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In this paper we announce some new results con-
cerning second-order differential parabolic equation in
two independent variables. Equations of Monge–
Ampére type are distinguished among them. They are
characterized by the fact that the associated subsidiary
equations describing singularities of their multivalued
solutions have, in a sense, the simplest form. The struc-
ture of these subsidiary equations allows us to subdi-
vide the parabolic equations into four classes. Each of
them can be described as a special geometrical struc-
ture on 4-dimensional manifolds introduced below.
Moreover, this leads to a complete classification of the
considered parabolic equations with respect to the
group of contact transformations.

Our approach differs from the traditional one (see,
for instance, [5]) in the fact that we focus on the corre-
sponding subsidiary, or characteristic, equations rather
than on the original ones. This leads to a noteworthy
simplification. In [3, 4] this approach was used to con-
struct scalar differential invariants of hyperbolic
Monge–Ampére equations.

1. SECOND-ORDER PARABOLIC
AND MONGE–AMPÉRE EQUATIONS
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Below, we deal with second-order equations of this
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, in terms of which a local descrip-
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 looks like
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Equation (1) is called elliptic (parabolic, or hyperbolic)

if 
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 > 0 (= 0, or < 0, respectively) at all points
of 

 

�

 

. Intrinsically, these three types of equations are
distinguished from one another by the character of sin-
gularities that their multi-valued solutions admit (see
[1]). These singularities are described by subsidiary
equations. Equations for which these subsidiary equa-
tions are, in a sense, the simplest form the class of
Monge–Ampére (MA) equations. We have no possibil-
ity to discuss the details of this conceptual characteriza-
tion of MA equations and refer to the traditional
descriptive definition of MA equations as equations of
the form
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. For a coordinate-free but descriptive defini-
tion of MA equations, see, for instance, [6, 7]. The sub-
ject of this paper is parabolic MA equations, i.e., those
for which
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The first result concerning parabolic equations (1) is
somehow surprising.
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equations
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are bidimensional.

 

For parabolic MA equations (PMA), this cone
reduces to a plane.
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2. GEOMETRICAL INTERPRETATION
OF PARABOLIC MONGE–AMPÉRE EQUATIONS

Recall that 

 

J1(E, 2) is canonically supplied with a
contact distribution C given locally by the Pfaff equa-
tion du – pdx – qdy = 0. Vector fields X and Y belonging
to C are called C-orthogonal if [X, Y] belongs to C as
well. Obviously, C-orthogonality is a C∞(J1(E, 2))-lin-
ear condition. If C is locally given by a Pfaff equation
ω = 0, where ω is a 1-form, then X and Y are C-orthog-
onal iff dω(X, Y) = 0. A bidimensional subdistribution
D ⊂ C is called Lagrangian if any two vector fields
belonging to it are C-orthogonal.

Let D be Lagrangian. Denote by L(1)(E, 2) the first
jet prolongation of a bidimensional submanifold L ⊂ E.
The condition

(4)

determines a second-order differential equation
imposed on bidimensional submanifolds of E. Denote it
by �D ⊂ J2(E, 2). So, by definition, L ⊂ E is a solution
of �D iff (4) holds.

Proposition 1. The correspondence 1. D � �D

between the Lagrangian distributions on J1(E, 2) and
the parabolic Monge–Ampére equations imposed on
2-dimensional submanifolds of E is biunique.

We use D� to denote the Lagrangian distribution
corresponding to a parabolic Monge–Ampére equation
� ⊂ J2(E, 2), and 〈X, Y〉 stands for the bidimensional
distribution generated by vector fields X, Y. Then, for
Eq. (2), we have

assuming that N ≠ 0. If N = 0, i.e., (2) is quasilinear,
then

Proposition 1 suggests the idea to define generalized
PMA equations as triples of the form � = (M, C, D),
where C is a contact distribution on a 5-fold M and D is
a Lagrangian subdistribution of C. A solution of � is
defined to be a Legendrian submanifold S of M such
that

In what follows, the term parabolic Monge–Ampére
(PMA) equation will refer to such a triple.

3. DIRECTING DISTRIBUTION

A PMA equation � = (M, C, D) is called integrable
if D is integrable.

dim Tθ L 1( )( ) Dθ∩{ } 0, θ∀ L 1( )∈>

D� ∂x p∂u
C
N
----∂p–

B
2N
-------∂q,+ +=

∂y q∂u
B

2N
-------∂p

A
N
----∂q–+ + ,

D� ∂x
B

2A
-------∂y p

B
2A
-------q+⎝ ⎠

⎛ ⎞ ∂u
D
A
----∂p–+ +

B
2A
-------∂p ∂q–, .=

dim Tθ S( ) Dθ∩{ } 0, θ∀ S.∈>

Theorem 2. All integrable PMA equations are
locally contact equivalent to one another and, in par-
ticular, to the equation uxx = 0.

So, further on we concentrate on nonintegrable
PMA equations. In this case the first prolongation D(1)
of D, i.e., the span of vector fields belonging to D and
their commutators, is 3-dimensional and belongs to C.
The C-orthogonal complement R of D(1) is 1-dimen-
sional and belongs to D. In this way, we obtain the fol-
lowing flag of distributions:

R is called the directly distribution of D (alternatively,
of �).

Obviously, the distribution D' = {X ∈ D(1)| [X, R] ∈
D(1)} contains D. Since D' ⊂ D(1), there are two possibil-
ities (except the eventual singular points): either D' = D
or D' = D(1).

A PMA equation is called generic if D' = D and is
called special if D' = D(1). Since the distribution D(1) is
the C-orthogonal complement of R in C, it is uniquely
determined by R. Therefore, D' is uniquely determined
by R as well. This shows that a generic PMA equation
is uniquely determined by its directing distribution. On
the contrary, it does not hold for special PMA equa-
tions. In this case, R is the characteristic distribution of
D(1) and any 1-dimensional distribution R' ∈ D(1) trans-
versal to R defines a special PMA equation D = R ⊕ R'
for which R is the directing distribution.

4. PROJECTIVE CURVE BUNDLES
AND THE ASSOCIATED PMA EQUATIONS

Let N be a 4-dimensional manifold and pτ*:
PT*N → N be the projectivization of the cotangent
bundle T*N → N. By definition the fiber of pτ* over
a point y ∈ N is the 3-dimensional projective space

N of 1-dimensional subspaces of . A projec-
tive curve bundle (PCB) over N is a 1-dimensional sub-
bundle π: K → N of pτ*. Its fiber Fy = π–1(y) is a
(smooth) curve in the projective space N. If the
curve Fy is not projectively flat at a point θ ∈ Fy, then θ
is called regular. A PCB is regular if all the points of the
curves composing it are regular.

A diffeomorphism Φ: N → N' lifts canonically to a
fibered diffeomorphism PT*N → PT*N ' which sends a
PCB over N to a PCB over N'. Such two PCBs are called
equivalent (via Φ).

Let θ ∈ N and θ = 〈ρ〉 with ρ ∈ . Then
Wθ = {ξ ∈ TyN}| ρ(ξ) = 0} is a 3-dimensional subspace
of TyN. Put

R D D 1( ) C.⊂ ⊂ ⊂

PTy* Ty*N

PTy*

PTy* Ty*N

Vθ η TθK | dθπ η( ) Wθ∈ ∈{ } TθK .⊂=
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Then Cπ: θ � Vθ is a 4-dimensional distribution on K
containing the distribution vert(π) of tangent lines to
fibers of π.

Proposition 2. If π is a regular PCB, then the distri-
bution Cπ is a contact structure on K.

In view of this proposition, Cπ-orthogonal to
vert(π), the subdistribution of Cπ, denoted by vert⊥(π),
is well-defined and we put

Theorem 3. If π is a regular PCB, then Dπ is a
Lagrangian distribution with respect to Cπ and, hence,
(K, Cπ, Dπ) is a generic parabolic Monge–Ampére
equation whose directing distribution is vert(π). Con-
versely, any generic parabolic Monge–Ampére equa-
tion is locally equivalent to such one.

Corollary 1. The problem of local contact classifi-
cation of generic PMA equations is equivalent to the
problem of local classification of regular PCBs with
respect to diffeomorphisms of base manifolds.

5. SPECIAL PMA EQUATIONS AND FRINGES

Let N be a 4-dimensional manifold supplied with a
2-dimensional distribution Q. The subbundle  = Q:
NQ → N of pτ* associated with Q is defined as

Note that fibers of ρ are projective lines in PT*N and
dimNQ = 5. Therefore,  is an (irregular) PCB.

The projectivization pτ: PTN → N of the tangent
bundle of N contains a 1-dimensional subbundle ι = ιQ:
NQ → N composed of all tangent lines to N belonging
to Q. A fringe over Q is a map Ψ: NQ → NQ such that
Ψ( –1(y)) ⊂ ι–1(y), ∀y ∈ N. A 2-dimensional distribu-
tion DΨ on NQ is naturally associated with a fringe Ψ:

Consider the 4-dimensional distribution  on NQ

associated with PCB  (see the previous section).
Proposition 3. If Q is not integrable, then the distri-

bution  is a contact structure on NQ with respect to
which DΨ is Lagrangian for any fringe Ψ over Q and
�Ψ = (NQ, , DΨ) is a special PMA equation with
directing distribution vert( ).

Now we describe two model nonintegrable
2-dimensional distributions on 4-dimensional mani-

folds. Let  be the Cartan distribution on the kth-
order jet bundle Jk(α) of the trivial bundle α: � × � →
�. It is bidimensional. The 4-dimensional manifold
J1(α) × � possesses a natural 2-dimensional distribu-

Dπ X vert⊥ π( )| X vert π( ),[ ] vert⊥ π( )⊂∈{ }.=

ζρ ζρ

NQ θ PT*N | Wθ Qpτ* θ( )⊃∈{ } PT*N ,⊂=

pτ* NQ
.=ρ

ζρ

ζρ

ζρDΨ: θ � ξ Tθ NQ( )| dθ  ξ( ) Ψ θ( )∈ ∈{ }.

Cζρ

ζρ

Cζρ

Cζρ

ζρ

Cα
k

tion  × 0, which is the direct product of the contact

distribution  on J1(α) and the zero distribution on �.

This is the first model. The second is  on J2(α).

Theorem 4. Any special PMA equation is locally
contact equivalent to �Ψ with Ψ being a fringe either

over  × 0 or over  and vice versa.

Corollary 2. The problem of local contact classifi-
cation of special PMA equations is equivalent to that of
local classification of fringes over the model distribu-

tions J1(α) × � and  with respect to diffeomor-
phisms preserving these distributions.

It is not difficult to see that these diffeomorphisms
are either fiberwise contact diffeomorphisms of the
bundle J1(α) × � → � in the first case or, lifted to J2(α),
contact diffeomorphisms of the contact manifold

(J1(α), ) in the second case.

Corollary 3. Any special PMA equation is locally
contact equivalent to a quasilinear one.

6. DIFFERENTIAL INVARIANTS AND CONTACT 
CLASSIFICATION

It follows from Theorems 3 and 4 that nonintegrable
PMA equations are subdivided into 3 classes: first,
generic equations; then, special ones associated with

fringes over ; and, finally, special equations associ-

ated with fringes over  × 0. We refer to them as G,
SG, and SI, respectively. Canonical models of PMA
equations described in these theorems immediately
suggest a construction of scalar differential invariants
that turn out to be sufficient for a complete classifica-
tion of PMA equations on the basis of the principle of
n-invariants (see [10, 11]). A general idea of how it can
be done in each of these three cases is as follow.

I. Type G. In this case we look for (scalar) differen-
tial invariants of PCBs with respect to diffeomorphisms
of base manifolds. Let � be a scalar projective differen-
tial invariant of curves in �P3, say, the projective cur-
vature (see [8, 9]); Θ ∈ K; and y = π(Θ) (see Section 4).
The value of this invariant for the curve π–1(y) in 
is a function on this curve. Denote it by �π, y and put
�π(Θ) = �π, y(Θ). Then �π ∈ C∞(K) is a differential
invariant of the PCB π and, as such, of the PMA equa-
tion associated with π.

II. Type SG. In this case we are interested in differ-
ential invariants of fringes with respect to the group of
diffeomorphisms of J2(α) preserving the distribution

. Let � be a (scalar) differential invariant of maps
�P1 → �P1 with respect to a natural action of the group
SL(2) × SL(2) on them. Denote by Ψy: –1(y) → ι–1(y) the
restriction of the fringe Ψ: NQ → NQ over Q (see Sec-

Cα
1

Cα
1

Cα
2

Cα
1 Cα

2

Cα
2

Cα
1

Cα
2

Cα
1

PTy*

Cα
2
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tion 5) to –1(y), y ∈ J2(α). Ψy is a map of one projective
line to another. Put �Ψ(Θ) = �Ψ, y(Θ) with �Ψ, y being
the value of the invariant � for Ψy. Then �Ψ ∈ C∞(NQ)
is a differential invariant of Ψ with respect to contact
transformations of J2(α).

III. Type SI. In this case, the construction of invari-
ants of the type �Ψ is identical to the preceding case.

Theorem 5. The differential invariants of one of the
forms �π, �Ψ are sufficient for a complete classification
of generic and special PMA equations, respectively, on
the basis of the principle of n-invariants.

Concerning the principle of n-invariants, we refer
the reader to [10, 11]. A detailed description of these
and some more delicate invariants constructed on the
basis of the proposed geometrical interpretation of
PMA equations will be given in a joint paper by D. Cat-
alano Ferraioli and the author. This interpretation has a
number of other applications to the theory of PMA
equations, which will be discussed elsewhere.
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