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Foreword

The idea of parallel transport along a path in a Riemannian manifold gave

birth to the concept of a linear connection on M at the end of 19th century.

Subsequently, it was extended to arbitrary vector bundles and much later,

at the time of the Second War, to general bundles. According to the now

standard approach, which is mainly due to Ch. Ehresmann, a connection

in a fiber bundle is just a distribution of ‘horizontal planes’ on its total

space. Duly specified to various types of fiber bundles this approach leads

to connections of a particular interest, such as affine or linear. Geometrical

clarity and apparent simplicity is an important advantage of Ehresmann’s

approach, which, unfortunately, is well balanced by a not negligible disad-

vantage. Namely, it gives almost no constructive indications on the opera-

tive machinery to work with. In particular, it does not allow an immediate

natural extension of the theory to some recently emerged situations of a

noteworthy importance such as supermanifolds (graded commutative alge-

bras) or secondary calculus (see [Vinogradov (2001)]). Indeed, it would

be hardly possible even to imagine what is a secondary (‘quantized’) con-

nection in terms of a distribution of horizontal planes. Moreover, in field

theory one deals directly with fields which may be, or not be interpreted

as sections of a vector bundle but not with the bundle as such. So, in

this context a connection must be defined as a construction which is per-

tinent to the fields ‘in person’. This kind considerations and the fact that

differential calculus is, in reality, an aspect of commutative algebra (see

[Nestruev]) plainly indicate that a natural framework for the theory of lin-

ear connections is differential calculus in the category of modules over a

(graded) commutative ground algebra. This point of view combines natu-

rally with the idea to treat a vector bundle as a ‘fat’ manifold composed

of ‘fat’ points that are its fibers. By using the term ‘fat point’ we refer to

vii
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an object possessing an ‘inner structure’ whose constituents, nevertheless,

cannot be directly observed, i.e., something like an elementary particle. In

the theory of gauge fields one deals, as a matter of fact, with fat points. In

this context unobservability of the constituents is formalized by means of a

suitable symmetry group that produce the necessary inseparable mixture.

These and other similar considerations leads to suppose existence of

a ‘fat’ analogue of differential calculus on a fat manifold well adopted to

treat various questions concerning a given vector bundle(s) and, in partic-

ular, connections in it. Such an analogue positively exists and the gauge

freedom is an inherent feature of it. On the other hand, connections in the

context of this ‘fat’ calculus play the role of a mechanism naturally effecting

interrelations among fat points.

In these notes we present some basic elements of the fat calculus and

then, on its basis, develop the theory of linear connections. In a sense this

text may be viewed as a translation of the classical theory of linear connec-

tions in smooth vector bundles into its native language. An extension of

the domain of the theory of linear connections much beyond its traditional

differential geometry frames is one of results of this translation. For in-

stance, this way one discovers that families of vector spaces over a smooth

manifold different from vector bundles can also possess connections as well

as vector bundles over manifolds with singularities. Another advantage of

this new language is that it simplifies noteworthy working techniques and

manipulations with connections by offering simple algebraic computations

as a substitute for non infrequently ponderous geometrical constructions.

In addition, it makes much easier to perceive more delicate aspects of the

theory. An instance of that is the notion of compatibility of two connections

along a morphism of vector bundles, introduced and studied in these notes

for the first time.

These notes are structured along the following lines. The introduc-

tive zeroth chapter contains an algebraic interpretation of some basic facts

of differential calculus on smooth manifolds that are brought to the form

allowing a direct ‘fat’ generalization. Materials gathered in this chapter

make the subsequent exposition self-contained and accessible for graduate

students.

Fat manifolds and first elements of ‘fat calculus’ are introduced and

discussed in the 1-st chapter. A fat manifold is simply a pair composed of

a smooth manifold and a vector bundle on it. This notion, synonymous by

itself to that of vector bundle, acquires, nevertheless, a new meaning in the

context of fat calculus. This subtle but important difference is similar to
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that between ‘just a particle’ and a charged particle. A general algebraic

counterpart of fat manifolds is a pair composed of a commutative algebra

and a module over it. A good deal of fat calculus can be developed in this

algebraic context and we do that as much as possible. In the 1-st chapter we

discuss only simplest elements of fat calculus such as fat tangent vectors, fat

vector fields, etc., simultaneously, with their algebraic counterparts. Other

fat notions are introduced as required in the course the exposition.

A fat manifold may be viewed as the result of a ‘thickening’ of the un-

derlying ordinary manifold, say, M . A natural question is whether this

thickening can be extended to other geometrical structures on M . In par-

ticular, the problem of a simultaneous thickening of vector fields onM leads

to discover the notion of a linear connection in the corresponding vector

bundle. In chapter 2 the theory of linear connections is build on the basis

of this idea. The main tools in doing that are fat differential calculus on

M and its algebraic counterpart. Among other things, here we construct

some exotic examples of connections already mentioned above and describe

basic operations of linear algebra with connections.

More fine elements of the theory of connections are developed in the

3-rd chapter. Covariant differential, duly interpreted, is the conceptual

center of our exposition here. In particular, we show that a connection can

be understood as a cd-module structure in the graded algebra of thickened

differential forms. This fact makes possible to introduce the concept of

compatibility of two connections and the concept of a connection along a

fat map. From one side, this enriches the standard theory of connections

with morphisms and relative objects and, from the other side, allows to

develop a more satisfactory theory of the covariant Lie derivation.

The covariant differential of a flat connection transforms the algebra of

thickened form into a complex. This kind of cohomology is studied at the

beginning of the concluding 4-th chapter. The main result here is the fat

homotopy formula, which is surprisingly valid even for cd-modules. As a

curiosity we show that the parallel translation along a curve is described

naturally by the ‘fat Newton-Leibniz formula’.

A cd-module associated with a connection is not, generally, a complex.

Nevertheless, there are naturally related with it differential complexes fur-

nishing connections with cohomological invariants. We interpret Maxwell’s

equations as dynamics of gauge equivalence classes of connections over the

fat Minkowski space-time in order to illustrate importance of this aspect

in the theory of connections. The theory of characteristic classes of gauge

structures is the final accord of these notes. Indeed, many elements of the



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

x Fat Manifolds and Linear Connections

previously developed theory are here shown in a common action.

Linear connections appear naturally in many areas of mathematics by

starting from abstract algebra and up to mathematical physics. A finite

separable extension of an algebraic field is supplied canonically with a flat

connection. This elementary fact is easily seen from the point of view pre-

sented in these notes. On the other hand, the cohomology of the associated

with this connection de Rham like complex is an invariant of the extension

and a natural question is what are these and, in particular, how to com-

pute them. Some hints about one can extract from differential geometry

where flat connection cohomology appears as the de Rham cohomology with

‘twisted coefficients’. Moreover, this kind cohomology appears in some sit-

uations in (physical) field theory, etc. This simple example illustrates why

a unified point of view on connections could be of interest and our hopes

are that these notes would be useful as a reference point to the subject.
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Chapter 0

Elements of Differential Calculus

over Commutative Algebras

In this chapter all necessary notions and facts forming the starting point of

the further exposition are collected. First of all this is done in order to make

this book self-contained modulo ‘undergraduate’ mathematics. The sug-

gested reference textbooks are [Singer and Thorpe (1976)] and [Mac Lane

and Birkhoff (1967)]. On the other hand, we present some standard elemen-

tary topics in a different perspective which better fits our goals. The book
[Nestruev (2003)] is highly recommended to the reader who is interested in

better understanding the origin and motivation of the algebraic approach

to Differential Calculus we follow in this book. Basically, terms that are

not explicitly defined here are tacitly assumed to be borrowed from the

aforementioned books (in reverse order of priority).

0.1 Algebraic Tools

In this section the needed algebraic terminology is set up. The degree of

generality is tuned in view of applications in the subsequent exposition.

0.1.1 General Conventions

All rings are assumed to posses the identity element 1 (but not all rings

will be commutative); all ring homomorphisms are assumed to preserve

the identity element. A k-algebra is not necessarily commutative, but the

base ring k is always assumed to be commutative. Nevertheless, most of

the algebras considered here will be commutative. In particular, in most

cases there will be no distinctions between left and right modules. When

the distinction takes place, ‘module’ stands for ‘left module’. The dual

module Hom (P,A) of an A-module P will be denoted by P∨. We say that

1
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a projective and finitely generated A-module P has constant rank r if for

all maximal ideals m of A the dimension of the A/m–vector space P/mP

is r.

There will be generally no a priori choices for universal constructions.

For instance, ‘direct sum’ and ‘coproduct’ in thus book are synonymous.

When a direct sum, tensor product, extension of scalars, etc., is invoked, the

reader may fix any object that satisfies the appropriate universal property,

unless a particular choice is explicitly indicated.

As usual, graded algebras and graded modules will be ‘internally graded’,

that is, direct sums of their components (cf. [Mac Lane and Birkhoff (1967),

Chap. XVI, Appendix to Sect. 3 (p. 546)]). The index set will always be

N0 = {0, 1, 2, . . .}, homogeneous components will be denoted by subscripts

and a component with a negative subscript will be zero by convention. If

A is a graded k-algebra and P is a graded k-module equipped with a ‘k-

compatible’ A-module structure, then P will be called a graded A-module,

provided that (1)

arps ∈ Pr+s, ar ∈ Ar, ps ∈ Ps .

A graded k-algebra A will be called commutative if it is commutative as a

ring; it will be called graded commutative (2) if

ara
′
s = (−1)

rs
a′sar, ar ∈ Ar, a

′
s ∈ As

A homomorphism

ϕ : P → Q

of graded k-modules will be called a graded homomorphism of n-th degree

(n ∈ Z) if for all s,

ps ∈ Ps =⇒ ϕ (ps) ∈ Qs+n .

When P and Q are graded A-modules, with A being a graded commutative

k-algebra, ϕ is a graded homomorphism of A-modules (of n-th degree), if,

in addition,

ϕ (arps) = (−1)rnarϕ (ps) , ar ∈ Ar, ps ∈ Ps .

If P andQ are itself graded k-algebras, ϕ will be a graded algebra homomor-

phism if it is both a ring homomorphism and a zeroth degree homomorphism

of graded k-modules.

1As usual, the components of the direct sums (=coproducts) A and P are identified
here with their images through the natural monomorphisms Ar ↪→ A and Ps ↪→ P .
2The definition of a commutative graded algebra given in [Mac Lane and Birkhoff

(1967), Chap. XVI, Sect. 4 (p. 551)] corresponds to the present definition of a graded

commutative algebra.
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In this book, a cochain complex (or, for short, complex ) is a graded

module P together with a first degree homomorphism d : P → P such that

d ◦ d = 0, which is called differential. If (P , d) and
(
P ′, d′

)
are complexes, a

zeroth degree homomorphism ϕ : P → P ′ will be called a homomorphism of

complexes or a cochain homomorphism, if it commutes with the differentials,

i.e., ϕ ◦ d = d′ ◦ϕ.

Commutators will always be understood in the sense of ring theory, i.e.,

[a, b] = ab− ba. If A is a graded k-algebra then the graded commutator of

ar ∈ Ar and a′s ∈ As will be

[ar, a
′
s]

(gr) def
= ara

′
s − (−1)rs a′sar .

Similarly, if P is a graded k-module and ϕr, ψs are graded endomorphisms

of P of r-th and s-th degree, respectively, then the graded commutator of

ϕr and ψs is the graded endomorphism [ϕr, ψs]
(gr)

= ϕr◦ψs−(−1)
rs
ψs◦ϕr.

0.1.2 Differential Operators

Let A be a commutative k-algebra, with k being a field, and P , Q modules

over A. If a ∈ A and ∆ : P → Q is a k-homomorphism, the commutator

[∆, a] : P → Q

makes sense provided that a is identified with the multiplication by a op-

erators in P and Q, respectively. Define inductively

Diff0(P,Q)
def
= HomA(P,Q) = {∆ : [∆, a] = 0 ∀a ∈ A},

Diffn(P,Q)
def
= {∆ : [∆, a] ∈ Diffn−1(P,Q) ∀a ∈ A},

Diff(P,Q)
def
=
⋃

n

Diffn(P,Q) .

Equivalently, ∆ ∈ Diffn(P,Q) if and only if

[. . . [[∆, a0] , a1] , . . . , an] = 0, ∀a0, a1, . . . , an ∈ A .

These sets admit two natural A-module structures

a∆
def
= a ◦∆, a+∆

def
= ∆ ◦ a .

The notation Diff(P,Q) usually refers to the first one, while Diff+(P,Q)

is used for the second, and Diff(+)(P,Q) is used to denote the bimodule.

Elements of these modules are called linear differential operators from P

to Q. The interested reader is referred to [Nestruev (2003), 9.66, 9.67] for

more details.
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0.1.3 Derivations

Let A be a commutative k-algebra and P an A-module. A derivation of A

into P is a linear over k function

∆ : A→ P

that fulfills the Leibnitz rule

∆(ab) = a∆(b) + b∆(a), a, b ∈ A .

Such a function is sometimes also called k-derivation (this may be useful

when more than one algebra structure on the same ring are under consid-

eration). The set of all derivations of A into P , equipped with the natural

A-module structure

(a∆) (a′)
def
= a (∆ (a′)) , a, a′ ∈ A ,

will be denoted by D(P ), or sometimes by Dk(P ). In particular, D(A) is the

A-module of all derivations of A into itself (often shortly called ‘derivations

of A’). Take notice that D(A) is not, generally, a subring of Endk (A) (with

the operation of function composition). However, it is easily checked that

the commutator of elements of D (A) lies again in D (A) (see, e.g., [Nestruev

(2003), 9.53]).

If ϕ : A → B is a homomorphism of commutative k-algebras, a deriva-

tion along ϕ will be a derivation A→ B with B considered as an A-module

via ϕ. The set of all derivations along ϕ, equipped with the natural B-

module structure

(b∆) (a)
def
= b (∆ (a)) , a ∈ A, b ∈ B ,

will be denoted by D(A)ϕ.

Let A be a graded commutative algebra. An n-th degree graded module

endomorphism ∆ : A → A is called a graded derivation of A (into itself) if

it fulfills the following graded Leibnitz rule:

∆(asa
′) = ∆(as)a

′ + (−1)nsas∆(a′), as ∈ As, a
′ ∈ A ,

for all s.

0.1.4 Additive Functions on Tensor Products

Let A be a commutative ring. As usual, an A-module homomorphism

P ⊗Q→ R
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will often be determined by means of an assignment such as

p⊗ q 7→ b(p, q) ,

provided that the expression b(p, q) is A-bilinear. Occasionally in this book,

there will be needed functions P ⊗ Q → R that are not A-module homo-

morphisms. To recognize if an assignment

p⊗ q 7→ f(p, q) ,

gives a well-defined additive function, it suffices to check that f : P×Q→ R

is biadditive and satisfies

f(ap, q) = f(p, aq), a ∈ A, p ∈ P, q ∈ Q

(see, e.g., [Hilton and Stammbach (1971), Chap. III, Theorem 7.2]).

0.1.5 Some Basic Facts

Let ϕ : A → B be a homomorphism of commutative rings, P , P1, . . . , Pn

modules over A, Q a module over B, QA the A-module obtained from Q

by restriction of scalars, PB , P1B , . . . , PnB the B-modules obtained from

P , P1, . . . , Pn by extension of scalars, and ν : P → PB , ν1 : P1 → P1B , . . .,

νn : Pn → PnB the universal homomorphisms. In the sequel the following

simple facts are supposed to be known.

(1) If P is projective, then PB is projective (see, e.g., [Nestruev (2003),

11.52]).

(2) For every multilinear function of A-modules

b : P1 × · · · × Pn → QA ,

there is exactly one multilinear function of B-modules

b : P1B × · · · × PnB → Q

such that

b = b ◦ (ν1 × · · · × νn) .

(3) In the above situation, if P1 = · · · = Pn and b is alternating or sym-

metric, then b is, respectively, alternating or symmetric.

(4) There exists exactly one graded A-homomorphism between (fixed) ex-

terior algebras ∧•
QA →

∧•
Q

such that the first degree component is the identity map of Q (3).

3As usual, the first degree components of tensor, symmetric and exterior algebras of a
module are supposed to be identified with the module itself. We use the symbol

∧
• for

exterior algebras.
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(5) The graded algebra obtained from
∧•P by extension of scalars is an

exterior algebra of PB :

B ⊗A

(∧•
P
)

=
∧•

(B ⊗A P )

(it follows form (3)).

(6) If P is projective and finitely generated then the natural homomor-

phism P → P∨∨
is an isomorphism (4).

(7) If either P or P1 is projective and finitely generated then the natural

homomorphism

P∨ ⊗ P1 → Hom (P, P1)

is an isomorphism.

(8) If P is projective and finitely generated, then PB
∨ is a module obtained

from P∨ by extension of scalars via ϕ, where the universal homomor-

phism

µ : P∨ → PB
∨

is determined by

µ (α) (ν(p)) = ϕ (α(p)) , p ∈ P, α ∈ P∨

(it follows from (7)).

(9) More generally, if P is projective and finitely generated, then

HomB (PB , P1B) is a module obtained from Hom (P, P1) by extension

of scalars via ϕ.

(10) If P is projective, finitely generated and of constant rank 1 then all its

endomorphisms are multiplication by scalars operators (5).

(11) There exists a natural decomposition

∧•
(P ⊕ P1) =

∧•
P ⊗

∧•
P1

(see [Bourbaki (1989), Chap. III, Sect. 7.7]).

(12) If P is projective and finitely generated, then
∧n

P is projective and

finitely generated for all n ∈ N0 (it follows from (11)).

4This result and the following (7) easily follow from the fact that the natural homo-
morphisms involved are compatible with finite direct sums.
5It follows from (9) and Nakayama’s Lemma (see, e.g., [Atiyah and Macdonald (1969),

Proposition 2.6]; take also into account [Atiyah and Macdonald (1969), Chap. 2, Exer-
cises, n. 10 (p. 32) and Proposition 3.9]).
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0.1.6 Equivalence of Categories

A functor E : A → C is called an equivalence of categories if there exists

a functor F : C → A and natural isomorphisms η : IC
∼
→ E ◦ F and

ε : F ◦ E
∼
→ IA, where IA, IC denote the identity functors (see [Mac Lane

(1971), Chap. 4, Sect. 4 (p. 91)]).

Suppose that, in addition, the following triangular identities are fulfilled

for all objects C of C and A of A:

E (εA) ◦ ηE(A) = idE(A), εF(C) ◦ F (ηC) = idF(C) . (0.1)

Then η and ε determine an adjunction ϕ (6): see [Mac Lane (1971),

Chap. IV, Sect. 1, Theorem 2, (v) (p. 81)]; cf. also [Mac Lane and Birkhoff

(1967), Chap. XV, Sect. 8, Exercise 12 (p. 535)]. The transformation η is

called the unit and ε the counit of the adjunction. In this case the triple

(F , E , ϕ) is called an adjoint equivalence: see [Mac Lane (1971), Chap. IV,

Sect. 4 (p. 91)] (7).

A functor is said to be full if, for all pairs of objects, the map on mor-

phisms are surjective. The notion of a faithful functor is obtained by re-

placing ‘surjective’ with ‘injective’. Every equivalence E : A → C is a full

and faithful functor with the property that every object of C is isomorphic

to E(A) for some object A of A: see [Mac Lane (1971), Chap. IV, Sect. 4,

Theorem 1 (p. 91)]. By the same theorem, if a full and faithful functor

A→ C is such that every object of C is isomorphic to the correspondent of

some object of A, then it is part of an adjoint equivalence. In particular, if

η : IC
∼
→ E ◦F and ε : F ◦ E

∼
→ IA are natural isomorphisms, then E is part

of an adjoint equivalence. However, this does not imply, generally, that η

and ε satisfy the triangular identities (0.1), because the unit and counit

of the so-obtained adjoint equivalence do not necessarily coincide with η

and ε.

0.2 Smooth Manifolds

In this section, we recall some basic facts concerning the algebraic interpre-

tation of the theory of smooth manifolds. For additional information, see
[Nestruev (2003)].

6Be aware that, when ϕ is an adjunction of F : C → A to E : A → C in the sense of
our reference book [Mac Lane and Birkhoff (1967)], then the triple (F , E , ϕ) is called an
adjunction from C to A in [Mac Lane (1971)].
7In [Mac Lane (1971)], when an adjunction of F to E is determined by η and ε, it is

also denoted by 〈F , E , η, ε〉: see [Mac Lane (1971), Chap. IV, Sect. 1 (p. 81)].
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0.2.1 Dual Space

Let k be a field and A a commutative k-algebra. A k-point of A is a

k-algebra homomorphism

A→ k ;

the dual space |A| of A is the set of all k-points of A (8).

0.2.2 Geometric Algebras

Each element a in the commutative k-algebra A gives rise to the real func-

tion

ã : |A| → k

defined by the formula

ã (m)
def
= m (a) .

Plainly, the set Ã = {ã : a ∈ A} is a subalgebra of the k-algebra of all

k-valued functions defined on |A| and

τ : A→ Ã, a 7→ ã

is a surjective k-algebra homomorphism (cf. [Nestruev (2003), 3.4]). When

τ is an isomorphism (i.e., it is also injective), each a will often be identified

with ã, and therefore A with Ã. This way, elements a ∈ A will be viewed

as functions |A| → k by means of the equality

a(m) = m(a) m ∈M,a ∈ A

(where the left-hand side is ‘abusive’, while the right-hand side is formally

correct; cf. [Nestruev (2003), 3.8]).

Definition. When k = R and τ is an isomorphism, the commutative R-

algebra A is said to be geometric (9).
8This definition is taken from [Nestruev (2003), 3.4] with R replaced by an arbitrary field

k (cf. the footnote of [Nestruev (2003), Preface]). In [Nestruev (2003), Definition 8.4],
one may find an extension of this concept, for a K-point of A is introduced, with K ⊇ k
being a ring without zero divisors. When K = k, this notion reduces to the former,
up to an obvious identification of a k-point with its singleton. Readers acquainted with
schemes will easily recognize that K-points of A correspond to points of the k-scheme
Spec A with a residue field isomorphic over k to the quotient field of K (cf. [Hartshorne
(1977), Chap. II, Exercise 2.7]). It follows that |A| may be identified with the set of all
points of Spec A that are rational over k.
9Although this notion would make sense over an arbitrary field, a geometric algebra

will be always understood over the field R.
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0.2.3 Natural Topology

Let A be a geometric algebra. Among all topologies on the dual space |A|

such that all functions a ∈ A are continuous (with respect to the usual

topology of R), there obviously exists a weakest one. This is called the

natural topology on |A|. The dual space |A| will always be understood as a

topological space by means of its natural topology (10).

A basis for the natural topology of |A| is

B =
{
a−1 (U) : a ∈ A and U is open in the usual topology of R

}
;

cf. [Nestruev (2003), 3.12] (11).

0.2.4 Dual Map

If ϕ : A→ B is a homomorphism of geometric algebras, the map

|ϕ| : |A| → |B|, h 7→ h ◦ ϕ

will be called the dual map of ϕ.

Note that, for all a ∈ A,

ϕ(a) = a ◦ |ϕ|

(up to the identification introduced in n. 0.2.2). Thus, ϕ may be recovered

from |ϕ| (12).

It is easy to show that the dual map is continuous (see [Nestruev (2003),

3.19]).

10For algebras over an arbitrary field k, the topology which is customarily considered is
the Zariski topology, that is, induced on |A| from the usual Zariski topology of Spec A
(see [Nestruev (2003), 8.8–8.10]). It generally differs from the natural one when k = R;
however (a bit surprisingly) they coincide in the cases of our main interest. For instance,
with the help of [Nestruev (2003), 2.4, 3.16], it is not a difficult exercise to show this
fact in the case when A = C∞(U), the algebra of infinitely differentiable real-valued
functions on an open set U ⊆ Rn.
11It follows from

a−1
(
]a(m) − ε , a(m) + ε [

) ⋂
a′−1

(
] a′(m) − ε , a′(m) + ε [

)
⊇ b−1

(
] − 1 , ε2 [

)

with a, a′ ∈ A, m ∈ M , ε > 0 and

b = (a − a(m))2 +
(
a′ − a′(m)

)
2

.

12The definition of the dual map could be given for non-geometric algebras, but with
this general setting, the assertion would be false (even over R).
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0.2.5

Let A, B be geometric algebras and

f : |B| → |A|

a map such that

a ∈ A⇒ a ◦ f ∈ B .

The correspondence

a 7→ a ◦ f

clearly preserves the algebra operations and therefore, it defines an R-

algebra homomorphism

ϕ : A→ B .

It is easily seen that f = |ϕ|.

0.2.6 Restriction Algebra

Let A be a geometric algebra and N a subset of |A|. Consider the set A|N
of all functions

N → R

that are locally restrictions of elements of A. This means that f ∈ A|N if

and only if every n ∈ N admits a neighborhood U in the subspace N ⊆ |A|

such that the restriction f |U coincides with a|U for some a ∈ A.

Plainly, A|N is a subalgebra of the R-algebra of all real-valued functions

on N . Following [Nestruev (2003), 3.23], the R-algebra A|N will be called

the restriction of A to N .

For each n ∈ N , define an evaluation homomorphism as

en : A|N → R, f 7→ f(n)

and, therefore, a map

µ : N → |A|N | n 7→ en .

Suppose that f ∈ A|N is such that f(h) = 0 for all h ∈ |A|N |. In

particular, f(en) = 0 for all n ∈ N . But f(en) = en(f) = f(n), hence

f(n) = 0 for all n ∈ N , that is, f = 0 in A|N . This shows that A|N is

geometric.

The restriction homomorphism is defined as the map

ρ : A→ A|N , f 7→ f |N .
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It is immediate to see that the composition

N
µ
−→ |A|N |

|ρ|
−→ |A|

is nothing but the inclusion map of N ⊆ |A|; moreover, it is not difficult

to check that µ is a homeomorphism onto its image (see [Nestruev (2003),

3.29]).

Finally, following [Nestruev (2003), 3.28], a geometric algebra A will be

said to be a complete algebra if the restriction homomorphism A → A||A|

is surjective (pay attention to N = |A|).

0.2.7 Smooth Algebras

A smooth algebra is defined below as in [Nestruev (2003), 4.1]. The dimen-

sion n is allowed to be zero. With this respect, the reasonable convention

that all real-valued functions on the single-point Euclidean space R0 are

smooth is assumed, so that C∞
(
R0
)
∼= R.

Definition. A smooth algebra of dimension n is a complete (geometric)

algebra A that admits a finite or countable open covering {Ui}i∈I of |A|

such that A|Ui
is isomorphic to C∞ (Rn) for all i.

According to the above definition, R is a zero-dimensional smooth al-

gebra. The zero R-algebra may be considered as a smooth algebra of inde-

terminate dimension.

A smooth algebra with boundary (of dimension n) is defined in the same

way, with the only change being that now the algebras A|Ui
are allowed to

be isomorphic, either to C∞(Rn) or to C∞(Rn
H), with

Rn
H = {(r1, . . . , rn) ∈ Rn : r1 ≥ 0}

being the (upper) half-space and the smooth functions on it being defined

as restrictions of smooth functions on Rn (see [Nestruev (2003), 4.2]).

0.2.8 C∞–closed Algebras

According to [Nestruev (2003), Definition 3.32], a geometric algebra A is

said to be C∞–closed if, for all f1, . . . fk ∈ A and g ∈ C∞(Rk), the function

f : |A| → R, h 7→ g (f1(h), . . . , fk(h))

belongs to A.
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Proposition. Smooth algebras and (more generally) smooth algebras with

boundary are C∞–closed.

Proof. See [Nestruev (2003), 4.4]. �

0.2.9 Smooth Manifolds

The Nestruev’s book presents two definitions of the term ‘smooth mani-

fold’ and discusses their interplay. Below, the algebraic definition (from
[Nestruev (2003), 4.1]) is assumed.

Definition. A (smooth) manifold is a pair (M,A), such that A is a smooth

algebra and M = |A| is the dual space of A.

Although M is determined by A, to make a concession to geometric

intuition, it is generally said that

M is a smooth manifold

and A is often implicitly assumed as given. Since smooth algebras are geo-

metric by definition, the convention of n. 0.2.2 and 0.2.3 apply. Accordingly,

M will be considered as a topological space and the elements of A will be

identified with real-valued functions by means of the equality

a (m) = m (a) m ∈M,a ∈ A .

They will be called smooth functions on M . The algebra of smooth functions

A on M is generally denoted by C∞(M).

The definition of a (smooth) manifold with boundary is plainly obtained

from Definition 0.2.9 by replacing ‘smooth algebra’ with ‘smooth algebra

with boundary’.

0.2.10 Smooth Maps

Definition. Let M and N be smooth manifolds, possibly with boundary.

A smooth map of N into M is the dual map |ϕ| of some R-algebra homo-

morphism

ϕ : C∞(M)→ C∞(N) .

A diffeomorphism is a smooth map that admits a smooth inverse.
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0.2.11 Associated Homomorphism

If f : N →M is a smooth map, according to n. 0.2.4, an R-algebra homo-

morphism ϕ : C∞(M)→ C∞(N) such that f = |ϕ| is uniquely determined.

Definition. The homomorphism ϕ will be said to be associated with f and

denoted by f∗.

0.2.12 Smoothness Condition

Proposition. A map f : N →M is smooth if and only if

a ∈ C∞(M)⇒ a ◦ f ∈ C∞(N)

and, in this case, f∗ is given by

a 7→ a ◦ f .

Proof. It trivially follows from nn. 0.2.4 and 0.2.5. �

As an immediate consequence we have that a composition g◦f of smooth

maps f : N →M and g : V → N is smooth and

(g ◦ f)
∗

= f∗ ◦ g∗ ;

besides, the identity idM is smooth and id∗
M = idC∞(M) (cf. [Nestruev

(2003), 6.6]).

Obviously, smooth manifolds, possibly with boundary, and smooth maps

constitute a category. Smooth manifolds without boundary constitute a full

subcategory which will be denoted by SMa (cf. [Nestruev (2003), 6.6]; the

subscript is to remind one that the algebraic definition is assumed).

0.2.13 Classical Definition of Manifolds

An extensive discussion about the consistency of the algebraic setting about

smooth manifolds with the classical one is the matter of [Nestruev (2003),

Chap. 7]. The main equivalence theorems will be reported below, after a

little preparation.

To fix the definition of an atlas, the reader is referred to [Nestruev

(2003), 5.5]. See [Nestruev (2003), 5.17] for the notion of a smooth function

with respect to an atlas. When referring to [Nestruev (2003), Chap. 5], take

into account that the term ‘smooth manifold’ is used there with its standard

‘coordinate meaning’ (see [Nestruev (2003), 5.8]). If A, B are atlases on the

sets M , N , respectively, a map N →M will be said smooth with respect to

B and A if it is smooth in the sense of [Nestruev (2003), 6.14].
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Proposition. In the above notation, a map f : N → M is smooth with

respect to B and A if and only if, for every function a : M → R that is

smooth with respect to A, the function a ◦ f is smooth with respect to B.

Proof. See [Nestruev (2003), 7.16]. �

If A is a maximal atlas on a set M , that satisfies countability and Haus-

dorff conditions (see [Nestruev (2003), 5.7]), then (M,A) is what is called a

smooth manifold in the common usage. Maps are said to be smooth when

they are smooth with respect to the structure atlases. The so-obtained

category will be denoted by SMc (where the subscript is to remind the

‘coordinate’ definition).

0.2.14 Associated Atlas

Theorem. Let M be a smooth manifold (without boundary). Then M is

a Hausdorff topological space with a countable basis, and there is a unique

maximal atlas A on M such that the R-algebra of functions that are smooth

with respect to A equals C∞(M).

Proof. The space M is Hausdorff by [Nestruev (2003), 3.13]. The fact

that M has a countable basis immediately follows from [Nestruev (2003),

7.8] and the fact that Rn has a countable basis. By [Nestruev (2003),

7.7], there exists an atlas A′ such that the algebra of functions that are

smooth with respect to A′ is C∞(M). It is a simple consequence of the

definition of the compatibility of atlases that an atlas A′′ determines the

same smooth functions as A′ if and only if it is compatible with A′. Hence,

the required atlas A is just the unique maximal atlas containing A′ (see
[Nestruev (2003), 5.5]). �

Definition. The maximal atlas A will be said to be associated with M .

Let f : N → M be a map and A, B be the atlases associated with M ,

N , respectively. From Propositions 0.2.12 and 0.2.13, it follows that f is

smooth if and only if it is smooth with respect to B and A.

0.2.15

Theorem. Let (M,A) be an object of SMc and A the R-algebra of func-

tions that are smooth with respect to the atlas A. Then

(1) A is a smooth R-algebra (without boundary);
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(2) the map

θM : M → |A|, m 7−→ hm ,

where

hm : A→ R, f 7→ f (m) ,

is a homeomorphism.

Proof. See [Nestruev (2003), Theorem 7.2]. �

In the above notation, if a ∈ A, then a ◦ θ−1
M coincides with a as a

function on |A|. Therefore, Proposition 0.2.13 easily implies that θM and

θ−1
M are smooth with respect to the A and the atlas A|A| associated with

the smooth manifold |A|.

0.2.16 The Equivalence E : SMa → SMc

From n. 0.2.14 it immediately follows that the assignments

E(M,C∞(M))
def
= (M,A), E(f)

def
= f ,

where A denotes the atlas associated with the smooth manifold M , define

a full and faithful functor

E : SMa → SMc .

According to n. 0.2.15, every object in SMc is diffeomorphic to the corre-

spondent through E of some object in SMa. Therefore, E is an equivalence

of categories (see n. 0.1.6).

More explicitly, denote by Ia and Ic the identity functors of SMa and

SMc, respectively, and, in notation of Theorem 0.2.15, let F : SMc →

SMa be the functor

(M,A) 7→
(
|A| , A

)
, f 7→ |ϕ|

with f : N →M and ϕ sending a ∈ A to a ◦ f . Then

M 7→ θM

defines a natural isomorphism

θ : Ic → E ◦ F ,

and

(M,C∞(M)) 7→ |τM | ,

with τM being the identification isomorphism of C∞(M) (see n. 0.2.2),

defines a natural isomorphism

ε : F ◦ E → Ia .
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0.2.17

It is easy to see that, in addition, E and F are part of an adjoint equivalence

with unit θ and counit ε, that is, the triangular identities (0.1), p. 7, are

satisfied (with θ in place of η).

0.2.18

Some basic results about smooth manifolds that are well-know in the co-

ordinate approach will sometimes be used: on the basis of the equivalence

theorem, recognizing their validity in the algebraic setting is a matter of

straightforward details. The same remark holds for the extension of these

results to manifolds with boundary (cf. [Nestruev (2003), 5.14, 7.12]). By

these reasons, references to elementary results about ‘coordinate smooth

manifolds’ will often be applied to ‘algebraic smooth manifolds with bound-

ary’ with no more explanations, except when in the presence of some non-

trivial details.

0.2.19

By the equivalence theorem, each manifold (M,A) in the classical sense

could be identified with the corresponding manifold (|A| , A), with A being

the algebra of smooth functions in the classical sense (i.e., smooth with

respect to A; cf. [Nestruev (2003), 7.19]). In the formal setting of this

book, it will not be necessary to make use of this identification, with the

following exception. An open subset U of a finite-dimensional vector space

E over R, which is canonically an object of SMc (through whatever vector

space isomorphism E
∼
→ Rn), will be identified with a smooth manifold

through the map

θU : U
∼
→ |A|

defined in the statement of Theorem 0.2.15. This identification will partic-

ularly be used for the whole space E and for open subsets of Rn.

Note that each function on |A| is identified with the function f ◦θ on U .

This way, real-valued functions on |A| that are smooth according to n. 0.2.9

are identified with functions on U ⊆ Rn that are smooth in the ordinary

sense (i.e., infinitely differentiable). This identification is the same as that

in n. 0.2.2.
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0.2.20 Submanifolds

Let M be a smooth manifold, possibly with boundary, N be a subset of M

and set A = C∞ (M). Recall that if µ and ρ are as in n. 0.2.6, then the

composition

N
µ
−→ |A|N |

|ρ|
−→M

is the inclusion map of N ⊆ M and µ maps N homeomorphically onto

its image.

Suppose that h ∈ |A|N | and set n = |ρ|(h). For all a ∈ A|N there exists

a function b ∈ A that coincides with a locally around n because of the

definition of A|N . Exploiting [Nestruev (2003), 4.17, (ii)] (13), one finds

f ∈ A such that f(n) = 1 and aρ(f) = ρ(bf). It follows that

h(a) = h(a)f(n) = h(a)h (ρ(f)) = h (aρ(f))

= h (ρ(bf)) = b(n)f(n) = b(n) = a(n) .

Hence h = µ(n). This shows that µ is surjective and, hence, a homeomor-

phism. (See also [Nestruev (2003), 3.32–3.33] for a more general discussion.)

Definition. If A|N is smooth then the manifold |A|N | will be called a

(smooth) submanifold of M and the smooth map |ρ| : |A|N | → M the

embedding of |A|N |.

The definition of a submanifold with boundary (and of its embedding)

is the same, but with the weakened requirement that A|N be smooth with

boundary.

Since the embedding |ρ| : |A|N | →M corresponds, through the homeo-

morphism µ : N → |A|N |, to the inclusion of N , it maps |A|N | homeomor-

phically onto N . Thus, the term ‘embedding’ is correct from a topological

viewpoint.

Points of |A|N | will be identified with their images through the embed-

ding (hence through µ−1). Thus, |A|N | may be identified with N . Accord-

ingly, a submanifold N ⊆M may be introduced by shortly saying

let N be a submanifold of M .

Note that each function |A|N | → R is identified with the function a◦µ :

N → R. By the definition of µ, smooth functions on |A|N | are so identified

with elements of A|N , so as to be consistent with n. 0.2.2. Therefore, A|N
may be denoted by C∞(N).
13Plainly, this result holds for a manifold with boundary as well.
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If N is an open subset of M then A|N is always a smooth algebra,

possibly with boundary. Therefore, an open submanifold of M is nothing

but an open subset of M , considered as a manifold according to the above

introduced identification.

Now suppose that C is a closed subset of M . Taking into account the

definition of the restriction algebra and using a suitable partition of unity,

one easily proves that the restriction homomorphism

ρ : C∞(M)→ C∞(M)|C

is surjective. On the other hand, it is not difficult to show that, when a

restriction homomorphism C∞(M) → C∞(M)|N is surjective, N is closed

(no matter whether C∞(M)|N is smooth or not; cf. [Nestruev (2003), 4.12,

(i)]). In conclusion, if the restriction algebra C∞(M)|C to a closed subset

C ⊆ M is smooth, then C may be called a closed submanifold of M ,

consistently with [Nestruev (2003), 4.11]. Similarly, if C∞(M)|C is smooth

with boundary then C is a closed submanifold with boundary.

A closed subset C together with

C∞(C) = C∞(M)|C

(see [Nestruev (2003), 7.13]) constitute a smooth set in M , no matter

whether C∞(M)|N is smooth or not.

0.2.21 Restrictions

Let f : M →M ′ be a smooth map between manifolds, possibly with bound-

ary, and N a submanifold of M , possibly with boundary. The set-theoretic

restriction f |N : N → M ′ is identified with a map |A|N | → M ′ between

manifolds, which is smooth because it coincides with the composition

|A|N | ↪→M
f
→M ′ ,

where the first map is the embedding.

LetN ′ be a submanifold ofM ′. If f(M) ⊆ N ′, then, taking into account

the definition of C∞ (M ′)|N ′ , one easily deduces from Proposition 0.2.12

that the restriction g : M → N ′ of f on the codomain is smooth.

It immediately follows that, in general, if f(N) ⊆ N ′ then the set-

theoretic restriction

f |N,N ′ : N → N ′

of f is smooth.
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0.2.22 Smooth Envelope

According to [Nestruev (2003), Definition 3.36], a smooth envelope of a

geometric algebra A is a pair
(
A, i
)

such that A is a C∞–closed geometric

algebra and i : A → A is an R-algebra homomorphism that satisfies the

following universal property: for every homomorphism α : A→ A′ of A into

a C∞–closed (geometric) algebra A′, there is exactly one homomorphism

α : A→ A′ such that α = α ◦ i.

A smooth envelope exists and is unique up to an isomorphism preserving

the envelope homomorphism (see [Nestruev (2003), 3.37]); accordingly, it

will be generally introduced by simply saying

let A be the smooth envelope of A.

The (often understood) universal homomorphism i : A → A will be called

the envelope homomorphism.

0.2.23

Let T = A ⊗R B be a tensor product of geometric algebras. According to
[Nestruev (2003), Exercise 4.28], T is geometric (14).

Now let T be a smooth envelope of T , with the envelope homomorphism

i : T → T , denote by ιA : A → T , ιB : B → T the universal homomor-

phisms and set

ιA = i ◦ ιA and ιB = i ◦ ιB .

Proposition. For every C∞–closed algebra C and for every pair of algebra

homomorphisms

ϕA : A→ C and ϕB : B → C ,

there exists exactly one algebra homomorphism

ϕ : T → C

such that

ϕA = ϕ ◦ ιA and ϕB = ϕ ◦ ιB .

Proof. It easily comes from the characteristic universal properties of ten-

sor product algebras and smooth envelopes. �

14To solve the exercise, note that an element t ∈ T may be written as a1⊗b1+· · ·+an⊗bn

with a1 , . . . , an linearly independent over R. For all h ∈ |A| and k ∈ |B|, assuming
R⊗R = R one gets h⊗k ∈ |T |. Suppose that (h⊗k)(t) = 0 for all h, k. Keeping k fixed,
from the fact that A is geometric, one deduces that b1(k)a1 + · · · + bn(k)an = 0 ∈ A.
Then bi(k) = 0 for all i ∈ {1, . . . , n} and k ∈ |B|, because of the linear independence of
a1, . . . , an. Hence bi = 0 ∈ B because B is geometric.
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0.2.24 Smooth Tensor Product

Suppose now that A and B are smooth with boundary. According to
[Nestruev (2003), 4.31], if at least one of A and B is smooth without bound-

ary, then T is smooth, possibly with boundary; and moreover, T is without

boundary if and only if A and B are both without boundary. Proposi-

tions 0.2.23 and 0.2.8 imply the following universal property. For every

smooth algebra C, possibly with boundary, and for every pair of algebra

homomorphisms

ϕA : A→ C and ϕB : B → C ,

there exists exactly one algebra homomorphism

ϕ : T → C

such that

ϕA = ϕ ◦ ιA and ϕB = ϕ ◦ ιB .

Conversely, a smooth algebra with boundary that matches the above prop-

erty turns out to be a smooth envelope of A⊗B.

In this situation, it is natural to say that T is a smooth tensor product . A

smooth tensor product of A and B will be generally denoted by A⊗B, and

the (usually understood) homomorphisms ιA and ιB will be called natural

homomorphisms into A⊗B.

When both A and B are smooth with nonempty boundaries, although

the smooth envelope T of A⊗B satisfies the property, it is not difficult to

prove that it is not a smooth algebra with boundary (cf. [Nestruev (2003),

Exercise 4.31, (ii)]): basically, it depends on the fact that a product of half-

spaces is diffeomorphic to no half or whole Euclidean spaces. Therefore, a

smooth tensor product does not exist in this case.

0.2.25 Cartesian Product

Let M , N be smooth manifolds, possibly with boundary. Clearly, a mani-

fold V is a product of M and N in the category of manifolds with boundary

if and only if C∞(V ) is a smooth tensor product of C∞(M) and C∞(N). It

immediately follows that a pair of smooth manifolds with boundary admits

a product when at least one is a smooth manifold (without boundary), and

that a product of smooth manifolds is again a smooth manifold (hence it

is also a product in the category SMa). Consistent with the policy about

algebraic constructions, a product manifold of M and N in this book will
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be, by definition, a product in the category of manifold with boundary.

Plainly, a product manifold V will be denoted by M ×N and the universal

smooth functions

πM : M ×N →M and πN : M ×N → N

will be simply called the projections maps of M × N . If f : S → M and

g : S → N are smooth maps, the unique smooth map

f : S →M ×N

such that

f = πM ◦ f and g = πN ◦ f

will be said to be induced by f and g, and it will be sometimes identified

with the pair

(f, g) .

(This map generally differs from f × g : S × S →M ×N , of course.)

The natural identification of the set M ×N with the set-theoretic prod-

uct will always be assumed.

0.2.26 Embeddings of Factors of a Product

Let M and N be smooth manifolds, possibly with boundary, that admit a

product M ×N .

For each n0 ∈ N the smooth map

in0 : M →M ×N, m 7→ (m,n0)

will be called the embedding at n0 into M ×N . Similarly, the smooth map

jm0 : N →M ×N, n 7→ (m0, n) ,

m0 ∈M , will be called the embedding at m0 into M ×N .

0.2.27 Tangent Vectors

Let M be a manifold, possibly with boundary, and m ∈M a point. Taking

into account the notion of a derivation along an algebra homomorphism

(see n. 0.1.3), one may define a tangent vector in the following way.

Definition. A tangent vector to M at m is a derivation along

m : C∞(M)→ R .
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The set

TmM
def
= D (C∞(M))m

of all tangent to M at m vectors gets an obvious structure of real vector

space. This vector space is called the tangent space to M at m.

The usual coordinate description of a tangent vector is called the Tan-

gent Vector Theorem in [Nestruev (2003), 9.6]; together with [Nestruev

(2003), 9.12], it guarantees consistency with other classical definitions of

a tangent vector (see, e.g., [Berger and Gostiaux (1988), 2.5.9]). Tangent

vectors are local operators, that is, if two functions coincides in a neighbor-

hood of m, then each tangent vector at m takes the same value on them

(see [Nestruev (2003), 9.8]).

0.2.28 Differential of a Smooth Map

Definition. The differential of a smooth map f : N →M at n ∈ N is the

(R-linear) map

dn f : TnN → Tf(n)M, η 7→ η ◦ f∗ .

As usual, f is an immersion or a submersion at n, according to whether

dn f is injective or surjective; it is an embedding if it is an immersion at

every point and maps N homeomorphically onto its image. The embedding

of a submanifold is actually an embedding, because of the definition of the

restriction algebra and the fact that tangent vectors are local operators.

0.2.29 Local Description of Submanifolds

In the coordinate framework (without boundary), a submanifold of a man-

ifold M may be defined as a subset that locally looks like a coordinate

subspace of Rn; cf. [Berger and Gostiaux (1988), Definition 2.6.1]. This

description holds, of course, in the algebraic setting too. More precisely, let

M and N be smooth manifolds (without boundary), of respective dimen-

sions d ≥ e, and consider the map

ν : Re ↪→ Rd, (x1, . . . , xe) 7→ (x1, . . . , xe, 0, . . . , 0) .

If N is a submanifold of M then, for each n ∈ N , there exists a neighbor-

hood U of n in M such that the restriction U ∩N → U of the embedding

of N corresponds to ν through diffeomorphisms U ∩N
∼
→ Re, U

∼
→ Rd (it

may be deduced, e.g., from [Berger and Gostiaux (1988), Corollary 2.6.11],
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which substantially relies on a well-known basic result from Calculus: see
[Berger and Gostiaux (1988), 0.2.24]).

An analogous description in the case when N or M are with boundary

is left to the reader.

0.2.30 Closed Embeddings

The cited result [Berger and Gostiaux (1988), Corollary 2.6.11] also implies

that if f : N → M is a closed embedding (that is, an embedding of man-

ifolds that is topologically a closed map), then f ∗ is surjective, because f

induces a diffeomorphism onto the closed submanifold f(N) ⊆M .

0.3 Vector Bundles

The algebraic treatment of vector bundles is based on projective modules

over smooth algebras (possibly with boundary). We recall below the con-

struction of pseudobundles given in [Nestruev (2003), 11.11], which empha-

sizes the similarity with the smooth manifolds setting.

0.3.1 Pseudobundles

Let k be a field, A a commutative k-algebra, and P an A-module. The

pseudobundle

πP : |P | → |A|

is determined by P in the following way. For each h ∈ |A|, the fiber of πP

at h is the k-module

Ph
def
=

P

µhP
= kh ⊗A P ,

where µh = Kerh and kh denotes k with the A-algebra structure given by

h : A → k. Thus, the set |P | is the (disjoint) union of all Ph, and the

projection πP : |P | → |A| sends every p ∈ Ph into h.

With each p ∈ P , a regular section of πP is associated; that is, the map

sp : |A| → |P |

(satisfying πP ◦ sp = idM ) defined by setting for all h ∈ |A|

sp(h)
def
= p+ µhP = 1⊗ p ∈ Ph .
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The set {sp}p∈P of all regular sections is denoted by Γ(P ). For all p, p′ ∈ P

and ã ∈ Ã (see n. 0.2.2) define sp + s′p and ãsp by setting, for all h ∈ |A|,

(sp + sp′) (h)
def
= sp(h) + sp′(h) ,

(ãsp) (h)
def
= ã(h)sp(h)

(here the operations appearing in the right-hand sides are those in the

module Ph). It is readily seen that

sp + sp′ = sp+p′ ∈ Γ (P )

and

ãsp = sap ∈ Γ (P ) .

This shows that Γ(P ) is an Ã-module in a natural way. Of course, Γ(P )

may be also considered as an A-module by restriction of scalars via the

natural homomorphism A→ Ã.

A pseudobundle πP is said to be equidimensional if all fibers Ph =

π−1
P (h) (h ∈ |A|) have the same dimension as vector spaces over k.

0.3.2 Geometric Modules

The Ã-module Γ (P ) of all regular sections of the pseudobundle πP : |P | →

|A| determined by P will be called the geometrization of P . The A-module

homomorphism

P → Γ (P ) , p 7→ sp ,

will be called the geometrization homomorphism (15). If the geometrization

homomorphism is an isomorphism, then P is said to be geometric. In this

case, P will be identified with Γ(P ) through this isomorphism.

By these conventions, when A and P are both geometric, there will

usually be no distinction between the A-module P and the Ã-module Γ(P ).

It is not difficult to show that a projective module over a geometric

algebra is geometric.

0.3.3

The following fact will be useful later. Let ϕ : A→ B a homomorphism of

geometric algebras and P a geometric B-module. Then the A-module PA

obtained from P by restriction of scalars via ϕ is also geometric. The proof

is an easy exercise left to the reader.
15In [Nestruev (2003), 11.11] one may also find an alternative definition of the ge-
ometrization of P as a quotient module of P . Consistency is obvious because the ge-
ometrization homomorphism is an epimorphism.
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0.3.4 Vector Bundles

The ‘algebraic definition’ of a vector bundle is assumed below (16).

Definition. A (smooth) vector bundle over a smooth manifold M , possibly

with boundary, is a pair

(π : Eπ →M,P )

such that:

(1) P is a projective, finitely generated C∞(M)–module;

(2) π : Eπ →M is the pseudobundle πP : |P | →M determined by P ;

(3) the pseudobundle π is equidimensional (17).

The map π = πP will be called the projection map, Eπ = |P | the total

space, and M the base of the vector bundle (π, P ). The fiber at a point

m ∈ M is π−1 (m) = Pm. A general fiber is a vector space E that is

isomorphic to some, hence to all, fibers of π.

Although π (and henceforth Eπ) is determined by P , a vector bundle is

generally identified by π or by Eπ, and the module P is denoted by Γ(π),

or even by Γ(Eπ). Accordingly, a vector bundle is generally introduced by

saying:

let π : Eπ →M be a vector bundle

or, simply,

let Eπ be a vector bundle.

A smooth section of π is an element of Γ (P ), i.e., a regular section of the

pseudobundle π = πP . In view of n. 0.3.2, Γ (P ) is identified with P = Γ (π).

Accordingly, P will be often called the module of smooth sections of π.

0.3.5 Morphisms of Vector Bundles over the Same Base

Let

π : Eπ →M, π′ : E′
π′ →M

16This approach is deduced from [Nestruev (2003), Chap. 11], where the reader is grad-
ually led from the classical notion of a vector bundle to the algebraic one. Be aware that
in [Nestruev (2003)], because of that pedagogical line, the term ‘vector bundle’ has to be
interpreted according to its ‘geometric definition’ (see [Nestruev (2003), 11.2]). Here, the
interplay between the ‘algebraic’ and the ‘geometric’ approaches will be briefly recalled
later.
17We shall prove soon that Condition (3) is automatically verified when M is connected.
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be vector bundles over the same manifold M (possibly with boundary) and

set

P = Γ(π) , P ′ = Γ (π′) , A = C∞ (M) .

If

ϕ : P → P ′

is an A-module homomorphism then, for each m ∈M , a homomorphism

ϕm
def
= idRm

⊗ϕ : Pm → P ′
m

is defined. More explicitly:

ϕm (p+ µmP ) = ϕ (p) + µmP
′ ,

with µm = Kerm. Taking into account that

Eπ = |P | =
⋃

m∈M

Pm, E′
π′ = |P ′| =

⋃

m∈M

P ′
m ,

one may define a map

|ϕ| : Eπ → E′
π′ , e 7→ ϕπ(e) (e) ,

which is compatible with the projection maps, i.e.,

π = π′ ◦ |ϕ| .

Note that |ϕ| is fiber-wise linear by definition, i.e., each restriction ϕm :

π−1 (m)→ π′−1 (m) of |ϕ| is linear over R.

It is immediately seen that, for all p ∈ P ,

ϕ(p) = |ϕ| ◦ p

(according to the identification of p with a smooth section). This formula

shows that ϕ may be recovered from |ϕ|.

Definition. The map |ϕ| is, by definition, a morphism over M from π

to π′.

A morphism between π and π′, will be often introduced by directly

saying

let f : Eπ → E′
π′ be a morphism.

The restriction ϕm of f to the fibers over m ∈M will be generally denoted

by fm.
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0.3.6 Induced Bundle

Let π : Eπ → M be a vector bundle, f : N → M a smooth map between

manifolds, possibly with boundary, and set

A = C∞ (M) , B = C∞ (N) , P = Γ (π) .

Denote by

f∗ (π) : Ef∗(π) → N

the pseudobundle determined by the B-module PB = B⊗AP obtained from

P by extension of scalars via f∗ : A→ B. The universal homomorphism

ν : P → PB

determines a map

f : Ef∗(π) → Eπ

in the following way. Let

e ∈ Ef∗(π) ,

set

n = f∗ (π) (e) , m = f (n)

and denote by Rn, Rm the algebras determined on R by the homomorphism

n : B → R, m : A→ R, respectively. By definition,

e ∈ f∗ (π)
−1

(n) = Rn ⊗B PB =
PB

(Kern)PB

and

π−1 (m) = Rm ⊗A P =
P

(Kerm)P
.

Since m = f (n) (i.e., m = n ◦ f∗), there exists a natural isomorphism

ιn : Rm ⊗A P
∼
−→ Rn ⊗B PB , λ⊗ p 7→ λ⊗ ν (p) .

It may be also described by

[p]m 7→ [ν (p)]n ,

where square brackets denote cosets in the respective quotient modules.

Let us define

f : Ef∗(π) → Eπ, e 7→ ι−1
n (e) .
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Since f sends each fiber f∗ (π)
−1

(n) into the fiber π−1 (m), the diagram

Ef∗(π)
f

//

f∗(π)

��

Eπ

π

��

N
f

// M

is commutative and the restriction

fn : f∗ (π)−1 (n)→ π−1(m)

of f is an isomorphism of vector spaces (it is just ι−1
n ). It follows that f∗ (π)

is equidimensional, because π is equidimensional. Moreover, by n. 0.1.5, (1),

PB is a projective B-module, which clearly is also finitely generated. This

shows that

f∗ (π) : Ef∗(π) → N

is a vector bundle.

Since

[ν (p)]n = ιn ([p]m) = f
−1

n

(
[p]f(n)

)
, p ∈ P, n ∈ N ,

the map ν may be recovered from f according to the formula

ν (p) (n) = f
−1

n (p (f(n))) , p ∈ P, n ∈ N .

Definition. The vector bundle

f∗ (π) : Ef∗(π) → N ,

together with f , will be said to be induced by f from π, or a pull-back of π

by f . The map f will be called canonical morphism, or map induced by f ,

or simply induced map.

An induced bundle, by definition, must always carry on a determined

(though sometimes understood) induced map (18). Moreover, note that an

induced bundle f∗ (π) : Ef∗(π) → N is determined only up to an isomor-

phism that is compatible with the induced map, because PB is determined

up to an isomorphism that is compatible with the universal homomorphisms

P → PB .
18Note that, indeed, the same module P could be a scalar extension of P in different
ways, by means of different natural functions P → PB . Consequently, the same bundle
may be considered as an induced bundle in different ways, because of different induced
maps.
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0.3.7 Pull-back by a Composition of Maps

Let π : Eπ →M be a vector bundle and

f : N →M, g : V → N

be smooth maps between manifolds, possibly with boundary. Consider the

induced by f bundle f∗ (π) : Ef∗(π) → N , with induced map

f : Ef∗(π) → Eπ ,

and then the induced by g from f∗ (π) bundle g∗ (f∗ (π)) : Eg∗(f∗(π)) → V ,

with induced map

g : Eg∗(f∗(π)) → Ef∗(π) .

From the construction in n. 0.3.6 and elementary properties of scalar ex-

tension, it easily follows that g∗ (f∗ (π)), together with g ◦ f , is an induced

by g ◦ f from Eπ bundle.

0.3.8 Morphisms of Vector Bundles

Let ξ : Eξ → N and π : Eπ → M be vector bundles and f : N → M a

smooth map. Denote as usual by f∗ (π) : Ef∗(π) → N the induced by f

from Eπ bundle and by f the induced map.

Definition. A map

f
′
: Eξ → Eπ

is a morphism of vector bundles with the base smooth map f , or simply a

morphism over f , if there exists a morphism

g : Eξ → Ef∗(π)

over N (see Definition 0.3.5) such that

f
′
= f ◦ g .

If g is an isomorphism, then f
′
will be said to be regular .

A morphism is compatible with the projection maps ξ, π and fiber-wise

linear, because of similar properties of f and g. For each n ∈ N ,

f
′

n : ξ−1(n)→ π−1 (f(n))

will denote the restriction of f
′
on the fibers at n and at f(n).

Since the induced bundle f∗ (π) is defined up to an isomorphism of

bundles over N , the question of whether a map

f
′
: Eξ → Eπ

is a morphism over f or not does not depend on the choice of f ∗ (π). The

same remark holds for the notion of regularity.
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0.3.9

If a choice of the induced bundle f∗ (π) is fixed, then the morphism

g : Eξ → Ef∗(π)

such that

f
′
= f ◦ g

is uniquely determined by f
′
, because the induced map f induces isomor-

phisms on the fibers. This morphism, in turn, leads to the C∞(N)–module

homomorphism

ϕ : Γ(ξ)→ Γ(f∗ (π)) = C∞(N)⊗C∞(M) Γ(π) ,

that is uniquely determined by the condition

f
′
= f ◦ |ϕ| .

Conversely, given ϕ : Γ(ξ) → C∞(N) ⊗C∞(M) Γ(π), the above equality

gives, by definition, a morphism f
′
: Eξ → Eπ.

0.3.10 Composition of Morphisms

Let η : Eη → V, ξ : Eξ → N , and π : Eπ → M be vector bundles, and

consider morphisms

f : Eξ → Eπ and g : Eη → Eξ ,

respectively over

f : N →M and g : V → N .

If ϕ : Γ(ξ)→ C∞(N)⊗C∞(M) Γ(π) and γ : Γ(η)→ C∞(V )⊗C∞(N) Γ(ξ)

are the homomorphisms respectively corresponding to f and g (see n. 0.3.9),

then the fact that f ◦ g is a morphism over f ◦ g may be easily deduced

from the following commutative diagram:

Eη

g

%%K
KKKKKKKKKKK

|γ|

��

Eg∗(ξ) //

|idC∞(V ) ⊗ϕ|
��

Eξ

f

""E
EE

EE
EE

EE

|ϕ|

��

Eg∗(f∗(π)) // Ef∗(π) // Eπ

,

where the horizontal arrows are the induced maps.
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0.3.11

In conclusion, vector bundles form a category, which will be denoted by VB.

If M is a fixed manifold, possibly with boundary, vector bundles and mor-

phisms over M form a subcategory VBM of VB. Note that, generally, it

is not a full subcategory, because morphisms over M are morphisms over

the identity map of M .

The main subject of this book will be another important subcategory

of VB: vector bundles with a fixed general fiber F together with regular

morphisms. They will be called fat manifolds and will be carefully studied

starting from Chap. 1.

0.3.12

Let π : Eπ → M be a vector bundle, f : N → M a smooth map, and

f∗ (π) : Ef∗(π) → N the induced bundle. The induced map f : Ef∗(π) → Eπ

is obviously a regular morphism over f .

Conversely, if ξ : Eξ → N is a vector bundle and

f
′
: Eξ → Eπ

is a regular morphism, then, by the definition of a regular morphism, ξ is

isomorphic to the induced bundle. But the induced bundle is defined up to

an isomorphism compatible with the induced map. Therefore ξ, together

with f
′
, is an induced bundle.

In conclusion, assigning an induced by f bundle is equivalent to assign-

ing a regular morphism over f .

0.3.13 Associated Homomorphism

with a Regular Morphism of Vector Bundles

Let ξ : Eξ → N and π : Eπ →M be vector bundles and

f : Eξ → Eπ

a regular morphism over f : N → M . According to n. 0.3.12 and tak-

ing into account the construction in n. 0.3.6, one may assume Γ (ξ) =

C∞(N)⊗C∞(M) Γ (π) with universal homomorphism

f
∗

: Γ (π)→ Γ (ξ)

given by

f
∗
(p)(n) = f

−1

n (p (f(n))) , p ∈ P, n ∈ N .
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Definition. The homomorphism f
∗

will be called associated with f .

Note that if N = M and f is the identity map, then f =
∣∣∣ f∗−1

∣∣∣.

0.3.14 Universal Property of the Induced Bundle

Let π : Eπ → M be a vector bundle and f : N → M a smooth map. As

a trivial consequence of the definition of bundle morphisms, the induced

bundle

f∗ (π) : Ef∗(π) → N ,

together with the induced map

f : Ef∗(π) → Eπ ,

satisfies the following universal property. For every vector bundle ξ : Eξ →

N and every bundle morphism f
′

: Eξ → Eπ over f , there exists exactly

one bundle morphism g : Eξ → Ef∗(π) over N such that f
′
= f ◦ g (19). In

this book the following more general result will be needed.

Proposition. (Universal property of the induced bundle.) For every vector

bundle

ξ : Eξ → V

and every morphism

g : Eξ → Eπ

of vector bundles such that the base map

g : V →M

factors through f and a smooth map

h : V → N

(i.e., g = f ◦ h), there is exactly one morphism of vector bundles

h : Eξ → Ef∗(π)

over h such that g factors through f and h.

Moreover, h is regular if and only if g is regular.

The proof is straightforward and left to the reader.

19A generalization of this property to fiber bundles may be found in [Nestruev (2003),
10.18].
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0.3.15 Standard Trivial Bundles

Let E be a finite-dimensional vector space over R and εE : EεE
→ |R| the

vector bundle determined by E. The smooth manifold |R| contains only one

point idR, denoted below by a dot ‘•’, and the unique fiber of εE coincides

with the whole total space

EεE
=

E

0E
=

E

{0}
.

It may be assumed that

EεE
= E

up the usual identification of each e ∈ E with its coset e + {0} = {e} (20).

Now, let M be a smooth manifold, possibly with boundary.

Definition. A standard trivial bundle over M with standard fiber E will

be a vector bundle π : Eπ →M induced from εE by the constant map

M → {•} .

The induced map Eπ → E will be also called the trivializing morphism.

An arbitrary bundle π : Eπ →M with general fiber E will be said to be a

trivial vector bundle, if there exists a regular morphism of bundles Eπ → E

over the constant map M → {•}.

In other words, to give a standard trivial bundle is the same as to give

a trivial bundle π : Eπ → M together with a fixed choice of a regular

morphism Eπ → E over the constant map (i.e., the trivializing morphism).

By the same reason, it may be said that a bundle is trivial if it may be

realized as a bundle on M induced from E by the constant map.

20Note that, on the strictly formal side, the identification Γ (EεE ) = Γ (E) admits now
two interpretations. The first is given, as usual, by the geometrization isomorphism,
because E is the R-module defining the bundle εE . The second interpretation is given
by the identification EεE = E introduced above. According to these identifications, a
vector e ∈ E is also interpreted as the coset

e + {0} = {e} ∈ EεE

and as the section

se ∈ Γ (E) , • 7→ {e} ≡ e .
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0.3.16 Identification Isomorphisms

A canonical identification of the fibers of a standard trivial bundle π :

Eπ →M with its standard fiber E is obtained by means of the trivializing

morphism Eπ → E as follows.

Definition. For all m ∈M the restriction

τm : π−1 (m)
∼
−→ E

of the trivializing morphism τ : Eπ → E will be called the identification

isomorphism at m. Vectors in the fiber π−1 (m) will often be identified

with their correspondents in E.

Although the terms ‘standard fiber’ and ‘general fiber’ are usually syn-

onymous, in this book there is a distinction between them: ‘standard fiber’

is reserved for standard trivial bundles, and refers to the fixed vector space

which the fibers are identified with.

According to the identification isomorphisms, the notion of a constant

section makes sense, that is, a section that associates a fixed e ∈ E with

all m ∈ M . Such a section is smooth because it is identified with 1⊗ e ∈

Γ (Eπ) = C∞(M)⊗R E.

0.3.17 Uniform Morphisms

Let ξ : Eξ → N and π : E′
π →M be standard trivial bundles with standard

fiber E and E′, respectively. Consider a vector space homomorphism ϕ :

E → E′ and a smooth map f : N →M . Because of the universal property

of the induced bundle, there exists exactly one morphism

fϕ : Eξ → E′
π

with base f such that the diagram

Eξ

fϕ
//

τ

��

E′
π

τ ′

��

E ϕ
// E′

,

is commutative (here τ and τ ′ denote the trivializing morphisms). Up to

the identification isomorphisms, fϕ may be characterized by
(
fϕ

)
n

= ϕ ∀n ∈ N .
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If ϕ is an isomorphism, then fϕ is regular, and the associated homomor-

phism is

fϕ

∗
= f∗ ⊗R ϕ

−1 .

Definition. The morphism fϕ will be called the uniform morphism with

base f and fiber ϕ.

0.3.18 Geometric Definition of Vector Bundles

Let E be a finite-dimensional real vector space and consider it also as a

smooth manifold (see n. 0.2.19). Let

π : Eπ →M

be a smooth map between manifolds, possibly with boundary, and sup-

pose that, for each m ∈ M , it is given an R-vector space structure on the

set π−1(m).

Definition. The smooth map π, together with the assigned family of vector

space structures, is said to satisfy the vector property of local triviality (with

respect to E) if, for each m ∈M , there is an open neighborhood Um ⊆M

and a map τm : π−1 (Um)→ E such that:

(1) the manifold π−1 (Um), together with

π|π−1(Um),Um
: π−1 (Um)→ Um

and

τm : π−1 (Um)→ E

is a product Um ×E;

(2) for all u ∈ Um, the restriction τm|π−1(u) : π−1(u) → E is linear (hence

a vector space isomorphism).

A smooth map π : Eπ → M that satisfies the vector property of local

triviality (21) is what it is called a vector bundle according to (a version of)

the classical ‘geometric’ definition: see [Nestruev (2003), 11.2].

21In the common usage, the family of vector space structures is generally understood.
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0.3.19 Vector Bundle Morphisms

from a Geometric Viewpoint

Let π : E → M and π′ : E′ → M ′ be smooth maps satisfying the vector

property of local triviality, and f : M →M ′ a smooth map.

Definition. A map f : E → E ′ will be called a morphism with the base

map f , or simply a morphism over f , if it satisfies the following conditions:

(1) it is smooth;

(2) the diagram

E
f

//

π

��

E′

π′

��

M
f

// M ′

is commutative;

(3) for each m ∈M , the restriction fm : π−1(m)→ π′−1 (f (m)) is linear.

A morphism f is said to be regular if fm is an isomorphism for all m.

It is immediately checked that, in this way, one gets a category VBg.

0.3.20 Module of Smooth Sections

of a Geometrically Defined Vector Bundle

A section of an object π : Eπ →M of VBg is a map

s : M → Eπ

such that

π ◦ s = idM ;

a smooth section of π is a section that is smooth as a map between man-

ifolds. Because of the vector spaces structures on the fibers of π, a nat-

ural C∞(M)–module structure on the set of all sections of π is defined

(cf. the operations on {sp}p∈P defined in n. 0.3.1). Using adapted co-

ordinates (22), it is also easily seen that the module operations preserve

smoothness; thus, smooth sections form a submodule. The so-obtained

22See [Nestruev (2003), 11.3]; details about manifolds with boundary are left to the
reader.



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Elements of Differential Calculus over Commutative Algebras 37

module of smooth sections of π is denoted by Γ (π) (cf. [Nestruev (2003),

11.7]), or even by Γ (Eπ).

A simple but important result about Γ (Eπ) is the following. Fix m ∈M

and consider the homomorphism

hm : Γ (Eπ)→ π−1(m), s 7→ s(m)

of vector spaces over R.

Proposition. The homomorphism hm is surjective and its kernel is the

module

µm Γ (Eπ) ,

where µm = Kerm.

Proof. See [Nestruev (2003), 11.8, 11.9]. �

0.3.21

Theorem. Let M be a manifold, possibly with boundary. A C∞(M)–

module P is isomorphic to Γ (π) for some object π : Eπ →M of VBg if and

only if it is finitely generated, projective and determines an equidimensional

pseudobundle, the last condition being superfluous when M is connected.

Proof. In the case when M is connected, the statement with the

equidimensionality condition left out is proved in [Nestruev (2003), The-

orem 11.32] (23). The connectedness of M is used only in the ‘if’ impli-

cation, to show that that the fibers Pm, m ∈ M , of P are of the same

dimension. On the other hand, if P is isomorphic to Γ (π) for some ob-

ject π : Eπ →M of VBg, equidimensionality is an immediate consequence

of Proposition 0.3.20. This explains why, for non-connected manifolds, it

suffices to add the equidimensionality condition. �

In other words, the above result says that a C∞(M)–module is the

module of smooth section of some object of VB if and only if it is isomorphic

to the module of smooth sections of some object of VBg .

23Plainly, all the preceding Nestruev’s results needed in the proof hold for manifolds with
boundary (to check details about the Whitney’s immersion theorem that is involved in
[Nestruev (2003), Theorem 11.27], the interested reader may refer, e.g., to the proof given
in [Lee (2003), Chap. 12]). To simplify the job, one may also avoid the invocation of
the geometric construction of the induced bundle: in [Nestruev (2003), Corollary 11.28],
it is sufficient to know that there exists a regular morphism of Eπ into the tautological
bundle over an appropriate Grassmann manifold.
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0.3.22

A projective and finitely generated C∞(M)–module P determines a vector

bundle (that is, the pseudobundle |P | → M is equidimensional) with r-

dimensional fibers if and only if P has constant rank r. Since we do not

strictly need this algebraic fact in the sequel, we leave the details to the

interested readers (24).

0.3.23 The Total Space as a Smooth Manifold

Let πP : |P | → M be a vector bundle with module of smooth sections P .

According to Theorem 0.3.21, it is possible to fix an object π : Eπ →M of

VBg and a C∞(M)–module isomorphism

ι : P
∼
→ Γ (π) .

Proposition. There is a unique bijective map

θ : |P | → Eπ

such that

θ ◦ p = ι(p), p ∈ P .

Moreover,

(1) the diagram

|P |
θ //

πP
  B

BB
BB

BB
B

Eπ

π
~~||

||
||

||

M

is commutative, i.e., for each m ∈ M , θ sends the fiber of πP over m

into the fiber of π over m,

(2) for each m ∈M the restriction

θm : π−1
P (m)→ π−1 (m)

is an isomorphism of vector spaces.

The proof is straightforward and left to the reader.

24One may use Nakayama’s Lemma (see, e.g., [Atiyah and Macdonald (1969), Propo-
sition 2.6]) and the fact that a prime spectrum Spec A is connected if and only if the
ring A contains no nontrivial idempotents (see [Atiyah and Macdonald (1969), Chap. 1,
Exercises, n. 22 (p. 14)]); cf. also [Hartshorne (1977), Chap. III, Example 12.7.2].
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Corollary. In the notation of the proposition,

s : M → |P | is a smooth section of πP ⇐⇒ θ ◦ s is a smooth section of π .

Proof. Since θ is bijective,

s 7→ θ ◦ s

gives a bijection between the set of all sections of πP , i.e., all the maps

s : M → |P | such that πP ◦ s = idM , to the set of all sections of π. By the

proposition, this bijection restricts to the subsets Γ (P ) and Γ (π): indeed,

the restriction coincides with ι up to the identification P = Γ(P ). This

means exactly that s is a smooth section of πP if and only if θ ◦ s is a

smooth section of π. �

Definition. The map θ will be said to be associated with ι.

When necessary, the total space |P | of a vector bundle will be identified

with the smooth manifold Eπ (possibly with boundary) through the map

θ associated with a fixed (understood) isomorphism ι : P → Γ (π).

0.3.24

Let P be the module of smooth sections of a vector bundle π : Eπ → M

and suppose that a map a : Eπ → R is linear on the fibers of π and smooth

when Eπ is considered as a smooth manifold according to n. 0.3.23. By

virtue of Corollary 0.3.23,

p ∈ P ⇒ a ◦ p ∈ C∞(M)

and by fiber-wise linearity of a, the map

α : P → C∞(M), p 7→ a ◦ p

belongs to the dual module P∨.

It is easy to show that

a 7→ α

gives a bijective map between the set of smooth, fiber-wise linear functions

on Eπ and the dual P∨.

Smooth, fiber-wise linear functions on Eπ will be generally identified

with linear forms on P according to the above bijection. Thus,

α (p(m)) = α(p)(m), α ∈ P∨, p ∈ P,m ∈M .
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Moreover, in this context, the identification of smooth functions on M with

their correspondent through π∗ (which are fiber-wise constant maps) will

be assumed:

f (p(m)) = f(m) f ∈ C∞(M), p ∈ P,m ∈M

(25).

0.3.25 Geometric Criterion for Vector Bundle Morphisms

Let f : N →M be a smooth map between manifolds, possibly with bound-

ary, and π : Eπ →M , ξ : Eξ → N vector bundles with modules of smooth

sections P and Q, respectively.

Suppose that f : Eξ → Eπ is a morphism when ξ and π are considered

as elements of VBg according to n. 0.3.23. If α ∈ P∨ is considered as a

smooth function on Eπ according to n. 0.3.24, then α ◦ f is smooth and

obviously fiber-wise linear. This way, one gets a homomorphism

P∨ → Q∨, α 7→ α ◦ f

and, therefore, a C∞(N)–module homomorphism

C∞(N)⊗C∞(M) P
∨ → Q∨ .

This homomorphism must be of the form ϕ∨ for a uniquely determined

ϕ : Q→ C∞(N)⊗C∞(M) P

because P and Q are finitely generated and projective (see n. 0.1.5, (6) and

(8)). It is a good exercise to show that the morphism of vector bundles

determined by ϕ according to n. 0.3.9 coincides with f .

In conclusion, if a fiber-wise linear map f : Eξ → Eπ over f is smooth

as a map between manifolds, then it is a vector bundle morphism (even in

the algebraic sense).

0.3.26 Equivalence Between VBg and VB

Theorem 0.3.21 and n. 0.3.25 allow us to define a faithful functor VBg →

VB that associates, with each π, the vector bundle determined by Γ(π)

and, with each morphism, the corresponding morphism obtained by means

25Note that the identification homomorphisms C∞(M) ↪→ C∞ (Eπ), P∨ ↪→ C∞ (Eπ)
induce a C∞(M)–algebra homomorphism ι : S (P∨) → C∞ (Eπ), where ι : S (P∨)
denotes the symmetric algebra of P∨ (Sr will denote an r-th symmetric power). It may
be proved that ι is injective, that S (P∨) is geometric, and that C∞ (Eπ), together with
ι, is a smooth envelope (cf. [Nestruev (2003), 11.58]).
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of the identification maps associated with the identity homomorphisms,

according to n. 0.3.23. It may be easily proved, using adapted coordinates,

that this functor is also full (cf. [Nestruev (2003), 11.29 (b)]). Finally, again

by Theorem 0.3.21, every vector bundle is isomorphic to the correspondent

of some object of VBg . This suffices to prove that VBg and VB are

equivalent categories (see n. 0.1.6).

0.4 Vector Fields

Basic properties of vector fields, with some extensions about vector fields

along maps, are reviewed in this section.

0.4.1 Smooth Vector Fields

LetM be a manifold, possibly with boundary. A (smooth) vector field on M

is a derivation of the R-algebra C∞(M). The C∞(M)–module D (C∞(M))

of all vector fields will be also shortly denoted by D(M).

For each point m ∈ M , a vector field X gives, in a natural way, a

tangent vector Xm at m:

Xm = m ◦X .

The vector field X may be recovered from the family {Xm}m∈M , but not

all families of tangent vectors give rise to a smooth vector field. With this

description, it is easy to see that vector fields are local operators, because

tangent vectors are as well: see [Nestruev (2003), 9.40]. The description of

a vector field in local coordinates U → Rn is given by

n∑

i=1

αi
∂

∂xi
, αi ∈ C∞(U)

(see [Nestruev (2003), 9.41]).

0.4.2 Image of a Vector Field

Definition. Let f : N → M be a diffeomorphism and Y a vector field on

N . The image of Y through f will be the vector field

f∗(Y )
def
= f∗−1 ◦ Y ◦ f∗

on M .
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Note that

f∗ (Y )f(n) = (dn f) (Yn) , n ∈ N .

In the more general context of vector fields along maps, which will be

examined later, another natural notion of ‘image’ arises (cf. also [Nestruev

(2003), Example 9.47]).

0.4.3 Compatibility

Let f : N →M be a smooth map, and X and Y be vector fields on M and

N , respectively.

Definition. The fields X and Y are said to be compatible with respect to

f (or, for short, f -compatible) if

Y ◦ f∗ = f∗ ◦X .

A geometric characterization of compatibility is

(dn f) (Yn) = Xf(n), n ∈ N .

In the case when f is a diffeomorphism, note that the image f∗(Y ) is

the unique vector field on M that is f -compatible with Y .

0.4.4 Commutator of Vector Fields

According to n. 0.1.3, the commutator

[X,Y ] = X ◦ Y − Y ◦X

of vector fields is again a vector field. It follows that vector fields on M

constitute a Lie algebra.

Now, let f : N →M be a smooth map and suppose thatX1, X2 ∈ D(M)

are respectively f -compatible with Y1, Y2 ∈ D(N). Then it is easily checked

that [X1, X2] is f -compatible with [Y1, Y2].

0.4.5 Restriction on Open Submanifolds

Proposition. Let N be an open submanifold of a manifold M (both pos-

sibly with boundary) and X a vector field on M . Then, there is a unique

vector field X |N on N compatible with X with respect to the embedding

i : N ↪→M .
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Proof. Let A = C∞ (M) and f ∈ C∞ (N) = A|N . By the definition

of the restriction algebra, for each point n ∈ N , an open neighborhood

Uf,n ⊆ N and a function fn ∈ A such that

f |Uf,n
= fn|Uf,n

may be chosen. Hence, setting

X |N (f) (n)
def
= X (fn) (n)

one gets a function X |N (f) : N → R. Taking into account the fact that

vector fields are local operators, it is easily checked that the function

X |N : A|N → A|N , f 7→ X |N (f)

is well defined, that it is a vector field, and that it is the unique one i-

compatible with X . (26). �

Definition. The vector field X |N will be called the restriction of X to N .

0.4.6

Since i∗ is the restriction homomorphism A→ A|N , the compatibility con-

dition that characterizes the restriction X |N may be written

X |N (f |N ) = X(f)|N , f ∈ A .

0.4.7

Let M be a smooth manifold, possibly with boundary, {Ui}i∈I an open

covering of M and, for each i ∈ I , let Xi be a vector field on the submani-

fold Ui.

Proposition. If the vector fields Xi agree on the intersections, i.e.,

Xi|Ui∩Uj
= Xj |Ui∩Uj

, i, j ∈ I ,

then there exists a unique vector field X on M such that

X |Ui
= Xi ∀i ∈ I .

26The above result could be proved in a even more algebraic fashion, once it is known
that A|N may be realized as an algebraic localization of A (see [Nestruev (2003), 10.7]).
In fact, the restriction of X could be defined, even in the general context of arbitrary
commutative algebras, by the rule

X|N

(
f

g

)
=

X (f) g − fX (g)

g2
.
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Proof. Let A = C∞ (M), so that C∞ (Ui) = A|Ui
for all i. For all f ∈ A

and i, j ∈ I ,

Xi (f |Ui
) |Ui∩Uj

= Xi|Ui∩Uj

(
f |Ui∩Uj

)
= Xj |Ui∩Uj

(
f |Ui∩Uj

)

= Xj

(
f |Uj

)
|Ui∩Uj

.

Thus, the functions

Xi (f |Ui
) ∈ A|Ui

agree on the intersections. Since A is complete (being smooth with bound-

ary), there exists a unique function f ′ ∈ A such that

f ′|Ui
= Xi (f |Ui

) ∀i ∈ I .

It is straightforward to check that

X : A→ A, f 7→ f ′

is the required vector field. �

Definition. The vector field X is said to be obtained by gluing the vector

fields Xi.

0.4.8 Extension from Closed Submanifolds

Proposition. Let N be a closed submanifold of a manifold M (both pos-

sibly with boundary) and X a vector field on N . Then X can be extended

to M , i.e., there exists a (not necessarily unique) vector field XM on M

that is compatible with X with respect to the embedding N ↪→M .

Proof. According to the local description of closed submanifolds (see

n. 0.2.29) and the coordinate description of vector fields, the result is true

around each point of N . Thus the global result is easily deduced with the

help of a partition of unity and a gluing procedure. �

0.4.9 Tangent Bundle

Let M be a manifold, possibly with boundary. According to [Nestruev

(2003), 11.6 (II)] and [Nestruev (2003), Exercise 9.40], there exists an ob-

ject π : TM → M of VBg such that Γ (π) is isomorphic to the module

D(M) of all vector fields on M . By the equivalence between VBg and VB,

the pseudobundle πD(M) : |D(M)| → M determined by D(M) is a vector

bundle. In this book, the tangent bundle of M will be, by definition, πD(M).
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0.4.10

By the Nestruev’s construction of the tangent bundle in VBg, the fiber at

m ∈M of the tangent bundle in VB turns out to be naturally isomorphic to

the tangent space TmM , and the value at m of a vector field X , considered

as a section of the tangent bundle, corresponds to the tangent vector Xm.

More precisely, if µm = Kerm is the ideal of functions vanishing at m, then

there exists a natural isomorphism

TmM ∼=
D(M)

µm D(M)
.

In other terms, TmM is an R-vector space

Rm ⊗C∞(M) D(M)

obtained from D(M) by extension of scalars via m : C∞(M) → R, with

universal homomorphism

D(M)→ TmM, X 7→ Xm .

0.4.11

If E is a vector space regarded as a smooth manifold (see n. 0.2.19), from

the local description of vector fields it easily follows that for each vector

e ∈ E there exists exactly one vector field Xe on E such that

Xe (ϕ) = ϕ(e), ϕ ∈ E∨ ,

and D(E) can be regarded as obtained from E by extension of scalars via

R→ C∞(E), with the universal homomorphism given by e 7→ Xe:

D(E) = C∞(E)⊗R E .

Therefore the tangent bundle TE is in a canonical way a standard trivial

bundle with standard fiber E. We shall often tacitly identify tangent vectors

to E with vectors in E through the identification isomorphisms and the

isomorphisms of n. 0.4.10.

0.4.12 Vector Fields Along Maps

Let f : N →M be a smooth map between manifolds, possibly with bound-

ary.

Definition. A (smooth) vector field along f is a derivation along f ∗ (see

n. 0.1.3).
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The C∞(N)–module D (C∞(M))f∗ of all vector fields along f will be

generally denoted by D(M)f .

For each point n ∈ N , a vector field X : C∞(M) → C∞(N) along f

gives, in a natural way, a tangent vector Xn to M at f(n):

Xn = n ◦X ,

and X is determined by the family {Xn}n∈N (but not every such family

gives rise to a smooth vector field along f).

0.4.13

Ordinary vector fields may be understood as vector fields along the identity

map. Note also that if X is a vector field along f : N →M and

g : V → N

is a smooth map, then the composition

g∗ ◦X

is a vector field along f ◦ g. Similarly, for every smooth map

g′ : M → V ′

the composition

X ◦ g′∗

is a vector field along g′ ◦ f .

In particular, every (ordinary) vector field Y on N gives rise to the

vector field

Yf
def
= Y ◦ f∗

along f , and every (ordinary) vector field Z on M gives rise to the vector

field

Zf def
= f∗ ◦ Z

along f .

With the above notation, the compatibility condition between Y and Z

may also be written

Yf = Zf .
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0.4.14

The vector field Yf along f may be considered as the ‘image’ of Y since,

for all n ∈ N ,

(Yf )n = (dn f) (Yn) .

One has to be careful when f is a diffeomorphism: in this case, the image

Yf along f is different from the ordinary image f∗ (Y ). Hence, instead of

‘image’, the following terminology will be used.

Definition. Let f : N → M be a smooth map, X be a vector field along

f , Y be a vector field on N and Z be a vector field on M . Then

Y projects onto X through f
def
⇐⇒ Yf = X ;

X projects into Z through f
def
⇐⇒ Zf = X ;

Y projects into Z through f
def
⇐⇒ Y and Z are f -compatible.

Moreover, Y will be said to be projectable through f if and only if it is

f -compatible with some vector field on M .

0.4.15

Let X be a vector field along f : N → M . The following results are easy

extensions of basic properties of ordinary vector fields.

(1) X is a local operator, that is, if g, g′ ∈ C∞(M) coincide on an open

U ⊆M , then X(g) and X (g′) coincide on f−1(U).

(2) If U ⊆M and V ⊆ N are open submanifolds such that

f(V ) ⊆ U ,

then there is a unique vector field X |V,U along f |V,U such that

X |V,U (f |U ) = X(f)|V , f ∈ C∞ (M) .

This field will be called the restriction of X to V and U .

(3) Let {Ui}i∈I and {Vi}i∈I be open coverings of M and N , respectively,

such that

f (Vi) ⊆ Ui ∀i ∈ I .

For each i ∈ I , let Xi be a vector field along the restriction f |Vi,Ui
. If

the vector fields Xi agree on the intersections, i.e.,

Xi|Vi∩Vj ,Ui∩Uj
= Xj |Vi∩Vj ,Ui∩Uj

∀i, j ∈ I ,

then there is a unique vector field X along f such that

X |Vi,Ui
= Xi ∀i ∈ I .
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(4) In local coordinates, X may be described by

X (a) (y1, . . . , yn) =

m∑

i=1

αi (y1, . . . , yn)
∂a

∂xi
(f (y1, . . . , yn)) .

(5) Let Y be a vector field on N , Z a vector field on M , and U ⊆ M ,

V ⊆ N open submanifolds such that f (V ) ⊆ U . Then

• if Y projects through f onto X , then Y |V projects onto X |V,U

through f |V,U ;

• if X projects through f into Z, then X |V,U projects into Z|U
through f |V,U ;

• if Y projects through f into Z, then Y |V projects into Z|U
through f |V,U .

0.4.16 Local Vector Fields

Working on a manifold M , one sometimes encounters vector fields that are

defined only locally, i.e., on an open U ⊆ M . Note that if X is a vector

field along the embedding i : U ↪→M , its restriction Y = X |U,U is a vector

field on U . By the definition of restrictions, Y is the unique vector field

on U projecting onto X . This gives a one-to-one correspondence between

vector fields along i and vector fields on U .

Definition. A local vector field on M is a vector field along the embedding

U ↪→ M of an open submanifold, and it is sometimes identified with the

corresponding vector field on U .

0.4.17 Splitting of Vector Fields on a Product Manifold

Proposition. Let M and N be smooth manifolds, one of them possibly

with boundary, letM×N be their product and denote by πM : M×N →M

and πN : M ×N → N the projection maps. For every pair (XM , XN ) of

vector fields respectively along πM and along πN , there exists exactly one

vector field X on M ×N that projects onto XM through πM and onto XN

through πN .

Proof. The result is true locally because of the coordinate description

given in n. 0.4.15, (4). The global case follows with the help of a gluing

procedure. �
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Corollary. For every pair (YM , YN ) of vector fields, respectively on M and

on N , there exists exactly one vector field on M × N that is compatible

with YM with respect to πM and with YN with respect to πN .

Proof. It suffices to set XM = π∗
M ◦ YM , XN = π∗

N ◦ YN . �

0.4.18

The modules D(M)πM
and D(N)πN

of vector fields along the projection

maps will also be respectively denoted by

D(M)N and D(N)M .

Proposition. There exists a decomposition

D (M ×N) = D (M)N ⊕D (N)M

with universal epimorphisms

πD(M)N
: D (M ×N)→ D (M)N , X 7→ X ◦ π∗

M ,

πD(N)M
: D (M ×N)→ D (N)M , X 7→ X ◦ π∗

N .

Proof. It is basically a reformulation of Proposition 0.4.17. �

0.4.19

A vector field X ∈ D (M ×N) lies on the image of the natural monomor-

phism

ιD(M)N
: D (M)N ↪→ D (M ×N) = D (M)N ⊕D (N)M

if and only if it belongs to the kernel of the natural epimorphism

πD(N)M
: D (M ×N)→ D (N)M , X 7−→ X ◦ π∗

N ,

i.e.,

X ◦ π∗
N = 0 .

Therefore, X ∈ Im
(
ιD(M)N

)
if and only if X vanishes on the image of the

homomorphism

π∗
N : C∞ (N)→ C∞ (M ×N)

that defines C∞ (M ×N) as a C∞(N)–algebra. Hence X ∈ Im
(
ιD(M)N

)
if

and only if X is a C∞(N)–derivation of C∞ (M ×N) into itself:

Im
(
ιD(M)N

)
= DC∞(N) (C∞ (M ×N)) .
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The module DC∞(N) (C∞ (M ×N)) of all derivations of the C∞(N)–

algebra C∞ (M ×N) will be also denoted by

DN (M ×N) .

Summing up, there are natural isomorphisms

D (M)N
∼
−→ DN (M ×N) and D (N)M

∼
−→ DM (M ×N)

and an internal decomposition

D (M ×N) = DN (M ×N)⊕DM (M ×N) .

0.4.20

The decompositions

D (M ×N) = D (M)N ⊕D (N)M

and

D (M ×N) = DN (M ×N)⊕DM (M ×N)

precisely express the intuitive fact that every vector field on a product

may be decomposed into a horizontal and a vertical component. Moreover,

n. 0.4.19 says that there are two natural formalizations of the concept of a

‘horizontal’ (respectively, vertical) vector field. The former is: a vector field

along the projection on the horizontal (resp., vertical) factor. The other

is: a vector field projecting into the zero vector field of the vertical (resp.,

horizontal) factor.

0.4.21

In this book, interval means a connected subset of R. Intervals may be

naturally considered as smooth manifolds, possibly with boundary (27). If

M is a manifold, possibly with boundary, by a (smooth) curve in M we

mean a smooth map I→M , with I being a nonempty interval, not reduced

to a singleton.

Definition. Let I be a nonempty interval, not reduced to a singleton. The

vector field

C∞ (I)→ C∞ (I) , f 7→ f ′

where f ′ indicates the derivative of f , will be called the standard vector

field on I.

27For open intervals, see n. 0.2.19; details about the other cases are left to the reader.
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Of course, when speaking about the standard vector field on an interval

I, it will be always tacitly implied that I is nonempty and not reduced to a

singleton. Since it is convenient to think of R as the timeline, the standard

vector field on I will generally be denoted by d/d t.

0.4.22 Trajectories

Let X be a vector field on a smooth manifold M , possibly with boundary.

Definition. A (smooth) trajectory of X (also called a (smooth) integral

curve) is a curve

γ : I→M ,

such that X is γ-compatible with the standard vector field d/d t on I.

Plainly, a trajectory γ : I → M is said to be maximal if it cannot be

prolonged, i.e., there are no trajectories γ ′ : I′ →M such that

I′ ) I and γ = γ′|I .

0.4.23

Let f : N →M be a smooth map and X and Y be vector fields respectively

on M and N , that are compatible with respect to f . From the definition of

trajectories and the transitivity of compatibility condition it follows that

γ is a trajectory of Y =⇒ f ◦ γ is a trajectory of X .

0.4.24

The standard vector field d/d t on R is clearly compatible with itself with

respect to the translation map

τs : R→ R, t 7→ t+ s

by s ∈ R. Hence, if γ : I → M is a trajectory of X ∈ D(M), and if, by

abuse of notation, the restriction

τ−1
s (I)→ I

of τs is denoted again by τs, then from n. 0.4.23 it immediately follows that

γ ◦ τs is a trajectory of X as well. Since the inverse τ−s of τs is again a

translation, it easily follows that

γ is a trajectory⇐⇒ γ ◦ τs is a trajectory ,
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and

γ is maximal⇐⇒ γ ◦ τs is maximal.

0.5 Differential Forms

0.5.1 Differential Forms with Values in a Module

Let k be a field, A a commutative k-algebra, and P an A-module.

Definition. A multilinear alternating function

D(A) × · · · ×D(A)︸ ︷︷ ︸
s factors

→ P

of A-modules will be called a differential s-form on A with values in P , or

also, shortly, a P -valued s-form.

The A-module of all P -valued differential s-forms will be denoted by

Λs(P ). The graded module with graded components Λs(P ) will be denoted

by Λ•(P ).

A (ordinary) differential form on A will be a differential form on A with

values in A itself. A differential form on a smooth manifold M will be a

differential form on the algebra C∞(M). The C∞(M)–module Λ• (C∞(M))

of all differential forms on M will be denoted simply by Λ• (M) (and its

graded components by Λs(M)).

0.5.2 Cotangent Bundle

Let M be a manifold and A = C∞(M). Arguing as in n. 0.4.9, with
[Nestruev (2003), 11.6 (III)] in place of [Nestruev (2003), 11.6 (II)] and using
[Nestruev (2003), 11.37, 11.39] instead of [Nestruev (2003), Exercise 9.40],

one deduces that Λ1(M) is projective, finitely generated, and determines an

equidimensional pseudobundle πΛ1(M) :
∣∣Λ1(M)

∣∣→ M which is, therefore,

a vector bundle. In this book, the cotangent bundle of M will be, by

definition, πΛ1(M).

0.5.3

By the above construction, the fiber at m ∈M of the cotangent bundle of

M is naturally isomorphic to the cotangent space T ∨
mM

def
= (TmM)

∨
, and
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the value at m of a 1-form ω, considered as a section of the tangent bundle,

corresponds to the unique tangent covector ωm : TmM → R such that

ωm(Xm) = ω(X)(m), X ∈ D(M) . (0.2)

Moreover, T∨
mM is an R-vector space

Rm ⊗A Λ1(M)

obtained from Λ1(M) by extension of scalars via m : A→ R, with universal

homomorphism Λ1(M)→ T∨
mM given by

ω 7→ ωm .

Finally, note that if it is assumed that

TmM = Rm ⊗A D(M)

(see n. 0.4.10) and

Rm = Rm ⊗A A ,

then (0.2) leads to

ωm = idRm
⊗A ω ,

i.e., ωm is the homomorphism obtained from ω by extension of scalars via

m : C∞(M)→ R.

Thus, a 1-form ω is geometrically described by a family

{ωm}m∈M

of tangent covectors.

0.5.4

For higher degrees, the geometric description is analogous. According to

n. 0.1.5, (3), given ω ∈ Λs(M), for each point m ∈ M there is a unique

alternating s-linear form

ωm : TmM × · · · × TmM → R

such that

ωm(X1m, . . . , Xsm) = ω(X1, . . . , Xs)(m) X1, . . . , Xs ∈ D(M) . (0.3)

Therefore, every s-form ω is geometrically described by a family

{ωm}m∈M

of alternating s-linear forms on the tangent spaces.
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0.5.5 The Ordinary Differential

Let k be a field and A be a commutative k-algebra. For each a ∈ A define

d a : D(A)→ A, X 7→ X (a)

and

d : A→ Λ1(A) a 7→ d a .

Definition. The function d will be called the ordinary differential on A.

If A = C∞(M), with M a smooth manifold, then d will be also called

the ordinary differential on M .

0.5.6 Universal Property of First Order Differential Forms

It can be immediately checked that the ordinary differential d on a k-algebra

is a derivation of A into the A-module Λ1(A). The following proposition as-

serts that the ordinary differential d : C∞(M)→ Λ1(M) on a manifold M ,

possibly with boundary, is a universal derivation into a geometric module.

Proposition. For every geometric C∞(M)–module P and for every deriva-

tion

X : C∞(M)→ P

of C∞(M) into P , there exists exactly one C∞(M)–module homomorphism

hX : Λ1(M)→ P

such that

X = hX ◦ d .

Proof. See [Nestruev (2003), Theorem 11.43] (take into account the def-

initions of [Nestruev (2003), 11.42]). �

0.5.7 Action of Smooth Maps on 1-Forms

Let f : N →M be a smooth map and denote by

dM : C∞(M)→ Λ1(M) and dN : C∞(N)→ Λ1(N)

the ordinary differentials.

Since dN is a derivation of C∞(N) into the C∞(N)–module Λ1(N),

the function dN ◦f
∗ is a derivation of C∞(M) into Λ1(N), considered as a
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C∞(M)–module (by restriction of scalars via f ∗). According to n. 0.5.2,

Λ1(N) is projective and finitely generated as a C∞(N)–module; hence it

is geometric. According to n. 0.3.3, it is also geometric as a C∞(M)–

module. Therefore, by Proposition 0.5.6, there is exactly one C∞(M)–

module homomorphism

Λ1 (f∗) : Λ1(M)→ Λ1(N) ,

such that

Λ1 (f∗) ◦ dM = dN ◦f
∗ .

0.5.8 Geometric Description of Λ1 (f∗)

A geometric description for Λ1 (f∗), with f : N →M being a smooth map,

is provided by statement (3) of the last Exercise in [Nestruev (2003), 11.45]

(where Λ1 (f∗) is denoted by f∗ for simplicity):
(
Λ1 (f∗) (ω)

)
n

= ωf(n) ◦ dn f, n ∈ N,ω ∈ Λ1(M) . (0.4)

(This fact also will come out later as a particular case of a much more

general statement.)

0.5.9

Proposition. Let f : N → M be a smooth map and consider the homo-

morphism

ν : D(M)→ D(M)f , X 7→ f∗ ◦X .

(In other words, the map ν associates to each vector field X on M the

vector field along f that projects into X .) Then D(M)f is a C∞(N)–

module obtained from D(M) by extension of scalars via f ∗, with universal

homomorphism ν.

Proof. Proposition 0.5.6 and n. 0.3.3 imply that

i : HomC∞(M)

(
Λ1(M),C∞(N)

) ∼
−→ D(M)f , h 7→ h ◦ d ,

with d being the ordinary differential on M , is a C∞(N)–module isomor-

phism.

According to n. 0.5.2, Λ1(M) = D(M)∨ is projective and finitely gener-

ated. Therefore n. 0.1.5, (7) implies

HomC∞(M)

(
Λ1(M),C∞(N)

)
= (D(M)∨)

∨
⊗ C∞(N) .

The result now easily follows from n. 0.1.5, (6). �
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As a consequence, if πT : TM → M is the tangent bundle of M , then

the pseudobundle on N defined by the module D(M)f is an induced bundle

f∗ (πT ). Accordingly, a vector field along f may be viewed as a section of

the induced bundle f∗ (πT ).

Example. Let E be a vector space considered as a smooth manifold ac-

cording to n. 0.2.19, f : N → E a smooth map and recall that TE is a

standard trivial bundle with standard fiber E (see n. 0.4.11). From the

definition of a standard trivial bundle (n. 0.3.15) and n. 0.3.7 it follows

that the induced from TE by f bundle is a standard trivial bundle with

standard fiber E as well. Hence a vector field along f , when regarded as a

section of this bundle, gives rise to a smooth function N → E, simply by

composition with the trivializing morphism.

If α : I → E is a smooth curve and d / d t is the standard vector field

on I, the function I→ E that corresponds to (d / d t) ◦ α∗ is the derivative

of α. It will be denoted by α′. Note also that α′ is characterized by

α′∗(ϕ) =
d

d t
(α∗(ϕ)) , ϕ ∈ E∨ ,

from which it can be easily recognized that when E = Rn, α′ is nothing

but the usual component-wise derivative of α.

0.5.10

Let A be a k-algebra, k being a field, and P an A-module. Consider the

bilinear function

t : Λs(A)× P → Λs(P )

defined by

t (ω, p) (X1, . . . , Xs) = ω (X1, . . . , Xs) p ,

ω ∈ Λs(A), p ∈ P, X1, . . . , Xs ∈ D (A) .

Proposition. If either D(A) or P is projective and finitely generated, then

(Λs(P ), t) is a tensor product:

Λs(P ) = Λs(A)⊗ P .

Proof. By the universality of exterior powers, there are natural isomor-

phisms Λs(P ) ∼= Hom (
∧s

D(A), P ) and Λs(A) ∼= (
∧s

D(A))
∨
. Therefore

the result easily comes from n. 0.1.5, (12) and (7). �
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By n. 0.4.9, the above result applies to A = C∞(M), with M being a

smooth manifold, possibly with boundary. Therefore, for every C∞(M)–

module P ,

Λs(P ) = Λs(M)⊗ P .

0.5.11 Exterior Differential

Let k be a field and A a commutative k-algebra. Define a k-linear function

ds : Λs (A)→ Λs+1 (A)

by setting

ds (ω) (X1, . . . , Xs+1) =
∑

i

(−1)i+1Xi

(
ω
(
X1, . . . , X̂i, . . . , Xs+1

))

+
∑

i<j

(−1)i+j ω
(
[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xs+1

)

ω ∈ Λs(M), X1, . . . Xs+1 ∈ D(A) ,

where t̂ denotes the omission of a term t.

Definition. The exterior differential on A in this book will be the first

degree graded k-module endomorphism

d : Λ•(A)→ Λ•(A)

with degree s component ds for each s (28).

Note that the degree 0 component is the ordinary differential on A.

Sometimes, by abuse of notation, each graded component will be denoted

simply by d.

In the case when A = C∞(M), with M being a smooth manifold, the

exterior differential on A will be also called the exterior differential on M.

For a ‘conceptual definition’ of the exterior differential see [Vinogradov

(2001), 1.1.6].

28For an arbitrary algebra A, the adjective ‘exterior’ could be a bit misleading. Indeed,
generally Λ•(A) is not an exterior algebra (but it will be such in situations of central
interest for this book).
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0.5.12 de Rham Complex

Let k be a field and A a commutative k-algebra.

Proposition. The exterior differential d on A satisfies

d ◦ d = 0 ,

i.e.,

(Λ•(A), d)

is a complex.

Proof. A proof may be done by writing down the definition of d2 = d ◦ d

on homogeneous forms, being careful in doing the simplifications. It results

in a rather long (but somewhat interesting) calculation, which is left to the

reader. �

0.5.13 Wedge Product

Let A be a commutative k-algebra, k being a field, Sr+s the group of

permutations of {1, . . . , r + s}, with r, s being nonnegative integers, and

define the following subset

Sr,s
def
= {σ ∈ Sr+s : σ (1) < · · · < σ (r) and σ (r + 1) < · · · < σ (r + s)} .

Then, the A-module Λ•(A) turns into a graded A-algebra once equipped

with the (distributive) operation ∧ determined by

(ω ∧ κ) (X1, . . . , Xr+s)

=
∑

σ∈Sr,s

(−1)
|σ|
ω
(
Xσ(1), . . . , Xσ(r)

)
κ
(
Xσ(r+1), . . . , Xσ(r+s)

)
,

ω ∈ Λr(A),κ ∈ Λs(A), X1, . . . , Xr+s ∈ D(A) ,

with (−1)|σ| being the parity of σ.

Moreover, consider the zeroth degree homomorphism of graded A-

modules

α :
∧•

Λ1(A)→ Λ•(A)

with graded components αn determined by the condition:

αn (ω1 ∧ · · · ∧ ωn) (X1, . . . , Xn) =
∣∣∣(ωi (Xj))i,j∈{1,...,n}

∣∣∣ ,

X1, . . . , Xn ∈ D(A), ω1, . . . , ωn ∈ Λ1(A)
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(here ∧ denotes the exterior product in
∧• Λ1(A)). From the generalized

Laplace expansion of determinants (see [Mac Lane and Birkhoff (1967),

Chap. XVI, Sect. 7, Theorem 12 (p. 564)]) it follows that α is a graded

algebra homomorphism too.

Proposition. If D(A) is projective and finitely generated, then α is an

isomorphism.

Proof. It follows from n. 0.1.5, (11) (details are left to the reader). �

Corollary. If M is a manifold, possibly with boundary, then Λ•(M) is

an exterior algebra of the C∞(M)–module Λ1 (M). Moreover, for all

X1, . . . , Xn ∈ D(M) and ω1, . . . , ωn ∈ Λ1(M),

(ω1 ∧ · · · ∧ ωn) (X1, . . . , Xn) =
∣∣∣(ωi (Xj))i,j∈{1,...,n}

∣∣∣ . (0.5)

Proof. It immediately follows from the proposition, because D(M) is

projective and finitely generated by n. 0.4.9. �

The operation ∧ will be called wedge product in Λ•(A). In conformity

with the proposition, if D(A) is projective and finitely generated then ∧

may also be called exterior product in Λ•(A). In particular, an exterior

product is defined on Λ•(M), with M being a manifold.

Note that, since the characteristic of the algebra C∞ (M) is 0, the for-

mula

(ω ∧ κ) (X1, . . . , Xr+s)

=
∑

σ∈Sr,s

(−1)
|σ|
ω
(
Xσ(1), . . . , Xσ(r)

)
κ
(
Xσ(r+1), . . . , Xσ(r+s)

)

may be also written

(ω ∧ κ) (X1, . . . , Xr+s)

=
1

r!s!

∑

σ∈Sr+s

(−1)
|σ|
ω
(
Xσ(1), . . . , Xσ(r)

)
κ
(
Xσ(r+1), . . . , Xσ(r+s)

)
.

The present definition of the wedge product agrees with the one that may

be generally found in the literature (see, e.g., [Berger and Gostiaux (1988),

0.1.4]). In some texts (e.g., [Singer and Thorpe (1976), Sect. 5.2 (p. 120)])

a different definition is assumed by replacing r!s! by (r+ s)!. The resulting

algebra structure on Λ•(M) is different but, anyway, isomorphic.
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0.5.14 Leibnitz Rule for the Exterior Differential

Proposition. Let d : Λ• (A) → Λ•(A) be the exterior differential on a

commutative k-algebra A, k being a field. For all ωr ∈ Λr (A) and κ ∈

Λ• (A),

d (ωr ∧ κ) = (dωr) ∧ κ + (−1)
r
ωr ∧ d κ .

Proof. Basically, a proof may be done by an easy (but cumbersome)

calculation, based on some preliminaries about permutations. The details

are left to the reader. �

In other words, the exterior differential is a graded derivation of Λ•(A).

0.5.15

The universal property of the ordinary differential d : C∞(M) → Λ1(M)

easily implies that the C∞(M)–module Λ1(M) is generated by the image

of d, i.e., by elements of the form d a with a ∈ C∞(M) (29).

It follows, more generally, that for all s ∈ N0, the C∞(M)–module

Λs(M) is generated by elements of the form

d a1 ∧ · · · ∧ d as ,

with a1, · · · , as ∈ C∞(M). In other words, every s-form ωs may be written

as a sum

ωs =
∑

i

ai d ai1 ∧ · · · ∧ d ais ,

with the a’s in C∞(M). Propositions 0.5.12 and 0.5.14 imply

dωs =
∑

i

d ai ∧ d ai1 ∧ · · · ∧ d ais .

Let U be open in Rn. From the local description of smooth vector fields

(see n. 0.4.1) it easily follows that

d a =
∂a

∂x1
dx1 + · · ·+

∂a

∂xn
dxn, a ∈ C∞(U) . (0.6)

Therefore dx1, . . . , dxn generate Λ1(U) as a C∞(U)–module and Λ•(U) as

a C∞(U)–algebra. This gives the usual description in local coordinates of

an s-form ωs on a manifold M :∑

i1<···<is

ai1...is
dxi1 ∧ · · · ∧ dxis

.

29Actually, in the present setting, the logical dependence between these facts is in-
verted, because the proof of [Nestruev (2003), Theorem 11.43] uses [Nestruev (2003),
Corollary 11.49].
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Accordingly, the local description of the exterior differential dωs is obtained

from a rearrangement of

∑

i1<···<is

d ai1...is
∧ dxi1 ∧ · · · ∧ dxis

after substitution of the various d ai1...is
with the corresponding expressions

given by (0.6).

0.5.16 Action of Smooth Maps on de Rham Complexes

Let f : N →M be a smooth map between manifolds, possibly with bound-

ary.

By n. 0.5.7, there exists exactly one C∞(M)–module homomorphism

Λ1 (f∗) : Λ1(M)→ Λ1(N)

such that

Λ1 (f∗) ◦ dM = dN ◦f
∗ , (0.7)

with dM , dN being the (zeroth components of) exterior differentials. Since

Λ•(M) is an exterior algebra of Λ1(M) by Corollary 0.5.13, Λ1 (f∗) in-

duces a C∞(M)–algebra homomorphism of Λ•(M) into the exterior alge-

bra of the C∞(M)–module obtained from Λ1(N) by restriction of scalars.

Upon composing with the natural homomorphism of n. 0.1.5, (4) one gets

a C∞(M)–algebra homomorphism

Λ• (f∗) : Λ•(M)→ Λ•(N) ,

which is the unique one with first degree component Λ1 (f∗).

Using the (global) description of differential forms recalled in n. 0.5.15,

one also easily deduces that

Λ• (f∗) ◦ dM = dN ◦Λ• (f∗) .

In conclusion, Λ• (f∗) : Λ•(M) → Λ•(N) is both a cochain homomor-

phism and a graded homomorphism of C∞(M)–algebras, when Λ•(N) is

considered so by restriction of scalars via f ∗. Moreover, Λ• (f∗) is char-

acterized by these conditions. It will be called the (de Rham) cochain

homomorphism induced by f .
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0.5.17 Geometric Description of Λ• (f∗)

Let f : N → M be a smooth map. A geometric pointwise description of

Λ• (f∗) is given by

(Λ• (f∗) (ω))n(ξ1, . . . , ξs) = ωf(n) (dn f(ξ1), . . . , dn f(ξs)) ,

n ∈ N, ω ∈ Λs(M), ξ1, . . . , ξs ∈ TnN .

Indeed, note that it suffices to check it in the case when

ω = ω1 ∧ · · · ∧ ωs

with ωi ∈ Λ1(M) for all i, and that by n. 0.4.10 vector fields Y1, . . . , Ys on

N may be chosen such that

Y1n = ξ1 , . . . , Ysn = ξs

and vector fields X1, . . . , Xs on M such that

X1f(n) = dn f(ξ1) , . . . , Xsf(n) = dn f(ξs) .

With these assumptions, the required formula comes from an easy calcula-

tion based on (0.3), p. 53, (0.4), p. 55 and (0.5), p. 59.

0.5.18 Insertion Operator

Let k be a field, A a commutative k-algebra,X ∈ D (A) and P an A-module.

If ω ∈ Λs (A), with s ≥ 1, then

ωX (X1, . . . , Xs−1)
def
= ω (X,X1, . . . , Xs−1) , X1, . . . , Xs−1 ∈ D(A) ,

defines a form ωX ∈ Λs−1 (P ). If ω ∈ Λ0(P ) ∼= P , set ωX = 0 by definition.

Definition. The (−1)-th degree graded A-module endomorphism

Λ•(P )→ Λ•(P )

with degree s components

Λs(P )→ Λs−1(P ), ω 7→ ωX

is called the insertion operator of X into Λ•(P ).

In the case when P = A, the insertion operator is usually denoted by

iX ; for an arbitrary P the notation iX,P , or often simply iX , will be used.

The form iX (ω) = ωX is sometimes also denoted by

X y ω .

If M is a smooth manifold, possibly with boundary, and X a vector field on

M , the insertion operator of X is the insertion operator of X into Λ•(M)

(i.e., it is assumed that P = A = C∞(M)).
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0.5.19 Leibnitz Rule for Insertion Operators

The insertion operator of X ∈ D (A) into Λ•(A) satisfies the following

Leibnitz Rule.

Proposition. For all ωr ∈ Λr(A) and κ ∈ Λ• (A),

iX (ωr ∧ κ) = iX (ωr) ∧ κ + (−1)
r
ωr ∧ iX (κ) .

Proof. The situation is similar to (but fortunately easier than) that of

Proposition 0.5.14. A proof may consist of a calculation together with some

manipulation about permutations. �

In other words, iX is a graded derivation.

0.5.20

Let M be a manifold, X a vector field on M , d : C∞(M) → Λ1(M) the

ordinary differential on M , and iX : Λ1(M) → C∞(M) the first degree

component of the insertion operator of X . Then for all a ∈ C∞(M), by

definition of d and iX ,

iX (d a) = (d a) (X) = X (a) .

Therefore

iX ◦ d = X .

By the universal property of d (Proposition 0.5.6), the above equality char-

acterizes iX among C∞(M)–module homomorphisms Λ1(M)→ C∞(M).

0.5.21

Let f : N →M be a smooth map, X a vector field on M , Y a vector field

on N , and let

iX : Λ1(M)→ C∞(M), iY : Λ1(N)→ C∞(N)

be the first degree components of the insertion operators of X and Y ,

respectively.
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Exercise. Show that X and Y are compatible with respect to f if and

only if the diagram

Λ1(M)
Λ1 f∗

//

iX

��

Λ1(N)

iY

��

C∞(M)
f∗

// C∞(N)

is commutative.

Hint. Compose with the ordinary differential on M and take into account

n. 0.5.20.

Proposition. The vector fields X and Y are f -compatible if and only if

the diagram

Λ•(M)
Λ• f∗

//

iX

��

Λ•(N)

iY

��

Λ•(M)
Λ• f∗

// Λ•(N)

is commutative.

Proof. It reduces to extend the ‘only if’ assertion of the preceding Ex-

ercise to every degree. By means of the description of ω ∈ Λs(M) given in

n. 0.5.15, it suffices to make straightforward use of Proposition 0.5.19. �

Now let X1, . . . , Xn ∈ D(M), Y1, . . . , Yn ∈ D(N) and ω ∈ Λn(M).

Corollary. If Xi and Yi are f -compatible for all i ∈ {1, . . . , n}, then

(Λ• f∗) (ω) (Y1, . . . , Yn) = f∗ (ω (X1, . . . , Xn)) .

Proof. It suffices to apply n times the Proposition. �

0.5.22 Differential Forms Along Maps

Let f : N →M be a smooth map and consider the C∞(M)–module struc-

ture on C∞(N) given by f∗.

Definition. A (differential) form on M along f is a differential form on

C∞(M) with values in the C∞(M)–module C∞(N).

The graded C∞(N)–module of all differential forms on M along f will

be denoted by Λ•(M)f , and its degree s component by Λs(M)f .
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0.5.23

Ordinary differential forms on a manifold may be understood as differential

forms along the identity. Note also that if ω is a form along f : N → M

and g : V → N is a smooth map, then the composition

g∗ ◦ ω

is a form along f ◦ g.

0.5.24

Proposition. The module Λs(M)f of differential s-forms along a smooth

map f : N →M is a module obtained from Λs(M) by extension of scalars

via f∗, with universal homomorphism

νs : Λs(M)→ Λs(M)f , ω 7→ f∗ ◦ ω .

Proof. Immediate from Proposition 0.5.10. �

As a consequence, Λ•(M)f is a graded C∞(N)–algebra obtained from

Λ•(M) by extension of scalars via f ∗, with universal homomorphism ν
def
=⊕

s∈N0
νs.

0.5.25

Example. Let f : N →M be a smooth map and πT∨ : T∨M →M be the

cotangent bundle of M . By Proposition 0.5.24, the vector bundle on N ,

defined by the module Λ1(M)f of all 1-forms along f , is an induced bundle

f∗ (πT∨). If f is replaced by a vector bundle π : E →M (understood as an

object of VBg), a 1-form along π corresponds to what in [Nestruev (2003),

11.26] is called a horizontal 1-form on E.

0.5.26

Proposition. Let f : M → N be a smooth map. Then Λ•(M)f is an

exterior algebra of the C∞(N)–module Λ1(M)f .

Proof. By Corollary 0.5.13, Λ•(M) is an exterior algebra of Λ1(M) and,

by n. 0.5.24, Λ•(M)f is an algebra obtained from Λ•(M) by extension of

scalars via f∗. Hence, it suffices to invoke n. 0.1.5, (5). �
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0.5.27 Wedge Product of Differential Forms Along Maps

According to Proposition 0.5.26, Λ•(M)f carries an exterior product ∧,

that will be also called wedge product.

The explicit expression of the wedge product in Λ•(M)f is similar to

the expression of the wedge product in Λ•(M) (see n. 0.5.13). To see this,

let ω ∈ Λr(M)f ,κ ∈ Λs (M)f and denote by

ν : Λ•(M)→ Λ• (M)f

the universal homomorphism into the scalar extension. Since Λ• (M)f is

generated by the image of ν, it may be assumed that

ω =

t∑

i=1

aiν (ωi) , κ =

u∑

j=1

bjν (κj) .

According to Proposition 0.5.24, ν(ωi) = f∗ ◦ ωi, ν(κj) = f∗ ◦ κj . There-

fore, from the expression of the wedge products ωi ∧ κj in Λ•(M), by a

straightforward calculation it is easily deduced that

(ω ∧ κ) (X1, . . . , Xr+s)

=
∑

σ∈Sr,s

(−1)
|σ|
ω
(
Xσ(1), . . . , Xσ(r)

)
κ
(
Xσ(r+1), . . . , Xσ(r+s)

)
,

where Sr,s is, as usual, the subset of the group Sr+s of permutations of

{1, . . . , r + s} given by

Sr,s = {σ ∈ Sr+s : σ (1) < · · · < σ (r) and σ (r + 1) < · · · < σ (r + s)} .

0.5.28 Insertion Along Maps

Since differential forms along f : N → M are, in particular, forms with

values in a module, according to Definition 0.5.18 for each vector field X

on M , an insertion operator

iX : Λ•(M)f → Λ•(M)f ,

which is clearly C∞(N)–linear, is defined. It is easy to define, more gen-

erally, insertion operators of vector fields along f . Indeed, according to

Proposition 0.5.9, the function

ν : D(M)→ D(M)f , X → f∗ ◦X

is the universal homomorphism into the scalar extension D(M)f of D(M).

Therefore, according to n. 0.1.5, (3), a differential s-form ω along f natu-

rally corresponds to the s-linear alternating form

ωf : D(M)f × · · · ×D(M)f → C∞(N)
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characterized by

ωf (f∗ ◦X1, . . . , f
∗ ◦Xs) = ω(X1, . . . , Xs), X1, . . . , Xs ∈ D(M) .

It is sometimes convenient to identify ω with ωf , so that it will make sense

ω(Y1, . . . , Ys) ∈ C∞(N), ω ∈ Λs(M)f , Y1, . . . , Ys ∈ D(M)f .

Now, let Y be a vector field along f . For each ω ∈ Λs(M)f , if s ≥ 1,

set

ωY (X1, . . . , Xs−1)
def
= ωf (Y, f∗ ◦X1, . . . , f

∗ ◦Xs−1) ,

X1, . . . , Xs−1 ∈ D(M) ;

if s = 0, set ωY = 0.

Definition. The (−1)–th degree graded C∞(N)–module homomorphism

iY : Λ•(M)f → Λ•(M)f

with degree s components

Λs(M)f → Λs−1(M)f , ω 7→ ωY

will be called the insertion operator of Y into Λ•(M)f .

Sometimes, the form ωY = iY (ω) will be also denoted by

Y y ω .

0.5.29

If N = M and f = idM , then iY coincides with the ordinary insertion

operator of the ordinary vector field Y into ordinary differential forms onM .

0.5.30 Leibnitz Rule for Insertions Along Maps

Proposition. Let Y be a vector field along a smooth map f : N → M .

For all ωr ∈ Λr(M)f and κ ∈ Λ•(M)f ,

iY (ωr ∧ κ) = iY (ωr) ∧ κ + (−1)
r
ωr ∧ iY (κ) .

Proof. The description of the wedge product in Λ•(M)f given in n. 0.5.27

still holds if the ordinary vector fields X1, . . . , Xr+s are replaced by vec-

tor fields along f (and forms along f are understood as forms on D(M)f

according to n. 0.5.28). To see this, it suffices to decompose the argu-

ments as linear combinations of ordinary vector fields with coefficients in

C∞(N). Using this description, the proof becomes formally identical to

that of Proposition 0.5.19. �



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

68 Fat Manifolds and Linear Connections

0.5.31

Let f : N → M be a smooth map and recall that D(M)f and Λs(M)f

are, respectively, obtained by extension of scalars via f ∗ with universal

homomorphisms

D(M)→ D(M)f , X 7→ X ◦ f∗

and

Λs(M)→ Λs(M)f , ω 7→ ω ◦ f∗ .

By the definition of insertion operators along f , for all X ∈ D(M) and

ω ∈ Λs(M),

f∗ ◦ (X y ω) = (f∗ ◦X) y (f∗ ◦ ω) .

This shows that the bilinear map

D(M)f × Λs(M)f → Λs−1(M)f , (Y,κ) 7→ Y y κ

coincides with the bilinear map obtained from

D(M)× Λs(M)→ Λs−1(M), (X,κ) 7→ X y ω

by extension of scalars via f∗ (see n. 0.1.5, (2)).

Now let g : V → N be a smooth map. If Y ∈ D(M)f and κ ∈ Λs(M)f

then

g∗ ◦ Y ∈ D(M)f◦g , g∗ ◦ κ ∈ Λs(M)f◦g

(see nn. 0.4.13 and 0.5.23). Moreover, the homomorphisms

D(M)f → Df◦g(M), Y 7→ g∗ ◦ Y

and

Λs(M)f → Λs(M)f◦g, κ 7→ g∗ ◦ κ

both satisfy the universal property of scalar extension via g∗, because this

is true for the analogous homomorphisms from D(M) and Λs(M). As a

consequence, the bilinear map

D(M)f◦g × Λs(M)f◦g → Λs−1(M)f◦g , (Z, ρ) 7→ Z y ρ

coincides with the bilinear map obtained from

D(M)f × Λs(M)f → Λs−1(M)f , (Y,κ) 7→ Y y κ

by extension of scalars via g∗. In other words, the following formula holds:

(g∗ ◦ Y ) y (g∗ ◦ κ) = g∗ ◦ (Y y κ) , Y ∈ D(M)f ,κ ∈ Λs(M)f . (0.8)
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0.5.32

Proposition. Let f : N → M be a smooth map. For all ω ∈ Λ1(M) and

Z ∈ D(N),

Λ1 (f∗) (ω)(Z) = (Z ◦ f∗) y (f∗ ◦ ω) .

Proof. According to n. 0.5.31, for all a ∈ C∞(M) and X ∈ D(M)

(f∗ ◦X) y (f∗ ◦ da) = f∗ ◦ (X y d a) = f∗ ◦X(a) .

Notice that hereX(a) is interpreted as a 0-form, so that f ∗◦X(a) is nothing

but f∗ (X(a)). Therefore,

(f∗ ◦X) y (f∗ ◦ d a) = (f∗ ◦X)(a) .

In other words, the C∞(N)–module homomorphism

D(M)f → C∞(N), Y 7→ Y y (f∗ ◦ d a)

coincides with

D(M)f → C∞(N), Y 7→ Y (a)

when Y is in the image of the universal homomorphism D(M) → D(M)f ,

X 7→ f∗ ◦X . Therefore, they coincide for all Y :

Y y (f∗ ◦ d a) = Y (a), Y ∈ D(M)f , a ∈ C∞(M) . (0.9)

Now consider the C∞(M)–module homomorphism

ϕ : Λ1(M)→ Λ1(N)

that, with ω ∈ Λ1(M), associates the 1-form on N given by

Z 7→ (Z ◦ f∗) y (f∗ ◦ ω) .

For all a ∈ C∞(M) and Z ∈ D(N),

ϕ(d a)(Z) = (Z ◦ f∗) y (f∗ ◦ d a)
(0.9)
= Z(f∗(a)) = (dN f∗(a))(Z) ,

with dN being the ordinary differential on N . This shows that ϕ fulfills the

condition

ϕ ◦ d = dN ◦f
∗

that characterizes Λ1 (f∗). �
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Note that the above proposition, together with (0.8) and n. 0.4.10, im-

plies the geometric description mentioned in n. 0.5.8 (compose the formula

in the statement with n : C∞(N)→ R).

Recall that Λ1(M)f is obtained from Λ1(M) by extension of scalars via

f∗ (see Proposition 0.5.24). Hence, to the C∞(M)–module homomorphism

Λ1 f∗ naturally corresponds a C∞(N)–module homomorphism

(Λ1 f∗)f : Λ1(M)f → Λ1(N) .

Corollary. For all κ ∈ Λ1(M)f and Z ∈ D(N)

(Λ1 f∗)f (κ)(Z) = (Z ◦ f∗) y κ .

Proof. By the Proposition, the composition of the universal homomor-

phism

Λ1(M)→ Λ1(M)f , ω 7→ f∗ ◦ ω

with the C∞(N)–module homomorphism given by

Z 7→ (Z ◦ f∗) y κ

is precisely Λ1 f∗. �

Consider now the C∞(N)–module homomorphism

(Λ• f∗)f : Λ•(M)f → Λ•(N)

corresponding to Λ• f∗.

Exercise. Show that

Z y (Λ• f∗)f (κ) = (Λ• f∗)f ( (Z ◦ f∗) y κ ) , κ ∈ Λ•(M)f , Z ∈ D(N) .

Hint. Argue by induction using the Leibnitz rule for insertions (see

n. 0.5.30).

0.5.33 Local Differential Forms

Let U be an open submanifold of a manifold M and κ be an s-form along

the embedding i : U ↪→M . Repeated applications of Exercise 0.5.32 lead to

(Λ• i∗)i(κ) (X1|U , . . . , Xs|U ) = κ (X1, . . . , Xs) , X1, . . . , Xs ∈ D(M) .

Moreover, according to n. 0.4.16, there exists a natural identification

D(M)i = D(U), which shows that D(U) is generated as a C∞(U)–module
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by the restrictions of vector fields on M (by Proposition 0.5.9). This implies

that ω = (Λ• i∗)i(κ) is the unique s-form on U such that

ω (X1|U , . . . , Xs|U ) = κ (X1, . . . , Xs) , X1, . . . , Xs ∈ D(M) .

Conversely, given an s-form ω on U , the above equality immediately defines

an s-form κ along i.

In conclusion, there exists a natural one-to-one correspondence between

s-forms along i and s-forms on U . This identification is compatible with

wedge products, as it easily follows form n. 0.5.27.

Definition. A local (differential) form on M is a form along the embedding

U ↪→ M of an open submanifold, and it is sometimes identified with the

corresponding s-form on U .

0.5.34 Splitting of Differential Forms

on a Product Manifold

Let M and N be smooth manifolds, at least one of them without boundary,

P a C∞(M ×N)–module, and

πM : M ×N →M, πN : M ×N → N

the projection maps.

Proposition. If PM and PN respectively denote the modules obtained

from P by restriction of scalars via π∗
M and π∗

N , then

Λ1(P ) = Λ1 (PM )⊕ Λ1 (PN ) .

Proof. From Propositions 0.4.18 it follows that

HomC∞(M×N)

(
D (M ×N) , P

)

= HomC∞(M×N)

(
D(M)N , P

)
⊕ HomC∞(M×N)

(
D(N)M , P

)
.

Therefore, it suffices to note that by Proposition 0.5.9 there are natural

isomorphisms

HomC∞(M×N) (D(M)N , P ) ∼= HomC∞(M) (D(M), PM )

and

HomC∞(M×N) (D(N)M , P ) ∼= HomC∞(N) (D(N), PN ) .
�
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0.5.35

When P = C∞(M × N), Proposition 0.5.34 leads to a decomposition of

Λ1(M × N). To write it in a more expressive form, let us introduce the

following notation.

Definition. Let πM : M ×N →M be the projection onto M of a product

M × N of smooth manifolds. The C∞ (M ×N)–module Λ•(M)πM
of all

differential forms on M along πM will be also denoted by

Λ•(M)N

and its degree s component Λs(M)πM
by Λs(M)N .

In this notation, Proposition 0.5.34 gives in particular

Λ1 (M ×N) = Λ1(M)N ⊕ Λ1 (N)M .

From the construction of the above decomposition and Corollary 0.5.32, it

easily follows that the natural monomorphisms

Λ1(M)N ↪→ Λ1 (M ×N) and Λ1(N)M ↪→ Λ1 (M ×N)

into the direct sum are nothing but the homomorphisms that naturally cor-

respond to Λ1 (π∗
M ) and Λ1 (π∗

N ), once Λ1(M)N and Λ1(N)M are considered

as scalar extensions from Λ1(M) and Λ1(N), respectively.

0.5.36 Splitting of Derivations

Proposition. In the notation of n. 0.5.34, if P is geometric then there is

a decomposition

D(P ) = D (PM )⊕D (PN )

such that the natural epimorphisms onto the summands are respectively

given by

X 7→ X ◦ π∗
M and X 7→ X ◦ π∗

N .

Proof. It easily follows from Proposition 0.5.6 and n. 0.5.35. �

0.5.37 Splitting of Tangent Vectors

When P = R with the C∞ (M ×N)–module structure given by (m,n) :

C∞ (M ×N)→ R, n. 0.3.3 and Proposition 0.5.36 leads to the decomposi-

tion

T(m,n) M×N = TmM ⊕ TnN ,
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with natural epimorphisms given by

d(m,n) πM and d(m,n) πN .

It is also easy to recognize that the natural monomorphisms of the sum-

mands are nothing but

dm in and dn jm ,

with in : M → M × N and jm : N → M × N being the embeddings at

m and n, respectively (it suffices to check the four compositions with the

natural epimorphisms, taking into account what are the compositions of in,

jm with πM and πN ).

Exercise. Show that a morphism of vector bundles is regular if and only

if it is regular as a morphism in VBg (according to n. 0.3.26).

Hint. Take into account the Inverse Function Theorem (see, e.g., [Nestruev

(2003), 6.21] or [Berger and Gostiaux (1988), 0.2.22]); cf. also [Nestruev

(2003), 11.30].

0.6 Lie Derivative

In this section, the notion of Lie derivative of a differential form along a

vector field X is reviewed. Although it could be directly introduced by

means of the Cartan formula (see n. 0.6.20), it is also worth it to recall the

description based on the flow of X .

0.6.1 Flow Generated by a Vector Field

The existence and uniqueness theorem for ordinary (smooth) differential

equations may be stated in the following form. For every smooth vector

field X on a manifold M , possibly with boundary, and for all m ∈M , there

exists a unique maximal trajectory γ : I → M of X such that γ(0) = m.

The smooth dependence of trajectories on the initial data is encoded by

the flow of X . More precisely, if M is without boundary, the flow of X is

a smooth map

Φ : IM →M ,

where IM is an open submanifold of M × R, such that for all m ∈ M , the

map

γm : Im →M, γm (t) = Φ(m, t)
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(where Im = {t ∈ R| (m, t) ∈ IM}) results in the unique maximal trajectory

of X such that γm (0) = m. For the proof of existence and uniqueness (30)

of the flow, the reader is referred to [Berger and Gostiaux (1988), 3.5.7] (it is

also convenient to have a look on [Arnold (2006), Chap. 4, 31.8, Solutions 1,

2 (p. 277)]).

0.6.2 Flows on a Manifold with Boundary

When M has a nonempty boundary, some pathologies may arise. Of course,

a map Φ : IM → M still exists such that maximal trajectories are given

by γm (t) = Φ(m, t), but the domain IM may be not a submanifold of

M × R. However, when IM is identified with
∣∣C∞(M × R)|

IM

∣∣ (through

the homeomorphism µ examined in n. 0.2.20), Φ is smooth in the sense that

it is the dual map of an algebra homomorphism. Equivalently, this means

that a ◦ Φ ∈ C∞(M × R)|
IM

for all a ∈ C∞(M).

0.6.3 Relative Intervals

In some sense, the flow is a ‘universal trajectory’: a single maximal trajec-

tory is to a single point m as the flow is to the whole of M . Accordingly,

it may be said that the subset IM of M × R is to M as an interval is to a

single point. By this reason, it is expressive to call IM a relative interval

over M , though this term is commonly used with a different meaning in

Physics. A precise definition is stated below: it will be limited to the case

when IM is a manifold.

Let M be a smooth manifold and, for all m ∈ M , consider the embed-

ding at m into the product M × R:

R→M × R, t 7→ (m, t) .

Definition. A relative interval over M will be, in this book, a submanifold

IM of M × R such that for all m ∈ M the inverse image through the

embedding at m is an interval.

A relative interval will be said to be open if it is such as a submanifold

of M × R. For each m ∈ M , restricting the embedding at m one gets a

30Since, in our setting, a product is defined up to natural diffeomorphisms, the unique-
ness holds only in view of the natural identification of M × R with the set-theoretic
product.
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smooth map

jm : Im → IM .

Similarly, for all t ∈ R, consider the embedding at t into the product M×R,

M →M × R, m 7→ (m, t) ,

and let Mt be the inverse image of IM through this map. If Mt is a sub-

manifold of M (it is certainly the case if IM is open or, more generally,

open in M × I, with I being an interval), then the restriction map

it : Mt → IM

is defined. The maps jm and it will be also called the embeddings into the

relative interval IM at m and at t, respectively.

Finally, let ∂/∂t be the unique vector field on M ×R that is compatible

with the zero vector field with respect to the projection map πM : M ×

R → M and with the standard vector field d/d t on R with respect to the

projection map πR : M ×R→ R (see Corollary 0.4.17). If IM is open, then

the restriction on IM of ∂/∂t is defined. Note that if IM = M × I, with I

being a nonempty interval not reduced to a singleton (31), the restriction

of ∂/∂t may be defined as well (32). Thus, if IM is open in M × I, the

restriction of ∂/∂t on IM will be called the standard vector field on the

relative interval IM (33).

A relative interval gives rise to a family of intervals Im. In view of the

identification of M × R with the set-theoretic product, it will be assumed

that a relative interval that determines a fixed family (if it exists) is unique.

Note that the standard vector field d / d t on the interval Im is jm–

compatible with the standard vector field on IM . Although this fact may be

trivially proved with the help of local coordinates, it is worth mentioning the

following algebraic trick, which will be useful in similar situations. Suppose

first that Im = I and IM = M × I. From the definitions of jm and of the

standard vector fields it immediately follows that

j∗m ◦
∂

∂t
◦ π∗

M = 0, j∗m ◦
∂

∂t
◦ π∗

I =
d

d t

31Thus I may include an endpoint and, in this case, we assume that M is without
boundary.
32Here, the uniquely determined vector field that is compatible with ∂/∂t through the
embedding is meant. Namely, it is the unique vector field on M × I that is compatible
with the zero vector field with respect to the projection M × I → M and with the
standard vector field d/d t on I with respect to the projection M × I → I.
33It would be easy to see that the standard vector field may be defined whenever
dim (IM ) = dim (M × R), but all relative intervals that will be needed in the sequel
are, in fact, open in M × I.
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and

d

d t
◦ j∗m ◦ π

∗
M = 0,

d

d t
◦ j∗m ◦ π

∗
I =

d

d t
.

Therefore, n. 0.3.3 and Proposition 0.5.36 (with P equal to the C∞ (M × I)-

module C∞ (Im) given by jm), imply that j∗m ◦ ∂/∂t = d/d t ◦ j∗m, i.e.,

d / d t and ∂/∂t are jm–compatible. When Im and IM are open sub-

manifolds, respectively of I and M × I, it suffices to invoke, in addition,

n. 0.4.15, (5).

0.6.4 Smooth Dependence on the Initial Data

Theorem. LetX be a smooth vector field on a manifoldM without bound-

ary and f : N →M be a smooth map. Then there exists a smooth map

Φf : IN →M ,

where IN is an open relative interval over N , such that, for all n ∈ N ,

the curve

γn = Φf ◦ jn

is the unique maximal trajectory of X such that γn(0) = f (n), with jn :

In → IN being the embedding at n ∈ N .

Proof. If N = M and f is the identity map, the statement results in the

ordinary existence theorem of the flow

Φ : IM →M .

To find Φf in the general case, it suffices to consider the smooth map

f × idR : N × R→M × R ,

set

IN = (f × idR)
−1

(IM )

and take

Φf
def
= Φ ◦ (f × idR) |IN ,IM

.
�

When M has a nonempty boundary, the above result may be appropri-

ately rephrased in view of n. 0.6.2.
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0.6.5

In the notation of the preceding theorem, note that the standard vector

fields ∂/∂t on IN and X are compatible with respect to Φf . In particular,

this is true when Φf coincides with the flow Φ.

0.6.6 One-parameter Group Generated by a Vector Field

Let

Φ : IM →M

be the flow of a vector field X on a manifold M without boundary. For all

t ∈ R let

it : Mt → IM

be the embedding at t into the relative interval IM and set

Φt = Φ ◦ it .

From n. 0.4.24, it easily follows that for all s, t ∈ R and m ∈Ms, either

Φt (Φs(m)) = Φt+s (m)

or both sides are undefined (that is, Φs(M) /∈Mt and m /∈Mt+s).

Definition. The family of smooth maps

{Φt}t∈R

will be called the one-parameter group generated by X .

In the case when the domain IM of the flow Φ is the whole of M × R,

Proposition 0.6.6 actually asserts that

{Φt}t∈R
,

equipped with the operation given by map composition, is an abelian group;

moreover, the Φt’s are diffeomorphisms M → M (since they are invertible

under composition). In the general case, the group operation coincides with

map composition only in a local sense.
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0.6.7

The standard vector field ∂/∂t and X are compatible with respect to Φ:

∂

∂t
◦ Φ∗ = Φ∗ ◦X .

Upon composing with i∗t0 , t0 ∈ R, and taking into account that, by defini-

tion, Φ ◦ it0 = Φt0 , one deduces

i∗t0 ◦
∂

∂t
◦ Φ∗ = Φ∗

t0 ◦X .

In particular, since Φ0 = idM ,

i∗0 ◦
∂

∂t
◦ Φ∗ = X .

These equalities are sometimes written

d

d t

∣∣∣∣
t=t0

Φ∗
t = Φ∗

t0 ◦X

and

d

d t

∣∣∣∣
t=0

Φ∗
t = X .

0.6.8 Smooth Families of Smooth Maps

Let M , N , and T be smooth manifolds and {Gt}t∈T be a family of smooth

maps Gt : N → M , parameterized by the points of T . Suppose that at

least one of N and T is without boundary (34).

Definition. The family {Gt}t∈T is said to be a smooth family if the map

G : N × T →M, (n, t) 7→ Gt(n)

is smooth.

It will be said that the smooth family {Gt}t∈T is defined by G, or that G

is the corresponding map of {Gt}t∈T . It is convenient to explicitly remark

that, for all t ∈ T ,

Gt = G ◦ it ,

with it : N → N × T being the embedding at t ∈ T .

34The requirement on N and T is necessary to assure that N × T is a smooth manifold,
possibly with boundary. This restriction could be avoided by using the dual space of the
smooth envelope of C∞(N) ⊗R C∞(T ).
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If M = N and Gt is a diffeomorphism for all t ∈ T , then {Gt}t∈T will

be called a smooth family of diffeomorphisms of M .

More generally, let U be an open submanifold of N × T , let

H : U →M

be a smooth map and, for all t ∈ T , set Nt = i−1
t (U) and

Ht : Nt →M, n 7→ H(n, t) .

Then {Ht}t∈T will be called a smooth family of local smooth maps of N

into M .

Finally, in the case when T is a nonempty interval not reduced to a

singleton and U is a relative interval (over which the standard vector field

∂/∂t is defined), a smooth family of (possibly local) smooth maps will be

also called a (smooth) one-parameter family.

0.6.9

Let {Gt}t∈T be a smooth family of smooth maps N → M defined by

G : N × T →M and set

G
def
= (G, πT ) : N × T →M × T ,

with πT : N × T → T being the projection map. Note that

G ◦ it = it ◦Gt .

If {Ht}t∈T is a smooth family of smooth maps Ht : M → V defined

by H : M × T → V , then {Ht ◦Gt}t∈T is a smooth family because it

corresponds to H ◦G.

0.6.10 Smooth Families of Vector Fields

Let M and T be smooth manifolds, with at least one of them without

boundary, π : M × T → M the projection map onto M , and X ∈ D(M)T

a vector field along π. For all t ∈ T , let

it : M →M × T

be the embedding at t, and set

Xt = i∗t ◦X .

By n. 0.4.13, Xt is a vector field on M .
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Definition. The family

{Xt}t∈T

will be called a smooth family of vector fields on M defined by X .

We shall also say that X is the vector field along π corresponding

to {Xt}t∈T .

More generally, let U be an open submanifold of M × T , Y be a vector

field along the restriction U →M of π, set Mt = i−1
t (U), and denote again

by it the restriction Mt → U . Then the family

{Yt}t∈T

given by

Yt = i∗t ◦ Y

will be called a smooth family of local vector fields on M , defined by Y (cf.

n. 0.4.16).

Finally, in the case when T is a nonempty interval not reduced to a sin-

gleton and U is a relative interval, a smooth family of (possibly local) vector

field on M will be sometimes called a (smooth) time-dependent vector field .

0.6.11 Time-dependent Vector Field Associated

with a One-parameter Family of Diffeomorphisms

Let {Gt}t∈I
be a one-parameter family of diffeomorphisms defined by G :

M × I→M , with I being a nonempty interval, not reduced to a singleton,

denote by πM : M × I → M and πI : M × I → I the projection maps and

set G = (G, πI) : M × I→M × I. By definition,

πM ◦G = G, πI ◦G = πI .

Therefore, denoting the embedding at t ∈ I by it : M → M × I one gets

πM ◦G ◦ it = G ◦ it = Gt .

Since the maps Gt are diffeomorphisms, G is a diffeomorphism (35). There-

fore the operator

X
def
=
(
G−1

)∗
◦
∂

∂t
◦G∗

is defined, with ∂/∂t being the standard vector field on M × I.

By n. 0.4.13, X is a vector field along G ◦G−1. But, since πM ◦G = G,

G ◦G−1 = πM .

Hence, X is a vector field along πM .

35Argue as in Exercise 0.5.37.
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Definition. The time-dependent vector field {Xt}t∈I
defined by X =(

G−1
)∗
◦ ∂/∂t ◦ G∗ is called the time-dependent vector field associated

with {Gt}t∈I
.

0.6.12

By definition,

∂

∂t
◦G∗ = G∗ ◦X .

The above formula is sometimes written as

d

d t
G∗

t = G∗
t ◦Xt .

More precisely, for all t0 ∈ I, let it0 : M → M × I be the embedding

at t0, and compose both sides of the above formula by i∗t0 . Taking into

account that

G ◦ it0 = it0 ◦Gt0 ,

one deduces

i∗t0 ◦
∂

∂t
◦G∗ = i∗t0 ◦G∗ ◦X = (G ◦ it0)

∗
◦X = (it0 ◦Gt0)

∗
◦X

= G∗
t0 ◦ i

∗
t0 ◦X = G∗

t0 ◦Xt0 .

This gives the fundamental formula

i∗t0 ◦
∂

∂t
◦G∗ = G∗

t0 ◦Xt0 ,

which is also sometimes written

d

d t

∣∣∣∣
t=t0

G∗
t = G∗

t0 ◦Xt0 .

0.6.13

Let {Xt}t∈T be a smooth family of vector fields corresponding to X ∈

D(M)T . Recall that there is a natural correspondence between vector fields

along the projection πM : M × T → M and ‘horizontal’ vector fields on

M × T (see n. 0.4.19). The vector field X ∈ DT (M ×N) corresponding to

X is characterized by

X ◦ π∗
T = 0, X ◦ π∗

M = X ,
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πT : M × T → T being the projection map onto T . If it : M → M × T is

the embedding at t, then

i∗t ◦ X ◦ π∗
T = 0, i∗t ◦ X ◦ π∗

M = i∗t ◦X = Xt .

But

Xt ◦ i
∗
t ◦ π

∗
T = 0, Xt ◦ i

∗
t ◦ π

∗
M = Xt ,

because πT ◦ it is a constant map and πM ◦ it is the identity map. There-

fore, from n. 0.3.3 and Proposition 0.5.36, it follows that Xt and X are

it–compatible for all t ∈ T . This gives an alternative description of the

smooth family {Xt}t∈T .

0.6.14

Suppose now that {Xt}t∈I is the time-dependent vector field associated

with a one-parameter family of diffeomorphisms {Gt}t∈I : M → M . As

before, set G = (G, πI), with G : M × I→M being the map corresponding

to the family and πI : M × I→ I the projection map.

Exercise. Show that if X is defined as in n. 0.6.13, then the standard

vector field ∂/∂t on M × I is G-compatible with (∂/∂t) + X.

Hint. Use Proposition 0.5.36 again.

0.6.15

Let Y be a vector field on a manifold M without boundary, Φ : IM → M

its flow, and {Φt}t∈R the generated one-parameter group.

Suppose first, for simplicity, that IM = M×R. It easily follows from the

definitions that the time-dependent vector field {Xt}t∈R associated with the

one-parameter family {Φt}t∈R corresponds to X = π∗
M ◦Y , πM : M ×R→

M being the projection map onto M . Therefore, if it : M → M × R is

the embedding at t then Xt = i∗t ◦ π
∗
M ◦ Y = id∗

M ◦Y = Y for all t ∈ R.

The vector field X ∈ DT (M ×N) that corresponds to X coincides, in this

case, with the unique vector field Ỹ that projects into Y ∈ D(M) and into

0 ∈ D(R) (see Corollary 0.4.17).

Note that, according to Exercise 0.6.14, ∂/∂t is compatible with (∂/∂t)+

Ỹ with respect to the map G = (Φ, πR). This holds also in the general case,

i.e., when IM is an open submanifold of M × R: the standard vector field

∂/∂t|
IM

on IM is compatible with (∂/∂t)+ Ỹ with respect to G = (Φ, πR) :

IM →M × R.
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0.6.16

The well-known intuitive description of the relationship between a vector

field X and the corresponding one-parameter group {Φt}t∈R is to say, in

view of

d

d t

∣∣∣∣
t=0

Φ∗
t = X

(see n. 0.6.7), that X is an infinitesimal diffeomorphism that generates the

group. In some sense, like a diffeomorphism G : M → M which acts on

smooth functions via its algebraic counterpart G∗ : C∞(M) → C∞(M), a

vector field X : C∞(M) → C∞(M) may be understood as the algebraic

counterpart of an infinitesimal diffeomorphism M → M , which would be

cumbersome to directly define in geometric terms.

Since a diffeomorphism G : M → M acts on differential forms via the

corresponding de Rham complex homomorphism

Λ•G∗ : Λ•(M)→ Λ•(M)

induced by G, it is natural to expect X to give rise to a derivation

Λ•X : Λ•(M)→ Λ•(M) .

This derivation is called the Lie derivative with respect to X . The notation

LX or LX (instead of the more ‘functorial’ Λ•X) is generally used. A

formalization of this concept is given in the following nn.

0.6.17 Smooth Families of Differential Forms

Let M and T be smooth manifolds, with at least one of them without

boundary, and Ω ∈ Λs(M)T an s-form on M along the projection π :

M × T →M . For all t ∈ T , set

ωt (X1, . . . , Xs) = i∗t (Ω (X1, . . . , Xs)) , X1, . . . , Xs ∈ D(M) ,

that is, ωt = i∗t ◦ Ω, with it : M →M × T being the embedding at t (36).

Definition. The family

{ωt}t∈T

of s-forms on M will be called a smooth family defined by Ω. We shall also

say that Ω is the form corresponding to {ωt}t∈T .

36ωt is an s-form on M , according to n. 0.5.23.
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More generally, let U be an open submanifold of M × T , K an s-form

along the restriction U → M of π, set Mt = i−1
t (U), and denote again by

it the restriction Mt → U . Then the family

{κt}t∈T

given by

κt (X1, . . . , Xs) = i∗t (K (X1, . . . , Xs)) , X1, . . . , Xs ∈ D(M) ,

will be said to be a smooth family of local differential forms on M (cf.

n. 0.5.33), defined by K (or, corresponding to K).

Finally, in the case when T is a nonempty interval not reduced to a

singleton and U is a relative interval, then a family of (possibly local)

differential forms is sometimes called a (smooth) time-dependent s-form

on M .

Exercise. With U and it : Mt → U being as above, let ω be an s-form

on U . Show that

{Λs i∗t (ω)}t∈T

is a smooth family (up to the natural identification introduced in n. 0.5.33).

Hint. Define an s-form Ω along π|U by

Ω (X1, . . . , Xs)
def
= ω

(
X̃1

∣∣∣
U
, . . . , X̃s

∣∣∣
U

)
, X1, . . . , Xs ∈ D(M) ,

where X̃ denotes the unique vector field on M × T that projects onto

X ∈ D(M) through π : M × T → M and onto 0 through πT : M ×

T → T . Then show that Λs i∗t (ω) is identified with i∗t ◦ Ω according to

n. 0.5.33.

0.6.18 Derivative of a Time-dependent Differential Form

Let M be a smooth manifold, possibly with boundary, ∂/∂t the standard

vector field on a relative interval IM overM , and π : IM →M the projection

map. Since

∂

∂t
: C∞ (IM )→ C∞ (IM )

projects onto the zero vector field through π, it is a C∞(M)–module ho-

momorphism when C∞ (IM ) is considered as a C∞(M)–module via π∗.

Therefore, for each differential s-forms Ω along π,

(X1, . . . , Xs) 7→
∂

∂t
(Ω (X1, . . . , Xs))

gives again an s-form Ω′ along π.
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Definition. The time-dependent s-form {ω′
t}t∈I

corresponding to Ω′ =

(∂/∂t)◦Ω will be called the derivative of the time dependent s-form {ωt}t∈I
.

The local form ω′
t0 , t0 ∈ R, will sometimes be denoted by

dωt

d t

∣∣∣∣
t=t0

or
d

d t

∣∣∣∣
t=t0

ωt .

It is interesting to describe the derivative of a time-dependent form

obtained as in Exercise 0.6.17. To this end, it is useful to preliminarily

point out the following Leibnitz rule.

Exercise. Let Ω ∈ Λr(M)π and K ∈ Λs(M)π be differential forms along

π : IM →M , and

{ωt}t∈I , {κt}t∈I ,

the corresponding time-dependent local s-forms, with respective derivatives

{ω′
t}t∈I , {κ′

t}t∈I .

Show that

{ωt ∧ κt}t∈I

is smooth and that its derivative is

{ω′
t ∧ κt + ωt ∧ κ′

t}t∈I .

Hint. Take into account n. 0.5.27.

Proposition. Let IM be as above and it : Mt → IM as in n. 0.6.17 (with

U = IM open in M × I). If ω is an r-form on IM , then the derivative of the

family

{Λr i∗t (ω)}t∈I

is

{Λr i∗t (ω
′)}t∈I

,

with

ω′ def
=

∂

∂t
y dω + d

(
∂

∂t
y ω

)
.
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Proof. The assertion is trivial for r = 0. Indeed, in this case ω is a

smooth function on IM and it can also be regarded as a 0-form along the

projection π : IM →M , that corresponds to the time-dependent form

{i∗t (ω)}t∈I
=
{
Λ0 i∗t (ω)

}
t∈I

.

Then the derivative corresponds simply to ∂ω/∂t, and the required equality

directly follows from the definitions of the ordinary differential and insertion

operators (note that ∂/∂t y dω = dω(∂/∂t) = ∂ω/∂t and ∂/∂t y ω = 0).

Now consider the case when ω = d a, a ∈ C∞(IM ). According to

Exercise 0.6.17, the derivative of
{
Λ1 i∗t (d f)

}
t∈I

corresponds to the form

along π given by

X 7→
∂

∂t

(
d a
(
X̃|IM

))
=

∂

∂t

(
X̃|IM

(a)
)
,

where X̃ ∈ D(M × I) projects into X ∈ D(M) and 0 ∈ D(I). On the other

hand,

∂

∂t
y d(d a) + d

(
∂

∂t
y d a

)
= d

(
∂a

∂t

)

corresponds to the form along π given by

X 7→ d

(
∂a

∂t

)(
X̃|IM

)
= X̃|IM

(
∂a

∂t

)
.

Hence, the required equality holds in this case too, because ∂/∂t clearly

commutes with X̃ |IM
(e.g., by Corollary 0.4.17 and n. 0.4.4).

In the general case recall that, according to n. 0.5.15, ω may be written

as a sum

ω =
∑

i

ai d ai1 ∧ · · · ∧ d air .

Then the result follows from the Leibnitz rule stated in the preceding ex-

ercise and the fact that the operation

ω 7→ ω′ =
∂

∂t
y dω + d

(
∂

∂t
y ω

)

also satisfies the Leibnitz rule (it is easily deduced by a straightforward

calculation from Propositions 0.5.14 and 0.5.19). �
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0.6.19 Lie Derivative of Differential Forms

Let X be a vector field and ω an s-form on a manifold M without boundary.

If {Φt}t∈R
is the generated one-parameter group, then

{Λs Φ∗
t (ω)}t∈R

is a smooth time-dependent (local) form: it suffices to apply Exercise 0.6.17

to the form Λs Φ∗(ω), where Φ : IM →M is the flow of X . Moreover, since

Φ0 is the identity map of M , the s-form

d

d t

∣∣∣∣
t=0

Λs Φ∗
t (ω)

is global, i.e., it is actually an s-form on M .

Definition. In the above notation, the s-form

LX (ω)
def
=

d

d t

∣∣∣∣
t=0

Λs Φ∗
t (ω)

is called the Lie derivative of ω along X .

The notation LX will refer more generally to the homogeneous operator

Λ•(M)→ Λ•(M) with components given by

ω 7→ LX(ω) .

Since the operator determined by

ω 7→
d

d t

∣∣∣∣
t=0

Λs Φ∗
t (ω) ,

may also be naturally denoted by

d

d t

∣∣∣∣
t=0

Λ• Φ∗
t ,

the above definition is summarized by

LX =
d

d t

∣∣∣∣
t=0

Λ• Φ∗
t .

0.6.20 Cartan Formula

Proposition. If X is a vector field on a manifold M without boundary,

then

LX = [iX , d]
(gr)

.
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Proof. Let Φ : IM →M and {Φt}t∈R
be the flow and the one-parameter

group of X , and denote, as usual, by i0 : M → IM the embedding at

t = 0 and by ∂/∂t the standard vector field on IM . Denoting the exterior

differential on IM again by d, one may write

LX(ω) =
d

d t

∣∣∣∣
t=0

Λs Φ∗
t (ω)

Prop. 0.6.18
= Λs i∗0

(
i ∂

∂t
(d (Λs Φ∗(ω))) + d

(
i ∂

∂t
(Λs Φ∗(ω))

))

Prop. 0.5.21, nn. 0.6.5, 0.5.16
= Λs i∗0

(
i ∂

∂t
(Λs Φ∗(dω)) + d (Λs Φ∗ (iX(ω)))

)

Prop. 0.5.21, nn. 0.6.5, 0.5.16
= Λs i∗0

(
Λs Φ∗ (iX(dω)) + Λs Φ∗ (d (iX(ω)))

)

= Λs Φ∗
0

(
iX(dω) + d (iX(ω))

)
= iX(dω) + d (iX(ω)) = [iX , d]

(gr)
(ω)

as required. �

The above result, called the Cartan formula, allows one to extend the

notion of a Lie derivative to differential forms on arbitrary commutative

algebras. In particular, a Lie derivative is also defined on manifolds with

boundary. On the other hand, on a manifold M , the definition by means of

the associated one-parameter group is not limited to the case of differential

forms. For instance, the reader may try to define the Lie derivative of

tensors of type (p, q) (i.e., sections of the bundle
∣∣D(M)⊗p ⊗ Λ1(M)⊗q

∣∣).

0.6.21 Leibnitz Rule for Lie Derivatives

From Exercise 0.6.18, a Leibnitz rule immediately follows:

LX (ω ∧ κ) = LX (ω) ∧ κ + ω ∧ LX (κ) , ω,κ ∈ Λ•(M) .

Note that it may be also deduced from the Cartan formula by means of a

direct calculation based on Propositions 0.5.14 and 0.5.19 (cf. the end of

the proof of Proposition 0.6.18). With this second argument, the Leibnitz

rule is proved for manifolds with boundary too (and, more generally, for

arbitrary commutative algebras).

0.6.22

Exercise. Prove that if X ∈ D(M) and ω ∈ Λs(M), then
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(1)

LX(ω)(X1, . . . , Xs) = X
(
ω(X1, . . . , Xs)

)

−
s∑

i=1

ω (X1, . . . , [X,Xi], . . . , Xs) , X1, . . . , Xs ∈ D(M) ;

(2) [LX , iY ] = i[X,Y ], Y ∈ D(M).

Hint. Use the Cartan formula and the definition of the exterior differential

to prove (1). Deduce (2) from (1).

Note that the above formulas hold for manifolds with boundary too (and,

more generally, for arbitrary commutative algebras).
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Chapter 1

Basic Differential Calculus

on Fat Manifolds

Below fat manifolds are defined simply as vector bundles and at the first

glance it might seem to be just an unprovoked change of terminology. Of

course, it would not have much sense if so. What we really pursue with

this renaming is to consider vector bundles as objects of another category

by creating this way a new conceptual environment around them. By this

reason a true understanding of what really are fat manifolds the reader will

get after having read this chapter. Nevertheless, a few words explaining

the idea in general outline would be healthy.

It is rather natural to treat a vector bundle as a manifold of fat points,

namely, its fibers. This terminology stresses that we are dealing with some

specific points that have a non trivial internal structure. If this structure

is classical, i.e., single points of a fiber can be observed and, therefore,

distinguished one from another with classical means, then they form, ac-

cording to J. Nestruev (see [Nestruev (2003), 10.1]), a smooth manifold.

This way one gets nothing new with respect to the standard (classical) ap-

proach according to which fiber bundles are considered as smooth maps

connecting smooth manifolds which are spectra of algebras of classical ob-

servables. From this point of view a fiber is simply an association of points

put together on the basis of an external prescription. On the contrary, the

impossibility to distinguish between points of a fiber with classical means

makes their unity physically natural and intrinsic. So, in such a situation

one must develop some non-classical means to deal with these fat points.

It is natural to look for such means in the fat calculus, i.e., a fat analogue

of the standard calculus on smooth manifolds. First steps in constructing

this analogue are done in this chapter. In doing that the adjective ‘fat’

plays a guiding role.

The situation when we are forced to renounce the classical observability

91
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of single points belonging to a fiber is what happens exactly in the theory

of gauge fields and the related mathematics must respect this fact. We

do not touch the physical aspect here but it was the main motivation in

developing the fat calculus. In this book we present a naive and geometri-

cally demonstrative approach to the subject which may be considered as an

introduction to a more satisfactory one based on the theory of dioles (see
[Vinogradov and Vinogradov (in preparation)]) and of iterated forms (see
[Vinogradov and Vitagliano (2006)]).

1.1 Basic Definitions

From now on we fix a real vector space F of a finite nonzero dimension.

1.1.1 Fat Manifolds

Definition. A fat manifold is a vector bundle over a manifold M , possibly

with boundary, with general fiber F . Its fiber over a point m ∈M is called

the fat point over m and denoted by m. In its turn m is called the base of

m. The total space of a fat manifold with base M will be usually indicated

by M . By type of a fat manifold we shall simply mean the dimension of

the general fiber F .

Similarly to as it is common in the theory of fiber bundles we indicate

only the total space M when referring to a fat manifold M →M .

According to Definition 0.3.4 the defining module of the vector bundle

M → M is denoted by Γ
(
M
)
. We shall interpret its elements as sections

of this bundle (cf. n. 0.3.2). If s ∈ Γ
(
M
)
, then s(m) ∈ m stands for the

value of s at m.

1.1.2

Let P be the module of smooth sections (i.e., the defining module) of a

fat manifold M . According to Definition 0.3.4, P is projective and finitely

generated. Therefore the dual P∨ is projective and finitely generated as

well. Moreover, P∨ determines an equidimensional pseudobundle because

of n. 0.1.5, (8). By these reasons, there is a fat manifold with base M and

module of smooth sections P∨. We shall denote it by M
∨
.

In a similar way, functors on modules often act on fat manifolds as well,

and we shall denote this action by a superscript. For instance, M
End

and
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M
Sr

are fat manifolds of different types defined by the modules End(P )

and Sr(P ), respectively.

1.1.3

Now we have to understand what would be morphisms of fat manifolds,

or, in other words, fat analogues of smooth maps. It is clear that these

should be morphisms of vector bundles, i.e., smooth maps that send lin-

early fibers to fibers. These fiber-to-fiber maps are interpreted naturally

as morphisms of ‘internal structures’ of the corresponding fat points. So,

one can figure various reasonable options for such morphisms in conformity

with the meaning given to words ‘internal structure’. Accordingly, there

are various natural possibilities to organize fat manifolds in a category. In

this book we choose a simplest one that would correspond to the theory

of one elementary particle. In such a context fiber-to-fiber maps must be

isomorphisms in order to ensure the integrity of the ‘intrinsic structure’.

In the theory of gauge fields the ‘intrinsic structure’ of an elementary par-

ticle is fixed by means of its symmetry group, which, due to elementary

character of the particle, must be an irreducible group of linear transfor-

mations of the fiber F . Our choice in this book corresponds to the group

GL(F ) ∼= GL(n,R) but can be easily generalized to other structure groups

that emerge in situations when fat manifolds are supplied with additional

geometric structures (see Sect. 1.7).

1.1.4 Fat Maps

Recall that a morphism of vector bundles is called regular if the associ-

ated fiber-to-fiber maps are isomorphisms (see Exercise 0.5.37). The above

considerations lead us to the following definition.

Definition. A (smooth) fat map between fat manifolds is a regular mor-

phism of vector bundles. If the base of a fat smooth map is denoted by f ,

then the fat map itself will be usually denoted by f . A fat diffeomorphism

is an invertible fat map (i.e., the inverse is also a fat map).

This definition means that we are working in the category of fat mani-

folds (vector bundles) with the common standard fat point (fiber). Since in

these notes we mainly consider the most general structure group GL(n,R),

the isomorphism class of the common standard fiber is uniquely character-
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ized by the dimension of the standard fiber (fat point), i.e., by the type.

It is worth stressing that the concept of the type of a fat manifold

becomes more delicate when the ‘internal structure’ of fat points in con-

sideration is more rich. For instance, it could be an equivalence class of

bilinear forms, or linear operators, etc.

Since fat maps are regular morphisms, a fat map is a fat diffeomorphism

if and only if its base is a diffeomorphism.

1.1.5

Recall that a homomorphism of modules

f
∗

: Γ
(
M
)
→ Γ

(
N
)

is associated with a regular morphism

f : N →M

of vector bundles (see Definition 0.3.13). If the fiber is nonzero (as for fat

manifolds), the correspondence

f ↔ f
∗

is bijective.

This module homomorphism is the fat analogue of the homomorphism

of smooth function algebras associated with a smooth map of manifolds.

1.1.6

By nn. 0.3.6 and 0.3.12 we have that Γ
(
N
)

is a C∞(N)–module obtained

from Γ
(
M
)

by extension of scalars via f∗ : C∞(M) → C∞(N). Taking

into account our conventions about tensor products and scalar extensions

(see n. 0.1.1) we have the following important fact.

Given a fat smooth map

f : N →M ,

we can assume that

Γ
(
N
)

= C∞(N)⊗C∞(M) Γ
(
M
)

and that the associated homomorphism

f
∗

: Γ
(
M
)
→ C∞(N)⊗C∞(M) Γ

(
M
)

is the universal homomorphism

s 7→ 1⊗ s .
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1.1.7 Fat Identity Maps

Definition. Let M and M
′
be fat manifold over the same base M . A fat

map M →M
′
with base the identity map of M will be called a fat identity

map.

A fat identity map M → M is not necessarily the identity map of M

in the category of fat manifolds. The name is due to the physical interpre-

tation: note that when M = M
′
a fat identity map is nothing else but a

gauge transformation.

1.1.8 Fat Submanifolds

Let M be a fat manifold, N a submanifold of M and i : N ↪→ M the

embedding map. Then i induces from M a bundle N together with a fat

map i : N ↪→M (see Definition 0.3.6).

Definition. The induced manifold N is a fat submanifold of M over N .

The induced map i is the fat embedding of N .

If N is an open submanifold, then N is called an open fat submanifold .

If N is a closed submanifold, then N is called a closed fat submanifold .

For an arbitrary fat submanifold N we shall identify the fat point of N

over a point n ∈ N with the fat point of M over i(n) via the isomorphism

in (see n. 0.3.8). In particular, two fat submanifolds over the same sub-

manifold are identified. For a given s ∈ Γ
(
M
)

the section i
∗
(s) is called

the restriction of s to N . Sometimes we shall use s|N,N , or, simply, s|N

for i
∗
(s).

1.1.9 Fat Curves

In order to develop a fat analogue of dynamics we must, first of all, know

what are fat trajectories and, more generally, what fat curves. To do that

it is sufficient to replace all ‘normal’ ingredients by the corresponding fat

ones in the definition of a ‘normal’ curve. Since a (smooth) curve on M is

a (smooth) map γ : I→M the result is the following.

Definition. A fat interval I is a standard trivial bundle over an interval

I ⊆ R with the standard fiber F (see Definition 0.3.15). A fat curve on a
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fat manifold M is a fat map

γ : I→M .

Sometimes γ will be called a lift of γ.

1.1.10

Any single fiber of a vector bundle is isomorphic to the standard one, but

such an isomorphism is not canonical. In this connection it is worth to

emphasize that fat points of a fat interval are identified canonically with

the standard fiber F (cf. Definition 0.3.16). Hence, a fat curve

γ : I→M

allows one to identify fat points of M along γ with the standard fiber F .

Note that if γ is not injective, then some fat points may admit several

different identifications.

1.1.11 Fat Restriction

Let

γ : I→M

be a fat curve and consider a fat interval J such that J ⊆ I. If i : J ↪→ I is

the inclusion map, a fat map

i : J ↪→ I

gives an inclusion of fat intervals, provided that it is uniform (see Defini-

tion 0.3.17).

Definition. A regular uniform morphism i over the inclusion map i : J ↪→ I

will be called a (fat) inclusion of J into I. The composition

γ ◦ i : J→M

will be called a (fat) restriction of γ to J.

1.1.12 Fat Translation

Let I be a fat interval. Denote by

τt : R→ R, λ 7→ λ+ t

the translation by t ∈ R and put J = τ−1
t (I). Abusing the notation indicate

the restriction J→ I of τt again by τt.
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Definition. A regular uniform morphism of fat intervals

τt : J→ I

over the translation τt is called a fat translation by t.

1.1.13 The Total Space as a Manifold

An important feature of our definition of a vector bundle is that it does

not require any smooth manifold structure on the total space. This is

motivated by some ‘observability’ principles (see [Nestruev (2003), 10.1]).

However, to make use of the smooth manifold structure on the total bundle

is sometimes convenient, either by technical reasons or in order to compare

our approach with the traditional one. For instance, it occurs in the proof

of the existence theorem of fat trajectories and flows of fat fields.

The algebra C∞
(
M
)

of smooth functions on the total space M con-

sidered as a smooth manifold (see n. 0.3.23) contains a copy of the dual

module P∨ of P = Γ
(
M
)
. More precisely, the elements of P∨ may be

interpreted as ‘linear along fibers’ functions:

α (p(m)) = α (p) (m) , α ∈ P∨, p ∈ P,m ∈M ,

where on the left side α is considered as a function on M meanwhile on

the right side it acts as a linear form on P (see n. 0.3.24). The elements of

A = C∞(M) are identified with ‘constant along fibers’ functions:

f (p (m)) = f (m) , f ∈ A, p ∈ P,m ∈M .

This way the A-module multiplication in P∨ is identified with the multi-

plication of linear along fibers functions by ‘constant along fibers’ ones.

1.1.14

Exercise. Let M be a fat manifold, A = C∞ (M), P = Γ
(
M
)

and f ∈

C∞
(
M
)
. Show that

f · P∨ ⊆ P∨ ⇐⇒ f ∈ A .

Hint. Only the direct implication deserves a proof. To this end show, first,

that on a real vector space the multiplication by a smooth function

sends a given nonzero linear form to a linear form if and only if the

smooth function is a constant. Then, note that for each fiber ofM →M

there exists an α ∈ P∨ that is different from zero on this fiber.
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1.1.15

The notation f
∗
, f : N → M being a fat map, is ambiguous. In fact, it

could indicate either the module homomorphism Γ
(
M
)
→ Γ

(
N
)

or the

algebra homomorphism C∞
(
M
)
→ C∞

(
N
)

both associated to f . As a

rule in this book the first meaning will be assumed. In few occasions when

the second interpretation is needed it will be explicitly mentioned.

1.1.16

In the sequel we shall need a characterization of smooth sections of a fat

open submanifold that is similar to the well-known localization procedure

in algebraic geometry. This is the subject of the following exercise.

Exercise. Let N be an open fat submanifold of a fat manifold M and

s : N → N a (not necessarily smooth) section of N . Show that s ∈ Γ
(
N
)

(that is, s is smooth) if and only if for all n ∈ N there exists an open

neighborhood Un ⊆ N and a smooth section sn ∈ Γ
(
M
)

such that

s|Un
= sn|Un

(see n. 1.1.8).

Hint. The isomorphism Γ
(
N
)

= C∞ (N) ⊗ Γ
(
M
)

reduces the direct im-

plication to localization of functions.

1.2 The Lie Algebra of Der-operators

Now we are passing to fat vector fields and related matters.

1.2.1

Let P , Q be modules over a commutative (unitary) k-algebra A, k being a

field. Consider the commutator map

Diff1 (P,Q)×A→ Diff0 (P,Q) ,

defined by

(�, a) 7→ [�, a] = � (a·)− a� (·)

(see n. 0.1.2). This map is linear over A with respect to the first argument

and a derivation with respect to the second. Hence it gives rise to an
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A-module homomorphism

∆ : Diff1 (P,Q)→ D (Diff0 (P,Q))

given by

� 7−→ (a 7→ [�, a]) .

Of course, Ker∆ = Diff0 (P,Q). Thus ∆ is factorized to a monomorphism

Smbl1 (P,Q) ↪→ D (Diff0 (P,Q)) , (1.1)

where

Smbl1 (P,Q)
def
=

Diff1 (P,Q)

Diff0 (P,Q)

is the module of first order symbols (cf. [Nestruev (2003), 9.69]).

1.2.2

Definition. Let P , Q be modules over a commutative k-algebra A, k being

a field. The symbol of an operator � ∈ Diff1 (P,Q) is the coset of � in

Diff1 (P,Q)

Diff0 (P,Q)
,

denoted by [�].

The symbol [�] will be identified with the associated derivation

A→ Diff0 (P,Q) = Hom (P,Q)

defined earlier in (1.1).

In the case when P = Q we have a derivation

[�] ∈ D (End (P )) .

Consider also the map

ι : A→ End (P ) , a 7→ a idP .

Obviously, ι is an A-module homomorphism whose image is the submodule

of scalar endomorphisms of P . A natural homomorphism

D(ι) : D (A)→ D (End (P )) (1.2)

is defined by

X 7→ ι ◦X .
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1.2.3

Definition. Let k be a field, A a commutative k-algebra and P an A-

module. A der-operator in P is a linear differential operator

� : P → P

of order ≤ 1 such that its symbol lies in the image of homomorphism (1.2).

The above definition can be summarized by saying that a der-operator

is a linear differential operator of order ≤ 1 with scalar symbol.

The totality of all der-operators in P has a natural A-module structure

induced by the module structure in Diff1 (P, P ), i.e., that given by

(a�)(p) = a (�(p)) , a ∈ A, p ∈ P

(see n. 0.1.2). The A-module of all der-operators in P is denoted by Der (P ).

1.2.4 Leibnitz Rule for Der-operators

Consider an arbitrary operator � : P → P .

If � is a der-operator, then, by definition, there exists a derivation

X ∈ D (A) such that

[�] (a) = X (a) idP , a ∈ A .

Hence, for all a ∈ A and p ∈ P ,

X (a) p = X (a) idP (p) = [�] (a) (p) = [�, a] (p) = � (ap)− a� (p) , (1.3)

that gives the following Leibnitz-like rule:

� (ap) = X (a) p+ a� (p) . (1.4)

Conversely, suppose that � is k-linear and satisfies (1.4) for some X ∈

D (A). Then the sequence (1.3) can be ‘rearranged’ in the following way:

[�] (a) (p) = [�, a] (p) = � (ap)− a� (p) = X (a) p = X (a) idP (p) .

This shows that � is a differential operator of order ≤ 1, because [�, a]

is an endomorphism of P for all a ∈ A, and that the symbol [�] belongs

to the image of (1.2), because the endomorphism [�, a] = [�](a) is scalar.

Hence � is a der-operator.

We conclude that an operator � : P → P is a der-operator if and only

if it is k-linear and satisfies (1.4).
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1.2.5

Definition. A der-operator � in P is said to be over a derivation X ∈

D (A) if the image of X in D (End (P )) according to (1.2) is [�], i.e., Leib-

nitz rule (1.4) holds.

If P is faithful, i.e., there is no f 6= 0 such that fp = 0 for all p ∈ P ,

then every der-operator is over a unique derivation. Indeed, in this case

the map

ι : A→ End (P ) , a 7→ a idP

is injective and so is the map

D (A)→ D (End (P )) .

A der-operator in P over the zero derivation of A is nothing but an

endomorphism of P . Consequently, the difference of two der-operators over

the same derivation is an endomorphism of P .

1.2.6

Example. Obviously, Der (A) = Diff1 (A,A) and, in particular, D (A) ⊆

Der (A).

1.2.7

Example. Let E be a k-vector space of a finite dimension m > 0 and

X ∈ D(A). Consider the free module P = A ⊗k E, which in a geometric

situation is interpreted naturally as the module of smooth sections of a

standard trivial vector bundle, and the operator

DX = X ⊗k idE : P → P .

Choose a basis (e1, . . . , em) in E. Then for all a ∈ A and p =
∑
ai⊗ei ∈ P

we have

DX (ap) = DX

(∑
aai ⊗ ei

)
=
∑

X (aai)⊗ ei

=
∑

(X (a) ai + aX (ai))⊗ ei =
(
X (a)

∑
ai ⊗ ei

)
+
(
a
∑

X (ai)⊗ ei

)

= X (a) p+ aDX (p) .

Hence DX is a der-operator in P .
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In coordinates DX is described as follows. Consider the isomorphism

P ∼= Am defined by

p ↔ (p1, . . . , pm) ⇐⇒ p =

m∑

i=1

piei

with ei = 1⊗ ei and pi ∈ A. Then up to this isomorphism

DX (p1, . . . , pm) = (X (p1) , . . . , X (pm)) .

1.2.8

Consider an arbitrary der-operator � in P = A⊗k E over X . Since � and

DX are over the same derivation X their difference is an endomorphism Φ

of P (see n. 1.2.5) and, so,

� = DX + Φ .

Conversely, every operator of this form is a der-operator.

1.2.9

In coordinates a der-operator � is described as follows. If p =
∑
piei, then

�(p) =
∑

k

X (pk) ek +
∑

j

pj� (ej) .

By putting

�(ej) =
∑

k

(Γ�)k
j ek ,

we obtain

�(p) =
∑

k


X(pk) +

∑

j

(Γ�)k
j pj


 ek .

Represent now coordinate vectors as columns and introduce the matrix

Γ� with entries (Γ�)k
j (where k is the row index), which represents Φ in

the basis (e1, . . . , em). In this notation the last formula reads as

�



p1

...

pm


 = X



p1

...

pm


+ Γ�



p1

...

pm


 ,
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where X is the operator matrix

X =



X O

. . .

O X


 .

Conversely, every operator � represented coordinate-wisely in the form

� = X + Γ�

is a der-operator over X .

1.2.10

Proposition. If �1 and �2 are der-operators in an A-module P over the

derivations X1 and X2, respectively, then the commutator [�1,�2] is a

der-operator over [X1, X2].

Proof. For all a ∈ A and p ∈ P we have

[�1,�2](ap) = �1(�2(ap))−�2(�1(ap))

= �1(X2(a)p+ a�2(p))−�2(X1(a)p+ a�1(p))

= X1(X2(a))p+X2(a)�1(p) +X1(a)�2(p) + a�1(�2(p))

−X2(X1(a))p−X1(a)�2(p)−X2(a)�1(p)− a�2(�1(p))

= [X1, X2](a)p+ a[�1,�2](p) .

Therefore, [�1,�2] satisfies the Leibnitz rule over [X1, X2] (see Defini-

tion 1.2.5). �

Corollary. Der (P ) is a Lie subalgebra of Diff1 (P, P ).

1.2.11 Der-operators Along Homomorphisms

Let ϕ : A → B be a commutative k-algebra homomorphism, k being a

field, and ϕ : P → Q an A-module homomorphism of an A-module into a

B-module. Recall that the symbol of a differential operator

� : P → Q

of order ≤ 1, with Q considered as an A-module via ϕ, is identified with a

derivation

A→ HomA (P,Q)

(see n. 1.2.1).
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Consider also the map

ιϕ : B → HomA (P,Q) , b 7→ bϕ .

Recall that D (A)ϕ denotes the module of derivations along ϕ. A natural

homomorphism

D(ιϕ) : D (A)ϕ → D (A)ιϕ◦ϕ

is defined by

X 7→ ιϕ ◦X .

Definition. A linear differential operator

� : P → Q

of order ≤ 1 is called a der-operator along ϕ over X ∈ D (A)ϕ if

[�] = D(ιϕ)(X) .

All der-operators along ϕ constitute a B-submodule of Diff1(P,Q) (the

B-module structure being induced by that of Q), which will be denoted by

Der(P )ϕ.

As for ordinary der-operators, it is easy to see that a function

� : P → Q

is a der-operator along ϕ over a derivation X along ϕ if and only if it is

k-linear and fulfills the following Leibnitz-like rule:

�(ap) = X(a)ϕ(p) + ϕ(a)�(p), a ∈ A, p ∈ P .

1.2.12

Like for ordinary der-operators it is easily proved that if the B-submodule

generated by Imϕ is faithful, then every der-operator along ϕ is over a

unique derivation along ϕ.

1.3 Fat Vector Fields

In this section der-operators are interpreted geometrically as fat fields.
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1.3.1

Definition. Let M be a fat manifold. A (smooth) fat vector field X on M

(or, for short, a fat field) is a der-operator in Γ
(
M
)
. If X is a der-operator

over a vector field X on M , then X is called the base of X .

The totality of all fat fields onM will be denoted by D(M), i.e., D(M) =

Der
(
Γ
(
M
))

. As we have already seen in the previous section D(M) is both

a C∞(M)–module and a Lie algebra.

Since the general fiber of M is nonzero, the module Γ
(
M
)

is faithful.

Therefore, by n. 1.2.5 the base X of a fat field X is uniquely determined.

1.3.2 Fat Tangent Vectors

Let M be a fat manifold and m ∈ M . Set A = C∞(M), P = Γ(M) and

recall that

m =
P

µmP
= Rm ⊗ P ,

where µm = Kerm is the ideal of functions vanishing at m and Rm is the

A-algebra given by m : A→ R (see n. 0.3.1 and Definition 0.3.4).

Definition. A fat tangent vector of M at m (or at m) is a der-operator

along the evaluation map

hm : P → m, p 7→ p(m) = 1⊗ p = p+ µmP .

1.3.3

In view of n. 1.2.12 every fat tangent vector ξ is over a unique ordinary

tangent vector ξ. According to n. 1.2.11, a fat tangent vector is character-

ized as an R-linear operator satisfying the following version of the Leibnitz

rule:

ξ (fp) = ξ (f) p (m) + f (m) ξ (p) .

1.3.4 Fat Tangent Space

The totality Der(P )hm
of all fat tangent vectors at m, which is an R-

subspace of Diff1 (P,m), will be called the fat tangent space at m and

denoted by TmM .
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1.3.5

According to the classical terminology, a field on a manifold is a rule as-

sociating with each point of the manifold a geometric object of a certain

type. In that sense a fat vector field, as it was defined earlier, is a field

of fat tangent vectors. In other words, with a fat vector field X on a fat

manifold M and a point m ∈M (or, equivalently, a fat point m of M) a fat

tangent vector at m, denoted by Xm, is associated. Namely, Xm is defined

as

Xm = hm ◦X .

Moreover, it is easy to see that the correspondence

m 7−→ Xm

determinesX uniquely. (But obviously not every field of fat tangent vectors

gives a fat vector field, which is a smooth one.)

1.3.6 Locality of Fat Tangent vectors and Fat Fields

Fat tangent vectors and fat fields are differential operators and as such are

local operators (cf. [Nestruev (2003), 9.61]). This means the following.

Let ξ be a be a fat tangent vector to M at a fat point m and X a fat

field on M . Assume that s, t ∈ Γ
(
M
)

are such that

s|U = t|U

with U being a neighborhood U of m. Then

ξ (s) = ξ (t) and X (s) |U = X (t) |U .

The reader is suggested to prove this locality property.

1.3.7 Fat Differential of a Fat Map

A fat map connecting two fat manifolds induces linear maps connecting

fat tangent spaces at the corresponding points. The following rigorous

definition mimics that of the usual differential.

Let f : N → M be a fat map, P = Γ
(
M
)
, Q = Γ

(
N
)
, n ∈ N and

f (n) = m. Consider the restriction fn : Qn → Pm of f to fibers n = Qn

and m = Pm and associate with a fat tangent vector to N at n, ξ : Q→ Qn,

the (differential) operator

dnf
(
ξ
)

: P → Pm, dnf
(
ξ
)

= fn ◦ ξ ◦ f
∗
.
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By definition of f
∗

(see n. 0.3.13)

f
∗
(p) (n) = f

−1

n (p (f (n))) , p ∈ P,

so that

fn

(
f
∗
(p) (n)

)
= p (m) , p ∈ P . (1.5)

Moreover,

f
∗
(ap) = f∗ (a) f

∗
(p) , a ∈ C∞ (M) , p ∈ P , (1.6)

because f
∗

is a C∞(M)–module homomorphism and the C∞(M)–module

structure on Q is defined by means of f∗.

The operator dnf
(
ξ
)

is R-linear, since fn, ξ and f
∗

are R-linear, and

for all a ∈ C∞ (M) and p ∈ P we have

dnf
(
ξ
)
(ap) = fn

(
ξ
(
f
∗
(ap)

))
(1.6)
= fn

(
ξ
(
f∗ (a) f

∗
(p)
))

= fn

(
ξ (f∗ (a)) f

∗
(p) (n) + f∗ (a) (n) ξ

(
f
∗
(p)
))

= ξ (f∗ (a)) fn

(
f
∗
(p) (n)

)
+ f∗ (a) (n) fn

(
ξ
(
f
∗
(p)
))

(1.5)
= (dn f (ξ) (a)) p (m) + a (m)

(
dnf

(
ξ
)
(p)
)
.

In view of n. 1.3.3, this implies that dnf
(
ξ
)

is a fat tangent vector to

M at m over the tangent vector dn f (ξ) to M . Finally the map

dnf : TnN → TmM, ξ 7→ dnf
(
ξ
)

is R-linear because fn is R-linear.

The above said leads us to the following definition.

Definition. The map dnf will be called the fat differential of f at n.

1.3.8 Compatibility of Fat Fields

Another notion that naturally comes from the analogy with the standard

case is that of compatibility of fat fields with respect to a fat map.

Definition. Suppose f : N → M is a fat map and X, Y are fat fields on

M , N , respectively. Then X and Y are said to be compatible with respect

to f (shortly, f -compatible) if

Y ◦ f
∗

= f
∗
◦X ,
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i.e., if the diagram

Γ(M)
f
∗

//

X

��

Γ(N)

Y

��

Γ(M)
f
∗

// Γ(N)

is commutative.

1.3.9

Exercise. Let f : N →M be a fat smooth map and X, Y fat fields on M

and N , respectively. Show that if X and Y are f -compatible, then X and

Y are f -compatible.

1.3.10 Restricted Fat Fields

Exercise. Let X be a fat field on a fat manifold M , N an open fat sub-

manifold of M and i : N ↪→ M the corresponding fat embedding. Show

that there is a unique fat field X|N on N compatible with X with respect

to i.

Hint. Take into account nn. 1.1.16 and 1.3.6 (cf. Proposition 0.4.5).

Definition. The fat field X |N will be called the restriction of X to N .

As it results from the definitions of restriction and compatibility, the

restriction of a fat field X is characterized by

X|N (s|N ) = X (s) |N , s ∈ Γ
(
M
)
.

1.3.11

The following result concerning fat fields is, in fact, valid for arbitrary

differential operators on a manifold M and is a direct consequence of the

fact that differential operators are localizable.

Proposition. Let M be a fat manifold, {Ui}i∈I an open covering of M

and Ui the open fat submanifold over Ui. Suppose that for each i Xi is

a fat field on Ui and that for all i, j ∈ I the restrictions of Xi and Xj to
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Ui ∩ Uj coincide. Then there is a unique fat field X on M such that its

restriction to Ui is Xi for all i.

Proof. Given a section s ∈ Γ
(
M
)

we have to define the value X (s) of

X on s. Put si = s|Ui
, ti = Xi (si), Xij = Xi|Ui∩Uj

(= Xj |Ui∩Uj
) and

sij = s|Ui∩Uj
. In view of n. 1.3.10, we have

ti|Ui∩Uj
= Xi (si) |Ui∩Uj

= Xij (sij) = Xj (sj) |Ui∩Uj
= tj |Ui∩Uj

(1.7)

for all i, j ∈ I. For each m ∈ M choose im such that m ∈ Uim
and define

the section

t : M →M, m 7→ tim
(m) .

It follows from (1.7) that the section t does not depend on the choice of

indexes im and that t is smooth (see also Exercise 1.1.16). Thus we put

X (s)
def
= t .

It is straightforwardly verified that X is a fat field whose restriction to

Ui is Xi.

The uniqueness is obvious: if the restriction of a fat field Y to Ui is Xi

for all i ∈ I, then the restriction of Y (s) on Ui is Xi (si) = ti, and hence

Y (s) = X (s). �

Definition. In the above situation, the fat field X is said to be obtained

by gluing together
{
Xi

}
i∈I

.

1.3.12

Exercise. Let m be a fat point of a fat manifold M . Show that

TmM = Rm ⊗D(M) ,

with Rm being as in n. 1.3.2, and

Xm = 1⊗X, X ∈ D(M) ,

Hint. Construct an isomorphism

TmM ∼=
D(M)

µmD(M)
,

with µm = Kerm being the ideal of functions vanishing at m, such that

Xm corresponds to the coset of X .

In other words, the above exercise claims that TmM is obtained from

D(M) by extension of scalars via m : C∞(M) → R with universal homo-

morphism

X 7→ Xm .
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1.3.13 Fat Fields Along Fat Maps

Definition. Let f be a fat map. A fat (vector) field along f is a der-

operator along f
∗
.

The C∞(N)–module of all fat fields along f : N → M will be denoted

by D(M)f .

Note that a fat tangent vector at m is a fat field along the inclusion

m ↪→M

according to the canonical identification Γ(m) = m (see n. 0.3.15).

If X is a fat field along f : N → M and g : V → N is a fat map, then

g∗ ◦X is a fat field along f ◦g. For this reason X can be described as a field

that associates with n ∈ N a fat tangent vector Xn to M at m = f(n):

consider the case when g is equal to the composition

m
f
−1
n→ n ↪→ N .

Note also that in this case g∗ = fn ◦ hn, where hn : Γ(N) → n is the

evaluation map. Therefore the explicit formula for Xn is

Xn = fn ◦ hn ◦X .

1.4 Fat Fields and Vector Fields on the Total Space

In this section we illustrate a natural correspondence arising between fat

vector fields on a fat manifold and some special vector fields on its total

space manifold.

1.4.1 Dual Der-Operators

Here, as before, k is a field, A a commutative k-algebra and P an A-module.

Exercise. Let P∨ be the dual of P , X a der-operator in P over a derivation

X and α ∈ P∨. Show that

X ◦ α− α ◦X ∈ P∨

and that the map

X
∨

: P∨ → P∨, α 7→ X ◦ α− α ◦X

is a der-operator in P∨ over X .

Definition. The der-operator X
∨

on P∨ is called the dual der-operator

of X.
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1.4.2 Dual fat manifolds

Exercise. Show that

X ←→ X
∨

gives a bijection between fat fields on M and fat fields on M
∨

(that is

defined in n. 1.1.2).

Hint. By definition, P is projective and finitely generated and, so, one

may use the natural isomorphism P ∼= (P∨)
∨

(see n. 0.1.5, (6)).

1.4.3

Let π : M → M be the projection of M onto its base and A = C∞ (M).

Recall that elements of P∨ are interpreted naturally as linear along fibers

of π functions on M (see n. 1.1.13).

Exercise. Assume X to be a vector field on M such that

X (P∨) ⊆ P∨, X (A) ⊆ A .

Show that the restriction of X to P∨ is a der-operator on P∨ whose base is

the restriction of X to A (the restrictions are intended on both the domain

and the codomain). Moreover, show that X and X are compatible with

respect to π.

1.4.4

Exercise. In the notation of the previous Exercise show that

X (P∨) ⊆ P∨ =⇒ X (A) ⊆ A .

Hint. Let a ∈ A, α ∈ P∨. Note that

X (a)α = X (aα)− aX (α)

and use Exercise 1.1.14.

Now one sees that in Exercise 1.4.3 the condition

X (A) ⊆ A

may be removed.
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1.4.5 Vector Fields Corresponding to Fat Fields

Exercise. Let χ be a der-operator in P∨. Show that there exists a unique

vector field X on M such that X (P∨) ⊆ P∨ and such that its restriction to

P∨ (on both the domain and the codomain) is χ.

Hint. Suppose first that M is an open subset of some Rn and that P∨ is a

free module. Let x1, . . . , xn be coordinate functions on M , take a basis

α1, . . . , αm of P∨ and consider these elements as coordinate functions

on the total space manifold M . Deduce a coordinate expression for the

required vector field from the decomposition of χ obtained according

to n. 1.2.9. For the general case, note that every fat manifold is locally

(on the base) of the above type, and use a gluing procedure.

Definition. Let X be a fat field on a fat manifold M , P = Γ
(
M
)

and X

the unique vector field on the total space manifold M that restricts to X
∨

on P∨ (see the above Exercise). Then X will be called the vector field on

the total space manifold associated with the fat field X .

The preceding exercises establish a one-to-one correspondence

X ←→ X

between fat fields and vector fields on the total space leaving invariant

P∨, i.e., X (P∨) ⊆ P∨. This correspondence is in a sense functorial. For

instance, compatibility of fat fields along a fat smooth map f implies com-

patibility of the associated vector fields along the map f considered as a

smooth map between the total spaces. We deduce now this fact a conse-

quence of a series of exercises.

1.4.6

Let f : N → M be a fat map and set P = Γ
(
M
)
, Q = Γ

(
N
)
. Note that

there is a fat map

f
∨

: N
∨
→M

∨

over f determined by
(
f
∨
)∗

(α)
(
f
∗
(p)
)

= f∗ (α (p)) , p ∈ P, α ∈ P∨

(see n. 0.1.5, (8)).
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Exercise. Consider f as a smooth map between the total space manifolds

and let f
∗

: C∞
(
M
)
→ C∞

(
N
)

be the associated homomorphism (so

that here f
∗

is not the homomorphism associated to f as a fat map; cf.

n. 1.1.15). Show that f
∗
(P∨) ⊆ Q∨ and that the restriction P∨ → Q∨ of

f
∗

coincides with
(
f
∨
)∗

.

1.4.7

Exercise. Let f : N → M be a fat map and X, Y , fat fields respectively

on M , N . Show that

X,Y are f -compatible ⇐⇒ X
∨
, Y

∨
are f

∨
-compatible .

1.4.8

Exercise. Let M be a fat manifold, P = Γ
(
M
)
, g a smooth map of a

smooth manifold V into the total space M , and Z, W vector fields along

g. Show that if Z and W coincide on P∨ ⊆ C∞
(
M
)

and on C∞ (M) ⊆

C∞
(
M
)
, then they are equal.

1.4.9

Exercise. Let f : N → M be a fat map, P = Γ
(
M
)
, Q = Γ

(
N
)
, and X,

Y vector fields on the total space manifolds M,N , respectively, such that

X (P∨) ⊆ P∨, Y (Q∨) ⊆ Q∨ .

Show that the restrictions

χ : P∨ → P∨, υ : Q∨ → Q∨

of X and Y, respectively, are fat fields compatible with respect to the fat

map f
∨

if and only if X,Y are compatible vector fields with respect to the

smooth map f .

Hint. According to Exercises 1.4.3 and 1.4.4, the operators χ, υ are fat

fields. Then use Exercises 1.3.9, 1.4.6 and 1.4.8.

1.4.10

Proposition. Let f : N →M be a fat map andX, Y fat fields respectively

on M , N . Then X and Y are compatible with respect to the fat map f
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if and only if the associated vector fields on the total space manifolds are

compatible with respect to the smooth map f .

Proof. Immediately from Exercises 1.4.7 and 1.4.9. �

1.5 Induced Der-operators

In the preceding section we discovered that every der-operator induces a

dual der-operator. Here we see that this construction generalizes easily to

modules of homomorphisms. By a similar procedure, we shall also see how

to extend der-operators to tensor products and introduce pull-backs of fat

fields as a particular case.

1.5.1 Extension of Der-operators to Homomorphisms

Proposition. Let k be a field, A a commutative k-algebra and �1, �2

der-operators in A-modules P , Q, respectively, over the same derivation X

of A. The formula

�(ϕ)
def
= �2 ◦ ϕ− ϕ ◦�1, ϕ ∈ Hom (P,Q)

defines a der-operator � over X on Hom (P,Q).

Proof. For all ϕ ∈ Hom (P,Q), p ∈ P and f ∈ A we have

� (ϕ) (fp) = �2 (ϕ (fp))− ϕ (�1 (fp))

= �2 (fϕ (p))− ϕ (X(f)p+ f�1 (p))

= X (f)ϕ (p) + f�2 (ϕ (p))−X (f)ϕ (p)− fϕ (�1 (p))

= f [�2 (ϕ (p))− ϕ (�1 (p))] = f (� (ϕ)) (p) .

Moreover, since �1, �2 and ϕ are additive, � (ϕ) = �2 ◦ ϕ − ϕ ◦ �1 is

additive as well. Therefore �(ϕ) is an A-module homomorphism.

The operator � is linear over k because �2 is linear over k and, for all

ϕ ∈ Hom (P,Q) and f ∈ A,

� (fϕ) = �2 ◦ fϕ− fϕ ◦�1 = X (f)ϕ+ f�2 ◦ ϕ− fϕ ◦�1

= X (f)ϕ+ f� (ϕ) .

So, the assertion follows from n. 1.2.4. �

Definition. The so defined der-operator � is called the der-operator in-

duced by �1 and �2 on Hom (P,Q) and it will be denoted by Hom (�1,�2).



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Basic Differential Calculus on Fat Manifolds 115

1.5.2 Extension of Der-operators to Tensor Products

Proposition. Let k be a field, A a commutative k-algebra and �1, �2

der-operators in A-modules P , Q, respectively, over the same derivation

X of A. Then there exists a der-operator � : P ⊗ Q → P ⊗ Q over X

determined by

�(p⊗ q) = �1 (p)⊗ q + p⊗�2 (q) , p ∈ P, q ∈ Q .

Proof. The formula in the statement determines a linear over k operator

� : P ⊗Q→ P ⊗Q

according to n. 0.1.4. A simple calculation shows that � satisfies the ‘der-

Leibnitz rule’ (1.4), p. 100, and hence that it is a der-operator over X . �

Definition. The so defined der-operator � is called the der-operator in-

duced by �1 and �2 on P ⊗Q.

A natural notation �1⊗�2 for � is a little confusing because it could be

understood as a k-endomorphism of P⊗kQ, or even as an A-endomorphism

of P ⊗A Q when X = 0. By this reason we shall use �1 � �2 instead.

1.5.3 Induced Fat Fields

Proposition. Let f : N →M be a fat map and X a fat field on M . If Y

is a vector field on N f -compatible with X , then there exists a unique fat

field Y over Y on N that is f -compatible with X.

Proof. Let A = C∞ (M), B = C∞ (N), P = Γ
(
M
)
, Q = Γ

(
N
)
. Since

f is a fat map, Q = B ⊗A P is a B-module obtained from P by extension

of scalars via f∗ and f
∗

is the universal homomorphism

P → B ⊗A P , p 7→ 1⊗ p

(see n. 1.1.6). It results from f -compatibility of X and Y that for all a ∈ A

and b ∈ B we have

Y (a · b) = Y
(
f∗ (a) b

)
= Y (f∗ (a)) b+ f∗(a)Y (b)

= f∗
(
X(a)

)
b+ a · Y (b) = X(a) · b+ a · Y (b) ,

where the ‘dot’ stands for the A-module multiplication in B. Therefore,

by n. 1.2.4, Y is a der-operator over X in the A-module B. Consider the
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der-operator Y = Y �X over X in the A-module Q = B ⊗A P as defined

in n. 1.5.2. By definition

Y (b⊗ p) = Y (b)⊗ p+ b⊗X (p) , b ∈ B, p ∈ P .

Once again in view of n. 1.2.4, we observe that the operator Y is a der-

operator over Y if Q is considered as a B-module. In fact, Y is k-linear

and it is sufficient to check the Leibnitz rule on the elements of the form

q = b⊗ p for arbitrary b ∈ B and p ∈ P as follows: for all b′ ∈ B,

Y (b′q) = Y (b′b⊗ p) = Y (b′b)⊗ p+ b′b⊗X (p)

= Y (b′) b⊗ p+ b′Y (b)⊗ p+ b′
(
b⊗X (pi)

)

= Y (b′) (b⊗ p) + b′
(
Y (b)⊗ p+ b⊗X (p)

)

= Y (b′) q + b′Y (q) .

This shows that Y is a fat field on N . Moreover, it is f-compatible with

X. Indeed, if p ∈ P then

Y
(
f
∗
(p)
)

= Y (1⊗ p) = Y (1)⊗ p+ 1⊗X(p) = 1⊗X(p) = f
∗ (
X(p)

)
,

i.e., Y ◦ f
∗

= f
∗
◦X.

Finally, if Y
′

is a fat field over Y on N that is f -compatible with X,

then for all q = b⊗ p, b ∈ B and p ∈ P ,

Y
′
(q) = Y

′
(b (1⊗ p)) = Y

′
(
bf

∗
(p)
)

= Y (b)f
∗
(p) + bY

′
(
f
∗
(p)
)

= Y (b)f
∗
(p) + bf

∗ (
X(p)

)
= Y (b)⊗ p+ b⊗X(p) = Y (q) .

This shows that

Y
′
= Y ,

i.e., Y is unique. �

Definition. The fat field Y is called the fat field over Y induced from X

by f .

It is worth stressing that the induced fat field is defined only in the

situation when Y is f -compatible with X , the base of X.
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1.5.4

In the case when f∗ is surjective the construction of induced fat field is par-

ticularly simple. In such a situation the algebra B is identified canonically

with A/I where I = Ker f∗, Q = B ⊗A P with P/IP and the fat map f
∗

reads as follows:

f
∗
(p) = [p] ,

where [p] stands for the coset p+ IP . This shows that f
∗

is surjective and

every element of Q is of the form

1⊗ p = [p] .

Note that

Y ([p]) = Y (1⊗ p) = Y (1)⊗ p+ 1⊗X (p) = 1⊗X (p) =
[
X (p)

]
.

So, in the considered case the induced fat field Y acts according to the

formula

Y ([p]) =
[
X (p)

]
.

Such a situation occurs if f is the embedding of a closed submanifold (or

a closed embedding, cf. n. 0.2.30) and Y is tangent to the submanifold. In

this particular case the induced fat field is nothing else but the restriction

of X to N .

1.5.5

Let X be a fat field on a fat manifold M and N an open fat submanifold

of M . Proposition 1.5.3 leads to an alternative and immediate solution of

Exercise 1.3.10 concerning the restriction X|N . Indeed, let Y = X |N (see

Definition 0.4.5). By Proposition 1.5.3 there is a unique fat field Y on N

over Y , compatible with X with respect to the fat embedding of N . By

Exercise 1.3.9 and Proposition 0.4.5, every fat field compatible with X via

the fat embedding of N must have the base Y . Therefore Y is the unique

fat field on N compatible with X with respect to the fat embedding of N

in M .

1.6 Fat Trajectories

In this section fat trajectories of fat fields are defined.
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1.6.1 Fat Standard Model

The first step is to fix the standard model.

Definition. Let I be a standard trivial fat manifold over an interval with

standard fiber E ∼= F . If d / d t is the standard vector field on I (supposed

nonempty nor reduced to a singleton; see n. 0.4.21), the fat field

D d
d t

=
d

d t
⊗R idE

on I (cf. Example 1.2.7) is called standard and denoted by d / d t.

Proposition. Let τt : J → I be a fat translation by t and d / d t, d / d s

standard fat fields on the fat intervals I and J, respectively. Then d / d t

and d / d s are compatible with respect to τt.

Proof. Recall that, by definition, τt : J → I is an uniform morphism

over τt corresponding to a vector space isomorphism ϕ : F
∼
→ F (F is the

standard fiber). Moreover,

τt
∗ = τ∗t ⊗R ϕ

−1

(see n. 0.3.17).

Standard vector fields d / d t and d / d s are τt-compatible (see n. 0.4.24).

Therefore, we have

d

d t
◦ τt

∗ =

(
d

d t
⊗R idF

)
◦
(
τ∗t ⊗R ϕ

−1
)

=

(
d

d t
◦ τ∗t

)
⊗R ϕ

−1

=

(
τ∗t ◦

d

d s

)
⊗R ϕ

−1 =
(
τ∗t ⊗R ϕ

−1
)
◦

(
d

d s
⊗R idF

)
= τt

∗ ◦
d

d s
.

�

This shows that fat standard models are preserved under fat translations

in full analogy with the classical case.

1.6.2

Recall that, in geometric terms, a fat interval I is the projection F × I→ I.

It is easy to see that the vector field on F × I associated with the standard

fat field d / d t is nothing but the standard vector field ∂/∂t on F × I (see

n. 0.6.3). Note that the maximals trajectories of ∂/∂t are constant sections

of the bundle and, on the other hand, constant sections p are characterized

by the following property:

d

d t
(p) = 0 .

This last fact is generalized as follows.
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1.6.3

Proposition. Let X = d/d t be the standard vector field on an interval

I, I a fat manifold over I, X a fat field on I over X and X the associated

with X vector field on the total space I. Then a section p ∈ P = Γ(I) is a

trajectory of X if and only if

X(p) = 0 .

Proof. By definition, the section p is a trajectory of X if and only if
d

d t
◦ p∗ = p∗ ◦ X .

Note that d / d t ◦ p∗ and p∗ ◦ X are vector fields along p. Thus, in view of

Exercise 1.4.8, it suffices to check the equality on C∞(I) and on P∨.

Let f ∈ C∞(I). According to Exercise 1.4.3, X and d / d t are compatible

with respect to the projection I→ I. So,

X(f) =
d

d t
(f) ,

by identifying f and π∗(f). Moreover, since p is a section, we have

p∗(f) = f

by applying the same identification. Hence

p∗(X(f)) = p∗(
d

d t
(f)) =

d

d t
(f) =

d

d t
(p∗(f)) .

Therefore, for every section p, d / d t ◦ p∗ and p∗ ◦ X agree on C∞(I) and

it remains to show that d / d t ◦ p∗ and p∗ ◦ X agree on P∨ if and only if

X(p) = 0.

Let α ∈ P∨. To avoid a confusion denote by a the smooth function

I→ R

identified with α. According to n. 1.1.13

a(p(t)) = α(p)(t), t ∈ I ,

and, therefore,

p∗(a) = α(p) .

But the function on I identified with X
∨
(α) ∈ P∨ is X(a). Thus we see

that

p∗(X(a)) = X
∨
(α)(p) =

d

d t
(α(p)) − α

(
X(p)

)
=

d

d t
(p∗(a)) − α

(
X(p)

)
.

This implies that d / d t ◦ p∗ and p∗ ◦ X agree on P∨ if and only if

α(X(p)) = 0, α ∈ P∨ .

This condition is equivalent to

X(p) = 0

because P is projective (see n. 0.1.5, (6)). �
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1.6.4 Fiber-wise Linearity of Fat Fields

The condition

X (P∨) ⊆ P∨

characterizing vector fields associated with fat fields expresses a fiber-wise

linear nature. In more geometric terms this means that ‘every scalar mul-

tiple of a trajectory of X is again a trajectory of X’ and ‘the sum of two

trajectories of X is again a trajectory of X’. The precise meaning of that is

explained below.

First, some notational conventions. Let π : Eπ →M be a vector bundle,

v, w ∈ Eπ and λ, µ ∈ R. If π(v) = π(w), then the linear combination

λv + µw is well-defined since v and w belong to the same fiber, which is a

vector space. Farther, if S is a set and f, g : S → Eπ are some maps such

that π ◦ f = π ◦ g, then the linear combination

λf + µg : S → Eπ

is defined by (λf + µg)(s) = λf(s) + µg(s), s ∈ S. Obviously,

π ◦ (λf + µg) = π ◦ f = π ◦ g.

Proposition. Let X be a fat field on a fat manifold M , X the associated

vector field on M and π : M → M the projection. If λ ∈ R and γ, γ ′ are

trajectories of X such that

π ◦ γ = π ◦ γ′ ,

then λγ and γ + γ′ are trajectories of X.

Proof. Put

β = π ◦ γ = π ◦ γ′ : I→M

and consider the induced by β bundle I → I together with the induced

map β : I → M . Exercise 1.4.3 tells us that vector fields X and X are π-

compatible. Since the standard vector field d / d t and X are γ-compatible,

then d / d t and X are (π ◦ γ)-compatible. In other words, β = π ◦ γ is a

trajectory of X . Hence the induced by β from X fat field Y over d / d t on

I is well defined. Denote by Y the associated with Y vector field on I.

Observe now that there exist smooth sections

∆,∆′ : I→ I

such that

β ◦∆ = γ , β ◦∆′ = γ′
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Indeed, the restriction βt : t → β(t) = β(t) of β to the fiber t is an iso-

morphism of vector spaces and ∆ is defined by putting ∆(t) = β
−1

t (γ(t)).

Similarly for ∆′. Moreover, Y and X are compatible in view of Proposi-

tion 1.4.10. This implies that ∆ and ∆′ are trajectories of the vector field

Y on I.

Now, Y is a linear operator on Γ(I), thus the maps λ∆ and ∆ + ∆′

are trajectories of Y as it results from Proposition 1.6.3. So, β ◦ λ∆ and

β ◦ (∆ + ∆′) are trajectories of X. Finally, it remains to observe that β is

fiberwise linear, so that

β ◦ λ∆ = λ(β ◦∆) = λγ and β ◦ (∆ + ∆′) = β ◦∆ + β ◦∆′ = γ + γ′ .

This concludes the proof. �

1.6.5

Let X = d/d t be the standard vector field on an interval I, I a fat manifold

over I, X a fat field on I over X and X the associated with X vector field

on the total space I. Proposition 1.6.3 tells that the kernel FX of X is

composed of trajectories of X understood as sections of I. Since X is R-

linear, FX is a vector subspace of P = Γ(I). As such it can be restricted to

any fat point of t ∈ I by means of the canonical evaluation homomorphism

ht : P → t = Pt =
P

µtP
= Rt ⊗ P ,

with µt = Ker t.

Denote the restriction of ht to FX by hX,t. In other words, the linear

map

hX,t : FX → t

associates with a section p ∈ FX its value p(t) at t.

The fact that the trajectory passing trough a given point is unique im-

plies injectivity of hX,t. On the contrary, the existence theorem by itself

does not guarantee surjectivity of hX,t. Namely, the maximal trajectory

through an assigned e ∈ t, existence of which it establishes, is not guar-

anteed to be a global section of I, just a local one. So, some additional

arguments are necessary.

Proposition. Through a given point of I passes a trajectory of X that is

a section of the bundle I→ I.
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Proof. Let t1, t2 ∈ I be arbitrary. It is sufficient to show that any max-

imal trajectory of X starting from a point of the fiber t1 reaches the fiber

t2. Observe, first of all, that the zero section of I is a trajectory of X. In

other words, the trajectory starting from the origin of t1 reaches t2. Using

some elementary general topology, we have that trajectories starting from

points of a sufficiently small neighborhood, say, U , of the origin of t1 reach

t2 according to the theorem of smooth dependence of solutions from initial

data (see n. 0.6.4). But a vector e ∈ t1 is a multiple of a vector belonging

to U . So, the same multiple of the corresponding trajectories (see n. 1.6.4),

starting, obviously, from e reaches t2 as well. �

Corollary. Let X, X
′

be fat fields on I over the standard vector field

X = d / d t. If X and X
′
have the same kernel, that is,

FX = FX
′ ,

then they coincide.

Proof. Let X and X′ be the vector fields on I associated with X and X
′
,

respectively. Since

FX = FX
′ ,

X and X′ have the same maximal trajectories and hence they coincide. �

1.6.6

The above results are summarized in the following proposition.

Proposition. Let X = d/d t be the standard vector field on an interval I,

I a fat manifold over I and X a fat field on I over X . Then for every fat

point t of I, the evaluation map

hX,t : FX → t

is a vector space isomorphism.

Proof. Immediately from n. 1.6.5. �

Example. Let d/d t be the standard fat field on a fat interval I. Then,

canonically,

Γ(I) = C∞(I)⊗R F

and the natural homomorphism

F → Γ(I), e 7→ 1⊗ e, e ∈ F,
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induces an isomorphism ν between F and Fd/d t. In these terms the canon-

ical identification of F and t, t ∈ I, is given by the map hd / d t,t ◦ ν.

Corollary. Any basis e1, . . . , en of the R-vector spaceFX is simultaneously

a free basis of the C∞(I)–module Γ(I). In particular, the homomorphism

of C∞(I)–modules

ιX : C∞(I)⊗R FX → Γ(I), a⊗ v 7→ av ,

with a ∈ C∞(I), v ∈ FX , is an isomorphism.

Proof. It is sufficient to observe that, according to the above Proposition,

the values of sections e1, . . . , en at a point m ∈ I form a basis of m. �

1.6.7

The previous results have the following important consequence. If a der-

operator X over the standard vector field is assigned on a fat manifold I

over an interval, then I is identified with a fat interval. This is due to

the canonical identification between fats points and a fixed vector space,

namely, FX . The following result precisely states this fact.

Proposition. Let X = d/d t be the standard vector field on an interval I.

If I is a fat manifold over I and X a fat field on I over X , then there exists

a fat identity map f : I
′
→ I (see Definition 1.1.7), where I

′
is a fat interval

over I, such that X is f -compatible with the standard fat field on I
′
.

Moreover, a fat diffeomorphism I
′′
→ I satisfies the same condition if

and only if it is of the form f ◦ u with u : I
′′
→ I

′
being a uniform fat

identity map between fat intervals.

Proof. Let ζ : F → FX be an isomorphism of vector spaces and

(v1, . . . , vn) a basis of F . Then (ζ(v1), . . . , ζ(vn)) is a basis of FX and

hence a basis of the free module Γ(I) (see Corollary 1.6.6). So, the map

ιζ : C∞(I)⊗R F → Γ(I), a⊗ v 7→ aζ(v) ,

with a ∈ C∞(I), v ∈ F , is an isomorphism of C∞(I)–modules. Hence

the corresponding to ιζ morphism g of vector bundles is a fat identity

map sending I to the fat interval I
′

associated with the C∞(I)–module

C∞(I) ⊗R F . Moreover, X(aζ(v)) = (d a/ d t)ζ(v) because, by definition,

ζ(v) ∈ Ker X. We have

(g∗ ◦ d / d t)(a⊗ v) = g∗(d a/ d t⊗ v) = ιζ(d a/ d t⊗ v) = (d a/ d t)ζ(v)

= X(aζ(v)) = (X ◦ ιζ)(a⊗ v) = (X ◦ g∗)(a⊗ v) .
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Therefore, g∗ ◦ d / d t = X ◦ g∗, or, equivalently, f
∗
◦ d / d t = f

∗
◦ X for

f = g−1. This proves the first assertion of the Proposition.

Let now I
′′

be a fat interval over I and h : I
′′
→ I another fat diffeomor-

phism satisfying the conditions imposed on the fat identity map f . Then

standard fat fields on I
′
and I

′′
, both denoted d / d t, are u-compatible for

u = g ◦ h : I
′′
→ I

′
. By this reason u sends Fd/d t into Fd/d t and, due to

canonical identification of F and Fd/d t (see Example 1.6.6), gives rise to an

automorphism τ of F . It is now obvious that u is an uniform fat identity

map associated with τ .

Conversely, the standard fat fields d/d t are compatible with respect to

whatever uniform fat identity map u of fat intervals. Therefore, fat fields

d/d t and X are (f ◦ u)-compatible for all such u. �

1.6.8 Definition of Fat Trajectories

Definition. A fat trajectory (also called an integral fat curve) of a fat

field X on a fat manifold M is a fat curve

γ : I→M

such that X is γ-compatible with the standard fat field d / d t.

If m = γ (t) for some t ∈ I, then we say that the fat trajectory γ passes

through the fat point m at the ‘time’ t.

A fat trajectory γ : I → M is said to be maximal if it cannot be

prolonged. This means that if γ is the fat restriction of a fat trajectory

γ′ : I′ →M , then γ′ coincides with γ up to an uniform fat identity map of

the domains (that is, I = I′).

Exercise. Let γ : I→M be a fat trajectory of a fat field X over X . Show

that γ : I→M is a trajectory of X .

1.6.9

Exercise. Let γ : I→M be a fat trajectory of a fat field X and τt : J→ I

a fat translation by t ∈ R. Show that γ ◦ τt is a fat trajectory and that it

is maximal if and only if γ is maximal.

Hint. Mimic n. 0.4.24.
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1.6.10 Lifted Fat Trajectories

Now we prove that if X is a fat field, every trajectory of the base vector

field X can be lifted to a fat trajectory of X .

Proposition. Let X be a fat field on a fat manifold M and γ : I → M a

trajectory of the base vector field X . Then there exists a fat trajectory

γ : I→M

of X whose base is γ. Such a fat trajectory is unique up to an uniform fat

identity map I
′
→ I.

Proof. Let IX be the bundle induced by γ from M . Consider the induced

map

γX : IX →M.

Since γ is a trajectory of X , the standard vector field d/d t on the base

interval I is γ-compatible with X . Therefore, the induced by γX from X

fat field Y over d/d t is defined. Consider then a fat interval I and a fat

identity map

f : I→ IX

such that the standard fat field d/d t on it is f -compatible with Y . Such a

fat map exists according to Proposition 1.6.7. The base of the fat map

γ
def
= γX ◦ f

is, obviously, γ and d/d t is γ-compatible with X, i.e., γ is a fat trajectory

of X.

Conversely, if

γ′ : I
′
→M

is an arbitrary fat trajectory of X over γ, then, due to universal property

of induced bundles (Proposition 0.3.14), there exists a unique fat identity

map

f
′
: I

′
→ IX

such that

γ′ = γX ◦ f
′
.

Since the base of f
′
is a diffeomorphism, f

′
itself is a fat diffeomorphism.

Moreover, the fat field induced by f
′
from Y is equal, by definition of Y ,
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to the fat field induced by γ ′ from X. But γ′ is a fat trajectory and, so,

this fat field is nothing but the standard fat field on I. In other words,

the standard fat field on I
′

is f
′
-compatible with Y . It follows now from

Proposition 1.6.7 that f
′
= f ◦ u, u : I

′
→ I being an uniform fat identity

map, and hence γ′ = γ ◦ u.

Conversely, it is obvious that the composition of γ with a uniform fat

identity map is a fat trajectory. �

Exercise. Let γ and γ ′ be fat trajectories of a fat field. Show that if the

base of γ is a restriction of the base of γ ′, then γ is a fat restriction of γ′.

Note that these facts, together with Exercise 1.6.8, imply that a fat

trajectory of a fat field X is maximal if and only if its base trajectory is

maximal.

1.6.11 Existence and Uniqueness of Fat Trajectories

Theorem. Let X be a fat field on a fat manifold M and m a fat point of

M . Then there exists a maximal fat trajectory

γ : I→M

of X passing through m at a given ‘time’ t0 ∈ R. Such a trajectory is

unique up to a uniform fat identity map of the domain fat intervals. A

maximal fat trajectory passing through a fixed fat point (not necessarily at

the same time) is unique up to a fat translation.

Proof. Immediately from the uniqueness of ‘normal’ maximal trajecto-

ries and the results of n. 1.6.10. �

1.6.12 Parallel Translation Along Fat Trajectories

As it was observed in n. 1.1.10, fat points lying on an embedded fat curve

γ : I→M

are canonically identified with the standard fiber F of I. When, as in the

case of fat trajectories, the curve is defined up to an uniform fat diffeo-

morphism this canonical identification goes lost. Nevertheless, in such a

situation fat points can be canonically identified each other.

More precisely, consider fat points t and t′ of I, and their images

m = γ
(
t
)
, m′ = γ

(
t′
)
.
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Fat points m and m′ are identified with F by means of the isomorphisms

ct ◦ γ
−1
t : m→ F and ct′ ◦ γ

−1
t′ : m′ → F ,

with

ct : t→ F and ct′ : t′ → F

being the identification isomorphisms (see Definition 0.3.16). These fat

points are, therefore, identified by means of

γt′ ◦ c
−1
t′ ◦ ct ◦ γ

−1
t : m

∼
→ m′ .

This identification does not change when passing to the curve γ ′ = γ ◦ f ,

f being a uniform fat diffeomorphism, as it can be easily checked. In

particular, fat points belonging to embedded fat trajectories of a fat field

X are canonically identified and the identification isomorphisms depend

only on the base trajectories. The same identifications arise by means of

the isomorphisms hY ,m (see n. 1.6.5), with Y induced by X on the induced

bundle by the base trajectory.

Now, fix m = γ
(
t0
)

and denote by Tt0,t1 the identification (along γ)

isomorphism between m and m′ = γ
(
t1
)
. The family of isomorphisms

Tt0,t1 ’s may be viewed naturally as the parallel translation of m along γ.

Of course, this procedure makes sense even for trajectories that are not

embedded (cycles), but in this case a fat point on γ may admit several

different identifications with m.

1.6.13 Fat Cylinders

As in the ordinary case, in order to construct the fat flow generated by a fat

field and then to prove in this context the theorem of smooth dependence

from initial data, a smooth family of fat intervals is to be organized into

a suitable fat manifold, which will be called a relative fat interval (cf.

Definition 0.6.3). Relative fat intervals are open fat submanifolds of fat

cylinders. These are defined as follows.

Let M be a fat manifold, T a manifold, possibly with boundary, and

π : M × T → M the projection onto M (1). Consider the fat manifold

1We assume here that at least one of M and T is without boundary, in order the product
to be really a manifold (possibly with boundary). This restriction could be easily leaved
out, by means of obvious considerations that are left to the interested readers (cf. the
footnote in Sect. 0.6.8).
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TM induced by π from M and the induced map π : TM → M . Denote by

it : M →M × T , jm : T →M × T the canonical embeddings at t ∈ T and

at m ∈M , respectively. According to Proposition 0.3.14 there is a uniquely

determined fat map it : M → TM over it such that π ◦ it = idM . Moreover,

if Tm is a standard trivial fat manifold with standard fiber m, then there

is a uniquely determined fat map jm : Tm → TM such that π ◦ jm factors

as

Tm
τ
−→ m ↪→M ,

where τ is the corresponding trivializing fat map (see n. 0.3.15).

Definition. The fat manifold TM is called fat T -cylinder over M , the map

π fat projection of TM and it, jm fat embeddings into TM at t and at m,

respectively.

1.6.14 Relative Fat Intervals

In the case when T is an interval I, the fat cylinder IM may be viewed as

a family of standard trivial fat manifolds Im. These are not properly fat

intervals, since the standard fibers are the fat points m. However, they

can be considered as such ones up to a uniform fat identity map, if an

isomorphism m ∼= F is fixed.

Thus a fat cylinder IM formalizes the idea of a smooth family of fat

intervals over I, parametrized by points of M . Similarly, the notion of a

relative fat interval formalizes the idea of family of fat intervals of ‘different

lengths’.

Definition. A relative fat interval over a fat manifold M is a fat subman-

ifold IM of a fat R-cylinder RM provided that the base manifold IM is a

relative interval (see Definition 0.6.3).

The fat projection IM →M is the restriction of the fat projection RM →

M . The fat embeddings at t ∈ R and at m ∈ M , will be the restrictions

(on both the domain and the range) of the corresponding fat embeddings

into RM .

Given two relative fat intervals over the same relative interval, there is

a unique fat diffeomorphism f between them that is compatible with the

projections onto M . These fat intervals are identified by means of f and we

may assume that there is a unique relative fat interval over a given relative

interval.
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1.6.15 Smooth Dependence on the Initial Data

Below we keep the notation of two preceding subsections. Like in the or-

dinary case (see n. 0.6.4), for simplicity here we assume that M is without

boundary, that is, its base (or, equivalently, its total space) is without

boundary.

Theorem. Let X be a fat field on M and f : N → M a fat map. Then

there exists a (essentially) unique open relative fat interval over N and a

unique fat map

Φf : IN →M ,

such that for all n ∈ N the fat map

γn = Φf ◦ jn ,

is a maximal fat trajectory of X and

Φf ◦ i0 = f .

Proof. According to the ordinary theorem on smooth dependence (The-

orem 0.6.4), there exists a unique relative interval IN over N and a unique

smooth map

Φf : IN →M ,

such that for all n ∈ N the curve

γn = Φf ◦ jn

is the unique maximal trajectory of X with γn(0) = f (n). Let IN be the

relative fat interval with base manifold IN .

For each n, consider a maximal fat trajectory γn
′ : In

′
→M of X over

γn, and the uniform fat identity map un : In
′
→ In corresponding to the

isomorphism fn

−1
◦ (γn

′)0 : F → n. Also put

γn
def
= γn

′ ◦ un
−1 .

Then there exists a unique map

Φf : IN →M

such that

Φf ◦ jn = γn
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for all n. Indeed, note that each vector in the total space IN can be repre-

sented as jn(v) for a unique v in the total space In, with uniquely deter-

mined n ∈ N . The relation

Φf ◦ i0 = f

follows easily from definitions of i0 and jn as well that the fat maps γn

and, therefore, Φf are uniquely determined by this condition. It remains

to show that Φf is a fat map.

Clearly, the map Φf sends linearly fat points into fat points; hence,

according to n. 0.3.25, it suffices to prove that it is smooth as a map between

the corresponding total spaces. Consider the vector field X on the total

space M associated with X. Note that the total space IN is an open

submanifold of the total space RN , which is a product N × R. The total

space In is identified with n× In ⊆ N × R. This shows that

In →M, t 7→ γn(v, t), v ∈ n

is a trajectory of X just because γn is a fat trajectory of X. But

γn(v, t) = Φf

(
jn(v, t)

)

and jn(v, t) is nothing but the point (v, t) in the product N×R. Therefore,

the curve

In →M, t 7→ Φf (v, t)

is a trajectory of X passing through f(v) at t = 0. Thus Φf is smooth by

the ordinary theorem on smooth dependence. �

Definition. The map Φf is called the fat flow of X if f = idM .

1.7 Inner Structures

In Differential Geometry, Field Theory, etc., vector bundles are, as a rule,

supplied with additional structures. These may be interpreted as inner

structures of fat manifolds and the general theory should be refined suitably

in order to take into account these features. In this section these topics are

illustrated by two guiding examples: inner complex structures and inner

metrics.
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1.7.1 Principal Bundles

Up to now we ignored an important feature of the theory of vector bundles,

namely, the notion of structure group. Besides Differential Geometry and

Topology this concept is considered, non infrequently, to be fundamental

in the theory of gauge fields. We do not share this last opinion by giving

more credit to symmetries (see below). Nevertheless in this subsection this

notion is sketched to allow the reader to judge about.

In the traditional approach the structure group is introduced by means

of principal bundles. Such a (smooth) fiber bundle is defined by means of a

free right action T : G×N → N of a Lie group G on a manifold N whose

orbits form a manifold, say, M , i.e., M = N/G (2). If, additionally, ρ is a

left (linear) representation of G in a vector space V , then the action Tρ on

N × V

(Tρ)(g) : (x, v) 7→
(
T (g, x), ρ(g−1)(v)

)
, x ∈ N, v ∈ V, g ∈ G,

is, obviously, free. The trivial bundle p : N × V → N is equivariant (cf.
[Nestruev (2003), (10.5), p. 154]) with respect to actions Tρ and T of G on

N × V and N , respectively. So, the quotient vector bundle

E = (N × V )/G→M = N/G

is well defined and called associated with the considered principal bundle

N → M = N/G. The Lie group G is called the structure group of it. If a

vector bundle is equivalent to an associated with a principal G-bundle one,

then G is called its structure group, too. In frames of this approach various

features of a vector bundle are considered to be representations of those of

the corresponding principal bundle.

In reality, the structure group appears as the symmetry group of an ad-

ditional geometric structure (see nn. 1.7.4 and 1.7.7) the considered vector

bundle is supplied. The point of view adopted here allows a direct natural

approach to this kind of situations that simplifies much the theory. These

points are illustrated by the subsequent exposition.

1.7.2 Inner Complex Structures

The first example we intend to discuss concerns complex structures in (real)

vector bundles. From intuitive geometrical point of view such a structure
2The action is free when g 6= h ⇒ T (g, x) 6= T (h, x) for all x ∈ N (g, h ∈ G). For

fundamentals about Lie groups we refer to [Lee (2003)] instead of [Singer and Thorpe
(1976)].



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

132 Fat Manifolds and Linear Connections

assigns a complex structure to each fiber of the considered real vector bundle

in a smooth manner. To this end it suffices to introduce a multiplication by

the imaginary unit operator on each fiber. Having in mind the relationship

between vector bundles and modules of their smooth sections this idea is

formalized as follows.

Definition. Let A be a commutative R-algebra and P an A-module. A

complex structure in P is an endomorphism

J : P → P

such that

J2 = − idP .

An inner complex structure on a fat manifold M is a complex structure in

the C∞(M)–module Γ
(
M
)
.

Note that if Â is the C-algebra obtained from A by extension of scalars,

then setting

(x+ i y)p = xp+ J(yp), p ∈ P ,

we get an Â-module structure in P .

Conversely, if an Â-module P is given, then the multiplication by the

imaginary unit is a complex structure on P , considered as an A-module by

restriction of scalars.

To avoid confusions, we explicitly mention that a complex structure on

the tangent bundle of a smooth manifold M is usually called an almost-

complex structure on M , because it does not necessarily come from some

complex manifold structure on M .

1.7.3 Inner (pseudo-)metrics

A symmetric bilinear form b : P × P → A on an A-module P is called

nondegenerate if the map

p 7→ ϕp ∈ P
∨ = HomA(P,A), ϕp(q) = b(p, q), p, q ∈ P ,

is an isomorphism P ∼= P∨ of A-modules. In the case when A = C∞(M),

a symmetric nondegenerate bilinear form b on P is called positive if

b(p, p)(m) ≥ 0, for all p ∈ P,m ∈M .

An inner bilinear form on a fat manifold M is a bilinear form on the

C∞(M)–module Γ
(
M
)
. Geometrically it means that each fat point m is
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supplied with an R-bilinear form which depends smoothly on m, i.e., on m

(cf. [Nestruev (2003), 11.24]).

Indeed, let b be such a form and m ∈M . Since

m = Rm ⊗ P

(see n. 1.3.2), n. 0.1.5, (2) shows that there exists a unique bilinear form

bm on m such that

bm (p1(m), p2(m)) = b (p1, p2) (m), p1, p2 ∈ Γ(M) .

By n. 0.1.5, (3), if b is symmetric (respectively, alternating), then bm is

symmetric (respectively, alternating). This way an R-bilinear form is as-

signed to any fat point so that one gets the ‘field’ {bm}m∈M of bilinear

forms on M .

An inner pseudo-metric g on M is a symmetric nondegenerate bilinear

form on Γ(M). If g is positive, then it is called simply inner metric on

M . It is easy to see that the ‘field’ {gm}m∈M consists of nondegenerate

(positive) forms if g is nondegenerate (positive).

An inner (pseudo-)metric g on the tangent bundle of a smooth manifold

M is called a (pseudo-)Riemmannian metric on M , and M together with

g is called a (pseudo-)Riemannian manifold .

1.7.4 Inner Symmetries

A symmetry of a bilinear form b on an A-module P is an automorphism ϕ

of P such that

b(ϕ(p1), ϕ(p2)) = b(p1, p2), p1, p2 ∈ P.

For fat manifolds, a fat identity map f is a symmetry of an inner bilinear

form g on M if

g(f
∗
(p1), f

∗
(p2)) = g(p1, p2), p1, p2 ∈ Γ(M) ,

that is, if f
∗

is a symmetry of g. The notion of symmetry of an inner

(pseudo-)metric is a particular case of this definition.

Obviously, the totality of all symmetries of a bilinear form b on P is a

group with respect to the operation of composition. It will be denoted by

O(P, b) and called b-orthogonal group. The group of all fat identity maps

that are symmetries of an inner bilinear form g on a fat manifold M will

be denoted by O
(
M, g

)
and also called g-orthogonal group.

In many situations it is more convenient to use the infinitesimal version

of the above notion of symmetry. As usual, it is understood to be the
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velocity at f0 = id of a time-dependent family ft of ordinary symmetries.

By deriving formally with respect to t the equality

g
(
f
∗

t (p1), f
∗

t (p2)
)

= g (p1, p2) , p1, p2 ∈ Γ
(
M
)
,

one finds that

g
(
ϕ(p1), p2

)
+ g
(
p1, ϕ(p2)

)
= 0 , (1.8)

ϕ = d/d t|t=0f
∗

t . This motivates to say that an endomorphism of the

C∞(M)–module Γ(M) is an infinitesimal symmetry of g, if it satisfies (1.8).

Alternatively, infinitesimal symmetries are also called g–skew-adjoint.

It is easily verified that infinitesimal symmetries form a submodule

o
(
M, g

)
of End

(
Γ(M)

)
. Moreover, the commutator of two infinitesimal

symmetries is again an infinitesimal symmetry so that o
(
M, g

)
is a Lie

subalgebra of the Lie algebra End
(
Γ(M)

)
.

It is worth noticing that this definition is a particular case of the follow-

ing general algebraic one. An endomorphism ϕ of an A-module P is called

an infinitesimal symmetry of a bilinear form b on P if

b(ϕ(p1), p2) + b(p1, ϕ(p2)) = 0, p1, p2 ∈ P .

Infinitesimal symmetries of b form a Lie subalgebra o (P, b) of End(P ).

Similar definitions can be done for other types of internal structures in

fat manifolds. For instance, for complex structures it looks as follows.

Let P be an A-module and ψ an endomorphisms of P . An automor-

phism Φ of P is called symmetry of ψ if Φ ◦ ψ = ψ ◦ Φ, i.e.,

[Φ, ψ] = 0 .

Obviously, the totality of all symmetries of ψ, i.e., of all automorphisms

commuting with ψ, is a subgroup GL(P, ψ) of AutP . When P = Γ(M),

a fat identity map f : M → M is a symmetry of ψ if the associated

automorphism f
∗

is a symmetry of ψ. The group of all such symmetries

of ψ will be denoted by GL
(
M,ψ

)
. In particular, if J is an inner complex

structure in M , then GL
(
M,J

)
is the symmetry group of J .

The same heuristic considerations as before lead to call an endomor-

phism of Γ(M) commuting with ψ to be an infinitesimal symmetry of ψ.

All such endomorphisms constitute a submodule in End
(
Γ(M)

)
, denoted

by gl
(
M,ψ

)
. Obviously, it is also a Lie subalgebra of the Lie algebra

End
(
Γ
(
M
))

. In particular, gl
(
M,J

)
is the Lie algebra of all infinitesimal

symmetries of the inner complex structure J . In general, when ψ is an en-

domorphism of whatever A-module P , all endomorphims of P commuting

with it constitute a Lie subalgebra gl (P, ψ) of End(P ).
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1.7.5

A natural and important question is: to what extent an inner structure in

a fat manifold is determined by its symmetry group (resp., its infinitesimal

symmetry algebra). For pseudo-metrics and complex structures the answer

is given below as a consequence of the following results.

Proposition. Let g be an inner pseudo-metric on a fat manifold M and b

an inner symmetric bilinear form on it. Then

O
(
M, b

)
⊇ O

(
M, g

)
⇐⇒ b = αg, α ∈ C∞(M) .

Proof. Let V be a finite dimensional vector space over R and β :

V × V → R a symmetric nondegenerate bilinear form on it. Consider

the connected component O0(V, β) of the β-orthogonal group O(V, β) that

contains the identity homomorphism. It is not difficult to see that if

O0(V, β) ⊆ O0(V, β
′), β′ being a symmetric bilinear form on V , then either

β′ = λβ, 0 6= λ ∈ R, or β′ = 0 (look at the values of the corresponding

quadratic forms on orbits).

The inclusion O
(
M, b

)
⊇ O

(
M, g

)
implies O0 (m, bm) ⊇ O0 (m, gm),

∀m ∈M , because g is nondegenerate (details are left to the reader). Hence

bm = λmgm. It remains to put α(m) = λm. It is easy to see that the

so-defined α is smooth. �

Exercise. Let J be a complex structure on a fat manifold M and ϕ an

endomorphism of Γ(M). Then

GL
(
M,ϕ

)
⊇ GL

(
M,J

)
⇐⇒ ϕ = a id +bJ, a, b ∈ C∞(M) .

Hint. Reduce the proof to single fibers as in the proof of the preceding

proposition, and use the fact that an endomorphism of a (complex)

vector space commuting with all automorphisms is a (complex) scalar

endomorphism.

Let g and g′ be inner pseudo-metrics on a fat manifold M and J and

J ′ inner complex structure in it.

Corollary. We have

O
(
M, g

)
= O

(
M, g′

)
⇔ g′ = αg,

with an invertible α ∈ C∞(M) and

GL
(
M,J

)
= GL

(
M,J ′

)
⇔ J ′ = σJ

with σ being a continuous function on M with values in {1,−1}. In par-

ticular, J ′ = ±J if M is connected.
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1.7.6

The results of the preceding n. remain valid when the symmetry groups

figuring in it are replaced by the corresponding symmetry Lie algebras,

i.e., O
(
M, g

)
by o

(
M, g

)
, etc. Proofs are easier and left as an exercise for

the reader.

For more general Lie groups, it suffices to recall that exponentials of

endomorphisms that belongs to the symmetry algebra generate the corre-

sponding symmetry group.

1.7.7 Relation with Principal Bundles

Principal bundles (see n. 1.7.1) arise naturally in connection with inner

structures. We shall illustrate this topics here just to draw a comparison

with the standard approach.

Let g be an inner pseudo-metric on M and {gm}m∈M the corresponding

family of pseudo-metrics on fat points m’s. If all gm’s are of the same signa-

ture, say (k, l), (it is automatic if M is connected) then all groups O (m, gm)

are isomorphic to the orthogonal group O(k, l). Consider now all gm–

orthonormal frames whose totality denote by Rm. The group O(k, l) acts

naturally on the right on Rm. Namely, if e ∈ Rm, e = (e1, . . . , en), ei ∈ m,

and θ = (θij) ∈ O(k, l), then θ sends e to the frame e′ = (e′1, . . . , e
′
n) with

e′i =
∑

j θjiej . The manifold of all frames

R
(
M
)

=
⋃

m∈M

Rm

projects naturally on M :

R
(
M
)
⊇ Rm 3 e 7→ m ∈M

and fibers of the so-obtained fiber bundle are Rm’s. As we have already

seen the group O(k, l) acts, obviously, freely, on fibers of this bundles and

hence it acts freely on R
(
M
)
. Thus

R
(
M
)
→M

is a principal bundle with the structure group O(k, l). It is not difficult to

show that the bundle M →M is associated with this principal bundle (see

n. 1.7.1).

The same procedure can be applied to an inner complex structure. The

only thing to be modified with respect to the previous case is to make use

of Jm–complex frames instead of gm–orthogonal ones. The structure group

of the so-obtained principal bundle is GL(d,C).

The general case can be treated along essentially the same lines.
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1.7.8 Fat Lie Algebras and Principal Bundles

Lie algebras o
(
M, g

)
and gl

(
M,J

)
are projective modules over C∞(M)

and the corresponding to them vector bundles have o(k, l) and gl(d,C) as

general fibers, respectively. These bundles may be thought as fat manifolds

with inner Lie algebra structures. This point of view leads to a general

idea of a fat Lie algebra as a fiber bundle of Lie algebras over a manifold

which are indistinguishable one from another. This means that fat points

composing a fat Lie algebra should be isomorphic one to another and hence

isomorphic to a Lie algebra g.

A delicate point here is that, from one side, there are many isomor-

phisms of g to the fiber gm, m ∈M , of the considered fat Lie algebra and,

from the other side, these isomorphisms should depend smoothly on m.

This requires a due formalization.

The first step toward this end is to fix a set Sm of admissible isomor-

phisms from g onto gm. If ϕ ∈ Sm, then

Sm = {ψ = ϕ ◦ a : a ∈ Gm,ϕ}

with

Gm,ϕ = {a ∈ Aut g : ϕ ◦ a ∈ Sm} .

By passing, if necessary, to the subgroup of Aut g generated by Gm,ϕ, we

may assume from the very beginning that Gm,ϕ is a group. Obviously, in

this case Gm,ϕ does not depend on ϕ and hence one can simply write Gm

by omitting ϕ. Note that Gm acts naturally from the right on Sm, i.e.,

ψ 7→ ψ ◦ a, a ∈ Gm.

Next, the group Gm should not depend on m ∈ M . Otherwise, the

situation cannot be treated as a fat one. Denote this common for all points

of M subgroup of Aut g by G. Finally, G must be supposed a submanifold

in Aut g in order to give a sense to various analytical questions appearing

in this context, say, smooth dependence on m, etc. This motivates the

assumption that G is a closed Lie subgroup of Aut g. Moreover, by the

same reasons, the totality S =
⋃

m∈M Sm of all admissible isomorphisms

of g onto fibers of the considered fat Lie algebra should be supplied with

a structure of a smooth manifold such that its natural projection S →M ,

Sm 3 ϕ 7→ m ∈ M , is smooth. Since Gm acts freely and from the right on

Sm, and G = Gm for all m ∈M , G acts freely and from the right on S and

orbits of this action are the Sm’s.

Now, by putting together all above considerations we see that S → M

is a principal bundle with the structure group G which is a Lie subgroup of
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Aut g. Thus a rigorous formalization of the idea of a fat Lie algebra requires

a principal bundle as a necessary ingredient. Such a bundle formalizes the

concept of the variety of all isomorphisms connecting the general fiber Lie

algebra with single fat point Lie algebras. The fat Lie algebra corresponding

to a principal bundle is the associated bundle with the general fiber g on

which the structure group G ⊆ Aut g acts naturally.

In the traditional approach g is as a rule assumed to be the Lie algebra

of G on which G acts via the adjoint representation.

We have used the term ‘fat Lie algebra’ with the only purpose to show

that the notion of a principal bundle appears almost automatically in the

context of ‘fat’ philosophy, and only in this subsection. This term is syn-

onymous to ‘gauge Lie algebra’ which is commonly used and it would be

unreasonable to try changing it. It is worth also stressing that the above

considerations are in full parallel with motivations for introducing gauge

fields.

The above is a geometrically intuitive definition of a gauge Lie algebra

which will be made precise in n. 3.6.1.

1.7.9

Lie algebras o
(
M, g

)
and gl

(
M,J

)
, as well as any other gauge Lie algebra,

are C∞(M)–Lie algebras, i.e., the Lie multiplication in them is C∞(M)–

bilinear. In the general algebraic context the corresponding notion is as

follows.

Definition. Given a commutative k-algebra A, k being a field, an A-

module P supplied with an A-bilinear skew-symmetric map

P × P
〈 · , · 〉
−→ P

is called a Lie algebra over A (alternatively an A-Lie algebra) if the Jacobi

identity

〈p1, 〈p2, p3〉〉+ 〈p3, 〈p1, p2〉〉+ 〈p2, 〈p3, p1〉〉 = 0

holds.

If I is an ideal in A then, obviously, 〈IP, P 〉 ⊆ IP and the Lie multipli-

cation 〈 · , · 〉 induces naturally a Lie multiplication 〈 · , · 〉I in the quotient

module P/IP over the quotient algebra A/I. In particular, this way one

obtains a family of k-Lie algebras

|A| 3 h 7→ gh
def
= (Ph, 〈 · , · 〉µh

)
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with Ph and µh as in n. 0.3.1.

If P = Γ
(
M
)
, then all vector spaces Pm = m are isomorphic one to

another, but it is no longer so for Lie algebras gm’s, i.e., these algebras

corresponding to different points of M are not generally isomorphic.

Example. Let M be a trivial fat manifold of type 2, and e1, e2 be a

basis of Γ
(
M
)
. Fix a function f ∈ C∞(M) and define a C∞(M)–Lie

algebra structure on Γ
(
M
)

by putting 〈e1, e2〉 = fe2. Then the Lie algebra

structure 〈 · , · 〉m in m is defined by the relation 〈e1(m), e2(m)〉 = fe2(m).

So, the bidimensional algebra gm is abelian if and only if f(m) = 0. Since

all bidimensional nonabelian algebras are isomorphic to each other, we see

that gm and gm′ are isomorphic either if f(m) = f (m′) = 0 or f(m) 6= 0,

f (m′) 6= 0, and nonisomorphic otherwise.

This shows that the class of A-Lie algebras is wider than the class of

gauge Lie algebras.

Exercise. Show that the described above algebra is a gauge Lie algebra in

the sense of n. 1.7.8 if and only if either f = 0, or f is nowhere zero on M ,

by describing explicitly the corresponding principal bundles.
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Chapter 2

Linear Connections

In order to be in conformity with the previous chapter and the underlying

philosophy, the theory of linear connections in vector bundles should be

developed exclusively in terms of the corresponding modules of sections.

It means that any use of total spaces of vector bundles must be excluded.

In the standard approach a connection is a horizontal distribution (or,

something equivalent) on the total space (see [Singer and Thorpe (1976),

7.1 (p. 178)]) of the bundle. According to the point of view developed

in [Nestruev (2003)] this presupposes that the sections can be observed

point by point with the classical observation mechanism. So, no more

of ‘horizontal distributions’ in a situation when the classical observation

mechanism is not applicable. This is our stand point in this chapter.

The subject of observability is, in fact, a rather delicate and important

matter which merits a more detailed discussion. It, however, goes much

beyond frames of this book and we will limit ourself with these short general

remarks.

2.1 Basic Definitions and Examples

In this section linear connections in modules and, consequently, on fat man-

ifolds are defined.

2.1.1 Linear Connections

In itself the following definition looks rather natural: it just transforms

‘normal’ vector fields into fat vector fields. It is certainly satisfactory for

fat manifolds, whereas for general modules it mainly plays, in a sense, a

‘descriptive role’.

141
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Definition. Let A be a commutative k-algebra, k being a field, and P anA-

module. We define a linear connection in P as an A-module homomorphism

∇ : D (A)→ Der (P )

such that ∇ (X) is a der-operator over X for all X ∈ D (A).

The image of X ∈ D (A) is usually denoted by ∇X , instead of ∇ (X),

and it is called the covariant derivative along X .

A linear connection on a fat manifold will be a linear connection on the

corresponding module of smooth sections.

Denote by Endk (P ) the group of all k-linear operators acting on P .

In view of n. 1.2.4, a linear connection on P may be seen as a map ∇ :

D (A)→ Endk (P ) such that

(1) ∇fX+gY = f∇X + g∇Y , f, g ∈ A, X, Y ∈ D(A);

(2) ∇X(fp) = X(f)p+ f∇X(p), f ∈ A,X ∈ D(A), p ∈ P .

Accordingly, a linear connection on a fat manifold, that is a homomor-

phism of A-modules

D (M)→ D
(
M
)
,

may be also viewed as a map

D (M)→ D
(
M
)

that sends a vector field X on M to a vector field on the total space M

projecting onto X : namely, X 7→ X where X is the associated to ∇X vector

field on M (see n. 1.4.5).

An arbitrary linear map D (M) → D
(
M
)

that sends X ∈ D (M) to a

vector field on M projecting onto X , but not necessarily associated with a

fat vector field, may be taken as an alternative definition of a (not necessar-

ily linear) connection. This approach is applicable as well to general smooth

bundles, but it becomes unjustifiably cumbersome when dealing with linear

connections and, by the reasons at the beginning of this chapter, is not very

compatible with our goals.

Vector fields X corresponding to der-operators∇X generate a C∞
(
M
)
–

submodule in D
(
M
)
, say, D∇

(
M
)
. The fact that any field X projects onto

X shows easily that it is a projective C∞
(
M
)
–module of rank n = dim M .

So, this module may be interpreted as the module of smooth sections of

an n-dimensional subbundle of the tangent bundle to M , i.e., as an n-

dimensional distribution on M . The fiber of this bundle at a point e ∈M

is generated by vectors of the form Xe where fields X’s are as above. These
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fibers project isomorphically onto the corresponding tangent spaces of M .

By this reason this distribution is called horizontal. It is easy to see that it

determines completely the original (non-linear) connection and hence can

be taken as an alternative definition of it.

2.1.2

Example. Let A be a commutative k-algebra, k being a field, and P = A.

A tautological linear connection D in P is defined due to a natural inclusion

of D (A) in Der (P ) (cf. Example 1.2.6). In other words,

DX = X, X ∈ D (A) .

D is called the trivial connection in A. A more general version of this

construction is as follows.

2.1.3

Example. With k and A being as above, let E be a k-vector space of a

finite dimensionm > 0. Consider P = A⊗kE and define a linear connection

D in the A-module P by putting

DX = X ⊗k idE , X ∈ D (A)

(cf. Example 1.2.7).

Definition. The above defined linear connection D will be called trivial

connection in P = A⊗kE. If M is a standard trivial bundle, in particular,

M may be a fat interval, then the trivial connection in Γ
(
M
)

will be also

called the trivial connection on M .

2.1.4 Christoffel Symbols

Let P = A ⊗k E and D be as above and ∇ a linear connection in P .

Since DX and ∇X are der-operators over the same derivation X ∈ D(A)

the difference ΦX = ∇X −DX , according to n. 1.2.8, is an endomorphism

of P . Hence ∇ may be presented in the form D + Φ with Φ being the

A-homomorphism D (A) → End (P ) , X 7→ ΦX . If (e1, . . . , em) is a basis

of E, then (1⊗k e1, . . . , 1⊗k em) is a basis of the free A-module P . In
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corresponding coordinates (see n. 1.2.9) we have

∇X



p1

...

pm


 = X



p1

...

pm


+ ΓX



p1

...

pm




with ΓX being the representing ΦX matrix.

Assume that D (A) is also free and {∂i}i=1,...,n is a basis of it. If X ∈

D (A) corresponds to (X1, . . . , Xn) ∈ An in this basis, then

ΓX =
∑

i

XiΓ∂i
⇒ ∇X =

∑

i

Xi(∂i + Γ∂i
) .

Hence the linear connection ∇ is determined by the entries

Γk
ij = (Γ∂i

)k
j

of the matrices Γ∂i
(with k being the row index).

Conversely, for every choice of the elements Γk
ij ∈ A the formula

∇X =
∑

i

Xi(∂i + Γ∂i
), X =

∑

i

Xi∂i ∈ D (A)

defines a linear connection in P .

Definition. The elements Γk
ij ∈ A are called the Christoffel symbols of ∇

with respect to the bases (e1, . . . , em) and (∂1, . . . , ∂n).

2.1.5

Every linear connection on a fat manifold M may be described locally as

above. Indeed, it will be proved in n. 2.4.10 that a linear connection can be

localized. If {U, (x1, . . . , xn)} is a trivializing local chart for the considered

vector bundle, then one may take for ei’s the corresponding local basis of

sections and ∂/∂xi for ∂i.

2.1.6

Example. Let k and A be as above. Consider the A-module Diff A of all

k-linear differential operators � : A → A, with the ‘left’ module multipli-

cation:

(f�) (g) = f (� (g)) , f, g ∈ A .

Put for any X ∈ D (A) and � ∈ Diff A

∇X (�) = X ◦� .
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Obviously, ∇X is a k-linear map of Diff A into itself.

Moreover,

∇fX+gY (�) = (fX + gY ) ◦� = f (X ◦�) + g (Y ◦�)

= f∇X (�) + g∇Y (�)

and

∇X (f�) = X ◦ f� = X (f) � + f (X ◦�) = X (f)� + f∇X (�) .

Hence the so-defined map ∇ is a linear connection in Diff A (see n. 2.1.1).

2.1.7

Assume now that A is a subalgebra of a k-algebra B such that every k-

derivation X of A extends to a unique derivation ∇X of B. If X and Y are

derivations of A and f, g ∈ A, then, obviously, f∇X +g∇Y is a derivation in

B whose restriction to A is fX+ gY . Hence by the uniqueness assumption

f∇X + g∇Y = ∇fX+gY .

Since ∇X is a derivation of B extending X , for all f ∈ A (⊆ B) and

p ∈ B, we have

∇X (fp) = ∇X (f) p+ f∇X (p) = X (f) p+ f∇X (p) .

This shows, in view of of n. 2.1.1, that the extension operation

∇ : X 7−→ ∇X

is a linear connection in the A-module B.

Example. If A has no zero divisors, then any k-derivation of A extends

uniquely to a derivation of its quotient field B. Namely,

∇X

(a
b

)
=
X (a) b+ aX (b)

b2
, a, b ∈ A, b 6= 0 .

Thus, a linear connection accompanies naturally the quotient procedure.

2.1.8

Another situation of this kind is also well-known in algebra.

Example. Let K be a field and k a subfield of it. Consider a finite separa-

ble algebraic extension L of K. If X is a k-derivation of K, then it extends

canonically to a derivation ∇X of L. In fact, by the primitive element theo-

rem, L can be obtained by adding toK a root θ of an irreducible polynomial
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p (x) ∈ K [x]. Obviously, the value ∇X (θ) determines ∇X completely and

it can be found from the linear equation (over L)

∇X (p (θ)) = ∇X (0) = 0 ⇔ p′ (θ)∇X (θ) + q (θ) = 0

with a certain q (x) ∈ K [x]. Note that p′ (θ) 6= 0 due to separability of the

extension K ⊆ L.

2.1.9 Affine Space of Linear Connections

Let ∇ be a linear connection in an A-module P , A being an algebra over a

field k. If a ∈ A and X ∈ D(A), then a∇X is a der-operator over aX . So,

the module homomorphism a∇ : D(A)→ Der(P ) is not a linear connection,

unless aX = X for all X ∈ D(A) (when P = Γ(M) this happens if and

only if a = 1 or dimM = 0). Similarly, the sum of two linear connections

is not, generally, a linear connection.

However, if ∇1, . . . ,∇n are linear connections in P and a1, . . . , an ∈ A

are such that a1+· · ·+an = 1, then a1∇1+· · ·+an∇n is a linear connection

on P . This induces to think that linear connections in P constitute an affine

space. Indeed, if ∇ and ∆ are linear connections, then ∇X −∆X ∈ EndP

for all X ∈ D(A), since ∇X and ∆X have the common symbol. This is

equivalent to say that ∇ − ∆ ∈ Λ1(End(P )) (see Definition 0.5.1), up to

the obvious identification of Λ1 (Der(P )) with the corresponding submodule

of Λ1 (End(P )) (due to Der(P ) ⊆ End(P )). Conversely, it is obvious that

∇+ρ, ρ ∈ Λ1(End(P )) is a linear connection in P . Hence linear connections

in P constitute an affine space modeled over the module Λ1(End(P )).

2.1.10 Lift of Tangent Vectors

The following exercise shows that a linear connection on a fat manifold

admits a ‘pointwise description’.

Exercise. Let ∇ be a linear connection on a fat manifold M and m ∈M .

Consider the evaluation at m map

hm : Γ
(
M
)

� m =
Γ
(
M
)

(Kerm) Γ
(
M
) .

For an X ∈ D(M) consider the tangent vector Xm = m ◦X at m and the

fat tangent vector Xm = hm ◦ ∇X at m. Show that if X,Y ∈ D(M), then

Xm = Ym =⇒ Xm = Y m .
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Hint. Make use of the following fact:

Xm = Ym ⇔ X − Y ∈ (Kerm) D(M) .

For a tangent vector ξ at m put

ξ = hm ◦ ∇Z

with a field Z ∈ D(M) such that ξ = Zm. It follows from the above exercise

that ξ does not depend on the choice of Z and is determined completely by

ξ and ∇.

Definition. The so-defined fat tangent vector ξ is called the ∇-lift of ξ.

The lift of ξ by ∇ will be sometimes denoted by ∇ξ.

In view of the above result a linear connection may be interpreted as

a procedure associating a fat tangent vector to each tangent vector. Infor-

mally speaking, a connection allows to identify infinitesimally near fibers.

2.2 Parallel Translation

Once the notion of internal structure is formalized as that of fat point, an

evolution of the internal state is represented as a time dependent family of

fat points, i.e., as a fat curve. Evolution of a fat point as a single whole

is a ‘normal’ curve in the base of the considered fat manifold. From this

point of view the role of a connection is that it completes the external

evolutions, i.e., a ‘normal’ curve, to the internal one, i.e., a covering fat

curve. Intuitively, it is quite clear. Indeed, a connections allows, as we

have noticed earlier, to identify infinitesimally near along a certain direction

fat points. So, when walking along a curve in the base of a fat manifold

consecutively passed fat points are identified each other. In this section a

due formalization of the above said is given.

2.2.1 Related Linear Connections

Definition. Let f : N →M be a fat map and � and ∇ be linear connec-

tions on N and M , respectively. ∇ and � are called f -related if for every

pair of f -compatible vector fields Y ∈ D(N), X ∈ D(M) the fat vector

fields �Y and ∇X are f -compatible.

The notion of related connections is not basic. It is convenient by some

technical reasons.
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2.2.2

Exercise. Let I
′
be a standard trivial fat manifold over an interval I, with

the standard fat field d / d t, ∇ a linear connection on a fat manifold I over

I and

f : I
′
→ I

a fat identity map. Show that the trivial connection D on I
′
is f -related

with ∇ if and only if d / d t is f -compatible with ∇d / d t.

Hint. Recall that every vector field on I is a multiple of d / d t by a smooth

function.

Proposition. Let I be a fat manifold over an interval I and ∇ a linear

connection on I. Then there exists a fat identity map f : I
′
→ I, I

′
being

a fat interval over I, such that ∇ is f-related with the trivial connection

on I
′
.

Moreover, f is unique up to an uniform fat identity map of I
′′
→ I

′
.

Proof. A direct consequence of Proposition 1.6.7 and the preceding Ex-

ercise. �

2.2.3 A Property of Closed Embeddings

Lemma. Let γ : N →M be a fat map over a closed embedding γ : N →M

and∇ a linear connection onM . Furthermore, consider fieldsX,Y ∈ D(M)

and Z ∈ D(N) such that Y is γ-compatible with Z and ∇X is γ-compatible

with Z. Then ∇Y is γ-compatible with Z.

Proof. By Exercise 1.3.9 X is γ-compatible with Z . Since X and Y are

both γ-compatible with Z and γ is a closed embedding, one has

Y = X +
∑

fiWi

for some functions f1, . . . , fs ∈ Ker γ∗ and vector fields W1, . . . ,Ws ∈

D(M). Then

γ∗ ◦ ∇Y = γ∗ ◦ ∇(X+
∑

fiWi) = γ∗ ◦
(
∇X +

∑
fi∇Wi

)

= γ∗ ◦ ∇X +
∑

γ∗ (fi) (γ∗ ◦ ∇Wi
) = γ∗ ◦ ∇X = Z ◦ γ∗ .

�
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2.2.4 Connection Induced by a Closed Embedding

Proposition. Let ∇ be a linear connection on a fat manifold M and i :

N → M a fat map whose base i : N → M is a closed embedding. Then

there exists a unique linear connection ∇N on N that is i-related with ∇.

Proof. For each vector field Y on N there exists a vector field X on

M , i-compatible with Y . This is equivalent to the possibility to extend a

vector field on a closed submanifold to the whole manifold (see nn. 0.2.30

and 0.4.8).

Now, according to Proposition 1.5.3, there exists a unique fat vector

field on N over Y , i-compatible with ∇X . Denote it by ∇N
Y . Lemma 2.2.3

shows that this vector field does not depend on the choice of X . Hence the

map

∇N : D (N)→ D
(
N
)
, Y 7→ ∇N

Y

is well-defined.

The map∇N is linear. Indeed, consider a pair of i-compatible fields Yj ∈

D(N) and Xj ∈ D(M), j = 1, 2. The field f1Y1 + f2Y2, f1, f2 ∈ C∞(N),

is, obviously, i-compatible with g1X1 + g2X2 assuming that functions gj ’s

are extensions of fj ’s to M , i.e., fj = i∗ (gj). Similarly, fat vector fields

f1∇
N
Y1

+ f2∇
N
Y2

and g1∇X1 + g2∇X2 = ∇g1X1+g2X2 are i-compatible and,

therefore,

∇N
f1Y1+f2Y2

= f1∇
N
Y1

+ f2∇
N
Y2
.

This proves that ∇N
Y is a linear connection. By definition, ∇N

Y is the unique

linear connection i-related with ∇. �

Note that the hypothesis of the above Proposition is satisfied for fat

submanifolds i : N →M .

Definition. The linear connection ∇N defined in the above proposition is

called induced by i from ∇. In the case when i is the embedding of a closed

fat submanifold we also refer to ∇N as the restriction of ∇ to N .

The restriction will be denoted by ∇|N .

2.2.5 Lift by a Linear Connection

Proposition. Let ∇ be a linear connection on a fat manifold M and

γ : I→M
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an embedding of a closed interval I = [a, b]. Then there exists a fat curve

γ : I→M ,

over γ such that∇ is γ-related with the trivial connectionD on I. Moreover,

γ is unique up to an uniform fat identity map on the domain.

Proof. Let I0 be the bundle induced by γ from M , γ0 the induced map

and ∆ the linear connection induced by γ0 from ∇ (see Definition 2.2.4).

Consider the fat identity map

f : I→ I0,

I being a fat interval, such that the trivial connection D in I is f -related

with ∆ (see Proposition 2.2.2). It is easy to see that D is related with ∇

through the fat map

γ
def
= γ0 ◦ f .

Conversely, if

γ′ : I
′
→M

is a fat map over γ that relates the trivial connection D′ on I
′

with ∇,

then, by universal property of the induced bundle, there exists the unique

fat identity map

f
′
: I

′
→ I0

such that

γ′ = γ0 ◦ f
′
.

By the uniqueness property of induced connections (Proposition 2.2.4), the

linear connection induced by f
′
from ∆ coincides with the linear connection

induced by γ from∇, i.e., withD′. This shows thatD′ is f
′
–related with∆.

Thus the correspondence f ↔ γ0 ◦f establishes a one-to-one correspon-

dence between fat identity maps f that relate the trivial connection D in I

with ∆ and fat maps over γ that relate D with ∇. Now the result follows

directly from Proposition 2.2.2. �

Definition. Let ∇ be a linear connection on a fat manifold M and

γ : I→M

be an embedding of a closed interval I = [a, b]. A fat curve

γ : I→M

over γ such that ∇ is γ-related with the trivial connection D on I is called

a lift of γ by ∇.
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2.2.6 Parallel Translation

Since the lift γ is unique up to an uniform fat identity map, it defines,

according to n. 1.6.12, a parallel translation of fat points.

In the sequel the term ‘parallel translation’ (along γ) will be reserved

for the identification isomorphisms as follows.

Definition. Let ∇ be a linear connection on a fat manifold M ,

γ : I→M

an embedding of a closed interval I = [a, b] and

m0 = γ (t0) , m1 = γ (t1) , t0, t1 ∈ I .

The isomorphism

Tγ
m0,m1

: m0 → m1

corresponding (see n. 1.6.12) to a lift of γ by ∇ is called the parallel trans-

lation of m0 to m1 along γ by ∇.

The notions of lift and parallel translation are, in fact, naturally defined

for all curves, i.e., not necessarily embedded nor necessarily with endpoints.

But the general case is not so immediate from the definition of a linear

connection (we invite the reader to reflect for a while on this extension).

The general definition will become immediate in the next chapter, after

having introduced the notion of compatible connections.

If γ is a lift of γ by ∇, then the family of parallel along γ vectors is the

family of vectors vt = γ(t, v) for a fixed v ∈ F . In other words, the family

of parallel vectors is the image of a constant section of I by γ. By definition,

each vector of this family may be viewed as the parallel translation of any

other.

It is worth noticing the transitivity of parallel translations:

Tγ
m0,m2

= Tγ
m1,m2

◦Tγ
m0,m1

.

2.2.7 Constant Sections

Let p ∈ Γ
(
M
)

be such that

∇X (p) = 0, ∀X ∈ D(M) .

Since D and ∇ are related through every lifted fat curve γ, and since

constant sections s of I are characterized by the condition

DX (s) = 0, X ∈ D (I) ,

we see that the vectors p(m) of M are identified with each other via the

parallel translations, independently of the connecting them curve γ.
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Definition. Let ∇ be a linear connection on a fat manifold M . A section

p of M is called constant with respect to ∇, if

∇X (p) = 0

for all X ∈ D(M).

2.2.8

The fact that a linear connection is defined by first order differential op-

erators guarantees that the lifting is a differential operation of first order.

One consequence of this fact is that if two curves are tangent at a point,

then their lifts are ‘fat tangent’ at the corresponding fat point. The exact

meaning of that is the following.

Let d/d t, d/d t′ be standard fat fields on fat intervals I, I′ over closed

bounded intervals, and γ : I → M , γ ′ : I′ → M two embedded curves on

the base of a fat manifold M . Assume now that γ and γ ′ pass through the

same point and are tangent at it, i.e.,

γ (t0) = γ′ (t′0) = m and dt0 γ

(
d

d t

∣∣∣∣
t0

)
= dt′0

γ′

(
d

d t′

∣∣∣∣
t′0

)

where

d

d t

∣∣∣∣
t0

= t0 ◦
d

d t
and

d

d t′

∣∣∣∣
t′0

= t′0 ◦
d

d t′
.

Exercise. Let ∇ be a linear connection on M and consider the lifts by ∇,

γ : I→M and γ′ : I′ →M of γ, γ′, respectively.

Show that

dt0γ

(
d

d t

∣∣∣∣
t0

)
= dt′0

γ′

(
d

d t

∣∣∣∣
t′0

)

(see Definition 1.3.7), where

d

d t

∣∣∣∣
t0

= ht0 ◦
d

d t
and

d

d t′

∣∣∣∣
t′0

= ht′0
◦

d

d t′
.

2.2.9 Linear Connections and Non-projective Modules

From a naive geometrical point of view a connection is a means that makes

possible parallel translations of fibers one to other along paths connecting

their base points. This induces to think that fibers of a pseudobundle
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associated with a module P admitting a linear connection are isomorphic

one to other assuming that the base manifold is connected and, moreover,

that the module P is projective. From the algebraic point of view developed

in this book not only projective modules admit connections as is shown in

the example that follows. This bears evidence that a due preference should

be done to the algebraic approach.

Example. Let A = C∞ (R) and µ0 the ideal of functions vanishing at the

origin 0 ∈ R. Recall that the vector space of l-jets of smooth function on

R at 0 is defined as

J l
0R

def
=

A

µl+1
0

and the vector space of infinite jets as

J∞
0 R

def
=

A⋂
l∈N

µl
0

.

It is immediate to recognize in J∞
0 R the inverse limit of spaces J l

0R, related

one to other by natural projections (cf. [Nestruev (2003), 9.64]). Let

j∞0 : A � J∞
0 R, f 7→ [f ] = f +

⋂

l∈N

µl
0

be the canonical projection. The space J∞
0 R has an A-module structure

induced by j∞0 , i.e.,

f · j∞0 (g) = j∞0 (fg) , f, g ∈ A .

Now, consider the linear connection ∇ in J∞
0 R determined by

∇ d
d t

(j∞0 (f)) = j∞0

(
d f

d t

)
.

In a sense, ∇ is induced by j∞0 from the trivial connection in A.

On the other hand, it is easily seen that all fibers of the pseudobundle

associated with P are zero except that over the origin. So, this pseudobun-

dle over the connected manifold R is not a bundle and hence the (finitely

generated) module P is not projective (see Theorem 0.3.21).

2.2.10 Linear Connections on a ‘Singular Manifold’

The algebraic definition of a linear connection works well also on manifolds

with singularities. This is illustrated by an example below in which con-

nections on the cross (cf. [Nestruev (2003), 2.11, Exercise 1]) are discussed.
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Consider the cross

K
def
=
{
(x1, x2) ∈ R2 : x1x2 = 0

}

in R2, i.e., the union of the two coordinate axes

R1
def
= {(x1, 0) : x1 ∈ R} , R2

def
= {(0, x2) : x2 ∈ R} .

The algebra of smooth functions on K is defined as

C∞ (K)
def
=
{
f |K : f ∈ C∞

(
R2
)}

.

(K,C∞ (K)) is not a smooth manifold, in spite of its ‘regular’ status of

an algebraic subset, but only a smooth set (see n. 0.2.20). It can be viewed

as a manifold with a singular point at the origin O = (0, 0) ∈ K ⊆ R2. As

topological space K is homeomorphic to the dual space |C∞ (K)|.

Consider now the algebra

A = {(f1, f2) : f1 ∈ C∞ (R1) , f2 ∈ C∞ (R2) , f1 (O) = f2 (O)} .

Restrictions to coordinate axes define an isomorphism

C∞ (K)
∼
−→ A ;

cf. [Nestruev (2003), 9.35]. In the sequel smooth functions on the cross will

be often identified with the corresponding pairs of functions constituting

the algebra A.

By definition vector fields on the cross K are derivations of the R-

algebra C∞ (K). They are naturally identified, see [Nestruev (2003), 9.45],

with pairs

(X1, X2)

of vector fields on the axes R1, R2, respectively, that vanish at O, i.e.,

(X1)O = 0 and (X2)O = 0 ,

in conformity with the above identification of R-algebras C∞ (K) and A:

(X1, X2) (f1, f2) = (X1(f1), X2(f2)) .

The C∞ (K)–module

P = C∞ (K)⊗R F,

F being the standard fiber, is free and hence projective. The associated

pseudobundle is naturally interpreted as a standard trivial vector bundle K

over K. Smooth sections of this bundle are identified naturally with pairs

(p1, p2) : p1 (O) = p2 (O) ,
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where p1 ∈ C∞ (R1) ⊗R F , p2 ∈ C∞ (R2) ⊗R F are sections of standard

trivial bundles R1, R2, respectively. A linear connection in P is interpreted

geometrically to be a linear connection on K.

Observe that the bundle K may be seen as the restriction of the standard

trivial bundle R2 over R2 with the standard fiber F to K. Denote by

f : K→ R2

the corresponding induced map. Proposition 2.2.4 can be easily extended

to this case. Therefore, if ∇ is a linear connection in R2, then the induced

linear connection ∇K on K is defined literally by the same way as as it was

done for closed fat submanifolds (see Definition 2.2.4). Namely, we put

∇K

(X1,X2)
(p1, p2) = ∇X (p)|

K

where X is a vector field on R2 compatible with (X1, X2) with respect to

the inclusion map f : K → R2 and p is a section of R that restricts to

(p1, p2).

Denote the restrictions of ∇ to closed fat submanifolds R1, R2 by ∇1

and∇2, respectively. As a section over the cross∇X (p) |K is identified with

the pair (p′1, p
′
2) with p′1, p

′
2 being the restrictions of ∇X (p)|

K
to the axes

R1 and R2, respectively. Obviously, p′1, p
′
2 may be viewed as restrictions of

∇X (p) to the axes as well.

Now again by definition of induced linear connection we have

p′1 = ∇1
X1

(p1) , p′2 = ∇2
X2

(p2) .

This leads to the following description of ∇K:

∇K

(X1,X2)
(p1, p2) =

(
∇1

X1
(p1) ,∇

2
X2

(p2)
)
,

or, shortly,

∇K = (∇1,∇2) .

Note that there are vector fields on one of two axes that do not extend

from it to the cross. By this reason, the proof of Proposition 2.2.4 does not

literally extend to this case and, therefore, we could not directly deduce

the above description by means of restrictions from K to the axes. By the

same reason it is not a priori clear if every linear connection on K admits

a description as a pair of linear connections over the axes. Now we shall

discuss this more subtle question.

So, let � be an arbitrary linear connection on K. Recall that the tangent

space to K at the origin O is two-dimensional (see [Nestruev (2003), 9.35]).

On the other hand, all vector fields on K vanish at O. By this reason,
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to define the lift of a nonzero tangent vector ξ ∈ TOK by applying the

approach of n. 2.1.10 is not possible. This may create a sensation that �

does not induce connections on axes on the whole. It is, however, not so as

is shown below.

The module D(K) of all vector fields is (not freely) generated by

Z1
def
=

(
x1

∂

∂x1
, 0

)
and Z2

def
=

(
0 , x2

∂

∂x2

)
.

Let p = (p1, p2) ∈ P and (p′1, p
′
2) = �Z1(p). Then

(0, x2p
′
2) = (0, x2)�Z1(p) = �(0,x2)Z1

(p) = �0(p) = (0, 0) .

So, p′2 = 0 and p′1(O) = p′2(O) = 0. According to Hadamard’s lemma (see
[Nestruev (2003), 2.8]), there is a unique section (q′1, 0) such that (p′1, 0) =

(x1, 0)(q′1, 0). Define a linear connection �1 on R1 by putting

(�1) ∂
∂x1

(p1) = q′1.

With an obvious extension of the notion of related connections to the con-

sidered situation it is easy to see that �1 is related with � with respect

to the embedding of the first axis into the cross. Similarly, a connection,

say, �2, is constructed on the second axis and we see that � is completely

determined by the pair of linear connections (�1,�2).

Finally, it is easy to see that for all pairs of linear connections (∇1,∇2)

on the axes, there is a linear connection on R2 that restricts to them. This

shows that linear connections on K are in one-to-one correspondence with

pairs of linear connections on the axes and that these extend to linear

connections on the whole plane.

2.3 Curvature

Consider a linear connection ∇ on an A-module P . Covariant deriva-

tives ∇X1 and ∇X2 are der-operators over X1 and X2, respectively. So,

their commutator [∇X1 ,∇X2 ] is a der-operator over [X1, X2] (see Proposi-

tion 1.2.10) as well as ∇[X1,X2]. Now a natural question is: do these two

der-operators coincide? In other words, is it true that the A-module of all

covariant derivatives {∇X}X∈D(A) is a Lie subalgebra of Der(P )? Examples

shows that, generally, the answer is negative. One of them is based on the

description of linear connections given in n. 2.1.4, and it is the following.
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2.3.1

Example. Let A = C∞
(
R2
)
, P = Am and ∇ be a linear connection in P .

Then ∇Xi
= ∂i + Γi with Xi = ∂i = ∂/∂xi, i = 1, 2 (cf. n. 1.2.8). Recall

that

∂ip =



∂ip1

...

∂ipm


 ,

for a column

p =



p1

...

pm


 ∈ Am

and similarly for a matrix with entries in A. In this notation we have

[∇X1 ,∇X2 ]−∇[X1,X2] = [∇∂1 ,∇∂2 ]−∇[∂1,∂2] = [∂1 + Γ1, ∂2 + Γ2]

= [Γ1,Γ2] + [∂1,Γ2] + [Γ1, ∂2] .

If p ∈ P , then, obviously,

∂i (Γj(p)) = (∂iΓj)p+ Γj(∂ip),

so that [∂i,Γj ] = ∂iΓj and

[∇X1 ,∇X2 ]−∇[X1,X2] = [Γ1,Γ2] + ∂1Γ2 − ∂2Γ1 .

The matrix [Γ1,Γ2] + ∂1Γ2 − ∂2Γ1 is, generally, non-zero. For instance, it

happens when Γ1 and Γ2 are noncommuting matrices with constant entries.

Though [∇X1 ,∇X2 ] and ∇[X1,X2] are not equal, they are der-operators

over the same vector field [X1, X2]. Hence in view of n. 1.2.5 [∇X1 ,∇X2 ]−

∇[X1,X2] is an A-module endomorphism of P measuring the deviation of

∇ : D(A)→ Der(A)

from being a Lie algebra homomorphism. This explains the importance of

the following notion.

Definition. The curvature tensor of a linear connection ∇ in an A-module

P is the function

R∇ : D(A)×D(A)→ End(P ), (X,Y ) 7→ [∇X ,∇Y ]−∇[X,Y ] .
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2.3.2

Proposition. The curvature tensorR of a linear connection∇ is A-bilinear

and skew-symmetric.

Proof. Skew-symmetricity and additivity are obvious. Further, if f ∈ A

and X,Y ∈ D (A), then

R (fX, Y ) = [∇fX ,∇Y ]−∇[fX,Y ]

= ∇fX∇Y −∇Y∇fX −∇f [X,Y ] +∇Y (f)X

= f∇X∇Y − f∇Y∇X − Y (f)∇X − f∇[X,Y ] + Y (f)∇X

= f
(
[∇X ,∇Y ]−∇[X,Y ]

)
= fR (X,Y ) .�

Note that when P = Γ
(
M
)
, R is not a tensor on M in the strict sense

of this term. However, R is commonly called ‘tensor’ partially due to some

historical reasons and partially to the A-linearity property. Being A-bilinear

and skew-symmetric R can be viewed as a differential form with values in

the A-module of endomorphisms of P , i.e.,

R ∈ Λ2 (End (P ))

(see Definition 0.5.1).

2.3.3 Flatness

Definition. A linear connection with zero curvature tensor is called flat .

Note that a linear connection ∇ : D(A) → Der(A) is flat if and only if

it is a Lie algebra homomorphism.

Example. The trivial linear connection and the connections of Exam-

ples 2.1.6, 2.1.7 and 2.1.8 are all flat. Every linear connection on a one-

dimensional fat manifold is flat.

2.3.4

Exercise. Let ∇ be a linear connection on a fat manifold M and i : N ↪→

M be the fat embedding of a closed fat submanifold. Consider the restric-

tion ∇|N of ∇ on N .

Prove that

R∇|N (Y1, Y2) (p|N ) = R∇ (X1, X2) (p)
∣∣
N
, p ∈ Γ

(
M
)
,

when X1, X2 are chosen i-compatible with Y1, Y2, respectively.
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2.4 Operations with Linear Connections

In this section is shown that connections are in a natural conformity with

basic operations of linear algebra. Concrete situations discussed below are

to be considered as patterns on the basis of which the reader can learn how

to assemble new connections from given ones in many other contexts.

2.4.1 Linear Connection in Modules of Homomorphisms

Below A stands for a commutative k-algebra, k being a field.

Definition. Let P and Q be A-modules supplied with linear connections

∇ and ∆, respectively. The linear connection Hom (∇, ∆) in Hom (P,Q)

associated with ∇ and ∆ is defined by putting

Hom (∇, ∆)X
def
= Hom(∇X , ∆X)

with X ∈ D (A) and Hom(∇X , ∆X) given by Definition 1.5.1.

It is easily verified that the above construction gives in reality a linear

connection in Hom (P,Q).

2.4.2 Curvature of Hom(∇, ∆)

Proposition. For the curvature tensor of the linear connection

� = Hom (∇, ∆)

the following relation holds:

R� (X,Y ) (ϕ) = R∆ (X,Y ) ◦ ϕ− ϕ ◦R∇ (X,Y )

with X,Y ∈ D (A) , ϕ ∈ Hom (P,Q).

Proof. This is a direct computation:

R� (X,Y ) (ϕ) = �X (�Y (ϕ))−�Y (�X (ϕ))−�[X,Y ] (ϕ)

= �X (∆Y ◦ ϕ− ϕ ◦ ∇Y )−�Y (∆X ◦ ϕ− ϕ ◦ ∇X)

−
(
∆[X,Y ] ◦ ϕ− ϕ ◦ ∇[X,Y ]

)

= ∆X ◦ (∆Y ◦ ϕ)− (∆Y ◦ ϕ) ◦ ∇X −∆X ◦ (ϕ ◦ ∇Y ) + (ϕ ◦ ∇Y ) ◦ ∇X

−∆Y ◦ (∆X ◦ ϕ) + (∆X ◦ ϕ) ◦ ∇Y +∆Y ◦ (ϕ ◦ ∇X)− (ϕ ◦ ∇X) ◦ ∇Y

−∆[X,Y ] ◦ ϕ+ ϕ ◦ ∇[X,Y ] = R∆ (X,Y ) ◦ ϕ− ϕ ◦R∇ (X,Y ) .
�
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2.4.3 Associated Linear Connections in Endomorphisms

In the particular case when P = Q and ∇ = ∆ the previous construction

gives a connection in End(P ) as follows.

Definition. The linear connection Hom (∇,∇) on End(P ) is called asso-

ciated with ∇ and denoted by ∇End.

Explicitly we have

∇End
X ϕ = [∇X , ϕ]

with X ∈ D(A) and ϕ ∈ End (P ).

According to Proposition 2.4.2 the curvature of ∇End reads as

R∇End

(X,Y ) (ϕ) =
[
R∇(X,Y ), ϕ

]
.

2.4.4 Dual Linear Connection

In the particular case when Q = A and ∆ is the trivial connection D the

construction of n. 2.4.1 gives a linear connection in the dual module P ∨

of P .

Definition. Let ∇ be a linear connection in an A-module P and D the

trivial connection in A. The linear connection Hom (∇, D) in the dual

module P∨, denoted by ∇∨, is called dual to ∇.

The explicit formula is

(∇∨)X (ψ) = X ◦ ψ − ψ ◦ ∇X

with ψ ∈ P∨, p ∈ P and X ∈ D (A). It shows that (∇∨)X is nothing else

but the dual to ∇X der-operator and there will not be any ambiguity in

the notation

∇∨
X .

Since D is flat, Proposition 2.4.2, gives the following explicit formula for

the curvature of ∇∨:

R∇∨

(X,Y ) (ψ) = −ψ ◦R∇ (X,Y )

with ψ ∈ P∨ and X,Y ∈ D (A).



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Linear Connections 161

2.4.5 Associated Linear Connections in Tensor Products

Definition. Let P and Q be A-modules supplied with linear connections

∇ and ∆, respectively. The linear connection ∇�∆ in P ⊗A Q associated

with ∇ and ∆ is defined by putting

(∇�∆)X
def
= ∇X �∆X ,

with X ∈ D (A) and ∇X �∆X given by Definition 1.5.2.

2.4.6 Curvature of ∇ � ∆

Proposition. The following explicit formula for the curvature of ∇ � ∆

takes place:

R∇�∆ (X,Y ) = R∇ (X,Y )⊗ idQ + idP ⊗R
∆ (X,Y ) , X, Y ∈ D (A) .

Proof. Let X,Y ∈ D (A), p ∈ P , q ∈ Q and � = ∇⊗∆. We have

(�X ◦�Y ) (p⊗ q) = �X (∇Y (p)⊗ q + p⊗∇Y (q))

= ∇X (∇Y (p))⊗ q +∇Y (p)⊗∆X (q)

+∇X (p)⊗∆Y (q) + p⊗∆X (∆Y (q)) .

This implies

[�X ,�Y ] (p⊗ q) = [∇X ,∇Y ] (p)⊗ q + p⊗ [∆X , ∆Y ] (q) .

Hence

R� (X,Y ) (p⊗ q) = [�X ,�Y ] (p⊗ q)−�[X,Y ] (p⊗ q)

= [∇X ,∇Y ] (p)⊗ q + p⊗ [∆X , ∆Y ] (q)−∇[X,Y ] (p)⊗ q − p⊗∆[X,Y ] (q)

=
(
[∇X ,∇Y ]−∇[X,Y ]

)
(p)⊗ q + p⊗

(
[∆X , ∆Y ]−∆[X,Y ]

)
(q)

= R∇(X,Y ) (p)⊗ q + p⊗R∆(X,Y ) (q) .
�

2.4.7 Associated Linear Connection in Bilinear Forms

Let P be an A-module, ∇ a linear connection in P and Bil(P ) the module

of A-bilinear forms on P . Denote by (∇ � ∇)∨ the linear connection in

(P ⊗ P )∨ that is dual to the connection ∇ � ∇ in P ⊗ P . In view of the

natural isomorphism

Bil(P ) ∼= (P ⊗ P )
∨
,

we have a corresponding linear connection in Bil(P ), which will be denoted

by ∇Bil. Recall that a bilinear form b ∈ Bil(P ) and the corresponding to
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it via the above mentioned isomorphism linear function β on P ⊗ P are

related by the formula

b (p1, p2) = β (p1 ⊗ p2) , p1, p2 ∈ P .

Having this in mind and putting � = ∇�∇ we find (for all X ∈ D(A)):

∇Bil
X (b) (p1, p2) = �

∨
X (β) (p1 ⊗ p2) = X (β (p1 ⊗ p2))− β (�X (p1 ⊗ p2))

= X (β (p1 ⊗ p2))− β (∇X (p1)⊗ p2 + p1 ⊗∇X (p2))

= X (β (p1 ⊗ p2))− β (∇X (p1)⊗ p2)− β (p1 ⊗∇X (p2))

= X (b (p1, p2))− b (∇X (p1) , p2)− b (p1,∇X (p2)) .

This leads to the following explicit description of ∇Bil:
(
∇Bil

X b
)
(p1, p2) = X (b (p1, p2))− b (∇X (p1) , p2)− b (p1,∇X (p2)) .

2.4.8 Curvature of the Associated Connection

in Bilinear Forms

Denote by RBil the curvature tensor of ∇Bil. Then
(
RBil (X,Y ) (b)

)
(p1, p2) = (R(∇�∇)∨ (X,Y ) (β)) (p1 ⊗ p2)

= −β
(
R∇�∇ (X,Y ) (p1 ⊗ p2)

)

= −β
(
R∇ (X,Y ) (p1)⊗ p2 + p1 ⊗R

∇ (X,Y ) (p2)
)

= −β
(
R∇ (X,Y ) (p1)⊗ p2

)
− β(p1 ⊗R

∇(X,Y ) (p2))

= −b
(
R∇ (X,Y ) (p1) , p2

)
− b(p1, R

∇(X,Y ) (p2)) ,

and, therefore,
(
RBil (X,Y ) (b)

)
(p1, p2) = −b

(
R∇ (X,Y ) (p1) , p2

)
− b(p1, R

∇(X,Y ) (p2)) .

2.4.9

Let ∇ be a linear connection on a fat manifold M . Assume that the module

P = Γ
(
M
)

is free, i.e., M is a trivial bundle, as well as the module D (M).

Let (e1, . . . , er) be a basis of P and (∂1, . . . , ∂n) be a basis of D (M). The

corresponding basis

{bij} , 1 ≤ i, j ≤ r ,

in the module Bil(P ) of A-bilinear forms on P (which is, therefore, free as

well) is defined by putting

bij (ei′ , ej′) = δi′

i δ
j′

j



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Linear Connections 163

(here the δ’s are the Kronecker symbols).

Denote by Γk
ij the Christoffel symbols of ∇ in bases (e1, . . . , er) and

(∂1, . . . , ∂n) and let us introduce the slightly unusual notation Γ̃
(lm)
k(ij) for the

Christoffel symbols of ∇Bil in bases {bij} and (∂1, . . . , ∂n), with its obvious

meaning.

Exercise. Express the Christoffel symbols Γ̃ in terms of the Christoffel

symbols Γ.

The result of the above exercise,

Γ̃
(lm)
k(ij) = −Γi

klδ
j
m − δ

i
lΓ

j
km ,

is valid locally for any fat manifold (cf. n. 2.1.5).

2.4.10 Localization of Linear Connections

Any connection can be restricted, or, better to say, localized, to an open

submanifold. Essentially, this possibility is due to the fact that differential

operators are local, i.e., localizable to open subsets. Below it is shown

how covariant derivatives are localized. This is the only we need for our

purposes.

Lemma. Let i : N → M be a fat embedding of an open fat submanifold,

X and Y vector fields on M and ∇ a linear connection on M . Then

X |N = Y |N =⇒∇X |N = ∇Y |N .

Proof. Let Z = X − Y , s ∈ Γ
(
M
)

and n ∈ N . Consider a function

f ∈ C∞ (M) such that

f (n) = 0 and f |M−N = 1

(see [Nestruev (2003), 4.17 (ii)]). Then Z = fZ because Z|N = X |N −

Y |N = 0 and

∇Z (s) (n) = ∇fZ (s) (n) = (f∇Z (s)) (n) = f (n) (∇Z (s)) (n) = 0 .

So, ∇Z (s) |N = 0 for all s ∈ P , and, therefore, ∇Z |N = 0.

Hence

∇X |N −∇Y |N = (∇X −∇Y ) |N = ∇X−Y |N = ∇Z |N = 0

and

∇X |N = ∇Y |N .
�
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Proposition. Let ∇ be a linear connection on a fat manifold M and N an

open fat submanifold of M . Then there exists a unique linear connection

∇|N on N that is related with ∇ through the fat embedding of N in M .

Proof. Let X ∈ D(N) and for each n ∈ N consider a vector field Xn ∈

D(M) such that X |Un
= Xn|Un

, with Un ⊆ N being a neighborhood of n.

In view of the above lemma and locality of fat fields (see n. 1.3.6), (∇|N )
X

can be defined as the fat field obtained by gluing together {∇Xn
|Un
}n∈N

(see Definition 1.3.11). The easy verification that

X 7→ (∇|N )X

gives the required connection is left to the reader. �

Definition. The linear connection ∇|N defined above is called the local-

ization of ∇ to N , or also the restriction of ∇ to N .

2.4.11 Gluing Linear Connections

It is possible now to describe how to glue together a family of linear con-

nections.

Exercise. Let M be a fat manifold and {Ui}i∈I be an open covering of

M . Let also ∇i be a linear connection in the open fat submanifold Ui over

Ui, i ∈ I, and suppose that for all i, j ∈ I the restrictions of ∇i and ∇j to

the open fat submanifold Ui ∩ Uj over Ui ∩ Uj coincide. Show that there

exists a unique linear connection ∇ on M such that its restriction to Ui is

∇i for all i ∈ I.

2.4.12

Exercise. Show that every fat manifold possess linear connections.

Hint. Take into account n. 2.1.9 and use local triviality and a partition of

unity.

2.5 Linear Connections and Inner Structures

When inner structures are considered, a natural notion of structure-

preserving connections arises. Here we illustrate this fact by means of

the complex and the orthogonal guiding examples (cf. Sect. 1.7).



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Linear Connections 165

2.5.1 Complex Linear Connections

Intuitively, a connection is structure-preserving if any parallel transport of

one fat point to another is an identification of the corresponding structures

they are supplied with. For instance, if such a structure is an endomorphism

of the bundle M → M , say, ϕ, then the endomorphism ϕm1 is identified

with ϕm2 each time when the fat point m1 is identified with m2 via a

parallel transport isomorphism. This geometrically clear idea is, however,

not very practical because it is not possible to check what happens along

each single parallel transport. But it means, as it is not difficult to see, that

the endomorphism ϕ is ‘constant’ with respect to the considered connection

∇, i.e., that

∇End
X (ϕ) = 0, ∀X ∈ D(M) .

In such a case we say that ∇ preserves ϕ.

A general algebraic paraphrase of the above said is the following.

Definition. Let ∇ be a linear connection in an A-module P and ϕ ∈

End P . Then ∇ is said to preserve ϕ if ∇End
X (ϕ) = 0 for all X ∈ D(M).

In particular, this definition applies to a linear connection and a complex

structure J on a fat manifold M . In this case the condition can be charac-

terized in terms of symmetry group/algebra as follows.

Proposition. The following conditions are equivalent:

(1) ∇End
X (J) = 0 for all X ∈ D(M);

(2) f ∈ GL(M,J), X ∈ D(M) ⇒ ∇End
X (f

∗
) ∈ gl(M,J);

(3) ϕ ∈ gl(M,J), X ∈ D(M) ⇒ ∇End
X (ϕ) ∈ gl(M,J).

Proof. The implications (1)⇒(3)⇒(2) are immediate. Assume now that

(2) holds. The Jacobi identity for operators ∇X , J and f
∗

shows that

∇End
X (J) commutes with f

∗
for all f ∈ GL(M,J). Now the result of Exer-

cise 1.7.5 implies that ∇End
X (J) = a id+bJ . On the other hand, it follows

from J2 = − id that

∇End
X (J) ◦ J + J ◦ ∇End

X (J) = 0 ,

which immediately leads to a = b = 0. �

Note that ∇ preserves J if ∇X is C-linear for all X . This leads to an

alternative interpretation of the condition in terms of the extended algebra

Â, with A = C∞(M) (see n. 1.7.2). Namely, it is easy to see that derivations
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of this algebra are of the form X̂ + i Ŷ with X̂, Ŷ being the extensions of

X,Y ∈ D(M). Hence they form an Â-module D(M)C obtained from D(M)

by the extension of scalars A → Â, i.e., by complexification. This shows

that

∇̂ : X̂ + i Ŷ 7→ ∇̂X̂+i Ŷ

def
= ∇X + J ◦ ∇Y

is a connection in the Â-module Γ(M) if and only if ∇ preserves J .

2.5.2 Orthogonal Linear Connections

The general idea from the previous subsection applied to a bilinear form b

on an A-module P is realized as follows.

Definition. A linear connection ∇ in an A-module P is said to preserve a

bilinear form b on P if ∇Bil
X (b) = 0 for all X ∈ D(M).

In more explicit terms, according to the definition of ∇Bil, ∇ preserves

b if

X
(
b (p1, p2)

)
= b
(
∇X (p1) , p2

)
+ b
(
p1,∇X (p2)

)
, X ∈ D(A), p1, p2 ∈ P .

(2.1)

The notion of a linear connection on a fat manifold M that preserves an

inner pseudo-metric g on it is the particular case of this definition applied to

the C∞(M)–module Γ(M). It is not difficult to see that a linear connection

that preserves g is characterized by the fact that any parallel translation of

a fat point m1 to a fat point m2 is a pseudo-orthogonal transformation of

the pseudo-scalar product gm1 to gm2 .

Exercise. Let ∇ be a linear connection on an A-module P that preserves

a bilinear form b on P . Moreover, let ∆ be a linear connection on P and

set ρ = ∆−∇ ∈ Λ1 (EndP ) (cf. n. 2.1.9). Show that

(1) ∆ preserves b ⇐⇒ ρ(X) ∈ o (P, b) , ∀X ∈ D(A);

(2) ϕ ∈ o (P, b) , X ∈ D(A) ⇒ ∇End
X (ϕ) ∈ o (P, b);

(3) R∇ (X,Y ) ∈ o (P, b) , ∀X,Y ∈ D(A);

Hint. For (2), calculate

X
(
g (ϕ (p1) , p2) + g (p1, ϕ (p2))

)

−X
(
g (ϕ (∇X (p1)) , p2) + g (∇X (p1) , ϕ (p2))

)

−X
(
g (ϕ (p1) ,∇X (p2)) + g (p1, ϕ (∇X (p2)))

)
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by means of (2.1) and note that it vanish because ϕ ∈ o (P, b). For (3),

calculate [X,Y ] (b (p1, p2)), X (Y (b (p1, p2))) and Y (X (b (p1, p2))) by

means of (2.1), and compare them.

Let g be an inner pseudo-metric on a fat manifold M . Now we are going

to clarify relations between a linear connection ∇ that preserves g and inner

symmetries of g. If f is a such one, then, by definition,

g (p1, p2) = g
(
f
∗
(p1) , f

∗
(p2)

)
, p1, p2 ∈ Γ(M) , (2.2)

and hence

X(g (p1, p2)) = X

(
g
(
f
∗
(p1), f

∗
(p2)

))
, X ∈ D(M) . (2.3)

Recall that ∇ preserves g when

X
(
g (p1, p2)

)
= g
(
∇X (p1) , p2

)
+ g
(
p1,∇X (p2)

)
(2.4)

for all X ∈ D(M) and p1, p2 ∈ Γ(M). It follows from (2.2), (2.3) and (2.4)

that

g
(
f
∗(
∇X (p1)

)
, f

∗
(p2)

)
+ g

(
f
∗
(p1) , f

∗(
∇X (p2)

))

= g
(
∇X

(
f
∗
(p1)

)
, f

∗
(p2)

)
+ g

(
f
∗
(p1) ,∇X

(
f
∗
(p2)

))
,

which gives

g

(
∇End

X

(
f
∗
)

(p1) , f
∗
(p2)

)
+ g

(
f
∗
(p1) ,∇

End
X

(
f
∗
)

(p2)

)
= 0 . (2.5)

In view of (2.2) equality (2.5) tells that

f
∗−1
◦ ∇End

X (f
∗
) ∈ o(M, g) . (2.6)

Thus

f ∈ O(M, g), X ∈ D(M) ⇒ f
∗−1
◦ ∇End

X (f
∗
) ∈ o(M, g) .

Proposition. Let ∇ be a linear connection and g an inner pseudo-metric

on a fat manifold M . Then the following conditions are equivalent:

(1) ∇Bil
X (g) = αg, ∀X ∈ D(M) with α ∈ C∞(M) depending on X ;

(2) f ∈ O(M, g), X ∈ D(M) ⇒ f
∗−1
◦ ∇End

X (f
∗
) ∈ o(M, g);

(3) ϕ ∈ o(M, g), X ∈ D(M) ⇒ ∇End
X (ϕ) ∈ o(M, g).
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Proof. Assume that f ∈ O(M, g). Then (2.2) and (2.3) hold and (2.6)

⇐⇒ (2.5). Independently of validity of (2.4), (2.5) means that

X
(
g (p1, p2)

)
− g
(
∇X (p1) , p2

)
− g
(
p1,∇X (p2)

)

= X

(
g
(
f
∗
(p1) , f

∗
(p2)

))
− g

(
∇X

(
f
∗
(p1)

)
, f

∗
(p2)

)

− g

(
f
∗
(p1) ,∇X

(
f
∗
(p2)

))
,

or, equivalently, that

∇Bil
X (g) (p1, p2) = ∇Bil

X (g)
(
f
∗
(p1) , f

∗
(p2)

)
, X ∈ D(M), p1, p2 ∈ Γ(M) .

This means that f
∗

is an inner symmetry of ∇Bil
X (g). Now, by applying

Proposition 1.7.5 to ∇Bil
X (g) we conclude that (1)⇐⇒ (2).

Similar computations show that if ϕ is an infinitesimal symmetry of

g, then ∇End
X (ϕ) is an infinitesimal symmetry of g if and only if ϕ is an

infinitesimal symmetry of ∇Bil
X (g). According to n. 1.7.6, this implies that

(1)⇐⇒ (3). �

2.5.3 Lie Connections

The question how to characterize gauge Lie algebras among A-Lie alge-

bras, A being a k-algebra, becomes natural in the light of the discussion in

n. 1.7.8. It is rather obvious that a direct reference to principal bundles is

not very practical. With the following notion this question can be resolved

in a much simpler ‘infinitesimal’ manner.

Definition. Let g be an A-Lie algebra, whose product is denoted by 〈·, ·〉.

A linear connection ∇ in g is a Lie connection if for all X ∈ D(A), ∇X is

a derivation of g, that is,

∇X (〈g1, g2〉) = 〈∇X (g1) , g2〉+ 〈g1,∇X (g2)〉 .

It will be shown later (see n. 3.6.1) that a C∞(M)-Lie algebra g =

Γ
(
M
)
, M being a connected fat manifold, is a gauge algebra if it ad-

mits a Lie connection. This is a consequence of the fact that the parallel

translation from m1 to m2, m1,m2 ∈ M , along a curve is a Lie algebra

isomorphism of Lie algebra structures in m1 and m2.

Exercise. Show without using this fact that the A-Lie algebra of Exam-

ple 1.7.9 does not admit a Lie connection.
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2.5.4 Levi-Civita Connection

Definition. Let M be a manifold. A linear connection in D(M) is torsion-

free if

∇X(Y )−∇Y (X) = [X,Y ], X, Y ∈ D(M) .

Proposition. Let (M, g) be a pseudo-Riemannian manifold. There exists

exactly one torsion-free linear connection on D(M) that preserves g.

Proof. If∇ is a linear connection that preserves g, for allX,Y, Z ∈ D(M)

we have

g (∇X (Y ) , Z) + g (∇X (Z) , Y ) = X (g (Y, Z)) , (2.7)

g (∇Y (Z) , X) + g (∇Y (X) , Z) = Y (g (Z,X)) , (2.8)

g (∇Z (X) , Y ) + g (∇Z (Y ) , X) = Z (g (X,Y )) . (2.9)

Moreover, if ∇ is torsion-free we have

g (∇X (Y ) , Z)− g (∇Y (X) , Z) = g ([X,Y ], Z) , (2.10)

g (∇Y (Z) , X)− g (∇Z (Y ) , X) = g ([Y, Z], X) , (2.11)

g (∇Z (X) , Y )− g (∇X (Z) , Y ) = g ([Z,X ], Y ) . (2.12)

If we sum (2.7), (2.8), (2.10), (2.12) and subtract (2.9), (2.11), we get

2g (∇X (Y ) , Z)

= X (g (Y, Z)) + Y (g (Z,X))− Z (g (X,Y ))

+ g ([X,Y ], Z)− g ([Y, Z], X) + g ([Z,X ], Y )

Now set

ωX,Y : D(M)→ R, Z 7→ X (g (Y, Z)) + Y (g (Z,X))− Z (g (X,Y ))

+ g ([X,Y ], Z)− g ([Y, Z], X) + g ([Z,X ], Y )

so that ωX,Y ∈ Λ1(M), and recall that, by definition of a nondegener-

ate form, the homomorphism ϕ : D(M) → Λ1(M) induced by g (that is,

ϕ(W )(Z)
def
= g(W,Z), W,Z ∈ D(M)) is an isomorphism. This shows that

if ∇ is a torsion-free linear connection preserves g, then for all X ∈ D(M),

∇X must coincide with the map

�X : D(M)→ D(M), Y 7→ ϕ−1

(
1

2
ωX,Y

)
.

Therefore there is at most one such connection. On the other hand, it

is straightforward to check that �X is a der-operator over X and that

X 7→ �X is linear, which proves the existence. �

The above proposition is often called fundamental theorem of Rieman-

nian Geometry and the connection in the statement is called the Levi-Civita

connection of the pseudo-Riemannian manifold (M, g). Much of linear con-

nection theory owe its motivations to this topic.
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Chapter 3

Covariant Differential

The covariant differential of a connection is the determined by it univer-

sal covariant derivative. This predetermines importance of this notions.

Moreover, it is, conceptually, very convenient to take it as definition of the

original connection. According to this point of view, a connection in an A-

module P may be understood as a (graded) der-operator over the (graded)

‘vector field’ d in Λ(A) in Λ(A)–module of P -valued differential forms. A

gradual passage from the previous, geometrically transparent point of view

to this new conceptual one is done in this chapter.

This change of the view-point facilitates construction of further, more

delicate elements in the theory of connections. Two of them, namely, mor-

phisms of connections, formalized in terms of compatibility, and gauge/fat

structures, are discussed in this chapter with a special attention.

3.1 Fat de Rham Complexes

In this section some de Rham-like complexes naturally associated with a

module/fat manifold are introduced. In doing that we imitate the standard

descriptive definition of the exterior differential which is sufficient for our

goals here. A conceptual approach requires more ‘spacetime’ and would

deviate us from the main lines of this book.

3.1.1 Fat forms

Let k be a field, A a commutative k-algebra, P an A-module and s a

nonnegative integer.

Definition. A fat (differential) s-form on P is an alternating s-linear over

171
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A function

Der(P )× · · · ×Der(P ) −→ P .

A fat s-form on a fat manifold M is a fat s-form on Γ(M).

So, a fat s-form on M is an alternating s-linear over C∞(M) function

D
(
M
)
× · · · ×D

(
M
)
−→ Γ

(
M
)

The A-module of all fat s-forms on P will be denoted by

Λ
s
(P )

and the graded A-module

⊕

s

Λ
s
(P )

by Λ
•
(P ). For a fat manifold, i.e., for P = Γ(M), we shall use symbols

Λ
s (
M
)

and Λ
• (
M
)
,

respectively.

3.1.2 Semi-fat Forms

Definition. A semi-fat (differential) s-form on P is an alternating s-linear

over A function

Der(P )× · · · ×Der(P ) −→ A .

A semi-fat s-form on a fat manifold M is a semi-fat s-form on Γ(M).

In other words, a semi-fat s-form on M is an alternating s-linear over

C∞(M) function

D(M)× · · · ×D(M) −→ C∞(M).

The module of semi-fat s-forms on P will be denoted by Λ
s
(P ;A). The

module of semi-fat s-forms on a fat manifold M will be denoted simply

by Λ
s
(M).
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3.1.3

If P is faithful, then every der-operator is over a unique derivation (see

n. 1.2.5). In such a case the A-module homomorphism

Der(P )→ D(A), X → X ,

is well-defined and in its turn induces an A-module homomorphism

Λs(A)→ Λ
s
(P ;A) .

In other words, ordinary forms can be also interpreted as semi-fat forms.

Namely, if ω ∈ Λs(A), then its semi-fat interpretation ω is defined as

ω(X1, . . . , Xs) = ω(X1, . . . , Xs), Xi ∈ Der(P ).

For a fat manifold every vector field can be lifted to a fat vector field,

i.e., the above map of der-operators is surjective. By this reason the ho-

momorphism

Λs (M)→ Λ
s
(M)

is, in fact, a monomorphism.

3.1.4 Thickened Forms

In order to distinguish between various types of differential forms we shall

use the following terminology in the case the context requires that.

Definition. A P -valued s-form over A (see Definition 0.5.1) will be called,

synonymously, thickened (differential) s-form on P . A thickened form on a

fat manifold M is a thickened form on Γ(M).

So, a thickened s-form on M is an alternating s-linear over C∞(M)

function

D(M)× · · · ×D(M) −→ Γ(M) .

Recall that the A-module of all thickened s-forms is denoted by Λs (P )

and Λ• (P ) =
⊕

s Λs (P ) (see Definition 0.5.1). For a fat manifold

Λs
(
M
)

and Λ•
(
M
)

will be generally used instead of Λs
(
Γ(M)

)
and Λ•

(
Γ(M)

)
, respectively.
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3.1.5

By the same reason as in n. 3.1.3 thickened forms on a faithful module

P are interpreted naturally as fat forms on it, i.e., a natural A-module

homomorphism

Λs (P )→ Λ
s
(P )

is well-defined. In the case of fat manifolds this homomorphism, i.e.,

Λs
(
M
)
→ Λ

s (
M
)
,

is injective.

3.1.6 Geometric Description

Differential forms introduced above may be seen as fields of suitable ge-

ometric quantities or, equivalently, as sections of suitable vector bundles.

For fat forms it looks as follows.

Fix a fat point m ∈M . According to Exercise 1.3.12 a fat s-form

ω : D(M)× · · · ×D(M) −→ Γ(M)

defines an alternating s-linear function of vector spaces

ωm : TmM × · · · × TmM −→ m

such that

ωm

(
X1m, . . . , Xsm

)
= ω

(
X1, . . . , Xs

)
(m), X1, . . . , Xs ∈ D(M)

(see n. 0.1.5 (3)). The family {ωm}m∈M determines, obviously, the form ω

which, by this reason, may be seen as a (smooth) field of such functions.

Similarly, a semi-fat s-form is geometrically described by a field of al-

ternating s-linear functions of the form

TmM × · · · × TmM −→ R

and a thickened s-form by a field of alternating s-linear functions

TmM × · · · × TmM −→ m .
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3.1.7 Wedge Products

Let Sr+s be the permutations group of {1, . . . , r + s}, with r, s being non-

negative integers. Define Sr,s ⊆ Sr+s by

Sr,s = {σ ∈ Sr+s : σ (1) < · · · < σ (r) and σ (r + 1) < · · · < σ (r + s)} .

Recall that the wedge product of an r-form ω ∈ Λr(A) and an s-form

κ ∈ Λs(A) is defined by

(ω ∧ κ) (X1, . . . , Xr+s)

=
∑

σ∈Sr,s

(−1)|σ| ω
(
Xσ(1), . . . , Xσ(r)

)
κ
(
Xσ(r+1), . . . , Xσ(r+s)

)
,

X1, . . . , Xr+s ∈ D(A)

(see n. 0.5.13).

If κ is a thickened s-form, then this formula defines a thickened s+ r–

form, called the (external) wedge product of ω ∈ Λr(A) and κ ∈ Λs(P ),

provided that the products in its right-hand side means the A-module mul-

tiplication in P . With respect to the so-defined wedge product Λ• (P )

becomes a graded Λ• (A)–module.

The above formula in which the arguments Xi’s from D(A) are replaced

by der-operators from Der(P ) defines two other wedge products, one be-

tween semi-fat forms, i.e.,

Λr(P ;A)× Λs(P ;A) −→ Λr+s(P ;A)

and another between semi-fat and fat forms, i.e.,

Λr(P ;A)× Λ
s
(P ) −→ Λ

r+s
(P ).

With these products Λ
•
(P ;A) becomes a graded algebra while Λ

•
(P )

a graded Λ
•
(P ;A)–module.

In the case when P is faithful (as in the case of fat manifolds) further

wedge products arise. First, the ‘semi-fat’ interpretation of ordinary dif-

ferential forms given in n. 3.1.3, combined with already defined products

leads to wedge products between ordinary forms and any other type of

forms considered earlier. Schematically they are

Λr(A)× Λs(P ;A) −→ Λr+s(P ;A), Λr(A)× Λ
s
(P ) −→ Λ

r+s
(P ) .

Similarly, the ‘fat’ interpretation of thickened form given in n. 3.1.5 allows

to define wedge products of the following type:

Λr(P ;A)× Λs(P ) −→ Λ
r+s

(P ) .
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We shall keep the notation ∧ for all these wedge products.

The Leibnitz rule of Proposition 0.5.19 generalizes, in an obvious man-

ner, to

iX (ωr ∧ κ) = iX (ωr) ∧ κ + (−1)
r
ωr ∧ iX (κ)

with ωr ∈ Λr(A) and κ ∈ Λ•(P ).

3.1.8 Exterior Fat and Semi-fat Differential

Recall that the degree s component

ds : Λs (A)→ Λs+1 (A)

of the de Rham differential is given by the formula

ds (ω) (X1, . . . , Xs+1) =
∑

i

(−1)i+1Xi

(
ω
(
X1, . . . , X̂i, . . . , Xs+1

))

+
∑

i<j

(−1)i+j ω
(
[Xi, Xj ] , X1, . . . , X̂i, . . . , X̂j , . . . , Xs+1

)
,

ω ∈ Λs (A) , X1, . . . , Xs+1 ∈ D(A)

(see Definition 0.5.11).

This formula still makes sense when ω in it is a fat s-form on P and

argumentsXi’s are replaced by der-operators in P . So interpreted it defines

the s-th component of the fat (exterior) differential

ds : Λ
s
(P )→ Λ

s+1
(P ) .

Putting them together we obtain the exterior fat differential

d : Λ
•
(P )→ Λ

•
(P )

on P (or on M in the case when P = Γ(M)).

Since the formulas defining both ordinary and fat differentials are for-

mally identical, the same computation as for ordinary differential shows

that

d
2

= 0

(cf. Proposition 0.5.12) and hence transforms Λ
•
(P ) into a cochain complex

called the der-complex of P (or of M if P = Γ(M)).

Note that the zeroth degree component of d acts in a particularly simple

manner:

p 7−→ dp : X 7→ X(p)
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and is called the (basic) fat differential of P .

Suppose now that P is faithful. In this case a slight modification of the

above formula allows to define the semi-fat exterior differential and the

semi-fat basic differential:

ds (ω)
(
X1, . . . , Xs+1

)
=
∑

i

(−1)i+1 Xi

(
ω
(
X1, . . . , X̂i, . . . , Xs+1

))

+
∑

i<j

(−1)
i+j

ω
([
Xi, Xj

]
, X1, . . . , X̂i, . . . , X̂j , . . . , Xs+1

)

with ω ∈ Λ
s
(P ;A), X1......Xs+1 ∈ Der(P ) and Xi being the unique deriva-

tion (P is faithful!) corresponding to the der-operator Xi. As before one

easily observes that the same formal computation as for ordinary differ-

ential d proves that the square of the semi-fat differential vanishes. This

way Λ•(P ;A) becomes a complex called semi-fat. It is easy to see that the

homomorphism of n. 3.1.3 sending ordinary differential forms to semi-fat

ones is a cochain map.

In this context thickened forms make an exception, because there is

no canonical way to supply them with a differential. In particular, the

basic formula for the standard differential which was used so far cannot be

adapted to thickened forms. The arising problem concerns terms in the first

summation of it: an action of D(A) on P is necessary in order to give a sense

to them. Obviously, there is no natural action of this kind for a general

module P . However, such an action can be constructed by associating with

a derivation X ∈ D(A) a der-operator in P . In other words, it can be done

with help of a connection in P . These considerations formalized properly

lead to discover the concept of covariant differential associated to a linear

connection as it is done in the next section. It appears to be an analogue

of the differential in the above discussed complexes.

3.1.9 Leibnitz Rule for Fat and Semi-fat Forms

Both fat and semi-fat differentials introduced in the previous subsection are

first order differential operators in both graded and ordinary senses. This

is a consequence of the fact that they are subject to the following Leibnitz

rules:

d (ωr ∧ κ) = dωr ∧ κ + (−1)r ωr ∧ d κ, ωr ∈ Λr (P ;A) ,κ ∈ Λ• (P ;A) ,

d (ωr ∧ κ) = dωr ∧ κ + (−1)
r
ωr ∧ dκ, ωr ∈ Λr (P ;A) , κ ∈ Λ

•
(P ) .
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The cohomology of fat and semi-fat complexes are not widely known

in spite of their importance. Essentially they were described in [Rubtsov

(1980)].

In the rest of this chapter we shall focus on thickened forms, rather than

on fat and semi-fat ones, in view of their natural relation with connections.

3.2 Covariant Differential

Let A be as before a commutative k-algebra, with k being a field.

3.2.1

With a linear connection ∇ in an A-module P the operator

d∇ : P → Λ1(P ), p 7−→ d∇(p) : X 7→ ∇X(p)

is naturally associated.

In the case when P = A and ∇ is the trivial connection D the covariant

differential dD : A → Λ1(A) coincides with the standard d. This analogy

suggests that the operator d∇ could be characterized by a suitable property.

In fact, it is the following Leibnitz-like rule:

d∇(ap) = d a ∧ p+ a d∇(p), a ∈ A, p ∈ P . (3.1)

Indeed, if X ∈ D(A), then

d∇(ap)(X) = ∇X (ap) = X(a)p+a∇X(p) = ((d a)(X)) (p)+a d∇(p)(X)

= (d a ∧ p+ a d∇(p)) (X) .

If D(A) is finitely generated and projective, as in the case of fat mani-

folds, then

Λ1(P ) = Λ1(A) ⊗ P ,

and the Leibnitz rule can be rewritten in the form

d∇(ap) = d a⊗ p+ a d∇(p), a ∈ A, p ∈ P .

It follows from (3.1) that (in notation of n. 0.1.2) the commutator

[d∇, a]

is the A-module homomorphism P → Λ1(P ) that sends p to d a∧p. There-

fore, d∇ is a differential operator of first order.

The operator d∇ is called the covariant differential of ∇.
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3.2.2

Let ∇ be a linear connection in an A-module P , ϕ : P → P an endomor-

phism and b : P × P → A a bilinear form.

Example. The connection ∇ preserves ϕ if and only if d∇End(ϕ) = 0. The

connection ∇ preserves b if and only if d∇Bil(b) = 0.

3.2.3

It is important to note that a k-linear operator ∆ : P → Λ1(P ) satisfy-

ing (3.1) determines a unique linear connection ∇ by associating with a

derivation X ∈ D(A) the operator ∇X : P → P defined by

p 7→ ∆(p)(X) .

Indeed, the linearity with respect to X is obvious and the Leibnitz rule

for ∆ implies that the so-defined operator ∇X is actually a der-operator

over X .

Thus a linear connection might be defined as a k-linear operator

∆ : P → Λ1(P )

satisfying the Leibnitz rule

∆(ap) = d a ∧ p+ a∆(p), a ∈ A, p ∈ P . (3.2)

This point of view is less intuitive, but more preferable in many situations.

An instance of that we shall see in connection with the notion of compati-

bility of linear connections.

3.2.4 Splitting of First Order Jets

In this subsection another useful characterization of the covariant differen-

tial is given.

Let M be a fat manifold, A = C∞(M) and P = Γ(M). Recall that the

projective module J 1(P ) of first order jets, together with the 1-jet operator

j1 : P → J 1(P ), represents the functor

Q 7→ Diff1(P,Q)

in the category of geometric A-modules (see [Nestruev (2003), 11.59–

11.64]). We denote it also by J 1
(
M
)
. This means that for each ∆ ∈

Diff1(P,Q) there exists a unique homomorphism h∆ : J 1(P ) → P such

that h∆ ◦ j1 = ∆.
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According to n. 1.2.1, the symbol of a fist order differential operator

� : P → Q connecting two arbitrary modules over a commutative algebra

A is identified with a derivation A→ Hom(P,Q) so that the exact sequence

of A-modules

0→ Diff0(P,Q) = Hom(P,Q)→ Diff1(P,Q) → D(Hom(P,Q))

holds. Note that in the considered situation all these modules are geometric.

This means that the sequence of natural transformations of functors

0→ Hom(P, ·)→ Diff1(P, ·)→ D(Hom(P, ·))

is exact. Passing to the representing objects in the category of geometric

modules and taking into account Proposition 0.5.10, one gets the exact

sequence of A-homomorphisms

Λ1(P )
csmblP−→ J 1(P )

π1,0
→ P → 0 . (3.3)

Here π1,0 = hidP
: aj1(p) 7→ ap is the restriction of order of jets homomor-

phism and csmblP is called the cosymbol map. Explicitly,

(h∆ ◦ csmblP )(d a⊗ p) = [∆](ap) = ∆(ap)− a∆(p),

∆ ∈ Diff1(P,Q), a ∈ A, p ∈ P (3.4)

(with geometric Q) and hence

csmblP (d a⊗ p) = [j1](a)(p) = j1(ap)− aj1(p), a ∈ A, p ∈ P .

Note that for P = A

hd ◦ csmblA = idΛ1(A) ,

so that a natural splitting J 1(A) = Kerhd ⊕ Λ1(A) is defined.

On the contrary, for a generic module P there is no natural choice of a

splitting homomorphism J 1(P )→ Λ1(P ), i.e., such that the composition

Λ1(P )
csmbl
→ J 1(P )→ Λ1(P )

is the identity homomorphism. In view of (3.4), a choice of splitting ho-

momorphism is equivalent to a choice of operator ∆ : P → Λ1(P ) that

satisfies (3.2), i.e., ∆ = d∇ for a linear connection ∇. In other words, a

linear connection in M may be alternatively defined as a splitting of J 1(M)

by means of the cosymbol map. Note that the natural splitting of J 1(A)

considered above corresponds to the trivial connection in A.

Since sequence (3.3) is exact the second direct summand of the above

splitting is isomorphic to P . More exactly, put

i∇
def
= j1 − csmblP ◦ d∇ : P → J 1(P ) .
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Then i∇ is an A-module homomorphism. Indeed, by definition of csmblP ,

we have

i∇(ap) = j1(ap)− csmblP (d∇(ap)) = j1(ap)− csmblP (d a⊗ p+ a d∇(p))

= aj1(p)− a csmblP (d∇(p)) = ai∇(p) .

On the other hand, π1,0 ◦ i∇ = idP , because π1,0 ◦ j1 = idP and π1,0 ◦

csmblP = 0.

Thus

J 1(P ) = im(i∇)⊕ im(csmblP )

with Im(i∇) and Im(csmblP ) isomorphic to P and Λ1(P ), respectively, as

required.

Moreover, from Exercise 2.4.12 it follows immediately that the natural

(connection-independent) sequence

0→ Λ1(M)
csmbl
→ J 1(M)

π1,0
→ Γ(M)→ 0

is exact. However, since P is projective, this fact is easily deduced from

the exactness of the similar sequence for P = A.

The above said leads to an alternative definition of a linear connection in

M , i.e., as a homomorphism i∇ : Γ(M)→ J 1(M) such that π1,0◦i∇ = idP .

It is worth mentioning that the above considerations remain valid for

modules P over arbitrary commutative algebra, admitting a linear connec-

tion, if J 1(P ) is the representing object of the functor Q 7→ Diff1(P,Q) in

a ‘good’ (=differentially closed) category of A-modules to which P belongs.

3.2.5 Dioles

By comparing Leibnitz rule (3.1) for covariant derivative and that of a

der-operator

� (ap) = X (a) p+ a� (p)

(see (1.4), p. 100) one can see that they are essentially the same. Namely,

the first of them is obtained from the second by replacing in it the derivation

X : A → A by the derivation d : A → Λ1(A). This suggests to interpret

the covariant differential as a der-operator over d. In other words, the

covariant differential may be seen as a fat derivation over the ordinary

derivation d. This and other similar facts show that it is both natural and

useful to generalize in a due manner the notion of a der-operator. This is

done below.
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Let A be a commutative k-algebra, k being a field. A diole over an

A-module P is a pair (Q,R) of A-modules together with an A-module

homomorphism

ϕ : Q⊗ P → R .

Given a diole (Q,R, ϕ) a der-operator

� : P → R

over a derivation

D : A→ Q

is a k-linear operator such that

�(ap) = ϕ(D(a)⊗ p) + a�(p) .

For instance, the pair (Λ1(A),Λ1(P )) together with the homomorphism

ω ⊗ p 7→ ω ∧ p ,

forms a diole and this way the covariant differential d∇ appears to be a

der-operator over d.

Note that the diole related to ordinary der-operators is the pair (A,P )

together with the identity homomorphism idP : P = A ⊗ P → P . More

generally, let ϕ : A → B be a homomorphism of commutative algebras

and Q be a B-module considered also as an A-module via ϕ. The diole

associated with a homomorphism of A-modules ϕ : P → Q is composed of

the pair (B,Q) together with the B-module homomorphism B ⊗A P → Q

corresponding to ϕ according to the universal property of scalar extensions.

This way we recover der-operators along ϕ (see n. 1.2.11).

3.2.6

Similarly to the ordinary differential, the covariant differential extends nat-

urally to all thickened forms:

(d∇)s : Λs (P )→ Λs+1 (P )

is defined by

(d∇)s(ω)(X1, . . . , Xs+1) =
∑

i

(−1)i+1∇Xi
(ω(X1, . . . , X̂i, . . . , Xs+1))

+
∑

i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xs+1),

X1, . . . , Xs+1 ∈ D(A), ω ∈ Λs (P ) .
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Definition. The covariant differential associated with ∇ is the first degree

graded k-module endomorphism

d∇ : Λ• (P )→ Λ• (P )

whose component of degree s is (d∇)s.

It is easy to see that (d∇)s is well-defined, i.e., that (d∇)s(ω) is really

a thickened s+ 1–form.

In the sequel a homogeneous component (d∇)s will be often denoted

simply by d∇. The component of degree zero is sometimes called the basic

covariant differential.

3.2.7

Let X ∈ D (A) and

iX : Λ1 (P )→ P

be the degree 0 component of the insertion operator of X into Λ• (P ), i.e.,

the map given by

ω 7−→ ω (X) .

Then, obviously,

iX ◦ d∇ = ∇X .

Also it is worth noticing that

p is constant with respect to ∇ ⇐⇒ d∇ (p) = 0 .

3.2.8

Let us now consider the sequence

P
d∇−→ Λ1 (P )

d∇−→ Λ2 (P )
d∇−→ . . .

d∇−→ Λs (P )
d∇−→ . . . .

It is natural to ask if it is a complex, i.e., if d2
∇ = 0. In the case when

∇ is a trivial connection in P = A, d∇ coincides with the standard dif-

ferential and, therefore, the answer is positive (see Proposition 0.5.12).

However, in the general case the answer is negative as one can see by com-

puting directly d2
∇. This computation is practically identical to that of

d2 and is obtained formally from the latter by replacing the terms X (·)

in it by ∇X (·). The difference between these two cases is that at the
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end expressions
[
∇Xi

,∇Xj

]
− ∇[Xi,Xj ] = R∇ (Xi, Xj) emerge in place of

[Xi, Xj ]− [Xi, Xj ] = 0. The final result is:

d2
∇ (ω) (X1, . . . , Xs)

=
∑

i<j

(−1)i+j−1R∇ (Xi, Xj)
[
ω
(
X1, . . . , X̂i, . . . , X̂j , . . . , Xs

)]
.

The above formula can be expressed in a much more expressive way by

means of a further useful generalization of the wedge product introduced

below.

3.2.9 Multiplication by End(P )–valued Forms

Definition. Let P be an A-module and

R : D (A)× · · · ×D (A)→ End (P )

a differential r-form over A with values in End (P ). The wedge product

R ∧ ω ∈ Λr+s (P )

of R and a form ω ∈ Λs (P ) is defined by the formula

(R ∧ ω) (X1, . . . , Xr+s)

=
∑

σ∈Sr,s

(−1)
|σ|
R
(
Xσ(1), ..., Xσ(r)

) (
ω
(
Xσ(r+1), . . . , Xσ(r+s)

))
,

X1, . . . , Xr+s ∈ D (A) .

Here Sr,s stands for the set of permutations of {1, . . . , r + s} such that

Sr,s = {σ ∈ Sr+s : σ (1) < · · · < σ (r) and σ (r + 1) < · · · < σ (r + s)} .

Similarly, the wedge product

Λr (End (P ))× Λs (End (P )) −→ Λr+s (End (P ))

is defined. We shall keep the notation ∧ for these wedge products too.

Because of the similarity of these definitions with that of the wedge

product in Λ•(A), the usual properties of it have some counterparts in this

context (with some caution about the commutation rules), and the proofs

are basically the same. For instance, Λ• (End(P )) is a graded associative

algebra and Λ• (P ) becomes a graded Λ• (End(P ))–module. Moreover, take

into account that the homomorphism A → End(P ), that with each a ∈ A

assigns the multiplication by a operator, obviously induces a homomor-

phism Λ•(A) → Λ•(End(P ). Then the Λ•(A)–module structure on Λ•(P )
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obtained from the Λ• (End(P ))–module structure coincides with the usual

one. Finally, if R ∈ Λr (End(P )) and ω is the image in Λs (End(P )) of some

form in Λs(A), then

R ∧ ω = (−1)rsω ∧ R .

3.2.10 The Square of the Covariant Differential

According to Proposition 2.3.2 the curvature R of a linear connection ∇ in

P is a 2-form of A with values in the A-module End (P ), i.e.,

R ∈ Λ2(End (P ))

and its wedge product with a form ω ∈ Λs−2 (P ) (see Definition 3.2.9) is

(R ∧ ω) (X1, . . . , Xs)

=
∑

i<j

(−1)i+j−1R (Xi, Xj)
[
ω
(
X1, . . . , X̂i, . . . , X̂j , . . . , Xs

)]
,

X1, . . . , Xs ∈ D(A) .

Proposition. Let ∇ be a linear connection in an A-module P . Then

d2
∇ (ω) = R∇ ∧ ω, ω ∈ Λ•(P ) .

Proof. Immediately from the above said and n. 3.2.8. �

Corollary. The sequence

P
d∇−→ Λ1 (P )

d∇−→ . . .
d∇−→ Λs (P )

d∇−→ . . .

is a cochain complex if and only if ∇ is flat.

3.2.11 Leibnitz Rule for the Covariant Differential

Proposition. Let ∇ be a linear connection in an A-module P . Then

d∇ (ωr ∧ κ) = dωr ∧ κ + (−1)
r
ωr ∧ d∇ κ, ωr ∈ Λr (A) , κ ∈ Λ• (P ) .

Proof. A direct computation, practically identical to that for the stan-

dard wedge product (see Proposition 0.5.14). �

This Leibnitz rule shows the covariant differential d∇ to be a graded

der-operator over the graded derivation d.
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Corollary. Each component of the covariant differential d∇ is a first order

differential operator as well as d∇ itself.

Proof. In view of the above proposition the commutator [d∇, a] , a ∈ A,

is the (wedge) multiplication by da operator and, therefore, is a homomor-

phism of A-modules, i.e., a zeroth order differential operator. �

3.2.12 Generalization to End(P )–valued Forms

Proposition. Let ∇ be a linear connection in an A-module P and T ∈

Λr (End(P )) , ω ∈ Λs (P ). Then

d∇ (T ∧ ω) = d∇End (T ) ∧ ω + (−1)rT ∧ d∇ (ω) .

Proof. It follows from the definition of ∇End (see Definition 2.4.3) that

∇Z ◦ T (X1, . . . , Xr) = ∇End
Z (T (X1, . . . , Xr)) + T (X1, . . . , Xr) ◦ ∇Z ,

with X1, . . . , Xr ∈ D(A). Hence

∇Z (T (X1, . . . , Xr) (ω (Y1, . . . , Ys)))

= ∇End
Z (T (X1, . . . , Xr)) (ω (Y1, . . . , Ys))

+ T (X1, . . . , Xr) (∇Z (ω (Y1, . . . , Ys))) ,

with X1, . . . , Xr, Y1, . . . , Ys, Z ∈ D(A). The last formula is an exact ana-

logue of

∇Z (ω (X1, . . . , Xr) κ (Y1, . . . , Ys))

= Z (ω (X1, . . . , Xr)) κ (Y1, . . . , Ys)

+ ω (X1, . . . , Xr)∇Z (κ (Y1, . . . , Ys)) ,

for ω ∈ Λr (A) and κ ∈ Λs (P ). This analogy shows that literally the same

computation as in Proposition 3.2.11 (or in Proposition 0.5.14) proves the

formula. �

3.2.13

Proposition. If ω ∈ Λ• (P ), then

d∇ (R ∧ ω) = R ∧ d∇ (ω)

with R = R∇.

Proof. In view of Proposition 3.2.10 we have

d∇ (R ∧ ω) = d∇

(
d2
∇ (ω)

)
= d2

∇ (d∇ (ω)) = R ∧ d∇ (ω) . �
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3.2.14 Bianchi Identity

The above Proposition seems to contradict Proposition 3.2.12. But the fact

is that

d∇End (R) ∧ ω = 0, ω ∈ Λ• (P ) .

This formula leads to the following fundamental result, called Bianchi

identity.

Proposition. Let ∇ be a linear connection in an A-module P . Then

d∇End

(
R∇
)

= 0 .

Proof. Observe that for ω = p ∈ P = Λ0 (P ) and S ∈ Λ3(End(P ))

(S ∧ p) (X,Y, Z) = S (X,Y, Z) (p)

with X,Y, Z ∈ D (A). �

3.3 Compatible Linear Connections

Many areas in the modern Differential Geometry are organized into cate-

gories naturally related with the basic category of all manifolds. For in-

stance, one of them is formed of fat manifolds of a given type. So, it is

natural to expect the same in what concerns the category of fat manifolds

and one of the first questions is whether linear connections could be or-

ganized in a reasonable category. What are objects of such a category is

absolutely clear. These should be pairs of the form (M,∇) with ∇ being a

connection in M . But the question what are morphisms in this suspected

category is not very easy. For instance, it could seem natural to define a

morphism

(N,∆)→ (M,∇)

as a fat map f such that ∆ and ∇ are f -related. But it turns out that the

composition of two such ‘morphisms’ fails, generally, to be a ‘morphism’.

Another way to approach this problem is to pass to the algebraic coun-

terparts (Λ•(M), d∇) and (Λ•(N), d∆) and then look for morphisms of this

new objects.

A category in which these new objects, called cd-modules, live is dis-

cussed below. As a result we shall discover the fundamental concept of

compatible linear connections.
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3.3.1 cd-Algebras and cd-Modules

We start with the necessary definitions. In this section k stands for a field,

A for a graded commutative k-algebra (see n. 0.1.1) the product in which

is denoted by ∧.

Definition. A graded commutative algebra A supplied with a graded

derivation d : A → A is called a cd-algebra.

3.3.2

We need also graded A-modules. A typical one will be denoted by P and

we shall continue to use ‘∧’ for the module multiplication in it.

Definition. A graded A-module P supplied with a graded k-module

endomorphism

d : P → P

of the same degree as d : A → A, say l, such that

d (ωr ∧ κ) = dωr ∧ κ + (−1)
lr
ωr ∧ dκ, ωr ∈ Ar,κ ∈ P ,

is called a cd-module over (A, d) (or simply over A). A cd-module is called

flat if d
2

= 0.

3.3.3

Let now
(
P , d

)
and

(
P ′, d

′
)

be cd-modules over the same cd-algebra A and

let l be the degree of the differentials.

Definition. A degree r cd-module homomorphism

ϕ : P → P ′

is a degree r A-module homomorphism such that

d
′
◦ ϕ = (−1)lr ϕ ◦ d .

3.3.4

Let (P , d) and (P ′, d
′
) be cd-modules over a cd-algebra A and suppose that

both d and d
′
are of degree 1. Then a zero degreeA-module homomorphism
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ϕ : P → P ′ is a cd-module homomorphism if and only if the diagram

P0
d

//

ϕ

��

P1
d

//

ϕ

��

P2
d

//

ϕ

��

· · ·
d

// Ps
d

//

ϕ

��

· · ·

Q0
d
′

// Q1
d
′

// Q2
d
′

// · · ·
d
′

// Qs
d
′

// · · ·

is commutative.

In the case when the cd-modules are flat, a cd-homomorphism is, in

particular, a cochain map.

3.3.5

Example. The algebra Λ• (A) together with the exterior differential is a

cd-algebra (see Proposition 0.5.14). If ∇ is a linear connection on an A-

module P , then (Λ•(P ), d∇) is a cd-module over Λ•(A) (by n. 3.1.7 and

Proposition 3.2.11).

3.3.6

Example. The algebra (Λ•(P ;A), d) of semi-fat forms over a faithful mod-

ule P (see n. 3.1.7) supplied with the exterior semi-fat differential (see

n. 3.1.8) is a cd-algebra and the module
(
Λ
•
(P ), d

)
of fat forms supplied

with the exterior fat differential is a cd-module over it.

3.3.7 Linear Connections and cd-Module Structures

on Thickened Forms

Proposition. Let P be an A-module. If Λ•(P ) is generated as Λ•(A)-

module by P , its zeroth degree component, then

∇ ↔ (Λ•(P ), d∇)

is a bijection between linear connections in P and cd-module structures

(Λ•(P ),∆) over (Λ•(A), d) with ∆ of degree 1.

Proof. The only fact that requires a proof is that for a given cd-module

(Λ•(P ),∆) over (Λ•(A), d) with ∆ being of degree 1 there exists a unique

linear connection ∇ in P such that ∆ = d∇. To this end, first, note that by

definition of cd-modules the zeroth component of ∆ satisfies the Leibnitz

rule (3.1), p. 178. By this reason (see n. 3.2.3) there exists a unique linear



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

190 Fat Manifolds and Linear Connections

connection ∇ in P such that the zero degree component of d∇ coincides

with that of ∆. Now it remains to prove that all other components of ∆

and d∇ coincide as well.

Since Λ•(P ) is generated as Λ•(A)–module by P , it suffices to verify

that on elements of the form ω ∧ p, ω ∈ Λ•(A) homogeneous, p ∈ P only.

But this is obvious:

d∇(ω∧p) = d(ω)∧p+(−1)sω∧d∇(p) = d(ω)∧p+(−1)sω∧∆(p) = ∆(ω∧p)

with s = deg ω. �

The hypothesis of the above propositions is satisfied if D(A) is projective

and finitely generated as, in particular, in the case of fat manifolds. In fact,

in this case

Λ•(P ) = Λ•(A) ⊗ P

(see Proposition 0.5.10) and, therefore, Λ•(P ) is manifestly generated as

Λ•(A)–module by P .

Thus linear connections on a fat manifold M are identified with (degree

1) cd-module structures in the Λ•(M)–module of thickened forms Λ•(M).

3.3.8 Homomorphisms of Thickened Forms

Induced by Fat Maps

Consider a fat map

f : N →M

and set

A = C∞ (M) , B = C∞ (N) , P = Γ
(
M
)
, Q = Γ

(
N
)

.

Recall that f generates the homomorphism of A-modules

f
∗

: P → Q

and a natural identification

Q = B ⊗A P

(see n. 1.1.6) takes place.

The identifications

Λ• (P ) = Λ• (A)⊗A P and Λ• (Q) = Λ• (B)⊗B Q .

are guaranteed by Proposition 0.5.10 while the identification

Λ• (B)⊗B Q = Λ• (B)⊗A P
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comes from elementary properties of scalar extensions.

Hence we have

Λ• (Q) = Λ• (B)⊗A P .

The induced by f homomorphism of the de Rham complexes (see

n. 0.5.16)

Λ• f∗ : Λ• (A)→ Λ• (B)

extends naturally to thickened forms

Λ• f
∗ def

= Λ• f∗ ⊗A idP : Λ• (A)⊗A P → Λ• (B)⊗A P

‖ ‖

Λ•
(
M
)

Λ•
(
N
) .

It is easy to see that Λ• f
∗

is a zero degree homomorphism of Λ• (M)–

modules with respect of the (left) Λ• (M)–module structure in Λ•
(
N
)

in-

duced by the restriction of scalars via Λ• f∗.

Definition. The homomorphism

Λ• f
∗

: Λ•
(
M
)
→ Λ•

(
N
)

of the (graded) Λ• (M)–modules will be called induced by f . Its s-th degree

component

Λs
(
M
)
→ Λs

(
N
)

will be denoted by Λs f
∗
.

3.3.9

Let f : M → M be a fat identity map of M into itself, i.e., a gauge

transformation. Since f = idM , Λ• f∗ = idΛ•(M). But the homomorphism

Λ• f
∗

= idΛ•(M)⊗ idΓ(M) : Λ• (M)⊗ Γ(M) → Λ• (M)⊗ Γ(M)

‖ ‖

Λ•
(
M
)

Λ•
(
M
)

in spite of its appearance is not generally the identity of Λ•
(
M
)
. The point

is that the notation used is ambiguous. Namely, Λ•
(
M
)

is considered here

as a tensor product Λ• (M) ⊗ Γ(M) in two different ways. First, on the

domain of Λ• f
∗

it stands for the universal bilinear function

(ω, p) 7→ ω ∧ p

while on the range it stands for

(ω, p) 7→ ω ∧ f
∗
(p).

So, the symbol ⊗ in Λ• f
∗

= idΛ•(M)⊗ idΓ(M) changes its meaning when

passing from the domain and the range and Λ• f
∗

is the automorphism

ω ∧ p 7→ ω ∧ f
∗
(p) .
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3.3.10 Geometrical Interpretation

of the Induced Homomorphism of Thickened Forms

Recall that a thickened s-form ω ∈ Λs
(
M
)

may be interpreted as the field

of maps

ωm : TmM × · · · × TmM −→ m

(see n. 3.1.6). Such field for the form Λ•(f
∗
)(ω) is described by the formula

(Λ•(f
∗
)(ω))n(ξ1, . . . , ξs) = f

−1

n

(
ωf(n) (dn f(ξ1), . . . , dn f(ξs))

)
,

ω ∈ Λs
(
M
)
, n ∈ N, ξ1, . . . , ξs ∈ TnN

which is deduced easily from the geometric description of Λ•(f∗) (see

n. 0.5.17) and the definition of Λ• f
∗
.

3.3.11

Proposition. Let f : N → M be a fat map and X,Y vector fields on M

and N , respectively. If X and Y are f -compatible, then

iY ◦ Λ• f
∗

= Λ• f
∗
◦ iX

(see n. 0.5.18).

Proof. Directly from the pointwise description of Λ• f
∗

given in the pre-

vious n. 3.3.10. �

The following fact is an immediate consequence of the proposition (cf.

Corollary 0.5.21).

Corollary. Let f : N → M be a fat map, X1, . . . , Xs vector fields on M

and Y1, . . . , Ys be vector fields on N such that for all i = 1, . . . , s vector

fields Xi and Yi are f -compatible. Then for all ω ∈ Λs
(
M
)

Λ• f
∗
(ω) (Y1, . . . , Ys) = f

∗
(ω (X1, . . . , Xs)) .

3.3.12 Compatible Linear Connections

Let f : N →M be a fat map, ∇ a linear connection on M and � a linear

connection on N .

By Example 3.3.5
(
Λ•
(
N
)
, d�

)
is a cd-module over Λ• (N). On

the other hand, Λ•
(
N
)

is also a Λ• (M)–module via Λ• f∗. This way(
Λ•
(
N
)
, d�

)
acquires a structure of cd-module over Λ• (M), in view of

the fact that Λ• f∗ commutes with the exterior differentials on M and N .



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Covariant Differential 193

Definition. Linear connections ∇ and � are called compatible with respect

to f or, shortly, f -compatible if Λ• f
∗

is a homomorphism of cd-modules

over Λ• (M), that is

d� ◦Λ• f
∗

= Λ• f
∗
◦ d∇ .

Compatibility is, obviously, a transitive property, that is, if ∇1 and

∇2 are f1-compatible and ∇2, ∇3 are f2-compatible, then ∇1 and ∇3 are

(f2 ◦ f1)-compatible.

This allows to organize connections in fat manifolds of a given type

into a category. Objects of this category are pairs of the form (M,∇) and

morphisms are fat maps along which the corresponding connections are

compatible.

3.3.13

It follows from commutativity of the diagram

Γ(M)
d∇

//

f
∗

��

Λ1(M)

Λ1 f
∗

��

Γ(N)
d�

// Λ1(N)

that Λ• f
∗

is a cd-module homomorphism and, obviously, vice versa. In

fact, if ω ∈ Λs(M) and p ∈ Γ(M), then

d�

(
Λ• f

∗
(ω ⊗ p)

)
= d�

(
Λ• f∗(ω) ∧ Λ• f

∗
(p)
)

= d (Λ• f∗(ω)) ∧ Λ• f
∗
(p) + (−1)s Λ• f∗(ω) ∧ d�

(
Λ• f

∗
(p)
)

= Λ• f∗(dω) ∧ Λ• f
∗
(p) + (−1)s Λ• f∗(ω) ∧ Λ• f

∗
(d∇(p))

= Λ• f
∗
(dω ∧ p+ (−1)sω ∧ d∇(p))

= Λ• f
∗
(d∇(ω ⊗ p)) .

In other words, � and ∇ are f -compatible if and only if the above

diagram is commutative.

3.3.14

Proposition. If linear connections ∇ and � are f -compatible, then they

are f-related.
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Proof. Let X , Y be f -compatible vector fields on M and N , respec-

tively. In order to show that ∇X and �Y are f -compatible consider the

commutative diagram

Λ1
(
M
) Λ1 f

∗

//

iX
��

Λ1
(
N
)

iY
��

Γ
(
M
)

f
∗

// Γ
(
N
)

,

(Proposition 3.3.11). The following commutative diagram expresses the

fact that Λ• f
∗

is a cd-homomorphism of Λ• (M)–modules

Γ
(
M
) f

∗

//

d∇

��

Γ
(
N
)

d�

��

Λ1
(
M
)

Λ1 f
∗
// Λ1

(
N
)

.

By combining these two commutative diagrams we get the the third one

Γ
(
M
) f

∗

//

iX◦d∇

��

Γ
(
N
)

iY ◦d�

��

Γ
(
M
)

f
∗

// Γ
(
N
)

. (3.5)

Since (see n. 3.2.7)

iX ◦ d∇ = ∇X and iY ◦ d� = �Y ,

diagram (3.5) tells exactly that ∇X and �Y are f-compatible. �

3.3.15

The inverse to Proposition 3.3.14 is false, i.e., f -related linear connections

are not necessarily f -compatible. An example of that is as follows.

Let M be a fat manifold over M = R2 with Γ
(
M
)

= C∞(R2) and N a

fat manifold over N = R with Γ
(
N
)

= C∞(R). Fix a (certainly existing)

bijective map σ : N → Q+
0 between naturals and nonnegative rational

numbers with σ(1) = 0, fix a function a ∈ C∞(R) that vanishes on (−∞, 0]
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and is constantly 1 on [1,+∞) (see [Nestruev (2003), Corollary 2.5]) and

define

b(t) =





(a(t)− 1)t, t < 1 ;

σ(i) + a(t− i) · (σ(i+ 1)− σ(i)), i ∈ N, t ∈ [i, i+ 1) .

The function b is smooth because all derivatives of a vanish at t = 0, t = 1.

Let

f : N →M, t 7→
(
b(t) , sin(πta(t))

)
.

It is easily verified that

• f (t) = f(−σ(t)) = (σ(t), 0), t ∈ N;

• (dt0 f)
(
d / d t|t0

)
and

(
d−σ(t0) f

)(
d / d t|−σ(t0)

)
are linearly indepen-

dent in T(σ(t0),0)M for all t0 ∈ N.

By these properties, if a vector field Y on N is f -compatible with some

vector field X on M , then for every negative rational t, the tangent vector

Yt must vanish. Hence, by continuity, Yt = 0 for t ≤ 0.

Let f be the fat map with f
∗

= f∗, fix a nonzero c ∈ C∞(R) that

vanishes on [0,∞) (e.g., c(t) = a(−t)), define a linear connection ∇ on N

by

∇g ∂
∂t

(q) = g
∂q

∂t
+ gcq, g ∈ C∞(R), q ∈ Γ(N) = C∞(R)

and consider the trivial connection D on M .

With Y = g∂/∂t being f -compatible with some vector field X on M ,

we have that g vanishes for t ≤ 0, and therefore gc = 0. Hence

∇Y (f
∗
(p)) = g

∂f
∗
(p)

∂t
= Y (f∗(p)) = f∗(X(p)) = f

∗
(DX(p)), p ∈ Γ(M) ,

i.e., ∇Y and DX are f -compatible. This shows that ∇ and D are f -related.

Finally, with x being the first coordinate function on M = R2 we have

d∇

(
f
∗
(x)
)( ∂

∂t

)
= ∇ ∂

∂t
(b) =

∂b

∂t
+ cb

while

Λ1 f
∗
(dD(x))

(
∂

∂t

)
= Λ1 f

∗
(dx)

(
∂

∂t

)
= d b

(
∂

∂t

)
=
∂b

∂t
.

Since cb is nonzero (c(t) 6= 0 for some t < 0 and b(t) 6= 0 for all t < 0), this

shows that ∇ and D are not f-compatible.
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3.3.16 Induced Linear Connections

Proposition. Let f : N → M be a fat map and ∇ a linear connection

on M . Then there exists a unique linear connection � on N f -compatible

with ∇.

Proof. Set

A = C∞ (M) , B = C∞ (N) , P = Γ
(
M
)
, Q = Γ

(
N
)

.

Then, according to n. 3.3.8,

Λ•
(
N
)

= Λ• (B)⊗A P ,

and

ω ∧ Λ•(f
∗
)(p) = ω ⊗ p, ω ∈ Λ•(B), p ∈ P .

It follows from n. 3.3.13 and Proposition 3.2.11 that a linear connection

� is f -compatible with ∇ if and only if its covariant differential d� satisfies

the following condition:

d� (b⊗ p) = d b⊗ p+ bΛ•(f
∗
)(d∇(p)), b ∈ B, p ∈ P .

On the other hand the formula

∆ (b⊗ p) = d b⊗ p+ bΛ•(f
∗
)(d∇(p)), b ∈ B, p ∈ P

correctly determines an additive operator

∆ : Q→ Λ1(Q)

(see n. 0.1.4) that satisfies the characteristic Leibnitz rule (3.1), p. 178:

∆(bq) = d b⊗ q + b∆(q) .

In fact, it suffices to check it on q = b′ ⊗ p, with b′ ∈ B and p ∈ P :

∆(bb′ ⊗ p) = d(bb′)⊗ p+ bb′ Λ•(f
∗
)(d∇(p))

= d b⊗ (b′ ⊗ p) + b
(
d b′ ⊗ p+ b′ Λ•(f

∗
) (d∇(p))

)
.

Hence ∆ is actually the (basic) covariant differential of a unique linear

connection �, as required. �

Example. Let ∇ be a linear connection on a fat manifold M and i : N →

M be a fat map over a closed embedding i : N → M . In n. 2.2.4 the

induced linear connection ∇|N on N was defined as the unique one that

is i-related with ∇. In view of Propositions 3.3.14 and 3.3.16 one can see

now that the unique linear connection i-compatible with ∇ must coincide

with ∇|N .

By the same reason the unique linear connection on an open fat sub-

manifold of M that is compatible with ∇ with respect to the underlying

fat embedding is the localization of ∇ (see Definition 2.4.10).
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Definition. Let f : N → M be a fat map and ∇ a linear connection on

M . The unique linear connection � on N that is f -compatible with ∇ is

called induced by f from ∇.

3.3.17 Lift and Parallel Translation

for Arbitrary Smooth Curves

Now we are able to define lift and parallel translation along arbitrary (pos-

sibly singular) curves as it was promised in Sect. 2.2.6.

Proposition. Let ∇ be a linear connection on a fat manifold M and

γ : I→M

be a curve. Then there exists a fat curve

γ : I→M ,

over γ such that ∇ is γ-compatible with the trivial connection D on I.

Moreover, γ is unique up to an uniform fat identity map on the domain.

Proof. Note that with respect to fat diffeomorphisms linear connections

are compatible if and only if they are related. Therefore, Proposition 2.2.2

in which ‘related’ is replaced by ‘compatible’ holds. After this modification

the proof repeats literally that of Proposition 2.2.5. In fact, it is even

simpler because the compatibility is transitive with respect to compositions

property. �

Definition. Let ∇ be a linear connection on a fat manifold M and

γ : I→M

be a curve. A fat curve

γ : I→M

over γ such that ∇ is γ-compatible with the trivial connection D on I is

called a lift of γ by ∇, or simply a ∇-lift . The isomorphism

Tγ
t0,t1 = γt1 ◦

(
γt0

)−1
: m0 = γ

(
t0
)
−→ m1 = γ

(
t1
)

(here we used the identification of fat points of I with the standard fiber

F ; cf. n. 1.6.12) is called the parallel translation from m0 = γ (t0) to m1 =

γ (t1) along γ via ∇.

The above said illustrates naturalness and advantages of the concept of

compatibility of connections which in its turn is based on that of covariant

differential.
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3.3.18 Holonomy

Denote by GL (m) the group of all automorphisms of the vector space m.

Recall that a loop at m is a curve γ : [a, b]→M such that γ(a) = γ(b) = m

and put Tγ
m = Tγ

a,b : m → m (with respect to a given linear connection

∇), Tγ
m ∈ GL (m).

Definition. The subgroup of GL (m) that is the closure of the subgroup

generated by all automorphisms of the form Tγ
m is called the holonomy

group of ∇ at m and is denoted by Hol (∇,m).

Being a closed subgroup of GL (m), Hol (∇,m) is a Lie subgroup ac-

cording to a well-known result (see [Lee (2003), Theorem 20.10 (p. 526)]).

If T : m0 → m1 is a parallel translation along a curve σ, then

Hol (∇,m0) 3 g 7→ T ◦ g ◦T−1 ∈ Hol (∇,m1) (3.6)

is an isomorphism depending on σ. If M is connected, then it is not difficult

to construct the holonomy bundle over M whose fiber over m is Hol (∇,m).

In spite of the fact that fibers of this bundle are isomorphic Lie groups, it

is not a principal bundle. It possesses a natural nonlinear connection with

respect to which parallel translations are of the form (3.6). We do not use

this fact in the sequel and, so, skip the details.

Informally speaking, the holonomy group Hol (∇,m) gives a cumulative

estimate, as viewed by an observer at m, of how much ∇ is ‘twisted’.

Exercise. Let ∇ be a flat linear connection in M . Is Hol (∇,m) a discrete

subgroup of GL (m) if M is compact?

3.3.19 Another Description of Compatibility

To be complete, we shall discuss below a geometric approach to compat-

ibility, induced connections, etc., à la Grothendieck. According to it, a

construction, proof, etc., are to be done in two steps, one for injection (em-

bedding) and another for surjection (projection). After that the result is

obtained by passing to the graph of the map in consideration. In the case

of connections the first step, namely, the restriction to closed submanifolds

is rather simple and is already done (see n. 2.2.4). For the second one a

fat cylinder NM over M (see n. 1.6.13) is necessary, and also a geometrical

description of the induced by the fat projection linear connection.
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Recall that vector fields on M×N decompose naturally into ‘horizontal’

and ‘vertical’ parts, i.e.,

D (M ×N) = DN (M ×N)⊕DM (M ×N)

(see n. 0.4.19; cf. also Proposition 0.4.18 and n. 0.4.20). A horizontal vector

field X ∈ DN (M ×N) is a vector field on M ×N that is compatible with

the zero vector field with respect to the projection onto N . Similarly are

defined vertical vector fields Y ∈ DM (M ×N).

In view of Proposition 0.5.9 and n. 0.4.19 the following canonical iden-

tifications takes place:

DN (M ×N) = C∞(M ×N)⊗C∞(M) D(M)

and

DM (M ×N) = C∞(M ×N)⊗C∞(N) D(N) .

According to them the vector field 1⊗X ∈ DN (M ×N) with X ∈ D(M)

is the unique horizontal vector field compatible with X with respect to

the projection onto M . Similarly are characterized vector fields 1 ⊗ Y ∈

DM (M ×N) with Y ∈ D(N). These vector fields will be denoted by X̃,

Ỹ , respectively.

Thus

D(M ×N)

=
(
C∞(M ×N)⊗C∞(M) D(M)

)
⊕
(
C∞(M ×N)⊗C∞(N) D(N)

)
.

Let ∇ be a linear connection on M and � be a π-related with ∇ linear

connection on the fat cylinder NM . Since X̃ is π-compatible with X ∈ DM ,

the fat vector field �X̃ over X̃ is induced by ∇X (see n. 1.5.3) and hence

is uniquely determined by X and ∇. In explicit terms this means that

�X̃(f⊗p) = X̃(f)⊗p+f⊗∇X(p), f⊗p ∈ C∞(M×N)⊗Γ(M) = Γ(NM ) .

Similarly, if Y ∈ DN , then Ỹ is π-compatible with the zero field on M . By

this reason �Ỹ is a fat vector field over Ỹ induced by the zero fat vector

field on M . As such it is uniquely determined by Ỹ , i.e.,

�Ỹ (f ⊗ p) = Ỹ (f)⊗ p, f ⊗ p ∈ C∞(M ×N)⊗ Γ(M) = Γ(NM ) .

In other words, �Ỹ = Ỹ ⊗ idΓ(M) because Ỹ is C∞(M)-linear.

According to the canonical decomposition of D(M×N), a generic vector

field Z on M × N has the form Z = fX̃ + gỸ , f, g ∈ C∞(M × N). So,
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�Z = f�X̃ + g�Ỹ . Taking into account the above formulas for �X̃ and

�Ỹ we get the following explicit formula for the connection �:

�f⊗X + g⊗Y (h⊗ p) = fX̃(h)⊗ p+ fh⊗∇X(p) + gỸ (h)⊗ p,

f, g, h ∈ C∞(M ×N), X ∈ D(M), Y ∈ D(N), p ∈ Γ(M) .

So, this formula proves the uniqueness of the connection π-related with ∇.

With an easy check of correctness it also proves the existence of such a

connection. Moreover, Proposition 3.3.14 shows that � is nothing else but

the induced by π from ∇ linear connection.

Thus the induced by the canonical projection connection on the fat

cylinder can be constructed geometrically without appealing to covariant

differential. In its turn this allows to construct the induced by an arbitrary

fat map f : N →M linear connection by means of the Grothendieck trick.

Namely, consider the graph map of f :

(f, idN) : N →M ×N .

In view of Proposition 0.3.14 there exists a unique over this graph fat map

g : N → NM such that f = π ◦ g. The graph is a closed embedding and,

therefore, the connection � can be restricted to it (see n. 2.2.4). Obviously,

this restriction coincides with the induced by g from � connection and by

this reason is precisely the linear connection induced from ∇ by f .

Thus this is a ‘naive’ geometric way to construct the induced con-

nection for arbitrary fat maps. Of course, it is rather cumbersome and

much less manageable with respect the conceptual algebraic one. But the

Grothendieck trick could give a useful initial impulse in a situation which

is conceptually unclear.

3.4 Linear Connections Along Fat Maps

If in the definition of linear connection (see Definition 2.1.1) one replaces

vector fields, both ordinary and fat, by vector fields, respectively, ordinary

and fat, along a fat map, say f , then he will get the notion of a linear

connection along f . This generalization is very natural and useful. In par-

ticular, it is closely related with the notion of compatibility. Fundamentals

of the corresponding theory are discussed in this section.
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3.4.1 Thickened Forms Along Fat Maps

Definition. A thickened form along a fat map f : N → M is a C∞(M)–

module homomorphism

D(M)→ Γ(N) .

In other words, a thickened form along f is a thickened form of the

C∞(M)–module obtained from C∞(N)–module Γ(N) by the restriction of

scalars via f∗. The C∞(N)–module of all thickened forms along f will be

denoted by Λ•(M)f , and its degree s component by Λs(M)f .

The following ‘thickened version’ of Proposition 0.5.24 holds.

Proposition. The module Λs(M)f of thickened s-forms along a fat map

f : N →M , together with the map

ν : Λs
(
M
)
→ Λs

(
M
)
f
, ω 7→ f

∗
◦ ω ,

possesses the universal property of extension via f ∗ of the C∞(M)–module

Λs
(
M
)
.

In other words,

Λs(M)f = C∞(N)⊗C∞(M) Λs
(
M
)

and

1⊗ ω = f
∗
◦ ω, ω ∈ Λs

(
M
)
.

Proof. Set as usual

A = C∞ (M) , B = C∞ (N) , P = Γ
(
M
)
, Q = Γ

(
N
)

.

By Proposition 0.5.10 we have

Λs(M) = Λs(M)⊗ P, Λs(M)f = Λs(M)⊗Q .

Also Q = B ⊗ P according to n. 1.1.6. Therefore,

Λs(M)f = Λs(M)⊗B ⊗ P = B ⊗ Λs(M)⊗ P = B ⊗ Λs(M)

as required.

Concerning the second assertion in the proposition it suffices to prove

it for forms of the type

ω = ω ⊗ p ∈ Λs(M) = Λs(M)⊗ P

only. But in this case 1⊗ω = 1⊗ω⊗ p = ω⊗ f
∗
(p) and Proposition 0.5.10

shows again that

(1⊗ ω) (X1, . . . , Xs) = ω (X1, . . . , Xs) f
∗
(p) = f

∗
(ω (X1, . . . , Xs) p)

= f
∗
(ω (X1, . . . , Xs)) = (f

∗
◦ ω) (X1, . . . , Xs) ,

i.e.,

1⊗ ω = f
∗
◦ ω

as required. �
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3.4.2 Insertion of D (M)f into Λ•(M)f

According to Definition 0.5.18, the insertion operator

Λ•(M)f → Λ•(M)f , ω 7→ X y ω

is associated with a vector field X on M . Exactly as in the case of differ-

ential forms along smooth maps this construction can be, in fact, extended

to vector fields along f (cf. Definition 0.5.28). Indeed, recall that vector

fields along f constitute a module D (M)f and the identification

D (M)f = C∞ (N)⊗C∞(M) D (M)

such that

1⊗X = f∗ ◦X, X ∈ D(M)

holds (see Proposition 0.5.9).

This allows to identify a thickened s-form ω along f with an alternating

s-linear function of C∞(N)–modules

D(M)f × · · · ×D(M)f → Γ(N) ,

according to n. 0.1.5, (3). Up to this identification, if Y is a vector field

along f , the insertion of Y operator into Λ•
(
M
)
f

is defined by setting

iY (ω) (X1, . . . , Xs−1)
def
= ω (Y, f∗ ◦X1, . . . , f

∗ ◦Xs−1) ,

X1, . . . , Xs−1 ∈ D(M)

(if s = 0 set iY (ω) = 0).

The notation

Y y ω

or

ωY

will be also used.

3.4.3 Linear Connections Along Fat Maps

Definition. Let ϕ : A → B be a commutative k-algebra homomorphism,

k being a field, and ϕ : P → Q a homomorphism of modules over ϕ (cf.

n. 1.2.11). A linear connection along ϕ is an A-module homomorphism

∇ : D(A)ϕ → Der(P )ϕ

such that ∇(X) is a der-operator (along ϕ) over X ∈ D (A)ϕ.

A linear connection along a fat map f is a linear connection along the

associated module homomorphism f
∗
.
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As in the classical case we shall write ∇X instead of ∇(X), X ∈ D (A)ϕ.

We repeat in exact terms that a linear connection along a fat map

f : N →M is a C∞(N)–module homomorphism

∇ : D(M)f → D
(
M
)
f

(here D
(
M
)
f

def
= D

(
M
)
f
∗) such that ∇X is a fat along f field over X .

3.4.4 Geometric Description of Linear Connections

Along Fat Maps

Recall that a fat vector field Y along f : N →M is geometrically described

as a field that associates with a fat point n of N a fat tangent vector Y n

to M at f(n) (see n. 1.3.13).

Let now ∇ be a linear connection along f . Fix a point n ∈ N and a

tangent vector ξ to M at f(n). Consider then a vector field Y along f

such that Yn = ξ and the fat tangent vector ξ at f(n) that the fat field

∇Y associates with n. As in n. 2.1.10 it is not difficult to prove that ξ is

independent of the choice of Y and, therefore, is determined completely by

n and ξ.

Definition. The so-defined fat tangent vector ξ is called the ∇-lift of ξ

at n.

Thus, from the geometric viewpoint, a linear connection along f asso-

ciates with every point n ∈ N a lifting map Tf(n)M → T f(n)M .

3.4.5 Covariant Differential Along a Fat Map

Let ∇ be a linear connection along a fat map f : N →M . With a p ∈ Γ(M)

is naturally associated the C∞(N)–module homomorphism

D(M)f → Γ(N), Y 7→ ∇Y (p) .

Since D(M)f is obtained from D(M) by extension of scalars, the above

operator corresponds to the differential form along f

X 7→ ∇f∗◦X(p), X ∈ D(M) .

Thus ∇ gives rise to a map

d∇ : Γ(M)→ Λ1(M)f ,

called the (basic) covariant differential associated with ∇.
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It immediately follows from the definitions that

Y y d∇(p) = ∇Y (p), Y ∈ D(M)f , p ∈ Γ(M) . (3.7)

As in the ordinary case this construction extends naturally to higher

degrees.

Definition. The covariant differential associated with a linear connection

∇ along f is the graded C∞(M)–module homomorphism

d∇ : Λ•(M)→ Λ•(M)f

whose degree s components is defined by

(d∇)s(ω)(X1, . . . , Xs+1) =
∑

i

(−1)i+1∇f∗◦Xi
(ω(X1, . . . , X̂i, . . . , Xs+1))

+
∑

i<j

(−1)i+jf
∗
(ω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xs+1)),

X1, . . . , Xs+1 ∈ D(M), ω ∈ Λs
(
M
)
.

3.4.6 Linear Connections Along Maps

Associated with Ordinary Linear Connections

Let f : N →M be a fat map and

∇ : D(M)→ D(M)

a linear connection on M .

Consider the C∞(M)–module homomorphism

ρ : D(M)→ D(M)f , � 7→ f
∗
◦�

coupled with the C∞(M)–module homomorphism

ν : D (M)→ D (M)f , X 7→ f∗ ◦X

and recall that D (M)f as a C∞(N)–module is obtained from D(M) by

extension of scalars via f∗. By the universal property of scalar extensions

there exists a unique linear connection ∇f along f characterized by the

property ∇f ◦ ν = ρ ◦ ∇, that is
(
∇f

)
f∗◦X

= f
∗
◦ ∇X , X ∈ D(M) .

Indeed, if X ∈ D (M), then

∇f (ν(X))(ap) = ρ(∇X)(ap) = f
∗
(X(a)p+ a∇X(p))

= f∗(X(a))f
∗
(p) + f∗(a)f

∗
(∇X(p)) = (ν(X)(a)) f

∗
(p) + f∗(a)ρ(∇X )(p)

= (ν(X)(a)) f
∗
(p) + f∗(a)∇f (ν(X)) (p), a ∈ C∞(M), p ∈ Γ(M) .
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Since D (M)f asB-module is generated by the image of ν, the above formula

leads to

∇f (Y )(ap) = Y (a)f
∗
(p) + f∗(a)∇f (Y )(p), Y ∈ D (M)f ,

i.e., ∇f (Y ) is a der-operator along f
∗

over Y .

Definition. The so-constructed linear connection ∇f along f is called as-

sociated with ∇.

Given a field k and a commutative k-algebra homomorphismA→ B, the

associated connection along an A-module homomorphism of an A-module

into a B-module can be defined exactly in the same way, provided that

D(A) is projective and finitely generated.

On the geometric side, it is easy to see that for a given tangent vector

ξ ∈ TmM and for any point n ∈ f−1(m) the ∇f –lift of ξ at n coincides

with the ∇-lift of ξ.

To describe the basic covariant differential d∇f
note that for all X ∈

D(M) and p ∈ Γ(M) we have

d∇
f
(p)(X) = (∇f )f∗◦X(p) = f

∗
(∇X (p))

= f
∗
(d∇(p)(X)) =

(
f
∗
◦ d∇(p)

)
(X) ,

that is,

d∇f
(p) = f

∗
◦ d∇(p) . (3.8)

In other words, the (basic) covariant differential of ∇f is the composition

Γ(M)
d∇7−→ Λ1(M) 7−→ Λ1(M)f ,

(see Proposition 3.4.1).

Exercise. Let g : L → N be another fat map. Show that for all Y ∈

D(M)f we have
(
∇f◦g

)
g∗◦Y

= g∗ ◦
(
∇f

)
Y
.

3.4.7

The notion of connection along a fat map leads to a new characterization

of compatibility. To this end some simple facts are to be fixed.
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First, note that

Λ•
(
M
)
f

= Λ•(M)⊗Γ(N) = Λ•(M)⊗C∞(N)⊗Γ(M) = Λ• (M)f⊗Γ(M) .

Second, it is not difficult to see that if iY is the insertion operator into

Λ• (M)f (see Definition 0.5.28), then

iY = iY ⊗ idΓ(M) .

In other words,

Y y (ω ⊗ p) = (Y yω)⊗ p, ω ∈ Λ• (M)f , Y ∈ D(M)f , p ∈ Γ(M) . (3.9)

Third, it follows easily from the proof of Proposition 3.4.1 that

(f∗ ◦ ω)⊗ p = f
∗
◦ (ω ⊗ p), ω ∈ Λ• (M)f , p ∈ Γ(M) . (3.10)

3.4.8

The following ‘thickened version’ of Proposition 0.5.32 holds.

Proposition. Let f : N →M be a fat map. Then

(Λ1(f
∗
)(ω)(Z) = (Z ◦ f∗) y (f

∗
◦ ω), ω ∈ Λ1(M), Z ∈ D(N) .

Proof. It suffices to verify the assertion for ω = ω ⊗ p, ω ∈ Λ1 (M) and

p ∈ Γ(M). Taking into account that Γ(N) = C∞(N) ⊗ Γ(M), Λ1
(
M
)

=

Λ1 (M)⊗ Γ(M) and Λ1
(
M
)
f

= Λ1 (M)f ⊗ Γ(M) this runs as follows:

Λ1(f
∗
)(ω ⊗ p))(Z) =

(
Λ1(f∗)(ω) ⊗ p

)
(Z) = (Λ1(f∗)(ω))(Z) ⊗ p

Prop. 0.5.32
= ((Z ◦ f∗) y (f∗ ◦ ω))⊗ p

(3.9)
= (Z ◦ f∗) y ((f∗ ◦ ω)⊗ p)

(3.10)
= (Z ◦ f∗) y (f

∗
◦ (ω ⊗ p)) ,

as required. �

3.4.9 Characterization of Compatibility by Means

of Associated Linear Connections

Proposition. Linear connections ∇ and � on M and N , respectively, are

compatible with respect to f : N →M if and only if

�Z ◦ f
∗

=
(
∇f

)
Z◦f∗

, ∀Z ∈ D(N) .



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Covariant Differential 207

Proof. f-compatibility of ∇ and � is equivalent to commutativity of the

diagram

Γ(M)
d∇

//

f
∗

��

Λ1(M)

Λ1 f
∗

��

Γ(N)
d�

// Λ1(N)

(see n. 3.3.13). But for all p ∈ Γ(M) and Z ∈ D(N) we have

((d� ◦f
∗
)(p))(Z) = �Z(f

∗
(p))

and

(Λ1 f
∗
◦ d∇)(p)(Z) = Λ1 f

∗
(d∇(p))(Z)

Prop. 3.4.8
= (Z◦f∗) y (f

∗
◦d∇(p))

(3.8)
= (Z◦f∗) y d∇f

(p)
(3.7)
=
(
∇f

)
Z◦f∗

(p) .

Therefore, f -compatibility is equivalent to

�Z(f
∗
(p)) =

(
∇f

)
Z◦f∗

(p), p ∈ Γ(M), Z ∈ D(N) ,

i.e.,

�Z ◦ f
∗

=
(
∇f

)
Z◦f∗

, ∀Z ∈ D(N) ,

as required. �

3.4.10 Geometric Characterization of Compatibility

A geometric characterization of compatibility can be given in terms of the

lifting procedure for tangent vectors. Let f : N →M be a fat map and ∇,

� linear connections on M and N , respectively. For a vector ξ ∈ TnN put

ξ = �ξ and dn f(ξ) = ∇dn f(ξ) (see Definition 2.1.10).

Proposition. The linear connections ∇ and � are f-compatible if and

only if

dn f(ξ) = dnf(ξ), n ∈ N, ξ ∈ TnN .

Proof. Let Z be a vector field on N and suppose that ξ = Zn, n ∈ N .

Since

dn f(ξ) = ξ ◦ f∗ = Zn ◦ f
∗ = n ◦ Z ◦ f∗ ,
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it follows from n. 3.4.4 that

dn f(ξ) =

((
∇f

)
Z◦f∗

)

n

or, equivalently,

dn f(ξ) = fn ◦ hn ◦
(
∇f

)
Z◦f∗

,

with

hn : Γ(M)→ n

being the evaluation map (see n. 1.3.13). On the other hand,

dnf(ξ) = dnf ((�Z)n) = dnf
(
hn ◦�Z

)
= fn ◦ hn ◦�Z ◦ f

∗
.

Now the result comes immediately from Proposition 3.4.9. �

3.4.11 Equivalent Conditions for Compatibility

Below we recapitulate the characterizations of f-compatibility of two con-

nections found previously:

(1) Λ• f
∗

is a homomorphism of cd-modules over Λ• (M).

(2) The diagram

Γ(M)
d∇

//

f
∗

��

Λ1(M)

Λ1 f
∗

��

Γ(N)
d�

// Λ1(N)

commutes.

(3) �Z ◦ f
∗

=
(
∇f

)
Z◦f∗

∀Z ∈ D(N).

(4) dnf(�ξ) = ∇dn f(ξ), n ∈ N, ξ ∈ TnN .

3.5 Covariant Lie Derivative

The covariant Lie derivative is another fundamental concept in the the-

ory of linear connections. It is absolutely analogous to the ordinary one.

Basically, the covariant Lie derivative is the velocity of the action of one-

parameter group of fat diffeomorphisms generated by ∇X on fat objects

in consideration. The exact meaning of that is given below together with

some basic properties.
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3.5.1 Smooth Families of Fat Maps

First, we shall formalize the intuitively clear notion of a (smooth) family of

fat maps (cf. Definition 0.6.8).

Let TN be the T -cylinder over a fat manifold N with fat projection

π : TN → N (see Definition 1.6.13). A fat map

G : TN →M

gives rise to a family

{
Gt

}
t∈T

: Gt = G ◦ it, t ∈ T ,

of fat maps N →M with it : N → TN being the fat embedding at t.

More generally, let U be an open fat submanifold of TN . For all t ∈ T

set Nt = i−1
t (U), denote again by it the embedding Nt → U and consider

the induced from U fat manifold Nt with the induced fat map it : Nt → U .

A fat map

H : U →M

gives rise to a family

{
Ht

}
t∈T

: Ht = H ◦ it, t ∈ T .

Definition. The family
{
Gt

}
t∈T

corresponding to G is called a smooth

family of fat maps M → N . If M = N and Gt is a fat diffeomorphism for

each t ∈ T , then
{
Gt

}
t∈T

is called a smooth family of fat diffeomorphisms

of M .

The family
{
Ht

}
t∈T

corresponding to H is called a smooth family of

local fat maps of N into M .

If T is a nonempty interval not reduced to a singleton and U is a relative

fat interval, a smooth family of (possibly local) fat maps is called a one-

parameter family .

3.5.2 Lift of One-parameter Families

Recall that the family of embeddings

jn : In → IN , n ∈ N

is associated with a relative interval IN .
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Definition. Let ∇ be a linear connection on M and
{
Gt

}
t∈I

a one-

parameter family corresponding to G : IN →M . The one-parameter family{
Gt

}
t∈I

is called a lift of {Gt}t∈I by ∇ (or simply ∇-lift) if

Gt1(v) = T∇,γn

t0,t1 (Gt0(v)), t0, t1 ∈ I, v ∈ n, n ∈ N ,

where T∇,γn

t0,t1 is the parallel translation from t0 to t1 along the curve

γn
def
= G ◦ jn : In →M, t 7→ Gt(n) .

By analogy with the lift of a curve, it is natural to expect that the fat

map G defining a lift of a one-parameter family could be characterized by

a kind of compatibility condition with respect to ∇. To this end, a notion

of the ‘trivial connection on IN over N ’ is necessary. It is not difficult to

do that, but it is not our goal here.

The following result assures the existence of a lift under the hypothesis

that the map G0 is global, i.e., N0 = N at least. We emphasize that the

only thing to be proved is smoothness of the family
{
Gt

}
t∈I

from the above

definition.

Proposition. Let ∇ be a linear connection on a fat manifold M , {Gt}t∈I

a one-parameter family and suppose that g : N → M is a fat map over

g = G0. Then there exists a unique lift
{
Gt

}
t∈I

of {Gt}t∈I such that

G0 = g.

Proof. Let IN be the induced by G : IN → M from M fat manifold,

G
′

: IN → M the induced fat map and � the induced from ∇ linear

connection on IN . Note also that, according to the universal property of

induced bundles, there exists a unique fat map i0 : N → IN over the

embedding N → IN at t = 0 such that g = G
′
◦ i0.

Let X = �∂/∂t, ∂/∂t being the standard vector field on the relative

interval IN . Then, according to Theorem 1.6.15 (1), i0 is extended to a fat

map

Φi0
: IN

′
→ IN

by means of X. Note that Φi0
is a fat identity map.

Now it is easy to see that the family
{
Gt

}
t∈I

corresponding to

G = G
′
◦ Φi0

,

possesses the required properties. The uniqueness is immediate. �

1In this situation, it is quite easy to extend Theorem 1.6.15 to the case when IN has
nonempty boundary. Details are left to the reader (see n. 1.6.10).
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The above result shows that every one-parameter family {Gt}t∈I with

G0 globally defined, admits many lifts. Indeed, if the fat manifold N is

induced from M by G0, then all other lifts are parametrized by fat identity

maps f : N
′
→ N : the corresponding family is

{
f ◦Gt

}
t∈I

.

By substituting G0 with a suitable local section of IN → N , it is not

difficult to prove that every one-parameter family admits lifts. However,

we have no need in this generalization.

3.5.3

If {Gt}t∈I is a one-parameter family of diffeomorphisms of M , a lift
{
Gt

}
t∈I

is a one-parameter family of (possibly local) fat diffeomorphisms of M
′

into M with M
′
being a suitable fat manifold over M which is, generally,

different from M .
{
Gt

}
t∈I

is a one-parameter family of fat diffeomorphisms

of M , i.e., M
′
= M , if G0 is lifted to a fat diffeomorphism G0 : M →M .

3.5.4 Standard Fat Field on a Relative Fat Interval

Since the standard vector field ∂/∂t on a relative interval IM projects onto

the zero vector field on M (see n. 0.6.3), it is C∞(M)-linear as a map of

C∞(IM ) into itself, assuming that C∞(IM ) is supplied with the C∞(M)–

module structure via the projection IM →M .

Consider IM , a relative fat interval with base IM , so that

Γ(IM ) = C∞(IM )⊗C∞(M) Γ(M) ,

and the fat field

∂

∂t

def
=

∂

∂t
⊗ idΓ(M)

on IM . Obviously, ∂/∂t is the fat field over ∂/∂t projecting to the zero fat

field on M .

Definition. The fat field ∂/∂t on IM is called standard .

The fat field ∂/∂t is jm-compatible with the standard fat field d/d t

on Im.

Exercise. Let {Gt}t∈I
be a one-parameter family and

{
Gt

}
t∈I

be a lift by

means of a linear connection ∇ on M . Denote by � the linear connection
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induced by G : IN →M from ∇. Show that

� ∂
∂t

=
∂

∂t
.

3.5.5

Let {Gt}t∈I
be a one-parameter family of local smooth maps of a manifold

N into a manifold M corresponding to the map G : IN → M . Recall that

the operator

i∗t0 ◦
∂

∂t
◦G∗ : C∞(M)→ C∞(Nt0) ,

with it0 : Nt0 → IN being the embedding at t0 ∈ I, is sometimes denoted

by

d

d t

∣∣∣∣
t=t0

G∗
t

(cf. nn. 0.6.7, 0.6.12 and 0.6.19).

Similarly, if
{
Gt

}
t∈I

is a one-parameter family of local fat maps of a fat

manifold N into a fat manifold M corresponding to the fat map G : IN →

M , the operator

it0
∗
◦
∂

∂t
◦G

∗
: Γ(M)→ Γ(Nt0) ,

with it0 : Nt0 → IN being the fat embedding at t0 ∈ I, will be sometimes

denoted by

d

d t

∣∣∣∣
t=t0

Gt
∗
.

3.5.6

If
{
Gt

}
t∈I

is the one-parameter group generated by a fat field X, then

∂

∂t
◦G

∗
= G

∗
◦X .

By applying on the left it0
∗

to this formula, it0 : Mt0 → IM being the fat

embedding at t0, we get

it0
∗
◦
∂

∂t
◦G

∗
= Gt0

∗
◦X ,
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or, equivalently,

d

d t

∣∣∣∣
t=t0

Gt
∗

= Gt0

∗
◦X . (3.11)

For t0 = 0 we have

d

d t

∣∣∣∣
t=0

Gt
∗

= X . (3.12)

3.5.7 Geometric Interpretation of the Covariant Derivative

Consider now a linear connection ∇ on M , the one-parameter group

{Gt}t∈R
generated by a vector field X on M and its ∇-lift

{
Gt

}
t∈R

corre-

sponding to the initial data G0 = idM (see Proposition 3.5.2). From the

result of Exercise 3.5.4 and Proposition 3.3.14 it follows that
{
Gt

}
t∈R

is

the one-parameter group generated by ∇X . Therefore, according to (3.11),

we have

d

d t

∣∣∣∣
t=t0

Gt
∗

= Gt0

∗
◦ ∇X . (3.13)

In particular,

∇X =
d

d t

∣∣∣∣
t=0

Gt
∗
. (3.14)

This interprets the fat field∇X to be an infinitesimal fat diffeomorphism

of M lifted by ∇ from the infinitesimal diffeomorphism X of M .

3.5.8

Formula (3.14) can be extended to arbitrary one-parameter families of lo-

cal diffeomorphisms. For simplicity, consider here one-parameter family

of (globally defined) diffeomorphisms only. So,
{
Gt

}
t∈I

stands now for a

one-parameter family of diffeomorphisms of a manifold M and the corre-

sponding map

G : IM →M

is defined on IM = M × I.

We are looking for an analogue of the formula

∂

∂t
◦G∗ = G∗ ◦X , (3.15)

with X ∈ D (M)
I
corresponding to the time-dependent vector field {Xt}t∈I

associated with {Gt}t∈I
(see n. 0.6.12).
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Let ∇ be a linear connection on M and
{
Gt

}
t∈I

the ∇-lift of {Gt}t∈I
.

Denote by

G : IM →M ,

the fat map corresponding to
{
Gt

}
t∈I

and let � be the induced by G from

∇ linear connection.

If π : IM → M is the canonical fat projection, then, according to the

universal property of induced bundles, there exists a unique fat map

G : IM → IM

over G such that π ◦ G = G. Finally, denote by ∇I the linear connection

associated with ∇ via π, i.e., in notation of Definition 3.4.6

∇I def
= ∇π .

Since ∇I is a linear connection along π and

X =
(
G−1

)∗
◦
∂

∂t
◦G∗

is a vector field along π,

∇I

X
def
=
(
∇I
)
X

is a fat vector field along π.

Proposition. The following formula takes place

∂

∂t
◦G

∗
= G

∗
◦ ∇I

X

Proof.

∂

∂t
◦G

∗ Exer. 3.5.4
= � ∂

∂t
◦G

∗ Prop. 3.4.9
= (∇G) ∂

∂t
◦G∗

(3.15)
=
(
∇π◦G

)
G∗◦X

Exer. 3.4.6
= G

∗
◦ ∇I

X .
�

Alternatively, the above formula can be read as

d

d t
Gt

∗
= Gt

∗
◦ ∇Xt

.

Indeed,

it0
∗
◦
∂

∂t
◦G

∗
= it0

∗
◦G

∗
◦ ∇I

X = Gt0

∗
◦ it0

∗
◦ ∇I

X
Exer. 3.4.6

= Gt0

∗
◦ ∇Xt0

,

or, equivalently,

d

d t

∣∣∣∣
t=t0

Gt
∗

= Gt0

∗
◦ ∇Xt0

.
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3.5.9 Local Thickened Forms

The preceding results concern operators acting on Γ(M) = Λ0(M). In fact,

they extend naturally to all thickened differential forms. To do that it is

useful to introduce local thickened forms.

Let U be an open fat submanifold of M and i : U ↪→ M the corre-

sponding fat embedding. In n. 0.5.33 we proved that an s-form ω on U is

naturally identified with an s-form κ along i by means of the formula

ω (X1|U , . . . , Xs|U ) = κ (X1, . . . , Xs) , X1, . . . , Xs ∈ D(M) .

In other words, we have a natural C∞(U)–module isomorphism Λs(U) ∼=

Λs(M)i. Since Λs(U) = Λs(U)⊗C∞(U)Γ(U) and Λs(M)i = Λs(M)i⊗C∞(U)

Γ(U) (see Propositions 0.5.10 and 3.4.1), we get a natural isomorphism

Λs(U) ∼= Λs(M)i, simply by tensoring the isomorphism Λs(U) ∼= Λs(M)i

by idΓ(U). So, the thickened analogous of the preceding formula is

ω (X1|U , . . . , Xs|U ) = κ (X1, . . . , Xs) , X1, . . . , Xs ∈ D(M)

with ω ∈ Λs(U) and κ ∈ Λs(M)i corresponding to each other.

Definition. A local thickened form on M is a form along i : U ↪→M , and

it is sometimes identified with the corresponding thickened form on U .

3.5.10 Time-dependent Thickened Forms

Let π : TM →M the fat projection of a T -cylinder over M and Ω a degree

s thickened form along π. By putting

ωt (X1, . . . , Xs) = it
∗ (

Ω (X1, . . . , Xs)
)
, X1, . . . , Xs ∈ D(M) ,

it : M → TM

being the fat embedding at t ∈ T , we get the family

{ωt}t∈T

of degree s thickened forms on M .

More generally, let U be an open fat submanifold of TM , K an s-form

along the restriction U →M of π, set Mt = it
−1 (

U
)

and denote again by

it the restriction Mt → U . Then

κt (X1, . . . , Xs) = it
∗ (
K (X1, . . . , Xs)

)
, X1, . . . , Xs ∈ D(M)

gives a family

{κt}t∈T

of local thickened forms on M .
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Definition. The families {ωt}t∈T and {κt}t∈T will be called smooth fam-

ilies, defined by Ω and K, respectively.

If T is a nonempty interval, not reduced to a single point, and U a

relative fat interval, then a family of (possibly local) thickened forms is

sometimes called a time-dependent thickened form on M .

Exercise. Let ω be a thickened form of degree s on U . Show that
{

Λs it
∗
(ω)
}

t∈T

is a smooth family (up to the natural identification introduced in n. 3.5.9).

Hint. Cf. Exercise 0.6.17.

3.5.11 Derivation of Time-dependent Thickened Forms

Let {ωt}t∈I
be a time-dependent thickened form of degree s on a fat mani-

fold M , defined by a thickened form Ω along the fat projection π : IM →M ,

and ∂/∂t be the standard fat field on the relative fat interval IM . Since

∂/∂t is a C∞ (M)–module endomorphism of Γ
(
IM

)
,

(X1, . . . , Xs) 7→
∂

∂t

(
Ω (X1, . . . , Xs)

)
, X1, . . . , Xs ∈ D(M)

is a thickened s-form Ω′ along π too.

Definition. The time-dependent thickened form
{
ω′

t

}
t∈I

defined by Ω′ is

called the derivative of {ωt}t∈I
.

The local thickened form ω′
t0 , t0 ∈ I, will be sometimes denoted by

dωt

d t

∣∣∣∣
t=t0

or
d

d t

∣∣∣∣
t=t0

ωt .

3.5.12 Lie Derivative Along Fat Fields

LetX be a fat field on a fat manifold without boundaryM and Φ : IM →M

the generated by X fat flow. The one-parameter family
{
Φt

}
t∈R

corre-

sponding to Φ is called the one-parameter group generated by X.

If ω is a thickened form of degree s, then
{
Λs Φt

∗
(ω)
}

t∈R
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is a smooth time-dependent (local) thickened form. Moreover, since Φ0 is

the identity map of M , the s-form

d

d t

∣∣∣∣
t=0

Λs Φt
∗
(ω)

is global, i.e., it is actually a thickened form on M .

Definition. The s-form

LX(ω)
def
=

d

d t

∣∣∣∣
t=0

Λs Φt
∗
(ω)

is called the Lie derivative of ω along X.

The notation LX will refer to the operator Λ•
(
M
)
→ Λ•

(
M
)

whose

homogeneous components are given by

ω 7→ LX(ω) .

It is natural to denote the operator

ω 7→
d

d t

∣∣∣∣
t=0

Λs Φt
∗
(ω) ,

by

d

d t

∣∣∣∣
t=0

Λ• Φt
∗
,

so that

LX =
d

d t

∣∣∣∣
t=0

Λ• Φt
∗
.

According to (3.12) for s = 0 the Lie derivative LX reduces to X , that

is

LX(p) = X(p), p ∈ Γ(M) .

Recall that for an ordinary local s-form ω on a relative interval IM the

derivative of the time-dependent form

{Λs i∗t (ω)}t∈I
,

with it : Mt → IM being the embedding at t, is the time-dependent form{
Λs i∗t

(
L ∂

∂t
(ω)
)}

t∈I

,

where L∂/∂t =
[
i∂/∂t, d

](gr)
is the Lie derivative along ∂/∂t (see Proposi-

tion 0.6.18 and n. 0.6.20).

Consider now a relative fat interval IM overM , ω ∈ Λs(IM ), p ∈ Γ
(
IM

)

and the thickened s-form ω ∧ p ∈ Λs
(
IM

)
.
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Exercise. Show that the derivative of the time-dependent thickened form{
Λs it

∗
(ω ∧ p)

}
t∈I

,

it : Mt → IM being the fat embedding at t, is
{

Λs it
∗
(
L ∂

∂t
(ω) ∧ p+ ω ∧

∂

∂t
p

)}

t∈I

.

Proposition. Let X be a fat field on a fat manifold M without boundary,

ω ∈ Λs(M), p ∈ Γ(M). Then

LX(ω ∧ p) = LX (ω) ∧ p+ ω ∧X(p) .

Proof. It comes easily from the Exercise, taking into account that ∂/∂t

and X are compatible with respect to the fat flow of X. �

The above formula completely determines the operator LX , because

Λs(M) = Λs(M)⊗C∞(M) Γ(M) and ω ⊗ p = ω ∧ p.

The above result extends naturally to the Leibnitz rule

LX (ω ∧ κ) = LX(ω) ∧ κ + ω ∧ LX(κ), ω ∈ Λ•(M),κ ∈ Λ•(M) ,

as it follows easily from n. 0.6.21.

3.5.13

Let IM be a relative fat interval over M and ω a thickened s-form on it.

From Exercise 3.5.12 and Proposition 3.5.12 it follows that the derivative

of the time-dependent thickened form{
Λs it

∗
(ω)
}

t∈I

,

it : Mt → IM being the fat embedding at t, is{
Λs it

∗
(
L ∂

∂t

(ω)
)}

t∈I

.

3.5.14

Proposition. Let M be a fat manifold without boundary, X ∈ D(M),

ω ∈ Λs(M). Then

(1)

LX(ω)(X1, . . . , Xs) = X (ω(X1, . . . , Xs))

−
∑

i
ω (X1, . . . , [X,Xi], . . . , Xs) , X1, . . . , Xs ∈ D(M) ;
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(2) [LX , iY ] = i[X,Y ], Y ∈ D(M).

Proof. According to the representation Λ•(M) = Λ•(M)⊗C∞(M) Γ(M),

it suffices to check both formulas on simple thickened forms ω = ω⊗p = ω∧p

only. This is, however, immediate in view of the result of Exercise 0.6.22

and Proposition 3.5.12. �

3.5.15 Covariant Lie Derivative

Let ∇ be a linear connection on a fat manifold without boundary M and

X a vector field on M . If {Φt}t∈R is the one-parameter group generated

by X , then the one-parameter group generated by ∇X is the lift {Φt}t∈R

of it by means of ∇ specified by Φ0 = idM . So, it is natural to introduce

the following terminology.

Definition. The operator

L∇X
=

d

d t

∣∣∣∣
t=0

Λ• Φt
∗

is called covariant Lie derivative along X and denoted by L∇
X .

The following is an analogue of the Cartan formula (see Proposi-

tion 0.6.20).

Proposition. It holds

L∇X =
[
iX , d∇

](gr)

with iX being the insertion of X into Λ•
(
M
)

operator.

Proof. According to the representation Λ•(M) = Λ•(M)⊗C∞(M) Γ(M),

it suffices to verify that the action of operators in question coincide on

simple thickened forms ω = ω ⊗ p = ω ∧ p. But this is straightforward in

view of Propositions 0.6.20, 3.2.11, 3.5.12 and the Leibnitz rule for insertion

operators (it is easy to extend Proposition 0.5.19 to thickened forms). �

The Cartan formula interpreted as a definition allows to extend the

notion of covariant Lie derivative to linear connections defined on an arbi-

trary module over a commutative algebra. In particular, it is defined for

fat manifolds with boundary.
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3.5.16 Natural Actions on the Space of Linear Connections

Recall that linear connections on a fat manifold M constitute an affine

space modelled over the module Λ1
(
End

(
Γ(M)

))
(see n. 2.1.9). The group

of fat diffeomorphisms of M acts naturally on this space. Namely, the

correspondent Tf (∇) of ∇ by the action of f : M → M is defined to be

the induced by f from ∇ linear connection. Compatibility condition (2)

in n. 3.4.11 gives an explicit formula for this action in terms of the zeroth

component of the covariant differential:

dTf (∇) = Λ1 f
∗
◦ d∇ ◦f

∗−1
, (3.16)

or, equivalently,(
Tf (∇)

)
X

= f
∗
◦ ∇f∗(X) ◦ f

∗−1
, X ∈ D(M) .

In particular, the above formulas define an action of the gauge group

GL(M) of fat identity maps on the affine space of all connections on M .

As in many similar situations there is an infinitesimal version of the

above action. Namely, the action of a fat vector field X on a connection ∇

is defined as

LX(∇) =
d

d t

∣∣∣∣
t=0

(∇t) ,

where ∇t stands for the induced by Φt : Mt → M from ∇ linear connec-

tion with
{
Φt

}
t∈R

being the fat flow generated by X. A clarity must be,

however, introduced into this heuristic definition in order to make it for-

mally rigorous. More exactly, the derivative in this right hand side is to

be duly defined. The only thing to be done on this concern is to define

the increment ∇t+∆t−∇t. But since connections form an affine space this

difference is well defined and belongs to Λ1
(
End

(
Γ(M)

))
(see n. 2.1.9). A

natural interpretation of the right-hand side of the heuristic definition in

terms of covariant differential, namely,
d

d t

∣∣∣∣
t=0

(d∇t
) : Γ(M)→ Λ1(M), p 7→

d

d t

∣∣∣∣
t=0

[d∇t
(p|Mt

)] ,

allows to avoid this problem and we shall adopt it. It is not difficult to

check smoothness of d∇t
(p|Mt

) with respect to t, so that the above formula

is well defined.

In this connection note that for all a ∈ C∞(M) and p ∈ Γ(M),

d

d t

∣∣∣∣
t=0

[d∇t
((ap)|Mt

)] =
d

d t

∣∣∣∣
t=0

(
d a|Mt

∧ p|Mt
+ a|Mt

d∇t
(p|Mt

)
)

= a
d

d t

∣∣∣∣
t=0

[d∇t
(p|Mt

)]
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because d a ∧ p is constant with respect to t. Hence (d/d t)|t=0(d∇t
) is a

C∞(M)–module homomorphism Γ(M)→ Λ1(M), which is naturally iden-

tified with an element LX (∇) ∈ Λ1
(
End

(
Γ(M)

))
, as expected.

An explicit formula for LX (∇) can be heuristically deduced from (3.16)

in the following way:

d

d t

∣∣∣∣
t=0

(
Λ1 Φ∗

t ◦ d∇ ◦Φ
∗
t
−1
)

=

(
d

d t

∣∣∣∣
t=0

Λ1 Φ∗
t

)
◦ d∇ ◦Φ

∗
0
−1 + Λ1 Φ∗

0 ◦ d∇ ◦

(
d

d t

∣∣∣∣
t=0

Φ∗
t
−1

)

= LX ◦ d∇− d∇ ◦X ,

which is the zeroth degree component of the commutator [LX , d∇](gr). The

following two exercises give a due rigor to this procedure.

3.5.17

Let ∇ be a linear connection on M , IM a relative fat interval and ω a

thickened s-form on it. Put ωt = Λs it
∗
(ω) with it : Mt → IM being the

fat embedding at t. If � is induced from ∇ by the fat projection IM →M

connection, then Λs+1 it
∗
(d� ω) = d∇|Mt

(ωt). Hence {d∇|Mt
(ωt)}t∈I is a

(smooth) time-dependent thickened form.

Exercise. Show that the derivative of {d∇|Mt
(ωt)}t∈I is the family

{
d∇|Mt

(
ω′

t

)}
t∈I

,

with
{
ω′

t

}
t∈I

being the derivative of {ωt}t∈I.

Hint. According to the representation Λs(IM ) = Λs(IM )⊗C∞(M) Γ(M), it

suffices to check the assert for forms ω = ω ∧ π∗(p), ω ∈ Λs(IM ) and

p ∈ Γ(M), only. Note that in this case Exercise 3.5.12 gives

ω′
t = Λs it

∗ (
L∂/∂t(ω) ∧ π∗(p)

)
.

3.5.18

Let
{
Φt

}
t∈R

be the fat flow generated by a fat field X (suppose that M

is without boundary). Denote by Ψt the restriction Mt
∼
→ Φt(Mt) = M−t

of Φt on its range. Suppose that {ωt}t∈R
is a time-dependent thickened
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s-form such that ωt is a thickened form on M−t for all t and let
{
ω′

t

}
t∈R

be its derivative.

Exercise. Show that

d

d t

∣∣∣∣
t=0

[
Λs Ψt

∗
(ωt)

]
= LX(ω0) + ω′

0 .

Hint. Take into account n. 0.6.15.

3.5.19

If ∇t is as in n. 3.5.16 and Ψt as in n. 3.5.18, then

d∇t
(p|Mt

) = Λ1 Ψt
∗
(
d∇|Mt

(
Φ−t

∗
(p)
))

, p ∈ Γ(M) .

Since
{
Φ−t

}
t∈R

is the flow generated by −X, it follows directly from Ex-

ercises 3.5.17 and 3.5.18 that

d

d t

∣∣∣∣
t=0

Λ1 Ψt
∗
(
d∇|Mt

(
Φ−t

∗
(p)
))

= LX (d∇(p))−d∇

(
X(p)

)
, p ∈ Γ(M) .

By evaluating the so-obtained thickened form on Y ∈ D(M) we get:

iY

(
LX (d∇(p))−d∇

(
X(p)

) ) Prop.3.5.14
= X(∇Y (p))−∇[X,Y ](p)−∇Y (X(p))

=
(
[X,∇Y ]−∇[X,Y ]

)
(p) .

This shows that ∇ under the action of X goes to the End
(
Γ(M)

)
–valued

1-form

LX(∇) : Y 7→ [X,∇Y ]−∇[X,Y ] . (3.17)

In particular, if X = ∇X , then

L∇X
(∇)(Y ) = R∇(X,Y ) ,

that is

L∇X
(∇) = i

End
X (R∇) ,

where i
End

stands for the insertion into Λ•
(
End

(
Γ(M)

))
operator.

It is not difficult to generalize this fact to higher degrees. If d∇ stands

now for the extended covariant differential, then [L∇X
, d∇] = [L∇

X , d∇]

coincides with the wedge multiplication by the form i
End

X (R∇) operator

(see n. 3.2.9).
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3.5.20

The particular case of (3.17) that concerns the action of an infinitesimal

symmetry ϕ ∈ gl
(
M
)

def
= End(Γ

(
M
)
) (cf. n. 1.7.4) is worth special men-

tioning. Since ϕ is a fat field over the zero field on M , formula (3.17) reads

as

Lϕ(∇) : Y 7→ [ϕ,∇Y ]−∇[0,Y ] ,

that is,

Lϕ(∇) = − d∇End(ϕ) .

3.5.21

The formula (3.13) allows to describe the Lie algebra hol (∇,m) of

Hol (∇,m). Let X and Y be commuting vector fields on M , {Ft}t∈R
and

{Gs}s∈R
the generated by them one-parameter groups, respectively, and{

Ft

}
t∈R

and
{
Gs

}
s∈R

their lifts by a linear connection ∇, corresponding

to the initial data F0 = G0 = idM , respectively. Then Ft and Gs locally

commute as well and four curves

γ1 : τ 7→ Fτ (m), 0 ≤ τ ≤ t ,

γ2 : τ 7→ Gτ (Ft(m)) , 0 ≤ τ ≤ s ,

γ3 : τ 7→ F−τ (Gs (Ft(m))) , 0 ≤ τ ≤ t ,

and

γ4 : τ 7→ G−τ (F−t (Gs (Ft(m)))) , 0 ≤ τ ≤ s

form a piecewise smooth loop at m. So, the (local) fat diffeomorphism

G−s ◦F−t ◦Gs ◦Ft sends m into itself. Obviously, this automorphism of m

belongs to Hol (∇,m) for all m ∈M . On the other hand, the restriction of

the endomorphism

∂2

∂t ∂s

(
G−s ◦ F−t ◦Gs ◦ Ft

)∗
∣∣∣∣
t=s=0

: Γ
(
M
)
→ Γ

(
M
)

of a fat point m is, as it is not difficult to see, an element of hol (∇,m).

Moreover, since [X,Y ] = 0,

∂2

∂t ∂s

(
G−s ◦ F−t ◦Gs ◦ Ft

)∗
∣∣∣∣
t=s=0

= [∇X ,∇Y ] = R∇(X,Y ) .
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Indeed, according to (3.13),

d

d t

(
G−s ◦ F−t ◦Gs ◦ Ft

)∗
∣∣∣∣
t=0

= ∇X −Gs
∗
◦ ∇X ◦G−s

∗

and, similarly,

d

d s

(
∇X −Gs

∗
◦ ∇X ◦G−s

∗
)∣∣∣∣

s=0

= [∇X ,∇Y ] .

Since any two vectors ξ, η ∈ TmM can be extended to commuting fields

X,Y , this shows that R∇
m(ξ, η) ∈ hol (∇,m), R∇

m being the value of R∇

at m.

Obviously, the parallel translation with respect to the connection ∇End

along a curve connecting a point m′ ∈M with m identifies hol (∇,m′) with

hol (∇,m). By this reason such a translation carries the curvature operator

R∇
m′(ξ′, η′), ξ′, η′ ∈ Tm′M , into an element of hol (∇,m).

The following assertion is intuitively clear, and is not used in the sequel.

So, we omit a proof.

Proposition. The Lie algebra hol (∇,m) is generated by all possible cur-

vature operators R∇
m′(ξ′, η′), m′ ∈ M , ξ′, η′ ∈ Tm′M , transferred to m by

means of the connection ∇End.

3.6 Gauge/Fat Structures and Linear Connections

In this section we shall consider inner structures on fat manifolds in full

generality by developing the preliminary idea discussed in Sect. 1.7. Such a

structure is fat if it is the same in all fat points. Here ‘the same’ means that

such an inner structure induces equivalent structures on single fat points.

In particular, all these individual structures are equivalent to a model one.

The totality of all equivalences among individual structures of fat points

and the model structure constitutes a principal bundle. This bundle is,

therefore, a a construction materializing the idea of identity of individual

inner structures of fat points. For Lie algebra structures details of this

constructions were discussed in n. 1.7.8 and, in fact, they are common for

all kinds of inner structures.

However, the formalism of principal bundles is rather cumbersome form

purely mathematical point of view, to say nothing about its other short-

comings. Another mechanism of establishing equivalence of individual inner

structures comes from the theory of connections. Namely, parallel transla-

tions with respect to a connection ∇ in M identify fat points of M if M
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is connected. Moreover, if ∇ preserves the considered inner structure on

M , then these translations identify individual inner structures of single fat

points of M . This motivates to call fat those inner structures on M that

admit preserving them connections.

From physical point of view the last approach is much preferred because

it introduces not only physical quantities (fat inner structures) but also

physical means (connections) to observe them. This is the main idea of

the modern theory of gauge fields, although formulated non in the very

standard manner.

From mathematical point of view the approach to fat structures based

on connections has the advantage that it works well in a much wider al-

gebraic context where the use of principal bundles is highly problematic.

Below the necessary details of this approach are given and we shall use the

term gauge (inner structure, quantity, etc.) instead of fat ones in order to

be in conformity with the established terminology (see also n. 1.7.8).

3.6.1

We start with an example completing the discussion in n. 2.5.3 which il-

lustrates equivalence of approaches based on principal bundles and connec-

tions, respectively.

Proposition. Let M be a fat manifold. A C∞(M)–Lie algebra structure

in P = Γ
(
M
)

admitting a Lie connection is a gauge Lie algebra in the

sense of n. 1.7.8.

Proof. Let X be a derivation of the considered C∞(M)–Lie bracket 〈·, ·〉

in P and
{
Gt

}
t∈R

be the generated by it one-parameter group. We prove

that 〈
Gt

∗
(s1) , Gt

∗
(s2)

〉
= Gt

∗
(〈s1, s2〉) , s1, s2 ∈ P . (3.18)

By simplifying the notation we set si(t) = Gt
∗
(si), i = 1, 2, K1(t) =

Gt
∗
(〈s1, s2〉) and K2(t) = (〈s1(t), s2(t)〉). Then, according to

d

d t
K1(t) = X (K1(t))

and

d

d t
K2(t) =

〈
d s1(t)

d t
, s2(t)

〉
+

〈
s1(t),

d s2(t)

d t

〉

=
〈
X (s1(t)) , s2(t)

〉
+
〈
s1(t), X (s2(t))

〉
= X (〈s1(t), s2(t)〉) = X (K2(t)) .
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This shows that K1(t) and K2(t) are solutions of the equation

d

d t
K(t) = X (K(t)) , K(t) ∈ P

such that K1(0) = 〈s1, s2〉 = K2(0). Hence by uniqueness K1(t) = K2(t),

i.e., (3.18) holds.

Since ∇ is a Lie connection, i.e., preserves the structure 〈·, ·〉, all covari-

ant derivatives ∇X are derivations of this bracket. Hence (3.18) is valid for

the generated by ∇X one-parameter group
{
Gt

}
t∈R

for all X ∈ D(M). In

particular, this implies that a parallel translation with respect to ∇ of one

fat point to another is an isomorphism of the corresponding Lie algebras.

�

3.6.2

Passing to a general situation we, first, recall some elementary facts con-

cerning the tensor algebra of a finite dimensional vector space E over a field

k of zero characteristic. Denote it by

T(E) =
⊕

p,q≥0

Ep
q , Ep

q = E ⊗ · · · ⊗E︸ ︷︷ ︸
p factors

⊗E∨ ⊗ · · · ⊗E∨

︸ ︷︷ ︸
q factors

.

GL(E) will be used for the group of automorphisms of E. An endomor-

phism g of E extends naturally to a homomorphism of the algebra T(E),

also denoted by g, i.e., g (α⊗ β) = g(α) ⊗ g(β), α, β ∈ T(E). It leaves

invariant symmetric, skew-symmetric and similar parts of T(E) (2). The

notation like g⊗p refers to the restriction of g to E⊗p, etc. Symmetric and

wedge products there are denoted by ‘·’ and ‘∧’, respectively.

The group GL(E) acts on T(E) and the orbits of this action are called

tensor types and tensor belonging to the same orbit are said to be equivalent.

Standard identifications such as End(E) = Homk(E,E) and E ⊗ E∨ we

shall use without special mentioning. For instance, a (Lie, associative, etc.)

algebra structure on E, i.e., an element of Homk (E ⊗E,E), is identified

with an element of E1
2 = E ⊗E∨⊗E∨. This way the isomorphism class of

such an algebra is identified with the tensor type of the corresponding to

it element of E1
2 .

2Since the characteristic of k is zero, we can consider the symmetric and the exterior
algebras as subspaces (not subalgebras) of T(E).
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3.6.3

All the above said extends with due modifications to a module P over a

commutative algebra A. For instance,

T(P ) =
⊕

p,q≥0

P p
q , P p

q = P ⊗ · · · ⊗ P︸ ︷︷ ︸
p factors

⊗P∨ ⊗ · · · ⊗ P∨

︸ ︷︷ ︸
q factors

stands for the tensor algebra of P . It should be stressed that the iden-

tifications like that of End(P ) and P ⊗ P∨ do not, generally take place

for arbitrary P . But they remain valid for finitely generated projective

modules. This is the case of fat manifolds, i.e., P = Γ
(
M
)
.

Definition. An inner structure of a fat manifold M is an element of the

module T(P ), P = Γ
(
M
)
.

We stress that in a general algebraic situation the idea of an inner

structure in P should be realized in a wider context of multilinear algebra

over P .

3.6.4

A linear connection ∇ in P extends naturally to a linear connection ∇T

of T(P ). Indeed, we have already associated with ∇ a connection ∇∨ on

P∨ (see n. 2.4.4) and defined the tensor product of two linear connections

(see n. 2.4.5). So, by suitably tensoring connections ∇ and ∇∨ one can

construct connections∇p
q on P p

q and hence a connection∇T on T(P ), whose

restriction to P p
q coincides with ∇p

q . In its turn, connections ∇p
q restrict to

‘smaller’ connections on natural submodules of P p
q . For instance, d∇p

q
leaves

invariant the Λ(A)-submodule Λ• (Sp(P )) of Λ• (P p
0 ) and hence d∇Sp

def
=

d∇k
0

∣∣∣
Λ•(Sp(P ))

gives a linear connection in Sp(P ). Similarly, ∇0
q restricts to

a connection ∇Poly on Sq (P∨), whose elements we interpret as polynomials

on P , etc.

Definition. A linear connection in a fat manifold M preserves an inner

structure Ξ in M if

d∇T (Ξ) = 0 .

Obviously this is equivalent to the fact that

∇T
X (Ξ) = 0, ∀X ∈ D(A) .
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3.6.5 Gauge/Fat Structures

The following definition is key.

Definition. An inner structure in a fat manifold admitting a preserving it

linear connection is called gauge (informally, fat).

In this book we do not discuss the existence problem of connections

preserving inner structures of a given kind. The following example-exercise

illustrates the question.

Exercise. Prove that a generic Ξ ∈ End(P ) = P 1
1 (Ξ ∈ P 2

0 ) does not admit

a preserving it connection even locally.

3.6.6

Now we have to show that inner structures at single fat points are ‘the same’

in the case of a gauge structure. The proof is based on a rather simple

fact. Let π1 and π2 be vector bundles over a manifold M , Pi = Γ(πi),

i = 1, 2, and �1, �2 be der-operators over the same vector field X ∈ D(M)

in P1 and P2, respectively. Consider the one-parameter groups
{
Gt

}
t∈R

,{
Gt

′
}

t∈R

and
{
Gt

′′
}

t∈R

generated by �1 � �2, �1 and �2, respectively.

By abusing slightly the notation, here we use Gt
′∗
⊗ Gt

′′∗
for the natural

map

p1 ⊗ p2 7→ Gt
′∗

(p1)⊗Gt
′′∗

(p2)

(cf. n. 3.3.9). Accordingly, denote the corresponding regular morphism of

vector bundles by Gt
′
⊗Gt

′′
.

Exercise. Show that Gt
′
⊗Gt

′′
= Gt.

Hint. Mind that

d

d t
Gt

∗
= Gt

∗
◦ (�1 � �2)

and use the Leibnitz rule for

d

d t

(
Gt

′∗
⊗Gt

′′∗
)
.

By applying the result of the above exercise to the one-parameter group

{Gt}t∈R generated by ∇X and one parameter groups generated by
(
∇p

q

)
X

’s

we have the following fact.
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Proposition. Let mt = Gt (m), m ∈ M , and αt = Gt

∣∣
m,mt

: m → mt.

The isomorphism T (αt) : T (m) → T(mt) of tensor algebras generated by

the isomorphism αt coincides with the isomorphism of the one-parameter

group generated by
(
∇T
)
X

, understood as the family of one-parameter

groups generated by
(
∇p

q

)
X

’s.

Thus the above exercise allows to identify the one-parameter group gen-

erated by
(
∇p

q

)
X

with
{(
Gt

)p
q

}
t∈R

if {Gt}t∈R is the one-parameter group

generated by ∇X .

Let now Ξ ∈ P p
q , P = Γ

(
M
)
, be a gauge structure in M and ∇ a

preserving it linear connection. Then for all X ∈ D(M) the one-parameter

group generated by
(
∇p

q

)
X

leaves Ξ invariant. This is equivalent to say

that
(
Gt

)p
q
(Ξm) = Ξmt

(3.19)

where Ξm ∈ m
p
q stands for the value of Ξ at m ∈M .

Theorem. Let Ξ be a gauge structure on M and ∇ a preserving it linear

connection. Then
(
Tγ

t0,t1

)p
q

(
Ξγ(t0)

)
= Ξγ(t1)

for all curves γ : I→M and t0, t1 ∈ I.

Proof. Apply (3.19) to the induced by γ from ∇ connection with γ being

the ∇-lift of γ. �

Corollary. IfM is connected and Ξ is a gauge structure onM , then tensors

Ξm ∈ m
p
q are equivalent to each other.

3.6.7

The above corollary justifies the following definition.

Definition. A tensor θ ∈ F p
q (F is the general fiber of M) is called general

(or model) for a gauge structure Ξ on M , if θ is equivalent to all Ξm,

m ∈M . The tensor type of θ is called the gauge type of Ξ.

For instance, if b is a gauge bilinear form on M , then a bilinear form β

on F that is equivalent to bm for all m ∈ M is called general (or model)

for b.
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3.6.8

Let ∇ be a linear connection in an A-module P and ω ∈ Λ•(A). If ω is

understood to be the multiplication by ω operator θ 7→ ω ∧ θ, θ ∈ Λ•(P ),

then [d∇, ω](gr) = dω : θ 7→ dω∧θ, i.e., the multiplication by dω operator,

and hence
[
[d∇, θ]

(gr)
, ρ
](gr)

= 0, ρ ∈ Λ•(A). This equality tells that d∇ is

a graded first order differential operator (see n. 3.6.9 below).

The differential d : Λ•(A)→ Λ•(A) is a ‘graded vector field’ over Λ•(A),

i.e., a derivation of the graded algebra Λ•(A). Then the Leibnitz rule for

d∇ shows that it is a graded der-operator over the graded vector field d (see

n. 3.6.9). Moreover [d∇, d∇](gr) = 2 d2
∇ is a graded der-operator over the

graded vector field [d, d](gr) = 2 d2 = 0. Hence d2
∇ is a der-operator over the

zero vector field, i.e., a graded endomorphism of the Λ•(A)–module Λ•(P ).

This explains why d2
∇ is a zero-order differential operator over A and not

of the second order as, generally, should be.

The graded Jacobi identity (see n. 3.6.9) for differential operators ∆1 =

∆2 = ∆3 = d∇ becomes

0 = 3
[
[d∇, d∇]

(gr)
, d∇

](gr)
= 6

[
R∇, d∇

](gr)
= 6 d∇End

(
R∇
)
.

This proves the Bianchi identity (cf. n. 3.2.14) by showing it to be a very

particular case of the Jacobi identity.

The above observations reveal naturalness of differential calculus over

the graded commutative algebra Λ(A) when dealing with connections. We

shall sketch some basic points of this approach.

3.6.9 Graded Differential Operators

Let A be a graded k-algebra, k being a field, and P1, P2 be graded A-

modules. A graded k-linear map ∆ : P1 → P2 is called a graded differential

operator of order ≤ s if

[
. . .
[
[∆, a0]

(gr)
, a1

](gr)
, . . . , as

](gr)
= 0, ∀a0, a1, . . . , as ∈ A

where homogeneous ai’s are understood to be the multiplication by ai op-

erators. This is the graded version of n. 0.1.2. Below it is mainly applied

to A = Λ•(A) and P = Λ•(P ).
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The graded Jacobi identity of graded k-linear maps looks as

(−1)deg X deg Z
[
[X,Y ]

(gr)
, Z
](gr)

+ (−1)deg Z deg Y
[
[Y, Z](gr) , X

](gr)

+ (−1)deg Y deg X
[
[Z,X ]

(gr)
, Y
](gr)

= 0 .

A graded k-linear map

P ⊗ P
〈·,·〉
→ P

is a graded Lie algebra structure in P if

• deg〈p1, p2〉 = deg p1 + deg p2;

• the bracket 〈·, ·〉 satisfies graded Jacobi identity.

A graded k-linear operator ∆ : P → P is a graded der-operator over a

graded derivation X : A → A if

∆(ap) = X(a)p+ (−1)r deg Xa∆(p), a ∈ Ar, p ∈ P .

This, obviously, implies degX = deg ∆ and shows ∆ to be a first order

graded differential operator over A.

It is easy to see that the totality of all graded der-operators gives a

graded A-module with respect to the left multiplication by elements of A

and a graded k-Lie algebra with respect to the graded commutator oper-

ation. For instance, if ∇ and � are linear connections in P , then d∇ and

d� are graded der-operators over d and [d∇, d�](gr) = d∇ ◦ d� + d� ◦ d∇ is

a der-operator over [d, d](gr) = 2 d2 = 0 and hence a degree two endomor-

phism of Λ•(P ).

The operator iX , X ∈ D(A), (see n. 0.5.18) is a degree −1 graded der-

operator in Λ•(P ) over the graded derivation iX of Λ•(A). Note that both

iX and iX are A-linear but not Λ•(A)-linear. Recall in this connection that

L∇X =
[
iX , d∇

](gr)
(Proposition 3.5.14, (2)).

3.6.10 Λ-Extension of scalars

Assume P to be projective and finitely generated. Every tensor Ξ ∈ T(P )

extends naturally to a ‘graded’ tensor ΞΛ in the Λ•(A)–module Λ•(P ). For

instance, if ϕ ∈ End(P ), then ϕΛ is the graded endomorphism

ω ∧ p 7→ ω ∧ ϕ(p), ω ∈ Λ•(A), p ∈ P .
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Similarly, if b is a bilinear form on P , then

bΛ (ω1 ∧ p1, ω2 ∧ p2) = ω1 ∧ ω2 b (p1, p2) , ωi ∈ Λ•(A), pi ∈ P .

These Λ-extensions may be viewed as elements of Λ• (T(P )). For instance,

the Λ-extension of End(P ) is Λ• (End(P )), and the extended action of

Λ• (End(P )) on Λ•(P ) (cf. n. 3.2.9) looks as

(ω ∧ ϕ) (% ∧ p) = ω ∧ % ∧ ϕ(p), ω, % ∈ Λ•(A), ϕ ∈ End(P ), p ∈ P .

Similarly, the extended action of Λ• (End(P )) on bΛ, b being a bilinear form

on P , reads
(

(ω ∧ ϕ)
(
bΛ
) )

(θ1, θ2) = −ω ∧
(
bΛ
(
ϕΛ (θ1) , θ2

)
+ bΛ

(
θ2, ϕ

Λ (θ1)
) )

with θi = ωi ∧ pi, ωi ∈ Λ•(A), pi ∈ P , i = 1, 2. In particular,

−R∇
(
bΛ
)
(θ1, θ2) = bΛ

(
R∇ (θ1) , θ2

)
+ bΛ

(
θ1, R

∇ (θ2)
)
.

Obviously, the extended commutator in Λ• (End(P )) is

[ω1 ∧ ϕ1, ω2 ∧ ϕ2]
(gr)

= ω1 ∧ ω2 ∧ [ϕ1, ϕ2] ,

ω1, ω2 ∈ Λ•(A), ϕ1, ϕ2 ∈ End(P ) .
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Chapter 4

Cohomological Aspects

of Linear Connections

In this chapter we discuss some cohomological aspects of the theory of

linear connections. The basic is the cohomology of complexes associated

with flat linear connections. They are interpreted naturally as the de Rham

cohomology with twisted coefficients and play an important role in many

situations. This cohomology is illustrated by some simple examples at the

beginning of the chapter and then some basic techniques of computations

are introduced. Then Maxwell’s equations are discussed from this point

of view. Also, some useful elements of Homological Algebra, like the long

exact cohomology sequence of a ‘flat pair’ and the ‘fat’ homotopy formula,

adapted to the context, are described. In the final section of this chapter

we develop the theory of characteristic classes of gauge, or, ‘fat’, structures.

4.1 An Introductory Example

Various natural questions appearing in the context of connections have a

cohomological nature. Some of them are related with the classification

problem. To provide an instructive example, this point is developed in

this section starting from simplest fat manifolds, i.e., trivial fat manifolds

of type 1. From now on in this chapter, A stands for a commutative k-

algebra, k being a field.

4.1.1 Gauge Equivalence Between Linear Connections

In the gauge theory two fields are physically indistinguishable if one of

them is obtained from another by a gauge transformation, i.e., by a fat

identity map. In conformity with that two connections are to be declared

indistinguishable if one is obtained from another by a fat identity map.

233
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This is is natural from a mathematical point of view as well.

Definition. Let ∇ and � be linear connections in an A-module P . They

are called gauge equivalent if � and ∇ are ‘conjugated’ by an automorphism

ϕ of P , i.e.,

�X = ϕ ◦ ∇X ◦ ϕ
−1, X ∈ D(A) .

In particular, two connections in a fat manifold are gauge equivalent if

one is induced from another by a fat identity map.

It is worth stressing that two connections in a module P (resp., in a fat

manifold M) are gauge equivalent if and only if they are compatible with

respect to an automorphism of P (resp., a fat identity map of M)).

Below this definition will be applied to free A-modules of rank 1. In this

situation automorphisms of P are just multiplication by invertible elements

of A, in particular, by nowhere vanishing functions on M if A = C∞(M).

4.1.2

Let ∇ be a linear connection in P = A.

Definition. The 1-form

d∇ (1) ∈ Λ1 (P ) = Λ1 (A)

is called associated with ∇.

Proposition. If % is the 1-form associated with ∇, then

(d∇− d) (ω) = % ∧ ω, ω ∈ Λ• (A) ,

d being the exterior differential.

Proof. We can assume that ω is homogeneous. Since (Λ• (A) , d∇) is a

cd-module over the cd-algebra (Λ• (A) , d) (see Example 3.3.5), we have

(d∇− d) (ω) = d∇ (ω ∧ 1)− d (ω)

= d (ω) ∧ 1 + (−1)
deg ω

ω ∧ d∇ (1)− d (ω)

= (−1)deg ω ω ∧ % = (−1)deg ω deg % ω ∧ % = % ∧ ω .
�
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4.1.3

The formula in the above proposition may be written as

d∇− d = % ,

if % is understood to be the multiplication by % operator. Similarly can be

interpreted the formula

∇−D = % , (4.1)

where D is the trivial connection. Namely, % is a map

D(A)→ A .

By composing it with the natural homomorphism

ι : A→ EndA(A) ⊆ Der(A)

that sends a into the multiplication by a operator we get a map

%′ : D (A)→ Der(A) .

Moreover, if X ∈ D (A) and a ∈ A, then

(∇X −DX) (a) = ((d∇− d) (a)) (X) = (% ∧ a) (X) = a% (X) = %′ (X) (a) ,

i.e.,

∇−D = %′

as elements of Hom (D(A),Der(A)) (cf. n. 2.1.9). So, by identifying % with

%′ we get (4.1).

4.1.4

Proposition. For a given % ∈ Λ1 (A) there exists a unique linear connec-

tion ∇ whose associated 1-form is %.

Proof. In view of nn. 2.1.9 and 4.1.3, it suffices to set

∇
def
= D + % ,

with D being the trivial connection and % being considered as an element

of Hom(D(A),Der(A)). �

This proposition together with the previous results establish a one-to-

one correspondence between linear connections in P = A and 1-forms. In

particular, it allows to supply the totality of all linear connections in A

with an A-module structure.
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4.1.5

Now it is natural to wonder what kind of linear connections correspond to

closed and exact forms.

Proposition. The curvature of a linear connection ∇ in A with associated

1-form % is (naturally identified with) d %.

Proof. According to n. 4.1.3

d∇ = d +% .

Since % ∧ % = 0, %2 = % ◦ % = 0 if % is understood as the multiplication by

% operator. Moreover, the Leibnitz formula

d (% ∧ ω) = d % ∧ ω − % ∧ dω ,

may be read as an equality of operators in Λ• (A):

d ◦% = d %− % ◦ d .

Hence

d2
∇ = d2 +% ◦ d + d ◦%+ %2 = % ◦ d + d %− % ◦ d = d % ,

and the result follows from Proposition 3.2.10. �

Corollary. A linear connection in A is flat if and only if the associated

with it 1-form is closed.

Exercise. Let ∇ be a linear connection in the A-module A. Let κ ∈ Λs(A)

and set κ′ = ι◦κ, with ι : A→ EndA(A) being as in n. 4.1.3, so that κ = κ′

when regarded as multiplication operators in Λ• (A) (as d ρ and R∇ before).

Check that d κ = d∇End κ′ (as multiplication operators).

4.1.6

It is natural to call gauge trivial a connection in a standard fat manifold

that is gauge equivalent to the trivial one.

Proposition. Let M be a fat manifold with Γ
(
M
)

= C∞ (M). Then a

linear connection ∇ in M is gauge trivial if and only if the associated with

∇ 1-form % is exact.
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Proof. Assume that ∇ is induced from the trivial connection by a fat

identity map f : M → M . Obviously, f
∗

is the multiplication by af

operator with af = f
∗
(1) ∈ C∞ (M). Note that af is invertible, i.e.,

nowhere vanishing function on M .

The extension Λ• f
∗

: Λ•
(
M
)
→ Λ•

(
M
)

of f
∗

is the multiplication by

af as well, but in Λ•
(
M
)

(see Definition 3.3.8).

The trivial connection D is f -compatible with ∇ if and only if

d ◦Λ• f
∗

= Λ• f
∗
◦ d∇ ,

with d being the exterior differential in Λ•(M) = Λ•(M). Since

Λ• f
∗
◦ d∇

Prop. 4.1.2
= af d +af%

and

d ◦Λ• f
∗

= af d + d
(
af

)

(as operators in Λ•
(
M
)
), ∇ and D are f-compatible if and only if

% =
d
(
af

)

af

i.e., % = d(bf ) with bf
def
= ln

∣∣∣af

∣∣∣. �

The above result holds for every standard trivial fat manifold M of

type 1, since in this case Γ(M) is identified with C∞(M) by means of a

canonical isomorphism preserving the trivial connection.

4.1.7

We have established the following one-to-one correspondences for a stan-

dard trivial fat manifold of type 1:

closed 1-forms ←→ flat linear connections

exact 1-forms←→ gauge trivial connections .

What about an arbitrary trivial fat manifold M of type 1, that is,

Γ(M) ∼= C∞(M), but no such isomorphism is canonically fixed?

Exercise. Let ∆ and ∇ be linear connection on a trivial fat manifold M of

type 1. Note that d∇− d∆ is the multiplication operator by a differential

form % ∈ Λ1(M). Prove that
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(1) ∆ and ∇ have the same curvature if and only if % is closed;

(2) ∆ and ∇ are gauge equivalent if and only if % is exact.

If a linear connection on a trivial fat manifold M corresponds to a

gauge-trivial connection through an isomorphism Γ(M)
∼
→ C∞(M), then

the same is true for any other such isomorphism. Hence the notion of a

gauge-trivial linear connection is well defined also for arbitrary trivial fat

manifolds.

We conclude that the totality of gauge equivalence classes of flat con-

nections on a trivial fat manifold of type 1 is naturally identified with

H1(M) =
Ker

(
d : Λ1(M)→ Λ2(M)

)

d Λ0(M)

(it is the first de Rham cohomology space of the base M ; we shall recall

the general definition later, in n. 4.2.3).

4.2 Cohomology of Flat Linear Connections

4.2.1

Definition. If i : N ↪→M is a closed fat submanifold, then the form

ω|N
def
= Λ• i

∗
(ω) ∈ Λ•

(
N
)
, ω ∈ Λ•

(
M
)
,

is called the restriction of ω ∈ Λ•
(
M
)

to N .

If, according to n. 3.3.10, a thickened form ω ∈ Λs
(
M
)

is understood

as the field m 7→ ωm on M , then the field n 7→ (ω|N )n on N is defined by

(ω|N )n = ωn|(TnN)s ,

where TnN is identified naturally with the corresponding to it subspace

of TnM .

4.2.2

Definition. A thickened form ω ∈ Λ•
(
M
)

is called relative with respect to

a closed fat submanifold N if

ω|N = 0 .

The notation Λ• (M,N) and Λ•
(
M,N

)
will be used for sets of relative

with respect to N forms and relative with respect to N thickened forms, re-

spectively. Obviously, Λ• (M,N) and Λ•
(
M,N

)
are submodules of graded



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

Cohomological Aspects of Linear Connections 239

Λ•(M)–modules Λ•(M) and Λ•
(
M
)
, respectively, and Λ•

(
M,N

)
is the

kernel of Λ•(M)–module homomorphism

Λ• i
∗

: Λ•
(
M
)
→ Λ•

(
N
)
.

The map Λ• i
∗

is surjective as it is easy to see from nn. 0.5.15 and 0.2.20.

Proposition. Let ∇ be a linear connection in M and ∇|N the induced lin-

ear connection in a closed fat submanifold i : N →M . Then the submodule

Λ•
(
M,N

)
⊆ Λ•

(
M
)

is stable with respect to d∇ and

0→ Λ•
(
M,N

)
−→ Λ•

(
M
) Λ• i

∗

−→ Λ•
(
N
)
→ 0 ,

is an exact sequence of cd-modules.

Proof. It directly follows from the definition of the induced linear con-

nection that Λ• i
∗

is a cd-module homomorphism. �

Written in details the above exact sequence becomes a commutative

diagram with exact rows:

0 // Λs−1
(
M,N

)
//

(d∇)(M,N)

��

Λs−1
(
M
)

//

d∇

��

Λs−1
(
N
)

//

d∇|
N

��

0

0 // Λs
(
M,N

)
//

(d∇)(M,N)

��

Λs
(
M
)

//

d∇

��

Λs
(
N
)

//

d∇|
N

��

0

0 // Λs+1
(
M,N

)
// Λs+1

(
M
)

// Λs+1
(
N
)

// 0

where (d∇)(M,N) stands for d∇ restricted to Λ•
(
M,N

)
.

4.2.3

According to Corollary 3.2.10 and Proposition 2.3.4, if ∇ is a flat connec-

tion, then cd-modules from the above exact sequence are complexes and

below we fix the notation for their cohomologies.
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Definition. Let A be a k-algebra, k being a field, and P be an A-

module. The graded vector space (over k) of cohomology of the complex

(Λ• (P ) , d∇) is denoted by H•
∇ (P ) and called the cohomology of ∇. Its

degree s component is denoted by Hs
∇ (P ), i.e.,

Hs
∇ (P ) =

Ker (d∇)s

Im (d∇)s−1

,

and called the s-th cohomology (space) of ∇. For P = Γ(M) these coho-

mologies are denoted by H•
∇

(
M
)

and Hs
∇

(
M
)
, respectively.

The cohomology of the complex
(
Λ•
(
M,N

)
, (d∇)(M,N)

)
is called the

relative cohomology of ∇ with respect to N and denoted by H•
∇

(
M,N

)
.

Its s-th component is denoted by Hs
∇

(
M,N

)
and called the s-th relative

cohomology of ∇ with respect to N .

It is worth stressing that if A = C∞ (M), P = A and D is the trivial

connection, then H•
D (A) is nothing but the standard de Rham cohomology

of M which will be denoted, as usually, by H• (M). More generally, for

every k-algebraA, the de Rham cohomology of A will be the space H• (A)
def
=

H•
D (A), with D being the trivial connection on A.

4.2.4

It is easy to understand what are zeroth cohomology of a flat connection.

Indeed, by definition H0 (M) = Ker (d∇)0. So, in view of n. 3.2.7, we have

Proposition. H0
∇(P ) coincides with the space of ∇-constant sections of P .

Effective computations of higher cohomologies of flat connections re-

quire a developed techniques which are basically the same as for the de

Rham cohomology. One of them exploits long exact cohomology sequences

associated with ‘flat pairs’ and is introduced below.

4.2.5

Let N be a closed fat submanifold of a fat manifold M and ∇ a flat linear

connection on M . So all cd-modules in the sequence

0→ Λ•
(
M,N

)
→ Λ•

(
M
)
→ Λ•

(
N
)
→ 0

introduced in Proposition 4.2.2 are complexes. The long exact cohomology

sequence canonically associated with this short exact sequence of complexes
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(see for instance [Hilton and Stammbach (1971), Chap. IV, Theorem 2.1])

looks in the above notation as follows:

0→ H0
∇

(
M,N

)
→ H0

∇

(
M
)
→ H0

∇|N

(
N
)

→ H1
∇

(
M,N

)
→ H1

∇

(
M
)
→ H1

∇|N

(
N
)

→ H2
∇

(
M,N

)
→ · · · .

We shall illustrate how long exact sequences do work by deducing a fat

analogue of the Newton-Leibnitz formula.

4.2.6

We start with a cohomological interpretation of the ordinary Newton-

Leibnitz formula.

Let I = [a, b] ⊆ R, ∂I = {a, b}, a < b. First, describe the segment

0→ H0 (I, ∂I)→ H0 (I)→ H0 (∂I)→ H1 (I, ∂I)→ H1 (I)

of the long de Rham cohomology sequence of the pair {I, ∂I}.

Let t be the canonical coordinate function on I, that is, the inclusion

I ↪→ R. Denote by d the exterior differential on I and by d(I,∂I) its restriction

to Λ• (I, ∂I). Then

Λ1 (C∞ (I)) = {f d t : f ∈ C∞ (I)}

and we have

H0 (I, ∂I) =
Ker

(
d(I,∂I)

)
0

{0}
∼= Ker

(
d(I,∂I)

)
0

= {f ∈ C∞ (I) : f |∂I = 0 and d f = 0}

= {f ∈ C∞ (I) : f |∂I = 0 and f is constant} = {0} .

The zero degree of the exterior differential

d0 : Λ0 (I)→ Λ1 (I) , f 7→ f ′ d t

is surjective, since every smooth function on I admits a smooth primitive.

This shows that H1 (I) = 0.

Further we see that

H0 (I) =
Kerd0

{0}
∼= Kerd0 = {f ∈ C∞ (I) : f is constant}

and a canonical isomorphism

H0 (I)
∼
→ R
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that sends each constant function to its value takes place.

Since ∂I is zero-dimensional,

Λ• (∂I) = Λ0 (∂I) = C∞ (∂I) ,

and hence the exterior differential vanishes. So,

H0 (∂I) =
C∞ (∂I)

{0}
∼= C∞ (∂I) = {f : {a, b} → R}

and the map H0 (∂I)
∼
−→ R⊕ R that sends each function

f : {a, b} → R

to the pair

(f (a) , f (b)) ,

is a (canonical) isomorphism.

Finally, the embedding i : ∂I ↪→ I induces the homomorphism

H0 (i) : H0 (I)→ H0 (∂I) , [f ] 7−→ [i∗ (f)] ,

where square brackets stands for the corresponding cohomology classes. By

combining it with the above isomorphisms

R
∼
−→ H0 (I)

H0(i)
−→ H0 (∂I)

∼
−→ R⊕ R

one gets a map R→ R⊕R which is nothing but the diagonal homomorphism

∆ : R→ R⊕ R, λ 7→ (λ, λ) .

Thus the segment

H0 (I, ∂I)→ H0 (I)→ H0 (∂I)→ H1 (I, ∂I)→ H1 (I)

of the long de Rham cohomology sequence is identified, via the above canon-

ical isomorphisms, with the short exact sequence

0→ R
∆
→ R⊕ R→ H1 (I, ∂I)→ 0 .

4.2.7

Obviously, every 1-form on I is also a relative one with respect to ∂I, i.e.,

Λ1 (I, ∂I) = Λ1 (I)

and

Ker d1 = Kerd(I,∂I) = Λ1 (I) .
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Therefore,

H1 (I, ∂I) =
Λ1 (I)

B1 (I, ∂I)
, (4.2)

where B1 (I, ∂I) is the image of d(I,∂I)0
: Λ0 (I, ∂I)→ Λ1 (I, ∂I).

On the other hand, it follows from the exact sequence

0→ R
∆
→ R⊕ R→ H1 (I, ∂I)→ 0

that

H1 (I, ∂I) ∼=
R⊕ R

Im ∆
. (4.3)

Obviously, Im ∆ ∼= R and

R⊕ R

Im ∆
∼= R . (4.4)

Among isomorphisms (4.4) there are two ‘privileged’ ones, namely, σ1 =

(π ◦ ι1)
−1

and σ2 = (π ◦ ι2)
−1

where

π : R2 →
R2

Im ∆

is the canonical projection and homomorphisms

ι1, ι2 : R→ R2 ,

are defined by

λ 7→ (0, λ) and λ 7→ (λ, 0) ,

respectively. It is easy to see that

σ1 ([(x, y)]) = y − x and σ2 ([(x, y)]) = x− y ,

where square brackets stand for cosets modulo Im ∆.

Thus canonical isomorphism (4.3) composed with σi, i = 1, 2, leads to

canonical isomorphisms

∫

i

: H1 (I, ∂I)→ R, i = 1, 2.
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4.2.8 Cohomological Interpretation

of Newton-Leibnitz Formula

Canonical isomorphisms
∫

i, i = 1, 2, mark relative cohomology classes of

1-form on I, i.e., elements of H1 (I, ∂I), with real numbers. This allows to

associate a real number with a 1-form ω on I:

ω ⇒ [ω] ∈ H1 (I, ∂I) ⇒

∫

i

([ω]) ∈ R .

Obviously, ∫

1

([ω]) = −

∫

2

([ω]) .

Now put ∫

1

([ω])
def
=
∫ b

a ω,

∫

2

([ω])
def
=
∫ a

b ω.

Definition.
∫ b

a ω (respectively,
∫ a

b ω) is called the cohomological definite

integral of ω over the oriented from a to b (respectively, from b to a) inter-

val I.

4.2.9

Recall that the isomorphism (4.3) comes from the cohomology exact se-

quence (see n. 4.2.5) by means of the co-boundary homomorphism

H0 (∂I)
∼
→ H1 (I, ∂I) .

By definition this homomorphism sends a pair (p, q) ∈ H0 (∂I) to [d f ] ∈

H1 (I, ∂I) where f ∈ C∞ (I) is a function such that

f(a) = p, f(b) = q .

On the other hand,

σ1([p, q]) = q − p = f(b)− f(a) .

Therefore,
∫ b

a d f = f (b)− f (a) .

This way we get the cohomological Newton-Leibnitz formula which is noth-

ing but a description of the co-boundary operator in the long cohomology

exact sequence of the pair (I, ∂I) in terms of canonical numerical marks of

cohomology classes from H1 (I, ∂I). It is worth stressing that this formula

corresponds to the orientation of I from a to b.
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4.2.10

By comparing the cohomological Newton-Leibnitz formula with the stan-

dard we see that the cohomological integral coincides with the ordinary one,

i.e.,
∫ b

a d f =

∫ b

a

d f.

This apparently simple, if not banal, fact has, nevertheless, a deep philo-

sophical meaning. Indeed, it indicates clearly that conceptually integrals

are cohomology classes marked by (real) numbers and, therefore, puts in

question the commonly accepted status of measure theory as the theory of

integral. It is not, however, our intention to discuss this important prob-

lem here and we send the reader to [Moreno et al. (in preparation)] for

further arguments in favor of cohomology origins of integrals. Below the

Newton-Leibnitz formula is generalized to linear connections on the basis

of the cohomological approach.

4.2.11 Newton-Leibnitz formula for Linear Connections

The mentioned generalization is obtained by substituting the cohomology of

a flat linear connection for that of de Rham in our previous considerations.

Let ∇ be a linear connection on a fat manifold I over I = [a, b], a < b.

Since the base dimension is 1, ∇ is automatically flat and the corresponding

long exact cohomology sequence of the pair
(
I, ∂I

)
is well-defined. As in

n. 4.2.6 describe the following segment of it:

H0
∇

(
I, ∂I

)
→ H0

∇

(
I
)
→ H0

∇

(
∂I
)
→ H1

∇

(
I, ∂I

)
→ H1

∇

(
I
)
.

The kernel F of (d∇)0 consists of ∇-constant sections of I. Therefore,

H0
∇

(
I, ∂I

)
= 0 and there is a canonical isomorphism H0

∇

(
I
)
∼= F . It is also

easy to see that H0
∇

(
∂I
)

is the direct sum a⊕ b and the homomorphism

H0
∇

(
I
)
→ H0

∇

(
∂I
)

corresponds to

h : F → a⊕ b, p 7→ (p(a), p(b)) .

According to Proposition 2.2.2, ∇ is compatible with a trivial connection

D with respect to a suitable fat identity map I
′
→ I and hence H1

∇

(
I
)

is

isomorphic to H1
D

(
I
′
)

which is, obviously, trivial.

Thus the segment

H0
∇

(
I, ∂I

)
→ H0

∇

(
I
)
→ H0

∇

(
∂I
)
→ H1

∇

(
I, ∂I

)
→ H1

∇

(
I
)



October 8, 2008 14:20 World Scientific Book - 9in x 6in FMaLC

246 Fat Manifolds and Linear Connections

is naturally identified with the short exact sequence

0→ F
h
→ a⊕ b→ H1

∇

(
I, ∂I

)
→ 0 ,

which gives rise to an isomorphism

a⊕ b

h(F)

∼
→ H1

∇

(
I, ∂I

)
.

Denote by T∇
t0,t1 : t0 → t1, t0, t1 ∈ I, the parallel translation isomor-

phism. Then

h(F) = {(va,vb) : vb = T∇
a,b(va)}

since F is composed of ∇-constant sections.

Now by combining this description of h with natural embeddings

ιa : a ↪→ a⊕ b and ιb : b ↪→ a⊕ b

one gets canonical isomorphisms

a⊕ b

h(F)

∼
→ a and

a⊕ b

h(F)

∼
→ b ,

given by

[(v,w)] 7→ v −T∇
b,a(w) and [(v,w)] 7→ w−T∇

a,b(v) ,

respectively. This way cohomology classes from H1
∇

(
I, ∂I

)
can be canoni-

cally marked either with vectors from a, or from b.

But Λ1
(
I, ∂I

)
= Λ1

(
I
)

and hence

H1
∇

(
I, ∂I

)
=

Λ1
(
I
)

B1
(
I, ∂I

) .

So, it is natural to define cohomological definite ∇-integrals of a thickened

1-form ω

∇
∫ a

b ω ∈ a and ∇
∫ b

a ω ∈ b

as markers of the cohomology class [ω]. Now, exactly as in n. 4.2.9, the

cohomological Newton-Leibnitz formulas

∇
∫ a

b d∇(p) = p(a)−T∇
b,a(p(b))

and

∇
∫ b

a d∇(p) = p(b)−T∇
a,b(p(a))

follow immediately from the definition of the co-boundary operator in the

above long exact sequence for ∇-cohomology.
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4.3 Maxwell’s Equations

The electromagnetic field (E,B), where E = (Ex, Ey, Ez) is the electric

field and B = (Bx, By, Bz) is the magnetic field, is described by the famous

Maxwell’s equations:

div B = 0 , rotE = −
∂B

∂t
, (4.5)

div E = ρ , rotB−
∂E

∂t
= j , (4.6)

where ρ and j = (jx, jy, jz) are densities of charge and current, respectively.

Much later after Maxwell it was observed that quantities E and B are

naturally interpreted as coefficients of the differential 2-form

F = Ex dx ∧ d t + Ey d y ∧ d t + Ez d z ∧ d t

+ Bz dx ∧ d y − By dx ∧ d z + Bx d y ∧ d z . (4.7)

Indeed, the first pair (4.5) tells that the form F is closed, i.e., dF = 0. How-

ever, on the basis of this observation we cannot be sure that F is a true

differential form. Namely, in view of our previous experience (Sect. 4.2),

(4.7) could be the coordinate expression of the curvature tensor of a con-

nection and the differential d in dF = 0 could be the covariant differential

of it. Some more delicate physical considerations that we cannot report

here show that this is the case by giving the origin of gauge field theory. In

this section we describe the mathematical part of the question.

4.3.1 Minkowski Space

The background of the classical electromagnetic theory is the Minkowski

spacetime M4. It is an affine space over R in which the affine structure

may be described as four dimensional abelian sub-Lie algebra a of D
(
M4
)
,

whose fields are all complete, i.e., the corresponding flows are defined on

the whole of R×M4. Denote by Gv

t diffeomorphisms of the one-parameter

group corresponding to a vector field v ∈ a. Gv

1 is interpreted as the affine

translation of M4 by v. Fix a point m ∈M4. Then the map

a 3 v 7→ Gv

1 (m) ∈M4

is, obviously, a bijection and Gv

1 (m) is interpreted as the result of applica-

tion of the vector v to m.

A cartesian frame in M4 is composed of a point m0 and a basis

(e0, e1, e2, e3) in a. The coordinates of a point m ∈ M 4 with respect to
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this frame are coordinates of the vector v in the basis (e0, e1, e2, e3) in a

assuming that m = Gv

1 (m0).

Let β be a nondegenerate symmetric bilinear form in the algebra a

understood as a vector space. This form determines a pseudo-metric η

in M4

ηm (vm,wm) = β (v,w) , ∀m ∈M4 .

Vector fields e0, . . . , e3 form a basis of C∞
(
M4
)
-module D

(
M4
)

as well.

So, if X,Y ∈ D
(
M4
)

then X =
∑

i µiei, Y =
∑

i νiei and

η(X,Y ) =
∑

i,j

µiνjβ (ei, ej) .

Assume now that β is of signature (1, 3). The affine space M 4 supplied

with the pseudo-metric η corresponding to such a β is called the Minkowski

spacetime. Let (e0, e1, e2, e3) be orthonormal, i.e., β (ei, ej) = εij , with

ε00 = 1, εii = −1, i > 0, and εij = 0 if i 6= j. Then the Minkowski metric η

in the corresponding Cartesian frame reads

η = d t 2 − dx 2 − d y 2 − d z 2 ,

with t, x, y, z being the corresponding coordinates.

4.3.2

Now, to proceed on we need some facts concerning fat manifolds of type

2 supplied with a gauge metric. The general (model) fiber in this case is

R2 and the standard scalar product on it is the model metric β. Note that

there is no difference between inner and gauge metrics on fat manifolds

because all symmetric positive bilinear forms of the same dimension are

equivalent.

So, assume M be such a fat manifold with connected M and g a gauge

metric on it. M is fat orientable if the second exterior power M
∧2

of the

vector bundle M →M is trivial (1-dimensional) bundle. From geometrical

point of view this means that each fat point m of M can be oriented in a

manner that the orentation varies continuously when passing from a point

to another.

The model Lie algebra for the gauge Lie algebra o
(
M, g

)
is so(2). So,

o
(
M, g

)
is a rank 1 projective C∞(M)-module (the fibers of the corre-

sponding vector bundle are one-dimensional).

Assume that M is fat oriented. Denote by Jm : m → m the gm–

orthogonal operator which is the rotation by π/2 in the clock-wise direction
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with respect to the chosen orientation in m. The family of rotations m 7→

Jm determine an operator J ∈ o
(
M, g

)
such that J2 = − id. This show

that M is fat orientable if and only if o
(
M, g

)
is a trivial (1-dimensional)

C∞(M)–module. Below we simplify the notation by writing o for o
(
M, g

)
.

Proposition. M is trivial if and only if it has a nowhere vanishing section

and is fat orientable.

Proof. Let s ∈ Γ
(
M
)

be such a section. Since M is fat orientable the op-

erator J is globally defined. Obviously, s and J(s) are C∞(M)–independent

and hence form a base of C∞(M)–module Γ
(
M
)
. The converse is obvious.

�

In the general case the operator J is well-defined locally by choosing a

local fat orentation of M . Since the C∞(M)–module o has constant rank

one, J is a local base of it and hence a local base of Λ•(M)–module Λ•(o).

If M is fat oriented, then J is a base of both o and Λ•(o).

According to Exercise 2.5.2, (2) if a linear connection ∇ preserves g then

∇End preserves o. This means that (locally) d∇End (J) = ω∧J , ω ∈ Λ1(M),

since J is a local base of Λ•(o).

Exercise. Prove that ω = 0, i.e., d∇End(J) = 0.

As a consequence we see that J defines a (local) gauge complex structure

in M .

4.3.3

Another important consequence is the following.

Proposition. If M is fat orientable and ∇ preserves g, then

Λ•(M) 3 ω 7→ ω ∧ J ∈ Λ•(o)

is an isomorphism of cd-modules and of complexes (Λ•(M), d) and

(Λ•(o), d∇o), with ∇o = ∇End
∣∣
o
.

If M is fat orientable and ∇ preserves g, then R∇ ∈ Λ2(o) and, so,

(locally) R∇ = Ω ∧ J . Moreover, Ω is a closed 2-form as it immediately

follows from the Bianchi identity.
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4.3.4

Assume M be fat orientable and
(
M, g, J

)
as before. Fix a preserving g

linear connection ∆. Exercise 2.5.2, (1) implies that Λ•(M)→ Λ• (o)

% 7→ ∇
def
= ∆+ % ∧ J

is a one-to-one correspondence between 1-forms on M and linear connec-

tions that preserves g.

The following proposition is key in understanding which kind of mathe-

matical quantities are electromagnetic fields. The notation %∧J in it stands

for the multiplication operator in Λ•(M).

Proposition. Let
(
M, g, J

)
b as above. If ∆ and ∇ are preserving g linear

connections, and, therefore, ∇ = ∆+%∧J for a uniquely determined 1-form

%, then

(1) d∇ = d∆ +% ∧ J ;

(2) R∇ = R∆ + d % ∧ J ;

(3) ∆ is induced from ∇ by f ∈ SO
(
M, g

)
if and only if % = d θ with

f
∗

= exp(θJ)
def
= (cos θ) id + (sin θ) J .

Proof. (1). In zeroth degree the equality is quite obvious. Namely, for

all p ∈ Γ
(
M
)

and X ∈ D(M), we have

d∇(p)(X) = ∇X (p) = ∆X(p) + (%∧ J)(X)(p) = d∆(X)(p) + %(X)(J(p))

= d∆(X)(p) + (% ∧ J)(X)(p) .

For higher degrees, it suffices to check the equality on ω∧p, with ω ∈ Λs(M)

and p ∈ Γ
(
M
)
:

d∇(ω ∧ p) = dω ∧ p+ (−1)sω ∧ d∇(p) = dω ∧ p+ (−1)sω ∧ d∆(p)

+ (−1)sω ∧ (% ∧ J) ∧ p
n. 3.2.9

= d∆(ω ∧ p) + (% ∧ J) ∧ (ω ∧ p) .

(2). First note that the Leibniz rule defining a cd-module
(
P , d

)
over

(A, d) (see Definition 3.3.2), rewritten in terms of operators on P , reads

d ◦ ωr = dωr + (−1)lrωr ◦ d ,

with l being the degree of d and ωr ∈ Ar. Similarly, the Leibniz rule of

Proposition 3.2.12 reads

d∇ ◦T = d∇End T + (−1)rT ◦ d∇ .

In particular, since ∆ preserves J , we also have

d∆ ◦J = J ◦ d∆ .
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Therefore,

R∇ = d∇ ◦ d∇ = d∆ ◦ d∆ +% ◦ J ◦ d∆ + d∆ ◦% ◦ J + % ◦ J ◦ % ◦ J

= R∆ + % ◦ d∆ ◦J + d % ◦ J − % ◦ d∆ ◦J + % ◦ % ◦ J ◦ J

= R∆ + d % ◦ J = R∆ + d % ∧ J .

(3). We have

Λ• f
∗
◦ d∇ = exp(θJ) ◦ d∆ + exp(θJ) ◦ % ◦ J

and

d∆ ◦Λ• f
∗

= d∆End (exp(θJ)) + exp(θJ) ◦ d∆ .

Moreover,

d∆End (exp(θJ)) = d∆End (cos θ id + sin θJ)

Proposition 3.2.12
= − sin θ d θ ∧ id + cos θ d θ ∧ J = d θ ∧ (sin θJ ◦ J + cos θJ)

= d θ ∧ (exp(θJ) ◦ J) ,

which in terms of operators reads

d∆End (exp(θJ)) = d θ ◦ exp(θJ) ◦ J

Therefore,

Λ• f
∗
◦ d∇ = d∆ ◦Λ• f

∗

if and only if

exp(θJ) ◦ % ◦ J = d θ ◦ exp(θJ) ◦ J .

This condition is equivalent to % = d θ because exp(θJ) ◦ % = % ◦ exp(θJ)

(according to n. 3.2.9) and exp(θJ) ◦ J is invertible. �

4.3.5

Let
(
M, g, J

)
be as before. Two g-preserving linear connections in M

are called g-gauge equivalent if one is induced from another by some

f ∈ SO
(
M, g

)
. This terminology is applied to any fat manifold and any

inner pseudo-metric in it.

Assume that there exists s ∈ Γ
(
M
)

such that g(s, s) = 1. According to

Proposition 4.3.2, this is the case if and only if M is trivial. Define a linear

connection � by conditions

d�(s) = d� (J(s)) = 0 .

Obviously, this connection preserves g. A g-preserving linear connection in

M is called g-gauge trivial if it is g-gauge equivalent to �.
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Exercise. Prove that g-gauge triviality is well-defined, i.e., it does not

depend on the choice of s.

Since any g-preserving linear connection is of the form ∇�,%
def
= �+%∧J .

By Proposition 4.3.4, the assignment

% 7→ ∇�,% (4.8)

establishes one-to-one correspondences

closed 1-forms ←→ g-preserving flat connections

exact 1-forms ←→ g-gauge trivial connections .

This induces a one-to-one correspondence between first de Rham cohomol-

ogy classes of M and g-gauge equivalence classes of flat linear connections

in M . As it is easy to see, this correspondence is canonical, i.e., does not

depend on the choice of �.

4.3.6

Denote by Conn g the totality of all g-preserving connections and observe

that the correspondence (4.8) allows to interpret Conn g as an affine space

modeled over Λ1(M). The map

Conn g 3 ∇ 7→ R∇ ∈ Λ2(o) (4.9)

is not injective. Indeed, Proposition 4.3.4 tells that R∇ = R∆ if and only

if d∇ = d∆ +% ∧ J with d % = 0. If, additionally, H1(M) = 0, i.e., closed

1-forms are exact, then (4.9) induces a one-to-one correspondence between

g-gauge equivalence classes and d∇o–exact forms in Λ2(o). The Bianchi

identity completely characterizes these 2-forms if H2
∇o(o) = 0. By Proposi-

tion 4.3.3 this is equivalent to vanishing of H2(M).

4.3.7

Now we are ready to encode what electromagnetic fields are from math-

ematical point of view. To this end, in our previous considerations take

for M the Minkowski spacetime M 4. Observe that in this case M is au-

tomatically trivial and all g-preserving flat connections are g-gauge trivial.

Moreover, since H2
(
M4
)

= 0, the curvature tensor R∇ completely char-

acterizes g-gauge equivalence class of ∇. In its turn, curvature tensors are

completely characterized in Λ2(o) as d∇o–closed forms. The isomorphism
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of complexes (Λ•(M), d) and (Λ•(o), d∇o) (Proposition 4.3.3) shows that

homogeneous Maxwell’s equations (4.5), p. 247, which are equivalent to

dF = 0 (see (4.7)), translate to the Bianchi identity for F ∧ J .

Thus homogeneous Maxwell’s equations reveal the fundamental corre-

spondence

Electromagnetic tensors←→ g-gauge equivalence classes .

In its turn, the remaining Maxwell’s equations (4.6) describe the dy-

namic of g-equivalence classes of g-preserving connections. This is, however,

a physical question we cannot touch here.

To conclude, we remark that similar considerations lead to famous Yang-

Mills equations.

4.4 Homotopy Formula for Linear Connections

Given a fat map f : N → M , let ∇ and � be f-compatible flat linear

connections on M and N , respectively. Then the homomorphism

H•
∇

(
f
)

: H•
∇

(
M
)
→ H•

∇

(
N
)
, [ω] 7→

[
Λ• f

∗
(ω)
]

is well-defined. Like the ordinary situation, a smooth ‘compatibility-

preserving’ deformation of f does not affect H•
∇

(
f
)
. This important fact

is properly formalized in terms of the concept of ∇-homotopy between fat

maps introduced below. It is worth stressing that this notion makes sense

and is useful for arbitrary, not necessarily flat, linear connections.

4.4.1 Homotopic Fat Maps

Definition. Fat maps

f, g : N →M

are called homotopic if there exists a one-parameter family
{
Gt

}
t∈[0,1]

(1)

of fat maps such that

f = G0 and g = G1 ,

and the family
{
Gt

}
t∈[0,1]

is called a (smooth) fat homotopy between f

and g.

1For simplicity, the reader may assume that fat manifolds in this section are without
boundary (cf. the footnote in n. 1.6.13).
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Sometimes the term ‘fat homotopy’ will also refer to the corresponding

fat map

G : IN →M, I = [0, 1] .

4.4.2 ∇-homotopy

Assume f , g and G to be as above.

Definition. Let ∇ be a linear connection on M and � the induced by f ◦π

linear connection, π : IN → N being the fat projection. If � and ∇ are

G-compatible, then the fat homotopy
{
Gt

}
t∈[0,1]

is called a ∇-homotopy

and f and g are called ∇-homotopic.

Recall that Gt = G ◦ it with it : N → IN being the fat embedding at

t ∈ [0, 1]. If
{
Gt

}
t∈[0,1]

is a ∇-homotopy, then the induced by f linear

connection ∇N is Gt–compatible with ∇ for all t as it follows easily from

the definition of � and the fact that π ◦ it is the identity map.

Moreover,
{
Gt

}
t∈[0,1]

is a lift of {Gt}t∈[0,1] by ∇, because the induced

from � by a fat embedding jn linear connection (see n. 1.6.13) is trivial.

Also, it follows easily from n. 3.3.19 that the two above conditions char-

acterize a ∇-homotopy
{
Gt

}
t∈[0,1]

.

If ∇ is flat and
{
Gt

}
t∈[0,1]

is a lift of {Gt}t∈[0,1] by ∇, it is not difficult

to deduce from n. 3.5.19 that ∇N is Gt–compatible with ∇ for all t. We

do not report details on this, since it will not be used. An interesting

consequence is that if ∇ is flat, then a fat homotopy
{
Gt

}
t∈[0,1]

is a ∇-

homotopy between f = G0 and g = G1 if and only if it is a lift by ∇ of a

family {Gt}t∈[0,1].

4.4.3 Integral of Time-dependent Forms

It is not difficult to define time integral of a family {ωt}t∈I, I = [a, b], of

thickened s-forms (cf. [Berger and Gostiaux (1988), 0.3.15.3]) on M . Fix a

fat point m. Then

t 7→ (ωt)m

defines a function

αm : I→ Alts (TmM,m) ,
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where Alts (TmM,m) is the space of alternating s-linear functions on TmM

with values in m. It is a finite-dimensional vector space over R and, so, the

integral

θm =

∫ b

a

αm(t) d t

is well-defined if, for instance, αm is continuous. Note also that if

ξ1, . . . , ξs ∈ TmM are tangent vectors, then

θm (ξ1, . . . , ξs) =

∫ b

a

αm(t) (ξ1, . . . , ξs) d t .

The smooth dependence of the integral on parameters theorem (see, e.g.,
[Berger and Gostiaux (1988), 0.4.8]) implies that if {ω}t∈I is smooth, then

the field {θm}m∈M is smooth. Thus we have a thickened s-form θ on M .

Definition. The thickened s-form θ is called the integral of {ωt}t∈I, I =

[a, b], and is denoted by
∫ b

a

ωt d t .

It follows directly from the definition that(∫ b

a

ωt d t

)
(X1, . . . , Xs) =

∫ b

a

ωt(X1, . . . , Xs) d t .

Exercise. Let {ωt}t∈[a,b] be a time-dependent thickened s-form on M and

{dωt/d t}t∈I its derivative (see Definition 3.5.11). Show that
∫ b

a

dωt

d t
d t = ωb − ωa

and
∫ b

a

d∇(ωt) d t = d∇

(∫ b

a

ωt d t

)

for a linear connection ∇ on M .

4.4.4 Homotopy Operator

Let
{
Gt

}
t∈I

, I = [0, 1], be a fat homotopy between fat maps f, g : N →M .

As usual, denote by G : IN → M the corresponding fat map, by ∂/∂t the

standard ‘time’ vector field on N × I. For each t ∈ I consider the operator

rt = Λ• it
∗
◦ i ∂

∂t
◦ Λ•G

∗
: Λ•

(
M
)
→ Λ•

(
N
)
,
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it : N → IN being the fat embedding at t ∈ I. According to Exercise 3.5.10,

for a given ω ∈ Λs
(
M
)

{rt(ω)}t∈I

is a time-dependent thickened form on N of degree s.

Definition. The C∞(M)–module homomorphism of degree −1

h : Λ•
(
M
)
→ Λ•

(
N
)

whose degree s component is given by

ω 7→

∫ 1

0

rt(ω) d t, ω ∈ Λs(M)

is called the homotopy operator associated with
{
Gt

}
t∈I

.

4.4.5 Homotopy Formula

Proposition. Let ∇ be a linear connection on a fat manifold M . If{
Gt

}
t∈[0,1]

is a ∇-homotopy between fat maps f, g : N → M , with as-

sociated homotopy operator h, then

Λ• g∗ − Λ• f
∗

= h ◦ d∇ + d∇N ◦h , (4.10)

with ∇N being as in n. 4.4.2.

Proof. Let G : IN → M be the fat map corresponding to
{
Gt

}
t∈[0,1]

,

it : N → IN the fat embedding at t ∈ I = [0, 1] and ∂/∂t the standard ‘time’

field on IN = N × I. If � is the induced by G from ∇ linear connection,

then

Λ• g∗(ω)− Λ• f
∗
(ω)

Exer. 4.4.3
=

∫ 1

0

d

d t
Λ•Gt

∗
(ω) d t =

∫ 1

0

d

d t
Λ• it

∗
(
Λ•G

∗
(ω)
)

d t

Exer. 3.5.4, n. 3.5.13, Prop. 3.5.15, n. 4.4.2
=

∫ 1

0

Λ• it
∗
(
i ∂

∂t

(
d�

(
Λ•G

∗
(ω)
))

+ d�

(
i ∂

∂t

(
Λ•G

∗
(ω)
)))

d t

n. 4.4.2
=

∫ 1

0

Λ• it
∗
(
i ∂

∂t

(
Λ•G

∗
(d∇ (ω))

))
d t

+

∫ 1

0

d∇N

(
Λ• it

∗
(
i ∂

∂t

(
Λ•G

∗
(ω)
)))

d t

n. 4.4.4
=

∫ 1

0

rt(d∇(ω)) d t+

∫ 1

0

d∇N (rt(ω)) d t
Exer. 4.4.3

= h(d∇(ω))+d∇N (h(ω)) ,

as required. �
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Corollary. Let ∇ be a flat linear connection on a fat manifold M . If

f, g : N → M are ∇-homotopic, then the induced homomorphisms

H•
∇

(
f
)
,H•

∇ (g) : H•
∇

(
M
)
→ H•

∇

(
N
)

coincide.

Proof. In this case (4.10) tells that the homotopy operator h associated

with a ∇-homotopy connecting f and g is a cochain homotopy connecting

cochain maps Λ• f
∗

and Λ• g∗ of the complex (Λ•(M), d∇) to (Λ•(N, d∇N )

(cf., e.g., [Hilton and Stammbach (1971), Chap. IV, Proposition 3.1]). �

4.5 Characteristic Classes

Cd-modules of the form (Λ•(P ), d∇) are not generally cochain complexes.

So, no cohomology can be associated with them straightforwardly. Nev-

ertheless, there are various cohomologies related with a connection. They

may be subdivided into two classes formed by ‘fine’ and ‘rough’ cohomolo-

gies, respectively. ‘Fine’ cohomologies characterize a connection itself and

change when passing from one connection to another. On the contrary,

‘rough’ cohomologies do not depend on a concrete connection preserving an

internal structure in a fat manifold. Hence such cohomologies characterize

fat manifolds supplied with an internal structure and are called character-

istic classes. Below we show how both kind of cohomologies related with

connections arise and the corresponding basic constructions.

Construction of characteristic classes requires a reciprocal action of var-

ious structures of the ‘connection calculus’ that were introduced and dis-

cussed previously. So, this section is instructive also in this sense.

4.5.1

The starting point is the following observation. Let P and Q be A-modules

supplied with linear connections ∇ and �, respectively. Assume addition-

ally that � is flat. If ϕ : Λ•(P )→ Λ•(Q) is a homomorphism of cd-modules

over Λ•(A) (see n. 3.3.3), then for all ω ∈ Kerd∇ ϕ (ω) is cocycle of the

complex (Λ•(Q), d�). Denote by [ϕ (ω)]
�

its cohomology class in H•
� (Q),

i.e., the coset ϕ (ω) + Im d�. But ϕ (Im d∇) ⊆ Im d�, and hence

ϕ (ω + Im d∇) ⊆ ϕ (ω) + Im d� ⊆ ϕ (ω) + Ker d� .

So, although Ker d∇ + Imd∇ 6⊆ Kerd∇ (generally), ϕ induces a map

Kerd∇ + Imd∇

Im d∇
→

Kerd�

Im d�

= H•
�(Q) .
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Now we observe that (Ker d∇ + Im d∇) / Imd∇ is the cohomology of the

complex
(
Cokerd2

∇, δ∇
)
, where δ∇ = d∇ mod d2

∇. Denote it by K•
∇. Thus

any homomorphism of the cd-module (Λ•(P ), d∇) in a flat cd-module

(Λ•(Q), d�) induces a homomorphism K•
∇ → H•

�(Q). In this the coho-

mology K•
∇ is universal with respect to cd-homomorphisms of (Λ•(P ), d∇)

to flat cd-modules over Λ•(A). It is worth mentioning that Cokerd2
∇

is a cd-module over Λ•(A) due to the fact that d2
∇ = R∇ is a Λ•(A)–

homomorphism. Obviously, K•
∇ = H•

∇(P ) if ∇ is flat.

A natural isomorphism

Ker d∇ + Im d∇

Im d∇

∼=
Kerd∇

Kerd∇ ∩ Im d∇

shows that K•
∇ may be interpreted as the cohomology of the complex(

Kerd2
∇, d∇

)
.

4.5.2

More generally, for a given nonnegative s consider complexes

(
Im ds

∇

Im ds+2
∇

, δ∇,s

)
and

(
Im ds

∇ ∩Kerd2
∇, d∇

)

where δ∇,s is naturally induced by d∇.

Exercise. Show that cohomologies of these complexes are isomorphic.

Denote them by K•
∇,s and note that a homomorphism of cd-modules

ϕ : (Λ•(P ), d∇)→ (Λ•(Q), d�) induces a mapK•
∇,s → K•

�,s. Cohomologies

K•
∇,s, s = 0, 1, . . ., are ‘fine’, i.e., generally change when passing from one

connection to another. They were not studied systematically and their

geometrical meaning is still not very clear.

4.5.3

Cohomologies of the above kind can be, in fact, associated with any

sequence of linear maps and, in particular, with a linear operator. If

δ : V → V is a linear operator, V being a finite dimensional vector space

over a field k, then the dimension of the cohomology space of the complex(
Im δs−1 ∩Ker δ2, δ

)
is equal to the number of nilpotent Jordan s× s cells

in the Jordan decomposition of δ.
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4.5.4

In the case when Q = A and d∇ = d, the above construction gives a map

K•
∇ → H•(A) (de Rham cohomology of A) induced by a cd-module homo-

morphism ϕ : Λ•(P )→ Λ•(A). In particular, if ∇ is a linear connection in

a fat manifold M , then this construction gives a map K•
∇ → H•(M) (de

Rham cohomology of M). So, this procedure allows us to associate with ∇

some cohomology classes ofM . They become global invariants of ∇ if ϕ can

be chosen in a canonical manner, as well as some cohomology classes in K•
∇.

At this point it is very important noticing that we can get a cohomologi-

cal characterization of ∇ by applying the above procedure to connections

associated with ∇, such as ∇End, ∇Bil, etc., as well. For instance, the

Bianchi identity (Proposition 3.2.14) tells us that R∇ is d∇End–closed and

hence defines a cohomology class ζ∇ ∈ K
2
∇End canonically associated with

∇. Then we need a linear map ϕ : EndP → A. A natural candidate for a

such one is ϕ = tr, i.e., the map that associates with an endomorphism its

trace. Below this idea is implemented.

4.5.5

Let V be a k-vector space of dimension r and L : V → V a linear operator.

The operator L extends uniquely to the whole exterior algebra
∧•

V of V

as a derivation ∂L of zeroth degree, i.e.,

∂L (w1 ∧ w2) = ∂L (w1) ∧ w2 + w1 ∧ ∂L (w2)

for w1, w2 ∈
∧•

V and ∂L(v) = L(v) if v ∈ V . The r-th exterior power of

V is 1-dimensional. So, the restriction of ∂L to
∧r

V is multiplication by a

number called the trace of L and denoted by trL.

Exercise. Check that this (conceptual) definition of the trace coincides

with the standard one, and that [∂L, ∂L′ ] = ∂[L,L′], L,L
′ ∈ EndV .

4.5.6

From now on, in order to avoid improper algebraic digressions, we make

the following assumptions: the k-algebra A has zero characteristic and the

A-module P is projective, finitely generated and has constant rank r.

The definition of trace given in n. 4.5.5 directly extends to Λ•(A)–

modules of the form Λ•(P ).
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Namely, let L : Λ•(P ) → Λ•(P ) be a graded Λ•(A)–module endomor-

phism (see n. 0.1.1). Consider the exterior algebra P ∧ def
=
∧•

P . Its top

component P∧
r =

∧r
P , is a projective A-module of constant rank 1. Hence

any Λ•(A)–module endomorphism of Λ• (P∧
r ) = Λ•(A)⊗P∧

r (see n. 0.5.10)

is multiplication by a form ω ∈ Λ•(A) (cf. n. 0.1.5, (10)).

The wedge product ‘∧’ in Λ•(A) and the wedge product ‘∧P ’ in P∧

are combined in a common product Z in Λ• (P∧) = Λ•(A) ⊗A P∧ =⊕
s,t Λs

(∧t
P
)
. Explictly:

(ω ∧ Π) Z (ω′ ∧ Π′) = (ω ∧ ω′) ∧ (Π ∧P Π′) , ω, ω′ ∈ Λ•(A),Π,Π′ ∈ P∧ .

With this product Λ• (P∧) becomes a bigraded commutative algebra:

κ Z κ′ = (−1)ss′+tt′κ Z κ ,

where κ ∈ Λs
(∧t

P
)
,κ′ ∈ Λs′

(∧t′
P
)
.

The endomorphism L extends to Λ• (P∧) as a graded Λ•(A)–

derivation ∂L:

∂L (κ Z κ′) = ∂L (κ) Z κ′ + (−1)s deg L κ Z ∂L (κ′) ,

∂L|Λ•(A) = 0, ∂L|Λ•(P ) = L

(2); or, also,

∂L (ω ∧ Π ∧P Π′)

= (−1)s deg L ω ∧ ∂L (Π) ∧P Π′ + (−1)s deg L ω ∧Π ∧P ∂L (Π′)

(here κ ∈ Λs (P∧), κ′ ∈ Λ• (P∧), ω ∈ Λs(A), Π,Π′ ∈ P∧). Then ∂L|Λ•(P∧
r )

is a Λ•(A)–endomorphism of Λ• (P∧
r ) and, as it was noticed above, is a

multiplication by a form, denoted by tr(L), i.e.,

∂L(Θ) = tr(L) ∧Θ, Θ ∈ Λ• (P∧
r ) , tr(L) ∈ Λ•(A) .

Exercise. Check that

[∂L, ∂L′ ](gr) = ∂[L,L′](gr) , L, L′ ∈ End
(gr)
Λ•(A) (Λ•(P )) ,

where [·, ·](gr) stands for the graded commutator with respect to the Λ•(A)–

grading.

2Here Λ•(A) and Λ•(P ) are regarded as a subset of Λ• (P∧) due to the identifications
A = P∧

0
, P = P∧

1
.
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4.5.7

Let now Y be a graded der-operator acting in the Λ•(A)–module Λ•(P )

over a graded derivation Y : Λ•(A) → Λ•(A). This means that degrees of

Y and Y coincide and

Y (ω ∧ κ) = Y (ω) ∧ κ + (−1)r deg Y ω ∧ Y (κ) , ω ∈ Λr(A),κ ∈ Λ•(P ) .

As in n. 4.5.6, Y extends to Λ• (P∧) as a graded derivation ∂Y , i.e.,

∂Y (κ Z κ′) = ∂Y (κ) Z κ′ + (−1)s deg Y κ Z ∂Y (κ′) ,

∂Y |Λ•(A) = Y, ∂Y |Λ•(P ) = Y ;

or, also,

∂Y (ω ∧Π) = Y (ω) ∧ Π + (−1)s deg Y ω ∧ ∂Y (Π),

∂Y (Π ∧P Π′) = ∂Y (Π) ∧P Π′ + Π ∧P ∂Y (Π′)

∂Y |Λ•(P ) = Y

(here κ ∈ Λs (P∧), κ′ ∈ Λ• (P∧), ω ∈ Λs(A), Π,Π′ ∈ P∧).

Exercise. With Y being as above and L as in n. 4.5.6, check that
[
Y , L

]gr

is an endomorphism of the Λ•(A)–module Λ• (P∧) and

[∂Y , ∂L]gr = ∂[Y ,L]
gr . (4.11)

By restricting (4.11) to Λ• (P∧
r ) we obtains the following important formula

tr
([
Y , L

]gr)
= Y (tr(L)) . (4.12)

Indeed, if Θ ∈ Λ• (P∧
r ), then

[∂Y , ∂L]
gr

(Θ) = ∂Y (∂L(Θ))− (−1)deg Y deg L∂L (∂Y (Θ))

= ∂Y (tr(L) ∧Θ)− (−1)deg Y deg L tr(L) ∧ ∂Y (Θ)

= Y (tr(L))∧Θ+(−1)deg Y deg L tr(L)∧∂Y (Θ)−(−1)deg Y deg L tr(L)∧∂Y (Θ)

= Y (tr(L)) ∧Θ ;

on the other side,

∂[Y ,L]gr(Θ) = tr
([
Y , L

]gr)
∧Θ .
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Now, by applying (4.12) to Y = d∇, Y = d and a zeroth degree Λ•(A)–

endomorphism of Λ•(P ) ϕ for L, we get [d∇, ϕ]
gr

= d tr(ϕ). But [d∇, ϕ]
gr

=

d∇End(ϕ). So, tr (d∇End(ϕ)) = d tr(ϕ) for all ϕ. This proves that

tr ◦ d∇End = d ◦ tr , (4.13)

i.e., that the map tr : Λ• (End(P )) → Λ•(A) is a homomorphism of cd-

modules. As such, tr induces a map in cohomology

Htr : K•
∇End 7→ H•(A)

and we obtain the cohomology class tr(∇)
def
= Htr (ζ∇) ∈ Λ2(A) (see

n. 4.5.4). If P = Γ
(
M
)
, then tr(∇) ∈ H2(M).

4.5.8

The last question to be asked now is: whether the class tr(∇) is non-

trivial. The answer is apparently disappointing. Indeed, a more detailed

analysis (see Proposition 4.5.29) shows that it is trivial. Nevertheless, the

ideas we previously used in constructing tr(∇) remain valid and give a

positive result if one will extract from them more than it was done up to

now. One of possible suggestions on how it could be done comes from

the observation that a linear invariant function on End(P ), namely, the

trace, leads almost automatically to the necessary cd-module homomor-

phism Λ• (End(P )) → Λ•(A). But endomorphisms posses many other in-

variants which are polynomial and hence cannot be used directly for con-

struction of the needed cd-module homomorphism. However, this is not

a difficulty because a polynomial can be treated as a linear function on a

suitable symmetric power of the base vector space. Even more, one can

immediately select a d�–closed element in K•
�, where � is the induced by

∇ connection in this symmetric power Sk (End(P )). This element is noth-

ing but the l-th power of R∇. As invariant polynomials one may take, for

instance, coefficients of the characteristic polynomial. The details are as

follows.

4.5.9 Linear Functions and Connections

First, we describe some constructions that allow to duly formalize what was

said before.

Let X ∈ D
(
M
)

and
{
Gt

}
t∈R

be the one-parameter group generated by

X. A linear function on M is a C∞(M)–linear map L : Γ
(
M
)
→ C∞(M),
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i.e., L ∈M
∨
. Geometrically L may be interpreted as a family Lm : m→ R,

m ∈M , of of linear functions on fat points. The map L is called invariant

with respect to X if (locally)

L ◦Gt
∗

= G∗
t ◦ L, t ∈ R . (4.14)

The equivalent infinitesimal version of (4.14) is obtained by applying to it

the operator (d / d t)|t=0:

L ◦X = X ◦ L . (4.15)

Definition. Let ∇ be a linear connection in P . An A-linear function L :

P → A is called invariant with respect to ∇ if

L ◦ ∇X = X ◦ L, ∀X ∈ D(A) ,

i.e., if

d∇∨(L) = 0 .

The function L induces a homomorphism of Λ•(A)–modules

Λ•(L) : Λ•(P )→ Λ•(A), ω ⊗ p 7→ L(p)ω

with ω ∈ Λ•(A), p ∈ P .

Proposition. The function L is invariant with respect to ∇ if and only if

Λ•(L) ◦ d∇ = d ◦Λ•(L) .

Proof. Since iX ◦Λ•(L) = Λ•(L) ◦ iX the result follows from ∇X =

iX ◦ d∇

∣∣
P

and X = iX ◦ d|A. �

In particular, this proposition holds for fat manifolds.

4.5.10 Polynomials and Connections

An l-th degree polynomial on an A-module P is a function f : P → A

such that f(q) = Π (p, . . . , p), where Π : P × · · · × P → A (l factors) is a

symmetric A-multilinear function on P . Formula

Π (p1, . . . , pl) =
1

l!

∑

1≤i1<...<is≤l

(−1)l−sf (pi1 + · · ·+ pis
)

shows that not only Π determines f but, vice versa, f completely determines

Π. The polynomial determined by a symmetric A-multilinear Π will be de-

noted by fΠ and, conversely, such a function corresponding to a polynomial
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f will be denoted by Πf . The function Π can be identified with an element

of Poly(P )
def
= Hom

(
Sl(P ), A

)
, i.e., a linear function on Sl(P ). Since we

are assuming that P is projective and finitely generated, Hom
(
Sl(P ), A

)

is canonically identified with Sl (P∨). A linear connection ∇ in P induces

a linear connection ∇Poly in Poly(P ):

d∇Poly(Π) (p1, . . . , pl) = d Π (p1, . . . , pl) −

l∑

s=1

ΠΛ (p1, . . . , d∇ ps, . . . , pl)

(recall that, according to n. 3.6.10, ΠΛ : Λ•
(
Sl(P )

)
→ Λ•(A) is the exten-

sion of Π : Sl(P ) → A, and hence can be thought as a graded symmetric

Λ•(A)-multilinear function on Λ•(P )).

Definition. A polynomial f on P is called invariant with respect to a

linear connection ∇ in P if d∇Poly (Πf ) = 0.

It immediately follows from the definition of ∇Poly that

∇Poly(Π) = Π ◦ d∇Syml − d ◦Π .

So, invariance of f with respect to ∇ is equivalent to equality Πf ◦

d
∇Syml − d ◦Πf and we have the following fact.

Proposition. If a polynomial f on P is invariant with respect to ∇, then

ΠΛ
f : Λ•

(
Sl(P )

)
→ Λ•(A) is a homomorphism of cd-modules.

4.5.11 Invariant Polynomials from Geometrical Point

of View

Let M be a fat manifold and f be a polynomial on P = Γ
(
M
)
. Recall that

f can be interpreted as a smooth function on M which is polynomial on

any fat point m (cf. the footnote in n. 0.3.24). Denote this interpretation

by fgeom, i.e.,

fgeom(y) = f(s)(m), if y = s(m) ∈ m and s ∈ Γ
(
M
)
.

Let ∇ be a linear connection in M . Denote by X∇ the vector field on M

corresponding to the fat field ∇X (see n. 1.4.5) and by fm the restriction

of fgeom to the fat point m understood as a vector space.

Exercise. Prove that f is invariant with respect to∇ if one of the following

two assertions holds:
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(1) fgeom ◦ X∇ = X ◦ fgeom, ∀X ∈ D(M);

(2) if the fat flow generated by ∇X sends m to mt ‘in t seconds’, then the

corresponding to m→ mt pull-back sends fmt
to fm.

4.5.12 Characteristic Polynomial of an Endomorphism

An endomorphism ϕ of P naturally extends to an endomorphism ϕ∧ =
∧• ϕ

of the algebra P∧ =
∧•

P :

ϕ∧ (p1 ∧ · · · ∧ pl) = ϕ (p1) ∧ · · · ∧ ϕ (pl) , p1, . . . , pl ∈ P .

Set ϕ∧
s =

∧s
ϕ and recall that every endomorphism of P∧

r is multiplication

by an element of A. Denote such an element for the endomorphism ϕ∧
r by

detϕ. In other words, ϕ∧
r (p̂) = (detϕ) p̂ for all p̂ ∈ P∧

r .

Exercise. Let h ∈ |A| and ϕ ∈ End(P ). According to n. 0.1.5, (9) (and in

notation of n. 0.3.1), ϕ + Kerh ∈ (End(P ))h naturally corresponds to an

endomorphism ϕh : Ph → Ph. Prove that detϕh = h (detϕ).

In particular, if P = Γ
(
M
)
, then ϕ ∈ End(P ), P = Γ

(
M
)
, is inter-

preted geometrically as a family of linear operators ϕm : m→ m, where m

is understood as a vector space. Then (detϕ)m = detϕm.

The characteristic polynomial chϕ(t) of ϕ ∈ End(P ) is defined as

chϕ(t) = det (ϕ− t idP ) .

Set

chϕ(t) =

r∑

l=0

(−1)r−lCr,l(Π)tr−l .

Then Cr,l : End(P )→ A is a polynomial of degree l on P .

4.5.13

Exercise. Prove that Cr,l = trϕ∧
l .

4.5.14 Multilinear Functions Corresponding

to Determinants

Now we describe explicitly a symmetric A-multilinear function on EndP

that naturally corresponds to det = detr, with r being the constant rank

of the projective A-module P (see n. 4.5.6). To this end, associate with
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endomorphisms ϕ1, . . . , ϕs ∈ End(P ) the endomorphism ∆ (ϕ1, . . . , ϕs) ∈

End (P∧
s ) defined as

∆ (ϕ1, . . . , ϕs) (p1, . . . , ps)
def
= ϕ1 (p1) ∧ · · · ∧ ϕs (ps) .

Obviously, ∆ is an s-linear function on End(P ) with values in End (P ∧
s ) (not

skew-symmetric!). Since the A-module P∧
r is projective, finitely generated

and has constant rank 1, any its endomorphism is multiplication by an

element of A. By denoting δ (ϕ1, . . . , ϕr) such an element for ∆ (ϕ1, . . . , ϕr),

we have

∆ (ϕ1, . . . , ϕr) (p̂) = δ (ϕ1, . . . , ϕr) p̂, p̂ ∈ P∧
r . (4.16)

A-multilinearity of ∆ (ϕ1, . . . , ϕr) immediately implies A-multilinearity of

δ (ϕ1, . . . , ϕr). Observe also that ϕ∧
r = δ (ϕ, . . . , ϕ) (r times). So, detϕ =

δ (ϕ, . . . , ϕ). By this reason the symmetrization of δ gives the symmetric

A-multilinear function on End(P ), denoted by Detr, that corresponds to

the polynomial function det:

Detr (ϕ1, . . . , ϕr) =
1

r!

∑

σ∈Sr

δ
(
ϕσ(1), . . . , ϕσ(r)

)
, (4.17)

with Sr being the group of all permutations of {1, . . . , r}.

In the sequel natural extensions of A-multilinear functions ∆, δ and

Detr on P∧
r to Λ•(A)–multilinear functions on EndΛ•(A) (Λ• (P∧

r )) will be

denoted by the same symbols. Formulas like (4.16) or (4.17) remain valid

for these extensions. For instance,

∆ (ϕ1, . . . , ϕr) (ω ⊗ p̂) = δ (ϕ1, . . . , ϕr)ω ⊗ p̂, ω ∈ Λ•(A), p̂ ∈ P∧
r .

4.5.15 Invariance of Detr

Now we are ready to prove invariance of Detr with respect to d(∇End)S
r , ∇

being a linear connection in P . To this end, we need the formula

d (δ (ϕ1, . . . , ϕr)) =
r∑

i=1

δ (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr) , (4.18)

a proof of which is as follows. First, note that

ϕ ◦ d∇ = d∇ ◦ϕ+ [ϕ, d∇] = d∇ ◦ϕ− d∇End(ϕ), ϕ ∈ End(P ) .
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Then we have

δ (ϕ1, . . . , ϕr) d∇
∧r = ∆ (ϕ1, . . . , ϕr) ◦ d∇

∧r

=

r∑

i=1

∆ (ϕ1, . . . , ϕi ◦ d∇, . . . , ϕr)

=
r∑

i=1

∆ (ϕ1, . . . , d∇ ◦ϕi, . . . , ϕr)−
r∑

i=1

∆ (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr)

= d∇
∧r ◦∆ (ϕ1, . . . , ϕr)−

r∑

i=1

∆ (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr)

= d (δ (ϕ1, . . . , ϕr)) idP∧
r

+δ (ϕ1, . . . , ϕr) d∇
∧r

−

r∑

i=1

δ (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr) idP∧
r
.

Second,

d∇
∧r (∆ (ϕ1, . . . , ϕr) (p̂)) = d∇

∧r (δ (ϕ1, . . . , ϕr) p̂)

= d (δ (ϕ1, . . . , ϕr)) p̂+ δ (ϕ1, . . . , ϕr) d∇
∧r (p̂) , p̂ ∈ P∧

r .

In other words,

d∇
∧r ◦∆ (ϕ1, . . . , ϕr)

= d (δ (ϕ1, . . . , ϕr)) idSr(Λ•(End(P ))) +δ (ϕ1, . . . , ϕr) d∇
∧r .

This gives the desired result.

Proposition. The A-multilinear function Det (ϕ1, . . . , ϕr) on Sr (End(P ))

is invariant with respect to the connection
(
∇End

)S
, ∇ being a linear con-

nection in P .

Proof. By combining formulas (4.17) and (4.18) one easily obtains that

d (Detr (ϕ1, . . . , ϕr)) =

r∑

i=1

Detr (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr) .

On the other hand,
r∑

i=1

Detr (ϕ1, . . . , d∇End (ϕi) , . . . , ϕr) =
(
Detr ◦ d(∇End)S

r

)
(ϕ1, . . . , ϕr) .

Hence,

d (Detr (ϕ1, . . . , ϕr)) =
(
Detr ◦ d(∇End)S

r

)
(ϕ1, . . . , ϕr)

and, therefore,

d ◦Detr = Detr ◦ d(∇End)S
r . (4.19)

�
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4.5.16 Invariance of Detr,l

Denote by Detr,l the symmetric A-multilinear function on End(P ) that

corresponds to the polynomial Cr,l . As it is easy to see,

Detr,l =

(
l

r

)−1

Detr ◦Υr,l, 1 ≤ l ≤ r ,

where

Υr,l : Sl (End(P ))→ Sr (End(P )) , ϕ1 · · ·ϕr 7→ ϕ1 · · ·ϕr · idP
r−l .

Since

d
(∇End)S

l = d(∇End)S
r ◦Υl,r

we prove the following assertion by composing (4.19) from the right by(
l
r

)−1
Υl,r.

Proposition. The symmetric A-multilinear function Detr,l on the module

Sl (End(P )) is invariant with respect to the connection

(
∇End

)Sl

for every linear connection ∇ in P , i.e.,

d ◦Detr,l = Detr,l ◦ d(∇End)S
r . (4.20)

4.5.17 Geometric Approach to Invariance

An advantage of the above algebraic proof of the invariance of Detr,l is that

it is valid in wider algebraic context and gives explicit formulas that can

be used in actual computations. For fat manifolds the invariance can be

proved geometrically in a simple direct way as it is explained below. This

simplicity is due to the equivalence of ‘finite’ and ‘infinitesimal’ versions of

the notion of invariance (see n. 4.5.9).

Definition. Let ∇ be a linear connection on a fat manifold M . A function

f ∈ C∞
(
M
)

is called ∇-constant if

fγ(t0) = fγ(t1) ◦T
γ
t0,t1 , ∀γ, t0, t1 , (4.21)

where fm stands for the restriction of f to the fiber m.

Proposition. A ∇-constant linear function L on M is invariant with

respect to ∇.
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Proof. Let X = ∇X and γ be a trajectory of X . Then relation (4.14)

is obviously, equivalent to (4.21). On the other hand, (4.14) implies (4.15)

(see n. 4.5.9). �

To proceed on we need two elementary facts formulated in the subse-

quent two exercises.

4.5.18

Let τ : V → W be an isomorphism of finite-dimensional vector spaces and

α be a l-th degree polynomial on W . Denote by Πα the linear function on

l-th symmetric tensor power Sl(W ) of W corresponding to α (see n. 4.5.10).

Exercise. Prove that

Πα ◦ Sl τ = Πα◦τ . (4.22)

4.5.19

Another geometrically obvious fact we leave to the reader is the following.

Exercise. Let T
def
= Tγ

t0,t1 be a parallel translation operator via a linear

connection connection ∇ on a fat manifold M . Then Sl (T) is the parallel

translation operator (from t0 to t1 along γ) via the connection ∇Sl

.

Hint. Reduce the problem to the fat interval supplied by the induced by

γ connection.

4.5.20

A direct consequence of (4.22) and the last exercise is the following.

Proposition. If f is an l-th degree ∇-constant polynomial on M , then Πf

(see n. 4.5.10) is a ∇Sl

linear function on M
Sl

.

This proposition combined with Proposition 4.5.17 prove the following

assertion, which is key in the geometrical approach to invariance.

Corollary. ∇-constant polynomials on a fat manifold M are invariant with

respect to ∇.
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4.5.21

A geometric proof of the invariance of Detr,l and similar functions is based

on a due specialization of Corollary 4.5.20. The only fact we need to this

end is formulated in the following analogue of Exercise 4.5.19.

Exercise. Let T
def
= Tγ

t0,t1 be a parallel translation operator via a linear

connection ∇ on a fat manifold M . Prove that the parallel translation via

∇End is

ϕ 7→ T ◦ ϕ ◦T−1 ,

ϕ being an endomorphism of the fiber m0 over m0 = γ (t0).

Recall that general fiber F of M is a finite-dimensional vector space and

the type of M is dimF . Let ν be an ad-invariant polynomial on End(F ),

i.e.,

ν(ϕ) = ν
(
R ◦ ϕ ◦R−1

)
, ∀ϕ ∈ End(F ), R ∈ Aut(F ) .

We define a polynomial fν on M
End

whose restriction fν
m to the fiber m is

defined by

fν
m(ϕ) = ν

(
I ◦ ϕ ◦ I−1

)
,

where I : m → F is an isomorphism. Correctness of this definition, i.e.,

independence of a choice of I , is due to ad-invariance of ν.

Proposition. The polynomial f ν is invariant with respect to ∇End for

every linear connections ∇ on M .

Proof. In view of Corollary 4.5.20 it suffices to prove that f ν is ∇End–

constant. Let T
def
= Tγ

t0,t1 , m0 = γ (t0), m1 = γ (t1). Denote by TEnd

the parallel translation from t0 to t1 along γ in M
End

via ∇End. Then,

according to Exercise 4.5.21, TEnd(ϕ) = ϕ 7→ T ◦ ϕ ◦T−1. If I0 : m0 → F

is an isomorphism, then I1
def
= I0 ◦ T−1 : m1 → F is an isomorphism too,

and

(
fν

m1
◦TEnd

)
(ϕ) = fν

m1

(
T ◦ ϕ, ◦T−1

)
= ν

(
I1 ◦T ◦ ϕ ◦T

−1 ◦ I−1
1

)

= ν
(
I0 ◦ ϕ ◦ I

−1
0

)
= fν

m0
(ϕ) .

Thus fν
m0

= fν
m1
◦TEnd, i.e., fν is ∇End–constant. �
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To conclude it remains to observe that for a fixed t ∈ R, Φ 7→

det (Φ− t idF ), Φ ∈ End(F ), is an ad-invariant function on End(F ). By

this reason coefficients of the characteristic polynomial, which up to signs

coincide with Cl : End(F ) → A, are ad-invariant as well. Hence poly-

nomials fCl , l = 1, . . . , r, on M
End

are invariant with respect to every

connection of the form ∇End. If P = Γ
(
M
)
, then functions Cr,l consid-

ered in n. 4.5.12 coincide with fCl . Hence ∇End-invariance of Cr,l’s is a

consequence of Proposition 4.5.21.

4.5.22 Dependence on ∇

Let M and ∇ be as before, and P = Γ
(
M
)
. Put

(
R∇
)s

= R∇ · · ·R∇ (s

times; see n. 4.5.9). Then R∇s
∈ Λ2s (Ss (End(P ))). Since

d(∇End)S
s

((
R∇
)s)

=

s∑

i=1

R∇ · · · d∇End R∇ · · ·R∇ = 0 ,

Detr,s

((
R∇
)s)
∈ Λ2s(M) is a cocycle. Denote its cohomology class by

ζ∇s ∈ H2s(M).

Proposition. The class ζ∇s does not depend on ∇.

Proof. Let � be another linear connection in M . Then ∇t
def
= (1− t)∇+

t�, t ∈ R is a family of connections such that ∇0 = ∇, ∇1 = �, and

d∇t
= d∇ +th, with h = d�− d∇ ∈ Λ1 (End(P )). Recall that d∇End

t
(h) =

[d∇t
, h]

gr
= d∇t

◦h+ h ◦ d∇t
. So, (d / d t) (d∇t

) = h and

d

d t

(
R∇t

)
=

d

d t
(d∇t

◦ d∇t
) = h ◦ d∇t

+ d∇t
◦h = d∇End

t
(h) .

Moreover, in view of the Bianchi identity, we have

d(∇End)S
s

(
R∇ · · ·h · · ·R∇

)
= R∇ · · ·d∇End(h) · · ·R∇

and hence

d

d t

((
R∇t

)s)
=

s∑

i=1

R∇t · · ·
d

d t

(
R∇t

)
· · ·R∇t

=

s∑

i=1

R∇t · · ·d∇End(h) · · ·R∇t

= d(∇End)S
s

(
s∑

i=1

R∇t · · ·h · · ·R∇t

)
.
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In other words,

d

d t

((
R∇t

)s)
= d(∇End)S

s (Θt) ,

with Θt =
∑s

i=1 R
∇t · · ·h · · ·R∇t .

Finally, let I : Λ• (Ss (End(P ))) 7→ Λ•(M) be a homomorphism of cd-

modules. Then, with the Newton-Leibnitz formula we obtain:

I
((
R∇1

)s)
−I
((
R∇0

)s)
=

∫ 1

0

d

d t

(
I
(
R∇t

)s)
d t =

∫ 1

0

d

d t
I

(
d

d t

(
R∇t

)s)

det

=

∫ 1

0

I
(
d(∇End)S

s (Θt)
)

d t =

∫ 1

0

d (I (Θt)) d t

= d

(∫ 1

0

I (Θt) d t

)
.

This proves that cocycles I
((
R∇0

)s)
and I

((
R∇1

)s)
are cohomologous.

Thus with I = Detr,s we see that ζ∇s = ζ�
s . �

4.5.23 Characteristic Classes

Proposition 4.5.22 allows to associate some cohomology classes with a fat

manifold M by putting ζs
(
M
)

= ζ∇s
(
M
)
∈ H2s(M). We shall also

write ζ∇s (ξ) with ξ : M → M being the projection. According to tra-

ditional terminology these classes are called characteristic classes of the

vector bundle ξ. More exactly, classes ζ∇s (ξ) are trivial for odd s, as

it will be shown later, while classes ζ∇2s(ξ) are, generally, nontrivial and

ps(ξ)
def
= (2π)

−2s
ζ∇2s(ξ) are known as Pontrjagin classes of ξ. Characteristic

classes of the tangent bundle of a manifold M are called its characteristic

classes. In Riemannian geometry the Levi-Civita connection ∇ is, as a rule,

used in constructions of classes ζ∇2s.

4.5.24 Naturalness of Characteristic Classes

An important property of characteristic classes is their naturalness with

respect to fat maps. This means that for a fat map f : N →M

H• f∗
(
ζs
(
M
))

= ζs
(
N
)
, (4.23)

where H• f∗ is the induced by Λ• f∗ map in de Rham cohomology. Indeed,

let ∇ and � be f -compatible linear connections in M and N , respectively.
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Then, by definition, Λ• f
∗

: Λ•
(
M
)
7→ Λ•

(
N
)

is a homomorphism of cd-

modules. So,

Λ• f
∗
◦R∇ = Λ• f

∗
◦ d2

∇ = d� ◦Λ• f
∗
◦ d∇

= d2
� ◦Λ• f

∗
= R� ◦ Λ• f

∗
.

The established relation Λ• f
∗
◦R∇ = R� ◦Λ• f

∗
is interpreted as

Λ• f
∗

End

(
R∇
)

= R� ,

where fEnd : N
End
→ M

End
is a fat map naturally induced by f . Simi-

larly, it is not difficult to see that connections ∇End and �
End are fEnd–

compatible.

Exercise. Prove that connections
(
∇End

)Ss

and
(
�End

)Ss

are
(
fEnd

)
Ss–

compatible if ∇ and � are f -compatible and use this fact in order to

prove (4.23).

4.5.25

A refinement of the previously discussed construction of characteristic

classes allows us to introduce more delicate ones for fat manifolds sup-

plied with a gauge structure. In the rest of this section we shall show how

to do it for fat bilinear forms and then present a general scheme. In fact,

the construction we are going to describe can be reproduced in a much

wider algebraic context. However, this requires a rather substantial alge-

braic preparation which goes beyond the scope of this book. Nevertheless,

in order to stress an algebraic nature of the construction we shall use as

before an algebraic flavor notation.

Namely, we fix a fat manifold M and put A = C∞(M), P = Γ
(
M
)
.

Let b be a bilinear form on P , recall that F denotes a general fiber of

M and let β a corresponding to b general bilinear form on F . Denote by

g the Lie algebra of infinitesimal symmetries of b (see n. 1.7.4). The Lie

algebra g is both an A-submodule and a Lie subalgebra of End(P ). Then

a general fiber of M
g

(see n. 1.1.2) is the Lie algebra o(β) of infinitesimal

symmetries of β.

Recall that bΛ is a natural extension of b to Λ•(P ):

bΛ (ω ⊗ p,κ ⊗ q) = (ω ∧ κ) b (p, q) , ω,κ ∈ Λ•(A), p, q ∈ P

(see n. 3.6.10).
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Then Λ•(g) is identified with graded infinitesimal symmetries of βΛ,

i.e.,

βΛ (Φ (θ1) , θ2) + (−1)degΦ·deg θ1βΛ (θ1,Φ (θ2)) = 0 (4.24)

with θ1, θ2 ∈ Λ•(P ), Φ ∈ Λ•(g) . If θ = ω ⊗ p ∈ Λ•(P ), Φ = κ ⊗ χ, with

ω,κ ∈ Λ•(A), p ∈ P and χ ∈ g, then by definition (see n. 3.6.10)

Φ(θ) = (ω ∧ κ) ⊗ χ(p) .

Recall that (see n. 3.2.2) a connection ∇ in P preserves b if d∇Bil(b) = 0,

i.e.,

d
(
bΛ (θ1, θ2)

)
= bΛ (d∇ (θ1) , θ2) + (−1)deg θ1bΛ (θ1, d∇ (θ2)) ,

θ1, θ2 ∈ Λ•(P ) .

The following two facts added to the previous general scheme give what we

need in order to construct special characteristic classes, or, more exactly,

β-characteristic classes. They are a graded version of Exercise 2.5.2, (2)

and (3).

Proposition. Let ∇ be a linear connection, preserving a fat bilinear form

β. Then

(1) d∇End (Λ• (g)) ⊆ Λ• (g);

(2) R∇ ∈ Λ2 (g) ⊆ Λ2 (End(P )).

Proof. (1). Let p, q ∈ P , χ ∈ g. Then

bΛ (d∇End (χ)(p), q) + bΛ (p, d∇End(χ)(q))

= bΛ (d∇ (χ(p)) , q)− bΛ (χ (d∇(p)) , q)

+ bΛ (p, d∇ (χ(q)))− bΛ (p, χ (d∇(q))) .

But, since ∇ preserves b,

bΛ (d∇ (χ(p)) , q) = d
(
bΛ (χ(p), q)

)
− bΛ (χ(p), d∇(q))

and (see (4.24))

bΛ (χ (d∇(p)) , q) = −bΛ (d∇(p), χ(q))

and similarly for remaining two terms in the last expression. Taking this

into account one immediately gets:

bΛ (d∇End (χ)(p), q)+bΛ (p, d∇End(χ)(q)) = d
(
bΛ (χ(p), q)+bΛ (p, χ(q))

)
= 0 .
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This shows that d∇End(χ) ∈ Λ1 (g). Therefore d∇End (g) ⊆ Λ1 (g) and hence

d∇End (Λ• (g)) ⊆ Λ• (g).

(2). Similarly,

bΛ
(
R∇(p), q

)
+ bΛ

(
p,R∇(q)

)
= bΛ

(
d2
∇(p), q

)
+ bΛ

(
p, d2

∇(q)
)
.

By observing that bΛ
(
d2
∇(p), q

)
= bΛ (d∇(p), d∇(q)) and bΛ

(
p, d2

∇(q)
)

=

−bΛ (d∇(p), d∇(q)) we see that

bΛ
(
R∇(p), q

)
+ bΛ

(
p,R∇(q)

)
= 0 ,

i.e., R∇ ∈ Λ• (g). �

Corollary. Set d∇g = d∇End |Λ•(g). We have

(1) (Λ•(g), d∇g) is a cd-submodule of Λ• (End(P ), d∇End);

(2) d∇g

(
R∇
)

= 0 (Bianchi identity).

Consider now the s-th symmetric power Ss (g) of g and the correspond-

ing cd-module
(
Λ• (Ss (g)) , d(∇g)S

s

)
. Then by (2) of the above Corollary

we see that

d(∇g)S
s

((
R∇
)s)

= 0 . (4.25)

4.5.26

At this point it remains to find a cd-module homomorphism(
Λ• (Ss (g)) , d(∇End)S

s

)
→ (Λ•(A), d). To do that we just mimic n. 4.5.17.

Namely, let I be an s-th degree Ad-invariant polynomial on O (F, β)

(see n. 4.5.21). Denote by bm (respectively, gm) the restriction to the fiber

m of the form b (respectively, of the algebra g). By definition,

bm (s1(m), s2(m)) = b (s1, s2) (m), s1, s2 ∈ Γ
(
M
)

= P .

Similarly, if χ ∈ g ⊆ End
(
Γ
(
M
))

and s ∈ Γ
(
M
)
, then

χm (s(m))
def
= χ(s)(m) and gm = {χm : χ ∈ g} ⊆ End (m) .

Obviously, gm is a Lie subalgebra of End (m). Moreover, denote by

Isom the totality of isomorphisms u : F
∼
→ m that send β to bm, i.e.,

bm (u (e1) , u (e2)) = β (e1, e2), with e1, e2 ∈ F . Then for all u ∈ Isom the

map χ 7→ u ◦ χ ◦ u−1, with χ ∈ O(F, β), identifies O (F, β) and gm. By

Ad-invariance the polynomial I ◦ u−1 on gm does not depend on u ∈ Isom
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and will be denoted by Im. This allows to define a polynomial IM on

End
(
Γ
(
M
))

= End(P ) by putting

(IM (χ)) (m) = Im (χm) , χ ∈ g .

In other words, if IM is thought to be a function on M
g
, then IM |gm

= Im.

Finally, denote by LI the A-linear function on Ss (g) associated with IM .

Then the following assertion is literally proved as Proposition 4.5.20.

Proposition. The function LI : Ss (g)→ A is ∇-invariant with respect to

every linear connection ∇ on M that preserves the gauge bilinear form b

on M .

Recall that this means LI ◦ d∇g = d ◦LI where we slightly abuse the

notation by denoting by LI the Λ(A)-extension of LI to Λ• (Ss (g)). So, by

formula (4.25), the differential form LI

((
R∇
)s)

on M is closed.

4.5.27

Proposition. In the above notation, the cohomology class of LI

((
R∇
)s)

does not depend on the choice of a preserving b linear connection.

Proof. Let � be another preserving b linear connection. Then h
def
=

d�− d∇ ∈ Λ1(g) and connections ∇t
def
= (t− 1)∇+ t� = ∇+ th preserve b

as well, and ∇0 = ∇, ∇1 = �. Then arguments proving Proposition 4.5.22

show that

LI

((
R�

)s)
− LI

((
R∇
)s)

= LI

((
R∇1

)s)
− LI

((
R∇0

)s)

= d

(∫ 1

0

I
(
Θg

t

)
d t

)
,

where Θg
t stands for the restriction of Θt ∈ Λ2s−1 (Ss (End(P ))) to

Λ2s−1 (Ss (g)). �

4.5.28 β-Characteristic Classes

Proposition 4.5.27 assures correcteness of the following definition.

Definition. The de Rham cohomology class pI

(
M, b

)
∈ H2s(M) of the

closed form LI

((
R∇
)s)

is called a β-characteristic class of a gauge bilinear

form b on M .
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This definition presupposes existence of linear connections preserving b.

It can be proved by standard methods in Algebraic Topology, since such a

connection may be interpreted as a section of a fiber bundle whose fibers

are homotopy trivial (see, for instance, [Husemoller (1994), Chap. 2, The-

orem 7.1]). Denote by I(g) the algebra of ad-invariant polynomials on g.

The map wg,β : I(g)→ H•(M) is called the Weil homomorphism.

One of the principal properties of β-characteristic classes is naturalness.

Namely, let f : M1 →M2 be a fat map that sends a type β gauge bilinear

form b2 on M2 to a similar from b1 on M1, i.e.,

b1

(
f
∗
(p), f

∗
(q)
)

= f∗ (b2 (p, q)) , p, q ∈ Γ
(
M2

)
.

Then

Λ• f
∗ (
pI

(
M2, b2

))
= pI

(
M1, b1

)
.

For a proof it is just sufficient to repeat arguments in n. 4.5.24.

4.5.29

By varying the type of β one obtains various types of characteristic classes,

say, orthogonal,symplectic, etc. For instance, the orthogonal ones corre-

spond to positive definite forms β, while symplectic to nondegenerate skew-

symmetric.

Note that I(g) contains polynomials Cl (adχ), χ ∈ g, that are, up to

the sign, coefficients of the characteristic polynomial of the operator adχ :

g → g, χ′ 7→ [χ, χ′]. The linear function LI for I = Cl was denoted by

Detr,l. Hence, the Pontrjagin classes are among β-characteristic classes.

This obvious fact has various nontrivial consequences. One of them was

already mentioned in nn. 4.5.8 and 4.5.23.

Proposition. Characteristic classes ζs are trivial for odd s.

Proof. A linear combination
∑

i λiβi of positive definite bilinear forms

βi on a vector space V with positive coefficients λi is, obviously, positive

definite too. By this reason, positive definite forms constitute a convex

domain in the vector space of all symmetric bilinear forms. By standard

topological arguments this fact implies existence of gauge metrics for any

fat manifold. On the other hand, the algebra o (V, β) for a positive definite

β is isomorphic to so(r) and operators adχ, χ ∈ so(r) are skew-symmetric.

But coefficients Cs for skew-symmetric operators are trivial for odd s. �
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In particular, the class tr (∇) we started with (see n. 4.5.7) is trivial.

The following simple exercise shows that not all vector bundles admit

gauge pseudo-metrics of a prescribed signature (r, s).

Exercise. Prove that the tangent bundle of a 2-sphere does not admit

gauge pseudo-metrics of signature (1, 1).

4.5.30

Generally, existence of β-type bilinear forms on a given vector bundle re-

flects its topological complexity which can be captured by means of charac-

teristic classes. This observation extends to all special characteristic classes

we are going to discuss.

Definition. β-characteristic classes of the tangent bundle of a manifold M

are called β-characteristic classes of M .

Exercise. Show that β-characteristic classes of a torus are trivial.

4.5.31 Special Characteristic Classes

Now we shall describe the most general scheme of constructing character-

istic classes via connections. Proof of all necessary for that facts are essen-

tially the same as before. They are based on a rather elementary algebraic

formalism concerning differential calculus in the tensor algebra associated

with a given A-module P .

However, its description requires more ‘space-time’ than we have at

disposal here. By this reason proofs are omitted, but they can be restored

by analogy with β-characteristic classes.

First, we must introduce the necessary terminology. Let F be a finite

dimensional vector space. Recall that (see n. 3.6.2) a tensor type τ is

understood an equivalence class in the tensor algebra T(F ) = ⊕Tp
q(F ) of

F (Tp
q(F ) = F ⊗· · ·⊗F ⊗F∨⊗· · ·⊗F∨; p copies of F and q of F∨) under

a natural action of GL(F ) in T(F ). In other words, τ is one of the orbits

of this action. We shall write Ψ ∈ τ if a tensor Ψ ∈ T(F ) belongs to the

class τ .

Put Ψ = (Ψ1, . . . ,Ψl), with Ψ1, . . . ,Ψl ∈ T(F ), and τ = (τ1, . . . , τl)

with τi’s being tensor types and write τ ∈ Ψ if Ψi ∈ τi, i = 1, . . . , l.

Fix a fat manifold M with a general fiber F and Ψ, and assume that

M is supplied a Ψ-type gauge structure, i.e., C∞(M)-module Γ
(
M
)

is
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supplied with gauge structures Ξ1, . . . ,Ξl with gauge types Ψ1, . . . ,Ψl, re-

spectively.

Let Sym Ψi ⊆ End(F ) be the Lie algebra of infinitesimal symmetries

of the tensor Ψi and gi ⊆ End(P ) the C∞(M)–Lie algebra of infinitesimal

symmetries of Ξi. Then gi is a gauge Lie algebra of gauge type Sym Ψi.

Put g
def
= g1 ∩ · · · ∩ gl. As before, for I ∈ I(g), deg I = s, denote b LI the

associated with I C∞(M)-linear function on Ss. Finally, assume ∇ to be a

linear connection on M that preserves all Ξ’s, i.e., such that d∇τi (Ξ) = 0.

Then Ψ-characteristic classes are defined according to Scheme 4.5.31.

d∇τi (Ξ) = 0, i = 1, . . . , l

rz mmmmmmmmmmmm

mmmmmmmmmmmm

"*
MMMMMMMMMM

MMMMMMMMMM

d∇End (Λ•(g)) ⊆ Λ•(g)

��

R∇ ∈ Λ2(g)

��(Λ•(g), d∇g) is a cd-submodule

of
(
Λ•
(
End

(
Γ
(
M
)))

, d∇End

)

and d∇g = d∇End |Λ•(g)

"*
LLL

LLLLLLL

LLLLLLLLLL

(
R∇
)s
∈ Λ2s (Ss(g))

w� w
wwwwwwwwwww

wwwwwwwwwwww

d(∇g)S
s

((
R∇
)s)

= 0

��

d
(
I
((
R∇
)s))

= 0

The cohomology class pΨI
(
M
)

of I
((
R∇
)s)

does not depend on preserving

Ξ’s ∇, and is called a Ψ-characteristic class of a Ψ-structure on M .

Scheme 4.5.31

In order to be in conformity with the standard terminology, when one

deals with vector bundles, one may use the notation pΨI (π) instead of

pΨI
(
M
)
, with π : M → M being the projection. Ψ-characteristic classes
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of a Ψ-structure on the tangent bundle of a manifold M are called Ψ-

characteristic classes of this Ψ-structure on M .

Example. Let J be a complex structure on F . Then the tensor type of J

is also called ‘complex structure’, and ‘complex characteristic classes’ are

nothing but famous Chern classes. The Lie algebra Sym J in this case is

isomorphic to gl (l,C).

The algebra generated by J in End(F ) is isomorphic to C. Scheme 4.5.31

allows to construct characteristic classes associated with a subalgebra of

End(F ). This illustrates the dimension of the obtained generalization of

the classical theory.

The ‘connection calculus’ developed in this book allows to establish vari-

ous types of characteristic classes and, in particular, various operations with

them. This new ‘characteristic’ universe is not sufficiently explored, except

its classical part (Pontrjagin and Chern classes), and promises interesting

applications.
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M
∨

1.1.2, 92

M
End

1.1.2, 92

M
Sr

1.1.2, 93

∇End 2.4.3, 160

∇∨ 2.4.4, 160

∇Bil 2.4.7, 161

Der(P ) 1.2.3, 100

Der(P )ϕ 1.2.11, 104

Hom (�1,�2) 1.5.1, 114

Hom (∇, ∆) 2.4.1, 159

Hol (∇,m) 3.3.18, 198
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O(P, b) 1.7.4, 133

O
(
M, g

)
1.7.4, 133

o
(
M, g

)
1.7.4, 134

o (P, b) 1.7.4, 134

GL(P, ψ) 1.7.4, 134

GL
(
M,ψ

)
1.7.4, 134

gl
(
M,ψ

)
1.7.4, 134

gl (P, ψ) 1.7.4, 134

∇X 2.1.1, 142

3.4.3, 203

∇ξ 2.1.10, 147

∇f 3.4.6, 205

R∇ 2.3.1, 157

∇End 2.4.3, 160

∇∨ 2.4.4, 160

∇Bil 2.4.7, 161

J 1(P ) 3.2.4, 179

j1 3.2.4, 179

J 1(M) 3.2.4, 179

H•
∇(P ), Hs

∇(P ) 4.2.3, 240

H•
∇

(
M
)
, Hs

∇

(
M
)

4.2.3, 240

H•
∇

(
M,N

)
4.2.3, 240

Hs
∇

(
M,N

)
4.2.3, 240

H• (M) 4.2.3, 240

H• (A) 4.2.3, 240

∫ b

a ω 4.2.8, 244

∇
∫ b

a ω 4.2.11, 246

∫ b

a
ωt d t 4.4.3, 255
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A-Lie algebra: 1.7.9, 138
adjoint equivalence: 0.1.6, 7
algebra: 0.1.1, 1

cd-: 3.3.1, 188
complete: 0.2.6, 11
geometric: 0.2.2, 8
graded: 0.1.1, 2
graded commutative: 0.1.1, 2
Lie a. over a commutative algebra:

1.7.9, 138
of smooth functions: 0.2.9, 12
restriction: 0.2.6, 10
smooth: 0.2.7, 11

with boundary: 0.2.7, 11
associated atlas: 0.2.14, 14
associated 1-form: 4.1.2, 234
associated homomorphism

with a regular morphism of vector
bundles: 0.3.13, 32

with a smooth map: 0.2.11, 13
associated linear connection

along a fat map: 3.4.6, 205
in End (P ): 2.4.3, 160
in Hom(P, Q): 2.4.1, 159
in P ⊗ Q: 2.4.5, 161

associated map, with an isomorphism
of modules of sections: 0.3.23, 39

associated vector field
with a fat field: 1.4.5, 112
with a one-parameter family:

0.6.11, 81
atlas, associated: 0.2.14, 14

base
of a fat field: 1.3.1, 105
of a fat point: 1.1.1, 92
of a morphism in VBg: 0.3.19, 36
of a morphism of vector bundles:

0.3.8, 29
of a vector bundle: 0.3.4, 25

basic differential
covariant, see covariant differential
fat: 3.1.8, 177
semi-fat: 3.1.8, 177

β-characteristic class: 4.5.28, 276
of a manifold: 4.5.29, 278

Bianchi identity: 3.2.14, 187

C∞–closed algebra: 0.2.8, 11
canonical morphism: 0.3.6, 28
Cartan formula: 0.6.20, 88

covariant: 3.5.15, 219
cd-algebra: 3.3.1, 188
cd-module: 3.3.2, 188

flat: 3.3.2, 188
characteristic class: 4.5.23, 272

β-c. c.: 4.5.28, 276
of a manifold: 4.5.29, 278

Christoffel symbols: 2.1.4, 144
closed submanifold: 0.2.20, 18

fat: 1.1.8, 95
cochain complex: 0.1.1, 3

der-: 3.1.8, 176
semi-fat: 3.1.8, 177

cochain homomorphism: 0.1.1, 3

289
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cohomological definite integral: 4.2.8,
244
c.d. ∇-i.: 4.2.11, 246

cohomology
de Rham c. of a manifold: 4.2.3,

240
de Rham c. of an algebra: 4.2.3,

240
of a linear connection: 4.2.3, 240

s-th: 4.2.3, 240
relative, see relative cohomology

commutator: 0.1.1, 3
graded: 0.1.1, 3

compatible fat fields: 1.3.8, 107
compatible linear connections: 3.3.12,

193
compatible vector fields: 0.4.3, 42
complete algebra: 0.2.6, 11
complex, cochain: 0.1.1, 3

der-: 3.1.8, 176
semi-fat: 3.1.8, 177

complex structure
in a module: 1.7.2, 132
inner: 1.7.2, 132

connection, see linear connection
constant function wrt a connection:

4.5.17, 268
constant rank: 0.1.1, 2
constant section wrt a connection:

2.2.7, 152
corresponding form: 0.6.17, 83
corresponding map of a smooth

family: 0.6.8, 78
corresponding vector field of a

smooth family: 0.6.10, 80
cosymbol map: 3.2.4, 180
cotangent bundle: 0.5.2, 52
counit of an adjunction: 0.1.6, 7
covariant derivative: 2.1.1, 142

Lie: 3.5.15, 219
covariant differential: 3.2.1, 178;

3.2.6, 183
along a fat map: 3.4.5, 204
basic: 3.2.1, 178; 3.2.6, 183

curvature tensor: 2.3.1, 157
curve: 0.4.21, 50

fat, see fat curve
integral, see integral curve

cylinder, fat: 1.6.13, 128

de Rham
cochain homomorphism induced by

a smooth map: 0.5.16, 61
cohomology of a manifold: 4.2.3,

240
cohomology of an algebra: 4.2.3,

240
definite integral, cohomological: 4.2.8,

244
c.d. ∇-i.: 4.2.11, 246

degree, of a graded homomorphism:
0.1.1, 2

der-complex: 3.1.8, 176
der-operator: 1.2.3, 100

along a homomorphism: 1.2.11, 104
dual: 1.4.1, 110
graded: 3.6.9, 231
in a diole: 3.2.5, 182
induced on a module of

homomorphisms: 1.5.1, 114
induced on a tensor product: 1.5.2,

115
over a derivation: 1.2.5, 101

derivation
along an algebra homomorphism:

0.1.3, 4
graded: 0.1.3, 4
of a k-algebra into a module: 0.1.3,

4
derivative

covariant, see covariant derivative
Lie, see Lie derivative
of a smooth curve in a vector

space: 0.5.9, 56
of a time-dependent differential

form: 0.6.18, 85
of a time-dependent thickened

form: 3.5.11, 216
diffeomorphism: 0.2.10, 12
differential

basic, see basic differential
covariant, see covariant differential
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exterior, see exterior differential
fat, see fat differential
of a complex: 0.1.1, 3
of a smooth map: 0.2.28, 22
ordinary

on a commutative algebra:
0.5.5, 54

on a smooth manifold: 0.5.5,
54

semi-fat, see semi-fat differential
differential form

along a map: 0.5.22, 64
associated 1-form: 4.1.2, 234
fat, see fat form
local, see local differential form
on a manifold: 0.5.1, 52
on an algebra: 0.5.1, 52
ordinary: 0.5.1, 52
P -valued: 0.5.1, 52
semi-fat, see semi-fat form
thickened, see thickened form
time-dependent: 0.6.17, 84
with values in a module: 0.5.1, 52

differential operator
graded: 3.6.9, 230
linear: 0.1.2, 3

dimension of a smooth algebra: 0.2.7,
11

diole: 3.2.5, 182
direct sum: 0.1.1, 2
dual der-operator: 1.4.1, 110
dual linear connection: 2.4.4, 160
dual map: 0.2.4, 9
dual space: 0.2.1, 8

embedding: 0.2.28, 22
fat, see fat embedding
into a product: 0.2.26, 21
into a relative interval: 0.6.3, 75
of a submanifold: 0.2.20, 17

envelope
homomorphism: 0.2.22, 19
smooth e. algebra: 0.2.22, 19

equidimensional pseudobundle: 0.3.1,
24

equivalence of categories: 0.1.6, 7

extension of scalars: 0.1.1, 2
exterior differential

fat: 3.1.8, 176
on a commutative algebra: 0.5.11,

57
on a smooth manifold: 0.5.11, 57
semi-fat: 3.1.8, 177

exterior product of differential forms:
0.5.13, 59

f -compatible fat fields: 1.3.8, 107
f -compatible linear connections:

3.3.12, 193
f -compatible vector fields: 0.4.3, 42
f -related linear connections: 2.2.1,

147
faithful functor: 0.1.6, 7
fat curve: 1.1.9, 95

integral: 1.6.8, 124
fat cylinder: 1.6.13, 128
fat diffeomorphism: 1.1.4, 93
fat differential

basic: 3.1.8, 177
exterior: 3.1.8, 176
of a fat map: 1.3.7, 107

fat differential form, see fat form
fat embedding

into a fat cylinder: 1.6.13, 128
into a relative fat interval: 1.6.14,

128
of a fat submanifold: 1.1.8, 95

fat field: 1.3.1, 105
along a fat map: 1.3.13, 110
induced by a fat map: 1.5.3, 116
standard: 1.6.1, 118

fat flow: 1.6.15, 130
fat form

on a fat manifold: 3.1.1, 172
on a module: 3.1.1, 171

fat homotopy: 4.4.1, 253
fat identity map: 1.1.7, 95
fat inclusion: 1.1.11, 96
fat interval: 1.1.9, 95

relative: 1.6.14, 128
fat manifold: 1.1.1, 92

fat orientable: 4.3.2, 248
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fat map: 1.1.4, 93
homotopic: 4.4.1, 253

∇-homotopic: 4.4.2, 254
fat orientable fat manifold: 4.3.2, 248
fat point: 1.1.1, 92
fat projection

of a fat cylinder: 1.6.13, 128
of a relative fat interval: 1.6.14, 128

fat restriction: 1.1.11, 96
fat s-form, see fat form
fat submanifold: 1.1.8, 95

closed: 1.1.8, 95
open: 1.1.8, 95

fat tangent space: 1.3.4, 105
fat tangent vector: 1.3.2, 105
fat trajectory: 1.6.8, 124

maximal: 1.6.8, 124
fat translation: 1.1.12, 97
fat vector field: 1.3.1, 105

along a fat map: 1.3.13, 110
induced by a fat map: 1.5.3, 116
standard: 1.6.1, 118

fiber
general: 0.3.4, 25
of a uniform morphism: 0.3.17, 35
of a vector bundle: 0.3.4, 25
standard: 0.3.15, 33

field, see vector field
flat cd-module: 3.3.2, 188
flat linear connection: 2.3.3, 158
flow: 0.6.1, 73

fat: 1.6.15, 130
form

along a map: 0.5.22, 64
associated 1-form: 4.1.2, 234
fat, see fat form
inner, bilinear: 1.7.3, 132
local: 0.5.33, 71
on a manifold: 0.5.1, 52
on an algebra: 0.5.1, 52
ordinary: 0.5.1, 52
P -valued: 0.5.1, 52
semi-fat, see semi-fat form
thickened, see thickened form
time-dependent: 0.6.17, 84
with values in a module: 0.5.1, 52

full functor: 0.1.6, 7

gauge equivalent linear connections:
4.1.1, 234
g-g.e.l.c.: 4.3.5, 251

gauge inner structure: 3.6.5, 228
gauge transformation: 1.1.7, 95
gauge trivial connection: 4.1.6, 236

g-g.t.c.: 4.3.5, 251
gauge type: 3.6.7, 229
general fiber: 0.3.4, 25
geometric algebra: 0.2.2, 8
geometric module: 0.3.2, 24
geometrization homomorphism: 0.3.2,

24
geometrization module: 0.3.2, 24
gluing

of fat fields: 1.3.11, 109
of vector fields: 0.4.7, 44

graded algebra: 0.1.1, 2
graded commutative algebra: 0.1.1, 2
graded commutator: 0.1.1, 3
graded der-operator: 3.6.9, 231
graded derivation: 0.1.3, 4
graded differential operator: 3.6.9,

230
graded homomorphism

induced by a fat smooth map:
3.3.8, 191

of graded algebras: 0.1.1, 2
of graded modules: 0.1.1, 2

over a graded algebra: 0.1.1, 2
graded Jacobi identity: 3.6.9, 231
graded Leibnitz rule: 0.1.3, 4
graded Lie algebra structure: 3.6.9,

231
graded module: 0.1.1, 2

holonomy group: 3.3.18, 198
homomorphism

cochain: 0.1.1, 3
of cd-modules: 3.3.3, 188

homotopic fat maps: 4.4.1, 253
∇-h. f. m.: 4.4.2, 254

homotopy
fat: 4.4.1, 253
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∇-h.: 4.4.2, 254
homotopy operator: 4.4.4, 256

identification isomorphism: 0.3.16, 34
image of a vector field through a

diffeomorphism: 0.4.2, 41
immersion: 0.2.28, 22
inclusion, fat: 1.1.11, 96
induced bundle: 0.3.6, 28
induced der-operator

on a module of homomorphisms:
1.5.1, 114

on a tensor product: 1.5.2, 115
induced fat field: 1.5.3, 116
induced graded homomorphism:

3.3.8, 191
induced homomorphism

de Rham: 0.5.16, 61
graded: 3.3.8, 191

induced linear connection
by a fat map: 3.3.16, 197

provisional definition: 2.2.4,
149

on the cross: 2.2.10, 155
induced map

into a product: 0.2.25, 21
of an induced bundle: 0.3.6, 28

induced vector bundle: 0.3.6, 28
infinitesimal symmetry

of a bilinear form: 1.7.4, 134
of an endomorphism: 1.7.4, 134
of an inner form: 1.7.4, 134

inner complex structure: 1.7.2, 132
inner metric: 1.7.3, 133
inner pseudo-metric: 1.7.3, 133
inner structure: 3.6.3, 227

complex: 1.7.2, 132
gauge: 3.6.5, 228

insertion operator
along fat maps: 3.4.2, 202
along smooth maps: 0.5.28, 67
of a derivation into a module of

P -valued forms: 0.5.18, 62
of a vector field: 0.5.18, 62

integral
cohomological definite: 4.2.8, 244

c.d. ∇-i.: 4.2.11, 246
of a time-dependent form: 4.4.3,

255
integral curve: 0.4.22, 51

fat: 1.6.8, 124
interval: 0.4.21, 50

fat, see fat interval
relative, see relative interval

invariant linear function
with respect to a fat field: 4.5.9,

263
with respect to a linear connection:

4.5.9, 263
invariant polynomial: 4.5.10, 264

Jacobi identity: 1.7.9, 138
graded: 3.6.9, 231

k-algebra: 0.1.1, 1
k-point: 0.2.1, 8

Leibnitz rule: 0.1.3, 4
graded: 0.1.3, 4

Levi-Civita connection: 2.5.4, 169
Lie algebra over a commutative

algebra: 1.7.9, 138
Lie connection: 2.5.3, 168
Lie derivative

along a fat field: 3.5.12, 217
along a vector field: 0.6.19, 87
covariant: 3.5.15, 219

lift
∇-l., see ∇-lift
of a curve: 1.1.9, 96
of a curve, by a linear connection:

3.3.17, 197
provisional definition: 2.2.5,

150
of a one-parameter family: 3.5.2,

210
of a tangent vector

by a linear connection: 2.1.10,
147

by a linear connection along a
fat map: 3.4.4, 203

linear connection: 2.1.1, 142
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along a fat map: 3.4.3, 202
along a homomorphism: 3.4.3, 202
associated l.c. along a fat map:

3.4.6, 205
associated l.c. in End (P ): 2.4.3,

160
associated l.c. in Hom (P, Q): 2.4.1,

159
associated l.c. in P ⊗ Q: 2.4.5, 161
compatible: 3.3.12, 193
dual: 2.4.4, 160
flat: 2.3.3, 158
gauge equivalent, see gauge

equivalent linear
connections

gauge trivial, see gauge trivial
connection

in a module: 2.1.1, 142
induced by a fat map: 3.3.16, 197

provisional definition: 2.2.4,
149

induced on the cross: 2.2.10, 155
Levi-Civita: 2.5.4, 169
Lie: 2.5.3, 168
localization: 2.4.10, 164
on a fat manifold: 2.1.1, 142
on the cross: 2.2.10, 155
preserving a bilinear form: 2.5.2,

166
preserving an endomorphism:

2.5.1, 165
preserving an inner structure:

3.6.4, 227
related: 2.2.1, 147
torsion-free: 2.5.4, 169

linear differential operator: 0.1.2, 3
linear function on a fat manifold:

4.5.9, 262
invariant

with respect to a fat field:
4.5.9, 263

with respect to a linear
connection: 4.5.9, 263

local differential form: 0.5.33, 71
thickened: 3.5.9, 215

local fat map: 3.5.1, 209

local smooth map: 0.6.8, 79
local thickened form: 3.5.9, 215
local triviality, vector property of:

0.3.18, 35
local vector field: 0.4.16, 48
localization of a linear connection:

2.4.10, 164
loop: 3.3.18, 198

manifold: 0.2.9, 12
fat, see fat manifold
pseudo-Riemannian: 1.7.3, 133
Riemannian: 1.7.3, 133
with boundary: 0.2.9, 12

maximal trajectory: 0.4.22, 51
fat: 1.6.8, 124

metric
inner: 1.7.3, 133
pseudo-Riemannian: 1.7.3, 133
Riemannian: 1.7.3, 133

Minkowski spacetime: 4.3.1, 248
model structure: 3.6.7, 229
module: 0.1.1, 1

cd-: 3.3.2, 188
flat: 3.3.2, 188

geometric: 0.3.2, 24
geometrization: 0.3.2, 24
graded: 0.1.1, 2
of smooth sections: 0.3.4, 25

in VBg: 0.3.20, 37
morphism

in VBg : 0.3.19, 36
of vector bundles

over a map: 0.3.8, 29
over the same base: 0.3.5, 26

regular, see regular morphism
uniform: 0.3.17, 35

∇-constant function: 4.5.17, 268
∇-homotopy: 4.4.2, 254
∇-integral, cohomological definite:

4.2.11, 246
∇-lift

of a curve: 3.3.17, 197
provisional definition: 2.2.5,

150
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of a one-parameter family: 3.5.2,
210

of a tangent vector: 2.1.10, 147
along a fat map: 3.4.4, 203

natural homomorphism into a smooth
tensor product: 0.2.24, 20

natural topology on a dual space:
0.2.3, 9

one-parameter family
of fat maps: 3.5.1, 209
of smooth maps: 0.6.8, 79

one-parameter group
generated by a fat field: 3.5.12, 216
generated by a vector field: 0.6.6,

77
open submanifold: 0.2.20, 18

fat: 1.1.8, 95
ordinary differential

on a commutative algebra: 0.5.5,
54

on a smooth manifold: 0.5.5, 54
ordinary differential form: 0.5.1, 52
orthogonal group

of a bilinear form: 1.7.4, 133
of an inner form: 1.7.4, 133

P -valued form: 0.5.1, 52
parallel translation: 3.3.17, 197

provisional definition: 2.2.6, 151
point, see k-point
Pontrjagin class: 4.5.23, 272
positive bilinear form: 1.7.3, 132
preserving linear connection

of a bilinear form: 2.5.2, 166
of an endomorphism: 2.5.1, 165
of an inner structure: 3.6.4, 227

product
exterior, see exterior product
of manifolds: 0.2.25, 20
wedge, see wedge product

projectable vector field: 0.4.14, 47
projecting vector field: 0.4.14, 47
projection map

fat, see fat projection
of a product: 0.2.25, 21

of a vector bundle: 0.3.4, 25

pseudo-metric, inner: 1.7.3, 133

pseudo-Riemannian manifold: 1.7.3,
133

pseudo-Riemannian metric: 1.7.3, 133

pseudobundle: 0.3.1, 23

equidimensional: 0.3.1, 24

pull-back vector bundle: 0.3.6, 28

R-algebra: 0.1.1, 1

rank, constant: 0.1.1, 2

regular morphism: 0.3.8, 29

in VBg : 0.3.19, 36

regular section: 0.3.1, 23

related linear connections: 2.2.1, 147

relative cohomology: 4.2.3, 240

s-th: 4.2.3, 240

relative form: 4.2.2, 238

relative interval: 0.6.3, 74

fat: 1.6.14, 128

open: 0.6.3, 74

relative thickened form: 4.2.2, 238

restriction

algebra: 0.2.6, 10

fat: 1.1.11, 96

homomorphism: 0.2.6, 10

of a fat field: 1.3.10, 108

of a form to a closed submanifold:
4.2.1, 238

of a linear connection

to a closed fat submanifold:
2.2.4, 149

to an open fat submanifold:
2.4.10, 164

of a smooth section to a fat
submanifold: 1.1.8, 95

of a thickened form to a closed fat
submanifold: 4.2.1, 238

of a vector field to an open
submanifold: 0.4.5, 43

of vector fields along maps: 0.4.15,
47

Riemannian manifold: 1.7.3, 133

Riemannian metric: 1.7.3, 133

ring: 0.1.1, 1
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s-form
along a map: 0.5.22, 64
associated 1-form: 4.1.2, 234
fat, see fat form
local: 0.5.33, 71
on a manifold: 0.5.1, 52
ordinary: 0.5.1, 52
P -valued: 0.5.1, 52
semi-fat, see semi-fat form
thickened, see thickened form
time-dependent: 0.6.17, 84

s-th cohomology of a linear
connection: 4.2.3, 240
relative: 4.2.3, 240

section
constant wrt a connection: 2.2.7,

152
of an object in VBg : 0.3.20, 36
regular s. of a pseudobundle: 0.3.1,

23
smooth, see smooth section

semi-fat complex: 3.1.8, 177
semi-fat differential

basic: 3.1.8, 177
exterior: 3.1.8, 177

semi-fat form
on a fat manifold: 3.1.2, 172
on a module: 3.1.2, 172

smooth algebra: 0.2.7, 11
with boundary: 0.2.7, 11

smooth envelope
algebra: 0.2.22, 19
homomorphism: 0.2.22, 19

smooth family
of diffeomorphisms: 0.6.8, 79
of differential forms: 0.6.17, 83
of fat diffeomorphisms: 3.5.1, 209
of fat maps: 3.5.1, 209
of local differential forms: 0.6.17,

84
of local fat maps: 3.5.1, 209
of local smooth maps: 0.6.8, 79
of local thickened forms: 3.5.10,

216
of local vector fields: 0.6.10, 80
of smooth maps: 0.6.8, 78

of thickened forms: 3.5.10, 216
of vector fields: 0.6.10, 80

smooth fat map: 1.1.4, 93
smooth fat vector field, see fat field
smooth function: 0.2.9, 12

on the cross: 2.2.10, 154
wrt an atlas: 0.2.13, 13

smooth manifold: 0.2.9, 12
with boundary: 0.2.9, 12

smooth map: 0.2.10, 12
fat: 1.1.4, 93
wrt atlases: 0.2.13, 13

smooth section
module of: 0.3.4, 25

in VBg: 0.3.20, 36
of a vector bundle: 0.3.4, 25

in VBg: 0.3.20, 36
smooth set: 0.2.20, 18
smooth tensor product: 0.2.24, 20
standard fat field

on a relative fat interval: 3.5.4, 211
on a standard trivial fat manifold

over an interval: 1.6.1, 118
standard fiber: 0.3.15, 33
standard trivial bundle: 0.3.15, 33
standard vector field

fat, see standard fat field
on a relative interval: 0.6.3, 75
on an interval: 0.4.21, 50

structure, inner: 3.6.3, 227
submanifold: 0.2.20, 17

closed, see closed submanifold
fat, see fat submanifold
open, see open submanifold
with boundary: 0.2.20, 17

submersion: 0.2.28, 22
symbol

Christoffel: 2.1.4, 144
of a differential operator: 1.2.2, 99

symmetry
infinitesimal, see infinitesimal

symmetry
of a bilinear form: 1.7.4, 133
of an endomorphism: 1.7.4, 134
of an inner form: 1.7.4, 133

symmetry group: 1.7.4, 134
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tangent bundle: 0.4.9, 44
tangent space: 0.2.27, 22

fat: 1.3.4, 105
tangent vector: 0.2.27, 21

fat: 1.3.2, 105
tensor, curvature: 2.3.1, 157
tensor product: 0.1.1, 2

smooth: 0.2.24, 20
tensor type: 3.6.2, 226
thickened form

along a fat map: 3.4.1, 201
local: 3.5.9, 215
on a fat manifold: 3.1.4, 173
on a module: 3.1.4, 173
relative: 4.2.2, 238
time-dependent: 3.5.10, 216

time-dependent differential form:
0.6.17, 84
thickened: 3.5.10, 216

time-dependent vector field: 0.6.10,
80
associated with a one-parameter

family of diffeomorphisms:
0.6.11, 81

torsion-free linear connection: 2.5.4,
169

total space: 0.3.4, 25
trajectory: 0.4.22, 51

fat, see fat trajectory
maximal: 0.4.22, 51

translation
fat: 1.1.12, 97
parallel: 3.3.17, 197

provisional definition: 2.2.6,
151

triangular identities: 0.1.6, 7
trivial bundle: 0.3.15, 33

standard: 0.3.15, 33
trivial connection

gauge t.c., see gauge trivial
connection

in a free module: 2.1.3, 143
on a standard trivial fat manifold:

2.1.3, 143

triviality, local, vector property of:
0.3.18, 35

trivializing morphism: 0.3.15, 33
type

of a fat manifold: 1.1.1, 92
tensor t.: 3.6.2, 226

uniform morphism: 0.3.17, 35
unit of an adjunction: 0.1.6, 7

valued form, P -: 0.5.1, 52
vector bundle: 0.3.4, 25

induced by a smooth map: 0.3.6,
28

pull-back: 0.3.6, 28
trivial: 0.3.15, 33

standard: 0.3.15, 33
vector field: 0.4.1, 41

along a map: 0.4.12, 45
associated with a fat field: 1.4.5,

112
associated with a one-parameter

family: 0.6.11, 81
fat, see fat field
local: 0.4.16, 48
on the cross: 2.2.10, 154
standard, see standard vector field
time-dependent: 0.6.10, 80

vector property of local triviality:
0.3.18, 35

wedge product
for fat, semi-fat and thickened

forms: 3.1.7, 175
of an End(P )–valued form and a

P -valued form: 3.2.9, 184
of differential forms along a map:

0.5.27, 66
of End(P )–valued forms: 3.2.9, 184
of ordinary differential forms:

0.5.13, 59
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