
REDUCTION OF DIFFERENTIAL EQUATIONS WITH SYMMETRIES

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 Math. USSR Izv. 17 73

(http://iopscience.iop.org/0025-5726/17/1/A03)

Download details:

IP Address: 194.225.72.70

The article was downloaded on 24/01/2011 at 10:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0025-5726/17/1
http://iopscience.iop.org/0025-5726
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


H3B. Ακω. Hayx CCCP Math. USSR Izvestija
Cep. M a m TOM 44(1980), Bun. 4 Vol. 17(1981), No. 1

REDUCTION OF DIFFERENTIAL EQUATIONS
WITH SYMMETRIES

UDC 517.9

Ε. Μ. VOROB'EV

ABSTRACT. A method for constructing group-invariant solutions of differential equations is
described. At the foundation of the method lies a reduction of the dimension of the base
of a bundle of fc-jets of functions Jk(M", R') by means of a passage to the manifolds of
orbits of the contact action of the Lie group of partial symmetries of the differential
equation. Only the orbits of a certain submanifold of Jk(M", R') are considered, an
extension of an involutive system of first-order differential equations associated with the
action of the group.

Bibliography: 7 titles.

We consider here differential equations which have a Lie group of symmetries, and we
describe a reduction method (for reducing the number of independent variables) for
obtaining group-invariant solutions of such equations. The main idea of this method as
applied to Hamilton-Jacobi equations is contained in [1], where a reduction of the phase
space and of Hamiltonian systems in the space which admit a group of symmetries is
carried out. The concept of a Lagrangian manifold permits the reformulation of these
results for Hamilton-Jacobi equations. By considering the contact structure instead of
the symplectic structure and the objects related to it, we can carry out the reduction of
contact manifolds and first-order differential equations. Higher-order differential equa-
tions are considered in this paper as submanifolds of codimension one of fibered
manifolds of A>jets of functions (see [2]), and symmetries of equations are treated in the
spirit of [3]. Groups of symmetries of higher-order equations are liftings of Lie groups of
actions with contact manifolds of 1-jets of functions. By means of the techniques of /c-jet
liftings and extensions, we can carry out the reduction in this case, relying on the
reduction of contact manifolds. To construct invariant solutions, it suffices to confine
oneself to the partial symmetries treated in this paper.

§1. Reduction of the Hamilton-Jacobi equation.

Reduction of first-order differential equations

We consider a connected symplectic manifold (M2n, ω) of class C°°, where ω is a
closed nondegenerate differential form on M2" of degree two (the symplectic structure).
The following method for constructing new symplectic manifolds from (Μ2 π, ω) is well
known [1]. Suppose that the connected Lie group G acts on A/2" from the left by means
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74 Ε. Μ. VOROB'EV

of the symplectic diffeomorphisms: g*(u>) = ω, g e G. We denote by σ: g -» H(M2n) a
homomorphism of the Lie algebra g of the group G, considered as an Λ-algebra of
left-invariant vector fields over G, into the Lie algebra H(M2n) of locally Hamiltonian
vector fields over M2n:

σ(Λ) = l i m ^ - ^ - , (1)
ί t

where a, = <p,(e), and φ, is a one-parameter group of diffeomorphisms of the group G
generated by a vector field A e g. In (1), a, is understood as a group of transformations
of the manifold Mln. The action of G on M2n is symplectic, so σ(Α) is a locally
Hamiltonian vector field.

We consider the Poisson action of a group G, in which, as is well known, 1) all fields
σ(Α) have globally defined Hamilton functions HA, and ι(σ(Α))ω = -dHA, where
ΐ(σ(Α))ω is the inner product of a(A) and ω, 2) the dependence of HA on Λ is linear, and
3) #M,BJ

 =
 (HA> HB)> where [Λ, 5] is the commutator of the fields A and B; (HA, HB) =

ϊ(σ(Β))ί(σ(Α))ω are the Poisson brackets of the functions HA and HB. The Poisson action
permits us to define a homomorphism ψ: g -» C f M 2 " ) , ψ(Λ) = //<, where C^AT2") is
regarded as a Lie algebra of functions with respect to the Poisson brackets. The mapping
ψ: Μ2" -* Q*, ψ(/η) = m ο ψ, dual to ψ, where w(/) = /(m),/ e C ^ M 2 " ) , is caUed the
moment mapping. The moment ψ is equivariant with respect to the coadjoint action Ad*:
G -» g* of the group G on the space g*: Ad*g~l » ψ = ψ » g, dual to g.

Let μ be a regular value of the moment; then ψ-1( μ) = Μμ is a submanifold of M2 n,
and Μμ is invariant with respect to the action of the stationary subgroup Gp of μ. We
denote the set of orbits of the points of Μμ by F^ = Μμ/ΰμ. If the action of όμ on Μμ is
proper, and GM acts freely on Μμ, then it is possible to furnish F^ with a smooth manifold
structure such that the canonical projection πμ: Μμ -» F^ is a submersion. The manifold
Ρμ is called the reduced symplectic manifold. There exists a unique symplectic structure ωμ

on F(1 such thatTŷ w^ = ΐ*ω, where ίμ: Μμ -> Μ2η is an embedding.

A submanifold Ε of the symplectic manifold (Μ2", ω) of codimension one is called a
Hamilton- Jacobi equation. A Lagrangian submanifold i:A" —* Λ/2", /*ω = 0 , is called a

solution of the equation is if Λ" c E. In the case M2n = T*M", £ is a submanifold
given by the equation Η = 0, He C'iM2"), and Λ" is diffeomorphically projected
onto M".

These definitions reduce to the classical ones, since in this case Λ" is the chart of the
differential of some function S, a classical solution of the Hamilton-Jacobi equation.

We assume that G is the group of symmetries of the equation E: the submanifold Ε is
an invariant submanifold of the group G. Suppose that the intersection of Ε and Μμ is in
general position and Ε η Μμ is a submanifold of Μμ of codimension one. The submani-
fold of FM of codimension one which consists of the collection of orbits of the points of
Ε Π Μμ is called the reduced Hamilton-Jacobi equation Εμ.

THEOREM 1. Let Λμ be a Lagrangian submanifold of Εμ which is a solution of the reduced

equation Εμ; then the submanifold A" = π~\Αμ) is a solution of the original equation.

PROOF. The inclusion Λ" c Ε is obvious. We show that Λ" is a Lagrangian submani-
fold. We consider an arbitrary point Q e A" and the tangent vectors Χ, Υ e TQA". The
vectors πμ,Χ and πμ. Υ are tangent to Λμ; therefore

ωμ = ί{-ημ.Υ)ί{πμ.Χ)ωμ = 0. •
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The method set forth in the theorem leads to solutions of the Hamilton-Jacobi
equation which are invariant with respect to the group ΰμ.

REMARK. For the reduction method to be applicable, it suffices that Ε η Μμ be a
submanifold which is invariant with respect to the group ΰμ. It is possible that the
invariance of the whole equation is essential for the construction of the complete
integral.

We turn to the "contactization" of the method. A "maximal integrable" field of
hyperplanes Κ (in other words, a local differential form ω such that Κ = ker ω satisfies
the condition: du/K is nondegenerate (class ω = 2n + 1)) is called a contact structure
over a manifold M2n+1 of odd dimension. An integral manifold L" of a contact structure
Κ of dimension η is called Legendre. A first-order differential equation Ε is Ά submanifold
of M2n+l of codimension one, and a solution of Ε is a Legendre submanifold L" c E.
This definition is natural since 1) by Darboux's theorem, in some neighborhood W of
each point of M2n+l there exist coordinates (q, u,p) such that ω = du — pdq, and 2) if
L" is projected diffeomorphically onto the submanifold T" c W defined by the system
of equations «=/>, = · · · = pn = 0, then L" is defined by the equations u = f(q),
ρ = grad/. Consequently the equation Ε is given locally by the classical relation
E(q, u, du/dq) = 0, where Ε is a function on W.

An important example of a contact manifold is furnished by the manifold J l(M", Rl)
of 1-jets of real functions over M" (see §2) having a globally defined contact form ω. In
view of the fact that differential equations on J 1(M", Rl) arise often in applications, we
restrict ourselves to a consideration of the reduction of contact manifolds with global
contact forms.

Suppose that the connected Lie group acts on M2n+1 on the left by means of the
contact transformations (g*u = F(g)u, where F(g) e C°°(M2'I + 1)). The vector fields
a(A) of (1) are contact vector fields: L{a{A))w = h(A)w, where L(X)to is the Lie
derivative, <mdh(A) e C°°(M2n + 1).

The contact vector fields X over M 2 n + 1 are in one-to-one correspondence with the
functions/ e C°°(A/2"+1), defined in the following way. We p u t / = ϊ(Χ)ω. We show
that the contact field X corresponding to / is uniquely determined. We denote by Χγ the
vector field of degeneracy of the form du>, normalized by the condition i(X{)u = 1. We
put X = fXx + Υ, Υ e. ker ω. The condition for X to be a contact field is

If we calculate the inner products of the differential forms in (2) with the vector field Xv

we get that h = X^f). Now Xx{f)u - df e (ker ω)*, since i(Xλ)^Χχ{ί)ω - df) = 0.
Consequently the equality i( Υ)άω = Xx(f)o) — df uniquely determines the vector field
Υ e ker ω corresponding to / by virtue of the fact that du is nondegenerate on ker ω.
The contact vector field X corresponding to / is denoted by Xj. The function / is called
the contact Hamiltonian of Xf.

This correspondence between contact vector fields and functions on A/2""1"1 allows us
to introduce a Lie algebra structure in C°°(M2n+1), defining the Lagrange bracket

(f,g)=i([X,, Χβ])ω. (3)

For a vector field A e g, the field a{A) has contact Hamiltonian fA = ϊ(σ(Α))ω. The
mapping ψ: g-> C°°(M2n+1), 4>(A)=fA, is linear, and f{AB] = (fA,fB). In a manner
similar to that of the symplectic case, it is possible to introduce the contact moment
mapping ψ: Μ 2 π + 1 -> g*, $(m) = m » f
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THEOREM 2. The contact moment ψ is equivariant with respect to the coadjoint action of

the group G if the transformations of G preserve ω. In the general contact case (g*u =

F( g)<o), we have

ψ ο g(m) = F(g)(m)Ad*g-1 « ψ(»ΐ).

PROOF. We calculate the value of the left-invariant differential form ψ ° g on the

vector field A. We have

i (A) ψ ο g = fA°g = g' (fA) = g*-(t (σ (Α)) ω)

= g* (i (σ (A)), g"1 ο g-ω) = i ( g > (A)) g'xp. (4)

In addition,

gy (A) = ± (g^g*) | i = o = A igatg-1)· |/ = β = σ ( A d g-i ( ^ ) ) ) ( 5 )

where the left invariance of A has been taken into account in the last equality. The

theorem follows from (4) and (5). •

COROLLARY. If 0 is a regular value of the contact moment ψ, then Mo = ^ ' ( O ) is an

invariant submanifold of G.

We denote by F o the set of orbits M o / G of points of the submanifold Mo. Under the

condition that G acts freely on Mo by eigentransformations, there exists a manifold

structure on Fo such that the canonical projection 7r0: Mo -> Fo is a submersion. In this

case Mo is a bundle with base Fo and standard fiber G.

THEOREM 3. Suppose there exists a section s: Fo^> Mo of the bundle π0; then the

differential form ω0 = s* ° i*(u>), where i: Mo—* M2n+l is an injection, is a contact

structure on Fo. The class of integral manifolds of forms ω0 does not depend on the choice of

s.

PROOF. We assume that there is a characteristic vector X e TpF0 of ω 0 at some point

ρ e Fo which is different from zero. If m = s(p) and X = s^X, then ί(Χ)ω = 0 and

i(Y)i(X)du = 0, where Υ = s+Ϋ, Ϋ G TpF0 being an arbitrary vector which is tangent

to the section at the point m. We consider the inner product i{X)i(Z)do>, where

Ζ e TmG(m) is an arbitrary vector tangent to the orbit G(m) of m. Then we have the

expansion Ζ = Σ? α,σ(^)(»ι), where Ax, . . . , Aq is a basis for g, whence

t (X) i (Ζ) άω = ^ α,ϊ (X) i (σ (Λ,)) d(o

7 = 1

= 2 «/»" (Χ) (L (σ (Λ'))« - dfA^ = ^ a/·' (Χ) (Χι (/ )̂ ω ~ dk/) = °·
/=1 /=1

since Χ is tangent to Mo. Thus we have proved that i(X)d(i*u>)(m) = 0.

We assume that Xx(m) does not he in the tangent plane to Mo at the point m. From

the definition of the field Xv we have that ϊ(Χλ)άω = 0; therefore in this case i(X)do>(m)

= 0 and the vector X is characteristic for the form ω, which contradicts the equality

class ω = 2« + 1.

We suppose now that AT,(w) e TmM 0, i.e. *,(/,)(»!) = 0,7 = 1, . . . , tf. We show that

in this case every vector a(Aj)(m) is characteristic for the form /*ω. In fact, ΐ(σ(Α]))ω =

fA = 0 on Mo. In addition,

i(a(Aj))d(i*a) = L(a(^))«*« - i*(dfA) = /*(Χ,(/ 4)ω - dfA) = 0.



REDUCTION OF DIFFERENTIAL EQUATIONS 77

Consequently the q + 1 linearly independent tangent vectors X{m)a(Aj%m), j =
1, . . . , q, are characteristic for the form i*u>, which contradicts the inequality class ΐ*ω
> class ω — codim MQ.

We consider two sections λ, and s2 of the bundle ir0. Let φ: Ν* - ^ F o b e a n integral
manifold of the form ω01 = s* ° ί*(ω); we show that it is also an integral manifold of the
form ω02 = J* ° '*(«)· We consider an arbitrary vector X G. TnN

k. The tangent vector
X = q>mX e TpF0 satisfies the equation ί(Χ)ωοι = 0, whence /(Α')ω = 0, where X =
s^X e TmM^, ml = st(p). If "h. = s2(p), then there exists an element g of the group G
such that rrij = g(/M[). We denote the tangent vector g^X = s2* ° <p*X by F e ΤηΜ^,
then

i( J > = »(g,A> = g* ' » * * ( « ( g , A » = g*-(/(A')g»«) = g*"'(F(g)i(X)<o) = 0.

Consequently, /(φ+Χ)ω02 = 0, which completes the proof of the theorem. •

COROLLARY 1. In the absence of a global section of the bundle ir0, it is possible to furnish

the manifold Fo with a contact structure Ko such that if Lo is an integral submanifold of Κφ

then TTQX(L^ is an integral manifold of the structure Κ on M2n+l.

PROOF. Everywhere in Theorem 3 we must understand s to be a local section. •
Let G be the group of symmetries of the equation E, and suppose that the intersection

Ε η Mo, in general position, is a submanifold of Mo of codimension one. The reduced
equation Eo is the submanifold Fo of orbits of the points of Ε η Μο.

COROLLARY 2. Let Lo be a Legendre submanifold of F o , which is a solution of the reduced

equation EQ; then the submanifold IT^^LQ) is a solution of the original equation.

The class of solutions described in the corollary consists of G-invariant solutions. For
the method of reduction to be applicable, it suffices that the submanifold Ε η Μο be
invariant with respect to G.

§2. A contact structure on a manifold of A:-jets of functions

In what follows, a fcth-order differential equation on the manifold M" will be regarded
as a submanifold of codimension one of the fibered manifold Jk(M", Rl) of k-jets of
functions defined on M". In what follows, we will denote the vector fibration
Jk(M", R') briefly by Jk. A point of the manifold Jk is an equivalence class of
C "-functions which have /cth-order contact at the point m G M". The equivalence class
of the function / is denoted by jk(f)(m) and is called the A:-jet of / at the point m. The
manifold structure o n / k can be introduced with the help of an atlas whose charts are
defined in the following way. Let (t/; qv . . ., qn) be a chart of the manifold M", where
qx, . . . , qn are coordinate functions on U c M". A chart on /* is a set V = U meu^m
(disjoint sum), where J^ is a set of A>jets of functions at the point m, together with
coordinate functions {̂ , u, pp . . . ,ρίχ ^, . . . }, 1 < j < n, 1 < / , < · · · < / „ < n,
2 < ν < k, defined on V whose values at Q = 7^(/)(/Μ) £ V are given by

qdm), u(Q)=f(m),

We define the submersion irk: Jk -> M" by ltTkUk(f)(m)) ~ m· Th e fibers /^ of •nk are
furnished with a vector-space structure over R by the relation
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The equalities (6) define a diffeomorphism <pK: K—» U X RN, which trivializes w*
locally. It is also not difficult to see that the bundles given by the natural projections irk:
Jk -» /', where Trk(Jk(f)(m)) ~ 7/(/)(w)> a r e locally triviahzed.

A section s: M" —>/* such that there exists a function g e Cx(Mn) which satisfies
the relation s(m) = jk(g)(m) for any point m Ε. Μ" is called a k-jet of the function g
and is denoted by jk(g). The section s is /-integrable (/ < k) at the point m if

JI(TTQ ° j)(m) = mk ° j(w). We will call A>integrable sections of the bundle <nk-integrable.
We consider a point Q G Jk and all possible sections passing through Q which are

integrable in a neighborhood of irk(Q). If we regard Q as an equivalence class of
integrable sections of the bundle mk~x which pass through the point Ρ = π£_χ(ζ)) and
which have first-order contact there, then it becomes obvious that the mapping
"•*-i. °Jk(f)*: TmM" ~* TPJ

k~x does not depend on the choice of f,jk(f)(m) = Q, and
it is uniquely determined by Q. Consequently there comes into consideration the bundle
K{Jk) induced by the mapping π£_ ν each fiber of which over Q is a subspace of the
space TPJ

k~l of the iorm.jk_x{f)it{TmMn), where jk(f)(m) = Q.

THEOREM 4 [4]. A section s: M" -» /* is integrable at a point m if and only if

π ! » ° s, (TmMn) c Ks(m) (/)·

PROOF. The necessity is obvious from the construction of K(Jk). To prove the
sufficiency, we consider an arbitrary section jk{f) such that jk(f)(m) = s(m). From the
hypothesis of the theorem it follows that the integrable sections jo(f) and i o*»s have
contact of at least the first order at m, whence wk ° s(m) = JX(JTQ ° s)(m), i.e. the section
s is 1-integrable. The sections w,* ° s and jx(f), which are integrable at m, have contact of
at least the first order at m; therefore the section s is 2-integrable, and so forth. •

The fiber KQ{Jk) can be lifted to the subspace KQ{Jk) c TQJk by means of any A>jet

Jk(f) s u c n that^C/X^*^)) = Q by using the relation

If we fix a basis Β in TnkiQ)M", then the bases jk(f)m(B) in KQ(Jk) for various / will
differ by a vector from ker w^_lm. From this observation, it follows that the concept in
the following definition is well defined.

DEFINITION. A contact structure K(Jk) over the manifold /* is called a subbundle TJk

with fibers KQ{Jk) = KQ(Jk) ® ker *£_,.(β).

COROLLARY. Integrable sections of the bundle irk are integral manifolds of dimension η of
the contact structure K(Jk).

In a local chart of the manifold Jk it is possible to find the following basis of the
C°°(/*)-module of sections of the bundle K(Jk):
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where a(j, iu . . . , /„) is a nondecreasing sequence of indices of the set {j, iv . . . , /„}.

The repeated indices in (7) denote summation. Vector fields of a local basis satisfy the

commutation relations

[Du D,] = 0, (8i)

where /, . . .j . . . ik is a sequence of the indices /'„ . . . , ik in which one of the indices,

equal toy, is omitted, and 8y is the Kronecker symbol. The commutation relations

[*V.,V, Df] = K...;..,^,,/· · · δ ν , 2 < v ^ f t - l (85)

will also be useful in what follows.

The bundle K*(Jk) dual to K(Jk) is a subbundle of T*Jk with the fibers

KQ (/) = {ω e= T'QJk I j (Χ) ω = 0 V X ^ KQ (/)},

or, equivalently,

KQ (/) = {ω e 4 ^ (T/^1) 11 (Χ) ω = 0 Μ ε ^ Q (/)}.

The sections of K£{Jk) form a contact Cx(Jk)-module, denoted by Ω(7*).

THEOREM 5. /< is possible to find an invariantly defined differential form Ux 6Ξ Ω(/*)

such that in each local chart of the manifold Jk the following differential forms constitute a

local basis of the module Ω(/*):

Uv L (Dj) UV...,L (A-,) · · · I ( A v ) Uv ..., ( 9 )

where L{Dj) i/, is the Lie derivative of the form U{ along the field Dj. The forms i/, and

L(Dj) υλ are horizontal for the bundle irk, the forms L(Z),)L(Z^) U{ are horizontal for the

bundle nk, and so forth, and the forms L(Dit) • • • L(Dit i)Ul are horizontal for the bundle

*k-i- The forms dU^mDJUJ, ..., ά^ί^) • • • L(Dit )UX) are horizontal for the

bundles irk, . . . , π^_ 2, respectively.

PROOF. We consider first of all the case k = 1. We note that the section s: M" —* /°,

* =Λ)(1)> trivializes the bundle π°; therefore J° = M" X Rl. Consequently TpJ° =

KQ(J1) θ 77?', where Ρ = -n^Q), Q e / ' . The value of the differential form Ux at the

point Q, the exterior form UX(Q) G TTO*T£J°, is uniquely determined by the conditions

i{X)Ux(Q) = 0, X e KQ(Jl), i(d/du)Ux{Q) = 1, where 9/9M is a basis vector of TRl.

In local coordinates, U{ = du — pdq, which proves the smoothness of the form I/,.

For arbitrary k > 2 we put £/, = irk*Ux, where Ul is the differential form on J1

defined in the preceding section. We verify that the forms L^D^ · • • L{Di)Ux, 1 < ix

< · · · < /, < n, 1 < ν < k - 1, belong to the module Ω(/*). Indeed i(Yii.[.ii)Ul = 0,

since y,· ... ik e ker -nk.. In addition,

Oi = ifaDj)^ = 0.
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H e n c e i t fo l lows f r o m (8 , ) t h a t i(DJ)L(Di) • • • L{Di)Ux = 0,2<v<k-l. U s i n g t h e

f a c t t h a t

i(Y)L(X)-L(X)i(Y)=i([Y, X]), (10)

the commutation relations (84), and the definition of Ux, we get

i (Yh..jk) L (D;) U, = i (\Yil...ikD!\)U1 = 0.

Using (83), (84), (85), and a p-fold application of (10), we can show that

'(^i,···!k)L(Dj) ' ' ' L(Dj)Ul = 0 , 2 < ν < k — 1. The assertion in the theorem about

the horizontalness of the forms in the basis and their exterior derivatives can be proved

similarly.

We suppose that

aUx + afL (Dj) U1 + --- + ^...i^L (Dh) • • • L ( D , ^ ) U 1 = 0. (11)

If we calculate the inner products of the left-hand side of (11) successively with the

vector fields d/du, 3/3/?,, . . . , d/dp^... ^, 1 < j < n, 1 < /, < · · · < / „ < « , 2 < ν <

k — 1, we get that all of the coefficients in the left-hand side of (11) are equal to zero.

This proves the independence of the collection of forms under consideration. It is not

difficult to see that their number is the same as the codimension of KQ(Jk) in TQJH. By

the same token the collection of differential forms mentioned in the hypothesis of the

theorem is a local basis of the module Ω(/*). •

DEFINITION. The diffeomorphism σ: Jk^>Jk is called a contact diffeomorphism if

o^K(Jk)) C K(Jk).

We study infinitesimal contact transformations of contact vector fields. The theorem

below has been stated in [3], and the proof given in [5] and [6]. An independent proof is

given here.

THEOREM 6. Every contact vector field X over the manifold Jk is compatible with the

projection irk, and the field Kk.X is a contact field Xj over Jl, where f = i(X) Ux e

C X{Jx). Any contact field Xj over Jx can be lifted uniquely to a contact field over Jk.

PROOF. From the definition of a contact vector field it follows that

[X, Dj] = a^Dt + β £ . ί Λ * ν . ί Α , <12ι)

I*, Y,-,-!k] = νί'1""'*^ + efciV,,...,,, (12,)
L (X) Ui = aUx + a,L (D/) U1 + --- + a^^JL (D,·,) · · • L (DikJ Ux, (123)

L (X) L (Dj) ί / ^ Ω ( Λ .... L(X)L (Dfl) · · · L (DikJ ί / , 6 Ω (A (124)

(the membership relation in the last expressions must be understood locally). We show

that all the coefficients on the right-hand side of (123), with the possible exception of a,

are equal to zero. We apply the operator L(D,) to both sides of (123). On the left-hand

side we get

L (Dd L (X) U, = L (X) L (Dd Ux + L {[Dh X])U1 = L([DU X)) t/a (modQ{Jk))

= - $LtkL (Yh...ik) t/i (mod Ω (/)) = 0 (mod Ω (/)),

since the forms Ux and 9 ^ are horizontal for the bundle ιτχ. The right-hand side

becomes

ai,..ik^L (A,) · • · L (Dt^) U, (mod Ω (/));
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therefore

ai,..ik-xL (°h) ••••L (D'kJ
 U i = ° ( m o d Ω ( j f t ) ) · ( 1 3 >

The inner product of the left-hand side of (13) with the vector field Yj^.-j is
proportional to aji...Jt t, whence aJi.. .Jk χ = 0. Applying the operators L(Dj) · · · L(Dj),
2 < ν < k — 1, successively to (123) and calculating the inner products of the resulting
differential forms with the vertical fields 1^.. .jki, we arrive at the proof.

From the fact that only the coefficient a in (123) does not vanish, it follows that the
coefficients γ in (122) are zero. In fact,

L ([X, Yh...tk]) Vx = [L (X), L (Y,,...ik)] Ux = - Yh...,k (a) Uv

At the same time

therefore

γ"'-/*'Ζ.(Α·)ί/1 = -Κ / ι . . . Λ (α)ί/ 1 . (14)

The forms in (9) are independent; consequently γ,^''''Jk) = 0 and Yj ... (a) = 0. The
fact that the coefficients γ in (122) are equal to zero means that the contact field X
retains the fibers of -π£_, and hence is compatible with the transformation π£_,. If k > 2,
extending the argument, we show that the field X preserves the fibers of π£_2, and so
forth. To do this, we calculate the Lie derivative along the vector field Yj .. mJ of the left
and right sides of (12,). We have

- [Y,,...,„ [X, Dj\] = [X, [Dj, Y,,...lk]] + [D,, [Y,,...,k, X}}

= i X ' y/,../.../*l ~ 1°/' t f^ . . . ,- ,] = [X, Y/u,.Uk] (mod kern*. J.

ίΛΑ + tit^h-ώ = Yi,..ik («ίΛ> Dt (mod ker nt M ),

which gives the commutation relations

I*. Yi,-ikJ == e t

( / l- / V l )A (modkerrtJL*),

from which it is easy to deduce by (123) a relation of the form (14):

This last relation means that

If k > 3, then we can establish in a similar way that X is compatible with ιτ£_3, and that
α ε C°°(/*~3), and so forth. Finally we conclude that the contact field X preserves the
fibers of π,* and that irf.X is a contact field over j \ since

L (Λ\,Χ)Ό1 = L (X) 4*U! = L (X) U, = aU,,

where α <Ξ C°(Jl).
The fact that the correspondence X —»A'y, where Xj is a contact field over 7',

/ = i(X)Ul,is one-to-one follows from the simple fact that the integrable sections jk(g)
are uniquely determined by their projection^g) in J°, so that a nonzero vertical field of
the bundle ŵ  cannot be contact.
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Let Xj be an arbitrary contact field over the manifold Jl, and let σ, be the correspond-
ing local one-parameter group of diffeomorphisms of / ' . We define the lift o,w of σ, to
the local one-parameter group of diffeomorphisms of Jk. If the point Q belongs to /*,
then a^k\Q) is determined in the following way. We will regard β as an equivalence
class PQ of germs of integrable sections of a bundle of J' at the point trk{Q) which have
(A: — l)th-order contact at this point. Diffeomorphisms of the group σ,, being contact,
map germs of integrable sections into germs of integrable sections (at least for suffi-
ciently small t, perhaps depending on the germ). Therefore the definition ajk\Q) =
a,(PQ) is a proper one. The vector field X, the generator of the group a$k\ is the lift of Xf

to a contact field over /*. Indeed, the diffeomorphisms a^ preserve the fibers of π£_,
and (for sufficiently small f) carry germs of integrable sections into germs of integrable
sections. Consequently a^k\K{Jk)) c K{Jk). U

§3. Symmetry and reduction of differential equations

of arbitrary order

We consider a kth-order differential equation Ε on a connected manifold M", i.e. a
submanifold of Jk of codimension one. Functions g e C'iM") such thatyt(g)(M") c
Ε are called classical solutions of E. Integral submanifolds L c Jk of the contact
structure K(Jk) having dimension η and belonging to Ε are called solutions of E.

Suppose that the connected Lie group G acts on the left on the manifold / * by means
of contact transformations and is the group of symmetries of the equation Ε {Ε is
invariant with respect to G). If Av . . . , Aq constitute a basis of the Lie algebra of G,
then a(Aj),j = 1, . . . , q, are contact vector fields over /*. By virtue of Theorem 6, the
contact vector fields X} = irk.a(Aj) with contact Hamiltonians f} = ϊ(σ(Αβ)Ul are well
defined on J1, and in this way there arises the contact action of G on the contact
manifold / ' .

Suppose that zero is a regular value of the contact moment ψ of the action of G on Jl\
then Mo = ψ-1(0) = {Q e Jl\fj(Q) = 0,j = 1, . . . , q) is an invariant submanifold of
G. In what follows, we will assume that the condition, stated in §1, which guarantees the
existence of the contact manifold Fo = Mo/ G, is fulfilled. We will denote the canonical
projection by π0: Mo —» Fo, an arbitrary (in the general case, local) differential form on
Fo such that π£ Uo = ΐξ Uu where /„: Mo -> Jl is an injection, by C/Q, and the differential
form on / ' constructed in Theorem 5 by i/,. We also put ic(g) = nk

THEOREM 7. The characteristic subspace K(g)(<2) C TQM0 is anti-orthogonal to the
subspace N(Q) = TQM0 η ker £/,(<2) '« the linear space ker UX(Q) furnished with the
symplectic form dll^Q).

The proof follows directly from the fact that ί(Χ^άυχ = ΛΊφί/ , - dfr •

COROLLARY 1. Every Lagrangian plane L c N(Q) contains κ(β)(<2)·

COROLLARY 2. The contact Hamiltonians fj belong to the involution with respect to the
Lagrange brackets (3) on the submanifold Mo.

Corollary 2 makes it possible to treat Mo as an involutive system of first-order
differential equations.

COROLLARY 3. Every solution of the system Mo (Legendre submanifold L" c Afo) is
invariant submanifold of the group G.
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An involutive system is said to be regular if the restriction of the differential form Uy

to the system is different from zero.

THEOREM 8. The involutive system Mo is regular.

PROOF. We assume the contrary: TQM0 c ker UX(Q) at some point Q e Mo. The

codimension of TQM0 in ker £/,((?) is equal to 2n — (2n + 1 — q) = q — 1; conse-

quently the dimension of the anti-orthogonal complement TQMQ relative to the form

dUx{Q), by virtue of its nondegeneracy, is q - 1. By Theorem 7, every vector of the

subspace K(Q)(Q) is anti-orthogonal to TQMQ. By an assumption in §1, G acts freely on

Mo; therefore dim ic(g)(<2) = q. This contradiction shows that TQM0 £ ker UX{Q). •

For the proof of the next theorem, it will be convenient to have a result established in

[7]·

LEMMA. Let Λ" be a Lagrange submanifold of the symplectic manifold (M2n, ω), and let

T*A" be the cotangent bundle, furnished with the canonical symplectic form Ω {locally,

Ω = dp Λ dq). There exist neighborhoods U D Λ" in M2n and V D 0 ^ " ) in T*A*, where

0 is the zero section of T*A", and a diffeomorphism F: U -» V such that F*(Q\ v) = ω| ν

and F(An) = 0(Λ").

THEOREM 9. Suppose that the subspaces K(Q)(Q) are projected without degeneracy onto

T^Q)M" at each point Q E. A/o; then the projection πο(ζ)ο) e Fo of any point Qo e Mo is

contained in a neighborhood W <z Fo furnished with a coordinate system (ξ, η, χ) such that

U0\w = dx\ - \di. Every function φ(ξ) defines a local solution L" = Gisij^XT"'9))) C

Mo which passes through QQ (a local "general integral" of Mo). Here s: W —» Mo is a local

section of the bundle ττ0, and T"~q is a submanifold given by the system of equations

τ?=Χι = · · · = χ Λ _ ί = 0. The solution L" is projected diffeomorphically onto M" in

some neighborhood Ο D s( W).

PROOF. By Theorem 8, the characteristic subspace N(Q0) = TQoM0 η ker ί/,(ζ)0) has

codimension q in the space ker ί/,(β0). By virtue of the way in which Ux was constructed

in Theorem 5, the vertical subspace N^QQ) = ker πΙ(ζ)0) Π ker C/,(2o) has dimension n

and is an isotropic subspace of the form dUx{Q^). We determine the dimension of

P(Qo) = N(Qo) η N\(Qo)· From the hypotheses of the present theorem it follows that

P(Qo) Π K(Q)(QO) = 0; therefore dim P(Q0) < n - q, since otherwise P{Q^) θ K(Q)(Q0)

would be an isotropic space of the form dUx{Q^) of dimension greater than n by

Theorem 7. At the same time,

dim NX(QO) - dim P{QQ) < codim N(Q0) = q,

whence dim P(Q0) = n — q.

We consider an arbitrary local section 5: U -» Mo of the bundle π0 passing through Qo.

The Lagrangian subspaces P(Q) = P(Q) θ κ(β)(<2) are defined for the points Q G

s(U). Their projections vo.(P(QJ) c TV^FO induce an involutive subbundle S c TU on

U since the differential forms Uo and dU0 vanish on wo.(/>(g)).

Let L be an integral submanifold for S of some neighborhood II, c U containing

πο(ζ)ο), and let Zx be the vector field of degeneracies of dU0 which satisfy the condition

i(Z})U0= 1. We consider the quotient manifold ttj = 11,/σ,, where σ, is the local

one-parameter group of diffeomorphisms of the field Zv The form dU0 induces a

symplectic differential form ω, π*ω — dU0, on U2, where π is the canonical projection of
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U, on Uj. The field Zx is nowhere tangent to L; therefore #(L) is a Lagrangian

submanifold of lt 2 (if U, is sufficiently small). By virtue of the lemma, in some

neighborhood W c IXj of the point π ° πο(ζ?ο) there is a system of coordinates (|, χ)

such that ω = -άχ Λ ^έ, and the equations Xj = · • • = χ η _ ? = 0 give π(ϊ,) in W.

Consequently in some neighborhood W c H~X(W) it is possible to find a system of

coordinates (ξ, η, χ) such that U0\w = dq - χάξ, where ξ = 77*(ξ), Χ = π*(χ), Ζ,(η) = 1,

η|ζ = ο.
Every Legendre submanifold Ζ,φ =7Ί(φ)(Γ π 9 ) , where Γ" q = L Π W, is transverse

to the subbundle S θ ΛΖ,; therefore the submanifolds 6(·ϊ(Ζ,φ)) are local solutions of

the system Mo diffeomorphically projected onto M" in some neighborhood €) D s( W).

An extension M^ c Jk of the system of equations MQ is defined to be a set of /c-jets

Jk( S)im) OI l° c a l classical solutions of Mo at the points m e M".

THEOREM 10. Suppose that the hypothesis of Theorem 9 is satisfied; then the extension
M0

(A) of Mo is a G-invariant submanifold of Jk of dimension dim Jk(R"~q, R1) + q.

PROOF. The submanifold M^k) is G-invariant, as follows from Corollary 3 of Theorem
7 and the construction, in the proof of Theorem 6, of a lifting of contact vector fields on
J' to contact vector fields on Jk.

We show that any local (in some neighborhood Q D s(W)) solution L of Mo of the
form L = jx(g){U), U c M", is representable in the form L = G(s(Ji(<pKTn"«))), where
J: ff —> Mo is the section described in Theorem 9. The tangent planes A(Q) to Z, at any
point Q e s(W) η L are transverse in the space ker UX{Q) to the vertical planes

P{Q) = W(S) Π ^V,(<2); therefore the planes ITO.(A(Q)) are transverse to the subbundle

S θ ΛΖ, constructed in the proof of Theorem 9. Consequently the submanifold wo(L) n

W is projected in a one-to-one manner onto T"~q along the integral submanif olds of the

involutive subbundle S θ RZV Theorem 9 allows us to identify W <z Fo with

j \^Tn-q^ R i). h e n c e i t f o u o w s from Theorem 4 that wo(L) n H^ = Jii^KT"'9).

This fact and Theorem 9 imply that the dimension of the fiber M^ over the point

Q e Mo is equal to the dimension of a fiber of the manifold Jk(R"~q, Rl) over a point

of J'(/?"-«, Λ'), whence

dim M* = dim 7fe (Rn~q, Rl) - dim J 1 ( # - ' , Z?1)

The submanifold M(^*) is given locally in J * by the system of equations fj = 0,
Di, " ' ' DJj = °' 1 < 7 < 9> 1 < / , < · · · < / , < n, 2 < ν < k - \, of which

dim Jk{Rn'~", Rl) + q are independent. •

THEOREM 11. Let f be a germ of the solution Mo at the point m e M", and let

Q = A ( / ) ( W ) e Mok)' then f defines a lift KQ(Jk) of the fiber K^J1*) of the bundle K(Jk)

to a subspace in TQM^\

PROOF. We put KQ(Jk) = Mf),(T^Q)M"); then
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COROLLARY 1. The dimension of the space ZQ of vertical vectors of the bundle ττ£_χ

which are tangent to M^ at the point Q is equal to the dimension of a fiber of the bundle
p*_,: Jk{R"-q, Rl) -* Jk-\R"-q, Rl).

COROLLARY 2. The subspace a(g)(g) c TQM^k) belongs to every lift KQ(Jk).

At each point Q e M&k) we consider the direct sum KQ(M^) = KQ(Jk) θ ZQ c
TQM^\ where ZQ is the linear subspace of vertical vectors of the bundle irk_l which are
tangent to a fiber of the bundle •n£_i: M^k) ^> Μ^~1). It is clear that KQ(M^k)) is a
subspace of KQ(Jk) and consists of the vectors of the contact structure which are tangent
to the submanifold M^ at the point Q. Since the action of G on /* is contact, the
submanifold M0

(A) is G-invariant; the system Mo is involutive since

g. (KQ ( M V (β) (<?)) = KelQ) (M[k))/a (3) (g (Q)). (15)

We denote by F£k) = M o

w / G the manifold of orbits of points of M^k) and by ττ^:
> F^k) the canonical projection. The manifold F^k) is called a reduced manifold of

k-jets of functions, and dim F&k) = dim Jk{Rn~q, R') by Theorem 10.

THEOREM 12. A reduced manifold can be furnished with a subbundle K{F^k)) c TF^k)

such that ( ^ ^ " ' ( L Q ) is an integral submanifold of the contact structure K(Jk) if Lo is an
integral submanifold of K(F^k)). Here

dim Κ (F'o
k)) = dim Κ ( / (/?""*, R1)-

PROOF. The theorem is an immediate consequence of (15) and Corollary 1 to Theorem

11- •
Suppose that the differential equation Ε intersects M^ in general position and

induces on it a submanifold Ε η M^k) of codimension one; then the reduced equation
Eo c F{jk) is defined as the submanifold of orbits of points of the intersection Ε η

COROLLARY. Suppose that Lo is an integral submanifold of the subbundle
belonging to Eo (a solution of the reduced equation); then (^^"'(L,,) is a G-invariant
solution of the equation E.

THEOREM 13. The manifold F0

(fc) is locally contact diffeomorphic to the manifold
Jk(R"-q,Rx).

PROOF. We consider the point Qo e Mo. By Theorems 9 and 10 there exists a
neighborhood W of the point ττο(βο) e ^o furnished with a contact system of coordi-
nates (ξ, η, χ) such that every solution g+ of the system Mo is generated by a function
<p(£). By the construction of the reduced submanifold F^k\ to its points π^ (jk(Sv)(m))
are assigned the well-defined A>jet coordinates of the points 7Λ(φΧί), where ξ is the
coordinate of the projection woOi(g<f))(w)) e W c Fo. By the same token, Ff>k) is locally
isomorphic to Jk{R"~9, Rx). By its construction, the reduced contact structure K(F^k))
clearly coincides locally with the canonical contact structure of the manifold
Jk(R"-q,Rx). U

COROLLARY. The reduced equation Eo is locally a differential equation.
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Theorems 9 and 13 furnish the basis for the following method for constructing
G-invariant solutions of a differential equation E. We must substitute the "general
integral" g(p of the system Mo into the equation E, and as a result we get a differential
equation for φ.
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