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Abstract

We use the equivariant moving frame method to study the local equivalence problem
of scalar control equations of the form uxx = r(x, u, v, ux, vx) under the pseudo-group
of fiber-preserving transformations X = φ(x), U = β(x, u), V = α(x, u, v). Three
typical branches of the equivalence problem are considered: The degenerate case which
contains the control systems with largest fiber-preserving symmetry group, the branch
containing the Hilbert–Cartan equation and finally the generic case.

1 Introduction

A common problem in geometry consists of determining when two geometrical struc-
tures are locally equivalent up to some group of transformations. Using his theory
of exterior differential systems, Cartan developed a powerful algorithm for answering
such question, [13, 21]. Recently, Olver and his collaborators proposed a new theoreti-
cal foundation to Cartan’s moving frame theory now known as the equivariant moving
frame method, [9, 23, 24], and in [25], it was shown how to use this new method to
solve local equivalence problems. The aim of this paper is to apply the results of [25]
to study the local equivalence of non-autonomous one-dimensional control systems of
the form

uxx = r(x, u, v, ux, vx) (1.1)

under the pseudo-group of fiber-preserving transformations

X = φ(x), U = β(x, u), V = α(x, u, v). (1.2)

By assumption
φx 6= 0, βu 6= 0, αv 6= 0,
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so that (1.2) is a local diffeomorphisms of R3. In physical applications, the variable
u = u(x) describes the dynamics of a state while v = v(x) is a scalar control parameter,
and equation (1.1) can be interpreted as a one-dimensional Newtonian equation with a
control in the force term.

Example 1.1. A simple control system prescribed by an equation of the form (1.1)
comes from robotics where the position of a single-link rotational joint is controlled by
a motor placed at the pivot, see Figure 1.
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Figure 1: Controlled pendulum.

If we assume that the units of time and distance are chosen so that the mass m and
the gravitational constant g are equal to one, and that the rod has unit length, then
the differential equation governing the time evolution of the mass, when friction is not
neglected, is given by

utt = f(t, v, vt)− sinu− αu2
t ,

where the constant α is the coefficient of friction and f(t, v, vt) is a force term depending
on the external torque v, its time derivative vt and possibly on time.

The literature contains similar, but different, versions of the equivalence problem
(1.1), (1.2). A more well-known problem in the geometry of underdetermined ordinary
differential equations of the form

vx = r(x, u, v, ux, uxx)

is the problem of internal equivalence studied by Cartan, [5, 6], Nurowski, [19], Doubrov
and Zelenko, [8] and Anderson and Kruglikov, [1]. Closer along the lines of the problem
considered in this paper is the equivalence problem of control equations that do not
depend on x and vx, namely,

uxx = r(u, v, ux), (1.3)

up to the group of feedback transformations

X = x, U = β(u), V = α(u, v).

Provided some generic conditions on (1.3), this problem was solved in [17]. Finally,
when the right-hand side of (1.1) does not depend on the control parameter v and its
derivative vx, i.e. when (1.1) is a standard second-order ordinary differential equation,
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the solution is well understood and appears in [10, 11, 15, 16]. To our knowledge, the
equivalence problem (1.1), (1.2) satisfying the non-degeneracy condition

∂r

∂vx
6= 0

has not been considered in the literature.
Mathematically, this problem is interesting in its own as it contains interesting exam-

ples of underdetermined ordinary differential equations. The most celebrated example
is most likely the Hilbert–Cartan equation

uxx = (vx)1/2. (1.4)

An interesting feature of equation (1.4) is that its algebra of internal symmetries is
isomorphic to the 14-dimensional non-compact real form of the exceptional Lie algebra
g2, [4], which is much larger than its 6-dimensional Lie algebra of external symmetries,
[2]. The Hilbert–Cartan equation (1.4) is also an example of differential equation that
does not admit parametric solutions of finite rank, [14].

Since we are interested in studying the equivalence problem (1.1), (1.2) using the
new theory of equivariant moving frames, we begin this paper with a review of the
structure theory of infinite-dimensional Lie pseudo-groups and the equivariant moving
frame construction, [22, 23, 25]. One of the interesting features is that all computations
can be done symbolically. Taking advantage of this feature, we symbolically analyze
the solution to our proposed equivalence problem in Section 4. Three typical branches
of the problem are studied. We first consider the degenerate branch which contains the
control equations with larges fiber-preserving symmetry group. Then, we consider an
intermediate branch which contains the Hilbert–Cartan equation (1.4) and finish with
the generic case. These three cases highlight all the different features of the equivariant
moving frame solution of a local equivalence problem. In Section 5, the coordinate
expressions of some differential invariants found using our symbolic computations are
obtained.

2 Lie Pseudo-Groups and Moving Frames

In this section we briefly review the structure theory of infinite-dimensional Lie pseudo-
groups and the equivariant moving frame construction. We refer the reader to [22, 23,
24, 25] for more details.

2.1 Structure Equations of Lie Pseudo-Groups

Let M be an m-dimensional manifold and D = D(M) the pseudo-group of all local
diffeomorphisms of M . In the following, all manifolds, maps, vector fields and differ-
ential forms are assumed to be analytic. For all 0 ≤ n ≤ ∞ we denote by D(n) the
bundle formed by the nth order jets of local diffeomorphisms. The coordinates of the
n-jet of a local diffeomorphism Z = ϕ(z) are given by jnϕ = φ(n) = (z, Z(n)), where
z = (z1, . . . , zm) are the source coordinates on M , Z = (Z1, . . . , Zm) the target coor-
dinates also on M , and the corresponding jet coordinates ZaB representing the partial
derivatives ∂kϕa(z)/∂zb

1 · · · ∂zbk , with 1 ≤ a, b1, . . . , bk ≤ m and 1 ≤ k = #A ≤ n.
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Definition 2.1. A pseudo-group G ⊂ D is called regular of order n? ≥ 1 if, for all
finite n ≥ n?, the set of n-jet of transformations G(n) forms an embedded subbundle of
D(n) and the projection πn+1

n : G(n+1) → G(n) is a surjective submersion. An analytic
pseudo-group G ⊂ D is called a Lie pseudo-group if G is regular of order n? ≥ 1 and,
moreover, every local diffeomorphism ϕ of D satisfying jn?ϕ ⊂ G(n?) belongs to the
pseudo-group.

In local coordinates, for n ≥ n?, the pseudo-group jet subbundle G(n) ⊂ D(n) is
characterized by an involutive system of nth order partial differential equations

F (n)(z, Z(n)) = 0 (2.1)

called the nth order determining system of G.
Let X (M) be the space of locally defined vector fields on M . In local coordinates a

vector field in X (M) will be denoted by

v =
m∑
a=1

ζa(z)
∂

∂za
. (2.2)

For 0 ≤ n ≤ ∞, let JnTM denote the bundle of nth order jets of sections of TM . Local
coordinates on JnTM are given by

(z, ζ(n)) = (za, ζaB), a = 1, . . . ,m, 0 ≤ #B ≤ n,

where ζaB represents the partial derivative ∂#Bζa/∂zB. Let

L(n)(z, ζ(n)) =
m∑
a=1

∑
#B≤n

hBa (z)ζaB = 0, (2.3)

be the linear system of partial differential equations obtained by linearizing the deter-
mining system (2.1) at the identity n-jet 1(n) ∈ G(n). A vector field (2.2) is in the Lie
algebra g of infinitesimal generators of the Lie pseudo-group G if and only if1 its n-jet
is a solution of (2.3). For this reason, the system of equations (2.3) is called the (nth

order) infinitesimal determining system of g.
As with Lie groups, the structure equations of a Lie pseudo-group G are obtained

by computing the structure equations of a G-invariant coframe. For the diffeomorphism
pseudo-group D an invariant coframe is given by the horizontal forms

σa =
m∑
b=1

Zab dz
b, a = 1, . . . ,m = dim M,

and the Maurer–Cartan forms

µbA, b = 1, . . . ,m, #A ≥ 0, (2.4)

on D(∞). The coordinate expressions of the Maurer–Cartan forms (2.4) can be found
in [22] but they are not needed here. The structure equations of the diffeomorphism
pseudo-group D(R) were first obtained by Cartan, [7]. For M = Rm, m ≥ 2, these
equations were first explicitly obtained in [22].

1assuming that the pseudo-group is tame, [22].
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Theorem 2.2. The structure equations of the diffeomorphism pseudo-group D(M) are

dσa =
m∑
b=1

µab ∧ σb, dµaC =
m∑
b=1

σb ∧ µaC,b +
∑

C=(A,B),
#B≥1

(
C

A

)
µaA,b ∧ µbB

 , (2.5)

where the last sum ranges over all multi-indices A,B such that #B ≥ 1, and their
concatenation equals the multi-index C. By definition(

C

A

)
=

C!
A!B!

when C = (A,B).

On G(∞) the Maurer–Cartan forms (2.4) are no longer linearly independent, the
linear relations among them are easily obtained from the infinitesimal determining
equations (2.3).

Proposition 2.3. Let G ⊂ D be a Lie pseudo-group. Once restricted to G(∞) the
Maurer–Cartan forms (2.4) satisfy the linear relations

L(∞)(Z, µ(∞)) = 0, (2.6)

obtained by making the formal replacements za 7→ Za, ζaB 7→ µaB in the infinitesimal
determining equations (2.3).

We refer the reader to [22] for the proof of Proposition 2.3 and the detailed justifi-
cation of the formal replacement ζaB 7→ µaB.

Theorem 2.4. The structure equations of a Lie pseudo-group G ⊂ D are obtained by
restricting the structure equations (2.5) to the kernel of (2.6).

Example 2.5. Let p = ux and q = vx. In this example, we compute the structure
equations of the Lie pseudo-group action

X = φ(x), U = β(x, u), V = α(x, u, v), P =
pβu + βx

φx
, Q =

qαv + pαu + αx
φx

,

(2.7)
obtained from (1.2) by considering its first-order prolongation, [20]. The linearization
of (2.7) at the identity jet yields the infinitesimal generator

v =ξ(x)
∂

∂x
+ η(x, u)

∂

∂u
+ γ(x, u, v)

∂

∂v
+ [p(ηu − ξx) + ηx]

∂

∂p

+ [q(γv − ξx) + pγu + γx]
∂

∂q
,

(2.8)

where ξ(x), η(x, u) and γ(x, u, v) are arbitrary analytic functions. Let τ(x, u, v, p, q),
and ζ(x, u, v, p, q) be the p, q-components of the vector field (2.8), respectively. Then,
the components of the vector field (2.8) are solution to the infinitesimal determining
system

ξu = ξv = ξp = ξq = 0, ηv = ηp = ηq = 0, γp = γq = 0,
τ = p(ηu − ξx) + ηx, ζ = q(γv − ξx) + pγu + γx.

(2.9)
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By virtue of Proposition 2.3, the linear relations among the Maurer–Cartan forms µxA,
µuA, µvA, µpA, µqA are obtained by making the substitutions

x 7→ X, u 7→ U, v 7→ V, p 7→ P, q 7→ Q,

ξA 7→ µxA, ηA 7→ µuA, γA 7→ µvA, τA 7→ µpA, ζA 7→ µqA

in (2.9). The result is

µxU = µxV = µxP = µxQ = 0, µuV = µuP = µuQ = 0, µvP = µvQ = 0,

µp = P (µuU − µxX) + µuX , µq = Q(µvV − µxX) + PµvU + µvX .
(2.10)

It follows from (2.10) that a basis of Maurer–Cartan forms is given by

µi = µxXi , νi,j = µuU iXj , αi,j,k = µvV iUjXk , i, j, k ≥ 0. (2.11)

To simplify the notation, we introduce the functions

δ(x, u, p) = pβu + βx, ψ(x, u, p, q) = qαv + pαu + αx, χ(x) =
φxx
φx

. (2.12)

Applying Theorem 2.4, we find that the structure equations of the invariant horizontal
coframe

σx = φxdx, σu = βxdx+ βudu,

σv = αxdx+ αudu+ αvdv, σp =
1
φx

[(δx − δχ)dx+ δudu+ βudp] ,

σq =
1
φx

[(ψx − ψχ)dx+ ψudu+ ψvdv + αudp+ αvdq] ,

(2.13)

are

dσx = µX ∧ σx,
dσu = νX ∧ σx + νU ∧ σu,
dσv = αX ∧ σx + αU ∧ σu + αV ∧ σv, (2.14a)
dσp = [P (νUX − µXX) + νXX ] ∧ σx + [PνUU + νUX ] ∧ σu + [νU − µX ] ∧ σp,
dσq = [Q(αV X − µXX) + PαUX + αXX ] ∧ σx + [QαV U + PαUU + αUX ] ∧ σu

+ [QαV V + PαV U + αV X ] ∧ σv + αU ∧ σp + [αV − µX ] ∧ σq,

while the structure equations for the Maurer–Cartan forms (2.11) are

dµ = σx ∧ µX , dν = σx ∧ νX + σu ∧ νU , dα = σx ∧ αX + σu ∧ αU + σv ∧ αV ,
dµX = σx ∧ µXX , dνX = σx ∧ νXX + σu ∧ νXU + νX ∧ (µX − νU ),
dνU = σx ∧ νXU + σu ∧ νUU , dαV = σx ∧ αXV + σu ∧ αUV + σv ∧ αV V , (2.14b)
dαU = σx ∧ αXU + σu ∧ αUU + σv ∧ αV U + αU ∧ (νU − αV ),
dαX = σx ∧ αXX + σu ∧ αUX + σv ∧ αV X + αX ∧ (µX − αV ) + αU ∧ νX ,

... .
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2.2 Equivariant Moving Frames

Let 1 ≤ p < m = dim M . For all 0 ≤ n ≤ ∞, let Jn = Jn(M,p) be the extended
jet bundle of equivalence classes of p-dimensional submanifolds of M under nth order
contact, [20, 21]. We introduce adapted coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq)
on M so that submanifolds of M are locally represented by graphs of functions (x, f(x)).
The induced local coordinates on Jn are denoted by z(n) = (x, u(n)), where u(n) denotes
the derivatives uαJ = ∂Juα/∂xJ of the u’s with respect to the x’s of order 0 ≤ #J ≤ n.
The algorithm leading to the construction of an equivariant moving frame contains two
steps.

Step 1: Lift

Definition 2.6. The nth order lifted bundle E(n) → Jn is defined as the pull-back
bundle of G(n) →M via the projection πn0 : Jn →M .

Local coordinates on E(n) are given by (z(n), g(n)), where the base coordinates
z(n) = (x, u(n)) ∈ Jn are the submanifold jet coordinates, and the fiber coordinates
g(n) parametrize the Lie pseudo-group jets. The lifted bundle has the structure of a
groupoid, [18], with source map σσσ(z(∞), g(∞)) = z(∞) and target map τττ(z(∞), g(∞)) =
Z(∞) = g(∞) · z(∞), given by the prolonged action, [20]. In local coordinates, the pro-
longed action is found by differentiating the target coordinates Uα = g ·uα with respect
to the lifted total differential operators

DXi =
p∑
j=1

W j
i Dxj , where (W j

i ) = (DxiXj)−1, (2.15)

to obtain

UαJ = DX
J (Uα), where DX

J = D
Xj1 · · ·DXjk , k = #J ≥ 0. (2.16)

The action of G on Jn and G(n) are combined together to induce the lifted action on
E(n):

h · (z(n), g(n)) = (h(n) · z(n), g(n) · (h−1)(n)), h ∈ G, (2.17)

whenever the compositions in (2.17) are well-defined. By definition of the lifted action
(2.17), the expressions (Xi, UαJ ) are invariant differential functions defined on the lifted
bundle E(∞). These invariants are known as the lifted differential invariants of the Lie
pseudo-group action.

Example 2.7. We consider the induced action of (1.2) on control equations of the
form (1.1), where we set p = ux, q = vx, r = uxx, and r is assumed to be a function of
the independent variables x, u, v, p, q. By the chain rule, the action (1.2) induces an
action on p, q, given by (2.7) and on r:

R = −(pβu + βx)φxx
φ3
x

+
p2βuu + rβu + 2pβux + βxx

φ2
x

=
−δχ+ pδu + δx + rβu

φ2
x

. (2.18)
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To compute the prolonged action we apply the lifted total differential operators

DQ =
φx
αv
Dq, DP =

1
βu

[φxDp − αuDQ],

DV =
1
αv

[
Dv −

ψv
φx
DQ

]
, DU =

1
βu

[
Du − αuDV −

δu
φx
DP −

ψu
φx
DQ

]
,

DX =
1
φx

[
Dx − βxDU − αxDV −

(
δx − δχ
φx

)
DP −

(
ψx − ψχ
φx

)
DQ

]
,

(2.19)

to the lifted invariant (2.18). For example, the first-order lifted differential invariants
are

RQ =
βurq
αvφx

, RP =
1
βu

[
−βuχ+ 2δu + βurp

φx
− αuRQ

]
, RV =

1
αv

[
βurv
φ2
x

− ψv
φx
RQ

]
,

RU =
1
βu

[
−δuχ+ pδuu + δux + βuur + βuru

φ2
x

− αuRV −
δu
φx
RP −

ψu
φx
RQ

]
,

RX =
1
φx

[
pδxu + δxx + βuxr + βurx − δxχ− δχx

φ2
x

− 2γR− βxRU − αxRV (2.20)

−
(
δx − δχ
φx

)
RP −

(
ψx − ψχ
φx

)
RQ

]
.

Differentiating (2.20) with respect to (2.19) yields the second-order lifted differential
invariants and so on.

Now that we have lifted the submanifold jet coordinates z(∞) to differential invari-
ants Z(∞) on E(∞), we do the same for the standard coframe on J∞. The space of
differential forms on E(∞) splits into

Ω∗ =
⊕
k,l

Ωk,l =
⊕
i,j,l

Ωi,j,l,

where l indicates the number of Maurer–Cartan forms (2.4), and k = i+ j the number
of jet forms, with i indicating the number of horizontal forms dxi, 1 ≤ i ≤ p, and j the
number of basic contact forms

θαJ = duαJ −
p∑
i=1

uαJ,idx
i, α = 1, . . . , q, #J ≥ 0, (2.21)

on the submanifold jet bundle J∞. Let

Ω∗J =
⊕
k

Ωk,0 =
⊕
i,j

Ωi,j,0 (2.22)

denote the subspace of jet forms consisting of those differential forms containing no
Maurer–Cartan forms. Let πJ : Ω∗ → Ω∗J be the projection that takes a differential
form Ω on E(∞) to its jet component πJ(Ω) by annihilating all Maurer–Cartan forms
in Ω. Similarly, let

Ω∗G =
⊕
l

Ω0,l

be the subspace of group forms consisting of those differential forms containing only
Maurer–Cartan forms, and let πG : Ω∗ → Ω∗G be the projection onto the group compo-
nent.
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Definition 2.8. The lift of a differential form Ω on J∞ is the jet form

λλλ(Ω) := πJ [τττ∗(Ω)]. (2.23)

Note that if Ω is a differential function, then (2.23) is equal to the prolonged action.
In the following we denote by ωi = λλλ(dxi) the lift of the horizontal coframe on J∞ and
by Θα

J = λλλ(θαJ ) the lift of the contact forms. The lift map λλλ is extended to vector field
jet coordinates as follows, [22, 23].

Definition 2.9. The lift of a vector jet coordinate ζbA is defined to be the Maurer–
Cartan form µbA:

λλλ(ζbA) = µbA, for b = 1, . . . ,m, #A ≥ 0.

More generally, the lift of any finite linear combination of vector field jet coordinates
m∑
b=1

∑
#A≥0

PAb (z(n))ζbA

is defined to be the invariant group one-form

λλλ

 m∑
b=1

∑
#A≥0

PAb (z(n))ζbA

 =
m∑
b=1

∑
#A≥0

PAb (Z(n))µbA.

With this in hand, we can now write down the universal recurrence formula found
in [23].

Theorem 2.10. Let Ω be a differential form on J∞. Then

d[λλλ(Ω)] = λλλ[dΩ + v(∞)(Ω)], (2.24)

where v(∞) is the prolongation of the vector field

v =
p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

φα(x, u)
∂

∂uα
∈ g (2.25)

given by

v(∞) =
p∑
i=1

ξi(x, u)
∂

∂xi
+

q∑
α=1

∑
k=#J≥0

φα;J(x, u(k))
∂

∂uαJ
∈ g(∞), (2.26)

with φα;J defined recursively by the prolongation formula, [20],

φα;J,j = Dxjφα;J −
p∑
i=1

(Dxjξi)uαJ,i. (2.27)

In particular, the identity (2.24) applies to the lifted differential invariants Xi, UαJ
leading to

dXi = ωi + µi, i = 1, . . . , p,

dUαJ =
p∑
j=1

UαJ,jω
j + Θα

J + φ̂α;J , α = 1, . . . , q, #J ≥ 0,
(2.28)

where φ̂α;J = λλλ(φα;J) are correction terms obtained by lifting the prolonged vector field
coefficients (2.27).
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Example 2.11. We continue Example 2.7. Since the Lie pseudo-group (2.7), (2.18)
acts projectably, [20], we have the equalities

ωx = λλλ(dx) = σx, ωu = λλλ(du) = σu, ωv = λλλ(dv) = σv,

ωp = λλλ(dp) = σp, ωq = λλλ(dq) = σq,

where the coordinate expressions of the one-forms σi are given in (2.13). The lifted
contact forms ΘJ = λλλ(θJ) will not play an important role in the subsequent computa-
tions, thus we introduce the notation ω ≡ Ω to denote equality up to a contact form,
i.e. ω ≡ Ω if and only if the difference ω − Ω is a contact form.

To obtain the correction terms in the recurrence relations (2.28) one needs to com-
pute the prolongation of the infinitesimal generator

v =ξ(x)
∂

∂x
+ η(x, u)

∂

∂u
+ γ(x, u, v)

∂

∂v
+ [p(ηu − ξx) + ηx]

∂

∂p
(2.29)

+ [q(γv − ξx) + pγu + γx]
∂

∂q
+ [p2ηuu + p(2ηux − ξxx) + r(ηu − 2ξx) + ηxx]

∂

∂r
,

using the formula (2.27). Restricting our attention to the zero-order lifted differential
invariants we obtain

dX ≡ ωx + µ, dU ≡ ωu + ν, dV ≡ ωv + α,

dP ≡ ωp + P (νU − µX) + νX ,

dQ ≡ ωq +Q(αV − µX) + PαU + αX ,

dR ≡ RXωx +RUω
u +RV ω

v +RPω
p +RQω

q

+ P 2νUU + P (2νUX − µXX) +R(νU − 2µX) + νXX .

(2.30)

Step 2: Normalization

Once the lifted differential invariants (X,U (∞)) have been computed, the next step
in the construction of a moving frame is to normalize the pseudo-group parameters
g(∞) parametrizing the fibers of G(∞). This is done by choosing a cross-section to
the prolonged action on J∞, [23]. While the lift is well-defined at every submanifold
jet, the normalization of the pseudo-group parameters depends on the geometry of the
pseudo-group orbits.

Definition 2.12. A subset S∞ ⊂ J∞ is said to be G-invariant if for all z(∞) ∈ S∞

and g|z ∈ G|z, z = π∞0 (z(∞)), the submanifold jet Z(∞) = g(∞)|z · z(∞) is also in S∞.
The set S∞ is a G-invariant subbundle of J∞ if there exists a finite n0 ≥ 1 such that
S∞n0

= π∞n0
(S∞) is a G-invariant subbundle of Jn0 locally described by

S∞n0
= {(x, u(n0)) : E(n0)(x, u(n0)) 6= 0 and F (n0)(x, u(n0)) = 0},

such that for all n ≥ n0 the subset S∞n = π∞n (S∞) is obtained from S∞n0
by “prolongation”

in the sense that

S∞n = {(x, u(n)) : E(n0)(x, u(n0)) 6= 0 and (Dx
JF

(n0))(x, u(n)) = 0, 0 ≤ #J ≤ n−n0}.

The integer n0 is called the determining order of the G-invariant subbundle S∞.
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By definition, the non-degeneracy conditions E(n0)(x, u(n0)) 6= 0 and the equations
F (n0)(x, u(n0)) = 0 are G-invariant. In a given equivalence problem, the different sub-
bundles S∞ satisfying the hypothesis of Definition 2.12 correspond to the different
branches of the equivalence problem. The functions E(n0)(x, u(n0)) appear when non-
degeneracy conditions are imposed on some differential invariants while the functions
F (n0)(x, u(n0)) come from assuming that some differential invariants are identically zero.

Definition 2.13. The pseudo-group G is said to act regularly on a G-invariant sub-
bundle S∞ ⊂ J∞ if the orbits in S∞ form a regular foliation, i.e. its leaves intersect
small open sets (in the relative topology) in S∞ in pathwise connected subsets. The
dimension of the leaves in S∞n is denoted by dn.

Definition 2.14. A pseudo-group G is said to act freely at z(∞) ∈ J∞ if the only pseudo-
group element that fixes the submanifold jet is the identity jet 1(∞). Submanifold jets
at which the action is free are called regular. Submanifold jets where the action is not
free are called singular.

Definition 2.15. For n ≥ 1, let

GS∞n =
⋃

z(∞)∈S∞

Gπ∞n (z(∞)),

be the collection of isotropy groups of the submanifold jets z(n) ∈ S∞n . The projective
limit

GS∞ =
⋃

z(∞)∈S∞

Gz(∞) (2.31)

is called isotropy pseudo-group of S∞.

Two regularity assumptions are made on GS∞ . We assume there exists a finite
n0 ≥ n0 ≥ 1, called the determining order of the isotropy pseudo-group, such that for
all n ≥ n0

• the isotropy pseudo-group GS∞n is an embedded subbundle of G(n)|S∞n (G(n)|S∞n
denotes the restriction of the pseudo-group jet bundle G(n) to S∞n ),

• the projection πn+1
n : GS∞n+1

→ GS∞n is a fibration.

The Lie pseudo-group G acts on GS∞ by conjugation:

Kh(∞)(g(∞)) = h(∞) · g(∞) · (h−1)(∞), for all g(∞) ∈ Gz(∞) and σσσ(h(∞)) = z(∞).

For n ≥ n0, let ES∞n be the pull-back bundle of GS∞n → M via the projection
πn0 : S∞n →M . In the projective limit, ES∞ is called the S∞ prolonged bundle.

We are now in a position to define the notion of an equivariant moving frame on
ES∞n .

Definition 2.16. Let G be a regular pseudo-group action on S∞. An nth order moving
frame on S∞n is a G-equivariant bundle map

ρ(n) : ES∞n → E
(n)|S∞n .

11



It is always possible to ask for right or left G-equivariance. In the following we work
with right moving frames which means that

h · ρ(n)(z(n), g(n)) =h · (z(n), ρ̃(n)(z(n), g(n))) = (h(n) · z(n), ρ̃(n)(h(n) · z(n),Kh(n)(g(n))))

=(h(n) · z(n), ρ̃(n)(z(n), g(n)) · (h−1)(n)), h ∈ G|z, g(n) ∈ Gz(n) .

Theorem 2.17. Let S∞ be a G-invariant subbundle of J∞ and n0 the determining order
of the isotropy group GS∞ . For n ≥ n0 let Kn ⊂ S∞n be a (local) cross-section to the
pseudo-group orbits. Given z(n) ∈ S∞n and g(n) ∈ Gz(n) , define ρ̃(n)(z(n), g(n)) ∈ E(n)|z(n)

to be the unique pseudo-group jet with the property that ρ̃(n)(z(n), g(n)) · z(n) ∈ Kn.
Then ρ(n) : ES∞n → E

(n)|S∞n is a right moving frame defined on ES∞n . The local cross-
section coordinates of the induced map I(n) = τττ ◦ρ(n) : ES∞n → K

n provide a complete
system of functionally independent nth order differential invariants on the domain of
definition of the moving frame.

In applications, a (coordinate) cross-section is obtained by fixing dn = codim Kn
individual jet coordinates of z(n) = (x, u(n)) equal to some constants (recall that dn is
also equal to the dimension of the pseudo-group orbits in S∞n .) Writing the coordinate
formulas for the prolonged action

(X,U (n)) = F (n)(x, u(n), h(n)) (2.32)

in terms of the submanifold jet coordinates (x, u(n)) and the Lie pseudo-group parame-
ters h(n), the dn components of (2.32) corresponding to the cross-section variables serve
to define the normalization equations

F1(z(n), h(n)) = c1, . . . Frn(z(n), h(n)) = cdn . (2.33)

Writing h(n) = (h̃(n), g(n)), so that g(n) are the pseudo-group jets parametrizing the
isotropy group Gz(n) , we can solve for the pseudo-group parameters h̃(n) in terms of z(n)

and g(n):
h̃(n) = h̃(n)(z(n), g(n)).

This leads to the moving frame

ρ(n)(z(n), g(n)) = (z(n), h̃(n)(z(n), g(n)), g(n)) = (z(n), ρ̃(n)(z(n), g(n))). (2.34)

Substituting the moving frame (2.34) into the lifted invariants (2.32) yields the nor-
malized differential invariants

I(n) = F (n)(z(n), ρ̃(n)(z(n), g(n))) = (H i(z(n)), IαK(z(n))), (2.35)

with 1 ≤ i ≤ p, 1 ≤ α ≤ q, 0 ≤ #K ≤ n. Note that the normalized invariants
(2.35) cannot depend on the pseudo-group parameters g(n) since they parametrize the
isotropy group G|z(n) . The normalized invariants used to obtain the normalization
equations (2.33) are called phantom invariants.

Definition 2.18. A moving frame ρ(k) : ES∞k → E
(k)|S∞k of order k > n is compatible

with a moving frame ρ(n) : ES∞n → E
(n)|S∞n of order n provided πkn ◦ρ

(k) = ρ(n) ◦πkn
where defined.
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A complete moving frame is a collection of mutually compatible moving frames of
all orders k ≥ n. In the projective limit we write ρ : ES∞ → E(∞)|S∞ .

Remark 2.19. When the isotropy pseudo-group GS∞ only contains the identity jet
1(∞), the preceding considerations reduce to the usual moving frame construction ap-
pearing in [23]. When this is not the case we obtain what is called a partial moving
frame in [25].

Definition 2.20. Let z(∞) ∈ S∞ and ρ a moving frame defined in a neighborhood of
z(∞) in S∞. The invariantization of a jet form Ω ∈ T ∗J∞ is the invariant jet form

ι(Ω) = ρ∗ ◦πJ [τττ∗(Ω)] (2.36)

defined on ES∞ .

We note that if the action is not free at z(∞) then the coefficients of an invariantized
jet form (2.36) may depend on the isotropy pseudo-group jet parameters.

3 Local Equivalence of Submanifolds

In this section we briefly review the solution to the local equivalence problem of sub-
manifolds.

Proposition 3.1. Let z(∞) = (x, u(∞)) ∈ S∞ and ρ a moving frame defined in a
neighborhood of (x, u(∞)). The invariantization of the submanifold jet coordinates
(H, I(∞)) = ι(x, u(∞)) forms a complete set of differential invariants.

Definition 3.2. A total differential operator D is said to be an invariant differential
operator if for all differential invariant I, DI is also a differential invariant.

Once a moving frame ρ is constructed, a basis of invariant differential operators is
easily obtained from the lifted total differential operators (2.15). One simply has to
pull-back the coefficients W j

i by ρ:

Di =
p∑
j=1

ρ∗(W j
i )Dxj , i = 1, . . . , p.

Definition 3.3. A set of differential invariants {Iκ} is said to generate the algebra
of differential invariants if all differential invariants can be written in terms of the
invariants Iκ and their invariant derivatives DJIκ.

The key result which makes it possible to solve local equivalence problems is that
while there might be infinitely many functionally independent normalized differential
invariants (H, I(∞)), there always exists a finite generating set, [24, 25].

Proposition 3.4. The algebra of differential invariants is finitely generated.

Definition 3.5. Let I = {I1, . . . , I`} be a generating set of differential invariants. The
nth order signature space K(n) is the Euclidean space of dimension `(1+p+p2 + · · ·+pn)
coordinatized by w(n) = (. . . , wκ;J , . . .), where (κ; J) = (κ, j1, . . . , jr) with 1 ≤ κ ≤ `,
and (j1, . . . , jr) ranging through all unordered multi-index with 1 ≤ ji ≤ p and 0 ≤
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r ≤ n. Given a submanifold S, the nth order signature map I(n)
S : S → K(n) is the map

whose compontents are

wκ;J = (DJIκ)|S , κ = 1, . . . , `, #J ≤ n.

Definition 3.6. A moving frame ρ is said to be fully regular on S if for each n ≥ 0
the signature map I(n)

S : S → K(n) is regular.

Definition 3.7. Let ρ be a fully regular moving frame. The image

S(n)(ρ, S) = {I(n)
S (z) : z ∈ S} ⊂ K(n) (3.1)

of the nth order signature map I(n)
S is called the nth order signature manifold.

Proposition 3.8. Let ρ be a fully regular moving frame and denote by %n the rank of
the nth order signature map I(n)

S . Then

0 ≤ %0 < %1 < · · · < %s = %s+1 = · · · = r ≤ p = dim S,

the stabilizing rank r is called the rank of the moving frame and the smallest s for
which %s = %s+1 = r is called the order of the moving frame.

Theorem 3.9. Let G be a Lie pseudo-group action on M , ρ a fully regular moving
frame on S∞ ⊂ J∞ and S, S ⊂ M two p-dimensional submanifolds such that for all
z ∈ S and z ∈ S, j∞S|z, j∞S|z ∈ S∞. Then there exists a local diffeomorphism ϕ ∈ G
mapping S onto S if and only if ρ has the same order s = s on S and S and the (s+1)st

order signature manifolds S(s+1)(ρ, S), S(s+1)(ρ, S) overlap. Moreover, if z0 ∈ S and
z0 ∈ S are any points mapping to the same point

I(s+1)
S (z0) = I(s+1)

S
(z0) ∈ S(s+1)(ρ, S) ∩S(s+1)(ρ, S)

on the overlap of the two signature manifolds, the local equivalence map ϕ sending
z0 to z0 = ϕ(z0) is uniquely defined up to precomposition at the source by a local
diffeomorphism ψ ∈ G

z
(∞)
0

and composition at the target by a local diffeomorphism

ψ ∈ G
z
(∞)
0

.

Finally, given an equivariant moving frame ρ, we note that the structure equations
obtained with Cartan’s equivalence method of coframes are readily obtained by pulling-
back the structure equations (2.5) of the equivalence pseudo-group by ρ, [25].

4 Symbolic Computations

In this section we use the recurrence relations (2.28) to investigate the local equivalence
problem for control equations of the form (1.1) under the group of transformations (1.2)
symbolically.

The first step towards the solution consists of constructing a moving frame. This is
done by determining a cross-section to the equivalence pseudo-group action. Since there
is a correspondence between the normalization of the pseudo-group parameters and the
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normalization of the Maurer–Cartan forms (2.11), the recurrence relations (2.28) can
be used to find a cross-section. Considering the group differential

dG = πG ◦d

component of the recurrence relations (2.28) it is possible to symbolically determine
how the lifted invariants depend on the pseudo-group parameters. For example, for the
zero order lifted invariants we have

dGX = µ, dGU = ν, dGV = α, dGP = P (νU − µX) + νX ,

dGQ = Q(αV − µX) + PαU + αX ,

dGR = P 2νUU + P (2νUX − µXX) +R(νU − 2µX) + νXX .

Since the group differential of X equals µ we conclude that it is possible to translate
X to zero. Similarly, since the group differential of U , V , P , Q, R depend on the
linearly independent Maurer–Cartan forms ν, α, νX , αX , νXX , respectively, it is also
possible to translate U , V , P , Q and R to zero. Said differently, we can set X = U =
V = P = Q = R = 0, and use the recurrence relations to solve for the Maurer–Cartan
forms µ, ν, α, νX , αX , νXX . Computing the group differential of the higher order lifted
differential invariants, the objective is to normalize as many Maurer–Cartan forms as
possible. Since the expressions for the group differential grow rapidly as the order
of the lifted invariants increases those computations were done with the assistance of
Mathematica. In the following we only include the main intermediate steps. Also, to
simplify the expressions, once a Maurer–Cartan form is normalized this normalization
is taken into account in following expressions. For example, setting

X = U = V = P = Q = R = 0,

leads to the normalizations

µ = ν = α = νX = αX = νXX = 0 (mod submanifold jet forms). (4.1)

Thus, when writing the group differential of higher order invariants we systematically set
the Maurer–Cartan forms (4.1) equal to zero. With this in mind, the group differential
of the first order lifted invariants reduce to

dGRQ = RQ (νU − αV − µX) ,
dGRP = −RPµX −RQαU + 2νUX − µXX ,
dGRV = RV (νU − αV − 2µX)−RQαV X ,
dGRU = −RP νUX −RQαUX −RV αU − 2RUµX + νUXX ,

dGRX = RX(νU − 3µX)−RQαXX + νXXX .

(4.2)

The group differential of RQ reveals that the equivalence pseudo-group acts by scaling
on RQ. Since at the identity transformation RQ is equal to rq and that we assume
rq 6= 0 it follows that RQ 6= 0. Hence, from (4.2) we see that there is enough liberty in
the prolonged action to set

RP = RV = RU = RX = 0 and RQ = 1,
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which leads to the normalization of the Maurer–Cartan forms µXX , αV X , νUXX , νXXX
and αV , respectively. From the prolongation formula (2.27) for the coefficients of a
vector field, we see that there is enough liberty in the prolonged action to set

RPXk = RV iUjXk = 0, i, j, k ≥ 0. (4.3)

The normalization equations (4.3) are used to normalize the Maurer–Cartan forms
µXk+2 , νUjXk+2 and αV iUjXk+1 , with i ≥ 1. For the remainder of the discussion the
normalizations (4.3) are performed in the background, and all the expressions that
follow take into account these normalizations. Thus, the group differential of the re-
maining unnormalized second order differential invariants are

dGRQQ =RQQ (2µX − νU ) , dGRQP = RQP (µX − νU )−RQQαU
dGRQV =RQV (µX − νU )− αV V , dGRQX = −RQQαXX −RQXµX + αU − νUX ,
dGRPP =−RPP νU − 2RQPαU + 2νUU , dGRPV = −RPV νU −RQV αU − αV U ,
dGRQU =−RQV αU −RQQαUX −RQUνU −RQP νUX − αV U + νUU ,

dGRPU =−RPP νUX −RPU (νU + µX)−RPV αU −RQPαUX −RQUαU
− αUU + 2νUUX . (4.4)

At this stage we can set

RQV = RQX = RPP = RPV = RPU = 0, (4.5)

and normalize the Maurer–Cartan forms αV V , νUX , νUU , αV U , νUUX . More generally,
we can set

RPPU i = RPU i+1 = RQV i+1 = RPV i+1Uj = 0, i, j ≥ 0,

and normalize of the Maurer–Cartan forms νU i+2 , νU i+2X , αV i+2 and αV i+1Uj+1 . Once
these normalizations are done, the group differential for RQQ, RQP and RQU reduce to

dGRQQ =RQQ(2µX − νU ),
dGRQP =RQP (µX − νU )−RQQαU ,
dGRQU =RQQ(RQPαXX − αUX)−RQUνU .

At this stage, the equivalence problem splits into four branches:

Second order degenerate branch: RQQ = RQP = RQU = 0.

Second order intermediate branch 1: RQQ = RQP = 0, RQU 6= 0.

Second order intermediate branch 2: RQQ = 0, RQP 6= 0.

Second order generic branch: RQQ 6= 0.

In Section 4.1 we consider the degenerate branch with the aim of determining the
control equations with largest fiber-preserving symmetry group. In Section 4.2 we study
the generic branch while the intermediate branches are omitted.
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4.1 Second Order Degenerate Branch

In this section we assume that the second order invariants

RQQ = RQP = RQU = 0 (4.6)

are identically equal to zero. Under assumption (4.6), the group differential of the
invariants RQQ, RQP , RQU is identically zero and these invariants cannot be used to
normalize any Maurer–Cartan form. We must thus proceed to the next order. But
before doing so we must take into account the consequences of (4.6) on the third order
lifted invariants. Taking the horizontal differential of (4.6) we obtain

0 = dHRQQ =RQQQωq +RQQPω
p +RQQV ω

v +RQQUω
u +RQQXω

x,

0 = dHRQP =RQQPωq +RQPPω
p +RQPV ω

v +RQPUω
u +RQPXω

x,

0 = dHRQU =RQQUωq +RQPUω
p +RQV Uω

v +RQUUω
u +RQUXω

x

− 1
2

[
RQPPω

q +RPPPω
p +RPPV ω

v +RPPXω
x

+ 2RQPV ωq + 2RPPV ωp + 2RPV Xωx
]
,

from which we conclude that

RQQQ = RQQP = RQQV = RQQU = RQQX = RQPP = 0
RQPV = RQPU = RQPX = RQUU = 0,

RPPP = −2RPPV , RPPV = 2RQV U , RPPX = 2RQUX − 2RPV X .

It follows that the only remaining independent unnormalized third order invariants are

RQV U , RPV X , RPUX , RQVX , RQUX , RQXX .

Computing their group differential we obtain

dGRQV U = RQV U (µX − 2νU ), dGRQVX = −RQVXνU ,

dGRQUX =−RQVXαU −RQUX(νU + µX) +
1
2
αUU ,

dGRQXX =− 2RQXXµX , dGRPV X = −RQVXαU −RPV X(νU + µX),
dGRPUX = (RPV X − 3RQUX)αU −RPUX(νU + 2µX) + αUUX .

Setting RQUX = RPUX = 0 we can normalize the Maurer–Cartan forms αUU , αUUX .
More generally, we can set

RQU i+1X = RPU i+1Xj+1 = 0, i, j ≥ 0,

and normalize the Maurer–Cartan forms αU i+2 and αU i+2Xj+1 .
Sub-branches to the equivalence problem appear depending on the values of the

invariants RPV X , RQXX , RQVX , RQV U . In the following, we consider the degenerate
case where all these invariants are identically equal to zero:

RPV X = RQXX = RQVX = RQV U = 0. (4.7)

In this case all differential invariants of order ≤ 3 are constant. This observation,
combined with our choice of cross-section made thus far, implies that all higher order
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invariants are also constant and we conclude that there is no further normalizations
possible. Hence, the Maurer–Cartan forms

αXX , αXXX , . . . , αU , αUX , αUXX , . . . , µX , νU (4.8)

cannot be normalized. In (4.8) we identify two sequences of un-normalized Maurer–
Cartan forms, namely αXi+2 and αUXi . This suggests that the general equivalence map
between two control equations in this branch of the equivalence problem depends on
two functions of one variable. This is verified to be the case using Cartan’s involutivity
test, [3, 21, 25]. Indeed, substituting the normalizations

µ ≡ −ωx, ν ≡ −ωu, α ≡ −ωv, νX ≡ −ωp, αX ≡ −ωq, αV ≡ νU − µX ,
νXX ≡ −ωq, µXX ≡ αU , αV X ≡ 0, αV V ≡ 0,

νUX ≡ αU , νUU ≡ 0, αV U ≡ 0, αUU ≡ 0, . . . (4.9)

into the structure equations (2.14) we obtain the involutive structure equations

dωx ≡ µX ∧ ωx, dωu ≡ ωx ∧ ωp + νU ∧ ωu,
dωv ≡ ωx ∧ ωq + αU ∧ ωu + (νU − µX) ∧ ωv,
dωp ≡ ωx ∧ ωq + αU ∧ ωu + (νU − µX) ∧ ωp,
dωq ≡ αXX ∧ ωx + αUX ∧ ωu + αU ∧ ωp + (νU − 2µX) ∧ ωq,
dµX ≡ ωx ∧ αU , dνU ≡ ωx ∧ αU , dαU ≡ ωx ∧ αUX + αU ∧ µX ,

...

(4.10)

with Cartan characters s1 = 2, s2 = 0.

4.2 Second Order Generic Branch

We now assume that RQQ 6= 0. From the group differential expressions (4.4) we see
that the normalization equations

RQQ = 1, RQP = RQU = 0, (4.11)

can be added to (4.5). With the three equations (4.11) we can normalize the Maurer–
Cartan forms νU , αU , αUX . More generally, we can set

RQPU i+1 = 0, i ≥ 0, RQU iXj = 0, i+ j ≥ 2,

to normalize αU i+1 , i ≥ 0 and αU iXj+1 , i + j ≥ 2, respectively. Considering the third
order differential invariants, the group differential of the unnormalized invariants are

dGRQQQ = 0, dGRQQP = −RQQPµX , dGRQQV = −RQQV µX ,
dGRQQU = RQQPαXX − 2RQQUµX , dGRQPP = −2RQPPµX ,
dGRQQX = −[1 +RQQQ]αXX −RQQXµX , dGRQPV = −2RQPV µX ,
dGRQPX = −2RQPXµX −RQQPαXX , dGRPPP = −3RPPPµX ,
dGRQV U = RQPV αXX − 3RQV UµX , dGRPPV = −3RPPV µX ,
dGRQVX = −RQQV αXX − 2RQVXµX , dGRPPX = −3RPPXµX ,
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dGRPUX =
[
RPPX −

1
2
RPPP −RPPV

]
αXX − 4RPUXµX ,

dGRPV X = −3RPV XµX −RQPV αXX . (4.12)

At this stage we are left with two Maurer–Cartan forms to normalize, namely αXX and
µX . The different scenarios leading to the normalization of those two Maurer–Cartan
forms lead to different branches of the equivalence problem. In the next two subsections
we consider the following two cases:

Hilbert–Cartan sub-branch: RQQQ 6= −1 and the invariants

RQQP = RQQV = RQQU = RQPP = RQPV = RQPX = RQV U = RQVX = 0
RPPP = RPPV = RPPX = RPV X = RPUX = RQQQX = RQQXX = 0

are identically equal to zero.

Third order generic branch: RQQP 6= 0.

The motivation for calling the first case the “Hilbert–Cartan sub-branch” comes
from the fact that the Hilbert–Cartan equation (1.4) is contained in this branch of
the equivalence problem. Also, we note that the generic branch RQQP 6= 0 is just one
of many cases leading to the complete normalization of the pseudo-group parameters.
Indeed, from the recurrence relations (4.12), we see that when RQQP 6= 0 the remaining
Maurer–Cartan forms νX , αXX can be normalized by setting RQQP = 1 and RQQU = 0
or RQPX = 0. But there are other obvious cases leading to the normalization of νX ,
αXX . For example, we could replace the non-degeneracy condition RQQP 6= 0 by
RQPV 6= 0 and make the normalizations RQPV = 1 and RQV U = 0 or RPV X = 0,
It is also possible to assume RQQV 6= 0, and make the normalizations RQQV = 1,
RQVX = 0 or to assume RPPX − RPPP /2 − RPPV 6= 0 and make the normalizations
RPPX − RPPP /2 − RPPV = 1, RPUX = 0. With the appropriate modifications, the
analysis of each for each of these cases is very similar to the computations appearing
in Section 4.2.2 where the case RQQP 6= 0 is considered.

4.2.1 Hilbert–Cartan Sub-Branch

If we assume that RQQQ + 1 6= 0, then it follows from (4.12) that the group differential
of RQQX depends on αXX . We can thus set

RQQX = 0 (4.13)

and normalize the Maurer–Cartan form αXX . Once αXX is normalized, the group
differential of the remaining third order unnormalized invariants, except for RQQQ, is
of the form

dGRJ = CJRJµX , where CJ is some nonzero constant.

If we impose that the invariants

RQQP = RQQV = RQQU = RQPP = RQPV = RQPX = RQV U = RQVX = 0
RPPP = RPPV = RPPX = RPV X = RPUX = 0

(4.14)

are identically zero, the Maurer–Cartan form µX cannot be normalized. Combining
(4.14) together with the normalization equations chosen thus far, it can be verified
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with the recurrence relations (2.28) that all fourth order invariants are zero except
possibly for RQQQQ, RQQQX , RQQXX . Computing their group differential we obtain

dGRQQQQ = 0, dGRQQQX = −RQQQXµX , dGRQQXX = −2RQQXXµX .

Assuming that
RQQQX = RQQXX = 0 (4.15)

are identically zero, the Maurer–Cartan form µX cannot be normalized using the fourth
order invariants. In fact, with the help of the recurrence relations (2.28) we can conclude
that, under the hypotheses (4.14), (4.15) and our choice of cross-section, all invariants
of order ≥ 4 are equal to zero except for RQk , k ≥ 3. But since RQk = Iqk , k ≥
3, are genuine differential invariants, i.e. they do not depend on the pseudo-group
parameters (after normalization), we conclude that the Maurer–Cartan form µX cannot
be normalized.

Since the normalized invariants Iqk , k ≥ 3, can be expressed in terms of Iqqq and its
invariants derivatives Dkq Iqqq we obtain the following result.

Theorem 4.1. If rq 6= 0, rqq 6= 0, Iqqq 6= −1 and the invariants (4.14), (4.15) are
identically zero, then Iqqq together with the invariant differential operator Dq generate
the algebra of differential invariants {Iqk : k ≥ 3}.

Theorem 4.2. Two control equations ∆, ∆ of the form (1.1) that satisfy rq 6= 0,
rqq 6= 0, Iqqq 6= −1 and (4.14), (4.15) are locally equivalent if and only if their signature
manifolds

S(ρ,∆) = {Dkq (Iqqq)|∆ : k ≥ 0} S(ρ,∆) = {Dkq (Iqqq)|∆ : k ≥ 0}

have the same order and overlap.

To obtain the structure equations of the invariant coframe ωωω = {ωx, ωu, ωv, ωp,
ωq, µX} we use the recurrence relations of the phantom invariants to solve for the
Maurer–Cartan forms. Modulo contact forms, the result is

µ ≡ −ωx, ν ≡ −ωu, α ≡ −ωv, νU ≡ (−2 + Iqqq)ωq + 2µX , νX ≡ −ωp,
αV ≡ (−1 + Iqqq)ωq + µX , αU ≡ 0, αX ≡ −ωq, µXX ≡ 0,

νUU ≡ 0, νUX ≡ 0, νXX ≡ −ωq, αV V ≡ 0, αV U ≡ 0, αV X ≡ 0,
αUU ≡ 0, αUX ≡ 0, αXX ≡ 0, . . . .

(4.16)

Substituting the expressions (4.16) into the structure equations (2.14) we obtain

dωx ≡ µX ∧ ωx, dωq ≡ 0, dµX ≡ 0,
dωu ≡ ωx ∧ ωp + [Iqqq − 2]ωq ∧ ωu + 2µX ∧ ωu,
dωv ≡ ωx ∧ ωq + [Iqqq − 1]ωq ∧ ωv + µX ∧ ωv,
dωp ≡ ωx ∧ ωq + [Iqqq − 2]ωq ∧ ωp + µX ∧ ωp.

(4.17)

Theorem 4.3. Under the conditions of Theorem 4.1, a control equation of the form
(1.1) has a 6-dimensional fiber-preserving symmetry group with Maurer–Cartan struc-
ture equations isomorphic to (4.17) if and only if Iqqq is constant.
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4.2.2 Third Order Generic Branch

We now assume that the normalizations made in Section 4.2 still hold except for the
normalization (4.13). Also, we no longer require that RQQQ 6= −1. Instead, we assume
RQQP 6= 0. In local coordinates, the non-degeneracy conditions RQ 6= 0, RQQ 6= 0,
RQQP 6= 0 imply

rq 6= 0, rqq 6= 0 and rqqrqqp − rqprqqq 6= 0. (4.18)

Provided (4.18) is satisfied, the group differential of RQQP and RQQU in (4.12) reveals
that there is enough liberty in the prolonged action to set

RQQP = 1, RQQU = 0.

This leads to the normalization of the last two un-normalized Maurer–Cartan forms
µX , αXX . Introducing the notation

z1 = x, z2 = u, z3 = v, z4 = p, z5 = q,

the recurrence relations for the third order normalized invariants IJ = ι(rJ) are

Iqqq,i = DiIqqq +M i
qqq,

Iqqv,i = DiIqqv + IqqvIqqp,i +M i
qqv,

Iqqx,i = DiIqqx + IqqxIqqp,i − (1 + Iqqq)Iqqu,i +M i
qqx,

Iqpp,i = DiIqpp + 2IqppIqqp,i +M i
qpp,

Iqpv,i = DiIqpv + 2IqpvIqqp,i +M i
qpv,

Iqpx,i = DiIqpx + 2IqpxIqqp,i − Iqqu,i +M i
qpx,

Iqvu,i = DiIqvu + Ipvv,i + IqpvIqqu,i + 3IqvuIqqp,i +M i
qvu, (4.19)

Iqvx,i = DiIqvx + 2IqvxIqqp,i − IqqvIqqu,i +M i
qvx,

Ippp,i = DiIppp + 3IpppIqqp,i +M i
ppp,

Ippv,i = DiIppv + 3IppvIqqp,i +M i
ppv,

Ippx,i = DiIppx + 3IppxIqqp,i − Iqpu,i +M i
ppx,

Ipvx,i = DiIpvx + 3IpvxIqqp,i − IqpvIqqu,i +M i
pvx,

Ipux,i = DiIpux + [Ippx −
Ippp

2
− Ippv]Iqqu,i + 4IpuxIqqp,i − Iquu,i +

Ippu,i
2

+ Ipvu,i +M i
pux,

where 1 ≤ i ≤ 5 and M l
ijk are correction terms involving only third order normal-

ized invariants. It follows from (4.19) that all fourth order normalized invariants are
expressible in terms of the third order invariants, their invariant derivatives and the
fourth order invariants Iqqpu, Iqquu. Furthermore, since the recurrence relations for the
normalized invariants of order ≥ 4 are of the form

IJ,i = DiIJ +M i
J , #J ≥ 4, 1 ≤ i ≤ 5,

where the correction terms M i
J depend on invariants of order ≤ #J , we obtain the

following result.
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Theorem 4.4. Provided that rq 6= 0, rqq 6= 0 and rqqrqqp − rqprqqq 6= 0, the algebra of
differential invariants is generated by the third order invariants

Iqqq, Iqqv, Iqpp, Iqpv, Ippp, Ippv, Iqqx, Iqpx, Iqvu, Iqvx, Ippx, Ipvx, Ipux, (4.20a)

and the fourth order invariants
Iqqpu, Iqquu. (4.20b)

In Theorem 4.4 the generating set is not assumed to be minimal. In fact there
are many syzygies among them. For example, each time a fourth order normalized
invariant Iijkl appears twice on the left-hand side of (4.4), equating the respective
right-hand sides gives a syzygy. For example, the recurrence relations

Iqqqv = DvIqqq +Mv
qqq, Iqqqv = DqIqqv + IqqvIqqqp +M q

qqv,

give the syzygy
DvIqqq +Mv

qqq = DqIqqv + IqqvIqqqp +M q
qqv.

Also, there are the commutator syzygies to consider, [24].
Finally, pulling-back the structure equations (2.14) via the moving frame we obtain

the structure equations of the invariant horizontal coframe {ωx, ωu, ωv, ωp, ωq}.

Theorem 4.5. Provided that rq 6= 0, rqq 6= 0 and rqqrqqp − rqprqqq 6= 0, the structure
equations of the invariant horizontal coframe {ωx, ωu, ωv, ωp, ωq} are

dωx ≡ [2− 3Iqqq + Iqqqp]ωq ∧ ωx + [Iqqpp − IqppIqqq − 2]ωp ∧ ωx

+ [Iqqpv − IqpvIqqq − 2Iqqv]ωv ∧ ωx + Iqqpuω
u ∧ ωx,

dωu ≡ ωx ∧ ωp + [2− 5Iqqq + 2Iqqqp]ωq ∧ ωu + [2Iqqpp − 2IqppIqqq − 3]ωp ∧ ωu

+ [2Iqqpv − 2IqpvIqqq − 3Iqqv]ωv ∧ ωu + [2Iqqpx − 2IqpxIqqq − 3Iqqx]ωx ∧ ωu,
dωv ≡ ωq ∧ ωu + ωx ∧ ωq + [Iqqpx − IqpxIqqq − Iqqx]ωx ∧ ωv + [Iqpv − Iqqpu]ωv ∧ ωu

+ [1− 2Iqqq + Iqqqp]ωq ∧ ωv + [Iqqqp − 1− IqppIqqq]ωp ∧ ωv + Iqppω
p ∧ ωu

+ Iqpxω
x ∧ ωu,

dωp ≡ ωx ∧ ωq + [Iqpp(Iqqq − 1)/2 + Iqpv(Iqqq − 2) + Iqqqu − Iqqv]ωq ∧ ωu

+ [Ippp(Iqqq − 1)/2 + Ippv(Iqqq − 2)− IqppIqqv]ωp ∧ ωu

+ [Ippv(Iqqq − 1)/2− IqpvIqqv + Iqqvu − IqqqIqvu]ωv ∧ ωu

+ [Ippx(Iqqq − 1)/2 + Ipvx(Iqqq − 2) + Iqqux − IqpxIqqv]ωx ∧ ωu

+ [Iqqqp − 2Iqqq]ωq ∧ ωp + [Iqqpv − IqpvIqqq − Iqqv]ωv ∧ ωp

+ [Iqqpx − IqpxIqqq − Iqqx]ωx ∧ ωp,
dωq ≡ [1 + Iqpp(1− Iqqq)/2 + Iqpv(2− Iqqq)− Iqqqu + Iqqv]ωq ∧ ωx

+ [Iqpp − Iqqpu + Ippp(1− Iqqq)/2 + Ippv(2− Iqqq) + IqppIqqv]ωp ∧ ωx

+ [Iqpv(1 + Iqqv) + Ippv(1− Iqqq)/2− Iqqvu + IqqqIqvu + Iqvx]ωv ∧ ωx

+ [Ippx/2 + Ipvx − Iqquu]ωu ∧ ωx + [Iqpp/2 + Iqpv]ωu ∧ ωq + Iqqvω
v ∧ ωq

+ [Ippp/2 + Ippv]ωu ∧ ωp + [Iqvu − Ippv/2]ωv ∧ ωu + Iqpvω
v ∧ ωp.

5 Coordinate Expressions

In this section we obtain the local coordinate expressions of some of the differential
invariants found in the previous section.
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5.1 Second Order Degenerate Branch

We begin by considering the degenerate branch discussed in Section 4.1. We found that
this branch of the equivalence problem occurs when the lifted invariants

RQQ = RQP = RQU = RPV X = RQXX = RQVX = RQV U = 0 (5.1)

are identically zero and the cross-section is

X = U = V = P = Q = 0, RQ = 1, (5.2)
RV iUjXk = RPU iXj = RPPU i = RPV i+1Uj = RQV i+1 = RQU iX = 0, i, j, k ≥ 0.

In this setting we concluded that the Maurer–Cartan forms (4.8) cannot be normal-
ized. In terms of the pseudo-group jet parameters this translates into the observation
that the solution to the normalization equations (5.2) will involve the submanifold jets
coordinates (x, u(∞)) and the pseudo-group parameters

φx, βu, αxk+2 , αuxk , k ≥ 0,

or equivalently, in terms of the functions (2.12),

φx, βu, αu, ψxk+1 , ψuxk , k ≥ 0.

Solving the normalization equations (5.2) we obtain

φ = 0, β = 0, α = 0, δ = 0, ψ = 0, αv =
βurq
φx

, ψv =
βurv
φx

, αvv =
βurqv
φx

,

βuu = −βurpp
2

, αuv =
βurpv
φx

, ψvv =
βurvv
φx

, αvvv =
βurqvv
φx

, αuvv =
βurpvv
φx

,

βuuu =
βu
2

[
r2
pp

2
− rppu

]
, ψuv =

βu
φx

[
rvu −

rvrpp
2

]
, αuuv =

βu
φx

[
rpvu −

rpvrpp
2

]
,

(5.3)

and so on. The system of differential equations defining the control equations (1.1) con-
tained in the degenerate branch of the equivalence problem are obtained by substituting
(5.3) into the lifted invariants (5.1). The result is

rqq = 0, rpq = 0, rppp = 0, 2rpv + rpprq = 2rqu, rqvA = rqAv,

rpvA+
rvrqrpp

2
= rqBv,

rr2
qrpp

2
+ 2A2 + rq(Ax + qAv + pAu + rpA) = rvA+ r2

qB,
(5.4)

where
A = rv − prqu − qrqv − rqx, B = ru − prpu − qrpv − rpx

and subscripts on A, B denote total differentiation: Av = Dv(A).

Theorem 5.1. All control equations of the form (1.1) with

r = a(x, u, v)q +
[
au − cv
a

]
p2 + c(x, u, v)p+ d(x, u, v), a(x, u, v) 6= 0, (5.5)
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such that the functions a(x, u, v), c(x, u, v), d(x, u, v) satisfy

a(au − cv)v = av(au − cv), a(dv − ax)v = av(dv − ax), a(dv − cx)v = dvau − cvax,
ad(au − cv) + 2(dv − ax)2 + a((dv − ax)x + c(dv − ax)) = dv(dv − ax) + a2(du − cx)

are equivalent. These control systems admit an infinite-dimensional fiber-preserving
symmetry group with structure equations (4.10).

Proof. The control equations (5.5) are the general solution of the system of differential
equations (5.4).

Corollary 5.2. All control systems satisfying the hypothesis of Theorem 5.1 are equiv-
alent to

uxx = vx. (5.6)

5.2 Second Order Generic Branch

We now consider the generic branch discussed in Section 4.2. First, we consider the
sub-branch obtained in Section 4.2.1.

5.2.1 Hilbert–Cartan Sub-Branch

For this branch of the equivalence problem, recall that the control equation (1.1) must
satisfy the non-degeneracy conditions

RQ 6= 0, RQQ 6= 0, RQQQ 6= −1, (5.7)

while the third order differential invariants (4.14) and the fourth order invariants (4.15)
are identically equal to zero and that our chosen cross-section is

X = U = V = P = Q = 0, RQ = RQQ = 1,
RV iUjXk = RPXi = RPPU i = RQV i+1 = RQPU i = RQQXi+1 = 0, i, j, k ≥ 0,

RPV iUj = RQU iXj = 0, i+ j ≥ 1.
(5.8)

As in the previous section, to find the control equations that are part of this branch
of the equivalence problem we must solve the normalization equations (5.8) for the
pseudo-group parameters and substitute the result in the invariants (4.14), (4.15). The
result is a complicated system of partial differential equations. Solving the system of
equations appears to be very complicated. Fortunately, it is possible to obtain particular
solutions, and this without knowing the actual expressions of the equations.

Proposition 5.3. A control equation that satisfies the non-degeneracy conditions rq 6=
0, rqq 6= 0, rqrqqq 6= r2

qq and only depends on the variable q, i.e. r = r(q), is part of the
Hilbert–Cartan sub-branch.

Proof. The restrictions rq 6= 0, rqq 6= 0, rqrqqq 6= −r2
qq come from the non-degeneracy

conditions (5.7) imposed on the invariants. When

rxiujvkpl = 0, i, j, k, l ≥ 0,
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the solution to the normalization equations (5.8) for the pseudo-group jets simplifies to

φxi = β = βxiuj+1 = α = αxiujvk+1 = 0, i, j, k ≥ 0, (5.9a)

and

βu =
φ2
xrqq
r2
q

, αv =
φxrqq
rq

. (5.9b)

Substituting (5.9) into the lifted invariants RJ we find that the invariants (4.14), (4.15)
are identically zero.

From (5.9b) we obtain the differential invariants

Iqqq = ι(rqqq) =
rqrqqq
r2
qq

, Iqqqq = ι(rqqqq) =
r2
qrqqqq

r3
qq

, . . . . (5.10)

Finally, substituting (5.9b) into the lifted total differential operator DQ given in (2.19)
yields the invariant differential operator

Dq =
rq
rqq

Dq

mentioned in Theorem 4.1.
The Hilbert–Cartan equation (1.4) satisfies the hypotheses of Proposition 5.3, and

has the property that Iqqq = 3. It thus satisfies the hypotheses of Theorem 4.3 from
which we conclude that it admits a 6-dimensional fiber-preserving symmetry group with
Maurer–Cartan structure equations isomorphic to

dωx = µX ∧ ωx, dωq = 0, dµX = 0, dωu = −ωp ∧ ωx + ωq ∧ ωu + 2µX ∧ ωu,
dωv = −ωq ∧ ωx + 2ωq ∧ ωv + µX ∧ ωv, dωp = −ωq ∧ ωx + ωq ∧ ωp + µX ∧ ωp.

This fact is well-known, [2, 12], it is nevertheless comforting to recover this result
using the equivariant moving frame method.

More generally, we can find all control equations of the form r = r(q) that admit
a six-dimensional fiber-preserving symmetry group by solving the ordinary differential
equation

rqrqqq
r2
qq

= I, where I 6= −1 is a constant. (5.11)

Integrating once, we obtain
rqq(rq)−I = C 6= 0. (5.12)

The constant of integration C cannot be equal to zero since by assumption rq 6= 0 and
rqq 6= 0. If I = 1 we obtain

r(q) = A+
eCq+B

C
, where A, B are constants.

When I 6= 1, integrating (5.12) we obtain

rq = [(1− I)(Cq +B)]
1

1−I . (5.13)

If I = 2, the solution of (5.13) is

r(q) = A− ln |Cq +B|
C

,
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otherwise

r(q) = A+
[(1− I)(Cq +B)]

2−I
1−I

C(2− I)
. (5.14)

The Hilbert–Cartan equation is recovered from (5.14) by setting I = 3, C = −2 and
A = B = 0.

5.2.2 Third Order Generic Branch

We end by writing down the coordinate expressions of the simplest invariants of the
generic branch of the equivalence problem. Let

D(rJ , rK)
D(zi, zl)

= rJ,i rK,l − rJ,l rK,i

denote the total Jacobian determinant of rJ and rK with respect to zi, zl. Introducing
the notation

∆ =
D(rqq, rq)
D(q, p)

6= 0, Γ = −rqq
rq

D(r, rp)
D(q, v)

+
rq
2
D(rq, rp)
D(p, q)

+ rqqrqu,

Ξ =
D(rq, rqq)
D(q, u)

+ 2
rqq
rq

D(rq, rv)
D(p, q)

+
D(rp, rqq)
D(v, q)

+
rqq
2
D(rq, rp)
D(p, q)

(1− Iqqq),

Λ =
1
rqq

[
rqx − rv +

q

rq

D(r, rq)
D(q, v)

+ prqu +
rq
rqq

D(r, rq)
D(q, p)

− rq
∆

Ξ + q
rv∆
r2
qq

+
rrqrqp∆
r3
qq

]
,

the coordinate expressions of the first six differential invariants (4.20a) are

Iqqq =
rqrqqq
r2
qq

, Iqqv =
rqq
r3
q∆

[
rq
D(r, rqq)
D(q, v)

− 2rqq
D(r, rq)
D(q, v)

]
,

Iqpp =
r2
qq

rq∆2

[
rqq

D(rq, rqp)
D(q, p)

− rqp
D(rqq, rq)
D(p, q)

]
,

Iqpv =
r3
qq

r3
q∆2

[
rqq

D(rq, rv)
D(p, q)

+ rq
D(rq, rqv)
D(q, p)

− rv
D(rqq, rq)
D(p, q)

]
,

Ippp =
r6
qq

r2
q∆3

[
D(rq, rpp)
D(q, p)

+
2rqp
rqq

D(rq, rqp)
D(p, q)

+
r2
qp

r2
qq

D(rqq, rq)
D(p, q)

]
,

Ippv =
r5
qq

r3
q∆3

[
rqq

D(rq, rpv)
D(q, p)

+ rpq
D(rq, rqv)
D(p, q)

+
rv
rq

(
rqp

D(rqq, rq)
D(p, q)

− rqq
D(rq, rqp)
D(q, p)

)]
.

The remaining differential invariants (4.4) can easily be obtained with a symbolic soft-
ware. Unfortunately, the expressions obtained take too much space to write them down.
Finally, the coordinate expressions of the invariant horizontal coframe in Theorem 4.5
are

ωx =
r2
q∆
r3
qq

dx, ωv =
rq∆
r3
qq

[rqp(du− pdx) + rqq(dv − qdx)],

ωu =
r2
q∆

2

r2
qq

(du− pdx), ωp =
1
r2
qq

[Ξ(du− pdx) + ∆(dp− rdx)],

ωq =
rqq
rq

[
Γ
r2
qq

(du− pdx) +
rv
rq

(dv − qdx) +
rqp
rpp

(dp− rdx) + (dq + Λdx)
]
.
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6 Concluding Remarks

The solution to a complicated equivalence problem involves many challenges. One of
the main difficulties is to determine all the different branches of the problem and to
characterize the algebra of differential invariants for each cases. Now, with the universal
recurrence relations (2.28) these questions can readily be answered symbolically. In this
paper we considered three typical branches of the equivalence problem (1.1), (1.2) that
illustrate the possible outcomes of the moving frame method:

Generic branch: all pseudo-group parameters are normalized and the result is a stan-
dard invariant coframe {ωx, ωu, ωv, ωp, ωq}.

Hilbert–Cartan branch: finitely many pseudo-group parameters cannot be normal-
ized and the result is a prolonged invariant coframe {ωx, ωu, ωv, ωp, ωq, µX}.

Degenerate branch: Infinitely many pseudo-group parameters cannot be normalized
and the result is an infinite-dimensional invariant coframe {ωx, ωu, ωv, ωp, ωq,
µX , νU ,, αXk+2 ,, αUXk} with involutive structure equations.

The author believes that doing the similar computations with Cartan’s equivalence
method of coframes would have required a lot more work. By possibly using symbolic
softwares, the hope is that the equivariant moving frame method will lead to the solution
of new equivalence problems or at least give valuable information on some key branches
of complicated equivalence problems.
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