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Abstract. LetV be a vector field distribution or Pfaffian system on manifold M . We
give an efficient algorithm for the construction of local coordinates on M such that
V may be locally expressed as some partial prolongation of the contact distribution
C(1)q , on the first-order jet bundle of maps from R to Rq , q ≥ 1. It is proven that if V
is locally equivalent to a partial prolongation of C(1)q , then the explicit construction
of contact coordinates algorithmically depends upon the determination of certain
first integrals in a sequence of geometrically defined and algorithmically determined
integrable Pfaffian systems on M . The number of these first integrals that must be
computed satisfies a natural minimality criterion. These results provide a full and
constructive generalisation of the Goursat normal form from the theory of exterior
differential systems.

1. Introduction

Let M be a smooth manifold and V a vector field distribution or a Pfaffian system
on M . It is rare for the local structure of V to be uniquely determined by its derived
type. The classical theorems we possess along these lines form the basic results of
local differential geometry and are far from numerous: the Frobenius theorem, the
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Pfaff–Darboux theorem and the Goursat normal form [4], [21]. More recently, the
works of R. Bryant [3] and K. Yamaguchi [26] have considerably extended this list,
providing a local geometric characterisation of the contact distribution on jet space
J k(Rn,Rq) for each k, n, q ≥ 1; these being total prolongations of J 1(Rn,Rq).

The corresponding problem for partial prolongations of J 1(Rn,Rq) is much
more difficult and has hardly been touched in the general case. An exception to
this state of affairs occurs for the simplest case, namely, partial prolongations
of the contact distribution C(1)q on J 1(R,Rq), q ≥ 1. This is principally due to
their central role in nonlinear geometric control theory [8]. Since the celebrated
result of P. Brunovský [2], which holds that a controllable, linear control system is
equivalent to a partial prolongation of C(1)q , for some q ≥ 1, a goal of the field has
been to find means of characterising those controllable nonlinear control systems
that can be identified with partial prolongations of C (1)

q , also known as Brunovský
normal forms, by a suitable transformation of the manifold of states and controls,
the so-called static feedback transformations. This has led to many interesting
results for various classes of nonlinear control systems and control theorists now
regard the so-called ‘feedback linearisation problem’ to be essentially solved. A
partial list of relevant works include Krener [10], Jakubczyk and Respondek [9],
Hunt, Su, and Meyer [7] and van der Schaft [22].

On the mathematical side we mention the work of Libermann [12], and Respon-
dek and Pasillas-Lepine [15]–[18]. In these works, the latter two authors establish a
characterisation of the contact distribution on J k(R,Rq), under the full diffeomor-
phism pseudogroup of the ambient manifold (herein called general equivalence),
these being the total prolongations of C(1)q . They also describe an efficient method
for constructing the corresponding contact coordinates. The problem of geomet-
rically characterising the partial prolongations of C(1)q under general equivalence
is considered by Respondek and Pasillas-Lepine in [16]. In that paper the authors
announce a theorem, the extended Goursat normal form, in which necessary and
sufficient conditions on the derived flag of a distribution, in order that it be locally
equivalent to a partial prolongation of C(1)q , are stated. This theorem is based on
concomitants of the derived flag and is therefore in the spirit of the present pa-
per; however, I have not been able to locate its proof. From a different direction,
Kumpera and Rubin [11] study very related questions in the theory of under-
determined ordinary differential equations in possession of the so-called Monge
property, establishing a sufficient condition for this property to hold.

Another solution of the static feedback linearisation problem for a fully non-
linear control system was discovered by Gardner and Shadwick [6], in which an
efficient algorithm was also established whereby the feedback equivalence could
be explicitly constructed using the minimum number of integrations. This so-called
GS algorithm relies on knowledge of a distinguished 1-form leading to a set of
structure equations that have to be determined before a static feedback equivalence
can be found. Knowledge of this 1-form and the corresponding structure equations
was thought to be problematic until the paper of Aranda-Bricaire and Pomet [1].
Though presented in the context of control systems, this work may also be viewed
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as establishing a geometric characterisation, up to general equivalence, of the par-
tial prolongations of C(1)q , the extended Goursat normal form, as the authors call
it. They approach the problem via the notion of infinitesimal Brunovský normal
forms which provide an alternative to the derived type of a distribution. The authors
also state that their considerations lead to a method for constructing an equivalence
to the extended Goursat normal form, whenever such an equivalence exists.

In [23] a geometric characterisation of the partial prolongations of C(1)q , up to
general equivalence, in terms of the derived type of a distribution was established,
the generalised Goursat normal form. Specifically, simple geometric conditions,
expressed in terms of numerical invariants associated to the derived flag of a sub-
bundle V ⊂ T M or � ⊂ T ∗M were obtained, guaranteeing the existence of a
local diffeomorphism from M which identifies V with some partial prolongation
of C(1)q or C(1)q

⊥
. This characterisation is quite different from what is available

in the literature to date and forms the basis of the algorithm established in this
paper.

The areas to which potential applications of this result can be made include
explicitly integrable partial differential equations and, more generally, Pfaffian
systems, nonlinear control theory, sub-Riemannian geometry, differential invari-
ants of curves in a homogeneous space and integrable curve dynamics. For these
and related applications, it is desirable not only to settle the recognition problem for
partial prolongations but, additionally, to find a method for explicitly constructing
an equivalence between a differential system and a partial prolongation, whenever
one is known to exist.

The main aim of this paper is to establish an efficient, practical algorithm, based
on the generalised Goursat normal form, for this very construction problem.

We identify canonical and algorithmically determined integrable Pfaffian sys-
tems over the ambient manifold whose first integrals determine local equivalences.
The number of these first integrals that must be constructed, according to our al-
gorithm, satisfies a natural minimality criterion. In the special case when V arises
from an autonomous nonlinear control system, the complexity of our algorithm
agrees with that of the GS algorithm [6]. However, even here, the method described
in this paper enjoys a number of advantages over the former. For instance, there
is no requirement to construct a distiguished 1-form and concomitant structure
equations before an equivalence can be found; nor is it restricted to autonomous
control systems and static feedback transformations. This point is briefly discussed
in Section 4. We go on in Section 5 to give an illustrative example of a nonlinear
control system where, in addition, a necessary condition for feedback linearisation
is derived in the nonautonomous case. We also present a number of other examples
in Section 5, among these a method for constructing the differential invariants of
curves in the homogeneous space of a Lie group. All these examples are mainly
presented for the pupose of illustrating the algorithm Contact, which is the main
result of this paper and for hinting at the possibility of future applications, rather
than attempting to present specifically new results in the areas from which the
examples are drawn.
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Throughout the present work we will rely on the results of the aforementioned
paper [23] and, wherever possible, adhere closely to its notational conventions. In
Sections 2 and 3, we will recall briefly the salient details of [23] that are required
to establish the main result which is given in Section 4.

2. Preliminaries

2.1. The Derived Flag

Suppose M is a smooth manifold and that V ⊂ T M is a smooth sub-bundle of
its tangent bundle. The structure tensor is the homomorphism of vector bundles
δ : �2V → T M/V defined by

δ(X, Y ) = [X, Y ] modV for X, Y ∈ �(M,V).

If δ has constant rank, we define the first derived bundle V (1) as the inverse image
of δ(�2V) under the canonical projection T M → T M/V . Informally,

V (1) = V + [V,V].

The derived bundles V (i) are defined inductively

V (i+1) = V (i) + [V (i),V (i)],

assuming that at each iteration, this defines a vector bundle, in which case we shall
say that V is regular. For regular V , by dimension reasons, there will be a smallest
k for which V (k+1) = V (k). This k is called the derived length of V and the whole
sequence of sub-bundles

V ⊂ V (1) ⊂ V (2) ⊂ · · · ⊂ V (k)

the derived flag of V . Though this is not essential, we shall in this paper restrict
ourselves to sub-bundles which are “maximally nonintegrable” meaning that the
final bundle in the derived flag is equal to the tangent bundle of the ambient
manifold: V (k) = T M , where k is the derived length of V .

2.2. Cauchy Bundles

Let us define

σ : V → Hom(V, T M/V) by σ(X)(Y ) = δ(X, Y ).

Even if V is regular, the homomorphism σ need not have constant rank. If it does,
let us write Char V for its kernel. The Jacobi identity shows that Char V is always
integrable. It is called the Cauchy bundle or characteristic bundle of V . If V is
regular and each V (i) has a Cauchy bundle then, we say that V is totally regular.
Then by the derived type of V we shall mean the list {V (i),Char V (i)} of subundles.
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2.3. The Singular Variety

For each x ∈ M , let

Sx = {v ∈ Vx\0 | σ(v) has less than generic rank}.
Then Sx is the zero set of homogeneous polynomials and so defines a subvariety
of the projectivisation PVx of Vx . We shall denote by Sing(V) the fibre bundle over
M with fibre over x ∈ M equal to Sx and we refer to it as the singular variety
of V . For X ∈ V the matrix of the homomorphism σ(X) will be called the polar
matrix of [X ] ∈ PV . There is a map degV : PV → N well defined by

degV([X ]) = rank σ(X) for [X ] ∈ PV.
We shall call degV([X ]) the degree of [X ]. The singular variety Sing(V) is a
diffeomorphism invariant in the sense that if V1,V2 are sub-bundles over M1, M2,
respectively and there is a diffeomorphism ϕ : M1 → M2 that identifies them, then
Sing(V2) and Sing(ϕ∗V1) are equivalent as projective subvarieties of PV2. That is,
for each x ∈ M1, there is an element of the projective linear group PGL(V2|ϕ(x) ,R)
that identifies Sing(V2)(ϕ(x)) and Sing(ϕ∗V1)(ϕ(x)).

We hasten to point out that the computation of the singular variety for any given
sub-bundle V ⊂ T M is algorithmic. That is, it involves only differentiation and
commutative algebra operations. One computes the determinantal variety of the
polar matrix for generic [X ].

2.4. The Singular Variety in Positive Degree

If X ∈ Char V , then degV([X ]) = 0. For this reason we pass to the quotient
V̂ := V/Char V . We have structure tensor δ̂ : �2V̂ → T̂ M/V̂ , well defined by

δ̂(X̂ , Ŷ ) = π([X, Y ])mod V̂,

where T̂ M = T M/Char V and

π : T M → T̂ M

is the canonical projection. The notion of degree descends to this quotient giving
a map

degV̂ : PV̂ → N

well defined by

degV̂([X̂ ]) = rank σ̂ (X̂) for [X̂ ] ∈ PV̂,
where σ̂ (X̂)(Ŷ ) = δ̂(X̂ , Ŷ ) for Ŷ ∈ V̂ . Note that all definitions go over mutatis
mutandis when the structure tensor δ is replaced by δ̂. In particular, we have notions
of polar matrix and singular variety, as before. However, if the singular variety of
V̂ is not empty, then each point of PV̂ has degree one or more.
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2.5. The Resolvent Bundle

Suppose V ⊂ T M is totally regular of rank c + q + 1, q ≥ 2, c ≥ 0, dim M =
c + 2q + 1. Suppose further that V satisfies:

(i) dim Char V = c, V (1) = T M ; and
(ii) �̂|x := Sing(V̂)|x = PB̂|x ≈ RP

q−1, for each x ∈ M and some rank q

sub-bundle B̂ ⊂ V̂ .

Then we call (V,PB̂) (or (V, �̂)) a Weber structure of rank q on M .
Given a Weber structure (V,PB̂), letR

�̂
(V) ⊂ V denote the largest sub-bundle

such that

π(R
�̂
(V)) = B̂. (2.1)

We call the rank q + c bundle R
�̂
(V) defined by (2.1) the resolvent bundle as-

sociated to the Weber structure (V, �̂). The bundle B̂ determined by the singular
variety of V̂ will be called the singular sub-bundle of the Weber structure. A Weber
structure will be said to be integrable if its resolvent bundle is integrable.

An integrable Weber structure descends to the quotient of M by the leaves of
Char V to be the contact bundle on J 1(R,Rq). The term honours Eduard von
Weber (1870–1934) who was the first to publish a proof of the Goursat normal
form [24]. We record the following properties of the resolvent bundle of a Weber
structure.

Proposition 2.1 [23]. Let (V, �̂) be a Weber structure on M and B̂ its singular
sub-bundle. If q ≥ 3, then the following are equivalent:

(1) Its resolvent bundleR
�̂
(V) ⊂ V is integrable.

(2) Each point of �̂ = Sing(V̂) has degree one.
(3) The structure tensor δ̂ of V̂ vanishes on B̂: δ̂(B̂, B̂) = 0.

Proposition 2.2 [23]. Let (V, �̂) be an integrable Weber structure on M . Then
its resolvent bundleR

�̂
(V) is the unique, maximal, integrable sub-bundle of V .

Checking the integrability of the resolvent bundle is algorithmic. One computes
the singular variety Sing(V̂) = PB̂. In turn, the singular bundle B̂ algorithmically
determinesR

�̂
(V).

A word on conventions. First, we work exclusively in the smooth (C∞) category
and all objects and maps will be assumed to be smooth without further notice.
Second, we will often denote sub-bundles V ⊂ T M by a list of vector fields
X, Y, Z , . . . on M enclosed by braces, V = {

X, Y, Z , . . .
}
. This will always

denote the bundle V whose space of sections is the C∞(M)-module generated by
vector fields X, Y, Z , . . .. Unless explicitly stated otherwise the annihilator V⊥ of
V will be denoted by �. That is, � := V⊥.
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3. Partial Prolongations and Goursat Bundles

In this section we give a brief coordinate description of partial prolongations and
introduce the notion of a Goursat bundle.

The contact distribution on the first-order jet bundle of maps from R → R
q ,

J 1(R, Rq), q ≥ 1, will be denoted by the symbol C(1)q and locally expressed in
contact coordinates as

C(1)q =
{
∂x +

q∑
j=1

z j
1∂z j , ∂z j

1

}
. (3.1)

A partial prolongation of C(1)q may be expressed in contact coordinates as a distri-
bution on J k(R,Rq) of the form

C(τ ) =
∂x +

∑
j∈{1,...,k}

qj∑
aj=1

j−1∑
lj=0

z
aj , j
lj+1∂z

aj , j

lj

, ∂
z

aj , j

j


qj

aj=1

, j ∈ {1, 2, . . . , k},

(3.2)
for some positive integers qj , where k is the derived length ofC(τ ) and, as indicated,
j takes values in a subset of {1, . . . , k}. If C(τ ) contains the qj elements

∂z1, j
j
, . . . , ∂

z
qj , j

j

for some j ∈ {1, . . . , k}, then we shall say it contains or possesses qj dependent
variables of order j .

Dually, we can express the partial prolongations in contact coordinates as

C(τ )⊥ =
⋃

j∈{1,...,k}

{
dz

aj , j
lj

− z
aj , j
lj+1 dx

}qj , j−1

aj=1,lj=0
. (3.3)

Here and elsewhere in this paper, the symbol τ denotes the type of the partial
prolongation which is specified by an ordered list of k non-negative integers

τ = 〈ρ1, ρ2, . . . , ρk〉, (3.4)

where the j th element ρj indicates the number of variables of order j . Note that if
a partial prolongation possesses qj variables of order j , then ρj = qj and ρj = 0,
otherwise. If C(τ ) has derived length k and only possesses dependent variables
of order k, then (3.2) and (3.3) have a type of the form, 〈0, 0, . . . , 0, q〉, where
k − 1 zeros precede entry ρk = q . Such a contact system is a total prolongation of
C(1)q , denoted C(k)q , an instance of a partial prolongation. The well-known Goursat

normal form [4], [21] is a characterisation of C(k)1 in terms of derived type.

Goursat Normal Form. Let V ⊂ T M be a rank 2, totally regular sub-bundle
with derived length k such that

dimV (i) = dimV (i−1) + 1, i = 1, 2, . . . , k.
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Then there is an open, dense subset M̂ ⊆ M such that the restriction of V to M̂ is
locally equivalent to C (k)

1 .

In terms of the notion of type introduced above, observe that the Goursat normal
form is a characterisation of totally regular sub-bundles whose type has the form
〈0, 0, . . . , 0, 1〉. The main result of [23] is a similar geometric characterisation for
arbitrary partial prolongations of C(1)q , the contact distribution on the first-order jet
bundle J 1(R,Rq). Such bundles can have completely arbitary type (3.4). Though
the proof of this result in [23] is constructive, the construction is certainly not
optimal. Here we establish an algorithm that is optimal in the sense that the amount
of integration that need be performed to construct an equivalence is minimal.
Before launching into the details we give an example that illustrates the foregoing
considerations.

Example 3.1. The contact distribution on the ‘hybrid’ jet bundle J τ (R,R21),
τ = 〈0, 11, 7, 0, 3〉 has the form

V = C〈0, 11, 7, 0, 3〉

=
{
∂x +

11∑
a2=1

1∑
l2=0

za2,2
l2+1∂z

a2 ,2
l2

+
7∑

a3=1

2∑
l3=0

za3,3
l3+1∂z

a3 ,3
l3

+
3∑

a5=1

4∑
l5=0

za5,5
l5+1∂z

a5 ,5
l5

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

, ∂
za5 ,5

5

}11,7,3

a2=1,a3=1,a5=1

.

This partial prolongation has 11 dependent variables of order 2; 7 dependent vari-
ables of order 3 and 3 dependent variables of order 5. The dual is

� = C〈0, 11, 7, 0, 3〉⊥

= {dza2,2
l2

− za2,2
l2+1dx}11,1

a2=1,l2=0 ∪ {dza3,3
l3

− za3,3
l3+1dx}7,2

a3=1,l3=0

∪ {dza5,5
l5

− za5,5
l5+1dx}3,4

a5=1,l5=0.

For any totally regular sub-bundle V ⊂ T M , we have the notion of its derived
type. In Section 2 we defined the derived type of a bundle as the list of all derived
bundles together with their corresponding Cauchy bundles. We shall frequently
abuse notation by using the term ‘derived type of V’ for the ordered list of ordered
pairs of the form

[[m0, χ
0], [m1, χ

1], . . . , [mk, χ
k]]

where mj = dimV ( j) and χ j = dim Char V ( j).

It is important to relate the type of a partial prolongation to its derived type. For
this it’s convenient to introduce the notions of velocity, acceleration and deceler-
ation of a sub-bundle.
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Definition 3.1. Let V ⊂ T M be a totally regular sub-bundle with derived type

[[m0, χ
0], [m1, χ

1], . . . , [mk, χ
k]]. (3.5)

The velocity of V is the ordered list of k integers

vel(V) = 〈�1,�2, . . . , �k〉, where �j = mj − mj−1, 1 ≤ j ≤ k.

The acceleration of V is the ordered list of k integers

accel(V) = 〈�2
2,�

2
3, . . . , �

2
k,�k〉,

where �2
i = �i −�i−1, 2 ≤ i ≤ k.

The deceleration of V is the ordered list of k integers

decel(V) = 〈−�2
2,−�2

3, . . . ,−�2
k,�k〉.

Note that total prolongationsC(k)q have decelerations of the form 〈0, 0, . . . , 0, q〉,
q ≥ 1, where there are k − 1 zeros before the final entry, q. The Goursat normal
form is the case q = 1 in this family of decelerations. The main aim of [23] is to
generalise this classical result to completely arbitrary decelerations.

Alternatively, one can formulate the theory dually, in terms of a sub-bundle
� ⊂ T ∗M . In this case we have an analogue of the structure tensor discussed
in Section 2. If � ⊂ T ∗M is a sub-bundle, then we define a tensor � : � →
�2 M/(�1 M ∧�) defined by

�(ω) = dω mod�1 M ∧�.

The kernel ker � of � is called the derived-bundle �(1) of �. In the constant rank
case we iterate to obtain the derived flag of �,

� ⊃ �(1) ⊃ �(2) ⊃ · · · ⊃ �(k).

We note that if �⊥ = V ⊂ T M and V (i) is the i th element of the derived flag of
V , then V (i) = �(i)⊥. The Cauchy bundle Char � of � is the Cauchy bundle of
the �⊥. The Cartan system �(�) of � is the annnihilator of Char �:

�(�) = (Char �)⊥.

We then define the derived type of � ⊂ T ∗M to be the list of sub-bundles
{�(i), �(�(i))}k

i=0 of T ∗M . As in the case of vector field distributions, for to-
tally regular sub-bundles � ⊂ T ∗M we often use the term “derived type of �” to
denote the list of ordered pairs of non-negative integers

[[h0, ξ
0], [h1, ξ

1], . . . , [hk, ξ
k]]

where hi = dim�(i), ξ i = dim�(�(i)), 0 ≤ i ≤ k, and k is the derived length
of �.
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Definition 3.2. Let � ⊂ T ∗M be a totally regular sub-bundle with derived type

[[h0, ξ
0], [h1, ξ

1], . . . , [hk, ξ
k]].

The velocity of � is the ordered list of k integers

vel(�) = 〈�1, �2, . . . , �k〉, where � j = h j − h j−1, 1 ≤ j ≤ k.

The acceleration of � is the ordered list of k integers

accel(�) = 〈�2
2, �

3
2, . . . , �

k
2,−�k〉,

where �
j
2 = � j − � j−1, 2 ≤ j ≤ k.

To recognise when a given sub-bundle has or has not the derived type of a partial
prolongation (3.2) we introduce one further canonically associated sub-bundle that
plays a crucial role.

Definition 3.3. If V ⊂ T M is a totally regular sub-bundle of derived length k
we let Char V ( j)

j−1 denote the intersections

Char V ( j)
j−1 = V ( j−1) ∩ Char V ( j), 1 ≤ j ≤ k − 1.

If � ⊂ T ∗M is a totally regular sub-bundle of derived length k we let �(�)
j
( j−1)

denote the unions

�(�)
j
( j−1) = �( j−1) ∪�(�( j)), 1 ≤ j ≤ k − 1.

Let

χ
j

j−1 = dim Char V ( j)
j−1, ξ

j
j−1 = dim�(�)

j
( j−1), 1 ≤ j ≤ k − 1.

We shall call the integers {χ0, χ j , χ
j

j−1}k−1
j=1 the type numbers of V ⊂ T M and

{ξ 0, ξ j , ξ
j

j−1}k−1
j=1 the type numbers of � ⊂ T ∗M . We shall refer to the ordered list

of lists

[[m0, χ
0], [m1, χ

1
0 , χ

1], [m2, χ
2
1 , χ

2], . . . , [mk−1, χ
k−1
k−2 , χ

k−1], [mk, χ
k]]

as the refined derived type of V and to the ordered list of lists

[[h0, ξ
0], [h1, ξ

1
0 , ξ

1], [h2, ξ
2
1 , ξ

2], . . . , [hk−1, ξ
k−1
k−2 , ξ

k−1], [hk, ξ
k]]

as the refined derived type of �.

It is easy to see that in every partial prolongation (3.2) these sub-bundles are
non-trivial and integrable.
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Proposition 3.1. Let sub-bundle V ⊂ T M be totally regular, of derived length k,
with velocity and acceleration 〈�1,�2, . . . , �k〉 and 〈�2

2, . . . , �
2
k,�k〉, respec-

tively. Then V has the derived type of a partial prolongation if and only if the type
numbers of V satisfy

χ j = 2mj − mj+1 − 1, 0 ≤ j ≤ k − 1,

χ i
i−1 = mi−1 − 1, 1 ≤ i ≤ k − 1. (3.6)

The type τ of V is given by its deceleration, τ = decel(V).

Proof. From the local normal form (3.2) we deduce thatχ j satisfies the recurrence
relation χ l+1 = χ l + �l+1 − �2

l+2, 0 ≤ l ≤ k − 2, with χ0 = 0; and that χ l
l−1

satisfies χ l+1
l = χ l

l−1 + �l+1 − �2
l+1, 1 ≤ l ≤ k − 2 with χ1

0 = �1. The
equations in (3.6) are readily deduced from these and the recurrence relations
mj+1 = �2

j+1 + 2mj − mj−1, m0 = 1 + P,m1 = 1 + 2P , P = ∑k
i=1 ρl . Observe

that the number of variables of order l in (3.2) is given by χ l − χ l
l−1 = −�2

l+1 for
1 ≤ l ≤ k − 1, and that there are �k variables of order k. This shows that the type
of a partial prolongation is given by τ = decel(V).

Dually, we have

Proposition 3.2. Let sub-bundle � ⊂ T ∗M be totally regular, of derived length
k with velocity and acceleration 〈�1, �2, . . . , �k〉 and 〈�2

2, �
3
2 . . . , �k

2,−�k〉, re-
spectively. Then � has the derived type of a partial prolongation if and only if the
type numbers of � satisfy

ξ j = 2hj − hj+1 + 1, 0 ≤ j ≤ k − 1,

ξ i
i−1 = hi−1 + 1, 1 ≤ i ≤ k − 1.

The type τ of � is given by its acceleration, τ = accel(�).

Example 3.2. We compute the refined derived type and relevant bundles asso-
ciated with the partial prolongation

V = C〈4, 3, 2〉 =
{

X = ∂x +
4∑

a1=1

za1,1
1 ∂za1 ,1 +

3∑
a2=1

1∑
l2=0

za2,2
l2+1∂z

a2 ,2
l2

+
2∑

a3=1

2∑
l3=0

za3,3
l3+1∂z

a3 ,3
l3

, ∂z
a1 ,1
1

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

}

on J τ (R,R9), τ = 〈4, 3, 2〉. The refined derived type is

[[10, 0], [19, 9, 13], [24, 18, 21], [26, 26]],
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and the derived length is k = 3. The Cauchy bundles and intersections are

Char V (1) = {∂z
a1 ,1
1

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

, ∂za1 ,1},

Char V (1)
0 = {∂z

a1 ,1
1

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

},

and

Char V (2) = {∂z
a2 ,2
1

, ∂z
a3 ,3
2

, ∂za2 ,2 , ∂z
a1 ,1
1

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

, ∂za1 ,1},

Char V (2)
1 = {∂z

a2 ,2
1

, ∂z
a3 ,3
2

, ∂z
a1 ,1
1

, ∂z
a2 ,2
2

, ∂z
a3 ,3
3

, ∂za1 ,1}.

The reader will find it easy to verify that the type numbers are in agreement with
Proposition 3.1. The singular variety of V̂ (2) = V (2)/Char V (2) consists of lines
E = [e1π(X) + e2π(∂z1,3

1
) + e3π(∂z2,3

1
)] whose degree is less than the generic

degree which is 2. The polar matrix of E , defined in Section 2.3, is(−e2 e1 0

−e3 0 e1

)
whose rank is less than 2 if and only if e1 = 0. According to section 2.3, we deduce
that

Sing(V̂ (2))|z = PB|z = P{∂z1,3
1
, ∂z2,3

1
}|z ≈ RP1, ∀ z ∈ J τ (R,R9).

Consequently, V (2) is a Weber structure of rank 2 with resolvent bundle,

R
�̂2

(V (2)) = Char V (2) ⊕ {∂z1,3
1
, ∂z2,3

1
},

which is integrable. We note that V has χ1 − χ1
0 = 4 dependent variables of

order 1, χ2−χ2
1 = 3 dependent variables of order 2, and ρ3 := �3 = 2 dependent

variables of order 3. Finally, we observe that decel(V) = 〈4, 3, 2〉.

Definition 3.4. A totally regular sub-bundle V ⊂ T M
(
� ⊂ T ∗M

)
of derived

length k will be called a Goursat bundle of type τ if

(i) V
(
�
)

has the derived type of a partial prolongation whose type is τ =
decel(V) (τ = accel(�)).

(ii) Each intersection CharV (i)
i−1 (union �(�)

j
( j−1)) is an integrable sub-bundle

whose rank, assumed to be constant on M , agrees with the corresponding
rank in C(τ ) (C(τ )⊥).

(iii) In case �k > 1 (�k < −1), thenV (k−1) (�(k−1)⊥) determines an integrable
Weber structure of rank �k = −�k on M .
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4. Efficient Construction of Contact Coordinates

In this section we establish our main result, an efficient, practical algorithm for
the construction of contact coordinates for any smooth sub-bundle V ⊂ T M
(� ⊂ T ∗M) locally equivalent to a partial prolongation of the contact bundle
C(1)q ((C(1)q )⊥) on J 1(R,Rq), q ≥ 1. Specifically, we show how to algorithmi-
cally construct certain canonical Pfaffian systems over the ambient manifold and
appropriate first integrals of these Pfaffian systems whose derivatives generate a
local equivalence, identifying a given Goursat bundle with some partial prolonga-
tion. The type of V or � is given by the deceleration vector, decel(V), or by the
acceleration vector, accel(�), respectively.

The main result upon which our algorithm is based is the generalised Goursat
normal form established in [23].

Theorem 4.1 (Generalised Goursat Normal Form [23]). Let V ⊂ T M (� ⊂
T ∗M) be a Goursat bundle over manifold M , of derived length k > 1 and type
τ = decel(V) = accel(�). Then there is an open, dense subset M̂ ⊆ M such that
the restriction of V (�) to M̂ is locally equivalent to C(τ ) (C(τ )⊥). Conversely,
any partial prolongation of C(1)q (C(1)q

⊥
) is a Goursat bundle.

This theorem settles the recognition problem for a distribution in terms of sim-
ple constraints on its derived type. While the proof in [23] is constructive, it is
extravagant with respect to the number of integrations that are carried out. The
aim here is to show that the number of integrations that must be carried out, to
actually construct an equivalence for any Goursat bundle, is comparatively small.
In fact we show that the number of first integrals that must be computed in the
general case is equal to the number of ‘dependent variables’ featured in C(τ ),
plus one, where τ = 〈ρ1, ρ2, . . . , ρk〉 is the bundle’s deceleration vector, decel(V),
or acceleration vector, accel(�). That is,

∑k
j=1 ρj + 1 = P + 1 first integrals

must be found in the general case. The remaining coordinates are computed by
differentiation. This is the ‘natural’ minimality criterion alluded to in the Intro-
duction. Our algorithm therefore performs as well as the GS algorithm [6] in the
special case when distributionV or � happens to arise from an autonomous control
system.

However, our approach doesn’t involve the construction of a distiguished 1-
form and concomitant structure equations before an equivalence can be found; nor
is it restricted to autonomous control systems and static feedback transformations.
Moreover, the geometric data that must be computed to settle the recognition
problem is expressed more naturally in terms of the bundle’s derived type. We
now proceed to the description of our method.

Let V ⊂ T M be a Goursat bundle over M of derived length k. Recall that there
is a distinction between the cases ρk > 1 and ρk = 1. In the former case we have
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the filtration

Char V (1)
0 ⊆ Char V (1) ⊂ · · · ⊂ Char V ( j)

j−1 ⊆ Char V ( j) ⊂ · · ·
⊂ Char V (k−1)

k−2 ⊆ Char V (k−1) ⊂ R
�̂k−1

(V (k−1)) ⊂ T M, (4.1)

where R
�̂k−1

(V (k−1)) is the resolvent bundle of the integrable Weber structure

(V (k−1), �̂k−1). Note that for j in the range 1 ≤ j ≤ k −1, Char V ( j)
j−1 = Char V ( j)

if and only if �2
j+1 = 0.

Dually, we let � = V⊥ and use the convenient notation

νj = �j , 1 ≤ j ≤ k,

ni = νi+1, 0 ≤ i ≤ k − 1,

Nl = dim M − ml , 0 ≤ l ≤ k. (4.2)

We have

�(�( j)) = Char V ( j)⊥, �(�)
j
( j−1) = Char V ( j)

j−1

⊥
, 1 ≤ j ≤ k − 1,

and we let

ϒ
�̂k−1

(�(k−1)) = R
�̂k−1

(V (k−1))
⊥
.

Then we have a filtration of the cotangent bundle T ∗M ,

ϒ
�̂k−1

(�(k−1)) ⊂ �(�(k−1)) ⊆ �(�)k−1
(k−2) ⊂ · · · ⊂ �(�(1))

⊆ �(�)1
(0) ⊂ T ∗M (4.3)

by integrable sub-bundles. It follows easily from Proposition 3.1 and (4.2) that

dimϒ
�̂k−1

(�(k−1)) = Nk−1 + 1,

dim�(�( j)) = Nj +�j+1 + 1,

dim�(�)
j
( j−1) = Nj−1 + 1, 1 ≤ j ≤ k − 1, (4.4)

and

dim�(�)
j
( j−1) − dim�(�( j)) = �

j+1
2 = −�2

j+1 = ρj , 1 ≤ j ≤ k − 1.
(4.5)

We can therefore construct a filtered basis for sub-bundle �(�)1
(0) ⊂ T ∗M as

follows

ω0, ω1, . . . , ωNj−1 for �(�)
j
( j−1),

ω0, ω1, . . . , ωNj+nj for �(�( j)),

ω0, ω1, . . . , ωNk−1 for ϒ
�̂k−1

(�(k−1)), 1 ≤ j ≤ k − 1. (4.6)
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Definition 4.1. For each j ∈ {1, . . . , k − 1} we have the quotient bundles

F j (�) := �(�)
j
( j−1)/�(�( j))

with natural projections

pj : �(�)
j
( j−1) → �(�)

j
( j−1)/�(�( j)).

If for some j it happens that ρj > 0, then F j (�) is nontrivial and we call it the
fundamental bundle of order j .

In view of (4.2) and (4.6), we see that a basis for F j (�) is

F j (�) = {ωNj+nj+1, . . . , ωNj+νj } mod�(�( j)) = pj (�(�)
j
( j−1)).

By the Frobenius theorem, there are functions {ϕlj , j }ρj

lj=1 and nonsingular matrices
Mj such that 

dϕ1, j

dϕ2, j

·
·

dϕρj , j

 ≡ Mj


ωNj+nj+1

ωNj+nj+2

·
·

ωNj+νj

 mod�(�)( j) (4.7)

and dϕ1, j , dϕ2, j , . . . , dϕρj , j determine a basis for F j (�).

Definition 4.2. We refer to the functions ϕlj , j , j ∈ {1, 2, . . . , k − 1}, defined
by (4.7) as fundamental functions of order j . Let ϕ0,k, ϕ1,k, . . . , ϕNk−1,k span the
first integrals of the integrable sub-bundle ϒ

�̂k−1
(�(k−1)). We refer to these as

fundamental functions of order k.

We now prove that the construction of fundamental functions of all orders is the
only integration that need be carried out in order to construct contact coordinates
for any Goursat bundle V ⊂ T M or � ⊂ T ∗M .

Theorem 4.2. Let V ⊂ T M (� ⊂ T ∗M) be a Goursat bundle of derived
length k with type τ = decel(V) = accel(�) = 〈ρ1, ρ2, . . . , ρk〉, ρk ≥ 2. Let
{x, ϕ1,k, ϕ2,k, . . . , ϕρk ,k} denote the fundamental functions of order k and for each
j in the range 1 ≤ j ≤ k − 1 for which ρj > 0, let {ϕ1, j , . . . , ϕρj , j } denote the
fundamental functions of order j defined on some open subset U ⊆ M .

Then there is an open, dense subset Û ⊆ U and a section Y of V (Y of �⊥)
such that on Û , Y x �= 0 and the fundamental functions x, ϕ

lj , j
0 := ϕlj , j , together

with the functions

ϕ
lj , j
sj+1 = Yϕ

lj , j
sj

Y x
, j ∈ {1, . . . , k}, 1 ≤ lj ≤ ρj , 0 ≤ sj ≤ j − 1, (4.8)
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are contact coordinates for V (�) identifying it with the partial prolongation C(τ )
(C(τ )⊥).

Proof. We will prove this theorem with reference to a sub-bundle V ⊂ T M .
One needs to make only minor adjustments to prove it for � ⊂ T ∗M . Fix a point
ȳ0 ∈ M in a neighbourhood U of which V is a Goursat bundle. The proof of
Theorem 4.1 in [23] shows that we may extend the fundamental functions of order
j ∈ {1, . . . , k}, for which ρj > 0, namely, x = ϕ0,k, zlj , j = ϕlj , j , 1 ≤ lj ≤ ρj , to
a system of contact coordinates

z̄ = (x, zlj , j , z
lj , j
1 , z

lj , j
2 , . . . , z

lj , j
j )

k,ρj

j=1,lj=1 (4.9)

on an open set Û ⊆ U . Since Char V (1)
0 has codimension 1 in V , it follows that

there is a section Z of V such that Z x = 1 on a dense open subset of Û , which need
not, in fact, contain ȳ0, and which, for simplicity, we denote by the same symbol.
Let

ψ : ȳ �→ z̄

be the local diffeomorphism defined by the change of variable from the original
coordinates ȳ to the contact coordinates (4.9). Then we have that ψ∗V = C(τ ),
where

C(τ ) =
X = ∂x +

∑
j∈{1,...,k}

ρj∑
lj=1

j−1∑
hj=0

z
lj , j
h j+1∂z

lj , j

h j

, ∂
z

lj , j

j

 ,

and z
lj , j
0 := zlj , j . Consequently, we have, for some functions α, αlj , j on Û ,

ψ∗Z = αX +
∑

j∈{1,2,...,k}

ρj∑
lj=1

αlj , j∂
z

lj , j

j

.

Since

α = (ψ∗Z)x = Z(x ◦ ψ) = Zϕ0,k = 1,

we have

ψ∗Z = X +
∑

j∈{1,2,...,k}

ρj∑
lj=1

αlj , j∂
z

lj , j

j

. (4.10)

For each j ∈ {1, 2, . . . , k} such that ρj > 0 define functions ϕ
lj , j
1 , ϕ

lj , j
2 , . . . , ϕ

lj , j
j

by

x = ϕ0,k, ϕ
lj , j
sj+1 = Zϕ

lj , j
sj , 1 ≤ lj ≤ ρj , 0 ≤ sj ≤ j − 1, (4.11)

where ϕ
lj , j
0 := ϕlj , j . By (4.10) we have

ϕ
lj , j
1 = Z(ϕlj , j )(ȳ) = Z(ψ∗zlj , j )(ȳ) = (ψ∗Z)(zlj , j )(ψ(ȳ)) = ψ∗(zlj , j

1 ). (4.12)
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The calculation in (4.12) can be repeated so that for each rj in the range 1 ≤
rj ≤ j , we have ϕ

lj , j
rj = ψ∗(zlj , j

rj ) showing that the functions defined in (4.11) are
independent on Û . Observe that if Y is any section of V such that Y x �= 0 on Û ,
then we may take Z to be the vector field (Y x)−1Y .

We complete the proof by showing that Char V (1)
0 has the correct local form.

First, because Char V ( j)
j−1 is integrable, of codimension one in V ( j−1) for each

1 ≤ j ≤ k − 1 and Z x �= 0, we deduce that it is spanned as

Char V ( j)
j−1 = {Cβ, ad(Z)Cβ, ad2(Z)Cβ, . . . , ad j−1(Z)Cβ},

where the Cβ form a basis for Char V (1)
0 . Similarly, it may be deduced that the

resolvent bundle is spanned as

R�k−1(V (k−1)) = {Cβ, ad(Z)Cβ, ad2(Z)Cβ, . . . , adk−1(Z)Cβ}.
From their definition each fundamental function of order j is an invariant of
Char V ( j)

j−1 whose local form above allows us to deduce, for all β, lj , that

Cβϕ
lj , j
s = (−1)i adi (Z)Cβϕ

lj , j
s−i , 0 ≤ s ≤ j − 1, 0 ≤ i ≤ s,

for each j such that ρj > 0. In particular, we deduce that

Cβϕ
lj , j
s = ads(Z)Cβϕ

lj , j = 0, 0 ≤ s ≤ j − 1.

It follows from this that

ψ∗ Char V (1)
0 =

⋃
j∈{1,2,...,k}

{∂
z

lj , j

j

}ρj

lj=1,

as required.

The only case remaining is ρk = 1. Here (M/Char V (k−1),V/Char V (k−1)) is
a three-dimensional contact manifold so there is no canonical maximal integrable
sub-bundle of V (k−1) as there is in the case ρk ≥ 2. The role of the resolvent bundle
when ρk = 1 is played by a locally defined bundle, �k , whose construction we
now describe. Let x denote any first integral of Char V (k−1) and seek any section
Z of V such that Z x = 1.1 Define a sub-bundle �k ⊂ V (k−1) inductively by

�l+1 = [�l , Z ], �1 = Char V (1)
0 , 1 ≤ l ≤ k − 1. (4.13)

The proof of Theorem 4.1 shows that �k is integrable, has codimension 2 in T M
and first integral x . In this case, filtration (4.3) is replaced by

�k⊥ ⊂ �(�(k−1)) ⊆ �(�)k−1
(k−2) ⊂ · · · ⊂ �(�(1)) ⊆ �(�)1

(0) ⊂ T ∗M, (4.14)

1 This is an open condition and is easily satisfied since X x �= 0 for generic sections X of V .
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and the filtered basis (4.6) for �(�)1
(0) is replaced by

ω0, ω1, . . . , ωNj−1 for �(�)
j
( j−1),

ω0, ω1, . . . , ωNj+nj for �(�( j)), 1 ≤ j ≤ k − 1,

ω0, ω1, . . . , ωNk−1 for �k⊥. (4.15)

Then by an argument similar to that of Theorem 4.2, we have

Theorem 4.3. Let V ⊂ T M (� ⊂ T ∗M) be a Goursat bundle of derived length
k and type τ = decel(V) = accel(�) = 〈ρ1, ρ2, . . . , ρk〉, ρk = 1. Let �k be the
bundle locally defined in (4.13). Let ϕ1,k be any other first integral of �k such that
dx ∧ dϕ1,k �= 0 on an open set U ⊆ M , where x is any invariant of Char V (k−1)

(�(�(k−1))).
Then there is an open, dense subset Û ⊆ U upon which is defined a section Z of

V (of �⊥) satisfying Z x = 1 such that the fundamental functions x, ϕ
lj , j
0 := ϕlj , j

together with the functions

ϕ
lj , j
sj+1 = Zϕ

lj , j
sj , j ∈ {1, . . . , k}, 0 ≤ sj ≤ j − 1, 1 ≤ lj ≤ ρj ,

are contact coordinates for V on Û , indentifying it with the partial prolongation
C(τ ) (C(τ )⊥).

Theorems 4.2 and 4.3 prove the correctness of algorithm Contact.

Algorithm Contact A

INPUT: Goursat bundle V ⊂ T M (or � ⊂ T ∗M) of derived length k and
type τ = decel(V) = accel(�) = 〈ρ1, . . . , ρk〉, ρk > 1.

1. Build filtration (4.3) of T ∗M .
2. Build filtered basis (4.6) of bundle �(�)1

(0) constructed in step 1.
3. For each j , 1 ≤ j ≤ k − 1 such that ρj > 0, compute a basis for the

fundamental bundle �(�)
j
( j−1)/�(�( j)) of order j .

4. Compute a basis for fundamental bundle of order k:
ϒ

�̂k−1
(�(k−1)) = R

�̂k−1
(V (k−1))⊥

5. For each j , 1 ≤ j ≤ k−1, such that is �(�)
j
( j−1)/�(�( j)) nontrivial, com-

pute the fundamental functions {ϕlj , j }ρj

lj=1 of order j and the fundamental

functions of order k from ϒ
�̂k−1

(�(k−1))

6. Fix any fundamental function of order k, denoted x and any section Z of
V (Z of �⊥) such that Z x = 1. [This and step 5 are the only ones requiring
integration. The remaining steps require differentiation and linear algebra,
alone.]
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7. For each j , such that ρj > 0 let zlj , j = ϕlj , j , 1 ≤ lj ≤ ρj .
8. For each j , such that ρj > 0 define functions

x, z
lj , j
0 := zlj , j = ϕlj , j , z

lj , j
sj+1 = Zz

lj , j
sj , 0 ≤ sj ≤ j − 1, 1 ≤ lj ≤ ρj .

OUTPUT: Contact coordinates for V (�) identifying it with C(τ ) (C(τ )⊥).

Algorithm Contact B

INPUT: Goursat bundle V ⊂ T M (� ⊂ T ∗M) of derived length k and
type τ = decel(V) = accel(�) = 〈ρ1, . . . , ρk〉, ρk = 1.

1. Compute filtration (4.1) of T M up to Char V (k−1) (filtration (4.14) of T ∗M
down to �(�(k−1))).

2. Fix any first integral of Char V (k−1) (�(�(k−1))), denoted x , and any section
Z of V (Z of �⊥) such that Z x = 1 .

3. Build distribution �k , defined by (4.13), giving refinement (4.14) of the
filtration constructed in step 1.

4. Let zk := ϕ1,k be any first integral of �k such that dx ∧ dϕ1,k �= 0.
5. Build filtered basis (4.15) of bundle �(�)1

(0).
6. For each j , such that ρj > 0, compute the fundamental bundle

�(�)
j
( j−1)/

�(�( j)) of order j .
7. For each j , such that �(�)

j
( j−1)/�(�( j)) is non-trivial, compute the funda-

mental functions {ϕlj , j }ρj

lj=1 of order j . [This and step 2 are the only ones
requiring integration. The remaining steps require differentiation and
linear algebra, alone.]

8. For each j , such that ρj > 0 let zlj , j = ϕlj , j , 1 ≤ lj ≤ ρj .
9. For each j , such that ρj > 0 define functions

x, z
lj , j
0 := zlj , j = ϕlj , j , z

lj , j
sj+1 = Zz

lj , j
sj , 0 ≤ sj ≤ j − 1, 1 ≤ lj ≤ ρj .

OUTPUT: Contact coordinates for V (�) identifying it with C(τ ) (C(τ )⊥).

5. Examples

In this section we illustrate our algorithm for finding contact coordinates for vec-
tor field distributions or Pfaffian systems which are locally equivalent to partial
prolongations. That is, those systems that determine Goursat bundles.

The data required to construct an equivalence is built out of those canonical
geometric structures required to settle the recognition question. In outline recog-
nition the procedure is as follows. For a given bundle V ⊂ T M or � ⊂ T ∗M
of derived length k, one computes the refined derived type (Definition 3.3) from
which the type numbers may be read off. If these numbers agree with those given
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in Propositions 3.1 or 3.2 then we declare the bundle to have the derived type of
a partial prolongation of type decel(V) = accel(�) = 〈ρ1, ρ2, . . . , ρk〉. We then
check the integrability of the intersections Char V ( j)

j−1 or unions �(�)
j
( j−1), as ap-

propriate, according to Definition 3.4. If they are all integrable and ρk = 1, then
the bundle in question is a Goursat bundle and a general equivalence to a partial
prolongation exists by Theorem 4.1. The partial prolongation to which the bundle
is equivalent is specified by decel(V) = accel(�). If ρk > 1, then we must go
on to check that V (k−1) = (�(k−1))⊥ determines an integrable Weber structure as
described in Section 2.5. If so, then V or � is a Goursat bundle and an equivalence
to a partial prolongation exists, as in the previous case.

The examples below are mainly designed to illustrate all the steps in algorithm
Contact, which is the main result of this paper. Beyond that, we have attempted
to provide some indication of the ease and range of possible applications. Indeed, a
suit of Maple procedures, <derived>, built on the differential geometry package
Vessiot2 has been written that implements the algorithm. All calculations below
were performed using <derived>.

Example 5.1. We begin with a pedagogical example that is sufficiently nontrivial
to illustrate all the steps in algorithm Contact A. Consider the sub-bundle of
TR21 defined by

V = {e−x1∂x1 + (x4 − x8 − ex1)∂x2 + (x5 − x21 − x20 + x4 − x8 − ex1)∂x3

+ (x9 + 2x21 + 2x20 − 4x4 + 4x8 + 3ex1)(∂x4 + ∂x8)

+ (2 − 2x12 + x7)∂x6

+ (x8 + ex1)∂x7 − ∂x8 + ∂x9 + (1 − x13 − x14 − x12)∂x10 +
+ ( 1

2 (x13 + x14)+ x4 − x8 − ex1)∂x11 + 1
2 (x13 − x14)∂x12

+ (x15 − x16)∂x13 + (x15 + x16)∂x14 + x17∂x15 + (x18 − 2x2)∂x16

+ (x19 − x8 − ex1)∂x17 + x20∂x18

+ (3x21 + 3x20 − 6x4 + 6x8 + 5ex1 + x9)∂x19 ,

∂x4 + 2∂x20 , ∂x5 , ∂x9 , ∂x20 − ∂x21 , ∂x5 − 2∂x9 + ∂x21}
= {X1, X2, . . . , X6}.

The refined derived type (Definition 3.3) is

[[6, 0], [11, 5, 7], [14, 10, 10], [17, 13, 14], [19, 16, 16], [21, 21]],

where for i = 0 and i = 5 the two-element lists record [mi , χ
i ] and for 1 ≤ i ≤ 4

the 3-element lists record [mi , χ
i
i−1, χ

i ]. Hence the derived length is k = 5. From

2 I used Vessiot, courtesy of its key developer Ian M. Anderson. Available at:
http://www.math.usu.edu/∼fg mp
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the dimensions m0 = 6,m1 = 11, . . . ,m5 = 21 we compute the corresponding
type numbers as described in Proposition 3.1,

χ1 = 7, χ2 = 10, χ3 = 14, χ4 = 16,

χ1
0 = 5, χ2

1 = 10, χ3
2 = 13, χ4

3 = 16.

Comparing these with the refined derived type of V we conclude that it has the
derived type of a partial prolongation whose type is

decel(V) = 〈2, 0, 1, 0, 2〉.
Since ρ5 := �5 = 2 > 1, we check (according to Definition 3.4) the singular
variety of V̂ (4) = V (4)/Char V (4). We compute that

V̂ (4) = {X̂1 = π(X1), X̂2 = π(∂x12), X̂3 = π(∂x13 + ∂x14)}
whose nonzero structure is

δ̂(X̂1, X̂2) = 〈π(2∂x6 + ∂x10)〉, δ̂(X̂1, X̂3) = 〈π(2∂x10 − ∂x11)〉.
As described in Section 2, δ̂ is the structure tensor of V̂ (4),

π : TR21 → TR21/Char V (4) =: T̂R21

is the natural projection and for any X ∈ TR21, 〈π(X)〉 denotes the element of the
quotient bundle

T̂R21/V̂ (4)

with representative π(X). From this structure, we easily compute that an arbitrary
point E = [a1 X̂1 + a2 X̂2 + a3 X̂3] ∈ PV̂ (4) has polar matrix(−a2 a1 0

−a3 0 a1

)
.

This matrix has less than generic rank if and only if a1 = 0 and hence the point
E belongs to the singular variety if and only if a1 = 0 and a2, a3 do not vanish
simultaneously. It follows that the set of lines in V̂4 with singular degree is [a2 X̂2+
a3 X̂3] ≈ RP1 (see Sections 2.3 and 2.4). Thus we deduce that

Sing(V̂ (4)) = P{π(∂x12), π(∂x13 + ∂x14)}
and the resolvent bundle is therefore

R
�̂4

(V (4)) = Char V (4) ⊕ {∂x12 , ∂x13 + ∂x14}.
The filtration induced on TR21 by V is

Char V (1)
0 ⊂ Char V (1) ⊂ Char V (2) ⊂ Char V (3)

2 ⊂ Char V (3)

⊂ Char V (4) ⊂ R
�̂4

(V (4)) ⊂ TR21, (5.1)
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and one can check that Char V (1)
0 , Char V (3)

2 and the resolvent bundle R
�̂4

(V (4))

are all integrable. This data confirms that V is a Goursat bundle of type decel(V) =
〈2, 0, 1, 0, 2〉. By Theorem 4.1, V is locally equivalent to the partial prolongation
with this type. We now go on to use algorithm Contact to construct an explicit
equivalence.

The filtration of T ∗
R

21 induced by V and dual to (5.1) is, in this case,

ϒ
�̂4

(�(4)) ⊂ �(�(4)) ⊂ �(�(3)) ⊂ �(�)3
(2) ⊂ �(�(2)) ⊂ �(�(1))

⊂ �(�)1
(0) ⊂ T ∗

R
21. (5.2)

Pursuing Step 2 of algorithm Contact A, <derived> computed a filtered basis
for �(�)1

(0) to be

ϒ
�̂4

(�(4)) = {dx1, dx2 − dx11, dx10},
�(�(4)) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14},
�(�(3)) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14, dx15, dx14},
�(�)3

(2) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14, dx15, dx14, dx6},
�(�(2)) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14,

dx15, dx14, dx6, dx7, dx16, dx17},
�(�(1)) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14, dx15, dx14, dx6, dx7,

dx16, dx17, dx19, dx8, 2dx11 − dx18},
�(�)1

(0) = {dx1, dx2 − dx11, dx10, dx12, dx13 + dx14, dx15, dx14, dx6, dx7,

dx16, dx17, dx19, dx8, 2dx11 − dx18, dx3, dx18}.

Since ρ1, ρ3 and ρ5 alone are nonzero, we deduce from this that bases for the
fundamental bundles are

�(�)1
(0)/�(�(1)) = {p1(dx3),p1(dx18)},

�(�)3
(2)/�(�(3)) = {p3(dx6)},

ϒ
�̂4

(�(4)) = {dx1, dx2 − dx11, dx10},
where the projections pi are defined in Definition 4.1. The corresponding funda-
mental functions may therefore be taken to be (for instance)

F1(�) = {z1,1 = x3, z2,1 = x18},
F3(�) = {z1,3 = x6},
F5(�) = {z1,5 = −x2 + x11, z2,5 = x10},
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and we take the independent variable x to be the fundamental function ex1 of
order 5, for then X1ex1 = 1, and Z = X1 may be taken to be the operator of total
differentiation.

Finally, executing Step 7, we compute the remaining components of the equiva-
lence by differentiating once the elements ofF1(�), differentiating three/ times the
elements of F3(�) and, finally, differentiating five/ times the elements of F5(�):

zl1,1
1 = X1zl1,1, z1,3

r3+1 = X1z1,3
r3

, zl5,5
r5+1 = X1zl5,5

r5
,

where

1 ≤ l1 ≤ 2, 1 ≤ l5 ≤ 2,

0 ≤ r3 ≤ 2, 0 ≤ r5 ≤ 4,

and z
lj , j
0 := zlj , j . We thereby obtain the functions

x = ex1 , z1,1 = x3, z2,1 = x18, z1,1
1 = x5 − x21 − x20 + x4 − x8 − ex1 ,

z2,1
1 = x20,

z1,3 = x6, z1,3
1 = −2x12 + x7 + 2, z1,3

2 = x8 − x13 + x14 + ex1 ,

z1,3
3 = x9 + 2(x20 + x21 − 2x4 + 2x8 + x16)+ 3ex1 ,

z1,5 = x10, z2,5 = −x2 + x11, z1,5
1 = 1 − (x12 + x13 + x14),

z2,5
1 = 1

2 (x13 + x14),

z1,5
2 = 1

2 (x14 − x13 − 4x15), z2,5
2 = x15, z1,5

3 = x16 − 2x17, z2,5
3 = x17,

z1,5
4 = x18 − 2(x2 + x19 − x8 − ex1), z2,5

4 = x19 − x8 − ex1 ,

z1,5
5 = 2(x4 − x8 − ex1 − x21)− x20, z2,5

5 = 2(−x4 + x8 + ex1)+ x20 + x21,

in accordance with Contact A. By Theorem 4.2, these functions define a local
diffeomorphism ψ : R21 → J 〈2,0,1,0,2〉 satisfying

ψ∗V = C〈2, 0, 1, 0, 2〉,
where J 〈2,0,1,0,2〉 denotes the partial prolongation of J 1(R,R5) in which and two
variables remain at order 1, one variable is prolonged to order 3, two are prolonged
to order 5. Finally, the contact distribution on J 〈2,0,1,0,2〉 has the form

C〈2, 0, 1, 0, 2〉 =
{
∂x +

2∑
l1=1

zl1,1
1 ∂zl1 ,1 +

2∑
h3=0

z1,3
h3+1∂z1,3

h3

+
2∑

l5=1

4∑
h5=0

zl5,5
h5+1∂z

l5 ,5
h5

, ∂z1,1
1
, ∂z2,1

1
, ∂z1,3

3
, ∂z1,5

5
, ∂z2,5

5

}
.
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Example 5.2 (Nonlinear Control Theory). A well-known and much studied ex-
ample of a nonlinear control system is that of a car moving in the xy-plane mod-
elled (see [8], [25]) as follows. The state of the car is described by four variables
(x, y, θ, ϕ). The ordered pair (x, y) gives the coordinates on the xy-plane of the
centre of the rear axle. The variable θ is the angle between the x-axis fixed on the
plane and the vertical axis V of the car, running perpendicular to the axles. The
variable ϕ is the angle the front wheels make relative to V .

Assuming the wheels do not slip as the car moves in the plane, then one obtains
the Pfaffian system

−sin θ dx + cos θ dy = 0, L cosϕ dθ − sinϕ(cos θ dx + sin θ dy) = 0.

This in turns leads to the control system � = {ω1 = 0, . . . , ω4 = 0}, known as
the kinematic car, where

ω1 = dx − u1 cos θ dt,

ω2 = dy − u1 sin θ dt,

ω3 = dθ − u1

L
tanϕ dt,

ω4 = dϕ − u2 dt,

and L is the length from the rear to the front axle. Here u1 models the speed of the
point (x, y) and u2 the speed at which the front wheels swivel. Variables u1, u2 are
the controls, for prescribing these as functions of time t gives a system of ordinary
differential equations for the state of the car.

Equivalently, control system � defines the sub-bundleK = �⊥ ⊂ T (Rt ×M),
given by

K =
{
∂t + u1

(
cos θ∂x + sin θ∂y + 1

L
tanϕ∂θ

)
+ u2∂ϕ, ∂u1 , ∂u2

}
, (5.3)

where M = R2
(x,y) ×R2

(u1,u2)
× S1 × S1 is the manifold of states and controls. An

important question in nonlinear control theory is: when can a nonlinear control
system be “linearised” by a static feedback transformation and more generally
a dynamic feedback transformation? We will derive the well-known results (see,
e.g., Isidori [8]) for the kinematic car as an illustration of our general theory and,
in particular, algorithm Contact.

We begin by showing that K is, in fact, a Goursat bundle of type τ = 〈1, 0, 1〉.
The refined derived type of K is

[[3, 0], [5, 2, 3], [6, 4, 4], [7, 7]].

Consequently, the derived length is 3. For dimensions m0 = 3,m1 = 5,m3 =
6,m4 = 7 associated to K, we compare with the type numbers (Proposition 3.1)
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of a partial prolongation to be

χ1 = 3, χ2 = 4,

χ1
0 = 2, χ2

1 = 4.

Since these type numbers agree with the refined derived type ofK, we conclude by
Proposition 3.1 thatK has the derived type of a partial prolongation. The filtration
induced by K is

Char K(1)
0 ⊂ Char K(1) ⊂ Char K(2) ⊂ TR7

where

Char K(1)
0 = {∂u1 , ∂u2},

Char K(1) = {∂u1 , ∂u2 , ∂t },
Char K(2) = {∂u1 , ∂u2 , ∂t , ∂ϕ}. (5.4)

Since the distributions in (5.4) are all integrable and ρ3 = 1, we conclude by
Definition 3.4 that K is a Goursat bundle of type

decel(K) = 〈1, 0, 1〉.
By Theorem 4.1, K is locally equivalent to the contact distribution C〈1, 0, 1〉.
This settles the recognition problem for K. We go on to find an equivalence using
Contact.

For this, according to Contact B, we compute distribution �3, as described
in (4.13). The invariants of Char K(2) are x, y, θ . Any one of these may be taken
to be the independent variable. If we choose x for this purpose then we take

X = ∂x + 1

u1 cos θ
(∂t + u1 sin θ∂y + L−1u1 tanϕ∂θ + u2∂ϕ)

for the operator of total differentiation. By (4.13), we find that

�3 = {∂u1 , ∂u2 , ∂t , ∂ϕ, ∂θ }.
The filtration of T ∗

R
7 induced by K is therefore

�3⊥ ⊂ �(�(2)) ⊂ �(�(1)) ⊂ �(�)
(1)
0 ⊂ T ∗

R
7

where

�3⊥ = {dx, dy}, �(�(2)) = {dx, dy, dθ},
�(�(1)) = {dx, dy, dθ, dϕ}, �(�)1

(0) = {dx, dy, dθ, dϕ, dt},
and � = K⊥. It follows that the fundamental bundles are

�(�)1
(0)

/
�(�(1)) = {p1(dt)}, �3⊥ = {dy},
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and the fundamental functions are therefore

F1(�) = {t}, F3(�) = {y}.
Consequently, by Contact B the map ψ : R7 → J 〈1,0,1〉 defined by

x, z1,1 = t, z1,1
1 = Xt, z1,3 = y,

z1,3
1 = X y, z1,3

2 = X2 y, z1,3
3 = X3 y, (5.5)

is an equivalence, according to Theorem 4.3. That is, ψ∗K = C〈1, 0, 1〉.
While (5.5) is certainly an identification of K with a partial prolongation, it is

not of much use in control theory. This is because it is not a feedback equivalence.
That is, (5.5) does not respect the special role played by the time coordinate t in the
original control system, nor the distinction between the roles played by the state
and control variables. We pause briefly to describe the class of transformations
that preserves the set of all control systems.

Let
dx
dt

= f (t, x,u) (5.6)

be a control system, where x denotes the state variables and u the control variables.
A local diffeomorphism of the form

t �→ t, x �→ !(x), u �→ "(x,u), (5.7)

is said to be a (static) feedback transformation. A question of interest is: Does there
exist a static feedback transformation that identifies a given control system with
some partial prolongation of C(1)q for some q or, as it is more commonly known in
the control theory literature, a Brunovský normal form?

Writing (5.5) out explicitly shows that it is not a static feedback equivalence.
In fact, being ‘driftless’, it is standard in geometric control theory that no static
feedback equivalence exists for the kinematic car [8]. For instance, an elegant
formulation in Sluis [20, Theorem 33] gives a proof of this based on the GS
algorithm and, consequently, applies to autonomous control systems such as the
kinematic car. In fact, a stronger necessary condition for feedback equivalence
can be derived via Theorems 4.2 and 4.3 that is valid in both the autonomous and
nonautonomous cases. That is, in case the diffeomorphisms that identify control
systems are more general than static feedback transformations (5.7). In this more
general setting we allow ! and " to depend upon time t , as well as states and
controls. We shall call these more general transformations control morphisms.

Definition 5.1. A local diffeomorphism of the form

t �→ t, x �→ !(t, x), u �→ "(t, x,u),

identifying a pair of control systems of the form (5.6), where x represent states
and u represent controls, is said to be a control morphism.
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Control morphisms generalise static feedback equivalences to the nonautono-
mous case. Clearly if a contol system cannot be identified with a Brunovský normal
form by a control morphism, then it is not static feedback equivalent to one either.

Theorem 5.1. Let K = {∂t + f (t, x,u)∂x, ∂u} ⊂ T (Rt × M) arise from any
smooth control system (5.6), where M is the manifold of states and controls. A
necessary condition in order that there be a control morphism that identifies K
with a Brunovský normal form is that:

(i) K is a Goursat bundle; and
(ii) If k is the derived length of K, then dt ∈ Char K(k−1)⊥ if ρk = 1 or

dt ∈ ϒ
�̂k−1

(K(k−1)) if ρk > 1.

Proof. Suppose there is a control morphismϑ identifyingKwith some Brunovský
normal form. Every such normal form is a partial prolongation C〈τ 〉 of C(1)q , where
τ = 〈ρ1, ρ2, . . . , ρk〉, ρk ≥ 1. In the case ρk > 1, the independent variable x of
C〈τ 〉 is an invariant of its resolvent bundle. Consequently, ϑ∗x = t is an invariant
of the resolvent bundle R�k−1(K(k−1)) determined by K. In the case ρk = 1, x is
an invariant of the Cauchy bundle Char C〈τ 〉(k−1) of the (k − 1)th derived bundle
C〈τ 〉(k−1). Hence, ϑ∗x = t is an invariant of Char K(k−1).

While the kinematic car K is certainly a Goursat bundle and therefore locally
equivalent to a partial prolongation, it does not satisfy condition (ii) of Theo-
rem 5.1. We deduce thatK cannot be identified with a Brunovský normal form by
a control morphism and hence a static feedback transformation, in agreement with
the standard result.

However, as is well known for this example, a certain Cartan prolongation of
K is static feedback linearisable. A precise definition is given in Example 5.3.
For the present, we merely exhibit a Cartan prolongation of K and show how
to apply algorithm Contact to determine a static feedback linearisation of the
Cartan prolonged distribution.

We obtain a Cartan prolongation of the kinematic car system as follows. Define
a new control system

dx

dt
= u1 cos θ,

dy

dt
= u1 sin θ,

dθ

dt
= u1

L
tanϕ,

dϕ

dt
= u2,

du1

dt
= w2,

dw2

dt
= v1, (5.8)

by ‘twice differentiating u1’. In control system (5.8) the coordinate u1 has become
a state variable and the new control variables are v1 and u2. To see the significance
for control theory of this admittedly ad hoc construction one needs to check for the
existence of a static feedback equivalence for system (5.8). We begin by changing
notation slightly and examining the sub-bundle pr K ⊂ T (Rt × M̄), defined by
(5.8), where M̄ is the manifold of new states and controls. Setting u1 = w1 and
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u2 = v2, we have

prK =
{

T = ∂t + w1

(
cos θ∂x + sin θ∂y + tanϕ

L
∂θ

)
+ v2∂ϕ + w2∂w1 + v1∂w2 , ∂v1 , ∂v2

}
.

The refined derived type is

[[3, 0], [5, 2, 2], [7, 4, 4], [9, 9]].

Proposition 3.1 shows that this is the derived type of the partial prolongation
C〈0, 0, 2〉, that is, the total prolongation C(3)2 . A calculation reveals that pr K̂(2) :=
pr K(2)/Char pr K(2) is spanned by

pr K̂(2) = π{� = ∂t + w1(cos θ∂x + sin θ∂y), ∂w1 , ∂θ },
and that the polar matrix of a line [a1π(�)+ a2π(∂w1)+ a3π(∂θ )] is(−a2 a1 0

−a3 0 a1

)
with respect to the nonzero structure

δ̂(π(∂w1), π(�)) = 〈π(cos θ∂x + sin θ∂y)〉,
δ̂(π(�), π(∂θ )) = 〈π(w1 sin θ∂x − w1 cos θ∂y)〉.

Here, again, δ̂ is the structure tensor of pr K̂(2),

π : T (Rt × M̄) → T (Rt × M̄)/Char pr K(2) =: T̂ (Rt × M̄)

is the natural projection and for any X ∈ T (Rt × M̄), 〈π(X)〉 denotes the element
of the quotient bundle

T̂ (Rt × M̄)/pr K̂(2)

with representative π(X). It follows that Sing(pr K̂(2)) = P{π(∂w1), π(∂θ )} and
so, the resolvent bundle of pr K(2) is

R
�̂2

(pr K(2)) = Char K(2) ⊕ {∂w1 , ∂θ },
which is integrable. The above data show that pr K is a Goursat bundle of type
〈0, 0, 2〉. By Theorem 4.1 there is an equivalence identifying prK with the contact
distribution C〈0, 0, 2〉, that is, a Brunovský normal form. But is it a static feedback
equivalence? To find out, we use algorithm Contact.

The only nonempty fundamental bundle in this case is the one of order 3,

ϒ
�̂2

(pr K(2)) = R
�̂2

(pr K(2))
⊥ = {dt, dx, dy}.
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So in this case, dt ∈ ϒ
�̂2

(pr K(2)) and we may choose z1,3 = x, z2,3 = y and

z1,3
1 = T z1,3, z2,3

1 = T z2,3, z1,3
2 = T z1,3

1 ,

z2,3
2 = T z2,3

1 , z1,3
3 = T z1,3

2 , z2,3
3 = T z2,3

2 .

It is a simple matter to verify that these are indeed contact coordinates as predicted
by Theorem 4.2. Moreover, an inspection of the formulas

z1,3
1 = w1 cos θ, z2,3

1 = w1 sin θ,

z1,3
2 = w2 cos θ − (w1)2

L
sin θ tanϕ, z2,3

2 = w2 sin θ + (w1)2

L
cos θ tanϕ,

z1,3
3 =

−(w1)3 cos θ sin 2ϕ − 3w1w2L sinϕ cosϕ sin θ

−(w1)2v2L sin θ + v1L2 cos θ cos 2ϕ

L2 cos 2ϕ
,

z2,3
3 =

−(w1)3 sin θ sin 2ϕ + 3w1w2L sinϕ cosϕ cos θ
+(w1)2v2L cos θ + v1L2 sin θ cos 2ϕ

L2 cos 2ϕ
,

shows that they define a static feedback equivalence. Because of the projection
M̄ → M , any integral manifold of pr K maps to a unique integral manifold of
K. This, together with the fact that there is a static feedback equivalence for pr K
implies that the kinematic car example is dynamic feedback linearisable in the
language of nonlinear control theory. It is an important and largely open problem
to geometrically characterise the class of nonlinear control systems which are
dynamic feedback linearisable.

Example 5.3 (Differential Invariants of Curves). A classical problem in differ-
ential geometry is to find the differential invariants of submanifolds under the
action of a Lie group. This problem has attracted fresh interest in recent years as a
result of a new approach [5] due to Fels and Olver. Assuming one knows the group
action explicitly, the authors give a simple procedure for the construction of the
differential invariants of the action that requires no integrations to be performed.3

In this example, we suggest an alternative procedure, at least in the case where the
submanifolds are curves, effectively requiring only an explicit parametrisation of
the matrix Lie group. In particular, no integration is required. The method uses the
algorithm worked out in this paper and is based on an observation of Shadwick and
Sluis [19]. These authors noticed that curves in the various Klein geometries can be
endowed with a contact structure in a fairly natural way. One begins with a Pfaffian
system whose integral submanifolds are lifts of curves in the homogeneous space
of a Lie group. Generally, this Pfaffian system is not a contact structure. However,

3 For very nice applications of the Fels–Olver procedure, see Mari Beffa [14] and Mansfield [13].
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Shadwick and Sluis observed that if it is subjected to a Cartan prolongation, then
the resulting Cartan prolonged Pfaffian system on the enlarged space is a contact
structure.

As an illustration of algorithmContactwe shall, in this example, enlarge upon
this idea of Shadwick and Sluis by studying one special case in detail, namely that
of curves in E3. Our aim is to show how the well-known Euclidean invariants of
curves, the curvature and torsion, arise from the generalised Goursat normal form
and algorithm Contact.

We have the diffeomorphism E3 → E(3)/SO(3) given by

x �→
(

1 0
x I3

)(
1 0
0 A

)
,

where A ∈ SO(3), the three-dimensional special orthogonal group. Denoting
the left-invariant Maurer–Cartan form on E(3), the (oriented) Euclidean group in
dimension 3, by

�MC =


0 0 0 0
θ1 0 ω12 ω13

θ2 −ω12 0 ω23

θ3 −ω13 −ω23 0

 , (5.9)

it is easily shown that the standard Serret–Frenet lift of curves in E3 are integral
submanifolds of the Pfaffian system

I = {θ2 = 0, θ3 = 0, ω13 = 0, [θ1]}, (5.10)

where θ1 is the independence form. Equivalently, they are integral curves of the
sub-bundle

V = {∂θ1 , ∂ω12 , ∂ω23} ⊂ T E(3). (5.11)

The structure equations of the Lie algebra e(3) of left-invariant vector fields on
E(3) are

∂θ1 ∂θ2 ∂θ3 ∂ω12 ∂ω13 ∂ω23

∂θ1 0 0 0 −∂θ2 −∂θ3 0
∂θ2 0 0 0 ∂θ1 0 −∂θ3

∂θ3 0 0 0 0 ∂θ1 ∂θ2

∂ω12 ∂θ2 −∂θ1 0 0 ∂ω23 ∂ω13

∂ω13 ∂θ3 0 −∂θ1 −∂ω23 0 ∂ω12

∂ω13 0 ∂θ3 −∂θ2 −∂ω13 −∂ω12 0

From these structure equations it is easy to deduce that

V (1) = {∂θ1 , ∂ω12 , ∂ω23 , ∂θ2 , ∂ω13},
V (2) = V (1) ⊕ {∂θ3} = T E(3),
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Char V = {0}, Char V (1) = Char V (1)
0 = {∂ω12},

leading to the refined derived type

[[3, 0], [5, 1, 1], [6, 6]]

and hence, in particular, m0 = 3, m1 = 5, m2 = 6. By Proposition 3.1, in order for
V to have the derived type of a partial prolongation, it is necessary that χ0 = 0,
χ1

0 = 2 and χ1 = 3; instead of which we have χ0 = 0, χ1
0 = 1 and χ1 = 1.

Hence there can be no local diffeomorphism between V and a partial prolongation
of C(1)q .

However, as observed by Shadwick and Sluis, one can make progress by carry-
ing out a Cartan prolongation as we did in Example 5.2. Here we need to discuss
this a little more precisely than before.

Definition 5.2. Let I be a Pfaffian system on manifold M and let η : B → M be
a fibred manifold. A Pfaffian system J on B is said to be a Cartan prolongation
of I if:

(i) η∗I ⊂ J ; and
(ii) For every integral manifold σ : U ⊆ R

m → M of I, there is a unique
integral manifold σ̃ : U → B of J such that η ◦ σ̃ = σ . We say that σ̃ is
the Cartan lift of σ .

If γ : R → E(3)/SO(3) ≈ E
3 is an immersion into Euclidean 3-space, then

we define the Serret-Frenet lift of γ as an integral submanifold � : R→ E(3) of
Pfaffian system I. We then define a Cartan prolongation (E(3) × R3

κ,κ1,τ
,J ) of

(E(3), I) by

J = {θ2, θ3, ω13, ω12 − κθ1, dκ − κ1θ1, ω23 − τθ1, [θ1]}. (5.12)

Equivalently, the Cartan lifts of γ are the integral submanifolds of

pr V := {∂θ1 + κ∂ω12 + κ1∂κ + τ∂ω23 , ∂κ1 , ∂τ }. (5.13)

We therefore have the commutative diagram

R
�̃−−−−→ (E(3)× R3

κ,κ1,τ
,J )�id

!η̃

R
�−−−−→ (E(3), I)�id

!η

R
γ−−−−→ E(3)/SO(3)



300 P.J. Vassiliou

Proposition 5.2. Let γi : It ⊆ R → E
3 be a pair of immersions with Cartan

lifts

�̃i : I → E(3)× R3
κ,κ1,τ

, i = 1, 2,

such that �̃∗
1θ1 = �̃∗

2θ1. Then the curves γi are congruent if and only if

�̃∗
1κ = �̃∗

2κ, �̃∗
1τ = �̃∗

2τ. (5.14)

Proof. By definition, Cartan lifts �̃i of the γi are integral submanifolds of the
Cartan prolongations J on E(3)× R3

κ,κ1,τ
and, consequently,

�̃∗
i θ2 = �̃∗

i θ3 = �̃∗
i ω13 = 0, �̃∗

i ω12 = (�̃∗
i κ)(�̃

∗
i θ1),

�̃∗
i ω23 = (�̃∗

i τ)(�̃
∗
i θ1), i = 1, 2.

Since �̃∗
1θ1 = �̃∗

2θ1, then (5.14) implies that �̃∗
1�MC = �̃∗

2�MC , where �MC is
the Maurer–Cartan form (5.9). Hence, the �i = η̃ ◦ �̃i satisfy

�∗
1�MC = �∗

2�MC . (5.15)

It follows from the standard theorem about maps into a Lie group that the γi =
η ◦ η̃ ◦ �̃i , i = 1, 2, can be identified by a fixed Euclidean isometry g ∈ E(3).
Conversely, if γ2 = g · γ1 for some g ∈ E(3), then their Serret–Frenet lifts �i

of γi satisfy (5.15) and are integral submanifolds of I. But since J is a Cartan
prolongation ofI, there are Cartan lifts �̃i of the�i which are integral submanifolds
J . Equations (5.14) follow from this fact and from equation (5.15).

The usefulness of this result derives from the following fact.

Proposition 5.3. The Cartan prolongation J of I is locally equivalent to the
contact distribution C〈0, 0, 2〉. Furthermore, the invariants of the resolvent bundle
form a local coordinate system on E(3)/SO(3).

Proof. A calculation using the structure equations of e(3) shows that the (refined)
derived type of J ⊥ = pr V is

[[3, 0], [5, 2, 2], [7, 4, 4], [9, 9]]

and hence its type is τ = 〈0, 0, 2〉;4 the derived length is k = 3 and �3 = 2.
Indeed, we find that

pr V (1) = {∂θ1 + κ∂ω12 , ∂κ , ∂ω23 , ∂κ1 , ∂τ },
pr V (2) = {∂θ1 , ∂ω12 , ∂ω13 , ∂κ , ∂ω23 , ∂κ1 , ∂τ },

4 We apologise for this notational clash. Symbol τ has been used throughout the paper to denote
the type of a partial prolongation but in this example it is also used to denote, as usual, the torsion of a
curve in E3. However, the two uses of τ should be clear from the context.
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Char pr V (1) = {∂κ1 , ∂τ },
Char pr V (2) = {∂κ1 , ∂τ , ∂κ , ∂ω23}.

Hence, we have the quotient

pr V (2)/Char pr V (2) = {ê1 = π(∂θ1), ê2 = π(∂ω12), ê3 = π(∂ω13)},

with structure

δ̂(ê2, ê1) = 〈π(∂θ2)〉, δ̂(ê3, ê1) = 〈π̂(∂θ3)〉, δ̂(ê2, ê3) = 0,

where δ̂ denotes the structure tensor of pr V̂2 := pr V (2)/Char pr V (2). Computing
the polar matrix of an arbitrary line [a1ê1 +a2ê2 +a3ê3] in pr V̂2 we easily deduce
that pr V (2) determines a Weber structure with singular bundle

B = P{ê2, ê3} ⊂ P(pr V̂ (2)).

The resolvent bundle associated to this Weber structure is therefore

R�2(pr V (2)) = so(3)⊕ {∂κ, ∂κ1 , ∂τ }. (5.16)

Since (5.16) is integrable, we’ve shown that pr V is a Goursat bundle of type
〈0, 0, 2〉. By the generalised Goursat normal form, we can conclude that pr V is
locally equivalent to C〈0, 0, 2〉. That is, there is a local diffeomorphism

ψ : E(3)× R3
(κ,κ1,τ )

→ J 3(R,R2) (5.17)

such that ψ∗(pr V) = C〈0, 0, 2〉, where

C〈0, 0, 2〉 = {∂x + u1∂u + v1∂v + u2∂u1 + v2∂v1 + u3∂u2 + v3∂v2 , ∂u3 , ∂v3}

is the contact distribution on jet bundle J 3(R,R2).

We can now pass to local coordinates and use Contact to construct the dif-
ferential invariants explicitly. Parametrise the elements of SO(3) by

A=


√

1−b2
√

1−a2 a
√

1−b2 −b

−a
√

1−c2−bc
√

1−a2
√

1−a2
√

1−c2−abc −c
√

1−b2

b
√

1−a2
√

1−c2−ac ab
√

1−c2+c
√

1−a2
√

1−b2
√

1−c2

.

In these coordinates, the Lie algebra e(3) is easily computed to have local basis

∂θ1 =
√

1 − a2
√

1 − b2∂x − (a
√

1 − c2 + bc
√

1 − a2)∂y

+ (b
√

1 − a2
√

1 − c2 − ac)∂z,
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∂θ2 = a
√

1 − b2∂x + (
√

1 − a2
√

1 − c2 − abc)∂y

+ (ab
√

1 − c2 + c
√

1 − a2)∂z,

∂θ3 = −b∂x − c
√

1 − b2∂y +
√

1 − b2
√

1 − c2∂z,

∂ω12 = −
√

1 − a2∂a,

∂ω13 = ab
√

1 − a2

√
1 − b2

∂a +
√

1 − a2
√

1 − b2∂b − a
√

1 − c2

√
1 − b2

∂c,

∂ω23 = −b(1 − a2)√
1 − b2

∂a + a
√

1 − b2∂b +
√

1 − a2
√

1 − c2

√
1 − b2

∂c. (5.18)

From the derived type of pr V we see that ρ1 = ρ2 = 0 and ρ3 = 2. Hence the only
non-empty fundamental bundle is the one of highest order ϒ

�̂2
(pr V (2)). The local

basis (5.18) and resolvent bundle (5.14) show that this is spanned by {dx, dy, dz}.
Fix a parameter value t0 ∈ I and let (xi (t), yi (t), zi (t)) be the explicit parametri-

sations of the curves γi (t), i = 1, 2. We may assume, without loss of generality,
that ẋ1(t0)ẋ2(t0) �= 0, if necessary after acting on the γi by Euclidean motions
gi ∈ E(3). Consequently, near x(t0), we can take x as a parameter along the
curves and hence the tangents along the integral curves of distribution (5.13) are
sections of

prV =
{

X = ∂x − 1√
1 − a2

√
1 − b2

(
(a
√

1 − c2 + bc
√

1 − a2)∂y

+(b
√

1 − a2
√

1 − c2 − ac)∂z + κ
√

1 − a2∂a

+ τ

(
b(1−a2)√

1−b2
∂a−a

√
1−b2∂b−

√
1−a2

√
1−c2

√
1−b2

∂c

)
−κ1∂κ

)
, ∂τ , ∂κ1

}
.

Despite its fierce appearance, prV is amenable since only differentiation is required
in order to construct the local diffeomorphism ψ whose existence is guaranteed by
the generalised Goursat normal form as proved in Proposition 5.2. By algorithm
Contact the total differential operator is X and the fundamental functions of
order 3 are x, y and z. By differentiation we obtain the components of ψ to be

x = x, u = y, v = z,

u1 = Xu = −a
√

1 − c2 + bc
√

1 − a2

√
1 − a2

√
1 − b2

,

u2 = Xu1 = κ
√

1 − c2

√
1 − a23

(1 − b2)
, u3 = Xu2,

v1 = Xv = b
√

1 − a2
√

1 − c2 − ac√
1 − a2

√
1 − b2

,
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v2 = Xv1 = cκ
√

1 − a23
(1 − b2)

, v3 = Xv2,

where the u3, v3 components of ψ are supressed due to their complexity. The
inverse ϕ of ψ is

x = x, y = u, z = v,

a = − v1v2 + u1u2√
1 + u2

1 + v2
1

√
u2

2 + v2
2

,

b = u2v1 − u1v2√
u2

2(1 + v2
1)− 2u1u2v1v2 + v2

2(1 + u2
1)

,

c = v2√
u2

2 + v2
2

,

κ =
√

u2
2(1 + v2

1)− 2u1u2v1v2 + v2
2(1 + u2

1)√
1 + u2

1 + v2
1

3 ,

τ = u2v3 − u3v2

u2
2(1 + v2

1)− 2u1u2v1v2 + v2
2(1 + u2

1)
,

κ1 = Dxκ,

where Dx is the total differential operator on J 3(R,R2). That the differential
functionsκ and τ given above are the complete invariants for curves under Eucldean
motions follows from Proposition 5.2. We have effectively factored the integral
curves of J through the jet bundle J 3(R,R2). If the corresponding expressions
for a, b, c given above are substituted into the general group element of E(3), then
we obtain the moving frame as in [5]. With a little more effort, we could have
predicted that κ is a second-order invariant and τ a third-order invariant, directly
from Proposition 5.3.

We complete the example of curves in E3 by obtaining the familiar invariants
for immersions of curves up to the action of the Euclidean group in terms of an
arbitrary parametrisation. By construction, ẋ(t) �= 0 for t near t0 and hence locally
we have

f ′1(x(t)) =
ẏ

ẋ
, f ′2(x(t)) =

ż

ẋ
, f ′′1 (x(t)) = ÿ ẋ − ẏ ẍ

ẋ3
, f ′′2 (x(t)) = z̈ ẋ − ż ẍ

ẋ3
,

f ′′′1 (x(t)) =
...
y ẋ2 − 2ÿ ẍ ẋ + 2ẏ ẍ2 − ẏ

...
x ẋ

ẋ5
,

f ′′′2 (x(t)) =
...
z ẋ2 − 2z̈ ẍ ẋ + 2ż ẍ2 − ż

...
x ẋ

ẋ5
.
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Substituting these into the differential expressions for κ and τ given by the inverse
of ψ above yields the usual formulas

κ(t) = |γ̇ (t) ∧ γ̈ (t)|
|γ̇ (t)|3 , τ (t) = γ̇ (t) ∧ γ̈ (t)· ...

γ (t)

|γ̇ (t)|2 ,

for the curvature and torsion of the curve γ (t) = (x(t) y(t) z(t))T . Note that ψ is
a local diffeomorphism away from the hyperplane κ = 0, as may be verified by a
computation. So the results above are valid for any C3 immersion of an interval
into E3 if and only if κ is nonzero. That is, if and only if γ̇ (t) ∧ γ̈ (t) is nonzero
near t0.

Curves in the other Klein geometries can be treated in much the same way,
yielding the corresponding differential invariants and moving frames. More gen-
erally, it is interesting to carry out the above construction for curves in a nonflat
Klein geometry, that is, a Cartan geometry. We will report on this in subsequent
work.

Example 5.4 (Pfaffian Systems). In this final example we illustrate the applica-
tion of our algorithm to Pfaffian systems. Consider the following Pfaffian system
� on a generic subset of R16,

� : ωi = 0, 1 ≤ i ≤ 12,

where

ω1 = x2x12 dx16 + (x16 − 1)2(x9η − x3) dx11 − x12(x16 − 1) dx2,

ω2 = x12 dx9 + (2x11 − x10) dx11, ω3 = x12 dx12 − x13dx11,

ω4 = x12(x16 − 1) dx1 + (x16(x2 − 1)+ 1) dx11,

ω5 = x11x12 dx6 + (x6x12 − x7 + η) dx11,

ω6 = x12 dx14 + (4x11 − 2x10 − x15) dx11,

ω7 = x12(x16 − 1)(dx4 + 3dx10)− ((x16 − 1)(x5 + 6x12)− x2x16) dx11,

ω8 = x12 dx13 + (x9 − x14) dx11, ω9 = x12 dx8 + (1 − x9) dx11,

ω10 = x12(x16 − 1)(dx15 + dx10)− (2x12(x16 − 1)− x2x16) dx11,

ω11 = x12 dx7 − (1 + x8 + η) dx11,

ω12 = x12 dx3 + (6x11 + 4x2
11 − x4 − x9 − 3x10 + x2

10

− 4x10x11 + 2x1x11 − 2x11x15 − x1x10 + x10x15) dx11,

and η = x1 − x10 − x15 + 2x11.
We seek the integral submanifolds of �. The package <derived> took a little

over a minute to compute the Pfaffian system’s refined derived type to be

[[12, 16], [9, 13, 13], [6, 10, 10], [3, 7, 6], [1, 4, 3], [0, 16]].
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The derived length is k = 5 and we find that the only nontrivial fundamental
bundles are

F3(�) = �(�)3
(2)/�(�(3)) =

{
p3

(
dx16

1 − x16
+ dx2

x2

)}
,

F4(�) = �(�)4
(3)/�(�(4)) = {p4(dx6)}.

Computing the type numbers ξ j , ξ i
i−1, as defined in Proposition 3.2, we obtain

ξ 0 = 16, ξ 1 = 13, ξ 2 = 10, ξ 3 = 6, ξ 4 = 3,

ξ 1
0 = 13, ξ 2

1 = 10, ξ 3
2 = 7, ξ 4

3 = 4.

Since ρ5 = 1 and these data agree with the above refined derived type, we confirm
that � is a Goursat bundle of type τ = accel(�) = 〈0, 0, 1, 1, 1〉 and, hence, by
Theorem 4.1, there is an equivalence to the contact system C〈0, 0, 1, 1, 1〉⊥. We
go on to find an equivalence and then use it to find the general solution of �,
explicitly.

From the fundamental bundles we deduce that there is one fundamental function
of order 3 and one of order 4, namely

ϕ1,3 = x2

x16 − 1
, ϕ1,4 = x6.

We emphasise that fundamental functions are not unique. Their exterior derivatives
are defined up to elements of the corresponding Cartan bundles. Thus while the
fundamental bundles are canonical, the choice of first integral is not. Some choices
lead to more complicated equivalences than others. In this case the two Cartan
systems in question are

�(�(3)) = {dx6, dx7, dx11, dx12, dx13,−dx1 + dx10 + dx15},
�(�(4)) = {dx11, dx12,−dx1 + dx10 + dx15},

and we see that d(x6x11) ∈ �(�)4(3)/�(�(4)). Hence we may, if we wish, also
take ϕ1,4 = x6x11. This freedom in the choice of fundamental functions of each
order can be expoited to derive, if possible, simple equivalences. Such choices can
only be derived from heuristics, as is the case here.

Now since ρ5 = 1, we turn to Contact B according to which we must at this
point choose a first integral in �(�(4)) that will play the role of the independent
variable x in the target contact system. Here again there is no canonical choice
of first integral, nor can there be. The target contact system is invariant under an
infinite Lie pseudogroup. One makes a choice that delivers a simple equivalence.
With a little experimentation it is possible to discover that

x = η = x1 − x10 − x15 + 2x11
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is a good choice for ‘independent variable’ x since we have that Z x = 1, where5

Z ∈ �⊥ has the form

Z =
(

1 − x16 + x2x16

1 − x16

)
∂x1 + (x3 − x9η)∂x2 + (x9 + x4 + 3x10 − 6x11

+ x1x10 − x10x15 − x2
10 + 4x10x11 − 2x1x11 + 2x11x15 − 4x2

11)∂x3

+
(

x5 − x5x16 + x2x16

1 − x16

)
∂x4 +

(
x7 − x6x12 − η

x11

)
∂x6

+(1 + x8 + η)∂x7 + (x9 − 1)∂x8 + (x10 − 2x11)∂x9 + 2x12∂x10 + x12∂x11

+ x13∂x12 + (x14 − x9)∂x13 + (2x10 − 4x11 + x15)∂x14 +
(

x2x16

1 − x16

)
∂x15

+
(

x16(x3 − x9η)(x16 − 1)

x2

)
∂x16 .

Setting V = �⊥, we compute a basis for Char V (1)
0 ,

Char V (1)
0 =

{
∂x2 +

x16 − 1

x2
∂x16 , ∂x5 , 3∂x4 − ∂x10 + ∂x15

}
.

Using the inductive definition of bundle �5 given by (4.13) we find that

�5⊥ = {dx11, dx1 − dx10 − dx15}.
This is the fundamental bundle of highest order 5, and we may take

ϕ1,5 = x11.

The remaining contact coordinates are computed via differentiation by Z as in
Contact B:

z1,3 = x2

x16 − 1
, z1,3

1 = Zz1,3 = −x3 + x9η,

z1,3
2 = Zz1,3

1 = −x4 − 3x10 + 6x11, z1,3
3 = x5 − x16(x2 − x5)

x16 − 1
,

z1,4 = x6x11, z1,4
1 = Zz1,4 = x7 − η, z1,4

2 = Zz1,4
1 = x8 + η,

z1,4
3 = Zz1,4

2 = x9, z1,4
4 = Zz1,4

3 = x10 − 2x11,

z1,5 = x11, z1,5
1 = Zz1,5 = x12, z1,5

2 = Zz1,5
1 = x13,

z1,5
3 = Zz1,5

2 = x14 − x9,

z1,5
4 = Zz1,5

3 = x10 + x15 − 2x11, z1,5
5 = Zz1,5

4 = x2x16

1 − x16
.

5 We emphasise that the construction of a vector field Z with this property is algorithmic.
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The inverse of this equivalence gives the general solution of � in terms of three
arbitrary functions u(x), v(x), w(x) and their derivatives u(i), v( j), w(l):

x1 = x + w(4), x2 = u(x)− w(5), x3 = u(1) + xv(3),

x4 = u(2) − 3v(4), x5 = u(3) − w(5),

x6 = v(x)

w(x)
, x7 = x + v(1), x8 = v(2) − x, x9 = v(3),

x10 = v(4) + 2w(x), x11 = w(x),

x12 = w(1), x13 = w(2), x14 = v(3) + w(3), x15 = w(4) − v(4), x16 = w(5)

u(x)
.
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