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REDUCTION OF DIFFERENTIAL EQUATIONS

WITH SYMMETRIES
UDC 5179

E. M. VOROB’EV

ABSTRACT. A method for constructing group-invariant solutions of differential equations is
described. At the foundation of the method lies a reduction of the dimension of the base
of a bundle of k-jets of functions J*(M", R') by means of a passage to the manifolds of
orbits of the contact action of the Lie group of partial symmetries of the differential
equation. Only the orbits of a certain submanifold of J¥(M™", R) are considered, an
extension of an involutive system of first-order differential equations associated with the
action of the group.
Bibliography: 7 titles.

We consider here differential equations which have a Lie group of symmetries, and we
describe a reduction method (for reducing the number of independent variables) for
obtaining group-invariant solutions of such equations. The main idea of this method as
applied to Hamilton-Jacobi equations is contained in [1}, where a reduction of the phase
space and of Hamiltonian systems in the space which admit a group of symmetries is
carried out. The concept of a Lagrangian manifold permits the reformulation of these
results for Hamilton-Jacobi equations. By considering the contact structure instead of
the symplectic structure and the objects related to it, we can carry out the reduction of
contact manifolds and first-order differential equations. Higher-order differential equa-
tions are considered in this paper as submanifolds of codimension one of fibered
manifolds of k-jets of functions (see [2]), and symmetries of equations are treated in the
spirit of [3]. Groups of symmetries of higher-order equations are liftings of Lie groups of
actions with contact manifolds of 1-jets of functions. By means of the techniques of k-jet
liftings and extensions, we can carry out the reduction in this case, relying on the
reduction of contact manifolds. To construct invariant solutions, it suffices to confine
oneself to the partial symmetries treated in this paper.

§1. Reduction of the Hamilton-Jacobi equation.

Reduction of first-order differential equations
We consider a connected symplectic manifold (M?", w) of class C*, where w is a
closed nondegenerate differential form on M?" of degree two (the symplectic structure).
The following method for constructing new symplectic manifolds from (M?", w) is well
known [1]. Suppose that the connected Lie group G acts on M?* from the left by means

1980 Mathematics Subject Classification. Primary 35A30, 58G99; Secondary 58A20.
© 1981 American Mathematical Society

73



74 E. M. VOROB’EV

of the symplectic diffeomorphisms: g*(w) = w, g € G. We denote by 6: g > H(M?**) a
homomorphism of the Lie algebra g of the group G, considered as an R-algebra of
left-invariant vector fields over G, into the Lie algebra H(M?*) of locally Hamiltonian
vector fields over M 2"

a,* —

o (4) = lim , (1)

t>0 I

where a, = @,(e), and ¢, is a one-parameter group of diffeomorphisms of the group G
generated by a vector field 4 € g. In (1), g, is understood as a group of transformations
of the manifold M?". The action of G on M?" is symplectic, so o(A4) is a locally
Hamiltonian vector field.

We consider the Poisson action of a group G, in which, as is well known, 1) all fields
o(A4) have globally defined Hamilton functions H,, and i(6(4))w = -dH,, where
i(o(A4))w is the inner product of 6(4) and w, 2) the dependence of H, on 4 is linear, and
3) Hy, 5 = (H,, Hp), where [A4, B] is the commutator of the fields 4 and B; (H,, Hy) =
i(o(B))i(o(A))w are the Poisson brackets of the functions H, and H,. The Poisson action
permits us to define a homomorphism y: g — C°(M?"), y(A) = H,, where C®(M?") is
regarded as a Lie algebra of functions with respect to the Poisson brackets. The mapping
Yr M2 S g* y(m) = m o z[:, dual to xﬁ, where m(f) = f(m), f € C®(M?"), is called the
moment mapping. The moment  is equivariant with respect to the coadjoint action Ad*:
G — g* of the group G on the space g*: Ad*g™' oy = y o g, dual to g.

Let u be a regular value of the moment; then ¢ '(p) = M, is a submanifold of M n
and M, is invariant with respect to the action of the stationary subgroup G, of u. We
denote the set of orbits of the points of M, by F, = M, /G,. If the action of G, on M, is
proper, and G, acts freely on M, then it is possible to furnish F, with a smooth manifold
structure such that the canonical projection 7,: M, — F, is a submersion. The manifold
F, is called the reduced symplectic manifold. There exists a unique symplectic structure w,
on F# such that w,fw,t = i;fw, where i M, — M?isan embedding.

A submanifold E of the symplectic manifold (M?*, w) of codimension one is called a
Hamilton-Jacobi equation. A Lagrangian submanifold i:A" — M?*, i*& =0, is called a
solution of the equation E if A" c E. In the case M?" = T*M", E is a submanifold
given by the equation H =0, H € C®(M?), and A" is diffeomorphically projected
onto M".

These definitions reduce to the classical ones, since in this case A" is the chart of the
differential of some function S, a classical solution of the Hamilton-Jacobi equation.

We assume that G is the group of symmetries of the equation E: the submanifold E is
an invariant submanifold of the group G. Suppose that the intersection of E and M, is in
general position and £ N M, is a submanifold of M, of codimension one. The submani-
fold of F, of codimension one which consists of the collection of orbits of the points of
E N M, is called the reduced Hamilton-Jacobi equation E,.

THEOREM 1. Let A, be a Lagrangian submanifold of F, which is a solution of the reduced
equation E,; then the submanifold A" = =, 1(A,,) is a solution of the original equation.

ProoF. The inclusion A" C E is obvious. We show that A” is a Lagrangian submani-
fold. We consider an arbitrary point Q € A” and the tangent vectors X, ¥ € T,A". The
vectors 7,.X and 7,. Y are tangent to A,; therefore

i(Y)i(X)itw = i(Y)i(X)mtw, = (7, Y)i(7.X)0, =0. W
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The method set forth in the theorem leads to solutions of the Hamilton-Jacobi
equation which are invariant with respect to the group G,.

REMARK. For the reduction method to be applicable, it suffices that E N M, be a
submanifold which is invariant with respect to the group G,. It is possible that the
invariance of the whole equation is essential for the construction of the complete
integral.

We turn to the “contactization” of the method. A “maximal integrable” field of
hyperplanes K (in other words, a local differential form w such that K = ker w satisfies
the condition: dw/ is nondegenerate (class w = 2n + 1)) is called a contact structure
over a manifold M?"*! of odd dimension. An integral manifold L” of a contact structure
K of dimension n is called Legendre. A first-order differential equation E is a submanifold
of M**! of codimension one, and a solution of E is a Legendre submanifold L" c E.
This definition is natural since 1) by Darboux’s theorem, in some neighborhood W of
each point of M2"*! there exist coordinates (g, u, p) such that w = du — pdq, and 2) if
L" is projected diffeomorphically onto the submanifold 7" c W defined by the system
of equations u =p, = -+ =p, =0, then L" is defined by the equations u = f(g),
p = grad f. Consequently the equation E is given locally by the classical relation
F(q, u, 3u/3q) = 0, where F is a function on W.

An important example of a contact manifold is furnished by the manifold J'(M" R")
of 1-jets of real functions over M” (see §2) having a globally defined contact form w. In
view of the fact that differential equations on J '(M", R") arise often in applications, we
restrict ourselves to a consideration of the reduction of contact manifolds with global
contact forms.

Suppose that the connected Lie group acts on M2"*! on the left by means of the
contact transformations (g*w = F(g)w, where F(g) € C®(M*"*1)). The vector fields
o(A) of (1) are contact vector fields: L(o(A4))w = h(A)w, where L(X)w is the Lie
derivative, and A(4) € CO(M 2"+,

The contact vector fields X over M?**! are in one-to-one correspondence with the
functions f € C°(M?>'*!), defined in the following way. We put f = i(X)w. We show
that the contact field X corresponding to f is uniquely determined. We denote by X, the
vector field of degeneracy of the form dw, normalized by the condition (X )w = 1. We
put X = fX; + Y, Y € ker w. The condition for X to be a contact field is

L(Xyo=i(Y)do+df=ho. @
If we calculate the inner products of the differential forms in (2) with the vector field X,
we get that 2 = X |(f). Now X|(f)w — df € (ker w)*, since (X WX, (fiw — df) =0.
Consequently the equality i(Y)dw = X,(f)w — df uniquely determines the vector field
Y € ker w corresponding to f by virtue of the fact that dw is nondegenerate on ker w.
The contact vector field X corresponding to f is denoted by X,. The function f is called
the contact Hamiltonian of X.

This correspondence between contact vector fields and functions on M2"*! allows us
to introduce a Lie algebra structure in C°(M>"*1), defining the Lagrange bracket

(f, &) =i(lX), XJ)o. (€))

For a vector field 4 € g, the field o(4) has contact Hamiltonian f, = i(¢(4))w. The
mapping y: g — CO(M>*Y), (4) = f4,1s linear, and fi, 5 = (f,, fp)- In a manner
similar to that of the symplectic case, it is possible to introduce the contact moment
mapping y: M*"*1 5 g* Y(m) = m o .
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THEOREM 2. The contact moment  is equivariant with respect to the coadjoint action of
the group G if the transformations of G preserve w. In the general contact case (g*w =
F(g)w), we have

Y © g(m) = F(g)(m)Ad*g™ o y(m).
ProoF. We calculate the value of the left-invariant differential form iy o g on the
vector field 4. We have

(Ao g =Taeg =g (fa) = ¢ (i(c(4) o)

= g (i (0 (A)), g0 g'o) = i(g)'a (A) g™ @
In addition,

d % * - * 3 -
€10 (A) = (&) |,y = - (gaug |, = o (Ad g™ (A), )

where the left invariance of 4 has been taken into account in the last equality. The
theorem follows from (4) and (5). W

COROLLARY. If 0 is a regular value of the contact moment , then My = y'(0) is an
invariant submanifold of G.

We denote by F, the set of orbits M,/ G of points of the submanifold M,. Under the
condition that G acts freely on M, by eigentransformations, there exists a manifold
structure on F;, such that the canonical projection 7,: M,— F is a submersion. In this
case M, is a bundle with base F;; and standard fiber G.

THEOREM 3. Suppose there exists a section s: Fo— M, of the bundle my; then the
differential form w, = s* o i*(w), where i: My—> M***! is an injection, is a contact
structure on F,. The class of integral manifolds of forms wq does not depend on the choice of
s.

PROOF. We assume that there is a characteristic vector X € T,F; of w, at some point
p € Fy which is different from zero. If m = s(p) and X = 5,X, then i(X)w = 0 and
(Y)i(X)dw = 0, where Y = s, Y, Y € T, F, being an arbitrary vector which is tangent
to the section at the point m. We consider the inner product i(X)i(Z)dw, where
Z € T, G(m) is an arbitrary vector tangent to the orbit G(m) of m. Then we have the
expansion Z = X{ a;0(4;)(m), where A4,, . . ., 4, is a basis for g, whence

q
H(X)i(Z)do =) a;i(X)i(0(4))do

j=1

q q
=S i (X) (L (0 (A) 0 —dfa) =3 i (X) (Xy(fa) © —dfa) =0,
=1 =1
since X is tangent to M. Thus we have proved that i(X)d(i*w)(m) = 0.

We assume that X,(m) does not lie in the tangent plane to M, at the point m. From
the definition of the field X, we have that i(X,)dw = 0; therefore in this case i(X)dw(m)
= 0 and the vector X is characteristic for the form w, which contradicts the equality
class w = 2n + 1.

We suppose now that X,(m) € T,,M,, 1.e. X,(fAj)(m) =0,j=1,..., 49 Weshow that
in this case every vector o(4;)(m) is characteristic for the form i*w. In fact, i(6(4;))w =
f4, = 0 on M, In addition,

i(o(4)))d(i*w) = L(a(4)))i*e — i*(df,) = i*(X,(f)o — df,) = ©.
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Consequently the g + 1 linearly independent tangent vectors X(m)o(4))(m), j =
1, ..., q, are characteristic for the form i*w, which contradicts the inequality class i*w
> class w — codim M,

We consider two sections 5, and s, of the bundle 7, Let ¢: N¥ — F, be an integral
manifold of the form w,y; = sT ° i*(w); we show that it is also an integral manifold of the
form wg, = 53 ° i*(w). We consider an arbitrary vector X € T,N*. The tangent vector
X = qJ*)? € T,F, satisfies the equation i(f Ywg; = 0, whence i(X)w = 0, where X =
51X € T,, My, m; = 5,(p). f m, = 5,(p), then there exists an element g of the group G
such that m, = g(m,). We denote the tangent vector g, X = s5,. © pXbyY e T, My,
then

i(Y)o = i(g,X)w=g*" o g*(i( g,X)0) = g* (i(X)g*w) = g*"(F(g)i(X)w) = 0.
Consequently, i((p*)? Jwg, = 0, which completes the proof of the theorem. W

COROLLARY 1. In the absence of a global section of the bundle n, it is possible to furnish
the manifold F, with a contact structure K, such that if L, is an integral submanifold of K,
then wy'(Ly) is an integral manifold of the structure K on M*"*!,

Proor. Everywhere in Theorem 3 we must understand s to be a local section. 1

Let G be the group of symmetries of the equation E, and suppose that the intersection
E N M, in general position, is a submanifold of M, of codimension one. The reduced
equation Ej is the submanifold F, of orbits of the points of £ N M,,

COROLLARY 2. Let L, be a Legendre submanifold of F,, which is a solution of the reduced
equation Ey; then the submanifold w3"(Ly) is a solution of the original equation.

The class of solutions described in the corollary consists of G-invariant solutions. For
the method of reduction to be applicable, it suffices that the submanifold £ n M, be
invariant with respect to G.

§2. A contact structure on a manifold of k-jets of functions

In what follows, a kth-order differential equation on the manifold M" will be regarded
as a submanifold of codimension one of the fibered manifold J¥(M", R") of k-jets of
functions defined on M”. In what follows, we will denote the vector fibration
J5M", R") briefly by J*. A point of the manifold J* is an equivalence class of
C =-functions which have kth-order contact at the point m € M". The equivalence class
of the function f is denoted by j, (f)(m) and is called the k-jet of f at the point m. The
manifold structure on J* can be introduced with the help of an atlas whose charts are
defined in the following way. Let (U; 4, - - . , 4,) be a chart of the manifold M", where
dys - - - » 4, are coordinate functions on U € M". AchartonJ*isaset V= U ., Jk
(disjoint sum), where JX is a set of k-jets of functions at the point m, together with
coordinate functions {g,u,p,....p; . ;»---} 1<j<n 1<i<---<i <n,
2 < v < k, defined on V whose values at Q = j, (f)(m) € V are given by

7:;(Q) =gi(m), w(Q)=[(m),

Q) = A 0y = Thm)
p! (Q) al]]' PR le...tv (Q) 017[1' - .aq[v

We define the submersion 7%: J¥ - M”" by 7%(j,(f)(m)) = m. The fibers J* of 7* are
furnished with a vector-space structure over R by the relation

aji(f) (m) +Bin(g) (m) =ju(af+pg) (m).

(6

Y - e e
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The equalities (6) define a diffeomorphism ¢,: ¥V — U X R", which trivializes 7*
locally. It is also not difficult to see that the bundles given by the natural projections =
J* > J', where 75, (/)(m)) = j(f)(m), are locally trivialized.

A section s: M” — J* such that there exists a function g € C°(M™) which satisfies
the relation s(m) = j,(g)(m) for any point m € M" is called a k-jer of the function g
and is denoted by j.(g). The section s is /-integrable (/ < k) at the point m if
Jm& o s)(m) = @ o s(m). We will call k-integrable sections of the bundle 7 *-integrable.

We consider a point Q € J* and all possible sections passing through Q which are
integrable in a neighborhood of 7*(Q). If we regard Q as an equivalence class of
integrable sections of the bundle #*~! which pass through the point P = w,f_l(Q) and
which have first-order contact there, then it becomes obvious that the mapping
7E_ 1. Je(Ny: T,uM™ — TpJ*~ ! does not depend on the choice of f, j,(f}m) = Q, and
it is uniquely determined by Q. Consequently there comes into consideration the bundie
K(J*) induced by the mapping 7*_,, each fiber of which over Q is a subspace of the
space TpJ*~! of the form ji, _ (/),(T,,M™), where j () (m) = Q.

THEOREM 4 [4]. A section s: M" — J* is integrable at a point m if and only if
m’i_l* °S, (TmMn) - RS(m) (Jk)~

PrOOF. The necessity is obvious from the construction of K(J*). To prove the
sufficiency, we consider an arbitrary section j,( f) such that j (f)(m) = s(m). From the
hypothesis of the theorem it follows that the integrable sections j(f) and #§ o s have
contact of at least the first order at m, whence 7f © s(m) = j,(7& o 5)(m), i.e. the section
s is l-integrable. The sections 7 ¥ o s and j,(f), which are integrable at m, have contact of
at least the first order at m; therefore the section s is 2-integrable, and so forth. W

The fiber IE'Q(J *) can be lifted to the subspace K,(J*) C T,J* by means of any k-jet
Ji(f) such that j,(fX7*(Q)) = Q by using the relation

7 k . n
Ko (") = ju (. (T 4 M)
If we fix a basis B in T, «o,M", then the bases j.(f),(B) in EQ(J k) for various f will
differ by a vector from ker z*_,,. From this observation, it follows that the concept in
the following definition is well defined.
DEFINITION. A contact structure K(J*) over the manifold J* is called a subbundle TJ*
with fibers Ky(J*) = Ky(J*) ® ker mf_1.(Q).

COROLLARY. Integrable sections of the bundle n* are integral manifolds of dimension n of
the contact structure K(J*).

In a local chart of the manifold J* it is possible to find the following basis of the
C ®(J*)-module of sections of the bundle K(J*):

d 0 7] d
D;= P + p; o + Poiy . - Potiiipy) EPR
' ‘ e 0
3] . . .
Yiein= o lign, 1< sshesn,

Pjyig
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where o(j, i), . . ., i,) is a nondecreasing sequence of indices of the set {j,;,...,4}.
The repeated indices in (7) denote summation. Vector fields of a local basis satisfy the
commutation relations

[Di, D=0, @8,
Vi i Vi = 0, ®)
d
o D =0 - 35
¥ Di " ou 3
[Y[’l...fkv D]] = Y“m/ ,,,lkéi;j' . '6"kf’ (84)

where #; ...j ... is a sequence of the indices i, ..., i in which one of the indices,
equal to j, is omitted, and §; is the Kronecker symbol. The commutation relations

Wit DI =Y 5 5 000 2<<v<<hk—1 (85)

g0y

will also be useful in what follows.
The bundle K*(J*) dual to K(J*) is a subbundle of T*J* with the fibers

Koy ={os Ty |iX)o=0 VX Ko/},
or, equivalently,
Koy ={oe a (T/"YHiX)o =0 VX & Ko(JH).
The sections of K3(J*) form a contact C*(J*)-module, denoted by J*).

THEOREM 5. It is possible to find an invariantly defined differential form U, € Q(J )
such that in each local chart of the manifold J* the following differential forms constitute a
local basis of the module J*):

Uy LY Uy ..., L(D1)-- L (D) Uy, ...

I<j<in, I<i,<..<iy<<n, 2<<v<<h—1,

=

®

where L(D;)U, is the Lie derivative of the form U, along the field D,. The forms U, and
L(D)U, are horizontal for the bundle wf, the forms L(D)L(D)U, are horizontal for the
bundle my, and so forth, and the forms L(D;) - - - L(D,_)U, are horizontal for the bundle
7. The forms dU,d(L(D)U,),...,d(I(D,) - - L(D,_)U,) are horizontal for the
bundles 771", e, 77,!‘_ 2 respectively.

PrOOF. We consider first of all the case k = 1. We note that the section s: M" — J°,
s = jo(1), trivializes the bundle 7°; therefore J° = M" x R'. Consequently TpJ° =
EQ(J Y@ TR', where P = 7i(Q), Q € J'. The value of the differential form U, at the
point Q, the exterior form U,(Q) € my*T3J Y is uniquely determined by the conditions
{X)UN(Q) =0, X € Ky(J"), i(d/0u)Uy(Q) = 1, where 3/du is a basis vector of TR'.
In local coordinates, U, = du — pdq, which proves the smoothness of the form U,.

For arbitrary k > 2 we put U, = nf*U,, where U, is the differential form on J'
defined in the preceding section. We verify that the forms L(D;) - - - L(D)U,, 1 <
< :-- <i,<n 1 <»<k-— 1, belong to the module UJ*). Indeed i(Y, ..., )U, =0,
since Y, ..., € ker wf;. In addition,

i(D)U, = i(D)xt"T, = i(zf.D)) U, = 0.



80 E. M. VOROB'EV

Hence it follows from (8,) that i(D,)L(D;) - - - L(D,)U, = 0,2 <» < k — 1. Using the
fact that

((Y)L(X)—L(X)i(Y) =i(Y, X]), (10)
the commutation relations (8,), and the definition of U,, we get
(Y ) L(D)U, = i(lYs,..;DY) Uy = 0.

Using (8;), (8,), (8), and a r-fold application of (10), we can show that
i(Y;,.. ., )L(D;) - - - L(D))U; =0, 2 <y <k — 1. The assertion in the theorem about
the horizontalness of the forms in the basis and their exterior derivatives can be proved
similarly.
We suppose that
aly +a;L (D) Uy + - - -+ iy, L(Di) - - - L (Dyy,_,) Uy = 0. (11)

If we calculate the inner products of the left-hand side of (11) successively with the
vector fields 9/9u, 8/8pj, e, a/ap,.‘__,.b, 1<j<n 1<i<---<i,<n,2<»r<
k — 1, we get that all of the coefficients in the left-hand side of (11) are equal to zero.
This proves the independence of the collection of forms under consideration. It is not
difficult to see that their number is the same as the codimension of K,(/ %y in ToJ k. By
the same token the collection of differential forms mentioned in the hypothesis of the
theorem is a local basis of the module 2(J*). B

DerINITION. The diffeomorphism ¢: J* — J* is called a contact diffeomorphism if
0 (K(J*) ¢ K(J*).

We study infinitesimal contact transformations of contact vector fields. The theorem
below has been stated in [3], and the proof given in [5] and [6]. An independent proof is
given here.

THEOREM 6. Every contact vector field X over the manifold J* is compatible with the
projection wf, and the field wl.X is a contact field X, over J !, where f=i(X)U, €
C*(J"). Any contact field X; over J' can be lifted uniquely to a contact field over J*.

ProoF. From the definition of a contact vector field it follows that

(X, D} = oD, + B oY i (12))

(X, Vitdd = ¥ D5 + 8005V iy (12,)

L(X) Uy = aUy + ;L (D) U, + @y LD LDy Uy (129
LX)LDYU, Q") ..., LX)LDy---L(D;, YU, QW (129

(the membership relation in the last expressions must be understood locally). We show
that all the coefficients on the right-hand side of (12,), with the possible exception of a,
are equal to zero. We apply the operator L(D,) to both sides of (12,). On the left-hand
side we get
LD)LX)Uy=L(X)L D~) Uy + L (IDi, X)) Uy = L(IDs, X1) Uy (mod Q%))
— — B oL (Viyoi) Uy (mod © (J5)) = 0 (mod Q (J5),

since the forms U, and dU, are horizontal for the bundle #f. The right-hand side
becomes

ity L (Di)- - - L (Dyy,_) Uy (mod @ (J%));
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therefore

@iy L (Dy)- L (Dy, ) Uy = 0 (mod Q (J). (13)
The inner product of the left-hand side of (13) with the vector field Y, .. ey is
proportional toa; ..., , whencea; ..., = 0. Applying the operators L(D;) - - - L(D,),

2 < v < k — 1, successively to (12;) and calculating the inner products of the resulting
differential forms with the vertical fields Y, .., We arrive at the proof.

From the fact that only the coefficient a in (12,) does not vanish, it follows that the
coefficients y in (12,) are zero. In fact,

L(IX, Y ) Uy = LX), LYl Uy = — Yoy (@) Use

At the same time

LUX,Yj.;) Uy = YL (D) Uy;

therefore
YW R (DY Uy = — Y}, (a) Uy (14)

The forms in (9) are independent; consequently yY: % = 0 and Y, ..., (@=0.The
fact that the coefficients y in (12,) are equal to zero means that the contact field X
retains the fibers of _, and hence is compatible with the transformation z{_,. If k > 2,
extending the argument, we show that the field X preserves the fibers of m{_,, and so
forth. To do this, we calculate the Lie derivative along the vector field Y, ..., of the left
and right sides of (12,). We have

- [y]’,n../'kv [X9 D]]] = [Xv [Djv Yj,...jk]] + [Dv [Y[',.../'ka X]]

(fi.f
=X, Y, ;.,1—1ID; S ity ol = (X, Y, a.) (modkerst ),

LY. ,k) (a DD+ B Vi) = Vg @V D, (mod ker 7f_,),

which gives the commutation relations
X, Yy = & 5-0D; (mod ker i),
from which it is easy to deduce by (12;) a relation of the form (14):
(Freerfpe
Sil - DU, = — Y}'x-‘-fknl (@) U,.
This last relation means that

(1 —
gliv-ik U 0, y].lm].k_1 (a) =0,

L

If k > 3, then we can establish in a similar way that X is compatible with 7*_,, and that
a € C*®(J*73), and so forth. Finally we conclude that the contact field X preserves the
fibers of 7{ and that 7{.X is a contact field over J ', since

LX), = L (X)=*U, = L(X)U, = aU,,
where a € C®(J ).

The fact that the correspondence X — X, where Xf is a contact field over J 1,
f=i(X)U,,is one-to-one follows from the simple fact that the integrable sections j,.(g)
are uniquely determined by their projection jiy(g) in J°, so that a nonzero vertical field of
the bundle 7§ cannot be contact.
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Let X, be an arbitrary contact field over the manifold J!, and let o, be the correspond-
ing local one-parameter group of diffeomorphisms of J'. We define the lift o of o, to
the local one-parameter group of diffeomorphisms of J*. If the point Q belongs to J¥,
then 6®(Q) is determined in the following way. We will regard Q as an equivalence
class P, of germs of integrable sections of a bundle of J ! at the point #%(Q) which have
(k — 1)th-order contact at this point. Diffeomorphisms of the group g,, being contact,
map germs of integrable sections into germs of integrable sections (at least for suffi-
ciently small ¢, perhaps depending on the germ). Therefore the definition ¢®(Q) =
a(Pyp) is a proper one. The vector field X, the generator of the group o{®, is the lift of X,
to a contact field over J*. Indeed, the diffeomorphisms ¢ preserve the fibers of 7*_,
and (for sufficiently small ¢) carry germs of integrable sections into germs of integrable
sections. Consequently of/(K(J*)) C K(J*). m

§3. Symmetry and reduction of differential equations
of arbitrary order

We consider a kth-order differential equation E on a connected manifold M", i.e. a
submanifold of J* of codimension one. Functions g € C®(M") such that j,(g(M") C
E are called classical solutions of E. Integral submanifolds L < J* of the contact
structure K(J*) having dimension n and belonging to E are called solutions of E.

Suppose that the connected Lie group G acts on the left on the manifold J* by means
of contact transformations and is the group of symmetries of the equation £ (E is
invariant with respect to G). If 4,, ..., 4, constitute a basis of the Lie algebra of G,
then 6(4;),j = 1, . . ., g, are contact vector fields over J*. By virtue of Theorem 6, the
contact vector fields X; = w{‘.o(Aj) with contact Hamiltonians f; = i(a(4,)) U, are well
defined on J!, and in this way there arises the contact action of G on the contact
manifold J '.

Suppose that zero is a regular value of the contact moment y of the action of G on J';
then My = 4(0) = {Q € J'|f(@) =0, =1,...,q} is an invariant submanifold of
G. In what follows, we will assume that the condition, stated in §1, which guarantees the
existence of the contact manifold Fy = M,/ G, is fulfilled. We will denote the canonical
projection by n,: M, — F,, an arbitrary (in the general case, local) differential form on
F, such that 73 U, = i* U,, where i;: M,— J'is an injection, by Up, and the differential
form on J ! constructed in Theorem 5 by U,. We also put k(g) = 750(g).

THEOREM 7. The characteristic subspace x(g) Q) C ToM, is anti-orthogonal to the
subspace N(Q) = ToM, N ker U\(Q) in the linear space ker U\(Q) furnished with the
symplectic form dU,(Q).

The proof follows directly from the fact that i(X)dU, = X,(f)U, — df;. A
COROLLARY 1. Every Lagrangian plane L C N(Q) contains k(g Q).

COROLLARY 2. The contact Hamiltonians f; belong to the involution with respect to the
Lagrange brackets (3) on the submanifold M,

Corollary 2 makes it possible to treat M, as an involutive system of first-order
differential equations.

COROLLARY 3. Every solution of the system M, (Legendre submanifold L" C M) is an
invariant submanifold of the group G.
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An involutive system is said to be regular if the restriction of the differential form U,
to the system is different from zero.

THEOREM 8. The involutive system M, is regular.

PrOOF. We assume the contrary: TpM, C ker U,(Q) at some point Q € M,. The
codimension of Ty,M, in ker U\(Q) is equal to 2n ~(2n +1 — ¢) = ¢ — 1, conse-
quently the dimension of the anti-orthogonal complement 7, M, relative to the form
dU(Q), by virtue of its nondegeneracy, is ¢ — 1. By Theorem 7, every vector of the
subspace «(g)(Q) is anti-orthogonal to T, M,,. By an assumption in §1, G acts freely on
M,; therefore dim x(g)}(Q) = g. This contradiction shows that T, M, & ker U,(Q). H

For the proof of the next theorem, it will be convenient to have a result established in

[7].

LEMMA. Let A" be a Lagrange submanifold of the symplectic manifold (M*", ), and let
T*A"™ be the cotangent bundle, furnished with the canonical symplectic form Q (locally,
Q = dp A dq). There exist neighborhoods U > A" in M*" and V > O(A") in T*A*, where
0 is the zero section of T*N\", and a diffeomorphism F: U — V such that F*(Q|,) = |,
and F(A™) = )(A").

THEOREM 9. Suppose that the subspaces k(g)( Q) are projected without degeneracy onto
T oyM" at each point Q € M,; then the projection m(Qo) € Fy of any point Qy € M, is
contained in a neighborhood W C F, furnished with a coordinate system (§, n, x) such that
Uolw = dn — xd&. Every function @(£) defines a local solution L™ = G(s(j (eXT"~9)) C
M, which passes through Q, (a local “general integral” of M). Here s: W — M, is a local
section of the bundle m,, and T" 7 is a submanifold given by the system of equations
M=X1=""" = Xs-q = 0. The solution L" is projected diffeomorphically onto M" in
some neighborhood © D s(W).

Proor. By Theorem 8, the characteristic subspace N(Q,) = Tp M, N ker U,(Q,) has
codimension ¢ in the space ker U (Q,). By virtue of the way in which U, was constructed
in Theorem 5, the vertical subspace N,(Q) = ker 7.(Qy) N ker U,(Qp) has dimension n
and is an isotropic subspace of the form dU,(Q;). We determine the dimension of
ﬁ(Qo) = N(Qp) N N,(Qy)- From the hypotheses of the present theorem it follows that
P(Qy) N k(@) Qo) = 0; therefore dim P(Q,) < n — g, since otherwise P(Qp) D x(g)(Qy)
would be an isotropic space of the form dU,(Q,) of dimension greater than n by
Theorem 7. At the same time,

dim N,(Qp) — dim P(Q,) < codim N(Qy) = g,

whence dim P(Qy) = n — gq.

We consider an arbitrary local section s: I — M, of the bundle =, passing through Q,,.
The Lagrangian subspaces P(Q) = P(Q) @ x(g)(Q) are defined for the points Q €
s(1). Their projections 7o (P(Q)) C T, oy F, induce an involutive subbundle § ¢ TU on
U since the differential forms U, and dU, vanish on 7g.(P(Q)).

Let L be an integral submanifold for S of some neighborhood U, ¢ U containing
7o(Qo), and let Z be the vector field of degeneracies of dU,, which satisfy the condition
i(Z)U, = 1. We consider the quotient manifold W, = U, /0, where o, is the local
one-parameter group of diffeomorphisms of the field Z,. The form dU, induces a
symplectic differential form w, 7*w = dU,, on U,, where 7 is the canonical projection of
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1, on U, The field Z, is nowhere tangent to L; therefore #(I) is a Lagrangian
submanifold of W, (if W, is sufficiently small). By virtue of the lemma, in some
neighborhood W C 112 of the point # o 7,(Q,) there is a system of coordinates (£, by
such that w = —dx ‘A dE, and the equations x; =+ -+ = x,_, = 0 give (L) in W.
Consequently in some neighborhood W c # \(W) it is possnble to find a system of
coordinates (£, 1, x) such that Uy, = dn — xd§, where § = w*(ﬁ), X =70 Z,(n) =1,
n;=0. .

Every Legendre submanifold L, = j (e} 7" ), where T""9= L N W, is transverse
to the subbundle S @ RZ,; therefore the submanifolds G(s(L,)) are local solutions of
the system M, diffeomorphically projected onto M" in some neighborhood © > s(W).
[ ]

An extension M{®  J* of the system of equations M, is defined to be a set of k-jets
Jx(8)(m) of local classical solutions of M, at the points m € M™.

THEOREM 10. Suppose that the hypothesis of Theorem 9 is satisfied; then the extension
M® of My is a G-invariant submanifold of J* of dimension dim J¥(R"™9, R") + q.

ProoF. The submanifold M{¥ is G-invariant, as follows from Corollary 3 of Theorem
7 and the construction, in the proof of Theorem 6, of a lifting of contact vector fields on
J! to contact vector fields on J*.

We show that any local (in some neighborhood © O s(W)) solution L of M, of the
form L = j (gW(U), U C M", is representable in the form L = G(s(j,(pT"?))), where
s: W— M, is the section described in Theorem 9. The tangent planes A(Q) to L at any
point Q € s(W) N L are transverse in the space ker U,(Q) to the vertical planes
P(Q) = N(Q) N N,(Q); therefore the planes my.(A(Q)) are transverse to the subbundle
S @ RZ, constructed in the proof of Theorem 9. Consequently the submanifold 7o(L) N
W is projected in a one-to-one manner onto 7"~ ? along the integral submanifolds of the
involutive subbundle S @ RZ,. Theorem 9 allows us to identify W C F, with
JY(T"9, RY; hence it follows from Theorem 4 that no(L) N W = j (@) T"~9).

This fact and Theorem 9 imply that the dimension of the fiber M{¥ over the point
Q € M, is equal to the dimension of a fiber of the manifold J¥(R"~9, R') over a point
of J{R"™%, R"), whence

dim M? = dim J* (R™7, RY) — dim J* (R, RY)
L2n41—g=J"R"R) +g

The submanifold M§¥ is given locally in J* by the system of equations f, =0,
D, - Df=0 1</< g, 1<ijp<---<i <n 2<v»<k—1, of which
dim J "(R" 9, R") + q are independent. W

THEOREM 11. Let f be a germ of the solution M, at the point m € M", and let
Q = ji(/)(m) € M{P; then f defines a lift Ky(J*) of the fiber Ky(J*) of the bundle K(J*)
to a subspace in ToM{®.

PrOOF. We put Ky(J*) = ji(N)4(T,+oyM"); then

T1xKq (/F) = Ko(J%). ®
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CoRrOLLARY 1. The dimension of the space Z of vertical vectors of the bundle k|
which are tangent to M{® at the point Q is equal to the dimension of a fiber of the bundle
plf—l: Jk(R"_q’ R 1) g Jk—l(Rn—q5 R l)'

COROLLARY 2. The subspace o(g)(Q) C ToM§® belongs to every lift Ky(J*%).

At each point Q € M we consider the direct sum Ky(M§) = Ky(J*)® Z, C
T, MY, where Z,, is the linear subspace of vertical vectors of the bundle #;¢_, which are
tangent to a fiber of the bundle m¢_;: M{¥ — M{~D. It is clear that Ky(M{¥) is a
subspace of K,(J k) and consists of the vectors of the contact structure which are tangent
to the submanifold M{¥ at the point Q. Since the action of G on J* is contact, the
submanifold M{¥ is G-invariant; the system M, is involutive since

g. (Ko (M5 () (Q)) = Keq) (MP)/5 (8) (g (Q)). (15)

We denote by F¥ = M{®/G the manifold of orbits of points of M and by #{:
M - F{® the canonical projection. The manifold F{® is called a reduced manifold of
k-jets of functions, and dim F{® = dim J¥(R"9, R") by Theorem 10.

THEOREM 12. A reduced manifold can be furnished with a subbundle K(F{¥) c TF{®
such that (7{)\(Ly) is an integral submanifold of the contact structure K(J*) if L, is an
integral submanifold of K(F{®). Here

dim K (F$) = dim K (J* (R, RY).

ProOF. The theorem is an immediate consequence of (15) and Corollary 1 to Theorem
1. m

Suppose that the differential equation E intersects M{® in general position and
induces on it a submanifold E N M{¥ of codimension one; then the reduced equation
E, C F{® is defined as the submanifold of orbits of points of the intersection £ N M.

COROLLARY. Suppose that Ly is an integral submanifold of the subbundle K(F{)
belonging to E, (a solution of the reduced equation); then (n{*)(L,) is a G-invariant
solution of the equation E.

THEOREM 13. The manifold F{ is locally contact diffeomorphic to the manifold
JX(R"™9, R,

PROOF. We consider the point O, € M;. By Theorems 9 and 10 there exists a
neighborhood W of the point 7y(Q,) € F, furnished with a contact system of coordi-
nates (£, 1, x) such that every solution g, of the system M, is generated by a function
@(§). By the construction of the reduced submanifold F{¥, to its points 7§ (j,(g,)(m))
are assigned the well-defined k-jet coordinates of the points j,(@)(§), where £ is the
coordinate of the projection 7(j,(g,)(m)) € W C F,. By the same token, F{® is locally
isomorphic to J¥(R"~%, R"). By its construction, the reduced contact structure K(FZ¥)
clearly coincides locally with the canonical contact structure of the manifold
JXR" ., RY. m

COROLLARY. The reduced equation E, is locally a differential equation.
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Theorems 9 and 13 furnish the basis for the following method for constructing
G-invariant solutions of a differential equation E. We must substitute the “general
integral” g of the system M, into the equation E, and as a result we get a differential
equation for ¢.
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