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1. Introduction

1.1 Historical background

We shall present a new approach to the computation of solutions of ordinary differential
systems which is based on jet space techniques. Jets were introduced in the early 1950s by
Ehresmann (1951) and were almost immediately applied by Spencer, Kuranishi, Sternberg,
Goldschmidt, Quillen and others to study arbitrary systems of PDEs (Spencer, 1969;
Kuranishi, 1967; Goldschmidt, 1967). Apparently these results did not become well known
to a larger audience because Vinogradov (1981) remarks (this is from his review of
Pommaret (1978), written in 1981):

Unfortunately, all these achievements have until now remained on the pages
of difficult-to-read periodical literature (including the book of Kumpera
& Spencer (1972), which is also difficult to read) and in fact remained
inaccessible to those for whom they were written, namely, for specialists in
differential equations.

Now there are several monographs on the subject of jets and PDEs (Krasilshchik et
al., 1986; Pommaret, 1978, 1983, 1988, 1994; Tarkhanov, 1995); see also the surveys
(Dudnikov & Samborski, 1996; Alekseevskij et al., 1991; Spencer, 1969) and the
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collection of articles (Lychagin, 1995). Also, jets are used (among other techniques) in
the analysis of the symmetries of differential equations (Olver, 1995) and in problems of
nonholonomic dynamical systems (Vershik & Gershkovich, 1994). However, none of these
works provides easy reading and require at least some background in differential geometry.

Now happily, though not unexpectedly, many of the complications disappear in the
ODE case, so we do not have to introduce the whole framework below. In spite of that,
we require many notions from differential geometry so this article cannot possibly be self-
contained in this sense and we must refer to Spivak (1979), do Carmo (1992) and Saunders
(1989) for more details and explanations on these basic matters. However, in Section 2
we have tried to explain some basic ideas with a minimum of technical details in order to
motivate the introduction of the heavier machinery which is needed later on.

1.2 Comparison to related work

The main motivation of this article came from the theory of differential algebraic equations,
but as the reader may remark, this term does not appear in the title, and in fact we shall not
need this concept at all. The reason is simple: from our point of view there is no difference
between ODEs and DAEs. Hence we shall usually use the term differential system to
remind the reader that this covers all the cases. Perhaps this sounds a bit surprising since in
the traditional approach to DAEs it is always stressed that ODEs and DAEs are basically
different, see the well-known books by Brenan et al. (1989); Hairer & Wanner (1991);
Hairer et al. (1989) and the survey article (März, 1992), where extensive references to
the literature are given. Intuitively, this (apparent) paradox can be explained as follows.
From the jet point of view the differential systems are certain submanifolds of jet spaces,
and consequently one can speak of differential systems without actually writing down any
particular equation. One might then say that the classical distinction between ODEs and
DAEs is related to the representation of objects rather than to the objects themselves.

Since ODEs and DAEs are not distinguished, it is only natural that the notion of index
is not needed either, see the above references for a discussion of this concept from the
traditional point of view and (Le Vey, 1998; Seiler, 1999) from the jet point of view. In
particular, the index is not related to any numerical difficulty of the problem when using
our approach in the numerical solution.

Let us further mention two interesting consequences of our point of view. The first
is that explicit methods can be used to solve general differential systems. In other words
there is no intrinsic connection between DAEs and stiff systems. The second is that since
the definition of the solution is not the usual one, some problems that are singular from
the traditional point of view become regular, hence easily computable, in our framework.
This aspect is discussed in detail in Tuomela (1997, 1998), so below we shall merely show
some examples of this phenomenon.

In traditional methods one sometimes also talks about manifolds and projections to
manifolds. Since both words are often used in the sequel, let us note that the manifolds in
question are not the same as discussed below, nor are the projections the same.

Rabier, Rheinboldt and Reich have also studied DAEs from the differential geometric
point of view, using the tangent bundle instead of jet spaces (Rheinboldt, 1984; Rabier
& Rheinboldt, 1991, 1994; Reich, 1991). Some theorems and computations are seen to
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be (equivalent to) special cases of the more general results of Goldschmidt (1967), see
Korvola (1997) for details.

Recently there has been much interest in applying geometric ideas to the numerical
solution of differential systems. Iserles (1996, 1997) discusses, in general, how qualitative
features of the solutions should be taken into account when designing numerical methods.
For example, nowadays Hamiltonian problems are usually treated with symplectic methods
which preserve the underlying symplectic structure of the problem, see Sanz Serna & Calvo
(1994) and the references therein. Symplecticity and jets appear also in Rangarajan (1996),
but the use of jets there is quite different than in the present paper. In Seiler & Tucker (1995)
and Seiler (1995) jets are used to study constrained dynamics, but the main motivation and
results are not in the numerical analysis. There are also many papers dealing with flows on
Lie groups and in general using Lie groups and Lie algebras in numerical methods. Since
these works are not directly related to the present paper (except for the fact that differential
geometric ideas play an essential role in both cases), we will simply refer the reader to
the following articles for further details: (Crouch & Grossman, 1993; Iserles & Nørsett,
1999; Munthe-Kaas, 1995, 1999; Munthe-Kaas & Zanna, 1997; Zanna, 1998; Zanna &
Munthe-Kaas, 1997).

1.3 Outline of the article

In Section 2 some motivating examples are given. By restricting our attention to simple
equations, it is possible to explain some basic ideas relying on the geometrical intuition
of the three-dimensional space. In Section 3 the jets are introduced and the important
concept of involutivity is discussed. In Section 4 there are some computations illustrating
the notions introduced in previous sections.

In Section 5 we use Riemannian geometry to analyse the local error of some one-
step methods. The analysis shows that the orders of these methods in our context are
the same as their classical orders. In Section 6 the actual numerical implementation is
presented. It is seen that the subproblems arising in our algorithm can be treated with fairly
standard techniques. In Section 7 the numerical examples are given. We have chosen some
representative problems which have appeared frequently in the literature. Our methods
work reliably, and the results show in particular that one can use explicit methods for
these kind of problem, although in the literature only implicit methods are considered. We
conclude with Section 8 where some suggestions for future work are indicated.

Essential parts of this article are based on the reports by Tuomela (1996) and Arponen
& Tuomela (1996). That jet spaces are useful for analysing differential-algebraic equations
was first suggested in Le Vey (1994) and Piirilä & Tuomela (1993) (independently).

2. Differential equation as a surface

Let us start by explaining the basic ideas in a simple setting where we can visualize the
situation in three-dimensional space before formulating the general framework. A similar
situation was considered in Arnold (1983) and Dara (1975) where the emphasis is on the
analysis of singularities. We will also say a few words about singularities in the examples,
but do not insist on this aspect of the problem. While discussing the examples we also
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introduce some standard concepts of differential geometry. All maps and manifolds are
assumed to be smooth, i.e. infinitely differentiable.

2.1 Basic machinery

Let us consider a single first-order differential equation

f (x, y, y1) = 0 (2.1)

where f is a smooth function and y1 is the derivative of y.† Now, forgetting for the moment
about derivatives, we can interprete (x, y, y1) as coordinates of R

3. Hence the zero set
of (2.1) is a subset of R

3, denoted by R1 = f −1(0) ⊂ R
3. If zero is a regular value of

f , i.e. if the gradient of f never vanishes on R1, then R1 is a smooth two-dimensional
manifold.

Now what are the solutions of (2.1)? Classically the solutions are defined as (smooth)
curves c : R→ R such that (2.1) is identically satisfied. Here we shall take another, more
geometrical as well as more general, point of view. Having defined R1 one could perhaps
consider defining solutions as certain curves c : R→ R1. However, it is only the image of
the curve which is important, its parametrization is irrelevant. Hence the solutions should
be defined directly as certain one-dimensional submanifolds of R1 without any reference to
parametrizations. So let S be a smooth one-dimensional submanifold of R1. When would
it be meaningful to say that S is a solution of (2.1)?

To proceed let us introduce some terminology. If p ∈ R1, the tangent plane of R1 at
p is denoted by (TR1)p. Similarly T Sp is the line tangent to S at p, and it is evident that
T Sp ⊂ (TR1)p. Our next task is to add to this framework some extra structure in such
a way that we can say that R1 is a differential equation. Consider R

3 with coordinates
(x, y, y1); if y1 is really the derivative of y with respect to x , then in infinitesimal notation
we should have dy − y1 dx = 0. To make sense of this we must define what is meant by
dy and dx . Using Spivak’s words (Spivak, 1979, vol. 1, p 153) symbols like dx

. . . metamorphosed into functions, and it became clear that they must be
distinguished from tangent vectors. Once this realization came, it was only
a matter of making new definitions, which preserved the old notation, and
waiting for everybody to catch up.

So dx , dy and dy1 are linear functions on the tangent space (T R
3)p, hence elements of

the dual space of (T R
3)p. This dual space is called the cotangent space and is denoted

(T ∗R3)p. Let us then define α = dy − y1 dx ; at each point of R
3, α is then a linear

function on (T R
3)p. Now we can define a subspace of (T R

3)p as follows

Cp = {v ∈ (T R
3)p |α(v) = 0}

All these Cp together are called a contact distribution, denoted C. In general let us define:

DEFINITION 2.1 A distribution on a manifold M is a map which associates a certain
subspace of the tangent space T Mp to each point of p ∈ M .

†Later y1 is called a jet coordinate.
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In the present case C is then a two-dimensional distribution on R
3. One may think of

distributions as generalizations of vector fields. Now a vector field may be interpreted as
a differential equation, and hence the integral curves of the vector field are said to be
solutions of the corresponding differential equation. A generalization of this idea leads to
the notion of an integral manifold.

DEFINITION 2.2 Let S be a submanifold of M and D a distribution on M . S is an integral
manifold of D if T Sp = Dp at each p ∈ S.†

Let us go back to our differential equation (2.1). Since (TR1)p can also be interpreted
as a subspace of (T R

3)p, we can define an intersection Dp = (TR1)p ∩ Cp. Hence D
is in general one dimensional. Of course at some points tangent and contact planes may
coincide; we will discuss this event and its consequences in the examples below. Ignoring
these exceptional points for the moment leads to

DEFINITION 2.3 Solutions of (2.1) are integral manifolds of D.‡

Since one-dimensional distributions always have integral manifolds, see (Spivak, 1979,
vol. 1, p 245), we get

THEOREM 2.1 Given p ∈ R1 such that D is one-dimensional in a neighbourhood of p,
there exists a solution S of (2.1) such that p ∈ S.

Note that this kind of existence theorem is not valid for many dimensional distributions.
For example, it is readily checked that the contact distribution does not admit any
integral manifolds, even locally. Incidentally, this implies that tangent and contact planes
cannot coincide in an open set of R1. Since we are interested only in one-dimensional
distributions, i.e. ordinary differential equations, we will not consider these matters further
and refer the reader to Spivak (1979, vol. 1, chapter 6) for more information.

2.2 Comparison to classical solutions

Consider again the problem (2.1) and let p ∈ R1 be a regular point, i.e. ∂ f/∂y1 = 0
at p. Then by the implicit function theorem there is a map ϕ : R

2 → R such that in
a neighbourhood of p, R1 can be represented by the equation y1 + ϕ(x, y) = 0. The
solutions of this equation can be defined in the usual way and one thinks of them either as
curves R → R or as (one-dimensional) submanifolds of R

2. Let us take the latter point
of view. Let us define a projection π : R

3 → R
2 by (x, y, y1) �→ (x, y) and let S be a

solution of (2.1) in the sense of Definition 2.3. Now if p ∈ S is regular, then one can show
that π(S) is the classical solution in some neighbourhood of π(p).

Hence around regular points there is a bijective correspondence between solutions in
the sense of Definition 2.3 and classical solutions. However, because the implicit function
theorem is not constructive, the reduction to the standard form is not in general possible in
practice. Note also that Definition 2.3 provides more smooth solutions than the classical

†Sometimes another terminology is used, for example in Dara (1975). If D has constant dimension on M , then
it determines a foliation of M and each integral manifold is called a leaf of this foliation.

‡In Dara (1975) this way of defining solutions is called ‘méthode de Lie’.
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FIG. 1. Some solution curves of the equation (2.2) and their projections.

setting since tangent and contact planes need not (and in general do not) coincide even if
∂ f/∂y1 = 0. We shall see shortly examples of this phenomenon.

REMARK 2.1 This property of having more smooth solutions than in the classical case
is quite interesting from the numerical point of view. Indeed, it is possible to use general
methods for a larger class of problems than the classical framework allows.

2.3 Examples

2.3.1 Sphere. Consider the problem

f (x, y, y1) = (y1)
2 + y2 + x2 − 1 = 0. (2.2)

Hence R1 = f −1(0) is the unit sphere and at each point p ∈ R1, Dp is given by the
nullspace of

A =
(−y1 1 0

x y y1

)
.

One observes that dim(N (A)) = 1, except at (0,±1, 0). So only at these two points tangent
and contact planes coincide; in the classical sense all the points of the equator are singular.
In Fig. 1 we show some solution curves of (2.2) as well as their projections. When the
solution crosses the equator, there is a cusp in the projected solution, which in convenient
coordinates can be represented by the equation u2 = v3. The singularities at exceptional
points (0,±1, 0) are called folded focuses (Arnold & Ilyashenko, 1988, p 34).
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FIG. 2. A solution of equation (2.4) (left) and some asymptotic curves on surface (2.3) (right). Thin lines represent
the sets of parabolic points.

2.3.2 Asymptotic curves. Let us consider the following problem of classical differential
geometry. Let N ⊂ R

3 be a surface defined by the equation

1
4 (x4 + y4)− 3xy − z = 0. (2.3)

We want to compute some asymptotic curves on this surface. There are several
characterizations of these curves, see Spivak (1979, vol. 3) or any book on classical
differential geometry. The one which is convenient for our purposes is the following: the
tangent of an asymptotic curve makes the second fundamental form vanish. Asymptotic
curves exist only in those parts of the surface where Gaussian curvature is negative or zero,
in the present case this occurs in the region where x2 y2 � 1. The curves can be computed
by solving the differential equation

f (x, y, y1) = y2(y1)
2 − 2y1 + x2 = 0. (2.4)

The distribution is one-dimensional everywhere on R1 = f −1(0), except at (1,−1, 1) and
(−1, 1, 1). Now the problem can be solved by computing the solution in R1, projecting
it to R

2 and finally lifting it to N . Note that the solutions of (2.4) are smooth in the
sense of Definition 2.3, although the corresponding asymptotic curves on surface N have
familiar cusps at x2 y2 = 1, see Fig. 2. The singularities at exceptional points (1,−1, 1)

and (−1, 1, 1) are called folded saddles, see Arnold & Ilyashenko (1988, p. 34) and Fig. 3
where there are some solutions and their projections around (1,−1, 1).

2.3.3 Distributions and their singularities. Distributions are perhaps less intuitive and
less familiar objects than vector fields, so let us see an example where distributions come
directly from the problem. In fact the previous example is such a case. The condition
defining the asymptotic directions clearly defines a subspace of the tangent space, hence
a distribution. In this way we have arrived directly at distributions without passing by
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FIG. 3. Some solution curves of the equation (2.4) and their projections.

differential equations. In the previous example we have not used this distribution. Also the
condition defining the lines of curvature of a surface leads directly to distributions. In this
case the distribution is determined by the eigenspaces of the differential of the Gauss map.

Let us then show that singularities of distributions are more general than singularities,
i.e. zeros, of vector fields. Consider any smooth surface N ⊂ R

3 and let us suppose that
distribution D is one-dimensional except at some isolated points which are called singular
points of D. Recall that around a regular point p there is a vector field V such that 0 =
Va ∈ Da for all a in some neighbourhood of p and conversely every such V spans a certain
distribution. However, around a singular point such a vector field may not exist. Let us see
an example of this phenomenon. Consider the problem

f (x, y, y1) = x(y1)
2 − 2yy1 − x = 0. (2.5)

It is easily checked that this is a regular problem, and in fact the classical solutions are
seen to be a family of parabolas, see Fig. 4. Now clearly there is no vector field in the
neighbourhood of the origin whose integral curves were the parabolas. Incidentally, the
pattern of parabolas is the same as the pattern of the lines of curvature around an umbilic
on an ellipsoid, see Spivak (1979, vol. 3, p 288). In other words the index of the singularity
is the same, namely 1/2 in both cases, see Spivak (1979, vol. 3, p 324). Note also that if
one transforms the above problem into a classical problem using square roots, the correct
solution is obtained only if one jumps from one branch of the square root to the other when
crossing x = 0.

3. Differential systems and jet spaces

Lychagin (1995, p ix) describes the importance of jets in the analysis of differential
equations as follows.
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Thus, whereas connections between linear differential equations and differ-
ential geometry were few and far between, as were the connections between
analytic geometry (in the elementary sense of the term) and geometry in the
sense of Felix Klein, in contrast the theory of nonlinear differential equations
is clearly a geometric theory, based on the special geometry of jet spaces.

Hence to proceed we must introduce more ideas from differential geometry and, in
particular, jets. For more details on jet geometry we refer to Saunders (1989). In all that
follows various maps are required to be defined only in some convenient open set of the
relevant manifold. For notational simplicity this set is not indicated. To further simplify the
discussion we shall not define bundles in full generality. The version presented is, however,
locally ‘true’, i.e. any bundle can locally be represented as described below.

3.1 Jet bundles

Let us consider two maps y, z : R
s → R

n , let ν ∈ N
s be a multi-index and |ν| =

ν1 + · · · + νs .

DEFINITION 3.1 The maps y and z are q-equivalent at x , if

∂ |ν|y
∂xν

(x) = ∂ |ν|z
∂xν

(x)

for all 0 � |ν| � q .
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The equivalence thus defined is clearly an equivalence relation so we can further define

DEFINITION 3.2 The q-jet of y at x , denoted by jq
x (y), is the equivalence class of the

above equivalence relation. The q-jet of y, denoted by jq(y), is the map x �→ jq
x (y).

Intuitively the q-jet of y at x is its Taylor expansion up to order q. Since all these
considerations are local, the previous definitions also make sense when R

s and R
n are

replaced by manifolds. However, in the jet theory one usually prefers to talk about sections
rather than maps. So let us introduce

DEFINITION 3.3 A (trivial) bundle is a triple (E, π,B) where E = R
s × R

n , B = R
s ,

π : E → B is a map defined by π(x, y) = x . E is called the total space, B the base space
and π the projection. For each p ∈ B, the set π−1(p) is called the fibre over p.

We shall usually refer to a bundle by the total space, although this might be confusing
in some situations; indeed in jet theory there are frequently situations where the same total
space is considered with different base spaces and projections. However, in our context this
kind of confusion is not likely to occur.

DEFINITION 3.4 A section of a bundle (E, π,B) is a map y : B → E such that π ◦ y =
identity.

Note that in our simplified context where E = R
s × R

n a section of E is simply the
graph of a map R

s → R
n . Hence the definition of jets for maps carries immediately over

to sections. Putting all this information together gives jet bundles.

DEFINITION 3.5 Let (E, π,B) be a bundle. The set of all q-jets of its sections is a bundle
(Jq(E), πq ,B), the qth jet bundle of (E, π,B).

For example if E = R × R, then R
3 in the previous section is denoted by J1(E). The

projection π1 is defined by (x, y, y1) �→ x and if y is a section of E , then j1(y) is a section
of J1(E) defined by x �→ (x, y(x), y′(x)). Note that not every section of J1(E) is a 1-jet of
a section of E . We are now ready to define a differential equation.

DEFINITION 3.6 Let E be a bundle. A (partial) differential system (or equation) of order
q on E is a submanifold Rq of Jq(E).

Since we are working with ODEs, the jet bundle Jq(E) can be identified with Cartesian
product R× R

n × · · · × R
n where R

n appears q + 1 times. Hence we can write Jq(E) �
R

(q+1)n+1 and denote its coordinates by (x, y, y1, . . . , yq); these are called jet coordinates.
However, before restricting our attention to the ODE case, we add a few comments

about the formal theory of PDEs and refer for more information to (Spencer, 1969;
Goldschmidt, 1967; Krasilshchik et al., 1986; Kuranishi, 1967; Pommaret, 1978, 1983,
1988, 1994; Tarkhanov, 1995; Dudnikov & Samborski, 1996; Alekseevskij et al., 1991).
The word formal is used for the following reason. When Riquier (1910) and others started
studying fairly arbitrary systems of PDEs at the end of the 19th century, they had in mind
a generalization of the Cauchy–Kovalevskaia theorem and this involved two steps: the
first being to construct the solution as a formal power series. Now Riquier realized that
given an arbitrary system, it was not possible to obtain the formal power series without
first transforming the initial system to a ‘canonical’ form, or, in modern terms, a formally
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integrable or involutive form. The second step is then to prove the convergence of the power
series in the analytical case, or more generally that the solution exists in a stronger sense
than merely as a formal power series. Note that these two steps are independent of each
other.

Now, is it always possible to find the involutive form? Probably already in the beginning
people working in this field thought that this must be the case for a ‘generic’ system, and the
result was proved in full generality by Goldschmidt (1967), based on the work of Spencer.
Stating precisely this theorem would require too much preparation, so we shall simply try
to explain some ideas that are relevant from the point of view of the present article. Anyway
let us formulate at least a slogan:

Any system of PDEs can be transformed into an involutive form. Moreover
this transformation is constructive.

In the ODE context, involutiveness says that if we have a system of differential equations
of order at most q , then we cannot obtain new independent equations of order q by
differentiating the given equations and eliminating higher-order derivatives. Later on we
shall discuss the implications of these matters to numerical computations.

3.2 Ordinary differential systems

In Definition 3.6 we have defined a differential system without actually mentioning any
equations. Now it is finally time to introduce the equations. Having identified Jq(E)

and R
(q+1)n+1 we can define a submanifold of Jq(E) as a zero set of some map f :

R
(q+1)n+1 → R

k :

f (x, y, y1, . . . , yq) = 0. (3.1)

Hence we can set Rq = f −1(0) ⊂ Jq(E). Now it is relatively straightforward to extend
the framework of Section 2 to the general case. We denote the tangent (resp. cotangent)
bundle of a manifold M by T M (resp. T ∗M), and the tangent (resp. cotangent) space at
p ∈ M by T Mp (resp. T ∗Mp). The sections of T M are vector fields and the sections of
T ∗M are one-forms. In the introductory examples α was a section of T ∗ J1(R × R) and
now we must formulate this idea in the general case.

Let us then consider the system (3.1) and let us define the one-forms on Jq(E) by

αi
j = dyi

j−1 − yi
j dx i = 1, . . . , n j = 1, . . . , q. (3.2)

With these forms one can formulate the appropriate generalization of the contact plane and
contact distribution. Let p ∈ Jq(E) and define

Cp =
{
vp ∈ (T Jq(E))p

∣∣αi
j (vp) = 0

}
.

This defines a distribution C on Jq(E), which is called a Cartan distribution, and it is easily
checked that dim(C) = n + 1.† Let us see that this distribution captures the ‘infinitesimal’

†The Cartan distribution defines a contact structure on Jq (E) only in the case n = q = 1.
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idea expressed in the notation of the one-forms. Let y (resp. z) be a section of E (resp.
Jq(E)). Identifying sections and their images we may consider jq(y) and z as submanifolds
of Jq(E). Then we have the following lemma whose proof we omit.

LEMMA 3.1 For all p ∈ jq(y), (T jq(y))p ⊂ Cp and conversely if for all p ∈ z, (T z)p ⊂
Cp, then z = jq(y) for some y.

Let Rq = f −1(0) ⊂ Jq(E) where f is given in (3.1) and, supposing that zero is
a regular value of f , Rq is a smooth manifold. Now as in the simple examples in the
beginning we can define a distribution D at each point of p ∈ Rq by

Dp = (TRq)p ∩ Cp. (3.3)

Hence we can now define the solutions in a similar fashion to the scalar case.

DEFINITION 3.7 Supposing that Rq is involutive and D is one-dimensional, the solutions
of (3.1) are integral manifolds of D.

Now Theorem 2.1 generalizes as such to the present situation, so we conclude that
there always exists a unique solution through p ∈ Rq , if D is one-dimensional in some
neighbourhood of p.

REMARK 3.1 Is D really one-dimensional? The dimensions of Cp, (TRq)p and
(T Jq(E))p are n + 1, qn + n − k + 1 and qn + n + 1 which implies that Dp is at
least n − k + 1 dimensional. Consequently for k < n (i.e. underdetermined systems) D
cannot be one-dimensional. Note that in this case the solutions can still be defined with the
help of sections, although evidently there is no unique solution through a given point. In
some problems it may be interesting to analyse the space of solutions of underdetermined
systems, and jet spaces are useful in this kind of analysis. However, such considerations
are rather far removed from numerical analysis, so from now on we will always assume
that the systems treated are not underdetermined.

For k = n one would expect that D is ‘generically’ one-dimensional, and in fact this is
always the case if f is in the standard form

f (x, y, y1, . . . , yq) = yq + f̃ (x, y, y1, . . . , yq−1).

More generally, the transversal intersection of (TRq)p and the Cartan distribution is one-
dimensional.

Finally if k > n, then for f taken ‘at random’ one would expect that D is zero-
dimensional. However, systems arising in practice have additional structure which ‘allows’
D to be one-dimensional.

REMARK 3.2 Why should the system be involutive? Consider the following systems in
J1(R× R

2) � R
5

R1 :
{

y1 + 1 = 0

y2
1 + 1 = 0

R(1)
1 :




y1 + 1 = 0

y1
1 = 0

y2
1 + 1 = 0.
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R(1)
1 is the involutive form of R1. Note that the solution sets, in the classical sense, are

the same for R1 and R(1)
1 . Now the distribution on R1 is one-dimensional, except when

y1
1 = 0, and hence if the initial point is not on R(1)

1 we get a well defined integral manifold.
However, this is not really what we want since the equation y1

1 = 0 should also be satisfied.

For the involutive system R(1)
1 one verifies that the corresponding distribution is every-

where one-dimensional. This is typical: noninvolutive systems can contain open sets where
there are no solutions at all, and in spite of that the distribution can be one-dimensional in
such a set. On the other hand, the dimension of the distribution of a noninvolutive system
can be greater than one in an open set where there are unique solutions.

REMARK 3.3 Note that it is unnecessary to transform the system into a first-order system
before the numerical solution. In fact it is better not to transform since the dimension of
the ambient space is bigger for the first-order system. Let q > 1, Rq ⊂ Jq(E) and let
the corresponding first-order system be R1 ⊂ J1(R × R

qn); then dim(J1(R × R
qn)) =

2qn + 1 > (q + 1)n + 1 = dim(Jq(E)). Of course dim(Rq) = dim(R1). For the same
reason it does not pay to transform a nonautonomous system into autonomous form.

REMARK 3.4 It is interesting that when one computes the solution, one obtains
automatically approximations to derivatives up to order q.

REMARK 3.5 Note that there is no natural way to extend the distribution D outside Rq ,
even in the neighbourhood of Rq . Such an extension would mean relaxing some of the
‘tangent conditions’ (the curve would not be tangent to Rq ) and/or ‘Cartan conditions’ (the
jet coordinates would not correspond to derivatives). Evidently choosing this relaxation is
quite arbitrary. Of course in some situations there can be an easily constructed extension,
which might prove useful in the computations.

REMARK 3.6 Perhaps the reader feels that at this point one could make a distinction
between ODEs and DAEs. A system Rq would be an ODE (strictly speaking a not
underdetermined ODE) if its dimension is maximal, i.e. equal to Jq−1(E), and the rest
would be DAEs. However, this would not be intrinsic because the same manifold can be
embedded in different jet spaces, and it would not be very informative to say that a system
is sometimes an ODE and sometimes a DAE. In fact in the resolution of singularities there
naturally arises a situation where one wants to consider the manifold in a higher-order
jet space than initially given (Tuomela, 1998). Anyway we are mainly interested in what
happens on the manifold itself and so it is hard to see how this kind of distinction which
is based on the dimension of the ambient space could convey any useful information. Of
course the term DAE can remain useful as a label for certain situations, but there is really
no need to give a mathematical definition.

3.3 Preliminary conclusions

Having defined our basic framework we pause to make a few comments before moving
on to the numerical part of the article. Since the basic objects of study, i.e. differential
equations and solutions of differential equations, have been redefined, it is perhaps not so
surprising that this approach opens up new points of view for many aspects of analysis of
differential systems. First of all, on the purely conceptual level, it is quite nice to be able
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to discuss such a large class of systems in a unified way; recall that no special property is
required of the map f in (3.1).

The important concept which emerges from this framework is involutivity, and because
of our slogan one might, from the theoretical point of view, restrict one’s attention to
involutive systems. However, in practice the systems are usually not involutive initially
and hence they must first be transformed to an involutive form before actual numerical
computations. Now this transformation usually involves some symbolic manipulation of
the given system, and consequently can be rather time consuming. Of course the algorithms
for symbolic manipulation are progressing all the time, so perhaps this is not such a
severe problem. Moreover, it is not quite clear how much symbolic computation is really
required: in some situations a mixture of numerical and symbolic techniques could be
sufficient. Finally, situations arising in practice have a lot of structure so although some
algorithms may be prohibitively slow, in general they could perhaps work quite well when
this structure is taken into account. It is impossible to go into the details of the various
algorithms here so we refer the interested reader to Boulier (1995); Carrà Ferro (1987);
Macutan & Thomas (1998); Mansfield (1991); Thomas (1997) and the references therein.

However, the transformation to involutive form should also be seen as an analysis (of
singularities) of the system. Recall that in our slogan we have suppressed the technical
details which hide some sort of regularity assumptions. One may think that in general these
conditions are satisfied in some open set of the relevant manifold. Now the set where these
conditions fail indicates some sort of singularity of the system: the manifold is perhaps not
smooth everywhere, or perhaps it can be factored to several subsystems. Obviously it is
impossible to analyse the situation using only the original, i.e. non-involutive, system. Also
it is quite interesting to locate the sets where the distribution fails to be one-dimensional,
because this gives essential information about the solutions. Again these sets cannot be
known in general, if the system is not involutive.

This leads to yet another aspect, namely genericity. When analysing singularities of
the solutions for example, it is well known that certain singularities are typical while
others disappear when the system is perturbed a little (Arnold et al., 1985). Of course this
kind of analysis is important in applications, where usually models and the coefficients
are only known approximatively. Without pursuing this matter further let us just mention
one interesting fact. Now the points where the distribution fails to be one-dimensional are
evidently the generalizations of the singularities (i.e. zeros) of vector fields. It is known that
generically singularities of vector fields appear only at isolated points. This is not true for
distributions. In fact one expects that generically the singularities of distributions appear in
the sets of codimension two, see Arnold et al. (1985); Tuomela (1997) and Tuomela (1998)
for more information.

In applications one sometimes encounters situations where f is not smooth and the
transformation to involutive form may fail because f cannot be differentiated a sufficient
number of times. In this situation it is not clear how useful this geometric framework is in
general. However, doing the transformation as if f were smooth might still reveal some
important information about the nature of singularities of the solutions.

Finally there is the numerical aspect which is the main topic of the present article.
Below we will show how to use jet spaces in numerical computations. Here also the
new point of view leads to different conclusions than the classical approach. This will
be discussed in more detail below.
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4. Examples and simplifications

Since a lot of problems arising in practice are of the type of mechanical systems with
constraints it seems worthwhile to discuss explictly some problems in this class. Moreover,
the computations that follow are also useful as illustrations of the concepts and definitions
introduced above.

4.1 Pendulum

Consider the simple pendulum which in classical notation is given by




x ′′ + λx = 0

y′′ + λy + 1 = 0

x2 + y2 − 1 = 0.

(4.1)

Here x and y are the Cartesian coordinates and λ is the tension in the string (or Lagrange
multiplier). Let us introduce the jet coordinates:

x ←→ y1 y←→ y2 λ←→ y3.

The system is not involutive, but differentiating and eliminating four times produces the
following involutive form:†




y1
2 + y1 y3 = 0

y2
2 + y2 y3 + 1 = 0

y3
2 + 3y2

2 = 0

y1 y1
1 + y2 y2

1 = 0

(y1
1)2 + (y2

1)2 − y2 − y3 = 0

3y2
1 + y3

1 = 0

(y1)2 + (y2)2 − 1 = 0.

(4.2)

Let E = R × R
3 and denote the above equations by f (x, y, y1, y2) = 0 and R2 =

f −1(0) ⊂ J2(E). Evidently dim(R2) = 3. Note that the original system and the involutive
system have the same set of solutions in the classical sense, but Definition 3.7 makes
sense only for the involutive form. Now the relevant distribution can be computed from

†We have to differentiate four times, although the system is said to be of (differential) index 3.
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the nullspace on the following matrix

A =




−y1
1 1 0 0 0 0 0 0 0 0

−y2
1 0 1 0 0 0 0 0 0 0

−y3
1 0 0 1 0 0 0 0 0 0

−y1
2 0 0 0 1 0 0 0 0 0

−y2
2 0 0 0 0 1 0 0 0 0

−y3
2 0 0 0 0 0 1 0 0 0

0 y3 0 y1 0 0 0 1 0 0
0 0 y3 y2 0 0 0 0 1 0
0 0 0 0 0 0 0 0 3 1
0 y1

1 y2
1 0 y1 y2 0 0 0 0

0 0 −1 −1 2y1
1 2y2

1 0 0 0 0
0 0 0 0 0 3 1 0 0 0
0 y1 y2 0 0 0 0 0 0 0




. (4.3)

It is easily checked that dim(N (A)) = 1 everywhere on R2, though A is usually of full
rank outside R2. Hence the problem is regular and through every initial point there exists
a unique solution. Of course in this simple problem one sees immediately that one could
drop the last four rows of the matrix in actual computations. However, in general one must
use the full matrix and hence treat an overdetermined system of linear equations.

The problem is quite simple and one could use the above formulation in the numerical
computations. However, the number of equations can be reduced, or more geometrically,
the manifold and the distribution can be projected to a lower-dimensional ambient space.
Since this projection can also be done for quite a large class of problems (see below), let
us see how this can be achieved.

Recall that if one has a system of the form y1 + ϕ(x, y) = 0, this always induces a
distribution or vector field on E , because in this case R1 is simply the graph of −ϕ. Hence
the projection (x, y, y1) �→ (x, y) induces a diffeomorphism between R1 and E , and the
differential of the projection transports the distribution from R1 to E . Note that the graph
cannot be vertical, so that the distribution remains one dimensional.

Now looking at the system (4.2) we see that it is ‘graph like’ with respect to y2, so
in this case we could project the system from J2(E) to J1(E) with the natural map π2

1 :
(x, y, y1, y2) �→ (x, y, y1). This gives




y1 y1
1 + y2 y2

1 = 0

(y1
1)2 + (y2

1)2 − y2 − y3 = 0

3y2
1 + y3

1 = 0

(y1)2 + (y2)2 − 1 = 0

(4.4)
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and the distribution is given by the nullspace of

Ã =




−y1
1 1 0 0 0 0 0

−y2
1 0 1 0 0 0 0

−y3
1 0 0 1 0 0 0

y1 y3 0 0 0 1 0 0
y2 y3 + 1 0 0 0 0 1 0
−3y2 y3 − 3 0 0 0 0 0 1

0 y1
1 y2

1 0 y1 y2 0
0 0 −1 −1 2y1

1 2y2
1 0

0 0 0 0 0 3 1
0 y1 y2 0 0 0 0




.

Denote the system (4.4) by R1 = f̃ −1(0) ⊂ J1(E). Again it is immediate that dim(R1) =
3, dim(N ( Ã)) = 1 on R1, and that π2

1 : R2 → R1 is a diffeomorphism. Hence there is a
bijective correspondence between the solutions of (4.2) and (4.4).

However, one can do another reduction. Recall that λ in the original equations (4.1)
was ‘only’ a Lagrange multiplier, so one suspects that perhaps it is not necessary to treat it
and other variables in the same way. Let us try to get a formulation where we can use the
special features of λ in the problem. So let us introduce

x ←→ y1 y ←→ y2.

Hence here y = (y1, y2) and E = R×R
2. Now differentiating twice the constraint in (4.1),

we get 


y1
2 + y1λ = 0

y2
2 + y2λ+ 1 = 0

〈y, y1〉 = 0

|y1|2 + 〈y, y2〉 = 0

|y|2 − 1 = 0.

(4.5)

Consequently y2 and λ can be solved from the equations
 1 0 y1

0 1 y2

y1 y2 0





y1

2
y2

2
λ


+


 0

1
|y1|2


 = 0. (4.6)

Note that the matrix cannot be singular since y1 and y2 cannot be both zero. Now we can
regard y2 and λ simply as parameters which have to be (numerically!) computed, and this
leads to a simple problem in J1(E). First let us consider the system (4.5) in J2(E) and
denote the manifold by R2. Now of course R2 depends on λ, but obviously R1 = π2

1 (R2)

does not; in fact R1 is given by the system{
|y|2 − 1 = 0

〈y, y1〉 = 0.
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Hence we can solve the problem in R1 ⊂ J1(E), provided we can compute the distribution
on R1. This is done with (4.6). The projected distribution is the nullspace of

A =




−y1
1 1 0 0 0

−y2
1 0 1 0 0

−y1
2 0 0 1 0

−y2
2 0 0 0 1

0 y1
1 y2

1 y1 y2

0 y1 y2 0 0




where y1
2 and y2

2 are computed from (4.6). Again it is seen that the last two rows can
be dropped, and we can immediately write down a vector which spans the nullspace:
(1, y1

1 , y2
1 , y1

2 , y2
2), or more briefly and conveniently (1, y1, y2). Hence the final form of

the problem is:




|y|2 − 1 = 0

〈y, y1〉 = 0

D = span(V )

V = (
1, y1, y2

)
 1 0 y1

0 1 y2

y1 y2 0





y1

2

y2
2

λ


+


 0

1

|y1|2


 = 0.

(4.7)

In the next section we generalize the above reduction argument.

4.2 Mechanical systems with holonomic constraints

Let f : R
m → R

k be a smooth map. The first (resp. second) differential of f , denoted
by d f (resp. d2 f ), is a map R

m → L(Rm, R
k) (resp. R

m → L(Rm × R
m, R

k)) where
L(Rm, R

k) (resp. L(Rm × R
m, R

k)) denotes the space of linear (resp. bilinear) maps. The
value of d f (resp. d2 f ) at p is denoted by d f p (resp. d2 f p).

The following class of systems occurs often in applications{
B(x, y, y1)y2 + f (x, y, y1)+ (dg)tλ = 0

g(y) = 0
(4.8)

where B is invertible, dg has a full rank and λ is the Lagrange multiplier. Note that the
pendulum system (4.1) is of this form and that the rank conditions need to be satisfied only
on the zero set of g. Now proceeding as in the pendulum case we differentiate twice the
constraint and get the system(

B (dg)t

dg 0

) (
y2
λ

)
+

(
f

d2g (y1, y1)

)
= 0.

This linear system has a solution under the present hypothesis. Hence projecting the system
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from J2(E) to J1(E) leads to


g(y) = 0

dgy1 = 0

D = span(V )

V = (
1, y1, y2

)(
B (dg)t

dg 0

) (
y2

λ

)
+

(
f

d2g(y1, y1)

)
= 0.

(4.9)

Note that the overdetermined character of the system has disappeared and that the solution
of the linear system can be computed numerically.

4.3 On the index

Before discussing the actual numerical methods, let us say a few words about the index.
There are many definitions of the index, see Brenan et al. (1989); Hairer & Wanner (1991);
Hairer et al. (1989); März (1992), and this notion (or these notions) has been used to
characterize the numerical difficulty of the problem. It is unnecessary to analyse here more
closely various definitions since we can recommend to interested readers the articles by Le
Vey (1998) and Seiler (1999) where they are discussed from the jet point of view, also in
the context of PDEs. So we simply make some remarks on the numerical implications of
this matter.

One of the definitions, the differential index, is rather close in spirit to the following
definition: the index is the number of differentiation and elimination steps needed to
transform the given system into an involutive system. Hence one may interpret the index
as measuring the lack of information in the original system, and so it is quite natural that
higher-index problems are numerically more difficult, if one uses the original system in
the numerical computations. We use the involutive form so we do not ‘see’ any index
numerically. We might conclude that the index is a useful concept when using certain
algorithms to deal with certain representations of differential equations. Hence it is quite
natural that when other representations and algorithms are used the index may cease to be
necessary or useful.

5. Computation of one-dimensional integral manifolds

5.1 Preliminary remarks

We have seen above that the computation of the solutions of a differential system reduces
to the following:

Given a manifold M , a point p ∈ M and a one-dimensional distribution D on
M , compute the integral manifold of D through p.

By Theorem 2.1 there exists a unique solution to this problem. Now in practice M is given
as a zero set of some map as in (3.1), but usually D is not explicitly known. However, given
a point p ∈ M we can numerically evaluate Dp and this is sufficient in applications. The
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standard ODE codes work in the same way: it is not necessary to know a formula for the
vector field, it is enough to be able to evaluate it at a given point.

Recall that around a regular point p one can find a vector field V such that 0 = Va ∈ Da

for all a in some neighbourhood of p and we can also normalize by requiring |Va | = 1.
Such a V is called a vector field associated to D. Note that V may not exist globally, as
our example in Section 2 showed. Finally let us remark that V is not needed in actual
computations, but it is useful in the analysis of numerical methods.

Let us also remark that there is no reason why the problem should always be stiff, so
there is no need to restrict one’s attention to implicit methods. Of course our formulation
includes all the classical stiff systems: simply take M to be some Euclidean space and V
to be a vector field which defines a stiff system. However, the point is that overdetermined
systems (or DAEs) are not intrinsically stiff.

To proceed in our construction and analysis of numerical methods to the above problem
we must pause to introduce some terminology.

5.2 Some notions of Riemannian geometry

For more details on Riemannian geometry we refer to Spivak (1979, vol. 2 and vol. 4) or
do Carmo (1992). Let M be a smooth submanifold of R

m . Then its normal space at p is
denoted by N Mp. In these circumstances N Mp is the orthogonal complement of T Mp in
(T R

m)p. Let us give M the Riemannian metric induced by the standard metric in R
m and

denote by ∇ the (unique) symmetric connection which is compatible with this metric.
Let X and Y be vector fields on M ; denoting their extensions to R

m by the same letter
we have

dY (X p) = ∇X p Y + S(X p, Yp) (5.1)

where dY (X p) is the standard directional derivative, ∇X p Y is the covariant derivative and
S is the second fundamental tensor. Note that

(∇X p Y
)

p ∈ T Mp and that at each point p,
S is a symmetric bilinear map T Mp × T Mp → N Mp.

Note that the covariant derivative is intrinsic to M while the second fundamental tensor
depends on how M is embedded in R

m . Let V be a vector field on M and c be an integral
curve of V . If |Vp| = 1 for all p, i.e. if c is parametrized by arclength, then |∇Vp V | is
called the geodesic curvature and |S(Vp, Vp)| is called the normal curvature of c at p.

5.3 Analysis of local error for some methods

Let k < m and f : R
m → R

k be a smooth map and let zero be a regular value of f .
We think of f as in (3.1), but for the present discussion it is convenient to regard Jq(E)

simply as a big Euclidean space R
m where m = (q + 1)n+ 1. Hence M := f −1(0) ⊂ R

m

is a smooth manifold of dimension m − k. Let us give M the Riemannian metric induced
by the standard metric in R

m . When it is convenient, the objects defined on M will also
be considered as defined on R

m without writing explicitly the inclusion map. Let D be a
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smooth one-dimensional distribution on M and let V be the vector field associated with it.
We would like to compute some integral manifolds of D.†

Let p ∈ M be the current point and c : R→ M be the integral curve of the associated
vector field with c(0) = p and c′(0) = Vp. The arclength parameter is denoted by s. Let
us compute an approximation of c(h) for small h. The simplest possibility is to use Euler’s
method in the following form.

1. Choose the step-size h and take a ‘Euler step’ along the tangent space; this gives a
point p + Vph.

2. Since p + Vph ∈ M in general we project it orthogonally back to M . This
projection is well defined for h sufficiently small by the tubular neighbourhood
theorem (Spivak, 1979, vol. 1, p 466).

Hence an approximation q of c(h) is obtained by solving{
q + (d fq)tµ = p + Vph

f (q) = 0
(5.2)

where µ ∈ R
k . It can easily be verified that this system has a solution for small h. To get

error estimates we compute the first few terms in the expansions

q = q0 + q1h + q2h2 + · · ·
µ = µ0 + µ1h + µ2h2 + · · · .

This leads to

PROPOSITION 5.1

q = p + Vph − (d f p)
tµ2h2 + O(h3)

µ = 1
2 (d f p(d f p)

t )−1d2 f p(Vp, Vp)h
2 + O(h3).

Proof. Obviously q0 = p and µ0 = 0. For linear terms we get the equations

q1 + (d f p)
tµ1 = Vp

d f pq1 = 0.

This implies that q1 = Vp and µ1 = 0. Then the quadratic terms give

q2 + (d f p)
tµ2 = 0

2d f pq2 + d2 f p(Vp, Vp) = 0

from which the result follows. �

PROPOSITION 5.2

q2 = 1
2 S(Vp, Vp).

†In the limiting case where m = k + 1 and hence the integral manifold is M itself, this problem has been
studied quite extensively, see Allgower & Georg (1990).
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Proof. Let c : R → M be any curve (parametrized by arclength) such that c(0) = p
and c′(0) = Vp. Recall that (T R

m)p = T Mp ⊕ N Mp and denote by π the orthogonal
projection π : R

m → N Mp. Now it is known that π(c′′(0)) = S(Vp, Vp), see Spivak
(1979, vol. 3, p 5). On the other hand differentiating twice the identity f ◦ c = 0 we obtain

d f pc′′(0)+ d2 f p(Vp, Vp) = 0.

Now c′′(0) = v + π(c′′(0)) = v + (d f p)
t a for some v ∈ T Mp and some a ∈ R

k . Since
d f pv = 0 we can use the above equation to compute a which then gives the required result.

�
Let us then compare the approximation to the exact value. Using (5.1) we obtain

c(h) = p + Vph + 1
2 ((∇Vp V )p + S(Vp, Vp))h

2 + O(h3).

Subtracting the expansions we get immediately

COROLLARY 5.1

c(h)− q = 1
2 (∇Vp V )ph2 + O(h3).

Hence our simple method (5.2) is of first order (i.e. the local error is O(h2)). Note that
the main error term is rather natural: it reduces to the standard directional derivative of the
classical case when M is a Euclidean space.

Let us then consider some simple implicit methods. One can formulate the implicit
Euler method in two ways.{

p + (d f p)
tµ = q − Vq h

f (q) = 0

{
q + (d fq)tµ = p + Vq h

f (q) = 0.
(5.3)

In either case we obtain

PROPOSITION 5.3 Let q solve either of the systems (5.3); then

c(h)− q = − 1
2 (∇Vp V )ph2 + O(h3).

Proof. Expanding as before q = p+ q1h+ q2h2+ · · · , we immediately get q1 = Vp and
µ1 = 0. Expanding the second system in (5.3) we get

q2 + (d f p)
tµ2 = dV Vp

d f pq2 + 1
2 d2 f p(Vp, Vp) = 0.

Hence (d f p(d f p)
t )µ2 = 1

2 d f p S(Vp, Vp) and q2 = ∇Vp V + 1
2 S(Vp, Vp). Expanding the

first system produces the same q2, but µ2 changes sign. �
The implicit mid-point rule can be formulated as follows.


q + (d fq)tµ = p + Vr h

f (q) = 0

r + (d fr )
tν = 1

2 (p + q)

f (r) = 0.

(5.4)
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PROPOSITION 5.4 Let q solve the above system; then

c(h)− q = O(h3).

Proof. Evidently q0 = r0 = p, q1 = Vp, r1 = Vp/2, µ0 = µ1 = ν0 = ν1 = 0. For
second-order terms we get

q2 + (d f p)
tµ2 = 1

2 dV V

d f q2 + 1
2 d2 f (V, V ) = 0.

Hence µ2 = 0 and q2 = 1
2 dV V from which the result follows. �

We have seen that it is rather straightforward to formulate low-order schemes in the
present context. Moreover their error terms are what one expects by the classical theory.
The analysis of higher-order schemes is more involved and will be treated elsewhere, see
Tuomela & Arponen (to appear). Note that the methods (5.2)–(5.4) are one-step methods
whose local errors are of order 2, 2 and 3. By standard theorems we can then conclude that
the global errors for sufficiently small h are 1, 1 and 2.

6. Numerical implementation

We have actually implemented the explicit Euler method (5.2) and the midpoint rule (5.4).
Implicit Euler (5.3) is only used for step size control as explained below. There are three
basic tasks in our methods.

1. Given a point p ∈ M , compute the distribution Dp.
2. Step size control.
3. Solving the nonlinear system (5.2), (5.3) or (5.4).

All these subproblems reduce to fairly standard numerical problems so we will say just a
few words about them. All computations were done with Mathematica (Wolfram, 1991).
Of course this is not as efficient as using standard languages like Fortran or C. However, at
this stage we found Mathematica to be more convenient than the traditional languages, so
the implementation in Fortran or C has to await future versions of our code.

6.1 Computing the distribution

As we have seen in the examples, the distribution defined in (3.3) can easily be represented
as a nullspace of some matrix A, as in (4.3). Let us analyse more closely the structure of
this matrix. Consider the system (3.1); then A is given by

A =
(−v Inq 0nq×n

w A1 A2

)

where w = ∂ f/∂x , A2 = ∂ f/∂yq , A1 contains the partial derivatives with respect to
y, y1, . . . , yq−1 and finally v ∈ R

nq×1 contains the vectors y1, y2, . . . , yq . Let us further
set B = (−v, Inq , 0nq×n) and let z ∈ R

(q+1)n+1 be a solution of Az = 0. From the
equations Bz = 0 we immediately get z2, . . . , znq+1 if we know z1. Hence the computation
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of the nullspace of A can be reduced to the computation of the nullspace of the following
k × (n + 1) matrix:

C = (
w + A1v A2

)
. (6.1)

Note that the dimensions of C are independent of q. Now this problem is (mildly) ill-
posed numerically since in general k > n and hence because of the round-off errors the
nullspace would be trivial. To circumvent this difficulty, we use the standard singular value
decomposition

C = UΣV t

where U and V are orthogonal and Σ contains the singular values in descending order in
its diagonal. The last singular value should be very close to zero, and hence the last column
of V should give a good approximation of the required direction. Of course we must check
that there is only one singular value which is much smaller than the others; if this is not
the case, this would indicate some singularity of the solution. We did not encounter any
problems of this sort in the examples below.

Note also that for mechanical systems with holonomic constraints, i.e. problems of the
form (4.8), the distribution can be computed from the regular linear system and the SVD
is not needed at all.

6.2 Step size

In the explicit Euler case we used the standard technique: take one big step of size 2h
achieving point b and two smaller ones of size h, thus achieving points a1 and a2. Then we
computed |a2 − b| in the ambient space and accepted the step if the difference was smaller
than a given tolerance. If the step was rejected we halved the step-size because then ‘old’
a1 could be used as a ‘new’ b.

In the case of the midpoint rule it was convenient to use the auxiliary point r in (5.4)
which has to be computed anyway. One can easily check that the local error of r is of order
2. Hence we can take an implicit Euler step from r with the step h/2 and compare this
value to the value q obtained by the midpoint rule.

6.3 Projection

We used Newton’s method to solve the systems (5.2)–(5.4). The values q := p and µ := 0
were used as initial guesses. The Jacobian was computed symbolically, and it was evaluated
at every third step during the iteration of one point. However, usually two iterations were
enough. In test problems we typically used 10−2 · · · 10−8 as an error tolerance for the
Newton iteration. For example, in the Hénon–Heiles case the error tolerance of the iteration
was 0·01 and the distance of the point from M was of the order of 10−5.

REMARK 6.1 In a forthcoming article (Tuomela & Arponen, to appear) we study higher-
order methods with more sophisticated step-size controls than above. Also, expansions
used in analysing the error can be used to obtain a better initial guess for the Newton
iteration. This is also explained in Tuomela & Arponen (to appear).

This leaves the following important problems which must be addressed in future
versions of our code.
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FIG. 5. A solution of system (4.7) and the system (7.1), 0 � x � 5·1.

•Using the full singular value decomposition to compute the nullspace of the matrix C
in (6.1) is rather excessive, and consequently this step could be done more efficiently.
Also C normally only changes slightly during a single step so maybe it would be
possible to exploit this in the computations.

• Instead of carrying out the full Newton iteration, one could try pseudoinverses which
would result in a smaller system to be solved. Since we are close to the manifold, one
would expect that this kind of iteration would also converge quite rapidly. However,
the projection would no longer be orthogonal, and it is not clear how this would affect
the accuracy.

•The symbolic computation of the various required derivatives is rather time consuming.
Fortunately this is not necessary: automatic differentiation permits a very accurate and
efficient numerical evaluation of the required quantities. However, discussion of these
techniques is outside the scope of the present article and we refer to Berz et al. (1996)
for more information on this subject.

7. Numerical examples

7.1 Pendulum

The pendulum system is of the form (4.8) with y ∈ R
2, λ ∈ R, g(y) = (|y|2 − 1)/2,

f = (0, 1) and B = I . The resulting simplified system was given in (4.7). In Fig. 5 we
show a solution of (4.7) with quite a large tolerance and with initial value (x, y, y1) =
(0, 1, 0, 0, 0). The solution is not very satisfactory since the energy deviates quite rapidly
from the correct value and in particular the computed solution goes above the y1-axis
although the correct solution would always stay below it. This is not surprising because
our method is of first order, so one expects that the energy is also only ‘first-order correct’.
However, one can easily impose conservation of energy. It is sufficient to add the energy
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FIG. 6. Evolution of the energy: top left, the Euler method; top right, the midpoint method using variable stepsize,
and the midpoint method using step sizes h = 0·5 and h = 0·1.

equation to system (4.7) which yields


|y|2 − 1 = 0

〈y, y1〉 = 0
1
2 |y1|2 + y2 − a = 0

D = span(V )

V = (1, y1, y2)
 1 0 y1

0 1 y2

y1 y2 0





y1

2

y2
2

λ


+


 0

1

|y1|2


 = 0

(7.1)

where a is the constant energy. Note that the distribution restricts to the appropriate
submanifold. In Fig. 5 there is also a solution of (7.1) with the same initial values and
same tolerance that were used without the conservation of energy.
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FIG. 7. A solution of system (7.2), 0 � x � 1·7, ε = 0·1. The Euler method is shown on the left and the midpoint
method on the right.

In Fig. 6 we show the evolution of the energy in various cases. It can be seen that
with the midpoint method the energy deviates quite slowly from the correct value. Recall
that the classical midpoint method is symplectic, so it is perhaps not so surprising that our
version of it behaves well with respect to conservation of energy. Note that in the case of
variable stepsize, the stepsizes were between 0·05 and 1, so the case h = 0·5 represents a
kind of average stepsize. Anyway let us reiterate that adding the energy constraint does not
make the system more difficult to solve.

7.2 Stiff pendulum

Let us then consider the stiff pendulum (Hairer et al., 1989, p 119) whose involutive form
is


y1
2 + y1 y3 = 0

y2
2 + y2 y3 + 1 = 0

((y1)2 + (y2)2)(ε2 y3 − 1)2 − 1 = 0

ε2 y3
1 + (y1 y1

1 + y2 y2
1)(ε2 y3 − 1)3 = 0

(ε2 y3 − 1)ε2 y3
2 − 3ε4(y3

1)2 + ((y1
1)2 + (y2

1)2 − y2)(ε2 y3 − 1)4 − y3(ε2 y3 − 1)2 = 0.

Now y3 cannot be solved without introducing square roots, and we want to avoid this.
However, we can still do the projection J2 → J1. In addition, y3

1 is ‘graph-like’, so one
can eliminate it also. The simplified system can be written as


((y1)2 + (y2)2)(ε2 y3 − 1)2 − 1 = 0

D = span(V )

V = (1, y1
1 , y2

1 ,−(y1 y1
1 + y2 y2

1)(ε2 y3 − 1)3/ε2,−y1 y3,−y2 y3 − 1).

(7.2)
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Here V is given in symbolic form just for the purposes of illustration. This form is not
needed, but if a symbolic form is available, it could be given to the programme. This would
somewhat speed up the computation.

Let us take ε = 0·1 and compute the solution in the interval 0 � x � 1·7 using
the initial value (x, y1, y2, y3, y1

1 , y2
1) = (0, 0·85, 0,−17·65, 0, 0). In Fig.7 we show the

results obtained with the Euler method and the midpoint method. In the former case
we needed about 4700 points and in the latter about 500 points. Then in Fig. 8 we
computed the solution using the midpoint method with ε = 0·01 and the initial value
(x, y1, y2, y3, y1

1 , y2
1) = (0, 1, 0,−17·65, 0·016, 0). Of course, even in the implicit case

the stepsize has to be quite small, because of the rapid oscillations.

7.3 Discharge pressure control problem

Let us consider the discharge pressure flow problem given in Hairer et al. (1989, p 116),
whose involutive form is



20y1
1 + y1 − y2 = 0

75y2
1 + 5y3

1 + y3 − c1 = 0

20y4
1 + y5 − f = 0

c2 y4(y5)2 − c3 y4 y5 + c4 y4 − y3 = 0

(y1)2(y4)2 − c5(y1)2 + c6 f 2 = 0

(40c2 y4 y5 − 20c3 y4)y5
1 − 20y3

1 − c2(y5)3 + g1(y5)2 − g2 y5 + c4 f = 0

y1 y2(y4)2 − (y1)2 y4 y5 + f (y1)2 y4 − c5 y1 y2 + c6g3 = 0

20y1((y4)2 − c5)y2
1 − 20(y1)2 y4 y5

1 + (y2)2(y4)2 + (y1)2 y4 y5

−4y1 y2 y4 y5 + (y1)2(y5)2 − f (y1)2 y4 − 2 f (y1)2 y5 + 4 f y1 y2 y4

+20 f ′(y1)2 y4 + f 2(y1)2 − c5(y2)2 + c6g4 = 0

(7.3)

where

c1 = 99·1 c2 = 0·001 c3 = 0·075
c4 = 3·35 c5 = 2458·18 c6 = 1/1·44

and

f = 5 tanh(x − 10)+ 15 g1 = c2 f + c3

g2 = c3 f + c4 g3 = f 2 + 20 f f ′
g4 = f 2 + 60 f f ′ + 400( f ′)2 + 400 f f ′′.

The values of the parameters are those given in Hairer et al. (1989, p 116). We computed
the solution with initial value

(x, y, y1) = (0, 0·25, 0·25, 99·1, 36·7, 9·998,

0,−8·45× 10−7, 1·27× 10−5, 8·5× 10−5, 1·1× 10−4).
(7.4)

The solution curves obtained with the Euler scheme are shown in Fig. 9 and those obtained
with the midpoint scheme are shown in Fig. 10. In Hairer et al. (1989) only y5 (output) is
given and the solution obtained is qualitatively the same as here.
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FIG. 8. A solution of system (7.2), ε = 0·01, using the midpoint method. On the right we have a magnified view
of part of the image on the left.

7.4 Hamiltonian systems

Let H : R2n → R and let M = H−1(0); then the Hamiltonian system on R× M is given
by the vector field

V =
(

1,
∂ H

∂yn+1
, . . . ,

∂ H

∂y2n
,− ∂ H

∂y1
, . . . ,− ∂ H

∂yn

)

which defines a distribution on R×M . If the given system has more invariants (or integrals)
then we restrict V to an appropriate submanifold of R × M . Now in many cases (in
particular in the examples that follow), the momenta and first-order jets are identified,
so it is convenient to identify R×R

2n and J1(R×R
n). Hence the system is R1 = R×M .

Note that V induces a symplectic flow on R
2n . However, the flow restricted to M or R1 is

not symplectic.
Consider the following Kepler problem (Sanz Serna & Calvo, 1994, p 6)




1
2 |y1|2 − 1/|y| − a = 0

y1 y2
1 − y2 y1

1 − b = 0

D = span(V )

V = (1, y1
1 , y2

1 ,−y1/|y|3,−y2/|y|3)
(7.5)

where a and b are constants (energy and angular momentum). The analytic solution is
periodic with period 2π . In Fig. 11 we show two solutions with the same initial values,
(x, y, y1) = (0, 0·5, 0, 0, 1·73); on the left is the Euler method and on the right the
midpoint method. The tolerances were chosen such that qualitatively the solutions were
similar. The solutions were computed for 0 � x � 100, and with the Euler method about
8000 points was needed while for the midpoint method about 900 points was sufficient.
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FIG. 9. A solution of system (7.3) with f = 5 tanh(x − 10)+ 15 using the explicit Euler method.
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FIG. 11. A solution of the Kepler problem (7.5) using the Euler (left) and midpoint (right) methods.

Next we take a Hénon–Heiles system (Sanz Serna & Calvo, 1994, p 13)




1
2 |y1|2 + 1

2 |y|2 + (y1)2 y2 − 1
3 (y2)3 − a = 0

D = span(V )

V = (1, y1
1 , y2

1 , y1 + 2y1 y2, y2 + (y1)2 − (y2)2)

(7.6)

where a is again the (constant) energy. For this system we took as an initial value
(x, y, y1) = (0, 0·12, 0·12, 0·12, 0·12), which yields quasiperiodic solutions. We
computed the solution using both methods, for 0 � x � 303. In Fig. 12 we have plotted
the values of the solution in the (y2, y2

1) plane when the hyperplane y1 = 0 was crossed.
On the left we show the solution with the Euler method (101 points) and on the right
the solution with the midpoint method (141 points). With the Euler method, 5000 points
had to be computed and with the midpoint method 2500. The plots should yield closed
curves rather than the spirals that can be seen in the figures. However, the results are quite
satisfactory, taking into account the fact that tolerances were not particularly strict and the
methods are of low order.

7.5 Mechanical system

As a final example we consider the system given in Leimkuhler & Skeel (1994). It is of the
form (4.8) with y ∈ R

12, λ ∈ R
5, B = I12, f = ∇F , where F = 5

2 〈y, K y〉 and K and g
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FIG. 12. The Poincaré sections for the Hénon–Heiles system (7.6); the Euler method is shown on the left and the
midpoint method on the right.

are given by

K =




I2 0 −I2 0 0 0
0 I2 0 −I2 0 0
−I2 0 2I2 0 −I2 0

0 −I2 0 2I2 0 −I2
0 0 −I2 0 I2 0
0 0 0 −I2 0 I2




g(y) = 1

2




(y1 − y3)2 + (y2 − y4)2 − 1
(y3 − y5)2 + (y4 − y6)2 − 1
(y5 − y7)2 + (y6 − y8)2 − 1
(y7 − y9)2 + (y8 − y10)2 − 1

(y9 − y11)2 + (y10 − y12)2 − 1


 .

Variables y1, . . . , y12 are coordinates of six points in the plane. In this case the system (4.9)
can be written as

R1 :




g(y) = 0

dgy1 = 0

D = span(V )

V = (1, y1,−(dg)tλ− 5K y
)

dg(dg)tλ+ 5 dgK y − d2g(y1, y1) = 0.

(7.7)

So the final problem is in J1(R×R
12) � R

25 and dim(R1) = 15. It can readily be verified
that treating Lagrange multipliers like other variables and transforming the system into
involutive form produces a 15-dimensional system in 52-dimensional ambient space.

The energy of the system is

E = 1
2 |y1|2 + 5

2 〈y, K y〉.
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FIG. 13. Evolution of the energy using the Euler (left) and midpoint (right) methods.

In Fig. 13 we show the evolution of the energy for the Euler and midpoint methods, and
as in the pendulum case, the midpoint method remains quite close to the correct manifold.
In Fig. 14 we show the time evolution of the configuration of the system (7.7) with initial
value

(x, y, y1) = (0, 0, 0, 0·5, 0·866, 1, 0, 1·5, 0·866, 2, 0, 2·5, 0·866,

1,−5·77,−1,−4·62, 1,−3·464,−1,−2·31, 1,−1·155,−1, 0).

For small values of x , the solutions with both methods are very similar so we have plotted
only one figure. For bigger values of x , the energy in the Euler case starts to grow quite
fast, so the results also quickly become quite different in the two cases.

Now adding the energy equation gives the system


g(y) = 0

dgy1 = 0
1
2 |y1|2 + 5

2 〈y, K y〉 − a = 0

D = span(V )

V = (1, y1,−(dg)tλ− 5K y)

dg(dg)tλ+ 5dgK y − d2g(y1, y1) = 0

(7.8)

where a is the constant energy. The solution of system (7.8) is given in Fig. 15 where
the configurations are given at the same time instants as in Fig. 14. The same initial
values and same tolerance were used as for system (7.7). Again there was practically no
difference between the solutions obtained with the Euler and midpoint methods, so only
one plot is given. However, comparing the results obtained with conservation of energy
to those obtained without conservation of energy, it is seen that the results may become
quite different. This is surprising because the midpoint method remains rather close to the
energy surface even without explicit conservation of energy. The same phenomenon was
also observed with other initial values.
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FIG. 14. Evolution of the configuration of the system (7.7) without conservation of energy.

8. Conclusion

We have introduced a new framework to treat arbitrary systems of ODEs and DAEs. The
main notion which emerges is the involutivity of the system, and we have seen that using
involutive form in the computations (and analysis) leads to rather different conclusions
than the traditional treatment of such systems. To sum up, let us list a few of them:

• We have not defined DAEs. This is simply because geometrically there is no difference
between ODEs and DAEs.

• It is possible to obtain reliable results even with low-order explicit methods. Hence
DAEs are not intrinsically stiff.

• The concept of index is not needed in our approach. Hence the index is not related to
the numerical difficulty of solving an involutive system.
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FIG. 15. Evolution of the configuration of the system (7.8) with conservation of energy.

• Because the notion of the solution is more general than the traditional one we obtain
more smooth solutions and hence encounter less singularities than in the traditional
setting.

This work can be extended in many directions. We have already completed a second
article where higher-order Runge–Kutta-type methods are analysed and implemented in
our context (Tuomela & Arponen, to appear). The most immediate task after this is to
study how the subproblems discussed in Section 6 could be implemented as efficiently as
possible. An interesting aspect is also the question of genericity of the system and analysis
of the system with respect to perturbations. This in turn is closely related to the analysis of
singularities of the system and its solutions.
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