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Abstract

In (2008 J. Phys. A: Math. Theor. 41, 025207), the author claims to have determined
a complete list of functionally independent differential invariants up to order two for the
equivalence group of differential equations defined by vector fields when there are two and
three independent variables. In this comment we show that this is not the case. Using
the equivariant moving frame method we derive a complete set of functionally independent
differential invariants of order one and two for an arbitrary number n ≥ 2 of independent
variables. In the particular case n = 2, we obtain six functionally independent invariants,
two of which were not found in (2008 J. Phys. A: Math. Theor. 41, 025207). In the case
n = 3, we get twenty-one functionally independent invariants, six of which are new. We also
give a complete classification of the differential invariants.

Mathematics subject classification: 58A20, 58H05, 58J70

1 Introduction

In 1998 and 1999, Fels and Olver developed the theory of equivariant moving frames for Lie
groups [3, 4]. Recently, their work has been generalized to Lie pseudo-groups [7, 8, 9]. As for
finite dimensional Lie groups, the equivariant moving frame method for Lie pseudo-groups gives
all functionally independent differential invariants of a pseudo-group action, and establishes the
recurrence relations between invariantly differentiated invariants and normalized invariants, [8, 9].
It can also be used to derive the structure equations of Lie pseudo-groups, [7]. The first extensive
application of this new theory can be found in [1,2]. In those two papers, the structure equations
for the symmetry pseudo-group of the Kadomtsev-Petviashvili equation and the classification of
the differential invariants is carried out in complete detail.

The computation of differential invariants of a symmetry group using Lie’s approach requires
the integration of a linear system of partial differential equations [6]. With the equivariant moving
frame method, differential invariants are derived using only differentiation and solving algebraic
equations. Since algebraic equations are usually easier to solve than differential equations, the
equivariant moving frame approach frequently gives the differential invariants with less work com-
pared to Lie’s approach. This is particularly true for the problem we are concerned with in this
paper. In [5], the author uses Lie’s approach to derive some of the differential invariants of order
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one and two for the equivalence pseudo-group of transformations for differential equations defined
by a vector field

n∑
i=1

ai(x)∂xiu(x) = 0, x = (x1, . . . , xn), (1)

when there are two and three independent variables. The derivation takes a total of about seven
pages. With the equivariant moving frame method the same computation, for an arbitrary number
n ≥ 2 of independent variables, is done in one page.

The purpose of this paper is not just to illustrate how the equivariant moving frame method
can reduce the amount of computations when it comes to determining the differential invariants
of a Lie pseudo-group, but to also address some errors found in [5]. In Theorem 6 of [5], the
author claims to have found all differential invariants, up to order two, for the pseudo-group of
equivalence transformations of (1) when there are two and three independent variables, but we
show that this is not the case. Using the equivariant moving frame technic we establish a complete
set of functionally independent differential invariants of (1), up to order two, for an arbitrary
number n ≥ 2 of independent variables. In the cases n = 2, 3 we show that we have found more
functionally independent invariants than in [5]. Furthermore, the conjecture of [5] on page 12 is
false. The conjecture is based on the wrong number of functionally independent invariants of order
one and two derived by the author when n = 2, 3, and on an unjustified quantity Wn at the top of
page 12. The conjecture must be replaced by our Proposition 5.

The paper is divided as follows. In Section 2 we start by giving an outline of the equivariant
moving frame theory, then in Section 3 we summarize the equivalence problem for the differential
equation (1) discussed in [5]. Using the method of equivariant moving frames we derive all func-
tionally independent invariants up to order two for the equivalence pseudo-group in Section 4, and
we finish the paper by studying the “algebra” of differential invariants.

2 Equivariant moving frame theory

For a detailed exposition of the equivariant moving frame theory for Lie pseudo-groups we refer
the reader to [8, 9]. In this section we state the important results without proofs.

2.1 Normalized invariants

Let M be a smooth manifold of dimension m. Let Jn(M, p) be n-th jet bundle of equivalence classes
of p-dimensional submanifolds S of M with n-th order contact. We choose local coordinates on M

z = (z1, . . . , zm) = (x1, . . . , xp, u1, . . . , uq) = (x, u), p+ q = m,

so that the submanifold S can be expressed a the graph of smooth functions uα = fα(x), α =
1, . . . , q. Local coordinates on Jn(M, p) are be given by jnz S = (x, u(n)), where u(n) denotes all
derivatives u with respect to the variables x up to order n. We denote by D(M) the pseudo-group
of all local diffeomorphisms of M . For 0 ≤ n ≤ ∞, let D(n) → M be the subbundle of Jn(M,M)
consisting of the n-th order jets jnψ of local diffeomorphisms ψ : M → M . Local coordinates
on D(n) are given by jnz ψ = (x, u,X(n), U (n)), where z = (x, u) ∈ M are the source coordinates,
Z = (X,U) ∈ M the target coordinates and X i

A = ∂#AX i/∂zA, i = 1, . . . , p, Uα
A = ∂#AUα/∂zA,

α = 1, . . . , q, 1 ≤ #A ≤ n, are the derivatives of the target coordinates with respect to the source
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coordinates. The jet coordinates X i
A, Uα

A are to be viewed as representing the group parameters
of the diffeomorphism pseudo-group D. The right action of D on D(n) is defined by

Rψ(jnz φ) = jnψ(z)(φ ◦ ψ−1),

when the composition φ ◦ ψ−1 is defined.

Definition 1. A Lie pseudo-group G is a sub-pseudo-group of D(M) whose diffeomorphisms are
local solutions of an involutive system of defining partial differential equations

F (x, u,X(n), U (n)) = 0. (2)

The pseudo-group G acts on the submanifold jet bundle Jn(M, p) by mapping the submanifold

jet jnz S = (x, u(n)) to the target jet ψ|z · jnz S = jnψ(z)ψ(S) = (X, Û (n)), ψ ∈ G. A hat is added over
the transformed jet coordinates to distinguish them from the diffeomorphism jet coordinates Uα

A.

The local expressions for Û (n) are given by

Ûα
J = DXj1 · · ·DXjkU

α, 0 ≤ k = #J ≤ n, α = 1, . . . , q, (3)

where

DXi =

p∑
j=1

W j
i Dxj , with (W j

i ) = (DxjX
i)−1, i = 1, . . . , p, (4)

and Dxi is the total differential operator with respect to xi.
The pseudo-group jet G(n) and the submanifold jet Jn(M, p) are put together in the bundle

H(n) → Jn(M, p) obtained by taking the pull-back of G(n) → M along the usual jet projection
πn : Jn(M, p)→ M . The local coordinates on H are given by the pair of jets (jnz S, j

n
z φ), S ⊂ M ,

φ ∈ G. The pseudo-group G acts on H by

ψ|z · (jnz S, jnz φ) = (jnψ(z)ψ(S), jnψ(z)(φ ◦ ψ−1)). (5)

From (5) it follows that the target jet coordinates ψ|z · jnz S = (X,U (n)) are invariant under the
action of G.

Definition 2. An n-th order moving frame for a pseudo-group G acting on p-dimensional sub-
manifolds of M is a G-equivariant local section ρ(n) : Jn(M, p)→ H(n).

The G-equivariance of the section means that

ρ(n)(ψ|(x,u) · (x, u(n))) = ρ(n)(x, u(n))(jn(x,u)ψ)−1, ψ ∈ G,

when all products are defined.
An n-th order moving frame exists in a neighborhood of a jet (x, u(n)) if and only if G acts

locally freely at (x, u(n)) and the action is regular. In applications, a moving frame ρ(n) is obtained
in three steps. First compute the prolonged pseudo-group action (3):

(X, Û (n)) = P (n)(x, u(n), g(n)), (6)

which will depend on rn pseudo-group parameters g(n). Then set rn of the coordinate functions
(6) to be constant valued

Pν(x, u
(n), g(n)) = cν , ν = 1, . . . , rn, (7)
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so as to form a cross-section of the pseudo-group orbits. Finally, solve the normalization equations
(7) with respect to the pseudo-group parameters g(n),

g(n) = h(n)(x, u(n)). (8)

Once this is done, the n-th order moving frame ρ(n) is given by ρ(n)(x, u(n)) = (x, u(n), h(n)(x, u(n))).

The invariance of the target jet coordinates (X, Û (n)) under the pseudo-group action and the
definition of a moving frame ρ(n) imply

Proposition 1. The normalized differential invariants

H i(x, u(n)) = (ρ(n))∗(X i) = ι(xi) = X i(x, u(n), h(n)(x, u(n))),

IαJ (x, u(n)) = (ρ(n))∗(Uα
J ) = ι(uαJ) = Ûα

J (x, u(n), h(n)(x, u(n))),
(9)

i = 1, . . . , p, α = 1, . . . , q, 0 ≤ #J ≤ n, obtained by replacing the pseudo-group parameters in (6)
by (8), form a complete set of functionally independent differential invariants of the n-th prolonged
pseudo-group action G(n).

In (9), rn of the normalized invariants are constant due to the normalization equations (7).
Those invariants are called phantom invariants and the other are referred to as non-phantom
invariants.

2.2 Recurrence formulas

From the p differential operators (4) and a moving frame ρ(∞) we derive p independent invariant
differential operators

Di =

p∑
j=1

((ρ(∞))∗(W j
i ))Dxj , i = 1, . . . , p. (10)

Applying the invariant differential operators (10) to the normalized differential invariants (9), with
n =∞, gives new differential invariants that can be expressed in terms of the normalized invariants
(9) since they constitute a basis of the algebra of differential invariants for the Lie pseudo-group
G. Those relations are called recurrence relations. Before writing out the recurrence formulas we
recall some facts about the infinitesimal generators of a Lie pseudo-group G. A vector field

v =

p∑
i=1

ξi(x, u)∂xi +

q∑
α=1

φα(x, u)∂uα (11)

is an infinitesimal generator of G if it is the solution to the infinitesimal determining equations

L(x, u, ξ(n), φ(n)) = 0, (12)

obtained by linearizing the defining equations (2) of the Lie pseudo-group G at the identity jet IM .
The n-th prolongation of the vector field (11) is given by the usual formula,

v(n) =

p∑
i=1

ξi(x, u)∂xi +

q∑
α=1

n∑
#J=0

φ̂αJ(x, u(n))∂uαJ ,
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where

φ̂αJ(x, u(n), ξ(n), φ(n)) = DJ

(
φα −

p∑
i=1

uαi ξ
i

)
+

p∑
i=1

uαJ,iξ
i. (13)

Note that the prolonged coefficients (13) are linear combinations of the derivatives ξiA, φαA, #A ≤
#J . Let

ψ̂αJ (H, I(n), β(n), ζ(n)) = ι(φ̂αJ(x, u, ξ(n), φ(n))),

be the invariantization of φ̂αJ obtained by the substitutions

xi 7→ H i, uαJ 7→ IαJ , ξiA 7→ βiA, φαA 7→ ζαA, (14)

where βiA and ζαA are the horizontal components of the invariantized Maurer-Cartan forms as-

sociated to the Lie pseudo-group G, [2]. Since φ̂αJ(x, u(n), ξ(n), φ(n)) are linear in ξiA and φαA,

ψ̂αJ (H, I(n), β(n), ζ(n)) are linear combinations in the one-forms βiA and ζαA. The differential forms
βiA and ζαA are not linearly independent and remarkably satisfy

Proposition 2. The one-forms βiA, i = 1, . . . , p, and ζαA, α = 1, . . . , q, #A ≥ 0, satisfy the linear
relations

L(. . . , H i, . . . , Iα, . . . , βiA, . . . , ζ
α
A . . .) = 0, (15)

where L is the completion of the infinitesimal determining equations (12).

The completion L of L consists of the original equations (12) along with all equations obtained
by repeated differentiation. The equations (15) are obtained in two steps, first compute the
completion L then make the substitutions (14). We are now in a position to state

Theorem 1. The recurrence formulas for the normalized differential invariants (9) are

p∑
i=1

(DiHj)ωi = ωi + βi,

p∑
i=1

(DiIαJ )ωi =

p∑
i=1

IαJ,iω
i + ψ̂αJ , (16)

where ωi are invariant one-forms dual to the invariant differential operators Di. Their explicit
expressions are

ωi =

p∑
j=1

((ρ(∞)∗(DxjX
i))dxj, i = 1, . . . , p.

The terms βi and ψ̂αJ appearing in (16) are called correction terms.

The recurrence relations for the phantom invariants have their left-hand side equal to zero
since these invariants are constant valued. Those equations form a linear system of equations in
βiA and ζαA which can be solved, if a bona fide cross-section is chosen and the pseudo-group action
is locally free at a certain order n. Substituting their expressions in the recurrence relations for the
non-phantom invariants gives explicit relations between the invariantly differentiated invariants
and the normalized invariants of the form

DiIαJ = IαJ,i +Rα
J,i,

where Rα
J,i is an expression of the normalized invariants (9).
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3 The pseudo-group of equivalence transformations for a

differential equation defined by a vector field

In [5], the most general pseudo-group of equivalence transformations for a linear scalar differential
equation

n∑
i=1

ai(x)∂xiu(x) = 0, x = (x1, . . . , xn), (17)

defined by the smooth vector field
∑n

i=1 a
i(x)∂xi is established. The pseudo-group of equivalence

transformations consists of all local diffeomorphisms

Ox ×Ou ⊂ Rn × R→ Rn × R,
(x, u) 7→ (X = ψ(x, y), U = α(x, u)),

mapping (17) into an equation of the same form

n∑
i=1

Ai(X)∂XiU(X) = 0,

where the functions Ai(X) can be different from the functions ai(x) appearing in (17). We assume
that all the coefficients ai(x) are nonzero, and also that n > 1 because otherwise the equivalence
problem is trivial. In this setting, we have

Proposition 3. The most general pseudo-group of equivalence transformations of (17) consists of
all local diffeomorphisms of the form

X i = ψi(x
i), i = 1, . . . , n, (18)

U = u. (19)

Under transformation (18) the vector field
∑n

i=1 a
i(x)∂xi is mapped to

∑n
i=1A

i(X)∂Xi , with

Ai(X) = ψ′i(x
i)ai(x), (20)

where ψ′i(x
i) denotes the derivative of ψi(x

i) with respect to xi. From (19) it is clear that the
dependent variable u is an invariant of the equivalence problem. We thus ignore this variable in
the search of invariant differential functions, and we are thus interested in finding the differential
invariants of the Lie pseudo-group

G : X i = ψi(x
i), Ai = ψ′i(x

i)ai, i = 1, . . . , n. (21)

The defining equations of this Lie pseudo-group are

X i
xj = 0, if j 6= i, Ai = X i

xia
i, i = 1, . . . , n,

where δij is the Kronecker delta.
For future reference we note that the infinitesimal generator of G is given by

v =
n∑
i=1

ξi(x
i)∂xi +

n∑
i=1

aiξ′i(x
i)∂ai , (22)

where ξi(x
i) is an arbitrary smooth function of xi, and ξ′i(x

i) denotes the derivative of ξi(x
i) with

respect to xi.
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4 Differential invariants

To find the differential invariants of the Lie pseudo-group (21), we apply the algorithm discussed
in Section 2.1. We use the multi-index notation aiJ = ∂kai/(∂xj1 · · · ∂xjk), to denote the partial
derivatives of the vector field coefficients ai, i = 1, . . . , n, with respect to the coordinates xi,
i = 1, . . . , n. The prolonged pseudo-group action of G is found by applying the differential operators

DXi =
1

ψ′i(x
i)
Dxi , i = 1, . . . , n, (23)

where

Dxj =
∂

∂xj
+

n∑
i=1

∑
#J≥0

aiJ,j
∂

∂aiJ
, j = 1, . . . , n,

to Ai, i = 1, . . . , n. The first few terms are

Aij =DXjAi =
1

ψ′j
(aijψ

′
i + aiδijψ

′′
i ),

Aijk =DXkAij =
1

ψ′k

[
−
δjkψ

′′
j

(ψ′j)
2
(aijψ

′
i + aiδijψ

′′
i ) +

1

ψ′j
(aijkψ

′
i + aijδ

i
kψ
′′
i + aikδ

i
jψ
′′
i + aiδijδ

i
kψ
′′′
i )

]
,

...

(24)

1 ≤ i, j, k ≤ n. The pseudo-group parameters ψi, ψ
′
i, ψ

′′
i , . . ., of the prolonged pseudo-group action

are normalized using the cross-section

X i = 0, Ai = 1, Aiik = 0, i = 1, . . . , n, k ≥ 1, (25)

where Ai
ik

denotes the k-th derivative of Ai with respect to X i. Solving for the pseudo-group
parameters we find

ψi = 0, ψ′i =
1

ai
, ψ′′i = − aii

(ai)2
, . . . , (26)

i = 1, . . . , n. Replacing the expressions (26) in the unnormalized target coordinates of (24), i.e.,
in AiJ , #J = k ≥ 1, with J = (j1, . . . , jk) such that jl 6= i for some l between 1 and k, we get the
differential invariants

I ij = ι(aij) =
aija

j

ai
, i 6= j,

I ijk = ι(aijk) =
ak

ai

(
δjka

j
j(a

i
j − δijaii) +

aj

ai
(aiaijk − δikaijaii − δijaikaii)

)
, (j, k) 6= (i, i),

...

(27)

The invariants I ij, I
i
jk of (27) are all functionally independent and give a complete list of invariants

for the second prolonged pseudo-group action G(2).
We now specify the above results to the cases where there are n = 2 and n = 3 independent

variables.

Proposition 4. Let N n be the maximal number of functionally independent differential invariants
of order one and two in n independent variables.

7



1. For n = 2, N 2 = 6, and the invariants are

I ij =
aija

j

ai
, I iij = ajaiij −

aj

ai
aija

i
i, I ijj =

aj

ai
ajja

i
j +

(aj)2

ai
aijj, (28)

with i, j ∈ {1, 2} and i 6= j.

2. For n = 3, N 3 = 21, and the invariants are

I ij =
aija

j

ai
, I iij = ajaiij −

aj

ai
aija

i
i,

I ijj =
aj

ai
ajja

i
j +

(aj)2

ai
aijj, I ijk =

akajaijk
ai

,

(29)

with i, j, k ∈ {1, 2, 3}, i 6= j, k, and j 6= k.

Theorem 6 of [5] must be replaced by our Proposition 4 above since our list of invariants is
more exhaustive. Indeed, for the case n = 2, the author of [5] finds 4 independent differential
invariants of order one and two:

Tij =
aija

j

ai
, Kij =

aijja
j

aij
+ ajj,

with i, j ∈ {1, 2}, and i 6= j. Those four invariants are related to the four invariants I ij, I
i
jj of (28)

by the relations
I ij = Tij, I ijj = KijTij.

So the two new invariants in the list (28) are I iij, with i, j = 1, 2, and i 6= j.
In the case n = 3, 15 independent differential invariants of order one and two are found in [5]:

Tij =
aija

j

ai
, Kij =

aijja
j

aij
+ ajj, Lijk = aijk

(
ajak

ai

)
,

with i, j, k ∈ {1, 2, 3}, i 6= j, k, and j 6= k. Those 15 invariants are related to the 15 invariants I ij,
I ijj, I

i
jk of (29) by the relations

I ij = Tij, I ijj = KijTij, I ijk = Lijk.

So the six new invariants in the list (29) are I iij, with i, j = 1, 2, 3, and i 6= j.

For a general number n ≥ 2 of independent variables, since there are
(
n+k−1

k

)
different k-th

order derivatives for a scalar function depending on n variables, it follows that there are n
(
n+k−1

k

)
different target coordinates AiJ , i = 1, . . . , n, with #J = k in (24). Since our cross-section (25)
imposes that Ai

ik
= 0, i = 1, . . . , n, for k ≥ 1 it follows that there are

Mk
n = n

(
n+ k − 1

k

)
− n, k ≥ 1,

functionally independent invariants of order k. Hence we have proven.
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Proposition 5. For any value n ≥ 2 of independent variables, the number of functionally inde-
pendent differential invariants of the second prolongation G(2) is

N n = M1
n +M2

n = n(n− 1) +
n2(n+ 1)

2
− n =

n2(n+ 3)

2
− 2n,

and a basis of such invariants is given by (27).

The conjecture on page 12 of [5] is false, and must be replaced by our Proposition 5. As
mentioned in the introduction, the conjecture is false since it relies on the wrong number of
invariants found by the author for the cases n = 2, 3, and the unjustified quantity Wn defined at
the top of page 12.

5 Algebra of differential invariants

In this section we give a complete classification of the differential invariants for a generic vector
field

∑n
i=1 a

i(x)∂xi .
As discuss in Section 2.2, from (23) we obtain n invariant differential operators

Di = aiDxi , i = 1, . . . , n, (30)

by replacing ψ′i in (23) by its normalization ψ′i = 1/ai.
To find the correction terms in the recurrence relations (16) we must first compute the prolon-

gation of the vector field (22). The first terms are

φ̂ij = aij(ξ
′
i − ξ′j) + δija

iξ′′i ,

φ̂ijk = aijk(ξ
′
i − ξ′j − ξ′k) + (δika

i
j + δija

i
k)ξ
′′
i − δ

j
ka

i
jξ
′′
j + δijδ

i
ka

iξ′′′i ,

...

(31)

The correction terms ψ̂iJ = ι(φ̂iJ) are obtained by making the substitution

xi 7→ H i, aiJ 7→ I iJ , ξi 7→ βi ξ′i 7→ βiXi = βi1, . . . ,
dkξi

d(xi)k
7→ βi(Xi)k = βik, . . . ,

i = 1, . . . , n, in (31). We note that the one-forms βik are all functionally independent. This follows
from the fact that the functions ξi and their derivatives are functionally independent.

Using the recurrence relations for the phantom invariants ι(xi) = 0, ι(Ai) = 1, ι(Ai
ik

) = 0,
k ≥ 1, i = 1, . . . , n, we find the explicit expressions for the one-forms βik:

0 =ωi + βi ⇒ βi = −ωi,

0 =
∑
j 6=i

I ij ω
j + βi1, ⇒ βi1 = −

∑
j 6=i

I ij ω
j,

0 =
∑
j 6=i

I iij ω
j + βi2, ⇒ βi2 = −

∑
j 6=i

I iij ω
j,

...

0 =
∑
j 6=i

I iik−1j ω
j + βik, ⇒ βik = −

∑
j 6=i

I iik−1j ω
j,

(32)
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i = 1, . . . , n, where I i
ikj

is the invariant I ii,i,...,i,j with k i’s as subscripts.

Substituting the expressions (32) in the recurrence relations for the first order non-phantom
invariants we find

n∑
i=1

DiIjk ω
i =

n∑
i=1

Ijki ω
i + Ijk

(∑
i 6=j

Iji ω
i −
∑
i 6=k

Iki ω
i

)
, j 6= k.

By induction on the order of the prolonged vector field coefficients (31) we see that the correction

terms ψ̂iJ with at least one jl 6= i involves only terms in βij with j ≤ #J − 1. From (32), we
conclude that the correction terms for the recurrence relations of the non-phantom invariants of
order #J ≥ 1 depend on non-phantom invariants of order at most #J . Hence any normalized
invariant I iJ,j of order #J + 1 can be written as

I iJ,j = DjI iJ +Ri
J,j, #J ≥ 1, 1 ≤ i, j ≤ n,

where Ri
J,j depends on normalized invariants of order at most #J . Base on those considerations

we conclude that the first order differential invariants I ij, i, j = 1, . . . , n, i 6= j, generate the algebra
of differential invariants of the equivalence pseudo-group (21).

For a generic vector field
∑n

i=1 a
i(x)∂xi , the number of first order differential invariants gener-

ating the algebra of differential invariants can be greatly reduced using the commutation relations
between the invariant differential operators (30). By direct computation

[Dj,Dk] = [ajDxj , a
kDk

x] = IkjDk − I
j
kDj. (33)

Under the assumption that the two normalized invariants I iojo , and Ijoio , io 6= jo, with io, jo fixed,
satisfy

det

(
DlI iojo DkI

io
jo

DlIjoio DkI
jo
lo

)
6= 0, (34)

for all (k, l) 6= (io, jo) or (k, l) 6= (jo, io), k 6= l, we can reduce the generating set of invariants to
I iojo and Ijoio . Indeed the assumption (34) implies that we can solve the linear system(

[Dk,Dl]I iojo
[Dk,DI ]Ijoio

)
=

(
DlI iojo DkI

io
jo

DlIjoio DkI
jo
io

)(
I lk
−Ikl

)
,

(k, l) 6= (i, j) or (k, l) 6= (j, i), k 6= l, for Ikl and I lk in terms of I iojo , I
jo
io

and their invariant derivatives.
An explicit computation of the determinants appearing in (34) using (30) and (27) confirms that
the determinants are not identically zero for a generic vector field

∑n
i=1 a

i(x)∂xi .
If furthermore

DjoI iojo 6= 0, (35)

which holds for a generic vector field, we can use the commutation relation (33) for Dio and Djo
to write

Ijoio =
1

DjoI iojo
([Dio ,Djo ]I iojo + I iojoDioI

io
jo

).

Hence for a generic vector field
∑n

i=1 a
i(x)∂xi , we conclude that all differential invariants of the

equivalence pseudo-group (21) can be expressed in terms of the single invariant I iojo , io 6= jo, and

its invariantly differentiated consequences Dj1 · · · DjkI
io
jo

, 1 ≤ j1, . . . , jk ≤ n, k ≥ 1.
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For non-generic vector fields , some of the non-degeneracy conditions (34), (35) might not
hold. The problem then splits in many different sub-cases, depending on which determinants in
(34) are identically zero and if the assumption (35) holds. But in most sub-cases we can still use
the commutator relations (33) to reduce the generating set of first order differential invariants
{I ij : i 6= j} to a subset of itself.
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