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Abstract

In 1904, Élie Cartan developed a new structure theory for Lie pseudo-groups based on
his theory of exterior differential systems, [?]. About a century later, in 2005, Olver and
Pohjanpelto proposed a new approach to derive the structure equations of Lie pseudo-groups,
[?]. The two theories are compared and it is shown that for intransitive Lie pseudo-groups
they do not agree. To make the two theories compatible, we show that Cartan’s structure
equations must be restricted to the orbits of the pseudo-group action. The repercussion of this
modification on Cartan’s concept of essential invariants is discussed. Also, the infinitesimal
interpretation of Cartan’s structure equations for transitive Lie pseudo-groups, given in 1965
by Singer and Sternberg, [?], is extended to intransitive Lie pseudo-groups.
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1 Introduction

Lie pseudo-groups are the infinite-dimensional counterparts of local Lie groups of transfor-
mations. When Sophus Lie began his work on continuous groups of transformations, no
significant distinction was drawn between finite-dimensional and infinite-dimensional theory.
But, since then the two subjects have evolved very differently. The definition of a Lie group
as an abstract object in the early twentieth century was a breakthrough in our understanding
of the finite-dimensional theory. The lack of an universally accepted abstract object play-
ing the role of an infinite-dimensional Lie group has made the study of infinite-dimensional
Lie pseudo-groups much more difficult. Infinite-dimensional Lie pseudo-groups only arise
through their concrete action on a space. Lie pseudo-groups appear in many fundamental
physical and geometrical contexts such as gauge theories, Hamiltonian mechanics, symplectic
and Poisson geometry, conformal geometry of surfaces, conformal field theory, geometry of
real hypersurfaces and as symmetry groups of partial differential equations.

A Lie pseudo-group G is defined in terms of an involutive system of differential equa-
tions whose solutions are the local diffeomorphisms constituting the pseudo-group. As for
Lie groups, it is easier to study infinite-dimensional Lie pseudo-groups by looking at their
infinitesimal properties. The infinitesimal structure of Lie pseudo-groups can be studied
through their Maurer-Cartan structure equations or by computing the Lie brackets of their
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infinitesimal generators. In this paper our focus will be on the Maurer-Cartan structure
equations of infinite-dimensional Lie pseudo-groups.

With his theory of exterior differential systems, Cartan associates to any Lie pseudo-group
a set of invariant differential forms and shows that their differential are given by equations
analogue to the Maurer-Cartan structure equations for Lie groups [?, ?]. For transitive Lie
pseudo-groups a lot of efforts have been made to establish a proper rigorous foundation,
[?, ?, ?, ?, ?]. For transitive Lie pseudo-groups, Reid, et al., also developed a method for
determining Cartan’s structure equations from the infinitesimal determining equations using
only algebraic manipulations and differentiation, [?, ?]. For intransitive Lie pseudo-groups
the situation is much different, few general results are known. A difficulty encountered in
the study of the local structure of intransitive Lie pseudo-groups is the possibility that the
structure coefficients can depend on the manifold on which they act. But more importantly, as
we will show, the fact that Cartan’s structure equations do not recover the correct infinitesimal
structure of intransitive Lie pseudo-groups is a problem.

Recently, Olver and Pohjanpelto have developed a new method to derive the structure
equations of Lie pseudo-groups, [?,?]. Their approach is completely algorithmic and requires
only differentiation and algebraic manipulations. It bypasses Cartan’s prolongation procedure
and is completely general; it can be applied to Lie groups of transformations and infinite-
dimensional Lie pseudo-groups, transitive or intransitive. It is based on a combination of the
theories of Lie groupoids, [?,?], and variational bicomplexes, [?]. The first part of the paper
is devoted to an overview of their theory. Then in Section 5 an infinitesimal interpretation
of their structure equations is given. This result extends the correspondence between the
Maurer-Cartan structure equations and the Lie algebra of infinitesimal generators given in [?]
for transitive pseudo-group actions to intransitive Lie pseudo-groups.

In Section 6 we summarize Cartan’s derivation of the structure equations for Lie pseudo-
groups. Comparing Olver and Pohjanpelto’s theory to Cartan’s theory, we show in Section
7 that for intransitive Lie pseudo-groups the two theories do not completely agree. This is
done by looking at some examples of intransitive Lie pseudo-group actions considered by
Cartan in [?, ?]. To make the two theories compatible, we argue that Cartan’s structure
equations must be restricted to the orbits of the pseudo-group action. The repercussion of
this observation on Cartan’s definition of essential invariants is analyzed. It is shown that
Cartan’s definition of essential invariants in terms of the systatic system becomes vacuous.
Yet essential invariants do exist, they correspond to the scalar invariants parametrizing the
leaves of the group foliation and appearing in the structure equations.

2 Lie Pseudo-Groups

Definition 2.1. Let M be a smooth m-dimensional manifold and G be a collection of local
diffeomorphisms of M . G is a pseudo-group if

1. G is closed under restriction: if φ : U →M is in G, then so is φ|V for all open V ⊂ U ,

2. we can piece together elements of G: if U ⊂ M is an open set with U = ∪iUi, and
φ : U →M is a diffeomorphism with φ|Ui ∈ G, then φ ∈ G,

3. G is closed under composition: if φ : U → M , and ψ : V → M are two members of G,
then ψ ◦ φ ∈ G also, whenever the composition is defined,

4. G contains the identity diffeomorphism of M ,

5. G is closed under inverse: if φ : U →M is in G, then φ−1 : φ(U)→M is also in G.
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We denote by D(M) be the pseudo-group of all local diffeomorphisms φ : U →M , U ⊂M .
For each n ≥ 0, let D(n)(M) ⊂ Jn(M,M) denote the bundle of their n-th order jets. Elements
in D(n)(M) are denoted by jnφ. Following Cartan, [?,?], we use lower case letters z, x, y, u, . . . ,
for the source coordinates and corresponding upper case letters Z,X, Y, U, . . . , for the target
coordinates of diffeomorphisms Z = φ(z). With this notation

jnφ|z = (z, Z(n)),

where Z(n) denotes all the derivatives of Z = φ(z) with respect to z, up to order n. Through-
out the paper we use the multi-index notation

ZbA =
∂kZb

(∂z1)a1 · · · (∂zm)am
, A = (a1, . . . , am), k = #A = a1 + · · ·+ am,

b = 1, . . . ,m, to denote partial derivatives. Let D(∞)(M) be the inverse limit of the bundles
πnk : D(n)(M)→ D(k)(M) (where n > k and πnk are the standard projection maps), which can
be identified with the bundle of Taylor series of local diffeomorphisms. Each bundle D(n)(M),
1 ≤ n ≤ ∞, carries the structure of a groupoid. The source map σσσ(n)(jnφ|z) = z and target
map τττ (n)(jnφ|z) = φ(z) = Z induce the double fibration

D(n)

σσσ(n)

||zz
zz

zz
zz τττ (n)

""DD
DD

DD
DD

M M

The groupoid multiplication follows from the composition of local diffeomorphisms. Given
g(n) = jnφ|z, h(n) = jnψ|Z with Z = τττ (n)(jnφ|z) = σσσ(n)(jnψ|Z), we have h(n)·g(n) = jn(ψ◦φ)|z.
Local diffeomorphisms ψ ∈ D(M) can act on D(n)(M) by either the left or right multiplication

Lψ(jnφ|z) = jn(ψ ◦ φ)|z, Rψ(jnφz) = jn(φ ◦ ψ−1)|ψ(z).

When the type of action is not specified, the right multiplication must be understood.

Definition 2.2. A sub-pseudo-group G ⊂ D(M) is called a Lie pseudo-group if there exists
n? ≥ 1 such that the following assumptions are satisfied for all finite n ≥ n?:
• G(n) ⊂ D(n) forms a smooth, embedded subbundle,

• πn+1
n : G(n+1) → G(n) is a bundle map,

• every smooth local solution Z = φ(z) to the determining system G(n) belongs to G,

• G(n) = pr(n−n
?)G(n?) is obtained by prolongation.

The minimal value of n? is called the order of the Lie pseudo-group.

In local coordinates, the order n ≥ n? determining equations defining the Lie pseudo-group
subbundle G(n) take the form of an involutive system, [?], of partial differential equations

F (n)(z, Z(n)) = 0, (2.1)

whose local solutions Z = φ(z) are the pseudo-group transformations. The prolonged system
defining pr(k)G(n) is obtained by repeatedly applying the total differential operators

Dzb =
∂

∂zb
+

m∑
a=1

∑
#A≥0

ZaA,b
∂

∂ZaA
, b = 1, . . . ,m, (2.2)
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to (2.1),

F (n+k)(z, Z(n+k)) =

{
F (n)(z, Z(n)) = 0,
Dz
AF

(n)(z, Z(n)) = 0, 1 ≤ #A ≤ k.

In the definition of the total differential operators (2.2) we use the notation

ZaA,b =
∂#A+1Za

(∂z1)a1 · · · (∂zb−1)ab−1(∂zb)ab+1(∂zb+1)ab+1 · · · (∂zm)am
.

Definition 2.3. A Lie pseudo-group G ⊂ D(M) is said to be transitive if for any point
z0 ∈ M there is a neighborhood U of z0 such that if z0 ∈ U then there is a diffeomorphism
φ ∈ G such that φ(z0) = z0. If a Lie pseudo-group is not transitive, it is said to be intransitive.

Transitive Lie pseudo-groups do not possess any scalar invariants, and this is equivalent to
the fact that the involutive defining system includes no zero order equations, [?,?]. Intransitive
Lie pseudo-groups do possess scalar invariants. Those invariants can appear in the structure
equations of the pseudo-groups, making their analysis more difficult.

3 Structure Equations of the Diffeomorphism Pseudo-

Group

The cotangent bundle T ∗D(∞)(M) naturally splits into horizontal and vertical components.
In terms of local coordinates g(∞) = (z, Z(∞)), the horizontal subbundle of T ∗D(∞)(M)
is spanned by the 1-forms dz1 = dMz

1, . . . , dzm = dMz
m, while the vertical subbundle is

spanned by the contact forms

Υa
A = dGZ

a
A = dZaA −

m∑
b=1

ZaA,bdz
b, a = 1, . . . ,m, #A ≥ 0.

This induces a splitting of the differential on D(∞)(M):

d = dM + dG.

The subscript on the vertical differential dG refers to the groupoid structure of D(∞)(M).
Given a differential function F : D(∞)(M) → R, its horizontal and vertical differentials take
the form

dMF =
m∑
b=1

(DzbF )dzb, dGF =
m∑
b=1

∑
#A≥0

∂F

∂ZbA
Υb
A.

Definition 3.1. A differential form µ on D(n)(M), 0 ≤ n ≤ ∞, is right-invariant if it satisfies
(Rψ)∗µ = µ (where defined) for every local diffeomorphism ψ ∈ D(M).

Since the splitting of the differential on D(∞)(M) into horizontal and contact components
is also invariant under the action of D(M), if µ is a right-invariant differential form, so are
dMµ and dGµ. The right invariance of the target coordinate functions Za : D(0)(M) → R
implies that their differentials

dZa = dMZ
a + dGZ

a = σa + µa, a = 1, . . . ,m,

split into right-invariant horizontal and contact forms. Thus, the one-forms

σa = dMZ
a =

m∑
b=1

∂Za

∂zb
dzb, a = 1, . . . ,m, (3.1)
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form an invariant horizontal coframe, while

µa = dGZ
a = Υa = dZa −

m∑
b=1

∂Za

∂zb
dzb, a = 1, . . . ,m, (3.2)

are the zero-th order invariant contact forms. The total differential operators DZ1 , . . . ,DZm ,
dual to the horizontal forms σ1, . . . , σm, are defined by

dMF =
m∑
a=1

(DZaF )σa,

where

DZa =
m∑
b=1

wbaDzb , (wba(z, Z
(1))) =

(
∂Zb

∂za

)−1

, a = 1, . . . ,m.

Invariance of the one-forms (3.1) implies that the Lie derivative of a right-invariant differential
form with respect to DZa is also right-invariant. The differential operators DZa mutually
commute and so the order of differentiation is immaterial. Therefore, higher-order invariant
contact forms are defined by

µaA = DA
Zµ

a, a = 1, . . . ,m, #A ≥ 0. (3.3)

The right-invariant contact forms µ(∞), constructed in (3.3), are the Maurer-Cartan forms
for the diffeomorphism pseudo-group D(M).

Given local coordinates z = (z1, . . . , zm) on M , we use ZJhK to denote the vector-valued
Taylor series, depending on h = (h1, . . . , hm), of a diffeomorphism Z = φ(z+h) at the source
point z ∈M , with coordinates

ZaJhK =
∑

#A≥0

1
A!
ZaAh

A, a = 1, . . . ,m,

where hA = (h1)a
1
(h2)a

2 · · · (hm)a
m

, and A! = a1!a2! · · · am!. Similarly, let µJHK be the
vector-valued Maurer-Cartan form power series with components

µaJHK =
∑

#A≥0

1
A!
µaAH

A, a = 1 . . . ,m. (3.4)

The m ×m Jacobian matrix power series obtained by differentiating µJHK with respect to
H = (H1, . . . ,Hm) is denoted by

∇HµJHK =
(
∂µaJHK
∂Hb

)
.

In [?] it is shown that the structure equations for the invariant coframe σa, µaA, a = 1, . . . ,m,
#A ≥ 0 are

dµJHK = ∇HµJHK ∧ (µJHK− dZJ0K),
dσ = ∇HµJ0K ∧ σ.

(3.5)

where σ = (σ1, . . . , σm)T . To obtain the structure equations of the diffeomorphism pseudo-
group D(∞)(M) we restrict (3.5) to a target fiber (τττ (∞))−1(Z). This amounts to setting
dZJ0K = 0 in the structure equations (3.5). Since 0 = dZJ0K = σ + µJ0K, on a target fiber,

σ = −µJ0K,

and the structure equations for the horizontal forms σ are redundant with the structure
equations of the zero-th order Maurer-Cartan forms µJ0K.
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Proposition 3.2. The structure equations of the pseudo-group of local diffeomorphisms
D(M) are

dµJHK = ∇HµJHK ∧ µJHK, (3.6)

when restricted to a target fiber.

4 Structure Equations of a Lie Pseudo-Group

For a Lie pseudo-group G ( D(M), the Maurer-Cartan forms (3.3) are no longer linearly
independent. Remarkably, the explicit expressions for the Maurer-Cartan forms are not
needed to find the linear relations between them. The linear dependencies follow from the
infinitesimal determining system defining the infinitesimal generators of the pseudo-group
action G(∞).

Let X (M) denote the space of locally defined vector fields in TM , and JnTM , 0 ≤ n ≤ ∞,
the tangent n-jet bundle of TM . A locally defined vector field v ∈ X (M) induces a flow Φt

on M . The left action of the flow Φt on D(n)(M) induces an invariant infinitesimal generator
V(n) tangent to the source fibers D(n)(M)|z. The vector field V(n) is called the n-th order
lift of the vector field v, and the notation V(n) = λλλ(n)(v) is used. The infinite order case is
denoted by V = λλλ(v). In local coordinates, the lift of a vector field

v =
m∑
a=1

ζa(z)
∂

∂za
(4.1)

on M is the right-invariant vector field

V =
m∑
a=1

∑
#A≥0

DA
z ζ

a(Z)
∂

∂ZaA
(4.2)

on D(∞)(M), where

Dzb =
m∑
a=1

∂Za

∂zb
DZa , b = 1, . . . ,m.

Let Z(n) denote the dual bundle to the vector field jet bundle J (n)TM , and Z(∞) the
direct limit. The lift of a section ζ of Z(∞) is defined to be the right-invariant differential
form λλλ(ζ) on D(∞)(M) that vanishes on all total vector fields, and satisfies

〈λλλ(ζ);λλλ(v)〉|g(∞) = 〈ζ; j∞v〉|Z , whenever g(∞) ∈ D(∞)(M), Z = τττ (∞)(g(∞)).

In [?,?] it is explained that in local coordinates, each vector field coordinate function ζaA
can be viewed as a section of Z(∞), and that

λλλ(ζaA) = µaA. (4.3)

More generally, the lift of a linear function of the vector field jets L(z, ζ(n)) is

λλλ[L(z, ζ(n))] = L(Z, µ(n)).

Given a Lie pseudo-group G, let g ⊂ X (M) denote the local Lie algebra of infinitesimal
generators, i.e., the set of locally defined vector fields whose flows belong to the pseudo-group.
Let Jng ⊂ JnTM denote their n-jets. In local coordinates, we can view the subbundle
Jng ⊂ JnTM as defining a linear system of partial differential equations

L(n)(z, ζ(n)) = 0 (4.4)
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for the vector field coefficients. The linear system of equations (4.4) is called the n-th order
infinitesimal determining system of the Lie pseudo-group G. In practice, they are constructed
by linearizing the n-th order determining equations (2.1) at the n-th order identity jet 1(n)

z :

L(n)(z, ζ(n)) = V(n)[F (n)(z, Z(n))]|
(z,Z(n))=1

(n)
z

= 0.

In [?] it is shown that

Proposition 4.1. The linear system

L(n)(Z, µ(n)) = 0, (4.5)

obtained by lifting the linear determining equations (4.4), gives the complete set of linear
dependencies among the right-invariant Maurer-Cartan forms µ(n).

The equations (4.5) are called the n-th order lifted determining equations for the Lie
pseudo-group G.

Theorem 4.2. The structure equations of a Lie pseudo-group G, when restricted to a target
fiber, are obtained by restricting the diffeomorphism structure equations (3.6) to the kernel
of the linearized involutive system (4.5):

(dµJHK = ∇HµJHK ∧ µJHK)
∣∣
L(∞)(Z,µ(∞))=0

. (4.6)

5 Correspondence Between the Maurer-Cartan Struc-

ture Equations and the Infinitesimal Generator Lie

Brackets

Given an r-dimensional Lie group G, one can associate to it a set of r linearly independent
invariant vector fields v1, . . . ,vr on G generating a Lie algebra. The structure of the Lie
algebra is given by the commutator relations

[vi,vj ] =
r∑

k=1

Ckijvk, i, j = 1, . . . , r, (5.1)

where the structure coefficients Ckij are skew-symmetric in their subscripts and satisfy the
Jacobi identities

r∑
k=1

(CkijC
m
kl + CkliC

m
kj + CkjlC

m
ki) = 0, 1 ≤ i, j, l,m ≤ r. (5.2)

Dually, one can associate to G a set of r linearly independent invariant one-forms µ1, . . . , µr

satisfying the Maurer-Cartan structure equations

dµk =
∑

1≤i<j≤r
Ckijµ

j ∧ µi,

where the coefficients Ckij are the same as in (5.1). The Jacobi identities (5.2) are equivalent
to the identities d2µk = 0, k = 1, . . . , r.

Cartan was sceptical that for infinite-dimensional Lie pseudo-groups a similar correspon-
dence could be made between his structure equations and the infinitesimal theory advo-
cated by S. Lie, [?, p. 1335]. In the 1960s, Kuranishi, [?, ?], and Singer and Sternberg, [?],
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were able to give an infinitesimal interpretation of Cartan structure theory for transitive Lie
pseudo-groups. We now explain how the Maurer-Cartan structure equations (4.6) of a Lie
pseudo-group are related to the commutators of its infinitesimal generators.

Let D(M) be the pseudo-group of local diffeomorphisms of M . In local coordinates, an
infinitesimal generator of the pseudo-group action is given by (4.1). In the category of analytic
vector fields we can expand the vector coefficients of (4.1) in Taylor series:

v =
m∑
a=1

∑
#A≥0

ζaA(z0)
(z − z0)A

A!
∂

∂za
' j∞v|z0 , z0 ∈M,

and the vector fields

vAa |z0 =
(z − z0)A

A!
∂

∂za
, a = 1, . . . ,m, #A ≥ 0, (5.3)

can be interpreted as a basis of J (∞)TM |z0 . There is a well-defined Lie algebra structure on
J (∞)TM |z0 given by

[vAa ,v
B
b ] =

(A+B \ a)!
A!(B \ a)!

(z − z0)A+B\a

(A+B \ a)!
∂

∂zb
− (A \ b+B)!

(A \ b)!B!
(z − z0)A\b+B

(A \ b+B)!
∂

∂za
, (5.4)

1 ≤ a, b ≤ m, #A,#B ≥ 0, where

B \ a = (b1, . . . , ba−1, ba − 1, ba+1, . . . , bm),

with the convention that
(z − z0)A+B\a

A!(B \ a)!
∂

∂zb
= 0,

if ba − 1 < 0, and similarly for the second term on the right-hand side of (5.4).

Proposition 5.1. The Lie brackets (5.4) are dual to the diffeomorphism pseudo-group struc-
ture equations (3.6).

Proof. The expression for the lift of a vector field v at z0, given by equation (4.2), is a well-
defined function of the vector field jet j∞v|z0 in which the coordinate jets ζaA(z0) are replaced
by ζaA(Z0), with source σσσ(0)(Z0) = z0. Thus the lift of a vector field defines a map

λλλ|z0 : J∞TM |z0 → Lie(D(∞)(M))|z0 , (5.5)

where Lie(D(∞)(M))|z0 denotes the set of right-invariant vector fields tangent to the source
fiber D(∞)(M)|z0 . In local coordinates

λλλ|z0
(

(z − z0)A

A!
∂

∂za

)
= VA

a ,

where VA
a is the vector field dual to the Maurer-Cartan form µaA. Since the map (5.5) is a

Lie algebra isomorphism, [?], this finishes the proof.

Remark 5.2. It is possible to give a combinatorial proof of Proposition 5.1 by directly
computing the commutators of the vector fields (5.3), expanding (3.6) in powers of H, and
verify that the commutators of the infinitesimal generators are dual to the Maurer-Cartan
structure equations.
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For Lie pseudo-groups, the duality between the Maurer-Cartan structure equations and
the commutators of the infinitesimal generators still holds. This follows from the fact that
the Maurer-Cartan forms satisfy the lifted determining equations (4.5) while the vector field
jet coordinates satisfy the equivalent infinitesimal determining equations (4.4). Since we do
not assume the Lie pseudo-group action to be transitive, the infinitesimal interpretation of
the Maurer-Cartan structure equations (4.6) remains valid for intransitive Lie pseudo-group
actions.

Example 5.3. Consider the intransitive Lie pseudo-group

X = x, Y = ay + b, Z = axz + f(x), a > 0, f ∈ C∞(R). (5.6)

The minimal involutive determining system is

X = x, Yx = 0, Yyy = 0, Yz = 0, Zy = 0, Zz = (Yy)x.

The associated infinitesimal determining equations, for an infinitesimal generator

v = ξ(x, y, z)∂x + η(x, y, z)∂y + φ(x, y, z)∂z,

are
ξ = 0, ηx = 0, ηyy = 0, ηz = 0, φy = 0, φz = xηy. (5.7)

Taking the lift of (5.7) we obtain the linear relations

µx = 0, µyX = 0, µyY Y = 0, µyZ = 0, µzY = 0, µzZ = XµyY . (5.8)

We note that the last equation of (5.8) implies the non trivial relation µzZX = µyY . From (5.8)
it follows that

µy, µyY , µzXk , k ≥ 0,

is a basis of Maurer-Cartan forms for the pseudo-group (5.6). Setting

µJHK =

(
0, µy + µyYHy, Xµ

y
YHz + µyYHxHz +

∞∑
k=0

µzXk

Hk
x

k!

)T
one obtains the Maurer-Cartan structure equations (dX = 0 on a target fiber) 0

dµy + dµyYHy

XdµyYHz + dµyYHxHz +
∑∞

k=0 dµ
z
Xk

Hk
x
k!

 =

 0 0 0
0 µyY 0

µyYHz +
∑∞

k=1 µ
z
Xk

Hk−1
x

(k−1)! 0 XµyY + µyYHx

 ∧
 0

µy + µyYHy

XµyYHz + µyYHxHz +
∑∞

k=0 µ
z
Xk

Hk
x
k!

 .

More explicitly

dµyY = 0, dµy = µyY ∧ µ
y, dµzXk = XµyY ∧ µ

z
Xk + kµyY ∧ µ

z
Xk−1 , k ≥ 0. (5.9)

The structure equations (5.9) induce the structure of an abstract Lie algebra. Setting Wk to
be the vector dual to µz

Xk , k ≥ 0, V1 to be dual to µyY and V2 to be dual to µy, (5.9) yields
the commutator relations

[V1, V2] = −V2, [V2,Wk] = 0, [V1,Wk] = −x0Wk − (k + 1)Wk+1, (5.10)
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at each fixed x0.
Taking Lie’s approach to the problem, the space of infinitesimal generators for the group

action (5.6) is spanned by

V1 = y∂y + xz∂z, V2 = ∂y, Vf(x) = f(x)∂z.

In the analytic category, a basis of vector fields, in the neighborhood of (x0, y0, z0), is given
by

V1 = ((y − y0) + y0)∂y + ((x− x0) + x0)((z − z0) + z0)
∂

∂z
,

V2 =
∂

∂y
, Wk =

(x− x0)k

k!
∂

∂z
, k ≥ 0.

(5.11)

In terms of (5.11) we can write

Vf(x) =
∞∑
k=0

f (k)(x0)Wk.

By direct computation one can verify that the commutation relations for the vector fields
(5.11) are given by (5.10).

6 Cartan’s Structure Equations

In this section we summarize Cartan’s derivation of the structure equations for a Lie pseudo-
group G ⊂ D(M). We refer the reader to Cartan’s original work [?, ?] and to [?, ?, ?] for a
detailed exposition of the material. This section follows mainly the discussion given in [?].

In an adapted set of local coordinates z = (x, y) on M , we can assume that the pseudo-
group action is locally given by

Xi = xi, Y α = fα(x, y), i = 1, . . . , p, α = 1, . . . , q, (6.1)

p + q = m = dim M , with p = 0 if the action is transitive, and p > 0 if the action is
intransitive.

The starting point of Cartan’s structure theory is the n?-th involutive defining system

X = x, F (n?)(x, y, Y (n?)) = 0, (6.2)

for the Lie pseudo-group action (6.1). Motivated by his theory of exterior differential systems,
Cartan recasts the determining system in terms of the Pfaffian system

Xi = xi, i = 1, . . . , p,

Υp+α
A |F (n?)(x,y,Y (n?))=0 = (dY α

A −
m∑
b=1

Y α
A,bdz

b)|F (n?)(x,y,Y (n?))=0 = 0,
(6.3)

α = 1, . . . , q, 0 ≤ A ≤ n? − 1. Let Y[k] = (Y 1
[k], . . . , Y

sk
[k] ) be local parameterizations of the

fibers of the bundles
G(k)

πkk−1

��

G(k−1)

10



where sk = dim G(k) − dim G(k−1), k ≥ 1. Then the system (6.3) is equivalent to

Xi − xi = 0, i = 1, . . . , p,

dY α −
m∑
a=1

Lαa (z, Y, Y[1])dz
a = 0, α = 1, . . . , q,

dY i
[1] −

m∑
a=1

Li[1],a(z, Y, Y[1], Y[2])dz
a = 0, i = 1, . . . , s1,

...

dY i
[n?−1] −

m∑
a=1

Li[n?−1],a(z, Y, Y[1], . . . , Y[n?])dz
a = 0, i = 1, . . . , sn?−1,

(6.4)

for some functions Lαa , . . . , L
i
[n?−1],a, whose expressions follow from the determining system

(6.2). From the differential forms appearing in (6.4), Cartan proceeds to derive a set of
invariant one-forms in an inductive fashion.

Since the one-forms

ωp+α[0] = dY α −
m∑
a=1

Lαa (z, Y, Y[1])dz
a, α = 1, . . . , q, (6.5)

are invariant and dY α, α = 1, . . . , q, are also (right) invariant one-forms, Cartan replaces
(6.5) by

ωp+α[0] =
m∑
a=1

Lαa (z, Y, Y[1])dz
a, α = 1, . . . , q.

Thus a set of order zero invariant one-forms is given by

ωi[0] = dxi, i = 1, . . . , p,

ωp+α[0] =
m∑
a=1

Lαa (z, Z, Z[1])dz
a, α = 1, . . . , q.

(6.6)

The differential forms (6.6) form a basis of horizontal forms, therefore dz1, . . . , dzm can be
written as linear combinations of the ωb[0], b = 1, . . . ,m. Hence the differential of the invariant
one-forms ωb[0] can be written as

dωb[0] =
m∑
a=1

d
(
Lba(z, Y, Y[1])

)
∧ dza =

m∑
a=1

ωa[0] ∧ π
b
a, b = 1, . . . ,m,

where the πba are certain linear combinations of dY 1
[1], . . . , dY

s1
[1] , dY

1, . . . , dY q, and ω1
[0], . . . , ω

m
[0].

The invariance of ωa[0], a = 1, . . . ,m, implies

m∑
a=1

ωa[0] ∧ (R∗ψ(πba)− πba) = 0, b = 1, . . . ,m, ψ ∈ G,

which means that
R∗ψ(πba) ≡ πba (mod ω1

[0], . . . , ω
m
[0]).

By hypothesis, s1 = dim G(1)−dim G of the πba are linearly independent modulo ω1
[0], . . . , ω

m
[0],

dY 1, . . . , dY q. Hence those s1 forms are of the form

πi ≡
s1∑
j=1

cijdY
j
[1] +

q∑
α=1

eiαdY
α (mod ω1

[0], . . . , ω
m
[0]), i = 1, . . . , s1,
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with det (cij) 6= 0. By adding suitable multiples of the ωa[0] we can write

πi ≡
s1∑
j=1

cij

(
dY j

[1] −
m∑
b=1

Lj[1],b(z, Y, Y[1])dz
b

)
+

q∑
α=1

eiα

(
dY α − ωp+α[0]

)
,

modulo ω1
[0], . . . , ω

m
[0], i = 1, . . . , s1. Defining

ωi[1] =
s1∑
j=1

cij

(
dY j

[1] −
m∑
b=1

Lj[1],b(z, Y, Y[1])dz
b

)
+

q∑
α=1

eiα

(
dY α − ωp+α[0]

)
, (6.7)

i = 1, . . . , s1, Cartan shows that those one-forms are invariant, [?, pp. 597–600]. We refer
to the one-forms (6.7) as the first order Maurer-Cartan forms of the pseudo-group G. Those
invariant differential forms are equivalent to some of the first order Maurer-Cartan forms
constructed in (3.3). Taking the differential of the first order Maurer-Cartan forms (6.7) and
repeating the above discussion, Cartan derives s2 linearly independent second order Maurer-
Cartan forms, and so on, up to order n? − 1.

The rn?−1 = m+s1+s2+· · ·+sn?−1 invariant one-forms constructed are collected together
and denoted by ω1, ω2, . . . , ωrn?−1 , where we drop their subscripts. Their exterior derivatives
are of the form

dωi =
∑

1≤j<k≤rn?−1

Cijkω
j ∧ ωk +

rn?−1∑
j=1

sn?∑
β=1

Aijβω
j ∧ πβ, i = 1, . . . , rn?−1, (6.8)

where
(π1, . . . , πsn? ) ≡ (dY 1

[n?], . . . , dY
sn?
[n?] ) (mod ω1, . . . , ωrn?−1)

as modules of one-forms over the ring of functions F : (x, y, Y, Y[1], . . . , Y[n?]) → R. If the
pseudo-group is intransitive, the coefficients Cijk, and Aijβ can depend on the invariants xi,
i = 1, . . . , p.

Example 6.1. Consider the infinite-dimensional Lie pseudo-group

X = x, Y = f(y), Z = z(f ′(y))x + φ(x, y), (6.9)

f ∈ D(R), φ ∈ C∞(R2), due to Cartan [?]. The defining system for this pseudo-group is
given by

X = x, Yx = 0, Yz = 0, Zz = (Yy)x. (6.10)

The fibers of the bundle G(1) → G are parameterized by

Y[1] = (Yy, Zx, Zy).

Since the determining system is of order one, Cartan’s algorithm gives three invariant one-
forms:

ω1 = dx, ω2 = Yydy, ω3 = Zxdx+ Zydy + (Yy)xdz.

Taking their differentials, we obtain Cartan’s structure equations

dω1 = 0,

dω2 = −ω2 ∧ π1,

dω3 = −ω1 ∧ π2 − ω2 ∧ π3 − xω3 ∧ π1,

12



where
π1 =

dYy
Yy

,

π2 = dZx −
xZx
Yy

dYy − ((Yy)x lnYy) dz,

π3 =
1
Yy

(
dZy −

xZy
Yy

dYy

)
.

(6.11)

7 Comparison of the Two Theories

The new structure theory by Olver, et al., has been applied to several transitive Lie pseudo-
groups, [?,?]. As one expects, their structure equations are equivalent to those obtained with
Cartan’s theory. Though the structure equations are equivalent, a fundamental distinction
needs to be pointed out. While the structure equations by Olver, et al., depend only on group
forms restricted to the target fibers, Cartan’s structure equations mix group and horizontal
forms. Indeed, the first m invariant one-foms (6.6) constructed by Cartan are horizontal,
while the others are group forms of order greater or equal to one. For the two theories to be
equivalent, the horizontal forms appearing in Cartan’s structure equations must be equivalent
to the zero order Maurer-Cartan forms (3.2), when restricted to a target fiber. In Section
7.1.1, in accordance with all examples investigated so far in the literature, we show that for
transitive Lie pseudo-groups the two sets of structure equations are equivalent. On the other
hand, in Section 7.2.2 we demonstrate that the two structure theories do not give the same
structure equations for intransitive Lie pseudo-groups.

7.1 Transitive Lie Pseudo-Groups

Let G ⊂ D(M) be a transitive Lie pseudo-group. The transitivity of the action implies that its
involutive infinitesimal determining system does not contain any zero order equation. Hence
the lift of the infinitesimal determining system does not introduce any linear relations among
the order zero Maurer-Cartan forms µ1, . . . , µm, defined in (3.2). We conclude that those
differential forms are non-zero and linearly independent. Since on a target fiber (τττ (∞))−1(Z)

0 = dZa = σa + µa, a = 1, . . . ,m,

the Maurer-Cartan forms µa are in one to one correspondence with the horizontal forms σa.
Making the substitutions

µa = −σa = −dMZa = −ωa[0], a = 1, . . . ,m,

into the structure equations (4.6), we conclude that for transitive Lie pseudo-groups, Cartan’s
structure equations are equivalent to Olver, et al., equations.

7.2 Intransitive Lie Pseudo-Groups

Let G ⊂ D(M) be an intransitive Lie pseudo-group. We assume it is locally given by (6.1),
with p > 0. In those adapted coordinates, we use the notation

v =
m∑
a=1

ζa(z)
∂

∂za
=

p∑
i=1

ξi(x, y)
∂

∂xi
+

q∑
α=1

φα(x, y)
∂

∂yα
.
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to denote a local vector field v ∈ X (M), and the corresponding Maurer-Cartan forms are
denoted by

$i
A = λλλ(ξiA), i = 1, . . . , p, ναA = λλλ(φαA), α = 1, . . . , q, #A ≥ 0. (7.1)

Furthermore we split the formal parameter H = (H1, . . . ,Hm) appearing in the expression
of the vector-valued Maurer-Cartan power series as

H = (H1, . . . ,Hp,K1, . . . ,Kq), p+ q = m.

With the above notations, the vector-valued Maurer-Cartan form power series (3.4) is given
by

µJHK = ($1JH,KK, . . . , $pJH,KK, ν1JH,KK, . . . , νqJH,KK)T =
(
$JH,KK
νJH,KK

)
.

The determining system for the infinite prolongation of the pseudo-group action (6.1) is of
the form

X = x, F (∞)(x, y, Y (∞)) = 0. (7.2)

Linearizing (7.2) at the identity jet we obtain the infinitesimal determining equations

ξ = 0, L(∞)(x, y, φ(∞)) = 0. (7.3)

Taking the lift of (7.3), we obtain the linear relations

$ = 0, L(∞)(X,Y, ν(∞)) = 0. (7.4)

We have thus shown

Proposition 7.1. The Maurer-Cartan structure equations of an intransitive Lie pseudo-
group G locally given by (6.1), are

(dνJH,KK = ∇KνJH,KK ∧ νJH,KK) |L(∞)(X,Y,ν(∞))=0, (7.5)

when restricted to a target fiber, where

∇KνJH,KK =
(
∂να

∂Kβ
JH,KK

)
is the q× q Jacobian matrix power series obtained by differentiating νJH,KK with respect to
K = (K1, . . . ,Kq).

In particular the structure equations of the Lie pseudo-group (6.1) do not involve the
Maurer-Cartan forms $i

A, i = 1, . . . , p, #A ≥ 0. Since $i = −dxi on a target fiber, this
implies that the structure equations (7.5) do not depend on dxi, i = 1, . . . , p. On the other
hand, those differential forms do appear in Cartan’s structure equations. Recalling equation
(6.6), the differential forms dxi correspond to the first p differential forms ωi[0], i = 1, . . . , p,
and their exterior differentials are

dωi[0] = 0, i = 1, . . . , p.

Example 7.2. Consider the intransitive Lie group action

X = x 6= 0, Y = y + ax, a ∈ R. (7.6)
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The infinitesimal generator of this one-parameter group of transformations is

v = x
∂

∂y
,

which clearly spans an abelian Lie algebra. Cartan computed the structure equations of this
group, [?, p. 1345] , and obtained

dω1 = 0, dω2 =
1
x
ω1 ∧ ω2, (7.7)

where ω1 = dx and ω2 = dy − y
xdx. Clearly, the structure equations (7.7) do not correspond

to those of an abelian group. Even worse, the structure equations (7.7) cannot be those of a
finite Lie group since the structure constants depend on x and it is well known that all Lie
groups have constant structure coefficients. Furthermore, the group is one-dimensional and
there should only be one independent Maurer-Cartan form associated to this group.

Let us now compute the structure equation of the pseudo-group (7.6) using (4.6). The
minimal involutive defining system of the group action is

X = x, Y − y = xYx, Yy = 1.

An infinitesimal generator v = ξ(x, y)∂x + η(x, y)∂y must be a solution of the infinitesimal
determining equations

ξ = 0, η = xηx, ηy = 0,

and the corresponding lifted determining equations are

µx = 0, µy = XµyX , µyY = 0. (7.8)

It follows from (7.8) that µy is a basis of Maurer-Cartan forms. The structure equation for
µy is

dµy = µyY ∧ µ
y = 0,

which corresponds to the structure equation of the abelian group action (7.6).

Example 7.3. Consider the intransitive Lie pseudo-group

X = x, Y = y + f(x), f ∈ C∞(R). (7.9)

The infinitesimal generator of the pseudo-group action (7.9) is

v = g(x)
∂

∂y
, (7.10)

with g ∈ C∞(R). The Lie algebra generated by the vector field (7.10) is abelian. The
structure equations for this Lie pseudo-group have been computed by Cartan, [?, p. 1346].
Those are given by

dω1 = 0, dω2 = π1 ∧ ω1, (7.11)

where ω1 = dx and ω2 = dy + Yxdx. The structure equations (7.11) do not correspond to
those of the abelian algebra (7.10). On the other hand, one can verify, using the infinitesimal
interpretation of the Maurer-Cartan structure equations given in Section 5, that the structure
equations (7.11) correspond to the pseudo-group action

X = x+ a, Y = y + f(x), a ∈ R, f ∈ C∞(R), (7.12)
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with infinitesimal generators
∂x, f(x)∂y.

The two Lie pseudo-groups (7.9) and (7.12) clearly have nonisomorphic infinitesimal struc-
tures, yet Cartan’s structure theory gives the same structure equations for those two Lie
pseudo-groups. This again highlights a problem with Cartan’s structure theory.

Now let us use Olver and Pohjanpelto’s theory to derive the structure equations of the
Lie pseudo-group (7.9). The involutive defining system is given by the equations

X = x, Yy = 1.

The infinitesimal determining equations of an infinitesimal generator v = ξ(x, y)∂x+φ(x, y)∂y
are

ξ = 0, φy = 0. (7.13)

The lift of (7.13) gives
µx = 0, µyY = 0,

and it follows that a basis of Maurer-Cartan forms for the pseudo-group (7.9) is given by

µy
Xk , k ≥ 0.

The structure equations for those differential forms are

∞∑
k=0

dµy
Xk

Hk
x

k!
=

∂

∂Hu

( ∞∑
k=1

µy
Xk

k!
Hk
x

)
∧
∑
k=0

µy
Xk

Hk
x

k!
= 0, (7.14)

which do correspond to the structure equations of an abelian pseudo-group.
Returning to the pseudo-group (7.12), one can verify that Olver and Pohjanpelto’s theory

gives the structure equations

dµx = 0, dµy
Xk = µy

Xk+1 ∧ µx, k ≥ 0,

which is in accordance with the fact that two Lie pseudo-groups with nonisomorphic infinites-
imal structures should have different structure equations.

The two previous examples show that Cartan’s structure theory does not recover ade-
quately the infinitesimal properties of intransitive Lie pseudo-groups. Under the assumption
that the pseudo-group action is locally given by (6.1), the source of the problem is the in-
clusion of the differential forms ωi[0] = dxi, i = 1, . . . , p, in the structure equations. The
differential forms dxi, i = 1, . . . , p, are indeed invariant under the identity transformation
x 7→ x, but they are also invariant under the translation group x 7→ x+ a. By including the
differential forms dx1, . . . , dxp, in the structure equations (6.8), Cartan does not compute the
structure of the Lie pseudo-group (6.1), but rather computes the infinitesimal structure of
the transformation

Xi = xi + ai, Y α = fα(x, y), i = 1, . . . , p, α = 1, . . . , q. (7.15)

There is no guarantee that (7.15) is a Lie pseudo-group action. Indeed if we go back to
Example 7.2 and replace the action (7.6) by

X = x+ b, Y = y + ax, (a, b) ∈ R2,

this is no longer a group action since it is not closed under composition. The Lie brackets of
the infinitesimal generators

∂x, x∂y
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are seen to be dual to the structure equations (7.7) and as previously remarked, those do not
form a Lie algebra.

A way to fix the problem is to set

ωi[0] = dxi = 0, i = 1, . . . , p, (7.16)

in Cartan’s structure equations. One can verify in the two previous examples that under the
equalities (7.16), Cartan’s structure equations do give the infinitesimal structure one expects.
The equalities (7.16) amounts to saying that Cartan’s structure equations must be restricted
to an orbit of the pseudo-group action where x is constant. Once the substitutions (7.16) are
done, Cartan’s structure theory becomes compatible with Olver and Pohjanpelto’s approach.

In Olver and Pohjanpelto’s formalism, the equalities (7.16) are direct consequences of
the theory. From equation (7.4), we have that the order zero Maurer-Cartan forms $i,
i = 1, . . . , p, are identically zero. Since on a target fiber (τ∞)−1(Z), Z = (X,Y ) is constant
we have the equalities

0 = dXi = dMX
i + dGX

i = σi +$i = σi = dxi, i = 1, . . . , p.

As for transitive Lie pseudo-groups, the equalities

0 = dY α = dMY
α + να = ωp+α[0] + να, α = 1, . . . , q,

on a target fiber, relate the non-zero Maurer-Cartan forms να, α = 1, . . . , q, to the horizontal
forms ωp+α[0] , α = 1, . . . , q, defined by Cartan.

The restriction of Cartan’s structure equations to an orbit of the pseudo-group action has
a direct repercussion on Cartan’s theory of essential invariants. As we explain in Section 9,
Cartan’s definition of essential invariants in terms of the systatic system becomes vacuous.

To simplify the following discussion, we assume the infinitesimal determining systems of
Lie pseudo-groups to be of first order for the rest of the paper. There is no loss of generality
in doing so since in [?, ?] the authors give an algorithm that transforms an n?-th order
infinitesimal involutive determining system into an equivalent first order involutive system.

8 Systatic System

Cartan’s systatic system plays an important role in the structure theory of Lie pseudo-groups,
[?, ?]. It is related to the isotropy algebra of pseudo-groups, [?], and the latter plays an
important role in the classification of infinite-dimensional primitive Lie pseudo-groups, [?,?,?].

We now explain where Cartan’s systatic system sits in Olver and Pohjanpelto’s structure
theory. Given a system of linear homogenous partial differential equations, we fix an order
compatible term ordering of the partial derivatives which ranks derivatives of higher total
order greater than those of lower total order, [?]. Gauss reduction of such system of differential
equations with respect to the ordering yields a solved form expressing certain dependents,
the principal derivatives, as functions of lower ranked non-principal (parametric) derivatives,
[?, ?,?]. We denote by Pk the set of parametric derivatives of k-th order, and by Pk the set
of principal derivatives of k-th order. The number of principal and parametric derivatives of
order k ≥ 1 is given by

#Pk = sk = dim G(k) − G(k−1),

#Pk = m

(
m+ k − 1

k

)
− sk.
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While #P0 equals the dimension of the pseudo-group orbits on M , and #P0 = m − #P0

their codimension. Using the notation conventions of Section 7.2, the pseudo-group orbits
of the action (6.1) are of dimension #P0 = q and codimension #P0 = p. The first order
infinitesimal involutive defining system L(1)(x, y, ξ(1), φ(1)) = 0, can be written in the form

ξi = 0, i = 1, . . . , p,

∂φα

∂za
=

∑
(β,b)∈P1

bαa,βb(z)
∂φβ

∂zb
+

q∑
β=1

bαa,β(z)φβ, (α, a) ∈ P1.
(8.1)

The lift of (8.1) implies the linear relations

$i =0,

ναZa =
∑

(β,b)∈P1

bαa,βb(Z)νβ
Zb

+
q∑

β=1

bαa,β(Z)νβ

=
s1∑
τ=1

bαa,τ (Z)ν̃τ +
q∑

β=1

bαa,β(Z)νβ (α, a) ∈ P1.

(8.2)

among the zero and first order Maurer-Cartan forms (7.1). In equation (8.2) we have relabeled
the parametric Maurer-Cartan forms νβ

Zb
, (β, b) ∈ P1 by ν̃τ , τ = 1, . . . , s1.

The zero order terms of the structure equations (7.5) give the differentials for the Maurer-
Cartan forms ν1, . . . , νq. More explicitly, those are obtained by restricting

dνα =
q∑

β=1

ναY β ∧ ν
β, α = 1, . . . , q,

to (8.2). Hence the structure equations for ν1, . . . , νq are of the form

dνα =
∑

1≤β<γ≤q
Cαβγν

β ∧ νγ +
q∑

γ=1

s1∑
τ=1

Aαγτν
γ ∧ ν̃τ , α = 1, . . . , q. (8.3)

Since all the differential forms involved in (8.3) are right invariant, it follows that the structure
coefficients Cαβγ , and Aαγτβ depend only on the target coordinates Z1, . . . , Zm of the Lie
pseudo-group G. This is also clear from (8.2). By transitivity of the pseudo-group action on
its orbits, we can set Y α = Y α

0 , α = 1, . . . , q, to some appropriate constants without losing
any information, and assume that the structure coefficients in (8.3) depend only on the scalar
invariants Xi, i = 1, . . . , p.

To obtain structure equations analogous to (6.8), we restrict (8.3) to G(1). We denote the
restriction of ν̃τ to G(1) by πτ . Because the Maurer-Cartan forms ν̃τ , 1, . . . , s1 live in T ∗G(2),
their restriction πτ are no longer invariant one-forms, except when the Lie pseudo-group is
finite-dimensional (Recall we are assuming the determining system to be of order one.). So
the restriction of the structure equations (8.3) to G(1) are

dνα =
∑

1≤β<γ≤q
Cαβγ(X,Y0)νβ ∧ νγ +

q∑
γ=1

s1∑
τ=1

Aαγτ (X,Y0)νγ ∧ πτ , (8.4)

α = 1, . . . , q. In analogy with Cartan, we define the systatic system to be the Pfaffian system
generated by the one-forms

q∑
γ=1

Aαγτν
γ , α = 1, . . . ,m, τ = 1, . . . , s. (8.5)
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It is related to Cartan’s definition, [?, ?], by the equalities

να = −dMY α = −ωp+α[0] , α = 1, . . . , q,

on a target fiber (τ (∞))−1(Z).

Definition 8.1. The Pfaffian system generated by

q∑
γ=1

Aαγτν
γ , α = 1, . . . , q, τ = 1, . . . , s1, (8.6)

is called the systatic system of G.

Example 8.2. Consider the Lie pseudo-group of conformal transformations of the plane

X = f(x, y), Y = g(x, y), fxgy − fygx = 1. (8.7)

The first order involutive infinitesimal determining system, for an infinitesimal generator

v = ξ(x, y)∂x + η(x, y)∂y,

is
ξx + ηy = 0. (8.8)

The lift of (8.8) gives
νxX = −νyY ,

and the structure equations for νx and νy are

dνx = νxX ∧ νx + νxY ∧ νy,
dνy = νyX ∧ ν

x − νxX ∧ νy.

Thus the systatic system is generated by

{νx, νy}. (8.9)

On the other hand, Cartan computed the structure equations of the pseudo-group action
(8.7) in [?]. With

ω1 = σx = Xxdx+Xydy, ω2 = σy = Yxdx+ Yydy, XxYy −XyYx = 1,

he obtained

dω1 = π1 ∧ ω1 + π2 ∧ ω2,

dω2 = π3 ∧ ω1 − π1 ∧ ω2,

and the systatic system is generated by

{ω1, ω2}. (8.10)

Using the fact that νx = −σx = −ω1, νy = −σy = −ω2 on a target fiber, the systatic systems
(8.9) and (8.10) are equivalent.
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9 Essential Invariants

For intransitive Lie pseudo-groups, Cartan draws a distinction between essential and inessen-
tial invariants.

Definition 9.1. A Pfaffian system generated by ω1, . . . , ωr is said to be complete if

dωi ≡ 0 (mod ω1, . . . , ωr), i = 1, . . . , r.

In [?], Cartan shows that the systatic system is complete, and then extracts from it as
many as possible linear combinations that only depend on the invariants x1, . . . , xp and their
differentials dx1, . . . , dxp. Suppose there are s linearly independent such combinations,

Ωj =
p∑
i=1

f ji (x1, . . . , xp)dxi, j = 1, . . . , s. (9.1)

The completeness of the systatic system implies that the Pfaffian system (Ω1, . . . ,Ωs) is
complete in the space of invariants x1, . . . , xp, and so Cartan defines the first integrals1 of
(Ω1, . . . ,Ωs) to be essential invariants, while the other invariants are said to be inessential.
The problem with this definition, once the substitutions (7.16) are done, is that all the
differential forms Ω1, . . . ,Ωs are zero. Indeed, none of the differential forms dx1, . . . , dxp

appear in the systatic system (8.6), hence there are no differential forms of the form (9.1).
Even though, Cartan’s definition of essential invariants becomes vacuous, it is possible to

give an alternative definition, which reflects Cartan’s idea of what essential invariants should
be. In order to justify our definition, we need to review the concept of isomorphism for Lie
pseudo-groups, [?,?]. To do so, some preliminary definitions need to be given.

Definition 9.2. A Lie pseudo-group H ⊂ D(N) is similar to a Lie pseudo-group G ⊂ D(M)
if there is a local diffeomorphism φ : N →M such that H = φ−1 ◦ G ◦ φ.

Lemma 9.3. If G and H are similar, their structure equations are isomorphic.

Since any Lie pseudo-group is trivially similar to itself we have

Corollary 9.4. Let G be an intransitive Lie pseudo-group locally represented by (6.1). If
the structure equations

(dµJHK = ∇HµJHK ∧ µJHK) |L(∞)(Z,µ(∞))=0,

depend on Xi for one basis of Maurer-Cartan forms then they also depend on Xi for any
other basis of Maurer-Cartan forms.

Definition 9.5. Let G ⊂ D(M) and G ⊂ D(M) be two Lie pseudo-groups such that π :
M → M is a fiber bundle with base space M . If for all φ ∈ G there exist φ ∈ G such that
π ◦ φ = φ ◦ π, then G is called a generalized prolongation of G.

In the literature, our definition of generalized prolongation is often simply called prolon-
gation. We introduce this new terminology to distinguish between the more general notion
of prolongation of a Lie pseudo-group G given in Definition 9.5 and the usual definition of
prolonged pseudo-group G(n) introduced in Definition 2.2.

Definition 9.6. A generalized prolongation G ⊂ D(M) of G ⊂ D(M) is called isomorphic if
the only diffeomorphism of G that projects to 1M is 1M .

1The existence those first integrals is guaranteed by Frobenius’ Theorem.
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Definition 9.7. Two Lie pseudo-groups G, H are said to be isomorphic if there exist iso-
morphic generalized prolongations G, H such that G is similar to H.

Of all possible isomorphic prolongations of G, the infinite prolongation G(∞) is the most
important. Indeed, let G and H be two Lie pseudo-groups such that H is an isomorphic
generalized prolongation of G. Assuming that the invariants of H can be expressed by means
of the local coordinates of the manifold that G acts on, Cartan shows in [?] that there exists
n such that G(n) is an isomorphic generalized prolongation of H. If H admits some invariants
which are not acted upon by G, G is extended by acting trivially on these, and then G(n) ⊕ 1
is an isomorphic generalized prolongation of H for some n. This discussion implies that
given two isomorphic Lie pseudo-groups G, H, up to the addition of scalar invariants, G(∞)

is isomorphic to H(∞). In particular, their structure equations (4.6) are isomorphic.

Example 9.8. To illustrate the above definitions, consider the Lie pseudo-groups

H : X̃ = x̃, W̃ = w̃ + f(x̃),

and
G : X = x, Y = y + f(x)z + f ′(x), Z = z,

where f ∈ C∞(R). The Lie pseudo-group

H : X̃ = x̃, Ỹ = ỹ + f(x̃)z̃ + f ′(x̃), Z̃ = z̃, W̃ = w̃ + f(x̃),

is an isomorphic generalized prolongation of H. Similarly

G : X = x, Y = y + f(x)z + f ′(x), Z = z, W = w + f(x),

is an isomorphic generalized prolongation of G. Clearly, H is similar to G, thusH is isomorphic
to G. Alternatively we note that H(1) ⊕ 1ez is similar to G since

H(1) ⊕ 1ez : X̃ = x̃, W̃ = w̃ + f(x̃), Ỹ = ỹ − f ′(x̃), Z̃ = z̃,

and
H(1) ⊕ 1ez = φ−1 ◦ G ◦ φ,

with
φ : (x̃, w̃, ỹ, z̃) 7→ (x, y, z, w) = (x̃, w̃z̃ − ỹ, z̃, w̃).

The above discussion motivates the following definition of essential invariant.

Definition 9.9. Let G be an intransitive Lie pseudo-group locally represented by (6.1). An
invariant Xi, i ∈ {1, . . . , p}, is said to be essential if for a basis of Maurer-Cartan forms
(hence for all), the structure coefficients of

(dµJHK = ∇HµJHK ∧ µJHK) |L(∞)(Z,µ(∞))=0

depend on Xi.

Example 9.10. In Example 7.3, Cartan’s structure equations for the intransitive Lie pseudo-
group (7.9) are given by (7.11). The systatic system is spanned by ω1 = dx, and in Cartan’s
theory x is an essential invariant. On the other hand, the observation that the transitive Lie
pseudo-group (7.12) also has (7.11) for structure equations implies that the x appearing in
the structure equations (7.11) is not even an invariant.

Based on the structure equations (7.14) and Definition 9.9, we say that the invariant x is
not essential since it does not appear in the structure equations, and thus does not influence
the structure of the pseudo-group.
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Remark 9.11. In Cartan’s structure theory, there is an algorithm to get rid of nonessential
invariants as defined by Cartan, [?, ?]. On the other hand, no claim is made that such an
algorithm exists for invariants not satisfying Definition 9.9. Example 9.10 is an illustration
of this fact. In Example 9.10, the variable x is not an essential invariant, in the sense of
Definition 9.9, yet it is clear that the pseudo-group action (7.9) cannot be written without
the use of the invariant x.

Example 9.12. Consider the pseudo-group action (6.9) of Example 6.1. We show that x is
an essential invariant. The involutive defining system of (6.9) is

X = x, Yx = 0, Yz = 0, Zz = (Yy)x,

and the infinitesimal determining system, for an infinitesimal generator

v = ξ(x, y, z)∂x + η(x, y, z)∂y + φ(x, y, z)∂z,

is
ξ = 0, ηx = 0, ηz = 0, φz = xηy. (9.2)

The lift of (9.2) gives the linear relations

µx = 0, µyX = 0, µyZ = 0, µzZ = XµyY ,

and it follows that
µy
Y k
, µzXkY j , k, j ≥ 0,

is a basis of Maurer-Cartan forms. Focusing our attention to the differentials of µy and µz

we have

dµy =µyX ∧ µ
x + µyY ∧ µ

y + µyZ ∧ µ
z = µyY ∧ µ

y,

dµz =µzX ∧ µx + µzY ∧ µy + µzZ ∧ µz = µzY ∧ µy +XµyY ∧ µ
z.

Thus x is an essential invariant.

10 Conclusion

In this paper we have shown that Olver and Pohjanpelto’s structure equations capture the
infinitesimal properties of Lie pseudo-groups. In the language of jets, the information of a
Lie pseudo-group is contained in the target fibers of the bundle τ (∞) : G(∞) → M . The
infinitesimal structural properties are studied by introducing right invariant group forms and
computing their differentials on the target fibers. If the pseudo-group is transitive, every
target fibers are isomorphic and the structure coefficients are constant. If the action is
intransitive, the structure of the pseudo-group on each target fiber can vary if the structure
equations depend on essential invariants.

Cartan’s structure theory mixes horizontal and group forms and we have shown that
the appearance of the horizontal forms into the structure equations is a source of problem
for intransitive Lie pseudo-groups. In fact, we noticed that Cartan’s structure equations
of intransitive Lie pseudo-groups always correspond to the infinitesimal structure of some
transitive transformations. A way to correct Cartan’s structure theory is to restrict his
considerations to the orbits the pseudo-group actions. Since transitive Lie pseudo-groups
have only one orbit, we conclude that his theory is good for such Lie pseudo-groups. For
intransitive Lie pseudo-groups, this is not the case. The restriction to an orbit modifies
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Cartan’s structure equations and has an important repercussion on his notion of essential
invariants.

Our observation explains, in part, some difficulties encountered by past researchers when
trying to extend results for transitive Lie pseudo-groups to intransitive Lie pseudo-groups. For
example, as we have shown in Section 5, Singer and Sternberg infinitesimal interpretation of
Cartan’s structure equations can be extended to intransitive Lie pseudo-groups when working
with the right structure equations. Also, Lisle and Reid’s method of deriving Cartan’s struc-
ture equations for transitive Lie pseudo-groups from the infinitesimal defining system, [?,?,?],
extends to intransitive Lie pseudo-groups. Indeed, once restricted to a pseudo-group orbit,
the pseudo-group action is transitive and their algorithm still holds.
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