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ON LOCAL EQUIVALENCE FOR VECTOR FIELD SYSTEMS

P.J. VASSILIOU*

Abstract. We give sufficient conditions for C* vector field systems on R"™ with genus ¢ = 1 to be
diffeomorphic to a contact structure. The diffeomorphism is explicitly constructed and used to give the
most general integral submanifolds for the systems. Finally the implications of these results for integrable
hyperbolic partial differential equations in the plane is discussed.

The aim of this note is to give some new results on the explicit integration of cer-
tain Pfaffian systems with genus ¢ = 1. The approach adopted is as follows. Given a
Pfaffian system E on R™, we ask the question; when is E equivalent to a contact struc-
ture with respect to the diffeomorphisms of R™ and how can an explicit diffeomorphism
be constructed? The construction of such a diffeomorphism provides the explicit integral
submanifolds for E.

The subject of the integration of Pfaffian systems has a long history dating back to
1815 when G.F. Pfaff first posed it [ 1 |. Since that time important contributions have
been made by a number of authors including von Weber, Goursat, Frobenius, Natani,
Clebsch, Grassman, Darboux, and others in the 19th century; (see E. Goursat [ 8 ]). In
the early 20th century, Cartan’s works [ 2 | are well known; less well known is the paper |
3 ] of E. Vessiot, which contains a number of important results including applications to
automorphic systems (see also Pommaret [ 12 | and Kumpera [ 13 ] ). More recent works
are those of Gardner [ 4 | and Bryant [ 5 |. We also note recent applications of the theory
of Pfaffian systems to control theory by Hermann [ 7], [ 11 ].

The motivation for solving the problem here posed comes from the theory of integrable
wave equations. In his study of scalar nonlinear second order partial differential equations
in two independent variables, Vessiot [ 6 | showed that whenever the second order charac-
teristics, M, possess two or more invariants and these invariants are taken as independent
coordinates, then M is equivalent to a contact structure on a reduced manifold. This fact
allowed Vessiot to settle the integration problem for these equations in an elegant way.
These matters will be discussed briefly in section 4.

§2. A. The Theory of Pfaffian Systems. In this section I review briefly some of the
known results on Pfaffian systems. Let TR™ and T*R™ denote the tangent and cotangent
bundles on R™ respectively. Let C*°(R™) denote the ring of real valued, C* functions on
R™. Let I'™*(T*(R™)) denote the C*°(R™)-module of smooth sections of T*(R™). A Pfaffian
system on R™ is a C°°(R™)-submodule of T*(T*(R™)). Let I'(T(R™) denote the C*(R™)-
module of smooth sections of T(R™). A vector field system on R™ is a C*°(R™)-submodule
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of T'(T(R")). A Pfaffian system E (vector field system E) is said to have dimension r at
point ¢ € R™ if there exists a neighborhood U 3 z and r-linearly independent 1-forms
(vector fields) defined on U which generate E(E). I will assume throughout that vector
fields systems and Pfaffian systems have constant dimension as z ranges over U. Such
vector field systems will sometimes be referred to as distributions.

The first important object we may associate to E is a vector field system called the
characteristic system of E or the Cauchy system of E denoted char E:

charE := {X e T(TR"): X|w =0, X|dweE, for all w € E},

where | denotes the interior product. The annihilator of charE is called to Cartan system

of E denoted C(E). That is
C(E) = (charE)*.

The dimension of the Cartan system of F is an invariant called the class of E. The
class of E is the minimum number of variables necessary in order to write down local
generators for the system (see Gardner [ 4 | and Cartan [ 2 ]).

The next important construction is that of the derived map of E which is the C*°(R")-
linear map

wod =65 : E — D(AXT*(R™))/T(T*(R™) A E

obtained by exterior differentiation and then projection into the quotient structure.

Suppose §g has constant rank on R”. Define the first derived system E() of E by
EM) = kerég. Inductively, define the derived map 65y of E

§py; E® — T(A?T*(R™))/T(T*(R™)) A E®,
Then the (i + 1)-derived system E(G*Y of E is given by
EG+) = ker 6 iy .

Letting ¢g; = dim E® we have go > ¢i > ....

There must be an N so that gy = gn4+1. N defined in this way is called the derived
length of E. So if N = 0, then E®) = E so §g = 0. This means d(E) C EATI'(T*R"),
that is, F is Frobenius-integrable. Thus § is the zero map when E is integrable so we have

the intuitive idea that § somehow measures the amount of non-integrability of E. The
collection (E, EM ... EN) is called the derived flag of E. We have

EWN) c gIN-1) - ... C E.
Define integers

po = dim E); py_; = dim(E® E(HY),
0<i<N-1.
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We have that
N
dim E = Z Di-
1=0

If pn4+1 denotes the codimension of E in C(E) then

N+1
class E = Z Di-
=

The Pfaffian system FE is said to be of type ( Gardner [4])

(pOapla "’pN>pN+1)-

Finally, we mention another important invariant, namely the rank or Engle rank. E
has rank p if p is the smallest integer such that

ap(da)? =0,
for all a € E.
The following theorem is proved in Bryant, Chern & Griffiths [ 14 ].

THEOREM 2.1. In a neighborhood of R® suppose « is a 1-form of rank p. Then there

exists a coordinate system wy,ws,..w,, possibly in a smaller neighborhood such that the
form a becomes

dw; + wodws + wedws + - - +w?Pdw?P T,

Interestingly, a proof of this classical theorem is given in [ 3 | using vector fields. The
following is also classical and due to von Weber (see [ 8 ]).

THEOREM 2.2. Let E be a Pfaffian system of type

(po,1,1,1,... 1,2)

and suppose
dim(C(EW)/EMy=2, 1<i<N-1,

and EN) is a po-dimensional completely integrable system, then there exist N + py + 2
independent functions

{x?z17“‘zl)0’y7yl?”yN}

such that E is locally generated by
{dz1,dzs,.. dzp,,dy — y1dz, dyy — yodz,...dyn_1 —yndz}.

For a proof of this theorem the reader is refered to [ 5 |. Theorems 2.1 and 2.2 were the
only local structure theorems known (apart from the case of Frobenius integrable systems)
until Bryant gave a new structure theorem [ 5, Theorem 2.1 |.
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B. Vector Field Systems. It will be convenient for what is to follow in §§3&4 to
give some results and definitions for vector field systems. Just as we stated the notion of
characteristic vector fields for E we can do so for the dual E. The characteristic system

for E, denoted charE is the set of all § € E such that [6, E] C E.
THEOREM 2.3. If E and E are dual then charE = charE.

Proof. Contraction of forms and fields is defined as follows:
(X]w)( Xy, Xpo1) = w(X, X1, .. Xp1)

where X, Xy,.. X,_, are vector fields and w is a p-form. We have the identity
db(v1,v2) = v1(v2]0) — v2(v1]6) — 0]([v1,v2]),

for 1-forms 8 and vector fields vy, v. So if § € charE and X € E, we have

do(6,X) = 6(X|0)—X(6]6)—6][6,X]

and foralld € E

do(6,X) = (6]6)(X) = 0][6,X] = 0. (%)

So charE C charE. Assuming 6 € charE and using () then proves the theorem.

Once again, as for Pfaffian systems, we can define the concept of a derived system for
a vector field system. The it* derived system E() of E is defined recursively

EW = EG-D 4 [EG-D BE-D] BO =
There will always be an integer N such that
EWN) — p(N+1)
meaning that E(V) is Frobenius integrable.
THEOREM 2.4. For eachi=0,1,2,...N.
dim E® + dim EO = n.

Proof. It will be enough to prove that E(? and E® are dual. Let z,y € E. Define a
set of 1-forms
§ = {6 € T(T*R") | 8]o = 8y = 0][z,y] = 0}.
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it follows that § C E and that df(z,y) = 0. Clearly if E is Frobenius integrable then
§ = E. Otherwise we have the maximal subset of E such that df € I'(T*R"),E. That is
6 € ker6g = E(M. This proves that E(!) is the annihilator of E() and the assertion for
¢ = 1. To prove the result for 7 > 1, repeat the argument choosing z,y € E¢~1 to show

that (E@)L = E®. We need only do this a finite number of times and the theorem is
proved.

Remark We now have because of theorems 2.3 and 2.4

Po=n— dim E™)
pn—i = dim(ECTD/ED) 0<i< N -1,
dim(B® JcharED) = dim(C(ED)/ED),  0<i< N 1.

§ 3. Vector Field Systems, Contact Structures and Integral Submani-
folds. In this section we obtain some results which concern generalizations of the von
Weber systems (theorem 2.2) in terms of the structure of the associated vector field sys-
tem. Specifically we consider vector field systems E locally generated in R(FTDeH1 1y

o 0 0
{X7a_£l7a_§23_a_§q—}

and such that the dual Pfaffian system has type

(0,¢,¢, .. ,q+1),

while
dim(C(EW)/EW)=¢+1, 1<i<N-1

and derived length N = k.

We will obtain sufficient conditions in terms of the structure of E in order that E be
diffeomorphic to the k**-order contact structure Q¥(R,R?)* on J*(R,R?), the k** order
jet bundle of maps R — RY. Importantly, we will show how the explicit diffeomorphism
may be constructed. Notice that when ¢ = 1, we obtain the von Weber system which is
known to be equivalent to the k** order contact structure Q*(R,R) on J*(R,R).

On J¥(R,R?), the k'"-order contact structure is locally generated by

0 0 0 0 0 0
{% + 211 5710 + 2128711 + - +Zlkazl,k_l + 2z 9720 +oeee +22k622,k—1 +-- -t
0 0 0 0 0
+quaz_q0 + 4z 32q,k—1 s azlk’ EP g ey 32qk }

0 0
_ g 9
_{J,C,am,...azqk}.
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We seek a diffeomorphism 3 : R+t J¥(R,R?) such that
(3.1) v E = QF(R,R7)*

where E is of the stated type. Equation (3.1) means that there exists ¢ € GL(q + 1,R)
such that

X Ji
52 o | o] o
0/0¢&, 0/0zqk

Suppose such a 1) exists then by the chain rule

a9 k
hu(X) = (Xw)— +ZZ(XZN Er

=0

(3.3)

x@ ? ka
Jj=1 1= O Ji

If g has the form
9= (Yap)1<a,p<o+1

equations (3.2), making use of (3.3) become

({X:v: Y11,
Xzji = 1112j,i+1, 1<;<¢0<:<k -1,
(3.4) < {%Z’MM’ lspsg
S = qupiaziib, 1<p<g1<j<q0<i<k—1,
Ozjk .
{éu-mﬁmﬂ, 1<p<q1<j<yq,
\ U Xz = 71540, 1<;5<q

In general the system is overdetermined, the difference between the number of equations
and unknowns being
kq®> —q — 1.

Hence in general no diffeomorphism 1 exists. Furthermore, as the equations stand it is
not clear how they can be solved in terms of the stated structure conditions. In fact, we
restrict ourselves to Pfaffian systems of the stated type only to insure that the necessary
conditions for equivalence are satisfied. In particular, see Hermann [ 7, p 138-141 ] for
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a discussion of this point. However, considerable simplification is effected if we restrict
ourselves to diffeomorphisms such that g lies in a subgroup of GL(q + 1,R), namely the
subgroup generated by the matrices ¢ € GL(q + 1,R) of the form

Y11 Y12 - - - Y1,9+1
Y22 Y2,q+1

g=1 0 7. ¥3,q+1
0 7vgt1,2--- Yg+1,q+1

The equations (3.4) then became

Xz  =1vn
@ . .
Zji = Y11%5,i41 1<7<q, 0<:1<k-1

oz
n

bz _
3¢
(3.5) (B) 1<p<q, 1<j<q 0<i<k-1

0z; .
(C) ij=’m+1,j+1, Xzjk =7ij+1, 1<p<gq, 1<5<g.
uw

which would seem to make matters worse since the system (3.5) is even more over deter-
mined than (3.4). In fact the later system is manageable. Indeed, it is not difficult to see
that the only integrability conditions for the existence of a solution are

0zjy 1 { 0 O }
= — = —— —,X e e s
(36)1 0 &fu - [66# ]Z]() 6£u Zj1

62]'2 1 6 8711 }
= —_— = — -, Xz — —2;
(3'6)2 0 asﬂ 711 {[66,1, ]zfl afu 232

ke 0 0
(3.6)k—1 0=%£_1 - i{[_,X]ij—l—ﬂzjk}

where

and where by assumption on g, v1; # 0.



Now from the first equation in 3.5(A), we have

0 0 Oz 0 O
—Xoe= —Xe—-X—0 =[—,X]z = .
56,7 Bg T g ~lae, M= g,
Hence, assuming, = to be an invariant of the distribution
o .9 ¢
3.7 , X
-0 tae o),

equation (3.6); becomes

2 0
o¢,’

We have therefore shown that the compatibility condition (3.6); will be satisfied if z and
zjo are chosen to be invariants of the subdistribution (3.7) of E(1),

X]zjo=0, 1<j<q.

Next, consider the compatibility condition (3.6);. Assume that z and zjo are chosen
as above. (3.6)2 then becomes

0

(39 3 Xlan=
But, Xzjo = 7112j1, hence (3.8) becomes
(3.9) [ a?u X] (o Xz,O) 0.
Now,
e X (o) = ~ sl X = ~ sl X1

But since [a—E“,X]w = 0, we have

0

5£u ](E) o )2[[56# , X], X]az.
Hence
(3.10) [8?“ Xz = ((Xz])()2)[[a£ , X1, Xz
1 0 .
+:y;[[8§“ , X1, X]zj0.

From (3.10), it follows that compatibility conditions (3.6); and (3.6), will be satisfied if z
and zjo are chosen to be any invariants of the subdistribution

0 5} 0 !
—_ — X —_— X
{aﬁu, [aﬁua}‘]a [[66#’){]’ ]}#=l



of E?,

We may proceed to consider the compatibility condition (3.6);. By a similar argument
and a tedious but straight-forward computation, we find that (3.6);, (3.6)2 and (3.6)3 will
be satisfied if z and z;o are chosen to be any invariants of the subdistribution

q

0 .0 0
{52 3 ¥l X1 XL 1, 1, %1, %1

p=1

of E®), Proceeding in this way we finally arrive at the last compatibility condition (3.6)5—1
and we have the following theorem.

THEOREM 3.1. Let E : {X, 3‘2 , 5%2- e E%} be a C*®-vector field system on R(F+1)a+1,
of type

0,4,9,¢,..-9,¢ +1).
and derived length k and such that

dim(ED /charED)=q+1, 1<i<k-1.

Suppose the distribution T' C E*~1 generated by

p) b o (k— 1) times b
:i{=—,[=—,X], ,X], X , X1, X1, .. 7_
{6611 [aﬁu ] [aﬁu ] ]7 [ [ [ a‘fu ] ] ] p=1
possesses q + 1 functionally independent invariants z and {zjo }§=1 and define the set of
functions zj1,2j2, ..., 2k, 1 < j < g, by the equations
o XZJ'O _ XZj] 2 _ ij,k—l
T Xe T TP Xa T X
Then, whenever the set of functions {z, zjo,....zjx} so defined are functionally inde-

pendent, they define a diffeomorphism
p : REFDIH _, JR(R RY),

such that
v E = Q%(R,R7)L.

The means of construction of the integral submanifolds for the Pfaffian systems of the
type considered in this paper is now clear. By application of Cartan’s theory or otherwise
its not difficult to show that the genus of E is one. An integral submanifold is therefore a
map

®:I —RY, ICR,
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such that
d*FE = 0.

Assuming the map ¥ has been found as per theorem 3.1 we have
(¥7)"E = Q*(R,RY).
Hence if j% : 2 —s J*(R,RY) is the k-jet extension of any C* map, f : R — R? then
U@ E= ()RR =0.

Hence
(3.11) ® =9 1o :R— RV

is the sought after integral submanifold for E in terms of the (now known) diffeomorphism
P.
Remark In view of the works [ 7,11 ] it may be worth mentioning the connection between

the result of this paper and control theory. Note that in this section we have been studying
Pfaffian systems of the form

zi — fi(ej,uj)dt

where the z; may be regarded as state variables and the u; as control variables. The
algorithm here developed expresses each of the variables z;(t),u;(t) in terms of arbitrary
functions and their derivatives thereby “parametrising” the state and control space. This
may be compared with the so called “Problem of Monge” (see [ 8, p310 ], [ 11, p353 ]).

Ezample We give a simple example to illustrate the results. On R” we have the vector field
system

. 0 0 0 0
E: {6 +£1($1 9 +t$2 )+€2($3 +t1?4 }

), 0&;’ 0,

E has type (0,2,2,3) and satisfies dim(E®)/charE®D) = 3,5 = 1,2 and hence satisfies
the necessary conditions for equivalence to the contact structure Q2(R,R?)*. Calculating
therefore the subdistribution I' in theorem 3.1, that is,

Lot e X]};

we easily find its three invariants in the form

T =1,
ot
Z10 —501/532,

2920 = .'1?;/(1?4
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From the equations of the theorem 3.1, we obtain the remaining variables

t t

:l:l T
z11 = —lnz,, 291 = —2In z3,
T2 T4
¢ t t ¢
T1 2 T T T
zi2=—(Inz1)* + &=, 20 = 22(In 73)* + £,-2
L2 T2 T4 Ty

and the map ¥ is explicitly found. It’s easy to check that 1 is a local diffeomorphism and
that ¥, E = Q*(R,R?)L. Calculating 4=, we find the integral submanifold for E is given
explicitly by equation (3.11):

¢:t— (t,exp(f{/fl), 1/fi eXP(t—;})’ exp(fa/ f2),1/ fa exp(tfs/ f2)

hfi' = fzfé'—fé)
(f1)2 7 ()

= (8,21, 29, 3,24,61,&2)

where f1(t), f2(t) are arbitrary C? functions R — R. It is straight-forward to check that
®*E = 0.

§ 4. Relationship to Integrable Wave Equations and the Work of Vessiot. As
mentioned in the introduction, Vessiot [ 6 | used the equivalence of vector field systems
to contact structures to obtain explicit general solutions for integrable nonlinear wave
equations. That is, equations of the form

Fu_ (o D
611718:1‘2 - 1o ’6:1:1’6:1:2

when there exist at least two independent first-integrals on each characteristic. In fact,
Vessiot used the algorithm worked out in this paper in the case £ = 3 and ¢ = 1 but
it seems, did not write out a proof. The details of this construction are as follows. We

(4.1)

will consider the Liouville equation as an example but the reader will find many more in
Vessiot’s paper [6].

Take the Liouville equation in the form

0%u

3.’131 0.1:2 -

eu

(4.2)

There are two sets of characteristics for (4.2) on the submanifold e C J?(R?,R) defined by

210 — e* = 0.
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These are given by the one-dimensional solutions of the vector field systems

~ 0 0 0 0 0 0
0% . — = f—
1%L {6 1+ZI6 +21161+e 622+z26 6222’6211}

~ 0 0 0 0 0 0
0% . - —
2807, {3 +220 +631+2223 + z1€* 3211’07522}

where 71,29, 2, 21, 23, 211, 212, 222 are local coordinates on J?(R?%,R) such that (52u)*zy; =
aza gz , etc. The distributions ;2 7 and 2 7, are dual to the characteristic 1-forms listed
for example by Goursat [ 9 ] in his discussion of Darboux’ method for the general solution
of the Liouville equation. One easily finds the invariants in the form

=9 my = T2, 0 m =2,
197, 20)2 2027, ¢ 2
— 2 z

T = 211 —

Now if we adapt a new coordinate system incorporating the above invariants, say

p:e — R7

H1 =21 Hs =222—(22)2/2
Ho = T pa = 211 — (21)%/2
=2 C=2, (=2
then for example go*(lfl%) is locally generated by
g 9 0 g 0
-+ + (pa + G2 /2) 5 + €05, }
oy * Oy + e+ M2+

on the reduced manifold which is locally R®. Applying theorem 3.1 to o,(;€%) shows
that it is diffeomorphic to the third order contact structure Q*(R,R)L. This reduction
however does not by itself give the general solution of (4.2). The reduction is only a

partial integration. The extra information one requires is the existence of a nonlinear
map linking the integral submanifolds of ;92 and ,Q2. In his remarkable study [ 6 ],
Vessiot discovered such a nonlinear map for each scalar integrable equation (4.1) and
thereby completely cleared up the integration problem for these equations. Finally, it
is worth mentioning that recently Vessiot’s results were extended to coupled systems of
wave equations [ 10 |. Interestingly, in this case the characteristics are not in general
diffeomorphic to contact structures ( see also [ 15 ]).
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