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Montréal, Québec H3A 2K6
Canada
valiquette@math.mcgill.ca

http://www.math.mcgill.ca/∼valiquette

Keywords: Differential invariants, equivalence problems, Maurer–Cartan forms, moving
frames

Mathematics subject classification (MSC2010): 53A55, 58A15

Abstract

In this paper we show how to solve local equivalence problems of submanifolds using
the theory of equivariant moving frames. The relations between Cartan’s equivalence
method of coframes and the equivariant moving frame method are discussed and illus-
trated with many examples. In contrast to Cartan’s approach, the equivariant moving
frame solution is not based on the theory of G-structures. It thus offers an alternative
method for tackling equivalence problems.

1 Introduction

First introduced by the Estonian mathematician Martin Bartels and primarily devel-
oped by Élie Cartan, [1], the theory of moving frames is a powerful tool for studying
geometric properties of submanifolds under the action of a (pseudo-) group of trans-
formations. Already in Cartan’s original work, [4, 5, 6, 7], the theory found many
important applications. It was used to solve local equivalence problems, it was at
the foundation of his structure theory of infinite-dimensional Lie pseudo-groups, and
became a tool to study Riemannian geometry, conformal geometry and geometric prop-
erties of differential equations. Modern treatments of Cartan’s moving frame method
can be found, for example, in [3, 15, 18, 19, 27, 40].

Recently, Fels and Olver proposed in [12, 13] a new theoretical foundation to the
method of moving frames. For a Lie group G acting on n-th order jets Jn(M,p) of p-
dimensional submanifolds of M , a moving frame is a G-equivariant section of the trivial
bundle Jn(M,p)×G→ Jn(M,p). This new approach to moving frames is now referred
as the equivariant moving frame method. It offers many interesting features. First,
the implementation of the method is completely algorithmic, and once an equivariant
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moving frame is obtained it induces an invariantization map that projects differential
functions and differential forms to their invariant counterparts yielding a complete
collection of local differential invariants and an invariant coframe on J∞(M,p). Thus
far, one of the most important results of the theory is the universal recurrence formula
for the exterior differential of invariant differential forms. With this formula, Kogan and
Olver were able to obtained, for the first time, a general explicit group-invariant formula
for the Euler–Lagrange equations associated with an invariant variational problem, [23].
In [42] the same formula was used to show that the cohomology of the invariant Euler–
Lagrange complex is isomorphic to the Lie algebra cohomology of the group action. But
probably more importantly, the universal recurrence formula is the key that unveils the
structure of the algebra of differential invariants of a group action, [29, 30, 31]. This
last fact will play an important role in our solution of local equivalence problems.

In [33, 34] the theory of equivariant moving frames was successfully extended to
infinite-dimensional Lie pseudo-group actions opening the way to many new applica-
tions. Some of the first applications can be found in [8, 9, 46] where some algebras
of differential invariants of infinite-dimensional symmetry groups of partial differen-
tial equations have been completely characterized and their Maurer–Cartan structure
equations computed. An application to the classification of Laplace invariants and the
factorization of linear partial differential operator can be found in [41]. The purpose of
this paper is to apply the equivariant moving frame theory to solve the general problem
of local equivalence of submanifolds under a Lie pseudo-group action. As stated in
[34], the solution to this problem is one of the motivations for the development of the
equivariant moving frame method.

In the same spirit as Cartan, the strategy is to construct sufficiently many invari-
ants to distinguish inequivalent submanifolds. Thanks to the invariantization map,
those invariants are easily found with the equivariant moving frame method. Since the
construction of an equivariant moving frame does not rely on the theory of exterior dif-
ferential systems and the theory of G-structures, solving an equivalence problem with
the equivariant moving frame method avoids some of the technical features of Cartan’s
solution in terms of coframes. For example, there is no need to absorb non-essential
torsion as we do not work with the structure equations, [15, 19, 27]. Furthermore,
with the universal recurrence formula and the structure equations of the equivalence
pseudo-group all computations can be performed symbolically.

The paper is structured as follows. Following [33, 34, 35], we begin with a review
of some of the important aspects of the theory of equivariant moving frames. First,
we explain how to obtain the structure equations of a Lie pseudo-group from its in-
finitesimal determining system in Section 2. Then given a Lie pseudo-group action
on submanifolds, the construction of an equivariant moving frame is discussed in Sec-
tion 3. A moving frame exists in the neighborhood of a submanifold jet provided the
pseudo-group action is free and regular. In typical equivalence problem, the equiva-
lence pseudo-group action admits singular submanifolds where the action is not free
and where no moving frame can be defined. To take care of these singular submani-
folds we introduce the notion of a partial moving frame. In Section 4 we explain how
to apply the equivariant moving frame method to solve local equivalence problems of
submanifolds. We are particularly interested in comparing our results with Cartan’s
equivalence method of coframes. To illustrate many aspects of the theory, the equiva-
lence of first order scalar Lagrangian on the line will be our running example. We chose
this problem as it is one of the simplest equivalence problems leading to a standard
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moving frame. For examples of equivalence problems admitting singular submanifolds,
we consider the local equivalence of second order ordinary differential equations under
fiber preserving transformations and contact transformations. Finally, we also consider
the simultaneous equivalence of a nonvanishing two-form and a non-zero vector field
in R3. This problem is interesting as it is one of the rare known equivalence problems
admitting involutive structure equations with an essential invariant. The equivalence
problems considered in our examples have already been solved in [16, 20, 21, 22, 27].
The examples were chosen because they span all possible situations that can occur when
solving an equivalence problem. We also chose simple examples so that one can concen-
trate on understanding how the equivariant moving frame method applies and compare
our computations with Cartan’s equivalence method. Applications of the equivariant
moving frame method to new equivalence problems will be considered elsewhere.

Remark 1.1. The theory of infinite-dimensional Lie pseudo-groups relies on the Cartan–
Kähler Theorem, [3, 27], which requires analyticity. For this reason, all our construc-
tions and results hold in the analytic category. Thus, implicitly, all manifolds, maps,
differential forms and vector fields are assumed to be analytic. For Lie pseudo-groups
of finite-type, i.e. pseudo-groups that come from Lie group actions, analyticity can be
replaced by smoothness instead.

2 Structure Equations

In this section we review the derivation of the structure equations of a Lie pseudo-group
action. We mainly follow [33]. As we will show in Section 4.3, the structure equations
of an equivalence pseudo-group action can be used to derive the structure equations
obtained with Cartan’s equivalence method symbolically.

The first step to derive the structure equations of a Lie pseudo-group G acting on
a manifold M is to obtain the structure equations of the pseudo-group of all local
diffeomorphisms of M .

2.1 Diffeomorphism Pseudo-Group

Let M be an analytic m-dimensional manifold. We denote by D = D(M) the pseudo-
group of all local analytic diffeomorphisms of M . For each integer 0 ≤ n ≤ ∞, let D(n)

denote the bundle formed by their n-th order jets. For k ≥ n, let πkn : D(k) → D(n)

denote the standard projection. The local coordinates of the n jet of a local diffeomor-
phism ϕ are given by jnϕ = (z, Z(n)), where z = (z1, . . . , zm) are the source coordinates
on M , Z = (Z1, . . . , Zm) the target coordinates also on M , and the corresponding jet
coordinates ZaB representing the partial derivatives ∂kϕa(z)/∂zb

1 · · · ∂zbk of the local
diffeomorphism Z = ϕ(z), with 1 ≤ a, b1, . . . , bk ≤ m and 1 ≤ k = #A ≤ n. Following
Cartan [6, 7] and the recent work of Olver and Pohjanpelto [33, 34] we systematically
use lower case letters, z, x, u, . . . for the source coordinates σσσ(ϕ) = z and the corre-
sponding upper case letters Z, X, U , . . . for the target coordinates τττ(ϕ) = Z of local
diffeomorphisms Z = ϕ(z).

The diffeomorphism jet bundle D(∞) has the structure of a groupoid, [25]. The
groupoid multiplication follows from the composition of local diffeomorphism. Given,
g(∞) = j∞ϕ|z, h(∞) = j∞ψ|Z , with Z = τττ(j∞ϕ|z) = σσσ(j∞ψ|Z), we write h(∞) · g(∞) =
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j∞(ψ ◦ϕ)|z. Throughout the paper, local diffeomorphisms ψ ∈ D act on D(∞) by right
multiplication:

Rψ(j∞ϕ|z) = j∞(ϕ ◦ψ−1)|ψ(z). (2.1)

Let T ∗D(∞) be the cotangent space of the infinite diffeormorphism jet bundle D(∞)

defined pointwise as the direct limit of the direct system (πn+1
n )∗ : T ∗D(n) → T ∗D(n+1),

n ≥ 0, [2]. The cotangent space T ∗D(∞) naturally splits into horizontal and vertical
(contact) components. In terms of the local coordinates za, ZbA, the horizontal subbundle
is spanned by the one-forms dza = dMz

a, a = 1, . . . ,m, while the vertical subbundle is
spanned by the basic contact one-forms

Υb
A = dZbA −

m∑
a=1

ZbA,adz
a, b = 1, . . . ,m, #A ≥ 0.

The decomposition of T ∗D(∞) accordingly splits the differential in two components

d = dM + dG,

where the subscript on the vertical differential dG refers to the groupoid structure of
D(∞). In particular, if F (z, Z(n)) is any differential function, then

dMF =
m∑
a=1

(DzaF )dza and dGF =
m∑
b=1

∑
#A≥0

∂F

∂ZbA
Υb
A,

where

Dza =
∂

∂za
+

m∑
b=1

∑
#A≥0

ZbA,a
∂

∂ZbA
, a = 1, . . . ,m, (2.2)

are the total derivative operators on D(∞).
Since the target coordinate functions Za : D(∞) → R are invariant under the right

action (2.1), so are their differentials dZa. The splitting of the differential into horizontal
and contact components is also right-invariant. This implies that the one-forms

σa = dMZ
a =

m∑
b=1

Zab dz
b, a = 1, . . . ,m, (2.3)

form an invariant horizontal coframe, while

µa = Υa = dGZ
a = dZa −

m∑
b=1

Zab dz
b, a = 1, . . . ,m, (2.4)

are the zero-th order invariant contact forms. Writing the horizontal component of the
exterior differential of a differential function F : D(∞) → R in terms of the invariant
horizontal coframe (2.3)

dMF =
m∑
a=1

(DZaF )σa

serves to define the dual invariant total differential operators

DZa =
m∑
b=1

wba Dzb , a = 1, . . . ,m, where
(
wba(z, Z

(1))
)

=
(
∂Zb

∂za

)−1

(2.5)
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denotes the inverse Jacobian matrix. Higher-order right-invariant contact forms are
obtained by repeatedly Lie differentiating the zero-th order invariant contact forms
(2.4) with respect to the invariant differential operators (2.5):

µbA = DA
Zµ

b = DZa1 · · ·DZakµ
b, b = 1, . . . ,m, #A ≥ 0. (2.6)

The differential operators DZ1 , . . . ,DZm commute, so the order of differentiation in
(2.6) is immaterial. The right-invariant contact forms µ(∞) = ( . . . µaA . . . ) define the
Maurer–Cartan forms for the diffeomorphism pseudo-group D, and they, together with
the horizontal forms (2.3) provide a right-invariant coframe on D(∞).

To concisely express the structure equations of the invariant coframe {σ, µ(∞)} the
vector-valued Maurer–Cartan formal power series µJHK = (µ1JHK, . . . , µmJHK)T , with
components

µbJHK =
∑

#A≥0

1
A!

µbAH
A, b = 1 . . . ,m, (2.7)

is introduced. Here H = (H1, . . . ,Hm) are formal power series parameters, while A! =
i1! i2! · · · im!, where il stands for the number of occurrences of the integer 1 ≤ l ≤ m in
A. The structure equations for the right-invariant forms µaA are obtained by comparing
the coefficients of the various powers of H in the power series identity

dµJHK = ∇µJHK ∧ (µJHK− dZ), (2.8a)

where dZ = (dZ1, . . . , dZm)T and∇µJHK =
(
∂µaJHK/∂Hb

)
denotes them×m Jacobian

matrix obtained by formal differentiation of the power series (2.7) with respect to
the parameters H. The structure equations for the invariant horizontal forms σ =
(σ1, . . . , σm)T are

dσ = ∇µJ0K ∧ σ. (2.8b)

Theorem 2.1. The structure equations of the diffeomorphism pseudo-group D are
given by the equations (2.8).

Example 2.2. To illustrate some of the above formulas we consider the planar diffeo-
morphism pseudo-group D(R2). Let (x, u) be coordinates on R2, then a local diffeo-
morphism in D(R2) is denoted by

X = φ(x, u), U = β(x, u), where φxβu − φuβx 6= 0.

The local coordinates of D(2)(R2), for example, are

(x, u,Xx, Xu, Ux, Uu, Xxx, Xxu, Xuu, Uxx, Uxu, Uuu).

The invariant horizontal coframe (2.3) is spanned by the two differential one-forms

σx = dMX = Xxdx+Xudu, σu = dMU = Uxdx+ Uudu,

and the corresponding dual total differential operators on D(∞)(R2) are

DX =
UuDx − UxDu

XxUu −XuUx
, DU =

−XuDx +XxDu

XxUu −XuUx
. (2.9)
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The zero-th order Maurer–Cartan forms (2.4) for the diffeomorphism pseudo-group
D(R2) are the zero-th order contact forms

µx = Υx = dGX = dX −Xxdx−Xudu,

µu = Υu = dGU = dU − Uxdx− Uudu.
(2.10)

The higher order Maurer–Cartan forms are obtained by Lie differentiating (2.10) with
respect to the differential operators (2.9). For example,

µxX =
UuΥx

x − UxΥx
u

XxUu −XuUx
, µxU =

XxΥx
u −XuΥx

x

XxUu −XuUx
,

µuX =
UuΥu

x − UxΥu
u

XxUu −XuUx
, µxU =

XxΥu
u −XuΥu

x

XxUu −XuUx
,

where

Υx
x = dXx −Xxxdx−Xxudu, Υx

u = dXu −Xxudx−Xuudu,

Υu
x = dUx − Uxxdx− Uxudu, Υx

u = dUu − Uxudx− Uuudu.

are the first order contact forms on D(∞)(R2). Let

µxJH,KK =
∑
j,k≥0

µxj,k
j!k!

HjKk, µxJH,KK− dX = −σx +
∑
j+k≥1
j,k≥0

µxj,k
j!k!

HjKk,

µuJH,KK =
∑
j,k≥0

µuj,k
j!k!

HjKk, µuJH,KK− dU = −σu +
∑
j+k≥1
j,k≥0

µuj,k
j!k!

HjKk,

be the Maurer–Cartan formal power series (2.7), where µxj,k = Dj
XDk

Uµ
x, µuj,k = Dj

XDk
Uµ

u.
Then the structure equations (2.8) are(

dσx

dσu

)
=
(
µxX µxU
µuX µuU

)
∧
(
σx

σu

)
,(

dµxJH,KK
dµuJH,KK

)
=
(
µxHJH,KK µxKJH,KK
µuHJH,KK µuKJH,KK

)
∧
(
µxJH,KK− dX
µuJH,KK− dU

)
.

Equating the powers of H and K we obtain the structure equations:

dσx = −dµx = µxX ∧ σx + µxU ∧ σu,
dσu = −dµu = µuX ∧ σx + µuU ∧ σu,
dµxX = −µxXX ∧ σx − µxXU ∧ σu + µxU ∧ µuX ,
dµuX = −µuXX ∧ σx − µuXU ∧ σu + µuX ∧ (µxX − µuU ),
dµxU = −µxXU ∧ σx − µxUU ∧ σu − µxU ∧ (µxX − µuU ),
dµuU = −µuXU ∧ σx − µuUU ∧ σu + µuX ∧ µxU ,

(2.11)

and so on.
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2.2 Lie Pseudo-Groups

With the structure equations of the diffeomorphism pseudo-group at hand it is a fairly
straightforward task to obtain the structure equations of any Lie pseudo-group from
its infinitesimal data. Several definitions of Lie pseudo-groups can be found in the
literature depending on the technical hypotheses made by the authors. In the analytic
category, Lie pseudo-groups can be defined as follows.

Definition 2.3. A pseudo-group G ⊂ D is called regular of order n? ≥ 1 if, for all
finite n ≥ n?, the pseudo-group jets form an embedded subbundle G(n) ⊂ D(n) and the
projection πn+1

n : G(n+1) → G(n) is a fibration.

The Lie requirement on the pseudo-group is encapsulated in the following definition.

Definition 2.4. An analytic pseudo-group G ⊂ D is called a Lie pseudo-group if G is
regular of order n? ≥ 1 and, moreover, every local diffeomorphism ϕ of D satisfying
jn?ϕ ⊂ G(n?) belongs to the pseudo-group, i.e. ϕ ∈ G.

In local coordinates, for n ≥ n? the pseudo-group jet subbundle G(n) ⊂ D(n) is
characterized by an involutive system, [39], of n-th order partial differential equations

F (n)(z, Z(n)) = 0, (2.12)

called the determining system for the pseudo-group. When n ≥ n?, the determining
system of G(n+1) is obtained by differentiating the determining equations (2.12) for G(n)

with respect to the total differential operators (2.2).
Once restricted to a Lie pseudo-group G ⊂ D, the Maurer–Cartan forms (2.6) are

no longer linearly independent. As we now explain, the coordinate expressions for the
Maurer–Cartan forms are not required to determine the linear dependencies. This can
be done symbolically from the infinitesimal data of the Lie pseudo-group.

Let g denote the Lie algebra of infinitesimal generators of the Lie pseudo-group G.
By definition g consists of the locally defined vector fields

v =
m∑
a=1

ζa(z)
∂

∂za
(2.13)

whose flows belong to G. for 0 ≤ n ≤ ∞, let JnTM , denote the bundle of n-th order
jets of sections of TM . Local coordinates on JnTM are given by

(z, ζ(n)) = (. . . , za, . . . , ζbA, . . .), b = 1, . . . ,m, 0 ≤ #A ≤ n,

where ζaA represents the partial derivative ∂#Aζb/∂zA. By our regularity assumption
on the pseudo-group G, for each n ≥ n?, Jng is a subbundle of JnTM which locally is
prescribed by a system of linear partial differential equations

L(n)(z, ζ(n)) =
m∑
b=1

∑
#A≤n

hAb;υ(z)ζbA = 0, υ = 1, . . . , k, (2.14)

known at the infinitesimal determining system. The system (2.14) is obtained by lin-
earization of the determining system (2.12) at the identity jet 1(n).
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Theorem 2.5. For each n ≥ n?, the homogeneous linear algebraic system

L(n)(Z, µ(n)) = 0, (2.15)

obtained from the infinitesimal determining equations (2.14) by formally replacing1

the source coordinates za by the corresponding target coordinates Za, and the vector
field jet coordinates ζaA by the corresponding Maurer–Cartan forms µaA, serves to define
the complete set of linear dependencies among the Maurer–Cartan forms µ(n) once
restricted to the Lie pseudo-group G.

Corollary 2.6. The structure equations of a Lie pseudo-group G are obtained by
restricting the diffeomorphism structure equations (2.8) to the solution space of (2.15).

Remark 2.7. The structure equations of a Lie pseudo-group are different from its
Maurer–Cartan structures. We refer the reader to [37, 45, 46] for a discussion on this
aspect.

For future reference we introduce Cartan’s notion of isomorphic prolongation of a
pseudo-group, [6, 39, 44].

Definition 2.8. Let π : M → N be a fiber bundle and H, G two pseudo-group actions
on M and N respectively. The pseudo-group G is an isomorphic prolongation of H if
there is a one-to-one correspondence between elements ϕ ∈ G and φ ∈ H satisfying
π ◦ϕ = φ ◦π.

Example 2.9. In this example we compute the structure equations for the fiber pre-
serving equivalence pseudo-group of first order scalar variational problems

L[u] =
∫
l(x, u, p)dx, where p = ux and l 6= 0, (2.16)

given by2

G : X = φ(x), U = β(x, u), P =
pβu + βx

φx
, L =

l

φx
, (2.17)

where φx 6= 0 and βu 6= 0. The determining equations for the pseudo-group action
(2.17) are

Xu = Xp = Xl = 0, Up = Ul = 0, P =
pUu + Ux

Xx
, L =

l

Xx
. (2.18)

Clearly, all diffeomorphisms satisfying the system of equations (2.18) are of the form
(2.17). To obtain the infinitesimal determining equations of the pseudo-group we lin-
earize (2.18) at the identity jet 1(1). If we denote an infinitesimal generator of the
pseudo-group action by

v = ξ(x, u, p, l)
∂

∂x
+ η(x, u, p, l)

∂

∂u
+ α(x, u, p, l)

∂

∂p
+ γ(x, u, p, l)

∂

∂l
, (2.19)

1This formal replacement is called the lift map in the theory equivariant moving frames. See Definitions
3.8 and 3.11.

2The pseudo-group action 2.17 corresponds to the “standard equivalence problem” which requires two
functionals to have the same values on functions: L[u] = L[u]. The more general “divergence equivalence
problem” which requires the Euler–Lagrange to match up requires the Lagrangian to transform according to
the rule L = (l +DxA(x, u))/φx, where A(x, u) is an arbitrary differential function, [21, 27].
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then the infinitesimal determining system is given by

ξu = ξp = ξl = 0, ηp = ηl = 0, α = p(ηu − ξx) + ηx, γ = −lξx. (2.20)

Under the replacement

ξA → µxA, ηA → µuA, αA → µpA, γA → µlA, (x, u, p, l)→ (X,U, P, L),

the infinitesimal determining equations (2.20) give the linear dependencies

µxU = µxP = µxL = 0, µuP = µuL = 0, µp = P (µuU − µxX) + µuX , µl = −LµxX (2.21)

among the Maurer–Cartan forms of order ≤ 1 of D(R4). The linear dependencies
among higher order Maurer–Cartan forms are obtained by differentiating the system of
equations (2.21) with respect to the invariant total differential operators DX , DU , DP ,
DL defined in (3.3). It follows from (2.21) and its prolongations that

µxXj , µuXjUk , j, k ≥ 0, (2.22)

is a basis of Maurer–Cartan forms for the pseudo-group (2.17). The coordinate expres-
sions of the Maurer–Cartan forms (2.22) are identical to the formulas for the Maurer–
Cartan forms of D(R2) of Example 2.2 with the difference that Xu and its derivatives
with respect to the variables x and u are equal to zero.

The horizontal forms of the pseudo-group action (2.17) are given by

σx = Xxdx, σu = Uxdx+ Uudu, σl =
1
Xx

[
− lXxx

Xx
dx+ dl

]
,

σp =
1
Xx

[(
pUxu + Uxx −

Xxx

Xx

)
dx+ (pUuu + Uux)du+ Uudp

]
.

Their structure equations are obtained by restricting the equations (2.8b) to the kernel
of (2.21) and its prolongations. This leads to

dσx =µxX ∧ σx,
dσu =µuX ∧ σx + µuU ∧ σu,
dσp =µpX ∧ σ

x + µpU ∧ σ
u + µpP ∧ σ

p

=[P (µuUX − µxXX) + µuXX ] ∧ σx + [PµuUU + µuUX ] ∧ σu + (µuU − µxX) ∧ σp,
dσl =µlX ∧ σx + µlU ∧ σu + µlP ∧ σp + µlL ∧ σl

=− LµxXX ∧ σx − µxX ∧ σl.

(2.23a)

The structure equations for the basis of Maurer–Cartan forms (2.22) are obtained from
the structure equations (2.11) by setting µx

XjUk+1 = 0, j, k ≥ 0:

dµx =− µxX ∧ σx,
dµu =− µuX ∧ σx − µuU ∧ σu,
dµxX =− µxXX ∧ σx,
dµuX =− µuXX ∧ σx − µuXU ∧ σu + µuX ∧ (µxX − µuU ),
dµuU =− µuXU ∧ σx − µuUU ∧ σu,

(2.23b)
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and so on.
The pseudo-group action (2.17) is a good example of isomorphic prolongation.

Clearly, it is an isomorphic prolongation of the pseudo-group

X = φ(x), U = β(x, u), (2.24)

acting of the plane.

3 Equivariant Moving Frames

For infinite-dimensional Lie pseudo-group actions, the equivariant moving frame con-
struction was first laid out in [34]. In Section 3.1 we review this construction and in
Section 3.2 we introduce the notion of a partial equivariant moving frame.

As in the previous section, let G be a Lie pseudo-group action on an m-dimensional
manifold M . We are now interested in the induced action of G on p-dimensional sub-
manifolds S ⊂M . For each integer 0 ≤ n ≤ ∞, let Jn = Jn(M,p) denote the n-th order
submanifold jet bundle, defined as the set of equivalence classes under the equivalence
relation of n-th order contact at a single point; see [27, 47] for more details . For k ≥ n,
we use πkn : Jk → Jn to denote the canonical projection. Locally, the coordinates on M
can be written as z = (x, u) where x = (x1, . . . , xp) are considered to be the indepen-
dent variables parametrizing a submanifold S ⊂M and u = (u1, . . . , uq), q = m−p, the
dependent variables. The induced coordinates on Jn are denoted by z(n) = (x, u(n)),
where u(n) denotes the derivatives uαJ = ∂#Juα/∂xJ of the u’s with respect to the x’s
of order 0 ≤ #J ≤ n.

Let E(n) → Jn be the lifted bundle obtained by taking the pull-back bundle of
G(n) → M via the projection πn0 : Jn → M . Local coordinates on E(n) are given
by (z(n), g(n)), where the base coordinates z(n) = (x, u(n)) ∈ Jn are the submanifold
jet coordinates and the fiber coordinates g(n) parametrize the pseudo-group jets. The
bundle E(n) carries the structure of a groupoid, with source map σσσ(z(n), g(n)) = z(n)

and target map τττ(z(n), g(n)) = Z(n) = g(n) ·z(n) given by the prolonged action. The local
coordinate expressions for the prolonged action Z(n) are obtained by implementing the
chain rule. Let

dHX
i =

p∑
j=1

(DxjX
i)dxj , i = 1, . . . , p, (3.1)

be the lifted horizontal coframe on E(∞), where

Dxj =
∂

∂xj
+

q∑
α=1

∑
#J≥0

uαJ,j
∂

∂uαJ
, j = 1, . . . , p, (3.2)

are the total derivative operators on the submanifold jet bundle J∞. The lifted total
differential operators are defined by the formula

dHF (z(n)) =
p∑
i=1

(DxiF )dxi =
p∑
i=1

(DXiF )dHXi.

More explicitly

DXi =
p∑
j=1

W j
i Dxj , where (W j

i ) = (DxiX
j)−1 (3.3)
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is the inverse of the total Jacobian matrix. By differentiating the target dependent
variables Uα = g · uα with respect to the lifted total differential operators (3.3) we
obtain the explicit expressions for the prolonged action3:

Xi, ÛαJ = DJ
XU

α = D
Xj1 · · ·DXjkU

α, k = #J ≥ 0. (3.4)

A local diffeomorphism ϕ ∈ G acts on the set

{(z(n), g(n)) ∈ E(n)| πn0 (z(n)) ∈ dom ϕ}

by
ϕ · (z(n), g(n)) = (jnϕ|z · z(n), g(n) · jnϕ−1|ϕ(z)), (3.5)

where πn0 (z(n)) = z. The action (3.5) is the concatenation of the prolonged action on
submanifold jets with the right action (2.1) on G(n). It is called the n-th order lifted
action of G on E(n).

3.1 Regular Submanifold Jets

Definition 3.1. Let G be a regular Lie pseudo-group acting on M . A moving frame
of order n is a G-equivariant local section ρ(n) : Jn → E(n).

In a system of local coordinates we use the notation

ρ(n)(z(n)) = (z(n), ρ̃(n)(z(n)))

to denote a moving frame. One can always define left and right moving frames. For a
right moving frame the G-equivariance means that

ϕ · ρ(n)(z(n)) =ϕ · (z(n), ρ̃(n)(z(n))) = (jnϕ|z · z(n), ρ̃(n)(jnϕ|z · z(n)))

=(jnϕ|z · z(n), ρ̃(n)(z(n)) · jnϕ−1|ϕ(z)),

for ϕ ∈ G and σσσ(jnϕ|z) = z(n). The existence of a moving frame requires the prolonged
pseudo-group action be free and regular. Recall that the action is regular if all the orbits
of the pseudo-group action have the same dimension and that each point z(n) ∈ Jn has
arbitrarily small neighborhoods whose intersection with each orbit is a connected subset
thereof.

Definition 3.2. The jet isotropy subgroup of a submanifold jet z(n) ∈ Jn is defined as
Gz(n) = τττ−1{z(n)} ∩ σσσ−1{z(n)} ⊂ E(n)|z. The pseudo-group is said to act freely at z(n)

if Gz(n) = {(z(n),1(n))}. The pseudo-group acts locally freely at z(n) if Gz(n) is discrete.
The pseudo-group G is said to act (locally) freely at order n if it acts (locally) freely on
an open subset Vn ⊂ Jn, called the set of regular n-jets.

Remark 3.3. As explained and illustrated in [34] it is important to notice that the
above definition of freeness for Lie pseudo-group actions is slightly different from the
standard definition of freeness for Lie group actions, [13].

3Hats are added over the transformed jet coordinates to avoid confusion with the diffeomorphism jet
coordinates UαA, A = (a1, . . . , ak), 1 ≤ al ≤ m.
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Theorem 3.4. Suppose G(n) acts freely on Vn ⊂ Jn with its orbits forming a regular
foliation, then an n-th order moving frame exists in the neighborhood of every z(n) ∈ Vn.

In light of Theorem 3.4, the domain of definition of a moving frame in Definition
3.1 should strictly speaking be restricted to set of regular jets Vn ⊂ Jn. An important
result in the theory of equivariant moving frames is the persistence of freeness proved
in [35, 36].

Theorem 3.5. For n > 0, if the pseudo-group G acts (locally) freely at z(n) then it
acts (locally) freely at any z(k) ∈ Jk, k > n, with πkn(z(k)) = z(n).

A pseudo-group G is said to act eventually freely if, for some n > 0, it acts freely
on an open subset Vn ⊂ Jn, and hence on the open subsets Vk = (πkn)−1Vn ⊂ Jk for
k ≥ n. The minimal such n is called the order of freeness, and denoted by n?.

Definition 3.6. A submanifold S ⊂M is said to be regular if there exists n ≥ n? such
that jnS|z ∈ Vn for all z ∈ S.

A moving frame is constructed through a normalization procedure based on a choice
of cross-section Kn ⊂ Vn to the pseudo-group orbits, that is, a transversal submanifold
of the complementary dimension. Assuming freeness, the associated (locally defined)
right moving frame section ρ(n) : Vn → E(n) is uniquely characterized by the condition
that τττ(ρ(n)(z(n))) ∈ Kn. Let zi1 , . . . , zirn be the rn = dim G(n) submanifold jet com-
ponents determining the cross-section Kn. Then the moving frame ρ(n) is obtained by
solving the normalization equations

Zi1(x, u(n), g(n)) = c1, . . . Zirn (x, u(n), g(n)) = crn , (3.6)

for the pseudo-group parameters g(n) = ρ̃(n)(x, u(n)). The invariants appearing on the
left-hand side of the normalization equations (3.6) are called phantom invariants.

-

-

-

Kn

t
z(n) O

Orbit through z(n)

ρ̃(n)(z(n)) · z(n)
t� ρ̃(n)(z(n))

Figure 1: n-th order (right) moving frame ρ(n)(z(n)) = (z(n), ρ̃(n)(z(n))).

For each order above the order of freenes, a new cross-section must be selected. We
require compatibility of the cross-sections, in the sense that πkn(Kk) = Kn for all k ≥
n ≥ n?, which implies compatibility of the resulting moving frames: πkn(ρ(n)(z(k))) =
ρ(n)(πkn(z(k))). A compatible sequence of moving frames is simply called a moving frame
and denoted by ρ : V∞ → E(∞).

Example 3.7. In this example we construct a moving frame for the equivalence pseudo-
group of first order scalar variational problems introduced in Example 2.9. The inde-
pendent variables for this problem are (x, u, p) and the Lagrangian l = l(x, u, p) is the

12



dependent variable. To obtain the prolonged action of (2.17) we first compute the lifted
total differential operators (3.3). Since the lifted horizontal coframe corresponding to
the pseudo-group action (2.17) is

dHX = φxdx, dHU = βxdx+ βudu, dHP =
ψx − γψ
φx

dx+
ψu
φx
du+

βu
φx
dp, (3.7)

where γ(x) = φxx/φx, and ψ(x, u, p) = pβu + βx, the lifted total differential operators
are

DP =
φx
βu
Dp, DU =

1
βu

[
Du −

ψu
φx
DP

]
, DX =

1
φx

[
Dx − βxDU −

ψx − ψγ
φx

DP

]
.

(3.8)
Iterated applications of the lifted total differential operators (3.8) to the invariant L =
l/φx yields the higher order lifted invariants

LP =
lp
βu
, LU =

lu − ψuLP
βuφx

,

LX =
1
φ2
x

[
−φxxL+ lx −

βx
βu

(lu − ψuLP )− ψx − ψγ
βu

lp

]
,

LPP =
φx
β2
u

lpp, LPU =
1
βu

[
−βuu
βu

LP +
lpu
βu
− ψu
φx
LPP

]
,

LPX =
1
φx

[
−βux
βu

LP +
lpx
βu
− βxLPU −

ψx − ψγ
φx

LPP

]
,

LUU =
1
βu

[
−βuu
βu

LU +
luu − ψuuLP

βuφx
− ψu

(
lpu − βuuLP

β2
uφx

)
− ψu
φx
LPU

]
,

LUX =
1
φx

[
−
(
βux
βu

+ γ

)
LU +

lux − ψuxLP
βuφx

− ψu
(
lpx − βuxLP

β2
uφx

)
− βxLUU

−ψx − ψγ
φx

LPU

]
, (3.9)

LXX =
1
φx

[
Dx(LX)− βxLUX −

ψx − ψγ
φx

LPX

]
,

LPPP =
φ2
x

β3
u

lppp, LPPU =
1
βu

[
−2

βuu
βu

LPP +
φx
β2
u

lppu −
ψu
φx
LPPP

]
,

LPPX =
1
φx

[
−2

βux
βu

LPP +
1
β2
u

(φxxlpp + φxlppx)− βxLPPU −
ψx − ψγ
φx

LPPP

]
,

LPUU =
1
βu

[
−βuu
βu

LPU +
1
βu

((
2
β2
uu

β3
u

− βuuu
β2
u

)
lp − 2

βuu
β2
u

lpu +
lpuu
βu
− ψu
β2
u

lppu

+
(

2
ψuβuu
β3
u

− ψuu
β2
u

)
lpp

)
− ψu
φx
LPPU

]
,

LPUX =
1
φx

[
−βux
βu

LPU +
1
βu

((
2
βuuβux
β3
u

− βuux
β2
u

)
lp −

βuu
β2
u

lpx +
lpux
βu
− βux

β2
u

lpu

−ψu
β2
u

lppx +
(

2
ψuβux
β3
u

− ψux
β2
u

)
lpp

)
− βxLPUU −

ψx − ψγ
φx

LPPU

]
,

and so on. In the process of solving for the pseudo-group parameters we find that the
action is free on

V∞ = J∞ \ {lp ≡ 0, lpp ≡ 0}. (3.10)
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From the coordinate expressions for the lifted invariants (3.9) we see that on the set of
regular jets (3.10) the invariants LP and LPP do not vanish. Also, the lifted invariant
L is not zero as we assume l 6= 0. On (3.10) a cross-section to the pseudo-group action
is given by

X = U = P = 0, L = LP = 1,
LU iXj = 0, i+ j ≥ 1, LPXk = LPUk = 0, k ≥ 1.

(3.11)

Solving the normalization equations (3.11) for the first few pseudo-group parameters
we obtain

φ = 0, β = 0, φx = l, βx = −p lp, βu = lp,

ψu = lu, ψx = − lp
lpp
Ẽ(l)− p lu, βuu =

1
lp

D(l, lp)
D(p, u)

, φxx = D̂(l),

ψuu = luu −
l2u
l2p
lpp, ψux = lux +

lu
lp
Ẽ(l) +

pl2u
l2p
lpp,

βuuu =
1
lp

D(lpu, l)
D(u, p)

+ luu +
l2ul

2
pp

l3p
−
lul

2
p

l
LPPU ,

(3.12)

where
Ẽ(l) = lu − lxp − p lup

is the truncated Euler operator, obtained by omitting the second derivative term from
the Euler operator

E(l) = lu − lxp − p lup − q lpp, (q = uxx).

The operator

D̂ = Dx + pDu +
Ẽ(l)
lpp

Dp

is the adapted total derivative which coincides with the total derivative in x when ap-
plied to solutions of the Euler–Lagrange equation E(l) = 0 and the dependent variable
u is considered to be a function of x. Finally,

D(l, lp)
D(p, u)

= Dp(l) ·Du(lp)−Du(l) ·Dp(lp) = lplup − lulpp

denotes the determinant of the total Jacobian matrix of l and lp with respect to the
variables p and u. Note that the invariant LPPU appearing in the normalization of βuuu
is a well-defined expression of the Lagrangian and its derivatives as LPPU depends on
the normalized pseudo-group parameters (3.12) (Note LPPU does not depend on βuuu).
The normalized pseudo-group parameters (3.12) constitute part of the (right) moving
frame associated to the cross-section (3.11). Further normalization of the pseudo-group
parameters can easily be achieved using a symbolic software like Mathematica or
Maple.

Once a moving frame is obtained it is possible to systematically invariantize differ-
ential functions, differential forms and differential operators. The space of differential
forms on E(∞) splits into

Ω∗ =
⊕
k,l

Ωk,l =
⊕
i,j,l

Ωi,j,l,
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where l indicates the number of Maurer–Cartan forms (2.6), k = i + j the number of
jet forms, with i indicating the number of horizontal forms dxi, 1 ≤ i ≤ p, and j the
number of basic contact forms

θαJ = duαJ −
p∑
i=1

uαJ,idx
i, α = 1, . . . , q, #J ≥ 0, (3.13)

on J∞. Let
Ω∗J =

⊕
k

Ωk,0 =
⊕
i,j

Ωi,j,0 (3.14)

denote the subspace of jet forms consisting of those differential forms containing no
Maurer–Cartan forms. Let πJ : Ω∗ → Ω∗J be the natural projection that takes a
differential form Ω on E(∞) to its jet component πJ(Ω) obtained by annihilating all
Maurer–Cartan forms in Ω.

Definition 3.8. The lift of a differential form ω on J∞ is the jet form

Ω = λλλ(ω) = πJ [τττ∗(ω)]. (3.15)

Since the pull-back τττ∗(ω) of a differential form ω on J∞ is invariant and the lifted
action (3.5) sends jet forms to jet forms, the lift λλλ(ω) is an invariant jet form defined
on E(∞). In particular, the lift of the submanifold jet coordinates z(n) coincides with
the prolonged action (3.4), i.e. λλλ(z(n)) = Z(n). Also we note that the lifts

Ωi = λλλ(dxi) =
p∑
i=1

(DxjX
i)dxj +

q∑
α=1

Xi
uαθ

α = dHX
i +

q∑
α=1

Xi
uαθ

α, (3.16)

of the horizontal forms dxi are invariant horizontal forms on E(∞) if and only if the
pseudo-group action is projectable, that is Xi

uα = 0 for i = 1, . . . , p and α = 1, . . . , q.
On the other hand the lift of a contact form Θα

J = λλλ(θαJ ) is always a contact form.

Definition 3.9. Let ρ : V∞ → E(∞) be a moving frame. If ω is a differential form on
V∞, then its invariantization is the invariant differential form

ι(Ω) = ρ∗[λλλ(ω)]. (3.17)

In particular, the invariantization map (3.17) can be applied to the submanifold jet
coordinates (x, u(∞)).

Proposition 3.10. Let ρ : V∞ → E(∞) be a moving frame, then the invariants

(H, I(n)) = ι(x, u(n)), (3.18)

called normalized differential invariants, form a complete set of functionally indepen-
dent differential invariants of order less or equal to n.

In the following we use the notation

$i = ρ∗(Ωi) = ι(dxi), ϑαJ = ρ∗(Θα
J ) = ι(θαJ )

to denote the invariantization of the jet forms dxi, θαJ . If the pseudo-group acts non-
projectably the “invariant horizontal forms”

$i = ωi + ηi, i = 1, . . . , p, (3.19)
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are not purely horizontal in the usual bi-grade Ωi,j(J∞) by virtue of (3.16). The
differential forms (3.19) are in fact the sum of a contact invariant horizontal one-form
ωi, [27], with a contact correction one-form ηi making$i invariant. The local coordinate
expressions of the contact invariant one-forms ωi are obtained by taking the pull-back
of the lifted horizontal forms (3.1) with respect to the moving frame ρ:

ωi = ρ∗(dHXi) =
p∑
j=1

ρ∗(DxjX
i)dxj , i = 1, . . . , p.

The contact invariant one-forms ωi serve to define the invariant total differential oper-
ators Di via the identity

dHF (z(n)) =
p∑
i=1

(DxiF )dxi =
p∑
i=1

(DiF )ωi.

The local coordinate expressions of the invariant differential operators Di are obtained
from (3.3) by taking the pull-backs of W j

i with respect to the moving frame ρ:

Di =
p∑
j=1

ρ∗(W j
i )Dxj , where (W j

i ) = (DxiX
j)−1.

One of the most important results in the theory of equivariant moving frames is the
recurrence formula for lifted differential forms, [34]. This formula requires to extend
the lift map λλλ to vector field jet coordinates.

Definition 3.11. The lift of a vector jet coordinate ζbA is defined to be the Maurer–
Cartan form µbA:

λλλ(ζbA) = µbA, for b = 1, . . . ,m, #A ≥ 0.

More generally, the lift of any finite linear combination of vector field jet coordinates

m∑
b=1

∑
#A≥0

PAb (z(n))ζbA

is defined to be the invariant group one-form

λλλ

 m∑
b=1

∑
#A≥0

PAb (z(n))ζbA

 =
m∑
b=1

∑
#A≥0

PAb (Z(n))µbA.

Theorem 3.12. Let ω be a differential form on J∞. Then

d[λλλ(ω)] = λλλ[dω + v(∞)(ω)], (3.20)

where v(∞) is the prolongation of the vector field

v =
p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
∈ g (3.21)
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given by

v(∞) =
p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
k=#J≥0

φα;J(x, u(k))
∂

∂uαJ
∈ g(∞), (3.22)

with φα;J defined recursively by the prolongation formula, [26],

φα;J,j = Dxjφ
α;J −

p∑
i=1

(Dxjξ
i)uαJ,i. (3.23)

In particular, the identity (3.20) applies to the lifted differential invariants Xi, ÛαJ
giving

dXi =Ωi + µi, i = 1, . . . , p,

dÛαJ =
p∑
j=1

ÛαJ,jΩ
j + Θα

J + φ̂α;J , α = 1, . . . , q, #J ≥ 0,
(3.24)

where Ωi = λλλ(dxi), Θα
J = λλλ(θαJ ) are the lifts of the jet forms, and φ̂α;J = λλλ(φα;J) are

correction terms obtained by lifting the prolonged vector field coefficients (3.23).

Corollary 3.13. Let ρ : V∞ → E(∞) be a moving frame and ω a differential form on
V∞, then

dι(ω) = ι[dω + v(∞)(ω)]. (3.25)

Of particular interest to us is when ω is one of the submanifold jet coordinate
functions xi, uαJ . We introduce the notation ν(n) = ρ∗(µ(n)) to denote the pull-back
of the Maurer–Cartan forms µ(n) via the moving frame ρ. Also recall our notation
convention: $i = ι(dxi), ϑαJ = ι(θαJ ) and H i = ι(xi), IαJ = ι(uαJ ). Then the identity
(3.25) applied to xi and uαJ yields the recurrence formulas

dH i =$i + νi, i = 1, . . . , p,

dIαJ =
p∑
i=1

IαJ,i$
i + ϑαJ + ψ̂α;J , α = 1, . . . , q, #J ≥ 0,

(3.26)

where the correction terms are obtained by invariantizating the prolonged vector field
coefficients (3.22)

νi = ρ∗(µi) = ι(ξi), ψ̂α;J(H, I(n), ν(n)) = ρ∗(φ̂α;J) = ι(φα;J), #J = n.

The differential in (3.26) splits into invariant horizontal and vertical components.
Let πH denote the invariant horizontal projection onto the differential forms {$i} and
πV the projection onto the invariant vertical (contact) differential forms {ϑαJ}. Since

dHF (z(n)) = πH ◦dF =
p∑
i=1

(DiF )$i

for any differential function F (z(n)), the recurrence relations (3.26) yield the identities

DjH i =
p∑
j=1

δij + πH(νi), DjIαJ = IαJ,j +Mα
J,j , (3.27a)

dVH
i = πV ◦dH

i = πV(νi), dVI
α
J = πV ◦dI

α
J = ϑαJ + πV(ψ̂α;J), (3.27b)
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where Mα
J,j = Mα

J,j(H, I
(n)) is the $j component of πH(ψ̂α;J). The equalities (3.27a)

give explicit relations between the normalized invariants and their invariants total
derivatives. The commutation relations among the invariant total differential operators
D1, . . . ,Dp are also direct consequences of the universal recurrence relation (3.25). First
replacing ω by the horizontal forms dxi in (3.25) we obtain the equations

dH$
i = πH ◦d$

i = −
∑

1≤j<k≤p
T ijk$

j ∧$k, i = 1, . . . , p.

Since the operators Di are dual to the invariant horizontal forms $i it follows that

[Di,Dj ] =
p∑

k=1

T kijDk, 1 ≤ i, j ≤ p. (3.28)

The functions T ijk are differential invariants of the pseudo-group action and are known
as the commutator invariants, [35]. The recurrence relations (3.27a) together with the
commutation relations (3.28) contain all the information on the structure of the algebra
of differential invariants of a pseudo-group action, [9, 34, 35, 46].

An important feature of the recurrence formula (3.25) (or (3.26)) is that the coordi-
nate expressions for the differential invariants (H, I(∞)), the invariant differential forms
$i, ϑαJ , the Maurer–Cartan forms µbA and the moving frame ρ are not required for the
equations to be used. The only pieces of information required are the cross-section K∞
and the infinitesimal generators v(∞) of the Lie pseudo-group G. The key observation
is that the unknown differential forms ν(n) = ρ∗(µ(n)) can be obtained directly from the
recurrence relations of the phantom invariants. By construction, the invariantization of
the jet coordinates defining the normalization equations (3.6) (which defines the cross-
section Kn) are constants, i.e. ι(zi1) = c1, . . . , ι(zirn ) = crn . Thus left-hand side of the
recurrence relations (3.26) for the phantom invariants are zero and form a system of
equations for the pulled-back Maurer–Cartan forms ν(n). The freeness assumption on
the pseudo-group action guarantees that the system as a unique solution in terms of the
invariant horizontal forms $i and the invariant contact forms ϑαJ . With the recurrence
relations (3.27a) at hand and the commutation relations (3.28) it is now possible to
study the structure of the algebra of differential invariants.

3.1.1 Algebra of Differential Invariants for Regular Submanifold Jets

Definition 3.14. A set of differential invariants I = {Iκ} is said to be a generat-
ing set for the algebra of differential invariants if every invariant can be locally ex-
pressed as a function of the invariants Iκ ∈ I and their invariant derivatives DJIκ =
Dj1Dj2 · · · DjkIκ.

The Basis Theorem for differential invariants, first formulated by Lie [24], and ex-
tended by Tresse, [43], to infinite-dimensional Lie pseudo-group actions, states that the
generating set I is finite. For Lie group actions, proofs based on the equivariant moving
frame method can be found in [13, 17]. For infinite-dimensional Lie pseudo-groups, a
proof based to the equivariant moving frame method also exits, [35], but it is much more
subtle. The proof requires the introduction of two important modules associated with
the prolonged pseudo-group action. We now briefly review the constructions appearing
in [35] as in the next section we will explain how those constructions extend to partial
moving frames.
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Let R[t, T ] be the algebra of real polynomials in the variables t = (t1, . . . , tm),
T = (T 1, . . . , Tm) (recall that m is the dimension of the manifold M on which a Lie
pseudo-group G acts) and let

T =

{
η(t, T ) =

m∑
a=1

ηa(t)T a
}
' R[t]⊗ Rm ⊂ R[t, T ]

be the R[t] module consisting of homogeneous linear polynomials in the variable T . Let
T n ⊂ T be the subspace of homogeneous polynomials of degree n in t. Then there is a
natural grading on T = ⊕n≥0T n. The notations T ≤n = ⊕nk=0T k and T ≥n = ⊕∞k=nT k
are used to denote the space of polynomials of degree ≤ n and ≥ n respectively. Let
H : T → T be the highest order terms operator such that for 0 6= η ∈ T ≤n the equality
η = H(η)+λ holds, where 0 6= H(η) ∈ T n and λ ∈ T ≤n−1. Locally, (J∞TM)∗ 'M×T
via the pairing 〈j∞v; tAT b〉 = ζbA. Under this isomorphism the infinitesimal linear
determining equations (2.14) are identified to the polynomials

ηυ(z; t, T ) =
m∑
b=1

∑
#A≤n

hAb;υ(z)tAT b, υ = 1, . . . , k. (3.29)

Definition 3.15. The symbol ΣΣΣ(L(n)) of the linear differential equations (2.14) consists
of the highest order terms of its defining polynomial (3.29):

ΣΣΣ[L(n)(z, ζ(n))] =

H[ηυ(z; t, T )] =
m∑
b=1

∑
#A=n

hAb;υ(z)tAT b : υ = 1, . . . , k

 .

Let L = (J∞g)⊥ ⊂ (J∞TM)∗ denote the annihilator subbundle of the infinitesimal
generator jet bundle. Let

I = H(L) (3.30)

be the span of the highest order terms of the annihilating polynomials at each z ∈M .
At the symbol level, total differentiation with respect to the operators (2.2) corresponds
to multiplication:

H(DzaL
(n)) = taH(L(n)), a = 1, . . . ,m. (3.31)

Since formal integrability requires that the linear determining system (2.14) be closed
under the application of the total derivative operators (2.2), it follows from (3.31) that
at each point z ∈M , the fiber I|z forms a graded submodule of T . This submodule is
known as the symbol module of the pseudo-group at the point z.

We now introduce the prolonged symbol algebra for the prolonged infinitesimal gen-
erators (3.23) of a pseudo-group action. Let s = (s1 . . . , sp), S = (S1, . . . , Sq) and
consider the R[s] module

Ŝ =

{
σ̂(s, S) =

q∑
α=1

σ̂α(s)Sα
}
' R[s]⊗ Rq.

of polynomials that are linear in S. Let

S = Rp ⊕ Ŝ =
∞∑

n=−1

Sn,
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where
S−1 = {c · s̃ = c1s̃1 + · · ·+ cps̃p} ' Rp,

and s̃ = (s̃1, . . . , s̃p) ∈ Rp are extra variables. The space S is endowed with the structure
of an R[s] module by taking the usual module structure on Ŝ and setting

τ(s)s̃i = τ(0)s̃i for any polynomial τ(s) ∈ R[s].

The highest order term map H : S → S is defined so that

H[σ(s̃, s, S)] = H[σ̂(s, S)], where σ(s̃, s, S) = c · s̃+ σ̂(s, S).

The cotangent bundle T ∗J∞ is identified with J∞ × S via the pairing

〈V; s̃i〉 = ξi, 〈V;Sα〉 = Qα = φα −
p∑
i=1

uαi ξ
i,

〈 sJSα〉 = φα;J , for n = #J ≥ 1,

whenever

V =
p∑
i=1

ξi
∂

∂xi
+

q∑
α=1

∑
#J≥0

φα;J ∂

∂uαJ
∈ TJ∞|z(∞) . (3.32)

Note that the coefficients of the vector field (3.32) are arbitrary and do not have to be
the coefficients of the prolonged vector field (3.22). Given z(n) ∈ Jn|z, the prolongation
formula (3.22) defines the prolongation map

p(n) = p(n)

z(n) : JnTM |z → TJn|z(n) , p(n)(jnv|z) = v(n)|z(n) .

In the projective limit, let p = p(∞) : J∞TM |z → TJ∞|z(∞) . Fix z(∞) ∈ J∞ with
π∞0 (z(∞)) = z, then the projection map p induces the dual prolongation map p∗ : S →
T defined by

〈j∞v; p∗(σ)〉 = 〈p(j∞v);σ〉 = 〈v(∞);σ〉 for all j∞v ∈ J∞TM |z, σ ∈ S.

Next consider the particular polynomials

βi(t) =ti +
q∑

α=1

uαi tp+α, i = 1, . . . , p,

Bα(T ) =T p+α −
p∑
i=1

uαi T
i, α = 1, . . . , q.

(3.33)

Geometrically, the polynomial Bα(T ) is the symbol of Qα, the α-th component of the
characteristic of v while βi(t) represents the symbol of the i-th total derivative operator
(3.2):

ΣΣΣ(DxiL
(n)) = βi(t)ΣΣΣ(L(n)),

where L(n) is the linear differential equations (2.14). For fixed first order jet coordinates
uαi , the functions (3.33) define the linear map

βββ : R2m → Rm, given by si = βi(t), Sα = Bα(T ). (3.34)
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Then for σ̂ ∈ Ŝ ⊂ S we have the equality

H[p∗(σ̂)] = βββ∗[H(σ̂)]. (3.35)

Consider the prolonged annihilator subbundle

Z = (g(∞))⊥ = (p∗)−1L ⊂ S, (3.36)

and define the subspace
U = H(Z) ⊂ S

corresponding to span of the highest order terms of the prolonged annihilators. In
general U is not a submodule.

Definition 3.16. The prolonged symbol submodule is defined as the inverse image of
the symbol module (3.30) under the polynomial pull-back morphism (3.34):

J = (βββ∗)−1(I) = {σ̂(s, S) : βββ∗(σ̂)(s, S) = σ̂(β(t), B(T )) ∈ I} ⊂ Ŝ. (3.37)

Proposition 3.17. A pseudo-group action G acts locally freely at a submanifold jet
z(n) if and only if the prolongation map p(n) : Jng|z → g(n)|z(n) is a linear isomorphism
or equivalently

p∗(S≤n) + L≤n|z = T ≤n.

From (3.35) and (3.36) the containment U ⊂ J always holds. When the action is
locally free the containment becomes an equality and brings algebraic structure into
the problem.

Lemma 3.18. Suppose G acts locally freely at z(n) ∈ Jn, then Uk|z(k) = J k|z(k) for all
k > n and all z(k) ∈ Jk with πkn(z(k)) = z(n).

The equality Uk|z(k) = J k|z(k) is key to proving the Basis Theorem, [35]. Since
J >n? = J ∩ Ŝ>n? is a polynomial ideal it has a Gröbner basis, [10]. For completeness,
we now recall the definition of a Gröbner basis in our particular framework. First,
given a degree compatible ordering on Ŝ, let lt(σ) be the leading term of σ. For an
ideal I ⊂ Ŝ, lt(I) be the set of leading terms of elements of I. Then, given a subset
E ⊂ Ŝ finite- or infinite-dimensional we denote the monomial ideal generated by E (in
Ŝ) by 〈E〉.

Definition 3.19. For a fix degree compatible ordering, a finite number of elements
{σ̂1, . . . , σ̂l} in J >n? is said to be a Gröbner basis of J >n? if

〈lt(σ̂1), . . . , lt(σ̂l)〉 = 〈lt(J >n?)〉.

Proposition 3.20. Given a degree compatible ordering on Ŝ, the ideal J >n? has a
Gröbner basis {σ̂1, . . . , σ̂l} and this Gröbner basis is a basis of J >n? .

Now given a moving frame, the invariantization map (3.17) is used to invariantize
the preceding algebraic constructions. Let

η(x, u; t, T ) =
m∑
b=1

∑
#A≤n

hAb (x, u)tAT b
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be a section of the annihilator bundle L, its invariantization is the polynomial

η̃(H, I; t, T ) =
m∑
b=1

∑
#A≤n

hAb (H, I)tAT b

obtained by replacing the coordinates on M by their invariantizations. Similarly let

σ̂(x, u(k); s, S) =
q∑

α=1

∑
#J≤n

hJα(x, u(k))sJSα ∈ Ŝ≤n

be a prolonged symbol polynomial, then its invariatization is the polynomial

σ̃(H, I(k), s, S) = ι(σ̂(x, u(k); s, S)) =
q∑

α=1

∑
#J≤n

hJα(H, I(k))sJSα. (3.38)

Let L̃ = ι(L) denote the invariantized annihilator bundle, Ĩ = ι(I) the invariantized
symbol submodule and J̃ = ι(J ) the invariantized prolonged symbol module. Identifying
the polynomial (3.38) with the differential invariant

Ieσ =
q∑

α=1

∑
#J≥0

hJα(H, I(k))IαJ

we come to the following important result proved in [35].

Theorem 3.21. Let G be a Lie pseudo-group that acts freely on an open subset of
the submanifold bundle at order n?. Then a finite generating system for its differential
invariant algebra consists of

• the differential invariants Iν = Ieσν , where σ̃1, . . . , σ̃l form a Gröbner basis for the
invariantized prolonged symbol submodule J̃ >n? , and, possibly,

• a finite number of additional differential invariants of order ≤ n?.

Example 3.22. We continue Example 3.7. Given the moving frame (3.12) we can
invariantize the submanifold jet coordinates to obtain a complete set of differential
invariants. This is achieved by substituting the expressions for the normalized pseudo-
group parameters (3.12) into the lifted invariants (3.9):

Ipp = ι(lpp) =
llpp
l2p
, Ippp = ι(lppp) =

l2lppp
l3p

,

Ippu = ι(lppu) =
l

l5p

[
−2lpp

D(lu, lp)
D(p, u)

+ lp
D(lpp, l)
D(u, p)

]
, (3.39)

Ippx = ι(lppx) =
1
l

[
−2
(
lulp − p

D(l, lp)
D(p, u)

)
LPP
l2p

+
1
l2p

(D̂(l)lpp + llppx)

+plplppu +
(
lp
lpp
Ẽ(l)− plu

)
Ippp
l

]
.

The coordinate expression of the invariant Ipux = ι(lpux) is a little bit too long to write
down but it is a simple exercise of substituting the expressions (3.12) into LPUX given
in (3.9).
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As the pseudo-group (2.17) acts projectably, the invariantization of the horizontal
coframe {dx, du, dp} is simply obtained by pulling-back the lifted horizontal coframe
(3.7) via the moving frame (3.12):

$x = ωx = ι(dx) = ldx, $u = ωu = ι(du) = lp(du− pdx),

$p = ωp = ι(dp) =
lu
l

(du− pdx) +
lp
l

(
dp− Ẽ(l)

lpp
dx

)
.

(3.40)

The corresponding dual invariant total differential operators to (3.40) are

Dp =
l

lp
Dp, Du =

1
l2p

(lpDu − luDp), Dx =
1
l

(
Dx + pDu +

Ẽ(l)
lpp

Dp

)
. (3.41)

We can also systematically invariantize the basic contact forms (3.13). For example,

ϑ =ι(θ) = ι(dl − lxdx− ludu− lpdp) = ι(dl)− ι(dp)

=ρ∗
(
πJ

(
d

(
l

φx

)))
−$p = ρ∗

(
θ + lxdx+ ludu+ lpdp

φx
− lφxx

φ2
x

dx

)
−$p =

θ

l
.

Similarly, the invariantization of the first order contact forms are

ϑp = ι(θp) =
θp
lp
, ϑu = ι(θu) =

1
llp

[
θu −

lu
lp
θp

]
,

ϑx = ι(θx) =
1
l2

[
−D̂(l)

l
θ + θx + pθu +

Ẽ(l)
lpp

θp

]
.

We now show how to use the recurrence relations (3.24). First, to compute the
correction terms φ̂α;J we need the coordinate expressions for the infinitesimal generators
of the pseudo-group action (2.17). From the infinitesimal determining system (2.20),
those are seen to be given by

v = ξ(x)
∂

∂x
+ η(x, u)

∂

∂u
+ [p(ηu − ξx) + ηx]

∂

∂p
− lξx

∂

∂l
, (3.42)

where ξ(x) and η(x, u) are two arbitrary differentiable functions. Using the formula
(3.23) to compute the prolongation of the vector field (3.42) the recurrence relations
(3.24) reduce to

dX =Ωx + µx, dU = Ωu + µu, dP = Ωp + P (µuU − µxX) + µuX ,

dL =LXΩx + LUΩu + LPΩp + Θ− LµxX ,
dLP =LPXΩx + LPUΩu + LPPΩp + ΘP − LPµuU ,
dLU =LUXΩx + LUUΩu + LPUΩp + ΘU − LU (µxX + µuU )− LP (PµuUU + µuUX),
dLX =LXXΩx + LUXΩu + LPXΩp + ΘX − 2LXµxX − LµxXX − LUµuX

− LP [P (µuUX − µxXX) + µuXX ],
dLPP =LPPXΩx + LPPUΩu + LPPPΩp + ΘPP − LPP (2µuU − µxX),
dLPU =LPUXΩx + LPUUΩu + LPPUΩp + ΘPU − LPµuUU − 2LPUµuU

− LPP (PµuUU + µuUX),
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dLPX =LPXXΩx + LPUXΩu + LPPXΩp + ΘPX − LPµuUX − LPX(µuU + µxX)
− LPUµuX − LPP [P (µuUX − µxXX) + µuXX ],

dLUU =LUUXΩx + LUUUΩu + LPUUΩp + ΘUU − LUµuUU − LUU (µxX + 2µuU )
− LP (PµuUUU + µuUUX)− 2LPU (PµuUU + µuUX),

dLUX =LUXXΩx + LUUXΩu + LPUXΩp + ΘUX − LU (µxXX + µuUX)
− LUX(2µxX + µuU )− LP (PµuUUX + µuUXX)− LPX(PµuUU + µuUX)
− LUUµuX − LPU [P (µuUX − µxXX) + µuXX ], (3.43)

dLXX =LXXXΩx + LUXXΩu + LPXXΩp + ΘXX − 3LXµxXX − LµxXXX
− 3LXXµxX − LUµuXX − 2LUXµuX − 2LPX [P (µuUX − µxXX) + µuXX ]
− LP [P (µuUXX − µxXXX) + µuXXX ],

dLPPP =LPPPXΩx + LPPPUΩu + LPPPPΩp + ΘPPP − LPPP (3µuU − 2µxX),
dLPPU =LPPUXΩx + LPPUUΩu + LPPPUΩp + ΘPPU − 2LPPµuUU + LPPU (µxX − 3µuU )

− LPPP (PµuUU + µuUX),
dLPPX =LPPXXΩx + LPPUXΩu + LPPPXΩp + ΘPPX + LPP (µxXX − 2µuUX)

− 2LPPXµuU − LPPUµuX − LPPP [P (µuUX − µxXX) + µuXX ],
dLPUX =LPUXXΩx + LPUUXΩu + LPPUXΩp + ΘPUX − LPµuUUX − LPXµuUU

− LPUµuUX − LPUX(2µuU + µxX)− LPP (PµuUUX + µuUXX)
− LPPX(PµuUU + µuUX)− LPUUµuX − LPPU [P (µuUX − µxXX) + µuXX ],

and so on. Pulling-back the recurrence relations (3.43) via the moving frame (3.12), we
use the recurrence relations for the phantom invariants (3.11) to obtain the expressions
for the pulled-back Maurer–Cartan forms:

νx = −$x, νu = −$u, νuX = −$p, νxX = $p + ϑ,

νuU = Ipp$
p + ϑp, νuXX =

1
Ipp

(Ipux$u + Ippx$
p + ϑpx − ϑu),

νuXU = ϑu, νxXX = ϑx −
1
Ipp

(Ipux$u + Ippx$
p + ϑpx − ϑu),

νuUU = Ipux$
x + Ippu$

p + ϑpu − Ippϑu, νuUUX = ϑuu,

νuUXX = Ipux$
p + ϑux, . . . .

(3.44)

Substituting the expressions (3.44) in the recurrence relation for LPP , for example,
yields

dIpp = Ippx$
x + Ippu$

u + Ippp$
p + ϑpp + Ipp($p − 2Ipp$p + ϑ− 2ϑp). (3.45)

Since the differential of Ipp is dIpp = dHIpp+dVIpp = DxIpp$x+DuIpp$u+DpIpp$p+
dVIpp we conclude from (3.45) that

DxIpp = Ippx, DuIpp = Ippu, DpIpp = Ippp + Ipp(1− 2Ipp),
dVIpp = ϑpp + Ipp(ϑ− 2ϑp).

(3.46)

Similarly, the horizontal component of the recurrence relations for the differential in-
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variants Ippp, Ippu, Ippx and Ipux yields the relations

DxIppp = Ipppx, DuIppp = Ipppu, DpIppp = Ipppp + Ippp(2− 3Ipp),
DxIppu = Ippux − 2IppIpux, DpIppu = Ipppu + Ippu(1− 5Ipp),

DuIppu = Ippuu, DxIppx = Ippxx, DuIppx = Ippux − Ipux
(
Ippp
Ipp

+ 1
)
,

DpIppx = Ipppx − Ippx
(

1 + 2Ipp +
Ippp
Ipp

)
+ Ippu, DxIpux = Ipuxx,

DuIpux = Ipuux −
IppuIpux
Ipp

, DpIpux = Ippux − Ipux(3Ipp + 1)− IppuIppx
Ipp

.

(3.47)

From (3.47) we conclude that all fourth order normalized invariants are expressible
in terms of the invariants Ippp, Ippu, Ippx, Ipux, Ipp and their invariant derivatives.
Combined with (3.46) the fourth order normalized invariants are in fact expressible
solely in terms of Ipp, Ipux and their invariant derivatives. Repeating the argument
for the higher order normalized differential invariants we conclude that {Ipp, Ipux} is a
generating set for the algebra of differential invariants.

Proposition 3.23. The algebra of differential invariants of the pseudo-group action
(2.17) is generated by {Ipp, Ipux}.

3.2 Singular Submanifold Jets

As stated in Theorem 3.4, a moving frame exists in a neighborhood of a submanifold
jet z(∞) provided the action is free and regular. But most infinite-dimensional pseudo-
group actions admit submanifold jets where the action is not free.

Example 3.24. All pseudo-group actions that satisfy

rn = dim G(n)|z > dim Jn|z = (m− p)
(
p+ n

p

)
for all n ≥ 1 (3.48)

can never be free. Indeed, the inequality (3.48) implies that for all n ≥ 1 we have
Gz(n) 6= {1(n)|z(n)} since the dimension of the pseudo-group fiber is larger than the
space on which it acts. For such pseudo-groups, all submanifold jet z(∞) are singular.

Singular submanifold jets play an important role in the solution of equivalence
problems and cannot be neglected. At those points, the next best thing that can be
done is to introduce a partial moving frame.

Definition 3.25. Let G be a regular pseudo-group action on M . A submanifold jet
z(n) ∈ Jn is said to be singular if the pseudo-group does not act freely at z(n). The set
of n-th order singular jets is be denoted by Sn ⊂ Jn.

By definition, Sn = Jn \ Vn, and for all n smaller than the order of freeness n? the
equality Sn = Jn holds, except for n= 0 as any pseudo-group action trivially satisfies
the freeness condition of Definition 3.2 since G(0)

z = {1|(0)
z }. The n-th order singular

subset is characterized by the infinitesimal condition

Sn =
{
z(n) ∈ Jn : dim g(n)|z(n) < rn = dim G(n)

}
, n ≥ 1.
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Definition 3.26. A submanifold jet z(∞) is said to be (totally) singular if for all
n ≥ 1 its projection π∞n (z(∞)) ∈ Sn is a singular submanifold jet. The set of singular
submanifold jets z(∞) is denoted by S∞ ⊂ J∞.

We introduce the notation

S∞n = π∞n (S∞) ⊂ Sn, n ≥ 1,

to denote the set obtain by truncating the singular submanifold jets in S∞ at order n.
At order zero we have S∞0 = M .

Definition 3.27. A submanifold S ⊂M is singular at a point z ∈ S if jnS|z ⊂ Sn for
all n ≥ 1. A submanifold S is said to be singular if for every z ∈ S the submanifold is
singular at z.

The space of singular jets S∞ can be very complicated. We now make some regularity
assumptions on S∞ and its projections S∞n . We assume that there exists a finite n0 ≥ 1
such that S∞n0

is a G-invariant bundle of Jn0 (more precisely a Zariski open subset of
Jn0) of the form

S∞n0
= {(x, u(n0)) : E(n0)(x, u(n0)) 6= 0 and F (n0)(x, u(n0)) = 0}

such that for all n ≥ n0 the subset S∞n is obtained from S∞n0
by “prolongation” in the

following sense

S∞n = {(x, u(n)) : E(n0)(x, u(n0)) 6= 0 and (Dx
JF

(n0))(x, u(n)) = 0, 0 ≤ #J ≤ n−n0}.

The G-invariance means that for all g(n0) ∈ G(n0) and z(n0) ∈ S∞n0
we have g(n0) · z(n0) ∈

S∞n0
. The integer n0 is called the determining order of the singular submanifold jet

bundle S∞. We also allows the possibility that S∞ = J∞. As mentioned in Example
3.24, this occurs when the dimension of fibers of the pseudo-group is too large.

The different bundles S∞ satisfying the above regularity assumptions naturally ap-
pear as one tries to normalize the pseudo-group parameters in the lifted invariants
(3.4). The differential functions E(n0)(x, u(n0)) appear as one imposes non-degeneracy
conditions on some lifted invariants (3.4) while the functions F (n0)(x, u(n0)) come from
assuming that some lifted invariants are identically equal to zero. In a local equivalence
problem, the different sets S∞ (together with V∞) correspond to the different branches
in the solution. The examples in Section 4 will illustrate and clarify the regularity
assumptions made on S∞. Finally, though the pseudo-group action is no longer free on
S∞ we continue to assume that the pseudo-group action is regular.

Definition 3.28. For n ≥ 1, let

GS∞n =
⋃

z(∞)∈S∞

Gπ∞n (z(∞)),

be the collection of isotropy groups of the submanifold jets z(n) ∈ S∞n . The limit

GS∞ =
⋃

z(∞)∈S∞

Gz(∞) (3.49)

is called isotropy pseudo-group of S∞.
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Two regularity assumptions are made on the isotropy pseudo-group GS(∞) . We
assume there exists a finite n? ≥ n0 ≥ 1, called the determining order of the isotropy
pseudo-group, such that for all n ≥ n?

• the isotropy pseudo-group GS∞n is an embedded subbundle of G(∞)|S∞n (G(∞)|S∞n
denotes the restriction of the pseudo-group jet bundle G(n) to S∞n ),

• the projection πn+1
n : GS∞n+1

→ GS∞n is a fibration.

The Lie pseudo-group G acts on GS∞ by conjugation:

Kh(∞)(g(∞)) = h(∞) · g(∞) · (h−1)(∞), for all g(∞) ∈ Gz(∞) and σσσ(h(∞)) = z(∞).

At the infinitesimal level let

gz(∞) = ker p|z(∞) ∩ J∞g|z, z = π∞0 (z(∞)), (3.50)

be the isotropy Lie algebra of Gz(∞) . Then

gS∞ =
⋃

z(∞)∈S∞

gz(∞)

is the isotropy Lie algebroid of GS∞ . In local coordinates, the regularity assumptions on
the isotropy pseudo-group GS∞ forces the system of equations (3.50) to be (formally)
integrable in the sense that for all n ≥ n? and k ≥ 0

(πn+k
n )∗(gz(n+k)) = gz(n) , with gz(n) = (π∞n )∗(gz(∞)). (3.51)

3.2.1 Partial Moving Frames

Though it is not possible to obtain a moving frame over S∞, it is nevertheless possible
to introduce the notion of a partial moving frame.

For n ≥ n∗, the determining order of the isotropy pseudo-group GS∞ , let ES∞n be
the pull-back bundle of GS∞n → M via the projection πn0 : S∞n → M . In the projective
limit, ES∞ is called the prolongation bundle of S∞. A local diffeomorphism ϕ ∈ G acts
on the set

{(z(n), g(n)) ∈ ES∞n | π
n
0 (z(n)) ∈ dom ϕ}

by
ϕ · (z(n), g(n)) = (jnϕ|z · z(n),Kjnϕ|z(g

(n))).

Definition 3.29. Let G be a regular pseudo-group action on S∞. An n-th order partial
moving frame over S∞n is a G-equivariant bundle map

ρ(n) : ES∞n → E
(n)|S∞n ,

where E(n)|S∞n denotes the restriction of E(n) to S∞n .

As in Definition 3.1 for moving frames, right G-equivariance means that

ϕ · ρ(n)(z(n), g(n)) =ϕ · (z(n), ρ̃(n)(z(n), g(n)))

=(jnϕ|z · z(n), ρ̃(n)(jnϕ|z · z(n),Kjnϕ|z(g
(n))))

=(jnϕ|z · z(n), ρ̃(n)(z(n), g(n)) · jnϕ−1|ϕ(z)).
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A right partial moving frame is constructed by following the algorithm in Section
3.1 leading to a moving frame. Namely, a partial moving frame is obtained by fixing
a series of compatible cross-sections Kn ⊂ S∞n , n ≥ n?, to the pseudo-group action
and solving the normalization equations (3.6). By assumption, the solution to the
normalization equations will depend on the submanifold jets and the isotropy pseudo-
group parameters. To obtain a unique solution, the isotropy pseudo-group parameters
need to be specified. It is for this reason that the isotropy pseudo-group GS∞ is given as
an input in the definition of a partial moving frame (See Figure 2 for an illustration of
partial moving frame). In view of the partial moving frame construction, the isotropy
pseudo-group parameters g(∞) ∈ Gz(∞) will loosely be referred as the unnormalizable
parameters of the pseudo-group action and the corresponding Maurer–Cartan forms as
the unnormalizable Maurer–Cartan forms.

K∞

t
z(∞)

ng(∞)
- t

h(∞) · z(∞)

nh(∞) · g(∞) · (h(∞))−1
-

ρ̃ · z(∞)
tnρ̃ · g(∞) · ρ̃−1
-

�
ρ̃

�
ρ̃ · (h(∞))−1

Figure 2: Right partial moving frame ρ(z(∞), g(∞)) = (z(∞), ρ̃(z(∞), g(∞))), with g(∞) ∈ Gz(∞) .

The definition of the invariantization map (3.17) and the recurrence formula (3.25)
still hold for partial moving frames, with the obvious difference that these formulas
hold on ES∞ . We note that by construction none of the normalized differential in-
variants (H, I(∞)) = ι(x, u(∞)) can depend on the isotropy pseudo-group parameters
g(∞) ∈ GS∞ as otherwise those parameters could be normalized. On the other hand,
the invariantization of the jet forms dxi, θαJ may depend on the isotropy pseudo-group
parameters.

3.2.2 Algebra of Differential Invariants for Singular Submanifold Jets

In this section we revisit the algebraic constructions of Section 3.1.1 at a singular
submanifold jet (x, u(∞)) = z(∞) ∈ S∞ ⊂ J∞. The main conclusion is that, modulo the
appropriate modifications, a Basis Theorem similar to Theorem 3.21 holds for singular
submanifold jets (provided our regularity assumptions on S∞ hold).

By hypothesis, (x, u(∞)) is a solution to the defining system of equations

E(n0)(x, u(n0)) 6= 0, F (∞)(x, u(∞)) = 0 for S∞.

Under the identification,

dxi ←→ s̃i, duαJ ←→ sJS
α,

we refer the reader to [35] for more details, the exterior differential of the functions
F (∞)(x, u(∞))

dF (x, u(n)) =
p∑
i=1

∂F

∂xi
(x, u(n))dxi +

q∑
α=1

∑
#J≤n

∂F

∂uαJ
(x, u(n))duαJ , F ∈ F (∞)(x, u(∞)),
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at a fixed z(∞) = (x, u(∞)) ∈ S∞ gives a collection of polynomials in S. Considering
the span of the leading terms

span
{

ΣΣΣ(dF (∞)(x, u(∞)))
}

=

span


q∑

α=1

∑
#J=n

∂F

∂uαJ
(x, u(n))sJSαJ : F (x, u(n)) ∈ F (∞)(x, u(∞))

 (3.52)

we obtain a vector subspace of S. Since F (∞)(x, u(∞)) = 0 is assumed to be formally
integrable, the vector space (3.52) is in fact a submodule of S. Let

Sz(∞) = S/span
{

ΣΣΣ(dF (∞)(x, u(∞)))
}

be the quotient module of S by (3.52). Geometrically, Sz(∞) can be identified with the
independent submanifold jet coordinates of z(∞) ∈ S∞. We can assume, possibly by
restricting to an open subset in S∞, that Sz(∞) does not depend on the particular z(∞).
We will then write SS∞ . We now defined the prolonged annihilator subbundle (3.36)
and the prolonged symbol submodule (3.37) at a singular submanifold jet the same way
as it is done for regular submanifold jets except that the module S is replaced by the
quotient module SS∞ .

Under the identification of (J∞TM)∗ with the symbol module T let

(gz∞)⊥ = Tz(∞) ⊂ T .

be the isotropy algebra annihilator space at the submanifold jet z(∞).

Proposition 3.30. Let z(∞) ∈ S∞, then

p∗(SS∞) + L|z = Tz(∞) . (3.53)

Proof. Let z(∞) ∈ S∞, then

gz(∞) = ker p|z(∞) ∩ J∞g|z = (rng (p)∗)⊥ ∩ (L|z)⊥ = (p∗(SS∞) + L|z)⊥,

from which (3.53) follows.

Definition 3.31. The isotropy algebra annihilator Tz(∞) is said to be (formally) inte-
grable if there exists a finite n? ≥ 1 such that for all n ≥ n? and k ≥ 0

T ≤n+k
z(∞) ∩ T ≤n = T ≤n

z(∞) . (3.54)

The smallest integer n? satisfying the definition is called the order of integrability of
Tz(∞) .

We note that Definition 3.31 is just a restatement of the integrability condition
(3.51). Fixing a degree compatible term ordering, [39], let N|z(∞) ⊂ T denote the
monomial module generated by the leading monomials of Tz(∞) . Again, we can assume,
possibly by restricting to an open subset in S∞, that N|z(∞) = N does not depend on
z(∞) ∈ S∞. Under the correspondence

µaB ←→ tBT
a (3.55)
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the unormalizable Maurer–Cartan forms associated with a partial moving frame are in
one-to-one correspondence with the monomials

tBT
a /∈ N .

The important Lemma 3.18 leading to the Basis Theorem 3.21 also holds for singular
submanifold jets.

Proposition 3.32. Let n? be the order of integrability of Tz(∞) and z(n) = π∞n (z(∞)),
then

Un|z(n) = J n|z(n) (3.56)

for all n > n?.

Proof. By induction it suffices to prove (3.56) when n = n?+1. Let Q ∈ J n?+1|z(n?+1)

and P = p∗(Q). By (3.35) and (3.37)

H(P ) = H(p∗(Q)) = βββ∗(H(Q)) = βββ∗(Q) ∈ In?+1|z.

The integrability of Tz(∞) implies that there exists Y ∈ T ≤n
?

z(∞) such that P+Y ∈ Ln?+1|z.
Let U ∈ S≤n

?

S∞ and V ∈ L≤n? |z such that Y = p∗(U) + V , then

p∗(Q+ U) = (P + Y )− V ∈ L≤n?+1|z.

Equation (3.36) implies that Q+ U ∈ Z≤n?+1|z(n?+1) .

The proof of Proposition 3.32 is essentially the same as [35, Lemma 5.5], valid for Lie
pseudo-groups acting freely. It is included to show where the integrability assumption
on Tz(∞) comes into play. By virtue of Proposition 3.32 the constructions and results of
[35] also hold when Tz(∞) is formally integrable. In particular, the Basis Theorem 3.21
still holds.

For certain types of Lie pseudo-group actions, the integrability assumption on the
isotropy algebra annihilator can be replaced by involutivity. Locally, assume that M '
X × U → X is a fiber bundle and that submanifolds of M are local sections of the
fiber bundle. Let G be a Lie pseudo-group action on X × U , for the remainder of this
section we assume that there exists a Lie pseudo-group action H on X such that G is
an isomorphic prolongation of H (recall Definition 2.8). Such Lie pseudo-group actions
are of interest as they occur as symmetry groups of differential equations, for example
the Kadomtsev–Petviashvili and the Khokhlov–Zabolotskaya equations [11, 38], but
more importantly, Cartan’s method of equivalence of coframes falls into this category
of pseudo-group actions. We will discuss in more detail this aspect in Section 4.3.

Let

TH = span {tJT i : J = (j1, . . . , jk), 1 ≤ jl ≤ p; i = 1, . . . , p} ⊂ T

be the symbol module of the Lie pseudo-group H acting on X. We defined the isotropy
algebra annihilator in TH at a submanifold jet z(∞) ∈ J∞(M,p) by

TH;z(∞) = (gz(∞))⊥ ∩ TH.
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Since G is an isomorphic prolongation of H the involutivity of TH;z(∞) automatically
implies the involutivity of the annihilator Tz(∞) = TG;z(∞) . Also, the assumption that G
is an isomorphic prolongation of H implies that the linear polynomials

tp+αT
i and Tα − Lα(z, tJT i) i = 1, . . . , p, α = 1, . . . , q,

where Lα(z, tJT i) are linear functions in tJT
i depending on G, are in L|z. Setting

P|z = span {tAtp+αT i, tA(Tα − Lα(z, tJT i)) : A = (a1, . . . , ak), 1 ≤ ab ≤ m}

we have TH;z(∞) ' (gz(∞))⊥/P|z. In other words, TH;z(∞) is obtained from (gz(∞))⊥ by
setting tAtp+αT i = 0 and replacing tATα with TALα(z, tJT i) in p∗(Sz(∞)). Now, at the
symbol level, the i-th total derivative operator (3.2) becomes multiplication by ti in
TH,z(∞) :

ΣΣΣ(DxiL) = tiΣΣΣ(L), L ∈ TH,z(∞) .

This means that the symbol of Dxi equals the symbol of the partial derivative operator
∂xi . Hence on TH;z(∞) we can introduce the notion of involutivity by appealing to the
standard theory of involutivity of partial differential equations as developed by Seiler,
[39]. We now summarize this theory in the context of our algebraic constructions.

Definition 3.33. Let z(∞) be a fix submanifold jet, n ≥ 1, and

T nH;z(∞) =

ηυ(z(∞); t, T ) =
p∑
i=1

∑
#J=n

hJi;υ(z(∞))tJT i, υ = 1, . . . , `


the collection of degree n polynomials in TH;z(∞) . The symbol matrix

Tn = T(T n
z(∞)) =

(
hJi;υ(z(∞))

)
, υ = 1, . . . , `, i = 1, . . . , p, #J = n (3.57)

is the ` × p
(
p+n−1
n

)
matrix with the entries of the υ-th row given by the coefficients

hJi;υ(z(∞)) of the polynomial ηυ(z(∞); t, T ).

To define the class of a symmetric multi-index J = (j1, . . . , jk) we rewrite the
multi-index as J = (j̃1, . . . , j̃p), where j̃i is the number of occurrences of the integer i
in (j1, . . . , jk).

Definition 3.34. The class of a multi-index J = (j̃1, . . . , j̃p) is

cl J = min {i : j̃i 6= 0}.

The columns of the symbol matrix Tn are ordered in such a way that the column
(ηJi;1, . . . , ∂η

J
i;`)

T is always to the left of the column (ηKj;1, . . . , η
K
j;`)

T if cl J > cl K. For
two multi-indices with the same class, the order of the columns does not matter. Once
the columns of the symbol matrix are ordered it is put in row echelon form without
performing any column permutations.

Definition 3.35. Let β(j)
n , j = 1, . . . , p, be the number of pivots with class 1 ≤ j ≤ p

of the row echelon form symbol matrix Tn. The numbers β(j)
n are called the indices of

Tn.
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Definition 3.35 depends on the chosen coordinate system and one must always work
with δ-regular coordinate systems.

Definition 3.36. A coordinate system is said to be δ-regular if the sum
∑m

j=1 j β
(j)
n is

maximal.

Any coordinate system can be transformed into a δ-regular one with a linear trans-
formation defined by a matrix coming from a Zariski open subset of Rp×p, [39].

Definition 3.37. The subspace T nH;z(∞) is said to be involutive if the symbol matrix

Tn+1 of T n+1
H;z(∞) satisfies the algebraic equality

rank Tn+1 =
p∑
j=1

jβ(j)
n . (3.58)

Definition 3.38. The annihilator space TH;z(∞) is said to be involutive if there exists
n ≥ 1 such that T nH;z(∞) is involutive.

By Cartan–Kuranishi Involutive Completion Theorem, [3, 39], we have the following
result.

Proposition 3.39. There exists a finite n ≥ 1, such that T nH;z(∞) is involutive. The
smallest such n = n? is called the order of involutivity of TH;z(∞) .

We remark that involution is preserved under prolongation, thus the involution of
T n?H;z(∞) implies the involution of T kH;z(∞) for all k ≥ n?. When TH;z(∞) is involutive, the
size of the isotropy algebra gz(∞) can be determined in terms of the Cartan characters,
[39].

Definition 3.40. Let T nH;z(∞) be involutive with indices β(j)
n , the Cartan characters of

T nH;z(∞) are defined by the expressions

α(j)
n = p

(
n+ p− j − 1

n− 1

)
− β(j)

n , 1 ≤ j ≤ p. (3.59)

Theorem 3.41. Let T n
z(∞) be involutive with Cartan characters α(j)

n . Then the vector
fields in gz(∞) depend on fj arbitrary functions of j variables where the numbers fj are
determined by the recursion relation

fp = α(p)
n ,

fj = α(j)
n +

p∑
i=j+1

(j − 1)!
(p− 1)!

(s(i−1)
i−j (0)α(i)

n − s
(i−1)
i−j (n)fi), 1 ≤ j ≤ p− 1,

(3.60)

provided all fj are non-negative integers. The numbers s(j)i (k) are the modified Stirling
numbers defined by the identity

(k + y + 1)(k + y + 2) · · · (k + y + n) =
n∑
l=0

s
(n)
n−l(k)yl

for all non-negative integers n, l, k with n ≥ l. Here y is an arbitrary variable.
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Since involutivity is stronger than formal integrability it follows that the Basis
Theorem 3.21 holds when TH;z(∞) is involutive. Finally, as in Section 3.1.1 the concepts
of integrability and involutivity are also well defined when the algebraic constructions
are invariantized since they coincide with their progenitor when restricted to the cross-
section used to define the partial moving frame.

Example 3.42. Consider the diffeomorphism pseudo-group of R2

X = f(x, u), U = g(x, u),

acting on planar curves (x, u(x)). The Maurer–Cartan forms for this pseudo-group
action are given in Example 2.2. The pseudo-group action on J∞(R2, 1) is transitive
and a cross-section to the pseudo-group action is

X = ÛXk = 0, k = 0, 1, 2, . . . .

Let $ = ι(dx) be the invariantization of horizontal form dx and ϑk = ι(θk) the in-
variantization of the contact forms. Solving the recurrence relations (3.26) for the
Maurer–Cartan forms we obtain

νx = −$, νuXk = ϑk. (3.61)

Under the correspondence (3.55), we have, by considering the left-hand side of (3.61),
that

T̃ι(z(∞)) = ι(Tz(∞)) = span {T 1, tk1T
2 : k ≥ 0}. (3.62)

The symbol module (3.62) is not involutive since it does not satisfy the involutivity test
(3.58). Indeed, for all n ≥ 1 the indices of Tn are β(2)

n = 1, β(1)
n = 0 while

rank Tn+1 = 1 6= 2 = 2β(2)
n + β(1)

n .

On the other hand, the symbol module (3.62) is integrable of order n? = 1 as it satisfies
the integrability condition (3.54).

The complement to (3.62) is spanned by

ti1t
j
2T

1, tj2T
2, i, j ≥ 1,

and we conclude that the isotropy pseudo-group is parametrized by the pseudo-group
parameters

fxiuj , guj , i, j ≥ 1.

4 Equivalence of Submanifolds

Let G be a Lie pseudo-group action on a manifold M . Given two p-dimensional subman-
ifolds S, S in M the local equivalence problem for submanifolds consists of determining
whether there exists or not a local diffeomorphism ϕ ∈ G mapping S onto S locally. In
accordance with Cartan’s general philosophy, the solution to the equivalence problem
is completely prescribed by the differential invariants of the pseudo-group action.

Within the equivariant moving frame framework the solution has a simple geomet-
rical interpretation. Let ρ be a moving frame with corresponding cross-section K∞. To
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determine if two regular submanifolds S, S are locally equivalent up to a diffeormor-
phism ϕ ∈ G the liberty of “movement” of the pseudo-group action G is removed by
projecting the submanifold jets j∞S, j∞S onto the cross-section K∞ with the moving
frame ρ. If the projections are locally the same then the submanifolds are locally equiv-
alent and if the projections are different then the submanifolds are inequivalent. As the
local coordinates on K∞ are in one-to-one correspondence with the normalized differ-
ential invariants (H, I(∞)) of G via the invariantization map (3.18), the submanifolds
S, S are locally equivalent it the restrictions of the differential invariants (H, I(∞)) to
S and S are the same.

�
��

�
��

�

�
��

�
��

�

K∞

(H, I(∞))|S

�

q
(H, I(∞))|S

�

ρ (x, u(∞))|S

(x, u(∞))|S

Figure 3: Signature of two equivalent submanifolds.

When the submanifolds S, S are singular, with the same type of singular jets, the
above geometrical picture still holds, but there is one important distinction. While the
equivalence map between two equivalent regular submanifolds is unique, the equiva-
lence map between two singular submanifolds is not. An equivalence map ϕ : S → S
between two singular submanifolds S, S can always be precomposed at its source by a
diffeomorphism in the isotropy pseudo-group of j∞S and composed at its range by a
diffeomorphism in the isotropy pseudo-group of j∞S to obtain a new equivalence map.

In applications, the identification of the regular and singular submanifolds naturally
occurs as one tries to obtain a cross-section to the equivalence pseudo-group action so
as to normalize the pseudo-group parameters. The submanifolds for which all pseudo-
group parameters are normalizable are regular while the others are singular. There are
fundamentally two ways of searching for a cross-section to a pseudo-group action. One
can either use the coordinate expressions of the prolonged action (3.4) or the recurrence
relations (3.24) for the lifted invariants. As the prolonged action is typically nonlinear,
in practice, it is usually simpler to work with the recurrence relations. Modulo the lifted
jet forms Ωi, Θα

J the recurrence relations (3.24) determine how the lifted invariants
depend on the pseudo-group jets through the Maurer–Cartan forms appearing on the
right-hand side of the equalities, and can thus be used find a cross-section. Using
the recurrence relations to find a cross-section is reminiscent to solving an equivalence
problem in Cartan’s framework using the intrinsic method popularized by Gardner,
[14, 15, 27]. It is this approach that we will promote in our examples.
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4.1 Equivalence of Regular Submanifolds

Let G be a pseudo-group action on M and V∞ the set of regular submanifold jets. In
this section we assume that all submanifolds S ⊂M are regular, that is j∞S ⊂ V∞. In
this setting a moving frame ρ : V∞ → E(∞) exists in a neighborhood of every z ∈ S.

In the following we use the short-hand notation Ω|S to denote the restriction of a
differential form Ω to the submanifold S (in other words Ω|S = i∗(Ω) where i : S ↪→M
is the inclusion map). But when the context is clear we will frequently make the abuse
of notation Ω = Ω|S to lighten the notation.

By virtue of Proposition 3.18, a complete set of functionally independent differential
invariants on V(∞) is given by the invariantization of the submanifold jet coordinates
ι(x, u(∞)) = (H, I(∞)). By the Basis Theorem 3.21, let I = {Iκ : κ = 1, . . . , `} be a
generating set for the algebra of differential invariants. Then all normalized invariants
can be expressed in terms of the generating invariants and their invariant derivatives

H i = F i(I1, . . . , I`, . . . ,DKI1, . . . ,DKI`, . . .),
IαJ = FαJ (I1, . . . , I`, . . . ,DKI1, . . . ,DKI`, . . .).

(4.1)

While the normalized invariants (H, I(∞)) form a complete set of functionally indepen-
dent invariants on J∞, when restricted to a submanifold S they might no longer be
functionally independent. This is definitely the case when there are more than p of
them. In principle, to solve an equivalence problem one needs to keep track of those
functional relations. But by virtue of (4.1), instead of considering the functional re-
lationships among the normalized invariants (H, I(∞))|S , it is enough to consider the
functional relations among the generating invariants and their invariant derivatives.

Definition 4.1. Let G be a Lie pseudo-group acting on p-dimensional submanifolds
of M , and I = {I1, . . . , I`} a generating set for the algebra of differential invariants
associated to a moving frame ρ : V∞ → E(∞). The n-th order signature space K(n)

is the Euclidean space of dimension `(1 + p + p2 + · · · + pn) coordinatized by w(n) =
(. . . , wκ;J , . . .), where (κ; J) = (κ, j1, . . . , jr) with 1 ≤ κ ≤ ` and (j1, . . . , jr) ranging
through all unordered multi-index with 1 ≤ ji ≤ p and 0 ≤ r ≤ n. The n-th order
signature map associated with the moving frame ρ is a map I(n)

S : S → K(n) whose
compontents are

wκ;J = (DJIκ)|S , κ = 1, . . . , `, #J ≤ n.

Remark 4.2. In Definition 4.1 the multi-index J is not assumed to be symmetric as
the invariant total differential operators Di generally do not commute. Nevertheless,
in applications we can reduce the dimension of the n-th order signature space K(n) by
ordering as many multi-indices J as possible using the commutation relations (3.28) for
the invariant total differential operators:

[Di,Dj ] =
p∑

k=1

T kij(Iκ,DKIκ)Dk, i, j = 1, . . . , p. (4.2)

In (4.2), the commutator invariants T kij are expressed in terms of the generating invari-
ants and their invariant derivatives.

Definition 4.3. A moving frame ρ is said to be fully regular on S if for each n ≥ 0
the signature map I(n)

S : S → K(n) is regular.
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Definition 4.4. Let ρ be a fully regular moving frame. The image

S(n)(ρ, S) = {I(n)
S (z) : z ∈ S} ⊂ K(n) (4.3)

of the n-th order signature map I(n)
S is called the n-th order signature manifold.

Proposition 4.5. Let ρ be a fully regular moving frame, and let %n denote the rank
of the n-th order signature map I(n)

S . Then

0 ≤ %0 < %1 < · · · < %s = %s+1 = · · · = r ≤ p,

and the stabilizing rank r is referred as the rank of the moving frame, and the smallest
s for which %s = %s+1 = r is called the order of the moving frame.

Theorem 4.6. Let G be a Lie pseudo-group action on M , ρ a fully regular moving
frame, and S, S ⊂ M two regular p-dimensional submanifolds. There exists a local
diffeomorphism ϕ ∈ G mapping S onto S if and only if ρ has the same order s = s on
S and S, and the (s+1)-st order signature manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap.
Moreover, if z0 ∈ S and z0 ∈ S are any points mapping to the same point

I(s+1)
S (z0) = I(s+1)

S
(z0) ∈ S(s+1)(ρ, S) ∩S(s+1)(ρ, S)

on the overlap of the two signature manifolds, then there exists a local equivalence map
ϕ mapping z0 to z0 = ϕ(z0).

Proof. Let J1, . . . , Jr be a set of invariants parametrizing the the s-th order signature
manifold S(s)(ρ, S). Then there exist signature functions Fκ;K(z1, . . . , zr), such that

DKIκ = FK;κ(J1, . . . , Jr), κ = 1, . . . , `, #K ≤ s.

By hypothesis, the invariants J1, . . . , Jr also parametrize the (s+1)-th signature mani-
fold S(n+1)(ρ, S). Hence there exist signature functions F̃i;υ(z1, . . . , zr) such that

DiJυ = F̃i;υ(J1, . . . , Jr), υ = 1, . . . , r, i = 1, . . . , p.

By the chain rule

Di(DKIκ) =
r∑

υ=1

∂FK;κ

∂zυ
(J1, . . . , Jr) · F̃i;υ(J1, . . . , Jr),

and we conclude that once S(s+1)(ρ, S) is known, S(s+k)(ρ, S), k ≥ 2, follows by dif-
ferentiation.

The assumption that the signature manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap im-
plies that the generating invariants I = {I1, . . . , I`} and their invariant derivatives are
equal when restricted to S and S: DKIκ|S = DKIκ|S , with #K ≥ 0. From (4.1) it
then follows that the normalized invariants H i|S = H i|S and IαK |S = IαK |S are equal
on the overlap. Equivalently, this means that the projections of j∞S and j∞S onto the
cross-section K∞ by the moving frame ρ are the same. Choose z0 ∈ S and z0 ∈ S such
that ρ(j∞S|z0) = ρ(j∞S|z0). Let Φ(z) and Φ(z) be the local diffeomorphisms in G such
that their jets at z0 and z0 satisfy

j∞Φ|z0 = ρ̃(j∞S|z0), j∞Φ|z0 = ρ̃(j∞S|z0).

Since σσσ((j∞Φ|z0)−1) = τττ(j∞Φ|z0), the map ϕ = Φ−1
◦Φ ∈ G is locally well defined and

by construction j∞ϕ ◦ j∞S|z0 = j∞S|z0 . Now, since we work in the analytic category,
the equality also holds for all z, z in some neighborhoods of z0 and z0 respectively:
j∞ϕ ◦ j∞S|z = j∞S|z. This implies ϕ(S) = S locally.
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4.2 Equivalence of Singular Submanifolds

We now turn to the equivalence of singular submanifolds. Again, let G be a Lie pseudo-
group acting on p-dimensional submanifolds of M and let S∞ be a fix set of singular
submanifold jets satisfying the regularity assumptions stated below Definition 3.27.
Since the algebra of differential invariants is also finitely generated for singular sub-
manifolds, the notion of signature manifold given in Definition 4.4 is also well defined.

Theorem 4.7. Let ρ be a (fully regular) partial moving frame defined on the bundle of
singular submanifold jets S∞ with isotropy pseudo-group GS∞ . Let S, S be to singular
submanifolds with j∞S, j∞S ⊂ S∞. There exists a local diffeomorphism ϕ ∈ G sending
S onto S if and only if ρ has the same order s = s on S and S, and the (s+1)-st order
signature manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap. Moreover, if z0 ∈ S and z0 ∈ S
are any points mapping to the same point

I(s+1)
S (z0) = I(s+1)

S
(z0) ∈ S(s+1)(ρ, S) ∩S(s+1)(ρ, S)

on the overlap of the two signature manifolds, then there is a family of local equivalence
maps mapping z0 to z0. Any two equivalence maps ϕ, ψ are related by

ψ = α ◦ϕ ◦γ, with j∞α|z0 ∈ Gj∞S|z0
and j∞γ|z0 ∈ Gj∞S|z0 .

Proof. The proof is the same as the proof of Theorem 4.6. The only difference is that
the diffeomorphism ϕ ∈ G mapping S onto S in the neighborhoods of z0 ∈ S and z0 ∈ S
is not uniquely defined. The diffeomorphism ϕ ∈ G can be precomposed by any γ ∈ G
such that j∞γ|z0 ∈ Gj∞S|z0 and compose by α ∈ G with j∞α|z0 ∈ Gj∞S|z0

to obtain a
new equivalence map ψ = α ◦ϕ ◦γ.

Remark 4.8. We note that in Theorem 4.7 the isotropy groups Gj∞S|z0
, Gj∞S|z0 are

isomorphic as they are conjugate to each other.

4.3 Equivalence of Coframes

In Cartan’s framework, a local equivalence problem is solved by recasting it as an
equivalence problem between coframes. We now specialize the preceding results to
this type of problem. Our exposition follows the treatments [19, 27]. Let H be a Lie
pseudo-group action on a p-dimensional manifold X and let

γγγ = {γi =
p∑
j=1

uij(x)dxj , i = 1, . . . , p}, γγγ = {γi =
p∑
j=1

uij(x)dxj , i = 1, . . . , p} (4.4)

be two coframes on X adapted to a given equivalence problem. Clearly, the functions
uij(x) and uij(x) depend on the geometry of the equivalence problem. We refer the
reader to [27] for an extensive discussion as to how to formulate equivalence problems
in terms of differential forms. The equivalence problem for the coframes (4.4) consists
of determining whether there exists or not a local diffeomorphism ϕ ∈ H such that

dϕ∗(γi) =
p∑
j=1

hij(x)γj , for i = 1, . . . , p. (4.5)
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The matrix (hij(x)) ∈ GL(p) in (4.5) is an element of a certain Lie group H called the
structure group of the equivalence problem. The primary goal of Cartan’s equivalence
method is to try to reduce the H-structure to an {e}-structure through a series of
“invariant operations” after which it is possible to determine if the two coframes (4.4)
are equivalent.

Considering coframes on X as sections of the coframe bundle F(X), the equivalence
problem for coframes can be interpreted as an equivalence problem of sections in F(X).
To do so, letM ⊂ F(X) be the subbundle of all coframes (4.4) adapted to an equivalence
problem. Then the action of H on X naturally induces a Lie pseudo-group action G on
the subbundle M via the the equivalence criterion (4.5). In terms of the pseudo-group
action G on M , two coframes γγγ, γγγ are locally equivalent if and only if the corresponding
sections S, S in M are equivalent up to a transformation ϕ ∈ G. Introducing the jet
bundle of sections of M one can apply the equivariant moving frame apparatus to the
pseudo-group action G to find the differential invariants of the equivalence problem.

Remark 4.9. In a system of local coordinates M ' X × U we note that the pseudo-
group action G on M is an isomorphic prolongation of the pseudo-group action H on
X (recall Definition 2.8). This observation will be used in the next section.

Example 4.10. Consider the local equivalence of first order Lagrangians (2.16) under
the pseudo-group of fiber preserving transformations

H : X = φ(x), U = β(x, u), P =
pβu + βx

φx
=
ψ(x, u, p)

φx
. (4.6)

In Cartan’s formalism, the coframes adapted to the equivalence problem are

γγγ = {γ1 = du− pdx, γ2 = ldx, γ3 = dp}, (4.7)

where l = l(x, u, p) is any nonzero Lagrangian. The subbundle M ⊂ F(X) adapted to
the equivalence problem is thus parametrized by (x, u, p, l) where (x, u, p) play the role
of the independent variables and l the role of the dependent variable. In terms of the
differential forms (4.7) the equivalence problem is encoded by requiring that

dϕ∗

dU − PdXLdX
dP

 =

a 0 0
0 1 0
b c e

du− pdxldx
dp

 for a diffeomorphism ϕ in H.

In terms of the pseudo-group action (4.6), the structure group parameters are given by

a = βu, b =
ψu
φx
, c =

ψx + pψu − γψ
lφx

, e =
βu
φx
.

The induced action on the fibers parametrized by the Lagrangian variable l is obtained
by requiring that the equality LdX = ldx holds. This gives

L =
l

φx
.

At the end of Cartan’s equivalence algorithm there are three possible outcomes,
each having their counterparts in the equivariant moving frame theory.
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a) Complete Normalization: The H-structure is reducible to an {e}-structure on
X. This occurs when the sections of M ⊂ F(X) are regular and lie in the domain
of definition of an equivariant moving frame.

b) Prolongation: The equivalence problem is prolonged to a larger space on which
the equivalence problem reduces to an {e}-structure problem. This situation
occurs when the sections of M are singular and their isotropy pseudo-groups are
finite-dimensional.

c) Involution: The structure equations of the invariant coframe are in involution.
This happens when the sections of M are singular and their isotropy pseudo-
groups are infinite-dimensional.

We now consider each cases separately and illustrate them with examples. Our focus is
on recovering results obtained with Cartan’s equivalence method using the equivariant
moving frame apparatus.

4.3.1 Complete Normalization

Let G be the Lie pseudo-group action on M ⊂ F(X) induced by a Lie pseudo-group
H acting on X. Given a moving frame ρ : V∞ → E(∞) and a regular section S ⊂ M
there is a canonical invariant coframe on X. This coframe is obtain by restricting the
invariantization of the horizontal forms dxi to the section S:

$ = $|S = {$i = ι(dxi)}|S = {ωi = ρ∗(dHXi)}|S = ωωω|S = ωωω. (4.8)

The equality between $|S and ωωω|S in (4.8) follows from the fact that contact forms
vanish on S (In fact, since the pseudo-group actions we are presently considering are
projectable, we have equality between $ and ωωω before their restriction to S). The
coframe derivatives, which are the dual operators to ωωω, are obtained by restricting the
invariant total differential oparators Di to the section S:

Di = Di|S =
∂

∂ωi
, i = 1, . . . , p.

Provided the cross-section defining the equivariant moving frame is compatible with
the normalizations leading to an {e}-structure in Cartan’s algorithm, the coframe (4.8)
will be identical to the one obtained by Cartan’s equivalence method. Now there are
three ways to derive the structure equations of the invariant coframe (4.8):

dωi =
∑

1≤j<k≤p
T ijk ω

j ∧ ωk, i = 1, . . . , p : (4.9)

One can of course compute the exterior differential of the invariant one-forms ωi using
their coordinate expressions but a better strategy is do the computations symbolically
by either using the recurrence relations (3.25) or the structure equations (2.8) of the
equivalence pseudo-group H (or4 G). We privilege the latter approach as it offers a
unified approach to recover the three possible outcomes of Cartan’s equivalence method.

Proposition 4.11. The structure equations (4.9) are obtained by taking the pull-back
of the structure equations of the equivalence pseudo-group H (or G) by the moving
frame ρ and restricting the result to a section S ⊂M ⊂ F(X).

4Since G is an isomorphic prolongation of H, the structural properties of G and H is essentially the same.
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Proof. Let (z1, . . . , zp, zp+1, . . . , zm) = (x1, . . . , xp, u1, . . . , uq) be adapted coordinates
on M ' X × U . The equalities dZa = σa + µa, a = 1, . . . ,m, combined with the
recurrence relations (3.24):

dXi = Ωi + µi, i = 1, . . . , p, dUα =
p∑
j=1

Ûαj Ωj + Θα + µp+α, α = 1, . . . , q,

lead to the identities σi = Ωi and σp+α =
∑p

j=1 Û
α
j Ωj + Θα. Hence once pulled-back

by a moving frame ρ and restricted to a section S we obtain the equalities

[ρ∗σi]|S = ωi|S , [ρ∗σp+α]|S =
p∑
i=1

Iαj ω
j |S . (4.10)

On the other hand, the Maurer–Cartan forms reduce to

νbA = νbA|S = ρ∗(µbA)|S =
p∑
j=1

F bA;j(H, I
(∞))ωj |S , b = 1, . . . ,m, #A ≥ 0. (4.11)

Substituting the expressions (4.10), (4.11) into the structure equations of the pseudo-
group H (or G) leads to the structure equations (4.9).

Remark 4.12. Only the structure equations for σ1, . . . , σp are needed to obtain the
structure equations (4.9). The pull-back of the remaining structure equations lead to
syzygies among the normalized invariants. We note that those syzygies can also be
recovered from the recurrence relations (3.25), and in [35] the authors give a computa-
tional algorithm for locating a finite system of generating differential syzygies among
the generating differential invariants.

Example 4.13. The local equivalence under the fiber preserving transformations (2.17)
of first order variational problems (2.16) satisfying the non-degeneracy conditions

l 6= 0, lp 6= 0, lpp 6= 0, (4.12)

is an example of equivalence problem where all submanifold jets are regular. The first
two non-degeneracy conditions in (4.12) are clear. The Lagrangian is assumed to be
nonzero and to depend on the derivative coordinate p. The third hypothesis says that
the Lagrangian should not be an affine function in the derivative coordinate

l(x, u, p) 6= a(x, u)p+ b(x, u)

as such Lagrangian is equivalent, modulo the addition of a suitable divergence, to a
degenerate Lagrangian that does not depend on the derivative coordinate, [21]. The
construction of a moving frame, the computation of differential invariants and their
recurrence relations was the content of Examples 3.7 and 3.22. The last step in the
solution to the equivalence problem is to analyze the signature manifold. The detailed
analysis, using Cartan’s approach, can be found in [21] and in [27, pp. 321–327]. The
rank of the moving frame (3.12) is either 0, 1, 2 or 3. The simplest case is when the rank
is zero which means that all the differential invariants are constant. It is important to
note that the constant values taken by the invariants are not completely arbitrary. For
example, in the problem we are concerned with it follows from (3.39) that Ipp 6= 0 since
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lpp 6= 0. Also the normalized invariants must satisfy the recurrence relations (3.46),
(3.47). For example, the recurrence relations (3.46) imply

Ippx = Ippu = 0, Ippp = Ipp(2Ipp − 1),

while the fourth and last recurrence relations in (3.47) give

0 = (Ipp + 1)Ipux.

Thus unless Ipp 6= −1 we must have Ipux = 0. In any case, by a standard result
in the equivalence theory of coframes, [27], the structure equations of the invariant
coframe ωωω = {ωx, ωu, ωp} associated with a rank zero moving frame will be those of
a three-dimensional Lie group. The structure equations of the invariant coframe ωωω
are obtained by taking the pull-back of the structure equations of σx = Ωx, σu = Ωu,
σp = Ωp in (2.23) by the moving frame (3.12) and restricting the result to a submanifold
(x, u, p, l(x, u, p)). Symbolically this is done by substituting the horizontal component
of the expressions (3.44) for pulled–back Mauer–Cartan forms in (2.23), and setting P
equal to zero as ρ∗(P ) = 0 by virtue of our choice of cross-section (3.11). The result
are the structure equations

dωx = ωp∧ωx, dωu = Ipp ω
p∧ωu+ωx∧ωp, dωp =

Ipux
Ipp

ωu∧ωx+
Ippx
Ipp

ωp∧ωx. (4.13)

The reader interested in comparing the structure equations (4.13) with those that one
would obtain with Cartan’s equivalence method is invited to look at the structure
equations [27, eq. (10.58)]. The passage between the two sets of equations is given by
the equalities

θ1 = ωu, θ2 = ωx, θ3 = ωp, I1 = Ipp, I2 =
Ipux
Ipp

, I3 = −Ippx
Ipp

.

As previously mentioned, the syzygies [27, eq. (10.61)], obtained by requiring that
d2θ1 = d2θ2 = d2θ3 = 0, can also be found using the recurrence relations (3.46), (3.47).
First, from (3.46) we immediately see that

−Ippx
Ipp

= − 1
Ipp
Dx(Ipp),

which is the first syzygy of [27, eq. (10.61)]. Then from the eighth identity in (3.47)
we have

Ippux = Du(Ippx) + Ipux

(
1 +

Ippp
Ipp

)
,

which when substituted into the last identity of (3.47) yields the second syzygy of [27,
eq. (10.61)]:

Dp
(
Ipux
Ipp

)
−Du

(
Ippx
Ipp

)
+ (1 + Ipp)

Ipux
Ipp

= 0.

We end this example by pointing out that the structure equations (4.13) can be
used to obtain a simple expression for the invariant Ipux in terms of Ipp. Indeed, from
the structure equations (4.13) it follows that the commutation relations between the
invariant differential operators are

[Dx,Dp] = Dx −Du +
Ippx
Ipp
Dp, [Du,Dp] = IppDu, [Dx,Du] =

Ipux
Ipp
Dp.
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Hence if DpIpp 6= 0 we conclude from the third commutation relation that

Ipux =
Ipp
DpIpp

[Dx,Du]Ipp.

Proposition 4.14. If DpIpp 6= 0 the algebra of differential invariants of the pseudo-

group action (2.17) is generated by the single invariant Ipp =
llpp

l2p
.

4.3.2 Prolongation

Let G be a Lie pseudo-group action on M ⊂ F(X) and S∞ ⊂ J∞ a subbundle of singular
submanifold jets. For the moment we assume that the fibers of isotropy pseudo-group
GS∞ are finite-dimensional. Let g = (g1, . . . , gr), r = dim Gz(∞) < ∞, be the pseudo-
group jets parametrizing the fibers of GS∞ .

Theorem 4.15. Let ρ be a (fully regular) partial moving frame defined on the bundle
of singular submanifold jets S∞ with r-dimensional isotropy pseudo-group GS∞ , i.e.
dim Gz(∞) = r for all z(∞) ∈ S∞. Let S, S be two singular sections of M ⊂ F(X)
with j∞S, j∞S ⊂ S∞. There exists a local diffeomorphism ϕ ∈ G sending S onto S if
and only if ρ has the same order s = s on S and S, and the (s+1)-st order signature
manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap. Moreover, if z0 ∈ S and z0 ∈ S are any
points mapping to the same point

I(s+1)
S (z0) = I(s+1)

S
(z0) ∈ S(s+1)(ρ, S) ∩S(s+1)(ρ, S)

on the overlap of the two signature manifolds, then there is an r-dimensional family of
local equivalence maps sending z0 to z0 locally parametrized the fibers of the isotropy
pseudo-group GS∞ .

Let µµµ = {µ1, . . . , µr} be the Maurer–Cartan forms associated with the pseudo-group
parameters g = (g1, . . . , gr). Then the invariant horizontal forms (4.8) together with
ννν = ρ∗(µµµ)|S form a finite-dimensional invariant coframe on the finite-dimensional space
ES∞ |S . Since the prolonged coframe {ωωω,ννν} contains the moving frame pull-back of the
Maurer–Cartan forms µµµ, their structure equations are contained in the pull-back of
the structure equations of H (or G) by the partial moving frame (after restriction to
a singular section S ⊂ F(X)). Indeed, when ρ is a partial moving frame, the pull-
backs (4.11) are linear combinations of the “Maurer–Cartan” forms ν1, . . . , νr and the
invariant horizontal forms ω1, . . . , ωp:

νbA = νbA|S = ρ∗(µbA)|S =
p∑
i=1

F bA;i(H, I
(∞))ωi +

r∑
l=1

GbA;l(H, I
(∞))νl,

b = 1, . . . ,m, #A ≥ 0.

Example 4.16. In this example we consider the local equivalence of second order
ordinary differential equations

uxx = F (x, u, ux)
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under the pseudo-group of fiber preserving transformations

X = φ(x), U = β(x, u), P =
pβu + βx

φx
=

ψ

φx
, (4.14a)

Q =
pψu + ψx + qβu − γψ

φ2
x

, with γ =
φxx
φx

, (4.14b)

and where we use the notation p = ux, q = uxx. The solution based on Cartan’s
equivalence method can be found in [27, p. 397]. We now reconsider this problem using
the method of equivariant moving frames.

The infinitesimal generators of the pseudo-group action (4.14) are

v = ξ(x)
∂

∂x
+η(x, u)

∂

∂u
+[p(ηu−ξx)+ηx]

∂

∂p
+[p2ηuu+p(2ηux−ξxx)+q(ηu−2ξx)+ηxx]

∂

∂q
,

where ξ(x) and η(x, u) are two arbitrary differentiable functions. Computing their
prolongation and substituting the result into (3.26) leads, modulo the lifted contact
forms ΘJ , to the recurrence relations

dX =Ωx + µx, dU = Ωu + µu, dP = Ωp + P (µuX − µxX) + µuX ,

dQ ≡QXΩx +QUΩu +QPΩp + P 2µuUU + P (2µuUX − µxXX)−Q(µuU − 2µxX) + µuXX ,

dQP ≡QPXΩx +QPUΩu +QPPΩp + 2PµuUU + 2µuUX − µxXX −QPµxX ,
dQU ≡QUXΩx +QUUΩu +QUPΩp + P 2µuUUU + 2PµuUUX − 2QUµxX +QµuUU (4.15)

+ µuUXX −QP (PµuUU + µuUX),

dQX ≡QXXΩx +QXUΩu +QXPΩp + P 2µuUUX + P (2µuUXX − µxXXX)
+QX(µuU − 3µxX) +Q(µuUX − 2µxXX) + µuXXX −QUµuX
−QP [p(µuUX − µxXX) + µuXX ],

and so on. With the recurrence relations (4.15) in hand, the objective is to normal-
ize as many Maurer–Cartan forms as possible without imposing any non-degeneracy
conditions on the invariants. For example, the equation

dX = Ωx + µx

implies that we can always translate the invariant X to take the value zero. On the
other hand, if we wanted to use the recurrence relation

dQPPP ≡ QPPPXΩx +QPPPUΩu +QPPPPΩp + (µxX − 2µuU )QPPP

to normalize the Maurer–Cartan form µuU we would need to impose the non-degeneracy
QPPP 6= 0, which for the moment we do not want to impose.

From the recurrence relations (4.15) (and their prolongations) we come to the con-
clusion that all the Maurer–Cartan forms, except for µxX , µuU , µuUX , can be normalized
without making non-degeneracy hypothesis on the invariants. An admissible cross-
section is given by

X = U = P = 0, QU iXj = QPU i = QPPU i = QPXj = 0, i, j ≥ 0. (4.16)
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Using the recurrence relations of the phantom invariants (4.16) to solve for the (moving
frame pulled-back) Maurer–Cartan forms we obtain

νx = −ωx, νu = −ωu, νp = νuX = −ωp, νuXX = 0,

νuUU = −1
2

(Ippxωx + Ipppω
p), νxXX = 2νuUX ,

νuXXX = νuUXX = νuUUX = 0, νuUUU = −1
2

(Ippuxωx + Ipppuω
p − IpppνuUX),

νuU iXj = 0, i+ j ≥ 4, νxXk = 0, k ≥ 4, (mod ωx, ωu, ωp, νxX , ν
u
U , ν

u
XU ).

(4.17)

To obtain the structure equations of the prolonged coframe {ωx, ωu, ωp, νxX , νuU , νuXU}
we simply substitute the expressions (4.17) into the structure equations of the pseudo-
group action (4.14a). The structure equations of the pseudo-group (4.14a) are given by
(2.23) where the differential of σl is omitted. The result is

dωx = νxX ∧ ωx, dωu = νuU ∧ ωu + ωx ∧ ωp,
dωp = νuXU ∧ ωu + (νuU − νxX) ∧ ωp, dνxX = −2νxX ∧ ωx,

dνuU = −Ippp
2
ωu ∧ ωp − Ippx

2
ωu ∧ ωx − νuXU ∧ ωx,

dνuXU = −Ipux
2
ωu ∧ ωx − Ippx

2
ωp ∧ ωx + νuXU ∧ νxX .

(4.18)

The structure equations (4.18) are equivalent to the structure equations [27, eq. (12.61)]
obtained with Cartan’s equivalence method. The correspondence between the differen-
tial forms and the invariants is given by

θ1 = ωu, θ2 = ωp, θ3 = ωx, π1 = νuU , π2 = νuXU , π6 = νxXU ,

J1 =
Ippp

2
, J2 = −Ippx

2
, J3 = −Ipux

2
.

Further reduction of the Maurer–Cartan forms νuU , νuXU , νxXU depends on the values
of Ipux, Ippp, Ippx. If the three invariants are equal to zero then all higher order invariants
are automatically zero. This can be seen from the recurrence relations (3.24) as follows.
Combining the assumption that Ipux = Ippp = Ippx = 0 with the cross-section (4.16) we
conclude that all invariants of order less or equal to three are zero. Since the correction
terms φ̂α;J in (3.24) only involve invariants of order less or equal to the order of the
multi-index J , the correction terms in the recurrence relations for the invariants Ipux,
Ippp, Ippx are identically zero. This implies

Ipppp = Dp(Ippp) = 0, Ipppu = Du(Ippp) = 0, Ipppx = Dx(Ippp) = 0,
Ippux = Du(Ippx) = 0, Ippxx = Dx(Ippx) = 0, Ipuux = Du(Ipux) = 0,

Ipuxx = Dx(Ipux) = 0,

and when combined with the cross-section (4.16) this means that all fourth order in-
variants are zero. Iterating the argument order by order we come to the conclusion that
all invariants are zero, that it is not possible to normalize the Maurer–Cartan forms
νuU , νuXU , νxXU and that

S∞ = {(x, u, p, l(∞)) : IJ,pux = IJ,ppp = IJ,ppx = 0, #J ≥ 0} ⊂ J∞ (4.19)
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is the bundle of singular submanifold jets. Since the Maurer–Cartan forms νuU , νuXU ,
νxXU cannot be normalized on (4.19), the isotropy pseudo-group of any submanifold jet
in (4.19) is parametrized by the pseudo-group parameters φx, βu, βxu. For this branch
of the equivalence problem, the structure equations (4.18) are the structure equations
of the six-parameter fiber-preserving symmetry group of all second order differential
equations satisfying Ipux = Ippp = Ippx = 0, [27]. The coordinate expressions for
the invariants Ipux, Ippp, Ippx and the invariant coframe {ωx, ωu, ωp, νxX , νuU , νuXU} are
obtained by implementing the (partial) moving frame algorithm of Section 3.

If certain of the invariants Ipux, Ippp, Ippx are non-zero then some of the Maurer–
Cartan forms νuU , νuXU , νxXU can be normalized leading to the different branches of the
equivalence problem. For example, in the generic case IpppIppx 6= 0 we can normalize
all three Maurer–Cartan forms νxX , νuU , νuXU by setting Ippp = Ippx = 1 and Ipux = 0.
Using the recurrence relations for Ippp, Ippx and Ipux, and solving for the Maurer–Cartan
forms νxX , νuU , νuXU we obtain

νx =
2Ippxx − Ipppx

3
ωx +

2Ippxu − Ipppu
3

ωu +
2Ipppx − Ipppp

3
ωp,

νuU =
Ipppx + Ippxx

3
ωx +

Ipppu + Ippux
3

ωu +
Ipppp + Ipppx

3
ωp,

νuXU =Ipuxxωx + Ipuuxω
u + Ippuxω

p.

Substituting the latter expressions into the structure equations of ωx, ωu, ωp in (4.18)
leads to

dωx =
2Ippux − Ipppu

3
ωu ∧ ωx +

2Ipppx − Ipppp
3

ωp ∧ ωx,

dωu =
Ipppx − Ippxx

3
ωx ∧ ωu +

Ipppp − Ipppx
3

ωp ∧ ωu + ωx ∧ ωp,

dωp =Ipuxxωx ∧ ωu +
4Ippux − 2Ipppu

3
ωp ∧ ωu +

2Ipppx − Ippxx
3

ωx ∧ ωp.

(4.20)

The structure equations (4.20) are the same as [27, eq. (12.66)] with

I1 =
Ipppx − Ippxx

3
, I2 =

2Ipppx − Ipppp
3

, I3 = 2
Ipppx − Ippxx

3
,

I4 =
2Ippux − Ipppu

3
, I5 = −Ipuxx.

4.3.3 Involution

Finally, we consider the case when the fibers of GS∞ are infinite-dimensional. By virtue
of Theorem 3.41 the size of the fibers is determined by the Cartan characters, and
Theorem 4.7 can be specialized as follows.

Theorem 4.17. Let ρ be a (fully regular) partial moving frame defined on the bundle
of singular submanifold jets S∞ with infinite-dimensional isotropy pseudo-group GS∞ .
Let S, S be two singular sections of M ⊂ F(X) with j∞S, j∞S ⊂ S∞. There exists a
local diffeomorphism ϕ ∈ G sending S onto S if and only if ρ has the same order s = s on
S and S, and the (s+1)-st order signature manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap.
Moreover, if z0 ∈ S and z0 ∈ S are any points mapping to the same point

I(s+1)
S (z0) = I(s+1)

S
(z0) ∈ S(s+1)(ρ, S) ∩S(s+1)(ρ, S)
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on the overlap of the two signature manifolds, then the set of local equivalence maps
sending z0 to z0 depend on fk arbitrary functions of k variables, where the fk’s are
given by formula (3.60).

As in the preceding section, let g(n) = (g1, . . . , grn) be the pseudo-group parameters
parametrizing GS∞n , µµµ(n) the corresponding Maurer–Cartan forms and ννν(n) = ρ∗(µµµ(n))
their (partial) moving frame pull-back. Assuming compatibility of the pseudo-group jet
normalizations in the equivariant moving method and the normalizations of the struc-
ture group parameters in Cartan’s equivalence method, the structure equations obtained
with Cartan’s method are recovered with the equivariant moving frame method by com-
puting the structure equations of the prolonged coframe {ωωω,ννν(n?−1)} where n? is the
order of involutivity of the isotropy algebra annihilator bundle. A particular feature of
the structure equations of the prolonged coframe {ωωω,ννν(n?−1)} is that they depend on
the n?-th order unnormalizable Maurer–Cartan forms. Those play an important role
in Cartan’s involutivity test, [3, 18, 27].

Remark 4.18. The equivalence problems discussed in Sections 4.3.1 and 4.3.2 can be
seen as particular instances of the general framework exposed in this section. These
equivalence problems are characterized by the property that all their Cartan characters
vanish which implies that for n ≥ n? all the n-th order pseudo-group parameters are
normalizable. If the pseudo-group action is free on Jn

?
then all pseudo-group parameters

of order ≤ n? are normalizable and we are in the framework of Section 4.3.1 where a
moving frame exits. If the action on Jn

?
is not free then finitely many pseudo-group

parameters cannot be normalized and those parametrize the finite-dimensional isotropy
pseudo-group of the singular submanifold jets.

Example 4.19. In this example we extend the fiber preserving equivalence pseudo-
group of Example 4.16 to contact transformations:

X = φ(x, u, p), U = β(x, u, p), P = ψ(x, u, p), Q =
ψx + pψu + qψp
φx + pφu + qφp

, (4.21)

where the functions φ, β and ψ satisfy the contact conditions

βp = ψφp, βx − ψφx = −p(βu − ψφu), and det
(
∂(φ, β, ψ)
∂(x, u, p)

)
6= 0. (4.22)

The corresponding infinitesimal generators are

v = ξ(x, u, p)
∂

∂x
+ η(x, u, p)

∂

∂u
+ τ(x, u, p)

∂

∂p
+ [τx + pτu + q(τp − ξx − pξu − qξp)]

∂

∂q
,

where ξ(x, u, p), η(x, u, p) and τ(x, u, p) are solution to the system of partial differential
equations

ηp = pξp, ηx = p(ξx − ηu) + τ + p2ξu, (4.23)

obtained by linearizing the determining system (4.22) at the identity jet. The lift of
(4.23) implies the linear relations

µuP − PµxP = 0, µp − [µuX + P (µuU − µxX)− P 2µxX ] = 0, (4.24)
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among the Maurer–Cartan forms. Linear relations among higher order Maurer–Cartan
forms are obtained by taking the prolongation of (4.24). The computation of the
recurrence relations (3.24) for the pseudo-group action (4.21) gives

dX =Ωx + µx, dU = Ωu + µu, dXp = Ωp + µp,

dQJ ≡QJ,XΩx +QJ,UΩu +QJ,PΩp + µpJ,X + DJ [PµpU +QµpP −Q(µxX + PµxU +QµxP )

− µxQX − µuQU − µpQP ] + µxQJ,X + µuQJ,U + µPQJ,P ,
(4.25)

modulo the lifted contact forms ΘJ . Since the Maurer–Cartan forms µPJ,X are linearly
independent it follows from (4.25) that the equivalence pseudo-group is transitive on
J∞. Since dim G(n) > dim Jn for all n, every submanifold jet is singular, S∞ = J∞.
Choosing the cross-section

X = U = P = QJ = 0, #J ≥ 0, (4.26)

we obtain
νx = −ωx, νu = −ωu, νp = −ωp, νpJ,X = 0. (4.27)

Thus once pulled-back by the partial moving frame (and restricted to a section S),
the Maurer–Cartan forms of the equivalence pseudo-group must satisfy the relations
(4.27) together with the system of equations (4.24) and their prolongations. Under the
correspondence (3.55), we can use the right-hand side of those relations to compute the
Cartan characters of the isotropy algebra annihilator bundle at the cross-section (4.26).
For example, collecting all the relations among the Maurer–Cartan forms in νx, νu, νp

of order ≤ 2 we obtain the equations

νx = −ωx, νu = −ωu, νp = −ωp,
νuP = 0, νuX − νp = 0, νpP + νxX − νuU = 0, νpX = 0,

νuPX = 0, νuPU = 0, νuPP = 0, νuXX − ν
p
X = 0, νuUX − ν

p
U = 0,

νpXX = 0, νpUX = 0, νpPX = 0, νpPX + νxXX − νuUX = 0,
νpPU + νxUX − νuUU = 0, νpPP + 2(νxPX − νuPU )− 2νxX = 0,

(4.28)

to which we associate the collection of polynomials

T x, T u, T p,

tpT
u, txT

u − T p, tpT
p + txT

x − tuT u, txT
p,

tptxT
u, tptuT

u, t2pT
u, t2xT

u − txT p, tutxT
u − tuT p,

t2xT
p, tutxT

p, tptxT
p, tptxT

p + t2xT
x − tutxT u,

tptuT
p + tutxT

x − t2uT u, t2pT
p + 2(tptxT x − tptuT u)− 2txT x.

(4.29)

Considering the polynomials of degree one on the second line of (4.29) and computing
the symbol matrix (3.57) we obtain

T1 =


txT

p txT
u txT

x tpT
p tpT

u tpT
x tuT

p tuT
u tuT

x

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 −1 0
0 0 0 0 1 0 0 0 0

. (4.30)
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The symbol of the matrix (4.30) are β(3)
1 = 3, β(2)

1 = 1, β(1)
1 = 0. Now, the rank of the

symbol matrix T2 is 11 as the symbol of the polynomials of degree two on lines 3–5
in (4.29) are linearly independent. Since 3β(3)

1 + 2β(2)
1 + β

(1)
1 = 11 the system (4.29)

is in involution and the order of involution is n? = 1. The Cartan characters (3.59)
are α(3)

1 = 0, α(2)
1 = 2, α(1)

1 = 3, and we conclude that the general equivalence map
depends on two arbitrary analytic functions, each depending on two variables. This is in
accordance with the results obtained with Cartan’s equivalence method, [27, Example
11.10].

Finally, the structure equations of the invariant coframe ωωω = {ωx, ωu, ωp} are ob-
tained by substituting νi = −ωi in the structure equations (2.8b). Note that since
ρ∗(P ) = 0 the equation (4.24) implies νpU = νuUX . This leads to the recurrence relations

dωx =νxX ∧ ωx + νxU ∧ ωu + νxP ∧ ωp,
dωu =νuU ∧ ωu + ωx ∧ ωp,
dωp =νuXU ∧ ωu + (νuU − νxX) ∧ ωp.

(4.31)

The coordinate expressions of the invariant coframe ωωω are found by the usual pseudo-
group parameter normalization procedure. The requirements that X = U = P = Q = 0
implies the normalizations

φ = 0, β = 0, ψ = 0, βp = 0, βx = −pβu, ψx = −pψu − qψp, (4.32)

which leads to

ωx =dHX|(4.32) = (φx + pφu + qφp)dx+ φu(du− pdx) + φp(dp− qdx),

ωu =dHU |(4.32) = βu(du− pdx), ωp = dHP |(4.32) = ψu(du− pdx) + ψp(dp− qdx).

This completes the solution to the equivalence problem under contact transforma-
tions. We refer the reader to [27, pp. 348–356] for the solution in terms of Cartan’s
moving frame method. For comparison purposes, the correspondence between (4.31)
and [27, eq. (11.5)] is given by

θ1 = ωu, θ2 = ωp, θ3 = ωx, π1 = νuU , π2 = νuXU ,

π3 = νuU − νxX , π4 = νxU , π5 = νxP .

Example 4.20. In our last example we consider the simultaneous local equivalence of
a two-form and a vector field on R3, [16]. This example is of interest as it is one of the
rare known equivalence problems whose solution, in terms of Cartan’s method, leads
to structure equations with an essential invariant.

Let

Ω = a(x, y, z)dx ∧ dy + b(x, y, z)dx ∧ dz + c(x, y, z)dy ∧ dz, a(x, y, z) 6= 0,

be a non-vanishing two-form and

v = e(x, y, z)
∂

∂x
+ f(x, y, z)

∂

∂y
+ g(x, y, z)

∂

∂z
, g(x, y, z) 6= 0,

a non-zero vector field on R3. Assume Ω is another non-vanishing two-form and v
another non-zero vector field. The equivalence problem consists of determining if there
exists or not a local diffeomorphism of R3

ϕ : X = φ(x, y, z), Y = β(x, y, z), Z = α(x, y, z) ∈ D(R3), (4.33)

48



such that
dϕ∗(Ω) = Ω and dϕ−1(v) = v. (4.34)

The equivalence problem splits in two branches: v Ω = 0 or v Ω 6= 0. In the
following we consider the case v Ω = 0. This imposes the restrictions

e(x, y, z) =
g(x, y, z)c(x, y, z)

a(x, y, z)
and f(x, y, z) = −g(x, y, z)b(x, y, z)

a(x, y, z)

on the vector field coefficients. In local coordinates, the equivalence criterions (4.34)
lead to the transformation rules

A(φxβy − βxφy) +B(φxαy − αxφy) + C(βxαy − αxβy) = a,

A(φxβz − βxφz) +B(φxαz − αxφz) + C(βxαz − αxβz) = b,

A(φyβz − βyφz) +B(φyαz − αyφz) + C(βyαz − αyβz) = c,

G =
g

a
(cαx − bαy + aαz),

(4.35)

for the two-form and vector field components. The infinitesimal generators correspond-
ing to the transformations (4.33), (4.35) are given by the vector fields

w =ξ(x, y, z)
∂

∂x
+ η(x, y, z)

∂

∂y
+ τ(x, y, z)

∂

∂z
− [a(ξx + ηy) + bτy − cτx]

∂

∂a

− [aηz + b(ξx + τz) + cηx]
∂

∂b
− [−aξz + bξy + c(ηy + τz)]

∂

∂c

+
g

a
[aτz − bτy + cτx]

∂

∂g
,

where ξ(x, y, z), η(x, y, z) and τ(x, y, z) are arbitrary differentiable functions. The rank
of the Lie matrix, [28], of the first prolongation w(1) reveals that the orbits of the first
order prolonged action are of codimension one in J1. Hence the equivalence pseudo-
group (4.33), (4.35) admits a first order differential invariant.

Respecting the geometric features of the equivalence problem, namely that the lifted
invariants A 6= 0 and G 6= 0, we see from the recurrence relations (3.24) that in general
there is enough liberty in the pseudo-group action to set

X = Y = Z = 0, A = G = 1, BJ = CJ = 0, #J ≥ 0,
GK = 0, #K > 1, AXiY j = 0, i+ j ≥ 1,

(4.36)

without imposing non-degeneracy conditions on some lifted invariants. We stress the
fact that the solution to the normalization equations (4.36) does not lead to the nor-
malization of all the pseudo-group parameters. Nevertheless, solving (4.36) for as many
pseudo-group parameters as possible it is possible to obtain the local coordinate ex-
pression of the anticipated first order differential invariant:

I = ι(az) =
g

a
(az − by + cx). (4.37)

Also, we observe that the invariantization of the standard horizontal coframe {dx, dy, dz}
by the equivariant moving frame method leads to an invariant horizontal coframe
ωωω = {ωx, ωy, ωz} = ι{dx, dy, dz} adapted to the geometry of the equivalence prob-
lem. First, the invariant one-forms ωx, ωy are such that Ω = ωx ∧ ωy while ωz is such
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that v ωz = 1. In the adapted invariant coframe, the differential invariant (4.37) has
a clear geometrical interpretation, it measures the obstruction of Ω to be closed since

dΩ = I ωx ∧ ωy ∧ ωz.

Further normalization of the pseudo-group parameters depends on the invariant
I = ι(az) = ρ∗(AZ). If I is constant it follows from the recurrence relations (3.24)
that the invariants ρ∗(AZ,J) are also constant. In this case no further normalization is
possible and (4.36) determines the cross-section to a partial moving frame. The partial
moving frame is involutive as we now verify. From the recurrence relations for the
phantom invariants we obtain

νx = −ωx, νy = −ωy, νz = −ωz,

for the zero order Maurer–Cartan forms and

νyY = −νxX (mod ωωω), νyZ = νxZ = νzZ = 0, (4.38)

with their prolongation, for the higher order Maurer–Cartan forms. The computation of
indices of the first order symbol matrix T1 associated to the system (4.38) yields β(3)

1 =
3, β(2)

1 = 1, β(1)
1 = 0. Computing the rank of the symbol matrix T2 corresponding to

the first prolongation of (4.38) gives: rank T2 = 11 = 3β(3)
1 + 2β(2)

1 + β
(1)
1 . Thus the

involutivity test (3.58) is satisfied. As in the previous example, the Cartan characters
are α(3)

1 = 0, α(2)
1 = 2, α(1)

1 = 3, and we conclude that the general equivalence map
depends on two arbitrary analytic functions, each depending on two variables.

Finally, the structure equations of the invariant differential forms ωx, ωy, ωz are

dωx =νxX ∧ ωx + νxY ∧ ωy,
dωy =νyX ∧ ω

x − νxX ∧ ωy − Iωy ∧ ωz,
dωz =νzX ∧ ωx + νzY ∧ ωy,

(4.39)

where the invariant I appears. The structure equations (4.39) are equivalent to [27, eq.
(11.29)]. The correspondence is given by

θ1 = ω1, θ2 = ωy, θ3 = ωz, α1 = νxX , α2 = νxY , α3 = νxY ,

β1 = νzX , β2 = νzY .

When I = ι(az) is not constant further normalizations are possible leading to dif-
ferent branches of the equivalence problems. The complete analysis, based on Cartan’s
equivalence method, can be found in [16].
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Géométriques, Exposés de Géométrie, no. 14, Hermann, Paris, 1945.
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411–451.

[45] Valiquette, F., Structure equations of Lie pseudo-groups, J. of Lie Theory 18, No.
4 (2008) 869–895.

[46] Valiquette, F. Applications of Moving Frames to Lie Pseudo-Groups, Ph.D. Thesis,
University of Minnesota, 2009.

[47] Warner, F.W., Foundations of Differentiable Manifolds and Lie Groups, Graduate
Texts in Mathematics, Vol. 94, Springer, New York, 1983.

53


