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Abstract

In this talk we derive the necessary and sufficient conditions for two coframes to be
equivalent.

Equivalence Problems

The fundamental equivalence problem consists of determining whether two geometric
objects O, O can be transformed into each other by a suitable change of variables: Φ : M →
M, x 7→ x = Φ(x). Those objects can be differential equations, polynomials, variational
problems, differential operators, manifolds, etc.. When O = O, the equivalence problem
consists of determining the symmetries of the object O, i.e. find the changes of variables
Φ : M → M such that O stays unchanged. One can study global or local equivalence
problems; in this presentation we restrict our attention to local equivalence problems,
meaning that the change of variables Φ : M → M can be defined only in neighborhoods
U ⊂ M and U ⊂ M .

In Cartan’s approach, the conditions of equivalence for two objects are reformulated
in terms of differential one-forms. A collection of one-forms is associated to the objects
under investigation and the original equivalence problem is translated into an equivalence
problem on the collections of one-forms. Due to the time restriction we won’t investigate
how one translates different equivalence problems in terms of differential forms, but we
shall establish the equivalence relations that must be satisfied by those forms.

1 Frames and Coframes

Definition 1.1 Let M be a smooth manifold of dimension m. A frame on M is an ordered
set of vector fields V = {v1, . . . , vm} forming a basis for the tangent space TM |x at each
x in M . A coframe on M is an ordered set of one-forms θ = {θ1, . . . , θm} which forms a
basis of the cotangent space T ∗M |x at each point x ∈ M .
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A frame and a coframe are dual to each other if and only if they form dual bases for
the tangent and cotangent spaces to M at each point. Given a coframe {θ1, . . . , θm} we
denote the dual frame by {∂θ1 , . . . , ∂θm}, so that〈

θi, ∂θj

〉
= δi

j , i, j = 1, . . . ,m. (1.1)

A set of one-forms θ = {θ1, . . . , θm} defines a coframe on M if and only if their wedge
product θ1∧ . . .∧θm 6= 0 does not vanish. Therefore, a coframe provides an orientation on
the manifold M , and a trivialization of the cotangent bundle T ∗M = M×Rm. Hence there
are global obstructions to the existence of coframes on a manifold since not all manifolds
are orientable. But since all our considerations are local, the global obstructions won’t be
a concern for us.

Since a coframe θ = {θ1, . . . , θm} is a basis of T ∗M |x, any k-form Ω can be written as
a linear combination of k-fold exterior products of the elements of the coframe

Ω =
∑

I

hI(x)θi1 ∧ . . . ∧ θik . (1.2)

The coefficient functions hI(x) are unique provided we sum over strictly increasing multi-
indices: I = (i1, . . . , im), 1 ≤ i1 < · · · < ik ≤ m.

2 The Structure Functions

Let θ = {θ1, . . . , θm} be a coframe on a manifold M and θ = {θ1
, . . . , θ

m} a coframe on
a manifold M of the same dimension as M . The equivalence problem for coframes is to
determine whether the two coframes can be mapped to each other by a diffeomorphism
Φ : M → M , so that

Φ∗θ
i = θi, i = 1, . . . ,m. (2.1)

If (2.1) holds, we must also have the equality

Φ∗dθ
i = dθi, i = 1, . . . ,m. (2.2)

The solution to the equivalence problem for coframes lies in the detailed analysis of the
differential conditions (2.2).

According to (1.2)

dθi =
∑

1≤j<k≤m

T i
jk(x)θj ∧ θk, i = 1, . . . ,m (2.3)

and those equations are referred to the fundamental structure equations. We note that
the structure functions measure the degree of non-commutativity of the corresponding
coframe derivatives since (see appendix A)

[∂θj , ∂θk ] = −
m∑

i=1

T i
jk∂θi . (2.4)
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The equation (2.2) then implies∑
1≤j<k≤m

T i
jk(x)θj ∧ θk = dθi = Φ∗dθ

i =
∑

1≤j<k≤m

T
i
jk(Φ(x))θj ∧ θk. (2.5)

Since the θj ∧ θk are linearly independent, this implies the invariance of the structure
functions:

T
i
jk(x) = T i

jk(x), when x = Φ(x), i, j, k = 1, . . . ,m, j < k. (2.6)

3 Derived Invariants

The structure functions associated with a coframe provides us with 1
2m2(m− 1) invariant

functions, when 2 coframes are equivalent, and from those more can be obtained. Suppose
I(x) is a scalar invariant which is mapped to a corresponding invariant I(x) under a change
of variables: I(x) = I(Φ(x)) = I(x). Then the differentials dI and dI must also agree:
Φ∗dI = dI. In terms of the respective coframes the last equality implies

m∑
j=1

∂I

∂θj
(x)θj = dI(x) = Φ∗dI(x) =

m∑
j=1

∂I

∂θ
j
(Φ(x))θj . (3.1)

Since the one-forms θj are linearly independent, the coframe derivatives of an invariant
function must also be invariant functions:

∂I

∂θ
j
(x) =

∂I

∂θj
(x), when x = Φ(x), j = 1, . . . ,m. (3.2)

By differentiating the new invariant functions we produce an infinite collection of poten-
tially different invariants know as the derived invariants associated to I.

4 Classifying Functions

The structure functions and all their coframe derivatives give us an infinite collection
of invariants (or conditions to be satisfied for two coframes to be equivalent) that are
not necessarly all indendent. Indeed, from the Lie bracket identities (2.4) we are able to
permute the coframe derivatives. Also the Jacobi identity

[[U, V ],W ] + [[V,W ], U ] + [[W,U ], V ] = 0, ∀ U, V, W ∈ TM (4.1)

also relates coframe derivatives together.
In order to keep track of this infinite collection of invariants and the dependence

between them we introduce the notion of a classifying manifold associated to a coframe.
First let us introduce the notation

Tσ =
∂sT i

jk

∂θls∂θls−1 · · · ∂θl1
, where σ = (i, j, k, l1, . . . , ls), (4.2)
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to denote the structure invariants. In (4.2), the indices i, j, k, lκ all run from 1 to m, with
j < k. The integer s = order σ is the order of the derived invariant (4.2). In terms of this
notation, two coframes are equivalent if

T σ(x) = Tσ(x), when x = Φ(x), order σ ≥ 0. (4.3)

Definition 4.1 The sth order classifying space K(s) = K(s)(m) associated with the m-
dimensional manifold M is the Euclidean space of dimension qs(m) = 1

2m2(m− 1)
(
m+s
m

)
,

which is coordinatized by z(s) = (. . . , zσ, . . .). The entries of z(s) are labeled by nonde-
creasing multi-indices σ = (i, j, k, l1, . . . , lr), 1 ≤ i ≤ m, 1 ≤ j < k ≤ m, 1 ≤ l1 ≤ l2 ≤
. . . ≤ lr ≤ m, 0 ≤ r ≤ s. The sth order structure map associated with a coframe θ on M
is the map T (s) : M → K(s) whose components are the structure invariants: zσ = Tσ(x),
for order σ ≤ s.

If θ and θ are equivalent coframes, the invariance equations (4.3) imply that for each
s = 0, 1, 2, . . ., the corresponding structure maps have the same image:

T
(s)(x) = T (s)(x), where x = Φ(x). (4.4)

Definition 4.2 The sth order classifying set C(s) = C(s)(θ, U) associated with a coframe
θ on an open subset U ⊂ M is defined as the image of the structure map T (s):

C(s)(θ, U) = {T (s)(x)|x ∈ U} ⊂ K(s). (4.5)

Proposition 4.1 Suppose θ and θ are equivalent coframes under Φ : M → M . Then,
for each s ≥ 0, the sth order classifying sets are the same. Thus C(s)(θ, U) = C(s)(θ, U),
where U ⊂ M is the domain and U = Φ(U) ⊂ M is the range of the local equivalence map
Φ.

5 The Classifying Manifolds

We now determine in what sense the necessary conditions for equivalence are also suffi-
cient. In order to make progress, we impose some regularity conditions.

Definition 5.1 A coframe θ is called fully regular if, for each s ≥ 0, the sth order
structure map T (s) : M → K(s) is regular.

Definition 5.2 The rank of a map F : Mm → Nn at a point x ∈ M is defined to be the
rank of the n×m Jacobian matrix (∂F i/∂xj) of any local coordinate expression for F at
the point x. The map F is called regular if its rank is constant.

Theorem 5.1 Let θ and θ be smooth, fully regular coframes defined, respectively, on m-
dimensional manifolds M and M . There exists a local diffeomorphism Φ : M → M if and
only if for each s ≥ 0, their sth order classifying manifolds C(s)(θ) and C(s)(θ) overlap.
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Definition 5.3 Two n-dimensional submanifolds N and N of a manifold M are said to
overlap if their intersection N ∩N is a nonempty n-dimensional submanifold of M .

The proof of the theorem is omitted since it is too long. It is based on the Frobenius
Theorem governing the existence of solutions to certain systems of partial differential
equations and can be found in [2], pages 437–439.

Theorem 5.1 gives the necessary and sufficient conditions for two coframes to be equiv-
alent but in practical applications a sharper version of it is use. Like we shall now see, it
is not necessary to verify the overlapping of the classifying manifolds for each s ≥ 0.

Let ρs = rank T (s) be the rank of the structure map (in the regular case, the rank of the
structure map is constant). In this case, ρs equals the number of functionally independent
structure invariants up to order s associated with the coframe θ (see Appendix B). Let

F(s) = F(s)(θ) = {Tσ| order σ ≤ s}, s = 0, 1, . . . , (5.1)

denote the family of functions consisting of all the structure invariants up to order s, so
that F(0) ⊂ F(1) ⊂ F(2) · · · . Then, locally, we can choose ρs functionally independent
structure invariants Iν = Tσν , ν = 1, . . . , ρs, which generate the full set of sth order
structure invariants F(s), in the sense that every other invariants of order ≤ s can be
expressed as a function of the basic invariants:

Tσ = Hσ(I1, . . . , Iρs), order σ ≤ s. (5.2)

In this way, the invariants I1, . . . , Iρs , furnish local coordinates on the ρs-dimensional
classifying manifold C(s).

Proposition 5.1 Let θ be a fully regular coframe, and let ρs denote the rank of the sth

order map T (s). The smallest s for which ρs = ρs+1 is called the order of the coframe,
and we have

0 ≤ ρ0 < ρ1 < · · · < ρs = ρs+1 = ρs+2 = · · · = r ≤ m. (5.3)

Proof:
Let s so that ρs = ρs+1 = r, such an equality implies that the number of functionally

independent invariants is the same on the classifying manifolds C(s)(θ) and C(s+1)(θ). Let
{I1, . . . , Ir} be a fundamental set of functionally independent invariants of C(s)(θ), hence
any structure invariant can be written as Tσ = Hσ(I1, . . . , Ir), 0 ≤ order σ ≤ s. Since
C(s)(θ) ⊂ C(s+1)(θ), {I1, . . . , Ir} is also a fundamental set of functionally independent
invariants of C(s+1)(θ). It follows that

∂Iν

∂θj
= Hν,j(I1, . . . , Ir), 1 ≤ ν ≤ r, 1 ≤ j ≤ m,

and from the chain rule, ∀Tσ ∈ F(s+1)

∂Tσ

∂θj
=

r∑
ν=1

∂Hσ

∂Iν
(I1, . . . , Ir)

∂Iν

∂θj

=
r∑

ν=1

∂Hσ

∂Iν
(I1, . . . , Ir)Hν,j(I1, . . . , Ir)

= Hσ,j(I1, . . . , Ir).
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So {I1, . . . , Ir} forms a fundamental set of functionally independent invariants for C(s+2)(θ).
Hence ρs+2 = ρs = r. By repeating the argument we get ρs+k = ρs,∀k ∈ N.

Base on proposition 5.1, theorem 5.1 is equivalent to

Theorem 5.2 Let θ and θ be smooth, fully regular coframes defined, respectively, on
m-dimensional manifolds M and M . There exists a local diffeomorphism Φ : M → M
mapping the coframes to each other, i.e. Φ∗θ = θ, if and only if they have the same order,
s = s, and their (s + 1)th order classifying manifolds C(s+1)(θ) and C(s+1)(θ) overlap.

6 Symmetries of a Coframe

Definition 6.1 Let θ = {θ1, . . . , θm} be a coframe defined on a manifold M . The symme-
try group of θ is the group of self-equivalences, meaning local diffeomorphisms Φ : M → M
satisfying Φ∗θi = θi for i = 1, . . . ,m.

For any equivalence problem which can be reformulated as an equivalence problem for
coframes, this definition of symmetry group coincides with the usual notion of symmetry
goup [1].

7 Appendix A

The aim of this appendix is to show the identity (2.4).

Definition 7.1 Let M be a smooth m-dimensional manifold, ω =
∑m

i=1 ηi(x)dxi a smooth
one-form on T ∗M and v =

∑m
i=1 ξi(x)∂xi a smooth vector field on TM , the evaluation of

ω on the vector field v is indicated by the bilinear pairing < ω; v > and is defined by

< ω; v >:=
m∑

i=1

ηi(x)ξi(x) (7.1)

The preceding definition can be extended to an arbitrary k-form as follows

Definition 7.2 Let ω1, . . . , ωk be k one-forms and v1, . . . , vk be k vectors fields, then we
define

< ω1, . . . , ωk; v1, . . . , vk >:= det(< wi; vj >). (7.2)

A useful formula relating the differential of a one-form to the Lie bracket of two vector
fields is given by

< dω; v, u >= v < ω;u > −u < ω; v > − < ω; [v, u] > (7.3)

where ω is a one-form and v, u are two vector fields. The identity (7.3) is verified by
writing the two sides of the equality using the two previous definitions.
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Proposition 7.1 Let θ = {θ1, . . . , θm} be a coframe on a smooth manifold M with struc-
ture equations

dθk =
m∑

i,j=1

T k
ijdθi ∧ dθj , k = 1, . . . ,m,

and V = {∂θ1 , . . . , ∂θm}, its dual frame. Then the Lie brackets of the coframe derivatives
satisfy

[∂θj , ∂θk ] = −
m∑

i=1

T i
jk∂θi . (7.4)

Proof:
This follows from the identity (7.3), setting ω = θi, v = ∂θj and u = ∂θk (without loss of
generality, suppose j < k):

<
∑

1≤l<p≤m

T i
lpdθl ∧ dθp; ∂θj , ∂θk > = 0− 0− < dθi; [∂θj , ∂θk ] >

T i
jk < dθj ∧ dθk; ∂θj , ∂θk > = − < dθi; [∂θj , ∂θk ] >

−T i
jk =< dθi; [∂θj , ∂θk ] >

Appendix B

Theorem 7.1 If a family of functions F = {fλ : M → R|λ ∈ Λ} is regular of rank
r, then, in a neighborhood of any point, there exist r functionally independent functions
f1, . . . , fr ∈ F with the property that any other function f ∈ F can be expressed as a
function thereof: f = H(f1, . . . , fr).

Proof:
Given x0 ∈ M , choose f1, . . . , fr ∈ F such that their differentials df1, . . . , dfr are

linearly independent at x0, and hence, by continuity, in a neighborhood of x0. By the
implicit function theorem (Let F : Mm → Nn,m ≤ n, be a regular map of rank r, then
there exists local coordinates x = (x1, . . . , xm) on M and y = (y1, . . . , yn) on N such
that F takes the canonical form y = F (x) = (x1, . . . , xm, 0, . . . , 0).) we can locally choose
coordinates (y, z) near x0 such that fi(y, z) = yi, i = 1, . . . , r. If f(y, z) is any other
function in F, then, since the rank is r, its differential must be a linear combination of
the differentials dfi, so that in the new coordinates df =

∑r
i=1 hi(y, z)dyi. To finish the

proof we need the following lemma.

Lemma 7.1 Let U ⊂ Rm be a convex open set. A function f : U → R has differential
df =

∑r
i=1 hi(x)dxi given as a linear combination of the first r coordinate differentials if

and only if f = f(x1, . . . , xr) is a function of the first r coordinates.

Thus, by shrinking the neighborhood of x0 if necessary so that it is convex in the
(y, z), Lemma 7.1 implies that f(y, z) is a function of y alone, i.e. f(y, z) = H(y). But
yi = fi, i = 1, . . . , r so f = H(f1, . . . , fr).
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