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Group Action

Some Notation

Let
x = (x1, . . . , xp) ∈ X ' Rp

denote the independent variables and

u = (u1, . . . , uq) ∈ U ' Rq

denote the dependent variables. We use

u(n) = (u1, . . . , uq, u1
x1 , u

1
x2 , . . .) ∈ U (n)

to denote the derivatives of u with respect to x up to order n. Finally we
write

∆(x , u(n)) = ∆(z(n)) = 0

to denote a system of partial differential equations.
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Group Action

Prolonged Action

Let G be an r -dimensional Lie group acting on X × U :

X = X (x , u) = g · x , U = U(x , u) = g · u.

This induces an action on the derivatives u1
x1 , u1

x1x1 , . . ..

r
(x , u)

�
�
�
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Group Action

The expressions of the prolonged action are found by the chain rule. This
can be done as follows:

Let

dHX j =

p∑
i=1

Dx i X jdx i , i = 1, . . . , p.

The corresponding dual total differential operators are

DX i =

p∑
j=1

W j
i Dx j , where (W j

i ) = (Dx j X i )−1.

Then
Uα

X J = DJ
X (Uα), α = 1, . . . , q, #J ≥ 0.
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Group Action

Running Example

As our running example we consider the following GL(2) action

X = αx + βy , Y = γx + δy , U = λu, λ = αδ − βγ 6= 0.

Then
dHX = αdx + βdy , dHY = γdx + δdy ,

and the lifted total differential operators are

DX =
1

λ
(δDx − γDy ), DY =

1

λ
(−βDx + αDy ).

Thus

UX = δux − γuy , UY = −βux + αuy ,

UXX =
δ2uxx − 2γδuxy + γ2uyy

λ
, UYY =

β2uxx − 2αβuxy + α2uyy

λ
,

UXY =
−βδuxx + (αδ + βγ)uxy − αγuyy

λ
, . . .
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Group Action

Symmetry of a PDE system

Definition

Let
S∆ = {(x , u(n)) : ∆(x , u(n)) = 0}.

A Lie group G is a symmetry group of ∆(x , u(n)) = 0 if and only if

g(S∆) ⊂ S∆, ∀g ∈ G .

Example

The nonlinear PDE

ut = uxx −
u2
x

u

admits the symmetry subgroup

G : X = αx + a, T = α2t + b, U = λu, α, λ ∈ R+, a, b ∈ R.
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Group Action

Infinitesimal Generators

Proposition

Let v =
∑p

i=1 ξ
i (x , u)∂x i +

∑q
α=1 φα(x , u)∂uα be an infinitesimal

generator of the group action, i.e.,

v =
d

dε

∣∣∣∣
ε=0

gε · (x , u),

then the n-th order prolongation of the infinitesimal generator is given by

v(n) =
d

dε

∣∣∣∣
ε=0

gε · (x , u(n)) =

p∑
i=1

ξi (x , u)∂x i +

q∑
α=1

∑
0≤#J≤n

φJ
α(x , u(#J))∂uα

J
,

where

φJ,j
α = Dx j (φJ

α)−
p∑

i=1

Dx j (ξi ) · uαJ,i .

The set of infinitesimal generators will be denoted by g.
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Group Action

Illustration

u
(x , u(n))

u
gε · (x , u(n))

u
gε+δ · (x , u(n))

�
���

v(n)

Figure: Infinitesimal Generator.
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Group Action

Example Continued

The infinitesimal generators of

X = αx + βy , Y = γx + δy , U = λu, λ = αδ − βγ.

are

vα =
d

dα

∣∣∣∣
α,δ=1,β,γ=0

g · (x , t, u) = x∂x + u∂u,

vβ =
d

dβ

∣∣∣∣
α,δ=1,β,γ=0

g · (x , t, u) = y∂x ,

vγ =
d

dγ

∣∣∣∣
α,δ=1,β,γ=0

g · (x , t, u) = x∂y ,

vδ =
d

dδ

∣∣∣∣
α,δ=1,β,γ=0

g · (x , t, u) = y∂y + u∂u.
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Group Action

The components of second order prolongation of vα = x∂x + u∂u are

φx
α = ux − ux = 0, φy

α = uy

φxx
α = −uxx , φxy

α = uxy − uxy = 0 φyy
α = uyy .

Thus
v(2)
α = x∂x + u∂u + uy∂uy − uxx∂uxx + uyy∂uyy .

Similarly,

v
(2)
β =y∂x − ux∂uy − uxx∂uxy − 2uxy∂uyy ,

v(2)
γ =x∂y − uy∂ux − 2uxy∂uxx − uyy∂uxy ,

v
(2)
δ =y∂y + u∂u + ux∂ux + uxx∂uxx − uyy∂uyy .
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Group Action

Infinitesimal Symmetry Criterion

Proposition

A connected group of transformations G is a symmetry group of a (fully
regular) system of differential equations ∆(x , u(n)) = 0 if and only if

v(n)(∆)

∣∣∣∣
∆=0

= 0, ∀ v ∈ g.

In practice the infinitesimal generators of symmetry are found, and
integrated to obtain the group transformations.

As we’ll see shortly, the infinitesimal generators play an important role
in structure of the algebra of differential invariants.
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Moving Frames

Moving Frames

Definition

Let G be a Lie group acting on M. A right (left) moving frame is a
G -equivariant map ρ : M → G , i.e.

ρr (g · z) = ρr (z) · g−1 (for a right moving frame),

ρl(g · z) = g · ρl(z) (for a left moving frame).

Left and right moving frames are related by

ρl(z) = (ρr (z))−1.
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Moving Frames

Definition

A Lie group G acts freely on a manifold M if Gz = {e} for all z ∈ M.

Definition

A Lie group G acts regularly on a manifold M if the orbits of G have
constant dimension and for all z ∈ M there exists a neighborhood Nz such
that Nz ∩ Oz is connected.

Theorem

If G acts freely and regularly at z ∈ M then there exists a moving frame in
a neighborhood of z.

Theorem

Let G act freely and regularly on M. Let K be a cross-section to the group
orbits. For z ∈ M, let g = ρ(z) be the unique group element that maps z
to the cross-section: g · z = ρ(z) · z ∈ K. Then ρ : M → G is a right
equivariant moving frame for the group action.

Francis Valiquette Group Foliation Using Moving Frames 27/01/2010 14 / 36



Moving Frames

Definition

A Lie group G acts freely on a manifold M if Gz = {e} for all z ∈ M.

Definition

A Lie group G acts regularly on a manifold M if the orbits of G have
constant dimension and for all z ∈ M there exists a neighborhood Nz such
that Nz ∩ Oz is connected.

Theorem

If G acts freely and regularly at z ∈ M then there exists a moving frame in
a neighborhood of z.

Theorem

Let G act freely and regularly on M. Let K be a cross-section to the group
orbits. For z ∈ M, let g = ρ(z) be the unique group element that maps z
to the cross-section: g · z = ρ(z) · z ∈ K. Then ρ : M → G is a right
equivariant moving frame for the group action.

Francis Valiquette Group Foliation Using Moving Frames 27/01/2010 14 / 36



Moving Frames

Moving Frame in Action

t
t

K
z

ρ(z) · z tg · z

Oz

ρ(z)

ρ(z) · g−1

y9

For us M = X × U (n) and z = z(n).
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Moving Frames

How to Obtain a Moving Frame?

1 Compute the explicit local coordinate formulas for the prolonged
group transformations

w (n)(g , z(n)) = Z (n) = g (n) · z(n), z(n) = (x , u(n)). (1)

2 Choose (typically) a coordinate cross-section Kn = {z1 = c1, . . . ,
zr = cr} obtained by setting r = dim G of the components of z(n)

equal to constants.

3 Solve the normalization equations

w1(g , z(n)) = c1, wr (g , z(n)) = cr , (2)

for the group parameters g = (g1, . . . , gr ) in terms of the coordinates
z(n).
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Moving Frames

Example Continued

For the GL(2) action

X = αx + βy , Y = γx + δy , U = λu, λ = αδ − βγ,
UX = δux − γuy , UY = −βux + αuy ,

we can choose the cross-section

X = 1, Y = 0, UX = 1, UY = 0.

Solving for the group parameters we obtain(
α β
γ δ

)
=

1

xux + yuy

(
ux uy

−y x

)
,

provided xux + yuy 6= 0.
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Moving Frames

Invariantization

Once a moving frame is known we can invariantize differential functions
(and differential forms). For differential functions

ι(F (z(n))) = ρ∗(F (g · z(n))) = F (ρ(n)(z(n)) · z(n)) = I (z(n)).

(g · I (z(n)) = F (ρ(n)(g · z(n)) · g · z(n)) = F (ρ(n)(z(n)) · g−1 · g · z(n)))

In particular we can invariantize x1, . . . , xp, u1, . . . , uq, ux1 , . . ..

Theorem

Let ρ be a moving frame, then

H i = ι(x i ), IαJ = ι(uαJ ), #J ≥ 0

constitutes a complete set of differential invariants.
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Moving Frames

Example Continued

For the GL(2) action the moving frame found was(
α β
γ δ

)
=

1

xux + yuy

(
ux uy

−y x

)
, λ =

1

xux + yuy
.

By definition of the cross-section

ι(x) = 1, ι(y) = 0, ι(ux) = 1, ι(uy ) = 0,

and the invariants are

ι(u) =ρ∗(λu) =
u

xux + yuy
,

ι(uxx) =ρ∗
(
δ2uxx − 2γδuxy + γ2uyy

λ

)
=

x2uxx + 2xyuxy + y 2uyy

xux + yuy
,

and so on.
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Moving Frames

Invariant Differential Operators

Definition

A differential operator D is said to be an invariant differential operator if
for all differential invariant I (z(n)), DI is also a differential invariant.

Proposition

If there is p independent variables then there is p independent invariant
differential operators.

Once a moving frame is known it is straightforward to obtain p
independent invariant differential operators:

Di =

p∑
j=1

ρ∗(W j
i )Dx j , where (W j

i ) = (Dx j X i )−1,

i = 1, . . . , p.
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Moving Frames
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Moving Frames

Example Continued

For our GL(2) running example we found the lifted total differential
operators

DX =
1

λ
(δDx − γDy ), DY =

1

λ
(−βDx + αDy ).

and the moving frame(
α β
γ δ

)
=

1

xux + yuy

(
ux uy

−y x

)
, λ =

1

xux + yuy
.

Then
D1 = xDx + yDy , D2 = −uy Dx + uxDy .
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Moving Frames

Recurrence Relations

Theorem

Let µ1, . . . , µr ∈ g∗ be the Maurer–Cartan forms dual to v1, . . . , vr ∈ g.
For any differential function F (z(n))

p∑
i=1

Di ι(F )ωi =

p∑
i=1

ι(Dx i F )ωi +
r∑

κ=1

ι[v(∞)
κ (F )] · νκ, (3)

where νκ = πH ◦ ρ∗(µκ) is the horizontal component of the pull-back of
the Maurer–Cartan form µκ via the moving frame and

ωi = ρ∗[

p∑
j=1

(Dx j X i )dx j ].

The differential forms νκ can be deduced directly from (3).
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Moving Frames

Example Continued

For our GL(2) example we have

H1 = ι(x) = 1, H2 = ι(y) = 0 I1 = ι(ux) = 1, I2 = ι(uy ) = 0,

and the corresponding recurrence relations imply

0 = ω1 + να, 0 = ω2 + νγ ,

0 = I11ω
1 + I12ω

2 + νδ, 0 = I12ω
2 + I22ω

2 − νβ.

Thus

να = −ω1, νγ = −ω2,

νδ = −(I11ω
1 + I12ω

2), νβ = I12ω
1 + I22ω

2.
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Moving Frames

In some more details . . .. Recall that

v(2)
α =x∂x + u∂u + uy∂uy − uxx∂uxx + uyy∂uyy ,

v
(2)
β =y∂x − ux∂uy − uxx∂uxy − 2uxy∂uyy ,

v(2)
γ =x∂y − uy∂ux − 2uxy∂uxx − uyy∂uxy ,

v
(2)
δ =y∂y + u∂u + ux∂ux + uxx∂uxx − uyy∂uyy .

Then the recurrence relation for ux gives

D1ι(ux)ω1 +D2ι(ux)ω2 =ι(Dxux)ω1 + ι(Dy ux)ω2 + ι[v(1)
α (ux)]να

+ ι[v
(1)
β (ux)]νβ + ι[v(1)

γ (ux)]νγ + ι[v
(1)
δ (ux)]νδ

D1(1)ω1 +D2(1)ω2 =ι(uxx)ω1 + ι(uxy ) + ι(0)να + ι(0)νβ

+ ι(−uy )νγ + ι(ux)νδ

0 =I11ω
1 + I12ω

2 + νδ

ι(ux) = 1, ι(uy ) = 0.
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Moving Frames

The recurrence relation for u gives

D1I ω1 +D2I ω2 =ι(Dxu)ω1 + ι(Dy u)ω2 + ι(u)να + ι(u)νδ

=ω1 − I ω1 − I (I11ω
1 + I12ω

2)

Hence
D1I = 1− I (1 + I11), D2I = I · I12,

Substituting the functions/variables uxx , uxy , uyy , . . . into the recurrence
relations gives recurrence relations for the higher order differential
invariants.
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Moving Frames

Finiteness Theorem

Theorem

Let G be a Lie group acting locally effectively on X ×U . Then the algebra
of differential invariants is finitely generated.

The Theorem says that there exists a finite set of differential
invariants

{J1, . . . , Jk} (4)

such that all other differential invariants can be obtain by taking
certain combinations of (4) and their invariant derivations
D1I 1, . . . ,DpI 1, . . . ,D1Jk , . . . ,DpJk ,D2

1I1, . . ..

The proof of the theorem relies on the recurrence relations for the
differential invariants.
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Group Foliation

Group Foliation of PDE

Let ∆(x , u(n)) = 0 be a system of PDE with non-trivial symmetry group
G . The goal is to obtain non-invariants solutions using moving frames. In
picture this is done as follows:

K

ρr

ρl

�

� (x , u(x))

Projection of
(x , u(x)) to K
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Group Foliation

Algorithm

Let ∆(x , u(n)) = 0 be a system of PDE with non-trivial symmetry
group G .

We assume G acts freely and regularly on X × U (n).

We assume that there is at least p + 1 independent differential
invariants of order ≤ n. (By introducing dummy variables and
companion equations to the PDE system the assumption can always
be satisfied [Mansfield, 10].)

Choose p invariants, call them J1, . . . , Jp, to play the role of the
independent variable.

Then
d

dJ i
=

p∑
i=1

W j
i Dj , where W j

i = (DjJ
i )−1.

i = 1, . . . , p, are invariant differential operators.
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Group Foliation

Use the recurrence relations to find a generating set of differential
invariants {J1, . . . , Jp, L1, . . . , Ls} with invariant differential operator
d/dJ1, . . . , d/dJp.

Write the invariant PDE ∆(x , u(n)) = 0 as

∆(J, L(k)) = 0,

and add all syzygies.

Solve the system of PDE. To obtain the solution to the original PDE
we need to reconstruct the solution.
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Group Foliation

Consider a faithful representation of the group G ∈ Ml×l . Then the
left moving frame satisfies the equation

dρl(J) = −ρl(J)(dρr · ρ−1
r )(J). (5)

The term in parenthesis corresponds to the pull-back of the right
invariant Maurer-Cartan forms by the right moving frame ρr . Their
expressions can be obtained from the recurrence relations. Equation
(5) is invariant hence its evolution is known.

Once (5) is solved, the original solution is obtained by computing

x(J) = ρl(J) · H, u(J) = ρl(J) · I .
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Group Foliation

An Application

We apply the group foliation method to the nonlinear PDE

ut = uxx −
u2
x

u
. (6)

The equation (6) is invariant under the transformation group

X = x , T = t, U = λu, λ > 0.

A moving frame is obtained by choosing the cross-section U = 1. Solving
for λ we obtain

λ =
1

u
, u > 0.
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Group Foliation

The first four differential invariants are given by

H1 = ι(x) = x , H2 = ι(t) = t,

I = ι(ux) = ρ∗
(ux

λ

)
=

ux

u
, J = ι(ut) = ρ∗

(ut

λ

)
=

ut

u
.

The algebra of differential invariants is generated by

x , t, I , J.

There is a syzygy between I and J:

Dt I =
uxt

u
− uxut

u2
= DxJ.
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Group Foliation

In terms of the invariants, the original nonlinear PDE (ut = uxx − u2
x/u)

reduces to
J = Dx I .

Thus we need to solve the system of PDE

Dt I = DxJ, J = Dx I .

It follows that I must satisfy the heat equation

Dt I = D2
x I .
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Group Foliation

We recover the original solution by the reconstruction process. A faithful
representation of the dilation group is given by

λ(x , t) = eα(x ,t).

Then the equation dρl(x , t) = −ρl(x , t)(dρr · ρ−1
r )(x , t) gives

ρx dx + ρt dt = −ρ · νλ

αx dx + αt dt = I dx + J dt.

The right-hand side of the last equality is a consequence of the recurrence
relation for the phantom invariant U = 1:

0 = I dx + J dt + νλ ⇒ νλ = −(I dx + J dt).

Thus
σx = I , σt = J = Dx I = σxx .
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Group Foliation

In conclusion, the solution to

ut = uxx −
u2
x

u

is given by

x = x , t = t, u = eα(x ,t) where αt = αxx .

Remark

This result was first derived using infinitesimal methods.

Kumei, S., and Bluman, G.W., When nonlinear differential equations
are equivalent to linear differential equations, SIAM J. Appl. Math 42
(1982) 1157–1173.
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Group Foliation
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