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Abstract

We use the equivariant moving frame method to study the local equivalence problem
of scalar control equations of the form u,, = r(z,u, v, uy, v,) under the pseudo-group
of fiber-preserving transformations X = ¢(x), U = f(z,u), V = a(z,u,v). Three
typical branches of the equivalence problem are considered: The degenerate case which
contains the control systems with largest fiber-preserving symmetry group, the branch
containing the Hilbert—Cartan equation and finally the generic case.

1 Introduction

A common problem in geometry consists of determining when two geometrical struc-
tures are locally equivalent up to some group of transformations. Using his theory
of exterior differential systems, Cartan developed a powerful algorithm for answering
such question, [13, 21]. Recently, Olver and his collaborators proposed a new theoreti-
cal foundation to Cartan’s moving frame theory now known as the equivariant moving
frame method, [9, 23, 24], and in [25], it was shown how to use this new method to
solve local equivalence problems. The aim of this paper is to apply the results of [25]
to study the local equivalence of non-autonomous one-dimensional control systems of
the form

Uge = 7(X, Uy U, Uy, V) (1.1)

under the pseudo-group of fiber-preserving transformations
X = ¢(x), U = B(z,u), V =a(z,u,v). (1.2)

By assumption

¢ # 0, Bu # 0, ay # 0,
L Supported by a NSERC' of Canada Postdoctoral Fellowship.

1 March 30, 2011



so that (1.2) is a local diffeomorphisms of R3. In physical applications, the variable
u = u(z) describes the dynamics of a state while v = v(x) is a scalar control parameter,
and equation (1.1) can be interpreted as a one-dimensional Newtonian equation with a
control in the force term.

Example 1.1. A simple control system prescribed by an equation of the form (1.1)
comes from robotics where the position of a single-link rotational joint is controlled by
a motor placed at the pivot, see Figure 1.

myg

Figure 1: Controlled pendulum.

If we assume that the units of time and distance are chosen so that the mass m and
the gravitational constant g are equal to one, and that the rod has unit length, then
the differential equation governing the time evolution of the mass, when friction is not
neglected, is given by

ug = f(t,v,v) —sinu — au?,

where the constant « is the coefficient of friction and f(t,v, v;) is a force term depending
on the external torque v, its time derivative vy and possibly on time.

The literature contains similar, but different, versions of the equivalence problem
(1.1), (1.2). A more well-known problem in the geometry of underdetermined ordinary
differential equations of the form

Vg = T(LU, U, v, Uy, uzx)

is the problem of internal equivalence studied by Cartan, [5, 6], Nurowski, [19], Doubrov
and Zelenko, [8] and Anderson and Kruglikov, [1]. Closer along the lines of the problem
considered in this paper is the equivalence problem of control equations that do not
depend on x and v,, namely,

Ugy = 7(U, v, Uy), (1.3)

up to the group of feedback transformations
X =z, U = B(u), V = a(u,v).

Provided some generic conditions on (1.3), this problem was solved in [17]. Finally,
when the right-hand side of (1.1) does not depend on the control parameter v and its
derivative v, i.e. when (1.1) is a standard second-order ordinary differential equation,

2



the solution is well understood and appears in [10, 11, 15, 16]. To our knowledge, the
equivalence problem (1.1), (1.2) satisfying the non-degeneracy condition

or

Oy 70

has not been considered in the literature.

Mathematically, this problem is interesting in its own as it contains interesting exam-
ples of underdetermined ordinary differential equations. The most celebrated example
is most likely the Hilbert—Cartan equation

Ugw = (v3)"2. (1.4)

An interesting feature of equation (1.4) is that its algebra of internal symmetries is
isomorphic to the 14-dimensional non-compact real form of the exceptional Lie algebra
g2, [4], which is much larger than its 6-dimensional Lie algebra of external symmetries,
[2]. The Hilbert—Cartan equation (1.4) is also an example of differential equation that
does not admit parametric solutions of finite rank, [14].

Since we are interested in studying the equivalence problem (1.1), (1.2) using the
new theory of equivariant moving frames, we begin this paper with a review of the
structure theory of infinite-dimensional Lie pseudo-groups and the equivariant moving
frame construction, [22, 23, 25]. One of the interesting features is that all computations
can be done symbolically. Taking advantage of this feature, we symbolically analyze
the solution to our proposed equivalence problem in Section 4. Three typical branches
of the problem are studied. We first consider the degenerate branch which contains the
control equations with larges fiber-preserving symmetry group. Then, we consider an
intermediate branch which contains the Hilbert—Cartan equation (1.4) and finish with
the generic case. These three cases highlight all the different features of the equivariant
moving frame solution of a local equivalence problem. In Section 5, the coordinate
expressions of some differential invariants found using our symbolic computations are
obtained.

2 Lie Pseudo-Groups and Moving Frames

In this section we briefly review the structure theory of infinite-dimensional Lie pseudo-
groups and the equivariant moving frame construction. We refer the reader to [22, 23,
24, 25| for more details.

2.1 Structure Equations of Lie Pseudo-Groups

Let M be an m-dimensional manifold and D = D(M) the pseudo-group of all local
diffeomorphisms of M. In the following, all manifolds, maps, vector fields and differ-
ential forms are assumed to be analytic. For all 0 < n < oo we denote by D™ the
bundle formed by the n'® order jets of local diffeomorphisms. The coordinates of the
n-jet of a local diffeomorphism Z = ¢(z) are given by j,o = ¢ = (z, Z(), where
z = (z1,...,2™) are the source coordinates on M, Z = (Z',...,Z™) the target coor-
dinates also on M, and the corresponding jet coordinates Z% representing the partial
derivatives 8k<p“(z)/8zb1 e 8zbk, with 1 <a,b!,...,0F <mand 1 <k =#A<n.



Definition 2.1. A pseudo-group G C D is called regular of order n, > 1 if, for all
finite n > ny, the set of n-jet of transformations G forms an embedded subbundle of
D™ and the projection antl. G+t — G ig a surjective submersion. An analytic
pseudo-group G C D is called a Lie pseudo-group if G is regular of order n, > 1 and,
moreover, every local diffecomorphism ¢ of D satisfying jn.¢ C G belongs to the

pseudo-group.

In local coordinates, for n > n,, the pseudo-group jet subbundle G < P ig
characterized by an involutive system of n*® order partial differential equations

FM(z,zM) =0 (2.1)

called the n'" order determining system of G.
Let X(M) be the space of locally defined vector fields on M. In local coordinates a
vector field in X (M) will be denoted by

v=>" ca(z)aza. (2.2)

a=1

For 0 < n < oo, let J*T'M denote the bundle of n'" order jets of sections of TM. Local
coordinates on J"T'M are given by

(zac(n)) = (za7§%)7 a=1,...,m, 0<#B<n,

where (% represents the partial derivative 075(%/025. Let

LM (z,¢M)=3" > wl(2)h =0, (2.3)

a=1#B<n

be the linear system of partial differential equations obtained by linearizing the deter-
mining system (2.1) at the identity n-jet 1 € G, A vector field (2.2) is in the Lie
algebra g of infinitesimal generators of the Lie pseudo-group G if and only if! its n-jet
is a solution of (2.3). For this reason, the system of equations (2.3) is called the (n'®
order) infinitesimal determining system of g.

As with Lie groups, the structure equations of a Lie pseudo-group G are obtained
by computing the structure equations of a G-invariant coframe. For the diffeomorphism
pseudo-group D an invariant coframe is given by the horizontal forms

m
aa:Zngzb, a=1,...,m=dim M,

and the Maurer—Cartan forms
e b=1,....,m, #A>0, (2.4)

on D(*®), The coordinate expressions of the Maurer-Cartan forms (2.4) can be found
in [22] but they are not needed here. The structure equations of the diffeomorphism
pseudo-group D(R) were first obtained by Cartan, [7]. For M = R™, m > 2, these
equations were first explicitly obtained in [22].
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Theorem 2.2. The structure equations of the diffeomorphism pseudo-group D(M) are

m m
C
daazzug/\ob, duaczz Ub/\ﬂc(i:b‘i‘ Z <A>H?4,b/\ﬂ% ) (2.5)
b=1 b=1 C=(4,B),
#B>1

where the last sum ranges over all multi-indices A, B such that #B > 1, and their
concatenation equals the multi-index C. By definition

|
(j) - % when O = (A,B).

On G(*) the Maurer-Cartan forms (2.4) are no longer linearly independent, the
linear relations among them are easily obtained from the infinitesimal determining
equations (2.3).

Proposition 2.3. Let G C D be a Lie pseudo-group. Once restricted to G() the
Maurer—Cartan forms (2.4) satisfy the linear relations

obtained by making the formal replacements 2 — Z¢, (% +— u% in the infinitesimal
determining equations (2.3).

We refer the reader to [22] for the proof of Proposition 2.3 and the detailed justifi-
cation of the formal replacement (% — u%.

Theorem 2.4. The structure equations of a Lie pseudo-group G C D are obtained by
restricting the structure equations (2.5) to the kernel of (2.6).

Example 2.5. Let p = u; and ¢ = v,. In this example, we compute the structure
equations of the Lie pseudo-group action
Q= 0y + DOy, +05x7
Pa
(2.7)
obtained from (1.2) by considering its first-order prolongation, [20]. The linearization
of (2.7) at the identity jet yields the infinitesimal generator

_ PBut B

X =¢(x), U=p(xu), V=aoxuwv), P 5

v =€)+ ) 5+ o) 5+l — € + el
P (2.8)
+ [Q(’}/v - fz) + DVu + '790]877
q

where £(z), n(x,u) and ~(x,u,v) are arbitrary analytic functions. Let 7(x,u,v,p,q),
and ((z,u,v,p,q) be the p, g-components of the vector field (2.8), respectively. Then,
the components of the vector field (2.8) are solution to the infinitesimal determining

system
fu:fU:€p:fq:0, ?7v=77p=77q=07 ’Vp:')/q:ov

(2.9)
T:p(nu_fx)+77xa CZQ(Vv_fx)+p'Yu+'Vx-



By virtue of Proposition 2.3, the linear relations among the Maurer-Cartan forms %,
p4, 1y, phy, ploare obtained by making the substitutions

r—X, u—U o=V, p=P qg—Q,

Ear s, mar pa,  yar ph,  Ta— b, Capd

in (2.9). The result is

pp =py =pp=po =0, py=pp=py=0,  pup=pg=0, (2.10)

pP = Pug — px) +py,  p?=Quy — px) + Pug + pk.

It follows from (2.10) that a basis of Maurer—Cartan forms is given by
Hi = Wi Vij = Hrixi Qi gk = Hyigixhs iJ,k = 0. (2.11)

To simplify the notation, we introduce the functions
o
5(1'7“717) = pBu + Be, ¢(x7uvpa q) = 0y + Py + Oy, X(x) = f (2'12)
X

Applying Theorem 2.4, we find that the structure equations of the invariant horizontal
coframe

0% = ¢pdx, o" = Bydx + Bydu,
_1
o

1
ol = ¢7 [(djz - ¢X)d£l? + Yydu + Pydv + o dp + ade] )

T

o' = azdx + aydu + aydv, oP [(0z — 0x)dx + dydu + Bydp],

(2.13)

are

do® = ux No®,
do" =vx No® +vy No¥,
do" =ax No*+ay Ao +ay Na?, (2.14a)
do? = [P(vyx — pxx) +vxx| ANo” + [Pvpy + vux]) Ao + [vg — ux] A o,
do? = [Q(avx — puxx) + Payx + axx| A o® + [Qavy + Payy + aux] Ao
+ [Qayy + Payy + ayx| Ao’ 4+ ay Ao + [ay — px]| A od,

while the structure equations for the Maurer—Cartan forms (2.11) are

dp = 0% A ux, dv =0 ANvx +c" ANy, da=0c"Nax +c" Nay +d’ A ay,
dux = o" A pxx, dvx = 0" ANvxx + 0" ANvxy +vx A (ux — vu),
dvy = o” ANvxy + o ANy, day =0 Naxy + 0" ANagy + 0 ANayy, (2.14b)

day =oc" Naxy +oc" Nagy + 0’ ANayy + ay A (v — ay),
dax =0 Naxx +o" Nayx + 0’ Nayx +ax A (ux — ay) + ay A vy,



2.2 Equivariant Moving Frames

Let 1 < p <m=dim M. For all 0 < n < oo, let J* = J*(M,p) be the extended
jet bundle of equivalence classes of p-dimensional submanifolds of M under n'" order
contact, [20, 21]. We introduce adapted coordinates z = (z,u) = (z!,..., 2P, u', ..., u9)
on M so that submanifolds of M are locally represented by graphs of functions (z, f(x)).
The induced local coordinates on J* are denoted by z(™ = (z, (™), where u(™ denotes
the derivatives u§ = 8Ju°‘/8:v‘] of the u’s with respect to the x’s of order 0 < #.J < n.
The algorithm leading to the construction of an equivariant moving frame contains two
steps.

Step 1: Lift

Definition 2.6. The n'" order lifted bundle £™ — J" is defined as the pull-back
bundle of (™ — M via the projection 7§ : J* — M.

Local coordinates on £M™ are given by (z("),g(”)), where the base coordinates
2" = (z,u™) € J" are the submanifold jet coordinates, and the fiber coordinates
g™ parametrize the Lie pseudo-group jets. The lifted bundle has the structure of a
groupoid, [18], with source map o(2(°), g(>)) = 2() and target map 7(2(>), g(>)) =
Z(2) = ¢(00) . 5(0) "given by the prolonged action, [20]. In local coordinates, the pro-
longed action is found by differentiating the target coordinates U% = g-u® with respect
to the lifted total differential operators

P
Dyxi=) WDy,  where (W])=(DuX’)™", (2.15)
j=1

to obtain

U$ = DF(U®),  where Df =D 1---D k=+4#J>0. (2.16)

X7 Xk

The action of G on J” and G(™ are combined together to induce the lifted action on

g,
b (2™ gy = (B0 . () o) o (p=1y(m)y, heg, (2.17)

whenever the compositions in (2.17) are well-defined. By definition of the lifted action
(2.17), the expressions (X*,U¢) are invariant differential functions defined on the lifted
bundle £(°). These invariants are known as the lifted differential invariants of the Lie
pseudo-group action.

Example 2.7. We consider the induced action of (1.2) on control equations of the
form (1.1), where we set p = uy, ¢ = Uy, T = Uy, and r is assumed to be a function of
the independent variables x, u, v, p, ¢. By the chain rule, the action (1.2) induces an
action on p, ¢, given by (2.7) and on 7:

po_ @8 zgﬁ)qﬁ Il +Tﬁ;:2£pﬂ + Bee _ —Ox+p Qg B (918)




To compute the prolonged action we apply the lifted total differential operators

Dg = f:}Dq: Dp = 3. [¢m O‘UDQ]?
v (S u
Dy = ; [D - ZxDQ] Dy = ﬂlu [Du ~auDy ~ 5 Dp - ‘Z;DQ} (2.19)
Oy — O -
Dx =+ [D — B.Dy — a, Dy — ( = X)Dp (1'” J")DQ],

to the lifted invariant (2.18). For example, the first-order lifted differential invariants
are

Burq [ ﬁux + 20, + 5urp :| |:/8urv Py :|
Ro =" R auRo|. R Ly
oo, T B ba O T T el e ¢
1 5uX + pduu + Ouz + ﬂuur + ﬂuru Ou wu
Ry = ﬂu [ 22 a, Ry — pr — QTRQ
1 5acu 69030 uzx u'xr T 6x - 6 x
Ry = {p + 00 + 19 r;ﬂ e Z0sX 70X 9 R B,Ry — asRy (2.20)

O0p — O -
_( o X>RP <w %wX)RQ]'

Differentiating (2.20) with respect to (2.19) yields the second-order lifted differential
invariants and so on.

Now that we have lifted the submanifold jet coordinates z(°) to differential invari-
ants Z(*) on £() we do the same for the standard coframe on J®. The space of
differential forms on £(>) splits into

O* @le @Qz,jl
k,l 4,7,

where [ indicates the number of Maurer—Cartan forms (2.4), and k = i + j the number
of jet forms, with ¢ indicating the number of horizontal forms dx*, 1 <1 < p, and j the
number of basic contact forms

P
=du§ — Z uiidx", a=1,...,q, #J >0, (2.21)
i=1

on the submanifold jet bundle J*°. Let
r=pat’ = @ Q70 (2.22)
k

denote the subspace of jet forms consisting of those differential forms containing no
Maurer-Cartan forms. Let 7;: % — Q% be the projection that takes a differential
form © on £ to its jet component m;(Q) by annihilating all Maurer-Cartan forms

in Q. Similarly, let
_ 0,0
Q; =
l
be the subspace of group forms consisting of those differential forms containing only

Maurer-Cartan forms, and let mg: ©2* — € be the projection onto the group compo-
nent.



Definition 2.8. The [lift of a differential form € on J*° is the jet form
AQ) =7 (Q)]. (2.23)

Note that if Q is a differential function, then (2.23) is equal to the prolonged action.
In the following we denote by w® = A(dz?) the lift of the horizontal coframe on J* and
by ©F = A(69) the lift of the contact forms. The lift map A is extended to vector field
jet coordinates as follows, [22, 23].

Definition 2.9. The lift of a vector jet coordinate Cﬁx is defined to be the Maurer—
Cartan form ul;‘:

A(Ch) = il for  b=1,...,m, #A > 0.
More generally, the lift of any finite linear combination of vector field jet coordinates
m
> > B
b=1 #A>0

is defined to be the invariant group one-form

ME Y s =X Y A

b=1 #A>0 b=1 #A>0

With this in hand, we can now write down the universal recurrence formula found
in [23].

Theorem 2.10. Let Q be a differential form on J°°. Then
dA(Q)] = A[dQ + v®) ()], (2.24)

where v(°°) is the prolongation of the vector field

p .
v=> &
=1

given by

P

; 0

=> &, +Z > ¢ (z,u®) 57 © g™, (2.26)
i=1 a=1k=#J>0

with ¢*7 defined recursively by the prolongation formula, [20],

P

¢*7I = D ;¢ — Z (Dzjfi)u?é]ﬂw (2.27)

=1

In particular, the identity (2.24) applies to the lifted differential invariants X*, U
leading to

dX' =W+ 1, 1=1,...,p,

L : T (2.28)
dU‘?:ZUﬁf]wy+@?+¢a’ ’ Oé:]_,...,q, #JZO)
j=1
where 50” = A(¢%”) are correction terms obtained by lifting the prolonged vector field
coefficients (2.27).



Example 2.11. We continue Example 2.7. Since the Lie pseudo-group (2.7), (2.18)
acts projectably, [20], we have the equalities

w® = A(dz) =0, W' = Adu) = o, W' = A(dv) = 0",
SN D) = o, = A(dg) = o,

where the coordinate expressions of the one-forms o are given in (2.13). The lifted
contact forms © ; = A(f;) will not play an important role in the subsequent computa-
tions, thus we introduce the notation w = €2 to denote equality up to a contact form,
i.e. w=Q if and only if the difference w — ) is a contact form.

To obtain the correction terms in the recurrence relations (2.28) one needs to com-
pute the prolongation of the infinitesimal generator

0 0 0 0
v :f(l“)% + 77(%“)% + 7(957%”)% + [P — &) + ﬁw]afp (2.29)
0 0
+ g — &) + Py + 'Yx]aiq + [p277uu +2(2Nue — ea) + 1(Nu — 282) + 779:9:]5,

using the formula (2.27). Restricting our attention to the zero-order lifted differential
invariants we obtain
dX = w” + pu, dU = w" + v, dV = w’ + «,
dP = w? + P(vy — px) + vx,
dQ = w? + Q(ay — px) + Pay + ax, (2.30)
dR = Rxw” + Ryw" + Ryw"” 4+ Rpw? + Rouw!
+ P?uyy + P(2uyx — pxx) + R(vy — 2ux) + vxx.

Step 2: Normalization

Once the lifted differential invariants (X, U (OO)) have been computed, the next step
in the construction of a moving frame is to normalize the pseudo-group parameters
¢(®) parametrizing the fibers of G(°°). This is done by choosing a cross-section to
the prolonged action on J*°, [23]. While the lift is well-defined at every submanifold
jet, the normalization of the pseudo-group parameters depends on the geometry of the
pseudo-group orbits.

Definition 2.12. A subset $§° C J® is said to be G-invariant if for all z(®) ¢ §>
and g, € G|., z = 75°(2(>)), the submanifold jet Z(>°) = ¢(>)|, . 2(*) is also in §*.
The set 8 is a G-invariant subbundle of J°° if there exists a finite ng > 1 such that
Spo = mpo (8%°) is a G-invariant subbundle of J™ locally described by

82% = {($7U(n0)) . E(”O)(x,u("o)) 40 and F(no)(x7u(n0)) — 0},

such that for all n > ng the subset 87° = 7;,°(8°°) is obtained from 8;° by “prolongation”
in the sense that

S = {(CE,u(”)) : E(no)(az,u("o)) #0 and (DﬁF(no))(x,u(n)) =0, 0<#J <n-—ng}.

The integer ng is called the determining order of the G-invariant subbundle 8.
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By definition, the non-degeneracy conditions E(”O)(:U, u(”o)) # 0 and the equations
F (”0)(a:,u(”0)) = 0 are G-invariant. In a given equivalence problem, the different sub-
bundles §°° satisfying the hypothesis of Definition 2.12 correspond to the different
branches of the equivalence problem. The functions E("O)(w, u("o)) appear when non-
degeneracy conditions are imposed on some differential invariants while the functions
F0) (g, 4(0)) come from assuming that some differential invariants are identically zero.

Definition 2.13. The pseudo-group G is said to act regularly on a G-invariant sub-
bundle 8§ C J* if the orbits in 8> form a regular foliation, i.e. its leaves intersect
small open sets (in the relative topology) in 8% in pathwise connected subsets. The
dimension of the leaves in 8° is denoted by d,,.

Definition 2.14. A pseudo-group G is said to act freely at 2(°°) € J* if the only pseudo-
group element that fixes the submanifold jet is the identity jet 1(°°). Submanifold jets
at which the action is free are called regular. Submanifold jets where the action is not
free are called singular.

Definition 2.15. For n > 1, let

be the collection of isotropy groups of the submanifold jets z(™ e 85°. The projective
limit
Gs~= |J G (2.31)

2(00) 8o

is called isotropy pseudo-group of 8.

Two regularity assumptions are made on Gg~. We assume there exists a finite
n® > ng > 1, called the determining order of the isotropy pseudo-group, such that for
all n > n0

e the isotropy pseudo-group Gge is an embedded subbundle of Q(”)\ 8 (Q(")\ 8

denotes the restriction of the pseudo-group jet bundle G(™ to 82,

n+1

e the projection

: Qg,;o+1 — Ggeo is a fibration.
The Lie pseudo-group G acts on Ggx by conjugation:

Kh<oc>(g(°°)) = h(>) . () (1Y) for all ¢(>) e G,(=) and o (h(™)) = z(),

For n > nY, let &g be the pull-back bundle of Gg« — M via the projection
7y 850 — M. In the projective limit, Eg is called the 8 prolonged bundle.

We are now in a position to define the notion of an equivariant moving frame on
Egoo.

Definition 2.16. Let G be a regular pseudo-group action on 8. An n* order moving
frame on 87° is a G-equivariant bundle map

p(n): Espe — g(n)‘S%_

11



It is always possible to ask for right or left G-equivariance. In the following we work
with right moving frames which means that

b p™ (2™ gy =h - (20 50 (2 M)y = (R . 2 5 (p () .Z(n)th(n) (g"™)))
=(R™) . 20 5 () gy (p=1) (), hegl,, g™ e G.n).-

Theorem 2.17. Let 8 be a G-invariant subbundle of J* and n° the determining order
of the isotropy group Gge. For n > n® let K™ C 8° be a (local) cross-section to the
pseudo-group orbits. Given z(™ € §° and g™ € G.(n), define p (2" ) ¢ 5(”)|Z<n>
to be the unique pseudo-group jet with the property that ﬁ(")(z(”),g(”)) -2 e K,
Then p(") 1&g — & (”)\ s 18 a right moving frame defined on Es~. The local cross-
section coordinates of the induced map I = 70p™ : Eso — K™ provide a complete
system of functionally independent n'™® order differential invariants on the domain of
definition of the moving frame.

In applications, a (coordinate) cross-section is obtained by fixing d,, = codim X"
individual jet coordinates of z(™ = (z,u(™) equal to some constants (recall that d,, is
also equal to the dimension of the pseudo-group orbits in 85°.) Writing the coordinate
formulas for the prolonged action

(X, U™y = FO) (g, 4™ pM) (2.32)

in terms of the submanifold jet coordinates (x,u(™) and the Lie pseudo-group parame-
ters A, the d,, components of (2.32) corresponding to the cross-section variables serve
to define the normalization equations

F(z2™ n)y =¢, ... F (2™ M) = ¢y . (2.33)

Writing h(" = (ﬁ("), g™), so that g™ are the pseudo-group jets parametrizing the
isotropy group G, ), we can solve for the pseudo-group parameters h(™ in terms of z(™
and ¢(™):

L) — E(n)(z(n)’g(n))'
This leads to the moving frame
p(n)(z(n)7g(n)) — (Z(n)j(n)(z(n)’g(n))’g(n)) — (z(n)jﬁ(n)(z(n)’g(n)))' (2.34)

Substituting the moving frame (2.34) into the lifted invariants (2.32) yields the nor-
malized differential invariants

10— O (000, 500 (400, g(0)) — (HY(2), I3 (), (2:35)

with 1 <i<p 1 < a<gq 0< #K < n. Note that the normalized invariants
(2.35) cannot depend on the pseudo-group parameters g™ since they parametrize the
isotropy group G|,m). The normalized invariants used to obtain the normalization
equations (2.33) are called phantom invariants.

Definition 2.18. A moving frame p*) : Egpe — E(k)\gzo of order k > n is compatible

with a moving frame p(™ : Egoo — g(n)|s%° of order n provided 7Fop) = p(n)ork
where defined.
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A complete moving frame is a collection of mutually compatible moving frames of
all orders k > n. In the projective limit we write p : Egoo — 8(00)\300.

Remark 2.19. When the isotropy pseudo-group Gs~ only contains the identity jet
1(°°) | the preceding considerations reduce to the usual moving frame construction ap-
pearing in [23]. When this is not the case we obtain what is called a partial moving
frame in [25].

Definition 2.20. Let 2(>) € §° and p a moving frame defined in a neighborhood of
2() in 8. The invariantization of a jet form Q € T*J* is the invariant jet form

{Q) = p o (@) (2.36)
defined on Egeo.

We note that if the action is not free at z(° then the coefficients of an invariantized
jet form (2.36) may depend on the isotropy pseudo-group jet parameters.

3 Local Equivalence of Submanifolds

In this section we briefly review the solution to the local equivalence problem of sub-
manifolds.

Proposition 3.1. Let 2(®) = (z2,u(*®)) € 8% and p a moving frame defined in a
neighborhood of (z,u(*). The invariantization of the submanifold jet coordinates
(H,1()) = 1(z,u(>)) forms a complete set of differential invariants.

Definition 3.2. A total differential operator D is said to be an invariant differential
operator if for all differential invariant I, DI is also a differential invariant.

Once a moving frame p is constructed, a basis of invariant differential operators is
easily obtained from the lifted total differential operators (2.15). One simply has to
pull-back the coefficients W/ by p:

Definition 3.3. A set of differential invariants {I} is said to generate the algebra
of differential invariants if all differential invariants can be written in terms of the
invariants I, and their invariant derivatives Djl,.

The key result which makes it possible to solve local equivalence problems is that
while there might be infinitely many functionally independent normalized differential
invariants (H, I(>)), there always exists a finite generating set, [24, 25].

Proposition 3.4. The algebra of differential invariants is finitely generated.

Definition 3.5. Let Z = {I3,..., I;} be a generating set of differential invariants. The
n order signature space K™ is the Euclidean space of dimension ¢(1+p+p?+- - -+p")
coordinatized by w(™ = (... Wi - - ), Where (k;J) = (k,51,...,j7) with 1 < x < ¥,
and (j',...,4") ranging through all unordered multi-index with 1 < j° < p and 0 <
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r < n. Given a submanifold S, the n* order signature map Ign): S — K™ is the map
whose compontents are

Wiy = (Dyli)ls, k=1,...,¢, #J < n.

Definition 3.6. A moving frame p is said to be fully regular on S if for each n > 0

the signature map Ign) . § — K™ is regular.

Definition 3.7. Let p be a fully regular moving frame. The image
&M (p,8) = {1(2) : z € S} c K™ (3.1)

of the n'" order signature map Ign) is called the n'* order signature manifold.

Proposition 3.8. Let p be a fully regular moving frame and denote by g, the rank of
the n'! order signature map Igl). Then

0<p <01 < <ps=0s41="-=r<p=dim S,

the stabilizing rank r is called the rank of the moving frame and the smallest s for
which gs; = gs4+1 = 7 is called the order of the moving frame.

Theorem 3.9. Let G be a Lie pseudo-group action on M, p a fully regular moving
frame on 8 C J* and S,S C M two p-dimensional submanifolds such that for all
z€ S and Z € S, jooS|2,jooS|z € 8. Then there exists a local diffeomorphism ¢ € G
mapping S onto S if and only if p has the same order 3 = s on S and S and the (s+1)%
order signature manifolds G+ (p, ), &6+ (p, S) overlap. Moreover, if zy € S and
Zop € S are any points mapping to the same point

on the overlap of the two signature manifolds, the local equivalence map ¢ sending

20 to Zg = ¢(z0) is uniquely defined up to precomposition at the source by a local

diffeomorphism ¢ € gz(m> and composition at the target by a local diffeomorphism
0

0

Finally, given an equivariant moving frame p, we note that the structure equations
obtained with Cartan’s equivalence method of coframes are readily obtained by pulling-
back the structure equations (2.5) of the equivalence pseudo-group by p, [25].

4 Symbolic Computations

In this section we use the recurrence relations (2.28) to investigate the local equivalence
problem for control equations of the form (1.1) under the group of transformations (1.2)
symbolically.

The first step towards the solution consists of constructing a moving frame. This is
done by determining a cross-section to the equivalence pseudo-group action. Since there
is a correspondence between the normalization of the pseudo-group parameters and the
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normalization of the Maurer—Cartan forms (2.11), the recurrence relations (2.28) can
be used to find a cross-section. Considering the group differential

dg = mgod

component of the recurrence relations (2.28) it is possible to symbolically determine
how the lifted invariants depend on the pseudo-group parameters. For example, for the
zero order lifted invariants we have

dgX =p, dgU=v, dgV=qa,  dgP =P —px)+vx,
dgQ = Q(av — px) + Pay + ax,
dgR = Pvyy + P(2uyx — pxx) + Rvu — 2px) + vxx.

Since the group differential of X equals u we conclude that it is possible to translate
X to zero. Similarly, since the group differential of U, V, P, ), R depend on the
linearly independent Maurer—Cartan forms v, «, vx, ax, vxx, respectively, it is also
possible to translate U, V, P, () and R to zero. Said differently, we can set X = U =
V =P =Q = R =0, and use the recurrence relations to solve for the Maurer—Cartan
forms p, v, a, vx, ax, vxx. Computing the group differential of the higher order lifted
differential invariants, the objective is to normalize as many Maurer—Cartan forms as
possible. Since the expressions for the group differential grow rapidly as the order
of the lifted invariants increases those computations were done with the assistance of
MATHEMATICA. In the following we only include the main intermediate steps. Also, to
simplify the expressions, once a Maurer—Cartan form is normalized this normalization
is taken into account in following expressions. For example, setting

X=U=V=P=Q=R=0,
leads to the normalizations
p=v=a=vxy =ax =vxx =0 (mod submanifold jet forms). (4.1)

Thus, when writing the group differential of higher order invariants we systematically set
the Maurer—Cartan forms (4.1) equal to zero. With this in mind, the group differential
of the first order lifted invariants reduce to

dgRg = Rq (vu — av — ux),

dgRp = — Rppux — Rgay +2vyx — pxx,
dgRy = Ry (v — av —2ux) — Rgavx, (4.2)
ngU = — RPVUX — RQO[UX — RVO(U - QRU/JX +VUuxx,

ngX = Rx(l/U — 3/L)() — RQaXX +Uxxx.

The group differential of Rg reveals that the equivalence pseudo-group acts by scaling
on Rg. Since at the identity transformation Rg is equal to 7, and that we assume
rq # 0 it follows that Rg # 0. Hence, from (4.2) we see that there is enough liberty in
the prolonged action to set

Rp=Ry=Ry=Rx=0 and Rg=1,
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which leads to the normalization of the Maurer—Cartan forms puxx, ayx, Vuxx, VXXX
and ay, respectively. From the prolongation formula (2.27) for the coefficients of a
vector field, we see that there is enough liberty in the prolonged action to set

RPX’“ == Rvinxk == 0, ’i,j, k 2 0. (43)

The normalization equations (4.3) are used to normalize the Maurer—Cartan forms
Lxk+2, Vpixk+2 and ayqigrg e+, with ¢ > 1. For the remainder of the discussion the
normalizations (4.3) are performed in the background, and all the expressions that
follow take into account these normalizations. Thus, the group differential of the re-
maining unnormalized second order differential invariants are

dgRqq =Rqq (2ux —wy), dgRqp = Rqop (nx —vu) — Rogow
dgRgv =Rqv (ux —vu) —avy, dgRgx = —Rgoaxx — Roxpx +av —vux,

dgRpp = — Rppvy — 2Rgpay + 2vyy, dgRpy = —Rpyvvy — Rovay — ayy,
dgRqu = — Rovay — Rggavx — Rouvu — Roprux — avu + vou,
dgRpy = — Rppvyx — Rpu(vu + px) — Rpvay — Roraux — Rouau

—ayyu + 2vyrx. (4.4)

At this stage we can set
Rgv = Rgx = Rpp = Rpy = Rpy =0, (4.5)

and normalize the Maurer—Cartan forms ayv, vyx, vuu, avu, Yuux. More generally,
we can set

RPPUi - RpUiJrl - RQvi+1 = vaz‘+1Uj - 0, Z,j Z 0,

and normalize of the Maurer—Cartan forms vyit2, Vyitex, o2 and ayitigi+1. Once
these normalizations are done, the group differential for Rpg, Rgp and Rgy reduce to

dgRqq =Rqq(2ux —w),

dgRqp =Rqp (nx —w) — Roqow,

dgRou =Roq(Rgraxx —aux) — Rouvy.
At this stage, the equivalence problem splits into four branches:
Second order degenerate branch: Rgg = Rgp = Rgou = 0.
Second order intermediate branch 1: Rgg = Rgp =0, Rgou # 0.
Second order intermediate branch 2: Rgg =0, Rgp # 0.
Second order generic branch: Rgg # 0.

In Section 4.1 we consider the degenerate branch with the aim of determining the
control equations with largest fiber-preserving symmetry group. In Section 4.2 we study
the generic branch while the intermediate branches are omitted.
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4.1 Second Order Degenerate Branch
In this section we assume that the second order invariants
Rog = Rgp = Rogu =0 (4.6)

are identically equal to zero. Under assumption (4.6), the group differential of the
invariants Rgg, Rgp, Rqu is identically zero and these invariants cannot be used to
normalize any Maurer—Cartan form. We must thus proceed to the next order. But
before doing so we must take into account the consequences of (4.6) on the third order
lifted invariants. Taking the horizontal differential of (4.6) we obtain

0= dHRQQ ZRQQqu + RQprp + RQvaU + RQQUu)u + RQQwa,
0= dHRQp ZRQQqu + RQPPwp + Rvawv + RQpru + RQprx,
0 =dyRqu ZRQQUwq + RQPUwp + RQVUWU + RQUUwu + RQUwa

1
~3 [RQPqu + Rpppw? + Rppyw” + Rppxw”
+ QRQPqu + 2Rppyw? + 2Rpy xw” |,
from which we conclude that

Rqqq = Roqr = Roqv = Roqu = Rogx = Rqorp =0
Ropv = Roru = Ropx = Rquu =0,

Rppp = —2Rppv, Rppv = 2Rqvu, Rppx = 2Rqux — 2Rpvx.

It follows that the only remaining independent unnormalized third order invariants are
Rovu, Rpvx, Rpux, Rovx, Rqux, Roxx-

Computing their group differential we obtain

dgRqvu = Rovu(nx — 2wy), dgRovx = —Rqvxvu,

1
dgRoux = — Rovxav — Roux(vu + px) + S,

dgRoxx = — 2Rgxxix, dgRpvx = —Rovxay — Rpvx (vu + px),
dgRpux = (Rpvx — 3Rgux)ov — Rpux (vu + 2ux) + avux.

Setting Roux = Rpyx = 0 we can normalize the Maurer-Cartan forms ayy, ayux.
More generally, we can set

Rquirix = Rpyi+ixi+1 =0, i,j >0,

and normalize the Maurer—Cartan forms agi+2 and agi+2 xj+1.

Sub-branches to the equivalence problem appear depending on the values of the
invariants Rpyvx, Roxx, Rovx, Rovu. In the following, we consider the degenerate
case where all these invariants are identically equal to zero:

Rpyx = Roxx = Rqovx = Rqvu = 0. (4.7)

In this case all differential invariants of order < 3 are constant. This observation,
combined with our choice of cross-section made thus far, implies that all higher order
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invariants are also constant and we conclude that there is no further normalizations
possible. Hence, the Maurer—Cartan forms

QXX, XXX, -, Ay, QUX, QUXX; +- -5 wx, VU (4.8)

cannot be normalized. In (4.8) we identify two sequences of un-normalized Maurer—
Cartan forms, namely a xi+2 and agrxi. This suggests that the general equivalence map
between two control equations in this branch of the equivalence problem depends on
two functions of one variable. This is verified to be the case using Cartan’s involutivity
test, [3, 21, 25]. Indeed, substituting the normalizations

w=-—w' v=-w" a=-w' vx=-uwl, ax=-w! ay=vy-—px,
vxx = —wi, pxx = ay, ayx =0, ayy =0,
vux = oy, vy =0, ayy =0, agy =0, e (4.9)

into the structure equations (2.14) we obtain the involutive structure equations

dw”® = pux NwW*, dw" = W ANWP + vy A WY,
dw’ =W ANw? +ay A" + (v — px) Aw,
dw? =W ANw? + ay A" + (v — px) AP,

dw! = axx Aw™ 4+ apx Aw" +ay AwP + (vy — 2ux) Awl, (4.10)

dux = w* A ay, dvy = W' A ay, day =w* Nayx +au A px,

with Cartan characters s1 = 2, so = 0.

4.2 Second Order Generic Branch

We now assume that Rgg # 0. From the group differential expressions (4.4) we see
that the normalization equations

Rog =1, Rgop = Rgu =0, (4.11)

can be added to (4.5). With the three equations (4.11) we can normalize the Maurer—
Cartan forms vy, ay, ayx. More generally, we can set

Ropyit1 =0, @20, Ropixi =0, i+j=2,

to normalize ayri+1, ¢ > 0 and agrixi+1, @ + J > 2, respectively. Considering the third
order differential invariants, the group differential of the unnormalized invariants are

dgRqoq =0,  dgRqqop = —Rqqrix, dgRoqv = —Rqqvux,
dgRoqu = Rgoraxx — 2Rqquix, dgRopp = —2Rgppix,
dgRoox = —[1+ Roqolaxx — Rooxix, dgRopv = —2Rgpviix,
dgRopx = —2Rqpxix — Rooraxx, dgRppp = —3Rpppiix,
dgRovu = Ropvaxx — 3Rgvuiix, dgRppv = —3Rppvix,
dgRgovx = —Rggvaxx — 2Rqvxix, dgRppx = —3Rppxix,
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1
dgRpyx = [RPPX - iRPPP — Rppv|axx —4Rpuxpx,
dgRpvx = —3Rpvxux — Ropvoaxx. (4.12)

At this stage we are left with two Maurer—Cartan forms to normalize, namely axx and
px. The different scenarios leading to the normalization of those two Maurer—Cartan
forms lead to different branches of the equivalence problem. In the next two subsections
we consider the following two cases:

Hilbert—Cartan sub-branch: Rggg # —1 and the invariants

Rqoop = Roqv = Roqu = Rqopp = Rqoprv = Ropx = Rqovu = Rovx =0
Rppp = Rppy = Rppx = Rpyvx = Rpux = Rgoox = Rgoxx =0

are identically equal to zero.

Third order generic branch: Rggp # 0.

The motivation for calling the first case the “Hilbert—Cartan sub-branch” comes
from the fact that the Hilbert-Cartan equation (1.4) is contained in this branch of
the equivalence problem. Also, we note that the generic branch Rggp # 0 is just one
of many cases leading to the complete normalization of the pseudo-group parameters.
Indeed, from the recurrence relations (4.12), we see that when Rggp # 0 the remaining
Maurer—Cartan forms vx, axx can be normalized by setting Rggp = 1 and Rggu = 0
or Ropx = 0. But there are other obvious cases leading to the normalization of vy,
axx. For example, we could replace the non-degeneracy condition Rggp # 0 by
Ropy # 0 and make the normalizations Rgpy = 1 and Rgyy = 0 or Rpyx = 0,
It is also possible to assume Rggy # 0, and make the normalizations Rggy = 1,
Rgyvx = 0 or to assume Rppx — Rppp/2 — Rppy # 0 and make the normalizations
Rppx — Rppp/2 — Rppy = 1, Rpyx = 0. With the appropriate modifications, the
analysis of each for each of these cases is very similar to the computations appearing
in Section 4.2.2 where the case Rggp # 0 is considered.

4.2.1 Hilbert—Cartan Sub-Branch

If we assume that Rggg + 1 # 0, then it follows from (4.12) that the group differential
of Roox depends on axx. We can thus set

Roox =0 (4.13)

and normalize the Maurer—Cartan form axx. Once axx is normalized, the group
differential of the remaining third order unnormalized invariants, except for Rgqq, is
of the form

dgRj;=CjRjux, where C'; is some nonzero constant.
If we impose that the invariants

Roqgp = Rqqv = Rqqu = Ropp = Rqpv = Rqorx = Rqvu = Rqvx =0 (4.14)

Rppp = Rppy = Rppx = Rpvx = Rpux =0

are identically zero, the Maurer—Cartan form px cannot be normalized. Combining
(4.14) together with the normalization equations chosen thus far, it can be verified
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with the recurrence relations (2.28) that all fourth order invariants are zero except
possibly for Rooog, Rooox, Rogxx. Computing their group differential we obtain

dgRqqqq =0, dgRqqQox = —RqoxIix, dgRooxx = —2RqQoxxpx-

Assuming that
Roogx = Rgoxx =0 (4.15)

are identically zero, the Maurer—Cartan form px cannot be normalized using the fourth
order invariants. In fact, with the help of the recurrence relations (2.28) we can conclude
that, under the hypotheses (4.14), (4.15) and our choice of cross-section, all invariants
of order > 4 are equal to zero except for Rgr, k > 3. But since Ror = Ik, k >
3, are genuine differential invariants, i.e. they do not depend on the pseudo-group
parameters (after normalization), we conclude that the Maurer—Cartan form px cannot
be normalized.

Since the normalized invariants I x, k > 3, can be expressed in terms of Iy4, and its
invariants derivatives D’;Iqqq we obtain the following result.

Theorem 4.1. If v, # 0, r¢q # 0, Iyyq # —1 and the invariants (4.14), (4.15) are
identically zero, then I 4, together with the invariant differential operator D, generate
the algebra of differential invariants {I,x : k > 3}.

Theorem 4.2. Two control equations A, A of the form (1.1) that satisfy r, # 0,
Tqq 7 0, Igqq # —1 and (4.14), (4.15) are locally equivalent if and only if their signature
manifolds

S(p,A) = {D];(Iqqq)m tk >0} S(p,A) = {qug([qqq)ﬁ k> 0}
have the same order and overlap.

To obtain the structure equations of the invariant coframe w = {w”, w", w’, WP,
wl, px} we use the recurrence relations of the phantom invariants to solve for the
Maurer—Cartan forms. Modulo contact forms, the result is

p=-—w' v=-w", =—w’, vy = (24 lygw! +2ux, vx=-ub,
ay = (=14 Iyg)w! +px, ay =0, ax=-w! puxx=0,
(4.16)
viu =0, vyx =0, vxx=-wd, ayy=0, ayw=0 ayx =0,

agy =0, ayx =0, axx =0,
Substituting the expressions (4.16) into the structure equations (2.14) we obtain
dw® = px Nw*, dw? =0, dux =0,
dw" = W AWP + [Igqq — 2Jw? Aw" +2ux Aw",
dw’ = W' ANw? + [Igqq — Hw? Aw? + px AWY,
dw? = W' AN w4 [Iyqq — 2]w? AN WP + px A WP.

(4.17)

Theorem 4.3. Under the conditions of Theorem 4.1, a control equation of the form
(1.1) has a 6-dimensional fiber-preserving symmetry group with Maurer—Cartan struc-
ture equations isomorphic to (4.17) if and only if 1,4, is constant.
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4.2.2 Third Order Generic Branch

We now assume that the normalizations made in Section 4.2 still hold except for the
normalization (4.13). Also, we no longer require that Rggg # —1. Instead, we assume
Rogp # 0. In local coordinates, the non-degeneracy conditions Rg # 0, Rgg # 0,

Rogp # 0 imply
rq # 0, Tqq 7 0 and TgqTqqp — TqpTqqq 7 0. (4.18)

Provided (4.18) is satisfied, the group differential of Rggp and Rgqu in (4.12) reveals
that there is enough liberty in the prolonged action to set

RQQP =1, RQQU =0.

This leads to the normalization of the last two un-normalized Maurer—Cartan forms
ux, axx. Introducing the notation

2 =g, 22 =u, 23 =, z4zp, 25:q,

the recurrence relations for the third order normalized invariants I; = «(rs) are

Iogqi = Dilgqq + M;qq’

Togvi = Dilgqu + Lgqulgep,i + M;qv’

Lyqui = Dilgge + Lygalgqpi — (1 + Iggq) Lgqui + Méq:v’

Lopp,i = Didgpp + 2 gpplqp,i + M;ppv

Iypvi = Dilgpy + 21 gpulggpi + Mgpv’

Iopai = Dilgpa + 21 gpaloqpi — Lgqu,i + M;pa:’

Lyvui = Dilguu + Ipvw,i + Lgpolgqu,i + 3guulyqp,i + Mng (4.19)

Lyvai = Dilguz + 21 gvalyqpi — Lgquloqu,i + Mév:c’

Tppp,i = Didppp + 3l ppplagp,i + Mzﬁpp’

Lypv,i = Didppy + 3L ppulggp,i + Mzipv’

Iypa,i = Dilppe + 3ppaleqp,i — Lgpu,i + Mzipx’

Lyvwi = Dilpuy + 3Lpualagpi — Lopulgqui + My,

Lppui
2

I .
Ipuz,i = Dilpus + [Ippw - P - Ippv]Iqquvi + 4puzlogpi — Lquu,i + + Lpvu,i + M;mx’

2
where 1 < ¢ < 5 and Miljk are correction terms involving only third order normal-
ized invariants. It follows from (4.19) that all fourth order normalized invariants are
expressible in terms of the third order invariants, their invariant derivatives and the
fourth order invariants Iygpu, Igquu- Furthermore, since the recurrence relations for the
normalized invariants of order > 4 are of the form

Iji=Dil;+M;  #J>4, 1<i<5,

where the correction terms Mf] depend on invariants of order < #.J, we obtain the
following result.
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Theorem 4.4. Provided that rq # 0, 74 # 0 and r¢q7¢qp — TgpTqqq 7 0, the algebra of
differential invariants is generated by the third order invariants

Togqs Laqus Lapps Lapvs Lppps Ippvs Lgqzs Logpzs Lgvus Lgvas Ippws Ipvws Ipuas (4.20a)
and the fourth order invariants
Tygpus Lgquu- (4.20b)

In Theorem 4.4 the generating set is not assumed to be minimal. In fact there
are many syzygies among them. For example, each time a fourth order normalized
invariant ;i appears twice on the left-hand side of (4.4), equating the respective
right-hand sides gives a syzygy. For example, the recurrence relations

Tggqv = Dylgqq + M(;qq’ Tyqqv = Doloqu + Igqulgqep + My qqu’

give the syzygy
Dylgqq + Mygq = Dalggo + Laqulaqep + Mgy,

Also, there are the commutator syzygies to consider, [24].
Finally, pulling-back the structure equations (2.14) via the moving frame we obtain
the structure equations of the invariant horizontal coframe {w”, w*, w’, wP, W9}.

Theorem 4.5. Provided that r4 # 0, 74 # 0 and r¢47¢qp — T¢pTqqq 7 0, the structure
equations of the invariant horizontal coframe {w?, w", w’, wP, wW?} are
dw” = (2 = 3laqq + Igqqp)w? N w" + [Tggpp — Igpplagq — 2Jw” A w”
+ agpo — Igpolgqq — 2gqo]w” A w* + Lggpuw™ A w7,
dw" = W ANWP + (2 = 5l qq + 2 gqqpw? AW + 21 gqpp — 2L gpplyqq — 3P AW
+ [2Lggpv — 2L gpvlgqq — 3lggu]w” A w" + [20ggpr — 2L gpalyqq — 3gga]w™ A WY,
dw’ = W AW + w” Aw? + Tygpe — Lgpalqeq — Lggalw”™ A W' + Tgpo — Iggpu]w®” AW
+ [1 = 20gq + Lggqplw? N w” + [Tggqp — 1 = Lpplygqlw” N " + Tgppw® A w"
+ Lgpaw”® A w",
dw” = w* Aw? + [Tgpp(Lgqq — 1)/2 + Igpo(Lgqq — 2) + Lggqu — Lgqu]w? A w"
+ Lppp(Lagg = 1)/2 + Lppv(Iggq — 2) = Igpplggo]w® A w*
Lppo(Lgaq — 1)/2 = Igpolgqu + Lgquu — Iggqlquulw®” A w*
[Lppe(Lagg — 1) /2 + Ipva(lgqq — 2) + Lgque — Igpalgqu]w™ A w"
[Lgaap — 21gqq)w? NP + [Tggpo — Igpvlqq — Igqu]w®” A w”
Laapz — Lopalagq — Iggalw® A WP,
= [1+ Iopp(1 — Lagq) /2 + Lgpo(2 — Igqq) — Lagqu + Iggo]w? A w®
Lapp — Lgapu + Tppp(1 — Lgqq) /2 + Ippo(2 — Igqq) + Lgpplqu]w® A w®
+ Lgpo (1 + Igqu) + Lppo(1 — Iggq) /2 — Igquu + Iggqlquu + Igua]w” A w®
+ Tppz/2 + Ipve — Igquulw™ A w® + Tgpp/2 + Igpp]w® A w? + Ijguw” A w?
+ Lppp/2 + Ippo]w® A WP + Tgou — Ippo/2]w” A w® + Igpuw® A wP.

+
+
+
+
dw? = |
+

5 Coordinate Expressions

In this section we obtain the local coordinate expressions of some of the differential
invariants found in the previous section.
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5.1 Second Order Degenerate Branch

We begin by considering the degenerate branch discussed in Section 4.1. We found that
this branch of the equivalence problem occurs when the lifted invariants

Rog = Rgp = Rgu = Rpvx = Rgxx = Rgvx = Rgovu =0 (5.1)
are identically zero and the cross-section is

X=U=V=P=Q=0, Rg=1, (5.2)
Rvinxk == RPUin == RPPUi = vaiJrlUj - RQvi+1 - RQU'X = O, i,j, k 2 0

In this setting we concluded that the Maurer—Cartan forms (4.8) cannot be normal-
ized. In terms of the pseudo-group jet parameters this translates into the observation
that the solution to the normalization equations (5.2) will involve the submanifold jets
coordinates (z, u(oo)) and the pseudo-group parameters

Oz, Bu, Qpk+2, ke s k>0,
or equivalently, in terms of the functions (2.12),

¢J37 ﬂ’un Oly, ka-‘rh wuxk, k Z 0.

Solving the normalization equations (5.2) we obtain

¢ =0, ﬁ:o, a=0, (5:(), wzo’ av:/@urq’ wv:ﬂurv’ Oy = ﬁuﬁfu)
Bur Bur T Bur Bur
IB’MU - _%’ Quv = T;xpv’ wm} = ﬁz;xvv? Cyyy = U(Zs;ZU'U, Qypy = u¢fvv7
Bu[Th B Tyl Ji; oo
(5.3)

and so on. The system of differential equations defining the control equations (1.1) con-
tained in the degenerate branch of the equivalence problem are obtained by substituting
(5.3) into the lifted invariants (5.1). The result is

Tqq = 0, Tpg = 0, Tppp = 0, 2rpy + TppTq = 27qu, rgvAd = 1rg Ay,
2
ToTaT rrir
A+ S0 =By, U 247 4 rg(Ar + g Ay + pAu + 1pA) = Ty A+ 1B,
(5.4)
where
A=r,— Prqu — qTqu — Tqx) B=ry,— Prpu — qTpy — Tpx

and subscripts on A, B denote total differentiation: A, = D, (.A).

Theorem 5.1. All control equations of the form (1.1) with

r=a(r,u,v)q+ {aua_cv] p? + c(x,u,v)p + d(z,u,v), a(x,u,v) # 0, (5.5)
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such that the functions a(x,u,v), c(x,u,v), d(x,u,v) satisfy

a(ay — cp)y = ap(ay — ¢), a(dy — az)y = ay(dy — az), al(dy — cz)y = dyay, — Cpay,
ad(a, — ¢y) + 2(dy — ax)2 +a((dy — az)z + c(dy — ay)) = dy(dy — ag) + a2(du —Cy)

are equivalent. These control systems admit an infinite-dimensional fiber-preserving
symmetry group with structure equations (4.10).

Proof. The control equations (5.5) are the general solution of the system of differential
equations (5.4). O

Corollary 5.2. All control systems satisfying the hypothesis of Theorem 5.1 are equiv-
alent to
Upy = Vg (5.6)

5.2 Second Order Generic Branch

We now consider the generic branch discussed in Section 4.2. First, we consider the
sub-branch obtained in Section 4.2.1.

5.2.1 Hilbert—Cartan Sub-Branch

For this branch of the equivalence problem, recall that the control equation (1.1) must
satisfy the non-degeneracy conditions

Rq#0,  Rgo#0,  Rgoq# —1, (5.7)

while the third order differential invariants (4.14) and the fourth order invariants (4.15)
are identically equal to zero and that our chosen cross-section is

X=U=V=P=Q=0, Rg=Rgo=1,

Rvinxk - Rsz' - RppUz‘ — RQVz'Jrl - RQPUi = RQQXi+1 = 0, i,j, k Z O, (58)
vain — RQUin — O, 7,+j 2 ].

As in the previous section, to find the control equations that are part of this branch
of the equivalence problem we must solve the normalization equations (5.8) for the
pseudo-group parameters and substitute the result in the invariants (4.14), (4.15). The
result is a complicated system of partial differential equations. Solving the system of
equations appears to be very complicated. Fortunately, it is possible to obtain particular
solutions, and this without knowing the actual expressions of the equations.

Proposition 5.3. A control equation that satisfies the non-degeneracy conditions r, #
0, rqg # 0, TqTqqq # rgq and only depends on the variable g, i.e. r = r(q), is part of the
Hilbert—Cartan sub-branch.

Proof. The restrictions 74 # 0, r¢q # 0, 7¢7qqq # —rgq come from the non-degeneracy
conditions (5.7) imposed on the invariants. When

r y =0, 0,5,k 1>0,

riuivkp
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the solution to the normalization equations (5.8) for the pseudo-group jets simplifies to

Gpi = B = Brivi+1 = & = Qgiyjpht1 = 0, i,J,k >0, (593“)
and )
po=tu o, = Tu (5.9b)
r2 T
q q
Substituting (5.9) into the lifted invariants R; we find that the invariants (4.14), (4.15)
are identically zero. O

From (5.9b) we obtain the differential invariants

Tq"qqq 4T qqqq
Togq = L(quq) = 20 Togqq = L(quqq) = 3 cee (5.10)
qq qq

Finally, substituting (5.9b) into the lifted total differential operator D¢ given in (2.19)
yields the invariant differential operator

Dy = -1D,
Tqq
mentioned in Theorem 4.1.

The Hilbert—Cartan equation (1.4) satisfies the hypotheses of Proposition 5.3, and
has the property that I, = 3. It thus satisfies the hypotheses of Theorem 4.3 from
which we conclude that it admits a 6-dimensional fiber-preserving symmetry group with
Maurer—Cartan structure equations isomorphic to

dw® = px AW, dw?=0, dux =0, dw"=—-wW’ A"+ A"+ 2ux AW,
dw’ = —wWINV" + 20NV 4+ px Aw?, dwP = —wI AW® +WI AWP + pux AWP.

This fact is well-known, [2, 12], it is nevertheless comforting to recover this result
using the equivariant moving frame method.
More generally, we can find all control equations of the form r = r(q) that admit
a six-dimensional fiber-preserving symmetry group by solving the ordinary differential
equation
Tq:% =1, where I # —1 is a constant. (5.11)
aq

Integrating once, we obtain
raq(rg) T =C #0. (5.12)

The constant of integration C' cannot be equal to zero since by assumption r, # 0 and
rqq 7 0. If I =1 we obtain

qu+B
C Y
When I # 1, integrating (5.12) we obtain

r(q) = A+

where A, B are constants.

re=[(1-I)(Cq+ B)]T1. (5.13)
If I = 2, the solution of (5.13) is

_ In[Cq+ B|

r(qg) = A o
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otherwise

. la=D(Cq+ BT
r(g) = A+ ce-1

The Hilbert—Cartan equation is recovered from (5.14) by setting I = 3, C' = —2 and
A=B=0.

(5.14)

5.2.2 Third Order Generic Branch

We end by writing down the coordinate expressions of the simplest invariants of the
generic branch of the equivalence problem. Let

D(TJ7TK) — g — TR
D(zi,zl) JiTK,l JITK

denote the total Jacobian determinant of r; and 7 with respect to 2%, 2. Introducing
the notation

D(ryq,7q) rqq D(ry7mp) 14 D(14, 7))
A=A ok, =M By A 8P v,
D(qap) Tq D(qv 7)) 2 D(pa Q) e
= D(rg,rqq) @D(Tqﬂ’v) D(rp,rqq) @D(Tqarp)(l ~ o)
D(Qvu) Tq D(p7 q) D(an) 2 D(pa Q) ez
q D(r,ry) rg D(r,rg)  7rq_ A rrgrgpA
A= —|rge —1p +— +prou + — ——==+q ,
el " vy D(g,v) "1y Dig,p) A rgq rgq
the coordinate expressions of the first six differential invariants (4.20a) are
7. — Td"aaq 7. — Ta [7“ D(r,rqq) _ 9 D(r,rq)]
- b v T b
2 -
7= " |, D(rg,rep) r D(quﬂ"q)]
W A2 D(g,p) " Dlp.g) |

Iy = r r T
P3N D(p,q) 7 D(q,p) " D(p,q)

6 2
Tag [D(rgsmpp) | 27gp D(rg, Tep) quD(quarq)]

I =
PPrZAS [ D(g,p) e D(pig) 12, D(p,q)

I qu —r D(rg, rpv) - D(rg,rqu) Ty <r D(rgq:1q) . D(rq, qu)ﬂ
v = — — — =],
PN [ D(g,p) " D(pg)  rq\ ¥ D(pgq) ™ D(q,p)

The remaining differential invariants (4.4) can easily be obtained with a symbolic soft-
ware. Unfortunately, the expressions obtained take too much space to write them down.
Finally, the coordinate expressions of the invariant horizontal coframe in Theorem 4.5
are

qu [ D(rq,m0) D(rq,mqw) D(quarq)}

rgA reA
W — ﬁde, Wl = 7?T[rqp(du — pdx) + 1gq(dv — gdz)),
aq aq
w _Tad’ 1
W=7 (du — pdx), wP = ﬁ[:(du — pdz) + A(dp — rdzx)],
aq aq
Tqq | T Ty Tap
wl = =2 | —(du — pdx) + —(dv — qdz) + —=(dp — rdz) + (dg + Adz)|.
Tq LTqq Tq Tpp
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6 Concluding Remarks

The solution to a complicated equivalence problem involves many challenges. One of
the main difficulties is to determine all the different branches of the problem and to
characterize the algebra of differential invariants for each cases. Now, with the universal
recurrence relations (2.28) these questions can readily be answered symbolically. In this
paper we considered three typical branches of the equivalence problem (1.1), (1.2) that
illustrate the possible outcomes of the moving frame method:

Generic branch: all pseudo-group parameters are normalized and the result is a stan-
dard invariant coframe {w”, w*, W’ WP, wW7}.

Hilbert—Cartan branch: finitely many pseudo-group parameters cannot be normal-
ized and the result is a prolonged invariant coframe {w?®, w", W', WP, W7, px}.

Degenerate branch: Infinitely many pseudo-group parameters cannot be normalized
and the result is an infinite-dimensional invariant coframe {w®, w", W', WP, WY,
WX, VU, Qxke2,, O xk} With involutive structure equations.

The author believes that doing the similar computations with Cartan’s equivalence
method of coframes would have required a lot more work. By possibly using symbolic
softwares, the hope is that the equivariant moving frame method will lead to the solution
of new equivalence problems or at least give valuable information on some key branches
of complicated equivalence problems.
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