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EQUIVALENCE AND SYMMETRIES

OF SECOND-ORDER DIFFERENTIAL EQUATIONS
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ABSTRACT. In this article we investigate the equivalence of underdetermined
differential equations and differential equations with deviations of second order

with respect to the pseudogroup of transformations x̄ = ϕ(x), ȳ = ȳ(x̄) =
L(x) + y(x), z̄ = z̄(x̄) = M(x) + z(x). Our main aim is to determine such
equations that admit a large pseudogroup of symmetries. Instead the common
direct calculations, we use some more advanced tools from differential geometry,
however, our exposition is self-contained and only the most fundamental proper-
ties of differential forms are employed.
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1. Introduction

The transformation properties of differential equations (including the equiv-
alences and symmetries) were studied for a long time by using various methods:
from the common direct calculations occasionally employing some simple geo-
metrical concepts, through the Lie group method with the help of infinitesimal
transformations, up to the Cartan’s moving frames with the current G-structures
modifications. Then the results are expressed in terms of differential invariants
together with the compatibility conditions for the equivalence and symmetry
transformations. On the contrary, analogous transformation properties for the
difference equations seem to be of quite other nature. Only the direct approach
is appropriate in this case and the results are as a rule expressed in terms of
rather clumsy functional equations for the sought equivalences and symmetries.
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We intend to deal with the intermediate problem, namely with the transforma-
tion properties of differential equations with deviating argument, and our aim is
to employ the mechanism of moving frames in its original (rather effective and
quite simple) setting. We believe that this is possible with the help of appropri-
ate underdetermined differential equations. For better clarity, we deal with the
second-order delay-differential equation

y′′(x) = f (x, y(x), y(ξ(x)), y′(x), (y(ξ(x)))′, (y(ξ(x)))′′) (1)
with a given delay function ξ(x). The right-hand side can be represented as

F (x, y, y(ξ), y′, y′(ξ), y′′(ξ)) = f(x, y, y(ξ), y′(ξ)ξ′, y′′(ξ)ξ′2 + y′(ξ)ξ′′) (2)

assuming the existence of ξ′′. Denoting z(x) = y(ξ(x)) it follows that the original
equation (1) is equivalent to the requirements

y′′ = f(x, y, z, y′, z′, z′′), z(x) = y(ξ(x)) (3)

consisting of an underdetermined differential equation (31) together with a sim-
ple functional equation (32). We wish to apply the moving frames to (31) sepa-
rately and then adapt the results by using (32) with the belief that the results
can be interpreted in terms of the original equation (1).

The most general pseudogroup of transformations that make a good sense in
this connection consists of all invertible substitutions

x̄ = ϕ(x), ȳ = ψ(x, y), z̄ = χ(x, z), (4)

where the definition domains are certain open subsets D ⊂ R
3 of the space with

coordinates x, y, z. The curve y = y(x), z = z(x) is transformed into the curve
ȳ = ȳ(x̄), z̄ = z̄(x̄), where

ȳ(x̄) = ψ(x, y(x)), z̄(x̄) = χ(x, z(x)) (5)

and the original delay function ξ(x) is transformed into the new delay ξ̄(x̄)
satisfying

ξ̄(ϕ(x)) = ξ̄(x̄) = ϕ(ξ(x)) (6)
(whenever this equation is defined) in particular ξ(ϕ(x)) = ϕ(ξ(x)) if we suppose
that the delay is preserved. In order to ensure (32) after the transformation, we
have the requirement z̄(x̄) = ȳ(ξ̄(x̄)), that is,

χ(x, z(x)) = ψ(ξ(x), y(ξ(x))) = ψ(ξ(x), z(x))

by using (6) and (4). Altogether, we obtain the additional functional equation

χ(x, z) = ψ(ξ(x), z) (7)

ensuring the existence of the transformed delay ξ̄(x̄) satisfying (6). The condition
(7) simplifies if the transformations (4) are of a certain special kind. For instance,
if

ψ = A(x)B(y) + C(x), χ = D(x)E(z) + F (x),
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then we have the functional equation D(x)E(z)+F (x) = A(ξ(x))B(z)+C(ξ(x))
which implies D(x) = A(ξ(x)), F (x) = C(ξ(x)), E(z) = B(z).

In full generality, our intentions are rather ambitious. So we start with a rela-
tively modest setting of the problem: the second-order equations (1) or (3) sub-
ject to the seemingly simple pseudogroup of invertible transformations x̄ = ϕ(x),
ȳ = y + L(x), z̄ = z +M (x) or, by using the logarithmic y and z scales, to the
isomorphic pseudogroup x̄ = ϕ(x), ȳ = L(x)y, z̄ = M (x)z where L(x)M (x) �= 0.
Let us pass to more detail.

2. Setting the problem

2.1. Pseudogroup

We introduce the pseudogroup of all transformations

Φ(x, y, z) = (x̄, ȳ, z̄) = (ϕ(x), y + L(x), z +M (x)), Φ: D(Φ) → R(Φ) (8)

defined on open subsets D(Φ) ⊂ R
3 of the space (with coordinates x, y, z)

depending on the transformation Φ under consideration. (Let us recall that
a pseudogroup is a family of diffeomorphisms Φ that is closed with respect
to the composition, the inversion, and the gluing of the definition domains.
Definition domains D(Φ) and the ranges R(Φ) = Φ(D(Φ)) are open subsets
on a manifold M and D(Φ) = R(Φ−1), D(Ψ ◦ Φ) = Φ−1(R(Φ) ∩ D(Ψ)),
R(Ψ ◦Φ) = Ψ(R(Φ)∩D(Ψ)).) Transformations Φ of our pseudogroup are char-
acterized by the system of partial differential equations (the Lie’s approach):
denoting x̄ = x̄(x, y, z), ȳ = ȳ(x, y, z), z̄ = z̄(x, y, z), clearly

∂x̄

∂y
=
∂x̄

∂z
=
∂ȳ

∂z
=
∂z̄

∂y
= 0,

∂ȳ

∂y
=
∂z̄

∂z
= 1

for the transformations (8) and conversely, these partial differential equations
characterize just the transformations (8).

Alternatively, the pseudogroup of all transformations Φ can be character-
ized by the invariance of appropriate differential forms (E. Cartan’s approach),
namely of the forms

ω0 = Adx, η0 = dy −A1dx, ζ0 = dz −A2dx (9)

where A �= 0, A1, A2 are additional variables. In more precise terms, we more-
over introduce the counterparts denoted by bars

ω̄0 = Ādx̄, η̄0 = dȳ − Ā1dx̄, ζ̄0 = dz̄ − Ā2dx̄

and the invariance requirements ω0 = ω̄0, η0 = η̄0, ξ0 = ξ̄0. Then the require-
ment ω0 = Adx = ω̄0 = Ādx̄ together with the additional assumption A, Ā �= 0
ensures that x̄ = ϕ(x) is a certain invertible function of x and we moreover
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obtain the transformation rule A = Āϕ′ for the new variables A, Ā. Analo-
gously η0 = dy−A1dx = η̄0 = dȳ− Ā1dx̄ reads d(ȳ−y) = (Ā1ϕ

′−A1)dx, hence
ȳ−y = L(x) is a function of x and then the transformation rule Ā1ϕ

′−A1 = L′(x)
for the new variables A1, Ā1 ensures the desired invariance. In a similar way,
ζ0 = ζ̄0 ensures that z̄ − z = M (x) is a function of x.

2.2. Differential equations

The pseudogroup of transformations Φ will be applied to underdetermined
differential equations of the second order. We consider the equivalence problem
when the given equation

y′′ = f(x, y, z, y′, z′, z′′)
(

′ =
d
dx

)
is transformed into another equation

ȳ′′ = f̄(x̄, ȳ, z̄, ȳ′, z̄′, z̄′′)
(

′ =
d
dx̄

)
by means of the transformations (8). In the direct approach, the prolongation

ȳ′ϕ′ = y′ + L′, ȳ′′ϕ′2 = y′′ − ϕ′′

ϕ′ (y′ + L′) + L′′,

z̄′ϕ′ = z′ +M ′, z̄′′ϕ′2 = z′′ − ϕ′′

ϕ′ (z′ +M ′) +M ′′,

of the pseudogroup Φ is needed. Recall for clarity that the prolongation is
induced by transformations

ȳ(ϕ(x)) = y(x) + L(x) and z̄(ϕ(x)) = z(x) +M (x)

of the above-mentioned curves y = y(x), z = z(x) and ȳ = ȳ(x̄), z̄ = z̄(x̄),
respectively, i.e.,

ȳ′(ϕ)ϕ′(x) = y′(x) + L′(x), ȳ′′(ϕ)ϕ′2(x) + ȳ′(ϕ)ϕ′′(x) = y′′(x) + L′′(x)

and

z̄′(ϕ)ϕ′(x) = z′(x) +M ′(x), z̄′′(ϕ)ϕ′2(x) + z̄′(ϕ)ϕ′′(x) = z′′(x) +M ′′(x).

As a result, we obtain the explicit formula for the transformed equation,

f̄ϕ′2 = f − ϕ′′

ϕ′ (y′ + L′) + L′′.

One can observe that direct analysis of this result is rather an unpleasant task.
Instead of this (rather clumsy) direct approach, we will apply the moving

frames exactly corresponding to the above-mentioned Cartan’s approach to the
pseudogroup theory. The equation y′′ = f will be represented by the Pfaffian
system

dy − y′dx = dy′ − y′′dx = dz − z′dx = dz′ − z′′dx = 0 (y′′ = f) (10)
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and the equation ȳ′′ = f̄ by the analogous system

dȳ − ȳ′dx̄ = dȳ′ − ȳ′′dx̄ = dz̄ − z̄′dx̄ = dz̄′ − z̄′′dx̄ ( ȳ′′ = f̄ ).

We denote µr = dy(r) − y(r+1)dx, νr = dz(r) − z(r+1)dx and analogously for the
forms µ̄r, ν̄r with bars.

Then the equations y′′ = f , ȳ′′ = f̄ are equivalent if and only if the forms
µ̄0, ν̄0, µ̄1, ν̄1 are (invertible) linear combinations of the forms µ0, ν0, µ1, ν1 by
virtue of (appropriate) pseudogroup transformation (8). Moreover, this trans-
formation can be characterized by the above invariance requirements.

Alternatively saying, the equivalence problem is briefly expressed by the in-
variance property

{µ0, ν0, µ1, ν1} = {µ̄0, ν̄0, µ̄1, ν̄1}, ω0 = ω̄0, η0 = η̄0, ξ0 = ξ̄0

of the module generated by the forms µ0, ν0, µ1, ν1 and of the forms ω0, η0, ξ0.
Employing moreover formulae (9) and (10), many other invariant objects (in par-
ticular invariant functions) will be determined.

3. The reduction procedure

The submodule {µ0, ν0} is preserved. Then η0 ∈ {µ0, ν0} is a linear combi-
nation of µ0, ν0 if and only if η0 = dy − y′dx (= µ0) and similarly ζ0 = ν0. The
forms η0, ζ0 together with dη0, dζ0 are preserved separately. The form ω0 is
preserved and

dη0 = dx ∧ dy′ = ω0 ∧ 1
A

(µ1 + Cω0)

hence the family 1
A (µ1 + Cω0) is preserved, too. The condition

1
A

(µ1 + Cω0) ∈ {η0, ζ0, µ1, ν1}

determines the common form η1 = 1
Aµ1 and η1 = 1

A(dy′ − fdx) is preserved.
Moreover ζ1 = 1

Aν1 = 1
A (dz′ − z′′dx) is determined and preserved in analogous

way. To continue this process we need

dω0 = dA ∧ dx =
(

dA
A

+Bω0

)
∧ ω0

with ω0 = ω̄0, dω0 = dω̄0. Hence the family ω1 = dA
A + Bω0 is also preserved

with a new variable B and still unknown variable A. Then

dζ1 = ζ1 ∧ ω1 + ω0 ∧
(
Bζ1 +

1
A2

ν2 + Cω0

)
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and the family Bζ1 + 1
A2 ν2 +Cω0 is preserved since ζ1 ∧ω1 is already preserved.

The condition

Bζ1 +
1
A2

ν2 + Cω0 ∈ {µ0, ν0, µ1, ν1, µ2, ν2} = {η0, ζ0, η1, ζ1, µ2, ν2}

determines the common preserved form ζ2 = Bζ1 + 1
A2 ν2. Then

dη1 = η1∧ω1+ω0∧
(
fy

A2
η0 +

fz

A2
ζ0 +

(
B+

fy′

A

)
η1 +

(
fz′

A
− fz′′B

)
ζ1+fz′′ζ2

)
,

all summands ω0 ∧ η0, . . . , ω0 ∧ ζ2, η1 ∧ ω1 are separately preserved and unique,
therefore all the coefficients are separately preserved and we choose B = −fy′/A
to simplify this differential. We get

dη1 = η1 ∧ ω1 + ω0 ∧ (I0η0 + J0ζ0 + J1ζ1 + J2ζ2)

with the coefficients

I0 =
fy

A2
, J0 =

fz

A2
, J1 =

fz′ + fy′fz′′

A
, J2 = fz′′ (11)

and invariant forms ω0, ω1, η0, η1, ζ0, ζ1, ζ2. It follows that also I0 = Ī0, J0 = J̄0,
J1 = J̄1, J2 = J̄2. Moreover,

ω1 =
dA
A

+Bω1 =
dA
A

− fy′dx

and

dω1 = ω0 ∧
(
fy′y

A
η0 +

fy′z

A
ζ0 + fy′y′η1 + fy′z′ζ1 + fy′z′′A

(
ζ2 +

fy′

A
ζ1

))
,

i.e.,

dω1 = ω0 ∧ (M0η0 +N0ζ0 +M1η1 +N1ζ1 +N2ζ2)

with the coefficients

M0 =
fy′y

A
, N0 =

fy′z

A
, M1 = fy′y′ , N1 = fy′z′ + fy′fz′′y′ , N2 = Afy′z′′ (12)

and the invariance properties Mi = M̄i, Nj = N̄j (i = 0, 1; j = 0, 1, 2).
Coefficients

J2 = fz′′ , M1 = fy′y′ , N1 = fy′z′ + fy′fz′′y′ (13)

are uniquely determined and independent of any additional variable, therefore
invariants.
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����� 1� The equivalence problem for differential equations y = f , ȳ = f̄ and
the pseudogroup Φ is characterized by the property of invariance of the forms

ω0 = Adx (A �= 0 is a variable), ω1 =
dA
A

− fy′dx,

η0 = dy − y′dx, η1 =
1
A

(dy′ − fdx), (14)

ζ0 = dz − z′dx, ζ1 =
1
A

(dz′ − z′′dx), ζ2 =
1
A2

(dz′′ − z′′′dx) − fy′

A
ζ1

and differentials

dω0 = ω1 ∧ ω0, dω1 = ω0 ∧ (M0η0 +N0ζ0 +M1η1 +N1ζ1 +N2ζ2) ,

dη0 = ω0 ∧ η1, dη1 = η1 ∧ ω1 + ω0 ∧ (I0η0 + J0ζ0 + J1ζ1 + J2ζ2), (15)

dζ0 = ω0 ∧ ζ1, dζ1 = ζ1 ∧ ω1 + ω0 ∧ ζ2.
Coefficients I0, J0, J1, J2,M0,M1, N0, N1, N2 (with the invariance property) are
determined by (11), (12). Moreover

J2 = fz′′ , M1 = fy′y′ , N1 = fy′z′ + fy′fz′′y′

are invariants.

Remark 1� If F = F (x, y, z, y′, z′, z′′) is an invariant, then the development

dF = Fxdx+ Fydy + Fzdz + Fy′dy′ + Fz′dz′ + Fz′′dz′′

=
∂F

∂ω0
ω0 +

∂F

∂η0
η0 +

∂F

∂ζ0
ζ0 +

∂F

∂η1
η1 +

∂F

∂ζ1
ζ1 +

∂F

∂ζ2
ζ2

(16)

with covariant derivatives

∂F

∂ω0
=

1
A

(Fx + y′Fy + z′Fz + fFy′ + z′′Fz′ + z′′′Fz′′),

∂F

∂η0
= Fy,

∂F

∂ζ0
= Fz,

∂F

∂η1
= AFy′ ,

∂F

∂ζ1
= A(Fz′ + fy′Fz′′),

∂F

∂ζ2
= A2Fz′′

(17)

still provides the new invariant when applied to the invariant function F = F̄
and is independent of any additional parameter.
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4. An uncertain variable A

Let us consider the case when all functions fy/A
2, fz/A

2, (fz′ + fy′fz′′)/A,
fy′z/A, Afy′z′′ in (11), (12) and also all covariant derivatives of invariants F =
fz′′ , fy′y′ , fy′z′ + fy′fz′′y′ containing the variable A vanish. In such case it is
not possible to determine A as a function of coordinates x, y, z, y′, z′, z′′ and the
variable A is independent. We obtain the requirements

fy = fz = fz′ + fy′fz′′ = 0,
fz′′x = fz′′y′ = fz′′z′ = fz′′z′′ = 0,

fy′y′x = fy′y′y′ = fy′y′z′ = fy′z′x = fy′z′z′ = 0
(18)

for the function f .

������� 1� The solution f of (18) is of the form

f = J2z
′′ + C1(y′ − J2z

′)2 + p(x)(y′ − J2z
′) + q(x)

where C1, J2 are arbitrary constants and p(x), q(x) are arbitrary functions,
x ∈ D(ϕ). The corresponding equation (3) can be expressed in the form

(y − J2z)′′ = C1(y − J2z)′
2 + p(x)(y − J2z)′ + q(x).

P r o o f. We have f = f(x, y′, z′, z′′) and fz′′ = J2 = const in accordance with
conditions fy = fy = (fz′′)x = (fz′′)y′ = (fz′′)z′ = (fz′′)z′′ = 0. Thus

f(x, y′, z′, z′′) = J2z
′′ + g(x, y′, z′) (19)

where gz′ + gy′J2 = (gy′y′)x = (gy′y′)y′ = (gy′y′)z′ = (gy′z′)x = (gy′z′)z′ = 0.
Then gy′y′ = 2C1 = const,

gy′ = 2C1y
′ + h(x, z′)

and gy′z′ = hz′ = 2C2 = const, i.e., h = 2C2z
′ + p(x). It follows gy′ = 2C1y

′ +
2C2z

′ + p(x) and

g(x, y′, z′) = C1y
′2 + 2C2y

′z′ + p(x)y′ + α(x, z′). (20)

The last condition gz′ + gy′J2 = 0 is equivalent to

2(C2 + J2C1)y′ + αz′(x, z′) + 2J2C2z
′ + J2p(x) = 0

hence
α(x, z′) = −J2C2z

′2 − J2p(x)z′ + q(x), C1J2 + C2 = 0. (21)
We obtain

f = J2z
′′ + C1(y′ − J2z

′)2 + p(x)(y′ − J2z
′) + q(x)

by using (19), (20), (21). Substituting f into (3) we get the remaining part of
the assertion. �
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4.1. The equivalence conditions

The equivalence transformations between equations y′′ = f , ȳ′′ = f̄ are given
by

ωi = ω̄i, ηi = η̄i, ζj = ζ̄j (i = 0, 1; j = 0, 1, 2)

in accordance with Lemma 1 and dω1 = 2C1ω0 ∧ (η1 − J2ζ1), dη1 = η1 ∧ ω1 +
J2ω2∧ζ2 is satisfied in the structural formulae (15). Let us introduce the function
N(x) = L(x) − J2M (x) and forms χ0 = η0 − J2ζ0, χ1 = η1 − J2ζ1. Then

dω1 = 2C1ω0 ∧ χ1, dχ0 = ω0 ∧ χ1, dχ1 = χ1 ∧ ω0

and we get dπ = 0 where

π = ω1 − 2C1χ0 =
dA
A

− (2C1u
′ + p(x))dx, u′ = y′ − J2z

′.

The forms ω0, χ0, χ1, π can be taken into account. We have

dĀ
Ā

=
dA
A

− ϕ′′(x)
ϕ′(x)

dx

due to ω0 = ω̄0 (i.e., A = Āϕ′) even if A, Ā remain uncertain variables. The
equivalence conditions χ0 = χ̄0, χ1 = χ̄1 and π = π̄ can be expressed as

ū′ϕ′ = u′ +N ′, ū′′ϕ′2 = u′′ +N ′′ − ϕ′′(x)
ϕ′(x)

(u′ +N ′)

and

p̄(ϕ)ϕ′ = p− ϕ′′(x)
ϕ′(x)

− 2C1N
′,

respectively. The explicit formula f̄ϕ′2 = f − ϕ′′(x)
ϕ′(x) (y′ + L′) + L′′ is replaced

by ū′′ϕ′2 = u′′ + N ′′ − ϕ′′(x)
ϕ′(x) (u′ + N ′) with u′′ = C1u

′2 + p(x)u′ + q(x) and

q̄(ϕ)ϕ′2 = q +N ′′ + C1N
′2 − pN ′ follows.

	���

��� 1� Suppose ϕ = ϕ(x), N(x) = L(x) − J2M (x). We have the
transformation conditions

p̄(ϕ)ϕ′ = p(x) − ϕ′′

ϕ′ − 2C1N
′(x),

q̄(ϕ)ϕ′2 = q(x) +N ′′(x) + C1(N ′(x))2 − p(x)N ′(x)

for the equivalence of equations y′′ = f , ȳ′′ = f̄ with

f = J2z
′′ + C1(y′ − J2z

′)2 + p(x)(y′ − J2z
′) + q(x)

in the case of an uncertain variable A.
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5. The determined case

Let us suppose that some of the equations (18) is not satisfied. Then A =
A(x, y, z, y′, z′, z′′) can be determined and

ω1 =
dA
A

− fy′dx = Kω0 +K0η0 + L0ζ0 +K1η1 + L1ζ1 + L2ζ2 (22)

where

K =
1
A2

(Ax + y′Ay + z′Az + fAy′ + z′′Az′ + z′′′Az′′) − fy′

A
,

K0 =
Ay

A
, L0 =

Az

A
, K1 = Ay′ , L1 = Az′ + fy′Az′′ , L2 = AAz′′ . (23)

In order to determine the function f in terms of invariants, we need to solve
the following system of equations

fy = I0A
2 fyy′ = M0A Ay = K0A

fz = J0A
2 fzy′ = N0A Az = L0A

fz′ + fy′fz′′ = J1A fy′y′ = M1 Ay′ = K1

fz′′ = J2 fy′z′ + fy′fz′′y′ = N1 Az′ + fy′Az′′ = L1

AAz′′ = L2

(24)

Ax + y′Ay + z′Az + fAy′ + z′′Az′ + z′′′Az′′ − fy′A = KA2. (25)
We shall discuss two subcases with the highest possible symmetry: namely if
all invariants are constant (Section 5.1) and if there exist only one nonconstant
invariant function (Section 5.2). In the remaining case, if there are more func-
tionally independent invariants, the equations are “rigid” and admit only few
equivalence and symmetry transformations.

Remark 2� Let A be a function A = A(x, y, z, y′, z′, z′′). Then the coefficients
I0, J0, J1, J2, K,K0, K1, L0, L1, L2, M0,M1, N0, N1 in (24), (25) are coefficients
of developments (15), (22) with the invariance property and independent of any
additional variables, they are true invariants.

5.1. Constant invariants

Let I0, K, Ji, Li (i = 0, 1, 2), Mj, Nj (j = 0, 1) be constants. We have
Az′′ = 0 because the right-hand side of the equation (25) is independent of z′′′.
Thus f = f(x, y, z, y′, z′, z′′), A = A(x, y, z, y′, z′), L2 = 0, N1 = fy′z′ . Also
y′′ = f = J2 + α(x, y, z, y′, z′) is satisfied, i.e.,

(y − J2z)′′ = α(x, y, z, y′, z′) (26)

in accordance with fz′′ = J2. We obtain the equation

u′′ = g(x, u, z, u′, z′) (27)
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with
f(x, y, z, y′, z′, z′′) = J2z

′′ + g(x, u(y, z), z, u′(y′, z′), z′), (28)
by means of the transformation

u = u(y, z) = y − J2z, u′ = u′(y′, z′) = y′ − J2z
′, u′′ = y′′ − J2z

′′ (29)

realized through functions u(x) = y(x) − J2z(x), x ∈ D(ϕ). The function A is
transformed into

Ã(x, u, z, u′, z′) = Ã(x, u(y, z), z, u′(y′, z′), z′) = A(x, y, z, y′, z′). (30)

The condition Ay = K0A is equivalent to (Ãuuy =) Ãu = K0Ã, Az = L0A is
equivalent to Az = Ãuuz + Ãz = −J2Ãu + Ãz = −J2K0Ã+ Ãz, i.e., Ãz = L̃0Ã
where L̃0 = L0 + J2K0. The remaining conditions are transformed in analogous
way, for the conditions containing f we use the relation (28). Moreover, (25) is
transformed into

Ãx + u′Ãu + z′Ãz + gÃu′ + z′′Ãz′ − gu′Ã = KÃ2

and we have Ãz′ = 0 because the right-hand side of the equation is independent
of z′′. As a result we obtain the conditions

gu = I0Ã
2 guu′ = M0Ã Ãu = K0Ã

gz = J̃0Ã
2 gzu′ = Ñ0Ã Ãz = L̃0Ã

gz′ = J1Ã gu′u′ = M1 Ãu′ = K1

gu′z′ = Ñ1

(31)

Ãx + u′Ãu + z′Ãz + gÃu′ − gu′Ã = KÃ2 (32)
for the functions g = g(x, u, z, u′, z′), Ã = Ã(x, u, z, u′). Here I0, J̃0, J1, M0,
Ñ0, M1, Ñ1, K0, L̃0, K1, K are constants.

������� 2� The following functions and conditions are solutions of the system
(31), (32) in the case of constant invariants.

(a) g = C1u
′2 + (C2z

′ + b(x))u′ + J1a(x)z′ + p(x), Ã = K1u
′ + a(x),

KK1 + C1 = 0, a′(x) − a(x)b(x) +K1p(x)−Ka2(x) = 0,
C2 = J1K1 �= 0 or J1 = C2 = 0, K1 �= 0.

(b) g = C1u
′2 + b(x)u′ + I0

4C1
a2(x)e4C1u + p(x), Ã = a(x)e2C1u,

a′(x) − a(x)b(x) = 0, I0, C1 ∈ R, C1 �= 0.

(c) g = b(x)u′ + J1a(x)z′ + a2(x)(I0u+ J̃0z) + p(x), Ã = a(x),
a′(x) − a(x)b(x) −Ka2(x) = 0, I0, J̃0, J1 ∈ R.

P r o o f. We have the following constant invariants

gu′u′ , gu′z′ , gu : gz : (gz′)2 : (guu′)2 : (gzu′)2 (33)

and also
g = C1u

′2 + (C2z
′ + β(x, u, z))u′ + γ(x, u, z, z′) (34)
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due to gu′u′ = const, gu′z′ = const.
Let guu′ = βu �= 0. Then

gu

(guu′)2
=
βuu

′ + γu

(βu)2
=

1
βu
u′ +

γu

(βu)2
= const

which is a contradiction since γ, β are independent of u′. Thus βu = 0 and
similarly βz = 0 by using gu/(guu′)2 = const. The function g is given by

g = C1u
′2 + (C2z

′ + b(x))u′ + γ(x, u, z, z′) (35)

and the remaining constant invariants are

γu : γz : (C2u
′ + γz′)2.

Two different subcases for C2 �= 0 and C2 = 0 should be distinguished.
(ι) Let us consider C2 �= 0. Assuming γu �= 0,

(C2u
′ + γz′)2

γu
=

(C2u
′)2

γu
+ 2C2u

′ γz′

γu
+

(γz′)2

γu
= const

holds true and through successive differentiating ∂/∂u′ we obtain

C2u
′ 1
γu

+
γz′

γu
= 0 and

C2

γu
= 0

which is a contradiction and we get γu = 0. In a similar way we obtain γz = 0
by means of (C2u

′ + γz′)2/γz and γ = γ(x, z′). The function g is of the form

g = C1u
′2 + (C2z

′ + b(x))u′ + γ(x, z′) (36)

and we have the conditions gz′ = J1Ã, Ãu = K0Ã, Ãz = L̃0Ã, Ãu′ = K1,
moreover

Ãx + u′Ãu + z′Ãz + gÃu′ − gu′Ã = KÃ2. (37)
Therefore Ãu = Ãz = 0 from the relation gz′ = C2u

′+γz′(x, z′) = J1Ã(x, u, z, u′).
Then Ã = K1u

′ + a(x) in accordance with Ãu′ = K1 and C2 = J1K1 �= 0,
γ(x, z′) = J1a(x)z′ + p(x) by means of C2u

′ + γz′(x, z′) = J1(K1u
′ + a(x)).

Furthermore, the condition (37) is equivalent toKK1+C1 = 0, a′(x)−a(x)b(x)+
K1p(x)−K(a(x))2 = 0.

We have proved that

g = C1u
′2 + (C2z

′ + b(x))u′ + J1a(x)z′ + p(x), Ã = K1u
′ + a(x), (38)

a′(x)− a(x)b(x) +K1p(x)−Ka2(x) = 0, C2 = J1K1 �= 0, KK1 +C1 = 0,
for C2 �= 0.

(ιι) The second subcase is characterized by C2 = 0 when

g = C1u
′2 + b(x)u′ + γ(x, u, z, z′) (39)

and
γu : γz : (γz′)2
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are constant invariants.
Returning to the relations (31), (32) we have

gu = γu = I0Ã
2 Ãu = K0Ã

gz = γz = J̃0Ã
2 Ãz = L̃0Ã

gz′ = γz′ = J1Ã Ãu′ = K1

Ãx + u′Ãu + z′Ãz + gÃu′ − gu′Ã = KÃ2

for γ = γ(x, u, z, z′), Ā = Ā(x, u, z, u′).
The relation γz′(x, u, z, z′) = J1Ã(x, u, z, u′) gives two possibilities γz′ = 0 or

Ãu′ = 0 (use ∂/∂u′).
(ιι)1 First we consider the subsubcase γ = γ(x, u, z), Ã = Ã(x, u, z, u′) for

γz′ = 0. We get Ã = K1u
′ + µ(x, u, z) by using Ãu′ = K1.

Assuming K1 �= 0, we have I0 = J̃0 = J1 = K0 = L̃0, i.e.,

γ(x, u, z) = p(x), Ã = K1u
′ + a(x).

Notice that ∂
∂u′ (γu − I0Ã

2) = −2I0ÃÃu′ = 0 which means I0 = 0 for ÃÃu′ �= 0,
i.e., γu = 0 for example. As a result

g = C1u
′2 + b(x)u′ + p(x), Ã = K1u

′ + a(x),
a′(x) +K1p(x) − a(x)b(x) −Ka2(x) = 0, K = C1/K1, K1 �= 0

(40)

with regard to the condition (37). This result coincides with (38) for J1 =
C2 = 0, K1 �= 0.

Let K1 = 0. Then γ = γ(x, u, z), Ã = µ(x, u, z) and we analyze the conditions

γu = I0µ
2, γz = J̃0µ

2, µu = K0µ, µz = L̃0µ,

µx + u′µu + z′µz − (bx+ 2C1u
′)µ = Kµ2.

Through ∂
∂u′ and ∂

∂z′ applied to the last equation we obtain

µu = 2C1µ, µz = 0, i.e., µ = a(x)e2C1u = µ(x, u)

and the same equation gives the condition

a′(x) − a(x)b(x) = Ka2(x)e4C1u

with two possibilities

a′(x) − a(x)b(x) −Ka2(x) = 0, K ∈ R for C1 = 0,
a′(x) − a(x)b(x) = 0, K = 0 if C1 �= 0.

— If C1 = 0, then µ = a(x) and γ(x, u, z) = a2(x)
(
I0u+ J̃0z

)
+ p(x) in

accordance with γu = I0µ
2, γz = J̃0µ

2. The resulting functions and conditions
are

g = b(x)u′ + a2(x)
(
I0u+ J̃0z

)
+ p(x), Ã = a(x),

a′(x) − a(x)b(x) −Ka2(x) = 0, I0, J̃0, K ∈ R.
(41)
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— The subcase C1 �= 0, µ(x, u) = a(x)e2C1u with conditions γu = I0µ
2,

γz = J̃0µ
2 has solution γ(x, u, z) = I0

4C1
a2(x)e4C1u + p(x) (γuz = γzu is satisfied

only if γz = 0) and the resulting functions and conditions are

g = C1u
′2 + b(x)u′ + I0

4C1
a2(x)e4C1u + p(x), Ã = a(x)e2C1u,

a′(x) − a(x)b(x) = 0, I0, C1 ∈ R, C1 �= 0.
(42)

(ιι)2 It remains to investigate the subcase Ãu′ = 0, γz′ �= 0.
First we consider Ã = µ(x, u, z) and g = C1u

′2 + b(x)u′ + γ(x, u, z, z′) with
conditions Ãu = K0Ã, Ãz = L̃0Ã and Ãx + u′Ãu + z′Ãz − gu′Ã = KÃ2. The
last equation means that µx + u′µu + z′µz − (2C1u

′ + b(x))µ = Kµ2. We get
µu − 2C1µ = 0 and µz = 0 by using ∂

∂u′ and ∂
∂z′ , respectively. Thus

µ = µ(x, u) = a(x)e2C1u = Ã, Ãu = Ãz = Ãu′ = 0.

Second, the conditions γu = I0Ã
2, γz = J̃0Ã

2, γz′ = J1Ã
2 determine the

function γ(x, u, z, z′) for J1 �= 0. We see that γ = J1µ(x, u)z′ + α(x, u, z) and
γz = αz = J̃0(µ(x, u))2, i.e., α = J̃0(µ(x, u))2z + β(x, u) and

γ = J1µ(x, u)z′ + J̃0(µ(x, u))2z + β(x, u).

Similarly,

γu = J1µuz
′ + 2J̃0µµuz + βu(x, u) = 2C1J1µz

′ + 4J̃0C1µ
2z + βu(x, u) = I0µ

2

and βu(x, u) = I0µ
2 − C1(4J̃0µ

2z + 2J1µz
′) gives C1 = 0 since J1 �= 0. Thus

Ã = µ(x, u) = a(x)e2C1u = a(x) and β(x, u) = I0a
2(x)u + p(x). We have the

function
γ = J1a(x)z′ + a2(x)(I0u+ J̃0z) + p(x).

The resulting functions and conditions are of the form

g = b(x)u′ + J1a(x)z′ + a2(x)(I0u+ J̃0z) + p(x), Ã = a(x),
a′(x) − a(x)b(x) −Ka2(x) = 0, I0, J̃0, J1, K ∈ R, J1 �= 0.

(43)

(This result with J1 = 0 involves (41).) The assertion is proved. �

5.1.1. The equivalence conditions

The equivalence transformations between equations y′′ = f , ȳ′′ = f̄ are given by

ωi = ω̄i, χi = χ̄i, ζ2 = ζ̄2 (i = 0, 1)

with χi = ηi − J2ζi (i = 0, 1), N(x) = L(x) − J2M (x) similarly to the case of
an uncertain variable. The relation gu′ = fy′ holds for f defined by (28), (29)
and we have the equivalence conditions

Āϕ′ = A, ḡu′ϕ′ = gu′ − ϕ′′

ϕ′ , ū′ϕ′ = u′+N ′, ḡϕ′2 = g+N ′′− ϕ′′

ϕ′ (u′+N ′)
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in accordance with dA/A = dĀ/Ā+(ϕ′′/ϕ′)dx and u′′ = g. Assuming the trans-
formation relations between u, ū for known, we give the remaining equivalence
conditions depending on the coefficients of the right-hand side of differential
equations under consideration.

	���

��� 2� Suppose ϕ = ϕ(x), N(x) = L(x) − J2M (x). We have the
following equivalence conditions

(a) ā(ϕ)ϕ′ = a(x) − K1N
′(x), b̄(ϕ)ϕ′ = b(x) − ϕ′′

ϕ′ − 2C1N
′(x) − C2M

′(x),

p̄(ϕ)ϕ′2 = p(x) +N ′′(x) − b(x)N ′(x) − J1a(x)M ′(x) + C1(N ′(x))2

+C2N
′(x)M ′(x);

(b) ā(ϕ)ϕ′e2C1N(x) = a(x), b̄(ϕ)ϕ′ = b(x) − ϕ′′

ϕ′ − 2C1N
′(x),

p̄(ϕ)ϕ′2 = p(x) +N ′′(x) − b(x)N ′(x) + C1(N ′(x))2;

(c) ā(ϕ)ϕ′ = a(x), b̄(ϕ)ϕ′ = b(x) − ϕ′′

ϕ′ ,

p̄(ϕ)ϕ′2 = p(x) +N ′′(x) − b(x)N ′(x) − J1a(x)M ′(x)

− a2(x)
(
I0N(x) + J̃0M (x)

)
corresponding to the functions g of Theorem 2.

5.2. Nonconstant invariants

We discuss the highest possible symmetry problem with nonconstant invari-
ants. Let all the invariants be composed functions of the form G(F ), where
F = F (x, y, z, y′, z′, z′′) is a certain “basical” nonconstant invariant. We will
use the covariant derivatives (16), (17) where A = A(x, y, z, y′, z′, z′′) satisfies
equations (24), (25) together with functions f = f(x, y, z, y′, z′, z′′). We can see
that Fz′′ = 0 because the condition (17)1 is of the form

1
A

(Fx + y′Fy + z′Fz + fFy′ + z′′Fz′ + z′′′Fz′′) = G(F ) (44)

and ∂G(F )/∂z′′′ = Fz′′/A = 0. In analogous way, Az′′ = 0 in accordance with
(25). Thus

A = A(x, y, z, y′, z′), F = F (x, y, z, y′, z′).
Assuming F to be “basic” invariant, functions Fy = P1(F ), Fz = P2(F ) are
composed invariants, too. Setting Fy = P1(F ) = a ∈ R, Fz = P2(F ) = b ∈ R we
obtain

F = ay + bz + c(x, y′, z′); a, b ∈ R. (45)
The condition (44) is of the form

cx + ay′ + bz′ + fcy′ + z′′cz′ = AG(F ) �= 0 (46)

and
fz′′cy′ + cz′ = 0
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follows through differentiation ∂/∂z′′. The function fz′′ = J2(F ) is an invariant
(see Lemma 1), hence

J2(F )cy′ + cz′ = 0 (47)
(and cz′ = 0 follows from cy′ = 0). Moreover

J ′
2(F )acy′ = J ′

2(F )bcy′ = 0 (48)

by using ∂/∂y, ∂/∂z applied to (47) and we have three possibilities

cy′ = 0, J ′
2(F ) = 0 and a = b = 0, (49)

respectively. We investigate the following subcases.
(ι) The invariant F = ay+bz+c(x) in the subcase cy′ = cz′ = 0 in accordance

with (45). Then

A =
1

G(F )
· (c′(x) + ay′ + bz′) = G (F ) · (c′(x) + ay′ + bz′) (50)

by means of (46) and

c′′(x) + af + bz′′ − (c′(x) + ay′ + bz′)fy′ = A2G̃ (F ) (51)

follows from (25). An invariant fz′′ = J2(F ) = J2(ay + bz + c(x)), thus fz′′y′ =
fy′z′′ = 0 and

afz′′ + b = aJ2(F ) + b = 0
by using ∂/∂z′′ in (51).

The possibilities a = b = 0 and J2(F ) ≡ J2 = −b/a = const, respectively
follow.

(ι)1 Let a = b = 0, i.e., F = c(x), A = G (c(x))c′(x) = a(x) �= 0, J2 = J2(c(x)).
Then c′′(x) − c′(x)fy′ = a2(x)G̃ (c(x)) gives fy′ = r(x) and the equations (24)
involve the conditions fy = I0(c(x))a2(x), fz = J0(c(x))a2(x), fz′′ = J2(c(x)),
fz′ + fy′fz′′ = J1(c(x))a(x). Solving these equations we get

f = J2(F )z′′+p(x)y+q(x)z+r(x)y′+s(x)z′+t(x), F = c(x), A = A(x), (52)

where p(x) = I0(F )a2(x), s(x) = J1(F )a(x) − J2(F )r(x), q(x) = J0(F )a2(x).
(ι)2 Let a2 +b2 �= 0, i.e., a �= 0, J2(F ) ≡ J2 = −b/a. Then F = ay+bz+c(x),

A = G (F ) · (c′(x) + ay′ + bz′). The condition fz′′ = J2 gives

f − J2z
′′ = α(x, y, z, y′, z′) = α(x, u+ J2z, z, u

′ + J2z
′, z′) = g(x, u, z, u′, z′)

for u = y − J2z. The problem can be transformed into

u′′ = g(x, u, z, u′, z′)

by means of transformation (29) similarly to the case of the constant invariants.
In contrast to the above-mentioned case we have transformed the basic invariant
F = ay + bz + c(x) = ay − aJ2z + c(x) = a(y − J2z) + c(x) into F̃ = au+ c(x),
a �= 0 and similarly the function A into Ã = G (F̃ )·(au′+c(x)), the condition (51)
into c′′ + ag − (c′ + au′)gu′ = Ã2G̃ (F̃ ). Moreover, the conditions (24), (25) are
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transformed into new conditions of the type (31), (32) with coefficients denoted
by I, J,K, L,M dependent on F̃ . We need the conditions

gu = I0(F̃ )Ã2, gz = J0(F̃ )Ã2, gz′ = J1(F̃ )Ã,

gu′u = M0(F̃ )Ã, gu′z = N0(F̃ )Ã, gu′u′ = M1(F̃ ), gu′z′ = N1(F̃ )

to resolve the function g. The resulting functions and conditions are of the form

g = K (F )(c′(x) + au′)2 +B(c′(x) + au′)z′ + aEu′2 + q(x)u′ + p(x),
Ã = G (F ) · (c′(x) + au′), F̃ = au+ c(x)

c′′(x) − q(x)c′(x) + ap(x) +Ec′2(x) = 0, a �= 0; B,E ∈ R,

i.e.,

f = J2z
′′ + K (F )(c′(x) + ay′ + bz′)2 + B(c′(x) + ay′ + bz′)z′

+
1
a
E(ay + bz)′2 + q(x)(ay + bz)′ + p(x),

A = G (F ) · (c′(x) + ay′ + bz′), F = ay + bz + c(x),

c′′(x) − q(x)c′(x) + ap(x) + Ec′2(x) = 0, a �= 0; B,E ∈ R.

(53)

(ιι) The second fundamental subcase is characterized by the condition cy′ �= 0,
when F = ay+bz+c(x, y′, z′), fz′′ = J2(F ) and cy′J2(F )+cz′ = 0 in accordance
with (45), (47).

First we consider the conditions ∂F/∂η1 = Afy′ = P3(F ), Ay′ = K1(F ) from
(17), (24). These conditions can be investigated since A = A(x, y, z, y′, z′) is
a function. Then

cy′y′

(cy′)2
= P(F ) (54)

is satisfied with regard to the equation

Ay′cy′ +Acy′y′ = K1(F )cy′ + P3(F )
cy′y′

(cy′)2
= P ′

3(F )cy′

and we analyze the following subcases.
(ιι)1 Let a = b = 0, i.e., F = c(x, y′z′). Then cy′y′/cy′ = P(c)cy′ gives cy′ =

α(x, z′)Q(c) and H (F ) = H (c) = α(x, z′)y′ + β(x, z′) follows from integration
of the equation cy′/Q(c) = α(x, z′). Take

F = c(x, y′, z′) = α(x, z′)y′ + β(x, z′) (55)

as a basic invariant in accordance with our assumptions. Two possibilities may
appear, cz′ �= 0 and cz′ = 0, respectively.

(ιι)1,1 Let cz′ �= 0. The condition J2(F )cy′ + cz′ = 0 is of the form

J2(c)α(x, z′) + αz′(x, z′)y′ + βz′(x, z′) = 0. (56)
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Through ∂/∂y′ we get J ′
2(c)α2(x, z′) + αz′(x, z′) = 0 and we put

J2(c(x, y′, z′)) = c(x, y′, z′) = α(x, z′)y′ + β(x, z′)

without loss of generality. The equations α2 +αz′ = αβ+βz′ = 0 are equivalent
to (56) and solving these equations we obtain functions

α(x, z′) =
1

z′ + a(x)
, β(x, z′) =

b(x)
z′ + a(x)

.

The basic invariant is

F =
y′ + b(x)
z′ + a(x)

(57)

and the condition AFy′ = Aα(x, z′) = A/(z′ + a(x)) = P3(F ) gives the function

A = P3(F ) · (z′ + a(x)). (58)

The covariant derivative
∂F

∂ω0
=

1
A

(Fx + fFy′ + z′′Fz′) = M (F )

considered as an invariant M (F ) determines the function f of the form

f = F (F ) · (y′ + b(x))(z′ + a(x)) + (z′′ + a′(x))F − b′(x) (59)

(F (F ) = P3(F )M (F )/F ). We get the resulting functions

f = (y′ + b(x))(z′ + a(x))F (F ) + (z′′ + a′(x))F − b′(x),
A = (z′ + a(x))P3(F ), F = y′+b(x)

z′+a(x) ,
(60)

without any additional condition. The remaining conditions in (23), (24), (25)
define some relations between the invariants.

(ιι)1,2 For cz′ = 0 we get F = c(x, y′) = α(x)y′ + β(x), J2(F ) ≡ 0, by using
(55), (47). Here cy′ = α(x) �= 0. The condition AFy′ = P3(F ) is equivalent to

A =
1

α(x)
P3(F ) (61)

and the condition (44) determines the function

f =
1

α2(x)
F (F ) − 1

α(x)
(α′(x)y′ + β′(x)) (F = α(x)y′ + β(x)). (62)

The equation y′′ = f is not an undetermined case of the equation (3).
We analyze the remaining subcase.
(ιι)2 Assume that a2 + b2 �= 0. Then F = ay + bz + c(x, y′, z′) and

cy′y′

(cy′)2
≡ C = const, J2(F ) ≡ J2 = const (63)

with regard to (54), (47). The possibilities that we have to discuss are C = 0
and C �= 0 (for cz′ = 0 and cz′ �= 0), respectively.
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(ιι)2,1 Let C = 0, then the function c(x, y′, z′) = α(x, z′)y′ + β(x, z′) is a so-
lution of cy′y′ = 0.

Let cz′ = 0, i.e., c(x, y′z′) = α(x)y′ + β(x) (α(x) �= 0 according to cy′ �= 0).
We have J2 = 0 (use (47)) and

F = ay + bz + α(x)y′ + β(x), a2 + b2 �= 0, α(x) �= 0, (64)

is the desired basic invariant. The condition AFy′ = P3(F ) determines the
function A = P3(F )/α(x) and the covariant derivative ∂F/∂ω0 = M (F ) the
function f of the form f = 1

α2(x)F (F ) − 1
α(x) ((α

′(x) + a)y′ + bz′ + β′(x)). The
resulting functions now are

f = 1
α2(x)F (F ) − 1

α(x) ((α
′(x) + a)y′ + bz′ + β′(x)), A = P3(F )/α(x),

F = ay + bz + α(x)y′ + β(x), a2 + b2 �= 0, α(x) �= 0,
(65)

without any additional condition.
Assuming c(x, y′, z′) = α(x, z′)y′+β(x, z′) in the case cz′ �= 0 we have cy′J2 +

cz′ = α(x, z′)J2+αz′(x, z′)y′+βz′(x, z′) = 0 where J2 �= 0. Thus α(x, z′) = α(x),
β(x, z′) = −J2α(x)z′ + β(x) and

c(x, y′z′) = α(x)y′ − J2α(x)z′ + β(x).

The considered basic invariant

F = ay + bz + α(x)(y′ − J2z
′) + β(x)

determines the function A = P3(F )/α(x) by using the condition AFy′ = P3(F )
and the covariant derivative ∂F/∂ω0 = M (F ) determines the function f . As
a result

f = J2z
′′ + 1

α2(x)F (F ) − α′(x)
α(x) (y − J2z)′ − 1

α(x)(β
′(x) + ay′ + bz′),

A = P3(F )/α(x), F = ay + bz + α(x)(y − J2z)′ + β(x), α(x)J2 �= 0,
(66)

without any additional condition.
(ιι)2,2 The case C �= 0 (cz′ = 0 and cz′ �= 0, respectively). By successive

integration of the equation − cy′y′
(cy′)2 = −C we obtain cy′ = − 1

C
−C

α(x,z′)−Cy′ and

then c(x, y′, z′) = − 1
C ln |α(x, z′) − Cy′| + β(x, z′), i.e.,

F = ay + bz + β(x, z′) − 1
C

ln |α(x, z′) − Cy′|.
We get J2(F ) ≡ J2 = const by using cy′J2(F ) + cz′ = 0 and the assumption
a2 + b2 �= 0. The condition cz′ = J2cy′ is equivalent to

1
C
αz′ − J2 = βz′(α− Cy′)

which is possible only if β(x, z′) = β(x), α(x, z′) = CJ2z
′ + α(x). Thus

F = ay + bz + β(x) − 1
C

ln |α(x) − C(y′ − J2z
′)| (67)
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and assuming J2 ∈ R we get both conditions cz′ = 0, cz′ �= 0 because cz′ = 0
means J2(F ) ≡ J2 = 0 as a subcase of (67). The functions A and f are deter-
mined by conditions AFy′ = P3(F ) and ∂F/∂ω0 = M (F ), respectively. Now

f = J2z
′′ + F (F )(α(x)− C(y′ − J2z

′))2

− (β′(x) + ay′ + bz′)(α(x) − C(y′ − J2z
′)) +

1
C
α′(x),

A =P3(F )(α(x) − C(y′ − J2z
′)),

F = ay + bz + β(x) − 1
C

ln |α(x) − C(y′ − J2z
′)|; C, J2 ∈ R, C �= 0,

(68)

without any additional condition. We have proved:

������� 3� The following functions and conditions are solutions of the system
(24), (25) for nonconstant invariants.

(a) f = J2(F )z′′ + p(x)y+ q(x)z+ r(x)y′ + s(x)z′ + t(x), A = a(x), F = c(x).
(b) f = J2z

′′ + K (F )(c′(x) + ay′ + bz′)2 +B(c′(x) + ay′ + bz′)z′

+
1
a
E(ay + bz)′2 + q(x)(ay + bz)′ + p(x),

A = G (F ) · (c′(x) + ay′ + bz′), F = ay + bz + c(x),
c′′(x) − q(x)c′(x) + ap(x) +Ec′2(x) = 0, a �= 0; B,E ∈ R.

(c) f = (y′+b(x))(z′+a(x))F (F )+(z′′+a′(x))F−b′(x), A = (z′+a(x))P3(F ),
F = y′+b(x)

z′+a(x) .

(d) f = 1
α2(x)F (F ) − 1

α(x)((α
′(x) + a)y′ + bz′ + β′(x)), A = P3(F )/α(x),

F = ay + bz + α(x)y′ + β(x), α(x) �= 0.

(e) f = J2z
′′ + 1

α2(x)F (F ) − α′(x)
α(x) (y − J2z)′ − 1

α(x)(β
′(x) + ay′ + bz′),

A = P3(F )/α(x), F = ay + bz + α(x)(y − J2z)′ + β(x),
α(x)J2 �= 0, a2 + b2 �= 0.

(f) f = J2z
′′ +

1
C
α′(x) + F (F )(α(x)− C(y′ − J2z

′))2

− (β′(x) + ay′ + bz′)(α(x) − C(y′ − J2z
′)) +

1
C
α′(x),

A = P3(F )(α(x) − C(y′ − J2z
′)),

F = ay + bz + β(x)− 1
C ln |α(x) − C(y′ − J2z

′)|,
C, J2 ∈ R, C �= 0, a2 + b2 �= 0.
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5.2.1. The equivalence conditions

The equivalence transformations between equations y′′ = f , ȳ′′ = f̄ are given by

ωi = ω̄i, ηi = η̄i, ζj = ζ̄j (i = 0, 1; j = 0, 1, 2)

and moreover, F = F̄ for the basic invariant F . We state the equivalence
conditions depending on coefficients of the right-hand side of the differential
equations under consideration.

	���

��� 3� Suppose ϕ = ϕ(x), N(x) = L(x) − J2M (x). We have the
following equivalence conditions

(a) ā(ϕ)ϕ′ = a(x), c̄(ϕ) = c(x), p̄(ϕ)ϕ′2 = p(x), q̄(ϕ)ϕ′2 = q(x),
r̄(ϕ)ϕ′2 = r(x) − ϕ′′

ϕ′ , q̄(ϕ)ϕ′2 = q(x) + J2(c(x))ϕ′′

ϕ′ ,

t̄(ϕ)ϕ′2 = t(x)+L′′−J2(c(x))M ′′− p(x)L− q(x)M − r(x)L′(x)− s(x)M ′;

(b) c̄(ϕ)ϕ′ = c(x)− aN(x), q̄(ϕ)ϕ′ = q(x) − ϕ′′

ϕ′ − aBM ′(x) − 2aEN ′(x),

p̄(ϕ)ϕ′2 = p(x) + aBM ′(x)N ′(x) + aE(N ′(x))2 −Bc′(x)M ′(x)

−q(x)N ′(x) +N ′′(x);

(c) b̄(ϕ)ϕ′ = b(x) − L′(x), ā(ϕ)ϕ′ = a(x) −M ′(x);
(d) 1

ᾱ(ϕ)ϕ
′ = 1

α(x) , β̄(ϕ) = β(x) − aL(x) − bM (x) − α(x)L′(x);

(e) ᾱ(ϕ)ϕ′ = α(x) + CN ′(x), β̄(ϕ) = β(x) − aL(x) − bM (x)− 1
C ln |ϕ′|;

corresponding to the functions f of Theorem 3.

We discuss only the conditions (b) of Corollary 3 relevant to f = J2z
′′ +

K (F )(c′(x)+ay′+bz′)2+B(c′(x)+ay′+bz′)z′+ 1
aE(ay + bz)′2 +q(x)(ay + bz)′

+ p(x), A = G (F ) · (c′(x) + ay′ + bz′), F = ay + bz + c(x), c′′(x) − q(x)c′(x) +
ap(x) +Ec′2(x) = 0, a �= 0 (B,E ∈ R), for example.

We get u′′ = K (F )(c′(x)+au′)2 +B(c′(x)+au′)z′ +aEu′2 + q(x)u′ +p(x) =
g(x, u, z, u′z′), A = G (F ) · (c′(x)+au′), F = au+ c(x), regarding to b+aJ2 = 0,
u = y − J2z (see (ι)2).

Then F = F̄ ⇐⇒ aū+ c̄(x̄) = au+ aN(x) + c̄(x̄) = au+ c(x) ⇐⇒ c̄(ϕ) =
c(x) − aN(x) and ω0 = ω̄0 follows from F = F̄ and c̄′(ϕ)ϕ′ = c′(x) − aN ′(x).
Moreover, ω1 = ω̄1 ⇐⇒ ḡu′ϕ′ = gu′ − ϕ′′

ϕ′ ⇐⇒ q̄(ϕ)ϕ′ = q(x)− ϕ′′

ϕ′ − aBM ′(x)

− 2aEN ′(x). The condition ū′′ϕ′2 = u′′ + N ′′ − ϕ′′(x)
ϕ′(x) (u′ + N ′) together with

the above conditions lead to p̄(ϕ)ϕ′2 = p(x) + aBM ′(x)N ′(x) + aE(N ′(x))2 −
Bc′(x)M ′(x) − q(x)N ′(x) + N ′′(x). The condition c′′(x) − q(x)c′(x) + ap(x)
+Ec′2(x) = 0 is true in relation to c̄′′ϕ′2 − q̄ϕ′c̄′ϕ′ + ap̄ϕ′2 + E(c̄′ϕ′)2 =
(c′−aN ′)′− ϕ′′

ϕ′ (c′−aN ′)−(q− ϕ′′

ϕ′ −aBM ′−2aEN ′)(c′−aN ′)+a(p+aBM ′N ′+

aEN ′2 −Bc′M ′ − qN ′ +N ′′) +E(c′ − aN ′)2 = c′′ − qc′ + ap+Ec′2 = 0.
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6. The isomorphic pseudogroup

The results obtained for the pseudogroup of all transformations

Φ(x, y, z) = (x̄, ȳ, z̄) = (ϕ(x), y + L(x), z +M (x)), Φ: D(Φ) → R(Φ)

can be related to the isomorphic pseudogroup of all transformations

Φ1(x, v, w) = (x̄, v̄, w̄) = (ϕ(x), P (x)v,Q(x)w), Φ1 : D(Φ1) → R(Φ1) (69)

by using the logarithmic y and z (ȳ and z̄) scales

y = ln |v|, z = ln |w| (ȳ = ln |v̄|, z̄ = ln |w̄|) (70)

for P (x) = eL(x) �= 0, Q(x) = eM(x) �= 0 (i.e., L = ln |P |,M = ln |Q|). Alto-
gether

y′ =
v′

v
, z′ =

w′

w
, y′′ =

(
v′

v

)′
=
v′′

v
−
(
v′

v

)2

, z′′ =
(
w′

w

)′
=
w′′

w
−
(
w′

w

)2

.

Every equation y′′ = f is then transformed into some equation(
v′
v

)′
= f

(
x, ln |v|, ln |w|, v′

v ,
w′
w ,
(

w′
w

)′)
= h(x, v, w, v′, w′, w′′) (71)

equivalent to the equation

v′′ = g(x, v, w, v′, w′, w′′) =
v′2

v
+ h(x, v, w, v′, w′, w′′)v (72)

and the equivalence of equations v′′ = g and v̄′′ = ḡ follows from the equivalence
conditions for y′′ = f and ȳ′′ = f̄ by using the logarithmic scales. Moreover

w(x) = ez(x) = ey(ξ(x)) = v(ξ(x))

with the delay function ξ considered in the delay-differential equation (1) and
our approach is fully applicable to all second-order differential equations of this
kind.

Example 1. In the pseudogroup (8), the equivalence conditions for

y′′ = f = (y′ + b(x))(z′ + a(x))F (F )+ (z′′ + a′(x))F − b′(x), F =
y′ + b(x)
z′ + a(x)

and ȳ′′ = f̄ are given by b̄(ϕ)ϕ′ = b − L′, ā(ϕ)ϕ′ = a −M ′ in accordance with
(c) of Theorem 3 and Corollary 3. The equation y′′ = f is transformed by
logarithmic scales (70) into the equation(

v′

v

)′
=
(
v′

v
+ b(x)

)(
w′

w
+ a(x)

)
F (F ) +

((
w′

w

)′
+ a′(x)

)
F − b′(x), (73)

F =
v′
v + b(x)

w′
w + a(x)

,
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equivalent to the equation

v′′ =
v′2

v
+(v′ + b(x)v)

(
w′

w
+ a(x)

)
F (F )+ v

(
w′′

w
− w′2

w2
+ a′(x)

)
F − b′(x)v.

Assuming the pseudogroup (69), we get the equivalence conditions

b̄(ϕ)ϕ′ = b− P ′

P
, ā(ϕ)ϕ′ = a− Q′

Q
(74)

for the equations v′′ = g and v̄′′ = ḡ. Indeed, by using the relations

v′

v
=
v̄′

v̄
ϕ′ − P ′

P
=
v̄′

v̄
ϕ′ + b̄ϕ′ − b,

w′

w
=
w̄′

w̄
ϕ′ − Q′

Q
=
w̄′

w̄
ϕ′ + āϕ′ − a

we obtain

F =
v′
v +b(x)

w′
w +a(x)

=
v̄′
v̄ +b̄

w̄′
w̄ +ā

= F̄ ,(
v′
v + b(x)

)(
w′
w + a(x)

)
=
(

v̄′
v̄ + b(x)

)(
w̄′
w̄ + a(x)

)
ϕ′2,(

v′
v

)′
=
(

v̄′
v̄

)′
ϕ′2 + v̄′

v̄ ϕ
′′ + b̄′ϕ′2 + b̄ϕ′′ − b′,(

w′
w

)′
+ a′ =

(
w̄′
w̄

)′
ϕ′2 + w̄′

w̄
ϕ′′ + ā′ϕ′2 + āϕ′′,

the equation (73) becomes

(
v̄′

v̄

)′
ϕ′2 +

v̄′

v̄
ϕ′′ + b̄′ϕ′2 + b̄ϕ′′ − b′

=
(
v̄′

v̄
+ b(x)

)(
w̄′

w̄
+ a(x)

)
ϕ′2F (F ) +

((
w̄′

w̄

)′
+ā′

)
Fϕ′2+

(
w̄′

w̄
+ā
)
Fϕ′′− b′

and
(

w̄′
w̄ + ā

)
F = v̄′

v̄ + b̄. The resulting equation

(
v̄′

v̄

)′
=
(
v̄′

v̄
+ b̄

)(
w̄′

w̄
+ ā

)
F (F ) +

((
w̄′

w̄

)′
+ ā′

)
F − b̄′

is the equation with bars corresponding to the equation (73). We have proved
that the equations v′′ = g and v̄′′ = ḡ are equivalent equations, assuming the
pseudogroup (69). Through direct verification we can prove the following asser-
tion.
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	���

��� 4� Let us consider the global transformation (see [8])

x̄ = ϕ(x) ∈ J ⊂ R, v̄(x̄) = v̄(ϕ(x)) = P (x)v(x), x ∈ I ⊂ R

such that ϕ ∈ C2(I), ϕ′(x)P (x) �= 0 on I and ϕ(I) = J. Then v̄(ξ̄(x̄)) =
v̄(ξ̄(ϕ(x))) = v̄(ϕ(ξ(x))) = P (ξ(x))v(ξ(x)) is satisfied for ξ̄(x̄) = ϕ(ξ(ϕ−1(x̄))),
x̄ ∈ J, and any differential equation(

v′(x)
v(x)

+ b(x)
)′

=
(
v′(x)
v(x)

+ b(x)
)(

(v(ξ(x)))′

v(ξ(x))
+ a(x)

)
F (F )

+
(

(v(ξ(x)))′

v(ξ(x))
+ a(x)

)′
F

with F = v′(x)/v(x)+b(x)
(v(ξ(x))′/v(ξ(x))+a(x) and coefficients a, b ∈ C1(I) is globally transformed

into an equation(
v̄′(x̄)
v̄(x̄)

+ b̄(x̄)
)′

=
(
v̄′(x̄)
v̄(x̄)

+ b̄(x̄)
)(

(v̄(ξ̄(x̄)))′

v̄(ξ̄(x̄))
+ ā(x̄)

)
F (F )

+
(

(v̄(ξ̄(x̄)))′

v̄(ξ̄(x̄))
+ ā(x̄)

)′
F

on the whole intervals I, J of definition. Moreover,

b̄(ϕ(x))ϕ′(x) = b(x) − P ′(x)
P (x)

, ā(ϕ(x))ϕ′(x) = a(x) − (P (ξ(x)))′

P (ξ(x))
,

F =
v′(x)/v(x) + b(x)

(v(ξ(x))′/v(ξ(x)) + a(x)
=

v̄′(x̄)/v̄(x̄) + b̄(x̄)
(v̄(ξ̄(x̄))′/v̄(ξ̄(x̄)) + ā(x̄)

is satisfied on I and J, respectively.

For example, differential equations(
v′(x)
v(x)

)′
=
v′(x)
v(x)

(v(x/e))′

v(x/e)
F (F ) +

(
(v(x/e))′

v(x/e)

)′
F,

(
v̄′(x̄)
v̄(x̄)

)′
=
(
v̄′(x̄)
v̄(x̄)

− 1
)(

v̄′(x̄− 1)
v̄(x̄− 1)

− 1
)

F (F ) +
(
v̄′(x̄− 1)
v̄(x̄− 1)

)′
F,

F = v′(x)v(x/e)/v(x)(v(x/e))′, are globally transformable by means of x̄ =
ϕ(x) = lnx, v̄(x̄) = xv(x) on I = (0,∞) and J = R, respectively.

Analogous results can be derived for the remaining cases of relevant Theorems.
Only nonoscillatory differential equations are considered by using the logarithmic
scales. Direct investigation of the pseudogroup (69) involving in results also
oscillatory equations is an open problem.

564



EQUIVALENCE AND SYMMETRIES OF SECOND-ORDER DIFFERENTIAL EQUATIONS

Comments

Transformation properties of differential equations belong to the central part
in the geometrical theory of differential equations, see the recent surveying book-
let [KAMRAN, N.: Selected Topics in the Geometrical Theory of Differential
Equations, CBMS Regional Conference Series in Math., Nr 96, AMS 2002] and
extensive literature therein. In particular the classical results are essentially
improved [SATO, H.—YOSHIKAWA, A. Y.: Third-order ordinary differential
equations and Legendre connections, J. Math. Soc. Japan 50 (1998), 993–1013];
[SATO, H.: Orbit decomposition of space of differential equations. In: UK-Japan
Winter school 2004 — Geometry and Analysis Towards Quantum Theory, pp.
77–88; Sem. Math. Sci. 30, Keio Univ., Yokohama, 2004]; [YOSHIKAWA, A. Y.:
Equivalence problem of third-order ordinary differential equations, Internat. J.
Math. 17 (2006), 1103–1125]. This symmetry-based methods are adapted for or-
dinary difference equations in order to obtain the reductions of order and explicit
solutions, that is, a counterpart to the classical Lie’s theory [HYDON, P. E.:
Symmetries and first integrals of ordinary difference equations, R. Soc. Lond.
Proc. Ser. A Math. Phys. Eng. Sci. 456 (2000), 2835–2855] (see also lit-
erature therein). We deal with the intermediate problem and investigate the
differential equations with deviations. The article should be regarded as a mere
modest preparation to deeper qualitative study of such equations which admit
large symmetries.
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