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1. Introductory.-The axioms set forth in this note are intended to
describe the class of manifolds of n dimensions to which the theories
nowadays grouped together under the heading of differential geometry
are applicable. The manifolds are classes of elements called points,
having a structure which is characterized by means of coordinate systems.
A co6rdinate system is a (1-1) correspondence, P > x, between a set of
points, [P], of the manifold, and a set, [x], of ordered sets of n real numbers,
x = (xl, ..., x"). For convenience we call any ordered set of n real
numbers an arithmetic point and the totality of arithmetic points, for
a fixed n, the arithmetic space of n dimensions. Each point P which
corresponds in a coordinate system, P > x, to an arithmetic point x,
is said to be represented by x. The set, [P], of all points represented in a
given coordinate system is called the domain of the coordinate system,
and the set, [x], of the arithmetic points which represent them is called
its arithmetic domain.

If P- > x and P - y are two coordinate systems having the same
domain, the transformation x -* y of the arithmetic space, which is the
resultant of x > P followed by P -> y, is called the transformation of
coordinates from P > x to P-* y, or the transformation between
P o- x and P > y. The general scheme of the axioms is to character-
ize a class of "allowable coordinate systems" by means of the analytic
properties of the transformations between them. In order to state these
properties clearly we recall a few arithmetic theorems and definitions:
A set of arithmetic points given by

-i I<,
for some positive 6, will be called a box, and the point xo will be called
its center. A set of points [x] will be called a region if each x is the center
of a box which is contained in [x].
A function F(xl, ..., xx), defined over a region, [xl, will be described
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as of class u if it and its first u derivatives exist and are continuous at
each point of [x]. Here u can be any positive integer. A function will
be described as belonging to the class co if all its derivatives exist. Con-
tinuous functions will be described as belonging to the class 0, and analytic
functions, i.e., functions which can be expanded in a power series about
each point in [x], will be described as of class w. We deal with single
valued functions only.

Let yl(x), . . ., y'(x) be n functions of class u > 0, defined over a region
[x]. The equations

y = y (x) (1.1)

define a transformation, x > y, of [x] into a set of points [y]. If the
Jacobian

(yl, Y')
(X . .., X")

does not vanish in [x] it follows from the implicit function theorem that
[y] is also a region. If the transformation x -* y is non-singular, i.e.,
has a single-valued inverse, it will be called a regular transformation of
class u. Unless otherwise stated it is to be assumed that any trans-
formation to which we refer is of this type. We assume u to be fixed
(either as 0, 1, . . ., o or w), and shall often omit the words "of class u,"
as applied to functions, transformations and, later on, to n-cells.
A regular transformation, x - y, of a region [x] into a region [y],

followed by a regular transformation, y -* z, of [y] into [z] is a regular
transformation, x >- z, of [x] into [z]. Moreover, the inverse of a
regular transformation is regular.
The last two sentences assert that the totality of regular transformations

between regions is what we call a pseudo-group. A pseudo-group is any
set of transformations which satisfy the conditions:

(1). If the resultant of any two exists, it is in the set.
(2). The inverse of each transformation in the set is also in the set.
The pseudo-group of regular transformation between regions will be

called the pseudo-group of class u.
An arithmetic n-cell of class u is any set of arithmetic points obtained

from a box by a regular transformation of class u. Thus the arithmetic
space is itself an n-cell. Moreover, any two n-cells of class u are equivalent
under the pseudo-group of class u. If u . u', any function, transforma-
tion or n-cell of class u' is also a function, transformation or n-cell of
class u.

2. The First Group ofAxioms.-The axioms are arranged in three groups,
the first being:

552



VOL. 17, 1931 MATHEMATICS: VEBLEN AND WHITEHEAD

A1. The transformation between two allowable coordinate systems which
have the same domain is regular if the arithmetic domain of one of them is
a region.

A2. Any coordinate system obtained by a regular transformation of co-
ordinates from an allowable coordinate system is allowable.

Definition: The image in an allowable coordinate system of a box will
be called an n-cell of class u.

A3. The correspondence in which each point of an n-cell corresponds to
its image in an allowable coordinate system is an allowable coordinate system.

3. The Second Group of Axioms.-Let [Ka] be any set of allowable co-
ordinate systems, finite or infinite. Let K be the correspondence in
which each point in the domain of at least one Koa corresponds to every
arithmetic point by which it is represented in at least one Ka. If the
correspondence K is (1-1) it will be called the union of [Kl,]. It can be
shown that the union of [Ka ] exists if the union of each pair Ka and K, exists.
The axioms of the second group are:
B1. Any coordinate system which is the union of a set of allowable co-

ordinate systems whose domains are n-cells is allowable.
B2. Each allowable coordinate system is the union of a set of allowable

coordinate systems whose domains are n-cells.
4. The Third Group of Axioms.-The axioms of the third group are:
C1., If two n-cells have a point in common they have in common an n-cell

containing this point.
C2. IfP and Q are any two distinct points there is an n-cell Cp, containing

P, and an n-cell CQ, containing Q, such that Cp and CQ have no point in common.
C3. There are at least two points.
5. Regular Manifolds.-Any space satisfying the axioms A, B and C

will be called an n-dimensional manifold of class u, or a regular manifold.
When u = 0 the theory of a regular manifold is a branch of analysis situs.
When u = 1 it is possible to define a tangent space of differentials at each
point of the manifold, and in addition to pure continuity considerations
we can apply some of the formal machinery of the differential calculus.
When u = 2 we have second differentials, affine connections and so on.

It would obviously be impossible in the space here available to show
how differential geometry is built out of these axioms. We have tried
to do this in a small book called "Foundations of Different Geometry,"
which we hope to publish as a Cambridge Tract, and will not deal further
with it here. Instead, we make a few remarks about the special peculiari-
ties of our axioms, and prove their independence.

6. Topological Considerations.-From the axioms C it follows that a
regular manifold satisfies the axioms given b.y F. Hausdorff (Mengenlehre,
Leipzig, 1914, p. 213) for a topological space. Indeed, if C be taken as

a separate set of axioms with points and n-cells as the undefined elements,

553



MA TIIEMA TICS: VEBLEN AND WHITEHEAD PROC. N. A. S.

the spaces which they determine satisfy Hausdorff's axioms, provided
each n-cell is taken as a neighborhood of each point in it. In the presence
of the axioms A and B, a regular manifold is what some writers call a
homogeneous topological space of n dimensions, that is, a topological space,
each of whose neighborhoods is homeomorphic with the arithmetic space
of n dimensions. This statement is equivalent to the theorem:
An allowable coordinate system is a homeomorphism between its domain

and its arithmetic domain.
Let [x] be a set of arithmetic points having a limit point x', where

[x] and x' are both in the arithmetic domain of an allowable coordinate
system P-* x. Let [PI and P' be the respective images of [x] and
x'. It will follow that P' is a limit point of [P], if every n-cell C contained
in the domain of P )- x, and containing P', contains points of [P] other
than P'. From the axioms A it follows that the image of C in P -. x is
an arithmetic n-cell containing x', and since x' is a limit point of [xI,
a point of [x] other than x'. Therefore C contains points of [P] other
than P', and P' is a limit point of [P1. Therefore the transformation
x - P is continuous.

Interchanging the parts played by the regular manifold and the arith-
metic space, it follows by a similar argument that the transformation
P ,- x is continuous. It is, therefore, a homeomorphism.

According to the theorem just proved, the domain of any allowable
coordinate system is topologically equivalent to some arithmetic region.
No arithmetic region is self-compact (a region U is said to be self-compact
if any infinite set of points in U has at least one limit point in U) and we
have as a corollary: The domain of an allowable coordinate system is not
self-compact. Therefore a manifold such as the surface of a sphere or an
anchor ring cannot be represented completely in a single allowable co-
ordinate system.

7. Consistency and Independence Examples.-As a consistency example
take the arithmetic space of n dimensions with regular transformations
between regions for allowable coordinate systems. The axioms A, B
and C are obviously satisfied by this set of coordinate systems. We shall
show that the axioms are independent by giving consistency examples
for the sets obtained by denying each one in turn.
Denying A1. Take the arithmetic space with all non-singular trans-

formations which operate on regions for allowable coordinate systems.
Then the domain of an allowable coordinate system is a region, but the
arithmetic domain may be any set of points with the power of the con-
tinuum.
Denying A2. Take the arithmetic space with any correspondence in

which each point of a region corresponds to itself, and only such corre-
spondences, as allowable coordinate systems.
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Denying A3. Limit the allowable coordinate systems in the arithmetic
space to those regular transformations in which the whole space corre-
sponds to the whole or a part of itself.
Denying B1. Limit the allowable coordinate systems in the arithmetic

space to regular correspondences between n-cells.
Denying B2. The allowable coordinate systems are to be those given

in the consistency proof together with all those in which a single point
corresponds to a single point.
Denying C1. The space (n = 1) is to be the arithmetic space of two

dimensions, and an allowable coordinate system is to be a regular corre-
spondence between a set (finite or infinite) of 1-cells in this space, no two
of which have a common point, and a set of segments in the arithmetic

p0 p0
P.
2

space of one dimension. Any such correspondence is to be an allowable
coordinate system. Thus the correspondence given by

x = t, y = 0,

for -1 < t < 1, will be one allowable coordinate system and that given by
x = O, y = t,

for -1 < t < 1, will be another. The domains of these two coordinate
systems will have the origin (0, 0) in common, and no other point. There-
fore C1 is not satisfied.

Denying C2. Let [P] be a set of points in a (1-1) correspondence,
K, with the interval 0 < t < 1. Let [P1] and [P2] be sets of points in
(1-1) correspondences K1 and K2,. respectively, with the real numbers
which are not greater than zero. The space is to consist of these three
sets of points with the allowable coordinate systems defined as follows:
The correspondence K'1 in which each P corresponds to its image in K,
and each P, corresponds to its image in K1, is to be an allowable coordinate

555



MA THEMA TICS: VEBLEN AND WHITEHEAD PROC. N. A. S.

system. The correspondences obtained from K'1 according to the axioms
A are also to be allowable coordinate systems. The analogous corre-
spondences for the set of points consisting of [P] together with [P2] are
to be allowable coordinate systems, and the remaining allowable coordinate
systems are the unions of these.

Let Po and P° be the points which correspond to zero under K1 and K2,
respectively. Any two n-cells containing P, and Po have a point in
common, contradicting C2.
Denying C3. The space shall have no points.
8. Other Pseudo-groups.-Let g be any pseudo-group of continuous

transformations between regions in the arithmetic space, such that. the
axioms A and B are consistent when the space is the arithmetic space
and the transformations of g are taken as allowable coordinate systems.
We obtain a -consistent set of axioms if we substitute "transformation of
g" for "regular transformation" in the axioms A and leave the axioms
B and C unchanged. The spaces which satisfy these axioms constitute a
sub-class of the manifolds of class 0. It is a special case of this remark
that the manifolds of class 0 include those of class 1, which include those
of class 2, and so on.

Let us consider a few examples of other pseudo-groups which give rise
to such spaces.

(1). Let g be the pseudo group of regular transformations x - y

with a constant Jacobian |x . In a space determined by g there is a

definition of ratios of volume. This pseudo-group has an invariant
sub-pseudo-group, g', of transformations whose Jacobian is unity. In
the spaces g' there will be an "invariant unit of volume. The relation
between the spaces g and the spaces g' is analogous to that between affine
and equiaffine spaces.

(2). Let g+ be the pseudo-group of direct transformations of class u,
that is, regular transformations with a positive Jacobian. The spaces
g+ are oriented manifolds of class u.

(3). Let g be the pseudo-group of linear transformations between
regions. This may be called the affine pseudo-group, as apart from the
affine group whose transfornations carry the arithmetic space into itself
as a whole. The spaces defined by the affine pseudo-group may be called
locally flat affine spaces.

(4). Let n = 2r, and let g be the pseudo-group of regular contact
transformations. That is to say, any transformation of g is given by
equations of the form

{x - ~x(xl, ....,x,pl,X,Pr)
P= Px(X1 .. . XxrpP ... Pr)) (X = 1, ... X r)
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where xX (x, p) and px,(x, p) are functions of class u such that

pxdxx = pxdxx + dW (x, p),
W(x, p) being an arbitrary function of class u.

(5). Let n = 2r, and let g be the pseudo-group of transformations
given by

wx w=(z`, ...,zr), (X = 1, ...,r),

where z and w are complex variables, and w`(z) are analytic functions. If

z=xX + iyx,=x

wx =X + ivx,w =

the transformations of g may also be written

xuX = u(x, y),
vx = v(x, y)

If n = 2 the spaces g are Riemann surfaces (cf. H. Weyl, "Die Idee der
Riemannschen Flache," Leipzig, 1913, p. 36) and their geometry is two
dimensional conformal geometry.

In a 2-dimensional manifold of class w, a scalar, f(P), of highest class
has as its component in any allowable co6rdinate system an analytic
function of two real variables. But in a space g it has a harmonic function
as its component, i.e., a function which is the real or imaginary part of
an analytic function of a complex variable. That is to say, we can define
complex point-functions, f(P), such that

F(x, y) =f(P),
is an analytic function of x + iy, where P - (x, y) is any one of the
class of coordinate systems which satisfies the axioms g.

In general any pseudo-group, G, of continuous transformations between
regions in the arithmetic n-space determines a unique pseudo-group which
defines a special class of regular manifolds. For g is that pseudo-group
which contains G and satisfies the axioms A3, B1 and B2, when the trans-
formations of g are taken as allowable coordinate systems.

9. Two Existence Theorems.-The use of the pseudo-group of trans-
formations of coordinates of class <w raises a question as to the status of
operations which are ordinarily described by means of power series. A
case in point is the transformation to normal coordinates in the affine
geometry of paths. The space of this geometry is a regular manifold
with a symmetric affine connection defined at every point. In any allow-
able coordinate system the paths are given by the differential equations
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d2x+ . dx-dx'(
dS2 + 7i'k( ds =0 (9.1)

where rk are the components of the affine connection. The transformation
law of an afline connection involves the second but not the higher de-
rivatives, and therefore it is an invariant condition to require r1k to be
functions of class u' if u' < u -2, but not if u' > u -2.

If u 2: 3 and if rPk are of class u - 2 at a point Q, there exists an n-cell
CQ, containing Q, which is represented in a co6rdinate system P - y, in
which the paths through Q are given by linear equations of the form

y= ps. (9.2)

The transformation of co6rdinates betwveen P - y and any allowable co-
ordinate system in which Q is represented, is of class u - 2.
The equations (9.1) admit a unique set of solutions (see, for instance,

L. Bieberbach, "Theorie der Differentialgleichungen," Berlin, 1926, pp.
115-116),

f (q, p, s),
which satisfy the initial conditions

(ft(q, p, 0) =

where Q > q in a given allowable coordinate system, P - x. I
X is any constant it follows from the form of the equations (9.1) that

f'(q, p, Xs)

are the solutions which satisfy the initial conditions
(fi(q, p, 0) = i

4I~=8A2xpi.
t \a5s/=O

That is to say,
f(q, p, Xs) = f'(q, Xp, s).

and the solutions may therefore be written

Fi(q, y),
where

yi = p-s
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It also follows that F$(q, y) are of class u - 2 for values of y in some
arithmetic n-cell containing the origin (see L. Bieberbach, loc. cit., pp.
39-41).

Since

pi) pi=
for all values of p, we have

(a )=¢, ~(9.3)

and therefore the Jacobian | - does not vanish for values of y near the

origin. Therefore the equations

Xi = F1(q, y) (9.4)

can be solved to give a regular transformation x > y of class u - 2,
which carries some arithmetic n-cell contained in the arithmetic domain
of P - x, and containing q, into an arithmetic n-cell containing the
origin. Therefore, x - y is a transformation between P - x and a
coordinate system, P > y, satisfying the required conditions. Because
P >- y also satisfies the conditions (9.3) it is called a normal coordinate
system at the point Q, for the coordinate system P > x. Clearly the
union of all normal coordinate systems at Q, for the same coordinate
system, P - x, exists, and may be called the normal coordinate system
at Q for P o- x. Normal coordinate systems are not necessarily allow-
able except when u = c, and when u = w.

10. When the curvature tensor or one of its generalizations arises as an
integrability condition, an existence theorem is in the background which,
for u arbitrary, takes the following form:

Let
Fa(xl, xn' zII ... Zm)

(Greek indices will run from 1 to m, Roman indices from 1 to n) befunctions
of class 1 in the region

|Ix I< 1, Iz I < 1. (10.1)
If, and only if,

-. axs + 'Fe' Fa 0, (10.2)

the differential equations

, = Pi (x,sz), (10.3)ax~
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admit a unique set of solutions

Z (Xo, Zo, X),

which satisfy given initial conditions

za (xO, zO, x) = Z, (10.4)

where xo and zo are any values of the variables x and z which satisfy (10.1).
We give a short proof of this theorem, which is perhaps well known,

because we have not seen it proved elsewhere except when the functions
F are analytic.
By a suitable transformation we can reduce the problem to the case

where xo = zo = 0, and we suppose this to have been done.
Instead of (10.3), let us consider the ordinary differential equations

d =- p'F7(plt, ..., pet, zl, .., zm), (10.5)dt

involving the parameters pl, ..., pn. These equations admit a unique
set of solutions

zi(p, t), ..., zm(p, t),

all of which vanish with t. By substituting Xt for t it follows from the
form of (10.5) that

za(p, 1t) = za(Xp, t),

or that the solutions may be written

z(x) ...
,zm(x), ...(10.6)

where

x = pet.

Moreover, za(x) are of class 1 in some n-cell containing the origin (Bieber-
bach, loc. cit., pp. 39-41).
We remark in passing that (10.3) have at most one solution satisfying

the given initial conditions. For if u(x) and v(x) are any solutions,
u(pt) and v(pt) both satisfy (10.5), and vanish with t. But (10.5) only
admits one such solution for given values of p', ..., pn. Therefore u(x) =
v(x).
We have now to show that if the conditions (10.2) are satisfied, the

functions (10.6) satisfy (10.3). 'We have

=a JpiF'(ps, z(ps))ds.
0
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When x $ 0, therefore,

a2 1 be

= 1 ): {( a-; + a
x
ax s + } }

-~~~x 6J ?x x a x
c + s

bxi b
+

- aFfflj FiJ)p' ds, (10.7)

where we have integrated by parts and used the identities

- ~~(aZa _F t=o

to obtain the last equality. From these identities it also follows that
(10.3) are satisfied for x = 0. From (10.2) and (10.7) we have

t~~~~~~~P(aX- b)= , i F (a4 Fj dds
Therefore

Fj' ~---- Fr)

satisfy the differential equations

dYt = a, (t) yf, (10.8)
dt

where a (t)=pi 6F(pt, z(pt))

These functions are continuous and therefore there- is only one solution
which vanishes with t, namely, (0, ..., 0). Therefore

a = F7j(x, z),

and so (10.2) are sufficient conditions for (10.3) to be completely integrable.
They are obviously necessary, and so the theorem is established.
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