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Abstract

In the present paper, a class of partial differential equations governing various rod and plate theories of Bernoulli–

Euler and Poisson–Kirchhoff type is studied by Lie transformation group methods. A system of equations determining

the generators of the admitted point Lie groups (symmetries) is derived and the general statement of the associated

group-classification problem is given. A simple relation is deduced allowing to recognize easily the variational sym-

metries among the ‘‘ordinary’’ symmetries of a self-adjoint equation of the class examined. Explicit formulae for the

conserved currents of the corresponding (via Bessel-Hagen�s extension of Noether�s theorem) conservation laws are

suggested. Solutions of group-classification problems are given for subclasses of equations of the foregoing type

governing stability and vibration of rods, fluid conveying pipes and plates resting on variable elastic foundations. The

obtained group-classification results are used to derive conservation laws and group-invariant solutions readily ap-

plicable in rod dynamics and plate statics and dynamics. New generalized symmetries and conservation laws for the

theories of Timoshenko beams, Reissner–Mindlin plates and three-dimensional elastostatics are presented.
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1. Introduction

The main objective of the present paper is to analyze from group-theoretical point of view several well

known and acknowledged linear theories for elastic rods 1 and plates which could be called ‘‘classical’’,

though some of them have been suggested quite recently, in the sense to be clear below.

Historically, interest in the development of theories describing the mechanical behaviour of slender or

thin solid bodies (such as rods and plates) from three-dimensional models by a dimensional reduction can

be traced more than three centuries back to Leibniz who introduced the idea to use the average of the stress

over the cross-sections of the body for constructing one-dimensional theories for rods. The first complete
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theory of that kind was the Bernoulli–Euler beam theory based on Hooke�s law (as the constitutive relation)

and the (kinematical) hypotheses that a plane cross-section normal to the rod axis, which is supposed to be

inextensible and initially straight, remains undeformed and normal to the bent rod axis, the latter being

assumed planar. Approximately one century later, the Poisson–Kirchhoff theory for thin elastic plates
emerged out of linear elastostatics and the well known Kirchhoff�s hypotheses that a straight fiber normal to

the plate middle-plane remains undeformed and normal to the bent plate middle-plane, the latter being

assumed inextensible. Starting from Euler�s celebrated study on the stability of an axially compressed

column, the elementary Bernoulli–Euler beam theory has been subjected to various modifications within

the framework of the aforementioned hypotheses in order to cover the effects of elastic foundations,

follower forces, fluid flow, etc.; similarly, the Poisson–Kirchhoff plate theory has been extended within

Kirchhoff�s hypotheses in numerous works to describe, for instance, the stability of plates, the influence of

elastic foundations, fluid-structure interaction, etc. (see, e.g., Bolotin, 1961; Vlasov and Leont�ev, 1966;
Paidoussis, 1998; Elishakoff, 2002). In the present paper, such contributions to the classical theories of

Bernoulli–Euler and Poisson–Kirchhoff are also referred to as ‘‘classical’’, for easy reference and to dis-

tinguish them from more sophisticated, in general nonlinear, theories for rods and plates (see, e.g., Antman,

1984, 1995; Naghdi, 1984; Simo et al., 1988; Dichmann et al., 1996 and the references therein).

In the classical theories, the state of equilibrium of an elastic rod or plate is fully determined in terms of the

transversal displacement of the rod axis or plate middle-plane. The corresponding governing equations are

linear fourth-order partial differential equations in one dependent variable, the transversal displacement

function, and one or two independent variables––the coordinates of the rod axis or plate middle-plane,
respectively. By introducing the inertial force in transversal direction, according to d�Alembert principle, all

these theories are recognized and employed to describe the dynamic behaviour of rods and plates as well. In

this case, the time appears as an additional independent variable in the governing equations. To complete the

description of the theories that are in the focus of attention of the present work, it is to be noticed, that many

of them can be set in a variational statement involving only one dependent variable, the corresponding

governing equations being the Euler–Lagrange equations associated with an appropriate action functional.

Each of the classical rod or plate theories can be viewed as a certain one- or two-dimensional approxi-

mation of three-dimensional elasticity achieved by a systematic use of projection methods (see, e.g.,
Antman, 1984; Naghdi, 1984; Niordson, 1985). However, during such a dimensional reduction procedure

many details are necessarily lost either for the highly restrictive kinematical hypotheses adopted or since

only certain averages of the stresses over the rod cross-sections or plate thickness, respectively, are taken

into account. In consequence of that, as a rule, the invariance properties (symmetries) inherent to such a

‘‘proper’’ rod or plate theory can neither be reduced to, nor be derived in full from the invariance properties

of one-, two- or three-dimensional elasticity. Therefore, in order to analyze a proper rod or plate theory of

the forgoing type from group-theoretical point of view, one should thoroughly study the symmetries of its

governing equations, resisting the temptation to merely take advantage of the allied results established in
the theory of elasticity, which are at disposal in a long series of papers: Chirkunov (1973, 1975), Fletcher

(1976), Olver (1984a,b, 1988), S�uhubi (1987, 1989), Honein and Herrmann (1997), Hatfield and Olver

(1998), etc. In our opinion, the study of the invariance properties of Bernoulli–Euler type rod equations and

Poisson–Kirchhoff type plate equations is far away from its completion; there are only a few works in which

results in this field can be found, namely those by Ovsiannikov (1972), Ibragimov (1985), Kienzler (1986),

Sosa et al. (1988), Vassilev (1988, 1997), Chien et al. (1993, 1994), Tabarrok et al. (1994) and Vassilev et al.

(2000). That is why, in the present work, bearing in mind the general form of the governing equations

specified above, we shall apply Lie transformation group methods 2 to examine the invariance of a generic

2 The foundations of the Lie transformation group methods, including the basic notions, statements, techniques and many

applications of the symmetries of differential equations and variational problems, can be found in Ovsiannikov (1982), Ibragimov

(1985) and Olver (1993) (see also the references therein).
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linear fourth-order partial differential equation in one dependent and several independent variables with

respect to local Lie groups of point transformations of the involved independent and dependent variables.

Then, we shall use the results obtained to analyze several rod and plate theories of particular interest. The

work is motivated both by the wide applicability of the theories in question in structural mechanics, and by
the remarkable efficiency demonstrated by the symmetry methods, especially when applied to differential

equations arising in physics and engineering.

Actually, once the invariance properties of a given differential equation are established, several im-

portant applications of its symmetries arise. First, it is possible to distinguish classes of solutions to this

equation which are invariant under the transformations of symmetry groups admitted. The determination

of such a group-invariant solution assumes solving a reduced equation involving less independent vari-

ables than the original one. Typical examples of group-invariant solutions are axisymmetric solutions,

self-similar solutions, travelling waves, etc., which have proved to be quite useful in many branches of
physics and engineering. For a self-adjoint differential equation another substantial application of its

symmetries is available. As it is well known, the self-adjoint equations are the Euler–Lagrange equations

of a certain action functional. If a one-parameter symmetry group of such an equation turns out to be its

variational symmetry as well, that is a symmetry of the associated action functional, then Bessel-Hagen�s
(1921) extension of Noether�s theorem (1918) guarantees the existence of a conservation law for the

smooth solutions of this equation. Needless to recall or discuss here the fundamental role that the con-

served quantities and conservation laws (or the corresponding integral relations, i.e. the balance laws)

have played in natural sciences, but it is worth pointing out that the available conservation laws (balance
laws) should not be overlooked (as it is often done) in the numerical analysis (when constructing finite

difference schemes or verifying numerical results, for instance) or in the examination of discontinuous

solutions (acceleration waves, shock waves, etc.) of any system of differential equations of physical

interest.

As a matter of fact, the conservation laws have attracted much attention in fracture analysis and defect

mechanics of solids and structures just because they have proved useful in the analysis of jump-disconti-

nuities such as notches and cracks. Here, the conservation laws appeared as path-independent integrals, for

the first time in Cherepanov (1967) and then, independently, in Rice (1968) who introduced the so-called J -
integral and showed its utility in the asymptotic analysis of the stress field near notches and cracks in

linearly elastic solids. Later, Budiansky and Rice (1973) introduced next two path-independent integrals (L
and M) in linear elastostatics and showed their applicability for calculation of the energy release rate re-

sulting from cavity motion. It should be remarked however, that the J -integral could be derived using the

conservative properties of the energy–momentum tensor proposed earlier by Eshelby (1956) as well as be

identified, together with L- and M-integrals, among the conservation laws for isotropic homogeneous linear

elastostatics established by G€uunther (1962) and Knowles and Sternberg (1972).

Apparently, G€uunther (1962) initiated the analysis of the theory of elasticity from group-theoretical point
of view as far as his study is based on Noether�s theorem. However, his work remained unnoticed and ten

years later Knowles and Sternberg (1972) starting anew presented the conservation laws associated through

Noether�s theorem with translational and rotational invariance of the equations of homogeneous isotropic

linear and finite elastostatics. They also derived another conservation law associated with the scale-

invariance of the equations of linear homogeneous isotropic elastostatics. The case of linear homogeneous

elastodynamics is examined in Fletcher (1976). The aforementioned works concern only geometric sym-

metries of the equations considered. In a series of papers, Olver (1984a,b, 1988) and Hatfield and Olver

(1998) presented a comprehensive classification of the conservation laws related to the invariance under the
geometric and first-order generalized symmetries of the equations of elastostatics. All these contributions

show the advantages that one can gain from the study of the invariance properties of a theory of physical

interest and the successive derivation of conservation laws using Noether�s theorem instead of using for that

purpose ad hoc techniques or physical arguments.
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Unfortunately, as underlined before, the knowledge of the invariance properties of the theory of elasticity

is of little usage when the symmetries of a proper rod or plate theory are to be established. The present

paper is intended to gain an insight into this latter problem.

The layout of the paper is as follows. A detailed description of the differential equations to be studied as
well as the variational statement for the self-adjoint equations among them are given in Section 2. In

Section 3, a system of equations determining the generators of the symmetry groups admitted by the

equations of the class considered is derived and the general statement of the associated group-classification

problem is given. Then, the variational symmetries of the self-adjoint equations of the examined class are

investigated. A simple relation allowing to recognize easily the variational symmetries among the ‘‘ordi-

nary’’ point Lie symmetries of such an equation is deduced, and explicit formulae for the conserved cur-

rents of the conservation laws corresponding to the variational symmetries via Bessel-Hagen�s extension of

Noether�s theorem are suggested. Group-classification results, conservation laws and group-invariant so-
lutions are presented in Section 4 for differential equations governing vibration of rods on a variable elastic

foundation and dynamic stability of fluid conveying pipes. Similar results are displayed in Section 5 for the

equations governing stability and vibration of plates of Poisson–Kirchhoff type. In Section 6, new gene-

ralized symmetries and conservation laws for the theories of Timoshenko beams, Reissner–Mindlin plates

and three-dimensional elastostatics are presented. Finally, in Section 7, one can find an extended summary

of the results obtained as well as practical hints on how to use this article without going into detail con-

cerning the Lie group analysis of differential equations.

2. Basic equations

Consider the class of fourth-order linear homogeneous partial differential equations

AabcdðxÞwabcd þ AabcðxÞwabc þ AabðxÞwab þ AaðxÞwa þ AðxÞw ¼ 0; ð1Þ

in n independent variables x ¼ ðx1; . . . ; xnÞ and one dependent variable wðxÞ. Here and throughout: Greek

indices have the range 1; 2; . . . ; n, unless explicitly stated otherwise; the usual summation convention over a
repeated index is employed; wa1a2���ak ðk ¼ 1; 2; . . .Þ denote (as it is accepted in the group analysis of dif-

ferential equations) the kth order partial derivatives of the dependent variable with respect to the inde-

pendent variables, i.e.

wa1a2���ak ¼
okw

oxa1oxa2 � � � oxak ðk ¼ 1; 2; . . .Þ:

Further, a similar notation will be used for the partial derivatives of any other function of the variables

x1; . . . ; xn but, in this case, the indices indicating the differentiation will be preceded by a comma, e.g.,

Aabcd
;a1a2���ak ¼

okAabcd

oxa1oxa2 � � � oxak ðk ¼ 1; 2; . . .Þ:

The coefficients of Eq. (1) are supposed to be smooth functions possessing as many derivatives as may be

required on a certain domain of interest, and to be symmetric under any permutation of their indices, i.e.

Aabcd ¼ Abacd ¼ Acdab ¼ Aacbd; Aabc ¼ Abac ¼ Acba ¼ Aacb; Aab ¼ Aba:

Using the total derivative operators

Da ¼
o

oxa
þ wa

o

ow
þ wal

o

owl
þ walm

o

owlm
þ walmr

o

owlmr
þ � � � ;
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Eq. (1) may be written in the form

D½w� ¼ 0; ð2Þ
where D is the linear differential operator given by the expression

D ¼ AabcdDaDbDcDd þ AabcDaDbDc þ AabDaDb þ AaDa þ A: ð3Þ

An equation of form (2) is the Euler–Lagrange equation associated with a certain variational problem

involving only one dependent variable if and only if the differential operator D is self-adjoint, that is

D ¼ D�; ð4Þ
where D� is the (formal) adjoint operator of D (cf. Olver, 1993). The explicit form of D� is

D� ¼ DaDbDcDdAabcd 	 DaDbDcAabc þ DaDbAab 	 DaAa þ A: ð5Þ

In such a case, Eq. (2) can be associated with the variational problem for the functional

A½w� ¼
Z

1

2
wD½w�dx1 � � � dxn;

since the application of the Euler operator

E ¼ o

ow
	 Dl

o

owl
þ DlDm

o

owlm
	 DlDmDr

o

owlmr
þ DlDmDrDs

o

owlmrs
	 � � �

on the Lagrangian density

L ¼ 1
2
wD½w� ð6Þ

yields

D½w� ¼ EðLÞ ð7Þ
due to relations (4) and (5).

3. Symmetries and conservation laws

Consider a local one-parameter Lie group of point transformations acting on some open subset X of the
space Rnþ1 representing the independent and dependent variables x1; . . . ; xn and w involved in our basic

equation (2). The infinitesimal generator of such a group is a vector field X on the space Rnþ1,

X ¼ nlðx;wÞ o

oxl
þ gðx;wÞ o

ow
; ð8Þ

whose components nlðx;wÞ and gðx;wÞ are supposed to be functions of class C1 on X. By virtue of

Theorem 2.31 (Olver, 1993), a vector field X of form (8) generates a point Lie symmetry group of Eq. (2)

(or, in other words, the equation admits this vector field) if and only if there exists a function k depending
on x, w and derivatives of w (that is a differential function) such that the following infinitesimal criterion of

invariance,

X
4
ðD½w�Þ 	 kD½w� ¼ 0; ð9Þ

holds; here X
k
denotes the k-th prolongation of the vector field X (Ovsiannikov, 1982).

The invariance criterion (9) leads, through the standard computational procedure (see, e.g., Ovsiannikov,

1982 or Olver, 1993), to the following results:
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(i) each equation of form (2), being linear and homogeneous, is invariant under the point Lie groups gene-

rated by the vector fields

X0 ¼ w
o

ow
; Xu ¼ uðxÞ o

ow
; ð10Þ

where uðxÞ is an arbitrary solution of the equation considered, the invariance criterion (9) being fulfilled

with k ¼ 1 and k ¼ 0 for the generators X0 and Xu, respectively;
(ii) an equation of form (2) admits other vector fields (8), in addition to the aforementioned (10), if and

only if they have the special form

X ¼ nlðxÞ o

oxl
þ rðxÞw o

ow
; ð11Þ

the functions nlðxÞ and rðxÞ being nontrivial solutions of the following system of determining equations

(called further the DE system for easy reference):

nlAabcd
;l þ ðr 	 kÞAabcd 	 Aabclnd

;l 	 Aabldnc
;l 	 Aalcdnb

;l 	 Albcdna
;l ¼ 0; ð12Þ

4Aabclr;l 	 2Aablmnc
;lm 	 2Aaclmnb

;lm 	 2Abclmna
;lm þ nlAabc

;l þ ðr 	 kÞAabc 	 Aablnc
;l 	 Aalcnb

;l 	 Albcna
;l ¼ 0;

ð13Þ

6Aablmr;lm 	 2Aalmrnb
;lmr 	 2Ablmrna

;lmr þ 3Aablr;l 	 ð3=2ÞAalmnb
;lm 	 ð3=2ÞAblmna

;lm þ nlAab
;l

þ ðr 	 kÞAab 	 Aalnb
;l 	 Albna

;l ¼ 0; ð14Þ

4Aalmrr;lmr 	 Almrsna
;lmrs þ 3Aalmr;lm 	 Almrna

;lmr þ 2Aalr;l 	 Almna
;lm þ nlAa

;l þ ðr 	 kÞAa 	 Alna
;l ¼ 0;

ð15Þ

Aabcdr;abcd þ Aabcr;abc þ Aabr;ab þ Aar;a þ nlA;l þ ðr 	 kÞA ¼ 0; ð16Þ

for a certain function k depending on x only. (Here, by a trivial solution we mean not only nl ¼ 0,

r ¼ 0, but also nl ¼ 0, r ¼ c ¼ const 6¼ 0, since the latter leads to the vector field cX0 generating the
same group as X0 which is already identified to be admitted by each equation of the type considered.)

Thus, given an equation of form (2), the question is whether there exist vector fields X 6¼ cX0 of form (11)

which leave it invariant, and the answer depends on whether the respective DE system has at least one

nontrivial solution. In this context the coefficients of Eq. (2) are supposed to be known functions, and

thereby Eqs. (12)–(16) constitute an over-determined system of linear homogeneous partial differential

equations with respect to the unknowns nl and r. Therefore, as a rule, it turns out possible to find in an

explicit form some (or even all) nontrivial solutions of the DE system, and thus to determine several (all)
additional point Lie symmetry groups inherent to the equation in question.

It should be remarked that various equations of form (2) admit only the point Lie groups generated by

the vector fields (10) with uðxÞ being any solution of the respective equation. For instance, it is easy to check

that all equations of the form (35) such that vab ¼ dab and jðxÞ ¼ pðxÞ, where pðxÞ is an arbitrary poly-

nomial of x1 and x2, belong to this variety. Without too much difficulties one can ascertain that the same

holds true for the equations of the form (44) with N ab ¼ dab and kðxÞ ¼ pðxÞ.
On the other hand, there are equations of the foregoing type which are invariant under a larger group; an

immediate example is the biharmonic equation in two independent variables, D2w ¼ 0, which admits the
seven-parameter group generated by the linear combinations of X0 and the following six additional basic

vector fields (cf. Ovsiannikov, 1972):
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o

ox1
; x2

o

ox1
	 x1 o

ox2
; 2x1x2

o

ox1
	 ½ðx1Þ2 	 ðx2Þ2� o

ox2
þ 2x2w

o

ow
;

o

ox2
; x1

o

ox1
þ x2 o

ox2
; ½ðx1Þ2 	 ðx2Þ2� o

ox1
þ 2x1x2

o

ox2
þ 2x1w

o

ow
:

An important problem naturally arises in the light of the above note. It may be placed in the category of the
so-called group-classification problems (see Ovsiannikov, 1982) and consists in determining all those

equations of the type considered that admit a larger group together with this group itself. Its most general

statement assumes all functions AabcdðxÞ, AabcðxÞ, AabðxÞ, AaðxÞ, AðxÞ, naðxÞ and rðxÞ involved in the deter-

mining equations (12)–(16) to be regarded as unknown variables and to find all solutions of this system.

Here we are not going to study this rather complicated nonlinear problem in general. However, in the

subsequent sections we examine the group-classification problems for several subclasses of equations of

form (2) widely used in mechanics of solids and structures.

Let us now specialize to the case of self-adjoint equations of form (2). Suppose that

D½w� ¼ 0; D ¼ D� ð17Þ

is such an equation. Then, a particular interest exists for its variational symmetries––the Lie groups gene-
rated by the so-called infinitesimal divergence symmetries (see Definition 4.33 in Olver, 1993) of any

variational functional with (17) as the associated Euler–Lagrange equation. (Note that if two functionals

lead to the same Euler–Lagrange equation, then they have the same collection of infinitesimal divergence

symmetries.) This interest is motivated by the fact that, in virtue of Bessel-Hagen�s extension of Noether�s
theorem, each variational symmetry of a given self-adjoint equation corresponds to a conservation law

admitted by the smooth solutions of the equation. Thus, if a vector field X of form (8) is found to generate a

variational symmetry of Eq. (17), then Bessel-Hagen�s extension of Noether�s theorem implies the existence

of a conserved current, which, in the present case, is a n-tuple of differential functions P a such that

DaP a ¼ QD½w�; ð18Þ

where Q is the characteristic of the vector field X ; by definition

Q ¼ g 	 wln
l: ð19Þ

The total divergence of the conserved current P a vanishes on the smooth solutions of Eq. (17) and so we

have the conservation law

DaP a ¼ 0; ð20Þ

Eq. (18) being its expression in characteristic form, and Q––its characteristic. Therefore, to derive the

conservation laws of the foregoing type, one can proceed by first determining the variational symmetries of

Eq. (17), and then using their characteristics (19) to find, from equality (18), explicit expressions for the

corresponding conserved currents P a.

Having analyzed earlier the invariance properties of the whole class of Eq. (2), it is convenient to base the

determination of the variational symmetries of Eq. (17) on the following observation. A vector field X of
form (8) generates a variational symmetry of Eq. (17) if and only if X is an infinitesimal symmetry of this

equation, that is the infinitesimal criterion of invariance (9) holds, and

X
4
ðD½w�Þ þ og

ow

�
þ Dln

l

�
D½w� ¼ 0: ð21Þ

This is a consequence of Lemma 4.34 and Proposition 5.55 (Olver, 1993), see also Lemma 7.46 (Olver,
1995). Subtracting expression (9) from (21) we can replace the latter with

V.M. Vassilev, P.A. Djondjorov / International Journal of Solids and Structures 40 (2003) 1585–1614 1591



og
ow

�
þ Dln

l þ k

�
D½w� ¼ 0;

and as D½w� is not supposed to vanish identically we arrive at the conclusion that

og
ow

þ Dln
l þ k ¼ 0 ð22Þ

is a necessary and sufficient condition for an infinitesimal symmetry admitted by a self-adjoint equation of
form (2) to be its infinitesimal variational symmetry as well. It should be remarked that the same holds true

for any self-adjoint partial differential equation in one dependent variable. For a vector field of form (11)

relation (22) simplifies, and reads

r þ nl
;l þ k ¼ 0: ð23Þ

Thus to find the variational symmetries of an equation of form (17), it suffices to check which of its ‘‘or-

dinary’’ symmetries satisfy the additional requirement (22). For instance, the result (i) implies that

X0 ¼ wo=ow does not generate a variational symmetry of any equation of form (17), while a vector field

Xu ¼ uðxÞo=ow generates a variational symmetry of an equation of form (17) whenever uðxÞ is its solution
(this is a common property of all systems of linear homogeneous partial differential equations, see Section

5.3 in Olver, 1993).
Suppose one has established that a vector field X with characteristic Q generates a variational symmetry

of a given equation of form (17), and now wishes to find the conserved current P a of the corresponding

conservation law (20). For this purpose one can use formulae (5.150) and (5.151) given by Olver (1993)

which express (in an explicit form) a null Lagrangian as a divergence. Indeed, in this case the right-hand

side of equality (18) is a total divergence or, in other words, a null Lagrangian. However, bearing in mind

the recommendation of Olver (1993) to use these formulae only as a last resort since ‘‘the homotopy

formula (5.151) can rapidly become unmanageable’’, in the present paper we suggest another way for

determination of the sought conserved current.
Our starting point is the so-called Noether identity (cf. Ibragimov, 1985):

X
1
ðLÞ þ ðDan

aÞL ¼ QEðLÞ þ DaN aðLÞ; ð24Þ

which holds for any differential function L and vector field X of the types considered here, N a being the

differential operators given by the expressions

N a ¼ na þ Q o

owa

(
þ
X
sP 1

ð 	 1ÞsDm1 � � �Dms

o

owam1���ms

)

þ
X
rP 1

ðDl1 � � �DlrQÞ
o

owal1���lr

(
þ
X
sP 1

ð 	 1ÞsDm1 � � �Dms

o

owal1���lrm1���ms

)
; ð25Þ

where Q ¼ g 	 nawa is the characteristic of the vector field X . By setting L ¼ L in identity (24) and taking

into account expressions (6) and (7), one obtains (after a little manipulation) the identity

DlNlð	wD½w�Þ ¼ 	wX
4
ðD½w�Þ 	 fg þ ðDln

lÞw	 2QgD½w�; ð26Þ

valid for any self-adjoint differential operator D of form (3) and vector field of form (8).

In particular, for Xv ¼ vðxÞo=ow, where vðxÞ is an arbitrary smooth function, we have

na ¼ 0; Q ¼ g ¼ v; ð27Þ
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and hence

Xv
4
ðD½w�Þ ¼ D½v�; ð28Þ

since D is a linear differential operator. Substituting expressions (27) and (28) into identity (26) we obtain

DlN lð	wD½w�Þ ¼ vD½w� 	 wD½v�; ð29Þ
which is nothing but the reciprocity relation associated with the equation D½w� ¼ 0. Under the additional
assumption v ¼ uðxÞ, where uðxÞ is an arbitrary smooth solution of the latter equation, the reciprocity

relation (29) becomes

DlN lð	wD½w�Þ ¼ uD½w�: ð30Þ
Taking into account expression (30), we can give now the following general formula for the conserved

currents P a of the conservation laws with characteristics Q ¼ u corresponding to the infinitesimal varia-

tional symmetries Xu ¼ uo=ow of Eq. (17):

P a ¼ P a
ðuÞ þ Ga;

where

P a
ðuÞ ¼ N að	wD½w�Þ; ð31Þ

and Ga is a current of a trivial conservation law. Of course,

DlP
l
ðuÞ ¼ uD½w�

and

DlP
l
ðuÞ ¼ 0 ð32Þ

on the smooth solutions of Eq. (17).

Next, let X be an infinitesimal variational symmetry of an equation of form (17) with characteristic

Q ¼ wr 	 wln
l. Then, on account of equality (21), identity (26) takes the form

DlN lð	1
2
wD½w�Þ ¼ QD½w�;

and hence we can write down the following explicit formula for the conserved currents P a of the conser-

vation laws with characteristics Q ¼ wr 	 wln
l corresponding to the aforementioned variational symme-

tries of the considered equation of form (17), namely

P a ¼ Ba þ Ga; ð33Þ

Ba ¼ N að	1
2
wD½w�Þ þ 1

2
DlðwnaAlbcdDbDcDdw	 wnlAabcdDbDcDdwÞ; ð34Þ

where, as before, Ga is a current of a trivial conservation law. Of course,

DlBl ¼ QD½w�;
and on the smooth solutions of the considered equation of form (17) we have

DlBl ¼ 0:

Let us remark that the special null divergence,

1
2
Dl wnaAlbcdDbDcDdw

�
	 wnlAabcdDbDcDdw

�
;

is used in expression (34) for the conserved current Ba to cut away the fourth-order derivatives of

the dependent variable w since in practice one is usually interested in conserved currents which involve
derivatives of order not higher than k 	 1, where k is the order of the equation considered. Using the
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operators (25) it is easy to check that the right-hand side of expression (34) incorporates derivatives of the

variable w of order less than fourth. In the subsequent sections just (31) and (34) will be referred to as the

expressions for the conserved currents of the conservation laws with characteristics Q ¼ u and

Q ¼ wr 	 wln
l, respectively, derived for equations of the form (17).

To summarize, given an equation of form (17), the crucial point on the way of deriving conservation laws

admitted by its smooth solutions is to find vector fields of form (11) generating ‘‘ordinary’’ point Lie

symmetries of the given equation. For that purpose, we should look for solutions of the respective DE

system (12)–(16). Once such vector fields are found, it is easy to check which of their linear combinations

satisfy the requirement (22) and hence generate variational symmetries of the equation considered. Now,

using the characteristics of these symmetries we first construct the operators N a from formulae (25) and

then calculate from formula (34) the conserved currents of the corresponding conservation laws.

4. Symmetries, conservation laws and group-invariant solutions of rod equations within Bernoulli–Euler theory

Consider a subclass of Eqs. (1), with n ¼ 2, consisting of the self-adjoint partial differential equations

cw1111 þ vabwab þ jðxÞw ¼ 0; ð35Þ
where c ¼ const 6¼ 0, vab are arbitrary constants (but ðv12Þ2 þ ðv22Þ2 6¼ 0, otherwise Eq. (35) degenerates and

becomes ordinary differential equation), and jðxÞ is an arbitrary function. Equations of this special type are

used by many authors to study applied engineering problems concerning dynamics and stability of both

elastic beams resting on elastic foundations (see, e.g., Smith and Herrmann, 1972) and pipes conveying fluid

(see, e.g., Paidoussis, 1998). In this context, the dependent variable w is the transversal displacement of the

rod axis, x1––the coordinate along this axis and x2––the time.
First of all, the group-classification problem is considered. In view of the results (i) and (ii) of Section 3, it is

clear that each equation of form (35) is invariant under the point Lie groups generated by the vector fields

X0 ¼ wo=ow and Xu ¼ uðxÞo=ow, where uðxÞ is any smooth solution of the foregoing equation and the ob-

jective is to find those equations of the type considered which admit vector fields X of form (11), X 6¼ cX0,

c ¼ const 6¼ 0.

The system of determining equations (12)–(16) simplifies considerably for the equations of form (35). The

solution of this simplified system involves lengthy computations which are omitted here (for details we refer

to Vassilev et al., 2000). The results of the group-classification analysis of the class of Eq. (35) are sum-
marized in Table 1, where the equations invariant under larger groups are given through their coefficients

together with the generators of the admitted symmetry groups. In Table 1, b, b1 and b2 are arbitrary

constants and for convenience the following vector fields are introduced:

Ya ¼
o

oxa
; Y3 ¼ x1

�
þ v12

v22
x2
�

o

ox1
þ 2x2

o

ox2
; Y4 ¼ x1

�
þ v11

v12
x2
�

o

ox1
þ 3x2

o

ox2
:

Having completely solved the group-classification problem, our next step is to identify the variational
symmetries of those equations of form (35) which are found to admit larger symmetry groups. For this

purpose, we are to apply condition (22) to the linear combinations of the vector field X0 ¼ wo=ow and the

vector fields presented in Table 1 with k ¼ r 	 4n1
;1. Omitting the details, we found that all vector fields

quoted under numbers 1, 3, 5, 7, 8, 9 and 11 generate variational symmetries of the respective equations.

In case #2, the variational symmetries are generated by the vector field ½b1 þ 2ðv12=v22Þb2�Y1 þ
2b2Y2 þ Y3 þ ð1=2ÞX0, in case #4––by Y1 and 2bY2 þ Y3 þ ð1=2ÞX0, in case #6––by ðv12=v22ÞY1 þ Y2 and

bY1 þ Y3 þ ð1=2ÞX0, and in case #10––by Y1, Y2 and Y3 þ ð1=2ÞX0.

Once the variational symmetries of the differential equations of form (35) are identified, we are ready to
derive the corresponding conservation laws. The conserved currents of the conservation laws for the
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equations given in Table 1 are computed using formula (34), the above notes concerning the variational
symmetries being taken into account. The obtained conservation laws are listed in Table 2 (in the same

order as in Table 1) in terms of the differential functions:

B1
ð1Þ ¼ 	1

2
½cð2w1w111 	 w2

11Þ þ v11w2
1 	 v22w2

2 þ jw2� 	 1
2
ðv2lwwlÞ;2;

B2
ð1Þ ¼ 	v2lw1wl þ 1

2
ðv2lwwlÞ;1;

B1
ð2Þ ¼ 	v1lw2wl þ cðw11w12 	 w2w111Þ 	 1

2
ðcw1w11 	 v1lwwlÞ;2;

B2
ð2Þ ¼ 	1

2
ðcw2

11 þ v22w2
2 	 v11w2

1 þ jw2Þ þ 1
2
ðcw1w11 	 v1lwwlÞ;1;

Ba
ð3Þ ¼ ½x1 þ ðv12=v22Þx2�Ba

ð1Þ þ 2x2Ba
ð2Þ þ valwwl þ 1

2
cd1aðww111 	 w1w11Þ;

Table 1

Equations of form (35) invariant under larger symmetry groups

# Coefficients Generators

1 jðxÞ ¼ f ðb2x1 	 b1x2Þ b1Y1 þ b2Y2

2 v22 6¼ 0, detðvabÞ ¼ 0, jðxÞ ¼ ðb2 þ x2Þ	2f ðyÞ,
y ¼ ðb2 þ x2Þ	1=2½b1 þ x1 	 ðv12=v22Þx2�

½b1 þ 2ðv12=v22Þb2�Y1 þ 2b2Y2 þ Y3

3 v22 ¼ 0, detðvabÞ 6¼ 0, jðxÞ ¼ ðb2 þ x2Þ	4=3f ðyÞ,
y ¼ ðb2 þ x2Þ	1=3½b1 þ 2x1 	 ðv11=v12Þx2�

½b1 þ 3ðv11=v12Þb2�Y1 þ 6b2Y2 þ 2Y4

4 v22 6¼ 0, detðvabÞ ¼ 0, jðxÞ ¼ j0ðb þ x2Þ	2
, Y1, 2bY2 þ Y3

5 v22 ¼ 0, detðvabÞ 6¼ 0, jðxÞ ¼ j0ðb þ x2Þ	4=3 Y1, 3bY2 þ Y4
6 v22 6¼ 0, detðvabÞ ¼ 0, jðxÞ ¼ j0ðb þ x1 	 ðv12=v22Þx2Þ	4 bY1 þ Y3, ðv12=v22ÞY1 þ Y2
7 v22 ¼ 0, detðvabÞ 6¼ 0, jðxÞ ¼ j0ðb þ 2x1 	 ðv11=v12Þx2Þ	4 bY1 þ 2Y4, ðv11=v12ÞY1 þ 2Y2

8 v22 detðvabÞ 6¼ 0, jðxÞ ¼ const Y1, Y2

9 v22 detðvabÞ ¼ 0, jðxÞ ¼ const 6¼ 0 Y1, Y2

10 v22 6¼ 0, detðvabÞ ¼ 0, jðxÞ ¼ 0 Y1, Y2, Y3

11 v22 ¼ 0, detðvabÞ 6¼ 0, jðxÞ ¼ 0 Y1, Y2, Y4

Table 2

Conservation laws for equations of form (35)

# Conservation laws

1 Da½b1Ba
ð1Þ þ b2Ba

ð2Þ� ¼ 0

2 Da½ðb1 þ 2ðv12=v22Þb2ÞBa
ð1Þ þ 2b2Ba

ð2Þ þ Ba
ð3Þ� ¼ 0

3 Da½ðb1 þ 3ðv11=v12Þb2ÞBa
ð1Þ þ 6b2Ba

ð2Þ þ 2Ba
ð4Þ� ¼ 0

4 DaBa
ð1Þ ¼ 0, Da½2bBa

ð2Þ þ Ba
ð3Þ� ¼ 0

5 DaBa
ð1Þ ¼ 0, Da½3bBa

ð2Þ þ Ba
ð4Þ� ¼ 0

6 Da½bBa
ð1Þ þ Ba

ð3Þ� ¼ 0, Da½ðv12=v22ÞBa
ð1Þ þ Ba

ð2Þ� ¼ 0

7 Da½bBa
ð1Þ þ 2Ba

ð4Þ� ¼ 0, Da½ðv11=v12ÞBa
ð1Þ þ 2Ba

ð2Þ� ¼ 0

8 DaBa
ð1Þ ¼ 0, DaBa

ð2Þ ¼ 0

9 DaBa
ð1Þ ¼ 0, DaBa

ð2Þ ¼ 0

10 DaBa
ð1Þ ¼ 0, DaBa

ð2Þ ¼ 0, DaBa
ð3Þ ¼ 0

11 DaBa
ð1Þ ¼ 0, DaBa

ð2Þ ¼ 0, DaBa
ð4Þ ¼ 0
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Ba
ð4Þ ¼ ½x1 þ ðv11=v12Þx2�Ba

ð1Þ þ 3x2Ba
ð2Þ þ 1

2
½valwwl þ d1aðv11ww1 þ 2v12ww2 	 cw1w11Þ�:

According to the general results of Section 3, each equation of form (35) admits conservation laws with

characteristics Q ¼ uðxÞ as well, where uðxÞ is any smooth solution of the equation considered. These

conservation laws are of form (32), that is

DaP a
ðuÞ ¼ 0;

the corresponding conserved currents P a
ðuÞ being given by formula (31), which in the case under conside-

ration simplifies and reads

P a
ðuÞ ¼ valðuwl 	 u;lwÞ þ d1acðuw111 þ u;11w1 	 u;111w	 u;1w11Þ: ð36Þ

Let us now specialize to the differential equations governing the small transversal vibration of elastic

pipes of uniform thickness and outer radius of the pipe cross-section, conveying inviscid fluid of flow ve-

locity U ¼ const, compressed by an axial end force p ¼ const and lying on a Winkler foundation with

stiffness c ¼ const:

EJw1111 þ ðp þMU 2Þw11 þ 2MUw12 þ ðmþMÞw22 þ cw ¼ 0; ð37Þ

where EJ is the pipe bending rigidity while m and M are the masses of the pipe and the fluid per unit length,

respectively (see Paidoussis, 1998). Obviously, Eq. (37) belongs to the class (35) with coefficients

c ¼ EJ ; v11 ¼ p þMU 2; v22 ¼ mþM ; v12 ¼ v21 ¼ MU ; jðxÞ ¼ c: ð38Þ

In this case v22 6¼ 0, j ¼ const and hence, according to the above results concerning the whole class (35),

Eq. (37) admits two infinitesimal variational symmetries Y1 and Y2 for arbitrary values of its coefficients, and
an additional one, Y3 þ ð1=2ÞX0, in the special case detðvabÞ ¼ 0 and j ¼ 0, that is when

pðmþMÞ þ mMU 2 ¼ 0; c ¼ 0: ð39Þ

Since the independent variables x1 and x2 are the spatial variable along the pipe axis and the time, res-

pectively, each conservation law admitted by the smooth solutions of Eq. (37) may be written in the more

familiar form

oW
ox2

þ oP
ox1

¼ 0; ð40Þ

where W is the density and P is the flux of the conservation law. The densities and fluxes of the conservation

laws for Eq. (37) related to the vector fields Y1 and Y2 are

W1 ¼ MUw1w1 þ ðmþMÞw1w2; P1 ¼ EJw1w111 þ cw2 	 E;

W2 ¼ E; P2 ¼ EJðw2w111 	 w11w12Þ þ ðp þMU 2Þw1w2 þMUw2w2;

E ¼ 1
2
½EJw2

11 þ ðmþMÞw2
2 	 ðp þMU 2Þw2

1 þ cw2�:

The conservation law with density W1 and flux P1 corresponds to conservation of wave momentum, while

that with density W2 ¼ E and flux P2 represents conservation of energy. These two conservation laws hold

for arbitrary values of the pipe parameters EJ , M , m, U , p and c. In the special case when equalities (39)

hold (note that this may happen only if the force p is negative, that is if the pipe is extended by it, as the
constants U , m, M should be positive due to their physical meaning), Eq. (37) admits an additional con-

servation law related to the vector field Y3 þ ð1=2ÞX0 with density and flux
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W3 ¼ x1
�

þ MU
mþM x2

�
W1

	
	 1

2
½MUww1 þ ðmþ MÞww2�;1



þ x2 2W2

(
	 EJw1w11

�
	 M2U 2

mþM ww1 	 MUww2

�
;1

)
	 w½MUw1 þ ðmþMÞw2�;

P3 ¼ x1
�

þ MU
mþM x2

�
P1

	
þ 1

2
½MUww1 þ ðmþ MÞww2�;2



	 1

2
EJðww111 	 w1w11Þ

þ x2 2P2

(
þ EJw1w11

�
	 M2U 2

mþM ww1 	 MUww2

�
;2

)
	 M2U 2

mþM ww1 	MUww2:

In order to clarify the significance and applicability of these results in the theory of fluid conveying pipes,

let us emphasize the following substantial feature of the suggested density W2 and flux P2 of the energy

conservation law. Recall that, according to formula (33) given in Section 3, the energy conservation law

oW2

ox2
þ oP2

ox1
¼ 0; ð41Þ

could be modified by means of a trivial conservation law with current Ga, say taking G1 ¼ oF =ox1 and

G2 ¼ 	oF =ox2, where F is a smooth differential function, to the form

o

ox2
W2

�
þ oF
ox1

�
þ o

ox1
P2

�
	 oF
ox2

�
¼ 0:

Thus, one has at disposal a multitude of mathematically equivalent densities W2 þ oF =ox1 and fluxes

P2 	 oF =ox2 for the energy conservation law. Under these circumstances, a natural question arises: which of

the aforesaid densities is to be referred to as ‘‘proper’’ energy density of the fluid conveying pipe. The

answer relies on a purely physical argument: the flux corresponding to this ‘‘proper’’ energy density should

represent the rate of work done on the pipe by the external forces and couples. Integrating the law (41) over

the pipe length ða6 x1 6 bÞ one obtains

o

ox2

Z b

a
Edx1 ¼ EJw11w12jba 	 EJw2w111jba þ pw1w2jba þ ðMUw2w2 þMU 2w1w2Þjba:

The left-hand side of this equality is the rate of change of total energy of the pipe, while the right-hand side
represents the rate of work done on the pipe by the external forces and couples. Indeed, EJw11w12 represents

the rate of work done by the bending moment EJw11 over the angular velocity w12 of the pipe cross-section,

EJw2w111 is the rate of work done by the shear force EJw111 over the transversal velocity w2 of the pipe cross-

section, pw1w2 is the rate of work done by the transversal projection pw1 of the axial force p over the

transversal velocity w2, and the terms MUw2w2 and MU 2w1w2 represent the rate of work done by forces and

couples due to the fluid flow (see Benjamin, 1961; Paidoussis, 1998). On the basis of this argument, the

suggested expressions for W2 and P2 are recognized as the ‘‘proper’’ energy density and the rate of work

done on the pipe, respectively.
Substituting c ¼ EJ , v11 ¼ v12 ¼ 0, v22 ¼ m and jðxÞ ¼ 0 in Eq. (35), one arrives at the well known

differential equation

EJw1111 þ mw22 ¼ 0; ð42Þ
governing the dynamics of a classical homogeneous Bernoulli–Euler beam of bending rigidity EJ and mass

per unit length m. Eq. (42) admits the following five linearly independent infinitesimal variational sym-
metries: Y1, Y2, Y3 þ ð1=2ÞX0, Y5 ¼ o=ow and Y6 ¼ x2 o=ow, where Y5 and Y6 are vector fields of the type

Xu ¼ uðxÞo=ow corresponding to the solutions u ¼ 1 and u ¼ x2 of Eq. (42), respectively. The densities and
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fluxes of the conservation laws for Eq. (42) associated with these vector fields together with their physical

interpretation are presented in Table 3.

Conservation laws in the dynamics of rods are considered in many papers (see, e.g., Antman, 1984; Chien

et al., 1993; Maddocks and Dichmann, 1994; Tabarrok et al., 1994; Djondjorov, 1995) with or without
reference to the symmetries of the respective governing equations. In order to identify the novelties in this

field achieved in the present contribution, the results presented in some of the aforementioned works are

discussed below.

Chien et al. (1993), employing a technique called by these authors neutral action method, derive con-

servation laws for the dynamics of nonhomogeneous Bernoulli–Euler beams of bending rigidity Bðx1Þ and
inertia term Hðx1Þ governed by the equation

Bw1111 þ 2B;1w111 þ B;11w11 þ Hw22 ¼ 0: ð43Þ

This equation is of form (1) and hence, for the same purpose, the results of Section 3 can be applied. Thus,

given an equation of form (43), one can easily ascertain that the general solution ðn1; n2; rÞ of the deter-

mining equations (12)–(16), provided that condition (23) holds, is of the form n1 ¼ 	f 1, n2 ¼ 	f 2 and
r ¼ f 3, where f i are given by the expressions (33) in Chien et al. (1993); at that, Eqs. (34) in Chien et al.

(1993) remain the only conditions (necessary and sufficient) for the existence of a nontrivial solution of the

foregoing form. Hence, both approaches lead to the same variety of conservation laws with characteristics

Q ¼ wr 	 wln
l. The corresponding conserved currents (35) in Chien et al. (1993) coincide (up to a null

divergence terms) with those obtainable through our formula (34). As for the conservation laws with

characteristics of the form Q ¼ uðxÞ, only a part of them are identified in Chien et al. (1993), namely those

with uðxÞ ¼ f 4ðxÞ, f 4 as in (33) in Chien et al. (1993), while any solution uðxÞ of Eq. (43) gives rise to a

conservation law whose current is given explicitly by the general formula (31).
Conservation laws for the dynamics of rods of variable length within the Bernoulli–Euler theory are

derived by Tabarrok et al. (1994). Rods, whose length is a linear function of the time, are governed by an

equation of form (35) that belongs to the case #10 in Table 1. For such an equation, Tabarrok et al. (1994)

suggest three conservation laws which (in our notation) are DaBa
ð1Þ ¼ 0 and DaBa

ð2Þ ¼ 0 given in Table 2 as

well as the conservation law with characteristic Q ¼ uðxÞ and current (36) corresponding to the solution

uðxÞ ¼ const of this equation. In addition to these, the conservation law DaBa
ð3Þ ¼ 0 from Table 2 and the set

of conservation laws with characteristics Q ¼ uðxÞ and currents (36) corresponding to any solution of the

governing equation are presented here.

Table 3

Conservation laws for Bernoulli–Euler beams

Generators Densities and fluxes of the corresponding conservation laws

Space translations Y1 Wave momentum

Wð1Þ ¼ mw1w2

Pð1Þ ¼ ð1=2Þ½EJð2w1w111 	 w2
11Þ 	 mw2

2�

Time translations Y2 Energy

Wð2Þ ¼ ð1=2ÞðEJw2
11 þ mw2

2Þ
Pð2Þ ¼ EJðw2w111 	 w11w12Þ

Scaling Y3 þ ð1=2ÞX0 W3 ¼ x1W1 þ 2x2W2 	 EJx2ðw1w11Þ;1 	 1
2
x1mðww2Þ;1 	 mww2

Pð3Þ ¼ x1P1 þ 2x2P2 þ EJx2ðw1w11Þ;2 	 1
2
EJðww111 	 w1w11Þ þ 1

2
x1mðww2Þ;2

Y5 Linear momentum

Wð5Þ ¼ mw2, Pð5Þ ¼ EJw111

Galilean boost Y7 Center-of-mass theorem

Wð7Þ ¼ mðx2w2 	 wÞ, Pð7Þ ¼ EJx2w111
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Five conservation laws in the dynamics of rods are reported in Maddocks and Dichmann (1994) within a

general nonlinear direct theory. The restricted version of this theory describing small planar bending of an

uniform inextensible unshearable isotropic elastic rod with a linear constitutive law, the rotatory inertia of

the rod cross-section being neglected, is exactly the classic Bernoulli–Euler theory for homogeneous beams
whose governing equation is (42). Rewriting the conservation laws in Maddocks and Dichmann (1994)

taking into account the aforementioned restrictions we observe that: (1) the conservation law for the total

angular momentum (formula 2.14 in Maddocks and Dichmann, 1994) degenerates to the well known basic

relation of Bernoulli–Euler theory Q ¼ oM=ox1 (here Q and M denote shear force and bending moment,

respectively, see Washizu, 1982); (2) the density and flux of the conservation law associated with material

isotropy (formula 4.5 in Maddocks and Dichmann, 1994) vanish identically; (3) the conservation law

corresponding to material homogeneity (formula 3.2 in Maddocks and Dichmann, 1994) reduces to con-

servation of the wave momentum (see Table 3); (4) the expressions for the densities and fluxes of energy
(formula 2.19 in Maddocks and Dichmann, 1994) and linear momentum (formula 2.12 in Maddocks and

Dichmann, 1994) conservation laws coincide with the respective ones presented in Table 3. The set of

conservation laws with characteristics Q ¼ uðxÞ, where uðxÞ is any solution of Eq. (42), as well as the

conservation law associated with the variational scaling symmetry Y3 þ ð1=2ÞX0 (see Table 3) have no

analogues in Maddocks and Dichmann (1994).

Three interesting kinds of group-invariant solutions to certain equations of class (35) are identified

below. The first of them corresponds to vector fields cY1 � Y2, where c ¼ const. These group-invariant

solutions are travelling waves

w ¼ UðsÞ; s ¼ x1 � cx2;

admissible only for Eq. (35) with jðx1; x2Þ ¼ f ðsÞ. The reduced equations determining such group-invariant

solutions are

c
d4U
ds4

þ ðv11 � 2v12cþ v22c2Þ d
2U
ds2

þ f ðsÞU ¼ 0:

The second one corresponds to the vector field Y3 and is of the form

w ¼ UðsÞ; s ¼ x1ðx2Þ	1=2 	 v12

v22
ðx2Þ1=2:

The vector field Y3 is admitted only if jðx1; x2Þ ¼ ðx2Þ	2f ðsÞ (see cases #2, 4, 6 and 10 in Table 1). The

reduced equations for these invariant solutions are

4c
d4U
ds4

þ v22s2
d2U
ds2

þ 3v22s
dU
ds

þ 4f ðsÞU ¼ 0:

The third kind of group-invariant solutions corresponds to the vector field Y4:

w ¼ UðsÞ; s ¼ 2x1ðx2Þ	1=3 	 v11

v12
ðx2Þ2=3:

The vector field Y4 is admitted only if jðx1; x2Þ ¼ ðx2Þ	4=3f ðsÞ (see cases #3, 5, 7 and 11 in Table 1). The

reduced equations for the invariant solution under consideration are

48c
d4U
ds4

	 4v12s
d2U
ds2

	 4v12 dU
ds

þ 3f ðsÞU ¼ 0:

Obviously, the latter two kinds of group-invariant solutions could be reduced to self-similar solutions if

v12 ¼ 0 or v11 ¼ 0, respectively.
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5. Symmetries, conservation laws and group-invariant solutions of Poisson–Kirchhoff type plate equations

Consider a thin isotropic elastic plate of bending rigidity D ¼ const resting on an elastic foundation of

Winkler type with variable modulus kðx1; x2Þ and subjected to an edge loading leading to the appearance of
nonuniform membrane stresses N abðx1; x2Þ. In the framework of Poisson–Kirchhoff plate theory, the

equation governing the small bending of the plate is

DD2wþ N abwab þ kw ¼ 0; ð44Þ
the membrane stress tensor N ab being symmetric, N ab ¼ Nba, and divergence free, i.e. N al

;l ¼ 0. Here, the

independent variables x1, x2 are the coordinates of the plate middle-plane; the dependent variable w rep-
resents the transversal displacement field; m is Poisson�s ratio; D is the Laplace operator, that is

D � dab o2=oxaoxb, where dab is the Kronecker delta symbol; throughout this section Greek indices are

supposed to take values 1, 2. There is a vast amount of papers in which problems concerning stability and

vibration of isotropic thin elastic plates are studied on the ground of this type of equations. Eq. (44) is self-

adjoint and belongs to class (1), n ¼ 2, with coefficients

Aabcd ¼ 1
3
Dðdabdcd þ dacdbd þ daddbcÞ; Aabc ¼ 0; Aab ¼ N ab; Aa ¼ 0; A ¼ k: ð45Þ

The aim of this section is to establish the group properties of Eq. (44). First, in view of the general results of

Section 3, it is clear that Xu ¼ uðxÞo=ow generates a variational symmetry of any equation of form (44)

whenever uðxÞ is its solution, while X0 ¼ wo=ow alone could never generate a variational symmetry of an

equation of form (44), though it is always its infinitesimal point Lie symmetry. Substituting expressions (45)

into the determining equations (12)–(16) one arrives, after a straightforward computation, at the conclusion

that an equation of form (44) is invariant under a point Lie group generated by a vector field X of form
(11), X 6¼ cX0 ðc ¼ constÞ, if and only if

r ¼ 1
2
nl
;l; ð46Þ

dalnb
;l þ dlbna

;l 	 dabnl
;l ¼ 0; ð47Þ

nlN ab
;l 	 N alnb

;l 	 N lbna
;l þ 2nl

;lN
ab þ 2Ddasdbmnl

;lsm ¼ 0; ð48Þ

N amnl
;lm 	 Nlmna

;lm ¼ 0; ð49Þ

2nlk;l þ 4nl
;lk þ Nlmns

;slm ¼ 0; ð50Þ

k ¼ 	3
2
nl
;l: ð51Þ

Substituting equality (46) into expression (11), and equalities (46) and (51) into condition (23), one can
conclude that the generator of such a group is a vector field of form

X ¼ nl o

oxl
þ 1

2
nl
;lw

o

ow
; ð52Þ

each symmetry of that kind of Eq. (44) being variational symmetry of the latter equation as well. Hence,

there exists a conservation law with characteristic

Q ¼ 1
2
nl
;lw	 wln

l

and conserved current Ba given by formula (34) admitted by the smooth solutions of the equation con-
sidered. Thus, to derive the conservation laws, which correspond to the variational symmetries of an

equation of form (44), it suffices to know the results of the group classification of the class of equations in
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question; of course, the same holds true for the derivation of group-invariant solutions to Eq. (44). This

group-classification problem is studied in Vassilev (1988, 1991, 1997). The classification results presented

below are based on results obtained in these works.

The scalar fields,

sð1Þ ¼ N lmdlm; sð2Þ ¼ ð8k 	 daldbmN abN lmÞ1=2; ð53Þ

are found to be of key importance for the group classification of the considered class of equations. These
scalar fields are called invariants of Eq. (44) since here they play a role similar to the role that Laplace�s and
Cotton�s invariants play in the group classification of the second-order linear partial differential equations

(see Ovsiannikov, 1982; Ibragimov, 1985). The following two properties of the scalar fields (53) give us both

an additional reason to call them invariants of Eq. (44) and explicit expressions for the invariants of groups

admitted by Eq. (44). First, if an equation of form (44) admits a vector field of form (52), then

nl
;lsðjÞ þ nlsðjÞ;l ¼ 0 ðj ¼ 1; 2Þ;

and hence UðjÞ ¼ w
ffiffiffiffiffiffi
sðjÞ

p
are invariants of the corresponding Lie group whenever sðjÞ 6� 0. Second, if an

equation of form (44) admits a vector field of form (52) and is such that its both invariants (53) are not

identically equal to zero, then sð1Þ=sð2Þ is an invariant of the corresponding symmetry group. Note, that

the invariants sð1Þ and sð2Þ of such an equation of form (44) provide two couples of functionally inde-
pendent invariants, namely Uð1Þ ¼ w ffiffiffiffiffiffiffisð1Þ

p
and sð1Þ=sð2Þ as well as Uð2Þ ¼ w ffiffiffiffiffiffiffisð2Þ

p
and sð1Þ=sð2Þ, of the ad-

mitted symmetry group, both couples being readily applicable for constructing group-invariant solutions

to the respective equation. However, if even one of the invariants (53) of an equation of form (44) is not

identically equal to zero, then this equation admits at most a three-parameter group with generators of

form (52). On the other hand, if all invariants (53) of an equation of form (44) are identically equal to

zero, then this equation admits a six-parameter group with generators of form (52). Below, the latter case

is set out in detail.

Let xðzÞ 6� const be an analytic function of the complex variable z ¼ x1 þ ix2, and let Ex be the equation
of the form (44) with coefficients

N 11 ¼ 	N 22 ¼ 4Ref/g; N 12 ¼ N 21 ¼ 	4Imf/g; k ¼ 4/ �//; ð54Þ

where / is the Schwarzian derivative of the function x, that is

/ ¼ x00

x0

� �0

	 1

2

x00

x0

� �2

; ð55Þ

�// is the complex conjugated of /, and the prime is used to denote differentiation with respect to the variable
z. Substituting expressions (54) into formulae (53) one can see that all invariants of equation Ex are

identically equal to zero. Then, taking into account the DE system (47)–(50), (54) and (55), one can verify

by direct computing that equation Ex admits the six-parameter group generated by the vector fields

ZðjÞ ¼ nl
ðjÞ

o

oxl
þ 1

2
nl
ðjÞ;lw

o

ow
ðj ¼ 1; . . . ; 6Þ;

the functions nl
ðjÞ being given by the expressions

n1
ð1Þ ¼ Refx1g; n2

ð1Þ ¼ Imfx1g;

n1
ð2Þ ¼ Refix1g; n2

ð2Þ ¼ Imfix1g;

n1
ð3Þ ¼ Refx2g; n2

ð3Þ ¼ Imfx2g;
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n1
ð4Þ ¼ Refix2g; n2

ð4Þ ¼ Imfix2g;

n1
ð5Þ ¼ Refx3g; n2

ð5Þ ¼ Imfx3g;

n1
ð6Þ ¼ Refix3g; n2

ð6Þ ¼ Imfix3g;

where

x1 ¼
1

x0 ; x2 ¼
x
x0 ; x3 ¼

x2

x0 : ð56Þ

It should be remarked that each equation of form (44) which admits a six-parameter group with gene-

rators of form (52) is of type Ex, meaning that it can be generated in the above manner using a suitable

analytic function x. The coefficients of each equation of this type are of the form

N ab ¼ daldbmu;lm; k ¼ 1
8
daldbmu;abu;lm;

where u is a harmonic function, that is dabu;ab ¼ 0, and vice versa. It is noteworthy that each equation with

variable coefficients of type Ex can be mapped to an equation with constant coefficients belonging to the
same family. It is easy to verify by direct computing that the equation Ex, corresponding to an analytic

function x whose Schwarzian derivative is not constant, transforms to a constant coefficients equation

under the following change of the variables:

ya ¼ f aðx1; x2Þ; W ¼ wUðx1; x2Þ; ð57Þ

f 1ðx1; x2Þ ¼ Re

Z
f 	1 dz

	 

; f 2ðx1; x2Þ ¼ Im

Z
f 	1 dz

	 

; Uðx1; x2Þ ¼ ðf �ff Þ	1=2

;

where f is any linear combination of the functions (56) such that f 6� 0, i.e.

f ¼ k1x1 þ k2x2 þ k3x3; ð58Þ

where k1, k2 and k3 are complex constants such that k21 þ k22 þ k23 6¼ 0.
Consider, as a simple example, the equation Ex corresponding to the analytic function x ¼ z

ffiffiffiffiffi
,=2

p
, where

, is a positive real constant. Then, formula (55) gives / ¼ 4ð2	 ,Þz2 and hence, according to expressions

(54), the coefficients of equation Ex read

N 11 ¼ 	N 22 ¼ ð2	 ,Þ ðx1Þ2 	 ðx2Þ2

½ðx1Þ2 þ ðx2Þ2�2
;

N 12 ¼ N 21 ¼ ð2	 ,Þ 2x1x2

½ðx1Þ2 þ ðx2Þ2�2
; k ¼ ð2	 ,Þ2 1

4½ðx1Þ2 þ ðx2Þ2�2
:

ð59Þ

Using the function f ¼ z obtained from (58) for x ¼ z
ffiffiffiffiffi
,=2

p
, k1 ¼ k3 ¼ 0, k2 ¼ 1þ

ffiffiffiffiffiffiffiffi
,=2

p
, we introduce,

according to formulae (57), the new independent and dependent variables

y1 ¼ 1

2
ln ðx1Þ2
h

þ ðx2Þ2
i
; y2 ¼ arctan

x2

x1

� �
; W ¼ w ðx1Þ2

h
þ ðx2Þ2

i	1=2

: ð60Þ

Note that the inverse transformations are given by the expressions

x1 ¼ ey
1

cos y2; x2 ¼ ey
1

sin y2; w ¼ W ðx1Þ2
h

þ ðx2Þ2
i1=2

: ð61Þ
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Under the change of the variables of form (60), the considered equation Ex transforms to the following one,

dabdlm o4W
oyaoyboyloym

	 ,
o2W
oy1oy1

þ ,
o2W
oy2 oy2

þ 1

4
,2W ¼ 0; ð62Þ

which belongs to the same class (since it corresponds to the analytic function x ¼ ez
ffiffiffiffiffi
,=2

p
) but whose co-

efficients are constant.

Eq. (62) admits the six-parameter group of variational symmetries generated by the basic vector fields

Va ¼
o

oya
;

V3 ¼ ehy1 cosðhy2Þ o

oy1
þ ehy1 sinðhy2Þ o

oy2
þ hehy1w cosðhy2Þ o

ow
;

V4 ¼ 	ehy1 cosðhy2Þ o

oy1
þ ehy1 cosðhy2Þ o

oy2
	 hehy1w sinðhy2Þ o

ow
;

V5 ¼ e	hy1 cosðhy2Þ o

oy1
	 e	hy1 sinðhy2Þ o

oy2
	 he	hy1w cosðhy2Þ o

ow
;

V6 ¼ e	hy1 cosðhy2Þ o

oy1
þ e	hy1 sinðhy2Þ o

oy2
	 hehy1w cosðhy2Þ o

ow
;

where h ¼
ffiffiffiffiffiffiffiffi
,=2

p
. These vector fields give rise to six linearly independent conservation laws for Eq. (62).

The characteristics of these conservation laws are

QðjÞ ¼
1

2
W

o

oyl
VjðylÞ 	 WlVjðylÞ ðj ¼ 1; . . . ; 6Þ:

Here, Vj are regarded as operators acting on the functions f : R2 ! R. The corresponding conserved cur-

rents can be easily calculated from formula (34).

Finally, let us remark that each one-parameter group generated by a linear combination of the basic

vector fields Vj can be used for constructing group-invariant solutions of Eq. (62). Consider, for instance,

the group HðV3 þ V5Þ generated by the vector field V3 þ V5. The functions s ¼ sinðhy2Þ= coshðhy1Þ and

u ¼ W = coshðhy1Þ constitute a complete set of invariants for this group and hence, following the well known

algorithm (Ovsiannikov, 1982; Olver, 1993), we seek the HðV3 þ V5Þ-invariant solutions of Eq. (62) in the
form

W ¼ uðsÞ coshðhy1Þ; s ¼ sinðhy2Þ
coshðhy1Þ : ð63Þ

Substituting expressions (63) into Eq. (62), we get the reduced equation

ðs2 	 1Þ2 d
4u
ds4

þ 8sðs2 	 1Þ d
3u
ds3

þ 4ð3s2 	 1Þ d
2u
ds2

¼ 0:

The general solution to this ordinary differential equation is

uðsÞ ¼ C1 þ C2 ln
sþ 1

s	 1

� �
þ C3sþ C4s ln

sþ 1

s	 1

� �
;

where C1, C2, C3 and C4 are real constants. Hence, the HðV3 þ V5Þ-invariant solutions of Eq. (62) are given
by the expression
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W ðy1; y2Þ ¼ C1 coshðhy1Þ þ C2 coshðhy1Þ ln
sinðhy2Þ þ coshðhy1Þ
sinðhy2Þ 	 coshðhy1Þ

� �
þ C3 sinðhy2Þ þ C4

sinðhy2Þ
coshðhy1Þ ln

sinðhy2Þ þ coshðhy1Þ
sinðhy2Þ 	 coshðhy1Þ

� �
:

Using the inverse transformations (61) one can convert the above solutions of Eq. (62) into solutions of the

equation Ex, x ¼ z
ffiffiffiffiffi
,=2

p
, with variable coefficients (59).

Actually, Eq. (44) describes the state of equilibrium of a plate but introducing, according to d�Alembert

principle, the inertia force 	qw33 in its right-hand side, w33 being the second derivative of the displacement

field with respect to the time x3 and qðx1; x2Þ––the mass per unit area of the plate middle-plane, one can

extend (44) to the equation

DD2wþ N abwab þ kwþ qw33 ¼ 0; ð64Þ

describing the dynamic behaviour of the plate, provided that the rotatory inertia is negligible. Eq. (64) is

evidently self-adjoint and belongs to the class (1), n ¼ 3, with coefficients given by expressions (45) and the

following ones:

A3333 ¼ Aa333 ¼ Aab33 ¼ Aabc3 ¼ A333 ¼ Aa33 ¼ Aab3 ¼ Aa3 ¼ A3 ¼ 0; A33 ¼ q: ð65Þ
Substitution of expressions (45) and (65) into the determining equations (12)–(16) implies that an equation

of form (64) is invariant under a point Lie group if and only if its generator is a linear combination of the
vector field X ¼ wo=ow and one of the form

X ¼ nl o

oxl
þ n3 o

ox3
þ rw

o

ow
; ð66Þ

where

nl ¼ nlðx1; x2Þ; n3 ¼ C1x3 þ C2 ðC1;C2 ¼ constÞ; r ¼ 1
2
nl
;l; ð67Þ

and

2qnl
;l þ nlq;l ¼ 2C1q; ð68Þ

holds together with Eqs. (46)–(50), the function k being given by expression (51).

An ordinary symmetry of the equation considered is either its variational symmetry, as well, or one that

can be completed to a variational symmetry, by adding to its generator a term of form Cwo=ow
ðC ¼ constÞ. Indeed, in the present case condition (23) reads r þ k þ nl

;l þ n3
;3 ¼ 0, so substituting here

expressions (51) and (67) one obtains all symmetries with C1 ¼ 0 to be variational ones. If C1 6¼ 0, then the

corresponding symmetry is not a variational one but when the term 	C1wo=ow is added to its generator, it

becomes a variational one. Hence, for each symmetry of Eq. (64) generated by a vector field of form (66)
there exists a conservation law with characteristic

Q ¼ ð1
2
nl
;l 	 C1Þw	 wln

l 	 w3n
3 ð69Þ

and conserved current Ba given by formula (34) admitted by the smooth solutions of the equation con-

sidered. Thus, as in the time-independent case, to derive the conservation laws, which correspond to the

variational symmetries of an equation of form (64), it suffices to know the results of the group classification

of the class of equations in question; of course, the same holds true for the derivation of group-invariant

solutions to Eq. (64). This group-classification problem is the same as in the time-independent case pro-

vided that the function q satisfies Eq. (68).
Consider now as an example the equations of form (64) with constant coefficients. They govern the

dynamics of plates of constant bending rigidity and mass density, lying on a Winkler foundation of con-
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stant modulus and subjected to edge loading resulting in constant membrane stresses. Omitting the details,

the solution of the corresponding group-classification problem is as follows: (a) each equation of this type

admits the translations generated by the vector fields

X1 ¼
o

ox1
; X2 ¼

o

ox2
; T ¼ o

ox3
;

(b) the equations of form

DD2wþ N 11w11 þ N 22w22 þ kwþ qw33 ¼ 0; N 11 ¼ N 22;

admit additionally the rotation group with generator

X3 ¼ x2
o

ox1
	 x1 o

ox2
;

(c) the equations of form

DD2wþ qw33 ¼ 0; ð70Þ

admit additionally the scaling group with generator

S ¼ x1
o

ox1
þ x2 o

ox2
þ 2x3

o

ox3
:

In each of the aforementioned three cases, the characteristics and currents of the corresponding conser-

vation laws can easily be computed from formulae (69) and (34), respectively. Let us remark, that the

conservation laws for Eq. (70) associated with the translational (X1, X2, T ) and rotational (X3) symmetries

are obtained by Ibragimov (1985). Here, these equations are found to admit an additional conservation law
with characteristic Q ¼ 	wlxl 	 2w3x3, associated with the scaling symmetry S.

6. Generalized symmetries and conservation laws in theories of Timoshenko beams, Reissner–Mindlin plates

and 3D elastostatics

The results obtained in Section 3 are readily applicable in many other theories of solids and structures

provided that such theories involve linear differential equations in one dependent variable of order less than

or equal to four. The present section comprises three examples illustrating the application of these results in

the nonclassical theories of Timoshenko beams and Reissner–Mindlin plates as well as in three-dimensional
elastostatics.

6.1. Timoshenko beam equations

The small vibration of homogeneous Timoshenko beams is described (see, e.g., Washizu, 1982) by the

following system of two coupled second-order partial differential equations:

D1½u; u� � EJu11 þ kGAðu1 	 uÞ 	 qJu22 ¼ 0;

D2½u; u� � kGAðu11 	 u1Þ 	 qAu22 ¼ 0;
ð71Þ

where the rotation angle u and the transversal displacement u are the dependent variables; the coordinate x1

along the rod axis and the time x2 are the independent variables; q, G and E are the mass density, shear and
Young�s moduli of the beam material; A and J are the cross-section area and inertia moment of the beam; k
is the shear correction factor.
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Given a solution ðu; uÞ of system (71), both the rotation angle u and the transversal displacement u
satisfy the single fourth-order partial differential equation

D0½w� � EJw1111 	 qJ 1

�
þ 2

1þ m
k

�
w1122 þ

2q2Jð1þ mÞ
kE

w2222 þ qAw22 ¼ 0; ð72Þ

in one dependent variable w and two independent variables; here w stands for both u and u, m denotes

Poisson�s ratio and the well known relation E ¼ 2Gð1þ mÞ is taken into account. Indeed, by direct com-

putation, one can verify that

D0½u� ¼ 	D1D2½u; u� þ D1D1D1½u; u� 	
q
kG
D2D2D1½u; u�;

D0½u� ¼ 	D2½u; u� þ D1D1½u; u� þ
2Jð1þ mÞ

kA
D1D1D2½u; u� 	

qJ
kGA

D2D2D2½u; u�:

It does not mean, however, that the Timoshenko beam equations (71) are thus decoupled since the opposite

of the above assertion is not always true, namely: given two solutions w ¼ u and w ¼ u of Eq. (72), the
couple ðu; uÞ is not necessarily a solution of system (71). Therefore, Eq. (72) cannot replace system (71)

entirely, but nevertheless it is of considerable importance for the theory of shearable beams and so the

exploration of its symmetries is of interest.

Eq. (72) is self-adjoint and belongs to the class (1), n ¼ 2, with nonzero coefficients

A1111 ¼ EJ ; A1122 ¼ 	 qJ
6

1

�
þ 2

1þ m
k

�
; A2222 ¼ 2q2Jð1þ mÞ

kE
; A22 ¼ qA: ð73Þ

Substituting expressions (73) in the determining equations (12)–(16) and solving the over-determined sys-

tem obtained in this way, one can see that Eq. (72) admits only two vector fields

X1 ¼
o

ox1
; X2 ¼

o

ox2
;

in addition to the vector fields (10). Moreover, condition (23) implies that the vector fields X1 and X2 are

infinitesimal variational symmetries of Eq. (72) and hence, two conservation laws with characteristics

Q1 ¼ 	w1 and Q2 ¼ 	w2, respectively, are associated with them. The densities and fluxes of these con-

servation laws, calculated through formulae (34), read

Wð1Þ ¼ 	 qJ
12

1

�
þ 2

1þ m
k

�
ð3w11w12 	 8w1w112 	 w2w111Þ

þ q2Jð1þ mÞ
kE

ðw12w22 	 2w1w222 	 w2w122Þ þ
1

2
qAðww12 	 w1w2Þ;

Pð1Þ ¼
1

2
EJðw11w11 	 2w1w111Þ þ

q2Jð1þ mÞ
kE

w2w222

	 1

2
qAww22 	

qJ
12

1

�
þ 2

1þ m
k

�
ðw11w22 þ 2w12w12 þ w2w112 	 4w1w122Þ;

Wð2Þ ¼
1

2
EJw1w111 þ

q2Jð1þ mÞ
kE

ðw22w22 	 2w2w222Þ

	 1

2
qAw2w2 	

qJ
12

1

�
þ 2

1þ m
k

�
ðw11w22 þ 2w12w12 þ w1w122 	 4w2w112Þ;

Pð2Þ ¼
1

2
EJðw11w12 	 w1w112 	 2w2w111Þ 	

qJ
12

1

�
þ 2

1þ m
k

�
ð3w12w22 	 w1w222 	 8w2w122Þ:

ð74Þ
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Each of the foregoing two conservation laws established for the single fourth-order equation (72) gives rise,

upon replacing w by u or u, to two conservation laws for the Timoshenko beam equations (71). In the case

when w stands for u, these conservation laws can be written in the characteristic form

D1
ePPðaÞ þ D2

eWWðaÞ ¼ eQQl
ðaÞDl½u; u� þ DlR

l
ðaÞ; a ¼ 1; 2;

with characteristics

eQQ1
ðaÞ ¼ u1a; eQQ2

ðaÞ ¼ ua 	
2Jð1þ mÞ

kA
u11a þ

qJ
kGA

ua22; a ¼ 1; 2; ð75Þ

and

R1
ðaÞ ¼ 	uaD1½u; u� þ

2Jð1þ mÞ
kA

ðu1aD2½u; u� 	 uaD1D2½u; u�Þ;

R2
ðaÞ ¼

qJ
kGA

ðuaD2D2½u; u� 	 ua2D2½u; u�Þ; a ¼ 1; 2:

Here, eWWðaÞ and ePPðaÞ denote the densities and fluxes (74) with u instead of w. Evidently, Rl
ðaÞ are currents of

trivial conservation laws as they vanish on the solutions of Eq. (71). In a similar way, conservation laws for

the rotation angle u could be established.

The invariance properties of Timoshenko beam equations (71) are considered in Djondjorov (1995). In

that paper, the vector fields X1 and X2 are identified to be infinitesimal variational symmetries of system (71)

and the corresponding conservation laws are derived therein. The conservation laws with characteristics

(75) which are found here to hold on the solutions of system (71) are new. They differ from the conservation

laws in Djondjorov (1995), because the latter correspond to geometric symmetries of system (71) while
expressions (75) imply that the conservation laws presented here correspond to generalized symmetries of

this system.

Neglecting the shear deformation of the rod cross-section one arrives at another rod theory, still ac-

counting for the rotatory inertia of the cross-section, governed by the equation

EJw1111 	 qJw1122 þ qAw22 ¼ 0;

which follows from Eq. (72) when k ! 1. Here, w denotes the transversal displacement of the rod axis.
Omitting the details, this equation is found to admit the same variational symmetries as Eq. (72), the

densities and fluxes of the associated conservation laws being limit cases of those given by expressions (74)

when k ! 1.

6.2. Reissner–Mindlin plate equations

Within the framework of the Reissner–Mindlin plate theory, the small vibration of a homogeneous

elastic plate of mass density q and thickness h is governed (see, e.g., Washizu, 1982) by the following system
of partial differential equations:

dabuab þ
1þ m
2

ðw12 	 u22Þ 	
6kð1	 mÞ

h2
ðw1 þ uÞ 	 qð1	 m2Þ

E
u33 ¼ 0;

dabwab þ
1þ m
2

ðu12 	 w11Þ 	
6kð1	 mÞ

h2
ðw2 þ wÞ 	 qð1	 m2Þ

E
w33 ¼ 0;

kð1	 mÞ
2

ðdabwab þ u1 þ w2Þ 	
qð1	 m2Þ

E
w33 ¼ 0;

ð76Þ
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where ðx1; x2Þ are Cartesian coordinates of the plate middle-plane, x3 is the time, w is the transverse dis-

placement of the plate middle-plane, u and w are the rotation angles of a straight element which is normal

to the middle-plane in the reference state, k is the shear correction factor, m is Poisson�s ratio, and E is

Young�s modulus. This system can easily be solved with respect to the derivatives of the variable w, namely

w1 ¼ 	u þ h2

6kð1	 mÞ dabuab

�
þ 1þ m

2
ðw12 	 u22Þ 	

qð1	 m2Þ
E

u33

�
;

w2 ¼ 	w þ h2

6kð1	 mÞ dabwab

�
þ 1þ m

2
ðu12 	 w11Þ 	

qð1	 m2Þ
E

w33

�
;

w33 ¼
D
qh

dabðu1ab

�
þ w2abÞ 	

qð1	 m2Þ
E

ðu133 þ w233Þ
�
;

ð77Þ

where D ¼ Eh3=ð12ð1	 m2ÞÞ is the bending rigidity of the plate. The left-hand sides of expressions (77) meet

the compatibility conditions ðw1Þ;33 ¼ ðw33Þ;1 and ðw2Þ;33 ¼ ðw33Þ;2 that are actually trivial conservation

laws. Nevertheless, substituting here the derivatives of the variable w from expressions (77), one could
obtain two nontrivial conservation laws for the solutions of the Reissner–Mindlin plate equations (76)

whose currents involve derivatives of the rotation angles u and w only. The left-hand sides of expressions

(77) also satisfy the compatibility condition ðw1Þ;2 ¼ ðw2Þ;1, which leads to the equation

dab/ab 	
2qð1þ mÞ

E
/33 	

12k
h2

/ ¼ 0; ð78Þ

for the function / ¼ w1 	 u2. This is a self-adjoint equation of form (1) with n ¼ 3 and nonzero coefficients:

Aab ¼ dab; A33 ¼ 	 2qð1þ mÞ
E

; A ¼ 	 12k
h2

:

Substituting these coefficients in system (12)–(16) and solving it, one obtains, taking into account condition

(23), that the following six vector fields

Xk ¼
o

oxk
ðk ¼ 1; 2; 3Þ; X4 ¼ x2

o

ox1
	 x1 o

ox2
;

X5 ¼ x3
o

ox1
þ 2qð1þ mÞ

E
x1

o

ox3
; X6 ¼ x3

o

ox2
þ 2qð1þ mÞ

E
x2

o

ox3
;

generate variational symmetries of Eq. (78). The currents of the associated conservation laws could easily

be derived from formula (34) in terms of the dependent variable / and its first derivatives. Then, using the

relation / ¼ w1 	 u2, it is a simple matter to rewrite these currents in terms of the rotation angles u and w
and their derivatives. In this manner, one will obtain six conservation laws that are valid on the solutions of

system (76) because each solution ðu;w;wÞ of this system transforms (via the relation / ¼ w1 	 u2) to a

solution of Eq. (78). Thus, we find that there exist eight conservation laws for the solutions of the Reissner–
Mindlin plate equations (76) that involve only derivatives of the rotation angles u and w.

On the other hand, it turns out that there exist conservation laws for system (76) involving only deri-

vatives of the transversal displacement w. Indeed, eliminating u and w from system (76) one arrives at the

well known equation

DDDw	 qh3

12ð1	 mÞ
2

k

�
þ 1	 m

�
Dw33 þ

q2h3ð1þ mÞ
6kE

w3333 þ qhw33 ¼ 0 ð79Þ

for the transversal displacement w. This equation is self-adjoint and belongs to class (1) with n ¼ 3 and

nonzero coefficients
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A1111 ¼ A2222 ¼ 3A1122 ¼ D; A3333 ¼ q2h3ð1þ mÞ
6kE

; A33 ¼ qh; A1133 ¼ A2233 ¼ qh3

72ð1	 mÞ
2

k

�
þ 1	 m

�
:

Substituting these coefficients in determining equations (12)–(16) and solving the over-determined system,

obtained in this way, one finds that Eq. (79) admits the vector fields

Zj ¼
o

oxj
; j ¼ 1; 2; 3; Z4 ¼ x2

o

ox1
	 x1 o

ox2
: ð80Þ

These four vector fields generate variational symmetries of Eq. (79) and this is easily confirmed using

condition (23). Thus, given an equation of form (79), the characteristics of its conservation laws associated

with the vector fields (80) are

QðjÞ ¼ 	wj; j ¼ 1; 2; 3; Qð4Þ ¼ x1w2 	 x2w1;

and the corresponding conserved currents could be computed from formula (34). Each solution of the

Reissner–Mindlin plate equations (76) is a solution of Eq. (79) too. For this reason, the conservation laws
for the solutions of Eq. (79) are conservation laws for the solutions of system (76) as well. In this manner,

the conservation laws derived here for the single fourth-order equation (79) are conservation laws for the

Reissner–Mindlin plate equations (76) too, but in this case they are with characteristics

Qa
ðjÞ ¼ DdabDbQðjÞ ða ¼ 1; 2; j ¼ 1; 2; 3; 4Þ;

Q3
ðjÞ ¼ 	 12D

h2
QðjÞ þ

2D
kð1	 mÞ dabDaDbQðjÞ 	

qh3

6kð1	 mÞD3D3Q:
ð81Þ

A number of conservation laws for nonhomogeneous Reissner–Mindlin plates are derived by Chien et al.

(1994). As for the homogeneous plates considered in this subsection, the general results of Chien et al.

(1994) imply that the vector fields Zj, j ¼ 1, 2 and 3 are generators of variational symmetries of system (76).

However, the vector field Z4 is not recognized as infinitesimal variational symmetry of system (76) by Chien

et al. (1994) and hence, the corresponding conservation law of characteristic (Q1
ð4Þ, Q

2
ð4Þ, Q

3
ð4Þ) is new in the

Reissner–Mindlin plate theory. The conservation laws for the solutions of system (76) associated with Z1, Z2
and Z3 whose currents are obtainable through our formula (34) are also new in the Reissner–Mindlin plate
theory because the form of their characteristics (81) implies that they correspond to generalized symmetries

of system (76) whereas the conservation laws in Chien et al. (1994) correspond to geometric symmetries of

system (76).

If the shear deformation is neglected, but the rotatory inertia of the straight element is retained in the

description, another plate theory arises whose governing equation is

DDDw	 qh3

12
Dw33 þ qhw33 ¼ 0; ð82Þ

which follows from Eq. (79) when k ! 1. Omitting the details, Eq. (82) is found to admit the same

variational symmetries as Eq. (79). The currents of the conservation laws for Eq. (82) are limits of the

currents of the conservation laws for Eq. (79) when k ! 1.

6.3. Three-dimensional elasticity

The three-dimensional homogeneous isotropic elastostatics is governed by the equations

Ec � ldabuc
ab þ ðk þ lÞdcbua

ab ¼ 0; a; b; c ¼ 1; 2; 3; ð83Þ

V.M. Vassilev, P.A. Djondjorov / International Journal of Solids and Structures 40 (2003) 1585–1614 1609



where ðu1; u2; u3Þ is the displacement vector in the Cartesian frame ðx1; x2; x3Þ. In this last subsection we

(following the tradition) use the notation k and l for the Lam�ee moduli. It is well known (see, e.g., Landau

and Lifshitz, 1970), that each component uc ðc ¼ 1; 2; 3Þ of the displacement vector satisfies the three-di-

mensional biharmonic equation

dabdrswabrs ¼ 0; ð84Þ
where w stands for any of the displacement components uc ðc ¼ 1; 2; 3Þ. Apparently, Eq. (84) is self-adjoint

and belongs to the class (1) with n ¼ 3.

Solving the corresponding determining equations (12)–(16) one arrives, after a straightforward compu-

tation, at the conclusion that the three-dimensional biharmonic equation (84) is invariant under the Lie

group generated by the vector fields

F1 ¼
o

ox1
; F2 ¼

o

ox2
; F3 ¼

o

ox3
;

F4 ¼ x2
o

ox1
	 x1 o

ox2
; F5 ¼ x1

o

ox3
	 x3 o

ox1
; F6 ¼ x3

o

ox2
	 x2 o

ox3
;

F7 ¼ x1
o

ox1
þ x2 o

ox2
þ x3 o

ox3
þ 1

2
w

o

ow
;

F8 ¼ ½ðx1Þ2 	 ðx2Þ2 	 ðx3Þ2� o

ox1
þ 2x1x2

o

ox2
þ 2x1x3

o

ox3
þ x1w o

ow
;

F9 ¼ 2x1x2
o

ox1
þ ½	ðx1Þ2 þ ðx2Þ2 	 ðx3Þ2� o

ox2
þ 2x2x3

o

ox3
þ x2w o

ow
;

F10 ¼ 2x1x3
o

ox1
þ 2x2x3

o

ox2
þ ½	ðx1Þ2 	 ðx2Þ2 þ ðx3Þ2� o

ox3
þ x3w o

ow
:

ð85Þ

In addition, condition (23) implies that all these symmetries are variational ones. Thus, in virtue of Noe-

ther�s theorem, the characteristics QðsÞ of the vector field Fs ðs ¼ 1; 2; . . . ; 10Þ,

Qð1Þ ¼ 	w1; Qð2Þ ¼ 	w2; Qð3Þ ¼ 	w3;

Qð4Þ ¼ x1w2 	 x2w1; Qð5Þ ¼ x3w1 	 x1w3; Qð6Þ ¼ x2w3 	 x3w2;

Qð7Þ ¼ 1
2
w	 x1w1 	 x2w2 	 x3w3;

Qð8Þ ¼ 2x1Qð7Þ 	 ½ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2�w1;

Qð9Þ ¼ 2x2Qð7Þ 	 ½ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2�w2;

Qð10Þ ¼ 2x3Qð7Þ 	 ½ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2�w3;

ð86Þ

are simultaneously characteristics of 10 linearly independent conservation laws for the solutions of Eq. (84).

The corresponding conserved currents P a
ðsÞ can be calculated from the general formula (34) taking into

account the particular form of the respective characteristic QðsÞ.

Evidently, each of the foregoing 10 conservation laws established for the single fourth-order equation

(84) gives rise, upon replacing w by uc ðc ¼ 1; 2; 3Þ, to three conservation laws for Eq. (83). These con-

servation laws can be written in the characteristic form

DaðP ðcÞa
ðsÞ 	 RðcÞa

ðsÞ Þ ¼ QðcÞ
ðsÞaE

a; s ¼ 1; 2; . . . ; 10; c ¼ 1; 2; 3 ð87Þ

with characteristics

QðcÞ
ðsÞa ¼

1

l
drbðDrDbQ

ðcÞ
ðsÞÞd

c
a 	

k þ l
lðk þ 2lÞ dbcðDaDbQ

ðcÞ
ðsÞÞ ð88Þ
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and

RðcÞa
ðsÞ ¼ 1

l
k þ l
k þ 2l

dbcEa

�
	 dabEc

�
DbQ

ðcÞ
ðsÞ þ

1

l
dabQðcÞ

ðsÞDbEc: ð89Þ

Here, P ðcÞa
ðsÞ and QðcÞ

ðsÞ denote the conserved currents P a
ðsÞ and the characteristics QðsÞ with uc instead of w; no

summation is assumed over the repeated index c. Expressions (89) show that RðcÞa
ðsÞ are currents of trivial

conservation laws since they vanish on the solutions of Eq. (83).

To the best of our knowledge, the conservation laws (87) are new for three-dimensional homogeneous

isotropic elastostatics since, as it follows by expressions (86) and (88), they correspond to generalized

symmetries of Eq. (83) of order higher than the one considered previously in the literature (cf. Olver, 1984b;
Hatfield and Olver, 1998).

7. Concluding remarks

In this paper, Lie transformation group methods have been applied to the class of partial differential

equations (1). This class is of interest to structural mechanics since the governing equations of various

classical rod and plate theories belong to it. In the context of structural mechanics, the results of the group

analysis of Eq. (1) give a number of attractive possibilities. Here, the established point Lie symmetries of

Eq. (1) are used to construct group-invariant solutions to the governing equations of several rod and plate

models, to derive conservation laws revealing important features of such models and to find transforma-

tions simplifying the differential structure of equations associated with particular plate problems. Several
nonclassical structural theories as well as three-dimensional elastostatics involve important equations be-

longing to the class (1) which provides the opportunity to achieve new knowledge in these theories; the

examples given in Section 6 illustrate this fact.

First of all, the well known computational procedure for finding the most general point Lie symmetry

group has been applied to the foregoing class of equations. As a result, the system of equations (12)–(16) is

derived determining the equations of the type considered that admit a larger group together with the

generators of this group; naturally, all equations of this class, being linear and homogeneous, admit the

point Lie groups generated by the vector fields (10). System (12)–(16) allows the associated group-classi-
fication problem to be stated and examined.

The group-classification problem for Eq. (35) governing stability and vibration of rods and fluid con-

veying pipes resting on variable elastic foundations within the classical Bernoulli–Euler theory is completely

solved in Section 4. All equations of that kind admitting point Lie symmetry groups, in addition to the ones

generated by the vector fields (10), are determined and presented in Table 1 together with the generators of

the respective groups. The largest symmetry groups are admitted by the equations of form (35) whose

coefficients are such that v22 detðvabÞ ¼ 0, jðxÞ � 0. The most interesting group-invariant solutions for

Eq. (35) are identified and the corresponding reduced equations are presented at the end of Section 4.
In Section 5, this problem is solved for Eq. (44) governing bending and stability of plates resting on

variable elastic foundations within Poisson–Kirchhoff theory in terms of the invariants sð1Þ and sð2Þ defined
by expressions (53). The equations of form (44) with sð1Þ � sð2Þ � 0 are found to admit the largest symmetry

groups. It is noteworthy that each equation of this kind with variable coefficients can be transformed, using

a suitable change of variables, to an equation with constant coefficients belonging to the same class. Next,

an example of such a transformation is given, and, in addition, a class of group-invariant solutions to

the equation considered is presented. The group-classification problem for the differential equation (64)

governing the dynamics of Poisson–Kirchhoff plates of constant bending rigidity, mass density and
membrane stresses is also solved in Section 5.
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Once the ‘‘ordinary’’ point Lie symmetries of an equation of form (1) are determined, one can easily find,

using the general criterion (22), which of them are variational symmetries of this equation. Then, formulae

(31) and (34) provide explicit expressions for the conserved currents of the conservation laws associated

through Bessel-Hagen�s extension of Noether�s theorem with the established variational symmetries. The
conserved currents obtained in this way involve derivatives of the dependent variable of lowest possible

order. This is important in view of their application in mechanics and engineering. The reciprocity relation

valid for each equation of form (1) is given explicitly by formula (29).

The conservation laws for the rod equations listed in Table 1 are given in Table 2. Inspecting these results

one can see that the equations for rods without foundation and for rods on Winkler foundations admit two

independent conservation laws associated with the wave momentum (DaBa
ð1Þ ¼ 0) and energy (DaBa

ð2Þ ¼ 0).

Equations of form (37) governing the stability of rods and fluid conveying pipes belong to this class. Rod

equations with jðxÞ ¼ 0 and detðvabÞ ¼ 0 admit a supplementary conservation law DaBa
ð3Þ ¼ 0 associated

with the scaling symmetry. Such are Eq. (37), governing pipes conveying fluid and extended by end force

(39), and Eq. (42), governing the vibration of the classical Bernoulli–Euler beam. The conservation laws for

the rod equations derived here are discussed in the light of the relevant results obtained by Chien et al.

(1993), Tabarrok et al. (1994) and Maddocks and Dichmann (1994).

In Section 5, it is shown, using the consequence (23) of the general criterion (22), that each point Lie

symmetry of a plate equation of form (44) generated by a vector field of form (52) is a variational symmetry

of this equation. Therefore, it gives rise to a conservation law with characteristic Q ¼ ð1=2Þnl
;lw	 wln

l and

conserved current given by formula (34) admitted by the smooth solutions of the respective equation.
Similarly, each symmetry of the corresponding dynamic equations (64), except the one associated with the

vector field X0 ¼ wo=ow, is shown to generate a conservation law with characteristic Q¼ Cw	wln
l 	w3n

3,

where C is an appropriate constant, the corresponding conserved current being given by formula (34).

It should be remarked that the applicability of the general results presented in Section 3 exceeds the

classical Bernoulli–Euler and Poisson–Kirchhoff type theories. Indeed, many other theories of solids and

structures involve differential equations of form (1) that are satisfied by the solutions of the respective

governing equations. Then, the geometric symmetries of such equations of form (1) turn out to be gene-

ralized symmetries of the governing equations of the theories in question. Besides, the conservation laws for
the equations of form (1) are admitted by the solutions of the respective governing equations as well, and

involve only a part of the dependent variables. This wider applicability of the general results achieved in

Section 3 is illustrated in Section 6 by three examples––the theories of Timoshenko beams, Reissner–

Mindlin plates and three-dimensional elastostatics. The physical interpretation of the new conservation

laws from Section 6 is not yet clarified and will be considered in a forthcoming paper.

Finally, it should be underlined that a reader who is interested in particular rod or plate equations be-

longing to the class considered could use the results obtained here without going into detail concerning the

Lie group analysis of differential equations. He could profit from the paper by following the procedure
given at the end of Section 3.
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