di�erent type of motion for the system|equilibrium, pe-

riodic, or chaotic.

Except for the equilibrium solutions, each of the attractors just
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described in the phase space has its corresponding representation in

the impact map. In general, the representation of the attractor in the

impact map is a geometric object of one dimension less than in phase

space. For instance, a periodic orbit is a closed curve in phase space,

and this same period n orbit consists of a collection of n points in the

impact map. The impact map for a chaotic orbit consists of an in�nite

collection of points.

For a nonlinear system, many attractors can coexist. This naturally

raises the question as to which orbits and collections of initial conditions
go to which attractors. For a given attractor, the domain of attraction,
or basin of attraction, is the collection of all those initial conditions
whose orbits approach and always remain near that attractor. That
is, it is the collection of all orbits that are \captured" by an attractor.

Like the attractors themselves, the basins of attraction can be simple
or complex [7].

Figure 1.15 shows a diagram of basins of attraction in the bouncing
ball system. The phase space is dominated by the black regions, which
indicate initial conditions that eventually become sticking solutions.

The white sinusoidal regions at the bottom of Figure 1.15 show un-
physical initial conditions|phases and velocities that the ball cannot
obtain. The gray regions represent initial conditions that approach a
period one orbit. (See Plate 1 for a color diagram of basins of attraction
in the bouncing ball system.)

1.6 Bifurcation Diagrams

A bifurcation diagram provides a nice summary for the transition be-
tween di�erent types of motion that can occur as one parameter of the

system is varied. A bifurcation diagram plots a system parameter on

the horizontal axis and a representation of an attractor on the vertical
axis. For instance, for the bouncing ball system, a bifurcation diagram

can show the table's forcing amplitude on the horizontal axis and the
asymptotic value of the ball's impact phase on the vertical axis, as il-

lustrated in Figure 1.16. At a bifurcation point, the attracting orbit

undergoes a qualitative change. For instance, the attractor literally
splits in two (in the bifurcation diagram) when the attractor changes
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Figure 1.15: Basins of attraction in the bouncing ball system. (Gener-

ated by the Bouncing Ball program.)
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Figure 1.16: Bouncing ball bifurcation diagram. (Generated by the
Bouncing Ball program.)

from a period one orbit to a period two orbit.
This bouncing ball bifurcation diagram (Fig. 1.16) shows the classic

period doubling route to chaos. For table amplitudes between 0.01 cm
and 0.0106 cm a stable period one orbit exists; the ball impacts with

the table at a single phase. For amplitudes between 0.0106 cm and

0.0115 cm, a period two orbit exists. The ball hits the table at two

distinct phases. At higher table amplitudes, the ball impacts at more
and more phases. The ball hits at an in�nity of distinct points (phases)

when the motion is chaotic.
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Problems

Problems for section 1.2.

1.1. For a period one orbit in the exact model show that

(a) vk = �v0k .

(b) vk = gT=2 .

(c) the impact phase is exactly given by

cos(�P1) =
gT 2

4�A

�
1� �

1 + �

�
: (1.40)
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1.2. Assuming only that vk = �v0k,

(a) Show that the solution in Problem 1.1 can be generalized to an nth-
order symmetric periodic (\equispaced") orbit satisfying vk = ngT=2, for
n = 1; 2; 3 : : ::

(b) Show that the impact phase is exactly given by

cos(�Pn) =
ngT 2

4�A

�
1� �

1 + �

�
: (1.41)

(c) Draw pictures of a few of these orbits. Why are they called \equispaced"?

(d) Find parameter values at which a period one and period two (n = 1; 2)
equispaced orbit can coexist.

1.3. If T = 0:01 s and � = 0:8, what is the smallest table amplitude for which a
period one orbit can exist (use Prob. 1.1(c))? For these parameters, estimate
the maximum height the ball bounces and express your answer in units of the
average thickness of a human hair. Describe how you arrived at this thickness.

1.4. Describe a numerical method for solving the exact bouncing ball map. How
do you determine when the ball gets stuck? How do you propose to �nd the
zeros of the phase map, equation (1.12)?

1.5. Derive equation (1.14) from equation (1.13).

Section 1.3.

1.6. Calculate (�n; �n) in equation (1.25) for n = 1; 2; 3; 4; 5 when � = 0:8, � = 1,
and (�0; �0) = (0:1; 1).

1.7. Con�rm that the variables �, �, and � given by equations (1.22{1.24) are
dimensionless.

1.8. Verify the derivation of equation (1.25), the standard map.

1.9. Calculate the inverse of the standard map (eq. (1.25)).

1.10. Write a computer program to iterate the model of the bouncing ball system
given by equation (1.25), the high bounce approximation.

Section 1.4.

1.11. (a) Calculate the stopping time (eq. (1.35)) for a �rst impact time �0 = 1,
and a damping coe�cient � = 0:5. Also calculate �1, �2, and �3.

(b) Calculate �0 and the stopping time for an initial velocity of 10 m/s (1000
cm/s) and a damping coe�cient of 0.5.



Problems 55

1.12. For the high bounce approximation (eq. (1.25)) show that when � < 1,

(a) j�j+1j � �j�jj+ �.

(b) A trapping region is given by a strip bounded by �vmax, where vmax =
�=(1 � �). (Note: The reader may assume, as the book does at the end of
section 1.4.1, that the vi cannot approach vmax asymptotically, and that once
inside the strip, the orbit cannot leave.)

1.13. Calculate �unstuck (eq. (1.37)) for A = 0:1 cm and T = 0:01 s. What is the
speed and acceleration of the table at this phase? Is the table on its way up
or down? Are there table parameters for which the ball can become unstuck
when the table is moving up? Are there table parameters for which the ball
can become unstuck when the table is moving down?

1.14. Show that the average table velocity between impacts equals the average ball
velocity between impacts.

1.15. These problems relate to the trapping region discussion in section 1.4.1.

(a) Prove that vi cannot approach the vmax given by equation (1.29) asymp-
totically. (Hint: It is acceptable to increase vmax by some small � > 0.)

(b) Prove that, for the trapping region D given by equation (1.31), once the
orbit enters D, it can never escape D.

(c) Use the trapping region D in the impact map to �nd a trapping region in
phase space. Hint: Use the maximum outgoing velocity (vmax) to calculate a
minimum incoming velocity and a maximum height.

(d) The trapping region found in the text is not unique; in fact, it is fairly
\loose." Try to obtain a smaller, tighter trapping region.

1.16. Derive equation (1.33).

Section 1.5.

1.17. How many period one orbits can exist according to Problem 1.1(c), and how
many of these period one orbits are attractors?

Section 1.6.

1.18. Write a computer program to generate a bifurcation diagram for the bouncing
ball system.
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Chapter 2

Quadratic Map

2.1 Introduction

A ball bouncing on an oscillating table gives rise to complicated phe-
nomena which appear to defy our comprehension and analysis. The
motions in the bouncing ball system are truly complex. However, part
of the problem is that we do not, as yet, have the right language with
which to discuss nonlinear phenomena. We thus need to develop a

vocabulary for nonlinear dynamics.
A good �rst step in developing any scienti�c vocabulary is the de-

tailed analysis of some simple examples. In this chapter we will begin
by exploring the quadratic map. In linear dynamics, the corresponding
example used for building a scienti�c vocabulary is the simple harmonic

oscillator (see Figure 2.1). As its name implies, the harmonic oscillator
is a simple model which illustrates many key notions useful in the study

of linear systems. The image of a mass on a spring is usually not far

from one's mind even when dealing with the most abstract problems in
linear physics.

The similarities among linear systems are easy to identify because
of the extensive development of linear theory over the past century.

Casual inspection of nonlinear systems suggests little similarity. Care-
ful inspection, though, reveals many common features. Our original

intuition is misleading because it is steeped in linear theory. Nonlin-
ear systems possess as many similarities as di�erences. However, the

57
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Figure 2.1: Simple harmonic oscillator.

vocabulary of linear dynamics is inadequate to name these common
structures. Thus, our task is to discover the common elements of non-

linear systems and to analyze their structure.
A simple model of a nonlinear system is given by the di�erence

equation known as a quadratic map,

xn+1 = �xn � �x2n;

= �xn(1 � xn): (2.1)

For instance, if we set the value � = 2 and initial condition x0 = 1=4

in the quadratic map we �nd that

x0 = 1=4;

x1 = 3=8;

x2 = 15=32;

etc:;

and in this case the value xn appears to be approaching 1=2.

Phenomena illustrated in the quadratic map arise in a wide variety

of nonlinear systems. The quadratic map is also known as the logistic
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map, and it was studied as early as 1845 by P. F. Verhulst as a model

for population growth. Verhulst was led to this di�erence equation by

the following reasoning. Suppose in any given year, indexed by the

subscript n, that the (normalized) population is xn. Then to �nd the

population in the next year (xn+1) it seems reasonable to assume that

the number of new births will be proportional to the current population,

xn, and the remaining inhabitable space, 1� xn. The product of these

two factors and � gives the quadratic map, where � is some parameter

that depends on the fertility rate, the initial living area, the average
disease rate, and so on.

Given the quadratic map as our model for population dynamics, it
would now seem like an easy problem to predict the future population.
Will it grow, decline, or vary in a cyclic pattern? As we will see, the

answer to this question is easy to discover for some values of �, but not
for others. The dynamics are di�cult to predict because, in addition
to exhibiting cyclic behavior, it is also possible for the population to
vary in a chaotic manner.

In the context of physical systems, the study of the quadratic map

was �rst advocated by E. N. Lorenz in 1964 [1]. At the time, Lorenz was
looking at the convection of air in certain models of weather prediction.
Lorenz was led to the quadratic map by the following reasoning, which
also applies to the bouncing ball system as well as to Lorenz's original
model (or, for that matter, to any highly dissipative system). Consider

a time series that comes from the measurement of a variable in some
physical system,

fx0; x1; x2; x3; : : : ; xi; : : : ; xn�1; xn : : :g: (2.2)

For instance, in the bouncing ball system this time series could consist
of the sequence of impact phases, so that x0 = �0; x1 = �1; x2 = �2,
and so on. We require that this time series arise from motion on an

attractor. To meet this requirement, we throw out any measurements

that are part of the initial transient motion. In addition, we assume

no foreknowledge of how to model the process giving rise to this time

series. Given our ignorance, it then seems natural to try to predict the
n+1st element of the time series from the previous nth value. Formally,
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we are seeking a function, f , such that

xn+1 = f(xn): (2.3)

In the bouncing ball example this idea suggests that the next impact

phase would be a function of the previous impact phase; that is, �n+1 =

f(�n).

If such a simple relation exists, then it should be easy to see by

plotting yn = xn+1 on the vertical axis and xn on the horizontal axis.
Formally, we are taking our original time series, equation (2.2), and cre-
ating an embedded time series consisting of the ordered pairs, (x; y) =
(xn; xn+1),

f(x0; x1); (x1; x2); (x2; x3); : : : ; (xn�1; xn); (xn; xn+1); : : :g: (2.4)

The idea of embedding a time series will be central to the experimental

study of nonlinear systems discussed in section 3.8.2. In Figure 2.2 we
show an embedded time series of the impact phases for chaotic motions
in the bouncing ball system. The points for this embedded time series
appear to lie close to a region that resembles an upside-down parabola.
The exact details of the curve depend, of course, on the speci�c param-

eter values, but as a �rst approximation the quadratic map provides
a reasonable �t to this curve (see Figure 2.3). Note that the curve's
maximum amplitude (located at the point x = 1=2) rises as the param-
eter � increases. We think of the parameter � in the quadratic map as
representing some parameter in our process; � could be analogous to

the table's forcing amplitude in the bouncing ball system. Such single-

humped maps often arise when studying highly dissipative nonlinear
systems. Of course, more complicated many-humped maps can and do
occur; however, the single-humped map is the simplest, and is therefore

a good place to start in developing our new vocabulary.

2.2 Iteration and Di�erentiation

In the previous section we introduced the equation

f(x) = �x(1� x); (2.5)
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Figure 2.2: Embedded time series of chaotic motion in the bouncing

ball system. (Generated by the Bouncing Ball program.)



62 CHAPTER 2. QUADRATIC MAP

Figure 2.3: The quadratic function. (Generated by the Quadratic Map

program.)
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known as the quadratic map. We write f�(x) when we want to make

the dependence of f on the parameter � explicit.

In this section we review two mathematical tools we will need for

the rest of the chapter: iteration and di�erentiation. We think of a

map f : xn �! xn+1 as generating a sequence of points. With the seed

x0, de�ne xn = fn(x0) and consider the sequence x0; x1; x2; x3; : : :, as

an orbit of the map. That is, the orbit is the sequence of points

x0; x1 = f(x0); x2 = f2(x0); x3 = f3(x0); : : : ;

where the nth iterate of x0 is found by functional composition n times,

f2 = f � f;
f3 = f � f � f;

fn =

nz }| {
f � f � � � � f � f :

When determining the stability of an orbit we will need to calcu-

late the derivative of these composite functions (see section 2.5). The
derivative of a composite function evaluated at a point x = x0 is written
as

(fn)0(x0) =

 
d

dx
fn(x)

!
jx=x0 : (2.6)

The left-hand side of equation (2.6) is a shorthand form for the right-
hand side that tells us to do the following when calculating the deriva-

tive. First, construct the nth composite function of f , call it fn. Sec-
ond, compute the derivative of fn. And third, as the bar notation

(jx=x0) tells us, evaluate this derivative at x = x0. For instance, if
f(x) = x2, n = 2, and x0 = 3, then

(f2)0(3) =

 
d

dx
f2(x)

!
jx=3;

=
d

dx
(f � f)(x) = d

dx
(f(x2)) =

d

dx
(x4);

= 4x3jx=3 = 108:

Notice that we suppressed the bar notation during the intermediate

steps. This is common practice when the meaning is clear from context.
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You may sometimes see the even shorter notation for evaluating the

derivative at a point x0 as

fn
0

(x0) =

 
d

dx
fn(x)

!
jx=x0 ; (2.7)

which is su�ciently terse to be legitimately confusing.

An examination of the dynamics of the quadratic map provides an

excellent introduction to the rich behavior that can exist in nonlinear

systems. To �nd the itinerary of an individual orbit all we need is a
pocket calculator or a computer program something like the following
C program.1

/* quadratic.c: calculate an orbit for the quadratic map

input: l x0

output: 1 x1

2 x2

3 x3

etc.

�/
#include <stdio.h>

main()

f
int n;

float lambda, x zero, x n;

printf("Enter: lambda x zeronn"); scanf("%f %f", &lambda, &x zero);

x n = x zero;

for(n = 1; n <= 100; ++n) f
x n = lambda * x n * (1 - x n); /� the quadratic map �/
printf("%d %fnn", n, x n);

g
g

1A nice, brief introduction to the C programming language su�cient for most of
the programs in this book is Chapter 1: A tutorial introduction, of B. W. Kernighan
and D. M. Ritchie, The C Programming Language (Prentice-Hall: Englewood Cli�s,
NJ, 1978), pp. 5{31.
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Figure 2.4: Graphical method for iterating the quadratic map. (Gen-
erated by the Quadratic Map program.)

2.3 Graphical Method

In addition to doing a calculation, there is a graphical procedure for
�nding the itinerary of an orbit. This graphical method is illustrated

in Figure 2.4 for the same parameter value and initial condition used
in the previous example and is based on the following observation. To

�nd xn+1 from xn we note that xn+1 = f(xn); graphically, to get f(xn)

we start at xn on the horizontal axis and move vertically until we hit
the graph y = f(x). Now this current value of y must be transferred

from the vertical axis back to the horizontal axis so that it can be used
as the next seed for the quadratic map. The simplest way to transfer

the y axis to the x axis is by folding the x{y plane through the diagonal
line y = x since points on the vertical axis are identical to points on

the horizontal axis on this line. This insight suggests the following

graphical recipe for �nding the orbit for some initial condition x0:
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Figure 2.5: Graphical iteration of the quadratic map for a chaotic orbit.

(Generated by the Quadratic Map program.)

1. Start at x0 on the horizontal axis.

2. Move vertically up until you hit the graph f(x).

3. Move horizontally until you hit the diagonal line y = x.

4. Move vertically|up or down|until you hit the graph f(x).

5. Repeat steps 3 and 4 to generate new points.

For the example in Figure 2.4 it is clear that the orbit is converging

to the point 1=2. This same graphical technique is also illustrated in
Figure 2.5 for the more complicated orbit that arises when � = 3:8.

We can also ask again about the fate of a whole collection of initial

conditions, instead of just a single orbit. In particular we can consider
the transformation of all initial conditions on the unit interval,

I = fxjx 2 [0; 1]g = [0; 1]; (2.8)
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Figure 2.6: Stretching and folding in the quadratic map (� = 4).

subject to the quadratic map, equation (2.5). As shown in Figure 2.6,
the quadratic map for � = 4 can be viewed as transforming the unit

interval in two steps. The �rst step is a stretch, which takes the interval
to twice its length, fstretch : [0; 1] �! [0; 2]. The second step is a fold ,
which takes the lower half of the interval to the whole unit interval,
and the upper half of the interval also to the whole unit interval with
its direction reversed, ffold : [0; 1] �! [0; 1] and [1; 2] �! [1; 0]. These

two operations of stretching and folding are the key geometric construc-
tions leading to the complex behavior found in nonlinear systems. The
stretching operation tends to quickly separate nearby points, while the
folding operation ensures that all points will remain bounded in some
region of phase space.

Another way to visualize this stretching and folding process is pre-
sented in Figure 2.7. Imagine taking a rubber sheet and dividing it into

two sections by slicing it down the middle. The sheet separates into

two branches at the gap (the upper part of the sheet where the slice
begins); the left branch is at, while the right branch has a half-twist
in it. These two branches are rejoined, or glued together again, at the

branch line seen at the bottom of the diagram. Notice that the left

branch passes behind the right branch. Next, imagine that there is a
simple rule, indicated by the wide arrows in the diagram, that smoothly

carries points at the top of the sheet to points at the bottom. In partic-
ular, the unit interval at the top of the sheet gets stretched and folded

so that it ends up as the bent line segment indicated at the bottom
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Figure 2.7: Rubber sheet model of stretching and folding in the

quadratic map.

of the sheet. At this point Figure 2.7 is just a visual aid illustrating
how stretching and folding can occur in a dynamical system. However,
observe that the resulting folded line segment resembles a horseshoe.
These horseshoes were �rst identi�ed and analyzed as recurring ele-

ments in nonlinear systems by the mathematician Steve Smale. We
will say much more about these horseshoes, and make more extensive
use of such diagrams, in section 4.8 and Chapter 5 when we try to

unravel the topological organization of strange sets.

2.4 Fixed Points

A simple linear map f : R �! R of the real line R to itself is given
by f(x) = mx. Unlike the quadratic map, this linear map can have
stretching, but no folding. The graphical analysis shown in Figure 2.8

quickly convinces us that for x0 > 0 only three possible asymptotic

states exist, namely:

limn!1 xn = +1; if m > 1;

limn!1 xn = 0; if m < 1; and

xn+1 = xn; for m = 1:
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Figure 2.8: Graphical iteration of the linear map.

The period one points of a map (points that map to themselves after
one iteration) are also called �xed points. If m < 1, then the origin
is an attracting �xed point or sink since nearby points tend to 0 (see
Figure 2.8(a)). If m > 1, then the origin is still a �xed point. However,
because points near the origin always tend away from it, the origin is

called a repelling �xed point or source (see Figure 2.8(b)). Lastly, if
m = 1, then all initial conditions lead immediately to a period one
orbit de�ned by y = x. All the periodic orbits that lie on this line have
neutral stability.

The story for the more complicated function f(x) = x2 is not much

di�erent. For this parabolic map a simple graphical analysis shows that
as n!1,

fn(x)!1; if jxj > 1;
fn(x)! 0; if jxj < 1;
fn(1) = 1; for all n;

fn(�1) = 1; if n � 1:

In this case all initial conditions tend to either 1 or 0, except for the

point x = 1, which is a repelling �xed point since all nearby orbits
move away from 1. The special initial condition x0 = �1 is said to be

eventually �xed because, although it is not a �xed point itself, it goes
exactly to a �xed point in a �nite number of iterations. The sticking

solutions of the bouncing ball system are examples of orbits that could

be called eventually periodic since they arrive at a periodic orbit in a
�nite time.
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Figure 2.9: The local stability of a �xed point is determined by the
slope of f at x�.

Graphical analysis also allows us to see why certain �xed points are
locally attracting and others repelling. As Figure 2.9 illustrates, the
local stability of a �xed point is determined by the slope of the curve

passing through the �xed point. If the absolute value of the slope is less

than one|or equivalently, if the absolute value of the derivative at the
�xed point is less than one|then the �xed point is locally attracting.
Alternatively, if the absolute value of the derivative at the �xed point

is greater then one, then the �xed point is repelling.

An orbit of a map is periodic if it repeats itself after a �nite number
of iterations. For instance, a point on a period two orbit has the prop-

erty that f2(x0) = x0, and a period three point satis�es f3(x0) = x0,
that is, it repeats itself after three iterations. In general a period n

point repeats itself after n iterations and is a solution to the equation

fn(x0) = x0: (2.9)
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In other words, a period n point is a �xed point of the nth composite

function of f. Accordingly, the stability of this �xed point and of the

corresponding period n orbit is determined by the derivative of fn(x0).

Our discussion about the �xed points of a map is summarized in

the following two de�nitions concerning �xed points, periodic points,

and their stability [2]. A more rigorous account of periodic orbits and

their stability in presented in section 4.5.

De�nition. Let f : R �! R. The point x0 is a �xed point for f
if f(x0) = x0. The point x0 is a periodic point of period n for f if
fn(x0) = x0 but f

i(x0) 6= x0 for 0 < i < n. The point x0 is eventually

periodic if fm(x0) = fm+n(x0), but x0 is not itself periodic.

De�nition. A periodic point x0 of period n is attracting if j(fn)0(x0)j <
1. The prime denotes di�erentiation with respect to x. The peri-

odic point x0 is repelling if j(fn)0(x0)j > 1. The point x0 is neutral if
j(fn)0(x0)j = 1.

We have just shown that the dynamics of the linear map and the
parabolic map are easy to understand. By combining these two maps
we arrive at the quadratic map, which exhibits complex dynamics. The
quadratic map is then, in a way, the simplest map exhibiting nontrivial
nonlinear behavior.

2.5 Periodic Orbits

From our de�nition of a period n point, namely,

fn(x0) = x0;

we see that �nding a period n orbit for the quadratic map requires
�nding the zeros for a polynomial of order 2n. For instance, the period

one orbits are given by the roots of

f(x) = �x(1 � x) = x; (2.10)

which is a polynomial of order 2. The period two orbits are found by
evaluating

f2(x) = f(f(x))
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= f [�x(1 � x)]

= �[�x(1 � x)] (1� [�x(1� x)]) = x; (2.11)

which is a polynomial of order 4. Similarly, the period three orbits are

given by solving a polynomial of order 8, and so on. Unfortunately,

except for small n, solving such high-order polynomials is beyond the

means of both mortals and machines.

Furthermore, our de�nition for the stability of an orbit says that
once we �nd a point of a period n orbit, call it x�, we next need to
evaluate the derivative of our polynomial at that point. For instance,
the stability of a period one orbit is determined by evaluating

f 0(x�) =
d

dx
�x(1 � x)jx=x� = �(1 � 2x�): (2.12)

Similarly, the stability of a period two orbit is determined from the
equation

(f2)0(x�) =
d

dx
�2x(1� x)(1� �x + �x2)jx=x�

= �2(1� 2x�)(1� 2�x� + 2�x�2): (2.13)

Again, these stability polynomials quickly become too cumbersome to
analyze as n increases.

Any periodic orbit of period n will have n points in its orbit. We will

generally label this collection of points by the subscript i = 0; 1; 2; : : : ;

n� 1, so that

x� = fx�0; x�1; x�2; : : : ; xi; : : : ; x�n�2; x�n�1g; (2.14)

where i labels an individual point of the orbit. The boldface notation

indicates that x� is an n-tuple of real numbers. Another complication

will arise: in some cases it is useful to write our indexing subscript in
some base other than ten. For instance, it is useful to work in base two
when studying one-humped maps. In general, it is convenient to work

in base n + 1 where n is the number of critical points of the map. It

will be advantageous to label the orbits in the quadratic map according

to some binary scheme.
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Lastly, the question arises: which element of the periodic orbit do

we use in evaluating the stability of an orbit? In Problem 2.13 we

show that all periodic points in a periodic orbit give the same value

for the stability function, (fn)0 [3]. So we can use any point in the

periodic sequence. This fact is good to keep in mind when evaluating

the stability of an orbit.

2.5.1 Graphical Method

Although the algebra is hopeless, the geometric interpretation for the
location of periodic orbits is straightforward. As we see in Figure
2.10(a), the location of the period one orbits is given by the intersection
of the graphs y = f(x) and y = x. The latter equation is simply a

straight line passing through the origin with slope +1. In the case of
the quadratic map, f� is an inverted parabola also passing through the
origin. These two graphs can intersect at two distinct points, giving
rise to two distinct period one orbits. One of these orbits is always at
the origin and the other's exact location depends on the height of the

quadratic map, that is, the speci�c value of � in the quadratic map.
To �nd the location of the period two orbit we need to plot y = x

and f2(x). The graph shown in Figure 2.10(b) shows three points of in-
tersection in addition to the origin. The middle point (the open circle)
is the period one orbit found above. The two remaining intersection

points are the two points belonging to a single period two orbit. A
dashed line indicates where these period two points sit on the original

quadratic map (the two dark circles), and the simple graphical con-

struction of section 2.3 should convince the reader that this is, in fact,
a period two orbit.

The story for higher-order orbits is the same (see Fig. 2.11(a) and

(b)). The graph of the third iterate, y = f3(x), shows eight points

of intersection with the straight line. Not all eight intersection points

are elements of a period three orbit. Two of these points are just the
pair of period one orbits. The remaining six points consist of a pair of
period three orbits. The graph for the period four orbits shows sixteen

points of intersection. Again, not all the intersection points are part of

a period four orbit. Two intersection points are from the pair of period

one orbits, and two are from the period two orbit. That leaves twelve
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Figure 2.10: First and second iterates of the quadratic map (� = 3:98).
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Figure 2.11: Third and fourth iterates of the quadratic map (� = 3:98).
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remaining points of intersection, each of which is part of some period

four orbit. Since there are twelve remaining points, there must be three

(12 points / 4 points per orbit) distinct period four orbits.

The number of intersection points of fn� depends on �. If 1 < � < 3

and n � 2, there are only two intersection points: the two distinct pe-

riod one orbits. In dramatic contrast, if � > 4, then it is easy to show

that there will be 2n intersection points, and counting arguments like

those just illustrated allow us to determine how many of these intersec-

tion points are new periodic points of period n [4]. One fundamental
question is: how can a system as simple as the quadratic map change
from having only two to having an in�nite number of periodic orbits?
Like many aspects of the quadratic map, the answers are surprising.
Before we tackle this problem, let's resume our analysis of the period

one and period two orbits.

2.5.2 Period One Orbits

Solving equation (2.10) for x we �nd two period one solutions,2

x�0 = 0 (2.15)

and

x�1 = 1� 1

�
: (2.16)

The �rst period one orbit, labeled x�0, always remains at the origin,
while the location of the second period one orbit, x�1, depends on �.

From equation (2.12), the stability of each of these orbits is determined

from
f 0(x�0) = � (2.17)

2The subscript n to x�n is labeling two distinct periodic orbits. This is potentially
confusing notation since we previously reserved this subscript to label di�erent
points in the same periodic orbit. In practice this notation will not be ambiguous
since this label will be a binary index, the length of which determines the period
of the orbit. Di�erent cyclic permutations of this binary index will correspond to
di�erent points on the same orbit. A noncyclic permutation must then be a point
on a distinct period n orbit. The rules for this binary labeling scheme are spelled
out in section 2.12.
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and

f 0(x�1) = �[1� 2(1 � 1=�)] = 2� �: (2.18)

Clearly, if 0 < � < 1 then jf 0(x�0)j < 1 and jf 0(x�1)j > 1, so the period

one orbit x�0 is stable and x�1 is unstable. At � = 1 these two orbits

collide and exchange stability so that for 1 < � < 3, x�0 is unstable and

x�1 is stable. For � > 3, both orbits are unstable.

2.5.3 Period Two Orbit

The location of the period two orbit is found from equation (2.11),

x�10 =
1

2�

�
1 + � +

p
�2 � 2� � 3

�
(2.19)

and

x�01 =
1

2�

�
1 + � �

p
�2 � 2� � 3

�
: (2.20)

These two points belong to the period two orbit. We label the left point
x�01 and the right point x�10. Note that the location of the period two
orbit produces complex numbers for � < 3. This indicates that the
period two orbit exists only for � � 3, which is obvious geometrically
since y = f2�(x) begins a new intersection with the straight line y = x

at � = 3.
The stability of this period two orbit is determined by rewriting

equation (2.13) as

(f2)0(x�) = �2(1 � 2x�10)(1� 2x�01); (2.21)

where we used equations (2.19) and (2.20) for x�10 and x
�
01. A plot of the

stability for the period two orbit is presented in Figure 2.12. A close
examination of this �gure shows that, for 3 < � < 3:45, the absolute
value of the stability function is less than one; that is, the period two

orbit is stable. For � > 3:45, the period two orbit is unstable.

The range in � for which the period two orbit is stable can actually
be obtained analytically. The period two orbit is stable as long as

�1 < (f2)0(x�) < +1: (2.22)

The period two orbit �rst becomes stable when (f2)0(x�) = +1 which

occurs at � = 3, and it loses stability at (f2)0(x�) = �1 which the
reader can verify takes place at � = 1 +

p
6 � 3:449 (see Prob. 2.17).
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Figure 2.12: Stability of period two orbit.

2.5.4 Stability Diagram

The location and stability of the two period one orbits and the single
period two orbit are summarized in the orbit stability diagram shown

in Figure 2.13. The vertical axis shows the location of the periodic
orbit x�n as a function of the parameter �. Stable orbits are denoted by
solid lines, unstable orbits by dashed lines. Two \bifurcation points"
are evident in the diagram. The �rst occurs when the two period one
orbits collide and exchange stability at � = 1. The second occurs with

the birth of a stable period two orbit from a stable period one orbit at

� = 3.

2.6 Bifurcation Diagram

To explore the dynamics of the quadratic map further, we can choose
an initial condition x0 and a parameter value �, and then iterate the
map using the program in section 2.2 to see where the orbit goes. We

would notice a few general results if we play this game long enough.

First, if � � 1 and x0 62 [0; 1], then the graphical analysis of section
2.5.1 shows us that all points not in the unit interval will run o� to
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Figure 2.13: Orbit stability diagram.

in�nity. Further, if 0 < � < 1, then the same type of graphical analysis

shows that the dynamics of the quadratic map are simple: there is only
one attracting �xed point and one repelling �xed point. These �xed
points are the period one orbits calculated in the previous section.

Second, the initial condition we pick is usually not important in
determining the attractor, although the value of � is very important.

We seem to end up with the same attractor no matter what x0 2 (0; 1)
we pick.3 The quadratic map usually has one, and only one, attractor,

whereas most nonlinear systems can have more than one attractor [5].

The bouncing ball system, for example, can have two or more coexisting
attractors.

Third, as we will show in section 2.11, almost all initial conditions

run o� to in�nity for all � > 4. There are no attractors in this case.

Therefore, when studying the quadratic map, it will usually su�ce

3Some initial conditions do not converge to the attractor. For instance, any x

belonging to an unstable periodic orbit will not converge to the attractor. Unstable
orbits are, by de�nition, not attractors, so that almost any orbit near an unstable
periodic orbit will diverge from it and head toward some attractor.



80 CHAPTER 2. QUADRATIC MAP

to pick a single initial condition from the unit interval. If fn(x0) ever

leaves the unit interval, then it will run o� to in�nity and never return

(provided � � 1). Further, when studying attractors we can limit our

attention to values of � 2 [1; 4]. If 0 < � < 1 then the only attractor is

a stable �xed point at zero, and if � > 4 there are no attractors.4

For all these reasons, a bifurcation diagram is a particularly powerful

method for studying the attractors in the quadratic map. Recall that a

bifurcation diagram is a plot of an asymptotic solution on the vertical

axis and a control parameter on the horizontal axis. To construct a
bifurcation diagram for the quadratic map only requires some simple
modi�cations of our previous program for iterating the quadratic map.
As seen below, the new algorithm consists of the following steps:

1. Set � = 1, and x0 = 0:1 (almost any x0 will do);

2. Iterate the quadratic map 200 times to remove the transient
solution, and then print � and xn for the next 200 points,
which are presumably part of the attractor;

3. Increment � by a small amount, and set x0 to the last value

of xn;

4. Repeat steps 2 and 3 until � = 4.

A C program implementing this algorithm is as follows.

/* bifquad.c: calculate bifurcation diagram for the quadratic map.

input: (none)

output: l1 x200

l1 x201

etc.,

l2 x200

l2 x201

etc.

�/
#include <stdio.h>

main()

f
int n;

4Technically, the phase space of the quadratic map, R, can be compacti�ed
thereby making the point at in�nity a valid attractor.
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Figure 2.14: Bifurcation diagram for the quadratic map.

float lambda, x n;

x n = 0.1;

for(lambda = 1; lambda <= 4; lambda += 0.01) f
for(n = 0; n <= 400; ++n) f

x n = lambda * x n * (1 - x n);

if(n > 199)

printf("%f %fnn", lambda, x n);

g
g

g

When plotted in Figure 2.14 (for 3:4 � � � 4), the output of our
simple program produces a bifurcation diagram of stunning complex-

ity. Above the diagram we provide comments on the type of attractor
observed, and on the horizontal axis signi�cant parameter values are

indicated. This bifurcation diagram shows many qualitative similari-
ties to bifurcation diagrams from the bouncing ball system (compare

to Figure 1.16). Both exhibit the period doubling route to chaos. For

the quadratic map an in�nite number of period doublings occur for
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1 < � < 3:57. Both also show periodic windows (white bands) within

the chaotic regions. For the quadratic map a period three window

begins at � � 3:83 and a period �ve window begins at � � 3:74. Look-

ing closely at the periodic windows we see that each branch of these

periodic windows also undergoes a period doubling cascade.

Bifurcation diagrams showing only attracting solutions can be some-

what misleading. Much of the structure in the bifurcation diagram can

only be understood by keeping track of both the stable attracting solu-

tions and the unstable repelling solutions, as we did in constructing the
orbit stability diagram (Figure 2.13). Just as there are stable periodic
orbits and chaotic attractors, there are also unstable periodic orbits
and chaotic repellers. In Figure 2.13, for instance, we indicate the ex-
istence of an unstable period one orbit by the dashed line beginning

at the �rst period doubling bifurcation. As we show in section 2.7.2,
this unstable period one orbit is simply the continuation of the stable
period one orbit that exists before this period doubling bifurcation (see
Figures 2.14 and 2.22).

2.7 Local Bifurcation Theory

Poincar�e used the term bifurcation to describe the \splitting" of asymp-
totic states of a dynamical system. Figure 2.14 shows a bifurcation
diagram for the quadratic map (see Plate 2 for a color version of a

quadratic map bifurcation diagram). As we examine Figure 2.14, we

see that several di�erent types of changes can occur. We would like
to analyze and classify these bifurcations. At a bifurcation value, the
qualitative nature of the solution changes. It can change to, or from, an

equilibrium, periodic, or chaotic state. It can change from one type of

periodic state to another, or from one type of chaotic state to another.
For instance, in the bouncing ball system we are initially in an

equilibrium state, with the ball moving in unison with the table. As
we turn up the table amplitude we �rst �nd sticking solutions. As

we increase the amplitude further, we �nd a critical parameter value

at which the ball switches from the sticking behavior to bouncing in a
period one orbit. Such a change from an equilibrium state to a periodic

state is an example of a saddle-node bifurcation. As we further turn
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Figure 2.15: Saddle-node bifurcation diagram.

up the table amplitude, we �nd that there is a second critical table

amplitude at which the ball switches from a period one to a period
two orbit. The analogous period doubling bifurcation in the quadratic
map occurs at � = 3. Both the saddle-node and the period doubling
bifurcations are examples of local bifurcations. At their birth (or death)
all the orbits participating are localized in phase space; that is, they all
start out close together. Global bifurcations can also occur, although

typically these are more di�cult to analyze since they can give birth to
an in�nite number of periodic orbits. In this section we analyze three
simple types of local bifurcations that commonly occur in nonlinear
systems. These are the saddle-node, period doubling, and transcritical

bifurcations [6].

2.7.1 Saddle-node

In a saddle-node bifurcation a pair of periodic orbits are created \out

of nothing." One of the periodic orbits is always unstable (the saddle),

while the other periodic orbit is always stable (the node). The basic

bifurcation diagram for a saddle-node bifurcation looks like that shown
in Figure 2.15. The saddle-node bifurcation is fundamental to the study

of nonlinear systems since it is one of the most basic processes by which

periodic orbits are created.
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Figure 2.16: Tangency mechanism for a saddle-node bifurcation.

A saddle-node bifurcation is also referred to as a tangent bifurcation
because of the mechanism by which the orbits are born. Consider the
nth composite of some mapping function f� which is near to a tangency
with the line y = x. Let �sn be the value at which a saddle-node

bifurcation occurs. Notice in Figure 2.16 that fn� is tangent to the line
y = x at �sn. For � < �sn, no period n orbits exist in this neighborhood,
but for � > �sn two orbits are born. The local stability of a point of
a map is determined by (fn� )

0. Since fn� (x) is tangent to y = x at a
bifurcation, it follows that at �sn,

5

(fn�sn)
0(x�) = +1: (2.23)

Tangent bifurcations abound in the quadratic map. For instance, a

pair of period three orbits are created by a tangent bifurcation in the
quadratic map when � = 1+

p
8 � 3:828. As illustrated in Figure 2.17

for � > 3:83, there are eight points of intersection. Two of the inter-
section points belong to the period one orbits, while the remaining six

make up a pair of period three orbits. Near to tangency, the absolute

value of the slope at three of these points is greater than one|this is the
unstable period three orbit. The remaining three points form the sta-

ble periodic orbit. The birth of this stable period three orbit is clearly
visible as the period three window in our numerically constructed bi-

furcation diagram of the quadratic map, Figure 2.14. In fact, all the

5See reference [5] for more details.
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Figure 2.17: A pair of period three orbits created by a tangent bi-

furcation in the quadratic map (shown with the unstable period one
orbits).

odd-period orbits of the quadratic map are created by some sort of
tangent bifurcation.

2.7.2 Period Doubling

Period doubling bifurcations are evident when we consider an even num-
ber of compositions of the quadratic map. In Figure 2.18 we show the

second iteration of the quadratic map near a tangency. Below the pe-

riod doubling bifurcation, a single stable period one orbit exists. As �

is increased, the period one orbit becomes unstable, and a stable period
two orbit is born. This information is summarized in the bifurcation

diagram presented in Figure 2.19. Let �pd be the parameter value at
which the period doubling bifurcation occurs. At this parameter value

the period one and the nascent period two orbit coincide. As illustrated
in Figure 2.18, f2�pd(x

�) is tangent to y = x so that (f2�pd)
0(x�) = +1.

However, (fn�pd)
0(x�) = �1; that is, at a period doubling bifurcation the

function determining the local stability of the periodic orbit is always
�1. Figure 2.20 shows f 0� just after period doubling. In general, for a
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Figure 2.18: Second iterate of the quadratic map near a tangency.

Figure 2.19: Period doubling (ip) bifurcation diagram.
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Figure 2.20: Tangency mechanism near a period doubling (ip) bifur-
cation.

period n to period 2n bifurcation, (f2n�pd)
0(x�) = +1 and

(fn�pd)
0(x�) = �1: (2.24)

A period doubling bifurcation is also known as a ip bifurcation. In
the period one to period two bifurcation, the period two orbit ips from
side to side about its period one parent orbit. This is because f 0�pd(x

�) =

�1 (see Prob. 2.14). The �rst ip bifurcation in the quadratic map

occurs at � = 3 and was analyzed in sections 2.5.2{2.5.4, where we
considered the location and stability of the period one and period two

orbits in the quadratic map.

2.7.3 Transcritical

The last bifurcation we illustrate with the quadratic map is a trans-

critical bifurcation, in which an unstable and stable periodic orbit col-
lide and exchange stability. A transcritical bifurcation occurs in the
quadratic map when � = �tc = 1. As in a saddle-node bifurcation,

f 0�tc = +1 at a transcritical bifurcation. However, a transcritical bi-

furcation also has an additional constraint not found in a saddle-node
bifurcation, namely,

f�tc(x
�) = 0: (2.25)
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For the quadratic map this �xed point is just the period one orbit at

the origin, x�0 = 0, found from equation (2.10).

A summary of these three types of bifurcations is presented in Figure

2.21. Other types of local bifurcations are possible; a more complete

theory for both maps and ows is given in reference [7].

2.8 Period Doubling Ad In�nitum

A view of the bifurcation diagram for the quadratic map for � between
2.95 and 4.0 is presented in Figure 2.22. This diagram reveals not
one, but rather an in�nite number of period doubling bifurcations. As
� is increased a period two orbit becomes a period four orbit, and

this in turn becomes a period eight orbit, and so on. This sequence of
period doubling bifurcations is known as a period doubling cascade. This
process appears to converge at a �nite value of � around 3.57, beyond
which a nonperiodic motion appears to exist. This period doubling
cascade often occurs in nonlinear systems. For instance, a similar period

doubling cascade occurs in the bouncing ball system (Figure 1.16). The
period doubling route is one common way, but certainly not the only
way, by which a nonlinear system can progress from a simple behavior
(one or a few periodic orbits) to a complex behavior (chaotic motion
and the existence of an in�nity of unstable periodic orbits).

In 1976, Feigenbaum began to wonder about this period doubling

cascade. He started playing some numerical games with the quadratic
map using his HP65 hand-held calculator. His wondering soon led to a

remarkable discovery. At the time, Feigenbaum knew that this period

doubling cascade occurred in one-dimensional maps of the unit inter-
val. He also had some evidence that it occurred in simple systems of

nonlinear di�erential equations that model, for instance, the motion of
a forced pendulum. In addition to looking at the qualitative similarities

between these systems, he began to ask if there might be some quan-
titative similarity|that is, some numbers that might be the same in

all these di�erent systems exhibiting period doubling. If these numbers

could be found, they would be \universal" in the sense that they would

not depend on the speci�c details of the system.

Feigenbaum was inspired in his search, in part, by a very success-
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Figure 2.21: Summary of bifurcations.
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Figure 2.22: Bifurcation diagram showing period doubling in the
quadratic map.

ful theory of universal numbers for second-order phase transitions in
physics.6 A phase transition takes place in a system when a change of
state occurs. During the 1970s it was discovered that there were quan-

titative measurements characterizing phase transitions that did not de-
pend on the details of the substance used. Moreover, these universal

numbers in the theory of phase transitions were successfully measured

in countless experiments throughout the world. Feigenbaum wondered
if there might be some similar universality theory for dissipative non-

linear systems [8].

6Feigenbaum introduced the renormalization group approach of critical phenom-
ena to the study of nonlinear dynamical systems. Additional early contributions
to these ideas came from Cvitanovi�c, and also Collet, Coullet, Eckmann, Lanford,
and Tresser. The geometric convergence of the quadratic map was noted as early
as 1958 by Myrberg (see C. Mira, Chaotic dynamics (World Scienti�c: New Jersey,
1987)), and also by Grossmann and Thomae in 1977.
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�1 = 3:0 �5 = 3:568759 : : :
�2 = 3:449490 : : : �6 = 3:569692 : : :

�3 = 3:544090 : : : �7 = 3:569891 : : :

�4 = 3:564407 : : : �8 = 3:569934 : : :

Table 2.1: Period doubling bifurcation values for the quadratic map.

By de�nition, such universal numbers are dimensionless; the speci�c
mechanical details of the system must be scaled out of the problem.

Feigenbaum began his search for universal numbers by examining the
period doubling cascade in the quadratic map. He recorded, with the
help of his calculator, the values of � at which the �rst few period dou-
bling bifurcations occur. We have listed the �rst eight values (orbits up
to period 28) in Table 2.1. While staring at this sequence of bifurcation

points, Feigenbaum was immediately struck by the rapid convergence
of this series. Indeed, he recognized that the convergence appears to
follow that of a geometric series, similar to the one we saw in equation
(1.35) when we studied the sticking solutions of the bouncing ball.

Let �n be the value of the nth period doubling bifurcation, and

de�ne �1 as limn!1 �n. Based on his inspiration, Feigenbaum guessed
that this sequence obeys a geometric convergence,7; that is,

�1 � �n = c=�n (n!1); (2.26)

where c is a constant, and � is a constant greater than one. Using

equation (2.26) and a little algebra it follows that if we de�ne � by

� = lim
n!1

�n � �n�1

�n+1 � �n
; (2.27)

then � is a dimensionless number characterizing the rate of convergence

of the period doubling cascade.

The three constants in this discussion have been calculated as

�1 = 3:5699456:::; � = 4:669202:::; and c = 2:637:::: (2.28)

7For a review of geometric series see any introductory calculus text, such as C.
Edwards and D. Penny, Calculus and analytic geometry (Prentice-Hall: Englewood
Cli�s, NJ, 1982), p. 549.
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The constant � is now called \Feigenbaum's delta," because Feigenbaum

went on to show that this number is universal in that it arises in a

wide class of dissipative nonlinear systems that are close to the single-

humped map. This number has been measured in experiments with

chicken hearts, electronic circuits, lasers, chemical reactions, and liquids

in their approach to a turbulent state, as well as the bouncing ball

system [9].

To experimentally estimate Feigenbaum's delta all one needs to do

is measure the parameter values of the �rst few period doublings, and
then substitute these numbers into equation (2.27). The geometric
convergence of � is a mixed blessing for the experimentalist. In practice
it means that �n converges very rapidly to �1, so that only the �rst
few �n's are needed to get a good estimate of Feigenbaum's delta. It

also means that only the �rst few �n's can be experimentally measured
with any accuracy, since the higher �n's bunch up too quickly to �1.
To continue with more technical details of this story, see Rasband's
account of renormalization theory for the quadratic map [6].

Feigenbaum's result is remarkable in two respects. Mathematically,

he discovered a simple universal property occurring in a wide class of
dynamical systems. Feigenbaum's discovery is so simple and fundamen-
tal that it could have been made in 1930, or in 1830 for that matter.
Still, he had some help from his calculator. It took a lot of numerical
work to develop the intuition that led Feigenbaum to his discovery, and

it seems unlikely that the computational work needed would have oc-
curred without help from some sort of computational device such as a

calculator or computer. Physically, Feigenbaum's result is remarkable

because it points the way toward a theory of nonlinear systems in which
complicated di�erential equations, which even the fastest computers
cannot solve, are replaced by simple models|such as the quadratic

map|which capture the essence of a nonlinear problem, including its

solution. The latter part of this story is still ongoing, and there are
surely other gems to be discovered with some inspiration, perspiration,

and maybe even a workstation.
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2.9 Sarkovskii's Theorem

In the previous section we saw that for 3 < � < 3:57 an in�nite number

of periodic orbits with period 2n are born in the quadratic map. In a

period doubling cascade we know the sequence in which these periodic

orbits are born. A period one orbit is born �rst, followed by a period

two orbit, a period four orbit, a period eight orbit, and so on. For

higher values of �, additional periodic orbits come into existence. For
instance, a period three orbit is born when � = 1 +

p
8 � 3:828, as we

showed in section 2.7.1. In this section, we will explicitly show that all
possible periodic orbits exist for � � 4. One of the goals of bifurcation
theory is to understand the di�erent mechanisms for the birth and death

of these periodic orbits. Pinning down all the details of an individual
problem is usually very di�cult, often impossible. However, there is
one qualitative result due to Sarkovskii of great beauty that applies to
any continuous mapping of the real line to itself.

The positive integers are usually listed in increasing order

1; 2; 3; 4; : : : : However, let us consider an alternative enumeration that
reects the order in which a sequence of period n orbits is created. For
instance, we might list the sequence of integers of the form 2n as

2n . � � � . 24 . 23 . 22 . 21 . 20;
where the symbol . means \implies." In the quadratic map system

this ordering says that the existence of a period 2n orbit implies the
existence of all periodic orbits of period 2i for i < n. We saw this
ordering in the period doubling cascade. A period eight orbit thus
implies the existence of both period four and period two orbits. This

ordering diagram says nothing about the stability of any of these orbits,

nor does it tell us how many periodic orbits there are of any given
period.

Consider the ordering of all the integers given by

3 � 5 � 7 � 9 � : : : � 2 � 3 � 2 � 5 � 2 � 7 � 2 � 9 � : : :

� 2n � 3 � 2n � 5 � 2n � 7 � 2n � 9 � : : :

� 2n � : : : � 16 � 8 � 4 � 2 � 1; (2.29)

with n ! 1. Sarkovskii's theorem says that the ordering found in

equation (2.29) holds, in the sense of the 2n ordering above, for any
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continuous map of the real line R to itself|the existence of a period

i orbit implies the existence of all periodic orbits of period j where j

follows i in the ordering. Sarkovskii's theorem is remarkable for its lack

of hypotheses (it assumes only that f is continuous). It is of great help

in understanding the structure of one-dimensional maps.

In particular, this ordering holds for the quadratic map. For in-

stance, the existence of a period seven orbit implies the existence of

all periodic orbits except a period �ve and a period three orbit. And

the existence of a single period three orbit implies the existence of
periodic orbits of all possible periods for the one-dimensional map.
Sarkovskii's theorem forces the existence of period doubling cascades
in one-dimensional maps. It is also the basis of the famous statement
of Li and Yorke that \period three implies chaos," where chaos loosely

means the existence of all possible periodic orbits.8 An elementary
proof of Sarkovskii's theorem, as well as a fuller mathematical treat-
ment of maps as dynamical systems, is given by Devaney in his book
An Introduction to Chaotic Dynamical Systems [10].

Sarkovskii's theorem holds only for mappings of the real line to

itself. It does not hold in the bouncing ball system because it is a map
in two dimensions. It does not hold for mappings of the circle, S1, to
itself. Still, Sarkovskii's theorem is a lovely result, and it does point the
way to what might be called \qualitative universality," that is, general
statements, usually topological in nature, that are expected to hold for

a large class of dynamical systems.

2.10 Sensitive Dependence

In section 1.4.5 we saw how a measurement of �nite precision in the

bouncing ball system has little predictive value in the long term. Such
behavior is typical of motion on a chaotic attractor. We called such

8In section 4.6.2 we show there exists a close connection between the existence
of an in�nity of periodic orbits and the existence of a chaotic invariant set, not
necessarily an attractor. The term \chaos" in nonlinear dynamics is due to Li and
Yorke, although the current usage di�ers somewhat from their original de�nition
(see T. Y. Li and J. A. Yorke, Period three implies chaos, Am. Math. Monthly 82,
985 (1975)).
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behavior sensitive dependence on initial conditions. For the special

value � = 4 in the quadratic map we can analyze this behavior in some

detail.

Consider the transformation xn = sin2(��n) applied to the quadratic

map when � = 4. Making use of the identity

sin 2� = 2 sin� cos�;

we �nd

xn+1 = 4xn(1� xn) =)
sin2(��n+1) = 4 sin2(��n)(1 � sin2(��n))

= 4 sin2(��n) cos
2(��n)

= (2 sin(��n) cos(��n))
2

= (sin(2��n))
2 =)

�n+1 = 2�n mod 1: (2.30)

This last linear di�erence equation has the explicit solution

�n = 2n�0 mod 1: (2.31)

Sensitive dependence on initial conditions is easy to see in this ex-

ample when we express the initial condition as a binary number,

�0 =
b0

2
+
b1

4
+
b2

8
+ � � � =

1X
i=0

bi

2i+1
; bi 2 f0; 1g: (2.32)

Now the action of equation (2.31) on an initial condition �0 is a shift
map. At each iteration we multiply the previous iterate by two (10 in

binary), which is a left shift, and then apply the mod function, which
erases the integer part. For example, if �0 = 0:10110101 : : : in binary,
then

�0 = 0:10110101 : : :

�1 = (10 � 0:10110101 : : :) mod 1

= 0:0110101 : : : (shift left and drop the integer part)

�2 = 0:110101 : : :

�3 = 0:10101 : : :

�4 = 0:0101 : : :
...
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and we see the precision of our initial measurement evaporating before

our eyes.

We can even quantify the amount of sensitive dependence the system

exhibits, that is, the rate at which an initial error grows. Assuming that

our initial condition has some small error �, the growth rate of the error

is

fn(�0)� fn(�0 + �) = 2n�0 � 2n(�0 + �) = 2n� = �en(ln2):

If we think of n as time, then the previous equation is of the form eat

with a = ln 2. In this example the error grows at a constant exponential
rate of ln 2. The exponential growth rate of an initial error is the
de�ning characteristic of motion on a chaotic attractor. This rate of
growth is called the Lyapunov exponent. A strictly positive Lyapunov
exponent, such as we just found, is an indicator of chaotic motion.

The Lyapunov exponent is never strictly positive for a stable periodic
motion.9

2.11 Fully Developed Chaos

The global dynamics of the quadratic map are well understood for
0 < � < 3, namely, almost all orbits beginning on the unit interval
are asymptotic to a period one �xed point. We will next show that
the orbit structure is also well understood for � > 4. This is known as
the hyperbolic regime. This parameter regime is \fully developed" in

the sense that all of the possible periodic orbits exist and they are all
unstable.10 No chaotic attractor exists in this parameter regime, but

rather a chaotic repeller. Almost all initial conditions eventually leave,

or are repelled from, the unit interval. However, a small set remains.
This remaining invariant set is an example of a fractal.

The analysis found in this book is based substantially on sections 1.5
to 1.8 of Devaney's An Introduction to Chaotic Dynamical Systems [10].

9For a well-illustrated exploration of the Lyapunov exponent in the quadratic
map system see A. K. Dewdney, Leaping into Lyapunov space, Sci. Am. 265 (3),
pp. 178{180 (1991).

10Technically, the system is \structurally stable." See section 1.9 of Devaney's
book for more details. Hyperbolicity and structural stability usually go hand-in-
hand.
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This section is more advanced mathematically than previous sections.

The reader should consult Devaney's book for a complete treatment.

Section 2.12 contains a more pragmatic description of the symbolic

dynamics of the quadratic map and can be read independently of the

current section.

2.11.1 Hyperbolic Invariant Sets

We begin with some de�nitions.

De�nition. A set or region � is said to be invariant under the map f

if for any x0 2 � we have fn(x0) 2 � for all n.

The simplest example of an invariant set is the collection of points
forming a periodic orbit. But, as we will see shortly, there are more

complex examples, such as strange invariant sets, which are candidates
for chaotic attractors or repellers.

De�nition. For mappings of R �! R, a set � � R is a repelling
(resp., attracting) hyperbolic set for f if � is closed, bounded, and
invariant under f and there exists an N > 0 such that j(fn)0(x)j > 1
(resp., < 1) for all n � N and all x 2 � [10].

This de�nition says that none of the derivatives of points in the
invariant set are exactly equal to one. A simple example of a hyperbolic
invariant set is a periodic orbit that is either repelling or attracting, but

not neutral. In higher dimensions a similar de�nition of hyperbolicity

holds, namely, all the points in the invariant set are saddles.

The existence of both a simple periodic regime and a complicated
fully developed chaotic (yet well understood) hyperbolic regime turns

out to be quite common in low-dimensional nonlinear systems. In Chap-
ter 5 we will show how information about the hyperbolic regime, which

we can often analyze in detail using symbolic dynamics, can be ex-
ploited to determine useful physical information about a nonlinear sys-

tem.

In examining the dynamics of the quadratic map for � > 4 we
proceed in two steps: �rst, we examine the invariant set, and second,

we describe how orbits meander on this invariant set. The set itself is
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Figure 2.23: Quadratic map for � > 4. (Generated by the Quadratic
Map program.)

a fractal Cantor set [11], and to describe the dynamics on this fractal
set we employ the method of symbolic dynamics.

Since f(1=2) > 1 for � > 4 there exists an open interval centered at
1=2 with points that leave the unit interval after one iteration, never to

return. Call this open set A0 (see Figure 2.23). These are the points in

A0 whose image under f is greater than one. On the second iteration,
more points leave the unit interval. In fact, these are the points that
get mapped to A0 after the �rst iteration: A1 = fx 2 Ijf(x) 2 A0g.
Inductively, de�ne An = fx 2 Ijf i(x) 2 I for i � n but fn+1(x) 62 Ig;
that is, An consists of all points that escape from I at the n + 1st

iteration. Clearly, the invariant limit set, call it �, consists of all the

remaining points

� = I �
 

1[
n=0

An

!
: (2.33)

What does � look like? First, note that An consists of 2n disjoint
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open intervals, so �n = I � (A0
S
::::
S
An) is 2

n+1 disjoint closed in-

tervals. Second, fn+1 monotonically maps each of these intervals onto

I. The graph of fn+1 is a polynomial with 2n humps. The maximal

sections of the humps are the collection of intervals An that get mapped

out of I, but more importantly this polynomial intersects the y = x

line 2n+1 times. Thus, �n has 2n+1 periodic points in I.

The set � is a Cantor set if � is a closed, totally disconnected,

perfect subset. A set is disconnected if it contains no intervals; a set is

perfect if every point is a limit point. It is not too hard to show that
the invariant set de�ned by equation (2.33) is a Cantor set [10]. Thus,
we see that the invariant limit set arising from the quadratic map for
� > 4 is a fractal Cantor set with a countable in�nity of periodic orbits.

2.11.2 Symbolic Dynamics

Our next goal is to unravel the dynamics on �. In beginning this task
it is useful to think how the unit interval gets stretched and folded with
each iteration. The transformation of the unit interval under the �rst

three iterations for � = 4 is illustrated in Figure 2.24. This diagram
shows that the essential ingredients that go into making a chaotic limit
set are stretching and folding. The technique of symbolic dynamics is
a bookkeeping procedure that allows us to systematically follow this
stretching and folding process. For one-dimensional maps the complete

symbolic theory is also known as kneading theory [10].

We begin by de�ning a symbol space for symbolic dynamics. Let
�2 = fs = (s0s1s2:::)jsj = 0 or 1g. �2 is known as the sequence space

on the symbols 0 and 1. We sometimes use the symbols L (Left) and

R (Right) to denote the symbols 0 and 1 (see Figure 2.24). If we de�ne

the distance between two sequences s and t by

d[s; t] =
1X
i=0

jsi � tij
2i

; (2.34)

then �2 is a metric space. The metric d[s; t] induces a topology on

�2 so we have a notion of open and closed sets in �2. For instance,
if s = (0100101 : : :) and t = (001011 : : :), then the metric d[s; t] =

1=2 + 1=4 + 1=32 + � � � :



100 CHAPTER 2. QUADRATIC MAP

Figure 2.24: Keeping track of the stretching and folding of the quadratic

map with symbolic dynamics.
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A dynamic on the space �2 is given by the shift map � : �2 �! �2

de�ned by �(s0s1s2:::) = (s1s2s3:::). That is, the shift map drops the

�rst entry and moves all the other symbols one place to the left. The

shift map is continuous. Briey, for any � > 0, pick n such that 1=2n <

�, and let � = 1=2n+1. Then the usual ��� proof goes through when we

use the metric given by equation (2.34) [10].

What do the orbits in �2 look like? Periodic points are identi�ed

with exactly repeating sequences, s = (s0 : : : sn�1; s0 : : : sn�1; : : :). For

instance, there are two distinct period one orbits, given by (0000000 : : :)
and (111111 : : :). The period two orbit takes the form (01010101 : : :)
and (10101010 : : :), and one of the period three orbits looks like
(001001001 : : :), (010010010 : : :), and (100100100 : : :), and so on. Evi-
dently, there are 2n periodic points of period n, although some of these

points are of a lower period. But there is more. The periodic points
are dense in �2; that is, any nonperiodic point can be represented as
the limit of some periodic sequence. Moreover, the nonperiodic points
greatly outnumber the periodic points.

What does this have to do with the quadratic map, or more exactly

the map f� restricted to the invariant set �? We now show that it is the
\same" map, and thus to understand the orbit structure and dynamics
of f� on � we need only understand the shift map, �, on the space of
two symbols, �2. We can get a rough idea of the behavior of an orbit
by keeping track of whether it falls to the left (L or 0) or right (R or

1) at the nth iteration. See Figure 2.25 for a picture of this partition.

That is, the symbols 0 and 1 tell us the fold which the orbit lies on at
the nth iteration.

Accordingly, de�ne the itinerary of x as the sequence S(x) = s0s1s2:::

where sj = 0 if f j�(x) < 1=2 and sj = 1 if f j�(x) > 1=2. Thus, the

itinerary of x is an in�nite sequence of 0s and 1s: it \lives" in �2. Fur-

ther, we think of S as a map from � to �2. If � > 4, then it can be

shown that S : � �! �2 is a homeomorphism (a map is a homeomor-
phism if it is a bijection and both f and f�1 are continuous). This

last result says that the two sets � and �2 are the same. To show the

equivalence between the dynamics of f� on � and � on �2, we need the

following theorem, which is quoted from Devaney.

Theorem. If � > 2+
p
5, then S : � �! �2 is a homeomorphism and
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S � f� = � � S .

Proof. See section 1.7 in Devaney's book [10]. This theorem holds for

all � > 4, but the proof is more subtle.

As we show in the next section, the essential idea in this proof is

to keep track of the preimages of points not mapped out of the unit

interval. The symbolic dynamics of the invariant set gives us a way to

uniquely name the orbits in the quadratic map that do not run o� to
in�nity. In particular, the itinerary of an orbit allows us to name, and
to �nd the relative location of, all the periodic points in the quadratic

map. Symbolic dynamics is powerful because it is easy to keep track of
the orbits in the symbol space. It is next to impossible to do this using
only the quadratic map since it would involve solving polynomials of
arbitrarily high order.

2.11.3 Topological Conjugacy

This last example suggests the following notion of equivalence of dy-
namical systems, which was originally put forth by Smale [12] and is
fundamental to dynamical systems theory.

De�nition. Let f : A �! A and g : B �! B be two maps. The
functions f and g are said to be topologically conjugate if there exists
a homeomorphism h : A �! B such that h � f = g � h.

The homeomorphism is called a topological conjugacy, and is more

commonly de�ned by simply stating that the following diagram com-
mutes:

f

A �! A

h # # h
g

B �! B

Using the theorem of the previous section, we know that if � > 2+
p
5

then f� (the quadratic map) is topologically conjugate to � (the shift
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map). Topologically conjugate systems are the same system insofar as

there is a one-to-one correspondence between the orbits of each system.

Sometimes this is too restrictive and we only require that the mapping

between orbits be many-to-one. In this latter case we say the two

dynamical systems are semiconjugate.

In nonlinear dynamics, it is often advantageous to establish a conju-

gacy or a semiconjugacy between the dynamical system in question and

the dynamics on some symbol space. The properties of the dynamical

system are usually easy to see in the symbol space and, by the conju-
gacy or semiconjugacy, these properties must also exist in the original
dynamical system. For instance, the following properties are easy to
show in �2 and must also hold in �, namely:

1. The cardinality of the set of periodic points (often written

as Pern(f�)) is 2
n.

2. Per(f�) is dense in �.

3. f� has a dense orbit in � [10].

Although there is no universally accepted de�nition of chaos, most
de�nitions incorporate some notion of sensitive dependence on initial
conditions. Our notions of topological conjugacy and symbolic dynam-
ics give us a promising way to analyze chaotic behavior in a speci�c
dynamical system.

In the context of one-dimensional maps, we say that a map f : I �!
I possesses sensitive dependence on initial conditions if there exists a

� > 0 such that, for any x 2 I and any neighborhood N of x, there exist

y 2 N and n � 0 such that jfn(x) � fn(y)j > �. This says that small
errors due either to measurement or round-o� errors become magni�ed

upon iteration|they cannot be ignored.
Let S1 denote the unit circle. Here we will think of the members of

S1 as being normalized to the range [0; 1): A simple example of a map

that is chaotic in the above sense is given by g : S1 �! S1 de�ned by
g(�) = 2�. As we saw in section 2.10, when � is written in base two,
g(�) is simply a shift map on the unit circle. In ergodic theory the above

shift map is known as a Bernoulli process. If we think of each symbol

0 as a Tail (T), and each symbol 1 as a Head (H), then the above shift
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map is topologically conjugate to a coin toss, our intuitive model of

a random process. Each shift represents a toss of the coin. We now

show that the shift map is essentially the same as the quadratic map

for � = 4; that is, the quadratic map (a fully deterministic process) can

be as random as a coin toss.

If f4(x) = 4x(1 � x), then the limit set is the whole unit inter-

val I = [0; 1] since the maximum f4(1=2) = 1; that is, the map is

strictly onto (the map is measure-preserving and is roughly analogous

to a Hamiltonian system that conserves energy). To continue with
the analysis, de�ne h1 : S1 �! [�1; 1] by h1 = cos(�). Also de�ne
q(x) = 2x2 � 1. Then

h1 � g(�) = cos(2�)

= 2 cos2(�)� 1

= q � h1(�)

so h1 conjugates g and q. Note, however, that h1 is two-to-one at most

points so that we only have a semiconjugacy. To go further, if we de�ne
h2 : [�1; 1] �! [0; 1] by h2(t) =

1
2
(1 � t), then f4 � h2 = h2 � q. Then

h3 = h2 � h1 is a topological semiconjugacy between g and f4; we have
established the semiconjugacy between the chaotic linear circle map
and the quadratic map when � = 4. The reader is invited to work
through a few examples to see how the orbits of the quadratic map, the

linear circle map, and a coin toss can all be mapped onto one another.

2.12 Symbolic Coordinates

In the previous section we showed that when � > 4, the dynamics of
the quadratic map restricted to the invariant set � are \the same" as

those given by the shift map � on the sequence space on two symbols,

�2. We established this correspondence by partitioning the unit inter-
val into two halves about the maximum point of the quadratic map,

x = 1=2. The left half of the unit interval is labeled 0 while the right half
is labeled 1, as illustrated in Figure 2.25. To any orbit of the quadratic

map fn(x0) we assign a sequence of symbols s = (s0s1s2 : : :)|for ex-

ample, 101001...|called the itinerary, or symbolic future, of the orbit.
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Each si represents the half of the unit interval in which the ith iteration

of the map falls.

In part, the theorem of section 2.11.2 says that knowing an orbit's

initial condition is exactly equivalent to knowing an orbit's itinerary.

Indeed, if we imagine that the itinerary is simply an expression for some

binary number, then perhaps the correspondence is not so surprising.

That is, the mapping fn� takes some initial coordinate number x0 and

translates it to a binary number �0 = �(s0; s1; : : :) constructed from the

symbolic future, which can be thought of as a \symbolic coordinate."
From a practical point of view, the renaming scheme described by

symbolic dynamics is very useful in at least two ways:

1. Symbolic dynamics provides a good way to label all the periodic
orbits.

2. The symbolic itinerary of an orbit provides the location of the
orbit in phase space to any desired degree of resolution.

We will explain these two points further and in the process show the

correspondence between � and x0.
In practical applications we shall be most concerned with keeping

track of the periodic orbits. Symbolic itineraries of periodic orbits are
repeating �nite strings, which can be written in various forms, such as

(s0s1 : : : sn�1; s0s1 : : : sn�1; : : :) = (s0s1 : : : sn�1)
1 = s0s1 : : : sn�1:

To see the usefulness of the symbolic description, let us consider the
following problem: for � > 4, �nd the approximate location of all the

periodic orbits in the quadratic map.

2.12.1 What's in a name? Location.

As discussed in section 2.5, the exact location of a period n orbit is

determined by the roots of the �xed point equation, fn(x) = x. This
naive method of locating the periodic points is impractical in general
because it requires �nding the roots of an arbitrarily high-order poly-

nomial. We now show that the problem is easy to solve using symbolic

dynamics if we ask not for the exact location, but only for the location

relative to all the other periodic orbits.
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If � > 4, then there exists an interval centered about x = 1=2 for

which f(x) > 1. Call this interval A0 (see Figure 2.23). Clearly, no

periodic orbit exists in A0 since all points in A0 leave the unit interval

I at the �rst iteration, and thereafter escape to �1. As we argued

in section 2.11.1, the periodic points must be part of the invariant set,

those points that are never mapped into A0.

As shown in Figure 2.25, the points in the invariant set can be

constructed by considering the preimages of the unit interval found

from the inverse map f�1� . The �rst iteration of f�1� produces two
disjoint intervals,

f�1� (I)
. &

I0 I1

which are labeled I0 (the left interval) and I1 (the right interval). As
indicated by the arrows in Figure 2.25, I0 preserves orientation, while
I1 reverses orientation. The orientation of the interval is simply deter-
mined by the slope (derivative) of f�(x),

f 0�(x) > 0 if x < 1=2; preserves orientation;

f 0�(x) < 0 if x > 1=2; reverses orientation:

We view f�1(I) as a �rst-level approximation to the invariant set
�. In particular, f�1(I) gives us a very rough idea as to the location of
both period one orbits, one of which is located somewhere in I0, while

the other is located somewhere in I1.
To further re�ne the location of these periodic orbits, consider the

application of f�1� to both I0 and I1,

f�1� (I0) f�1� (I1)
. & . &

I00 I01 I11 I10

The second iteration gives rise to four disjoint intervals. Two of these
contain the distinct period one orbits, and the remaining two intervals
contain the period two orbit,

I00 = I0
\
f�1� (I0);
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Figure 2.25: Symbolic coordinates and the alternating binary tree.
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I01 = I0
\
f�1� (I1);

I11 = I1
\
f�1� (I1);

I10 = I1
\
f�1� (I0):

In general we can de�ne 2n disjoint intervals at the nth level of re�ne-

ment by

Is0s1:::sn�1
= Is0

\
f�1� (Is1)

\
: : :
\
f
�(n�1)
� (Isn�1

): (2.35)

With each new re�nement, we hone in closer and closer to the periodic

orbits.
The one-to-one correspondence between x0 and s is easy to see ge-

ometrically by observing that, as n!1,\
n�0

Is0s1:::sn

forms an in�nite intersection of nested nonempty closed intervals that
converges to a unique point in the unit interval.11 The invariant limit
set is the collection of all such limit points, and the periodic points are
all those limit points indexed by periodic symbolic strings.

2.12.2 Alternating Binary Tree

We must keep track of two pieces of information to �nd the location of

the orbits at the nth level: the relative location of the interval Is0s1:::sn�1

and its orientation. A very convenient way to encode both pieces of data
is through the construction of a binary tree that keeps track of all the
intervals generated by the inverse function, f�1� . The quadratic map
gives rise to the \alternating binary tree" illustrated in Figure 2.25(b)

[13].

The nth level of the alternating binary tree has 2n nodes, which are
labeled from left to right by the sequence

nth level :

2nz }| {
0 1 1 0 0 1 1 : : : 0 0 1 1 0 0 1 1 0;

11A partition of phase space that generates a one-to-one correspondence between
points in the limit set and points in the original phase space is known in ergodic
theory as a generating partition. Physicists loosely call such a generating partition
a \good partition" of phase space.
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This sequence starts at the left with a zero. It is followed by a pair of

ones, then a pair of zeros, and so on until 2n digits are written down.

To form the alternating binary tree, we construct the above list of 0s

and 1s from level one to level n and then draw in the pair of lines from

each i� 1st level node to the adjacent nodes at the ith level.

Now, to �nd the symbolic name for the interval at the nth level,

Is0s1:::sn�1
, we start at the topmost node, s0, and follow the path down

the alternating binary tree to the nth level, reading o� the appropriate

symbol name at each level along the way. By construction, we see
that the symbolic name read o� at the nth level of the tree mimics the
location of the interval containing a period n orbit.

More formally, we identify the set of repeating sequences of period
n in �2 with the set of �nite strings s0s1 : : : sn�1. Let �(s0; s1; : : : ; sn�1)

denote the fraction between 0 and (2n � 1)=2n giving the order, from
left to right, generated by the alternating binary tree. Further, let
N(s0; s1; : : : ; sn�1) denote the integer position between 0 and 2n � 1
and let B denote N in binary form. It is not too di�cult to show that
B(s0; s1; : : : ; sn�1) = b0b1 : : : bn�1, where bi = 0 or 1, and

�(s0; s1; : : : ; sn�1) =
b0

2
+
b1

4
+ : : :+

bn�1

2n
(2.36)

N(s0; s1; : : : ; sn�1) = b0 � 2n�1 + b1 � 2n�2 + : : :+ bn�1 � 20(2.37)

bi =
iX

j=0

sj mod 2: (2.38)

An application of the ordering relation can be read directly o� of Figure
2.25(b) for n = 3 and is presented in Table 2.2. As expected, the left-
most orbit is the string 0, which corresponds to the period one orbit
at the origin, x0. Less obvious is the position of the other period one

orbit, x1, which occupies the �fth position at the third level.
The itinerary of a periodic orbit is generated by a shift on the re-

peating string (s0s1 : : : sn�1)
1:

�(s0s1 : : : sn�1) = (s1s2 : : : sn�1s0): (2.39)

In this case, the shift is equivalent to a cyclic permutation of the sym-

bolic string. For instance, there are two period three orbits shown in
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N B s0s1s2
x position binary x position symbolic name

0 000 000

1 001 001

2 010 011

3 011 010

4 100 110

5 101 111

6 110 101

7 111 100

Table 2.2: Symbolic coordinate for n = 3 from the alternating binary

tree.

Table 2.2; their itineraries and positions are

s0s1s2 : 001 �! 010 �! 100
N : 1 �! 3 �! 7

and
s0s1s2 : 011 �! 110 �! 101

N : 2 �! 4 �! 6:

So the itinerary of a periodic orbit is generated by cyclic permutations
of the symbolic name.

2.12.3 Topological Entropy

To name a periodic orbit, we need only choose one of its cyclic per-

mutations. The number of distinct periodic orbits grows rapidly with

the length of the period. The symbolic names for all periodic orbits
up to period eight are presented in Table 2.3. A simple indicator of

the complexity of a dynamical system is its topological entropy. In the
one-dimensional setting, the topological entropy, which we denote by

h, is a measure of the growth of the number of periodic cycles as a
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0 01011 0000011 0101011 00010011 00011111
1 01111 0000101 0011111 00010101 00101111
01 000001 0001001 0101111 00011001 00110111
001 000011 0000111 0110111 00100101 00111011
011 000101 0001011 0111111 00001111 00111101
0001 000111 0001101 00000001 00010111 01010111
0011 001011 0010011 00000011 00011011 01011011
0111 001101 0010101 00000101 00011101 00111111
00001 001111 0001111 00001001 00100111 01011111

00011 010111 0010111 00000111 00101011 01101111
00101 011111 0011011 00001011 00101101 01111111
00111 0000001 0011101 00001101 00110101

Table 2.3: Symbolic names for all periodic orbits up to period eight
occurring in the quadratic map for � > 4. All names related by a cyclic
permutation are equivalent.

function of the symbol string length (period),

h = lim
n!1

lnNn

n
; (2.40)

where Nn is the number of distinct periodic orbits of length n. For
instance, for the fully developed quadratic map, Nn is of order 2n, so

h = ln 2 � 0:6931 : : : :

The topological entropy is zero in the quadratic map for any value of

� below the accumulation point of the �rst period doubling cascade
because Nn is of order 2n in this regime. The topological entropy
is a continuous, monotonically increasing function between these two

parameter values. The topological entropy increases as periodic orbits

are born by di�erent bifurcation mechanisms. A strictly positive value
for the topological entropy is sometimes taken as an indicator for the

amount of \topological chaos."
In addition to its theoretical importance, symbolic dynamics will

also be useful experimentally. It will help us to locate and organize

the periodic orbit structure arising in real experiments. In Chapter
5 we will show how periodic orbits can be extracted and identi�ed
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from experimental data. We will further describe how to construct

a periodic orbit's symbolic name directly from experiments and how

to compare this with the symbolic name found from a model, such as

the quadratic map. Reference [14] describes an additional re�nement of

symbolic dynamics called kneading theory, which is useful for analyzing

nonhyperbolic parameter regions, such as occur in the quadratic map

for 1 < � < 4.

Notice that the ordering relation described by the alternating bi-

nary tree between the periodic orbits does not change for any � > 4. A
simple observation, which will nevertheless be very important from an
experimental viewpoint, is the following: this ordering relation, which

is easy to calculate in the hyperbolic regime, is often maintained in the

nonhyperbolic regime. This is the case, for instance, in the quadratic

map for all � > 1. This observation is useful experimentally because it
will give us a way to name and locate periodic orbits in an experimen-
tal system at parameter values where a nonhyperbolic strange attractor
exists. That is, we can name and identify periodic orbits in a hyper-
bolic regime, where the system can be analyzed analytically, and then

carry over the symbolic name for the periodic orbit from the hyperbolic
regime to the nonhyperbolic regime, where the system is more di�cult
to study rigorously. Symbolic dynamics and periodic orbits will be our
\breach through which we may attempt to penetrate an area hitherto
deemed inaccessible" [15].

The reader might notice that our symbolic description of the
quadratic map used very little that was speci�c to this map. The

same description holds, in fact, for any single-humped (unimodal) map

of the interval. Indeed, the topological techniques we described here
in terms of binary trees extend naturally to k symbols on k-ary trees
when a map with many humps is encountered.

This concludes our introduction to the quadratic map. There are

still many mysteries in this simple map that we have not yet begun
to explore, such as the organization of the periodic window structure,

but at least we can now continue our journey into nonlinear lands with
words and pictures to describe what we might see [16].
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Usage of Mathematica

In this section, we illustrate how Mathematica12 can be used for re-

search or course work in nonlinear dynamics. Mathematica is a com-

plete system for doing symbolic, graphical, and numerical manipula-

tions on symbols and data, and is commonly available on a wide range

of machines from microcomputers (386s and Macs) to mainframes and

supercomputers.
Mathematica is strong in two- and three-dimensional graphics, and,

where appropriate, we would encourage its use in a nonlinear dynamics
course. It can serve at least three important functions: (1) a means of
generating complex graphical representations of data from experiments

or simulations; (2) a method for double-checking complex algebraic
manipulations �rst done by hand; and (3) a general system for writ-
ing both numerical and symbolic routines for the analysis of nonlinear
equations.

What follows is text from a typical Mathematica session, typeset

for legibility, used to produce some of the graphics and to double-check
some of the algebraic results presented in this chapter. Of course, a
real Mathematica session would not be so heavily commented.
(* This is a Mathematica comment statement. Mathematica ignores

everything between star parentheses. *)

(* To try out this Mathematica session yourself, type everything in

bold that is not enclosed in the comment statements. The following

line is Mathematica's answer typed in italic. Mathematica's output

from graphical commands are not printed here, but are left for the

reader to discover. *)

(* This notebook is written on a Macintosh. 7/22/90 nbt. *)

(* In this notebook we will analytically solve for the period one and

period two orbits in the quadratic map and plot their locations as a

function of the control parameter, lambda. *)

12Mathematica is a trademark of Wolfram Research Inc. For a brief introduction
to Mathematica see S. Wolfram, Mathematica, a system for doing mathematics by

computer (Addison-Wesley: New York, 1988), pp. 1{23.
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(* First we define the quadratic function with the Mathematica

Function[fx,y, ...g, f(x,y, ...)] command, which takes two

arguments, the first of which is a list of variables, and the second

of which is the function. The basic data type in Mathematica

is a list, and all lists are enclosed between braces,

fx1, x2, x3, ...g. Note that all arguments and functions in

Mathematica are enclosed in square brackets f[], which differs from

the standard mathematical notation of parentheses f(). This is, in

part, because square brackets are easier to reach on the keyboard.

Also, note that in defining a variable one must always put a space

around it, so xy is equal to a single variable named "xy", while

x y with a space between is equal to two variables, x and y. *)

(* To evaluate a Mathematica expression tap the enter key, not the

return key. Now to our first Mathematica command: *)

f = Function[flambda, xg, lambda x (1 - x)]

Function[flambda, xg, lambda x (1 � x)]

(* Mathematica should respond by saying Out[1], which tells us that

Mathematica successfully processed the first command and has put the

result in the variable Out[1], as well as the variable we created, f.

To evaluate the quadratic map, we now can feed f two arguments,

the first of which is lambda, and the second of which is x. *)

f[4, 1/2]

1

(* Mathematica should respond with the function Out[2], which

contains the quadratic map evaluated at lambda = 4 and x = 1/2. To

evaluate a list of values for x we could let the x variable be a

list, i.e., a series of numbers enclosed in braces fx1, x2, x3, ...g.
To try this command, type: *)

f[4, f0, 0.25, 0.5, 0.75, 1g]
f0, 0.75, 1., 0.75, 0g
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(* To plot the quadratic map we use the Mathematica plot command,

Plot[f, fx, xmin, xmaxg]. For instance a plot of the quadratic map

for lambda = 4 is given by: *)

Plot[f[4,x], fx, 0, 1g]

(* It is as easy as pie to take a composite function in Mathematica,

just type f[f[x]], so to plot f(f(x)) for the quadratic map we

simply type: *)

Plot[f[4,f[4,x]], fx, 0, 1g]

(* Now let's find the locations of the period one orbits, given by

the roots of f(x) = x. To find the roots, we use the Mathematica

command Solve[eqns, vars]. Notice that we are going to rename the

parameter "lambda" to "a" just to save some space when printing the

answer. The double equals "==" in Mathematica is equivalent to the

single equal "=" of mathematics. *)

Solve[f[a, x1] == x1, x1]

ffx1 |> 1 � a�1g, fx1 |> 0gg

(* As expected, Mathematica finds two roots. Let's make a function

out of the first root so that we can plot it later using Plot. To do

this we need the following sequence of somewhat cryptic commands: *)

r1 = %[[1]]

fx1 |> 1 � a�1g

(* The roots are saved in a list of two items. To pull out the

first item we used the % command, a Mathematica variable that always

holds the value of the last expression. In this case it holds the

list of two roots, and the double square bracket notation %[[1]]

tells Mathematica we want the first item in the list of two items.

Now we must pull out the last part of the expression, 1 - 1/a, with

the replacement command Replace[expr, rules]: *)
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x1 = Replace[x1, r1]

1 � a�1

(* To plot the location of the period one orbit we just use the Plot

command again. *)

Plot[x1, fa, 0.9, 4g]

(* To find the location of the period two orbit,

we solve for f(f(x)) = x. *)

Solve[f[a,f[a, x2]] == x2, x2]

ffx2 |> 0g, fx2 |> 1 � a�1g,
fx2 |> (1 + ((�1 � a�1 )2 � (4 (1 + a�1 ))=a)1=2 + a�1 )=2g,
fx2 |> (1 � ((�1 � a�1 )2 � (4 (1 + a�1 ))=a)1=2 + a�1 )=2gg

(* We find four roots, as expected. Before proceeding further, it's

a good idea to try and simplify the algebra for the last two new

roots by applying the Simplify command to the last expression. *)

rt = Simplify[%]

ffx2 |> 0g, fx2 |> 1 � a�1g,
fx2 |> (1 + (1 � 3=a2 � 2=a)1=2 + a�1 )=2g,
fx2 |> (1 � (1 � 3=a2 � 2=a)1=2 + a�1 )=2gg

(* And we can now pull out the positive and negative roots of the

period two orbit. *)

x2plus = Replace[x2, rt[[3]]]

x2minus = Replace[x2, rt[[4]]]

(1 � (1 � 3=a2 � 2=a)1=2 + a�1 )/2

(* As a last step, we can plot the location of the period one orbit

and both branches of the period two orbit by making a list of

functions to be plotted. *)
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Plot[fx1, x2plus, x2minusg, fa, 1, 4g]

(* This is how we originally plotted the orbit stability diagram

in the text. Mathematica can go on to find higher-order periodic

orbits by numerically finding the roots of the nth composite of f,

if no exact solution exists. *)
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Problems

Problems for section 2.1.

2.1. For the quadratic map (eq. (2.1)), show that the interval [1� �=4; �=4] is a
trapping region for all x in the unit interval and all � 2 (2; 4].

2.2. Use the transformation

x = (�=4� 1=2)y + 1=2; � = �(�=4 � 1=2)

to show that the quadratic map (eq. (2.1)) can be written as

yn+1 = 1� �y2n; y 2 [�1;+1]; � 2 (0; 2]; (2.41)

or (using a di�erent x-transformation) as

zn+1 = � � z2n; z 2 [��;+�]; � 2 (0; 2]: (2.42)

Specify the ranges to which x and � are restricted under these transforma-
tions.

2.3. Read the Tellus article by Lorenz mentioned in reference [1].

Section 2.2.

2.4. Write a program to calculate the iterates of the quadratic map.

Section 2.3.

2.5. For f(x) = 4x(1�x) and x0 = 0:25, calculate f6(x0) by the graphical method
described in section 2.3.
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2.6. Show by graphical analysis that if x0 62 [0; 1] and � > 1 in the quadratic map,
then as n ! 1, fn(x0) ! �1. Further, show that if 0 < � < 1, then the
�xed point at the origin is an attractor.

Section 2.4.

2.7. Find all the attractors and basins of attraction for the map f(x) = mx2 where
m is a constant.

2.8. The tent map (see sections 2.1{2.2 of Rasband, reference [6]) is de�ned by

�� = �(1� 2jx� 1

2
j) = 2�

�
x if 0 � x � 1=2;
1� x if 1=2 � x � 1:

(a) Sketch the graph of the tent map for � = 3=4. Why is it called the tent
map?

(b) Show that the �xed points for the tent map are

x�0 = 0 and, for � > 1=2, x�1 = 2�=(1 + 2�).

(c) Show that x�1 is always repelling and that x�0 is attracting when � 2
(0; 1=2).

(d) For a one-dimensional map the Lyapunov exponent is de�ned by

�(x0) = lim
n!1

1

n
ln

����� ddxfn(x)

����
x=x0

����� : (2.43)

Show that for � = 1, the Lyapunov exponent for the tent map is � = ln 2.
Hint: For the tent map use the chain rule of di�erentiation to show that

�(x0) = lim
n!1

1

n

n�1X
i=0

ln jf 0(xi)j : (2.44)

2.9. Determine the local stability of orbits with 0 < f 0(x�) < 1 and 1 < f 0(x�) <
1 using graphical analysis as in Figure 2.9.

Section 2.5.

2.10. Determine the parameter value(s) for which the quadratic map intersects the
line y = x just once.

2.11. Consider a period two orbit of a one-dimensional map,

f2(x�s) = f(f(x�s)) = x�s:
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(a) Use the chain rule for di�erentiation to show that (f2)0(x�01) = (f2)0(x�10).

(b) Show that the period two orbit is stable if jf 0(x�01) f 0(x�10)j < 1, and
unstable if jf 0(x�01) f 0(x�10)j > 1.

2.12. For � = 4, use Mathematica to �nd the locations of both period three orbits
in the quadratic map.

2.13. Consider a p-cycle of a one-dimensional map. If this p-cycle is periodic then
it is a �xed point of fp. Let x0; x1; : : : ; xp�1 represent one orbit of period p.
Show that this periodic orbit is stable if

p�1Y
j=0

jf 0(xj)j < 1:

Hint: Show by the chain rule for di�erentiation that for any orbit (not nec-
essarily periodic),

dfp

dx

����
x=x0

= f 0(x0)f
0(x1) � � �f 0(xp�1): (2.45)

Now assume the orbit is periodic. Then for any two points of a period p orbit,
xi and xj , note that (fp)0(xi) = (fp)0(xj).

2.14. Consider a seed near a period two orbit, x0 = x� + �, with slope near to
f 0(x�) = �1. Show by graphical analysis that fn(x0) \ips" back and forth
between the two points on the period two orbit. Show by graphical construc-
tion that this period two orbit is stable if j(f2)0(x0)j < 1, and unstable if
j(f2)0(x0)j > 1.

2.15. For � � 4, show that the quadratic map fn� (x) intersects the y = x line 2n

times, but only some of these intersection points belong to new periodic orbits
of period n. For n = 1 to 10, build a table showing the number of di�erent
orbits of f� of period n.

2.16. Prove (see Prob. 2.15) that for prime n, (2n � 2)=n is an integer (this result
is a special case of the Simple Theorem of Fermat).

2.17. (a) Derive the equation of the graph shown in Figure 2.12.

(b) Verify that the two intersection points shown in the �gure occur at 3 and
1 +

p
6.

2.18. Equation (2.21) follows directly from equation (2.12) and the chain rule dis-
cussion in Problem 2.13. Derive it using only equations (2.13), (2.19), and
(2.20).



122 Quadratic Map

Section 2.6.

2.19. Write a program to generate a plot of the bifurcation diagram for the quadratic
map.

Section 2.7.

2.20. Show that the period two orbit in the quadratic map loses stability at � =
1 +

p
6; i.e., (f2)0(x�) = �1 at this value of �.

2.21. Show that the \equispaced" orbits of the bouncing ball system (see Prob.
1.2) are born in a saddle-node bifurcation. Note that equation (1.41) gives
two impact phases for each n. For n = 1 and for n = 2 in equation (1.41),
which orbit is a saddle near birth, and which orbit is a node? What is the
impact phase of the saddle? What is the impact phase of the node?

2.22. Use Mathematica (or another computer program) to show that a pair of period
three orbits are born in the quadratic map by a tangent bifurcation at � =
1 +

p
8.

2.23. Show that the absolute value of the slope of fn evaluated at all points of a
period n orbit have the same value at a bifurcation point.

2.24. In Figure 2.17, the two sets of triangles (\open"|white interior and \closed"|
black interior) represent two di�erent period three orbits. Show that the open
triangles represent an unstable orbit.

Section 2.8.

2.25. Using Table 2.1 and equations (2.26 and 2.27), estimate �, c, and �1.

2.26. Use the bifurcation diagram of the quadratic map (Fig. 2.22) and a ruler
to measure the �rst few period doubling bifurcation values, �n. It may be
helpful to use a photocopying machine to expand the �gure before doing the
measurements. Based on these measurements, estimate \Feigenbaum's delta"
with equation (2.27). Do the same thing for the bifurcation diagram for the
bouncing ball system found in Figure 1.16. How do these two values compare?

Section 2.9.

2.27. Find a one-dimensional circle map g : S1 ! S1 for which Sarkovskii's ordering
does not hold. Hint: Find a map that has no period one solutions by using a
discontinuous map.

2.28. Consider the periodic orbits of periods 1; 2; 3; 4; 5;6;7;8; 9; and 10. Order
these points according to Sarkovskii's ordering, equation (2.29). Show that
Sarkovskii's ordering uniquely orders all the positive integers.
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Section 2.11.

2.29. For � > 4, determine the interval A0, as shown in Figure 2.23, as a function of
�. Verify that points in this interval leave the unit interval and never return.

2.30. (a) Using the metric of equation (2.34), calculate the distance between the
two period two points, 01 and 10.

(b) Create a table showing the distances between all six period three points:

001; 010; 100; 011; 101, and 110.

2.31. Establish an isomorphism between the unit interval and the sequence space
�2 of section 2.11.2. Hint: See Devaney [10], section 1.6.

2.32. (a) De�ne f : R ! R by f(x) = mx + b and de�ne g : R ! R by g(x) =
mx + nb, where m, b, and n 2 R. Show that f and g are topologically
conjugate.

(b) De�ne f : S1 ! S1 by f(x) = x + �=2. De�ne g : [0; 1] ! [0; 1] by
g(x) = 1� x. Show that f and g are topologically semiconjugate.

(c) Find a set of functions f , g, and h that satis�es the de�nition of topological
conjugacy.

Section 2.12.

2.33. Construct the binary tree up to the fourth level where the nth level is de�ned
by the rule

nth level :

2
nz }| {

0 1 0 1 0 1 0 : : : 1 0 1 0 1 0 1 0 1 :

(a) Construct the sixteen symbolic coordinates s0s1s2s3 at the fourth level
of this binary tree, and show that the ordering from left to right at the nth
level is given by

N (s0; s1; : : : ; sn�1) = s0 � 2n�1 + s1 � 2n�2 + � � �+ sn�1 � 20: (2.46)

Why is it called the \binary tree"?

(b) Show that the fractional ordering � is given by

�(s0; s1; : : : ; sn�1) =
s0

2
+
s1

4
+ � � �+ sn�1

2n
: (2.47)

(c) Give an example of a one-dimensional map (not necessarily continuous)
on the unit interval giving rise to the binary tree.
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2.34. Construct the alternating binary tree up to the fourth level and calculate the
symbolic coordinate and position of each of the sixteen points (24). Present
this information in a table.

2.35. Show that the order on the x-axis of two points x0 and y0 in the quadratic
map with � = 4 is determined by their itineraries fakg and fbkg as follows:
suppose a1 = b1; a2 = b2; : : : ; ak = bk, and that ak+1 = 0 and bk+1 = 1 (i.e.,
the itineraries of each initial condition are identical up to the kth iteration,
and di�er for the �rst time at the k+1st iteration). Then

x0 < y0 ()
kX
i=1

ai mod 2 = 0: (2.48)

Hint: See Appendix A of reference [13] and theorem 18.10 on page 145 of
Devaney, reference [10].



Chapter 3

String

3.1 Introduction

Like a jump rope, a string tends to swing in an ellipse, a fact well known
to children. When holding both ends of a rope or string, it is di�cult to
shake it so that motion is con�ned to a single transverse plane. Instead
of remaining con�ned to planar oscillations, strings appear to prefer
elliptical or whirling motions like those found when playing jump rope.

Borrowing terminology from optics, we would say that a string prefers
circular polarization to planar polarization. In addition to whirling,
other phenomena are easily observed in forced strings including bi-
furcations between planar and nonplanar periodic motions, transitions
to chaotic motions, sudden jumps between di�erent periodic motions,

hysteresis, and periodic and aperiodic cycling between large and small
vibrations.

In this chapter we will begin to explore the dynamics of an elastic

string by examining a single-mode model for string vibrations. In the
process, several new types of nonlinear phenomena will be discovered,

including a new type of attractor, the torus, arising from quasiperiodic
motions, and a new route to chaos, via torus doubling. We will also

show how power spectra and Poincar�e sections are used in experiments
to identify di�erent types of nonlinear attractors. In this way we will

continue building the vocabulary used in studying nonlinear phenomena
[1].

125
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In addition to its intrinsic interest, understanding the dynamics of

a string can also be important for musicians, instrument makers, and

acoustical engineers. For instance, nonlinearity leads to the modulation

and complex tonal structure of sounds from a cello or guitar. Whirling

motions account for the rattling heard when a string is strongly plucked

[2]. Linear theory provides the basic outline for the science of the

production of musical sounds; its real richness, though, comes from

nonlinear elements.

When a string vibrates, the length of the string must uctuate.
These uctuations can be along the direction of the string, longitu-
dinal vibrations, or up and down, vibrations transverse to the string.
The longitudinal oscillations occur at about twice the frequency of the
transverse vibrations. The modulation of a string's length is the essen-

tial source of a string's nonlinearity and its rich dynamical behavior.
The coupling between the transverse and longitudinal motions is an
example of a parametric oscillation. An oscillation is said to be para-
metric when some parameter of a system is modulated, in this case the
string's length. Linear theory predicts that a string's free transverse os-

cillation frequency is independent of the string's vibration amplitude.
Experimental measurements, on the other hand, show that the reso-
nance frequency depends on the amplitude. Thus the linear theory has
a restricted range of applicability.

Think of a guitar string. A string under a greater tension has a

higher pitch (fundamental frequency). Whenever a string vibrates it
gets stretched a little more, so its pitch increases slightly as its vibration

amplitude increases.

We begin this chapter by describing the experimental apparatus
we've used to study the string (section 3.2). In section 3.3 we model
our experiment mathematically. Sections 3.4 to 3.6 examine a special

case of string behavior, planar motion, which gives rise to the Du�ng

equation. Section 3.7 looks at the more general case, nonplanar mo-
tion. Finally, in section 3.8 we present experimental techniques used

by nonlinear dynamicists. These experimental methods are illustrated
in the string experiment.
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Figure 3.1: Schematic of the apparatus used to study the vibrations of
a wire (string).

3.2 Experimental Apparatus

An experimental apparatus to study the vibrations of a string can be
constructed by mounting a wire between two heavy brass anchors [3].
As shown in Figure (3.1), a screw is used to adjust the position of the

anchors, and hence the tension in the wire (string). An alternating sinu-
soidal current passed through the wire excites vibrations; this current is
usually supplied directly from a function generator. An electromagnet,
or large permanent magnet, is placed at the wire's midpoint. The inter-
action between this magnetic �eld and the magnetic �eld generated by

the wire's alternating current causes a periodic force to be applied at

the wire's midpoint.1 If a nonmagnetic wire is used, such as tungsten,
then both planar and nonplanar whirling motions are easy to observe.
On the other hand, if a magnetic wire is used, such as steel, then the

motion always remains restricted to a single plane [4]. The use of a

magnetic wire introduces an asymmetry into the system that causes

the damping rate to depend strongly on the direction of oscillation.

1From the Lorentz force law, a wire carrying a current I, in a magnetic �eld of
strength B, is acted on by a magnetic force Fmag =

R
(I �B)dl. If the current I in

the wire varies sinusoidally, then so does the force on the wire. See D. J. Gri�ths,
An introduction to electrodynamics (Prentice-Hall: Englewood Cli�s, NJ, 1981), pp.
174{181.
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A similar asymmetry is seen in the decay rates of violin, guitar,

and piano strings. In these musical instruments the string runs over a

bridge, which helps to hold the string in place. The bridge damps the

motion of the string; however, the damping force applied by the bridge

is di�erent in the horizontal and vertical directions [5]. The clamps

holding the string in our apparatus are designed to be symmetric, and

it is easy to check experimentally that the decay rates in di�erent direc-

tions (in the absence of a magnetic �eld) show no signi�cant variation.

Our experimental apparatus can be thought of as the inverse of that
found in an electric guitar. There, a magnetic coil is used to detect the
motion of a string. In our apparatus, an alternating magnetic �eld is
used to excite motions in a wire.

The horizontal and vertical string displacements are monitored with

a pair of inexpensive slotted optical sensors consisting of an LED (light-
emitting diode) and a phototransistor in a U-shaped plastic housing [6].
Two optical detectors, one for the horizontal motion and one for the
vertical motion, are mounted together in a holder that is fastened to
a micropositioner allowing exact placement of the detectors relative

to the string. The detectors are typically positioned near the string
mounts. This is because the detector's sensitivity is restricted to a
small-amplitude range, and the string displacement is minimal close to
the string mounts. As shown in Figure 3.2, the string is positioned
to obstruct the light from the LED and hence casts a shadow on the

surface of the phototransistor. For a small range of the string displace-
ments, the size of this shadow is linearly proportional to the position of

the string, and hence also to the output voltage from the photodetec-

tor. This voltage is then monitored on an oscilloscope, digitized with
a microcomputer, or further processed electronically to construct an
experimental Poincar�e section as described in section 3.8.1.

Care must be taken to isolate the rig mechanically and acoustically.

In our case, we mounted the apparatus on a oating optical table. We
also constructed a plastic cover to provide acoustical isolation. The

string apparatus is small and easily �ts on a desktop. Typical experi-
mental parameters are listed in Table 3.1.

Most of our theoretical analysis will be concerned with single-mode

oscillations of a string. If we pluck the string near its center, it tends
to oscillate in a sinusoidal manner with most of its energy at some pri-
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Figure 3.2: Module used to detect string displacements. (Adapted from
Hanson [6].)

Parameter Typical experimental value

Length 80 mm

Mass per unit length 0.59 g/m

Diameter 0.2 mm
Primary resonance 1 kHz

Range of hysteresis 300 Hz
Magnetic �eld strength 0.2 T

Current 0{2 A

Maximum displacement 3 mm
Damping 0.067

Table 3.1: Parameters for the string apparatus.
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mary frequency called the fundamental. A similar plucking e�ect can

be achieved by exciting wire vibrations with the current and the sta-

tionary magnetic �eld. To pluck the string, we switch o� the current

after we get a large-amplitude string vibration going. The fundamen-

tal frequency is recognizable by us as the characteristic pitch we hear

when the string is plucked. A large-amplitude (resonant) response is

expected when the forcing frequency applied to a string is near to this

fundamental. This is the primary resonance of the string, and it is

de�ned by the linear theory as

!0 =
�

l

 
T

�

!1=2

; (3.1)

where � = m=l is the mass per unit length and T is the tension in the
string.2

The primary assumption of the linear theory is that the equilibrium
length of the string, l, remains unchanged as the string vibrates, that

is, l(t) = l, where l(t) is the instantaneous length. In other words, the
linear theory assumes that there are no longitudinal oscillations. In
developing a simple nonlinear model for the vibrations of a string we
must begin to take into account these longitudinal oscillations and the
dependence of the string's length on the vibration amplitude.

3.3 Single-Mode Model

A model of a string oscillating in its fundamental mode is presented in

Figure 3.3 and consists of a single mass fastened to the central axis by a
pair of linearly elastic springs [7]. Although the springs provide a linear

restoring force, the resulting force toward the origin is nonlinear because
of the geometric con�guration. The ends of the massless springs are

�xed a distance l apart where the relaxed length of the spring is l0
and the spring constant is k. In the center a mass is attached that is
free to make oscillations in the x{y plane centered at the origin. The
motion in the two transverse directions, x and y, is coupled directly,

2For a review of the linear theory for the vibrations of a stretched string see A.
P. French, Vibrations and waves (W. W. Norton: New York, 1971), pp. 161-170.
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Figure 3.3: Single-mode model for nonlinear string vibrations. String
vibrations are assumed to be in the fundamental mode and are mea-
sured in the transverse x{y plane by the polar coordinates (r; �). (a)

Equilibrium length; (b) relaxed length.

and also indirectly, via the longitudinal motion of the spring. Both of
these coupling mechanisms are nonlinear. The multimode extension of
this single-mode model would consist of n masses hooked together by

n+ 1 springs.
The restoring force on the mass shown in Figure 3.3 is

F = �2kr
 
1� l0p

l2 + 4r2

!
; (3.2)

where the position of the mass is given by polar coordinates (r; �) of
the transverse plane (see Prob. 3.8). Expanding the right-hand side of

equation (3.2) in a Taylor series (2r < l), we �nd that

F = �2kr(l � l0)(
r

l
)� 4kl0[(

r

l
)3 � 3(

r

l
)5 + � � �]:

The force can be written as

F = m�r;
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so

m�r � �2k(l� l0)

�
r

l

�"
1 +

2l0

(l � l0)

�
r

l

�2#
: (3.3)

Note the cubic restoring force. Also note that nonlinearity dominates

when l � l0. That is, the nonlinear e�ects are accentuated when the

string's tension is low.

De�ne

!2
0 =

2k

m

(l � l0)

l
(3.4)

and

K =
2l0

l2(l � l0)
: (3.5)

Then from equation (3.3) we get, because of symmetry in the angular
coordinate, the vector equation for r = (x(t); y(t)),

�r+ !2
0r(1 +Kr2) = 0; (3.6)

which is the equation of motion for a two-dimensional conservative
cubic oscillator.3 The behavior of equation (3.6) depends critically
upon the ratio (l0=l). If l0 < l, the coe�cient of the nonlinear term,K,

is positive, the equilibriumpoint at r = 0 is stable, and we have a model
for a string vibrating primarily in its fundamental mode. On the other
hand, if l0 > l, then K is negative, the origin is an unstable equilibrium
point, and two stable equilibrium points exist at approximately r = �l.
This latter case models the motions of a single-mode elastic beam [8].
For our purpose we will mostly be concerned with the case l0 < l, or

K > 0.

In general, we will want to consider damping and forcing, so equa-
tion (3.6) is modi�ed to read

�r+ �_r+ !2
0(1 +Kr2)r = f(t); (3.7)

where f(t) is a periodic forcing term and � is the damping coe�cient.

Usually, the forcing term is just a sinusoidal function applied in one
radial direction, so that it takes the form f(t) = (A cos(!t); 0). For

3The term r2 in equation (3.6) is a typical physicist's notation meaning the dot
product of the vector, r2 = (r � r)2 = x2 + y2 = r2.
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simplicity, we have assumed that the energy losses are linearly propor-

tional to the radial velocity of the string, _r. We also assumed that the

ends of the string are symmetrically �xed, so that � is a scalar. In gen-

eral, the damping rate depends on the radial direction, so the damping

term is a vector function. This is the case, for instance, when a string

is strung over a bridge that breaks the symmetry of the damping term.

Equation (3.7) was also derived by Gough [2] and Elliot [9], both

of whom related !0 and K to actual string parameters that arise in

experiments. For instance, Gough showed that the natural frequency
is given by

!0 =
c�

l
(3.8)

and the strength of the nonlinearity is

K =
1

�l
(
�

2
)2; (3.9)

where � is the longitudinal extension of a string of equilibrium length l,
!0 is the low-amplitude angular frequency of free vibration, and c is the
transverse wave velocity. Again, we see that the nonlinearity parameter,
K, increases as the longitudinal extension, �, approaches zero. That

is, the nonlinearity is enhanced when the longitudinal extension|and
hence the tension|is small. Nonlinear e�ects are also ampli�ed when
the overall string length is shortened, and they are easily observable
in common musical instruments. For a viola D-string with a vibration
amplitude of 1 mm, typical values of the string parameters showing

nonlinear e�ects are: l = 27:5 cm, !0 = 60 Hz, � = 0:079 mm, K =
0:128 mm�2 [2].

Equation (3.7) constitutes our single-modemodel for nonlinear string

vibrations and is the central result of this section. For some calcula-
tions it will be advantageous to write equation (3.7) in a dimensionless

form. To this end consider the transformation

� = !0t; s =
r

l0
; (3.10)

which gives

s00 + �s0 + [1 + �s2]s = g(� ); (3.11)
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where the prime denotes di�erentiation with respect to � and

� � �

!0
; � � Kl20; g �

f

l0!
2
0

; and  � !

!0
: (3.12)

Before we begin a systematic investigation of the single-mode model

it is useful to consider the unforced linear problem, f(t) = (0; 0). If the

nonlinearity parameter K is zero, then equation (3.7) is simply a two-

degree of freedom linear harmonic oscillator with damping that admits
solutions of the form

r = (X0 cos!0t; Y0 sin!0t)e
��t=2 ; (3.13)

where X0 and Y0 are the initial amplitudes in the x and y directions.

Equation (3.13) is a solution of (3.7) if we discard second-order terms
in �. In the conservative limit (� = 0), the orbits are ellipses centered
about the z-axis. As we show in section 3.7, one e�ect of the nonlin-
earity is to cause these elliptical orbits to precess. The trajectories of
these precessing orbits resemble Lissajous �gures, and these precessing

orbits will be one of our �rst examples of quasiperiodic motion on a
torus attractor.

3.4 Planar Vibrations: Du�ng Equation

An external magnetic �eld surrounding a magnetic wire restricts the
forced vibrations of a wire to a single plane. Alternatively, we could

fasten the ends of the wire in such a way as to constrain the motion
to planar oscillations. In either case, the nonlinear equation of motion
governing the single-mode planar vibrations of a string is the Du�ng

equation,

�x+ � _x+ !2
0x(1 +Kx2) = A cos(!t); (3.14)

where equation (3.14) is calculated from equation (3.7) by assuming
that the string's motion is con�ned to the x{z plane in Figure 3.3. The

forcing term in equation (3.7) is assumed to be a periodic excitation of

the form

f(t) = A cos(!t); (3.15)
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where the constant A is the forcing amplitude and ! is the forcing

frequency. The literature studying the Du�ng equation is extensive,

and it is well known that the solutions to equation (3.14) are already

complicated enough to exhibit multiple periodic solutions, quasiperi-

odic orbits, and chaos. A good guide to the nonchaotic properties of

the Du�ng equation is the book by Nayfeh and Mook [10]. Highly

recommended as a pioneering work in nonlinear dynamics is the book

by Hayashi, which deals almost exclusively with the Du�ng equation

[11].

3.4.1 Equilibrium States

The �rst step in analyzing any nonlinear system is the identi�cation of
its equilibrium states. The equilibrium states are the stationary points
of the system, that is, where the system comes to rest. For a system of

di�erential equations, the equilibrium states are calculated by setting
all the time derivatives equal to zero in the unforced system. Setting
�x = 0, _x = 0, and A = 0 in equation (3.14), we immediately �nd that
the location of the equilibrium solutions is given by

!2
0x(1 +Kx2) = 0; (3.16)

which, in general, has three solutions:

x0 = 0; and x+ = +

s
�1
K

; x� = �
s
�1
K

: (3.17)

Clearly, there is only one real solution if K > 0, x0, since the other two

solutions, x�, are imaginary in this case. If K < 0, then there are three
real solutions.

To understand the stability of the stationary points it is useful to

recall the physical model that goes with equation (3.14). If l < l0, then
K < 0 (see eqs. (3.4 and 3.5)) and the Du�ng equation (3.14) is a
simple model for a beam under a compressive load. As illustrated in

Figure 3.4, the solutions x� correspond to the two asymmetric stable

beam con�gurations. The position x0 corresponds to the symmetric
unstable beam con�guration|a small tap on the beam would imme-

diately send it to one of the x� con�gurations. If l > l0, then K > 0
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Figure 3.4: Equilibrium states of a beam under a compressive load.

Figure 3.5: Equilibrium state of a wire under tension.

and the Du�ng equation is a simple model of a string or wire under
tension, so there is only one symmetric stable con�guration, x0 (Fig.
3.5).

3.4.2 Unforced Phase Plane

Conservative Case

After identifying the equilibrium states, our next step is to understand
the trajectories in phase space in a few limiting cases. In the unforced,
conservative limit, a complete account of the orbit structure is given by
integrating the equations of motion by using the chain rule in the form

�x = _v =
d

dt
v(x) =

dv

dx

dx

dt

= v
dv

dx
: (3.18)

Applying this identity to equation (3.14) with � = 0 and A = 0 yields

v
dv

dx
= �!2

0x(1 +Kx2); (3.19)

which can be integrated to give

1

2
v2 = h� !2

0

 
x2

2
+K

x4

4

!
; (3.20)
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where h is the constant of integration.

The term on the left-hand side of equation (3.20) is proportional to

the kinetic energy, while the term on the right-hand side,

V (x) = !2
0

 
x2

2
+K

x4

4

!
; (3.21)

is proportional to the potential energy. Therefore, the constant h is

proportional to the total energy of the system, as illustrated in Figure
3.6(a).

The phase space is a plot of the position x and the velocity v of all
the orbits in the system. In this case, the phase space is a phase plane,
and in the unforced conservative limit we �nd

v = �
p
2[h� V (x)]1=2

= �
p
2

"
h� !2

0

 
x2

2
+K

x4

4

!#1=2
: (3.22)

The last equation allows us to explicitly construct the integral curves (a

plot of v(t) vs. x(t)) in the phase plane. Each integral curve is labeled
by a value of h, and the qualitative features of the phase plane depend
critically on the signs of !2

0 and K.
If l > l0, then both !2

0 and K are positive. A plot of equation
(3.22) for several values of h is given in Figure 3.6(c). If h = h0,

then the integral curve consists of a single point called a center. When
h > h0, the orbits are closed, bounded, simply connected curves about

the center. Each curve corresponds to a distinct periodic motion of the

system. Going back to the string model again, we see that the center
corresponds to the symmetric equilibrium state of the string, while the
integral curves about the center correspond to �nite-amplitude periodic

oscillations about this equilibrium point.

If l < l0, then K is negative. The phase plane has three stationary
points. This parameter regimemodels a compressed beam. The left and

right stationary points, x�, are centers, but the unstable point at x = 0,
labeled S in Figure 3.6(b), is a saddle point because it corresponds to

a local maximum of V (x).

Curves that pass through a saddle point are very important and
are called separatrices. In Figure 3.6(d) we see that there are two
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Figure 3.6: Potential and phase space for a single-mode string (a,c,e)

and beam (b,d,f).
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integral curves approaching the saddle point S and two integral curves

departing from S. These separatrices \separate" the phase plane into

two distinct regions. Each integral curve inside the separatrices goes

around one center, and hence corresponds to an asymmetric periodic

oscillation about either the left or the right center, but not both. The

integral curves outside the separatrices go around all three stationary

points and correspond to large-amplitude symmetric periodic orbits

(Figure 3.6(d)). Thus, the separatrices act like barriers in phase space

separating motions that are qualitatively di�erent.

Dissipative Case

If damping is included in the system, then the phase plane changes
to that shown in Figure 3.6(e). For the string, damping destroys all
the periodic orbits, and all the motions are damped oscillations that
converge to the point attractor at the origin. That is, if we pluck a

string, the sound fades away. The string vibrates with a smaller and
smaller amplitude until it comes to rest. Moreover, the basin of attrac-
tion for the point attractor is the entire phase plane. This particular
point attractor is an example of a sink.

The phase plane for the oscillations of a damped beam is a bit more

involved, as shown in Figure 3.6(f). The center points at x� become
point attractors, while the stationary point at x0 is a saddle. There are
two separate basins of attraction, one for each point attractor (sink).
The shaded region shows all the integral curves that head toward the
right sink. Again we see the important role played by separatrices, since

they separate the basins of attraction of the left and right attracting
points. In the context of a dissipative system, the separatrix naturally

divides into two parts: the inset consisting of all integral curves that
approach the saddle point S, and the outset consisting of all points

departing from S. Formally, the outset of S can be de�ned as all points

that approach S as time runs backwards. That is, we simply reverse all

the arrows in Figure 3.6(f).

The qualitative analysis of a dynamical system can usually be di-
vided into two tasks: �rst, identify all the attractors and repellers of

the system, and second, analyze their respective insets and outsets.
Attractors and repellers are limit sets. Insets, outsets, and limit sets
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are all examples of invariant sets (see section 4.3.1). Thus, much of

dynamical systems theory is concerned not simply with the analysis of

attractors, but rather with the analysis of invariant sets of all kinds, at-

tractors, repellers, insets, and outsets. For the unforced, damped beam

the task is relatively easy. There are two attracting points and one

saddle point. The inset and outset of the saddle point spiral around

the two attracting points and completely determine the structure of the

basins of attraction (see Figure 3.6(f)).

3.4.3 Extended Phase Space

To continue with the analysis of planar string vibrations, we now turn
our attention to the forced Du�ng equation in dimensionless variables
(from eqs. (3.11 and 3.14)),

x00 + �x0 + (1 + �x2)x = F cos(� ); (3.23)

where F is the forcing amplitude and  is the normalized forcing fre-
quency.

It is often useful to rewrite an nth-order di�erential equation as a
system of �rst-order equations, and to recall the geometric interpreta-
tion of a di�erential equation as a vector �eld. To this end, consider
the change of variable v = x0, so that

x0 = v;

v0 = aut(x; v) + g(� );

)
(x; v) 2 R2 (3.24)

where aut(x; v) = �[�v + (1 + �x2)x] is the autonomous, or time-
independent, term of v0 and g(� ) = F cos(� ) is the time-dependent

term of v0. The phase space for the forced Du�ng equation is topolog-

ically a plane, since each dependent variable is just a copy of R, and
the phase space is formally constructed from the Cartesian product of

these two sets, R�R = R2.
A vector �eld is obtained when to each point on the phase plane

we assign a vector whose coordinate values are equal to the di�erential

system evaluated at that point. The vector �eld for the unforced, un-
damped Du�ng equation is shown in Figure 3.7(a). This vector �eld

is static (time-independent). In contrast, the forced Du�ng equation
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Figure 3.7: Extended phase space for the Du�ng oscillator.

has a time-dependent vector �eld since the value of the vector �eld at
(x; v) at � is

(x0; v0) = (v; aut(x; v)+ F cos(� )):

In Figure 3.7(b) we show what the integral curves look like when plotted

in the extended phase space, which is obtained by introducing a third
variable,

z = �: (3.25)

With this variable the di�erential system can be rewritten as

x0 = v;

v0 = aut(x; v) + g(z);

z0 = :

9>=
>; (x; v; z) 2 R3 (3.26)
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By increasing the number of dependent variables by one, we can for-

mally change the forced (time-dependent) system into an autonomous

(time-independent) system.

Moreover, since the vector �eld is a periodic function in z, it is

sensible to introduce the further transformation

� = � mod 2�; (3.27)

thereby making the third variable topologically a circle, S1. With this

transformation the forced Du�ng equation becomes

x0 = v;

v0 = �[�v + (1 + �x2)x] + F cos(�);

�0 = :

9>=
>; (x; v; �) 2 R2 � S1 (3.28)

One last reduction is possible in the topology of the phase space of
the Du�ng equation. It is usually possible to �nd a trapping region
that topologically is a disk, a circular subset D � R2. In this last

instance, the topology of the phase space for the Du�ng equation is
simply D � S1, or a solid torus (see Figure 3.7(c)).

3.4.4 Global Cross Section

The global solution to a system of di�erential equations (the collection
of all integral curves) is also known as a ow. A ow is a one-parameter

family of di�eomorphisms of the phase space to itself (see section 4.2).
To visualize the ow in the Du�ng equation, imagine the extended

phase space as the solid torus illustrated in Figure 3.8. Each initial

condition in the disk D, at � = 0, must return to D when � = 2�,
because D is a trapping region and the variable � is 2�-periodic. That
is, the region D ows back to itself. An initial point in D labeled

(x0; v0; �0 = 0) is carried by its integral curve back to some new point

labeled (x1; v1; �1 = 2�) also in D. The Du�ng equation satis�es the
fundamental uniqueness and existence theorems in the theory of or-

dinary di�erential equations [12]. Hence, each initial point in D gets
carried to a unique point back in D and no two integral curves can ever

intersect in D � S1.

As originally observed by Poincar�e, this unique dependence with
respect to initial conditions, along with the existence of some region in
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Figure 3.8: Phase space for the Du�ng oscillator as a solid torus.

phase space that is recurrent, allows one to naturally associate a map

to any ow. The map he described is now called the Poincar�e map. For
the Du�ng equation this map is constructed from the ow as follows.
De�ne a global cross section ��0 of the vector �eld (eq. (3.28)) by

��0 = f(x; v; �) 2 D � S1 j � = �0 2 [0; 2�)g: (3.29)

Next, de�ne the Poincar�e map of ��0 as

P�0 : �
�0 �! ��0 ; x0 7! x1; v0 7! v1; (3.30)

where (x1; v1) is the next intersection with ��0 of the integral curve
emanating from (x0; v0). For the Du�ng equation the Poincar�e map is

also known as a stroboscopic map since it samples, or strobes, the ow

at a �xed time interval.

The dynamics of the Poincar�e map are often easier to study than

the dynamics in the original ow. By constructing the Poincar�e map
we reduce the dimension of the problem from three to two. This di-

mension reduction is important both for conceptual clarity as well as
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for graphical representations (both numerical and experimental) of the

dynamics. For instance, a periodic orbit is a closed curve in the ow.

The corresponding periodic orbit in the map is a collection of points

in the map, so the �xed point theory for maps is easier to handle than

the corresponding periodic orbit theory for ows.

The construction of a map from a ow via a cross section is gener-

ally unique. However, constructing a ow from a map is generally not

unique. Such a construction is called a suspension of the map. Studies

of maps and ows are intimately related|but they are not identical.
For instance, a �xed point of a ow (an equilibrium point of the di�er-
ential system) has no natural analog in the map setting.

A complete account of Poincar�e maps along with a thorough case
study of the Poincar�e map for the harmonic oscillator is presented by

Wiggins [13].

3.5 Resonance and Hysteresis

We now turn our attention to resonance in the Du�ng oscillator. The
notion of a resonance is a physical concept with no exact mathemat-
ical de�nition. Physically, a resonance is a large-amplitude response,
or output, of a system that is subject to a �xed-amplitude input. The
concept of a resonance is best described experimentally, and resonances
are easy to see in the string apparatus described in section 3.2 by con-

structing a sort of experimental bifurcation diagram for forced string

vibrations.
Imagine that the string apparatus is running with a small excitation

amplitude (the amount of current in the wire is small) and a low forcing

frequency (the frequency of the alternating current in the wire is much

less than the natural frequency of free wire vibrations). To construct
a resonance diagram we need to measure the response of the system,

by measuring the maximum amplitude of the string vibrations as a
function of the forcing frequency. To do this we slowly increase (scan

through) the forcing frequency while recording the response of the string

with the optical detectors. The results of this experiment depend on
the forcing amplitude as well as where the frequency scan begins and

ends. Decreasing frequency scans can produce di�erent results from
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Figure 3.9: Response curve for a harmonic oscillator.

increasing frequency scans.

3.5.1 Linear Resonance

For a very small forcing amplitude the string responds with a linear

resonance, such as that illustrated in Figure 3.9. According to linear
theory, the response of the string is maximum when  = !=!0 = 1.
In other words, it is maximum when the forcing frequency ! exactly

equals the natural frequency !0. A primary (or main) resonance exists
when the natural frequency and the excitation frequency are close. The
resonance diagram (Fig. 3.9) is called a linear response because it can be
obtained by solving the periodically forced, linearly damped harmonic
oscillator,

x00 + �x0 + x = F cos(� ); (3.31)

which has a general solution of the form

x(� ) = x0e
���=2 cos[(1� �2)� + �0] +

F [(1� 2)2 + �22]�1=2 cos(� + �): (3.32)

The constants x0 and �0 are initial conditions. Equation (3.32) is a

solution to equation (3.31) if we discard higher-order terms in �. The
maximum amplitude of x, as a function of the driving frequency , is

found from the asymptotic solution of equation (3.32),

lim
�!1

x(� ) � F cos(� + �)

[(1� 2)2 + �22]1=2
; (3.33)
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Figure 3.10: Schematic of the response curve for a cubic oscillator.

which produces the linear response diagram shown in Figure 3.9, since

a() = xmax() = max

�
lim
�!1

x(� )

�
=

F

[(1� 2)2 + �22]1=2
: (3.34)

After the transient solution dies out, the steady-state response has the

same frequency as the forcing term, but it is phase shifted by an amount
� that depends on �, , and F . As with all damped linear systems, the
steady-state response is independent of the initial conditions so that we
can speak of the solution.

In the linear solution, motions of signi�cant amplitude occur when

F is large or when  � 1. Under these circumstances the nonlinear
term in equation (3.28) cannot be neglected. Thus, even for planar
motion, a nonlinear model of string vibrations may be required when a

resonance occurs or where the excitation amplitude is large.

3.5.2 Nonlinear Resonance

A nonlinear resonance curve is produced when the frequency is scanned

with a moderate forcing amplitude, F . Figure 3.10 shows the results
of both a backward and a forward scan, which can be constructed

from a numerical solution of the Du�ng oscillator, equation (3.28) (see

Appendix C on Ode [14] for a description of the numerical methods).
The two scans are identical except in the region marked by l <  < u.

Here, the forward scan produces the upper branch of the response curve.
This upper branch makes a sudden jump to the lower branch at the

frequency u. Similarly, the backward (decreasing) scan makes a sudden



3.5. RESONANCE AND HYSTERESIS 147

Figure 3.11: Nonlinear resonance curve showing secondary resonances
in addition to the main resonance.

jump to the upper branch at l. In the region l <  < u, at least

two stable periodic orbits coexist. The sudden jump between these two
orbits is indicated by the upward and downward arrows at l and u.
This phenomenon is known as hysteresis.

The nonlinear response curve also reveals several other intriguing
features. For instance, the maximum response amplitude no longer oc-

curs at  = 1, but is shifted forward to the value u. This is expected
in the string because, as the string's vibration amplitude increases, its
length increases, and this increase in length (and tension) is accompa-
nied by a shift in the natural frequency of free oscillations.

Several secondary resonances are evident in Figure 3.11. These sec-

ondary resonances are the bumps in the amplitude resonance curve that
occur away from the main resonance.

The main resonance and the secondary resonances are associated
with periodic orbits in the system. The main resonance occurs near

 = 1 when the forcing amplitude is small and corresponds to the

period one orbits in the system, those orbits whose period equals the

forcing period. The secondary resonances are located near some ra-

tional fraction of the main resonance and are associated with periodic
motions whose period is a rational fraction of . These periodic orbits

(denoted by �x) can often be approximated to �rst order by a sinusoidal
function of the form

�xm;n(� ) � A cos(
m

n
� + �); (3.35)

where A is the amplitude of the periodic orbit, (m=n) is its frequency,
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Figure 3.12: Amplitude-modulated, quasiperiodic motions on a torus.

and � is the phase shift. These periodic motions are classi�ed by the
integers m and n as follows (m 6= 1; n 6= 1):

 = !=!0 = m, an ultraharmonic,

 = !=!0 = 1=n, a subharmonic,
 = !=!0 = m=n, an ultrasubharmonic.

Equation (3.35) is used as the starting point for themethod of harmonic

balance, a pragmatic technique that takes a trigonometric series as the
basis for an approximate solution to the periodic orbits of a nonlinear
system (see Prob. 3.12) [11]. It is also possible to have solutions to dif-

ferential equations involving frequencies that are not rationally related.
Such orbits resemble amplitude-modulated motions and are generally
known as quasiperiodic motions (see Figure 3.12). A more complete ac-

count of nonlinear resonance theory is found in Nayfeh and Mook [10].
Parlitz and Lauterborn also provide several details about the nonlinear
resonance structure of the Du�ng oscillator [15].

3.5.3 Response Curve

In this section we focus on understanding the hysteresis found at the

main resonance of the Du�ng oscillator because hysteresis at the main

resonance and at some secondary resonances is easy to observe experi-
mentally. The results in this section can also be derived by the method

of harmonic balance by taking m = n = 1 in equation (3.35); how-
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ever, we will use a more general method that is computationally a little

simpler.

We generally expect that in a nonlinear system the maximum re-

sponse frequency will be detuned from its natural frequency. An esti-

mate for this detuning in the undamped, free cubic oscillator,

x00 + (1 + �x2)x = 0; (3.36)

is obtained by studying this equation by the method of slowly varying

amplitude [16]. Write4

x(� ) =
1

2
[A(� )ei� +A�(� )e�i� ] (3.37)

and substitute equation (3.37) into equation (3.36) while assumingA(� )
varies slowly in the sense that jA00j << 2A. Then equation (3.36) is
approximated by

(2i)A0 + (1� 2 +
3�

4
jAj2)A = 0; (3.38)

where we ignore all terms not at the driving frequency. Equation (3.38)
has a steady-state solution in A, denoted by a 2 R. In this case,

2 = 1 +
3�

4
jaj2; (3.39)

since A0 = 0, and [17]
�x(� ) = a cos(� ) : (3.40)

To �rst order, the strength of the nonlinearity increases the normalized

frequency by an amount depending on the amplitude of oscillation and

the nonlinearity parameter. This approximate value for a Du�ng os-
cillator is consistent with the results found in Appendix B where exact
solutions for a cubic oscillator are presented.

4If we write A(� ) = a(� ) + ib(� ), and A�(� ) = a(� ) � ib(� ), then it is easy to
show from Euler's identity that x(� ) = a(� ) cos(� ) � b(� ) sin(� ). Thus, the use
of complex numbers is not essential in this calculation; it is merely a trick that
simpli�es some of the manipulations with the sinusoidal functions.
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Hysteresis is discovered when we apply the slowly varying amplitude

approximation to the forced, damped Du�ng equation,

x00 + �x0 + [1 + �x2]x = F cos(� ): (3.41)

Substituting equation (3.37) into equation (3.41), and again keeping

only the terms at the �rst harmonic, we arrive at the complex amplitude

equation

(�+ 2i)A0 +

 
1� 2 + i� +

3�

4
jAj2

!
A = F; (3.42)

which in steady-state (A0 = 0) becomes 
1� 2 + i� +

3�

4
j �Aj2

!
�A = F: (3.43)

To �nd the set of real equations for the steady state, write the complex
amplitude in the form

�A = ae�i� ; (3.44)

where both a and � are real constants. Then equation (3.43) separates
into two real equations,

�a = F sin � (3.45)

and

(1 � 2 +
3�

4
a2)a = F cos �; (3.46)

which collectively determine both the phase and the amplitude of the

response. Squaring both equations (3.45) and (3.46) and then adding

the results, we obtain a cubic equation in a2,

[(�)2 + (1� 2 +
3�

4
a2)2]a2 = F 2; (3.47)

illustrated in Figure 3.10, which is known as the response curve. In this

approximation the steady-state response is given by

�x = a cos(� � �); (3.48)

where a is the maximum amplitude of the harmonic response deter-

mined from equation (3.47) and � is the phase shift determined from

equations (3.45 and 3.46).
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3.5.4 Hysteresis

The response curve shown in Figure 3.10 is a plot of a versus  cal-

culated from equation (3.47), the nonlinear phase{amplitude relation.

This curve shows that the string can exhibit hysteresis near a primary

resonance; a slow scan of the variable  (the so-called quasistatic ap-

proximation) results in a sudden jump between the two stable solutions

indicated by the solid lines in Figure 3.10. The jump from the upper

branch to the lower branch takes place at u. The jump from the lower
branch to the upper branch takes place at l.

In the parameter regime l <  < u, the response curve reveals
the coexistence of three periodic orbits at the same frequency, but with
di�erent amplitudes. All these orbits are possible solutions to equation

(3.47) for the values of a indicated in the diagram. All three orbits are
harmonic responses (or period one orbits) since their frequency equals
the forcing frequency. The middle solution, indicated by the dashed
line in Figure 3.10, is an unstable periodic orbit.

3.5.5 Basins of Attraction

In a linear system with damping, the attracting periodic orbit is inde-
pendent of the initial conditions. In contrast, the existence of two or
more stable periodic orbits for the same parameter values in a nonlin-

ear system indicates that the initial conditions play a critical role in
determining the system's overall response. These attracting periodic
orbits are called limit cycles, and their global stability is determined by

constructing their basins of attraction. A very nice three-dimensional
picture of the basins of attraction for the two stable periodic orbits
found in the Du�ng oscillator is presented by Abraham and Shaw

[18]. However, this picture of the basins of attraction within the three-

dimensional ow is very intricate. An equivalent picture of the basins
of attraction constructed with a two-dimensional cross section and a

Poincar�e map is easier to understand.
A schematic for the basins of attraction in a Du�ng oscillator with

three coexisting orbits is portrayed in Figure 3.13. The cross section

shows two stable orbits, P1 and P3, and one unstable orbit, P2. In
the region surrounding the inset of P2, a small change in the initial



152 CHAPTER 3. STRING

Figure 3.13: Schematic of the basins of attraction in the Du�ng oscil-

lator. (Adapted from Hayashi [11].)

conditions can produce a large change in the response of the system
since initial conditions in this region can go to either attracting periodic
orbit. The unstable periodic orbit indicated by P2 is a saddle �xed
point in the Poincar�e map, and the stable periodic orbits are sinks in

the Poincar�e map.
The inset of the saddle is the collection of all points that approach

P2. This inset divides the Poincar�e map into two distinct regions: the
initial conditions that approach P1 and the initial conditions that ap-

proach P3. That is, the inset to the saddle determines the boundary

separating the two basins of attraction. Again, we see the importance
of keeping track of the unstable solutions, as well as the stable solu-

tions, when analyzing a nonlinear system. Figure 3.14(a) should be
compared to|but not confused with|Figure 3.6(e), the phase plane

for the unforced, damped Du�ng oscillator. In the Poincar�e map each

�xed point represents an entire periodic orbit, not just an equilibrium
point of the ow as in Figure 3.6. More importantly, in the Poincar�e
map, the inset to the saddle point at P2 is not a trajectory of the ow.

Rather, it is the collection of all initial conditions that converge to
P2. The approach of a single orbit toward P2 is a sequence of discrete
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Figure 3.14: Schematic of a homoclinic tangle in the Du�ng oscillator.

points, indicated by the crosses (�) in Figure 3.13. In general, the inset
and the outset of the saddle represent an in�nite continuum of distinct
orbits, all of which share a common property: namely, they arrive at
or depart from a periodic point of the map.

3.6 Homoclinic Tangles

Figure 3.13 shows the Poincar�e map for the ow arising in the Du�ng
oscillator in a parameter region where hysteresis exists. We see that
the inset to P2 consists of two di�erent curves. Similarly, the outset
of P2 also consists of two di�erent curves. One branch of the outset

approaches P1, while the other branch approaches P3. The inset and

the outset of the saddle are not trajectories in the ow, so they can
intersect without violating a fundamental theorem of ordinary di�eren-

tial equations, the unique dependence of an orbit with respect to initial
conditions.

It is possible to �nd parameter values so that the inset and the

outset of the saddle point at P2 do indeed cross. A self-intersection
of the inset of a saddle with its outset is illustrated in Figure 3.14(b)
and, as originally observed by Poincar�e, it always gives rise to wild

oscillations about the saddle (see section 4.6.2).

Such a self-intersection of the inset of a saddle with its outset is
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called a homoclinic intersection, and it is a fundamental mechanism by

which chaos is created in a nonlinear dynamical system. The reason is

roughly the following. Consider a point at a crossing of the inset and

the outset indicated by the point I in Figure 3.14(b). By de�nition,

this point is part of an orbit that approaches the saddle by both its

inset and its outset; that is, it is doubly asymptotic. Consider the

next intersection point of I with the cross section, P 1(I). This point

must lie on the inset at a point closer to the saddle. Next, the second

iterate of I under the Poincar�e map, P 2(I), must be even closer to the
saddle. Similarly, the preimage of I approaches the saddle along the
outset of the saddle. The outset and inset get bunched up near the
saddle, creating an image known as a homoclinic tangle. Homoclinic
tangles beat at the heart of chaos because, in the region of a homoclinic

tangle, initial conditions are subject to a violent stretching and folding
process, the two essential ingredients for chaos. A marvelous pictorial
description of homoclinic tangles along with an explanation as to their
importance in dynamical systems is presented by Abraham and Shaw
[18].

Homoclinic tangles are often associated with the existence of strange
sets in a system. Indeed, it is thought that in many instances a strange
attractor is nothing but the closure5 of the outset of some saddle when
this outset is bunched up in a homoclinic tangle. Figure 3.15(a) shows
the cross section for a strange attractor of the Du�ng oscillator. Figure

3.15(b) shows the cross section of the outset of the period one saddle in
this strange set for the exact same parameter values. The resemblance

between these two structures is striking. Indeed, developing methods to

dissect homoclinic tangles will be central to the study of chaos in low-
dimensional nonlinear systems. In fact, one could call it the problem

of low-dimensional chaos.

3.7 Nonplanar Motions

Additional dynamical possibilities arise when we consider nonplanar

string vibrations. These vibrations are also easy to excite with the

string apparatus described in section 3.2. When a nonmagnetic wire

5The closure of a set X is the smallest closed set that is a superset of X.
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Figure 3.15: Comparison of a strange attractor and the outset of a

period one saddle in the Du�ng oscillator.
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Figure 3.16: Planar periodic, elliptical (nonplanar) periodic, and pre-
cessing (quasiperiodic) motions of a string.

is used, out-of-plane motions are observed which are sometimes called
ballooning or whirling motions. These nonplanar vibrations arise even
when the excitation is only planar.

Indeed, ballooning motions are hard to avoid. Imagine scanning the
forcing frequency of the string apparatus through a resonance. The re-

sponse of the string increases as the resonance frequency is approached,
and the following behavior is typically observed. Well below the reso-
nance frequency, the string responds with a planar, periodic oscillation
(Fig. 3.16(a)). As the forcing frequency is increased, the amplitude of
the response also grows until the string \pops out of the plane" and be-

gins to move in a nonplanar, elliptical, periodic pattern (Fig. 3.16(b)).

That is, the string undergoes a bifurcation from a planar to a nonpla-
nar oscillation. At a still higher frequency the elliptical periodic orbit
becomes unstable and begins to precess, as illustrated in Figure 3.16(c).

We will present a more complete qualitative account of these whirling

motions in section 3.7.2, which is based on the recent work of Johnson

and Bajaj [19], Miles [20], and O'Reilly [21]. Now, though, we turn our

attention to the whirling motion that occurs when no forcing is present.

3.7.1 Free Whirling

If we pluck a string hard and look closely, we typically see the string

whirling around in an elliptical pattern with a diminishing amplitude.

Some understanding of these motions is obtained by considering the free
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planar oscillations of a string modeled by the two-dimensional equation

�r+ �_r+ !2
0(1 +Kr2)r = 0; (3.49)

which is equation (3.7) with no forcing term. We noted in section 3.3

that the linear approximation to equation (3.7) results in elliptical mo-

tion (eq. (3.13)). We shall use this observation to calculate an approxi-

mate solution to equation (3.49) using a procedure put forth by Gough

[2]; similar results were obtained by Elliot [9].

Transform the problem of nonlinear free vibrations to a reference
frame rotating with an angular frequency 
, with 
 to be determined.
In this rotating frame, equation (3.49) becomes

�u+ � _u + 2
 � _u + �
 � u �
2u + !2
0(1 +Ku2)u = 0; (3.50)

where u is the new radial displacement vector, subjected to the addition
of Coriolis and centrifugal accelerations. Let us now look for a solution
of the form

u(t) = [x(t); y(t)] =

e��t=2[X1 cos ~!t+X3 cos 3~!t; Y1 sin ~!t+ Y3 sin 3~!t]; (3.51)

where X3 and Y3 are small compared to X1 and Y1. Looking at the
x coordinate only, when we substitute equation (3.51) into equation

(3.50) and discard appropriate higher-order terms, we get

(!2
0 � 
2 � ~!2)X1 cos ~!t+ (!2

0 � 
2 � 9~!2)X3 cos 3~!t�
2
~!Y1 cos ~!t+ !2

0K(X2
1 cos

2 ~!t+ Y 2
1 sin

2 ~!t)e��tX1 cos ~!t = 0;

a similar relation holds for the y coordinate. On equating sinusoidal
terms of the same frequency we|after considerable algebra|discover

~!2 = !2
0

�
1 +

3K

4
(X2

1 + Y 2
1 )e

��t

�
�
2; (3.52)

~!


!2
0

=
�K
4

X1Y1e
��t; (3.53)

and
X3

X1

=
Y3

Y1
=

�
K

4

�
!2
0(X

2
1 � Y 2

1 )e
��t

(9~!2 � !2
0 + 
2)

: (3.54)
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If there is no damping (� = 0), then this approximate solution is

periodic in the rotating reference frame and is slightly distorted from

an elliptical orbit. The angular frequency ~! is detuned from !0 by

an amount proportional to the mean-square radius X2
1 + Y 2

1 . In the

original stationary reference frame, equation (3.53) shows us that the

orbit precesses at a rate 
 proportional to the orbital area �X1Y1. The

angular frequency ~! in equations (3.52) to (3.54) is measured in the

rotating reference frame. It is related to the angular frequency in the

stationary reference frame ! by

!2 = (~! + 
)2 = !2
0

�
1 +

K

4
[3(X2

1 + Y 2
1 )� 2X1Y1]e

��t

�
: (3.55)

Thus, in the stationary reference frame, the undamped motion is
quasiperiodic unless ~! and 
 are accidentally commensurate, in which

case the orbit is periodic. The damped oscillations are also elliptical in
character and precess at a rate 
. In both cases, the detuning given
by equation (3.55) is due to two sources: the nonlinear planar motion
detuning plus a detuning resulting from the precessional frequency.

3.7.2 Response Curve

The case of whirling motions subject to a planar excitation is described
by the equation

�r+ �_r + !2
0(1 +Kr2)r = (A cos!t; 0); (3.56)

where the phase space is four-dimensional: (x; vx; y; vy) 2 R4. The
extended phase space, when we add the forcing variable, is �ve-dimen-

sional: (x; vx; y; vy; �) 2 R4 � S1.
Equation (3.56) can be analyzed for periodic motions by a combi-

nation of averaging and algebraic techniques not unlike the harmonic

balance method. Because our text is an experimental introduction to
nonlinear dynamics, we present here a qualitative description of the

results of this analysis. For further details see references [19], [20], and
[21].

As mentioned in the introduction to this section, an experimental
frequency scan that passes through a main resonance can result in the

following sequence of motions:
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Figure 3.17: Response curve for planar and nonplanar motion.
(Adapted from Johnson and Bajaj [19].)

planar periodic �! nonplanar periodic �!8>>><
>>>:

planar periodic;

quasiperiodic
(precessing elliptical orbit);
chaotic

9>>>=
>>>;

�! jump to small-amplitude planar motions:

The basic features of these experimental observations agree with those

predicted by equation (3.56), and are summarized in the response curve
shown in Figure 3.17.

In the parameter range l <  < u, the response curve indicates

the coexistence of three planar periodic motions and one nonplanar
periodic orbit. In this parameter regime, the planar periodic orbit
becomes unstable; the string \pops out of the plane" and begins to

execute a whirling motion. At some parameter value q, the nonplanar

periodic motion itself becomes unstable and the system may do any
number of things depending on the exact system parameters and ini-

tial conditions. For instance, it may hop to the small-amplitude planar
periodic orbit. Or the ballooning orbit itself may become unstable and

begin to precess (quasiperiodic motion). In addition, chaotic motions

can sometimes be observed in this parameter range. These various dy-
namical possibilities are illustrated schematically in Figure 3.17. We
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repeat, the motion observed depends on the exact system parameters

and the initial conditions, because there can be many coexisting attrac-

tors with complicated basins of attraction in this region. In particular,

the chaotic motions are di�cult to isolate (and observe experimentally)

without a thorough understanding of the system.

3.7.3 Torus Attractor

To construct a cross section for nonplanar periodic motion we could
imagine a plot of the position of the center of the string, and the forcing
phase, (x; y; �) 2 R2 � S1 (Fig. 3.18). A map can be associated to an
orbit in R2�S1 by recording the position of the orbit once each forcing
period. Although this map is not a true Poincar�e map, it is easy to

obtain experimentally and will be useful in explaining the notion of a
torus attractor (see section 3.8.1).6

An elliptical periodic orbit in the ow is represented in this cross
section by a discrete set of points that lie on a closed curve. This curve
is topologically a circle, S1 (Fig. 3.18(b)). Similarly, a precessing ellipse

(quasiperiodic motion) can generate an in�nite number of points; these
points �ll out this circle (Fig. 3.18(c)).

In the extended space (x; y; �), this quasiperiodic motion represents
a dense winding of a torus as shown in Figure 3.18(d). Topologically, a
torus is a space constructed from the Cartesian product of two circles,

T 2 = S1 � S1. In general, an n torus is constructed from n copies of a
circle,

T n =

nz }| {
S1 � S1 � � � � S1;

and a torus attractor naturally arises whenever quasiperiodic motion

is encountered in a dissipative dynamical system.7 The torus is an

6A proper cross section would be a manifold transverse to the ow in R4 � S1,
i.e., a four manifold such as � = f(x; vx; y; vy; �) j � = 0g. The torus attractor arises
from a Hopf bifurcation|a bifurcation from a �xed point to an invariant curve. In
a cross section, the limit cycle is represented by a �xed point. At the transition to
quasiperiodic motion, this �xed point loses stability and gives birth to an invariant
circle, which is a cross section of the torus in the ow.

7The attracting torus for nonplanar string vibrations is actually a four torus,
T 4.
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Figure 3.18: Experimental cross section for the nonplanar string vibra-
tions.

attractor because it is an invariant set and an attracting limit set. This

is illustrated in Figure 3.19, which shows how orbits are attracted to
a torus. A graph of a quasiperiodic orbit on a torus attractor is an

amplitude-modulated time series (Fig. 3.12).

3.7.4 Circle Map

We found that the single-humped map of the interval, f� : I �! I, was

a good model for some aspects of the dynamics of the bouncing ball
system. Similarly, insight about motion near a torus attractor can be
gained by studying a circle map,

g : S1 �! S1;
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Figure 3.19: Torus attractor.

where the mapping g most often studied is a two-parameter map of the

form

�n+1 = g(�n) = �n + 
� K

2�
sin(2��n); �n 2 [0; 1): (3.57)

This map has a linear term �n, a constant bias term 
, and a nonlinear
term whose strength is determined by the constant K.

The frequency of the circle map is monitored by the winding number

W = lim
n!1

gn
;K(�) � �

n
: (3.58)

If the nonlinear termK equals zero, thenW = 
. The winding number

measures the average increase in the angle � per unit time (Fig. 3.20).

An orbit of the circle map is periodic if, after q iterations, �n+q =

�n+ p, for integers p and q. The winding number for a periodic orbit is

W = p=q. A quasiperiodic orbit has an irrational winding number [22].
Circle maps have a devilish dynamical structure, which is explored in
reference [22].
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Figure 3.20: The winding number measures the average increase in the

angle of the circle map.

3.7.5 Torus Doubling

A nonlinear system can make a transition from quasiperiodic motion

directly to chaos. This is known as the quasiperiodic route to chaos.
It is of great practical and historical importance since it was one of
the �rst proposed mechanisms leading to the formation of a strange
attractor [23].

There are, in fact, many routes to chaos even from a humble T 2 torus

attractor. For instance, when the T 2 attractor loses stability, a stable

higher-dimensional torus attractor sometimes forms. Another possibil-
ity in the string system is the formation of a doubled torus, illustrated
schematically in Figure 3.21. In the torus doubling route to chaos, our

original torus (which is a closed curve in cross section) appears to split

into two circles at the torus doubling bifurcation point [24]. The torus
doubling route to chaos is reminiscent of the period doubling route to

chaos. However, it di�ers in at least two signi�cant ways. First, in most
experimental systems, there are only a �nite number of torus doublings

before the onset of chaotic motion. In fact, no more than two torus

doublings have ever been observed in the string experiment. Second,
the torus doubling route to chaos is a higher-dimensional phenomenon,
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Figure 3.21: Schematic of a torus doubling bifurcation.

requiring at least a four-dimensional ow, or a three-dimensional map.
It is not observed in one-dimensional maps, unlike the period doubling
route to chaos.

Now that we have reviewed some of the more salient dynamical
features of a string's motions, let's turn our attention to assembling
the tools required to view these motions in a real string experiment.

3.8 Experimental Techniques

The dynamics of a forced string raises experimental challenges common

to a variety of nonlinear systems. In this section we describe a few
of the experimental diagnostics that help with the visualization and
identi�cation of di�erent attractors, such as:

equilibrium points

limit cycles (periodic orbits)

invariant tori (quasiperiodic orbits)

strange attractors (chaotic orbits)
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The main tools used in the real-time identi�cation of an attractor are

Fourier power spectra and real-time Poincar�e maps. In addition, the

correlation dimension calculated from an experimental time series helps

to con�rm the existence of a strange attractor, as well as providing a

measure of its fractal structure.

The terms \strange attractor" and \chaotic attractor" are not al-

ways interchangeable. Speci�cally, a strange attractor is an attractor

that is a fractal. That is, the term strange refers to a static geomet-

ric property of the attractor. The term chaotic attractor refers to an
attractor whose motions exhibit sensitive dependence on initial condi-
tions. That is, the term chaotic refers to the dynamics on the attractor.
We mention this distinction because it is possible for an attractor to
be strange (a fractal), but not chaotic (exhibit sensitive dependence on

initial conditions) [25]. Experimental methods are available for quanti-
fying both the geometric structure of an attractor (fractal dimensions)
and the dynamic properties of orbits on an attractor (Lyapunov expo-
nents).

3.8.1 Experimental Cross Section

Variables measured directly in the string apparatus include the forcing
phase, �(t), and the displacement amplitudes of the string, x(t) and
y(t). The phase is measured directly from the function generator that

provides the sinusoidal current to the wire. The string displacement

is measured from the optical detectors that record the horizontal and
vertical displacement at a �xed point along the wire. In addition, the
wire's velocity can be measured by sending the amplitude displacement

signal through a di�erentiator, a circuit that takes the analog derivative

of an input signal.

Many approaches are possible for constructing an experimental

Poincar�e section. The particular approach taken depends on both the
type of system and the equipment at hand. Here, we assume that the

lab is stocked with a dual-trace storage oscilloscope and some basic
electronic components. A di�erent approach might be taken, for in-

stance, if we have access to a digital oscilloscope either in the form of

a commercial instrument or a plug-in board to a microcomputer.
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Figure 3.22: Schematic for the construction of an experimental Poincar�e
map for the string apparatus.

Planar Cross Section

We will record the Poincar�e section on the storage oscilloscope. Our
�rst step is to adjust the optical detectors so that the axis for a purely
planar vibration is well aligned with one of the optical detectors. Next,

the signal from this optical detector is sent to one of the input channels

of the oscilloscope. The other channel is used to record the velocity,
via the di�erentiator, of this same signal. Lastly, the time-base on the
oscilloscope must be set to X-Y mode, thereby allowing both the hori-

zontal and vertical oscilloscope sweeps to be controlled by the external

signals.

The result, as shown schematically in the oscilloscope in Figure 3.22,

is an experimental rendering of the phase space trajectory for a string.
To construct a Poincar�e map, we need to sample this trajectory once

each forcing period. That is, instead of recording the entire trajectory,
we only want to record a sequence of points on this trajectory. This

can be accomplished by turning the oscilloscope's beam intensity on for
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a brief moment once each forcing period. This is easy to do because on

the back of most oscilloscopes is an analog input line labeled \z" that

controls the oscilloscope's beam intensity. Finally, we need a triggering

circuit that takes as input the sinusoidal forcing signal and generates as

output a clock pulse, which is used to briey turn on the oscilloscope's

beam once each forcing period.

Triggering Circuit

A simple triggering circuit can be constructed from a monostable vi-

brator and a Schmitt trigger. Here, though, we describe a slightly
more sophisticated approach based on a phase-locked loop (PLL). The
phase-locked loop circuit has the advantage that it allows us to trigger
more than once each forcing period. This feature will be useful when
we come to digitizing a signal because the phase-locked loop circuit can
be used to trigger a digitizer an integer number k times each forcing

period, thereby giving us k samples of the trajectory each cycle.
A good account of all things electronic, including phase-locked loops,

is presented in the book by Horowitz and Hill, The art of electronics.
For our purposes, a phase-locked loop chip contains a phase detector,
an ampli�er, and a voltage-controlled oscillator (VCO), in one pack-

age. A PLL, when used in conjunction with a stage counter, gener-
ates a clock signal (or triggering pulse) that is ideal for constructing a
Poincar�e section. A schematic of the triggering circuit used with the
string apparatus is presented in Figure 3.23, and is constructed from
two o�-the-shelf chips: a CMOS 4046 PLL and a 4040 stage counter.

This circuit, with small adjustments, is useful for generating a trigger-
ing signal in any forced system. The counter is set to one for a Poincar�e

section; that is, it generates one pulse each period. It can be readjusted
to produce k pulses per period when digitizing.

Nonplanar Cross Section

To generate an experimental cross section for nonplanar motions we

replace the vx(t) input to the oscilloscope with the output y(t) from the

second displacement detector. The resulting plot on the oscilloscope is

proportional to the actual horizontal and vertical displacement of the
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Figure 3.23: Triggering circuit used to construct a Poincar�e map in the
string apparatus. (Courtesy of K. Adams and T. C. A. Molteno.)

string, thus providing us with a magni�ed view of the string's whirling.

3.8.2 Embedding

In the string system there is no di�culty in specifying and measur-

ing the major system variables. Usually, though, we are not so lucky.

Imagine an experimental dynamical system as a black box that gen-

erates a time series, x(t). In practice, we may know little about the

process inside the black box. Therefore, the experimental construction
of a phase space trajectory, or a Poincar�e map, seems very problematic.

One approach to this problem|the experimental reconstruction of a
phase space trajectory|is as follows. We start out by assuming that the

time series is produced by a deterministic dynamical system that can

be modeled by some nth-order ordinary di�erential equation. For this

particular example we assume that the system is modeled by a third-

order di�erential system, as is the case for planar string vibrations.
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Then a given trajectory of the system is uniquely speci�ed by the value

of the time series and its �rst and second derivatives at time t0 = 0:

x(t0); _x(t0); �x(t0):

This suggests that in reconstructing the phase space we can begin with

our measured time series, and then use x(t) to calculate two new phase

space variables y(x(t)) and z(x(t)) de�ned by

y(t) =
d

dt
x(t);

z(t) =
d

dt
y(t):

In estimating the pointwise derivatives of x(t) in an experiment we
can proceed in at least two ways: �rst, we can process the original
signal through a di�erentiator, and then record (digitize) the original
signal along with the di�erentiated signals; or second, we could digitize
the signal, and then compute the derivatives numerically. While both
techniques are feasible, each is fraught with experimental di�culties

because di�erentiation is an inherently noisy process. This is because
approximating a derivative often involves taking the di�erence of two
numbers that are close in value. To see this, consider the numerical
derivative of a digitized time series fx(ti)g de�ned by

yi =
xi � xi�1

ti � ti�1
: (3.59)

For instance, let xi�1 = 1:0�0:1, xi = 1:1�0:1, and ti�ti�1 = 1. Then

yi = 0:1� 0:2; that is, the value of the �rst derivative is already buried
in the noise, and the problem just gets worse when taking higher-order
derivatives.

However, let's look at equation (3.59) again. If the sampling time

is evenly spaced, then ti � ti�1 is constant, so

yi / xi � xi�1:

That is, almost all the information about the derivative is contained in

a variable constructed by taking the di�erence of two points in the orig-

inal time series fx(ti)g. This idea can be generalized as follows. Instead
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of de�ning the new variables for the reconstructed phase space in terms

of the derivatives, we can recover almost all of the same information

about an orbit from the embedded variables de�ned by [26]:

yi = xi�r; (3.60)

zi = xi�s; s 6= r; (3.61)

where r and s are integers. Each new embedded variable is de�ned by
taking a time delay of the original time series. Clearly, any number of

embedded variables can be created in this way, and this method can be
used to reconstruct a phase space of dimension far greater than three.

There are many technical issues associated with the construction of
an embedded phase space. An in-depth discussion of these issues can
be found in reference [1]. The �rst concern is determining a good choice
for the delay times, r and s. One rule of thumb is to take r to be small,

say 3 or 4. In fact, we could de�ne the second variable as

vi = xi � xi�r; (3.62)

and think of it as a velocity variable. The second embedding time
should be much larger than r, but not too large. To be more speci�c,
consider the planar oscillations of a string again. In this example a
natural cycle time is given by the period of the forcing term. A good
choice for s is some sizable fraction of the cycle time. For instance, let's

say our digitizer is set to sample the signal 64 times each period. Then
a sensible choice for r might be 4, and for s might be 16, or one-quarter

of the forcing period. Figure 3.24 shows a plot of a chaotic trajectory

in the Du�ng oscillator in both the original phase space and the phase
space reconstructed from the embedding variables. The similarity of

the two representations lends support to the claim that a trajectory
in the embedded phase space provides a faithful representation of the

dynamics.
Constructing a real-time two-dimensional embedded phase space is

straightforward. An embedded signal is obtained by sending the orig-

inal signal through a delay line. The current signal and the delayed

signal are sent to the oscilloscope, thereby giving us a real-time repre-

sentation of the phase space dynamics from our black box.
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Figure 3.24: Trajectory of the Du�ng oscillator in (a) phase space and
(b) the embedded phase space with delay time � = 0:8.

3.8.3 Power Spectrum

A signal from a nonlinear process is a function of time which we will
call F (t) in this section. It is possible to develop signatures for periodic,
quasiperiodic, and chaotic signals by analyzing the periodic properties
of F (t). These signatures, which are based on Fourier analysis, are

valuable experimental aids in identifying di�erent types of attractors.

Fourier Series

To analyze the periodic properties of F (t) it is useful to uncover a func-

tional representation of the signal in terms of the orthogonal functions
cos(2�t=L) and sin(2�t=L) of period L. To determine the Fourier se-

ries for F (t) we must �nd the constants ak and bk so that the following

identity holds [27]:

F (t) =
a0

2
+ a1 cos

2�

L
t+ b1 sin

2�

L
t

+ a2 cos
2�

L
2t+ b2 sin

2�

L
2t+ � � � : (3.63)

Fourier showed that the constants ak and bk in equation (3.63) are

computed from F (t) by means of the integral formulas

ak =
2

L

Z L

0
F (t) cos

�
2�

L
kt

�
dt k = 0; 1; 2; 3; : : : (3.64)
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Figure 3.25: Digitized time series.

and

bk =
2

L

Z L

0
F (t) sin

�
2�

L
kt

�
dt k = 1; 2; 3; 4; : : : : (3.65)

Finite Fourier Series

In equations (3.63{3.65) we are assuming that F (t) is a continuous
function of t. Equations (3.64) and (3.65) dictate that to calculate the
kth constants, ak and bk in the Fourier series (eq. (3.63)), we substitute
F (t) into the previous equations and integrate. In experiments with

digitized data, the signal we actually work with is an equally spaced
discrete set of points, F (tp), measured at the set of times ftpg (Fig.
3.25). Therefore, we need to develop a discrete analog to the Fourier
series, the �nite Fourier series.

Let us consider an even number of points per period, 2N . Then the

2N sample points are measured at

0;
L

2N
;
2L

2N
; : : : ;

(2N � 1)L

2N
;

or more succinctly,

tp =
pL

2N
; p = 0; 1; 2; : : : ; 2N � 1: (3.66)

The �nite Fourier series for a function sampled at F (tp) is

F (t) =
A0

2
+

N�1X
k=1

�
Ak cos

2�

L
kt+Bk sin

2�

L
kt

�
+
AN

2
cos

2�

L
Nt; (3.67)
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where

Ak =
1

N

2N�1X
p=0

F (tp) cos
2�

L
ktp; k = 0; 1; : : : ; N (3.68)

and

Bk =
1

N

2N�1X
p=0

F (tp) sin
2�

L
ktp; k = 1; 2; : : : ; N � 1: (3.69)

In the above formulas, we assumed that the function is sampled
at 2N points, that the value at the point 2N + 1 is L, and that the

endpoints 0 and L satisfy the periodic boundary condition,

F (0) = F (L):

If the latter assumption does not hold, the convention is to average the
values at the endpoints so that the value at F (0) is taken to be

F (0) + F (L)

2
:

In this case the formulas for the coe�cients are

Ak =
1

N

2
4F (0)

2
+

2N�1X
p=1

F (tp) cos
2�

L
ktp +

F (L)

2

3
5 (3.70)

and

Bk =
1

N

2N�1X
p=1

F (tp) sin
2�

L
ktp: (3.71)

Equations (3.68 and 3.69) can be viewed as a transform or mapping.

That is, given a set of numbers F (tp), these relations generate two new

sets of numbers, A(k) and B(k). It is easy to program this transform.

The code to calculate the discrete Fourier transform of F (tp) involves

a double loop (see eqs. (3.68 and 3.69)): the inner loop cycles through
the index k, and the outer loop covers the index p. Each loop has
order N steps, so the total number of computations is of order N2.

The discrete Fourier transform is, therefore, quite slow for large N

(say N > 500) (see Appendix D for programs to calculate discrete

Fourier transforms). Fortunately, there exists an alternative method
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for calculating the Fourier transform called the fast Fourier transform

or FFT. The FFT is an N lnN computation, which is much faster than

the discrete Fourier for large data sets. A detailed explanation of the

FFT along with C code examples is found in Numerical Recipes [28].

Power Spectrum

The amplitude coe�cients Ak and Bk give us a measure of how well the

signal �ts the kth sinusoidal term. A plot of Ak versus k or Bk versus
k is called a frequency spectrum. The (normalized) power spectrum

amplitude is de�ned by

Hk =
q
A2
k +B2

k: (3.72)

A plot of Hk versus k is called the power spectrum. This graphical
representation tells us how much of a given frequency is in the original
signal.

Experimental power spectra can be obtained in at least three ways:
(i) obtain a spectrum analyzer or signal analyzer, which is a commercial

instrument dedicated to displaying real-time power spectra;8 (ii) obtain
a signal analyzer card for a microcomputer (this is usually less expensive
than option (i)); or (iii) digitize your data and write an FFT for your
computer (this option is the cheapest). Having successfully procured
spectra capabilities, we now move on to describing how to use them.

Spectral Signatures

The spectral signatures for periodic, quasiperiodic, and chaotic motion
are illustrated in Figure 3.26. The power spectrum of a period one orbit

is dominated by one central peak, call it !1. The power spectrum of a

period two orbit also has a sharp peak at !1, and additional peaks at the
subharmonic !=2 and the ultrasubharmonic 3!=2. These new spectral

8All things are fair in love, war, and experimental physics. Methods to obtain
a spectrum analyzer may include: (a) locating and \nationalizing" a spectrum
analyzer from a nearby laboratory, or (b) locating and appropriating a spectrum
analyzer on grounds of \national security." Another option is to use an older model
spectrum analyzer, such as a Tektronix 1L5 spectrum analyzer which plugs into an
older model Tek scope.
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Figure 3.26: Time series and power spectra: (a) periodic (period one),

(b) periodic (period two), (c) quasiperiodic, (d) chaotic.
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peaks are the \sidebands" about the primary frequency that come into

existence through, say, a period doubling bifurcation of the period one

orbit. More generally, the power spectrum of a period n orbit consists

of a collection of discrete peaks showing the primary frequency and its

overtones. In periodic motion, all the peaks are rationally related to

the primary peak (resonance).

Quasiperiodic motion is characterized by the coexistence of two in-

commensurate frequencies. Thus, the power spectrum for a quasiperi-

odic motion is made up from at least two primary peaks, !1 and !2,
which are not rationally related. Additionally, each of the primary
peaks can have a complicated overtone spectrum. The mixing of the
overtone spectra from !1 and !2 usually allows one to distinguish pe-
riodic motion from quasiperiodic motion. A quick examination of the

time series, or the Poincar�e section, can also help to distinguish periodic
motion from quasiperiodic motion.

The power spectrum of a chaotic motion is easy to distinguish from
periodic or quasiperiodic motion. Chaotic motion has a broad-band
power spectrum with a rich spectral structure. The broad-band nature

of the chaotic power spectrum indicates the existence of a continuum
of frequencies. A purely random or noisy process also has a broad-band
power spectrum, so we need to develop methods to distinguish noise
from chaos. In addition to its broad-band feature, a chaotic power
spectrum can also have many broad peaks at the nonlinear resonances

of the system. These nonlinear resonances are directly related to the
unstable periodic orbits embedded within the chaotic attractor. So the

power spectrum of a chaotic attractor does provide some limited infor-

mation concerning the dynamics of the system, namely, the existence of
unstable periodic orbits (nonlinear resonances) that strongly inuence
the recurrence properties of the chaotic orbit.

Additionally, in the periodic and quasiperiodic regimes, new humps

and peaks can appear in a power spectrum whenever the system is
near a bifurcation point. These spectral features are called transient

precursors of a bifurcation. A detailed theory of these precursors with
many practical applications has been developed by Wiesenfeld and co-

workers [29].
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3.8.4 Attractor Identi�cation

So far we have discussed four measurements that allow us to visualize

and identify the attractor coming from a nonlinear process:

time series

power spectra

phase space portrait, or reconstructed phase space

experimental Poincar�e sections

All these qualitative techniques can be set up with instruments that
are commonly available in any laboratory.

To get a time series we hook up the output signal from the nonlinear
process to an input channel of the oscilloscope and use the time base
of the scope to generate the temporal dimension of the plot. To obtain
a power spectrum, we use a spectrum analyzer or digitize the data and
use an FFT. An experimental phase space portrait can be plotted on

an oscilloscope either by recording two system variables directly, such
as (x; y) or (x; _x), or from the delayed variable (x(t); x(t� � )), where
� is the delay time. Lastly, in a forced system, the Poincar�e section
is obtained from the phase space trajectory by strobing it once each
forcing period using the \z" blanking on the back of the oscilloscope.

Now to identify an attractor, we monitor these four diagnostic tools

as we vary a system parameter. A bifurcation point is easy to iden-
tify by using these tools, and the existence of a particular bifurcation

sequence, say a sequence of period doubling bifurcations, is a strong

indicator for the possible existence of chaotic motion.
The use of these diagnostic tools is illustrated schematically in Fig-

ure 3.27 for the period doubling route to chaos. For the parameter
values �1, �2, and �3, an examination of any one of these diagnostics

is su�cient to identify the existence of a periodic motion, as well as its
period. For � > �c, these four diagnostics, as well as the fact that the

strange Poincar�e section arose from a sequence of bifurcations from a

periodic state, support the claim that the motion is chaotic.

In particular, the Poincar�e section is useful for distinguishing low-

dimensional chaos from noise. The chaotic Poincar�e section illustrated
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Figure 3.27: Period doubling route to chaos: (a) period one, (b) period

two, (c) period four, and (d) chaotic. (Adapted from Tredicce and

Abraham [1].)
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Figure 3.28: Poincar�e maps from periodic, quasiperiodic, chaotic, and
noisy (random) processes.

in Figure 3.27 resembles the familiar one-humped map studied in Chap-

ter 2. In contrast, the Poincar�e map for a noisy signal from a stochastic
process �lls the whole oscilloscope screen with a random collection of
dots (see Fig. 3.28). Thus motion on a strange attractor has a strong
spatial correlation not present in a purely random signal. In the next
section we will quantify this observation by introducing the correlation

dimension, a measure that allows us to distinguish whether the signal
is coming from a low-dimensional strange attractor or from noise.

The quasiperiodic route to chaos is illustrated in Figure 3.29. In
this case, the phase portrait for a quasiperiodic motion would resemble
a Lissajous pattern, which may be hard to distinguish from a slowly
evolving chaotic orbit. The Poincar�e map, on the other hand, is useful

in distinguishing between these two cases. The sequence of dots forming
the Poincar�e map in the quasiperiodic regime lie on a closed curve that
is easy to distinguish from the spread of points in the Poincar�e map for
a strange attractor.

3.8.5 Correlation Dimension

One di�erence between a chaotic signal from a strange attractor and a

signal from a noisy random process is that points on the chaotic attrac-

tor are spatially organized. One measure of this spatial organization is

the correlation integral,

C(�) = lim
n!1

1

n2
� [number of pairs i; j whose distance jyi � yjj < �];
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Figure 3.29: Quasiperiodic route to chaos: (a) equilibrium, (b) peri-

odic, (c) quasiperiodic, and (d) chaotic. (Adapted from Tredicce and

Abraham [1].)
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where n is the total number of points in the time series. This correlation

function can be written more formally by making use of the Heaviside

function H(z),

C(�) = lim
n!1

1

n2

nX
i;j=1

H(�� jyi � yjj); (3.73)

where H(z) = 1 for positive z, and 0 otherwise. Typically, the vector
yi used in the correlation integral is a point in the embedded phase

space constructed from a single time series according to

yi = (xi; xi+r; xi+2r; : : : ; xi+(m�1)r); i = 1; 2; : : : : (3.74)

For a limited range of � it is found that

C(�) / ��; (3.75)

that is, the correlation integral is proportional to some power of � [30].
This power � is called the correlation dimension, and is a simple mea-

sure of the (possibly fractal) size of the attractor.
The correlation integral gives us an e�ective procedure for assigning

a fractal dimension to a strange set. This fractal dimension is a simple
way to distinguish a random signal from a signal generated by a strange
(possibly chaotic) set. In principle, a random process has an \in�nite"

correlation dimension. Intuitively, this is because an orbit of a random
process is not expected to have any spatial structure. In contrast, the

correlation dimension for a closed curve (a periodic orbit) is 1, and for

a two-dimensional surface (such as quasiperiodic motion on a torus)
is 2. A strange (fractal) set can have a correlation dimension that is
not an integer. For instance, the strange set arising at the end of the

period doubling cascade found in the quadratic map has a correlation

dimension of 0:583 : : :, indicating that the dimension of this strange
attractor is somewhere between that of a �nite collection of points

(� = 0) and a curve (� = 1).
There exist some technical issues associated with the calculation of

a correlation dimension � from a time series that have to do with the

choice of the embedding dimension m and the delay time r. These
issues are dealt with more fully in references [1] and [23]. There now
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exist several computer codes in the public domain that have, to a large

extent, automated the calculation of � from a single time series x(ti).

Such a time series could come from a simulation or from an experiment.

See, for example, the BINGO code by Albano [31], or the e�cient algo-

rithm discussed by Grassberger [32]. Thus, the correlation dimension

is now a standard tool in a nonlinear dynamicist's toolbox that helps

one distinguish between noise and low-dimensional chaos.
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Problems

Problems for section 3.2.
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3.1. Use Amp�ere's law to �nd the magnetic �eld at a radial distance r from a long
straight current-carrying wire.

3.2. The Joule heating law says that the power dissipated by a current-carrying
object is

P = V I = I2R; (3.76)

where V is the voltage, I is the current, and R is the resistance. Furthermore,
for small temperature changes �Temp, the fractional change of length of a
solid obeys

�L

L
= ��Temp; (3.77)

where � is the linear coe�cient of thermal expansion of the material. Discuss
the relevance of these two physical laws on the string apparatus.

Section 3.3.

3.3. From equation (3.3), show that the location of the two equilibrium points is

approximately given by r� � �l
q

l0�l
2l0

.

3.4. Solve the di�erential equation �x = �� _x � !2x and graph x(t) versus t for a
few values of �. Why is � called the damping coe�cient?

3.5. Solve the di�erential equation �r = ��_r, r = (x; y), � = (�x; �y). Draw a plot
of r(t) = (x(t); y(t)) for a �xed (�x; �y).

3.6. Verify that the variables in equation (3.11) are dimensionless.

3.7. Verify that equation (3.13) is a solution to equation (3.7) with f (t) = (0; 0)
and K = 0 (discard second-order terms in �). Draw the solution, r(t), in the
x{y plane.

3.8. Derive equation (3.2) from Figure 3.3. Hint: To account for the factor of 2
realize that each spring makes a separate contribution to the restoring force.

Section 3.4.

3.9. (a) Show that the equation of motion for a simple pendulum in dimensionless
variables is

��+ sin� = 0: (3.78)

(b) Write this as a �rst-order system with (�; v) 2 S1 �R. Using equation
(3.18), �nd the potential energy function and a few integral curves for a
pendulum.
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(c) Show that the pendulum has equilibrium points at (0; 0) and (��; 0) and
discuss the stability of these �xed points by relating them to the con�gura-
tions of the physical pendulum. Are there any saddle points? Are there any
centers?

(d) Draw a schematic of the phase plane. Identify the separatrix in this phase
portrait. Orbits inside the separatrix are called oscillations. Why? Orbits
outside the separatrix are called rotations. Why?

(e) Add a dissipative term (� _�) to get a damped pendulum and discuss how
this changes the phase portrait. In particular, discuss the relation of the
insets and outsets of the equilibrium points with the basins of attraction. Are
there any attractors? Are there any repellers?

(f) Now add a forcing term f cos(!t) and write the di�erential equations for
the system in the extended phase space (�; v; �) 2 R�S1�S1, where � = !t.
De�ne a global cross section for the forced damped pendulum (see eq. (3.29)).

Section 3.5.

3.10. Verify that equation (3.32) is a solution to equation (3.31) (discard higher-
order terms in �).

3.11. Plot the linear response curve a() (eq. (3.34)) for a few representative values
of F and �.

3.12. This exercise illustrates the method of harmonic balance. Assume an approx-
imate solution of the form

x0 = X sin � + Y cos �

to the Du�ng equation (3.23).

(a) Substitute x0 into equation (3.23) and equate terms containing sin� and
cos � separately to zero.

(b) Show that
AX + �Y = 0; �X � AY = F;

where

A = 2 � 1� 3

4
�R2; R2 = X2 + Y 2:

(c) Show that
(A2 + 2�2)R2 = F 2:

(d) Plot the response (R2 versus ) for � = 0:9, � = 0:2, and several values
of F . Plot the amplitude characteristic (R2 versus F ) for � = 0:9, � = 0:2,
and  = 1. Indicate the unstable solution with a dashed line. Hint: It is
easier to plot R2 as the independent variable.
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Section 3.7.

3.13. Verify equations (3.52{3.54) for the free whirling motions of a string.

3.14. Write a program to iterate the circle map (eq. (3.57)) and explore its solutions
for di�erent values of K and 
.

Section 3.8.

3.15. For a time series fxig, in which the xi are sampled at evenly spaced times,
write a transformation between the phase space variable yi = (xi�xi�1)=(ti�
ti�1) and the embedded phase space variable yi = xi�r, with r = 1. Why is
the embedded phase space rotated like it is in Figure 3.24? Why does one
usually choose r > 1?

3.16. Write a program based on equations (3.67{3.71) to calculate the discrete
Fourier amplitude coe�cients and the power spectrum (eq., (3.72)) for a dis-
crete time series. Test the program on some sample functions for periodic
motion (e.g., x(t) = cos(!t) + cos(3!t)), and quasiperiodic motions (e.g.,
x(t) = cos(!t) + cos(

p
2!t)).



Chapter 4

Dynamical Systems Theory

4.1 Introduction

This chapter is an eclectic mix of standard results from the mathemat-
ical theory of dynamical systems along with practical results, terminol-
ogy, and notation useful in the analysis of a low-dimensional dynamical
system [1]. The examples in this chapter are usually con�ned to two-
dimensional maps and three-dimensional ows.

In the �rst three chapters we presented nonlinear theory by way
of examples. We now present the theory in a more general setting.
Many of the fundamental ideas have already been illustrated in the
one-dimensional setting. For example, in one-dimension we found that
the stability of a �xed point is determined by the derivative at the

�xed point. The same result holds in higher dimensions. However, the
actual computational machinery needed is far more intricate because

the derivative of an n-dimensional map is an n� n matrix.

Another key idea we have already introduced is hyperbolicity, hyper-
bolic sets, and symbolic analysis (see section 2.11). In this chapter we

present a detailed study of the Smale horseshoe, which is the canonical
example of a \hyperbolic chaotic invariant set." A thorough under-

standing of this example is essential to the analysis of a chaotic repeller
or attractor. We conclude this chapter with a discussion of sensitive

dependence on initial conditions. This brings us back to the Lyapunov
exponent, which we de�ne for a general n-dimensional dynamical sys-
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tem.
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Flows

Lorenz Equation

�(x; y; z) : R3 ! R3

_x = �(y � x)
_y = �x� y � xz

_z = ��z + xy

9=
;

parameters

�; �; �

Du�ng Equation

�(x; v; �) : R2 � S1 ! R2 � S1

_x = v

_v = �(x + �x3 + �v) + f cos(�)
_� = !

9=
;

nonautonomous form
�x+ � _x+ x+ �x3 = f cos(!t)
parameters

�; �; f; !

Forced Damped Pendulum

�(�; v; ') : S1 � S1 �R! S1 � S1 �R

_� = v

_v = �[�v + � sin(�)] + f cos(')
_' = !

9=
;

parameters

�; �; f; !

Modulated Laser

�(u; z; �) : R2 � S1 ! R2 � S1

_u = [z � f cos(�)]u
_z = (1� �1z)� (1 + �2z)u
_� = !

9=
;

parameters

�1; �2; f; !

Maps

Quadratic Map

f(x) : R! R

xn+1 = �xn(1 � xn)
parameter

�

Sine Circle Map

f(�) : S1 ! S1

�n+1 = �n + 
 + K
2�

sin(2��n)
parameters


;K

H�enon Map

f(x; y) : R2 ! R2

xn+1 = �� x2n + �yn
yn+1 = xn

�
parameters

�; �

Baker's Map

f(x; y) : I � I ! I � I

xn+1 = 2xn mod 1

yn+1 =

�
�yn for 0 � xn < 1=2
1=2 + �yn for 1=2 � xn � 1

9=
;

parameter

� < 1=2

IHJM Optical Map [2]

f(z) : C! C

zn+1 =  +Bzn exp
h
i
�
� � �

1+jznj2

�i
parameters

�; �; ; B
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4.2 Flows and Maps

Most of the dynamical systems studied in this book are either three-

dimensional ows or one- or two-dimensional maps. Common examples

of maps and ows are listed on the previous page.

Flows are speci�ed by di�erential equations (section 4.2.1). Simi-

larly, maps are speci�ed by di�erence equations:

xn+1 = f(xn;�): (4.1)

Maps can also be written as x 7! f(x;�). The notation 7! is read
as \maps to." The forward orbit of x is O+(x) = ffn(x) : n � 0g,
where fn = f � � � � � f is the nth composite of f , and f0 is the identity
function. If the inverse f�1 is well de�ned, then the backward orbit of
x is O�(x) = ff�n(x) : n � 0g. Finally, the orbit of x is the sequence

of all positions visited by x, O(x) = O�(x)
S
O+(x).

4.2.1 Flows

A �rst-order system of di�erential equations is written as

dx

dt
= f(x; t;�); (4.2)

where x = (x1; x2; : : : ; xn) are the dependent variables, t is the inde-
pendent variable time, and � is the set of parameters for the system.
Sometimes the parameter dependence is denoted by a subscript as in

f�(x; t).

A vector �eld is formally de�ned by a map F : A � Rn ! Rn

that assigns a vector F(x) to each point x in its domain A. More
generally, a vector �eld on a manifoldM is given by a map that assigns

a vector to each point in M . For most of this chapter we only need to

work with Rn. A system governed by a time-independent vector �eld
is called autonomous; otherwise it is called nonautonomous. As we saw

in section 3.4.3, any nonautonomous vector �eld can be converted to
an autonomous vector �eld of a higher dimension.

The ow, �, of the vector �eld F is analytically de�ned by:

@

@t
�(x; t) = F(�(x; t)); (4.3)

�(x; 0) = x: (4.4)
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Figure 4.1: (a) The ow of a solution curve. (b) The ow of a collec-
tion of solution curves resulting in a continuous transformation of the
manifold.

The position x is the initial condition or initial state. The initial con-
dition is also written as x0 when it is speci�ed at t = 0. A solution

curve, trajectory, or integral curve of the ow is an individual solution
of the above di�erential equation based at x0. We often explicitly note
the time-dependence of the position (the solution curve to the above
di�erential equation) by writing x(t) when we want to indicate the po-
sition of the trajectory at a time t > 0. The collection of all states of a
dynamical system is called the phase space.

The term \ow" describing the evolution of the system in phase
space comes by analogy from the motion of a real uid ow. The
ow �(x; t) is regarded as a function of the initial condition x and the
single parameter time t. The ow � tells us the position of the initial

condition x after a time t. As illustrated in Figure 4.1(a), the position

of the point on the ow line through x is carried or ows to the point
�(x; t). A geometric description of a ow says that it is a one-parameter

family of di�eomorphisms of a manifold. That is, the ow lines of the
ow, which are solution curves of the di�erential equation, provide a

continuous transformation of the manifold into itself (Fig. 4.1(b)).

The ow is often written as �t(x) to highlight its dependence on
the single parameter t. The ow �t is also known as the evolution

operator. Composition of the evolution operator is de�ned in a natural
way: starting at the state x at time s = 0, it �rst ows to the point
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�s = �(x; s) and then onto the point �t+s = �(�(x; s); t). The evolution

operator satis�es the group properties

(i) �0 = identity; (ii) �t+s = �t � �s; (4.5)

which are taken as the de�ning relations of a ow for an abstract dy-

namical system. If the system is nonreversible we speak of a semiow.

A semiow ows forward in time, but not backward.

An explicit example of an evolution operator is given by solving the
linear di�erential equation �x = �x. Here the vector �eld is found from
the equivalent �rst-order system ( _x = v; _v = �x) so that the vector
�eld is

F(x; v) = (v;�x):
This vector �eld generates a ow that is a simple rotation about the
origin (see Fig. 0.3). The evolution operator is given by the rotation
matrix1

�t(x) =

"
x(t)
v(t)

#
=

"
cos(t) sin(t)

� sin(t) cos(t)

# "
x

v

#
:

4.2.2 Poincar�e Map

A continuous ow can generate a discrete map in at least two ways: by
a time-T map and by a Poincar�e map. A time-T map results when a
ow is sampled at a �xed time interval T . That is, the ow is sampled
whenever t = nT for n = 0; 1; 2; 3, and so on.

The more important way (as described, for instance, in Gucken-

heimer and Holmes [1]) in which a continuous ow generates a discrete
map is via a Poincar�e map. Let  be an orbit of a ow �t in R

n. As
illustrated in Figure 4.2, it is often possible to �nd a local cross sec-

tion � 2 Rn about , which is of dimension n � 1. The cross section

need not be planar; however, it must be transverse to the ow. All the

orbits in the neighborhood of  must pass through �. The technical
requirement is that F(x) �N(x) 6= 0 for all x 2 �, where N(x) is the

1The components of the map � should be written as (�x; �v), where the super-
script indicates the dependent coordinate. It is a common convention, though, to
suppress the � and mix the dependent variables with the coordinate functions so
that [�x(t); �v(t)] = [x(t); v(t)].
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Figure 4.2: Construction of a Poincar�e map from a local cross section.

unit normal vector to � at x. Let p be a point where  intersects �,

and let q 2 � be a point in the neighborhood of p. Then the Poincar�e
map (or �rst return map) is de�ned by

P : �! �; P (q) = ��(q); (4.6)

where � = � (q) is the time taken for an orbit starting at q to return
to �. It is useful to de�ne a Poincar�e map in the neighborhood of a
periodic orbit. If the orbit  is periodic of period T , then � (p) = T .
A periodic orbit that returns directly to itself is a �xed point of the
Poincar�e map. Moreover, an orbit starting at q close to p will have a

return time close to T .

For forced systems, such as the Du�ng oscillator studied in sec-
tion 3.4, a global cross section and Poincar�e map are easy to de�ne
since the phase space topology is R2 � S1. All periodic orbits of a

forced system have a period that is an integer multiple of the forcing

period. In this situation, it is sensible to pick a planar global cross

section that is transverse to S1 (see Fig. 3.8). The return time for this
cross section is independent of position and equals the forcing period.
In this special case, the Poincar�e map is equivalent to a time-T map.

The Poincar�e map for the example of the rotational ow generated

by F(x; v) = (v;�x) is particularly trivial. A good cross section is

de�ned by the positive half of the x-axis, � = f(x; v)jv = 0 and x > 0g.
All the orbits of the ow are �xed points in the cross section, so the
Poincar�e map is just the identity map, P (x) = x.
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Figure 4.3: (a) Construction of a suspension of a map. (b) The sus-
pension is not unique; an arbitrary number of twists can be added.

See Appendix E, H�enon's Trick, for a discussion of the numerical
calculation of a Poincar�e map from a cross section.

4.2.3 Suspension of a Map

A discrete map can also be used to generate a continuous ow. A
canonical construction for this is the so-called suspension of a map [1],

which is in a sense the inverse of a Poincar�e map.2 Given a discrete map
f of an n-dimensional manifold M , it is always possible to construct a

ow on an n+1-dimensional manifold formed by the Cartesian product
R with the original manifold: � : M � R ! M . This suspension

process is illustrated in Figure 4.3(a) where we show a mapping and
the ow formed by \suspending" this map. Each sequence of points

of the map becomes an orbit of the ow with the property that if

fn(x) = �t(x) then fn+1(x) = �T+t(x). The original map is recovered

from the suspended ow by a time-T map. The suspension construction

2The suspension is de�ned globally, while the cross section for a Poincar�e
map is only de�ned locally. Thus, these two constructions are not completely
complementary.



4.3. ASYMPTOTIC BEHAVIOR AND RECURRENCE 197

is far from unique. For instance, as illustrated in Figure 4.3(b), we

could add an arbitrary number of complete twists to this particular

suspension and still get an identical time-T map. The number of full

twists in the suspended ow is called the global torsion, and it is a

topological invariant of the ow independent of the underlying map.

4.2.4 Creed and Quest

The close connection between maps and ows|Poincar�e maps and
suspensions|gives rise to \The Discrete Creed":

Anything that happens in a ow also happens in a (lower-
dimensional) discrete dynamical system (and conversely).

\The creed is stated in the mode of the sunshine patriot, leaving plenty
of room to duck as necessary [3]." This creed is implicit in Poincar�e's

original work, but was �rst clearly enunciated by Smale.
The essence of dynamical systems studies is stated in \The Dynam-

ical Quest":

Where do orbits go, and what do they do/see when they
get there?

The dynamical quest emphasizes the topological (i.e., qualitative) char-
acterization of the long-term behavior of a dynamical system.

4.3 Asymptotic Behavior and Recurrence

In this section we present some more mathematical vocabulary that
helps to re�ne our notions of invariant sets, limit sets (attractors and

repellers), asymptotic behavior, and recurrence. For the most part we

state the fundamental de�nitions in terms of maps. The correspond-
ing de�nitions for ows are completely analogous and can be found in

Wiggins [1].
Recurrence is a key theme in the study of dynamical systems. The

simplest notion of recurrence is periodicity. Recall that a point of a map

is periodic of period n if there exists an integer n such that fn(p) = p

and f i(p) 6= p, 0 < i < n. This notion of recurrence is too restricted
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since it fails to account for quasiperiodic motions or strange attractors.

We will therefore explore more general notions of recurrence. At the

end we will argue that the \chain recurrent set" is the best de�nition

of recurrence that captures most of the interesting dynamics.

4.3.1 Invariant Sets

Formally, a set S is an invariant set of a ow if for any x0 2 S we have

�(x0; t) 2 S for all t 2 R. S is an invariant set of a map if for any
x0 2 S, fn(x0) 2 S for all n. We also speak of a positively invariant set

when we restrict the de�nition to positive times, t � 0 or n � 0.
Invariant sets are important because they give us a means of de-

composing phase space. If we can �nd a collection of invariant sets,

then we can restrict our attention to the dynamics on each invariant
set and then try to sew together a global solution from the invariant
pieces. Invariant sets also act as boundaries in phase space, restricting
trajectories to a subset of phase space.

4.3.2 Limit Sets: �, !, and Nonwandering

We begin by introducing the !-limit set, which starts us down the road
toward de�ning an attractor. Let p be a point of a map f :M !M of
the manifold M . Then the !-limit set of p is

!(p) = fa 2M j there exists a sequence ni !1 such that fni(p)! ag:

Conversely, by going backwards in time we get the �-limit set of p,

�(p) = fr 2M j there exists a sequence ni !1 such that f�ni(p)! rg:

These limit sets are the closure of the ends of the orbits. For ex-

ample, if p is a periodic point, then !(p) = O+(p). It is not di�cult to

show that !(p) is a closed subset of M and that it is invariant under
f , i.e., f(!(p)) = !(p). Finally, a point p 2 M is called recurrent if it

is part of the !-limit set, i.e., p 2 !(p).
The forward limit set, L+, is de�ned as the union of all !-limit sets;

likewise the backward limit set, L�, is de�ned as the union of all �-limit
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sets:

L+(f) =
[
p2M

!(p) and L�(f) =
[
p2M

�(p):

The forward and backward limit sets are not necessarily closed.

This observation motivates yet another useful notion of recurrence, the

nonwandering set. A point p 2M wanders if there exist a neighborhood

U of p and an m > 0 such that fn(U) \ U = ; for all n > m. A

nonwandering point is one that does not wander. This brings us to the
nonwandering set, 
, which is a closed, invariant (under f) subset of

M :

(f) = fq 2M j q is nonwanderingg:

The dynamical decomposition of a set into its wandering and non-
wandering parts separates, in mathematical terms, a dynamical sys-

tem into its transient behavior|the wandering set|and long-term or
asymptotic behavior|the nonwandering set.

The !-limit set and the nonwandering set do not address the ques-
tion of the stability of an asymptotic motion. To get to the idea of an
attractor, we begin with the idea of an attracting set. A closed invari-

ant set A � M is an attracting set if there is some neighborhood U of
A such that for all x 2 U and all n � 0,

fn(x) 2 U and fn(x)! A:

Moreover, the domain or basin of attraction of A is given by

\
n�0

fn(U):

The attracting set can consist of a collection of di�erent sets that are
dynamically disconnected. For instance, a single attracting set could

consist of two separate periodic orbits. To overcome this last di�culty,
we will say that an attractor is an attracting set that contains a dense

orbit. Conversely, a repeller is de�ned as a repelling set with a dense

orbit.
Although this is a reasonable de�nition mathematically, we will see

that this is not the most useful de�nition of an attractor for physical
applications or numerical simulations. In these circumstances it will

turn out that a more useful (albeit mathematically naive) de�nition of
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an attractor or repeller is the closure of a certain collection of periodic

orbits. The proper de�nition of an attractor is yet another hot spot in

the creative tension between the rigor demanded by a mathematician

and the utility required by a physicist.

4.3.3 Chain Recurrence

In the previous section we attempted to capture all the recurrent be-

havior of the mapping f : M !M . Let

Per(f) = fperiodic points of fg
L+(f) =

S
p2M !(p)


(f) = fnonwandering pointsg

Clearly,

Per(f) � L+(f) � 
(f):

There is no universally accepted notion of a set that contains all the
recurrence, but this set ideally ought to be closed and invariant. Per(f)
is too small|periodicity is too limited a kind of recurrence. L+(f)
is not necessarily closed. 
(f), while closed and invariant, has the

drawback that:

(f j
) 6= 
:

The mapping f j
 : 
 ! 
 makes sense, of course, because of 
's
invariance.

In certain contexts the chain recurrent set, which is bigger than 
,

has all the desirable properties. According to the \chain recurrent point

of view," all the interesting dynamics take place in the chain recurrent
set [4].

Let � > 0. An �-pseudo orbit is a �nite sequence such that

d[f(xi); xi+1] < �; i = 0; 1; : : : ; n � 1;

where d[�; �] is a metric on the manifold M . An �-pseudo orbit can
be thought of as a \computer-generated orbit" because of the slight
roundo� error the computer makes at each stage of an iteration (see

Fig. 4.4(a)).
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Figure 4.4: (a) An �-pseudo orbit, or computer orbit, of a map; (b) a

chain recurrent point.

A point x 2 M is chain recurrent if, for all � > 0, there exists an
�-pseudo orbit x0; x1; : : : ; xn such that x = x0 = xn (see Fig. 4.4(b)).
The chain recurrent set is de�ned as

R(f) = fchain recurrent pointsg:

The chain recurrent set R(f) is closed and f -invariant. Moreover, 
 �
R. For proofs, see reference [1] or [4].

As an example consider the quadratic map, f�(x) = �x(1 � x), for

� > 2 +
p
5 and M = [�1;+1]. It is easy to see from graphical

analysis that if x 62 [0; 1] then f�1g is the attracting limit set. When

x 2 [0; 1], the limit set � is a Cantor set (see section 2.11.1) and the

dynamics on � are topologically conjugate to a full shift on two symbols,
so the periodic orbits are dense in �. The chain recurrent set R(f) =

�
Sf�1g.
As another example, consider the circle map f : S1 ! S1 shown

in Figure 4.5, in which the only �xed points are x and y. The arrows

indicate the direction a point goes in when it is iterated. It is easy to
see that

fx; yg = Per(f) = L+ = L� = 
:
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Figure 4.5: Circle map with two �xed points.

However, R(f) = S1 because an �-pseudo orbit can jump across the
�xed points. Chain recurrence is a very weak form of recurrence.

4.4 Expansions and Contractions

In this section we consider how two-dimensional maps and three-
dimensional ows transform areas and volumes. Does a map locally
expand or contract a region? Does a ow locally expand or contract a
volume in phase space? To answer each of these questions we need to
calculate the Jacobian of the map and the divergence of the ow [5].

In this section we are concerned with showing how to do these calcula-
tions. In section 4.10, where we introduce the tangent map, we provide
some geometric insight into these calculations.

4.4.1 Derivative of a Map

To �x notation, let f be a map fromRn to Rm speci�ed bym functions,

f = (f1; : : : ; fm); (4.7)

of n variables. Recall that the derivative3 of a map f : Rn ! Rm at x0
is written as T = Df(x0) and consists of an m � n matrix called the

matrix of partial derivatives of f at x0:

Df(x0) =

2
664

@f1
@x1

� � � @f1
@xn

...
...

@fm
@x1

� � � @fm
@xn

3
775 : (4.8)

3Some books call this the di�erential of f and denote it by df(x0).
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Figure 4.6: Deformation of an in�nitesimal region under a map.

The derivative of f at x0 represents the best linear approximation to f
near to x0.

As an example of calculating a derivative, consider the function from
R2 to R2 that transforms polar coordinates into Cartesian coordinates:

f(r; �) = [f1(r; �); f2(r; �)] = (r cos �; r sin �):

The derivative of this particular transformation is

Df(r; �) =

2
4 @f1

@r
@f1
@�

@f2
@r

@f2
@�

3
5 =

"
cos � �r sin �
sin � r cos �

#
:

4.4.2 Jacobian of a Map

The derivative contains essential information about the local dynamics
of a map. In Figure 4.6 we show how a small rectangular region R

of the plane is transformed to f(R) under one iteration of the map

f(u; v) : R2 ! R2 where f1(u; v) = x(u; v) and f2(u; v) = y(u; v).

The Jacobian of f , written @(x; y)=@(u; v), is the determinant of the

derivative matrix Df(x; y) of f :4

@(x; y)

@(u; v)
=

������
@x
@u

@x
@v

@y
@u

@y
@v

������ =
@x

@u
� @y
@v
� @x

@v
� @y
@u

: (4.9)

4See Marsden and Tromba [5] for the n-dimensional de�nition.
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In the example just considered, (x; y) = (r cos �; r sin �), the Jacobian

is
@(x; y)

@(r; �)
= r(cos2 � + sin2 �) = r:

The Jacobian of a map at x0 determines whether the area about x0
expands or contracts. If the absolute value of the Jacobian is less than

one, then the map is contracting; if the absolute value of the Jacobian

is greater than one, then the map is expanding.
A simple example of a contracting map is provided by the H�enon

map for the parameter range 0 � � < 1. In this case,

f1(xn; yn) = xn+1 = �� x2n + �yn;

f2(xn; yn) = yn+1 = xn;

and a quick calculation shows

@(xn+1; yn+1)

@(xn; yn)
= ��:

The Jacobian is constant for the H�enon map; it does not depend on
the initial position (x0; y0). When iterating the H�enon map, the area is
multiplied each time by �, and after k iterations the size of an initial
area a0 is

a = a0j�kj:
In particular, if 0 � � < 1, then the area is contracting.

4.4.3 Divergence of a Vector Field

Recall from a basic course in vector calculus that the divergence of a
vector �eld represents the local rate of expansion or contraction per

unit volume [5]. So, to �nd the local expansion or contraction of a ow

we must calculate the divergence of a vector �eld. The divergence of a

three-dimensional vector �eld F(x; y; z) = (F1; F2; F3) is

div F = r � F =
@F1

@x
+
@F2

@y
+
@F3

@z
: (4.10)

Let V (0) be the measure of an in�nitesimal volume centered at x.

Figure 4.7 shows how this volume evolves under the ow; the diver-
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Figure 4.7: Evolution of an in�nitesimal volume along a ow line.

gence of the vector �eld measures the rate at which this initial volume
changes,

div F(x) =
1

V (0)

d

dt
V (t)jt=0: (4.11)

For instance, the divergence of the vector �eld for the Lorenz system

is

r �
2
64 F1

F2

F3

3
75 = r �

2
64 �(y � x)
�x� y � xz

��z + xy

3
75 = �(� + 1 + �);

we �nd that the ow is globally contracting at a constant rate whenever
the sum of � and � is positive.

4.4.4 Dissipative and Conservative

The local rate of expansion or contraction of a dynamical system can be
calculated directly from the vector �eld or di�erence equation without

explicitly �nding any solutions. We say a system is conservative if the

absolute value of the Jacobian of its map exactly equals one, or if the
divergence of its vector �eld equals zero,

r � F = 0; (4.12)
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for all times and all points. A physical system is dissipative if it is

not conservative.5 Most of the physical examples studied in this book

are dissipative dynamical systems. The phase space of a dissipative

dynamical system is continually shrinking onto a smaller region of phase

space called the attracting set.

4.4.5 Equation of First Variation

Another quantity that can be calculated directly from the vector �eld

is the equation of �rst variation, which provides an approximation for
the evolution of a region about an initial condition x. The ow �(x; t)
is a function of both the initial condition and time. We will often be
concerned with the stability of an initial point in phase space, and thus
we are led to consider the variation about a point x while holding the

time t �xed. Let Dx denote di�erentiation with respect to the phase
variables while holding t �xed. Then from the di�erential equation for
a ow (eq. (4.3)) we �nd

Dx

@

@t
�(x; t) = Dx[F(�(x; t))];

which, on applying the chain rule on the right-hand side, yields the
equation of �rst variation,

@

@t
Dx�(x; t) = DF(�(x; t))Dx�(x; t): (4.13)

This is a linear di�erential equation for the operator Dx�. DF(�(x; t))

is the derivative of F at �(x; t). If the vector �eld F is n-dimensional,

then both DxF(�) and Dx� are n� n matrices.
Turning once again to the vector �eld

F(x; v) = (v;�x);
we �nd that the equation of �rst variation for this system is2

4 _�xx
_�xv

_�vx
_�vv

3
5 =

2
4 0 1

�1 0

3
5
2
4 �xx �xv

�vx �vv

3
5 :

5Note that this de�nition of dissipative can include expansive systems. These
will not arise in the physical examples considered in this book. See Problem 4.12.
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The superscript i to �i indicates the ith component of ow, and the

subscript j to �j denotes that we are taking the derivative with respect

to the jth phase variable. For example, �vx = @
@x
�v. The compo-

nents of � are the coordinate positions, so they could be rewritten as

[�x(t); �v(t)] = [x(t); v(t)]. The dot, as always, denotes di�erentiation

with respect to time.

4.5 Fixed Points

An equilibrium solution of a vector �eld _x = f(x) is a point �x that does
not change with time,

f(�x) = 0: (4.14)

Equilibria are also known as �xed points, stationary points, or steady-
state solutions. A �xed point of a map is an orbit which returns to itself
after one iteration,

�x 7! f(�x) = �x: (4.15)

We will tend to use the terminology \�xed point" when referring to
a map and \equilibrium" when referring to a ow. The theory for

equilibria and �xed points is very similar. Keep in mind, though, that
a �xed point of a map could come from a periodic orbit of a ow. This
section briey outlines the theory for ows. The corresponding theory
for maps is completely analogous and can be found, for instance, in
Rasband [6].

4.5.1 Stability

At least three notions of stability apply to a �xed point: local stability,
global stability, and linear stability. Here we will discuss local stability

and linear stability. Linear stability often, but not always, implies local

stability. The additional ingredient needed is hyperbolicity. This turns
out to be quite general: hyperbolicity plus a linearization procedure is

usually su�cient to analyze the stability of an attracting set, whether
it be a �xed point, periodic orbit, or strange attractor.

The notion of the local stability of an orbit is straightforward. A

�xed point is locally stable if solutions based near �x remain close to
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Figure 4.8: (a) A stable �xed point. (b) An asymptotically stable �xed
point.

�x for all future times. Further, if the solution actually approaches
the �xed point, i.e., x(t) ! �x as t ! 1, then the orbit is called
asymptotically stable. Figure 4.8(a) shows a center that is stable, but
not asymptotically stable. Centers commonly occur in conservative

systems. Figure 4.8(b) shows a sink, an asymptotically stable �xed
point that commonly occurs in a dissipative system. A �xed point is
unstable if it is not stable. A saddle and source are examples of unstable
�xed points (see Fig. 0.4).

4.5.2 Linearization

To calculate the stability of a �xed point consider a small perturbation,

y, about �x,
x = �x(t) + y: (4.16)

The Taylor expansion (substituting eq. (4.16) into eq. (4.2)) about �x
gives

_x = _�x(t) + _y = f(�x(t)) +Df(�x(t))y+ higher-order terms: (4.17)

It seems reasonable that the motion near the �xed point should be

governed by the linear system

_y = Df(�x(t))y; (4.18)
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since _x(t) = f(�x(t)). If �x(t) = �x is an equilibrium point, then Df(�x)

is a matrix with constant entries. We can immediately write down the

solution to this linear system as

y(t) = exp[Df(�x)t]y0; (4.19)

where exp[Df(�x)] is the evolution operator for a linear system. If we let

A = Df(�x) denote the constant n�n matrix, then the linear evolution

operator takes the form

exp(At) = id+At+
1

2!
A2t2 +

1

3!
A3t3 + � � � (4.20)

where id denotes the n� n identity matrix.
The asymptotic stability of a �xed point can be determined by the

eigenvalues of the linearized vector �eld Df at �x. In particular, we have
the following test for asymptotic stability: an equilibrium solution of a

nonlinear vector �eld is asymptotically stable if all the eigenvalues of
the linearized vector �eld Df(�x) have negative real parts.

If the real part of at least one eigenvalue exactly equals zero (and
all the others are strictly less than zero) then the system is still linearly
stable, but the original nonlinear system may or may not be stable.

4.5.3 Hyperbolic Fixed Points: . Saddles,

Sources, and Sinks

Let x = �x be an equilibrium point of a vector �eld. Then �x is called

a hyperbolic �xed point if none of the real parts of the eigenvalues of

Df(�x) is equal to zero. The test for asymptotic stability of the previous
section can be restated as: a hyperbolic �xed point is stable if the real

parts of all its eigenvalues are negative. A �xed point of a map is
hyperbolic if none of the moduli of the eigenvalues equals one.

The motion near a hyperbolic �xed point can be analyzed and
brought into a standard form by a linear transformation to the eigen-

vectors of Df(�x). Additional analysis, including higher-order terms, is

usually needed to analyze the motion near a nonhyperbolic �xed point.

At last, we can precisely de�ne the terms saddle, sink, source, and

center. A hyperbolic equilibrium solution is a saddle if the real part of
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Figure 4.9: Complex eigenvalues for a two-dimensional map with a

hyperbolic �xed point: (a) saddle, (b) sink, and (c) source.

at least one eigenvalue of the linearized vector �eld is less than zero and
if the real part of at least one eigenvalue is greater than zero. Similarly,
a saddle point for a map is a hyperbolic point if at least one of the
eigenvalues of the associated linear map has a modulus greater than

one, and if one of the eigenvalues has modulus less than one.
A hyperbolic point of a ow is a stable node or sink if all the eigen-

values have real parts less than zero. Similarly, if all the moduli are
less than one then the hyperbolic point of a map is a sink.

A hyperbolic point is an unstable node or source if the real parts of

all the eigenvalues are greater than zero. The moduli of a source of a
map are all greater than one.

A center is a nonhyperbolic �xed point for which all the eigenvalues
are purely imaginary and nonzero (modulus one for maps). For a pic-

ture of the elementary equilibriumpoints in three-dimensional space see

Figure 3.10 of Thompson and Stewart [7]. The corresponding stability
information for a hyperbolic �xed point of a two-dimensional map is

summarized in Figure 4.9.

4.6 Invariant Manifolds

According to our discussion of invariant sets in section 4.3.1, we would
like to analyze a dynamical system by breaking it into its dynamically

invariant parts. This is particularly easy to accomplish with linear
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systems because we can write down a general solution for the ow

operator as etA (see section 4.5.2). The eigenspaces of a linear ow or

map (i.e., the spaces formed by the eigenvectors of A) are invariant

subspaces of the dynamical system. Moreover, the dynamics on each

subspace are determined by the eigenvalues of that subspace. If the

original manifold isRn, then each invariant subspace is also a Euclidean

manifold which is a subset of Rn. It is sensible to classify each of these

invariant submanifolds according to the real parts of its eigenvalues, �i:

Es is the subspace spanned by the eigenvectors of A with Re(�i) < 0;

Ec is the subspace spanned by the eigenvectors of A with Re(�i) = 0;

Eu is the subspace spanned by the eigenvectors of A with Re(�i) > 0:

Es is called the stable space of dimension ns, E
c is called the center

space of dimension nc, and E
u is called the unstable space of dimension

nu. If the original linear manifold is of dimension n, then the sum of
the dimensions of the invariant subspaces must equal n: nu+nc+ns =
n. This de�nition also works for maps when the conditions on �i are
replaced by modulus less than one (Es), modulus equal to one (Ec), and

modulus greater than one (Eu).
For example, consider the matrix

A =

0
B@ 1 2 0

1 0 0

0 0 0

1
CA

This matrix has eigenvalues � = �1; 0; 2 and eigenvectors (1;�1; 0),
(0; 0; 1), (2; 1; 0), and the ow on the invariant manifolds is illustrated

in Figure 4.10.

4.6.1 Center Manifold Theorem

It is important to keep in mind that we always speak of invariant man-

ifolds based at a point. This point is usually a �xed point �x of a ow
or a periodic point of a map. In the linear setting, the invariant man-

ifold is just a linear vector space. In the nonlinear setting we can also
de�ne invariant manifolds that are not linear subspaces but are still



212 CHAPTER 4. DYNAMICAL SYSTEMS THEORY

Figure 4.10: Invariant manifolds for a linear ow with eigenvalues �i =
�1 (Es); 0 (Ec); 2 (Eu).

manifolds. That is, locally they look like a copy of Rn. These invariant
manifolds are a direct generalization of the invariant subspaces of the
linear problem. They are the most important geometric structure used
in the analysis of a nonlinear dynamical system.

The way to generalize the notion of an invariant manifold from the

linear to the nonlinear setting is straightforward. In both the linear and
nonlinear settings, the stable manifold is the collection of all orbits that
approach a point x. Similarly, the unstable manifold is the collection of
all orbits that depart from x. The fact that this notion of an invariant
manifold for a nonlinear system is well de�ned is guaranteed by the

center manifold theorem [1]:

Center Manifold Theorem for Flows. Let f�(x) be a

smooth vector �eld on Rn with f�(�x) = 0 and A = Df(�x).

The spectrum (set of eigenvalues) f�ig of A divides into
three sets �s, �c, and �u, where

�i 2
8><
>:

�s; Re(�i) < 0;

�c; Re(�i) = 0;
�u; Re(�i) > 0:

Let Es, Ec, and Eu be the generalized eigenspaces of �s, �c,

and �u. There exist smooth stable and unstable manifolds,

calledW s and W u, tangent to Es and Eu at �x, and a center
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Figure 4.11: Invariant manifolds of a saddle for a two-dimensional map.

manifold W c tangent to Ec at �x. The manifolds W s, W c,
and W u are invariant for the ow. The stable manifold
W s and the unstable manifold W u are unique. The center
manifold W c need not be unique.

W s is called the stable manifold, W c is called the center manifold, and
W u is called the unstable manifold. A corresponding theorem for maps
also holds and can be found in reference [1] or [6]. Numerical methods

for the construction of the unstable and stable manifolds are described
in reference [8].

Always keep in mind that ows and maps di�er: a trajectory of a
ow is a curve in Rn while the orbit of a map is a discrete sequence of
points. The invariant manifolds of a ow are composed from a union of
solution curves; the invariant manifolds of a map consist of a union of a

discrete collection of points (Fig. 4.11). The distinction is crucial when

we come to analyze the global behavior of a dynamical system. Once
again, we reiterate that the unstable and stable invariant manifolds

are not a single solution, but rather a collection of solutions sharing a
common asymptotic past or future.

An example (from Guckenheimer and Holmes [1]) where the invari-

ant manifolds can be explicitly calculated is the planar vector �eld

_x = x; _y = �y + x2:

This system has a hyperbolic �xed point at the origin where the lin-
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Figure 4.12: (a) Invariant manifolds (at the origin) for the linear ap-
proximation. (b) Invariant manifolds for the original nonlinear system.

earized vector �eld is

_x = x; _y = �y:
The stable manifold of the linearized system is just the y-axis, and the
unstable manifold of the linearized system is the x-axis (Fig. 4.12(a)).
Returning to the nonlinear system, we can solve this system by elimi-
nating time:

_y

_x
=

dy

dx
=
�y
x

+ x or y(x) =
x2

3
+

c

x
;

where c is a constant of integration. It is now easy to see (Prob. 4.20)
that (Fig. 4.12(b))

W u(0; 0) = f(x; y) j y = x2

3
g and W s(0; 0) = f(x; y) j x = 0g:

4.6.2 Homoclinic and Heteroclinic Points

We informally de�ne the unstable manifold and the stable manifold for

a hyperbolic �xed point �x of a map f by

W s(�x) = fx j limn!1f
n(x) = �xg
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Figure 4.13: (a) Poincar�e map in the vicinity of a periodic orbit,
W s(�x) = W u(�x). (b) The map shown with a transversal intersection

at a homoclinic point.

and
W u(�x) = fx j limn!1f

�n(x) = �xg:
These manifolds are tangent to the eigenvectors of f at �x.

We are led to study a two-dimensional map f by considering the
Poincar�e map of a three-dimensional ow in the vicinity of a periodic
orbit. This situation is illustrated in Figure 4.13. The map f is orienta-
tion preserving6 because it comes from a smooth ow. The periodic or-

bit of the ow gives rise to the �xed point �x of the map. The �xed point

�x has a one-dimensional stable manifold W s(�x) and a one-dimensional

unstable manifold W u(�x). Poincar�e was led to his discovery of chaotic
behavior and homoclinic tangles (see section 3.6 and Appendix H) by
considering the interaction between the stable and unstable manifold

of �x. One possible interaction is shown in Figure 4.13(a) where the un-

stable manifold exactly matches the stable manifold, W s(�x) = W u(�x).
However, such a smooth match is exceptional. The more common

possibility is for a transversal intersection between the stable and unsta-

6Informally, a map of a surface is orientation preserving if the normal vector to
the surface is not ipped under the map.
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Figure 4.14: (a) A homoclinic point. (b) A heteroclinic point.

ble manifold (Fig. 4.13(b)). The location of the transversal intersection
is called a homoclinic point when both the unstable and stable manifold
emanate from the same periodic orbit (Fig. 4.14(a)). The intersection
point is called a heteroclinic point when the manifolds emanate from dif-
ferent periodic orbits. A heteroclinic point is shown in Figure 4.14(b)

where the unstable manifold emanating from �x intersects the stable
manifold of a di�erent �xed point �y.

The existence of a single homoclinic or heteroclinic point

forces the existence of an in�nity of such points. Moreover,

it also gives rise to a homoclinic (heteroclinic) tangle. This

tangle is the geometric source of chaotic motions.

To see why this is so, consider Figure 4.15. A homoclinic point
is indicated at x0. This homoclinic point is part of both the stable
manifold and the unstable manifold,

x0 2 W s(�x) and x0 2 W u(�x):

Also shown is a point a that lies on the stable manifold behind x0 (the

direction is determined by the arrow on the manifold), i.e., a < x0 on

W s. Similarly, the point b lies on the unstable manifold with b < x0 on

W u. Now, we must try to �nd the location of the next iterate of f(x0)
subject to the following conditions:

1. The map f is orientation preserving.

2. f(x0) 2 W s(�x) and f(x0) 2 W u(�x) (all the iterates of a homo-
clinic point are also homoclinic points).
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Figure 4.15: The interaction of the stable manifold W s(�x) and the

unstable manifold W u(�x) with a homoclinic point x0. The homoclinic
point x0 gets mapped to the homoclinic point f(x0). The orientation
of the map is determined by considering where points a and b in the
vicinity of x0 are mapped.

3. f(a) < f(x0) on W s and f(b) < f(x0) on W u .

A picture consistent with these assumptions is shown in Figure 4.15.

The point f(x0) must lie at a new homoclinic point (that is, at a new
intersection point) ahead of x0. The �rst candidate for the location
of f(x0) is the next intersection point, indicated at d. However, f(x0)
could not be located here because that would imply that the map f

is orientation reversing (see Prob. 4.21). The next possible location,

which does satisfy all the above conditions, is indicated by f(x0). More
complicated constructions could be envisioned that are consistent with

the above conditions, but the solution shown in Figure 4.15 is the sim-
plest.

Now f(x0) is itself a homoclinic point. And the same argument
applies again: the point f2(x0) must lie closer to �x and ahead of f(x0)

(Fig. 4.16(a)). In this way a single homoclinic orbit must generate

an in�nite number of homoclinic orbits. This sequence of homoclinic
points asymptotically approaches �x.

Since f arises from a ow, it is a di�eomorphism and thus invertible.
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Figure 4.16: (a) Images and preimages of a homoclinic point. (b) A
homoclinic tangle resulting from a single homoclinic point.

Therefore, exactly the same argument applies to the preimages of �x0.
That is, f�n(x0) approaches �x via the unstable manifold. The end
result of this construction is the violent oscillation of W s and W u in
the region of �x. These oscillations form the homoclinic tangle indicated

schematically in Figure 4.16(b).
The situation is even more complicated than it initially appears.

The homoclinic points are not periodic orbits, but Birkho� and Smith
showed that each homoclinic point is an accumulation point for an in-

�nite family of periodic orbits [9]. Thus, each homoclinic tangle has an

in�nite number of homoclinic points, and in the vicinity of each homo-
clinic point there exists an in�nite number of periodic points. Clearly,

one major goal of dynamical systems theory, and nonlinear dynamics,
is the development of techniques to dissect and classify these homo-

clinic tangles. In section 4.8 we will show how the orbit structure of a

homoclinic tangle is organized by using a horseshoe map. In Chapter 5
we will continue this topological approach by showing how knot theory
can be used to unravel a homoclinic tangle.
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4.7 Example: Laser Equations

We now consider a detailed example to help reinforce the barrage of

mathematical de�nitions and concepts in the previous sections. Our

example is taken from nonlinear optics and is known as the laser rate

equation [10],

F =

 
F1

F2

!
=

 
_u

_z

!
=

 
zu

(1 � �1z)� (1 + �2z)u

!
:

In this model u is the laser intensity and z is the population inversion.
The parameters �1 and �2 are damping constants. When certain lasers
are turned on they tend to settle down to a constant intensity light out-
put (constant u) after a series of damped oscillations (ringing) around
the stable steady state solution. This behavior is predicted by the laser

rate equation.
To calculate the stability of the steady states we need to know the

derivative of F:

DF =

0
@ @F1

@u
@F1
@z

@F2
@u

@F2
@z

1
A =

0
@ z u

�(1 + �2z) �(�1 + �2u)

1
A :

4.7.1 Steady States

The steady states are found by setting F = 0:

zu = 0;

(1� �1z)� (1 + �2z)u = 0:

These equations have two equilibrium solutions. The �rst, which we

label a, occurs at

u = 0 ) z =
1

�1
; a =

�
0;

1

�1

�
:

The second, which we label b, occurs at

z = 0 ) u = 1; b = (1; 0):
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The location in the phase plane of these equilibrium points is shown in

Figure 4.17.

The motion in the vicinity of each equilibrium point is analyzed by

�nding the eigenvalues � and eigenvectors v,

�v = A � v; (4.21)

of the derivative matrix of F, A = DF, at each �xed point of the ow.

At the point a we �nd

DFja =
0
@ 1

�1
0

�(1 + �2
�1
) ��1

1
A :

4.7.2 Eigenvalues of a 2� 2 Matrix

To calculate the eigenvalues of DF, we recall that the general solution
for the eigenvalues of any 2 � 2 real matrix,

A =

 
a11 a12
a21 a22

!
; (4.22)

are given by

�+ =
1

2
[tr(A) +

p
�]; �� =

1

2
[tr(A)�

p
�]; (4.23)

where

tr(A) = a11 + a22; (4.24)

det(A) = a11a22 � a12a21; (4.25)

�(A) = [tr(A)]2 � 4 det(A): (4.26)

Applying these formulas to DFja we �nd

tr(DFja) = 1=�1 � �1;

det(DFja) = �1;
�(DFja) = (1=�1 � �1)

2 + 4 = (�1 + 1=�1)
2;
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and the eigenvalues for the �xed point a are

�+ =
1

�1
and �� = ��1:

The eigenvalue �+ is positive, and indicates an unstable direction; the

eigenvalue �� is negative and indicates a stable direction. The �xed

point a is a hyperbolic saddle.

4.7.3 Eigenvectors

The stable and unstable directions, and hence the stable space Es(a)
and the unstable space Eu(a), are determined by the eigenvectors of
DFja. The stable direction is calculated from

1

�1

 
�

�

!
=

0
@ 1

�1
0

�(1 + �2
�1
) ��1

1
A �

 
�

�

!
:

Solving this system of simultaneous equations for � and � gives the
unnormalized eigenvector for the unstable space as

v(�+) =

 
�

�m�

!
; m =

�1 + �2

�21 + 1
:

Similarly, the stable space is found from the eigenvalue equation for ��:

��1
 

�

�

!
=

0
@ 1

�1
0

�(1 + �2
�1
) ��1

1
A �

 
�

�

!
:

Solving this set of simultaneous equations shows that the stable space

is just the z-axis,

v(��) =

 
0

�

!
:

In fact, the z-axis is invariant for the whole ow (i.e., if z = 0 then _u = 0

for all t) so the z-axis is the global stable manifold at a, Es(a) = W s(a).
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Figure 4.17: Phase portrait for the laser rate equation.

4.7.4 Stable Focus

To analyze the dynamics in the vicinity of the �xed point b we need to
�nd the eigenvalues and eigenvectors of

DFjb =
 

0 1
�1 �(�1 + �2)

!
:

The eigenvalues of DFjb are

�+ = ��+ i! and �� = �� � i!;

where

� =
�1 + �2

2
and ! =

p
1� �2:

The �xed point b is a stable focus since the real parts of the eigenvalues
are negative. This focus represents the constant intensity output of a

laser, and the oscillation about this steady state is the ringing a laser
initially experiences when it is turned on.

The global phase portrait, pieced together from local information
about the �xed points, is pictured in Figure 4.17.
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4.8 Smale Horseshoe

In section 4.6.2 we stressed the importance of analyzing the orbit struc-

ture arising within a homoclinic tangle. From a topological and physical

point of view, analyzing the orbit structure primarily means answering

two questions:

1. What are the relative locations of the periodic orbits?

2. How are the stable and unstable manifolds interwoven within a
homoclinic tangle?

By studying the horseshoe example we will see that these questions are
intimately connected.

In sections 2.11 and 2.12 we answered the �rst question for the
one-dimensional quadratic map by using symbolic dynamics. For the
special case of a chaotic hyperbolic invariant set (to be discussed in
section 4.9), Smale found an answer to both of the above questions for

maps of any dimension. Again, the solution involves the use of symbolic
dynamics.

The prototypical example of a chaotic hyperbolic invariant set is the
Smale horseshoe [11]. A detailed knowledge of this example is essential
for understanding chaos. The Smale horseshoe (like the quadratic map

for � > 4) is an example of a chaotic repeller. It is not an attractor.
Physical applications properly focus on attractors since these are di-
rectly observable. It is, therefore, sometimes believed that the chaotic

horseshoe has little use in physical applications. In Chapter 5 we will
show that such a belief could not be further from the truth. Remnants

of a horseshoe (sometimes called the proto-horseshoe [11]) are buried
within a chaotic attractor. The horseshoe (or some other variant of

a hyperbolic invariant set) acts as the skeleton on which chaotic and
periodic orbits are organized. To quote Holmes, \Horseshoes in a sense

provide the `backbone' for the attractors [12]." Therefore, horseshoes

are essential to both the mathematical and physical analysis of a chaotic

system.
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4.8.1 From Tangles to Horseshoes

The horseshoe map is motivated by studying the dynamics of a map in

the vicinity of a periodic orbit with a homoclinic point. Such a system

gives rise to a homoclinic tangle. Consider a small box (ABCD) in the

vicinity of a periodic orbit as seen from the surface of section. This

situation is illustrated in Figure 4.18(a). The box is chosen so that the

side AD is part of the unstable manifold, and the sides AB and DC

are part of the stable manifold. We now ask how this box evolves under
forward and backward iterations. The unstable and stable manifolds
of the periodic orbit are invariant. Therefore, when the box is iterated,
any point of the box that lies on an invariant manifold must always
remain on this invariant manifold.

If we iterate points in the box forward, then we generally end up (af-
ter a �nite number of iterations) with the \horseshoe shape" (C 0D0A0B0)
shown in Figure 4.18(b). The initial segment AD, which lies on the un-
stable manifold, gets mapped to the segment A0D0, which is also part
of the unstable manifold. Similarly, if we iterate the box backward

we �nd a backward horseshoe perpendicular to the forward horseshoe
(Fig. 4.18(c)). The box of initial points gets compressed along the un-
stable manifoldW u and stretched along the stable manifoldW s. After
a �nite number of iterations, the forward image of the box will inter-
sect the backward image of the box. Further iteration produces more
intersections.

Each new region of intersection contains a periodic orbit (see Fig.
4.20) as well as segments of the unstable and stable manifolds. That is,

the horseshoe can be viewed as generating the homoclinic tangle. Smale

realized that this type of horseshoe structure occurs quite generally in
a chaotic system. Therefore, he decided to isolate this horseshoe map

from the rest of the problem [11].
A schematic for this isolated horseshoe map is presented in Figure

4.18(d). Like the quadratic map, it consists of a stretch and a fold.
The horseshoe map can be thought of as a \thickened" quadratic map.

Unlike the quadratic map, though, the horseshoe map is invertible. The

future and past of all points are well de�ned. However, the itinerary

of points that get mapped out of the box are ignored. We are only

concerned with points that remain in the box under all future and past
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Figure 4.18: Formation of a horseshoe inside a homoclinic tangle.

iterations. These points form the invariant set.

4.8.2 Horseshoe Map

A mathematical discussion of the horseshoe map is provided by De-

vaney [13] or Wiggins [14]. Here, we will present a more descriptive

account of the horseshoe that closely follows Wiggins's discussion.

The forward iteration of the horseshoe map is shown in Figure
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Figure 4.19: (a) Forward iteration of the horseshoe map. (b) Backward

iteration of the horseshoe map.
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4.19(a). The horseshoe is a mapping of the unit square D,

f : D ! R2; D = f(x; y) 2 R2j0 � x � 1; 0 � y � 1g;
which contracts the horizontal directions, expands in the vertical direc-

tion, and then folds. The mapping is only de�ned on the unit square.

Points that leave the square are ignored. Let the horizontal strip H0

be all points on the unit square with 0 � y � 1=�, and let horizontal

strip H1 be all points with 1 � 1=� � y � 1. Then a linear horseshoe

map is de�ned by the transformation

f(H0) :

 
x

y

!
7!
 
� 0
0 �

! 
x

y

!
; (4.27)

f(H1) :

 
x

y

!
7!
 
�� 0

0 ��
! 

x

y

!
+

 
1

�

!
; (4.28)

where 0 < � < 1=2 and � > 2. The horseshoe map takes the horizontal
strip H0 to the vertical strip V0 = f(x; y)j0 � x � �g, and H1 to the
vertical strip V1 = f(x; y)j1� � � x � 1g:

f(H0) = V0 and f(H1) = V1: (4.29)

The strip H1 is also rotated by 180�. The inverse of the horseshoe map
f�1 is shown in Figure 4.19(b). The inverse map takes the vertical

rectangles V0 and V1 to the horizontal rectangles H0 and H1.
The invariant set � of the horseshoe map is the collection of all

points that remain in D under all iterations of f ,

� = � � � f�2(D)
\
f�1(D)

\
D
\
f(D)

\
f2(D) � � � =

1\
n=�1

fn(D):

This invariant set consists of a certain in�nite intersection of horizontal
and vertical rectangles. To keep track of the iterates of the horse-

shoe map (the rectangles), we will need the symbols si 2 f0; 1g with
i = 0;�1;�2; : : : : The symbolic encoding of the rectangles works much
the same way as the symbolic encoding of the quadratic map (see sec-

tion 2.12.2).
The �rst forward iteration of the horseshoe map produces two ver-

tical rectangles called V0 and V1. V0 is the vertical rectangle on the
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Figure 4.20: (a) Forward iteration of the horseshoe map and symbolic
names. (b) Backward iteration. (c) Symbolic encoding of the invariant

points constructed from the forward and backward iterations.
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left and V1 is the vertical rectangle on the right. The next step is to

apply the horseshoe map again, thereby producing f2(D). As shown

in Figure 4.20(a), V0 and V1 produce four vertical rectangles labeled

(from left to right) V00, V01, V11, and V10. Applying the map yet again

produces eight vertical strips labeled V000, V001, V011, V010, V110, V111,

V101, and V100. In general, the nth iteration produces 2n rectangles.

The labeling for the vertical strips is recursively de�ned as follows: if

the current strip is left of the center, then a 0 is added to the front of

the previous label of the rectangle; if it falls to the right, a 1 is added.
So, for instance, the rectangle labeled V1 starts on the right. The rect-
angle labeled V01 originates from strip V1, but it currently lies on the
left. Lastly, the strip V101, starts on the right, then goes to the left,
and then returns to the right again. To each vertical strip we associate

a symbolic itinerary,
Vs

�1s�2s�3:::s�i:::s�n ;

which gives the approximate orbit (left or right) of a vertical strip after
n iterations. The minus sign in the symbolic label indicates that the
symbol s�i arises from considering the ith preimage of the particular
vertical strip under f . Also note that the vertical strips get progres-

sively thinner, so that after n iterations, each strip has a width of �n.
The backward iterates produce 2n horizontal strips at the nth it-

eration. The height of each of these horizontal strips is 1=�n. From
the two horizontal strips H0 and H1, the inverse map f�1 produces
four horizontal rectangles labeled (from bottom to top) as H00, H01,

H11, and H10 (Fig. 4.20(b)). This in turn produces eight horizontal

rectangles, H000, H001, H011, H010, H110, H111, H101, and H100. Each
horizontal strip can be uniquely labeled with a sequence of 0's and 1's,

Hs0s1s2:::si:::sn�1
;

where the symbol s0 indicates the current approximate location (bot-
tom or top) of the horizontal rectangle. The fact that the labeling

scheme is unique follows from the de�nition of f and the observation

that all of the horizontal rectangles are disjoint. Unlike the vertical

strips, the indexing for the horizontal strips starts at 0 and is positive.

The need for this indexing convention will become apparent when we
specify the labeling of points in the invariant set.
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Now, the invariant set � of the horseshoe map f is given by the in�-

nite intersection of all the horizontal and vertical strips. The invariant

set is a fractal, in fact, it is a product of two Cantor sets. The map f

generates a Cantor set in the horizontal direction, and the inverse map

f�1 generates a Cantor set in the vertical direction. The invariant set

is, in a sense, the product of these two Cantor sets.

4.8.3 Symbolic Dynamics

We can identify points in the invariant set according to the following
scheme. After one forward iteration and one backward iteration, the in-
variant set is located within the four shaded rectangular regions shown
in Figure 4.20(c). After two forward iterations and two backward it-
erations, the invariant set is a subset of the 16 shaded regions. The

shaded regions are the intersection of the horizontal and vertical strips.
To each shaded region we associate a bi-in�nite symbol sequence,

� � � s�n � � � s�3s�2s�1:s0s1s2 � � � sn � � � ;
constructed from the label of the vertical and horizontal strips forming
a point in the invariant set. The right-hand side of the symbolic name,
s0s1s2 � � � sn � � �, is the label from the horizontal strip Hs0s1s2���sn���. The
left-hand side of the symbolic name, � � � s�n � � � s�3s�2s�1, is the label
from the vertical strip written backwards, Vs

�1s�2s�3:::s�i:::s�n. For in-
stance, the shaded region labeled L in Figure 4.20(c) has a symbolic
name \10:01." The \:01" to the right of the dot indicates horizontal

strip H01. The \10:" (\01" backwards) to the left of the dot indicates

that the shaded region comes from the vertical strip V01.

We hone in closer and closer to the invariant set by iterating the

horseshoe map both forward and backward. Moreover, the above la-
beling scheme generates a symbolic name, or symbolic coordinate, for

each point of the invariant set. This symbolic name contains informa-
tion about the dynamics of the invariant point.

To see how this works more formally, let us call � the symbol space
of all bi-in�nite sequences of 0's and 1's. A metric on � between the

two sequences

s = (� � � s�n � � � s�1:s0s1 � � � sn � � �)



4.8. SMALE HORSESHOE 231

�s = (� � � �s�n � � � �s�1:�s0�s1 � � � �sn � � �)

is de�ned by

d[s; �s] =
1X

i=�1

�i

2jij
where �i =

(
0 if si = �si;

1 if si 6= �si:
(4.30)

Next we de�ne a shift map � on � by

�(s) = (� � � s�n � � � s�1s0:s1s2 � � � sn � � �); i:e:; �(s)i = si+1: (4.31)

The shift map is continuous and it has two �xed points consisting
of a string of all 0's or all 1's. A period n orbit of � is written as

s�n � � � s�1:s0s1 � � � sn�1, where the overbar indicates that the symbolic
sequence repeats forever. A few of the periodic orbits and their \shift
equivalent" representations are listed below,

Period 1 : 0:0; 1:1;
Period 2 : 01:01 �! 10:10;
Period 3 : 001:001 �! 010:010 �! 100:100;

110:110 �! 101:101 �! 110:110;

and so on. In addition to periodic orbits of arbitrarily high period, the
shift map also possesses an uncountable in�nity of nonperiodic orbits as
well as a dense orbit. See Devaney [13] or Wiggins [14] for the details.

In section 2.11 we showed that the shift map on the space of one-

sided symbol sequences is topologically semiconjugate to the quadratic
map. A similar results holds for the shift map on the space of bi-in�nite
sequences and the horseshoe map; namely, there exists a homeomor-

phism � : �! � connecting the dynamics of f on � and � on � such

that � � f = � � �:

�
f�! �

� # # �
�

��! �

The correspondence between the shift map on � and the horseshoe map

on the invariant set � is pretty easy to see (again, for the mathematical
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Figure 4.21: Equivalence between the dynamics of the horseshoe map
on the unit square and the shift map on the bi-in�nite symbol space.

details see Wiggins [14]). The invariant set consists of an in�nite inter-
section of horizontal and vertical strips. These intersection points are
labeled by their symbolic itinerary, and the horseshoe map carries one
point of the invariant set to another precisely by a shift map. Consider,

for instance, the period two orbit

01:01
��! 10:10:

The shift map sends 01:10 to 10:10 and back again. This corresponds

to an orbit of the horseshoe map that bounces back and forth between
the points labeled 01:01 and 10:10 in � (see Fig. 4.21). The topological

conjugacy between � and f allows us to immediately conclude that,
like the shift map, the horseshoe map has

1. a countable in�nity of periodic orbits (and all the periodic orbits
are hyperbolic saddles);

2. an uncountable in�nity of nonperiodic orbits;

3. a dense orbit.

The shift map (and hence the horseshoe map) exhibits sensitive de-

pendence on initial conditions (see section 4.10). As stated above, it
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possesses a dense orbit. These two properties are generally taken as

de�ning a chaotic set.

4.8.4 From Horseshoes to Tangles

Forward and backward iterations of the horseshoe map generate the

locations of periodic points to a higher and higher precision. That is, by

iterating the horseshoe map, we can specify the location of a periodic

orbit within a homoclinic tangle (of the horseshoe) to any degree of
accuracy. For instance, after one iteration, we know the approximate
location of a period two orbit. It lies somewhere within the shaded
regions labeled 0:1 and 1:0 in Figure 4.20(c). After two iterations, we
know its position even better. It lies somewhere within the shaded

regions labeled 10:10 and 01:01 (Fig. 4.20(c)).
The forward iterates of the horseshoe map produce a \snake" that

approaches the unstable manifold W u of the periodic point. The back-
ward iterates produce another snake that approaches the stable mani-
fold W s of the periodic point at the origin. Thus, iterating a horseshoe

generates a tangle. The relative locations of horizontal and vertical
branches of this tangle are the same as those that occur in a homoclinic
tangle with a horseshoe arising in a particular ow. This is illustrated
in Figure 4.22. We can name the branches of the tangle with the same
labeling scheme we used for the horseshoe. For a horseshoe, the label-

ing scheme is easy to see once we notice that both the horizontal and
vertical branches are labeled according to the alternating binary tree

introduced in section 2.12.2.

The labeling of the horizontal branches is determined by the symbols
s0s1s2 : : : : For instance, the horizontal label for branch H110 can be
determined by reading down the alternating binary tree as illustrated

in Figure 4.22. A second alternating binary tree is used to determine

the labeling for the vertical branches. The labeling for the branch V110
is indicated in Figure 4.22. The labeling scheme for the horizontal and

vertical branches at �rst appears complicated. However, the branch
names are easy to write down once we realize that they can be read

directly from the alternating binary tree.
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Figure 4.22: Homoclinic (horseshoe) tangle and the labeling scheme for

horizontal and vertical branches from a pair of alternating binary trees.
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Figure 4.23: Examples of horseshoe-like maps that generate hyperbolic
invariant sets.

4.9 Hyperbolicity

The horseshoe map is just one of an in�nity of possible return maps
(chaotic forms) that can be successfully analyzed using symbolic dy-
namics. A few other possibilities are shown in Figure 4.23. Each dif-
ferent return map generates a di�erent homoclinic tangle, but all these
tangles can be dissected using symbolic dynamics. All these maps are

similar to the horseshoe because they are topologically conjugate to an
appropriate symbol space with a shift map. All these maps possess an
invariant Cantor set �. These invariant sets all possess a special prop-
erty that ensures their successful analysis using symbolic dynamics,
namely, hyperbolicity.

Recall our de�nition of a hyperbolic point. A �xed point of a map
is hyperbolic if none of the moduli of its eigenvalues exactly equals

one. The notion of a hyperbolic invariant set is a generalization of a

hyperbolic �xed point. Informally, to de�ne a hyperbolic set we extend
this property of \no eigenvalues on the unit circle" to each point of the

invariant set. In other words, there is no center manifold for any point
of the invariant set. Technically, a set � arising in a di�eomorphism

f : R2 ! R2 is a hyperbolic set if

1. there exists a pair of tangent lines Es(x) and Eu(x) for each x 2 �

which are preserved by Df(x);
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2. Es(x) and Eu(x) vary smoothly with x;

3. there is a constant � > 1 such that kDf(x)wk � �kwk for all

w 2 Eu(x) and kDf�1(x)wk � �kwk for all w 2 Es(x).

A more completemathematical discussion of hyperbolicity can be found

in Devaney [13] or Wiggins [14]. A general mathematical theory for the

symbolic analysis of chaotic hyperbolic invariant sets is described by

Devaney [13] and goes under the rubric of \subshifts and transition
matrices."

Like the horseshoe, the chaotic hyperbolic invariant sets encoun-
tered in the mathematics literature are often chaotic repellers. In phys-
ical applications, on the other hand, we are more commonly faced with
the analysis of nonhyperbolic chaotic attractors. The extension of sym-
bolic analysis from the (mathematical) hyperbolic regime to the (more

physical) nonhyperbolic regime is still an active research question [15].

4.10 Lyapunov Characteristic Exponent

In section 2.10 we informally introduced the Lyapunov exponent as
a simple measure of sensitive dependence on initial conditions, i.e.,
chaotic behavior. The notion of a Lyapunov exponent is a general-
ization of the idea of an eigenvalue as a measure of the stability of a
�xed point or a characteristic exponent [1] as the measure of the sta-

bility of a periodic orbit. For a chaotic trajectory it is not sensible to

examine the instantaneous eigenvalue of a trajectory. The next best
quantity, therefore, is an eigenvalue averaged over the whole trajectory.

The idea of measuring the average stability of a trajectory leads us to

the formal notion of a Lyapunov exponent. The Lyapunov exponent is
best de�ned by looking at the evolution (under a ow) of the tangent

manifold. That is, \sensitive dependence on initial conditions" is most
clearly stated as an observation about the evolution of vectors in the

tangent manifold rather than the evolution of trajectories in the ow
of the original manifold M .

The tangent manifold at a point x, written as TMx, is the collection

of all tangent vectors of the manifold M at the point x. The tangent

manifold is a linear vector space. The collection of all tangent manifolds
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Figure 4.24: Evolution of vectors in the tangent manifold under a ow.

is called the tangent bundle. For instance, for a surface embedded inR3

the tangent manifold at each point of the manifold is a tangent plane.
More generally, if the original manifold is of dimension n, then the tan-
gent manifold is a linear vector space also of dimension n. For further
background material on manifolds, tangent manifolds, and ows, see

Arnold [1].
The integral curves of a ow on a manifold provide a smooth foli-

ation of that manifold, in the following manner. A point x 2 M goes
to the point �t(x) 2M under the ow (see Fig. 4.24). Now we make a
key observation: the tangent vectors w 2 TMx are also carried by the

ow (this is called a \Lie dragging") so that we can set up a unique

correspondence between the tangent vectors in TMx and the tangent
vectors in TM�t(x). Namely, for each w 2 TMx, there exists a unique
vector D�t[w] 2 TM�t(x). The Lyapunov characteristic exponent of a

ow is de�ned as

�(x;w) = lim
t!1

1

t
ln

 kD�t(x)[w]k
kwk

!
: (4.32)

That is, the Lyapunov characteristic exponent measures the average

growth rate of vectors in the tangent manifold. The corresponding
Lyapunov characteristic exponent of a map is [6]

�(x;w) = lim
n!1

1

n
ln k(Df(x))n[w]k; (4.33)
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where

(Df(x))n = Df(fn�1(x)) � � � � �Df(x)[w]: (4.34)

A ow is said to have sensitive dependence on initial conditions if the

Lyapunov characteristic exponent is positive. From a physical point of

view, the Lyapunov exponent is a very useful indicator distinguishing

a chaotic from a nonchaotic trajectory [16].
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Problems

Problems for section 4.2.

4.1. Show that the H�enon map with � = 0 reduces to an equivalent form of the
quadratic map.
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4.2. Introduce the new variable � = !t to the forced damped pendulum and
rewrite the equations for the vector �eld so that the ow is �(�; �; v) : S1�R2.

4.3. Write the IHJM optical map as a map of two real variables f(x; y) : R2 ! R2

where z = x+ iy. Consider separately the cases where the parameters  and
B are real and complex.

Section 4.3.

4.4. What is the !-limit set of a point x1 of a period two orbit of the quadratic
map: O(x1) = fx1; x2g?

4.5. Let f(z) : S1 ! S1, with z 7! e2�i�z. Show that if � is irrational, then
!(p) = S1.

4.6. Give an example of a map f : M !M with L+ 6= 
.

4.7. Why is the label 
 a good name for the nonwandering set?

Section 4.4.

4.8. Verify that the Jacobian for the H�enon map is

@(xn+1; yn+1)

@(xn; yn)
= ��:

4.9. Compute the divergence of the vector �eld for the damped linear oscillator,
�x+ � _x+ !2x = 0.

4.10. Calculate the divergence of the vector �eld for the Du�ng equation, forced
damped pendulum, and modulated laser rate equation. For what parameter
values are the �rst two systems dissipative or conservative?

4.11. Calculate the Jacobian for the quadratic map, the sine circle map, the Baker's
map, and the IHJM optical map. For what parameter values is the Baker's
map dissipative or conservative?

4.12. The de�nition of a \dissipative" dynamical system in section 4.4.4 actually
includes expansive systems. How would you rede�ne the term dissipative to
handle these cases separately?

4.13. Solve the equation of �rst variation for the vector �eld F(x; v) = (v;�x).
That is, �nd the time evolution of �xx(t); �xv(t); �vx(t); �vv(t).

Section 4.5.
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4.14. Explicitly derive the evolution operator for the vector �eld F(x; v) = (v;�x)
by solving the di�erential equation for the harmonic oscillator in dimensionless
variables.

4.15. Show that the following 2� 2 Jordan matrices have the indicated linear evo-
lution operators:

(a)

A =

�
�1 0
0 �2

�
; etA =

�
e�1t 0

0 e�2t

�
;

(b)

A =

�
� �!
! �

�
; etA = e�t

�
cos!t � sin!t
sin!t cos!t

�
;

(c)

A =

�
� 0
1 �

�
; etA = e�t

�
1 0
t 1

�
:

4.16. Find an example of a di�erential equation with an equilibrium point which is
linearly stable but not locally stable. Hint: See Wiggins, reference [1].

4.17. Find the �xed points of the sine circle map and the Baker's map.

4.18. Find all the �xed points of the linear harmonic oscillator �x+ x+� _x = 0 and
evaluate their local stability for � = 1 and � < 1. When are the �xed points
asymptotically stable?

4.19. Find the equilibrium points of the unforced Du�ng equation and the damped
pendulum, and analyze their linear stability.

Section 4.6.

4.20. CalculateWu(0; 0) andW s(0; 0) for the planar vector �eld _x = x, _y = �y+x2.

4.21. Draw a picture from Figure 4.15 to show that if f(x0) is located at d, then
the map is orientation reversing.

Section 4.7.

4.22. Follow section 4.7 to construct the phase portrait for the laser rate equation
when (a) �1 = �2 = 0, and (b) �1; �2 < 0.

Section 4.8.

4.23. Calculate the inverse of the horseshoe map f�1 described in section 4.8.2.
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Chapter 5

Knots and Templates

5.1 Introduction

Physicists are confronted with a fundamental challenge when studying
a nonlinear system; to wit, how are theory and experiment to be com-
pared for a chaotic system? What properties of a chaotic system should
a physical theory seek to explain or predict? For a nonchaotic system,
a physical theory can attempt to predict the long-term evolution of

an individual trajectory. Chaotic systems, though, exhibit sensitive
dependence on initial conditions. Long-term predictability is not an
attainable or a sensible goal for a physical theory of chaos. What is to
be done?

A consensus is now forming among physicists which says that a

physical theory for low-dimensional chaotic systems should consist of
two interlocking components:

1. a qualitative encoding of the topological structure of the chaotic

attractor (symbolic dynamics, topological invariants), and

2. a quantitative description of the metric structure on the attractor

(scaling functions, transfer operators, fractal measures).

A physicist's \dynamical quest" consists of �rst dissecting the topolog-
ical form of a strange set, and second, \dressing" this topological form

with its metric structure.

243
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In this chapter we introduce one beautiful approach to the �rst

part of a physicist's dynamical quest, that is, unfolding the topology

of a chaotic attractor. This strategy takes advantage of geometrical

properties of chaotic attractors in phase space.

A low-dimensional chaotic dynamical system with one unstable di-

rection has a rich set of recurrence properties that are determined by

the unstable saddle periodic orbits embedded within the strange set.

These unstable periodic orbits provide a sort of skeleton on which

the strange attractor rests. For ows in three dimensions, these pe-
riodic orbits are closed curves, or knots. The knotting and linking of
these periodic orbits is a bifurcation invariant, and hence can be used
to identify or \�ngerprint" a class of strange attractors. Although a
chaotic system de�es long-term predictability, it may still possess good

short-term predictability. This short-term predictability fundamentally
distinguishes \low-dimensional" chaos from our notion of a \random"
process. Mindlin and co-workers [1,2,3], building on work initiated by
Solari and Gilmore [4,5], recently developed this basic set of observa-
tions into a coherent physical theory for the topological characterization

of chaotic sets arising in three-dimensional ows. The approach advo-
cated by Mindlin, Solari, and Gilmore emphasizes the prominent role
topology must play in any physical theory of chaos. In addition, it sug-
gests a useful approach toward developing dynamical models directly
from experimental time series.

In recent years the ergodic theory of di�erentiable dynamical sys-
tems has played a prominent role in the description of chaotic physical

systems [6]. In particular, algorithms have been developed to compute

fractal dimensions [7,8], metric entropies [9], and Lyapunov exponents
[10] for a wide variety of experimental systems. It is natural to consider
such ergodic measures, especially if the ultimate aim is the characteri-

zation of turbulent motions, which are, presumably, of high dimension.

However, if the aim is simply to study and classify low-dimensional
chaotic sets, then topological methods will certainly play an important

role. Topological signatures and ergodic measures usually present dif-
ferent aspects of the same dynamical system, though there are some

unifying principles between the two approaches, which can often be

found via symbolic dynamics [11]. The metric properties of a dynam-
ical system are invariant under coordinate transformations; however,
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they are not generally stable under bifurcations that occur during pa-

rameter changes. Topological invariants, on the other hand, can be

stable under parameter changes and therefore are useful in identifying

the same dynamical system at di�erent parameter values.

The aim of this chapter is to develop topological methods suitable

for the classi�cation and analysis of low-dimensional nonlinear dynam-

ical systems. The techniques illustrated here are directly applicable to

a wide spectrum of experiments including lasers [4], uid systems such

as those giving rise to surface waves [12], the bouncing ball system
described in Chapter 1, and the forced string vibrations described in
Chapter 3.

The major device in this analysis is the template, or knot holder,
of the hyperbolic chaotic limit set. The template is a mathematical

construction �rst introduced by Birman and Williams [13] and further
developed by Holmes and Williams [14]. Roughly, a template is an
expanding map on a branched surface. Templates are useful because
periodic orbits from the ow of a chaotic hyperbolic dynamical system
can be placed on a template in such a way as to preserve their original

topological structure. Thus templates provide a visualizable model for
the topological organization of the limit set. Templates can also be
described algebraically by �nite matrices, and this in turn gives us a
kind of homology theory for low-dimensional chaotic limit sets.

As recently described by Mindlin, Solari, Natiello, Gilmore, and

Hou [2], templates can be reconstructed from a moderate amount of
experimental data. This reconstructed template can then be used both

to classify the strange attractor and to make speci�c predictions about

the periodic orbit structure of the underlying ow. Strictly speaking,
the template construction only applies to ows in the three-sphere,
S3, although it is hoped that the basic methodology illustrated by the

template theory can be used to characterize ows in higher dimensions.

The strategy behind the template theory is the following. For a
nonlinear dynamical system there are generally two regimes that are

well understood, the regime where a �nite number of periodic orbits
exist and the hyperbolic regime of fully developed chaos. The essen-

tial idea is to reconstruct the form of the fully developed chaotic limit

set from a non-fully developed (possibly nonhyperbolic) region in pa-
rameter space. Once the hyperbolic limit set is identi�ed, then the
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topological information gleaned from the hyperbolic limit set can be

used to make predictions about the chaotic limit set in other (possibly

nonhyperbolic) parameter regimes, since topological invariants such as

knot types, linking numbers, and relative rotation rates are robust un-

der parameter changes.

In the next section we follow Auerbach and co-workers to show how

periodic orbits are extracted from an experimental time series [15, 16].

These periodic cycles are the primary experimental data that the tem-

plate theory seeks to organize. Section 5.3 de�nes the core mathemat-
ical ideas we need from knot theory: knots, braids, links, Reidemeister
moves, and invariants. In section 5.4 we describe a simple, but phys-
ically useful, topological invariant called a relative rotation rate, �rst
introduced by Solari and Gilmore [4]. Section 5.5 discusses templates,

their algebraic representation, and their symbolic dynamics. Here, we
present a new algebraic description of templates in terms of \framed
braids," a representation suggested by Melvin [17]. This section also
shows how to calculate relative rotation rates from templates. Section
5.6 provides examples of relative rotation rate calculations from two

common templates. In section 5.7 we apply the template theory to
the Du�ng equation. This �nal section is directly applicable to ex-
periments with nonlinear string motions, such as those described in
Chapter 3 [18].

5.2 Periodic Orbit Extraction

Periodic orbits are available in abundance from a single chaotic time
series. To see why this is so consider a recurrent three-dimensional ow
in the vicinity of a hyperbolic periodic orbit (Fig. 5.1) [19]. Since the

ow is recurrent, we can choose a surface of section in the vicinity of

this �xed point. This section gives a compact map of the disk onto
itself with at least one �xed point. In the vicinity of this �xed point a

chaotic limit set (a horseshoe) containing an in�nite number of unstable
periodic orbits can exist. A single chaotic trajectory meanders around

this chaotic limit set in an ergodic manner, passing arbitrarily close

to every point in the set including its starting point and each periodic

point.
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Figure 5.1: A recurrent ow around a hyperbolic �xed point.

Figure 5.2: (a) A close recurrence of a chaotic trajectory. (b) By gently
adjusting a segment of the chaotic trajectory we can locate a nearby
periodic orbit. (Adapted from Cvitanovi�c [19].)

Now let us consider a small segment of the chaotic trajectory that

returns close to some periodic point. Intuitively, we expect to be able
to gently adjust the starting point of the segment so that the segment

precisely returns to its initial starting point, thereby creating a periodic
orbit (Fig. 5.2).

Based on these simple observations, Auerbach and co-workers [15]
showed that the extraction of unstable periodic orbits from a chaotic

time series is surprisingly easy. Very recently, Lathrop and Kostelich

[16], and Mindlin and co-workers [2], successfully applied this orbit
extraction technique to a strange attractor arising in an experimental

ow, the Belousov-Zhabotinskii chemical reaction.



248 CHAPTER 5. KNOTS AND TEMPLATES

As discussed in Appendix H, the idea of using the periodic orbits

of a nonlinear system to characterize the chaotic solutions goes back to

Poincar�e [20]. In a sense, Auerbach and co-workers made the inverse

observation: not only can periodic orbits be used to describe a chaotic

trajectory, but a chaotic trajectory can also be used to locate periodic

orbits.

A real chaotic trajectory of a strange attractor can be viewed as

a kind of random walk on the unstable periodic orbits. A segment

of a chaotic trajectory approaches an unstable periodic orbit along its
stable manifold. This approach can last for several cycles during which
time the system has good short-term predictability. Eventually, though,
the orbit is ejected along the unstable manifold and proceeds until it
is captured by the stable manifold of yet another periodic orbit. A

convenient mathematical language to describe this phenomenon is the
shadowing theory [21] of Conley and Bowen. Informally, we say that
a short segment of a chaotic time series shadows an unstable periodic
orbit embedded within the strange attractor. This shadowing e�ect
makes the unstable periodic orbits (and hence, the hyperbolic limit

set) observable. In this way, horseshoes and other hyperbolic limit sets
can be \measured."

This also suggests a simple test to distinguish low-dimensional chaos
from noise. Namely, a time series from a chaotic process should have
subsegments with strong recurrence properties. In section 5.2.3 we

give examples of recurrence plots that show these strong recurrence
properties. These recurrence plots give us a quick test for determining

if a time series is from a low-dimensional chaotic process.

5.2.1 Algorithm

Let the vector xi be a point on the strange attractor where xi in our

setting is three-dimensional, and the components are either measured
directly from experiment (e.g., x, _x, �x) or created from an embed-
ding xi = (si; si+� ; si+2� ) of fsigni=1, the scalar time series data gen-

erated from an experimental measurement of one variable. In the

three-dimensional phase space the saddle orbits generally have a one-
dimensional repelling direction and a one-dimensional attracting direc-

tion. When a trajectory is near a saddle it approximately follows the
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motion of the periodic orbit. For a data segment xi;xi+1;xi+2; ::: near

a periodic orbit, and an � > 0, we can �nd a smallest n such that

kxi+n�xik < �. We will often write n = kn0. In a forced system, n0 is

simply the number of samples per fundamental forcing period and k is

the integer period. If the system is unforced, then n0 can be found by

constructing a histogram of the recurrence times as described by Lath-

rop and Kostelich [16]. Candidates for periodic orbits embedded in

the strange attractor are now given by all xi which are (k; �) recurrent

points, where k = n=n0 is the period of the orbit.
In practice we simply scan the time series for close returns (strong

recurrence properties),

kxi+n � xik < �; (5.1)

for k = 1; 2; 3::: to �nd the period one, period two, period three orbits,
and so on. When the data are normalized to the maximum of the time
series, then � = 0:005 appears to work well. The recurrence criterion � is

usually relaxed for higher-order orbits and can be made more stringent
for low-order orbits.

In a ow with a moderate number of samples per period, say n0 >

32, the recurrent points tend to be clustered about one another. That
is, if xi is a recurrent point, then xi+1;xi+2; :::, are also likely to be

recurrent points for the same periodic orbit, simply because the peri-
odic orbit is being approached from its attracting direction. We call
a cluster of such points a window. The saddle orbit is estimated, or
reconstructed, by choosing the orbit with the best recurrence prop-

erty (minimum �) in a window. Alternatively, the orbit can also be

approximated by averaging over nearby segments, which is the more
appropriate procedure for maps [15].

Data segments of strong recurrence in a chaotic time series are easily
seen in recurrence plots, which are obtained by plotting kxi+n�xik as a
function of i for �xed n = kn0. Di�erent recurrence plots are necessary
for detecting period one (k = 1) orbits, period two (k = 2) orbits, and

so on. Windows in these recurrence plots are clear signatures of near-
periodicity over several complete periods in the corresponding segment

of the time series data. The periodic orbits are reconstructed by choos-

ing the orbit at the bottom of each window. Windows in recurrence
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plots also provide a quick test showing that the time series is not being

generated by noise, but may be coming from a low-dimensional chaotic

process.

5.2.2 Local Torsion

In addition to reconstructing the periodic orbits, we can also extract

from a single chaotic time series the linearized ow in the vicinity of each
periodic orbit. In particular, it is possible to calculate the local torsion,
that is, how much the unstable manifold twists about the �xed point.
Let vu be the eigenvector corresponding to the largest eigenvalue �u
about the periodic orbit. That is, vu is the local linear approximation
of the unstable manifold of the saddle orbit. To �nd the local torsion,
we need to estimate the number of half-twists vu makes about the
periodic orbit. The operator ST;0,

ST;0 = exp

 Z T

0
DFd�

!
; (5.2)

gives the evolution of the variational vector. This variational vector
will generate a strip under evolution, and the number of half-turns (the
local torsion) is nothing but one-half the linking number (de�ned in
section 5.3.3) of the central line and the end of the strip de�ned by [22]

A = fx0(t) + �vu(t); 0 � t < 2Tg; (5.3)

where x0 is the curve corresponding to the periodic orbit.

The evolution operator can be estimated from a time series by �rst
noting that

exp

 Z T

0
DFd�

!
�

exp(DF jT�t)� exp(DF jT��T�t)� :::� exp(DF j0�t): (5.4)

Let xi be a recurrent point, and let fxjgnj=1 be a collection of points
in some prede�ned neighborhood about xi. Then DF (xi) is a 3 � 3

matrix, and we can use a least-squares procedure on points from the

time series in the neighborhood of xi to approximate both the Jaco-

bian and the tangent map [10,22]. The local torsion (the number of
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half-twists about the periodic orbit) is a rather rough number calcu-

lated from the product of the Jacobians and hence is insensitive to the

numerical details of the approximation.

5.2.3 Example: Du�ng Equation

To illustrate periodic orbit extraction we again consider the Du�ng

oscillator, in the following form:

_x1 = x2; (5.5)

_x2 = ��x2 � x1 � x31 + f cos(2�x3 + �); (5.6)

_x3 = !=2�; (5.7)

with the control parameters � = 0:2; f = 27:0; ! = 1:330, and � =
0:0 [3]. At these parameter values a strange attractor exists, but the
attractor is probably not hyperbolic.

The Du�ng equation is numerically integrated for 213 periods with
213 steps per period. Data are sampled and stored every 27 steps, so

that 26 points are sampled per period. A short segment of the chaotic
orbit from the strange attractor, projected onto the (x2; x1) phase space,
is shown in Figure 5.3.

Periodic orbits are reconstructed from the sampled data using a
standard Euclidean metric. The program used to extract the periodic

orbits of the Du�ng oscillator is listed in Appendix F. The distances
d[xi+n � xi] are plotted as a function of i for �xed n = kn0, with

n0 = 26. Samples of these recurrence plots are shown in Figure 5.4

for k = 2 and k = 3. The windows at the bottom of these plots
are clear signatures of near-periodicity in the corresponding segment
of the time series data. The segment of length n with the smallest

distance (the bottom of the window) was chosen to represent the nearby

unstable periodic orbit. Some of the unstable periodic orbits that were
reconstructed by this procedure are shown in Figure 5.5. We believe

that the orbits shown in Figure 5.5 correctly identify all the period one
and some of the period three orbits embedded in the strange attractor

at these parameter values. In addition, a period two orbit and higher-

order periodic orbits can be extracted (see Table 5.3). However, this
may not be all the periodic orbits in the system since some of them
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Figure 5.3: Two-dimensional projection of a data segment from the

strange attractor of the Du�ng oscillator.
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Figure 5.4: Recurrence plots. Distances d[xi+n � xi] plotted as a func-
tion of i for �xed n = kn0, with n0 = 26. The windows in these plots
show near-periodicity over at least a full period in the corresponding

segment of the time series data. The bottom of each window is a good
approximation to the nearby unstable periodic orbit: (a) k = 2; (b)
k = 3.

may have basins of attraction separate from the basin of attraction for
the strange attractor.

The periodic orbits give a spatial outline of the strange attractor.
By superimposing the orbits in Figure 5.5 onto one another, we recover

the picture of the strange attractor shown in the upper left-hand corner
of Figure 5.5. Each periodic orbit indicated in Figure 5.5 is actually a

closed curve in three-space (we only show a two-dimensional projection

in Fig. 5.5).
Now we make a simple but fundamental observation. Each of these

periodic orbits is a knot, and the periodic orbits of the strange attractor
are interwoven (tied together) in a very complicated pattern. Our goal

in this chapter is to understand the knotting of these periodic orbits,
and hence the spatial organization of the strange attractor. We begin

by reviewing a little knot theory.
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Figure 5.5: Some of the periodic orbits extracted from the chaotic

time series data of Figure 5.3: (a) symmetric period one orbit; (b), (c)
asymmetric pair of period one orbits; (d), (e) symmetric period three

orbits; (f), (g) asymmetric period three orbits.
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Figure 5.6: Planar diagrams of knots: (a) the trivial or unknot; (b)

�gure-eight knot; (c) left-handed trefoil; (d) right-handed trefoil; (e)
square knot; (f) granny knot.

Figure 5.7: Link diagrams: (a) Hopf link; (b) Borromean rings; (c)

Whitehead link.

5.3 Knot Theory

Knot theory studies the placement of one-dimensional objects called

strings [23,24,25] in a three-dimensional space. A simple and accurate

picture of a knot is formed by taking a rope and splicing the ends
together to form a closed curve. A mathematician's knot is a non-self-

intersecting smooth closed curve (a string) embedded in three-space. A
two-dimensional planar diagram of a knot is easy to draw. As illustrated

in Figure 5.6, we can project a knot onto a plane using a solid (broken)
line to indicate an overcross (undercross). A collection of knots is called

a link (Fig. 5.7).

The same knot can be placed in space and drawn in planar dia-

gram in an in�nite number of di�erent ways. The equivalence of two

di�erent presentations of the same knot is usually very di�cult to see.
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Figure 5.8: Equivalent planar diagrams of the trefoil knot.

Figure 5.9: Two knots whose equivalence is hard to demonstrate.

Classi�cation of knots and links is a fundamental problem in topology.
Given two separate knots or links we would like to determine when

two knots are the same or di�erent. Two knots (or links) are said to
be topologically equivalent if there exists a continuous transformation
carrying one knot (or link) into another. That is, we are allowed to
deform the knot in any way without ever tearing or cutting the string.

For instance, Figure 5.8 shows two topologically equivalent planar di-

agrams for the trefoil knot and a sequence of \moves" showing their
equivalence. The two knots shown in Figure 5.9 are also topologically

equivalent. However, proving their equivalence by a sequence of moves
is a real challenge.

A periodic orbit of a three-dimensional ow is also a closed noninter-
secting curve, hence a knot. A periodic orbit has a natural orientation

associated with it: the direction of time. This leads us to study oriented
knots. Formally an oriented knot is an embedding S1 ! R3 where S1

is oriented. Informally, an oriented knot is just a closed curve with an

arrow attached to it telling us the direction along the curve.
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Figure 5.10: Crossing conventions: (a) positive (b) negative.

The importance of knot theory in the study of three-dimensional
ows comes from the following observation. The periodic orbits of a
three-dimensional ow form a link. In the chaotic regime, this link
is extraordinarily complex, consisting of an in�nite number of periodic
orbits (knots). As the parameters of the ow are varied the components

of this link, the knots, may collapse to points (Hopf bifurcations) or
coalesce (saddle-node or pitchfork bifurcations). But no component of

the link can intersect itself or any other component of the link, because
if it did, then there would be two di�erent solutions based at the same
initial condition, thus violating the uniqueness theorem for di�erential

equations. The linking of periodic orbits �xes the topological structure
of a three-dimensional ow [14]. Moreover, as we showed in the previous
section, periodic orbits and their linkings are directly available from

experimental data. Thus knot theory is expected to play a key role in
any physical theory of three-dimensional ows.

5.3.1 Crossing Convention

In our study of periodic orbits we will work with oriented knots and
links. To each crossing C in an oriented knot or link we associate a

sign �(C) as shown in Figure 5.10. A positive cross (also known as

right-hand cross, or overcross) is written as �(C) = +1. A negative
cross (also known as a left-hand cross, or undercross) is written as

�(C) = �1. This de�nition of crossing is the opposite of the Artin
crossing convention adopted by Solari and Gilmore [4].
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Figure 5.11: Reidemeistermoves: (a) untwist; (b) pull apart; (c) middle

slide.

5.3.2 Reidemeister Moves

Reidemeister observed that two di�erent planar diagrams of the same
knot represent topologically equivalent knots under a sequence of just
three primary moves, now called Reidemeister moves of type I, II, and
III. These Reidemeister moves, illustrated in Figure 5.11, simplify the
study of knot equivalence by reducing it to a two-dimensional problem.

The type I move untwists a section of a string, the type II move pulls
apart two strands, and the type III move acts on three strings sliding the
middle strand between the outer strands. The Reidemeister moves can
be applied in an in�nite number of combinations. So knot equivalence
can still be hard to show using only the Reidemeister moves.

5.3.3 Invariants and Linking Numbers

A more successful strategy for classifying knots and links involves the
construction of topological invariants. A topological invariant of a knot

or link is a quantity that does not change under continuous deforma-

tions of the strings. The calculation of topological invariants allows
us to bypass directly showing the geometric equivalence of two knots,
since distinct knots must be di�erent if they disagree in at least one

topological invariant. What we really need, of course, is a complete

set of calculable topological invariants. This would allow us to de�-
nitely say when two knots or links are the same or di�erent. Unfor-

tunately, no complete set of calculable topological invariants is known
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Figure 5.12: Linking numbers: (a) one; (b) zero.

for knots. However, mathematicians have been successful in develop-
ing some very �ne topological invariants capable of distinguishing large
classes of knots [23].

The linking number is a simple topological invariant de�ned for a
link on two oriented strings � and �. Intuitively, we expect the Hopf
link in Figure 5.12(a) to have linking number +1 since the two strings
are linked once. Similarly, the two strings in Figure 5.12(b) are unlinked
and should have linking number 0. The linking number, which agrees

with this intuition, is de�ned by

lk(�; �) =
1

2

X
C

�(C): (5.8)

In words, we just add up the crossing numbers for each cross between
the two strings � and � and divide by two. The calculation of linking
numbers is illustrated in Figure 5.13. Note that the last example is

a planar diagram for the Whitehead link showing that \links can be

linked even when their linking number is zero" [24].
The linking number is an integer invariant. More re�ned algebraic

polynomial invariants can be de�ned such as the Alexander polynomial

and the Jones polynomial [23]. We will not need these more re�ned

invariants for our work here.

5.3.4 Braid Group

Braid theory plays a fundamental role in knot theory since any oriented

link can be represented by a closed braid (Alexander's Theorem [24]).

The identi�cation between links, braids, and the braid group allows
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Figure 5.13: Examples of linking number calculations. (Adapted from
Kau�man [24].)

us to pass back and forth between the geometric study of braids (and
hence knots and links) and the algebraic study of the braid group. For
some problems the original geometric study of braids is useful. For
many other problems a purely algebraic approach provides the only
intelligible solution.

A geometric braid is constructed between two horizontal level lines
with n base points chosen on the upper and lower level lines. From up-
per base points we draw n strings or strands to the n lower base points
(Fig. 5.14(a)). Note that the strands have a natural orientation from

top to bottom. The trivial braid is formed by taking the ith upper base

point directly to the ith lower base point with no crossings between the
strands (Fig. 5.14(b)). More typically, some of the strands will inter-

sect. We say that the i+ 1st strand passes over the ith strand if there
is a positive crossing between the two strands (see Crossing Conven-

tion, section 5.3.1). As illustrated in Figure 5.15(a), an overcrossing

(or right-crossing) between the i+1st and ith string is denoted by the
symbol bi. The inverse b

�1
i represents an undercross (or left-cross), i.e.,

the i+ 1st strand goes under the ith strand (Fig. 5.15(b)).

By connecting opposite ends of the strands we form a closed braid.
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Figure 5.14: (a) A braid on n-strands. (b) A trivial braid.

Figure 5.15: Braid operators: (a) bi, overcross; (b) b
�1
i , undercross.
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Figure 5.16: (a) Braid of a trefoil knot. (b) Braid of a Hopf link.

Figure 5.17: Braid on four strands whose braid word is b2b
�1
3 b1.

Each closed braid is equivalent to a knot or link, and conversely Alexan-
der's theorem states that any oriented link is represented by a closed
braid. Figure 5.16(a) shows a closed braid on two strands that is equiv-

alent to the trefoil knot; Figure 5.16(b) shows a closed braid on three

strands that is equivalent to the Hopf link. The representation of a
link by a closed braid is not unique. However, only two operations on
braids (the Markov moves) are needed to prove the identity between

two topologically equivalent braids [24].

A general n-braid can be built up from successive applications of

the operators bi and b�1i . This construction is illustrated for a braid

on four strands in Figure 5.17. The �rst crossing between the second
and third strand is positive, and is represented by the operator b2.

The next crossing is negative, b�13 , and is between the third and fourth
strands. The last positive crossing is represented by the operator b1.

Each geometric diagram for a braid is equivalent to an algebraic braid
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Figure 5.18: Braid relations.

word constructed from the operators used to build the braid. The braid

word for our example on four strands is b2b
�1
3 b1.

Two important conventions are followed in constructing a braid
word. First, at each level of operation (bi, b

�1
i ) only the ith and i+1st

strands are involved. There are no crossings between any other strands
at a given level of operation. Second, it is not the string, but the base

point which is numbered. Each string involved in an operation incre-
ments or decrements its base point by one. All other strings keep their
base points �xed.

The braid group on n-strands, Bn, is de�ned by the operators fbi; i =
1; 2; : : : n� 1g. The identity element of Bn is the trivial n-braid. How-

ever, as previously mentioned, the expression of a braid group element
(that is, a braid word) is not unique. The topological equivalence be-
tween seemingly di�erent braid words is guaranteed by the braid rela-

tions (Fig. 5.18):

bibj = bjbi; ji� jj � 2; (5.9)

bibi+1bi = bi+1bibi+1: (5.10)

The braid relations are taken as the de�ning relations of the braid

group. Each topologically equivalent class of braids represents a col-
lection of words that are di�erent representations for the same braid

in the braid group. In principle, the braid relations can be used to

show the equivalence of any two words in this collection. Finding a
practical solution to word equivalence is called the word problem. The
word problem is the algebraic analog of the geometric braid equivalence

problem.
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5.3.5 Framed Braids

In our study of templates we will need to consider braids with \fram-

ing." A framed braid is a braid with a positive or negative integer

associated to each strand. This integer is called the framing. We think

of the framing as representing an internal structure of the strand. For

instance, if each strand is a physical cable then we could subject this

cable to a torsional force causing a twist. In this instance the framing

could represent the number of half-twists in the cable.
Geometrically, a framed braid can be represented by a ribbon graph.

Take a braid diagram and replace each strand by a ribbon. To see the
framing we twist each ribbon by an integer number of half-turns. A
half-twist is a rotation of the ribbon through � radians. A positive half-

twist is a half-twist with a positive crossing, the rightmost half of the
ribbon crosses over the leftmost half of the ribbon. Similarly, a negative
half-twist is a negative crossing of the ribbon. Figure 5.19 shows how
the framing is pictured as the number and direction of internal ribbon
crossings.

This concludes our brief introduction to knot theory. We now turn
our attention to discussing how our rudimentary knowledge of knot
theory and knot invariants is used to characterize the periodic and
chaotic behavior of a three-dimensional ow.

5.4 Relative Rotation Rates

Solari and Gilmore [4] introduced the \relative rotation rate" in an

attempt to understand the organization of periodic orbits within a ow.

The phase of a periodic orbit is de�ned by the choice of a Poincar�e

section. Relative rotation rates make use of this choice of phase and

are topological invariants that apply speci�cally to periodic orbits in
three-dimensional ows. Our presentation of relative rotation rates

closely follows Eschenazi's [25].
As usual, we begin with an example. Figure 5.20 shows a period

two orbit, a period three orbit, and their intersections with a surface of
section. The relative rotation rate between an orbit pair is calculated
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Figure 5.19: Geometric representation of a framed braid as a ribbon
graph. The integer attached to each strand is the sum of the half-twists
in the corresponding branch of the ribbon graph.

beginning with the di�erence vector formed at the surface of section,

�r = (xA � xB; yA � yB); (5.11)

where (xA; yA) and (xB; yB) are the coordinates of the periodic orbits
labeled A of period pA and B of period pB. In general there will be

pA �pB choices of initial conditions from which to form �r at the surface

of section. To calculate the rotation rate, consider the evolution of �r
in pA � pB periods as it is carried along by the pair of periodic orbits.
The di�erence vector �r will make some number of rotations before

returning to its initial con�guration. This number of rotations divided

by pApB is the relative rotation rate. Essentially, the relative rotation
rate describes the average number of rotations of the orbit A about the

orbit B, or the orbit B about the orbit A. In the example shown in
Figure 5.20, the period three orbit rotates around the period two orbit

twice in six periods, or one-third average rotations per period.

The general de�nition proceeds as follows. Let A and B be two
orbits of periods pA and pB that intersect the surface of section at
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Figure 5.20: Rotations between a period two and period three orbit
pair. The rotation of the di�erence vector between the two orbits is

calculated at the surface of section. This vector is followed for 3 � 2 = 6

full periods, and the number of average rotations of the di�erence vector
is the relative rotation rate between the two orbits. (Adapted from
Eschenazi [25].)
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(a1; a2; :::; apA), and (b1; b2; :::; bpB). The relative rotation rate Rij(A;B)

is

Rij(A;B) =
1

2�pApB

Z
d[arctan(�r2=�r1)]; (5.12)

or in vector notation,

Rij(A;B) =
1

2�pApB

Z
n � [�r� d(�r)]

�r ��r : (5.13)

The integral extends over pA � pB periods, and n is the unit vector

orthogonal to the plane spanned by the vectors �r and d�r. The
indices i and j denote the initial conditions ai and bj on the surface of
section. In the direction of the ow, a clockwise rotation is positive.1

The self-rotation rate Rij(A;A) is also well de�ned by equation
(5.13) if we establish the convention that Rii(A;A) = 0. The rela-

tive rotation rate is clearly symmetric, Rij(A;B) = Rji(B;A). It also
commonly occurs that di�erent initial conditions give the same relative
rotation rates. Further properties of relative rotation rates, including
a discussion of their multiplicity, have been investigated by Solari and
Gilmore [4,5].

Given a parameterization for the two periodic orbits, their relative
rotation numbers can be calculated directly from equation (5.12) by
numerical integration (see Appendix F). There are, however, several
alternative methods for calculating Rij(A;B). For instance, imagine
arranging the periodic orbit pair as a braid on two strands. This is

illustrated in Figure 5.21 where the orbits A and B are partitioned into

segments of length pA and pB each starting at ai(bj) and ending at
ai+1(bj+1). We keep track of the crossings between A and B with the

counter �ij,

�ij =

8><
>:

+1 if Ai crosses over Bj from left to right
�1 if Ai crosses over Bj from right to left

0 if Ai does not cross over Bj :

(5.14)

1As previously mentioned, the crossing convention and this de�nition of the
relative rotation rate are the opposite of those originally adopted by Solari and
Gilmore [4].
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Figure 5.21: The orbit pair of Figure 5.20 arranged as a braid on two
strands. The relative rotation rates can be computed by keeping track
of all the crossings of the orbit A over the orbit B. Each crossing adds
or subtracts a half-twist to the rotation rate. The linking number is

calculated from the sum of all the crossings of A over B. (Adapted
from Eschenazi [25].)

Then the relative rotation rates can be computed from the formula

Rij(A;B) =
1

pApB

X
n

�i+n;j+n; n = 1; 2; 3; :::; pApB: (5.15)

Using this same counter, the linking number of knot theory is

lk(A;B) =
X
i;j

�ij; i = 1; 2; :::; pA and j = 1; 2; :::; pB: (5.16)

The linking number is easily seen to be the sum of the relative rotation

rates:
lk(A;B) =

X
ij

Rij(A;B): (5.17)

An intertwining matrix is formed when the relative rotation rates for
all pairs of periodic orbits of a return map are collected in a (possibly

in�nite-dimensional) matrix. Intertwining matrices have been calcu-

lated for several types of ows such as the suspension of the Smale
horseshoe [4] and the Du�ng oscillator [5]. Perhaps the simplest way
to calculate intertwining matrices is from a template, a calculation we

describe in section 5.5.4.

Intertwining matrices serve at least two important functions. First,
they help to predict bifurcation schemes, and second, they are used to

identify a return mapping mechanism.
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Again, by uniqueness of solutions, two orbits cannot interact through

a bifurcation unless all their relative rotation rates are identical with

respect to all other existing orbits. With this simple observation in

mind, a careful examination of the intertwining matrix often allows

us to make speci�c predictions about the allowed and disallowed bi-

furcation routes. An intertwining matrix can give rise to bifurcation

\selection rules," i.e., it helps us to organize and understand orbit ge-

nealogies. A speci�c example for a laser model is given in reference

[4].
Perhaps more importantly, intertwining matrices are used to iden-

tify or �ngerprint a return mapping mechanism. As described in sec-
tion 5.2, low-order periodic orbits are easy to extract from both ex-
perimental chaotic time series and numerical simulations. The relative

rotation rates of the extracted orbits can then be arranged into an in-
tertwining matrix, and compared with known intertwining matrices to
identify the type of return map. In essence, intertwining matrices can
be used as signatures for horseshoes and other types of hyperbolic limit
sets.

If the intertwining comes from the suspension of a map then, as
mentioned in section 4.2.3 (see Fig. 4.3), the intertwining matrix with
zero global torsion is usually presented as the \standard" matrix. A
global torsion of +1 adds a full twist to the suspension of the return
map, and this in turn adds additional crossings to each periodic orbit in

the suspension. If the global torsion is an integer GT , then this integer
is added to each element of the standard intertwining matrix.

Relative rotation rates can be calculated from the symbolic dynam-

ics of the return map [25] or directly from a template if the return
map has a hyperbolic regime. We illustrate this latter calculation in
section 5.5.4.

5.5 Templates

In section 5.5.1 we provide the mathematical background surrounding

template theory. This initial section is mathematically advanced. Sec-

tion 5.5.2 contains a more pragmatic description of templates and can

be read independently of section 5.5.1.
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Before we begin our description of templates, we �rst recall that the

dynamics on the attractor can have very complex recurrence properties

due to the existence of homoclinic points (see section 4.6.2). Poincar�e's

original observation about the complexity of systems with transverse

homoclinic intersections is stated in more modern terms as [26]

Katok's Theorem. A smooth ow �t on a three-manifold, with pos-

itive topological entropy, has a hyperbolic closed orbit with a

transverse homoclinic point.

Templates help to describe the topological organization of chaotic

ows in three-manifolds. In our description of templates we will work
mainly with forced systems, so the phase space topology is R2 � S1.
However, the use of templates works for any three-dimensional ow.

Periodic orbits of a ow in a three-manifold are smooth closed curves
and are thus oriented knots. Recall yet again that once a periodic orbit
is created (say through a saddle-node or ip bifurcation) its knot type

will not change as we move through parameter space. Changing the
knot type would imply self-intersection, and that violates uniqueness
of the solution. Knot types along with linking numbers and relative
rotation rates are topological invariants that can be used to predict
bifurcation schemes [14] or to identify the dynamics behind a system

[1,2,3,4,5]. The periodic orbits can be projected onto a plane and ar-
ranged as a braid. Strands of a braid can pass over or under one
another, where our convention for positive and negative crossings is
given in section 5.3.1. We next try to organize all the knot information

arising from a ow, and this leads us to the notion of a template. Our

informal description of templates follows the review article of Holmes
[14].

5.5.1 Motivation and Geometric Description

Before giving the general de�nition of a template, we begin by illus-
trating how templates, or knot holders, can arise from a ow in R3. In

accordance with Katok's theorem, let O be a closed hyperbolic orbit

with a transversal intersection and a return map resembling a Smale
horseshoe (Figure 5.22(a)). For a speci�c physical model, the form of

the return map can be obtained either by numerical simulations or by
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Figure 5.22: (a) Suspension of a Smale horseshoe type return map

for a system with a transversal homoclinic intersection. This return
map resembles the orientation preserving H�enon map. (b) The dots
(both solid and open) will be the boundary points of the branches in
a template. The pieces of the unstable manifold W u on the intervals
(a; �a) and (b;�b) generate two ribbons.

analytical methods as described by Wiggins [27]. The only periodic
orbit shown in Figure 5.22(b) is given by a solid dot (�). The points
of transversal intersection indicated by open dots (�) are not periodic
orbits, but|according to the Smale-Birkho� homoclinic theorem [28]|
they are accumulation points for an in�nite family of periodic orbits (see

section 4.6.2).

The periodic orbits in the suspension of the horseshoe map have
a complex knotting and linking structure, which was �rst explored by
Birman and Williams [13] using the template construction.

Let us assume that our example is from a forced system. Then

the simplest suspension consistent with the horseshoe map is shown
in Figure 5.23(a). However, this is not the only possible suspension.

We could put an arbitrary number of full twists around the homoclinic
orbit O. The number of twists is called the global torsion, and it is a

topological invariant of the ow. In Figure 5.23(b) the suspension of
the horseshoe with a global torsion of �1 is illustrated by representing
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Figure 5.23: Suspension of intervals on W u(O): (a) global torsion is 0;
(b) global torsion is �1.

the lift2 of the boundaries on W u(O) of the horseshoe as a braid of two

ribbons.
Note that adding a single twist adds one to the linking number

of the boundaries of the horseshoe, and this in turn adds one to the
relative rotation rates of all periodic orbits within the horseshoe. That
is, a change in the global torsion changes the linking and knot types,

but it does so in a systematic way. In the horseshoe example the global
torsion is the relative rotation rate of the period one orbits.

To �nish the template construction we identify certain orbits in

the suspension. Heuristically, we project down along the stable mani-
folds W s(O) onto the unstable manifoldW u(O), i.e., we \collapse onto
W u(O)." For the Smale horseshoe, this means that we �rst identify
the ends of the ribbons (now called branches) at �T in Figure 5.24(a),

and next identify �0 and �T . The resulting braid template for the

horseshoe is shown in Figure 5.24(b). The template itself may now
be deformed to several equivalent forms (not necessarily resembling a

braid) including the standard horseshoe template illustrated in Figure

2For our purposes, a lift is a suspension consisting of ow with a simple twist.
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Figure 5.24: Template construction: (a) identify the branch ends at
�T , i.e., \collapse onto W u(O)," and (b) identify �0 and �T to get a
\braid template."

5.25 [14].
For this particular example it is easy to see that such a projection is

one-to-one on periodic orbits. Each point of the limit set has a distinct
symbol sequence and thus lies on a distinct leaf of the stable manifold
W s(O). This projection takes each leaf of W s(O) onto a distinct point
of W u(O). In particular, for each periodic point of the limit set there
is a unique point on W u(O).

Each periodic orbit of the map corresponds to some knot in the
template. Since the collapse onto W u(O) is one-to-one, we can use the
standard symbolic names of the horseshoe map to name each knot in

the template (sections 4.8.2{4.8.3). Each knot will generate a symbolic
sequence of 0s and 1s indicated in Figure 5.25. Conversely, each periodic

symbolic sequence of 0s and 1s (up to cyclic permutation) will generate
a unique knot. The three simplest periodic orbits and their symbolic

names are illustrated in Figure 5.26.

If a template has more than two branches, then we number the

k branches of the template with the numbers f0; 1; 2; : : : ; k � 1g. In

this way we associate a symbol from the set f0; 1; 2; : : : ; k � 1g to each
branch. A periodic orbit of period n on the template generates a se-

quence of n symbols from the set f0; 1; 2; : : : ; k�1g as it passes through
the branches. Conversely, each periodic word (up to cyclic permuta-
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Figure 5.25: Standard Smale horseshoe template. Each periodic (in�-
nite) symbolic string of 0s and 1s generates a knot.

tions) generates a unique knot on the template. The template itself
is not an invariant object. However, from the template one can easily
calculate invariants such as knot types and linking numbers. In this
sense it is a knot holder.

The branches of a template are joined (or glued) at the branch

lines. In a braid template, all the branches are joined at the same
branch line. Figure 5.24(b) is an example of a braid template, and
Figure 5.25 is an example of a (nonbraided) template holding the same
knots. Forced systems always give rise to braid templates. We will

work mostly with full braid templates, i.e., templates which describe

a full shift on k symbols. Franks and Williams have shown that any
embedded template can be arranged, via isotopy, as a braid template

[26].
The template construction works for any hyperbolic ow in a three-

manifold. To accommodate the unforced situation we need the follow-

ing more general de�nition of a template.

De�nition. A template is a branched surface T and a semiow ��t on
T such that the branched surface consists of the joining charts

and the splitting charts shown in Figure 5.27.
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Figure 5.26: Some periodic orbits held by the horseshoe template. Note

that the orbits 0 and 1 are unlinked, but the orbits 1 and 01 are linked
once.

The semiow fails to be a ow because inverse orbits are not unique
at the branch lines. In general the semiow is an expanding map so

that some sections of the semiow may also spill over at the branch
lines. The properties that the template (T; ��t) are required to satisfy
are described by the following theorem [13].

Birman and Williams Template Theorem (1983). Given a ow
�t on a three-manifoldM3 having a hyperbolic chain recurrent set
there is a template (T; ��t), T �M3, such that the periodic orbits

under �t correspond (with perhaps a few speci�ed exceptions)

one-to-one to those under ��t. On any �nite subset of the periodic
orbits the correspondence can be taken via isotopy.

The correspondence is achieved by collapsing onto the (strong) stable

manifold. Technically, we establish the equivalence relation between
elements in the neighborhood, N , of the chain recurrent set, as follows:
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Figure 5.27: Template building charts: (a) joining chart and (b) split-

ting chart.

x1 � x2 if k�t(x1) � �t(x2)k ! 0 as t ! 1. In other words, x1 and
x2 are equivalent if they lie in the same connected component of some

local stable manifold of a point x 2 N .
Orbits with the same asymptotic future are identi�ed regardless of

their past. By throwing out the history of a symbolic sequence, we can
hope to establish an ordering relation on the remaining symbols and
thus develop a symbolic dynamics and kneading theory for templates

similar to that for one-dimensional maps. The symbolic dynamics of
orbits on templates, as well as their kneading and bifurcation theory, is
discussed in more detail in the excellent review article by Holmes [14].

The \few speci�ed exceptions" will become clear when we consider
speci�c examples. In some instances it is necessary to create a few

period one orbits in ��t that do not actually exist in the original ow �t.
These virtual orbits can sometimes be identi�ed with points at in�nity

in the chain recurrent set.

Some examples of two-branch templates that have arisen in physical
problems are shown in Figure 5.28: the Smale horseshoe with global tor-
sion 0 and +1, the Lorenz template, and the Pirogon. The Lorenz tem-

plate is the �rst knot holder originally studied by Birman and Williams

[13]. It describes some of the knotting of orbits in the Lorenz equation
for thermal convection. The horseshoe template describes some of the

knots in the modulated laser rate equations mentioned in section 4.1
[4].
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Figure 5.28: Common two-branch templates: (a) Smale horseshoe with

global torsion 0; (b) Lorenz ow, showing equivalence to Lorenz mask;
(c) Pirogon; (d) Smale horseshoe with global torsion +1. (Adapted

from Mindlin et al. [1].)
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Figure 5.29: Representation of a template as a framed braid using
standard insertion.

5.5.2 Algebraic Description

In addition to the geometric view of a template, it is useful to develop
an algebraic description. Braid templates are described by three pieces

of algebraic data. The �rst is a braid word describing the crossing
structure of the k branches of the template. The second is the fram-
ing describing the twisting in each branch, that is, the local or branch
torsion internal to each branch. The third piece of data is the \lay-
ering information" or insertion array, which determines the order in

which branches are glued at the branch line. We now develop some

conventions for drawing a geometric template. In the process we will
see that the �rst piece of data, the braid word, actually contains the
last piece of data, the insertion array. Thus we conclude that a tem-

plate is just an instance of a framed braid, a braid word with framing

(see sections 5.3.3{5.3.5).

Drawing Conventions

A graph of a template consists of two parts: a ribbon graph and a
layering (or insertion) graph (Fig. 5.29). In the upper section of a

template we draw the ribbon graph, which shows the intertwining of

the branches as well as the internal twisting (local torsion) within each
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Figure 5.30: The layering graph can always be moved to standard form,
back to front.

branch. The lower section of the template shows the layering informa-
tion, that is, the order in which branches are glued at the branch line.

By convention, we usually con�ne the expanding part of the semiow
on the template to the layering graph: the branches of the layering
graph get wider before they are glued at the branch line. We also often
draw the local torsion as a series of half-twists at the top of the ribbon
graph.

In setting up the symbolic dynamics on the templates (that is, in
naming the knots) we follow two important conventions. First, at the
top of the ribbon graph we label each of the k branches from left to right

with a number from the labeling set 0; 1; 2; : : : ; i; : : : ; k�1. Second, from
now on we will always arrange the layering graph so that the branches
of the template are ordered back to front from left to right. This second

convention is called the standard insertion.

The standard insertion convention follows from the following ob-
servation. Any layering graph can always be isotoped to the standard

form by a sequence of branch moves that are like type II Reidemeister
moves. This is illustrated in Figure 5.30, where we show a layering

graph in nonstandard form and a simple branch exchange that puts it

into standard form.
The adoption of the standard insertion convention allows us to dis-

pense with the need to draw the layering graph. The insertion infor-
mation is now implicitly contained in the lower ordering (left to right,
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back to front) of the template branches. We see that the template is

well represented by a ribbon graph or a framed braid. We will often

continue to draw the layering graph. However, if it is not drawn then

we are following the standard insertion convention. A template with

standard insertion is a framed braid.

These conventions and the framed braid representation of a tem-

plate are illustrated in Figure 5.31 for a series of two-branch templates.

We show the template, its version following standard insertion, and the

ribbon graph (framed braid) without the layering graph from which we
can write a braid word with framing. We also show the \braid linking
matrix" for the template, which is introduced in the next section.

Braid Linking Matrix

A nice characterization of some of the linking data of the knots held
by a template is given by the braid linking matrix. In particular, in
the second half of section 5.5.4 we show how to calculate the relative
rotation rates for all pairs of periodic orbits from the braid linking

matrix. The braid linking matrix is a square symmetric k � k matrix
de�ned by3

B =

8>>><
>>>:

bii : the sum of half-twists in the ith branch;
bij : the sum of the crossings between the

ith and the jth branches of the ribbon graph
with standard insertion:

(5.18)

The ith diagonal element of B is the local torsion of the ith branch.
The o�-diagonal elements of B are twice the linking numbers of the
ribbon graph for the ith and jth branches. The braid linking matrix

describes the linking of the branches within a template and is closely

related to the linking of the period one orbits in the underlying ow
[17]. For the example shown in Figure 5.29, the braid linking matrix is

B =

0
B@ �1 0 �1

0 2 �1
�1 �1 0

1
CA :

3The braid linking matrix is equivalent to the orbit matrix and insertion array
previously introduced by Mindlin et al. [1]. See Melvin and Tu�llaro for a proof
[17].
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Figure 5.31: Examples of two-branched templates, their corresponding
ribbon graphs (framed braids) with standard insertion, and their braid

linking matrices.
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The braid linking matrix also allows us to compute how the strands

of the framed braid are permuted. At the top of the ribbon graph

the branches of the template are ordered 0; 1; : : : ; i; : : : ; k � 1. At the

bottom of the ribbon graph each strand occupies some possibly new

position. The new ordering, or permutation �B, of the strands is given

by
�B(i) = i � # odd entries bij with j < i

+ # odd entries bij with j > i:
(5.19)

Informally, to calculate the permutation on the ith strand, we examine
the ith row of the braid linking matrix, adding the number of odd
entries to the right of the ith diagonal element to i, and subtracting

the number of odd entries to the left.
For example, for the template shown in Figure 5.29 we �nd that

�B(0) = 0 + 1 = 1, �B(1) = 1 + 1� 0 = 2, and �B(2) = 2� 2 = 0. The
permutation is �B = (012). That is, the �rst strand goes to the second
position, and the third strand goes to the �rst position. The second

strand goes to the front third position.

5.5.3 Location of Knots

Given a knot on a template, the symbolic name of the knot is deter-

mined by recording the branches over which the knot passes. Given a
template and a symbolic name, how do we draw the correct knot on a
template?

There are two methods for �nding the location of a knot on a tem-
plate with k branches. The �rst is global and consists of �nding the lo-
cations of all knots up to a length (period) n by constructing the appro-

priate k-ary tree with n levels. The second method, known as \knead-

ing theory," is local. Kneading theory is the more e�cient method of
solution when we are dealing with just a few knots.

Trees

A branch of a template is called orientation preserving if the local tor-

sion (the number of half-twists) is an even integer. Similarly, a branch

is called orientation reversing if the local torsion is an odd integer. A

convenient way to �nd the relative location of knots on a k-branch
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template is by constructing a k-ary tree which encodes the ordering

of points on the orientation preserving and reversing branches of the

template.

The ordering tree is de�ned recursively as follows. At the �rst level

(n = 1) we write the symbolic names for the branches from left to right

as 0; 1; 2; : : : ; k�1. The second level (n = 2) is constructed by recording

the symbolic names at the �rst level of the tree according to the ordering

rule: if the ith branch of the template is orientation preserving then

we write the branch names in forward order (0; 1; 2; : : : ; k � 1); if the
ith branch is orientation reversing then we write the symbolic names
at the �rst level in reverse order (k � 1; k � 2; : : : ; 2; 1; 0). The n+ 1st
level is constructed from the nth level by the same ordering rule: if
the ith symbol (branch) at the nth level is orientation preserving then

we record the ordering of the symbols found at the nth level; if the
ith symbol labels an orientation reversing branch then we reverse the
ordering of the symbols found at the nth level.

This rule is easier to use than to state. The ordering rule is illus-
trated in Figure 5.32 for a three-branch template. Branch 0 is orienta-

tion reversing; branches 1 and 2 are both orientation preserving. Thus,
we reverse the order of any branch at the n+ 1st level whose nth level
is labeled with 0. In this example we �nd

0 1 2

(2; 1; 0) (0; 1; 2) (0; 1; 2)

((2; 1; 0); (2; 1;0); (0;1;2)) ((2; 1; 0); (0; 1;2); (0;1;2)) ((2; 1; 0); (0; 1;2); (0;1;2))

...
...

...

and so on.
To �nd the ordering of the knots on the template we read down the

k-ary tree recording the branch names through which we pass (see Fig.

5.32). The ordering at the nth level of the tree is the correct ordering

for all the knots of period n on the template. Returning to our example,
we �nd that the ordering up to period two is 02 � 01 � 00 � 10 � 11 �
12 � 20 � 21 � 22. The symbol � is read \precedes" and indicates
the ordering relation found from the ordering tree (the order induced

by the template).
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Figure 5.32: Example: location of period two knots (n = 2).



5.5. TEMPLATES 285

To draw the knots with the desired symbolic name on a template,

we use the ordering found at the bottom of the k-ary tree. Lastly,

we draw connecting line segments between \shift equivalent" periodic

orbits as illustrated in Figure 5.32. For instance, the period two orbit
02 is composed of two shift equivalent string segments 02 and 20, which

belong to the branches 0 and 2 respectively.

Kneading Theory

The limited version of kneading theory [14] needed here is a simple rule
which allows us to determine the relative ordering of two or more orbits
on a template. From an examination of the ordering tree, we see that

the ordering relation between two itineraries s = fs0; s1; : : : ; si; : : : ; sng
and s0 is given by s � s0 if si = s0i for 0 � i < n, and sn < s0n when the
number of symbols in fs0; : : : ; sn�1g representing orientation reversing
branches is even, or sn > s0n when the number of symbols representing
orientation reversing branches is odd.

As an example, consider the orbits 012 and 011 on the template

shown in Figure 5.32. We �rst construct all cyclic permutations of
these orbits,

012 011
201 101
120 110:

Next we sort these permutations in ascending order,

011 012 101 110 120 201:

Last, we note that the only orientation reversing branch is 0, so we
need to reverse the ordering of the points 012 and 011, yielding

012 � 011 � 101 � 110 � 120 � 201;

which agrees with the ordering shown on the ordering tree in Figure

5.32.

5.5.4 Calculation of Relative Rotation Rates

Relative rotation rates can be calculated from the symbolic dynamics
of the return map or directly from the template. We now illustrate this
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latter calculation for the zero global torsion lift of the horseshoe. We

then describe a general algorithm for the calculation of relative rotation

rates from the symbolics.

Horseshoe Example

Consider two periodic orbits A and B of periods pA and pB. At the

surface of section, a periodic orbit is labeled by the set of initial condi-

tions (x1; x2; :::; xn), each xi corresponding to some cyclic permutation
of the symbolic name for the orbit. That is, it amounts to a choice

of \phase" for the periodic orbit. For instance, the period three orbit
\011" on the standard horseshoe template gives rise to three symbolic
names (011, 110, 101). When calculating relative rotation rates it is
important to keep track of this phase since di�erent permutations can
give rise to di�erent relative rotation rates.

To calculate the relative rotation rate between two periodic orbits

we �rst represent each orbit by some symbolic name (choice of phase).
Next, we form the composite template of length pA � pB. This is il-
lustrated for the period three orbit 110 and the period one orbit 000
in Figure 5.33(a). The two periodic orbits can now be extracted from
the composite template and presented as two strands of a pure braid

of length pA � pB with the correct crossing data (Figure 5.33(b)). The
self-rotation rate is calculated in a similar way. The case of the period
two orbit in the horseshoe template is illustrated in Figure 5.33(c,d).

General Algorithm

Although we have illustrated this process geometrically, it is completely
algorithmic and algebraic. For a general braid template, the relative

ordering of the orbits at each branch line is determined from the sym-
bolic names and kneading theory. Given the ordering at the branch

lines, and the form of the template, all the crossings between orbits

are determined, and hence so are the relative rotation rates. Gilmore
developed a computer program [29] that generates the full spectrum

of relative rotation rates when supplied with only the periodic orbit
matrix and insertion array (for a de�nition of periodic orbit matrix,

also known as the template matrix, see ref. [1]), i.e., purely algebraic
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Figure 5.33: Relative rotation rates from the standard horseshoe tem-

plate: (a) composite template for the orbits 110 and 000; (b) the pe-

riodic orbits represented as pure braids; (c) composite template for

calculating self-rotation rate of 01; (d) pure braid of 01 and 10; (e) the
intertwining matrix for the orbits 0, 01, and 110.
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data. Here we describe an alternative algorithm based on the framed

braid presentation and the braid linking matrix. This algorithm is im-

plemented as a Mathematica package, listed in Appendix G.

To calculate the relative rotation rate between two orbits we need

to keep track of three pieces of crossing data: (1) crossings between

two knots within the same branch (recorded by the branch torsion);

(2) crossings between two knots on separate branches (recorded by the

branch crossings); and (3) any additional crossings occurring at the

insertion layer (calculated from kneading theory). One way to organize
this crossing information is illustrated in Figure 5.34, which shows the
braid linking matrix for a three-branch template and two words for
which we wish to calculate the relative rotation rate.

Formulas can be written down describing the relative rotation rate

calculation [17], but we will instead try to describe in words the \rel-
ative rotation rate arithmetic" that is illustrated in Figure 5.34. To
calculate the relative rotation rate between two orbits we use the fol-
lowing sequence of steps:

1. Write the braid linking matrix for the template with standard insertion (re-
arrange branches as necessary until you reach back to front form).

2. In the row labeled � write the word w1 until the length of the row equals
the least common multiple (LCM ) between the lengths of w1 and w2; do
the same with word w2 in row �.

3. Above these rows create a new row (called the zeroth level) formed by the
braid linking matrix elements b�i�i , where i indexes the rows.

4. Find all identical blocks of symbols, that is, all places where the symbolics
in both words are identical (these are boxed in Figure 5.34). Wrap around
from the end of the rows to the beginning of the rows if appropriate.

5. The remaining groups of symbols are called unblocked regions; for the un-
blocked regions write the zeroth-level value mod 2 (if even record a zero, if
odd record a one) directly below the word rows at the �rst level.

6. For the blocked regions sum the zeroth-level values above the block (i.e., add
up all the entries at the zeroth level that lie directly above a block) and write
this sum mod 2 at the second level.

7. For the unblocked regions look for a sign change (orientation reversing
branches) from one pair of symbols to the next (i.e., �i < �i but �i+u > �i+u,
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or �i > �i but �i+u < �i+u) and write a 1 at the second level if there is a
sign change, or write a 0 if there is no change of sign. The counter u gives
the integer distance to the next unblocked region. Wrap around from the
end of the rows to the beginning of the rows if necessary.

8. Group all terms in the �rst and second levels as indicated in Figure 5.34.
Add all terms in each group mod 2 and write at the third level.

9. Sum all the terms at the zeroth level, and write the sum to the right of the
zeroth row.

10. Sum all the terms at the third level, and write the sum to the right of the
third row.

11. To calculate the relative rotation rate, add the sums of the zeroth level and

the third level, and divide by 2� the LCM found in step 2.

The rules look complicated, but they can be mastered in just a
few minutes, after which time the calculation of relative rotation rates
becomes just an exercise in the rotation rate arithmetic.

5.6 Intertwining Matrices

With the rules learned in the previous section we can now calculate rel-
ative rotation rates and intertwining matrices directly from templates.
For reference we present a few of these intertwining matrices below.

5.6.1 Horseshoe

The intertwining matrix for the zero global torsion lift of the Smale
horseshoe is presented in Table 5.1.

5.6.2 Lorenz

The intertwining matrix for the relative rotation rates from the Lorenz

template is presented in Table 5.2. Adding a global torsion of one (a
full twist) adds two to the braid linking matrix, and it adds one to each

relative rotation rate, i.e., each entry of the intertwining matrix.
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Figure 5.34: Example of the relative rotation rate arithmetic.
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0 1 01 001 011 0001 0011 0111

0 0

1 0 0

01 0 1

2
0; 1

2

001 0 1

3

1

3
0; 1

3
; 1
3

011 0 1

3

1

3

1

3
0; 1

3
; 1
3

0001 0 1

4

1

4

1

4

1

4
0; 1

4
; 1
4
; 1
4

0011 0 1

4

1

4

1

4

1

4

1

4
0; 1

4
; 1
4
; 1
4

0111 0 1

2

1

4

1

3

1

3

1

4

1

4
0; 1

2
; 1
4
; 1
2

Table 5.1: Horseshoe intertwining matrix.

0 1 01 001 011 0001 0011 0111

0 0

1 0 0

01 0 0 0; 1
2

001 0 0 1

6
0; 1

3
; 1
3

011 0 0 1

6
0; 0; 1

3
0; 1

3
; 1
3

0001 0 0 0 1

6

1

12
0; 1

4
; 1
4
; 1
4

0011 0 0 1

4

1

6

1

6
0; 0; 1

4
; 1
4

0; 1
4
; 1
4
; 1
4

0111 0 0 0 1

12

1

6
0; 0; 0; 1

4
0; 0; 1

4
; 1
4

0; 1
4
; 1
4
; 1
4

Table 5.2: Lorenz intertwining matrix.
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Figure 5.35: Template for the Du�ng oscillator for the parameter
regime explored in section 5.2.3.

5.7 Du�ng Template

In this �nal section we will apply the periodic orbit extraction tech-

nique and the template theory to a chaotic time series from the Du�ng

oscillator. For the parameter regime discussed in section 5.2.3, Gilmore
and Solari [4,29] argued on theoretical grounds that the template for

the Du�ng oscillator is that shown in Figure 5.35. The resulting in-
tertwining matrix up to period three is presented in Table 5.3. All

the relative rotation rates calculated from the periodic orbits extracted
from the chaotic time series agree (see Appendix G) with those found

in Table 5.3, which were calculated from the braid linking matrix for

the template shown in Figure 5.35.
However, not all orbits (up to period three) were found in the chaotic
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0 1 2 01 02 12 001 002 011 012 021 022 112 122

0 0

1 2 0

2 2 2 0

01 5

2
2 2 0; 5

2

02 5

2

5

2

5

2

5

2
0; 5

2

12 2 2 5

2
2 5

2
0; 5

2

001 7

3
2 2 7

3

5

2
2 0; 7

3
; 7
3

002 7

3

7

3

7

3

7

3

5

2

7

3

7

3
0; 7

3
; 7
3

011 7

3
2 2 7

3

5

2
2 7

3

7

3
0; 7

3
; 7
3

012 7

3

7

3

7

3

7

3

5

2

7

3

7

3

7

3

7

3
0; 7

3
; 7
3

021 7

3

7

3

7

3

7

3

5

2

7

3

7

3

7

3

7

3

7

3
0; 7

3
; 7
3

022 7

3

7

3

7

3

7

3

5

2

7

3

7

3

7

3

7

3

7

3

7

3
0; 7

3
; 7
3

112 2 2 7

3
2 5

2

7

3
2 7

3
2 7

3

7

3

7

3
0; 7

3
; 7
3

122 2 2 7

3
2 5

2

7

3
2 7

3
2 7

3

7

3

7

3

7

3
0; 7

3
; 7
3

Table 5.3: Du�ng intertwining matrix, calculated from the template

for the Du�ng oscillator. All the periodic orbits were extracted from
a single chaotic time series except for those in italics, the so-called
\pruned" orbits.
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time series. In particular, the orbits 02, 002, and 022 did not appear

to be present. Such orbits are said to be \pruned."

The template theory helps to organize the periodic orbit structure

in the Du�ng oscillator and other low-dimensional chaotic processes.

Mindlin and co-workers [1,2] have carried the template theory further

than our discussion here. In particular, they show how to extract not

only periodic orbits, but also templates from a chaotic time series.

Thus, the template theory is a very promising �rst step in the develop-

ment of topological models of low-dimensional chaotic processes.
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Problems

Problems for section 5.3.

5.1. Calculate the linking numbers for the links shown in Figures 5.7(a) and (c).
Choose di�erent orientations for the knots and recalculate.

5.2. Calculate the linking numbers between the three orbits shown in Figure 5.26.

5.3. Calculate the linking numbers between the orbits 00, 01, and 02 in Figure
5.32.

5.4. Write the braid words for the braids shown in Figure 5.16.

5.5. Verify that the braid group (section 5.3.4) is, in fact, a group.

5.6. Find an equivalent braid to the braid shown in Figure 5.17 and write down
its corresponding braid word. Use the braid relations to show the equivalence
of the two braids.



Problems 297

5.7. Write down the braid words for the braids shown in Figure 5.18. Use the
braid relations to demonstrate the equivalence of the braids as shown.

5.8. Write down the braid word for the braid in Figure 5.19.

Section 5.4.

5.9. Calculate the relative rotation rates from both the A orbit and the B orbit in
Figure 5.20. That is, verify the equivalence of R(A;B) and R(B;A) in this
instance. Use the geometric method illustrated in Figure 5.21 (which is taken
from Figure 5.20). Attempt the same calculation directly from Figure 5.20.

5.10. Show that the sum of the relative rotation rates is the linking number (see
reference [4] for more details).

5.11. Show the equivalence of equations (5.12) and (5.13).

Section 5.5.

5.12. Draw three di�erent three-branch templates and sketch their associated return
maps. Assume a linear expansive ow on each branch. Construct their braid
linking matrices.

5.13. Show that the Lorenz template arises from the suspension of a discontinuous
map. Consider the evolution of a line segment connecting the two branches
at the middle.

5.14. Draw the template in Figure 5.32 as a ribbon graph and as a framed braid.
What is its braid linking matrix?

5.15. Verify that the strands of a braid are permuted according to equation (5.19).

5.16. Verify the relative rotation rates in Figure 5.33(e) by the relative rotation
rate arithmetic described in section 5.5.4. Add the orbit 010 to the table.

Section 5.6.

5.17. Calculate the intertwining matrix for the orbits shown in Figure 5.32 up to
period two.

Section 5.7.

5.18. Verify the 012 row in Table 5.3 by the relative rotation arithmetic.
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Appendix A: Bouncing Ball Code

The dynamical state of the bouncing ball system is speci�ed by three variables:
the ball's height y, its velocity v, and the time t. The time also speci�es the table's
vertical position s(t). Let tk be the time of the kth table-ball collision, and vk the
ball's velocity immediately after the kth collision. The system evolves according to
the velocity and phase equations:

vk � _s(tk) = ��fvk�1 � g[tk � tk�1]� _s(tk)g;
s(tk) = s(tk�1) + vk�1[tk � tk�1]� 1

2
g[tk � tk�1]

2;

which are collectively called the impact map. The velocity equation states that
the relative ball-table speed just after the kth collision is a fraction � of its value
just before the kth collision. The phase equation determines tk (given tk�1) by
equating the table position and the ball position at time tk; tk is the smallest
strictly positive solution of the phase equation. The simulation of the impact map
on a microcomputer presents no real di�culties. The only somewhat subtle point
arises in �nding an e�ective algorithm for solving the phase equation, which is an
implicit algebraic equation in tk.

We choose to solve for tk by the bisection method 1 because of its great stability
and ease of coding. Other zero-�nding algorithms, such as Newton's method, are
not recommended because of their sensitivity to initial starting values. All bisection
methods must be supplied with a natural step size for the method at hand. The step
interval must be large enough to work quickly, yet small enough so as not to include
more than one zero on the interval. Our solution to the problem is documented in
the function �ndstep() of the C program below. In essence, our step-�nding method
works as follows.

If the relative impact velocity is large then tk and tk�1 will not be close, so
the step size need only be some suitable fraction of the forcing period. On the
other hand, if tk and tk�1 are close then the step size needs to be some fraction of
the interval. We approximate the interval between tk and tk�1 by noting that the
relative velocity between the ball and the table always starts out positive and must
be zero before they collide again. Using the fact that the time between collisions is
small, it is easy to show that

�k � A! cos(�k�1)� vk�1

A!2 sin(�k�1)� g
;

where �k�1 is the phase of the previous impact and �k is the time it takes the relative
velocity to reach zero. �k provides the correct order of magnitude for the step size.
This algorithm is coded in the following C program.

1For a discussion of the bisection method for �nding the real zeros of a continuous
function, see R. W. Hamming, Introduction to applied numerical analysis (McGraw-
Hill: New York, 1971), p. 36.
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/* bb.c bouncing ball program

copyright 1985 by Nicholas B. Tufillaro

Date written: 25 July 1985

Date last modified: 5 August 1987

This program simulates the dynamics of a bouncing ball subject to

repeated collisions with an oscillating wall.

The INPUT is:

delta v0 Amplitude Frequency damping cycles

where

delta: the initial position of ball between 0 and 1, this is the

phase of forcing frequency that you start at (phase mod 2*PI)

v0: the initial velocity of the ball, this must be greater than

the initial velocity of the wall.

A: Amplitude of the oscillating wall

Freq: Frequency of the oscillating wall in hertz

damp: (0-1) the impact parameter describing the energy loss per

collision. No energy loss (conservative case) when d = 1,

maximum dissipation occurs at d = 0.

cycles:the total length the simulation should be run in terms of

the number of forcing oscillations.

Units: CGS assumed

Compile with: cc bb.c -lm -O -o bb

Bugs:

�/

#include <stdio.h>

#include <math.h>

/* CONSTANTS (CGS Units) */

#define STEPSPERCYCLE (256)

#define TOLERANCE (1e-12)

#define MAXITERATIONS (1024)

#define PI (3.14159265358979323846)

#define G (981) /* earth's gravitational constant */

#define STUCK (-1)

#define EIGHTH (0.125)

/* Macros */

#define max(A, B) ((A) > (B) ? (A) : (B))

#define min(A, B) ((A) < (B) ? (A) : (B))
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/* Comments of variables

t is time since last impact

ti is time of last impact

tau is ti + t, time since start of simulation

xi is position of ball at last impact

vi is velocity of ball at last impact

w is velocity of wall

v is velocity of ball

�/

/* Global Variables */

double delta; /* initial phase (position) of ball */

double v0; /* initial ball velocity */

double A; /* table amplitude */

double freq; /* frequency of forcing */

double damp; /* impact parameter */

double omega; /* angular frequency 2*PI*f = 2*PI/T */

double T; /* period of forcing */

double cycles; /* length of simulation */

/* Functions */

double s(), w(), x(), v(), d(), acc();

double find step();

double checkstep();

double root();

double fmod(), asin();

main()

f
int stuckcount;

double t, ti, tau, dt, tstop, xi, vi, tj, xj, vj;

double t alpha, t beta, t ph; /* variables for sticking case */

/* read input parameters */

scanf("%lf%lf%lf%lf%lf%lf", &delta, &v0, &A, &freq, &damp, &cycles);

T = 1.0/freq;

tstop = T*cycles;

omega = 2*PI*freq;

delta = delta/freq;

if( v0 < w(0.0) ) f
printf("Error: Initial velocity less than wall velocity nn");
printf("Wall velocity: %g nn", w(0.0));
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exit();

g

t = 0; ti = 0; tau = ti + t; xi = s(tau); vi = v0;

dt = find step(ti, xi, vi);

t = dt; tau = ti + t; stuckcount = 0;

while( tau <= tstop) f
t += dt; tau = ti + t;

if( impact( tau, t, xi, vi)) f
t = root(t-dt, t, t, xi, vi, ti);

tj = ti + t;

xj = s(tj);

vj = (1+damp)*w(tj) - damp*v(t,vi);

t = 0; xi = xj; vi = vj; ti = tj;

dt = find step(ti, xi, vi);

if (dt == STUCK ) f /* sticking solution */

if (A*omega*omega < G) f
printf("Stuck forever with tablenn");
exit();

g
if(fabs(G/(A*omega*omega)) < 1.0)

t alpha = (1.0/omega)*asin(G/(A*omega*omega));

else

t alpha = T*0.25;

t beta = 0.5*T-t alpha;

dt = (t beta-t alpha)/STEPSPERCYCLE;

t ph = fmod(ti+delta,T);

if(!((t ph > t alpha) && (t ph < t beta))) f
stuckcount +=1;

if (t alpha < t ph)

tj = T + ti + t alpha - t ph;

else

tj = ti + t alpha - t ph;

xj = s(tj); vj = w(tj);

t = 0; xi = xj; vi = vj; ti = tj;

g
if(stuckcount == 2) f

printf("%g %gnn", fmod(tj/T,1.0), v(t,vj));

printf("Ball Stuck Twicenn");
exit();

g
g
if(tau > tstop/10.0)
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printf("%g %gnn", fmod(tj/T,1.0), v(t,vj));

dt = checkstep(dt,ti,xi,vi);

t = dt; tau = ti + dt;

g
g

g

double s(tau) /* wall position */

double tau;

f
return(A*(sin(omega*(tau+delta))+1));

g

double w(tau) /* wall velocity */

double tau;

f
return(A*omega*cos(omega*(tau+delta)));

g

double acc(tau) /* table acceleration */

double tau;

f
return(-A*omega*omega*sin(omega*(tau+delta)));

g

double x(t,xi,vi) /* ball position */

double t, xi, vi;

f
return(xi+vi*t-0.5*G*t*t);

g

double v(t,vi) /* ball velocity */

double t, vi;

f
return(vi-G*t);

g

double d(tau,t,xi,vi) /* distance between ball and wall */

double tau, t, xi, vi;

f
return(x(t,xi,vi)-s(tau));

g

int impact(tau,t,xi,vi) /* find when ball is below wall */
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double tau,t,xi,vi;

f
return(d(tau,t,xi,vi) <= 0.0);

g

/* pick a good step for finding zero */

double find step(ti,xi,vi)

double ti,xi,vi;

f
double t max, tstep;

if(vi-w(ti) <= 0.0) f /* should be alpha = 0, or sticking */

return(STUCK);

g
if(-acc(ti) - G != 0.0)

t max = fabs((w(ti)-vi)/(-acc(ti)-G));

else

t max = T/STEPSPERCYCLE;

if(t max < T*TOLERANCE) f
return(STUCK);

g
tstep = min(EIGHTH*t max,T/STEPSPERCYCLE);

return(tstep);

g

double root(a,b,t,xi,vi,ti)

double a,b;

double t, xi, vi, ti;

f
double m;

int count;

count = 0;

while(1) f
count += 1;

if(count > MAXITERATIONS) f
printf("ERROR: infinite loop in rootnn");
exit();

g
if(d(ti+a,a,xi,vi)*d(ti+b,b,xi,vi) > 0.0) f

printf("root finding error: no zero on intervalnn");
exit();

g
m = (a+b)/2.0;

if((d(ti+m,m,xi,vi) == 0.0 ) jj (b-a) < T*TOLERANCE)
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return(m);

else if ((d(ti+a,a,xi,vi)*d(ti+m,m,xi,vi)) < 0.0 )

b = m;

else

a = m;

g
g

double checkstep(dt,ti,xi,vi)

double dt, ti, xi, vi;

f
int count;

for(count=0; d(ti+dt,dt,xi,vi) < 0.0; ++count) f
dt = EIGHTH*dt;

if (count > 10) f
printf("Error: Can't calculate dtnn");
exit();

g
g
return(dt);

g
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Appendix B: Exact Solutions for a Cubic Oscillator

The free conservative cubic oscillator, equation (3.19), arose in the single-mode
model of string vibrations, and admits exact solutions in two special circumstances.
The �rst is the case of circular motion at a constant radius R. In Figure 3.3 we could
imagine circular orbits arising when the restoring force on the string just balances
the centrifugal force. Plugging the ansatz

r = (R cos!t; R sin!t) (B:1)

into equation (3.6) we see that it is indeed a solution provided the frequency is
adjusted to

!2c = !20(1 +KR2) : (B:2)

The second solution appears when we consider planar motion. If all the motion
is con�ned to the x{z plane, then the system is a single degree of freedom oscillator,
whose equation of motion in the dimensionless form obtained from equation (3.11)
is

x00 + x+ �x3 = 0: (B:3)

The exact solution to equation (B.3) is [1]

� =
1

(1 + 4�E)1=4

�
K

�
a2

a2 + b2

�
� F

�
arccos

x

a
;

a2

a2 + b2

��
; (B:4)

where F (�; �) is an elliptic integral of the �rst kind and K(�) = F (�=2; �) [2]; E is
the energy constant

E =
1

2
x0
2

+
1

2
x2 +

�

4
x4 (B:5)

and

b2; a2 =
1

�
(
p

1 + 4�E � 1) : (B:6)

As in circular motion, the frequency in planar motion is again shifted to a new value
given by

p =
�

2

(1 + 4�E)1=4

I[a2=(a2 + b2)]
: (B:7)

The exact solutions for circular and planar motion are useful benchmarks for testing
limiting cases of more general, but not necessarily exact, results.

An exact solution for the more general case of an anharmonic oscillator,

x00 + a1 + a2x+ a3x
2 + a4x

3 = 0

is provided by Reynolds [3].
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Appendix C: Ode Overview

Ode renders a numerical solution to the initial value problem for many families
of �rst-order di�erential equations. It is a programming language that resembles
the mathematical language so that the problem posed by a system is easy to state,
thereby making a numerical solution readily available. Ode solves higher-order
systems since a simple procedure converts an nth-order equation into n �rst-order
equations. Three distinct numerical methods are implemented at present: Runge-
Kutta-Fehlberg (default), Adams-Moulton, and Euler. The Adams-Moulton and
Runge-Kutta routines are available with adaptive step size [1]. The Ode User's

Manual provides both a tutorial on applying Ode and a discussion of its design and
implementation [2].

The user need only be familiar with the fundamentals of the UNIX operating
system to access and run this numerical software. Ode provides:

� A simple problem-oriented user interface,

� A table-driven grammar, simplifying extensions and changes to the language,

� A structure designed to ease the introduction of new numerical methods, and

� Remarkable execution speed and capacity for large problems, for an \inter-
pretive" system.

Ode currently runs on a wide range of microcomputers and mainframes that support
the UNIX operating system. Ode was developed at Reed College in the summer of
1981 under a UNIX operating system and is public domain software. The program
is currently in use at numerous educational and industrial sites (Reed College,
Tektronix Inc., U.C. Berkeley, Bell Labs, etc.), and the program and documentation
are available from some electronic networks, such as Internet.

Ode solves the initial value problem for a family of �rst-order di�erential equa-
tions when provided with an explicit expression for each equation. Ode parses a
set of equations, initial conditions, and control parameters, and then provides an
e�cient numerical solution. Ode makes the initial value problem easy to express;
for example, the Ode program

# an ode to Euler

y = 1

y' = y

print y from 1

step 0, 1

prints 2.718282.
A UNIX Shell can be used as a control language for Ode. Indeed, this allows

Ode to be used in combination with other graphical or analytical tools commonly
available with the UNIX operating system. For instance, the following shell script

[3] could be used to generate a bifurcation diagram for the Du�ng equation:
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: shell script using Ode to construct a bifurcation diagram

: for the Duffing oscillator.

: Scan in F: 50 ---> 60.

: Create a file "bif.data" with the initial conditions

: before running this shell script.

for I in 0 1 2 3 4 5 6 7 8 9

do

for J in 0 1 2 3 4 5 6 7 8 9

do

for K in 0 2 4 6 8

do

tail -1 bif.data > lastline.tmp

xo=`awk 'fprint $1g' lastline.tmp`

vo=`awk 'fprint $2g' lastline.tmp`

ode <<marker >>bif.data

alpha = 0.0037

beta = 86.2

gamma = 0.99

F = 5$I.$J$K

x0 = $xo

v0 = $vo

theta0 = 0

x' = v

v' = -(alpha*v + x + beta*x^3) + F*cos(theta)

theta' = gamma

F = 5$I.$J$K; t = 0; theta = 0;

print x, v, F every 64 from (2*PI*200)/(0.99)

step 0, (2*PI*400)/(0.99), (2*PI)/(64*0.99)

marker

done

done

done

In addition to Ode, there exist many other packages that provide numerical
solutions to ordinary di�erential equations. However, if you wish to write your own
routines see Chapter 15 of Numerical Recipes [4].
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Appendix D: Discrete Fourier Transform

The following C routine calculates a discrete Fourier transform and power spec-
trum for a time series. It is only meant as an illustrative example and will not be
very useful for large data sets, for which a fast Fourier transform is recommended.

/* Discrete Fourier Transform and Power Spectrum

Calculates Power Spectrum from a Time Series

Copyright 1985 Nicholas B. Tufillaro

*/

#include <stdio.h>

#include <math.h>

#define PI (3.1415926536)

#define SIZE 512

double ts[SIZE], A[SIZE], B[SIZE], P[SIZE];

main()

{

int i, k, p, N, L;

double avg, y, sum, psmax;

/* read in and scale data points */

i = 0;

while(scanf("%lf", &y) != EOF) {

ts[i] = y/1000.0;

i += 1;

}

/* get rid of last point and make sure #

of data points is even */

if((i%2) == 0)

i -= 2;

else

i -= 1;

L = i; N = L/2;

/* subtract out dc component from time series */

for(i = 0, avg = 0; i < L; ++i) {

avg += ts[i];

}

avg = avg/L;

/* now subtract out the mean value from the time series */

for(i = 0; i < L; ++i) {
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ts[i] = ts[i] - avg;

}

/* o.k. guys, ready to do Fourier transform */

/* first do cosine series */

for(k = 0; k <= N; ++k) {

for(p = 0, sum = 0; p < 2*N; ++p) {

sum += ts[p]*cos(PI*k*p/N);

}

A[k] = sum/N;

}

/* now do sine series */

for(k = 0; k < N; ++k) {

for(p = 0, sum = 0; p < 2*N; ++p) {

sum += ts[p]*sin(PI*k*p/N);

}

B[k] = sum/N;

}

/* lastly, calculate the power spectrum */

for(i = 0; i <= N; ++i) {

P[i] = sqrt(A[i]*A[i]+B[i]*B[i]);

}

/* find the maximum of the power spectrum to normalize */

for(i = 0, psmax = 0; i <= N; ++i) {

if(P[i] > psmax)

psmax = P[i];

}

for(i = 0; i <= N; ++i) {

P[i] = P[i]/psmax;

}

/* o.k., print out the results: k, P(k) */

for(k = 0; k <= N; ++k) {

printf("%d %g\n", k, P[k]);

}

}
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Appendix E: H�enon's Trick

The numerical calculation of a Poincar�e map from a cross section at �rst appears
to be a rather tedious problem. Consider, for example, calculating the Poincar�e map
for an arbitrary three-dimensional ow

dx

dt
= f(x; y; z);

dy

dt
= g(x; y; z);

dz

dt
= h(x; y; z);

with a planar cross section
� = (x; y; z = 0):

A simpleminded approach to this problem would involve numerically integrating
the equations of motion until the cross section is pierced by the trajectory. An
intersection of the trajectory with the cross section is determined by testing for a
change in sign of the variable in question. Once an intersection is found, a bisection
algorithm could be used to hone-in on the surface of section to any desired degree
of accuracy.

H�enon, however, suggested a very clever procedure that allows one to �nd the
intersection point of the trajectory and the cross section in one step [1]. Suppose
that between the nth and the n + 1st steps we �nd a change of sign in the z

coordinate:

(tn; xn; yn; zn < 0) and (tn + �t; xn+1; yn+1; zn+1 > 0):

To �nd the exact value in t at which the z coordinate equals zero we can change
t from the independent to a dependent variable, and change z from a dependent
variable to the independent variable. This is accomplished by dividing the �rst two
equations by dt=dz and inverting the last equation:

dx

dz
=

f(x; y; z)

h(x; y; z)
;

dy

dz
=

g(x; y; z)

h(x; y; z)
;

dt

dz
=

1

h(x; y; z)
:

This new system can be numerically integrated forward one step, �z = �zn, with
the initial values xn; yn; tn. A simple numerical integration method, such as a
Runge-Kutta procedure, is ideally suited for this single integration step.

As an application of H�enon's method consider the swinging Atwood's machine
(SAM) de�ned by the conservative equations of motion [2]:

_v =
1

1 + �

�
ru2 + cos � � �

�
;

_u = �1

r
(2vu + sin �) ;

_r = v;

_� = u:
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A cross section for this system is de�ned by (r; _r; � = 0). So we need to change the
independent variable from t to �. When � changes sign, we can �nd the Poincar�e
map by numerically integrating the equations:

dv

d�
=

1

u(1 + �)

�
ru2 + cos � � �

�
;

du

d�
= � 1

ur
(2vu+ sin �) ;

dr

d�
=

v

u
dt

d�
=

1

u
:

Pictures of the resulting Poincar�e map are found in reference [2].

References and Notes

[1] M. H�enon, On the numerical computation of Poincar�e maps, Physica 5D, 412{
414 (1982). Also see Hao B.-L., Elementary symbolic dynamics (World Scienti�c:
New Jersey, 1989), pp. 260{262.

[2] N. B. Tu�llaro, Motions of a swinging Atwood's machine, J. Physique 46, 1495{
1500 (1985).
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Appendix F: Periodic Orbit Extraction Code

The �rst C routine below was used to extract the periodic orbits from a chaotic
time series arising from the Du�ng oscillator, as described in section 5.2. This code
is speci�c to the Du�ng oscillator and is provided because it illustrates the coding
techniques needed for periodic orbit extraction. The second routine takes a pair
of extracted periodic orbits and calculates their relative rotation rates according to
equation (5.12). The input to the relative rotation rate program is a pair of periodic
orbits plus a �rst line containing some header information about the input �le.

/* fp.c

Find all Periodic orbits of period P and tolerance TOL.

Copyright 1989 by Nicholas B. Tufillaro

Department of Physics

Bryn Mawr College, Bryn Mawr, PA 19010-2899 USA

*/

#include <stdio.h>

#include <math.h>

/* This Array Maximum must be greater then 2*P*STEPS + 1 */

#define AMAX 1000

#define DIST(X1,X2,Y1,Y2)

((float)sqrt((double)((X2-X1)*(X2-X1)+(Y2-Y1)*(Y2-Y1))))

main(ac, av)

char **av;

{

int m, n, cnt, P, STEPS, LEN, TWOLEN, SHORTERPERIODICORBIT;

float d, ds, phe[AMAX], x[AMAX], y[AMAX], TOL, SHRTOL;

float oldphe;

/* process command line arguments: P TOL */

--ac; P = atoi(*++av); --ac; TOL = (float)atof(*++av);

/* set "global" variables */

STEPS = 64; LEN = P*STEPS; TWOLEN = 2*LEN;

SHRTOL = 2*TOL;

/* initialization, get first LEN points */

for(n = 0; n < LEN; ++n) {

if(scanf("%f %f %f", &phe[n], &x[n], &y[n]) == EOF) {

printf("Not enough orbits for computations.\n");

exit();

}

}



Periodic Orbit Extraction Code 315

/* find periodic orbits */

for(;;) {

for(n = LEN; n < TWOLEN; ++n) {

if(scanf("%f %f %f", &phe[n], &x[n], &y[n]) == EOF) {

exit();

}

}

for(n = 0; n < LEN; ++n) {

d = DIST(x[n], x[n+LEN], y[n], y[n+LEN]);

if(d < TOL) {

/* Identify shorter periodic orbits, if any.

This is a kludge.

*/

for(m = 1, SHORTERPERIODICORBIT = 0; m < P; ++m) {

ds = DIST(x[n], x[n+m*STEPS], y[n], y[n+m*STEPS]);

if(ds < SHRTOL) {

SHORTERPERIODICORBIT = 1;

}

}

/* End of kludge. */

if(!SHORTERPERIODICORBIT) {

if(fabs(phe[n]-oldphe) > 1.0) {

oldphe = phe[n];

printf("\n%f %f %f\n\n", -1.0, (float) P, (float) cnt);

for(m = n; m <= n+LEN; ++m) {

printf("%f %f %f\n", phe[m], x[m], y[m]);

}

cnt += 1;

}

}

}

}

for(n = 0; n < LEN; ++n) {

phe[n] = phe[n+LEN]; x[n] = x[n+LEN]; y[n] = y[n+LEN];

}

}

}
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/* rrr.c

calculate Relative Rotation Rates of two periodic orbits

of periods PA, PB.

Copyright 1989 by Nicholas B. Tufillaro

Department of Physics, Bryn Mawr College

Bryn Mawr, PA 19010-2899 USA

INPUT:

Data file with phase, x, and y listed for points in two

periodic orbits. For the first input line of each

periodic orbit, use -1.0 for phase and give the period in x.

For this first point y is ignored.

*/

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

#define ARG(X,Y) (float)(atan2((double)Y,(double)X))

main()

{

int m, n, M, N, I[10], J[10];

float phe, x, y, PA, PB, A[3][1000], B[3][1000];

int i, j, q, Q;

float rx[10000], ry[10000], RR[10][10];

if(scanf("%f %f %f", &phe, &x, &y)==EOF) {

printf("Error: empty input file\n");

exit();

}

if(phe != -1.0) {

printf("Error: Input file does not begin with -1.0\n");

exit();

}

if(phe == -1.0) {

PA = x;

for(n = 0, m = 0; ; ++n) {

if(scanf("%f%f%f", &phe, &x, &y)==EOF) {

printf("Error: not enough orbits\n");

exit();

}

if(phe == -1.0) {

break;
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}

if(fmod(phe,1.0) == 0.0) {

I[m] = n;

m +=1;

}

A[0][n] = phe; A[1][n] = y; A[2][n] = x;

}

PB = x;

M = n;

for(n = 0, m = 0; scanf("%f%f%f", &phe, &x, &y) != EOF; ++n) {

if(phe == -1.0) {

printf("Error: Too many orbits\n");

exit();

}

if(fmod(phe,1.0) == 0.0) {

J[m] = n;

m += 1;

}

B[0][n] = phe; B[1][n] = y; B[2][n] = x;

}

N = n;

}

Q = (int)(PA)*(N-1) + 1;

for(i = 0; i < PA; ++i) {

for(j = 0; j < PB; ++j) {

for(m = I[i], n = J[j], q = 0; q < Q; ++q, ++m, ++n) {

if(m == 0) m = M-1;

if(n == 0) n = N-1;

if(m == M) m = 1;

if(n == N) n = 1;

rx[q] = B[1][n]-A[1][m]; ry[q] = B[2][n]-A[2][m];

}

for(q = 0; q < Q - 1; ++q) {

if(ARG(rx[q],ry[q]) > PI/2 && ARG(rx[q],ry[q]) < PI

&& ARG(rx[q+1],ry[q+1]) > -PI &&

ARG(rx[q+1],ry[q+1]) < -PI/2)

RR[i][j] += 2*PI + ARG(rx[q+1],ry[q+1]) -

ARG(rx[q],ry[q]);

else if(ARG(rx[q],ry[q]) > -PI &&

ARG(rx[q],ry[q]) < -PI/2 &&

ARG(rx[q+1],ry[q+1]) > PI/2 &&

ARG(rx[q+1],ry[q+1]) < PI)

RR[i][j] += ARG(rx[q+1],ry[q+1])-

ARG(rx[q],ry[q]) - 2*PI;
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else

RR[i][j] += ARG(rx[q+1],ry[q+1])-

ARG(rx[q],ry[q]);

}

}

}

printf("\nROTATION RATES\n\n");

printf("PA: %g PB: %g\n\n", PA, PB);

for(i = 0; i < PA; ++i) {

for(j = 0; j < PB; ++j) {

printf("Index: %d, %d. Rotations: %g Rel. Rot.: %g\n",

i+1, j+1, RR[i][j]/(2*PI), RR[i][j]/(2*PI*PA*PB));

}

}

printf("\n");

}
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Appendix G: Relative Rotation Rate Package

The following Mathematica package calculates relative rotation rates and inter-
twining matrices by the methods described in section 5.5.4.

(*

Relative Rotation Rates --- Mathematica Package

Date: 10/04/90

Last Modified:

Authors: Copyright 1990

A. Lorentz, N. Tufillaro and P. Melvin.

Departments of Mathematics and Physics

Bryn Mawr College, Bryn Mawr, PA 19010-2899 USA

Bugs:

Many of these symbolic computations are exponential time algorithms,

so they are slow for long periodic orbits and templates with many branches.

A "C" version of these routines exists which runs considerably

faster. The algorithm for the calculation of the relative

rotation rate from a single word pair, however, is polynomial time.

About the Package:

This collection of routines automates the process for the symbolic

calculation of relative rotation rates, and the intertwining matrix

for an arbitrary template. The template is represented algebraically

by a framed braid matrix, which is specified by the global variable

"bm" in these routines. This variable must be defined by the user

when these routines are entered.

There are three major routines:

RelRotRate[word pair], AllRelRotRates[word pair], and

Intertwine[start row, stop row].

The input for the RelRotRate programs is a word pair, which is just

a list of lists. For example, a valid input for these programs is

{ {0,1,0,1,1,0}, {1,1,0} }

where the first word of the word pair is "010110" and the second word

is "110". The input for the Intertwine program is just two integers,

"start row" and "stop row". For instance, Intertwine[2,3] would produce

all relative rotation rates for all words of length between 2 and 3.

In addition, the routine
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GetFunCyc[branches, period]

generates all fundamental cycles of length "period" for a template with

"b" branches or a symbolic alphabet of "b" letters. This routine can

be useful for the cycle expansion techniques (see, R. Artuso, E. Aurell,

and P. Cvitanovic, Recycling of strange sets I and II, Nonlinearity

Vol 3., Num. 2, May 1990, p. 326.).

References:

[1] G. B. Mindlin, X.-J. Hou, H. G. Solari, R. Gilmore, and N. B. Tufillaro,

Classification of strange attractors by integers, Phys. Rev. Lett. 64

(20), 2350 (1990).

[2] N. B. Tufillaro, H. G. Solari, and R. Gilmore, Relative rotation rates:

fingerprints for strange attractors, Phys. Rev. A 41 (10), 5717 (1990).

[3] H. G. Solari and R. Gilmore, Organization of periodic orbits in the

driven Duffing oscillator, Phys. Rev. A 38 (3), 1566 (1988).

[4] H. G. Solari and R. Gilmore, Relative rotation rates for driven

dynamical systems, Phys. Rev. A 37 (8), 3096 (1988).

*)

(*

The template braid matrix is a global variable that should be

defined by the user before this package is used. Comment out the

default setting for the braid matrix.

Examples for the braid matrix are presented below.

Global Variable Abbreviation.

bm braid matrix --- algebraic description of template

*)

(* Braid Matrix Example: The Horseshoe Template *)

(*

bm = {

{ 0, 0 },

{ 0, 1 }

};

*)

(* Braid Matrix Example: Second Iterate of The Horseshoe Template *)

bm = {

{ 0, 0, 0, 0},

{ 0, 1, 1, 1},

{ 0, 1, 2, 1},
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{ 0, 1, 1, 1}

};

(* Calculate the relative rotation rate for a pair of words.

Variables local to RelRotRate.

wordp wordpair

lcm lowest common multiple of word pair lengths

ewordp expanded word pair

top top list

bottom bottom list

rrr relative rotation rate of word pair

*)

RelRotRate[wordp_List] :=

Block[

{

lcm,

ewordp, top, bottom,

rrr,

},

If[wordp[[1]] == wordp[[2]], Return[0]]; (* Self rotation rate *)

ewordp = ExpandWordPair[wordp];

top = GetTop[ewordp];

bottom = GetBottom[ewordp];

lcm = Length[top];

rrr = (SumAll[top] + SumAll[bottom])/(2 lcm);

Return[rrr]

]

(* Permute the word pair list to generate

all possible relative rotation rates *)

AllRelRotRates[wordp_List] :=

Block[

{i, pa, pb, lcm, wordstep, rrr,

firstword, secondword, rrrs},

firstword = wordp[[1]];

secondword = wordp[[2]];

pa = Length[firstword];

pb = Length[secondword];
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lcm = LCM[pa, pb];

wordstep = (lcm*lcm)/(pa*pb);

rrrs = {};

For[i = 0, i < lcm, i += wordstep,

rrr = RelRotRate[{firstword, secondword}];

rrrs = Append[rrrs, {firstword, secondword, rrr}];

firstword = RotateRight[firstword, wordstep];

];

Return[rrrs];

]

(* Calculate the Intertwining Matrix of all orbits of length "startrow"

to length "stoprow", startrow <= stoprow. *)

Intertwine[startrow_Integer, stoprow_Integer] :=

Block[

{b, i, j, k, rowsize, rsum, colsize, csum, mult,

cycls = {}, rcycls = {}, ccycls = {}, rrr = {}, rrrs = {}},

b = Length[bm];

rowsize = 0; rsum = 0;

For[i = startrow, i <= stoprow, ++i,

cycls = GetFunCyc[b, i]; rowsize = Length[cycls];

rsum += rowsize;

For[j = 1, j <= rowsize, ++j,

rcycls = Append[rcycls, cycls[[j]]];

];

];

colsize = 0; csum = 0;

For[i = 1, i <= stoprow, ++i,

cycls = GetFunCyc[b, i]; colsize = Length[cycls];

csum += colsize;

For[j = 1, j <= colsize, ++j,

ccycls = Append[ccycls, cycls[[j]]];

];

];

rrr = {}; rrrs = {};

For[i = 1, i <= rsum, ++i,

For[j = 1, j <= csum, ++j,

rrr = AllRelRotRates[{rcycls[[i]], ccycls[[j]]}];

mult = Length[rrr];

rrrs = {rrr[[1,1]], rrr[[1,2]]};

For[k = 1, k <= mult, ++k,
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rrrs = Append[rrrs, rrr[[k,3]]];

];

Print[rrrs];

If[rcycls[[i]] == ccycls[[j]], Break[]];

];

];

]

(* Subroutines for major programs: RelRotRate, AllRelRotRates,

Intertwine *)

ExpandWordPair[wp_List] :=

Block[

{i, lcm, firstword, secondword},

firstword = wp[[1]]; secondword = wp[[2]];

lcm = LCM[Length[firstword], Length[secondword]];

Return[

{ Flatten[ Table[firstword, {i, lcm/Length[firstword] }]],

Flatten[ Table[secondword, {i, lcm/Length[secondword] }]] }

];

]

GetTop[ewp_List] :=

Block[

{i, lcm},

lcm = Length[ ewp[[1]] ];

Return[

Table[ bm[[ ewp[[1,i]]+1, ewp[[2,i]]+1]], {i, lcm} ]

];

]

GetBottom[ewp_List] :=

Block[

{i=0, s=0, j=0, prevj=0, nextj=0, cnt=0, lcm=0, sgn=0,

top={}, ewpd={}, b1={}, b2={}, b3={}, bot={}},

lcm = Length[ewp[[1]]];

top = GetTop[ewp];

ewpd = ewp[[1]] - ewp[[2]];

(* initialize rows b1, b2, b3 *)

For[i = 1, i < lcm+1, i++,
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AppendTo[b1,0]; AppendTo[b2,0]; AppendTo[b3,0];

];

(* calculate b1 row *)

For[i = 1, i < lcm + 1, i++,

If[ewpd[[i]] != 0, b1[[i]] = Mod[top[[i]],2]];

];

(* calculate b2 row *)

For[s = 0, ewpd[[s+1]] == 0, ++s];

For[i = 1, i < lcm + 1, i++,

j = i + s; If[j > lcm, j -= lcm];

prevj = j - 1; If[prevj < 1, prevj += lcm];

If[0 == ewpd[[j]],

cnt = 0;

For[k = j, ewpd[[k]] == 0, k++,

cnt = cnt + top[[k]];

If[k == lcm, k = 0];

i++;

];

cnt = Mod[cnt, 2];

b2[[prevj]] = cnt;

];

];

(* calculate b3 row *)

For[i = 1, i < lcm + 1, i++,

j = i + s; If[j > lcm, j -= lcm];

nextj = j + 1; If[nextj > lcm, nextj -= lcm];

k = nextj;

While[0 == ewpd[[nextj]],

++nextj; ++i;

If[nextj > lcm, nextj -= lcm];

];

If[Negative[ewpd[[j]]*ewpd[[nextj]]], sgn = 1, sgn = 0];

b3[[j]] = sgn;

];

bot = Mod[b1 + b2 + b3, 2];

Return[bot];

]

SumAll[l_List] :=



Relative Rotation Rate Package 325

Block[{i},

Return[Sum[l[[i]], {i, Length[l]}]]

]

(* Generates the fundamental cycles of length "period" for a template

with "b" branches *)

GetFunCyc[b_Integer, period_Integer] :=

Block[

{cycles},

(* get all cycles of length *)

cycles = GetAllCyc[b, period]; (* "period", and b "branches" *)

cycles = DelSubCyc[b, cycles]; (* delete nonfundamental subcycles *)

cycles = DelCycPerm[cycles]; (* delete cyclic permutations

of fundamental cycles *)

Return[cycles];

]

(* Subroutines for GetFunCyc *)

GetAllCyc[branches_Integer, levels_Integer] :=

Block[

{n, m, i, j,

roots, tree, nextlevel, cycle, cycles},

For[i = 0; roots = {}, i < branches, ++i,

roots = Append[roots, i];

];

(* creates full n-ary tree recursively *)

tree = {roots};

For[n = 1, n < levels, ++n,

nextlevel = {};

For[m = 1, m <= branches, ++m,

nextlevel = Append[nextlevel, Last[tree]];

];

tree = Append[tree, Flatten[nextlevel]];

];

(* reads up each branch of tree to root, from left to right *)

cycles = {};

For[i = 1, i <= branches^levels, ++i,

cycle = {};

For[j = levels, j > 0, --j,
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k = Ceiling[i/(branches^(levels-j))];

cycle = Prepend[cycle, tree[[j]][[k]]];

];

cycles = Append[cycles, cycle];

];

Return[cycles];

]

DelSubCyc[b_Integer, allcycls_List] :=

Block[

{i, j, k, levels, period, numofdivs, numofsub, copies, wordpos,

cycles = {}, div = {}, word = {}, droplist = {},

subcycles = {}, subword = {}, nonfun = {}, funcycls = {}},

(* Initializations and gets divisor list *)

cycles = allcycls; levels = Length[ cycles[[1]] ];

period = levels; div = Divisors[levels];

(* Creates nonfundamental words from periodic orbits created from

divisor list *)

numofdivs = Length[div];

For[i = 1, i < numofdivs, ++i, (* go throw divisor list *)

copies = period/div[[i]];

subcycles = GetAllCyc[b, div[[i]]];

numofsub = Length[subcycles];

(* create subwords of lengths found in divisor list *)

For[j = 1; subword = {}, j <= numofsub, ++j,

subword = subcycles[[j]];

(* expand subwords to length of periodic orbits *)

For[k = 1; word = {}, k <= copies, ++k,

word = Flatten[Append[word, subword]];

];

(* find positions of nonfundamental cycles in all cycles *)

wordpos = Flatten[Position[cycles, word]][[1]];

droplist = Union[Append[droplist, wordpos]];

];

];

(* this is a kludge to delete nonfundamental cycles *)

For[i = 1; nonfun = {}, i <= Length[droplist], ++i,

nonfun = Append[nonfun, cycles[[droplist[[i]]]]];

];

funcycls = Complement[cycles, nonfun];



Relative Rotation Rate Package 327

Return[funcycls];

]

DelCycPerm[funcycls_List] :=

Block[

{size, i, j, period,

cycs, word },

cycs = funcycls;

size = Length[cycs]; period = Length[cycs[[1]]];

For[i = 1, i < size, ++i,

word = cycs[[i]];

For[j = 1, j < period, ++j,

word = RotateLeft[word];

cycs = Complement[cycs, {word}];

size = size-1;

];

];

Return[cycs];

]
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Appendix H: Historical Comments

How hard are the problems posed by classical mechanics? The beast in the ma-
chine, the beast we now call chaos, was discovered about a century ago by the French
scientist and mathematician Henri Poincar�e during the course of his investigations
on \the three-body problem," the great unsolved problem of classical mechanics.
Poincar�e, in his magnum opus on the three-body problem, New Methods of Celestial

Mechanics, writes:1

397. When we try to represent the �gure formed by these two curves
and their intersections in a �nite number, each of which corresponds
to a doubly asymptotic solution, these intersections form a type of
trellis, tissue, or grid with in�nitely serrated mesh. Neither of the two
curves must ever cut across itself again, but it must bend back upon
itself in a very complex manner in order to cut across all of the meshes
in the grid an in�nite number of times.

The complexity of this �gure will be striking, and I shall not even try
to draw it. Nothing is more suitable for providing us with an idea of
the complex nature of the three-body problem, and of all the problems
of dynamics in general, where there is no uniform integral and where
the Bohlin series are divergent.

Poincar�e is describing his discovery of homoclinic solutions (homoclinic intersec-
tions, or homoclinic tangles2). The existence of these homoclinic solutions \solved"
the three-body problem insofar as it proved that no solution of the type envisioned
by Jacobi or Hamilton could exist. Volume III of Poincar�e's New Methods of Celes-

tial Mechanics (1892{1898), from which the above quote is taken, is the foundational
work of modern dynamical systems theory.

Poincar�e's great theorem of celestial mechanics, as stated in his prize-winning
essay to the King of Sweden, is the following:3

The canonical equations of celestial mechanics do not admit (except
for some exceptional cases to be discussed separately) any analytical
and uniform integral besides the energy integral.

Simply put, Poincar�e's theorem says that there does not exist a solution to the
three-body problem of the type assumed by the Hamilton-Jacobi method or any
other method seeking an analytic solution to the di�erential equations of motion.

1H. Poincar�e, Les m�ethodes nouvelles de la m�ecanique c�eleste, Vol. 1{3
(Gauthier-Villars: Paris, 1899); reprinted by Dover, 1957. English translation:
New methods of celestial mechanics (NASA Technical Translations, 1967).

2R. Abraham and C. Shaw, Dynamics|The geometry of behavior, Vol. 1{4
(Aerial Press: Santa Cruz, CA, 1988).

3H. Poincar�e, Sur le probl�eme des trois corps et les �equations de la dynamique,
Acta Math. 13, 1{271 (1890).
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Poincar�e \solved" the three-body problem by showing that no solution exists|at
least not of the type assumed by scientists of his era.

But Poincar�e did much more. Confronted with his discovery of homoclinic
tangles, Poincar�e went on to reinvent what is meant by a solution. In the process,
Poincar�e laid the foundations for several new branches of mathematics including
topology, ergodic theory, homology theory, and the qualitative theory of di�erential
equations.4 Poincar�e also pointed out the possible uses of periodic orbits in taming
the beast:5

36. . . . It seems at �rst that this fact can be of no interest what-
ever for practice. In fact, there is a zero probability for the initial
conditions of the motion to be precisely those corresponding to a pe-
riodic solution. However, it can happen that they di�er very little
from them, and this takes place precisely in the case where the old
methods are no longer applicable. We can then advantageously take
the periodic solution as �rst approximation, as intermediate orbit, to
use Gyld�en's language.

There is even more: here is a fact which I have not been able to demon-
strate rigorously, but which seems very probable to me, nevertheless.

Given equations of the form de�ned in art. 13 and any particular
solution of these equations, we can always �nd a periodic solution
(whose period, it is true, is very long), such that the di�erence between
the two solutions is as small as we wish, during as long a time as
we wish. In addition, these periodic solutions are so valuable for us
because they are, so to say, the only breach by which we may attempt
to enter an area heretofore deemed inaccessible.

The periodic orbit theme is pursued in Chapter 5.
Shortly thereafter Hadamard (1898) produced the �rst example of an abstract

system exhibiting chaos|the geodesics on a surface of constant negative curvature.6

Hadamard's example was later generalized by Anosov and is still one of the best
mathematical examples of chaos in its most extreme form.

In America, George David Birkho� continued in the way of Poincar�e. He ex-
amined the use of maps7 instead of ows, and began the process of hunting and

4F. Browder, The mathematical heritage of Henri Poincar�e, Vol. 1{2, Proc. Sym.
in Pure Math. Vol. 39 (American Mathematical Society: Providence, RI, 1983).

5R. MacKay and J. Meiss, eds., Hamiltonian dynamical systems (Adam Hilger:
Philadelphia, 1987).

6J. Hadamard, Les surfaces �a curbures oppos�es et leurs lignes g�eod�esiques, Journ.
de Math. 4 (5), 27{73 (1898).

7G. D. Birkho�, Surface transformations and their dynamical applications, Acta
Math. 43, 1{119 (1922).
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naming di�erent critters that he called limit sets of the alpha and omega variety.8

Still, without the aid of the computer, Birkho� was often fooled by the beast into
thinking that nonintegrability implies complete ergodicity. It took the work of Kol-
mogorov, Arnold, and Moser in the early 1960s to show that the beast is more subtle
in its destructive tendencies, and that it prefers to chew on rational frequencies.9

Few physicists were concerned about the beast, or even aware of its existence,
during the �rst half of the twentieth century; however, this is more than understand-
able when you consider that they had their hands full with quantum mechanics and
some less savory inventions. Still, there were some notable exceptions, such as those
discussed by Brillouin in his book Scienti�c Uncertainty, and Information.10

Near the end of the Second World War, Cartwright and Littlewood11 and
Levinson12 showed that the beast liked to play the numbers, and could generate
solutions as random as a coin toss. At �rst they did not quite believe their results;
however, experiments with a simple circuit (the van der Pol oscillator) forced them
to accept the idea that a fully deterministic system can produce random results|
what we now think of as the de�nition of chaos.

In 1960, the young topologist Steven Smale was sitting on the beach in Rio
playing with the beast when he �rst saw that in its heart lay a horseshoe.13 Smale
found that he could name the beast, a hyperbolic limit set, even if he had trouble
seeing it since it was very, very thin. Moreover, Smale found a simple way to
unravel the horseshoe via symbolic dynamics.14 Now that the beast was named
and dissected, mathematicians had some interesting mathematical objects to play
with, and Smale and his friends were o� and running.

At about the same time the meteorologist Ed Lorenz, a former student of G. D.
Birkho�, discovered that the beast was not only in the heavens, as evidenced in the
three-body problem, but may well be around us all the time in the atmosphere.15

Whereas Smale showed us how to name the beast, Lorenz allowed us to see the
beast with computer simulations and judiciously chosen models. Lorenz pointed

8G. D. Birkho�, Collected mathematical works, Vol. 1{3 (Dover: New York,
1968).

9J. Moser, Stable and random motions in dynamical systems, Ann. Math. Studies
77 (Princeton University Press: Princeton, NJ, 1973).

10L. Brillouin, Scienti�c uncertainty, and information (Academic Press: New
York, 1964).

11M. L. Cartwright and N. Littlewood, On nonlinear di�erential equations of the
second order, I, J. Lond. Math. Soc. 20, 180{189 (1945).

12N. Levinson, A second-order di�erential equation with singular solutions, Ann.
Math. 50, 127{153 (1949).

13S. Smale, The mathematics of time: Essays on dynamical systems, economic

processes, and related topics (Springer-Verlag: New York, 1980).
14R. L. Devaney, An introduction to chaotic dynamical systems, second ed.

(Addison-Wesley: New York, 1989).
15E. N. Lorenz, Deterministic nonperiodic ow, J. Atmos. Sci. 20, 130{141 (1963).
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out the role return maps can play in understanding real systems, how ubiquitous
the beast really is, and how we can become more familiar with the beast through
simple models such as the logistic map.16

This two-pronged approach of using abstract topological methods on the one
hand and insightful computer experiments on the other is central to the method-
ology employed when studying nonlinear dynamical systems. More than anything
else, it probably best de�nes the \nonlinear dynamical systems method" as it has
developed since Lorenz and Smale. In fact, J. von Neumann helped invent the elec-
tronic computer mainly to solve, and provide insight into, nonlinear equations. In
1946 in an article called \On the principles of large scale computing machines," he
wrote:

Our present analytic methods seem unsuitable for the solution of the
important problems arising in connection with non-linear partial dif-
ferential equations and, in fact, with virtually all types of non-linear
problems in pure mathematics. . . .

. . . really e�cient high-speed computing devices may, in the �eld of
non-linear partial di�erential equations as well as in many other �elds
which are now di�cult or entirely denied of access, provide us with
those heuristic hints which are needed in all parts of mathematics for
genuine progress.

Thank heavens for the Martians.

16E. N. Lorenz, The problem of deducing the climate from the governing equa-
tions, Tellus 16, 1{11 (1964).
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Appendix I: Projects

In this appendix we provide a brief guide to the literature on some topics that
might be suitable for an advanced undergraduate research project.

1. Acoustics

(a) Review article
W. Lauterborn and U. Parlitz, Methods of chaos physics and their
application to acoustics, J. Acoust. Soc. Am. 84 (6), 1975{1993 (1988).

(b) Oscillations in gas columns
T. Yazaki, S. Takashima, and F. Mizutani, Complex quasiperiodic
and chaotic states observed in thermally induced oscillations of gas
columns, Phys. Rev. Lett. 58 (11), 1108{1111 (1987).

(c) Wineglass
A. French, A study of wineglass acoustics, Am. J. Phys. 51 (8), 688{694
(1983).

2. Biology

(a) Review article
L. Olsen and H. Degn, Chaos in biological systems, Quart. Rev. Bio-
phys. 18 (2), 165{225 (1985).

(b) Brain waves
P. Rapp, T. Bashore, J. Martinerie, A. Albano, I. Zimmerman, and A.
Mees, Dynamics of brain electrical activity, Brain Topography 2 (1&2),
99{118 (1989).

(c) Gene structure
H. Je�rey, Chaos game representation of gene structure, Nucleic Acids
Res. 18 (8), 2163{2170 (1990).

3. Chemistry

(a) Chemical clocks
S. Scott, Clocks and chaos in chemistry, New Scientist (2 December
1989), 53{59; E. Mielczarek, J. Turner, D. Leiter, and L. Davis, Chem-
ical clocks: Experimental and theoretical models of nonlinear behavior,
Am. J. Phys. 51 (1), 32{42 (1983).

4. Electronics

(a) Analog simulation of laser rate equations
M. James and F. Moss, Analog simulation of a periodically modulated
laser model, J. Opt. Soc. Am. B 5 (5), 1121{1127 (1988); for more
details about the circuit contact F. Moss, Dept. of Physics, University
of St. Louis, St. Louis, MO 63121.
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(b) Circuits
J. Lesurf, Chaos on the circuit board, New Scientist (30 June 1990),
63{66. A. Rodriguez-Vazquez, J. Huertas, A. Rueda, B. Perez-Verdu,
and L. Chua, Chaos from switched-capacitor circuits: Discrete maps,
Proc. IEEE 75 (8), 1090{1106 (1987).

(c) Double scroll
T. Matsumoto, L. Chua, and M. Komuro, The double scroll bifurca-
tions, Circuit theory and applications 14, 117{146 (1986); T. Mat-
sumoto, L. Chua, and M. Komuro, The double scroll, IEEE Trans.
on Circuits and Systems CAS-32 (8), 798{818 (1985); L. Chua, M.
Komuro, and T. Matsumoto, The double scroll family, IEEE Trans.
on Circuits and Systems CAS-33 (11), 1073{1118 (1986); T. Weldon,
An inductorless double scroll circuit, Am. J. Phys. 58 (10), 936{941
(1990).

5. Hydrodynamics

(a) Dripping faucet
R. Cahalan, H. Leidecker, and G. Cahalan, Chaotic rhythms of a drip-
ping faucet, Computing in Physics, 368{383 (Jul/Aug 1990); R. Shaw,
The dripping faucet as a model chaotic system (Aerial Press, Santa
Cruz, CA 1984); H. Yepez, N. Nuniez, A. Salas Brito, C. Vargas, and
L. Viente, Chaos in a dripping faucet, Eur. J. Phys. 10, 99{105 (1989).

(b) Hele-Shaw cell
J. Nye, H. Lean, and A. Wright, Interfaces and falling drops in Hele-
Shaw cell, Eur. J. Phys. 5, 73{80 (1984).

(c) Lorenz loop
S. Dodd, Chaos in a convection loop, Reed College Senior Thesis
(1990); M. Gorman, P. Widmann, and K. Robbins, Nonlinear dynam-
ics of a convection loop, Physica 19D, 255{267 (1986); P. Widmann,
M. Gorman, and K. Robbins, Nonlinear dynamics of a convection loop
II, Physica 36D, 157{166 (1989).

(d) Surface waves
R. Apfel, \Whispering" waves in a wineglass, Am. J. Phys. 53 (11),
1070{1073 (1985); S. Douady and S. Fauve, Pattern selection in Fara-
day instability, Europhys. Lett. 6 (3), 221{226 (1988); J. P. Gollub,
Spatiotemporal chaos in interfacial waves (To appear in: New per-

spectives in turbulence, edited by S. Orszag and L. Sirovich, Springer-
Verlag); J. Miles and D. Henderson, Parametrically forced surface
waves, Annu. Rev. Fluid Mech. 22, 143{165 (1990); V. Nevolin, Para-
metric excitation of surface waves, J. Eng. Phys. (USSR) 47, 1482{1494
(1984).
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6. Mechanics

(a) Artistic mobiles
O. Viet, J. Wesfreid, and E. Guyon, Art cin�etique et chaos m�ecanique,
Eur. J. Phys. 4, 72{76 (1983).

(b) Bicycle stability
Y. H�ena�, Dynamical stability of the bicycle, Eur. J. Phys. 8, 207{210
(1987); J. Papadopoulos, Bicycling handling experiments you can do
(preprint, Cornell University, 1987); C. Miller, The physical anatomy
of steering stability, Bike Tech (October 1983), 8{11.

(c) Compass in a B-�eld
H. Meissner and G. Schmidt, A simple experiment for studying the
transition from order to chaos, Am. J. Phys. 54 (9), 800{804 (1986);
V. Croquette and C. Poitou, Cascade of period doubling bifurcations
and large stochasticity in the motions of a compass, J. Physique Lettres
42, L-537{L-539 (1981).

(d) Compound pendulum
N. Pedersen and O. Soerensen, The compound pendulum in interme-
diate laboratories and demonstrations, Am. J. Phys. 45 (10), 994{998
(1977).

(e) Coupled pendula
K. Nakajima, T. Yamashita, and Y. Onodera, Mechanical analogue of
active Josephson transmission line, J. Appl. Phys. 45 (7), 3141{3145
(1974).

(f) Elastic pendulum
E. Breitenberger and R. Mueller, The elastic pendulum: A nonlinear
paradigm, J. Math. Phys. 22 (6), 1196{1210 (1981); M. Olsson, Why
does a mass on a spring sometimes misbehave? Am. J. Phys. 44 (12),
1211{1212 (1976); H. Lai, On the recurrence phenomenon of a reso-
nant spring pendulum, Am. J. Phys. 52 (3), 219{223 (1984); L. Falk,
Recurrence e�ects in the parametric spring pendulum, Am. J. Phys.
46 (11), 1120{1123 (1978); M. Rusbridge, Motion of the sprung pendu-
lum, Am. J. Phys. 48 (2), 146{151 (1980); T. Cayton, The laboratory
spring-mass oscillator: An example of parametric instability, Am. J.
Phys. 47 (8), 723{732 (1977); J. Lipham and V. Pollak, Constructing
a \misbehaving" spring, Am. J. Phys. 46 (1), 110{111 (1978).

(g) Forced beam
See Appendix C of F. Moon, Chaotic vibrations (John Wiley & Sons,
New York, 1987).

(h) Forced pendulum
R. Leven, B. Pompe, C. Wilke, and B. Koch, Experiments on periodic
and chaotic motions of a parametrically forced pendulum, Physica 16D,
371{384 (1985).
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(i) Impact oscillator
H. Isomaki, J. Von Boehm, and R. Raty, Devil's attractors and chaos
of a driven impact oscillator, Phys. Lett. 107A (8), 343{346 (1985);
A. Brahic, Numerical study of a simple dynamical system, Astron. &
Astrophys. 12, 98{110 (1971); C. N. Bapat and C. Bapat, Impact-pair
under periodic excitation, J. Sound Vib. 120 (1), 53{61 (1988).

(j) Impact pendulum
D. Moore and S. Shaw, The experimental response of an impacting
pendulum system, Int. J. Nonlinear Mech. 25 (1), 1{16 (1990); S.
Shaw and R. Rand, The transition to chaos in a simple mechanical
system, Int. J. Nonlinear Mech. 24 (1), 41{56 (1989).

(k) Impact printer
P. Tung and S. Shaw, The dynamics of an impact print hammer, J.
of Vibration, Acoustics, Stress, and Reliability in Design 110, 193{200
(April 1988).

(l) Swinging Atwood's machine
J. Casasayas, A. Nunes, and N. B. Tu�llaro, Swinging Atwood's ma-
chine: Integrability and dynamics, J. de Physique 51, 1693{1702 (1990);
J. Casasayas, N. B. Tu�llaro, and A. Nunes, In�nity manifold of a
swinging Atwood's machine, Eur. J. Phys. 10 (10), 173{177 (1989);
N. B. Tu�llaro, A. Nunes, and J. Casasayas, Unbounded orbits of a
swinging Atwood's machine, Am. J. Phys. 56 (12), 1117{1120 (1988);
N. B. Tu�llaro, Integrable motion of a swinging Atwood's machine,
Am. J. Phys. 54 (2), 142{143 (1986); N. B. Tu�llaro, Motions of a
swinging Atwood's machine, J. de Physique 46, 1495{1500 (1985); N.
B. Tu�llaro, Collision orbits of a swinging Atwood's machine, J. de
Physique 46, 2053{2056 (1985); N. B. Tu�llaro, T. A. Abbott, and D.
J. Gri�ths, Swinging Atwood's machine, Am. J. Phys. 52 (10), 895{
903 (1984); B. Bruhn, Chaos and order in weakly coupled systems of
nonlinear oscillators, Physica Scripta 35, 7{12 (1987).

(m) Swinging track
J. Long, The nonlinear e�ects of a ball rolling in a swinging quarter
circle track, Reed College Senior Thesis (1990); R. Benenson and B.
Marsh, Coupled oscillations of a ball and a curved-track pendulum,
Am. J. Phys. 56 (4), 345{348 (1988).

(n) Wedge
N. Whelan, D. Goodings and J. Cannizzo, Two balls in one dimension
with gravity, Phys. Rev. A 42 (2), 742{754 (1990); H. Lehtihet and B.
Miller, Numerical study of a billiard in a gravitational �eld, Physica
21D, 93{104 (1986); A. Matulich and B. Miller, Gravity in one dimen-
sion: Stability of a three particle system, Celest. Mech. 39, 191{198
(1986); B. Miller and K. Ravishankar, Stochastic modeling of a billiard
in a gravitational �eld, J. Stat. Phys. 53 (5/6), 1299{1314 (1988).
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7. Optics

(a) Laser instabilities
N. B. Abraham, A new focus on laser instabilities and chaos, Laser
Focus, May 1983.

(b) Light absorbing uid
G. Indebetouw and T. Zukowski, Nonlinear optical e�ects in absorbing
uids: Some undergraduate experiments, Eur. J. Phys. 5, 129{134
(1984).

(c) Maser equations
D. Kleinman, The maser rate equations and spiking, Bell System Tech.
J. (July 1964), 1505{1532.

(d) Semiconductor lasers
H. Winful, Y. Chen, and J. Liu, Frequency locking, quasiperiodicity,
and chaos in modulated self-pulsing semiconductor lasers, Appl. Phys.
Lett. 48 (10), 616{618 (1986); J. Camparo, The diode laser in atomic
physics, Contemp. Phys. 26 (5), 443{477 (1985).

(e) Diode-pumped YAG laser
N. B. Abraham, L. Molter, and G. Alman, Experiments with a diode-
pumped Nd-YAG laser, private communication. Address: Department
of Physics, Bryn Mawr College, Bryn Mawr, PA 19101-2899 USA.

8. Spatial-Temporal Chaos

(a) Capillary ripples
N. B. Tu�llaro, Order-disorder transition in capillary ripples, Phys.
Rev. Lett. 62 (4), 422{425 (1989); H. Riecke, Stable wave-number
kinks in parametrically excited standing waves, Europhys. Lett. 11 (3),
213{218 (1990); A. B. Ezerskii, M. I. Rabinovitch, V. P. Reutov, and
I. M. Starobinets, Spatiotemporal chaos in the parametric excitations
of a capillary ripple, Sov. Phys. JEPT 64 (6), 1228{1236 (1987); W.
Eisenmenger, Dynamic properties of the surface tension of water and
aqueous solutions of surface active agents with standing capillary waves
in the frequency range from 10 kc/s to 1.5 Mc/s, Acustica 9, 327{341
(1959).

(b) Cellular automata
J. P. Reilly and N. B. Tu�llaro, Worlds within worlds|An introduction
to cellular automata, The Physics Teacher (February 1990), 88{91.

(c) Coupled lattice maps
R. Kapral, Pattern formation in two-dimensional arrays of coupled,
discrete-time oscillators, Phys. Rev. A 31 (6), 3868{3879 (1985).

(d) Ferrohydrodynamics
E. M. Karp, Pattern selection and pattern competition in a ferrohy-
drodynamic system, Reed College Senior Thesis (1990).
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(e) Video feedback
J. Crutch�eld, Space-time dynamics in video feedback, Physica 10D,
229{245 (1984); V. Golubev, M. Rabinovitch, V. Talanov, V. Shklover,
and V. Yakhno, Critical phenomena in inhomogeneous excitable media,
JEPT Lett. 42 (3), 99{102 (1985); G. Hausler, G. Seckmeyer, and T.
Weiss, Chaos and cooperation in nonlinear pictorial feedback systems,
Appl. Opt. 25 (24), 4656{4672 (1986).



Index

(k; �) recurrent point, 245
�-limit set, 195
�-pseudo orbit, 197
!-limit set, 195
\period three implies chaos", 90

abstract dynamical system, 191
alternating binary tree, 105
Arnold, V. I., 1, 9
Artin crossing convention, 253
asymptotic behavior, 196
asymptotically stable, 204
attracting, 68

set, 47, 196
attractor, 14, 41, 47, 196

identi�cation, 174
autonomous, 138, 189

backward limit set, 195
backward orbit, 189
Baker's map, 188
basin of attraction, 48, 196
beam, 130, 133, 135
Bendixson, Ivar, 13
bi-in�nite symbol sequence, 226
bifurcation, 41, 79

diagram, 49, 77
summary diagram, 84

binary expansion, 17, 92
binary tree, 120
BINGO, 179, 183
Birkho�, G. D., 324
Birman and Williams template theo-

rem, 270
bisection method, 293
Borromean rings, 251

bouncing ball
C program, 293
impact map, 25, 293
impact relation, 29
phase map, 30, 293
sticking solution, 34, 39, 66
strange attractor, 26
system, 23
velocity map, 31, 293

braid, 256
group, 258
relations, 258
word, 258

braid linking matrix, 275
branch line, 269
branch torsion, 272

C programming language, 61
Cantor set, 19, 95
Cartwright and Littlewood, 325
center, 135, 206
center manifold, 209

theorem, 209
center space, 208
chain recurrent, 197
chain recurrent set, 197
chain rule, 134
chaos, 14, 152
chaos vs. noise, 177, 244
chaotic, 14, 174, 231, 233

attractor, 163
repeller, 93
set, 228

circle map, 159
close return, 245

338



INDEX 339

closure, 152
coe�cient of restitution, 28
coexisting solutions, 42
conservative, 27, 202
contraction, 199
correlation dimension, 179
correlation integral, 177
cross section, 16, 140, 191
crossing convention, 253

damping coe�cient, 28
delay time, 168
derivative

of a composite function, 60
of a map, 199

deterministic, 11
Devaney, R. L., 91, 93, 98, 114, 115
devil's staircase, 182
di�eomorphism, 16
di�erential, 199
di�erential equations

�rst-order system of, 11
geometric de�nition, 10
numerical solution of, 302

di�erentiator, 163
disconnected set, 95
discrete Fourier transform

C program, 305
dissipative, 27, 202
divergence, 201, 202
domain of attraction, 48, 196
Du�ng equation, 132, 188, 247

template, 287
dynamical quest, 194, 239
dynamical systems theory, 2

eigenvalues, 2� 2 real matrix, 216
elastic collision, 27
embedded time series, 58
embedded variable, 167
embedding, 58

di�erential, 166
time-delayed, 167

equation of �rst variation, 203
equilibrium

point, 14
solution, 204
state, 133

eventually �xed, 66
eventually periodic point, 68
evolution operator, 190, 246

linear, 205
expansion, 199
extended phase space, 138

fast Fourier transform, 171
Feigenbaum, 86
Feigenbaum's delta, 88
FFT, 171
�gure-eight knot, 251
�nite Fourier series, 170
�rst return map, 17, 192
�rst-order system, di�erential equa-

tions, 11
�xed point, 66, 68, 204
ip bifurcation, 83
ow, 11, 140, 189, 190
forced damped pendulum, 184, 188
forward limit set, 195
forward orbit, 189
Fourier series, 169
Fourier transform

C program, 305
fractal, 18
fractal dimension, 19, 179
framed braid, 259
framing, 259
frequency spectrum, 172
fully developed chaos, 93, 241
functional composition, 60
fundamental frequency, 128

geometric braid, 256
geometric convergence, 88
geometric series, 38, 88
global torsion, 194, 264, 267
granny knot, 251
graphical iteration of a one-dimensional

map, 62



340 INDEX

Hadamard, J., 324
half-twist, 259
harmonic balance, 146, 181, 185
harmonic oscillator, 55, 132, 143
Hausdor�, F., 19
Heaviside function, 177
H�enon map, 15, 188

Jacobian, 201
H�enon, Michel, 15
H�enon's trick, 307
heteroclinic

point, 212
tangle, 213

Holmes, P., 220
homeomorphism, 16, 98
homoclinic

intersection, 151
point, 212
solution, 323
tangle, 152, 213, 220

Hopf bifurcation, 158
Hopf link, 251
horseshoe, 65, 219

intertwining matrix, 284
linear map, 223
template, 271

hyperbolic
�xed point, 206
point, 231
set, 94, 231

hyperbolicity, 94
hysteresis, 144, 148

IHJM optical map, 188
incommensurate, 14
inelastic collision, 27
initial condition, 190
inset, 137, 150
integral curve, 11, 135, 190
integration trick, 134
intertwining matrix, 264
invariant set, 93, 137, 195
invertible map, 16
itinerary, 98, 101

Jacobian, 200, 201

Katok's theorem, 265
kneading theory, 96, 277, 280
knot, 249

problem, 251
types, 251

laser rate equation, 215
Levinson, N., 325
Li and Yorke, 90
lift, 267
limit cycle, 13, 14, 149
linear approximation, 199
linear di�erential equation, 3
linear map, 65
linear resonance, 142
linear stability, 204
linear system, 3
linearization, 205
link, 251
linking number, 255, 263
local stability, 204
local torsion, 246
logistic map, 56
longitudinal vibrations, 124
Lorentz force law, 125
Lorenz equations, 188

divergence, 202
intertwining matrix, 284
template, 271

Lorenz, E. N., 57, 325
Lyapunov exponent, 92, 117, 233

main resonance, 143
Mandelbrot, B., 18
manifold, 10
map, 15, 189
maps to, 189
Martians, 326
Mathematica, 110, 314
matrix of partial derivatives, 199
metric, 96
mod operator, 25
modulated laser equations, 188



INDEX 341

multifractal, 20

negative cross, 253
neutral stability, 68
nonautonomous, 189
noninvertible map, 16
nonlinear dynamics, 2
nonwandering

point, 196
set, 196

numerical methods
calculation of a Poincar�e map, 307
solution of ordinary di�erential equa-

tions, 302

Ode, 302
orbit, 15, 60, 189
orbit stability diagram, 75
ordering relation, 106, 278
ordering tree, 278
orientation, 104
orientation preserving, 211
oriented knot, 252
outset, 137, 150

parabolic map, 66
parametric oscillation, 124
partition, 105
pedagogical approach, 8, 9, 55, 123
pendulum, 184
perfect set, 95
period, 14
period doubling, 41
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