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Computational simulation of scientific phenomena and engineering problems
often depend on solving linear systems with a large number of unknowns. This
book gives an insight into the construction of iterative methods for the solution
of such systems and helps the reader to select the best solver for a given classes
of problems.

The emphasis is on the main ideas and how they have led to efficient solvers such
as CG, GMRES, and Bi-CGSTAB. The book also explains the main concepts
behind the construction of preconditioners. The reader is encouraged to build
his own experience by analysing numerous examples that illustrate how best to
exploit the methods. The book also hints at many open problems and, as such,
it will appeal to established researchers. There are many exercises that clarify
the material and help students to understand the essential steps in the analysis
and construction of algorithms.
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Preface

In 1991 I was invited by Philippe Toint to give a presentation, on Conjugate
Gradients and related iterative methods, at the university of Namur (Belgium). I
had prepared a few hand-written notes to guide myself through an old-fashioned
presentation with blackboard and chalk. Some listeners asked for a copy of the
notes and afterwards I heard from Philippe that they had been quite instructive
for his students. This motivated me to work them out in LATEX and that led to
the first seven or so pages of my lecture notes. I took the habit of expanding
them before and after new lectures and after I had read new interesting aspects
of iterative methods. Around 1995 I put the then about thirty pages on my
website. They turned out to be quite popular and I received many suggestions
for improvement and expansion, most of them by e-mail from various people:
novices in the area, students, experts in this field, and users from other fields
and industry.

For instance, research groups at Philips Eindhoven used the text for their
understanding of iterative methods and they sometimes asked me to comment
on certain novel ideas that they had heard of at conferences or picked up from
literature. This led, amongst others, to sections on GPBi-CG, and symmetric
complex systems. Discussions with colleagues about new developments in-
spired me to comment on these in my Lecture Notes and so I wrote sections on
Simple GMRES and on the superlinear convergence of Conjugate Gradients.

A couple of years ago, I started to use these Lecture Notes as material
for undergraduate teaching in Utrecht and I found it helpful to include some
exercises in the text. Eventually, the text grew larger and larger and it resulted
in this book.

The history of the text explains more or less what makes this book different
from various other books. It contains, of course, the basic material and the
required theory. The mathematical presentation is very lecture inspired in the

xi



xii Preface

sense that I seldom prove theorems in lectures: I rather present the successive
ideas in a way that appears logical, at least to me. My presentation of the Bi-CG
method is an example of this. Bi-CG can be presented in a very short and clean
way once the method is known. However, I preferred to introduce the method
from the point of view of the person who only knows CG and has learned that
CG does not work for unsymmetric systems. The natural question then is how to
repair the method, retaining its short recurrences, so that unsymmetric problems
can be solved. This is exemplary for the major part of the text. In most cases I
try to present the ideas in the way they may come up in a discovery phase and
then I, sometimes, collect interesting conclusions in theorems. I only included
in some cases a more formal (‘afterward’) proof.

The text contains the basic material for the best known iterative methods and
most of them are shown in frames in a way that facilitates implementation in
Matlab. The experiments have been carried out with my own Matlab versions
of the framed algorithms. The experiments are also rather unusual. They are
very simple and easy to repeat. They are of a kind that anyone can come up with
rather quickly. However, by inspecting the behaviour of the various methods for
these simple problems, we observe various aspects that are typical for the more
complicated real-life problems as well. I have seen many large and complicated
linear systems and I have advised researchers in the industry on how to solve
these systems. I found it always instructive to explain expected effects with the
help of very simple small examples. I expect that these experiments and the
discussions will add more life to the material for industrial users and that they
will help students to construct other, even more interesting, test examples. I hope
too that my discussions will stimulate students to discover other new aspects
and to think about these.

Apart from the basic material, the text focuses on aspects that I found partic-
ularly interesting. Mostly these are aspects that lead to more insight or to better
methods, but sometimes I have also included discussions on ideas (of others),
which have less certain outcomes. Hence the book may also be of interest to
researchers, because it hints at many avenues for new research.

I know that some of my colleagues have used older versions of this text
for teaching, at various levels. For that purpose I have included all sorts of
exercises in the text. As a student I did not like many of the exercises that we
had to do, which served as tests afterwards. I preferred exercises that helped me
understand the text when I needed it most. With this in mind I have constructed
the exercises. In most cases they concern essential parts of the presentation
and they are placed in the text where their results are most helpful for deeper
understanding. Often I refer to results and formulas obtained in these exercises.
Other exercises are intended to motivate students to construct working examples
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and to teach them to draw, and sometimes prove, correct conclusions. These
exercises can be made with the help of short Matlab, or Mathematica, codes that
the students have to write themselves, guided by the framed algorithms. Some
of the problems can also be handled with the existing Template codes for various
Krylov subspace methods, including CG, Bi-CG, GMRES, CGS, QMR, and
Bi-CGSTAB. These methods are standard and are available in Matlab 6.0 and
more recent versions. They are also available through the Web at the famous
netlib website.

This is the place to thank numerous colleagues for their suggestions and
comments. Over the past ten years they have been so numerous that it is im-
possible to mention all of them and it would also be unfair not to mention the
many persons from various audiences that helped me, through their questions
and comments, to improve my presentation of the material. I would like to make
a few exceptions. I am particularly indebted to Michael Saunders, who helped
me to correct part of the text while we were at a workshop in Copenhagen. I also
learned very much about the subject from collaborations with Iain Duff, Gene
Golub, and Youcef Saad, with whom I wrote a number of overview papers.
These were extremely pleasant and fruitful events.

Dear reader of this book, I hope very much that this text will be helpful to
you and I would appreciate hearing your comments and suggestions for further
improvement.

Henk van der Vorst





1
Introduction

In this book I present an overview of a number of related iterative methods
for the solution of linear systems of equations. These methods are so-called
Krylov projection type methods and they include popular methods such as
Conjugate Gradients, MINRES, SYMMLQ, Bi-Conjugate Gradients, QMR,
Bi-CGSTAB, CGS, LSQR, and GMRES. I will show how these methods can
be derived from simple basic iteration formulas and how they are related. My
focus is on the ideas behind the derivation of these methods, rather than on a
complete presentation of various aspects and theoretical properties.

In the text there are a large number of references for more detailed infor-
mation. Iterative methods form a rich and lively area of research and it is not
surprising that this has already led to a number of books. The first book devoted
entirely to the subject was published by Varga [212], it contains much of the
theory that is still relevant, but it does not deal with the Krylov subspace meth-
ods (which were not yet popular at the time).

Other books that should be mentioned in the context of Krylov subspace meth-
ods are the ‘Templates’ book [20] and Greenbaum’s book [101]. The Templates
are a good source of information on the algorithmic aspects of the iterative
methods and Greenbaum’s text can be seen as the theoretical background for
the Templates.

Axelsson [10] published a book that gave much attention to preconditioning
aspects, in particular all sorts of variants of (block and modified) incomplete
decompositions. The book by Saad [168] is also a good source of information
on preconditioners, with much inside experience for such methods as threshold
ILU. Of course, GMRES receives much attention in [168], together with variants
of the method. Kelley [126] considers a few of the most popular Krylov methods
and discusses how to use them for nonlinear systems. Meurant [144] covers the

1



2 1. Introduction

theory of most of the best algorithms so far known. It contains extensive material
on domain decomposition and multilevel type preconditioners. Meurant’s book
is also very useful as a source text: it contains as many as 1368 references
to literature. Brezinski’s book [31] emphasizes the relation between (Krylov)
subspace methods and extrapolation methods. He also considers various forms
of hybrid methods and discusses different approaches for nonlinear systems.
Implementation aspects for modern High-Performance computers are discussed
in detail in [61].

For general background on linear algebra for numerical applications see
[98, 181], and for the effects of finite precision, for general linear systems, I
refer to [116] (as a modern successor of Wilkinson’s book [222]).

Some useful state of the art papers have appeared; I mention papers on the
history of iterative methods by Golub and van der Vorst [97], and Saad and
van der Vorst [170]. An overview on parallelizable aspects of sparse matrix
techniques is presented in [70]. A state-of-the-art overview for preconditioners
is presented in [22].

Iterative methods are often used in combination with so-called precondition-
ing operators (easily invertible approximations for the operator of the system to
be solved). I will give a brief overview of the various preconditioners that exist.

The purpose of this book is to make the reader familiar with the ideas and the
usage of iterative methods. I expect that then a correct choice of method can be
made for a particular class of problems. The book will also provide guidance
on how to tune these methods, particularly for the selection or construction of
effective preconditioners.

For the application of iterative schemes we usually have linear sparse systems
in mind, for instance linear systems arising in the finite element or finite dif-
ference approximations of (systems of) partial differential equations. However,
the structure of the operators plays no explicit role in any of these schemes,
which may also be used successfully to solve certain large dense linear sys-
tems. Depending on the situation, this may be attractive in terms of numbers of
floating point operations.

I will also pay some attention to the implementation aspects of these methods,
especially for parallel computers.

Before I start the actual discussion of iterative methods, I will first give a
motivation for their use. As we will see, iterative methods are not only great
fun to play with and interesting objects for analysis, but they are really useful
in many situations. For truly large problems they may sometimes offer the only
way towards a solution, as we will see.
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Figure 1.1. The computational grid for an ocean flow.

1.1 On the origin of iterative methods

In scientific computing most computational time is spent in solving systems of
linear equations. These systems can be quite large, for instance as in computa-
tional fluid flow problems, where each equation describes how the value of a
local unknown parameter (for example the local velocity of the flow) depends
on (unknown) values in the near neighbourhood.

The actual computation is restricted to values on a previously constructed grid
and the number of gridpoints determines the dimensions of the linear sys-
tem. In Figure. 1.1 we see such a grid for the computation of two-dimensional
ocean flows. Each gridpoint is associated with one or more unknowns and with
equations that describe how these unknowns are related to unknowns for neigh-
bouring gridpoints. These relations are dictated by the physical model. Because
many gridpoints are necessary in order to have a realistic computational model,
we will as a consequence have many equations. A nice property of these linear
systems is that each equation contains only a few unknowns. The matrix of the
system contains mainly zeros. This property will be of great importance for the
efficiency of solution methods, as we will see later.
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We see that the grid consists of four differently represented subgrids. The reason
for this is that, in the actual computations for this problem, we had to do the
work in parallel: in this case on four parallel computers. This made it possible to
do the work in an acceptably short time, which is convenient for model studies.
We will see that most of the methods that we will describe lend themselves to
parallel computation.

As we will see, the process of solving the unknowns from these large linear
systems involves much computational work. The obvious approach via direct
Gaussian elimination is often not attractive. This was already recognized by the
great Gauss himself, in 1823, albeit for different reasons to those in the present
circumstances [93]. In that year he proposed an iterative method for the solution
of four equations with four unknowns, arising from triangular measurements.

In order to appreciate his way of computing, we start with the familiar (Gaussian)
elimination process. As an example we consider the small linear system10 0 1

1
2 7 1
1 0 6

 x1

x2

x3

 =
21

9
8

 .

The elimination process is as follows. We subtract 1
20 times the first row from

the second row and then 1
10 times the first row from the third row. After this we

have zeros in the first column below the diagonal and the system becomes10 0 1

0 7 1 − 1
20

0 0 6 − 1
10


 x1

x2

x3

 =

 21
9 − 21

20

8 − 21
10

 .

As a coincidence we also have a zero element in the second column below the
diagonal, and now we can solve the system without much effort. It leads to the
solution x3 = 1, x2 = 1, and x1 = 2. Note that we have used exact computation.
This is not a problem in this case, which has been designed to have a ‘nice’
solution. However, in more realistic situations, we may have non-integer values
and then exact computation may lead to significant computational effort for
a human being. It is not so easy to avoid human errors and after checking
that the computed erroneous solution does not satisfy the initial system, it
is not easy to find the place where the error occurred. Gauss suffered from
this in his computations. He had a good physical intuition and he knew that
the solution of his system should have components of about the same order
of magnitude. Because his matrices had strongly dominating elements on the
diagonal, he knew that the main contribution in the right-hand side came from



1.1 On the origin of iterative methods 5

the components in the solution that had been multiplied by a diagonal element: in
our example 10x1, 7x2, and 6x3. This implies that if we neglect the off-diagonal
elements in our system,

10 0 0
0 7 0
0 0 6

 x1

x2

x3

 =
21

9
8

 ,

we may still expect, from this perturbed system, a fairly good approximation for
the solution of the unperturbed system; in our example: x1 = 2.1, x2 = 9

7 , and
x3 = 8

6 . Indeed, this is a crude approximation for the solution that we want. This
way of approximation is still popular; it is known as a Gauss–Jacobi approxima-
tion, because the mathematician-astronomer Jacobi used it for the computation
of perturbations in the orbits of the planets in our solar system.

Gauss made another intelligent improvement. He observed that we can approx-
imate the original system better if we only replace nonzero elements in the strict
upper triangular part. This leads to

10 0 0
1
2 7 0
1 0 6

 x1

x2

x3

 =
21

9
8

 .

This system has the solution x1 = 2.1, x2 = 7.95
7 , and x3 = 5.9

6 . Indeed, this
leads to an improvement (it should be noted that this is not always the case;
there are situations where this approach does not lead to an improvement). The
approach is known as the Gauss–Seidel approximation.

Altogether, we have obtained a crude approximated solution for our small sys-
tem for only a small reduction in the computational costs. At this point it is
good to discuss the computational complexity. For a system with n equations
and n unknowns we need 2(n − 1)2 operations to create zeros in the first column
(if we ignore possible, already present, zeros). Then for the second column we
need 2(n − 2)2 operations. From this we conclude that for the elimination of
all elements in the lower triangular part, we need about 2

3 n3 operations. The
cost of solving the resulting upper triangular system again requires roughly
n2 operations, which is a relatively minor cost for larger values of n. We may
conclude that the cost of obtaining the exact solution is proportional to n3. It is
easy to see that the cost of computing only the Gauss–Seidel approximation is
proportional to n2 and it may be seen that this promises great advantages for
larger systems.
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The question now arises – how is the obtained approximated solution improved
at relatively low costs? Of course, Gauss had also considered this aspect. In or-
der to explain his approach, I will use matrix notation. This was not yet invented
in Gauss’s time and the lack of it makes the reading of his original description
not so easy. We will write the system as

Ax = b,

with

A =
10 0 1

1
2 7 1
1 0 6

 ,

x =
 x1

x2

x3

 and

21
9
8

 .

The lower triangular part of A is denoted by L:

L =
10 0 0

1
2 7 0
1 0 6

 .

The Gauss–Seidel approximation is then obtained by solving the system

Lx̃ = b.

For a correction to this solution we look for the ‘missing’ part �x :

A(x̃ + �x) = b,

and this missing part satisfies the equation

A�x = b − Ax̃ ≡ r.

It is now an obvious idea to compute an approximation for �x again with a
Gauss–Seidel approximation, that is we compute �̃x from

L�̃x = r,

and we correct our first approximation with this approximated correction x̃ :

˜̃x = x̃ + �̃x .
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Table 1.1. Results for three Gauss–Seidel
iterations

iteration 1 2 3
x1 2.1000 2.0017 2.000028
x2 1.1357 1.0023 1.000038
x3 0.9833 0.9997 0.999995

Of course, we can repeat this trick and that leads to the following simple iteration
procedure:

x (i+1) = x (i) + L−1(b − Ax (i)),

where the vector y = L−1(b − Ax (i)) is computed by solving

Ly = b − Ax (i).

We try this process for our little linear system. In the absence of further
information on the solution, we start with x (0) = 0. In Table 1.1 we display
the results for the first three iteration steps.

We observe that in this case we improve the solution by about two decimals
per iteration. Of course, this is not always the case. It depends on how strongly
the diagonal elements dominate. For instance, for the ocean flow problems we
have almost no diagonal dominance and Gauss–Seidel iteration is so slow that
it is not practical in this bare form.

The computational costs per iteration step amount to roughly 2n2 operations
(additions, subtractions, multiplications) for the computation of Ax (i), plus
n2 operations for the solution of the lower triangular system with L: in total
≈ 3n2 operations per iteration step. Solution via the direct Gaussian elimination
process takes ≈ 2

3 n3 operations. This implies a gain in efficiency if we are
satisfied with the approximations and if these are obtained after less than(

2

3
n3

)
/(3n2) = 2

9
n

iterations.

Computation with this iteration method was very attractive for Gauss, not be-
cause of efficiency reasons but mainly because he did not have to compute
the approximated solutions accurately. A few decimal places were sufficient.
Unintentional errors and rounding errors ‘correct themselves’ in the later iter-
ations. Another advantage is that the residual b − Ax (i) has to be computed in
each step, so that we can see at a glance how well the computed approximation
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satisfies the system. In a letter to his colleague Gerling, Gauss was elated over
this process and mentioned that the computations could be undertaken even
when a person is half asleep or thinking of more important things.

The linear systems that Gauss had to solve were strongly diagonally dominant
and for that reason he could observe fast convergence. The Gauss–Seidel iter-
ation process is much too slow for the very large linear systems that we see
in many applications. For this reason there has been much research into faster
methods and we will see the results of this later in this text.

1.2 Further arguments for iterative methods

For the solution of a linear system Ax = b, with A a nonsingular n by n matrix,
we have the choice between direct and iterative methods.

The usual pro-arguments for iterative methods are based on economy of com-
puter storage and (sometimes) CPU time. On the con side, it should be noted
that the usage of iterative methods requires some expertise. If CPU-time and
computer storage are not really at stake, then it would be unwise to consider
iterative methods for the solution of a given linear system. The question re-
mains whether there are situations where iterative solution methods are really
preferable. In this section I will try to substantiate the pro-arguments; the con-
arguments will appear in my more detailed presentation of iterative methods.
I hope that the reader will feel sufficiently familiar, after reading these notes,
with some of the more popular iterative methods in order to make a proper
choice for the solving of classes of linear systems.

Dense linear systems, and sparse systems with a suitable nonzero structure,
are most often solved by a so-called direct method, such as Gaussian elimi-
nation. A direct method leads, in the absence of rounding errors, to the exact
solution of the given linear system in a finite and fixed amount of work. Round-
ing errors can be handled fairly well by pivoting strategies. Problems arise when
the direct solution scheme becomes too expensive for the task. For instance,
the elimination steps in Gaussian elimination may cause some zero entries of
a sparse matrix to become nonzero entries, and nonzero entries require storage
as well as CPU time. This is what may make Gaussian elimination, even with
strategies for the reduction of the so-called fill-in, expensive.

In order to get a more quantitative impression of this, we consider a sparse
system related to discretization of a second order PDE over a (not necessarily
regular) grid, with about m unknowns per dimension. Think, for instance, of
a finite element discretization over an irregular grid [159]. In a 3D situation
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this leads typically to a bandwidth ∼ n
2
3 (≈ m2 and m3 ≈ n, where 1/m is the

(average) gridsize).
Gaussian elimination is carried out in two steps: first the matrix A is factored

into a lower triangular matrix L , and an upper triangular matrix U (after suitable
permutations of rows and columns):

A = LU.

When taking proper account of the band structure, the number of flops is then
usually O(nm4) ∼ n2 1

3 [98, 67]. We make the caveat ‘usually’, because it may
happen that fill-in is very limited when the sparsity pattern of the matrix is
special.

For 2D problems the bandwidth is ∼ n
1
2 , so that the number of flops for a

direct method then varies with n2.
Then, in the second step, we have to solve x from LU x = b, which, again,

is done in two steps:

(a) first solve y from Ly = b,
(b) then solve x from U x = y.

The LU factorization is the expensive part of the computational process; the
solution of the two triangular systems is usually a minor cost item. If many
systems with different right-hand sides have to be solved, then the matrix has
to be factored only once, after which the cost for solving each system will vary
with n

5
3 for 3D problems, and with n

3
2 for 2D problems.

In order to be able to quantify the amount of work for iterative methods, we have
to be a little more specific. Let us assume that the given matrix is symmetric pos-
itive definite, in which case we may use the Conjugate Gradient (CG) method.
The error reduction per iteration step of CG is ∼

√
κ−1√
κ+1 , with κ = ‖A‖2‖A−1‖2

[44, 8, 98].
For discretized second order PDEs over grids with gridsize 1

m , it can be
shown that κ ∼ m2 (see, for instance, [159]). Hence, for 3D problems we have
that κ ∼ n

2
3 , and for 2D problems: κ ∼ n. In order to have an error reduction

by a factor of ε, the number j of iteration steps must satisfy(
1 − 1√

κ

1 + 1√
κ

) j

≈
(

1 − 2√
κ

) j

≈ e− 2 j√
κ < ε.

For 3D problems, it follows that

j ∼ − log ε

2

√
κ ≈ − log ε

2
n

1
3 ,
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whereas for 2D problems,

j ≈ − log ε

2
n

1
2 .

If we assume the number of flops per iteration to be ∼ f n ( f stands for the
average number of nonzeros per row of the matrix and the overhead per unknown
introduced by the iterative scheme), then the required number of flops for a
reduction of the initial error with ε is

(a) for 3D problems: ∼ − f n
4
3 log ε, and

(b) for 2D problems: ∼ − f n
3
2 log ε.

f is typically a modest number, say of order 10–15.

From comparing the flops counts for the direct scheme with those for the itera-
tive CG method we conclude that the CG method may be preferable if we have
to solve one system at a time, and if n is large, or f is small, or ε is modest.

If we have to solve many systems Ax = bk with different right-hand sides
bk , and if we assume their number to be so large that the costs for constructing
the LU factorization of A is relatively small per system, then it seems likely that
direct methods will be more efficient for 2D problems. For 3D problems this is
unlikely, because the flops counts for the two triangular solves associated with
a direct solution method are proportional to n

5
3 , whereas the number of flops

for the iterative solver (for the model situation) varies in the same way as n
4
3 .

1.3 An example

The above arguments are quite nicely illustrated by observations made by Horst
Simon [173]. He predicted that by now we will have to solve routinely linear
problems with some 5 × 109 unknowns. From extrapolation of the CPU times
observed for a characteristic model problem, he estimated the CPU time for the
most efficient direct method as 520 040 years, provided that the computation
can be carried out at a speed of 1 TFLOPS.

On the other hand, the extrapolated guess for the CPU time with precondi-
tioned conjugate gradients, still assuming a processing speed of 1 TFLOPS, is
575 seconds. As we will see, the processing speed for iterative methods may be
a factor lower than for direct methods, but, nevertheless, it is obvious that the
differences in CPU time requirements are gigantic. The ratio of the two times
is of order n, just as we might have expected from our previous arguments.

Also the requirements for memory space for the iterative methods are typ-
ically smaller by orders of magnitude. This is often the argument for the use
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of iterative methods in 2D situations, when flops counts for both classes of
methods are more or less comparable.

Remarks:

• With suitable preconditioning we may have
√

κ ∼ n
1
6 and the flops count is

then roughly proportional to

− f n
7
6 log ε,

see, e.g., [105, 10].
• Special methods may even be (much) faster for special problems: Fast Pois-

son Solvers [35, 184], multigrid [111, 220]. For more general problems,
we see combinations of these methods with iterative schemes. For instance,
iterative schemes can be used as smoothers for multigrid, or a multigrid cy-
cle for an approximating regular problem may be used as a preconditioner
for an iterative method for an irregular problem. Also, preconditioners have
been designed with multigrid-like properties.

• For matrices that are not positive definite symmetric the situation can be
more problematic: it is often difficult to find the proper iterative method or a
suitable preconditioner. However, for methods related in some sense to CG,
like GMRES, QMR, TFQMR, Bi-CG, CGS, and Bi-CGSTAB, we often see
that the flops counts are similar to those for CG.

• Iterative methods can be attractive even when the matrix is dense. Again,
in the positive definite symmetric case, if the condition number is n2−2ε

then, since the amount of work per iteration step is ∼ n2 and the number
of iteration steps ∼ n1−ε, the total work estimate is roughly proportional to
n3−ε, and this is asymptotically less than the amount of work for Cholesky’s
method (the symmetric positive definite variant of Gaussian elimination),
which varies with ∼ n3. This says that the condition number has to be less
than n2 in order to make iterative methods potentially competitive for dense
matrices.

• In many situations the condition number tells only part of the story. Methods
like CG can be a good deal faster than the condition number predicts. This
happens, for instance, when the eigenvalues of A have relatively big gaps at
the lower end of the spectrum (see Section 5.3).

1.4 Performance aspects

Now the question remains – how well can iterative methods take advantage of
modern computer architectures? From Dongarra’s LINPACK benchmark [59]
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Table 1.2. Speed in megaflops for 50 Iterations of ICCG and CG

Peak Optimized Scaled
Machine performance ICCG CG
NEC SX-3/22 (2.9 ns) 2750 607 1124
CRAY Y-MP C90 (4.2 ns) 952 444 737
CRAY 2 (4.1 ns) 500 96 149
IBM 9000 Model 820 444 40 75
IBM 9121 (15 ns) 133 11 25
DEC Vax/9000 (16 ns) 125 10 17
IBM RS/6000-550 (24 ns) 81 18 21
CONVEX C3210 50 16 19
Alliant FX2800 40 2 3

Table 1.3. Performances in megaflops for processors

Peak
Processor performance CG GMRES ILU
EV6 759 285 216 163
Athlon 600 MHz 154 43 44 34
SGI Origin 106 70 71 57
ALPHA 533 MHz 81 45 40 33
IBM 375 MHz 606 254 209 120
SUN 296 MHz 154 57 37 34
R1200 270 MHz 155 52 78 62
PPC G4 450 MHz 198 45 38 31
Pentium III 550 MHz 96 37 39 27

it may be concluded that the solution of a dense linear system can (in principle)
be computed with computational speeds close to peak speeds on most com-
puters. This is already the case for systems of, say, order 50 000 on parallel
machines with as many as 1024 processors.

In sharp contrast to the dense case are computational speeds reported in
[63] for the preconditioned as well as the unpreconditioned conjugate gradient
methods (ICCG and CG, respectively). I list some of these results for classical
vector computers, for regular sparse systems from 7-point stencil discretizations
of 3D elliptic PDEs, of order n = 106, in Table 1.2. We see that, especially for
ICCG, the performance stays an order of magnitude below the theoretical peak
of most machines.

A benchmark for representative components of iterative methods is proposed
in [62]. In this benchmark the asymptotic speeds, that is the megaflops rates
for large values of the order of the linear system, are computed for the stan-
dard unpreconditioned Conjugate Gradients method and the unpreconditioned
GMRES(20) method. The performance of preconditioners, necessary in order
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to speed up the convergence, is measured separately. When a preconditioner
is used, the overall performance of the iterative process is typically closer to
the performance of the preconditioning part. In Table 1.3 we list some asymp-
totic performances for Conjugate Gradients (CG), GMRES(20) (GMRES), and
the popular preconditioner ILU, for more modern processors. The situation
for these processors is certainly somewhat better than for the vector proces-
sors. However, note that high performances are now sought by coupling large
numbers of these processors (massively parallel computing). Parallelism in pre-
conditioned iterative methods is not a trivial matter. I will come back to this in
my discussion on preconditioning techniques.





2
Mathematical preliminaries

In this chapter I have collected some basic notions and notations that will be
used throughout this book.

2.1 Matrices and vectors

We will look at linear systems Ax = b, where A is usually an n by n matrix:

A ∈ R
n×n.

The elements of A will be denoted as ai, j . The vectors x = (x1, x2, . . . , xn)
T

and b belong to the linear space R
n . Sometimes we will admit complex matrices

A ∈ C
n×n and vectors x, b ∈ C

n , but that will be explicitly mentioned.
Over the space R

n we will use the Euclidean inner product between two
vectors x and y:

xT y =
n∑

i=1

xi yi ,

and for v, w ∈ C
n we use the standard complex inner product:

vHw =
n∑

i=1

v̄iwi .

These inner products lead to the 2-norm or Euclidean length of a vector

‖x‖2 =
√

xT x for x ∈ R
n,

‖v‖2 =
√

vHv for v ∈ C
n.

15
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With these norms we can associate a 2 norm for matrices: for A ∈ R
n×n , its

associated 2-norm ‖A‖2 is defined as

‖A‖2 = sup
y∈Rn ,y 	=0

‖Ay‖2

‖y‖2
,

and similarly in the complex case, using the complex inner product.
The associated matrix norms are convenient, because they can be used to

bound products. For A ∈ R
n×k , B ∈ R

k×m , we have that

‖AB‖2 ≤ ‖A‖2‖B‖2,

in particular

‖Ax‖2 ≤ ‖A‖2‖x‖2.

The inverse of a nonsingular matrix A is denoted as A−1. Particularly useful is
the condition number of a square nonsingular matrix A, defined as

κ2(A) = ‖A‖2‖A−1‖2.

The condition number is used to characterize the sensitivity of the solution x
of Ax = b with respect to perturbations in b and A. For perturbed systems we
have the following theorem.

Theorem 2.1. [98, Theorem 2.7.2] Suppose

Ax = b A ∈ R
n×n, 0 	= b ∈ R

n

(A + �A)y = b + �b �A ∈ R
n×n, �b ∈ R

n,

with ‖�A‖2 ≤ ε‖A‖2 and ‖�b‖2 ≤ ε‖b‖2.
If εκ2(A) = r < 1, then A + �A is nonsingular and

‖y − x‖2

‖x‖2
≤ ε

1 − r
κ2(A).

With the superscript T we denote the transpose of a matrix (or vector): for
A ∈ R

n×k , the matrix B = AT ∈ R
k×n is defined by

bi, j = a j,i .
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If E ∈ C
n×k then the superscript H is used to denote its complex conjugate

F = E H , defined as

fi, j = ē j,i .

Sometimes the superscript T is used for complex matrices in order to denote
the transpose of a complex matrix.

The matrix A is symmetric if A = AT , and B ∈ C
n×n is Hermitian if B =

B H . Hermitian matrices have the attractive property that their spectrum is real.
In particular, Hermitian (or symmetric real) matrices that are positive definite are
attractive, because they can be solved rather easily by proper iterative methods
(the CG method).

A Hermitian matrix A ∈ C
n×n is positive definite if x H Ax > 0 for all 0 	=

x ∈ C
n . A positive definite Hermitian matrix has only positive real eigenvalues.

In the context of preconditioning, the notion of an M-matrix is useful. Some
popular preconditioners can be proven to exist when A is an M-matrix.

Definition 2.1. A nonsingular A ∈ R
n×n is an M-matrix if ai, j ≤ 0 for i 	= j

and A−1 ≥ 0.

With A ≥ 0 we denote the situation that the inequality holds for all elements
of A. The M-matrix property can be proven to hold for important classes of
discretized PDEs. It is an important property for iteration methods that are based
on (regular) splittings of the matrix A (for details on this see [212]).

We will encounter some special matrix forms, in particular tridiagonal ma-
trices and (upper) Hessenberg matrices. The matrix T = (ti, j ) ∈ R

n×m will be
called tridiagonal if all elements for which |i − j | > 1 are zero. It is called
upper Hessenberg if all elements for which i > j + 1 are zero. In the context
of Krylov subspaces, these matrices are often k + 1 by k and they will then be
denoted as Tk+1,k .

2.2 Eigenvalues and eigenvectors

For purposes of analysis it is often helpful or instructive to transform a given
matrix to an easier form, for instance, diagonal or upper triangular form.

The easiest situation is the symmetric case: for a real symmetric matrix, there
exists an orthogonal matrix Q ∈ R

n×n , so that QT AQ = D, where D ∈ R
n×n

is a diagonal matrix. The diagonal elements of D are the eigenvalues of A, the
columns of Q are the corresponding eigenvectors of A. Note that the eigenvalues
and eigenvectors of A are all real.
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If A ∈ C
n×n is Hermitian (A = AH ) then there exist Q ∈ C

n×n and a diag-
onal matrix D ∈ R

n×n so that Q H Q = I and Q H AQ = D. This means that
the eigenvalues of a Hermitian matrix are all real, but its eigenvalues may be
complex.

Unsymmetric matrices do not in general have an orthonormal set of eigen-
vectors, and may not have a complete set of eigenvectors, but they can be
transformed unitarily to Schur form:

Q∗ AQ = R,

in which R is upper triangular. In fact, the symmetric case is a special case of this
Schur decomposition, since a symmetric triangular matrix is clearly diagonal.
Apart from the ordering of the eigenvalues along the diagonal of R and the sign
of each column of Q, the matrix Q is unique.

If the matrix A is complex, then the matrices Q and R may also be complex.
However, they may be complex even when A is real unsymmetric. It may
then be advantageous to work in real arithmetic. This can be realized because
of the existence of the real Schur decomposition. If A ∈ R

n×n then it can be
transformed with an orthonormal Q ∈ R

n×n as

QT AQ = R̃,

with

R̃ =


R̃1,1 R̃1,2 · · · R̃1,k

0 R̃2,2 · · · R̃2,k
...

...
. . .

...

0 0 · · · R̃k,k

 ∈ R
n×n.

Each R̃i,i is either 1 by 1 or a 2 by 2 (real) matrix having complex conjugate
eigenvalues. For a proof of this see [98, Chapter 7.4.1]. This form of R̃ is
referred to as an upper quasi-triangular matrix.

If all eigenvalues are distinct then there exists a nonsingular matrix X (in
general not orthogonal) that transforms A to diagonal form:

X−1 AX = D.

A general matrix can be transformed to Jordan form with a nonsingular X :

X−1 AX = diag(J1, J2, . . . , Jk),
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where

Ji =



λi 1 0 · · · 0

0 λi
. . .

...

. . .
. . .

. . .

...
. . .

. . . 1
0 · · · 0 λi


.

If there is a Ji with dimension greater than 1 then the matrix A is defective.
In this case A does not have a complete set of independent eigenvectors. In
numerical computations we may argue that small perturbations lead to different
eigenvalues and hence that it will be unlikely that A has a true Jordan form
in actual computation. However, if A is close to a matrix with a nontrivial
Jordan block, then this is reflected by a (severely) ill-conditioned eigenvector
matrix X .

Matrices A ∈ C
n×n that satisfy the property AH A = AAH are called normal.

Normal matrices also have a complete orthonormal eigensystem. For such ma-
trices the distribution of the eigenvalues can help to explain (local) phenomena
in the convergence behaviour of some methods. For unsymmetric matrices that
are not normal, the eigenvalues are often insufficient for a detailed analysis.
In some situations the convergence behaviour can be analysed partly with the
so-called field of values.

Definition 2.2. The field of values F(A) is defined as

F(A) = {zH Az | zH z = 1}.

We will also encounter eigenvalues that are called Ritz values. For simplicity,
we will introduce them here for the real case. The subspace methods that will
be discussed in this book are based on the identification of good solutions
from certain low-dimensional subspaces Vk ⊂ R

n , where k � n denotes the
dimension of the subspace. If Vk ∈ R

n×k denotes an orthogonal basis of Vk

then the operator Hk = V T
k AVk ∈ R

k×k represents the projection of A onto Vk .
Assume that the eigenvalues and eigenvectors of Hk are represented as

Hks(k)
j = θ

(k)
j s(k)

j ,

the θ
(k)
j is called a Ritz value of A with respect to Vk and Vks(k)

j is its corre-
sponding Ritz vector. For a thorough discussion of Ritz values and Ritz vectors
see, for instance, [155, 165, 182, 203].
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For some methods we will see that Harmonic Ritz values play a role. Let
Wk denote an orthogonal basis for the subspace AVk then the Harmonic Ritz
values of A with respect to that subspace are the inverses of the eigenvalues of
the projection Zk of A−1:

Zk = W T
k A−1Wk .

The importance of the (Harmonic) Ritz values is that they can be viewed
as approximations for eigenvalues of A. Often they represent, even for modest
values of k, very accurate approximations for some eigenvalues. The monitoring
of Ritz values, which can often be easily obtained as an inexpensive side product
of the iteration process, reveals important information on the iteration process
and on the (preconditioned) matrix A.



3
Basic iteration methods

3.1 Introduction

The idea behind iterative methods is to replace the given system by some nearby
system that can be more easily solved. That is, instead of Ax = b we solve the
simpler system K x0 = b and take x0 as an approximation for x . The iteration
comes from the systematic way in which the approximation can be improved.
Obviously, we want the correction z that satisfies

A(x0 + z) = b.

This leads to a new linear system

Az = b − Ax0.

Again, we solve this system by a nearby system, and most often K is again
taken:

K z0 = b − Ax0.

This leads to the new approximation x1 = x0 + z0. The correction procedure
can now be repeated for x1, and so on, which gives us an iterative method. In
some iteration methods we select a cycle of different approximations K , as, for
instance, in ADI. In such cases the approximation for x after one cycle can be
regarded as being obtained from the approximation prior to the cycle with an
implicitly constructed K that represents the full cycle. This observation is of
importance for the construction of preconditioners.

21
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For the basic iteration, introduced above, it follows that

xi+1 = xi + zi

= xi + K −1(b − Axi )

= xi + b̃ − Ãxi , (3.1)

with b̃ = K −1b and Ã = K −1 A. We use K −1 only for notational purposes;
we (almost) never compute inverses of matrices explicitly. When we speak of
K −1b, we mean the vector b̃ that is solved from K b̃ = b, and in the same way
for K −1 Axi .

The formulation in (3.1) can be interpreted as the basic iteration for the
preconditioned linear system

Ãx = b̃, (3.2)

with approximation K = I for Ã = K −1 A.

In order to simplify our formulas, we will from now on assume that if we have
some preconditioner K , we apply our iterative schemes to the (preconditioned)
system (3.2), and we will skip the superscript .̃ This means that we iterate for
Ax = b with approximation K = I for A. In some cases it will turn out to
be more convenient to incorporate the preconditioner explicitly in the iteration
scheme, but that will be clear from the context.

We have thus arrived at the well-known Richardson iteration:

xi+1 = b + (I − A)xi = xi + ri , (3.3)

with the residual ri = b − Axi .
Because relation (3.3) contains xi as well as ri , it cannot easily be analysed.

Multiplication by −A and adding b gives

b − Axi+1 = b − Axi − Ari

or

ri+1 = (I − A)ri (3.4)

= (I − A)i+1r0

= Pi+1(A)r0. (3.5)

In terms of the error x − xi , we get

A(x − xi+1) = Pi+1(A)A(x − x0),
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so that, for nonsingular A:

x − xi+1 = Pi+1(A)(x − x0).

In these expressions Pi+1 is a (special) polynomial of degree i + 1. Note that
Pi+1(0) = 1.
The expressions (3.4) and (3.5) lead to interesting observations. From (3.4) we
conclude that

‖ri+1‖ ≤ ‖I − A‖‖ri‖,

which shows that we have guaranteed convergence for all initial r0 if
‖I − A‖ < 1. This puts restrictions on the preconditioner (remember that A
represents the preconditioned matrix). We will later see that for the convergence
of more advanced iterative schemes, we may drop the restriction ‖I − A‖ < 1.

Equation (3.5) is also of interest, because it shows that all residuals can
be expressed in terms of powers of A times the initial residual. This observa-
tion will be crucial for the derivation of methods like the Conjugate Gradients
method. It shows something more. Let us assume that A has n eigenvectors w j ,
with corresponding eigenvectors λ j . Then we can express r0 in terms of the
eigenvector basis as

r0 =
n∑

j=1

γ jw j ,

and we see that

ri = Pi (A)r0 =
n∑

j=1

γ j Pi (λ j )w j .

This formula shows that the error reduction depends on how well the polynomial
Pi damps the initial error components. It would be nice if we could construct
iterative methods for which the corresponding error reduction polynomial Pi

has better damping properties than for the standard iteration (3.3).

From now on we will also assume that x0 = 0 to simplify future formulas.
This does not mean a loss of generality, because the situation x0 	= 0 can be
transformed with a simple shift to the system

Ay = b − Ax0 = b̄ (3.6)

for which obviously y0 = 0.



24 3. Basic iteration methods

With the simple Richardson iteration, we can proceed in different ways. One
way is to include iteration parameters, for instance, by computing xi+1 as

xi+1 = xi + αi ri . (3.7)

This leads to the error reduction formula

ri+1 = (I − αi A)ri .

It follows that the error reduction polynomial Pi can be expressed in this
case as

Pi =
i∏

j=1

(I − α j A).

Apparently, we can now construct methods for which the corresponding error
polynomials have better damping properties. For instance, if the eigenvalues
λ j are all in the real interval [a, b], with a > 0, then we can select the α j as
the zeros of a Chebyshev polynomial, shifted from [−1, 1] to [a, b] and scaled
so that Pi (0) = 1, which leads to the Chebyshev iteration method. An obvious
criticism could be that we have to select different sets of iteration parameters for
different values of i (because all Chebyshev polynomials have different zeros),
but it turns out that the recurrence relations for Chebyshev polynomials can be
exploited to derive recurrence relations for the corresponding xi . For further
details on this see [212, Chapter 5] or [98, Chapter 10.1.5].

An important consequence of this polynomial damping interpretation is that
it is no longer necessary that I − A has all its eigenvalues inside the unit ball.
The eigenvalues may, in principle, be anywhere as long as we have a chance
to construct, implicitly, iteration polynomials that damp the unwanted error
components.

A seemingly different approach is to save all approximations xi and to try
to recombine them into something better. This may seem awkward, but after
some reflection we see that all approximations can be expressed in polynomial
form, and hence also any possible combination. This shows that the Chebyshev
iteration is a member of this class, but we may hope that the approach leads to
optimal methods; optimal in a sense to be defined later.

First we have to identify the subspace in which the successive approx-
imate solutions are located. By repeating the simple Richardson iteration,
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we observe that

xi+1 = r0 + r1 + r2 + · · · + ri (3.8)

=
i∑

j=0

(I − A) j r0 (3.9)

∈ span{r0, Ar0, . . . , Air0} (3.10)

≡ K i+1(A; r0). (3.11)

The m-dimensional space spanned by a given vector v, and increasing powers
of A applied to v, up to the (m − 1)-th power, is called the m dimensional
Krylov subspace, generated with A and v, denoted by K m(A; v).

Apparently, the Richardson iteration, as it proceeds, delivers elements of
Krylov subspaces of increasing dimension. This is also the case for the
Richardson iteration (3.7) with parameters. Including local iteration parameters
in the iteration would lead to other elements of the same Krylov subspaces. Let
us still write such an element as xi+1. Since xi+1 ∈ K i+1(A; r0), we have that

xi+1 = Qi (A)r0,

with Qi an arbitrary polynomial of degree i . It follows that

ri+1 = b − Axi+1 = (I − AQi (A))r0 = P̃i+1(A)r0, (3.12)

with, just as in the standard Richardson iteration, P̃i+1(0) = 1. The standard
Richardson iteration is characterized by the polynomial Pi+1(A) = (I − A)i+1.

The consequence is that if we want to make better combinations of the generated
approximations, then we have to explore the Krylov subspace.

3.2 The Krylov subspace approach

Methods that attempt to generate better approximations from the Krylov sub-
space are often referred to as Krylov subspace methods. Because optimality
usually refers to some sort of projection, they are also called Krylov projection
methods. The Krylov subspace methods, for identifying suitable x ∈ Kk(A; r0),
can be distinguished in four different classes (we will still assume that x0 = 0):

(1) The Ritz–Galerkin approach: Construct the xk for which the residual is
orthogonal to the current subspace: b − Axk ⊥ Kk(A; r0).

(2) The minimum norm residual approach: Identify the xk for which the
Euclidean norm ‖b − Axk‖2 is minimal over Kk(A; r0).
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(3) The Petrov–Galerkin approach: Find an xk so that the residual b − Axk is
orthogonal to some other suitable k-dimensional subspace.

(4) The minimum norm error approach: Determine xk in ATKk(AT ; r0) for
which the Euclidean norm ‖xk − x‖2 is minimal.

The Ritz–Galerkin approach leads to well-known methods such as Conjugate
Gradients, the Lanczos method, FOM, and GENCG. The minimum norm resid-
ual approach leads to methods such as GMRES, MINRES, and ORTHODIR.
The main disadvantage of these two approaches is that, for most unsymmetric
systems, they lead to long and therefore expensive recurrence relations for the
approximate solutions. This can be relieved by selecting other subspaces for the
orthogonality condition (the Galerkin condition). If we select the k-dimensional
subspace in the third approach as Kk(AT ; s0), we then obtain the Bi-CG and
QMR methods, and these methods indeed work with short recurrences. The
fourth approach is not so obvious, but for A = AT it already becomes more
natural. In this case it leads to the SYMMLQ method [153]. For the unsymmet-
ric case it leads to the less well-known GMERR methods [218, 219]. Hybrids
of these approaches have been proposed, for instance CGS, Bi-CGSTAB,
Bi-CGSTAB(
), TFQMR, FGMRES, and GMRESR.

The choice of a method is a delicate problem. If the matrix A is symmetric
positive definite, then the choice is easy: Conjugate Gradients. For other types
of matrices the situation is very diffuse. GMRES, proposed in 1986 by Saad and
Schultz [169], is the most robust method, but in terms of work per iteration step
it is also relatively expensive. Bi-CG, which was suggested by Fletcher in 1976
[83], is a relatively inexpensive alternative, but it has problems with respect
to convergence: the so-called breakdown situations. This aspect has received
much attention in the literature. Parlett et al. [156] introduced the notion of
look-ahead in order to overcome breakdowns and this was further perfected by
Freund, Gutknecht and Nachtigal [89], and by Brezinski and Redivo Zaglia [32].
The theory for this look-ahead technique was linked to the theory of Padé
approximations by Gutknecht [108]. Other contributions to overcome specific
breakdown situations were made by Bank and Chan [17], and Fischer [81].
I discuss these approaches in the sections on Bi-CG and QMR.

The development of hybrid methods started with CGS, published in 1989
by Sonneveld [180], and was followed by Bi-CGSTAB, by van der Vorst in
1992 [201], and others. The hybrid variants of GMRES: Flexible GMRES and
GMRESR, in which GMRES is combined with some other iteration scheme,
were proposed in the mid-1990s.
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A nice overview of Krylov subspace methods, with focus on Lanczos-based
methods, is given in [88]. Simple algorithms and unsophisticated software for
some of these methods are provided in the ‘Templates’ book [20]. This book
is complemented, with respect to theory, by the very elegant textbook [101],
authored by Greenbaum. Iterative methods with much attention to various forms
of preconditioning have been described in [10]. Another book on iterative meth-
ods was published by Saad [168]; it is very algorithm oriented, with, of course,
a focus on GMRES and preconditioning techniques, for instance threshold ILU,
ILU with pivoting, and incomplete LQ factorizations. A nice introduction to
Krylov subspace methods, viewed from the standpoint of polynomial methods,
can be found in [82]. An annotated entrance to the vast literature on precondi-
tioned iterative methods is given in [33].

3.3 The Krylov subspace

In order to identify the approximations corresponding to the four different ap-
proaches, we need a suitable basis for the Krylov subspace; one that can be
extended in a meaningful way for subspaces of increasing dimension. The ob-
vious basis r0, Ar0, . . . , Ai−1r0 for Ki (A; r0), is not very attractive from a
numerical point of view, since the vectors A jr0 point more and more in the
direction of the dominant eigenvector for increasing j (the power method!),
and hence the basis vectors become dependent in finite precision arithmetic. It
does not help to compute this nonorthogonal generic basis first and to orthog-
onalize it afterwards. The result would be that we have orthogonalized a very
ill-conditioned set of basis vectors, which is numerically still not an attractive
situation.

We now derive an orthogonal basis that, in exact arithmetic, spans the Krylov
subspace. For this we follow ideas from [182, Chapter 4.3]. We start with the
generic basis for Ki+1(A; r0) and we denote the basis vectors by u j :

u j = A j−1r0.

We define the n by j matrix U j as the matrix with columns u1, . . . , u j . The
connection between A and Ui is left as an exercise.

Exercise 3.1. Show that

AUi = Ui Bi + ui+1eT
i , (3.13)

with ei the i-th canonical basis vector in R
i , and Bi an i by i matrix with

b j+1, j = 1 and all other elements zero.
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The next step is to decompose Ui , still in exact arithmetic, as

Ui = Qi Ri ,

with QT
i Qi = I and Ri upper triangular. Then, with (3.13), it follows that

AQi Ri = Qi Ri Bi + ui+1eT
i ,

or

AQi = Qi Ri Bi R−1
i + ui+1eT

i R−1
i

= Qi H̃i + ui+1eT
i R−1

i (3.14)

= Qi H̃i + 1

ri,i
ui+1eT

i . (3.15)

Exercise 3.2. Show that H̃i is an upper Hessenberg matrix.

We can also decompose Ui+1 as Ui+1 = Qi+1 Ri+1, and if we write the last
column of Ri+1 as ( r̃ , ri+1,i+1)

T , that is

Ri+1 =
(

Ri r̃

0 ri+1,i+1

)
,

then it follows that

ui+1 = Qir̃ + ri+1,i+1qi+1.

In combination with (3.14), this gives

AQi = Qi (H̃i + 1

ri,i
r̃ eT

i ) + ri+1,i+1

ri,i
qi+1eT

i

= Qi Hi + αqi+1eT
i . (3.16)

From this expression we learn at least two things: first

QT
i AQi = Hi , (3.17)

with Hi upper Hessenberg, and second

qT
i+1 Aqi = α,

which, with QT
i+1 AQi+1 = Hi+1, leads to α = hi+1,i .
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The implicit Q theorem [98, Theorem 7.4.2] states that the orthogonal Q that
reduces A to upper Hessenberg form is uniquely determined by q1 = 1

‖r0‖r0,
except for signs (that is, q j may be multiplied by −1). The orthogonality of the
q j basis gives us excellent opportunities to compute this basis in finite precision
arithmetic.

Arnoldi [6] proposed to compute the orthogonal basis as follows. In fact, with
Arnoldi’s procedure we compute in a straightforward manner the columns of Qi

and the elements of Hi . Start with v1 ≡ r0/‖r0‖2. Then compute Av1, make it
orthogonal to v1 and normalize the result, which gives v2. The general procedure
is as follows. Assuming we already have an orthonormal basis v1, . . . , v j for
K j (A; r0), this basis is expanded by computing t = Av j and by orthonormaliz-
ing this vector t with respect to v1, . . . , v j . In principle the orthonormalization
process can be carried out in different ways, but the most commonly used
approach is then the modified Gram–Schmidt procedure [98].
This leads to an algorithm for the creation of an orthonormal basis forKm(A; r0),
as in Figure 3.1. It is easily verified that v1, . . . , vm form an orthonormal basis
for Km(A; r0) (that is, if the construction does not terminate at a vector t = 0).
The orthogonalization leads, in exact arithmetic, to the relation that we have
seen before (cf. (3.16), but now expressed in terms of the v j . Let Vj denote the
matrix with columns v1 up to v j then it follows that

AVm−1 = Vm Hm,m−1. (3.18)

The m by m − 1 matrix Hm,m−1 is upper Hessenberg, and its elements hi, j are
defined by the Arnoldi algorithm.

v1 = r0/‖r0‖2;
for j = 1, . . . , m − 1

t = Av j ;
for i = 1, . . . , j

hi, j = vT
i t;

t = t − hi, jvi ;
end;
h j+1, j = ‖t‖2;
v j+1 = t/h j+1, j ;

end

Figure 3.1. Arnoldi’s method with modified Gram–Schmidt orthogonalization.



30 3. Basic iteration methods

From a computational point of view, this construction is composed of three
basic elements: a matrix vector product with A, inner products, and vector
updates. We see that this orthogonalization becomes increasingly expensive
for increasing dimension of the subspace, since the computation of each hi, j

requires an inner product and a vector update.

Note that if A is symmetric, then so is Hm−1,m−1 = V T
m−1 AVm−1, so that in

this situation Hm−1,m−1 is tridiagonal. This means that in the orthogonalization
process, each new vector has to be orthogonalized with respect to the previous
two vectors only, since all other inner products vanish. The resulting three-
term recurrence relation for the basis vectors of Km(A; r0) is known as the
Lanczos method [129] and some very elegant methods are derived from it. In
this symmetric case the orthogonalization process involves constant arithmetical
costs per iteration step: one matrix vector product, two inner products, and two
vector updates.

3.3.1 A more accurate basis for the Krylov subspace

A more accurate implementation for the construction of an orthonormal basis,
useful for ill-conditioned matrices A, was suggested by Walker [215]. He

v is a convenient starting vector
Select a value for κ , e.g., κ = .25
v1 = v/‖v‖2

for j = 1, . . . , m − 1
t = Av j

τin = ||t ||2
for i = 1, . . . , j

hi, j = v∗
i t

t = t − hi, jvi

end
if ‖t‖2/τin ≤ κ

for i = 1, . . . , j
ρ = v∗

i t
t = t − ρvi

hi, j = hi, j + ρ

end
endif
h j+1, j = ‖t‖2

v j+1 = t/h j+1, j

end

Figure 3.2. The Arnoldi Method with refined modified Gram–Schmidt.
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suggested employing Householder reflections instead of the modified
Gram–Schmidt orthogonalization procedure.

An alternative is to do two iterations with (modified) Gram–Schmidt if nec-
essary. This works as follows. If we want to have a set of orthogonal vectors to
almost working precision then we have to check, after the orthogonalization of
a new vector with respect to the existing set, whether the resulting unnormalized
vector is significantly smaller in norm than the new vector at the start of the
orthogonalization step, say more than κ < 1 smaller. In that case we may have
had cancellation effects, and once again we apply modified Gram–Schmidt.
This is the basis for the refinement technique suggested in [50]. It leads to a
set of vectors for which the mutual loss of orthogonality is limited to 1/κ , in a
relative sense. In the template in Figure 3.2, we incorporate this technique into
the Arnoldi algorithm.

Note that, in exact arithmetic, the constants ρ in Figure 3.2 are equal to zero.
It is easily verified that, in exact arithmetic, the v1, . . . , vm form an orthonormal
basis for Km(A; v) (that is, if the construction does not terminate at a vector
t = 0).





4
Construction of approximate solutions

4.1 The Ritz–Galerkin approach

The Ritz–Galerkin conditions imply that rk ⊥ Kk(A; r0), and this is equivalent
to

V T
k (b − Axk) = 0.

Since b = r0 = ‖r0‖2v1, it follows that V T
k b = ‖r0‖2e1 with e1 the first canon-

ical unit vector in R
k . With xk = Vk y we obtain

V T
k AVk y = ‖r0‖2e1.

This system can be interpreted as the system Ax = b projected onto the subspace
Kk(A; r0).

Obviously we have to construct the k × k matrix V T
k AVk , but this is, as we

have seen, readily available from the orthogonalization process:

V T
k AVk = Hk,k,

so that the xk for which rk ⊥ Kk(A; r0) can be easily computed by first solving
Hk,k y = ‖r0‖2e1, and then forming xk = Vk y. This algorithm is known as FOM
or GENCG [169].

When A is symmetric, then Hk,k reduces to a tridiagonal matrix Tk,k , and the
resulting method is known as the Lanczos method [130]. When A is in addi-
tion positive definite then we obtain, at least formally, the Conjugate Gradient
method. In commonly used implementations of this method, an LU factorization
for Tk,k is implicitly formed without generating Tk,k itself, and this leads to very
elegant short recurrences for the x j and the corresponding r j , see Chapter 5.

33
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The positive definiteness is necessary to guarantee the existence of the LU
factorization, but it also allows for another useful interpretation. From the
fact that ri ⊥ Ki (A; r0), it follows that A(xi − x) ⊥ Ki (A; r0), or xi − x ⊥A

Ki (A; r0). The latter observation expresses the fact that the error is A-orthogonal
to the Krylov subspace and this is equivalent to the important observation that
‖xi − x‖A is minimal1. For an overview of the history of CG and important
contributions on this subject see [96].

4.2 The minimum norm residual approach

The creation of an orthogonal basis for the Krylov subspace, with basis vectors
v1, . . . , vi+1, leads to

AVi = Vi+1 Hi+1,i , (4.1)

where Vi is the matrix with columns v1 to vi . We look for an xi ∈ K i (A; r0),
that is xi = Vi y, for which ‖b − Axi‖2 is minimal. This norm can be rewritten,
with ρ ≡ ‖r0‖2, as

‖b − Axi‖2 = ‖b − AVi y‖2 = ‖ρVi+1e1 − Vi+1 Hi+1,i y‖2.

Now we exploit the fact that Vi+1 is an orthonormal transformation with respect
to the Krylov subspace K i+1(A; r0):

‖b − Axi‖2 = ‖ρe1 − Hi+1,i y‖2,

and this final norm can simply be minimized by solving the minimum norm least
squares problem for the i + 1 by i matrix Hi+1,i and right-hand side ||r0||2e1.
The least squares problem is solved by constructing a QR factorization of Hi+1,i ,
and because of the upper Hessenberg structure that can conveniently be done
with Givens transformations [98].

The GMRES method is based upon this approach; see Chapter 6.

4.3 The Petrov–Galerkin approach

For unsymmetric systems we cannot, in general, reduce the matrix A to a
symmetric system in a lower-dimensional subspace, by orthogonal projections.
The reason is that we cannot create an orthogonal basis for the Krylov subspace

1 The A-norm is defined by ‖y‖2
A ≡ (y, y)A ≡ (y, Ay), and we need the positive definiteness of

A in order to get a proper inner product (·, ·)A .
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by a three-term recurrence relation [79]. We can, however, obtain a suitable
non-orthogonal basis with a three-term recurrence, by requiring that this basis
be orthogonal with respect to some other basis.

We start by constructing an arbitrary basis for the Krylov subspace:

hi+1,ivi+1 = Avi −
i∑

j=1

h j,iv j , (4.2)

which can be rewritten in matrix notation as AVi = Vi+1 Hi+1,i . The coefficients
hi+1,i define the norm of vi+1, and a natural choice would be to select them
such that ‖vi+1‖2 = 1. In Bi-CG implementations, a popular choice is to select
hi+1,i such that ‖vi+1‖2 = ‖ri+1‖2.

Clearly, we cannot use Vi for the projection, but suppose we have a Wi for
which W T

i Vi = Di (an i by i diagonal matrix with diagonal entries di ), and for
which W T

i vi+1 = 0. Then

W T
i AVi = Di Hi,i , (4.3)

and now our goal is to find a Wi for which Hi,i is tridiagonal. This means
that V T

i AT Wi should also be tridiagonal. This last expression has a similar
structure to the right-hand side in (4.3), with only Wi and Vi reversed. This
suggests generating the wi with AT .

We choose an arbitrary w1 	= 0, such that wT
1 v1 	= 0. Then we generate v2

with (4.2), and orthogonalize it with respect to w1, which means that h1,1 =
wT

1 Av1/(w
T
1 v1). Since wT

1 Av1 = (AT w1)
T v1, this implies that w2, generated

from

h2,1w2 = AT w1 − h1,1w1,

is also orthogonal to v1.
This can be continued, and we see that we can create bi-orthogonal basis

sets {v j } and {w j } by making the new vi orthogonal to w1 up to wi−1, and then
by generating wi with the same recurrence coefficients, but with AT instead
of A.

Now we have that W T
i AVi = Di Hi,i , and also that V T

i AT Wi = Di Hi,i . This
implies that Di Hi,i is symmetric, and hence Hi,i is a tridiagonal matrix, which
gives us the desired 3-term recurrence relation for the v j s, and the w j s. Note
that v1, . . . , vi form a basis for Ki (A; v1), and w1, . . . , wi form a basis for
Ki (AT ; w1).

These bi-orthogonal sets of vectors form the basis for methods such as Bi-CG
and QMR.
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4.4 The minimum norm error approach

In SYMMLQ [153], with A = AT we minimize the norm of the error x − xk , for
xk = x0 + AVk yk , which means that yk is the solution of the normal equations

V T
k AAVk yk = V T

k A(x − x0) = V T
k r0 = ||r0||2e1. (4.4)

This system can be further simplified by exploiting the Lanczos relations (3.18),
with Tk+1,k ≡ Hk+1,k :

V T
k AAVk = T T

k+1,k V T
k+1Vk+1Tk+1,k = T T

k+1,k Tk+1,k . (4.5)

A stable way of solving this set of normal equations is based on an L Q̃ de-
composition of T T

k+1,k , but note that this is equivalent to the transpose of the
Qk+1,k Rk decomposition of Tk+1,k , constructed for MINRES (by Givens rota-
tions), and where Rk is an upper tridiagonal matrix (only the diagonal and the
first two co-diagonals in the upper triangular part contain nonzero elements):

T T
k+1,k = RT

k QT
k+1,k .

This leads to

T T
k+1,k Tk+1,k yk = RT

k Rk yk = ||r0||2e1,

from which the basic generating formula for SYMMLQ is obtained:

xk = x0 + AVk R−1
k R−T

k ||r0||2e1

= x0 + Vk+1 Qk+1,k Rk R−1
k R−T

k ||r0||2e1

= x0 + (Vk+1 Qk+1,k) (L−1
k ||r0||2e1), (4.6)

with Lk ≡ RT
k . The actual implementation of SYMMLQ [153] is based on an

update procedure for Wk ≡ Vk+1 Qk+1,k , and on a three-term recurrence relation
for ||r0||2L−1

k e1.
In SYMMLQ it is possible to generate the Galerkin approximations as a

side product. This means that for positive definite symmetric matrices the CG
results can be reconstructed, at relatively low costs, from the SYMMLQ results
[153]. This gives no advantage for positive definite matrices, but it can be used
for indefinite symmetric matrices. The advantage over CG in that situation is
that SYMMLQ avoids having to construct the LU decomposition of Tk,k and
the latter may not exist (without pivoting), or be singular, for indefinite systems.
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The Conjugate Gradients method

5.1 Derivation of the method

As explained in Section 4.1, the Conjugate Gradients method can be viewed as
a variant of the Lanczos method. The method is based on relation (3.18), which
for symmetric A reduces to AVi = Vi+1 Hi+1,i with tridiagonal Hi+1,i . For the
k-th column of Vk , we have that

Avk = hk+1,kvk+1 + hk,kvk + hk−1,kvk−1. (5.1)

In the Galerkin approach, the new residual b − Axk+1 is orthogonal to the
subspace spanned byv1, . . . ,vk , so that rk+1 is in the direction ofvk+1. Therefore,
we can also select the scaling factor hk+1,k so that vk+1 coincides with rk+1.
This would be convenient, since the residual gives useful information on our
solution, and we do not want to work with two sequences of auxiliary vectors.

From the consistency relation (3.12) we have that rk can be written as

rk = (I − AQk−1(A))r0.

By inserting the polynomial expressions for the residuals in (5.1), and compar-
ing the coefficient for r0 in the new relation, we obtain

hk+1,k + hk,k + hk−1,k = 0,

which defines hk+1,k .
At the end of this section we will consider the situation where the recurrence

relation terminates.

With Ri we denote the matrix with columns r j :

Ri = (r0, . . . , ri−1) ,

37
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then we have

ARi = Ri+1Ti+1,i , (5.2)

where Ti+1,i is a tridiagonal matrix (with i + 1 rows and i columns); its nonzero
elements are defined by the hi, j .

Since we are looking for a solution xi in Ki (A; r0), that vector can be written
as a combination of the basis vectors of the Krylov subspace, and hence

xi = Ri y.

Note that y has i components.
Furthermore, the Ritz–Galerkin condition says that the residual for xi is

orthogonal with respect to r0, . . . , ri−1:

RT
i (Axi − b) = 0,

and hence

RT
i ARi y − RT

i b = 0.

Using equation (5.2), we obtain

RT
i Ri Ti,i y = ‖r0‖2

2e1

Since RT
i Ri is a diagonal matrix with diagonal elements ‖r0‖2

2 up to ‖ri−1‖2
2,

we find the desired solution by solving y from

Ti,i y = e1 ⇒ y ⇒ xi = Ri y.

So far we have only used the fact that A is symmetric and we have assumed
that the matrix Ti is not singular. The Krylov subspace method that has been
derived here is known as the Lanczos method for symmetric systems [130].
We will exploit the relation between the Lanczos method and the conjugate
gradients method for the analysis of the convergence behaviour of the latter
method.

Note that for some j ≤ n − 1 the construction of the orthogonal basis must ter-
minate. In that case we have that AR j+1 = R j+1Tj+1, j+1. Let y be the solution
of the reduced system Tj+1, j+1 y = e1, and x j+1 = R j+1 y. Then it follows
that x j+1 = x , i.e., we have arrived at the exact solution, since Ax j+1 − b =
AR j+1 y − b = R j+1Tj+1, j+1 y − b = R j+1e1 − b = 0 (we have assumed that
x0 = 0).
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Exercise 5.1. Show that exact termination for a j ≤ n − 1 also holds if
x0 	= 0.

The Conjugate Gradients method [115], CG for short, is a clever variant on
the above approach and saves storage and computational effort. If we follow
naively the above sketched approach when solving the projected equations, then
we see that we have to save all columns of Ri throughout the process in order
to recover the current iteration vectors xi . This can be done in a more memory
friendly way. If we assume that the matrix A is in addition positive definite
then, because of the relation

RT
i ARi = RT

i Ri Ti,i ,

we conclude that Ti,i can be transformed by a rowscaling matrix RT
i Ri into a pos-

itive definite symmetric tridiagonal matrix (note that RT
i ARi is positive definite

for y ∈ R
i ). This implies that Ti,i can be LU decomposed without any pivoting:

Ti,i = LiUi ,

with Li lower bidiagonal, and Ui upper bidiagonal with unit diagonal. Hence

xi = Ri y = Ri T
−1

i e1 = (RiU
−1
i )(L−1

i e1). (5.3)

We concentrate on the factors, placed between parentheses, separately.

(1)

Li =



δ0

φ0 δ1

φ1
. . .

. . .
. . .

φi−2 δi−1


With q ≡ L−1

i e1 we have that q can be solved from Li q = e1. Hence
q0 = 1/δ0, and qi−1 = −φi−2qi−2/δi−1, so that the elements of q can be
computed in a recursive manner.

(2) Defining Pi ≡ RiU
−1
i , we have that

Ri = PiUi =

 p0 · · · pi−2 pi−1




1 ε0

1 ε2
. . .

. . . εi−2

1


⇒ ri−1 = εi−2 pi−2 + pi−1,
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so that the vector pi−1 can be recursively computed as

pi−1 = ri−1 − εi−2 pi−2.

Exercise 5.2. Show that in step i from this process we can simply expand Li

to Li+1, and Ui to Ui+1. Hence, we can simply compute qi and pi , using the
above obtained recursion relations with the new values φi−1, δi , and εi−1.

Pasting the two recurrences together we obtain

xi =

 p0 · · · pi−1




...

...

qi−1


= xi−1 + qi−1 pi−1.

In principle the method is not too complicated: the tridiagonal matrix is gen-
erated from a simple three-term recurrence, and this matrix is factorized and
solved for both factors. However, as we will see, it is not necessary to generate
Ti,i explicitly, we can obtain the required information in an easier way.

To see this, we simplify the notation for our recurrence relations and then
we exploit the orthogonality properties of the underlying Lanczos method. First
we write αi ≡ qi , and βi ≡ ei .

Then our two-term recurrence relations can be recast as

pi−1 = ri−1 + βi−2 pi−2 (5.4)

xi = xi−1 + αi−1 pi−1 (5.5)

ri = ri−1 − αi−1 Api−1. (5.6)

Exercise 5.3. Show that pT
i Ap j = 0 for i 	= j .

The vector αi−1 pi−1 is the correction vector that leads to the new minimum
of ‖x − xi‖A. It is thus tangential to the surface ‖x − z‖A = ‖x − xi‖A, for
z ∈ Ki+1(A; r0). The vectors p j are A-orthogonal, and can be interpreted as
conjugate (= A-orthogonal) gradients for ‖x − z‖A, as a function of z. This
gave the method its name.

From r T
i ri−1 = 0, we derive αi−1:

αi−1 = r T
i−1ri−1

r T
i−1 Api−1

,
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and using relation (5.4), we arrive at the elegant expression

αi−1 = r T
i−1ri−1

pT
i−1 Api−1

.

Exercise 5.4. Show that r T
i−1 Api−1 = pT

i−1 Api−1.

For βi−1, we can derive a similar elegant expression. First we multiply the
recursion (5.4) for pi−1 by A:

Api−1 = Ari−1 + βi−2 Api−2,

and we eliminate Api−2 with the recurrence relation (5.6), which leads to

ri = ri−1 − αi−1 Ari−1 − αi−1βi−2

αi−2
(ri−2 − ri−1). (5.7)

Since r T
i ri−2 = 0, we obtain

βi−2 = −αi−2
r T

i−2 Ari−1

r T
i−2ri−2

= −αi−2
r T

i−1 Ari−2

r T
i−2ri−2

= r T
i−1ri−1

r T
i−2ri−2

(cf. (5.7)).

Note that we need only two new inner products in iteration step i for the
computation of the two iteration coefficients (precisely as many as for the
Lanczos process).

Thus we have arrived at the well-known conjugate gradients method. The name
stems from the property that the update vectors pi are A-orthogonal. Note that
the positive definiteness of A is exploited only to guarantee safe decomposition
of the implicitly generated tridiagonal matrix Ti,i . This suggests that the conju-
gate gradients method may also work for certain nonpositive definite systems,
but then at our own risk [152]. We will see later how other ways of solving the
projected system lead to other well-known methods.

5.2 Computational notes

The standard (unpreconditioned) Conjugate Gradient method for the solution
of Ax = b can be represented by the scheme in Figure 5.1.
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x0 is an initial guess, r0 = b − Ax0

for i = 1, 2, . . . .
ρi−1 = r T

i−1ri−1

if i = 1
pi = ri−1

else
βi−1 = ρi−1/ρi−2

pi = ri−1 + βi−1 pi−1

endif
qi = Api

αi = ρi−1/pT
i qi

xi = xi−1 + αi pi

ri = ri−1 − αi qi

if xi accurate enough then quit
end

Figure 5.1. Conjugate Gradients without preconditioning.

Exercise 5.5. Consider the Conjugate Gradients scheme in Figure 5.1 for a
given linear system Ax = b, with starting vector x0. Now consider the appli-
cation of this CG scheme for the system

Ãx̃ = b̃, (5.8)

with Ã = QT AQ, x̃ = QT x, and b̃ = QT b, and Q an orthonormal matrix:
QT Q = I . Denote the computed variables for CG applied to (5.8) with a su-
perscript ,̃ and start the iteration with x̃0 = QT x0.

Show that the scheme applied for (5.8) generates the same iteration constants
as in the iteration process for Ax = b. Show also that ‖r̃i‖2 = ‖ri‖2.
Obviously, an orthonormal transformed system leads to the same CG iteration
process.

Exercise 5.6. Show that for studying the convergence behaviour of CG it is no
restriction if we restrict ourselves to diagonal matrices A (except for rounding
errors). Verify this by numerical experiments. Hint: use the results of the
previous exercise.

Exercise 5.7. Do experiments with CG for suitably chosen Ax = b, and for the
system that is orthogonally transformed with Q so that QT AQ is a diagonal
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matrix. Any difference between the convergence histories must be attributed to
rounding errors. Is there much difference? Enough difference to prevent us from
drawing conclusions on the convergence behaviour of CG if we do experiments
with diagonal matrices?

Exercise 5.8. Do experiments with CG for diagonal matrices with only k dif-
ferent eigenvalues. What is the maximum number of iterations to obtain a re-
duction in the norm of the residual by, say, 10−10? Explain this result. Hint: use
the polynomial interpretation for the residuals in CG.

CG is most often used in combination with a suitable approximation K for
A and then K is called the preconditioner. We will assume that K is also
positive definite. However, we cannot apply CG straightaway for the explicitly
preconditioned system K −1 Ax = K −1b, as we suggested in the introduction,
because K −1 A is most likely not symmetric. One way out is to apply the
preconditioner differently. Assume that K is given in factored form:

K = L LT ,

as is the case for ILU preconditioners.
We then apply CG for the symmetrically preconditioned system

L−1 AL−T y = L−1b,

with x = L−T y.

This approach has the disadvantage that K must be available in factored form
and that we have to backtransform the approximate solution afterwards. There
is a more elegant alternative. Note first that the CG method can be derived for
any choice of the inner product. In our derivation we have used the standard
inner product (x, y) = ∑

xi yi , but we have not used any specific property of
that inner product. Now we make a different choice:

[x, y] ≡ (x, K y).

Exercise 5.9. Show that [x, y] defines a proper inner product.

It is easy to verify that K −1 A is symmetric positive definite with respect to [ , ]:

[K −1 Ax, y] = (K −1 Ax, K y) = (Ax, y)

= (x, Ay) = [x, K −1 Ay]. (5.9)
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x0 is an initial guess, r0 = b − Ax0

for i = 1, 2, . . . .
Solve Kwi−1 = ri−1

ρi−1 = r H
i−1wi−1

if i = 1
pi = wi−1

else
βi−1 = ρi−1/ρi−2

pi = wi−1 + βi−1 pi−1

endif
qi = Api

αi = ρi−1/pH
i qi

xi = xi−1 + αi pi

ri = ri−1 − αi qi

if xi accurate enough then quit
end

Figure 5.2. Conjugate Gradients with preconditioning K .

Hence, we can follow our CG procedure for solving the preconditioned system
K −1 Ax = K −1b, using the new [ , ]-inner product.

Apparently, we now are minimizing

[xi − x, K −1 A(xi − x)] = (xi − x, A(xi − x)),

which leads to the remarkable (and known) result that for this preconditioned
system we still minimize the error in A-norm, but now over a Krylov subspace
generated by K −1r0 and K −1 A.

In the computational scheme for preconditioned CG, displayed in Figure 5.2,
for the solution of Ax = b with preconditioner K , we have again replaced the
[ , ]-inner product by the familiar standard inner product. For example, note
that with r̃i+1 = K −1 Axi+1 − K −1b we have that

ρi+1 = [r̃i+1, r̃i+1]

= [K −1ri+1, K −1ri+1] = [ri+1, K −2ri+1]

= (ri+1, K −1ri+1),

and K −1ri+1 is the residual corresponding to the preconditioned system
K −1 Ax = K −1b. Furthermore, note that the whole derivation of this method
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also holds for complex Hermitian matrices A and K , provided we use the
standard complex inner product vHw for vectors v and w in C

n .

Exercise 5.10. In view of the fact that diagonal matrices can be used to study the
convergence behaviour of CG: is it really necessary to construct preconditioners
in order to study the effect of clustering of eigenvalues?

Do experiments with matrices that have clustered eigenvalues and compare
the convergence histories with systems that have more uniformly distributed
eigenvalue distributions. Does clustering make a difference?

Exercise 5.11. For some classes of linear systems, particular preconditioners
have the effect that they reduce the condition number by a factor, say 4, and that
they cluster most of the eigenvalues around 1. Do experiments with diagonal
matrices and study the effects.

If preconditioning would make each iteration step twice as expensive, is
preconditioning then likely to lead to efficient iteration processes? Do these
experiments prove that preconditioning will be effective? What do they prove?

The coefficients α j and β j , generated by the Conjugate Gradient algorithms, as
in Figures 5.1 and 5.2, can be used to build the matrix Ti,i in the
following way:

Ti,i =



. . .

. . . − β j−1

α j−1

. . . 1
α j

+ β j−1

α j−1

. . .

− 1
α j

. . .

. . .


. (5.10)

With the matrix Ti,i approximations can easily be computed for eigenvalues of
A, the so-called Ritz values. To this end, note that

RT
i ARi = Di Ti,i ,

where Di is a diagonal matrix with diagonal elements ‖r0‖2
2, up to ‖ri‖2

2.
Multiplication from the left and the right by the matrix D

− 1
2

i leads to

D
− 1

2
i RT

i ARi D
− 1

2
i = D

1
2
i Ti,i D

− 1
2

i .
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Exercise 5.12. Show that the n by i + 1 matrix Ri D
− 1

2
i is an orthonormal

matrix, that is (Ri D
− 1

2
i )T Ri D

− 1
2

i = Ii+1,i+1.

Apparently, the i + 1 columns of Ri D
− 1

2
i span an orthonormal basis for the

subspace Ki+1(A; r0). A vector x from that subspace can be expressed as

x = Ri D
− 1

2
i y.

If we take Rayleigh quotients for A with vectors x 	= 0 from the Krylov
subspace, we have

ρ(A, x) ≡ (Ax, x)

(x, x)

= (ARi D
− 1

2
i y, Ri D

− 1
2

i y)

(y, y)

= (D
1
2
i Ti,i D

− 1
2

i y, y)

(y, y)
.

The eigenvalues of the matrix D
1
2
i Ti,i D

− 1
2

i represent the local extrema of the
Rayleigh quotient for A with respect to the Krylov subspace. We denote the
eigenpairs of Ti,i by

θ
(i)
j , z(i)

j .

Exercise 5.13. Show that if D
1
2
i Ti,i D

− 1
2

i z(i)
j = θ

(i)
j z(i)

j , then

ARi D
− 1

2
i z(i)

j − θ
(i)
j Ri D

− 1
2

i z(i)
j ⊥ Ki+1(A; r0).

We conclude that the residual for the approximate eigenpair

θ
(i)
j , x (i)

j ≡ Ri D
− 1

2
i z(i)

j

is orthogonal to the current Krylov subspace. For this reason, this pair is usually
referred to as a (Rayleigh–)Ritz value and its corresponding Ritz vector.
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Exercise 5.14. Show that the matrix T̃i,i ≡ D
1
2
i Ti,i D

1
2
i is a symmetric matrix

that can be expressed as the following symmetric tridiagonal matrix:

T̃i =



. . .

. . . −
√

β j−1

α j−1

. . . 1
α j

+ β j−1

α j−1

. . .

−
√

β j

α j

. . .

. . .


.

The eigenvalues of the leading i-th order minor of this matrix are the Ritz values
of A (for Figure 5.1) or the preconditioned matrix K −1 A (for Figure 5.2) with
respect to the i-dimensional Krylov subspace spanned by the first i residual
vectors. The Ritz values approximate the (extremal) eigenvalues of the (pre-
conditioned) matrix increasingly well. These approximations can be used to get
an impression of the relevant eigenvalues. They can also be used to construct
upperbounds for the error in the delivered approximation with respect to the so-
lution [124, 113]. According to the results in [191] the eigenvalue information
can also be used in order to understand or explain delays in the convergence
behaviour.

Exercise 5.15. Do experiments with CG for several linear systems with di-
agonal matrices. Compute the Ritz values for Ti for some values of i . What
observations can be made? Can some relation between the Ritz values and
convergence of CG be discerned?

5.3 The convergence of Conjugate Gradients

Exercise 5.16. Show that x − u = Qi (A)(x − x0), for some polynomial Qi of
degree i with Qi (0) = 1, if u ∈ x0 + Ki (A; r0).

The conjugate gradient method (here with K = I ) constructs in the i-th iteration
step an xi , that can be written as

xi − x = Pi (A)(x0 − x), (5.11)

such that ‖xi − x‖A is minimal over all polynomials Pi of degree i , with
Pi (0) = 1. Let us denote the eigenvalues and the orthonormalized eigenvectors
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of A by λ j , z j . We write r0 = ∑
j γ j z j . It follows that

ri = Pi (A)r0 =
∑

j

γ j Pi (λ j )z j (5.12)

and hence

‖xi − x‖2
A =

∑
j

γ 2
j

λ j
P2

i (λ j ). (5.13)

Note that only those λ j play a role in this process for which γ j 	= 0. In particular,
if A happens to be semidefinite, i.e., there is a λ = 0, then this is no problem
for the minimization process as long as the corresponding coefficient γ is zero
as well. The situation where γ is small, due to rounding errors, is discussed in
[124].

Exercise 5.17. Write b = ∑n
j=1 γ j z j . Consider only those values of j for which

γ j 	= 0. Let 
 denote the number of different eigenvalues associated with these
nonzero γ s. Show that CG delivers the exact solution in 
 iteration steps. Hint:
use the polynomial expression for the iterates.

Upperbounds on the error (in A-norm) are obtained by observing that

‖xi − x‖2
A =

∑
j

γ 2
j

λ j
P2

i (λ j ) ≤
∑

j

γ 2
j

λ j
Q2

i (λ j )

≤ max
λ j

Q2
i (λ j )

∑
j

γ 2
j

λ j
, (5.14)

for any arbitrary polynomial Qi of degree i with Qi (0) = 1, where the maxi-
mum is taken, of course, only over those λ for which the corresponding γ 	= 0.

When Pi has zeros at all the different λ j then ri = 0. The conjugate gradients
method tries to spread the zeros in such a way that Pi (λ j ) is small in a weighted
sense, i.e., ‖xi − x‖A is as small as possible.

We get descriptive upperbounds by selecting appropriate polynomials for Qi . A
very well-known upperbound arises by taking for Qi the i-th degree Chebyshev
polynomial Ci transformed to the interval [λmin, λmax ] and scaled such that its
value at 0 is equal to 1:

Qi (λ) = Ci (
2λ−(λmin+λmax

λmax −λmin
)

Ci (− λmin+λmax
λmax −λmin

)
.
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For the Chebyshev polynomials Ci we have the following properties:

Ci (x) = cos(i arccos(x)) for − 1 ≤ x ≤ 1, (5.15)

|Ci (x)| ≤ 1 for − 1 ≤ x ≤ 1, (5.16)

Ci (x) = 1

2

[
(x +

√
x2 − 1)i + (x +

√
x2 − 1)−i

]
for x ≥ 1, (5.17)

|Ci (x)| = |Ci (−x)|. (5.18)

With Qi instead of the optimal CG-polynomial Pi , we have that

‖xi − x‖2
A ≤

∑ γ 2
j

λ j
Q2

i (λ j )

≤ max
λmin ,λmax

|Q2
i (λ j )| ‖x0 − x‖2

A. (5.19)

Using properties of the Chebyshev polynomials, we can now derive an elegant
upperbound for the error in A-norm . First we note that

|Qi (λ)| ≤ 1

|Ci (
λmax +λmin
λmax −λmin

)| for λmin ≤ λ ≤ λmax .

Exercise 5.18. Show that for 0 < a < b we have that

Ci (
b + a

b − a
) ≥ 1

2
(x +

√
x2 − 1)i ,

with x = (b + a)/(b − a). Note that this lower bound is increasingly sharp for
increasing i .

With a ≡ λmin and b ≡ λmax , we have for a ≤ λ ≤ b that

|Qiλ| = 1

|Ci (
b+a
b−a )| (5.20)

≤ 2

(
1

x + √
x2 − 1

)i

with x ≡ b + a

b − a
(5.21)

=
(

x −
√

x2 − 1
)i

(5.22)

=
(

b + a − 2
√

ba

b − a

)i

(5.23)

=
(√

b − √
a√

b + √
a

)i

. (5.24)
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With κ ≡ b/a = λmax/λmin , we obtain a well known upperbound for the
A-norm of the error [44, 98, 8]:

‖xi − x‖A ≤ 2

(√
κ − 1√
κ + 1

)i

‖x0 − x‖A. (5.25)

This upperbound shows that we have fast convergence for small condition
numbers. It was shown by Axelsson [8] that similar upperbounds can be obtained
for specific eigenvalue distributions. For instance, let us consider the situation
that λn > λn−1. Then we take for Qi , the polynomial

Qi (λ) = λn − λ

λn
Ci−1

(
2λ − (a + b)

b − a

)
/Ci−1

(−(a + b)

b − a

)
,

with a ≡ λmin , b ≡ λn−1.
This shows that for the situation where λn−1 is relatively much smaller than

λn , the upperbound for the error for the CG process lags only one step behind
the upperbound for a process with a condition number λn−1/λ1.

Exercise 5.19. Derive an upperbound for the A-norm of the error that shows
that this error is at most two steps behind the upperbound for a process with
condition number λn−2/λ1.

These types of upperbounds show that it is important to have small condi-
tion numbers, or, in the case of larger condition numbers, to have eigenvalue
distributions with well-separated eigenvalues that cause these large condition
numbers. In that case we say that the (remaining) part of the spectrum is (rel-
atively) clustered. The purpose of preconditioning is to reduce the condition
number κ and/or clustering of the eigenvalues.

In [8] the situation is analysed where the eigenvalues of K −1 A are in disjoint
intervals.

5.3.1 Local effects in the convergence behaviour

Upperbounds as in (5.25) show that we have global convergence, but they do
not help us to explain all sorts of local effects in the convergence behaviour
of CG. A very well-known effect is the so-called superlinear convergence: in
many situations the average speed of convergence seems to increase as the it-
eration proceeds. As we have seen, the conjugate gradients algorithm is just
an efficient implementation of the Lanczos algorithm. The eigenvalues of the
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implicitly generated tridiagonal matrix Ti are the Ritz values of A with re-
spect to the current Krylov subspace. It is known from Lanczos theory that
these Ritz values converge towards the eigenvalues of A and that in general
the extreme eigenvalues of A are well approximated during early iterations
[129, 149, 155]. Furthermore, the speed of convergence depends on how well
these eigenvalues are separated from the others (gap ratio) [155]. This will
help us to understand the superlinear convergence behaviour of the conju-
gate gradient method (as well as other Krylov subspace methods). It can be
shown that as soon as one of the extreme eigenvalues is modestly well approx-
imated by a Ritz value, the procedure converges from then on as a process in
which this eigenvalue is absent, i.e., a process with a reduced condition num-
ber. Note that superlinear convergence behaviour in this connection is used to
indicate linear convergence with a factor that is gradually decreased during
the process as more and more of the extreme eigenvalues are sufficiently well
approximated.

Example We consider a linear system of order n = 100 with one isolated
eigenvalue 0.0005 and the other 99 eigenvalues equally distributed over the
interval [0.08, 1.21]. The right-hand side was chosen so that the initial residual
has equal components in all eigenvector directions.

Exercise 5.20. Show that this test example can be realized, without loss of gen-
erality, by taking a diagonal matrix for A, with the eigenvalues on the diagonal,
x0 = 0, and with right-hand side b being the vector with all elements equal to 1.

The A-norms of the error x − xi are plotted on a logarithmic scale in Figure 5.3.
We see, in this figure, that the convergence for the first eight or so iteration steps
is relatively slow, in agreement with the condition number of A: 242.0. After
iteration 10 the convergence is noticeably faster: about four times faster than
in the earlier phase. This corresponds to a condition number of about 15.1 and
that is the condition number for a matrix with eigenvalue spectrum [0.08, 1.21],
that is, the smallest eigenvalue 0.005 seems to have lost its influence on the
convergence behaviour after 10 iteration steps. The smallest Ritz value at iter-
ation step 10 is θ

(10)
1 ≈ 0.0061, at iteration step 11: θ

(11)
1 ≈ 0.0054, and at step

12: θ
(12)
1 ≈ 0.0052. Clearly, the smallest Ritz value is converging towards the

smallest eigenvalue λ1 = 0.005, but we see that the faster convergence of CG
commences already in a phase where the smallest Ritz value is still a relatively
crude approximation (at step 10 we have an error of about 20%). We will now
analyse this behaviour in more detail.
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Figure 5.3. The convergence of CG for one isolated small eigenvalue.

The local convergence behaviour of CG, and especially the occurrence of super-
linear convergence, was first explained in a qualitative sense in [44], and later in
a quantitative sense in [191]. In both papers it was linked to the convergence of
eigenvalues (Ritz values) of Ti,i towards eigenvalues of K −1 A, for increasing i .
Here we will follow the exposition given in [191]. The main idea in that paper
is to link the convergence of CG in a certain phase with a process in which one
or more of the Ritz values are replaced by eigenvalues of the matrix. To that
end we first have to make a link with the Ritz values.

As we have seen, the residual ri can be expressed as

ri = Pi (A)b, (5.26)

with ri ⊥ Ki (A, r0). Let the orthonormal Lanczos basis for this Krylov subspace
be given by v1, v2, . . . , vi . We have seen that ri is a multiple of vi+1. In the
generic case, vi+1 	= 0 (if the equal sign holds then we have exact termination),
the polynomial Pi has exact degree i . We will now show that the Ritz values
are zeros of Pi . We start with the basic relation (3.18), which is rewritten for
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the symmetric case as

AVi = Vi Ti,i + ti+1,ivi+1eT
i , (5.27)

with Ti,i a symmetric tridiagonal matrix. After post-multiplication with e1 (the
first canonical unit vector of length i) we obtain

Av1 = Vi Ti,i e1.

Pre-multiplying this with A leads to

A2v1 = AVi Ti,i e1

= (Vi Ti,i + ti+1,ivi+1eT
i )Ti,i e1

= Vi T
2

i,i e1 if i > 2

Exercise 5.21. Show that

Aiv1 = Vi Ti,i e1 + cvi+1, (5.28)

for some constant c.

Exercise 5.22. Show that

V T
i Pi (A)v1 = Pi (Ti,i )e1 = 0, (5.29)

with Pi the polynomial of (5.26).

Equation (5.29) shows that Pi (Ti,i ) is at least singular. We will now show that
Pi (Ti,i ) is identical to zero for all eigenvectors of Ti,i .

The Ritz pairs θ, z of A with respect to Ki (A; v1) are defined by

Az − θ z ⊥ Ki (A; v1),

for z ∈ Ki (A; v1). With z = Vi y it follows that

V T
i AVi y − θy = 0,

so that the pair θ, y is an eigenpair of Ti,i . Let the eigenpairs of Ti,i be
denoted as

θ
(i)
j , y(i)

j .
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Since Ti,i is symmetric the normalized eigenvectors span a complete orthonor-
mal basis for R

i . This implies that we can express e1 in terms of this eigenvector
basis

e1 =
∑

j

γ j y(i)
j . (5.30)

Assume that γ j = (y(i)
j , e1) = 0, then because

Ti,i y(i)
j = θ

(i)
j y(i)

j ,

we have that (Ti,i y(i)
j , e1) = (y(i)

j , Ti,i e1) = 0 and this implies that (y(i)
j , e2) =

0. It is now easy to prove that y(i)
j ⊥ {e1, e2, . . . , ei } and this leads to a

contradiction.
A combination of (5.29) with (5.30) gives∑

j

γ j Pi (θ
(i)
j )y(i)

j = 0,

and since all γ j are nonzero it follows that the i Ritz values θ
(i)
j are the zeros

of Pi . Because Pi (0) = 1 (cf. (3.12)), this polynomial can be fully character-
ized as

Pi (t) = (θ
(i)
1 − t)(θ(i)

2 − t) · · · (θ(i)
i − t)

θ
(i)
1 θ

(i)
2 · · · θ(i)

i

. (5.31)

We can now further analyse the convergence behaviour of CG by exploiting the
characterization of the residual polynomial Pi . Let λ j , z j denote the eigenpairs
of A, with normalized z j . We write the initial error x − x0 as

x − x0 =
n∑
1

µ j z j , (5.32)

and this implies, on account of (5.11),

x − xi =
n∑
1

µ j Pi (λ j )z j .

Now we replace the first component of xi by the first component of x and we
take the modified xi as the starting vector x̄0 for another CG process (with the
same A and b):

x − x̄0 =
n∑
2

µ j Pi (λ j )z j .
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This new CG process generates x̄k , for which the error is characterized by a
polynomial P̄k . Because of the optimality property of these polynomials, we
may replace any of the residual polynomials by arbitrary other polynomials in
order to derive upperbounds. We select

qi (t) = (λ1 − t)(θ(i)
2 − t) · · · (θ(i)

i − t)

λ1θ
(i)
2 · · · θ(i)

i

= θ
(i)
1 (λ1 − t)

λ1(θ
(i)
1 − t)

Pi (t).

The polynomial P̄kqi takes the value 1 for t = 0, and it follows that

‖x − xi+k‖2
A ≤ ‖P̄k(A)qi (A)(x − x0)‖2

A (5.33)

=
n∑
2

λ j P̄k(λ j )
2qi (λ j )

2γ 2
j . (5.34)

Defining

Fi ≡ θ
(i)
1

λ1
max
j≥2

∣∣∣∣∣ λ j − λ1

λ j − θ
(i)
1

∣∣∣∣∣ ,
it follows that

|qi (λ j )| ≤ Fi |Pi (λ j )| for j ≥ 2.

We can now further simplify the upperbound in (5.33) as

‖x − xi+k‖2
A ≤ F2

i

n∑
2

λ j P̄k(λ j )
2 Ri (λ j )

2γ 2
j

= F2
i ‖x − x̄k‖2

A

≤ F2
i

‖x − x̄k‖2
A

‖x − x̄0‖2
A

‖x − xi‖2
A. (5.35)

We have now proved the result stated in Theorem 3.1 in [191]. The interpretation
of this result is as follows. First note that when a Ritz value, say θ i

1, is close to
an eigenvalue, in this case λ1, for some i then Fi ≈ 1. The result in (5.35) says
that we may then expect a reduction in the next steps that is bounded by the
reduction that we obtain for a CG process for Ax = b in which λ1 is missing.
If we define the effective condition number for that process as κ2 = λn/λ2, we
have that

‖x − xi+k‖A ≤ 2

(√
κ2 − 1√
κ2 + 1

)k

‖x − xi‖A.
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This shows that after the i-th step we have a reduction that is bounded by an
expression in which we see the condition number for the remaining part of the
spectrum. In fact, expression (5.35) shows more. It shows that we do not need
to have accurate approximations for λ1 by the first Ritz values. For instance, if

θ
(i)
1 − λ1

λ1
< 0.1 and

θ
(i)
1 − λ1

λ2 − λ1
< 0.1,

then we already have that Fi < 1.25, which shows that from then on we have
the same reduction as that for the reduced process except for a very modest
factor. Things cannot then become worse, because it is easy to prove that θ

(i)
1

is a strictly decreasing function towards λ1 for increasing i . This means that Fi

also becomes smaller during the further iterations.

Example We now return to our earlier example of Figure 5.3. For that ex-
ample, we have at iteration step 10 a value F10 ≈ 1.22. In Figure 5.4 we
have plotted the errors in A-norm for the CG process (the drawn line), and
we have also marked with + the results for the comparison process. In this
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Figure 5.4. CG (–) and the comparison process (+ + +).
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comparison process, we have removed at iteration step 10 the error compo-
nent in the eigenvector direction corresponding to λ1 = 0.005, and from then
on we have multiplied the error-norms for the modified process by F10. We
see that this comparison process, which has only eigenvalues in the interval
[0.08, 1.21], describes the observed convergence behaviour for the original CG
process (with all eigenvalues present) rather well.

In [191] other results are presented that shed more light on all sorts of special
situations, such as almost double eigenvalues in the spectrum of A, or situations
in which more Ritz values have converged to a number of successive eigen-
values. Not surprisingly, these results show that after (modest) approximations
of Ritz values for the smallest m eigenvalues, we will see convergence of the
CG process from then on, governed by a condition number κm ≡ λn/λm+1. Of
course, similar results can be derived for convergence of Ritz values towards
the largest eigenvalues, but usually removal of small eigenvalues leads to much
smaller condition numbers.

Exercise 5.23. Consider the matrix A of order 100 with eigenvalues 1, 2, . . . ,
100. Suppose we carry out a CG process with this A, for some right-hand side b.
What is the guaranteed speed of convergence after θ

(i)
1 < 1.1, for some i? How

many eigenvalues at the upper end of the spectrum need to be well approximated
by Ritz values in order to have a similar reduction with the effective condition
number?

In view of the fact that the convergence of Ritz values depends on the relative
gap in the spectrum, we will see in the generic case that the smallest and the
largest Ritz values converge about as fast as the smallest and largest eigenvalues
of A, respectively. Is it meaningful in this to consider convergence of the largest
Ritz value in order to explain an observed faster convergence?

5.4 CG and the normal equations

When faced with an unsymmetric system, it seems rather obvious to form the
system of normal equations AT Ax = AT b, and to solve this iteratively with
conjugate gradients. However, this may have severe disadvantages because of
the squaring of the condition number. The effects of this are that the solution is
more susceptible to errors in the right-hand side and that the rate of convergence
of the CG procedure is much slower as it is for a comparable symmetric system
with a matrix with the same condition number as A. Moreover, the amount
of work per iteration step, necessary for the matrix vector product, is doubled.
GMRES avoids our having to form the normal equations, but needs an increasing
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amount of storage and computational work per iteration. Therefore, the normal
equations approach may still be attractive if only a few iterations suffice to
obtain an acceptably small residual. To illustrate this, we note that when A is
orthonormal, CG solves AT Ax = AT b in one single iteration because AT A =
I . GMRES would need many iterations for such an extremely well-conditioned
system if A is indefinite (which is the case for nontrivial situations). Of course,
solving orthonormal systems is an easy matter, but this example shows that
if A is in some sense close to orthogonal then the normal equations approach
with CG may be very attractive. Another way of stating this is that CG with the
normal equations, in the way formulated below in CGLS, may be attractive if
the singular values of A are clustered. The Krylov subspace methods for the
equation Ax = b are attractive if the eigenvalues of A are clustered.

Paige and Saunders [154] point out that applying CG (see Figure 5.1, with
A replaced by AT A) naively to the normal equations is not advisable, largely
because the method would then generate vectors of the form AT Api . This vector
does not lead to sufficiently accurate iteration coefficients αi . An algorithm with
better numerical properties is obtained after a slight algebraic rearrangement,
where we make use of the intermediate vector Api (see also [28], which contains
an early FORTRAN implementation). This leads to the CGLS algorithm in
Figure 5.5. Our formulation is slightly different from the one in [154], in order

x0 is an initial guess, r0 = b − Ax0, s0 = AT r0

for i = 1, 2, . . . .
ρi−1 = sT

i−1si−1

if i = 1
pi = si−1

else
βi−1 = ρi−1/ρi−2

pi = si−1 + βi−1 pi−1

endif
qi = Api

αi = ρi−1/pT
i qi

xi = xi−1 + αi pi

ri = ri−1 − αi qi

si = AT ri

if xi accurate enough then quit
end

Figure 5.5. CGLS.
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to have it compatible with the CG algorithm in Figure 5.1. The vector ri denotes
the residual for the system Ax = b.

The use of conjugate gradients (LSQR) in a least squares context, as well
as a theoretical comparison with SIRT type methods, is discussed in [192] and
[193].

Exercise 5.24. Show that, in exact arithmetic, CGLS leads to xi for which
‖b − Axi‖2 is minimal over the shifted Krylov subspace x0 + Ki (AT A; AT b).

For overdetermined, or underdetermined, systems, solving the normal equa-
tions may be a quite natural approach. Now we have to face the situation that
A may be ill-conditioned. In that case it may be numerically unattractive to
apply the Lanczos procedure with AT A to form the reduced tridiagonal sys-
tem with respect to the Krylov subspace. This tridiagonal system may also be
ill-conditioned. Paige and Saunders have proposed a method that behaves nu-
merically better. Their LSQR [154] is, in exact arithmetic, equivalent to CGLS
but gives better results for ill-conditioned systems (in particular, when the sin-
gular vectors associated with small singular vectors carry important information
about the solution). We will now discuss LSQR in more detail.

We first note that the least squares problem Ax = b is equivalent to the auxiliary
square linear system (

I A

AT 0

)(
r

x

)
=
(

b

0

)
. (5.36)

Forming an orthonormal basis for the Krylov subspace for the system in (5.36),
and starting with the vector

w1 = 1

‖b‖2

(
b

0

)
,

we obtain as the second vector for the Krylov subspace:

1

‖b‖2

(
b

AT b

)
.

After orthogonalizing this vector to w1 and normalizing the result, we obtain
the second orthogonal basis vector

w2 = 1

‖AT b‖2

(
0

AT b

)
.
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Exercise 5.25. Show that we get alternately orthogonal basis vectors for the
Krylov subspace of the form (

u

0

)
and

(
0

v

)
. (5.37)

Let Uk denote the matrix of the first k u-vectors and let Vk denote the matrix of
the first k v-vectors in their proper order. Then we have the following relation
between these vectors:

β1u1 = b α1v1 = AT u1

i = 1, 2, . . . .

{
βi+1ui+1 = Avi − αi ui

αi+1vi+1 = AT ui+1 − βi+1vi
(5.38)

The scalars αi > 0 and βi > 0 are chosen so that ‖ui‖2 = ‖vi‖2 = 1. These
relations are also known as the bidiagonalization procedure, due to Golub and
Kahan [95], for reasons that will now be made clear. With

Uk ≡ [u1, u2, . . . , uk],

Vk ≡ [v1, v2, . . . , vk],
Bk =



α1

β2 α2

β3
. . .

. . . αk

βk+1


,

it follows that

β1Uk+1e1 = b, (5.39)

AVk = Uk+1 Bk, (5.40)

AT Uk+1 = Vk Bk
T + αk+1vk+1eT

k+1. (5.41)

Exercise 5.26. Show that Tk = Bk
T Bk, with Tk the reduced tridiagonal matrix

obtained with the Lanczos process for AT Ax = AT b, and that this Lanczos
process is characterized by

AT AVk = Vk Tk + γk+1vk+1eT
k+1, (5.42)

with γ = βk+1αk+1.

Now we return to the augmented system (5.36) (which is equivalent to the
normal equations). With the Lanczos method, we want to find a solution in a
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Krylov subspace K so that the residual is orthogonal to K, that is, we want to
find a (r̃ , x̃)T ∈ K so that[

I A

AT 0

][
r̃

x̃

]
−
[

b

0

]
⊥ K. (5.43)

When we increase the dimension ofK then x̃ should approximate x and r̃ should
approximate r = b − Ax . In view of relation (5.42) the subspace K should
be such that it permits x̃ of the form xk ≡ x̃ = Vk yk . For the corresponding
rk = b − Axk , we should then have

rk = b − AVk xk

= b − Uk+1 Bk yk

= Uk+1(β1 − Bk yk)

≡ Uk+1tk+1.

This shows that K should be spanned by the columns of[
Uk+1 0

0 Vk

]
,

and note that these columns are generated by the first 2k + 1 steps of the Lanczos
process for the augmented system (5.36), although not in that order.

With r̃ = Uk+1tk+1 and x̃ = Vk yk , the orthogonality relations (5.43) lead to[
U T

k+1 0

0 V T
k

][
I A

AT 0

][
Uk+1tk+1

Vk xk

]
−
[

b

0

]
= 0.

This leads to the reduced system[
I Bk

BT
k 0

][
tk+1

yk

]
=
[

β1e1

0

]
. (5.44)

Now note that (5.44) is equivalent to the least-squares problem

min ‖β1e1 − Bk yk‖2, (5.45)

and this forms the basis for LSQR.

In LSQR [154] the linear least-squares problem (5.45) is solved via the stan-
dard QR factorization (see, for instance, [98, Chapter 5]) for the matrix Bk .
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x0 = 0, β1 = ‖b‖2, u1 = ‖b‖2/β1,
v = AT u1, α1 = ‖v‖2, w1 = v1 = v/α1

φ̃1 = β1, ρ̃1 = α1

for i = 1, 2, . . . .
u = Avi − αi ui , βi+1 = ‖u‖2, ui+1 = u/βi+1

v = AT ui+1 − βi+1vi , αi+1 = ‖v‖2, vi+1 = v/αi+1

ρi =
√

ρ̃i
2 + β2

i+1

ci = ρ̃i/ρi

si = βi+1/ρi

θi+1 = siαi+1

ρ̃i+1 = −ciαi+1

φi = ci φ̃i

φ̃i+1 = si φ̃i

xi = xi−1 + (φi/ρi )wi

wi+1 = vi+1 − (θi+1/ρi )wi

if xi accurate enough then quit
end

Figure 5.6. LSQR.

The better numerical properties of LSQR, with respect to CG for the nor-
mal equations, stem from the fact that we form the bidiagonal factors of the
Lanczos tridiagonal matrix and that we use the QR method for solving the
reduced least-squares problem instead of solving the reduced tridiagonal prob-
lem (thus avoiding additional problems if this reduced tridiagonal system is
ill-conditioned).

For completeness I give the LSQR algorithm, as formulated in [154], in
Figure 5.6. For further details refer to [154] and note that more sophisticated
implementations of LSQR are available in netlib:
http://www.netlib.org

An interesting variant that is also based on the bidiagonalization of A is the
so-called Craig’s method [154]. The easiest way to think of this method is to
apply Conjugate Gradients to the system AT Ax = AT b, with the following
choice for the inner product

[x, y] ≡ (x, (AT A)−1 y),

which defines a proper inner product if A is of full rank (see Section 5.2).
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First note that the two inner products in CG (as in Section 5.2) can be computed
without inverting AT A:

[pi , AT Api ] = (pi , pi ),

and, assuming that b ∈ R(A) so that Ax = b has a solution x :

[ri , ri ] = [AT (Axi − b), AT (Axi − b)] = [AT A(xi − x), AT (Axi − b)]

= (xi − x, AT (Axi − b)) = (Axi − b, Axi − b).

Apparently, with CG we are minimizing

[xi − x, AT A(xi − x)] = (xi − x, xi − x) = ‖xi − x‖2
2,

that is, in this approach the Euclidean norm of the error is minimized, over the
same shifted subspace x0 + K i (AT A′ AT r0), as it is in the standard approach.
Note, however, that the rate of convergence of Craig’s method is also determined
by the condition number of AT A, so that this method is also only attractive if
there is a good preconditioner for AT A.

It is also possible to interpret Craig’s method as a solution method for
the system AAT u = b, with x = AT u. This leads to the same algorithm as
sketched in the approach discussed here. For a convenient introduction to the
AAT -approach see [168].

5.5 Further references

A more formal presentation of CG, as well as many theoretical properties, can
be found in the textbook by Hackbusch [111]. A shorter presentation is given
in [98]. An overview of papers published in the first 25 years of existence of
the method is given in [96]. Vector processing and parallel computing aspects
are discussed in [61] and [148].





6
GMRES and MINRES

In this chapter I am still concerned with the problem of identifying good
approximations xi for the solution of Ax = b in the Krylov subspaceKi (A, r0),
with r0 = b (I assume that x0 = 0; the situation x0 	= 0 leads to a trivial shift
of the approximations, cf. (3.6)). The construction of an orthogonal set of basis
vectors v j for the subspace Ki (A, r0) leads to the relation (3.18):

AVi = Vi+1 Hi+1,i .

I will exploit this relation for the construction of approximations with minimum
norm residual over the Krylov subspace.

6.1 GMRES

As we have seen in Section 4.2, the minimal norm residual approach leads to a
small minimum least squares problem that has to be solved:

Hi+1,i y = ‖r0‖2 e1. (6.1)

In GMRES [169] this is done efficiently with Givens rotations, that annihilate
the subdiagonal elements in the upper Hessenberg matrix Hi+1,i . The resulting
upper triangular matrix is denoted by Ri,i :

Hi+1,i = Qi+1,i Ri,i ,

where Qi+1,i denotes the product of the successive Givens eliminations of the
elements h j+1, j , for j = 1, . . . , i .

65
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Exercise 6.1. Consider the 2 by 2 matrix

A =
[

a1,1 a1,2

a2,1 a2,2

]
.

Construct the 2 by 2 matrix

Q =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]
,

so that B = Q A has a zero element in its lower left corner: b2,1 = 0. The
matrix Q is called a Givens transformation. What is the value of θ? Verify that
QTQ = I .

Show that Givens rotations can be used to reduce Hi+1,i to upper triangular
form. What do the Givens transformations look like?

After the Givens transformations the least squares solution y minimizes

‖Hi+1,i y − ‖r0‖2e1‖2 = ‖Qi+1,i Ri,i y − ‖r0‖2e1‖2

= ‖Ri,i y − QT
i+1,i‖r0‖2e1‖2. (6.2)

The resulting least squares problem leads to the minimum norm solution

y = R−1
i,i QT

i+1,i‖r0‖2e1.

The required approximation xi is now computed as xi = Vi y.

Exercise 6.2. Show that Ri,i cannot be singular, unless xi−1 is equal to the
solution of Ax = b.

Note that when A is Hermitian (but not necessarily positive definite), the up-
per Hessenberg matrix Hi+1,i reduces to a tridiagonal system. This simplified
structure can be exploited in order to avoid storage of all the basis vectors for
the Krylov subspace, in a similar way to that pointed out for CG. The resulting
method is known as MINRES [153], see Section 6.4.

In order to avoid excessive storage requirements and computational costs for
the orthogonalization, GMRES is usually restarted after each m iteration steps.
This algorithm is referred to as GMRES(m); the not-restarted version is often
called ‘full’ GMRES. There is no simple rule to determine a suitable value for
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r = b − Ax0, for a given initial guess x0

x = x0

for j = 1, 2, . . . .

β = ||r ||2, v1 = r/β, b̂ = βe1

for i = 1, 2, . . . , m
w = Avi

for k = 1, . . . , i
hk,i = vT

k w, w = w − hk,ivk

hi+1,i = ‖w‖2, vi+1 = w/hi+1,i

r1,i = h1,i

for k = 2, . . . , i
γ = ck−1rk−1,i + sk−1hk,i

rk,i = −sk−1rk−1,i + ck−1hk,i

rk−1,i = γ

δ =
√

r2
i,i + h2

i+1,i ci = ri,i/δ, si = hi+1,i/δ

ri,i = ciri,i + si hi+1,i

b̂i+1 = −si b̂i b̂i = ci b̂i

ρ = |b̂i+1| (= ‖b − Ax( j−1)m+i‖2)

if ρ is small enough then
(nr = i , goto SOL)

nr = m, ynr = b̂nr /rnr ,nr

SOL: for k = nr − 1, . . . , 1
yk = (b̂k − ∑nr

i=k+1 rk,i yi )/rk,k

x = x +∑nr
i=1 yivi , if ρ small enough quit

r = b − Ax

Figure 6.1. Unpreconditioned GMRES(m) with modified Gram–Schmidt.

m; the speed of convergence may vary drastically for nearby values of m. It
may be the case that GMRES(m + 1) is much more expensive than GMRES(m),
even in terms of numbers of iterations.

We present in Figure 6.1 the modified Gram–Schmidt version of GMRES(m)
for the solution of the linear system Ax = b. The application to preconditioned
systems, for instance K −1 Ax = K −1b, is straightforward.

For complex valued systems, the scheme is as in Figure 6.2. Note that the
complex rotation is the only difference with respect to the real version.
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r = b − Ax0, for a given initial guess x0

x = x0

for j = 1, 2, . . . .

β = ||r ||2, v1 = r/β, b̂ = βe1

for i = 1, 2, . . . , m
w = Avi

for k = 1, . . . , i
hk,i = v∗

k w, w = w − hk,ivk

hi+1,i = ||w||2, vi+1 = w/hi+1,i

r1,i = h1,i

for k = 2, . . . , i
γ = ck−1rk−1,i + s̄k−1hk,i

rk,i = −sk−1rk−1,i + ck−1hk,i

rk−1,i = γ

δ = √|ri,i |2 + |hi+1,i |2
if |ri,i | < |hi+1,i |
then µ = ri,i/hi+1,i , τ = µ̄/|µ|
else µ = hi+1,i/ri,i , τ = µ/|µ|
ci = |ri,i |/δ, si = |hi+1,i |τ/δ

ri,i = ciri,i + s̄i hi+1,i

b̂i+1 = −si b̂i b̂i = ci b̂i

ρ = |b̂i+1| (= ||b − Ax( j−1)m+i ||2)
if ρ is small enough then

(nr = i , goto SOL)
nr = m, ynr = b̂nr /rnr ,nr

SOL: for k = nr − 1, . . . , 1
yk = (b̂k −∑nr

i=k+1 rk,i yi )/rk,k

x = x +∑nr
i=1 yivi , if ρ small enough quit

r = b − Ax

Figure 6.2. Unpreconditioned GMRES(m) for complex systems.

Exercise 6.3. For a real unsymmetric nondefective matrix A there exists a
nonsingular real matrix Z so that

Z−1 AZ = T,

where T is a real block diagonal matrix with 2 by 2 blocks along the diagonal.
The eigenvalues of A are equal to those of T .
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This can be used to construct test examples for GMRES. Would it be suf-
ficient to test GMRES with diagonal matrices, as was the case for Conjugate
Gradients? Why not?

Exercise 6.4. The FOM method for real unsymmetric systems is based on the
Galerkin relations:

b − Axm ⊥ Km(A, x0),

for xm ∈ Km(A, x0).
Modify the scheme for (the real version of ) GMRES(m) so that we obtain

the restarted version of FOM: FOM(m).

Exercise 6.5. Test the methods GMRES(m) and FOM(m). Run the tests with
only one cycle of m steps. Construct matrices with complex conjugate eigen-
values with positive real part.

Plot the logarithm of the norms of the first m residuals. Why do the norms
for GMRES form a strictly monotonic decreasing curve? Should that also be
the case for FOM? Do you observe situations where ‖r G M RE S

i ‖2 ≈ ‖r F O M
i ‖2

for some values of i? Could such situations be expected after inspection of the
matrix Hi+1,i ?

Exercise 6.6. Repeat the experiments for GMRES and FOM with real indefinite
matrices (eigenvalues with positive real parts and eigenvalues with negative
real parts). Can we modify a given test example so that FOM breaks down at
step i? Hint: If Hi+1,i is the reduced matrix for A, what is the reduced matrix
for A − σ I ? How can we expect a breakdown step from inspection of Ri,i .

What happens to GMRES at a breakdown step of FOM? Can FOM be contin-
ued after a breakdown? Modify FOM so that it computes only the approximated
solutions at nonbreakdown steps.

Another scheme for GMRES, based upon Householder orthogonalization in-
stead of modified Gram–Schmidt has been proposed in [215]. For certain appli-
cations it seems attractive to invest in additional computational work in return
for improved numerical properties: the better orthogonality might save iteration
steps.

The eigenvalues of Hi,i are the Ritz values of A with respect to the Krylov sub-
space spanned by v1, . . . , vi . They approximate eigenvalues of A increasingly
well for increasing dimension i .
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Exercise 6.7. Construct some example systems for the testing of GMRES, such
that the eigenvalues of the matrices are known. Plot the convergence curve:
log(‖ri‖2) as a function of i . Compute also the Ritz values for some values of i .
Is there any relation between the Ritz values and the eigenvalues of the matrix of
the linear system? Which eigenvalues are well approximated? Does that depend
on the distribution of the eigenvalues of the matrix? Is there a relation between
the convergence of Ritz values and effects in the convergence curve?

There is an interesting and simple relation between the Ritz–Galerkin approach
(FOM and CG) and the minimum residual approach (GMRES and MINRES). In
GMRES the projected system matrix Hi+1,i is transformed by Givens rotations
to an upper triangular matrix (with last row equal to zero). So, in fact, the major
difference between FOM and GMRES is that in FOM the last ((i + 1)-th) row
is simply discarded, while in GMRES this row is rotated to a zero vector. Let
us characterize the Givens rotation, acting on rows i and i + 1, in order to
zero the element in position (i + 1, i), by the sine si and the cosine ci . Let us
further denote the residuals for FOM with a superscript F and those for GMRES
with a superscript G. If ck 	= 0 then the FOM and the GMRES residuals are
related by

‖r F
k ‖2 = ‖r G

k ‖2√
1 − (‖r G

k ‖2/‖r G
k−1‖2)2

, (6.3)

([49, Theorem 3.1]).
From this relation we see that when GMRES has a significant reduction at

step k, in the norm of the residual (i.e., sk is small, and ck ≈ 1), FOM gives about
the same result as GMRES. On the other hand when FOM has a breakdown
(ck = 0), GMRES does not lead to an improvement in the same iteration step.
Because of these relations we can link the convergence behaviour of GMRES
with the convergence of Ritz values (the eigenvalues of the ‘FOM’ part of the
upper Hessenberg matrix). This has been exploited in [206], for the analysis
and explanation of local effects in the convergence behaviour of GMRES. We
will see more of this in Section 6.2.

There are various methods that are mathematically equivalent to FOM or
GMRES. We will say that two methods are mathematically equivalent
if they produce the same approximations {xk} in exact arithmetic. Among
those that are equivalent to GMRES are: ORTHOMIN [213], Orthodir [121],
GENCR [75], and Axelsson’s method [9]. These methods are often more
expensive than GMRES per iteration step and they may also be less robust.
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The ORTHOMIN method is still popular, since this variant can be easily trun-
cated (ORTHOMIN(s)), in contrast to GMRES. The truncated and restarted
versions of these algorithms are not necessarily mathematically equivalent.

Methods that are mathematically equivalent to FOM are: Orthores [121] and
GENCG [42, 221]. In these methods the approximate solutions are constructed
such that they lead to orthogonal residuals (which form a basis for the Krylov
subspace; analogously to the CG method).

The GMRES method and FOM are closely related to vector extrapolation
methods, when the latter are applied to linearly generated vector sequences.
For a discussion on this, as well as for implementations for these matrix free
methods, see [172]. For an excellent overview of GMRES and related variants,
such as FGMRES, see [168].

6.1.1 A residual vector variant of GMRES

It may not come as a surprise that a method as popular as GMRES comes in
different flavours. As an example of such a variant we discuss the so-called
Simpler GMRES, proposed by Walker and Zhou [216]. The main idea is that
GMRES computes the vector from the Krylov subspace for which the residual
had minimum norm. The residuals live in the shifted Krylov supspace

r0 + AKm(A; r0),

so that we may construct an orthonormal basis for AKm(A; r0) as an alternative
to the regular basis.

More precisely, given a starting vector x0 with residual vector r0, the compo-
nent z of the approximated solution x0 + z is sought in the subspace B spanned
by r0, Ar0, . . . , Am−1r0. The residual for z is computed with Az and this vector
belongs to the subspace V spanned by the vectors Ar0, A2r0, . . . , Amr0. An
orthonormal basis v1, v2, . . . , vm is computed as in Figure 6.3.
Now note that the vectors r0, v1, . . . , vm−1 form a (nonorthogonal) basis for B.
We denote the matrix with columns r0, v1, . . . , vm−1 as Bm .

The vectors v1, . . . , vm form an orthonormal basis for V , the matrix with
these columns is denoted as Vm .

Exercise 6.8. Show that

ABm = VmUm, (6.4)

with Um an m by m upper triangular matrix with elements ui, j (cf. Figure 6.3).
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r0 is a given vector, v0 = r0

for k = 1, . . . , m
w = Avk−1

for j = 1, . . . , k − 1
u j,k = vT

j w, w = w − u j,kv j

end j
uk,k = ||w||2, vk = w/hk,k

end k

Figure 6.3. A basis for AKm(A; r0) with modified Gram–Schmidt.

Now we are well equipped to compute the residual minimizing approximation
x0 + z from the shifted subspace x0 + B. This z can be expressed as z = Bms,
which gives the approximated solution x0 + Bms. The vector s has to be deter-
mined so that the residual in 2-norm

‖b − A(x0 + Bms)‖2

is minimal. Note that the residual for this approximation is rm = b − A(x0 +
Bms). Using (6.4) we obtain

‖b − A(x0 + Bms)‖2 = ‖r0 − ABms‖2

= ‖r0 − VmUms‖2. (6.5)

For the minimization of the last expression in (6.5), we have to decompose r0

into a component in V and a vector orthogonal to V:

r0 = t + Vmw,

with w = V T
m r0. This leads to

‖r0 − VmUms‖2 = ‖t + Vm(w − Ums‖2, (6.6)

and it follows that the minimal norm is achieved for the solution s of

Ums = w. (6.7)

Exercise 6.9. Prove that rm = t .

With s = U−1
m w (6.7), the approximated solution from B is obtained as

xm = x0 + Bms.
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We are now ready to compare this variant of GMRES with the original GMRES,
cf. Figure 6.1. In the traditional form we work with a basis for the standard
Krylov subspace, onto which A is reduced to upper Hessenberg form. This
leads to the solution of a small upper Hessenberg system, see (6.1). For the
variant in this section, we have to solve a small upper triangular system. That
means that we have avoided the Givens rotations, necessary for the reduction
of the upper Hessenberg system to an upper triangular system. For this reason
the new variant has been named simpler GMRES.

The question now is: what have we actually saved and what is the price to
be paid? First we compare the costs for original GMRES and simpler GMRES.
The only difference is in the amount of scalar work; the operations with (long)
vectors and with A are the same. GMRES additionally requires 16 flops per
iteration and one square root. Simpler GMRES requires 2 flops per iteration
plus sin and an arccos (for the update of the norm of the residual). This means
that both methods have about the same expense per iteration.

Simpler GMRES has available in each iteration the residual vector, and that
means that we do not have to compute it explicitly at a restart (as in GMRES(m)).
However, the residuals in Simpler GMRES are obtained by an update procedure
(projecting out the new basis vector for V) and hence the approximate solution
and the residual vector, which should be equal in exact arithmetic, may deviate
after a few iterations. So, unless the length of a GMRES cycle is very small,
it may be better to compute the residual explicitly at restart, leading to only a
small increase of the total computational costs.

It seems to be more serious that the approximate solution is computed for
the nonorthogonal basis of B. It was shown in [131] that

κ2(Bm) ≤ 2
‖r0‖2 + (‖r0‖2

2 − ‖rm‖2
2)

1/2

‖rm‖2
.

In [216] an upperbound was given, with essentially the same order of magnitude.
This implies that fast convergence goes hand in hand with an ill-conditioned
basis, which may lead to inaccuracies in the computed approximation. A similar
effect does not play a role for slowly converging restarted simpler GMRES
processes [216], but there may be negative effects for larger values of m, as
numerical experiments in [131] show.

In conclusion it seems that simpler GMRES is not a serious competitor for
original GMRES, but it may be that the process has its merits in situations with
low values of m, for instance in hybrid iteration methods (such as GMRESR or
FGMRES).
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6.1.2 Flexible GMRES

As we have seen in Section 6.1.1, it is necessary to have an orthonormal basis for
the image subspace, that is the subspace in which the residuals ‘live’, in order to
determine the minimum norm residual. Saad [166] has exploited this knowledge
for the design of a variant of GMRES that admits variable preconditioning, more
particularly right preconditioning. That is, we consider solving the linear system

AK −1 y = b, (6.8)

with x = K −1b. The application of GMRES with the operator AK −1 is straight-
forward. Note that the approximate solution for y has to be multiplied by K −1

in order to get a meaningful approximation for x . This operation can be saved
by storing all the intermediate vectors K −1vi that have to be computed when
forming the new basis vector through w = AK −1vi . Thus one operation might
be saved with the preconditioner per m steps at the expense of storing m long
vectors. Often storage is a limiting factor and this will not then be attractive.
However, as Saad notes [168, p. 257], there are situations where the precondi-
tioner is not explicitly given, but implicitly defined via some computation, for
instance as an approximate Jacobian in a Newton iteration, or by a few steps
of an iteration process. Another example is when the preconditioning step is
done by domain decomposition and if the local problems per domain are again
solved by a few steps of an iterative method.

We denote this variable preconditioning by an index, that is in iteration step
i we compute w = AK −1

i vi and now we have to store the intermediate vectors
zi = K −1

i vi in order to compose the update for the approximate solution x .
If we follow the Arnoldi process for the new vectors w = AK −1

i vi , then we
do not obtain a Krylov subspace, because the operator AK −1

i is not fixed.

Exercise 6.10. Let the Arnoldi process be carried out with the operator AK −1
j

for the construction of the orthogonal vector ṽ j+1 and start with the initial
normalized vector ṽ1. Let Zm denote the matrix with columns z j = K −1

j ṽ j ,
then show that

AZm = Ṽm+1 H̃m+1,m, (6.9)

with H̃m+1,m an m + 1 by m upper Hessenberg matrix.

The residual minimization process can now be carried out in the same way as
that for GMRES, with H̃m+1,m instead of hm+1,m . Of course, the update for x is
with the z j vectors. The complete FGMRES(m) scheme is given in Figure 6.4.
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r = b − Ax0, for a given initial guess x0

x = x0

for j = 1, 2, . . . .

β = ||r ||2, ṽ1 = r/β, b̂ = βe1

for i = 1, 2, . . . , m
zi = K −1

i ṽi

w = Azi

for k = 1, . . . , i
h̃k,i = ṽT

k w, w = w − h̃k,i ṽk

h̃i+1,i = ||w||2, ṽi+1 = w/h̃i+1,i

r1,i = h̃1,i

for k = 2, . . . , i
γ = ck−1rk−1,i + sk−1h̃k,i

rk,i = −sk−1rk−1,i + ck−1h̃k,i

rk−1,i = γ

δ =
√

r2
i,i + h̃2

i+1,i , ci = ri,i/δ, si = h̃i+1,i/δ

ri,i = ciri,i + si h̃i+1,i

b̂i+1 = −si b̂i b̂i = ci b̂i

ρ = |b̂i+1| (= ||b − Ax( j−1)m+i ||2)
if ρ is small enough then

(nr = i , goto SOL)
nr = m, ynr = b̂nr /rnr ,nr

SOL: for k = nr − 1, . . . , 1
yk = (b̂k −∑nr

i=k+1 rk,i yi )/rk,k

x = x + ∑nr
i=1 yi zi , if ρ small enough quit

r = b − Ax

Figure 6.4. FGMRES(m) with variable right preconditioning K −1
i .

Relation (6.9) reveals the possible problems that we may encounter with
the flexible approach. The matrix Zm is nonorthogonal and the matrix H̃m+1,m

is not even an orthogonal projection of some right-preconditioned A (unless
all preconditioners Ki are equal). That means that the reduced matrix Hm+1,m

may be singular even if A is nonsingular. This situation is rare, but it should be
checked. From [168, Property 9.3] we have that the iterative process has arrived
at the exact solution x j = x when the orthogonal basis v j cannot be further
expanded (i.e. when h j+1, j = 0), under the condition that Hj, j is nonsingular.
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In Section 6.6 we will see another variant of GMRES that permits variable
preconditioning. In that variant the updates for the residuals are preconditioned
rather than the updates for the approximate solution as in FGMRES.

6.2 The convergence behaviour of GMRES

For CG we have seen nice upperbounds for the reduction of the residual norms
‖rk‖2/‖r0‖2 in terms of the condition number of the matrix A (cf. (5.25). The
situation for GMRES is much more complicated, because of the fact that unsym-
metric matrices have, in general, no orthonormal eigensystem and the eigen-
values may be complex. From the Krylov subspace characterization it follows
that the residual rk , for full unpreconditioned GMRES, can be expressed in
polynomial form as

rk = Pk(A)r0,

with Pk(0) = 1. Now assume that A is diagonalizable, that is there exists a
nonsingular X such that

A = X DX−1,

with D a diagonal matrix with the (possibly complex) eigenvalues of A on its
diagonals. We assume that the columns of X are scaled to make ‖X‖2‖X−1‖2

as small as possible. GMRES generates implicitly the polynomial Pk for which
‖rk‖2 is minimal. Hence

‖rk‖2 = min
Pk ,Pk (0)=1

‖Pk(A)r0‖2

≤ ‖X‖2‖X−1‖2 min
Pk ,Pk (0)=1

max
j

|Pk(λ j )|‖r0‖2. (6.10)

The upperbound given by (6.10) is, in general, not very useful. The bound is
not sharp [101, Section 3.2], and, moreover, the minimization of a polynomial
over a complex set of numbers, under the condition that it is 1 at the origin,
is an unsolved problem. In fact, the upperbound does not even predict that
‖rk‖2 ≤ ‖r0‖2, as is the case for GMRES. In some cases, the upperbound may
be used to predict a true reduction for the GMRES residuals. For instance,
when the field of values F(A) (Definition 2.2) of A is contained in an ellipse
in the right-half plane then the rate of convergence can be bounded. Let us
assume that A is real, so that the eigenvalues appear in complex conjugate
pairs. The ellipse then has its centre d at the real axis, say d > 0. We denote the
focal points by d − c and d + c and the intersection of the ellipse with the real
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axis by d − a and d + a. Manteuffel [135] describes a Chebyshev iteration for
Ax = b, and gives, for the situation described above, an asymptotic convergence
factor

rc = a + √
a2 − c2

d + √
d2 − c2

.

Of course, there are infinitely many ellipses that contain F(A), but we have to
select the smallest one. In [135] an algorithm is presented that computes the
best parameters a, c, and d .

Because the GMRES residuals are smaller than the Chebyshev residuals, the
GMRES residuals can be bounded by a set of numbers that decrease geometri-
cally with this rc. Note that because of the appearance of the condition number
of X this does not predict a true reduction if this condition number is larger
than (1/rc)

k .

In general, nothing can be said about the convergence behaviour of GMRES,
and no reduction can even be guaranteed for k < n, as the example in the next
exercise shows.

Exercise 6.11. Let ei denote the canonical basis vectors in R
n. Let A be the

matrix with successive columns e2, e3,. . . , en, e1. For b we take b = e1. We start
full GMRES with x0 = 0. Show that the upper Hessenberg matrices associated
with the Arnoldi basis for the Krylov subspaces of dimension less than n have
upper triangular part equal to zero. Use this in order to show that ‖r j‖ = ‖r0‖2

for all j ≤ n. What happens at the n-th iteration step? Where are the eigenvalues
of A located, and what are the Ritz values (the eigenvalues of the Hessenberg
matrices)?

The remarkable observation is that the condition number of the matrix in
Exercise 6.11 is 1. This also shows that the convergence of GMRES cannot
adequately be described in terms of the condition number. It also cannot, in
general, be described in terms of the eigenvalues, as has been shown in [102].
The main result for convergence is given in the next theorem.

Theorem 6.1. Given a nonincreasing positive sequence f0 ≥ f1 ≥ fn−1 and
a set of nonzero complex numbers λ1, λ2, . . . , λn, there exists a matrix A with
eigenvalues λ j and a right-hand side b with ‖b‖2 = f0 such that the residual
vectors rk of GMRES (for Ax = b, with x0 = 0) satisfy ‖rk‖2 = fk , k = 0,

1, . . . , n − 1.
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So, the eigenvalue information alone is not enough; information about the
eigensystem is also needed. If the eigensystem is orthogonal, as for normal
matrices, then the eigenvalues are descriptive for the convergence. Also for
well-conditioned eigensystems the distribution of the eigenvalues may give
some insight into the actual convergence behaviour of GMRES. In practical
cases superlinear convergence behaviour is also observed, as it is for CG. This
has been explained in [206]. In that paper it is shown that when eigenvalues
of the Hessenberg matrix Hk,k (the Ritz values) approximate eigenvalues of
A rather well, then the convergence of GMRES proceeds from then as if the
corresponding eigenvector of A is no longer present. The analysis in [206] is
unnecessarily complicated, because the GMRES approximations are computed
with Hk+1,k . The approximations of FOM, however, are determined by Hk,k

and, hence, the FOM iteration polynomial can be expressed in terms of the
Ritz polynomial (cf. (5.31)). Since the convergence of GMRES can be linked
with that of FOM, the link with the Ritz values can be made. The introduction
of the FOM polynomial could have been avoided by replacing the Ritz values
by the Harmonic Ritz values [152], because the GMRES iteration polynomial
can be characterized by the Harmonic Ritz values ([86]).

Embree [77] has studied the convergence behaviour of GMRES and
GMRES(m) in great detail. He has studied upperbounds in terms of eigen-
values and in terms of fields of values, similar to the bounds we have seen here,
and in terms of pseudospectral information. The latter bounds seem to be rather
promising and a nice aspect is that relevant pseudospectral information can be
gathered from the GMRES iteration process. This is certainly an interesting
direction for further research.

6.3 Some numerical illustrations

My numerical experiments have been taken from [202]. The matrices A are of
order = 200 and of the form A = SBS−1 with

S =



1 β

1 β

. . .
. . .

. . . β

1


and B =



λ1

λ2

λ3

. . .

λn

 .

We take b such that the solution x of Ax = b is S times the vector with all
elements equal to 1. The value of β can be used to make A less normal. Note
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Figure 6.5. Successive reduction factors for the residual norms of GMRES for a uniform
real spectrum.

that for β = 0, we have a very simple normal and even symmetric situation and
that is not of so much interest for GMRES.

Example 1. For the first example we select β = 0.9 and λ j = j , for j = 1,

2, . . . , n. In Figure 6.5 we have shown the reduction factors ‖r j‖2/‖r j−1‖2,
for j = 1, . . . .

We see that initially there is rather fast convergence, but this slows down
until GMRES ‘sees’ the full spectrum of A. Then we see a maximum at about
iteration numbers 26–27. At iteration 25, the smallest Ritz value θ

(25)
1 ≈ 2.15,

and at iteration 27 it is θ
(27)
1 ≈ 1.93. In line with [206], the GMRES process

can, from iteration 27 onwards, be compared with the residual norms of r ′
i of a

GMRES process, in which the first eigenvalue (and eigenvector) are missing:

‖r27+i‖2 ≤ κ2(S)
|θ(i+27)

1 |
|λ1| max

j≥2
| λ j − λ1

λ j − θ27+i
1

|‖r ′
i ‖2 (6.11)

(cf. (5.35) for CG).
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Figure 6.6. Successive reduction factors for the residual norms of GMRES for a close
eigenpair.

After iteration 27 we observe a reduction in the rate of convergence, and
this reduction continues to decrease, because, for this problem, next Ritz values
θ

( j)
k also arrive in their intervals [λk, λk+1]. This explains the increasingly fast

convergence.

Example 2. For the second example, λ j is replaced by the value 1.1, which
leads to a matrix with two relatively close eigenvalues.

In Figure 6.6 we see the ratios of the successive residual norms for this
example. We see a first bulge in the graph of the reduction factors. After this
bulge we see a phase of decreasing reduction factors, which has its minimum
at about iteration number 40. At that point the smallest Ritz value θ

(40)
1 ≈

1.0674, which indicates that the underlying Arnoldi process has spotted the
close eigenpair and has located a Ritz value near the middle. Then the process
has to identify both eigenvalues and this explains the second bulge: at iteration
60 we find the two smallest Ritz values θ

(60)
1 ≈ 1.0326 and θ

(60)
2 ≈ 1.2424. This

means that both Ritz values have arrived in their final intervals and from then
on we may expect faster convergence, just as for the previous example.
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Figure 6.7. Successive reduction factors for the residual norms of GMRES for a complex
conjugate eigenpair.

Example 3. We start again with the B of Example 1, but now the diagonal
subblock

1 0

0 2

is replaced by the subblock

1 1

−1 1
,

that is, the eigenvalues 1 and 2 of Example 1 are replaced by the conjugate
eigenpair 1 ± i . In Figure 6.7 we see the reduction factors for successive residual
norms for this example. We see a behaviour similar to that for the close eigenpair
situation in Example 2. Indeed, at iteration 30 the smallest Ritz value is θ

(30)
1 ≈

1.0580 (the second one is θ
(40)
2 ≈ 4.0783). The first one has arrived close to the

middle of the conjugate eigenpair, while the second one is still not in its final
interval [3, 4]. At iteration 40 we have θ

(40)
1 ≈ 0.95 + i and θ

(40)
2 ≈ 0.95 − i
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(in this case the next nearest Ritz value is θ
(40)
3 ≈ 3.82. Apparently, the process

had discovered the conjugate eigenpair and it has even a Ritz value in the next
interval [3, 4]. With repeated applications of formulas like (6.11) we can explain
the faster convergence after the second bulge.

Example 4. The final example is one with a defective matrix. We replace the
leading 3 by 3 block of B (of Example 1) by a Jordan block with multiple
eigenvalue 1:

1 1 0

0 1 1

0 0 1

.

For β we again take the value 0.9. It should be noted that other values of β give
more or less similar results, although the condition number of S increases for
larger β. This is reflected by slower convergence of GMRES. For values of β

significantly larger than 1.0 the condition number of S becomes very large and
then there is practically no more convergence. In view of the large condition
number of A the approximated solution would then also bear little significance
and solution of such systems would be meaningless.

In Figure 6.8 we see the reduction factors for successive residual norms. At
the first bulge we have the situation that a Ritz value approaches 1.0, at the
second bulge a second Ritz value comes close to 1.0 and it is only after a third
Ritz value has arrived near 1.0 (the third bulge) that faster convergence can take
place. This faster convergence is in line with what may be expected for a system
from which the Jordan block has been deleted. We can make two remarks for this
example. First, it can be argued that defective matrices do not occur in rounding
arithmetic. This may be so, but if the transformation matrix X is computed for
transformation to diagonal form then X has a very large condition number,
which also leads to slow convergence. Second, the situation in this example is
essentially different from the situation of a diagonalizable matrix with multiple
eigenvalue 1. As we have seen, the multiplicity of an eigenvalue plays no role
in the nondefective case, since all eigenvector components corresponding to
the multiple eigenvalue can be eliminated with one single root of the iteration
polynomial Pk .

Comments For a more precise discussion on similar examples see [206,
Section 3].

Although our experiments have been carried out for very simple exam-
ples, we see phases of convergence behaviour that are also typical for real
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Figure 6.8. Successive reduction factors for the residual norms of GMRES for a defective
matrix.

life problems. This type of analysis helps us to understand when and why
preconditioning may be effective. With preconditioning matrix K we hope
to cluster the eigenvalues of K −1 A and to have well-separated eigenvalues
remaining. In the situation that a large number of similar problems have to
be solved, then my advice is to select one representative system from this
group and start with GMRES, rather than one of the more memory friendly
methods like Bi-CGSTAB. Then do as many steps with full GMRES as mem-
ory space and time permit and inspect the Hessenberg system computed in
GMRES. Compute the Ritz values of some successive Hessenberg matrices
Hk,k , which most often gives a good impression of the spectrum of the (pre-
conditioned) matrix A. This gives an indication of the possible effectiveness of
preconditioning and if the spectrum is nicely located, more memory friendly
Krylov methods may be considered. If the spectrum leads us to expect slow
convergence, for instance, because it has the origin in its convex hull, then
my advice is to seek a better preconditioner (or to expect the slow conver-
gence for at least a number of iterations depending on how indefinite the
matrix is).
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In practice, GMRES(m) is often used instead of full GMRES. My small
examples already hint at some of the problems associated with the selection of
m. If a value of m is selected that is too small to overcome a phase of relatively
slow convergence (a phase with a bulge in the reduction factors) then it is
plausible that we will never see the faster convergence of full GMRES. This
is most obvious for the example considered in Exercise 6.11. For that example
we will never see convergence for m < n. In practice, we will rarely see such
extreme situations. However, the choice for m remains tricky and it may occur
that a specific value of m gives relatively slow convergence, whereas the value
m + 1 would result in much faster convergence. As a rule of thumb it seems to
be good practice to select m so that the field of values F(Hm,m) coincides more
or less withF(Hm+1,m+1). If it is to be expected that the (preconditioned) matrix
is not too far from a normal matrix, then the convex hull of the eigenvalues of
Hm,m may be taken to approximate F(Hm,m).

It should be noted here that it is not always efficient to enlarge m. Not only
is GMRES increasingly expensive per iteration, it may also be the case that
GMRES(m − 1) converges faster than GMRES(m) in terms of matrix vector
multiplications. For an example of this, see [77, Chapter 4].

6.4 MINRES

When A is symmetric, then the matrix Hi+1,i reduces to a tridiagonal matrix
Ti+1,i . This property can be exploited to obtain short recurrence relations.
As with GMRES, we look for an

xi ∈ {r0, Ar0, . . . , Ai−1r0}, xi = Ri ȳ

‖Axi − b‖2 = ‖ARi ȳ − b‖2

= ‖Ri+1Ti+1,i y − b‖2,

such that this residual norm is minimal. Now we exploit the fact that Ri+1 D−1
i+1,

with

Di+1 = diag(‖r0‖2, ‖r1‖2, . . . ,‖ri‖2),

is an orthonormal transformation with respect to the current Krylov subspace:

‖Axi − b‖2 = ‖Di+1Ti+1,i y − ‖r0‖2e1‖2

and this final expression can simply be seen as a minimum norm least squares
problem.
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The element in the (i + 1, i) position of Ti+1,i can be transformed to zero by
a simple Givens rotation and the resulting upper tridiagonal system (the other
subdiagonal elements being removed in previous iteration steps) can simply be
solved, as I will now show.

The effect of the Givens rotations is that Ti+1,i is decomposed in Q R-form:

Ti+1,i = Qi+1,i Ri,i ,

in which the orthogonal matrix Qi+1,i is the product of the Givens rotations and
Ri,i is an upper triangular matrix with three nonzero diagonals. We can exploit
the banded structure of Ri,i , for the computation of xi .

The solution of Ti+1,i y = ||r0||2e1 can be written as

y = R−1
i,i QT

i+1,i ||r0||2e1,

so that the solution xi is obtained as

xi = (Vi R−1
i,i )(QT

i+1,i‖r0‖2e1).

We first compute the matrix Wk = Vk R−1
k , and it is easy to see that the last

column of Wk is obtained from the last 3 columns of Vk . The vector zi ≡
QT

i+1,i‖r0‖2e1 can also be updated by a short recurrence, since zi follows from
a simple Givens rotation on the last two coordinates of zi−1. These two coupled
recurrence relations lead to MINRES [153].

This leads to the algorithmic form of MINRES in Figure 6.9, which has been
inspired by a MATLAB routine published in [82].

MINRES is attractive when the symmetric matrix A is symmetric and indef-
inite. In the positive definite case, CG is the preferred method. For a symmetric
positive definite preconditioner of the form L LT , the MINRES algorithm can
be applied to the explicitly preconditioned system

L−1 AL−T Ax̃ = L−1b, with x = L−1 x̃ .

Explicit inversions with L and LT can be avoided, all we have to do is solve
linear systems with these matrices. We cannot, without risk, apply MINRES
to K −1 Ax = K −1b, for symmetric K and A, when the matrix K −1 A is un-
symmetric. It does not help to replace the inner product by the bilinear form
(x, K y), with respect to which the matrix K −1 A is symmetric, since this bi-
linear form does not define an inner product if K is not positive definite. The
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Compute v1 = b − Ax0 for some initial guess x0

β1 = ||v1||2; η = β1;
γ1 = γ0 = 1; σ1 = σ0 = 0;
v0 = 0; w0 = w−1 = 0;
for i = 1, 2, . . . .

The Lanczos recurrence:
vi = 1

βi
vi ; αi = vT

i Avi ;
vi+1 = Avi − αivi − βivi−1

βi+1 = ||vi+1||2
QR part:
Old Givens rotations on new column of T :

δ = γiαi − γi−1σiβi ; ρ1 =
√

δ2 + β2
i+1

ρ2 = σiαi + γi−1γiβi ; ρ3 = σi−1βi

New Givens rotation for subdiag element:
γi+1 = δ/ρ1; σi+1 = βi+1/ρ1

Update of solution (with Wi = Vi R−1
i,i )

wi = (vi − ρ3wi−2 − ρ2wi−1)/ρ1

xi = xi−1 + γi+1ηwi

||ri ||2 = |σi+1|||ri−1||2
check convergence; continue if necessary
η = −σi+1η

end

Figure 6.9. The unpreconditioned MINRES algorithm.

construction of effective preconditioners for symmetric indefinite A is largely
an open problem.

With respect to parallelism, or other implementation aspects, MINRES can be
treated as CG. Note that most of the variables in MINRES may overwrite old
ones that are obsolete.

The use of the 3-term recurrence relation for the columns of Wi makes
MINRES very vulnerable to rounding errors, as has been shown in [179].
It has been shown that rounding errors are propagated to the approximate
solution with a factor proportional to the square of the condition number
of A, whereas in GMRES these errors depend only on the condition num-
ber itself. Therefore, we should be careful with MINRES for ill-conditioned
systems. If storage is no problem then GMRES should be preferred for ill-
conditioned systems; if storage is a problem then we might consider the us-
age of SYMMLQ [153]. SYMMLQ, however, may converge a good deal
slower than MINRES for ill-conditioned systems. For more details on this see
Section 8.3.
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6.5 Rank-one updates for the matrix splitting

Iterative methods can be derived from a splitting of the matrix, and we have used
the very simple splitting A = I − R, with R = I − A, in order to derive the
projection type methods. In [73] updating the matrix splitting with information
obtained in the iteration process is suggested. I will give the flavour of this
method here since it turns out that it has an interesting relation with GMRES.
This relation is exploited in [207] for the construction of new classes of GMRES-
like methods that can be used as cheap alternatives for the increasingly expensive
full GMRES method.

If we assume that the matrix splitting in the k-th iteration step is given by
A = H−1

k − Rk , we obtain the iteration formula

xk = xk−1 + Hkrk−1 with rk = b − Axk .

The idea now is to construct Hk by a suitable rank-one update to Hk−1:

Hk = Hk−1 + uk−1v
T
k−1,

which leads to

xk = xk−1 + (Hk−1 + uk−1v
T
k−1)rk−1 (6.12)

or

rk = rk−1 − A(Hk−1 + uk−1v
T
k−1)rk−1

= (I − AHk−1)rk−1 − Auk−1v
T
k−1rk−1

= (I − AHk−1)rk−1 − µk−1 Auk−1. (6.13)

The optimal choice for the update would have been to select uk−1 such that

µk−1 Auk−1 = (I − AHk−1)rk−1,

or

µk−1uk−1 = A−1(I − AHk−1)rk−1.

However, A−1 is unknown and the best approximation we have for it is Hk−1.
This leads to the choice

ūk−1 = Hk−1(I − AHk−1)rk−1. (6.14)
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The constant µk−1 is chosen such that ‖rk‖2 is minimal as a function of µk−1.
This leads to

µk−1 = 1

‖Aūk−1‖2
2

(Aūk−1)
T (I − AHk−1)rk−1.

Since vk−1 has to be chosen such that µk−1 = vT
k−1rk−1, we have the following

obvious choice for it

v̄k−1 = 1

‖Aūk−1‖2
2

(I − AHk−1)
T Aūk−1 (6.15)

(note that from the minimization property we have that rk ⊥ Aūk−1).

In principle the implementation of the method is quite straightforward, but note
that the computation of rk−1, ūk−1, and v̄k−1 costs 4 matrix vector multiplications
with A (and also some with Hk−1). This would make the method too expensive to
be of practical interest. Also the updated splitting is most likely a dense matrix
if we carry out the updates explicitly. I will now show, still following the
lines set forth in [73], that there are orthogonality properties, following from
the minimization step, by which the method can be implemented much more
efficiently.

We define

(1) ck = 1
‖Aūk‖2

Aūk (note that rk+1 ⊥ ck),
(2) Ek = I − AHk .

From (6.13) we have that rk = Ekrk−1, and from (6.14):

Aūk = AHk Ekrk = αkck

or

ck = 1

αk
(I − Ek)Ekrk = 1

αk
Ek(I − Ek)rk . (6.16)

Furthermore:

Ek = I − AHk = I − AHk−1 − Aūk−1v̄
T
k−1

(6.14) ⇒ = I − AHk−1 − Aūk−1(Aūk−1)
T (I − AHk−1)

1

‖Aūk‖2
2

= (I − ck−1cT
k−1)Ek−1

=
k−1∏
i=0

(I − ci c
T
i )E0. (6.17)
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We see that the operator Ek has the following effect on a vector. The vector is
multiplied by E0 and then orthogonalized with respect to c0, . . . , ck−1. Now we
have from (6.16) that

ck = 1

αk
Ek yk,

and hence

ck ⊥ c0, . . . , ck−1. (6.18)

A consequence from (6.18) is that

k−1∏
j=0

(I − c j c
T
j ) = I −

k−1∑
j=0

c j c
T
j = I − Pk−1

and therefore

Pk =
k∑

j=0

c j c
T
j . (6.19)

The actual implementation is based on the above properties. Given rk we
compute rk+1 as follows (and we update xk in the corresponding way):

rk+1 = Ek+1rk .

With ξ (0) = E0rk we first compute (with the c j from previous steps):

Ekrk = ξ (k) ≡
I −

k−1∑
j=0

c j c
T
j

 ξ (0) =
k−1∏
j=0

(I − c j c
T
j )ξ (0).

The expression with
∑

leads to a Gram–Schmidt formulation, the expression
with

∏
leads to the Modified Gram-Schmidt variant. The computed updates

−cT
j ξ (0)c j for rk+1 correspond to updates

cT
j ξ (0) A−1c j = cT

j ξ (0)u j/‖Au j‖2

for x j+1. These updates are in the scheme, given below, represented by η.

From (6.14) we know that

ūk = Hk Ekrk = Hkξ
(k).
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Now we have to make Aūk ∼ ck orthogonal with respect to c0, . . . , ck−1, and to
update ūk accordingly. Once we have done that we can do the final update step to
make Hk+1, and we can update both xk and rk by the corrections following
from including ck . The orthogonalization step can be carried out easily as
follows. Define c(k)

k ≡ αkck = AHk Ekrk = (I − Ek)Ekrk (see (6.16)) =
(I − E0 + Pk−1 E0)ξ

(k) (see (6.17)) = AH0ξ
(k) + Pk−1(I − AH0 )ξ (k) =

c(0)
k +Pk−1ξ

(k) − Pk−1c(0)
k . Note that the second term vanishes since ξ (k)

⊥ c0, . . . , ck−1.

The resulting scheme for the k-th iteration step becomes:

(1) ξ (0) = (I − AH0)rk ; η(0) = H0rk ;
for i = 0, . . . , k − 1 do

αi = cT
i ξ (i); ξ (i+1) = ξ (i) − αi ci ; η(i+1) = η(i) + αi ui ;

(2) u(0)
k = H0ξ

(k); c(0)
k = Au(0)

k ;
for i = 0, . . . , k − 1 do

βi = −cT
i c(i)

k ; c(i+1)
k = c(i)

k + βi ci ; u(i+1)
k = u(i)

k + βi ui ;
ck = c(k)

k /‖c(k)
k ‖2; uk = u(k)

k /‖c(k)
k ‖2;

(3) xk+1 = xk + η(k) + ukcT
k ξ (k);

rk+1 = (I − ckcT
k )ξ (k);

Remarks

(1) The above scheme is a Modified Gram–Schmidt variant, given in [207], of
the original scheme in [73].

(2) If we keep H0 fixed, i.e., H0 = I , then the method is not scaling invariant
(the results for ρ Ax = ρb depend on ρ). In [207] a scaling invariant method
is suggested.

(3) Note that in the above implementation we have ‘only’ two matrix vector
products per iteration step. In [207] it is shown that in many cases we
may also expect convergence comparable to GMRES in half the number of
iteration steps.

(4) A different choice for ūk−1 does not change the formulas for v̄k−1 and Ek−1.
For each different choice we can derive schemes similar to the one above.

(5) From (6.13) we have

rk = rk−1 − AHk−1rk−1 − µk−1 Auk−1.

In view of the previous remark we might also make the different choice
ūk−1 = Hk−1rk−1. With this choice, we obtain a variant which is alge-
braically identical to GMRES (for a proof of this see [207]). This GMRES
variant is obtained by the following changes in the previous scheme: Take
H0 = 0 (note that in this case we have that Ek−1rk−1 = rk−1, and hence we
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may skip step (1) of the above algorithm), and set ξ (k) = rk , η(k) = 0. In
step (2) start with u(0)

k = ξ (k).

The result is a different formulation of GMRES in which we can obtain
explicit formulas for the updated preconditioner (i.e., the inverse of A is
approximated increasingly well): The update for Hk is ūkcT

k Ek and the sum
of these updates gives an approximation for A−1.

(6) Also in this GMRES-variant we are still free to select a slightly different
uk . Remember that the leading factor Hk−1 in (6.14) was introduced as
an approximation for the actually desired A−1. With ūk−1 = A−1rk−1, we
would have that rk = Ek−1rk−1 − µk−1rk−1 = 0 for the minimizing µk−1.
We could take other approximations for the inverse (with respect to the
given residual rk−1), e.g., the result vector y obtained by a few steps of
GMRES applied to Ay = rk−1. This leads to the so-called GMRESR family
of nested methods (for details see [207]), see also Section 6.6. A similar
algorithm, named FGMRES, has been derived independently by Saad [166].
In FGMRES the search directions are preconditioned, whereas in GMRESR
the residuals are preconditioned. This gives GMRESR direct control over
the reduction in norm of the residual. As a result GMRESR can be made
robust while FGMRES may suffer from breakdown. A further disadvantage
of the FGMRES formulation is that this method cannot be truncated, or
selectively orthogonalized, as GMRESR can be.

In [14] a generalized conjugate gradient method is proposed, a variant of
which produces in exact arithmetic identical results as the proper variant
of GMRESR, though at higher computational costs and with a classical
Gram–Schmidt orthogonalization process instead of the modified process
in GMRESR.

6.6 GMRESR and GMRES�

In [207] it has been shown that the GMRES method can be effectively combined
(or rather preconditioned) with other iterative schemes. The iteration steps of
GMRES (or GCR) are called outer iteration steps, while the iteration steps
of the preconditioning iterative method are referred to as inner iterations. The
combined method is called GMRES�, where � stands for any given iterative
scheme; in the case of GMRES as the inner iteration method, the combined
scheme is called GMRESR [207].

In exact arithmetic GMRES� is very close to the Generalized Conjugate
Gradient method [14]; GMRES�, however, leads to a more efficient computa-
tional scheme.
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x0 is an initial guess; r0 = b − Ax0;
for i = 0, 1, 2, 3, . . . .

Let z(m) be the approximate solution of Az = ri

obtained after m steps of an iterative method.
c = Az(m) (often available from the iterative method)
for k = 0, . . . , i − 1

α = (ck, c)
c = c − αck

z(m) = z(m) − αuk

end
ci = c/‖c‖2; ui = z(m)/‖c‖2

xi+1 = xi + (ci , ri )ui

ri+1 = ri − (ci , ri )ci

if xi+1 is accurate enough then quit
end

Figure 6.10. The GMRES� algorithm.

The GMRES� algorithm can be described by the computational scheme in
Figure 6.10.

A sufficient condition to avoid breakdown in this method (‖c‖2 = 0) is that
the norm of the residual at the end of an inner iteration is smaller than the right-
hand residual: ‖Az(m) − ri‖2 < ‖ri‖2. This can easily be controlled during the
inner iteration process. If stagnation occurs, i.e. no progress at all is made in the
inner iteration, then van der Vorst and Vuik [207] suggest doing one (or more)
steps of the LSQR method, which guarantees a reduction (but this reduction is
often only small).

When memory space is a limiting factor or when the computational costs
per iteration become too high, we can simply truncate the algorithm (instead
of restarting as in GMRES(m)). If we wish only to retain the last m vectors ci

and ui , the truncation is effected by replacing the for k loop in Figure 6.10 by

for k = max(0, i − m), . . . , i − 1

and of course, we have to adapt the remaining part of the algorithm so that only
the last m vectors are kept in memory.

Exercise 6.12. Modify the algorithm in Figure 6.10 so that we obtain the trun-
cated variant and so that only the last m vectors ui and ci are kept in mem-
ory. Compare this truncated algorithm with GMRES(m) for the examples in
Exercise 6.3.
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The idea behind the nested iteration scheme in GMRESR is that we explore
parts of high-dimensional Krylov subspaces, hopefully localizing the same
approximate solution that full GMRES would find over the entire subspace, but
now at much lower computational costs. The alternatives for the inner iteration
could be either one cycle of GMRES(m), since then we also have locally an
optimal method, or some other iteration scheme, such as Bi-CGSTAB. As has
been shown by van der Vorst [202], there are a number of different situations
where we may expect stagnation or slow convergence for GMRES(m). In such
cases it does not seem wise to use this method.

On the other hand it may also seem questionable whether a method like
Bi-CGSTAB should lead to success in the inner iteration. This method does not
satisfy a useful global minimization property and a large part of its effectiveness
comes from the underlying Bi-CG algorithm, which is based on bi-orthogonality
relations. This means that for each outer iteration the inner iteration process
again has to build a bi-orthogonality relation. It has been shown for the related
Conjugate Gradients method that the orthogonality relations are determined
largely by the distribution of the weights at the lower end of the spectrum
and on the isolated eigenvalues at the upper end of the spectrum [193]. By
the nature of these kinds of Krylov process, the largest eigenvalues and their
corresponding eigenvector components quickly enter the process after each
restart, and hence it may be expected that much of the work is taken up in
rediscovering the same eigenvector components in the error over and over again,
whereas these components may already be so small that a further reduction
in those directions in the outer iteration is a waste of time, since it hardly
contributes to a smaller norm of the residual. This heuristic way of reasoning
may explain in part our rather disappointing experiences with Bi-CGSTAB as
the inner iteration process for GMRES�.

De Sturler and Fokkema [54] propose that the outer search directions are
explicitly prevented from being reinvestigated again in the inner process. This
is done by keeping the Krylov subspace that is built in the inner iteration orthog-
onal with respect to the Krylov basis vectors generated in the outer iteration.
The procedure works as follows.

In the outer iteration process the vectors c0, . . . , ci−1 build an orthogo-
nal basis for the Krylov subspace. Let Ci be the n by i matrix with columns
c0, . . . , ci−1. Then the inner iteration process at outer iteration i is carried out
with the operator Ai instead of A, and Ai is defined as

Ai = (I − Ci C
T
i )A. (6.20)

It is easily verified that Ai z ⊥ c0, . . . , ci−1 for all z, so that the inner iteration
process takes place in a subspace orthogonal to these vectors. The additional
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costs, per iteration of the inner iteration process, are i inner products and i
vector updates. In order to save on these costs, it is not necessary to orthog-
onalize with respect to all previous c-vectors, and ‘less effective’ directions
may be dropped, or combined with others. De Sturler and Fokkema [54] make
suggestions for such strategies. Of course, these strategies are appropriate in
those cases where we see too little residual reducing effect in the inner iteration
process in comparison with the outer iterations of GMRES�.



7
Bi-Conjugate Gradients

7.1 Derivation of the method

For the computation of an approximation xi for the solution x of Ax = b, xi ∈
Ki (A, r0), x0 = 0, with unsymmetric A, we can start again from the Lanczos
relations (similarly to the symmetric case, cf. Chapter 5):

AVi = Vi+1Ti+1,i , (7.1)

but here we use the matrix Wi = [w1, w2, . . . , wi ] for the projection of the
system

W T
i (b − Axi ) = 0,

or

W T
i AVi y − W T

i b = 0.

Using (7.1), we find that yi satisfies

Ti,i y = ‖r0‖2e1,

and xi = Vi y. The resulting method is known as the Bi-Lanczos method [130].

We have assumed that di 	= 0, that is wT
i vi 	= 0. The generation of the bi-

orthogonal basis breaks down if for some i the value of wT
i vi = 0, this is

referred to in literature as a serious breakdown. Likewise, when wT
i vi ≈ 0, we

have a near-breakdown. The way to get around this difficulty is the so-called
look-ahead strategy, which takes a number of successive basis vectors for the

95
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Krylov subspace together and makes them blockwise bi-orthogonal. This has
been worked out in detail in [156, 89, 90, 91].

Another way to avoid breakdown is to restart as soon as a diagonal element
becomes small. Of course, this strategy looks surprisingly simple, but it should
be realised that at a restart the Krylov subspace, which has been built up so
far, is thrown away, and this destroys the possibility of faster (i.e., superlinear)
convergence.

We can try to construct an LU-decomposition, without pivoting, of Ti,i . If this
decomposition exists, then, similarly to CG, it can be updated from iteration
to iteration and this leads to a recursive update of the solution vector, which
avoids saving all intermediate r and w vectors. This variant of Bi-Lanczos is
usually called Bi-Conjugate Gradients, or Bi-CG for short [83]. In Bi-CG, the
di are chosen such that vi = ri−1, similarly to CG.

Of course we cannot in general be certain that an LU decomposition (without
pivoting) of the tridiagonal matrix Ti,i exists, and this may also lead to a break-
down (a breakdown of the second kind) of the Bi-CG algorithm. Note that this
breakdown can be avoided in the Bi-Lanczos formulation of the iterative solu-
tion scheme, e.g., by making an LU-decomposition with 2 by 2 block diagonal
elements [17]. It is also avoided in the QMR approach (see Section 7.3).

Note that for symmetric matrices Bi-Lanczos generates the same solution as
Lanczos, provided that w1 = r0, and under the same condition Bi-CG de-
livers the same iterands as CG for positive definite matrices. However, the
bi-orthogonal variants do so at the cost of two matrix vector operations per
iteration step. For a computational scheme for Bi-CG, without provisions for
breakdown, see Figure 7.1.

The scheme in Figure 7.1 may be used for a computer implementation of the
Bi-CG method. In the scheme the equation Ax = b is solved with a suitable
preconditioner K .

As with conjugate gradients, the coefficients α j and β j , j = 0, . . . , i − 1 build
the matrix Ti , as given in formula (5.10). This matrix is, for Bi-CG, not generally
similar to a symmetric matrix. Its eigenvalues can be viewed as Petrov–Galerkin
approximations, with respect to the spaces {r̃ j } and {r j }, of eigenvalues of A.
For increasing values of i they tend to converge to eigenvalues of A. The
convergence patterns, however, may be much more complicated and irregular
than in the symmetric case.
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x0 is an initial guess, r0 = b − Ax0

Choose r̃0, for example r̃0 = r0

for i = 1, 2, ....

Solve Kwi−1 = ri−1

Solve K T w̃i−1 = r̃i−1

ρi−1 = w̃T
i−1wi−1

if ρi−1 = 0 method fails
if i = 1

pi = wi−1

p̃i = w̃i−1

else
βi−1 = ρi−1/ρi−2

pi = wi−1 + βi−1 pi−1

p̃i = w̃i−1 + βi−1 p̃i−1

endif
zi = Api

z̃i = AT p̃i

αi = ρi−1/ p̃T
i zi )

xi = xi−1 + αi pi

ri = ri−1 − αi zi

r̃i = r̃i−1 − αi z̃i

if xi is accurate enough then quit
end

Figure 7.1. Bi-CG algorithm.

7.2 Another derivation of Bi-CG

An alternative way to derive Bi-CG comes from considering the following
symmetric linear system:

(
0 A

AT 0

)(
x̂

x

)
=
(

b

b̂

)
, or Bx̃ = b̃,

for some suitable vector b̂.
If we select b̂ = 0 and apply the CG-scheme to this system, then again

we obtain LSQR. However, if we select b̂ 	= 0 and apply the CG scheme
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with the preconditioner (
0 I

I 0

)
,

in the way shown in Section 5.2, then we immediately obtain the unprecondi-
tioned Bi-CG scheme for the system Ax = b. Note that the CG-scheme can be
applied since K −1 B is symmetric (but not positive definite) with respect to the
bilinear form

[p, q] ≡ (p, K q),

which is not a proper inner product. Hence, this formulation clearly reveals the
two principal weaknesses of Bi-CG (i.e., the causes for breakdown situations).
Note that if we restrict ourselves to vectors

p =
(

p1

p1

)
,

then [p, q] defines a proper inner product. This situation arises for the Krylov
subspace that is created for B and b̃ if A = AT and b̂ = b. If, in addition, A is
positive definite then K −1 B is positive definite symmetric with respect to the
generated Krylov subspace, and we obtain the CG-scheme (as expected). More
generally, the choice

K =
(

0 K1

K T
1 0

)
,

where K1 is a suitable preconditioner for A, leads to the preconditioned version
of the Bi-CG scheme, as given in Figure 7.1.

The above presentation of Bi-CG was inspired by a closely related presentation
of Bi-CG in [119]. The latter paper gives a rather untractable reference for the
choice of the system Bx̃ = b̃ and the preconditioner(

0 I

I 0

)
to [120].

7.3 QMR

The QMR method [91] relates to Bi-CG similarly to the way in which MINRES
relates to CG. We start with the recurrence relations for the v j :

AVi = Vi+1Ti+1,i .
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We would like to identify the xi , with xi ∈ K i (A; r0), or xi = Vi y, for which

‖b − Axi‖2 = ‖b − AVi y‖2 = ‖b − Vi+1Ti+1,i y‖2

is minimal, but the problem is that Vi+1 is not orthogonal. However, we pretend
that the columns of Vi+1 are orthogonal. Then

‖b − Axi‖2 = ‖Vi+1(‖r0‖2e1 − Ti+1,i y)‖2 = ‖(‖r0‖2e1 − Ti+1,i y)‖2,

and in [91] solving the projected miniminum norm least squares problem
‖(‖r0‖2e1 − Ti+1,i y)‖2 is suggested. The minimum value of this norm is called
the quasi residual and will be denoted by ‖r Q

i ‖2.
Since, in general, the columns of Vi+1 are not orthogonal, the computed

xi = Vi y does not solve the minimum residual problem, and therefore this
approach is referred to as a quasi-minimum residual approach called QMR [91].
It can be shown that the norm of the residual r QM R

i of QMR can be bounded in
terms of the quasi residual

‖r QM R
i ‖2 ≤ √

i + 1 ‖r Q
i ‖2.

The above sketched approach leads to the simplest form of the QMR method. A
more general form arises if the least squares problem is replaced by a weighted
least squares problem [91]. No strategies are yet known for optimal weights.

In [91] the QMR method is carried out on top of a look-ahead variant of the
bi-orthogonal Lanczos method, which makes the method more robust. Experi-
ments indicate that although QMR has a much smoother convergence behaviour
than Bi-CG, it is not essentially faster than Bi-CG. This is confirmed explicitly
by the following relation for the Bi-CG residual r B

k and the quasi residual r Q
k

(in exact arithmetic):

‖r B
k ‖2 = ‖r Q

k ‖2√
1 − (‖r Q

k ‖2/‖r Q
k−1‖2)2

, (7.2)

see [49, Theorem 4.1]. This relation, which is similar to the relation for GMRES
and FOM, shows that when QMR gives a significant reduction at step k, then
Bi-CG and QMR have arrived at residuals of about the same norm (provided,
of course, that the same set of starting vectors has been used).

It is tempting to compare QMR with GMRES, but this is difficult. GMRES
really minimizes the 2-norm of the residual, but at the cost of increasing the
work of keeping all residuals orthogonal and increasing demands for memory
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space. QMR does not minimize this norm, but often it has a convergence com-
parable to GMRES, at a cost of twice the amount of matrix vector products per
iteration step. However, the generation of the basis vectors in QMR is relatively
cheap and the memory requirements are limited and modest. The relation (7.2)
expresses that at a significant local error reduction of QMR, Bi-CG and QMR
have arrived almost at the same residual vector (similarly to GMRES and FOM).
However, QMR is preferred to Bi-CG in all cases because of its much smoother
convergence behaviour, and also because QMR removes one breakdown condi-
tion (even when implemented without look-ahead). Several variants of QMR,
or rather Bi-CG, have been proposed that increase the effectiveness of this class
of methods in certain circumstances [85]. See Section 7.5 for a variant that is
suitable for complex symmetric systems. In Figure 7.2 we present the simplest
form of QMR, that is without look-ahead [20], for the solution of Ax = b, for
real A and with preconditioner M = M1 M2.

Zhou and Walker [226] have shown that the QMR approach can also be
followed for other methods, such as CGS and Bi-CGSTAB. The main idea is
that in these methods the approximate solution is updated as

xi+1 = xi + αi pi ,

and the corresponding residual is updated as

ri+1 = ri − αi Api .

This means that APi = Wi Ri+1, with Wi a lower bidiagonal matrix. The xi

are combinations of the pi , so that we can try to find the combination Pi yi for
which ‖b − APi yi‖2 is minimal. If we insert the expression for APi , and ignore
the fact that the ri are not orthogonal, then we can minimize the norm of the
residual in a quasi-minimum least squares sense, similarly to QMR.

Exercise 7.1. The methods Bi-CG and QMR are suitable for general unsym-
metric nonsingular linear systems. Construct test cases with known spectra.
How is working avoided with dense matrices? Try to get an impression of sys-
tems for which Bi-CG and QMR work well. Is it possible to create linear systems
for which Bi-CG nearly breaks down at step i? Hint: compute the Ritz values
at step i and consider a shift for the matrix of the system.

Exercise 7.2. In the methods Bi-CG and QMR, the iteration coefficients build
a tridiagonal matrix T . Bi-CG is based on the i by i part, QMR works with the
i + 1 by i part. The difference is thus only in one element. Could that explain
effects in the convergence behaviour of both methods? Have the eigenvalues of
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x0 is an initial guess, r0 = b − Ax0, ṽ = r0

Choose w̃, for example w̃ = r0

Solve M1 y = ṽ, ρ1 = ‖y‖2, solve MT
2 z = w̃, ξ1 = ‖z‖2

for i = 1, 2, ....

if ρi = 0 or ξi = 0 method fails
vi = ṽ/ρi , y = y/ρi , wi = w̃/ξi , z = z/ξi

δi = zT y; if δi = 0 method fails
Solve M2 ỹ = y, solve MT

1 z̃ = z
if i = 1

p1 = ỹ, q1 = z̃
else

pi = ỹ − (ξiδi/εi−1)pi−1

qi = z̃ − (ρiδi/εi−1)qi−1

endif
p̃ = Api

εi = qT
i p̃, if εi = 0 method fails

βi = εi/δi , ṽ = p̃ − βivi

Solve M1 y = ṽ, ρi+1 = ‖y‖2

w̃ = AT qi − βiwi

Solve MT
2 z = w̃, ξi+1 = ‖z‖2

θi = ρi+1/(γi−1|βi |), γi = 1/
√

1 + θ 2
i , if γi = 0 method fails

ηi = ηi−1ρiγ
2
i /(βiγ

2
i−1)

if i = 1
d1 = η1 p1, s1 = η1 p̃

else
di = ηi pi + (θi−1γi )

2di−1

si = ηi p̃ + (θi−1γi )
2si−1

endif
xi = xi−1 + di , ri = ri−1 − si

if xi is accurate enough then quit
end

Figure 7.2. QMR without look-ahead and preconditioner M = M1 M2.

Ti,i any relation with those of the system matrix? Is there an explanation for
such a relation?

In Sections 6.1.2 and 6.6 we have seen variants of GMRES, namely FGMRES
and GMRESR that permit variable preconditioning. Such variable precondition-
ing may be advantageous in situations where the preconditioning is different
because of parallel processing or when the preconditioning operator is defined
with, for instance, a sweep of multigrid with iterative smoothing. In all these
variable preconditioning methods we need to store two different complete bases,
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and the question is whether flexible variants of short-term recurrence methods
exist. Unfortunately, this is not the case, because the global (bi-)orthogonality
requires fixed operators. The so-called Flexible QMR (FQMR) method [185]
seems to contradict that statement. However, as is shown in [185, Theorem 2.2]
there is only a very local bi-orthogonality between the two sets of bases in
FQMR. That is, under some restrictive assumptions, it can be proved that
vT

i wi−1 = 0 and wT
i vi−1 = 0. One of the assumptions is that the precondi-

tioner Ki is the same for A and AT in the i-th iteration step. Nevertheless, even
when this assumption is violated, numerical experiments show that FQMR may
converge rather quickly when the preconditioning operation is carried out by
a preconditioned QMR process again. It is not quite clear yet under what cir-
cumstances it can be advantageous to use FGMRES. In [185] the argument
of higher eventual accuracy of the approximated solution is given, based upon
experimental observations. However, it might be that the differences in accu-
racy between QMR and FQMR in these experiments stem from the updating
procedure and it may be that they disappear when using reliable updating, see
Section 8.1.

7.4 CGS

For the derivation of the CGS method we exploit the fact that the vectors
belong to some Krylov subspace and, in particular, we write these vectors in
polynomial form. Our derivation is based on the Bi-CG algorithm. Note that the
bi-conjugate gradient residual vector can be written as r j (= ρ jv j ) = Pj (A)r0,
and, similarly, the so-called shadow residual r̃ j (= ρ jw j ) can be written as
r̃ j = Pj (AT )r̂0. Because of the bi-orthogonality relation we have that

(r j , r̃i ) = (Pj (A)r0, Pi (AT )r̃0)

= (Pi (A)Pj (A)r0, r̃0) = 0,

for i < j . The iteration parameters for bi-conjugate gradients are computed
from similar inner products. Sonneveld [180] observed that we can also con-
struct the vectors r̂ j = P2

j (A)r0, using only the latter form of the inner product
for recovering the bi-conjugate gradients parameters (which implicitly define
the polynomial Pj ). By doing so, the computation of the vectors r̃ j can be
avoided and so can the multiplication by the matrix AT .

We will make this more precise. In Bi-CG (Figure 7.1) we concentrated on
the recursions that are necessary to compute the new residual vector ri (for
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simplicity we consider the unpreconditioned algorithm: K = I ):

pi = ri−1 + βi−1 pi−1

ri = ri−1 − αi Api .

Now we express these vectors explicitly as members of the Krylov subspace,
by using the polynomial expressions

ri = Pi (A)r0 and pi = Qi−1(A)r0. (7.3)

In these expressions the index denotes the degree of the polynomials involved.

Exercise 7.3. Show that the vectors ri and pi can be expressed as in (7.3).

The recursion for ri leads to the following recursion for the polynomials:

Pi (A) = Pi−1(A) − αi AQi−1(A), (7.4)

and from the recursion for pi we obtain

Qi−1(A) = Pi−1(A) + βi−1 Qi−2(A). (7.5)

We are interested in the computation of the vector r̂i = Pi (A)2r0, and therefore
we square the expression in (7.4):

Pi (A)2 = Pi−1(A)2 + α2
i A2 Qi−1(A)2 − 2αi APi−1(A)Qi−1(A). (7.6)

In order to make this a computable recursion, we also need expressions for
Qi−1(A)2 and for Pi−1(A)Qi−1(A). Squaring (7.5) leads to

Qi−1(A)2 = Pi−1(A)2 + βi−1 Qi−2(A)2 + 2βi−1 Pi−1(A)Qi−2(A). (7.7)

The expression for Pi−1(A)Qi−1(A) is obtained by multiplying (7.5) with
Pi−1(A):

Pi−1(A)Qi−1(A) = Pi−1(A)2 + βi−1 Pi−1(A)Qi−2(A). (7.8)

We need (7.7) and (7.8) for Pi−1(A)Qi−2(A), and this is obtained from the
multiplication of the expression in (7.4) by Qi−2(A):

Pi−1(A)Qi−2(A) = Pi−2(A)Qi−2(A) − αi−1 AQi−2(A)2. (7.9)
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In the actual computations, all of these polynomial expressions have to operate
on r0. This leads to a set of vector recursions for the vectors

ri ≡ Pi (A)2r0

pi ≡ Qi−1(A)2r0

ui ≡ Pi−1(A)Qi−1(A)

qi ≡ Pi (A)Qi−1(A).

Exercise 7.4. Show that the above relations lead to the algorithm given in
Figure 7.3.

x0 is an initial guess, r0 = b − Ax0

r̃ is an arbitrary vector, such that
r̃ T r0 	= 0,
e.g., r̃ = r0

for i = 1, 2, ....

ρi−1 = r̃ T r0

if ρi−1 = 0 method fails
if i = 1

u1 = r0

p1 = u1

else
βi−1 = ρi−1/ρi−2

ui = ri−1 + βi−1qi−1

pi = ui + βi−1(qi−1 + βi−1 pi−1)

endif
solve p̂ from K p̂ = pi

v̂ = A p̂
αi = ρi−1

r̃ T v̂

qi = ui − αi v̂

solve û from K û = ui + qi

xi = xi−1 + αi û
ri = ri−1 − αi Aû
check convergence; continue if necessary

end

Figure 7.3. CGS algorithm.
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In Bi-CG, the coefficient βi−1 is computed from the ratio of two successive
values of ρ. We now have that

ρi−1 = r̃ T
i−1ri−1

= (Pi−1(AT )r̃0)
T Pi−1(A)r0

= r̃ T
0 Pi−1(A)2r0

= r̃ T
0 ri−1, (7.10)

which shows that the Bi-CG recursion coefficient can be recovered without
forming the shadow residuals r̃ j as in Bi-CG.

Exercise 7.5. Show that αi can also be computed from the above defined vec-
tors, that is, without forming the Bi-CG shadow residuals.

In the CGS algorithm we have avoided working with AT , which may be an
advantage in some situations. However, the main attraction is that we are able
to generate residuals for which

ri = Pi (A)2r0.

Note that it is easy to find the update formula for xi .

Exercise 7.6. Compare the computational costs for one iteration of Bi-CG with
the costs for one iteration of CGS.

In order to see the possible advantage of CGS, we have to realize that the operator
Pi (A) transforms the starting residual r0 into a much smaller residual ri =
Pi (A)r0, if Bi-CG converges well. We might hope that applying the operator
once again gives another reduction in the residual. Indeed, the resulting CGS
[180] method generally works very well for many unsymmetric linear problems.
It often converges much faster than BI-CG (about twice as fast in some cases,
because of the squaring effect of the operator Pi (A)). The surprising observation
is that we obtain this faster convergence for about the same amount of work per
iteration as in Bi-CG. Bi-CG and CGS have the advantage that fewer vectors
are stored than in GMRES. These three methods have been compared in many
studies (see, e.g., [160, 34, 158, 146]).

CGS, however, usually shows a very irregular convergence behaviour. This
behaviour can even lead to cancellation and a ‘spoiled’ solution [201]; see also
Chapter 8. Freund [87] suggested a squared variant of QMR, which was called
TFQMR. His experiments showed that TFQMR is not necessarily faster than
CGS, but it certainly has a much smoother convergence behaviour.
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The scheme in Figure 7.3 represents the CGS process for the solution of Ax = b,
with a given preconditioner K .

In exact arithmetic, the α j and β j are the same constants as those gener-
ated by Bi-CG. Therefore, they can be used to compute the Petrov–Galerkin
approximations for eigenvalues of A.

Exercise 7.7. Construct real unsymmetric systems with known eigenvalues.
Test CGS and Bi-CG for problems where all eigenvalues have positive real
part (and zero or small imaginary parts). Compare the convergence plots. Do
the same for spectra with larger imaginary parts and for indefinite problems.

Exercise 7.8. Compare CGS and GMRES for some test problems. CGS may be
faster than GMRES in terms of iterations, but can it be faster in terms of matrix
vector products? Can CGS be faster in terms of CPU-time? In what sorts of
situation?

7.4.1 Numerical illustrations

We have seen that CGS generates residuals r j that can be expressed as r j =
p j (A)2r0, where p j (A) describes the contraction for Bi-CG. We see this effect
most easily for situations where the eigenvalues are distributed uniformly over
some interval. As an example, we take a diagonal matrix A of order 200 with
diagonal elements uniformly distributed over [1, 1000]. We take the right-hand
side b so that the solution x of Ax = b has elements that all are 1 (which makes
it easy to check the solution). In Figure 7.4 we have plotted the residuals for
Bi-CG and CGS, and we see the squaring effect.

Of course, the squaring effect of CGS may also have unwanted effects, that is, it
magnifies local peaks in the convergence history of Bi-CG. This is what we see
when we repeat the example for A1 = A − 50I . The matrix A1 is now indefinite
and that leads to slow convergence of Krylov subspace methods (remember that
one wants the iteration polynomial p j to be small in all eigenvalues, but at the
same time p j (0) = 1). We see the convergence history in Figure 7.5.

Indeed, we see the sharper, and relatively higher, peaks for CGS in compar-
ison with Bi-CG, and in fact we do not see much advantage for CGS in this
case. However, if we inspect the process in more detail, then there may be ad-
vantages. As an example, we again consider the matrix A1, but now we replace
the largest diagonal element by 1050. Because the first n − 1 eigenvalues are
now in the interval [−49, 950], the n-th one is relatively well separated. Hence,
we may expect that the eigenvector component of the residual corresponding
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Figure 7.4. Bi-CG (–) and CGS (- -) for a system with uniformly distributed eigenvalues.

to this isolated eigenvalue is discovered relatively early in the iteration process
by Lanczos-based methods. In Figure 7.6 we have plotted the absolute values
of the n-th component of the residual vectors for Bi-CG and CGS. Indeed, we
see that CGS returns a residual with increased accuracy for the last component
(and hence a much better error in the approximated solution in this case).

In Figure 7.7 we have plotted the history for the 5-th component of the
residual and now we see that CGS gives no advantage over Bi-CG (as was to
be expected from the convergence history displayed in Figure 7.5.

We believe that the squaring effect in components of the residual is respon-
sible for the observation that CGS often does remarkably well as an iterative
process for the computation of the correction in a Newton iteration process for
nonlinear systems (cf. [84, p.125].

7.5 Complex symmetric systems

In some applications the system matrix A is complex symmetric and not
Hermitian. This occurs, for instance, in the modelling of electric currents in
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Figure 7.5. Bi-CG (–) and CGS (- -) for an indefinite system.

magnetic fields. The symmetry cannot be exploited in the standard way, that
is with CG, MINRES, or SYMMLQ, in order to obtain short-term recurrence
relations. However, three-term recurrence relations for a basis for the Krylov
subspace can be derived by replacing the inner product for complex vectors v

and w:

vHw =
n∑

i=1

v̄iwi ,

by the bilinear form:

vT w =
n∑

i=1

viwi . (7.11)

Exercise 7.9. Show that (7.11) does not define a proper inner product over C
n.

In particular, determine a vector v 	= 0 for which vT v = 0.

Note that (7.11) represents the standard complex inner product for vectors v̄

and w. This can be used to show that a complex symmetric matrix (A = AT )
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Figure 7.6. The n-th residual component Bi-CG (–) and CGS (- -) for an indefinite
system with a well-separated eigenvalue.

is symmetric with respect to the bilinear form:

vT Aw = v̄H Aw = ĀT v̄
H
w = ( Āv)

H
w = (Av)T w.

We can now generate a basis for the Krylov subspace with a three term recur-
rence relation, just as we have done for the Conjugate Gradient method, by
using the bilinear form (7.11) [204, 85]. If this process does not break down
within m steps, then it generates a basis v1, v2, . . . , vm that is not orthogonal,
but satisfies the conjugate orthogonality relations

v̄H
i v j = 0 for i 	= j.

If we collect these vectors v j in a matrix Vm , then we have the situation that
Vm is, with the standard complex inner product, orthogonal with respect to V̄m .
For this reason, the resulting method belongs to the class of Petrov–Galerkin
methods, and in [204] the method has been named the Conjugate Orthogonal
Conjugate Gradient method: COCG, for short.
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Figure 7.7. The 5-th residual component Bi-CG (–) and CGS (- -) for an indefinite
system with a well-separated eigenvalue.

The method can be described by the algorithm given in Figure 7.8. In that
algorithm we have included a preconditioner K , that also has to be (complex)
symmetric.

Note that the only essential change with respect to the Conjugate Gradient
method (cf. Figure 5.2) is the replacement of the standard complex inner product
by the bilinear form (7.11). In this scheme for COCG we have assumed that
no pivoting was necessary for the implicitly generated tridiagonal matrix Tm .
Singularity of Tm can be tested by checking whether an intermediate pT

i qi = 0.
Likewise, when this quantity is very small with respect to ‖pi‖2‖Aqi‖2, we
may expect stability problems. Of course, we may also encounter a breakdown
condition as that in Bi-CG, since we cannot be certain that r T

i ri is very small
with respect to ‖ri‖2

2.

The pivoting problem could be circumvented by a QR decomposition of T ,
as in MINRES or SYMMLQ [85]. The other breakdown condition could be
circumvented by a look-ahead strategy as has been suggested for Bi-CG. An
easier, although possibly less efficient, fix would be to restart or to proceed with
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x0 is an initial guess, r0 = b − Ax0

for i = 1, 2, ....

Solve Kwi−1 = ri−1

ρi−1 = r T
i−1wi−1

if i = 1
pi = wi−1

else
βi−1 = ρi−1/ρi−2

pi = wi−1 + βi−1 pi−1

endif
qi = Api

αi = ρi−1/pT
i qi

xi = xi−1 + αi pi

ri = ri−1 − αi qi

if xi accurate enough then quit
end

Figure 7.8. COCG with preconditioning K.

another Krylov subspace method, thereby giving up the possible savings due
to the complex symmetry.

Freund [85] has proposed using the QR decomposition for Tm , similar to
MINRES and SYMMLQ, and solving the reduced system with the quasi-
minimum residual approach as in QMR, see Section 7.3. His variant is based
on Lanczos and generates, after k iterations, a symmetric tridiagonal matrix

Tk+1,k =



α1 β2 0 · · · 0

β2 α2 β3
. . .

...

0 β3
. . .

. . . 0
...

. . .
. . .

. . . βk

0 · · · 0 βk αk

0 · · · · · · 0 βk+1


.

This matrix is rotated by successive Givens rotations[
c j s̄ j

−s j c j

]
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x0 ∈ C
n is an initial guess, ṽ = b − Ax0

v0 = p0 = p−1 = 0

β1 = (ṽT ṽ)
1/2

, τ̄1 = β1, c0 = c−1 = 1,
s0 = s−1 = 0
for i = 1, 2, . . . .

if βi = 0 STOP: xi−1 solves Ax = b
else vi = ṽ/βi , αi = vT

i Avi

endif
ṽ = Avi − αivi − βivi−1, βi+1 = (ṽT ṽ)

1/2

θi = s̄i−2βi , ηi = ci−1ci−2βi + s̄i−1αi

µ = ci−1αi − si−1ci−2βi , |ζi | = (|µ|2 + |βi+1|2)1/2

if µ = 0
ζi = |ζi |

else ζi = |ζi |µ/|µ|
endif
ci = µ/ζi , si = βi+1/ζi

pi = (vi − ηi pi−1 − θi pi−2)/ζi

τi = ci τ̄i , τ̄i+1 = −si τ̄i

xi = xi−1 + τi pi

if xi is accurate enough then quit
end

Figure 7.9. QMR-SYM for complex symmetric systems.

to upper triangular form Rk+1,k :

Rk+1,k =



ζ1 η2 θ3 0 · · · 0

0 ζ2 η3
. . .

. . .
...

0
. . . ζ3

. . .
. . . 0

...
. . .

. . .
. . . θk

...
. . .

. . . ηk

0 · · · · · · · · · 0 ζk

0 · · · · · · · · · · · · 0


.

We recognize all these elements in the algorithm QMR-SYM [85], given in
Figure 7.9. Although this algorithm is more complicated than COCG, given
before, we have included it, because it avoids one of the possible breakdowns
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of COCG. This algorithm might be made even more robust by adding look-
ahead strategies, but it may be as efficient to restart at the iteration just be-
fore breakdown, because this event is rather rare. Note that we have given
the algorithm with weights ω j = 1. For a weighted minimization variant see
[85, Algorithm 3.2].

We have seen that these variants of Bi-CG for complex symmetric systems
can be derived from either Conjugate Gradients or the Lanczos procedure by
using the bilinear form vT w instead of the proper inner product vHw over
complex vector spaces. The question may arise – how safe is it to work with
a ‘wrong’ inner product? Freund gives an elegant argument for the useful-
ness of QMR-SYM [85, p.428]: any complex n by n matrix is similar to a
complex symmetric matrix. This result implies that the general nonsymmetric
Lanczos method differs from the complex symmetric one only in an additional
starting vector r̃0, which can be chosen independently from r0. In [85] numer-
ical experiments are reported in which QMR-SYM compares favourably with
GMRES(m), Bi-CG, and CGS.





8
How serious is irregular convergence?

Bi-CG and methods derived from Bi-CG can display rather irregular conver-
gence behaviour. By irregular convergence I refer to the situation where suc-
cessive residual vectors in the iterative process differ in orders of magnitude in
norm, and some of these residuals may even be much bigger in norm than the
starting residual. In particular the CGS method suffers from this phenomenon.
I will show why this is a point of concern, even if eventually the (updated)
residual satisfies a given tolerance.

In the Bi-CG algorithms, as well as in CG, we typically see in the algorithm
a statement for the update of xi , such as

xi+1 = xi + wi (8.1)

and a statement for the update of ri , of the form

ri+1 = ri − Awi . (8.2)

We see that, in exact arithmetic, the relation ri+1 = b − Axi+1 holds, just as
expected. A further inspection of these algorithms reveals that xi is not used
at other places in the basic algorithm, whereas the ri is also used for the com-
putation of the search direction and for iteration parameters. The important
consequence of this is that rounding errors introduced by the actual evalua-
tion of ri+1 using equation (8.2) will influence the further iteration process, but
rounding errors in the evaluation of xi+1 by (8.1) will have no effect on the
iteration. This would not be much of a problem if the rounding error

δri+1 ≡ f l(ri − Awi ) − (ri − Awi )

would match the rounding error

δxi+1 ≡ f l(xi + wi ) − (xi + wi ),

115
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in the sense that δri+1 = −Aδxi+1, since that would keep the desired relation
ri+1 = b − Axi+1 intact. However, it will be obvious that this is unrealistic, and
the question remains – how serious can a possible deviation between r j and
b − Ax j be?

Of course, we make rounding errors in (8.1) and (8.2) through the vector
addition, but usually these errors will be small in comparison with the rounding
errors introduced in the multiplication of wi with A. Therefore, we will here
consider only the effect of these errors. In this case, we can write the computed
ri+1 as

ri+1 = r j − Awi − �Aiwi , (8.3)

where �A is an n × n matrix for which |�Ai | � n A ξ |A|: n A is the maximum
number of nonzero matrix entries per row of A, |B| ≡ (|bi j |) if B = (bi j ), ξ is
the relative machine precision, the inequality � refers to element-wise ≤.

It then simply follows that

rk − (b − Axk) =
k∑

j=1

�A jw j =
k∑

j=1

�A j (e j−1 − e j ), (8.4)

e j is the approximation error in the j-th approximation: e j ≡ x − x j . Hence,

|‖rk‖ − ‖b − Axk‖| ≤ 2k n A ξ ‖|A|‖ max
j

‖e j‖

≤ 2k n A ξ ‖|A|‖ ∥∥A−1
∥∥ max

j
‖r j‖. (8.5)

Except for the factor k, the first upperbound appears to be rather sharp. We
see that an approximation with a large approximation error (and hence a large
residual) may lead to inaccurate results in the remaining iteration process. Such
large local approximation errors are typical for CGS, and van der Vorst [201]
describes an example of the resulting numerical inaccuracy. If there are a num-
ber of approximations with comparable, large approximation errors, then their
multiplicity may replace the factor k, otherwise it will be only the largest ap-
proximation error that makes up virtually all of the bound for the deviation.

For more details we refer to Sleijpen and van der Vorst [176], Sleijpen et al.
[177].

Exercise 8.1. Show that similar update expressions can also be formulated
for Bi-CGSTAB. Is the difference essential for the above discussion on the
influence of rounding errors? Derive an upperbound for the deviation between
‖rk‖2 and ‖b − Axk‖2 for Bi-CGSTAB, again under the assumption that only
the multiplication with A leads to rounding errors.
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8.1 Reliable updating

It is of course important to maintain a reasonable correspondence between rk

and b − Axk , and the easiest way to do this would be to replace the vector rk

by b − Axk . However, the vectors rk steer the entire iterative process and their
relation defines the projected matrix Ti,i . If we replace these vectors then we
ignore the rounding errors to these vectors and it will be clear that the iteration
process cannot compensate for these rounding errors. They may be significant
at iteration steps where the update to r j is relatively large and the above sketched
naive replacement strategy may not then be expected to work well. Indeed, if we
replace ri+1 in CGS by b − Axi , instead of updating it from ri , then we observe
stagnation in the convergence in many important situations. This means that we
have to be more careful.

Neumaier (see references in [176]) suggested replacing r j by b − Ax j in
CGS only at places where ‖r j‖2 is smaller than the smallest norm of the resid-
ual in the previous iteration history and carrying out a groupwise update for the
iterates in between. Schematically, the groupwise update and residual replace-
ment strategy of Neumaier can be described as in Figure 8.1.

This scheme was further analysed and refined, in particular with a flying
restart strategy, in [176]. Note that the errors in the evaluation of w j itself are
not so important: it is the different treatment of w j in the updating of x j and of
r j that causes the two vectors to lose the desired mutual relation. In this respect
we may consider the vectors w j as exact quantities.

Groupwise Solution Update:
z = x0, x̂ = 0, rmin = ‖r0‖2

. . .

for j = 0, 2, . . . , until convergence
. . .

x̂ = x̂ + w j (instead of update of xi )
if ‖r j‖2 < rmin (i.e. group update)

z = z + x̂
x̂ = 0
r j = b − Az
rmin = ‖r j‖2

end if
end

Figure 8.1. Neumaier’s update strategy.
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At a replacement step we perturb the recurrence relation for the basis vectors
of the Krylov subspace and we want these errors to be as small as possible. The
updates w j usually vary widely in norm in various stages of the iteration process,
for instance in an early phase these norms may be larger than ‖r0‖2, whereas
they are small in the final phase of the iteration process. Especially in a phase
between two successive smallest values of ‖r j‖2, the norms of the updates may
be a good deal larger than in the next interval between two smallest residual
norms. Grouping the updates avoids rounding errors within one group spoiling
the result for another group. More specifically, if we denote the sum of w j s for
the groups by Si , and the total sum of updates by S, then groupwise updating
leads to errors of the magnitude of ξ |Si |, which can be much smaller than ξ |S|.

Now we have to determine how much we can perturb the recurrence relations
for the Lanczos vectors r j . This has been studied in much detail in [189]. It
has been observed by many authors that the driving recurrences r j = r j−1 −
α j−1 Aq j−1 and q j = r j + β j−1q j−1 are locally satisfied almost to machine
precision and this is one of the main properties behind the convergence of the
computed residuals [100, 189, 176]. Tong and Ye [189] observed that these
convergences are maintained even when we perturb the recurrence relations
with perturbations that are significantly greater than machine precision, say of
the order of the square root of the machine precision ξ , in a relative sense.

The idea, presented in [208], is to compute an upperbound for the deviation
in r j , with respect to b − Ax j , in finite precision, and to replace r j by b − Ax j

as soon as this upperbound reaches the relative level of
√

ξ . This upperbound
is denoted by d j and it is computed from the recurrence

d j = d j−1 + ξ N‖A‖‖x̂ j‖ + ξ‖r j‖,

with N the maximal number of nonzero entries per row of A.
The replacement strategy for reliable updating is then implemented schemat-

ically as in Figure 8.2.
Remark: For this reliable implementation, we need to put a value for N (the
maximal number of nonzero entries per row of A) and ‖A‖. The number of
nonzero entries may, in applications, vary from row to row, and selecting the
maximum number may not be very realistic. In my experience with sparse
matrices, the simple choice N = 1 still leads to a practical estimate dn for ‖δn‖.
For ‖A‖, I suggest simply taking ‖A‖∞.

In any case, we note that precise values are not essential, because the re-
placement threshold ε can be adjusted. We also need to choose this ε. Extensive
numerical testing (see [208]) suggests that ε ∼ √

ξ is a practical criterion. How-
ever, there are examples where this choice leads to stagnating residuals at some
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Reliable Updating Strategy:
Input: an initial approximation x = x0

a residual replacement threshold ε = √
xi , an estimate of N‖A‖

r0 = b − Ax0 x̂0 = 0, dinit = d0 = ξ(‖r0‖ + N‖A‖‖x0‖),
for j = 1, 2, . . . , until convergence

Generate a correction vector q j by the Iterative Method
x̂ j = x̂ j−1 + q j

r j = r j−1 − Aq j

d j = d j−1 + ξ N‖A‖ ‖x̂ j‖ + ξ‖r j‖
if d j−1 ≤ ε‖r j−1‖, d j > ε‖r j‖ and d j > 1.1dinit

z = z + x̂ j

x̂ j = 0
r j = b − Az
dinit = d j = ξ(‖r j‖ + N‖A‖‖z‖)

end if
end for
z = z + x̂ j

Figure 8.2. Ye–van der Vorst update strategy.

unacceptable level. In such cases, choosing a smaller ε will regain the conver-
gence to O(ξ).

The presented implementation requires one extra matrix-vector multiplica-
tion when a replacement is carried out. Since only a few steps with replacement
are required, this extra cost is marginal relative to the other costs. However,
some savings can be made by selecting a slightly smaller ε and carrying out
residual replacement at the step next to the one for which the residual replace-
ment criterion is satisfied (cf. [176]). It also requires one extra vector storage for
the groupwise solution update (for z) and computation of a vector norm ‖x̂n‖
for the update of dn (‖rn‖ is usually computed in the algorithm for stopping
criteria).

8.2 Rounding errors and discretization errors

When a linear system Ax = b is solved in rounded finite precison floating
point arithmetic, then the obtained solution x̂ is most likely contaminated by
rounding errors. In the absence of precise information about these errors, we
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have to work with bounds for their effects. A well-known rigorous bound for
the relative error in the solution of the perturbed linear system

(A + δA)y = b + δb

is given by [98, Chapter 2.7.3]:

‖y − x‖
‖x‖ ≤ 2ε

1 − r
κ(A), (8.6)

under the conditions that

‖δA‖ ≤ ε‖A‖, ‖δb‖ ≤ ε‖b‖, εκ(A) = r < 1,

and κ(A) denotes the condition number of A:

κ(A) ≡ ‖A−1‖ ‖A‖.

The upperbound is quite realistic in the sense that there exist perturbations that
lead to errors that are quite close to the upperbound.

However, this does not imply that we may expect the multiplying effect
of the condition number for perturbations that have a specific structure, such
as discretization errors. In particular, if Ax = b comes from a standard finite
difference or finite element discretization of an elliptic partial differential equa-
tion, then a common situation is that the exact solution x̄ of the PDE, restricted
to the gridpoints, satisfies

Ax̄ = b + τ,

with τi = O(h2).
In such situations, the solution x of Ax = b typically satisfies

‖x − x̄‖ = O(h2).

See, for instance, [112, Chapter 4.5] or [159, Chapter 6.2.1] for more detailed
information on this.

This means that a structured error in b may have a very well-understood effect
on the solution, in contrast to unstructured errors. When the discretized system
Ax = b is represented by machine numbers, then we introduce an additional
relative error in the solution that is bounded by (8.6), with ε replaced by the
relative machine precision ξ .

A major source of errors in the actually computed solution is in the al-
gorithm by which the solution is generated. Gaussian elimination may lead
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to large additional errors, even with partial pivoting [98, Chapter 3.3.2]. The
errors introduced by the elimination process can be largely removed by itera-
tive refinement, under the condition that the residual b − Ax̂ can be computed
with some significant digits [98, Chapter 3.5.3]. It is tempting to believe that
this is automatically the case in iterative solution methods, but this is only the
case if the residual is computed explicitly, at least from time to time, as in the
reliable updating technique. In particular, for an explicitly computed residual
ri = b − Axi , we have with (8.6) that

‖xi − x‖
‖x‖ ≤ 2

1 − r
κ(A)

‖ri‖
‖b‖ ,

under the condition that κ(A) ‖ri ‖
‖b‖ = r < 1.

8.3 Effects of rounding errors to Krylov processes

In this section we will study the possible effects of inexact computations on
Krylov subspace methods. We have seen how the effects of large updates (or
better still large residual vector corrections) can be reduced by appropriate
update techniques. Now we will focus on other parts of the algorithms.

Essentially, the Krylov subspace methods are composed with the following
ingredients

(a) The construction of a (bi-)orthogonal basis,
(b) The solution of a small reduced linear system,
(c) The construction of an approximate solution as a combination of the basis

vectors.

Each of these three elements is a source for rounding errors and the fact that these
elements are usually mixed in efficient implementations makes the analysis
complicated. As a result, rigid upperbounds for actual methods are usually
pessimistic and do not describe the actually observed behaviour well. For an
example of state of the art work with respect to GMRES, see [64].

We will follow a slightly different approach in order to gain more insight into
the main sources of rounding errors. We will restrict ourselves to symmetric
matrices. In that case, a basis for the Krylov subspace is generated by the
Lanczos method. This remarkable three-term recurrence relation does many
things simultaneously: it provides a reduced system that can be used to generate
an approximate solution and it contains useful spectral information on the matrix
A. Even more remarkable is its behaviour with respect to rounding errors. In
finite arithmetic the iteration coefficients may differ by more than 100% from
those in exact arithmetic, after a number of iteration steps. Nevertheless, the
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reduced system may still lead to accurate approximate solutions and to accurate
spectral information.

In the early 1950s, the Lanczos method was regarded as a method for the
reduction of a square matrix A to tridiagonal form, and after the full n steps
a similarity transformation of A to tridiagonal form was expected, if no early
termination was encountered. In the latter case an invariant subspace would
have been identified, which information is just as useful. It was soon recognized
that rounding errors could change the process dramatically. Engeli et al. [78]
published an example for which the desired spectral information was obtained
only after many more than n iterations. A decade later, Ginsburg [94] made an
algorithmic description of the Conjugate Gradients that was included in the well-
known Handbook of Automatic Computation [223]. As an illustrative example,
Ginsburg also used a discretized bi-harmonic equation for a one-dimensional
beam problem, which led to the 40 by 40 matrix:

A =



5 −4 1

−4 6 −4 1

1 −4 6 −4 1 ∅
1 −4 6 −4 1

· · · · ·
· · · · ·

· · · · ·
· · · · ·
1 −4 6 −4 1

∅ 1 −4 6 −4 1

1 −4 6 −4

1 −4 5



.

Then CG was used to solve the linear system Ax = b, where b is the first unit
vector (of length 40). The convergence history is shown in Figure 8.3. Clearly,
the CG method requires about 90 iterations to obtain a fairly accurate solution,
and the approximate solution after 40 iterations is quite far from what it should
have been in exact computation.

In the same figure, we have also plotted the convergence history for FOM,
where we have solved the reduced system with Givens transformations in order
to have optimal numerical stability. In theory, FOM and CG should produce
the same iterates and we see that this is more or less the case until the 35-th
iteration step. The main difference between FOM and CG is that in FOM we
orthogonalize the new basis vector for the Krylov subspace against all previous
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Figure 8.3. CG (...) and FOM (–).

basis vectors. Apparently, the loss of orthogonality, among the basis vectors
generated with the 3-term recurrence relations, leads to a significant delay of
the convergence. This was not understood in the early 1970s so that it is no
surprise that CG was not very popular around that time. The CG subroutine,
published in [223], was one of the very few that did not make it to the influential
LINPACK and EISPACK software collections. It was only in the late 1990s that
the conjugate gradients method entered Matlab.

8.3.1 The Lanczos recurrence in finite precision

In our attempts to understand the main effects of rounding errors we initially
follow Greenbaum’s analysis [101, Chapter 4]. This analysis starts with the
famous results of Paige [150], published in 1976. Paige gave a rigorous analysis
of the behaviour of the Lanczos algorithm in finite precision. Before we are in a
position to quote an important theorem from [150], we have to introduce some
notations.

Let ξ denote the floating point relative machine precision. With m we denote
the maximum number of nonzero elements per row of the n by n matrix A.
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We repeat the algebraic formulation, in exact arithmetic, of the Lanczos
reduction

AVk = Vk+1Tk+1,k, (8.7)

where Tk+1,k is a k + 1 by k tridiagonal matrix and Vj denotes the n by j matrix
with the orthonormal Lanczos vectors v1, v2, ..., v j as its columns. This relation
can equivalently be expressed as

AVk = Vk Tk + tk+1,kv
T
k+1eT

k ,

where ek denotes the k-th unit vector of length k.
We know that the Lanczos vectors are, in exact arithmetic, generated with

Arnoldi’s algorithm, given in Figure 3.1. The k by k leading part of the reduced
matrix Hk+1,k is symmetric, expressed by the fact that we have replace H by T
in (8.7). When working in finite precision, we have to be more careful in how
we ensure that T is tridiagonal. First, we avoid, of course, the computation of
the elements outside the tridiagonal part. Second, we ensure that the matrix T is
symmetric, by avoiding again computing the lower diagonal elements of T . In
fact, Paige [150] proved his results for the implementation shown in Figure 8.4
of the algorithm in Figure 3.1.

Let v1 be given with vT
1 v1 = 1

u = Av1

for j = 1, 2, ..., k
α j = vT

j u
w = u − αv j

β j = ‖w‖2, if β j = 0 STOP
v j+1 = w/β j

u = Av j+1 − β jv j

end for

Figure 8.4. The Paige-style Lanczos algorithm.

Exercise 8.2. Show that the algorithm in Figure 8.4 leads in exact arithmetic
to the same vectors v j as the algorithm in Figure 3.1. How do the α j and β j

define the matrix Tk+1,k?

This sets the stage for the following results.
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Theorem 8.1. Paige [150]. Let A be an n by n real symmetric matrix with
at most m nonzero elements in any row. If the Lanczos algorithm described
in Figure 8.4 is executed in floating point arithmetic with relative machine
precision ξ , then α j , β j , v j will be computed such that

AVk = Vk Tk + βkvk+1eT
k + δVk (8.8)

with Vk ≡ [v1, ..., vk]

δk ≡ [δv1, ..., δvk]

|vT
j v j − 1| ≤ (n + 4)ξ (8.9)

‖δv j‖2 ≤ ‖A‖2(7 + m‖ |A| ‖2/‖A‖2)ξ. (8.10)

Note that from now on, in this chapter, Vk and Tk will denote the computed
quantities. We will now follow Greenbaum’s way of reasoning and study what
will happen if we use the computed Vk and TK in a straightforward manner. We
will consider two different cases:

(A) The Ritz–Galerkin approach: In this case the approximated solution is
defined as

x R
k = Vk y R

k with y R
k = ‖r0‖2T −1

k,k e1, (8.11)

and we will use this definition for the computation. In fact, this definition
is, in exact arithmetic, equivalent to the CG method, but then the xk is
computed from different formulas.

(B) The Minimum Residual approach: Here the approximated solution is de-
fined by

x M
k = Vk yM

k , (8.12)

where yM
k is defined by

min
y

‖ ‖r0‖2e1 − Tk+1,k y‖2 (= ‖b − Ax M
k ‖2).

In exact arithmetic, these definitions lead to an x M
k that is the same as the

one computed by MINRES, but, again, in MINRES other formulas are
used.

We will now assume that the defining formulas (8.11) and (8.12) hold exactly
for the computed Vk and Tk+1,k .
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Analysis for case (A) The residual for x R
k is:

r R
k = r0 − AVk y R

k

= r0 − (Vk Tk,k + βkvk+1eT
k + δVk)y R

k

= −βkvk+1eT
k y R

k − δVk y R
k (8.13)

= −βk‖r0‖2vk+1eT
k T −1

k,k e1 − δVk y R
k . (8.14)

Note that we have treated y R
k differently in the last expression. The reason is

that in the first term at the right-hand side of (8.14) it is only the last term of
the solution that matters and by using Tk,k this can be nicely exploited. We will
deviate slightly from Greenbaum’s analysis by a different interpretation of the
formulas.

From (8.14) it follows that the norm of ‖r R
k ‖2 can be bounded as

‖r R
k ‖2 ≤ |βk | ‖r0‖2‖vk+1‖2 |eT

k T −1
k,k e1| + ‖δVk‖2 ‖y R

k ‖2. (8.15)

Exercise 8.3. Consider the Lanczos process for the system

Tk+1,k+1 y = e1. (8.16)

Show that j steps of the process, starting with v1 = e1, generate the Lanczos
basis vi = ei , for i = 1, ..., j ≤ k and that the reduced matrix T̃ is given by

T̃j+1, j = T j + 1, j .

Exercise 8.4. Show, with the result of exercise 8.3, that j ≤ k steps with CG for
the system (8.16), with starting vector y0 = 0, lead to an approximate solution
for which the norm of the residual satisfies:

‖r j‖2 = β j |eT
j T −1

j, j e1|. (8.17)

This last exercise shows that the first term in the right-hand side of (8.15) can be
interpreted as ‖r0‖2 times the norm of a residual of a CG process. It remains to
link this CG process with a CG process for A. In exact arithmetic, the Lanczos
algorithm leads to a transformation of A to tridiagonal form (or to a partial
reduction with respect to an invariant subspace):

AVn = VnTn,n.

Paige [151] has shown that in floating point arithmetic a tridiagonal matrix is
generated that has eigenvalues θ j that are in the interval

[min λ(A) − τ1, max λ(A) + τ2], (8.18)
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where τ1, τ2 are mild functions of j times the machine precision ξ . We can
now view the matrix Tk+1,k as a section of a much larger matrix T that satisfies
Paige’s eigenvalue bounds. This means that the residuals βk |eT

k T −1
k,k e1| (see

equation (8.17)) can be bounded as in CG (5.25), which leads to an upperbound
that converges with a factor

√
κ̃ − 1√
κ̃ + 1

,

where κ̃ is the condition number based on the spectrum in (8.18).
This means that the first term in the right-hand side of (8.15) can be bounded

by a function that converges to zero in almost the same way as the usual upper-
bound for the CG residuals for A (note that ‖vk+1‖2 can be bounded essentially
by 1 apart from a very small correction in the order of ξ ). Eventually, the second
term will dominate and this second term can be bounded as (using (8.10) and
(8.11))

‖ ‖δVk‖2 ‖y R
k ‖2‖2 ≤

√
k‖A‖2(7 + m‖ |A| ‖2/‖A‖2)ξ ‖r0‖2‖T −1

k,k ‖2. (8.19)

According to Paige’s results,‖T −1
k,k ‖2 is equal, apart from a very small correction,

to ‖A−1‖2. This leads to an upperbound that eventually behaves like a function
that is proportional to

√
kκξ , which is rather satisfactory. The final conclusion

is that the errors in the Lanczos process do not seriously affect the converging
properties of the Ritz–Galerkin approach.

Analysis for (B) For the minimum residual case, we can follow exactly the
same arguments as for case (A). Now we have for the residual for x M

k (again
following Greenbaum’s analysis [101, Chapter 4.3],:

r M
k = r0 − AVk yM

k

= r0 − (Vk+1Tk+1,k + δVk)yM
k

= Vk+1(‖r0‖2 − Tk+1,k yM
k − δVk yM

k . (8.20)

From (8.20) it follows that the norm of ‖r M
k ‖2 can be bounded as

‖r M
k ‖2 ≤ ‖Vk+1‖2 ‖ ‖r0‖2e1 − Tk+1,k yM

k ‖2 + ‖δVk‖2 ‖yM
k ‖2. (8.21)

The first term at the right-hand side goes to zero on account of the relation
between Ritz–Galerkin (in exact arithmetic: FOM) and Minimum Residual (in
exact arithmetic: MINRES) residuals, see (6.3). This implies that eventually
the second term in the error bound (8.21) dominates and this is the same term
as for the Ritz–Galerkin approach.
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From this we conclude that the loss of accuracy in the Lanczos process has
no serious effects on the overall convergence of the Ritz–Galerkin and the Min-
imum Residual iterative approaches. By no serious effects we mean that the
global upperbound, based on the condition number of A, is almost the same
in exact and in finite precision floating point arithmetic. However, effects may
be observed. We have seen that, depending on the spectral distribution of A,
superlinear convergence may occur for, for instance, CG. This increased speed
of convergence happens when extreme eigenvalues have been approximated
sufficiently well in the underlying Lanczos process. It is well known that loss
of orthogonality in the Lanczos process goes hand in hand with the occurrence
of (almost) multiple eigenvalues of Tk,k (see, for instance, [155, Chapter 13.6],
[150]). These so-called multiplets have nothing to do with possibly multiple
eigenvalues of A. Because of rounding errors, the eigenvalues of A, to which
eigenvalues of Tk,k have converged, have their effect again on future iterations
and they may reduce (part of) the effects of the so-called superlinear conver-
gence behaviour. This is visible in a delay of the convergence with respect to the
convergence that would have been observed in exact arithmetic (or that might
have been expected from gaps in the spectrum of A).

8.3.2 Effects of rounding errors on implementations

In the previous section we have discussed the effects of finite precision compu-
tations in the Lanczos process and we have seen that these effects are limited.
In actual implementations there may be bigger effects because of a specific
implementation. This has been analysed to some extent in [179]. We will fol-
low this discussion for two possible implementations of the minimum residual
approach for symmetric linear systems.

We start again from (8.12). We see that a small overdetermined linear system

Tk+1,k yM
k = ‖r0‖2e1

has to be solved, and a good and stable way of doing this is via a reduction of
Tk+1,k with Givens rotations to upper triangular form

Tk+1,k = Qk+1,k Rk,

in which Rk is a k by k upper triangular band matrix with bandwidth 3 and
Qk+1,k is a k + 1 by k matrix with orthonormal columns (that is the product of
the k Givens rotations).

This leads to the approximated solution

x M
k = ‖r0‖2 Vk R−1

k QT
k+1,ke1. (8.22)
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With the given Lanczos basis, this approximated solution can be computed in
a straightforward manner by first evaluating the vector

zk = QT
k+1,k ‖r0‖2e1 (8.23)

and then evaluating

z̃k = R−1
k zk and xk = Vk z̃k . (8.24)

We will denote this way of computing by rewriting expression (8.22) with
parentheses that indicate the order of computation (in a way that is different
from other orders of computation to come):

x M
k = Vk (R−1

k QT
k+1,k ‖r0‖2e1). (8.25)

In fact, this is the way of computation that is followed in GMRES for unsym-
metric linear systems and therefore we will denote this implementation of the
minimum residual approach on the basis of the three-term Lanczos relation as
MINRESG M RE S .

The disadvantage of MINRESG M RE S would be that we have to store all
Lanczos vectors and this is avoided in actual implementations. Indeed, the
computations in the formula (8.22) can be grouped alternatively as

x M
k = (Vk R−1

k )zk ≡ Wk zk, (8.26)

with zk as in (8.23). Because of the banded structure of Rk , it is easy to see that
the last column of Wk can be computed from the last two columns of Wk−1 and
vk . This interpretation makes it possible to generate x M

k with a short recurrence,
since zk itself follows from the k-th Givens rotation applied to (zT

k−1, 0)T . This
approach is the basis for actual MINRES implementations and therefore we
will refer to this implementation simply as MINRES.

Note that zk is evaluated in the same way for MINRESG M RE S and MINRES.
In fact, the essential difference between the evaluations in (8.24) and (8.26) is
in the action of R−1

k . In MINRESG M RE S the operator R−1
k acts on zk , whereas

in MINRES it acts on Vk . The analysis in [179] concentrates on this difference.
We start with MINRESG M RE S . With the given computed Rk and zk , we

compute in floating point finite precision arithmetic the vector z̃k and we denote
the actually computed result as ẑk . This results satisfies (cf. [98, p.89]):

(Rk + �R)ẑk, with |�R| ≤ 3ξ |Rk | + O(ξ 2),

where ξ denotes the machine precision.
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Because ẑk = (I + R−1
k �R)−1 R−1

k zk , we have for the difference between
the computed and the exact vector

�1 ≡ ẑk − z̃k = −R−1
k �R R−1

k zk .

Then we have to multiply Vk with ẑk in order to obtain the computed x̂k , and
this also introduces an error (see [116, p.78]):

x̂k = Vk ẑk + �2, with |�2| ≤ kξ |Vk ||̃zk | + O(ξ 2).

These two errors �1 and �2 lead to a contribution �xk in the computed
solution xk :

�xk = Vk�1 + �2.

When we evaluate b − Ax̂k then this contribution leads to an extra deviation
�r G

k (in addition to other error sources) with respect to the exact b − Axk , and
after some formula manipulation (see [179, p.732]) we obtain

‖�r G
k ‖2

‖b‖2
≤ (3

√
3‖Vk+1‖2 + k

√
k)ξκ2(A), (8.27)

where κ2(A) denotes the condition number ‖A−1‖2‖A‖2.
In actual situations ‖Vk+1‖2 is a modest number, much smaller than

√
k + 1,

because there is at least local orthogonality in the columns of Vk+1. The dom-
inating factor is the condition number, but note that we may already expect
relative errors in the order of ξκ2(A) because of rounding errors in the repre-
sentation of A and b. This leads to the conclusion that the computation of x̂k

with Rk and the evaluation of Vk ẑk is rather stable in MINRESG M RE S .

Now we turn our attention to the implementation of MINRES. According to
(8.26), we have to evaluate Wk . The j-th row w j,: of Wk satisfies

w j Rk = v j,:,

which in finite precision leads to a row ŵ j,: that satisfies

ŵ j,:(Rk + �R j ) = v j,: with |�R j | ≤ 3ξ |Rk | + O(ξ 2). (8.28)

After combining the relations for the k rows of the computed Ŵk , we have that
Ŵk satisfies

Ŵk = (Vk + �W )R−1
k with |�W | ≤ 3ξ |Ŵk | |Rk | + O(ξ 2). (8.29)
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In this equation, we may replace Ŵk in the expression for |�W | by Vk R−1
k ,

because this leads only to additional errors of O(ξ 2). The computation of xk

with the computed Ŵk leads to additional errors that can be expressed as

x̂k = Ŵk zk + �3 with |�3| ≤ kξ |Wk | |zk | + O(ξ 2).

Proceeding in a similar way as for MINRESG M RE S , we obtain errors �r M
k in

the computed b − Ax̂k that can be attributed to the computation of Ŵk and the
assembly of x̂k , that can be bounded as

‖�r M
k ‖2

‖b‖2
≤ 3

√
3kξκ2(A)2 + k

√
kξκ2(A). (8.30)

Comparing this with the expression (8.27) for MINRESG M RE S , we see that we
now have an error bound for MINRES, due to the evaluation of Ŵk and the
assembly of x̂k , that is proportional to κ2(A)2. Of course, we might wonder
how pessimistic these upperbounds are, but for the example given in Figure 8.5
(taken from [179]) we see that we may really encounter differences in practice
that may be explained by the condition numbers.

Our analysis does not imply that MINRES is always an unattractive method.
Of course, when A is not ill-conditioned, the method is attractive because of
economy in storage. But also, if A is ill-conditioned, then the ill-conditioning
is felt in the solution, if that solution has components of about the same mag-
nitude in right singular vector directions corresponding to the smallest and the
largest singular vectors. For some classes of problems, including problems from
tomography, we want to avoid components in the directions of the small singu-
lar vectors (regularization) and in such cases MINRES may be still attractive,
because the Krylov methods, including MINRES, tend to discover the small
singular vectors after more iterations than the large singular vector directions.
This may also be viewed as a sort of regularization, for an analysis of this
phenomenon see [193].

8.3.3 Some considerations for CG

The somewhat alarming aspect of our analysis of MINRES and the hypothetical
MINRESG M RE S is that it gives the impression that we have to pay a high price
for short recurrence relations, when we use these to transform the Krylov basis:
the transformation from Vk to Wk in MINRESG M RE S . This may make us slightly
nervous with respect to Conjugate Gradients, where the Krylov basis is also
transformed, see (5.3): the transformation of the orthogonal R-basis to RU−1.
The discussion in [178, Section 4] indicates that the usual CG implementations,
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Figure 8.5. MINRES (top) and MINRESG M RE S (bottom): solid line (–) log10 of ‖b −
Ax̂k‖2/‖b‖2 ; dotted line (· · · ) log10 of the estimated residual norm reduction ρk . The
pictures show the results for a positive definite system (the left pictures) and for an
indefinite system (the right pictures). For both examples κ2(A) = 3 · 108. To be more
specific: at the left A = G DG ′ with D diagonal, D ≡ diag(10−8, 2 · 10−8, 2 : h : 3),
h = 1/789, and G the Givens rotation in the (1, 30)-plane over an angle of 45◦; at the
right A = G DG ′ with D diagonal D ≡ diag(−10−8, 10−8, 2 : h : 3), h = 1/389, and
G the same Givens rotation as for the left example; in both examples b is the vector with
all coordinates equal to 1, x0 = 0, and the relative machine precision ξ = 1.1 · 10−16.

based on coupled two-term recurrence relations, are very stable and lead to
perturbations in the order of κ(A) times machine precision at most. The crux
is that in MINRES we transform the basis by a three-term recurrence and
these three-term recurrence relations may trigger parasytic components in the
transformed vectors.



9
Bi-CGSTAB

9.1 A more smoothly converging variant of CGS

We have mentioned that the residuals ri in CGS satisfy the relation ri =
Pi (A)2r0, in which Pi (A)r0 just defines the residual rBi-CG,i in the bi-conjugate
gradient method:

rBi-CG,i = Pi (A)r0.

By construction, we have that (Pi (A)r0, Pj (AT )r̂0) = 0 for j < i , which ex-
presses the fact that Pi (A)r0 is perpendicular to the subspace K i (AT ; r̂0),
spanned by the vectors

r̂0, AT r̂0, . . . , (AT )i−1r̂0.

This implies that, in principle, we can also recover the bi-conjugate gradient
iteration parameters by requiring that, e.g., ri is perpendicular to P̃ j (PT )r̂0,
or, equivalently, (P̃ j (A)Pi (A)r0, r̂0) = 0, for another suitable set of polyno-
mials P̃ j of degree j . In Bi-CG we take P̃ j = Pj , namely r̂ j = Pj (AT )r̂0.
This is exploited in CG-S, as we have indicated before, since recursion
relations for the vectors P2

j (A)r0 can be derived from those for
Pj (A)r0.

Of course, we can now construct iteration methods, by which the xi are gen-
erated so that ri = P̃ i (A)Pi (A)r0 with other i-th degree polynomials, such as,
e.g., Chebyshev-polynomials, which might be more suitable. Unfortunately,
the optimal parameters for the Chebyshev polynomials are generally not eas-
ily obtainable and also the recurrence relations for the resulting method are

133
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more complicated than for CG-S. Another possibility is to take for P̃ j a
polynomial of the form

Qi (x) = (1 − ω1x)(1 − ω2x) · · · (1 − ωi x), (9.1)

and to select suitable constants ω j . This expression leads to an almost trivial
recurrence relation for the Qi .

An obvious possibility for selectingω j in the j-th iteration step is to minimize
r j , with respect to ω j , for residuals that can be written as r j = Q j (A)Pj (A)r0.
This leads to the Bi-CGSTAB method [201].

We will now derive the (unpreconditioned) Bi-CGSTAB scheme. This will be
done completely analogously to the derivation of CGS. We repeat the two im-
portant relations for the vectors ri and pi , extracted from the unpreconditioned
version of Bi-CG, see Figure 7.1 (take K = I ):

pi = ri−1 + βi−1 pi−1

ri = ri−1 − αi Api .

We write ri and pi again in polynomial form:

ri = Pi (A)r0 and pi = Ti−1(A)r0,

in which Pi (A) and Ti−1(A) are polynomials in A of degree i , i + 1, respec-
tively. From the Bi-CG recurrence relations we obtain recurrence relations for
these polynomials:

Ti−1(A)r0 = (Pi−1(A) + βi−1Ti−2(A))r0,

and

Pi (A)r0 = (Pi−1(A) − αi ATi−1(A))r0.

In the Bi-CGSTAB scheme we wish to have recurrence relations for

r̂i = Qi (A)Pi (A)r0.

With Qi as in (9.1) and the Bi-CG relation for the factors Pi and Ti−1, it then
follows that

Qi (A)Pi (A)r0 = (1 − ωi A)Qi−1(A)(Pi−1(A) − αi ATi−1(A))r0

= {Qi−1(A)Pi−1(A) − αi AQi−1(A)Ti−1(A)}r0

− ωi A{(Qi−1(A)Pi−1(A) − αi AQi−1(A)Ti−1(A))}r0.
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Clearly, we also need a relation for the product Qi (A)Ti (A)r0. This can also be
obtained from the Bi-CG relations:

Qi (A)Ti (A)r0 = Qi (A)(Pi (A) + βi Ti−1(A))r0

= Qi (A)Pi (A)r0 + βi (1 − ωi A)Qi−1(A)Ti−1(A)r0

= Qi (A)Pi (A)r0 + βi Qi−1(A)Ti−1(A)r0 − βiωi AQi−1(A)Ti−1(A)r0.

Finally we have to recover the Bi-CG constants ρi , βi , and αi by inner
products in terms of the new vectors that we now have generated. For example,
βi can be computed as follows. First we compute

ρ̃i = (r̃0, Qi (A)Pi (A)r0) = (Qi (AT )r̃0, Pi (A)r0).

By construction, the vector Pi (A)r0 is orthogonal with respect to all vectors
Ui−1(AT )r̃0, where Ui−1 is an arbitrary polynomial of degree ≤ i − 1. This
means that we have to consider only the highest order term of Qi (AT ) when
computing ρ̃i . This term is given by (−1)iω1ω2 · · · ωi (AT )i . We actually wish
to compute

ρi = (Pi (AT )r̂0, Pi (A)r0),

and since the highest order term of Pi (AT ) is given by (−1)iα1α2 · · · αi (AT )i ,
it follows that

βi = (ρ̃i/ρ̃i−1)(αi−1/ωi−1).

The other constants can be derived similarly.

Note that in our discussion we have focused on the recurrence relations for
the vectors ri and pi , while in fact our main goal is to determine xi . As in all
CG-type methods, xi itself is not required for continuing the iteration, but it
can easily be determined as a ‘side product’ by realizing that an update of the
form ri = ri−1 − γ Ay corresponds to an update xi = xi−1 + γ y for the current
approximated solution.

By writing ri for Qi (A)Pi (A)r0 and pi for Qi−1(A)Ti−1(A)r0, we obtain the
following scheme for Bi-CGSTAB (I trust that, with the foregoing observations,
the reader will now be able to verify the relations in Bi-CGSTAB). In this scheme
we have computed the ωi so that the residual ri = Qi (A)Pi (A)r0 is minimized
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x0 is an initial guess; r0 = b − Ax0

Choose r̃ , for example, r̂ = r0

for i = 1, 2, . . . .
ρi−1 = r̃ T ri−1

if ρi−1 = 0 method fails
if i = 1

pi = ri−1

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)

endif
vi = Api ;
αi = ρi−1/r̃ T vi

s = ri−1 − αivi

check ‖s‖2, if small enough: xi = xi−1 + αi pi and stop
t = As, ωi = t T s/t T t
xi = xi−1 + αi pi + ωi s
ri = s − ωi t
check convergence; continue if necessary
for continuation it is necessary that ωi 	= 0

end

Figure 9.1. The Bi-CGSTAB algorithm.

in 2-norm as a function of ωi . In Figure 9.1, I have presented the algorithm,
skipping thênotation for the Bi-CGSTAB iteration vectors.

In order to place a restriction on memory traffic, we have carried out both updates
to the current solution x in one single step, while the updates to the residual r
had to be done separately (s = ri−1 − αvi and ri = s − ωi t). So s represents
the residual after a ‘Bi-CG step’. If the norm of s is small enough then we might
stop, but in that case, before stopping the algorithm, the current solution has to
be updated appropriately as xi = xi−1 + αpi in order to be compatible with the
current residual s (and the computation of t , ωi , as well as the second update
ωi s should be skipped).

From the orthogonality property (Pi (A)r0, Q j (AT )r̂0) = 0, for j < i , it follows
that Bi-CGSTAB is also a finite method, i.e., in exact arithmetic it will terminate
after m ≤ n iteration steps. In this case we get s = 0 at iteration step m and ωm
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is then not defined. This represents a lucky break-down of the algorithm and
the process should be terminated as indicated in the previous paragraph.

In the presented form Bi-CGSTAB requires, for the solution of an N by N sys-
tem Ax = b, evaluation of 2 matrix vector products with A, 12N flops for vector
updates and 4 inner products. This has to be compared with (unpreconditioned)
CGS, which also requires 2 matrix vector products with A, and 13N flops, but
only 2 inner products. In practical situations, however, the two additional inner
products lead to only a small increase in computational work per iteration step
and this is readily undone by almost any reduction in the number of iteration
steps (especially on vector computers for which inner products are usually fast
operations).

Except for memory locations for x, b, r , and A we need memory space
for 4 additional N -vectors r̃ , p, v, and t for Bi-CGSTAB (note that r may be
overwritten by s). This is the same as for CGS.

Of course, Bi-CGSTAB may suffer from the same breakdown problems as
Bi-CG and CGS. These problems stem basically from the fact that for general
matrices the bilinear form

[x, y] ≡ (P(AT )x, P(A)y),

which is used to form the bi-orthogonality, does not define an inner product. In
particular, it may occur that, by an unlucky choice for r̃ , an iteration parameter ρi

or r̃ T vi is zero (or very small), without convergence having taken place. In an ac-
tual code we should test for such situations and take appropriate measures, e.g.,
restart with a different r̃ or switch to another method (for example GMRES).

The preconditioned Bi-CGSTAB algorithm for solving the linear system
Ax = b, with preconditioning K , reads as in Figure 9.2.
The matrix K in this scheme represents the preconditioning matrix and the way
of preconditioning [201]. The above scheme in fact carries out the Bi-CGSTAB
procedure for the explicitly postconditioned linear system

AK −1 y = b,

but the vectors yi and the residual have been back transformed to the vectors xi

and ri corresponding to the original system Ax = b.

In exact arithmetic, the α j and β j have the same values as those generated by
Bi-CG and CGS. Hence, they can be used to extract eigenvalue approximations
for the eigenvalues of A (see Bi-CG).
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x0 is an initial guess, r0 = b − Ax0

Choose r̃ , for example, r̃ = r0

for i = 1, 2, . . . .
ρi−1 = r̃ T ri−1

if ρi−1 = 0 method fails
if i = 1

pi = ri−1

else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)

pi = ri−1 + βi−1(pi−1 − ωi−1vi−1)

endif
Solve p̂ from K p̂ = pi

vi = A p̂
αi = ρi−1/r̃ T vi

s = ri−1 − αivi

if ‖s‖ small enough then
xi = xi−1 + αi p̂, quit

Solve ŝ from K ŝ = s
t = Aŝ
ωi = t T s/t T t
xi = xi−1 + αi p̂ + ωi ŝ
if xi is accurate enough then quit
ri = s − ωi t
for continuation it is necessary that ωi 	= 0

end

Figure 9.2. The Bi-CGSTAB algorithm with preconditioning.

Bi-CGSTAB can be viewed as the product of Bi-CG and GMRES(1). Of
course, other product methods can also be formulated. Gutknecht [109] has
proposed BiCGSTAB2, which is constructed as the product of Bi-CG and
GMRES(2).

9.2 Bi-CGSTAB(2) and variants

One particular weak point in Bi-CGSTAB is that we get breakdown if an ω j

is equal to zero. We may equally expect negative effects when ω j is small. In
fact, Bi-CGSTAB can be viewed as the combined effect of Bi-CG and GCR(1),
or GMRES(1), steps. As soon as the GCR(1) part of the algorithm (nearly)
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stagnates, then the Bi-CG part in the next iteration step cannot (or can only
poorly) be constructed.

Another dubious aspect of Bi-CGSTAB is that the factor Qk has only real
roots by construction. It is well known that optimal reduction polynomials
for matrices with complex eigenvalues may also have complex roots. If, for
instance, the matrix A is real skew-symmetric, then GCR(1) stagnates forever,
whereas a method like GCR(2) (or GMRES(2)), in which we minimize over
two combined successive search directions, may lead to convergence, and this
is mainly due to the fact that the complex eigenvalue components in the error
can be effectively reduced.

This point of view was taken in [109] for the construction of a variant called
Bi-CGSTAB2. In the odd-numbered iteration steps the Q-polynomial is ex-
panded by a linear factor, as in Bi-CGSTAB, but in the even-numbered steps
this linear factor is discarded, and the Q-polynomial from the previous even-
numbered step is expanded by a quadratic 1 − αk A − βk A2. For this construc-
tion the information from the odd-numbered step is required. It was anticipated
that the introduction of quadratic factors in Q might help to improve conver-
gence for systems with complex eigenvalues, and, indeed, some improvement
was observed in practical situations (see also [157]).

However, my presentation suggests a possible weakness in the construction
of Bi-CGSTAB2, namely in the odd-numbered steps the same problems may
occur as in Bi-CGSTAB. Since the even-numbered steps rely on the results of
the odd-numbered steps, this may equally lead to unnecessary breakdowns or
poor convergence. In [174] another, and even simpler, approach was taken to
arrive at the desired even-numbered steps, without the necessity of the con-
struction of the intermediate Bi-CGSTAB-type step in the odd-numbered steps.
Hence, in this approach the polynomial Q is constructed straightaway as a
product of quadratic factors, without ever constructing a linear factor. As a re-
sult the new method Bi-CGSTAB(2) leads only to significant residuals in the
even-numbered steps and the odd-numbered steps do not lead necessarily to
useful approximations.

In fact, it is shown in [174] that the polynomial Q can also be constructed
as the product of 
-degree factors, without the construction of the intermediate
lower degree factors. The main idea is that 
 successive Bi-CG steps are carried
out, where for the sake of an AT -free construction the already available part of
Q is expanded by simple powers of A. This means that after the Bi-CG part
of the algorithm vectors from the Krylov subspace s, As, A2s, . . . , A
s, with
s = Pk(A)Qk−
(A)r0, are available, and it is then relatively easy to minimize
the residual over that particular Krylov subspace. There are variants of this
approach in which more stable bases for the Krylov subspaces are generated
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[177], but for low values of 
 a standard basis satisfies, together with a minimum
norm solution obtained through solving the associated normal equations (which
requires the solution of an 
 by 
 system). In most cases Bi-CGSTAB(2) will
already give nice results for problems where Bi-CGSTAB or Bi-CGSTAB2 may
fail. Note, however, that, in exact arithmetic, if no breakdown situation occurs,
Bi-CGSTAB2 would produce exactly the same results as Bi-CGSTAB(2) at the
even-numbered steps.

Bi-CGSTAB(2) can be represented by the scheme in Figure 9.3. For more
general Bi-CGSTAB(
) schemes see [174, 177].

x0 is an initial guess, r0 = b − Ax0

Choose r̂0, for example r̂0 = r
ρ0 = 1, u = 0, α = 0, ω2 = 1
for i = 0, 2, 4, 6, . . . .

ρ0 = −ω2ρ0

even Bi-CG step: ρ1 = (r̂0, ri ), β = αρ1/ρ0, ρ0 = ρ1

u = ri − βu
v = Au
γ = (v, r̂0), α = ρ0/γ

r = ri − αv

s = Ar
x = xi + αu

odd Bi-CG step: ρ1 = (r̂0, s), β = αρ1/ρ0, ρ0 = ρ1

v = s − βv

w = Av

γ = (w, r̂0), α = ρ0/γ

u = r − βu
r = r − αv

s = s − αw

t = As
GCR(2)-part: ω1 = (r, s), µ = (s, s), ν = (s, t), τ = (t, t)

ω2 = (r, t), τ = τ − ν2/µ, ω2 = (ω2 − νω1/µ)/τ

ω1 = (ω1 − νω2)/µ

xi+2 = x + ω1r + ω2s + αu
ri+2 = r − ω1s − ω2t
if xi+2 is accurate enough then quit
u = u − ω1v − ω2w

end

Figure 9.3. The Bi-CGSTAB(2) algorithm.
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Another advantage of Bi-CGSTAB(2) over BiCGSTAB2 is its efficiency.
The Bi-CGSTAB(2) algorithm requires 14 vector updates, 9 inner products
and 4 matrix vector products per full cycle. This has to be compared with
a combined odd-numbered and even-numbered step in BiCGSTAB2, which
requires 22 vector updates, 11 inner products, and 4 matrix vector products,
and with two steps of Bi-CGSTAB, which require 4 matrix vector products,
8 inner products and 12 vector updates. The numbers for BiCGSTAB2 are
based on an implementation described in [157].

Also with respect to memory requirements, Bi-CGSTAB(2) takes an inter-
mediate position: it requires 2 n-vectors more than Bi-CGSTAB and 2 n-vectors
less than Bi-CGSTAB2.

For distributed memory machines the inner products may cause communi-
cation overhead problems (see, e.g., [48]). We note that the Bi-CG steps are
very similar to conjugate gradient iteration steps, so that we may consider all
kind of tricks that have been suggested to reduce the number of synchronization
points caused by the 4 inner products in the Bi-CG parts. For an overview of
these approaches see [20]. If on a specific computer it is possible to overlap
communication with communication, then the Bi-CG parts can be rescheduled
so as to create overlap possibilities:

(1) The computation of ρ1 in the even Bi-CG step may be done just before the
update of u at the end of the GCR part.

(2) The update of xi+2 may be delayed until after the computation of γ in the
even Bi-CG step.

(3) The computation of ρ1 for the odd Bi-CG step can be done just before the
update for x at the end of the even Bi-CG step.

(4) The computation ofγ in the odd Bi-CG step already has overlap possibilities
with the update for u.

For the GCR(2) part we note that the 5 inner products can be taken together,
in order to reduce start-up times for their global assembling. This gives the
method Bi-CGSTAB(2) a (slight) advantage over Bi-CGSTAB. Furthermore
we note that the updates in the GCR(2) may lead to more efficient code than
for Bi-CGSTAB, since some of them can be combined.

9.3 More general hybrid Bi-CG methods

As follows from Sonneveld’s paper [180], Bi-CG can be the basis for methods
that generate residuals of the form

ri = Qi (A)Pi (A)r0,

where Pi (A) is the iteration polynomial defined by the Bi-CG recursions. The
trick is to find suitable, easy to generate, polynomials Qi (A) that help to
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decrease the norm of ri . In CGS we select Qi = Pi , in Bi-CGSTAB we select
Qi as the product of GMRES(1) iteration polynomials, and in Bi-CGSTAB(
)
the polynomial Qi is a product of GMRES(
) polynomials for i a multiple
of 
.

Zhang [225] has studied the case where Qi is also generated by a three term
recurrence relation similar to the underlying Lanczos recurrence relation (9.2)
of Bi-CG.

Exercise 9.1. Show, similarly to the derivation of relation (5.7) for CG, that
the iteration polynomial Pi of Bi-CG satisfies

Pi (A) = (1 + βi−2

αi−2
− αi−1 A)Pi−1(A) − βi−2

αi−2
Pi−2(A), (9.2)

for i ≥ 2. How are P0(A) and P1(A) defined?

Equation (9.2) inspired Zhang to exploit a similar relation for Qi :

Qi (A) = (1 + ηi−1 − ζi−1 A)Qi−1(A) − ζi−1 Qi−2(A). (9.3)

The combination of (9.3) with Pi (A) leads to the following expression for
ri = Qi (A)Pi (A)r0:

Qi (A)Pi (A)r0 = Qi−1 Pi (A)r0 − ηi−1(Qi−2(A) − Qi−1(A))Pi (A)r0

− ζi−1 AQi−1 Pi (A)r0. (9.4)

Similarly to the derivation of Bi-CGSTAB (and CGS) we can, exploiting
the recursions for the polynomials Pi and Ti , defined by the Bi-CG algorithm
as the generating functions for the residuals and update vectors, respectively,
derive recursions for each of the product forms at the right-hand side of (9.4).
We denote these products as

ti−1 = Qi−1(A)Pi (A)r0 (9.5)

yi−1 = (Qi−2(A) − Qi−1(A))Pi (A)r0, (9.6)

which leads to the following recursion for ri :

ri = ti−1 − ηi−1 yi−1 − ζi−1 Ati−1. (9.7)

Zhang [225, Section 5.3] suggests determining the parameters ηi−1 and ζi−1

so that they minimize the norm ‖ri‖2 as a function of these parameters. The
resulting algorithm is called GPBi-CG (generalized product Bi-CG) [225].
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It can be shown that if we take ηi = 0 for even i then GPBi-CG reduces to
Bi-CGSTAB(2) (in exact arithmetic). It is tempting to believe that GPBi-CG is
superior to Bi-CGSTAB(2), because it minimizes, locally, the new contribution
to the Qi factor. However, it is still unclear whether the complete Qi polynomial
in GPBi-CG should have better reduction properties than the product of the
GMRES(2) polynomials in Bi-CGSTAB(2). Moreover, the Qi polynomial in

x0 is an initial guess; r0 = b − Ax0

u = z = 0
Choose r̃ , for example, r̃ = r0

for i = 1, 2, . . . .
ρi−1 = r̃ Hri−1

if ρi−1 = 0 method fails
if i = 1

p = ri−1, q = Ap
αi = ρi−1/r̃ H q
t = ri−1 − αi q, v = At ,
y = αi q − ri−1

µ2 = vH t ; µ5 = vHv, ζ = µ2/µ5, η = 0
else

βi−1 = (ρi−1/ρi−2)(αi−1/ζ )

w = v + βi−1q
p = ri−1 + βi−1(p − u), q = Ap
αi = ρi−1/r̃ H q, s = t − ri − 1
t = ri−1 − αi q, v = At
y = s − αi (w − q)

µ1 = yH y, µ2 = vH t , µ3 = yH t , µ4 = vH y, µ5 = vHv

τ = µ5µ1 − µ̄4µ4, ζ = (µ1µ2 − µ3µ4)/τ , η = (µ5µ3 − µ̄4µ2)/τ

endif
u = ζq + η(s + βi−1u)

z = ζri−1 + ηz − αi u
xi = xi−1 + αi p + z
if xi is accurate enough then quit
ri = t − ηy − ζv

for continuation it is necessary that ζ 	= 0
end

Figure 9.4. The GPBi-CG algorithm without preconditioning.
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GPBi-CG is constructed by a three term recurrence relation, instead of the two
coupled two term recurrences for the Pi polynomial. Three term recurrences
are considered as less numerically stable than coupled two term recurrences,
so the numerical stability of GPBi-CG also requires further investigation.

Exercise 9.2. Show that GPBi-CG reduces formally to Bi-CGSTAB (that is, it
generates the same approximations in exact arithmetic) if we set ηi = 0 for all i .

For completeness, we give the complete GPBi-CG algorithm [225, Algorithm 5]
in Figure 9.4. This is also the basis of the Matlab code with which we have carried
out some numerical experiments. This algorithm is without preconditioning, but
it is straightforward to include preconditioning, for instance, by replacing A by
the preconditioned operator K −1 A and b by K −1b.

Exercise 9.3. Compare the numbers of floating point operations, in terms of
matrix vector operations, inner products, and vector updates, for CGS,
Bi-CGSTAB, and GPBi-CG.
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Figure 9.5. GPBi-CG (–), CGS (*) , and Bi-CGSTAB (..) for a system with uniformly
distributed eigenvalues.
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9.3.1 Numerical experiments

We start with a very simple example. The 300 by 300 matrix A is diagonal, with
diagonal elements uniformly distributed in the interval [1, 1000]. The right-hand
side is chosen so that the solution is the vector of all 1s. In Figure 9.5 we see the
convergence history for the three methods, CGS, Bi-CGSTAB, and GPBi-CG.
We see that for such nice spectra the methods require about the same number
of iterations, with CGS having a slight advantage.

Now we replace the diagonal part from 296 to 299 by two 2 by 2 blocks with
eigenvalues 0.1 ± 2i , 0.4 ± i , respectively. The result for this mildly complex
spectrum (4 complex conjugate eigenvalues at the lower end of the spectrum)
is shown in Figure 9.6.

In this case CGS starts to show its characteristic peaks: the large peak of
about 1010 for the residual norm destroys the accuracy of the solution, which
has about 5 decimals of accuracy. The solutions obtained with GPBi-CG and
Bi-CGSTAB are much more accurate and these methods are, for high accu-
racy, also slightly faster (in terms of iteration counts). Note that the iterations
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Figure 9.6. GPBi-CG (–), CGS (*), and Bi-CGSTAB (..) for a system with uniformly
distributed real eigenvalues and 4 complex ones.
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with GPBi-CG are more expensive than those of Bi-CGSTAB. Zhang [225]
reports experiments with Helmholtz systems, where GPBi-CG is considerably
faster than Bi-CGSTAB(2) and Bi-CGSTAB, and much more accurate than
CGS. It seems that in those experiments Bi-CGSTAB suffers from stagnation
because of small reductions in its GMRES(1) part. In such cases GPBi-CG and
Bi-CGSTAB(
) may be good alternatives, and in particular GPBi-CG deserves
more attention by the research community than it has received.



10
Solution of singular systems

10.1 Only nonzero eigenvalues matter

Suppose that we want to solve the linear system Ax = b, with a singular n by n
matrix A. This can be done with Krylov subspace methods, as I will now show.
For simplicity, I will assume that A is symmetric.

I will assume that the system is consistent, that is b has no component in
the kernel of A (if the system is inconsistent then the linear system could still
be solved with a minimum residual approach). We denote the eigenvalues and
eigenvectors of A by λ j and v j :

Av j = λ jv j .

Assuming that A has a complete eigensystem then, in principle, the vector b
can be expressed in terms of these eigenvectors. We write b as

b =
m∑

j=1

γ jw j ,

where m is the number of different eigenvalues, counted as λ1, . . . , λm , for which
b has a nonzero component in the corresponding eigenvector direction(s). If λ j

is an eigenvalue with multiplicity 1 then w j = v j ; if λ j is multiple, then w j

represents the sum of the corresponding eigenvectors.
Now suppose, for simplicity, that for a proper Krylov subspace method

the starting vector is x0 = 0, so that the Krylov subspaces are generated with
A and b. We will restrict ourselves to the Ritz–Galerkin approach, so that
the residual ri is orthogonal to the i dimensional Krylov subspace Ki (A; b).
For a Lanczos method, we then have that the Lanczos vectors are multiples
of the residuals ri (see, for instance, Section 5.1). These residuals can be
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expressed as (cf. (5.12))

ri = Pi (A)r0 =
m∑

j=1

γ j Pi (λ j )w j ,

with Pi an i-th degree polynomial with Pi (0) = 0. From this it follows that

r
 = 0 ↔
m∑

j=1

γ j P
(λ j )w j = 0

↔ P
(λ j ) = 0 for j = 1, ..., m (10.1)

From this it follows that r
 = 0 if and only if 
 = m, that is the construction of
the Lanczos basis terminates after exactly m steps. The reduced matrix Tm,m has
eigenvalues λ1, . . . , λm and hence it is nonsingular and can be used to compute
the exact solution x , with no components in the kernel of A, as (cf. (5.3))

x = xm = Rm T −1
m,me1.

Moreover, if all λ j (for which λ j 	= 0) are positive, then Ti,i is positive definite
for all i ≤ m. This implies that we can safely use the CG method to generate
approximations ri , according to (5.3).

If these λ j s are not all positive, then the Ritz values are in the interval
spanned by the smallest and largest of these eigenvalues, and a Ritz value may
occasionally for some i be close to 0, or even be equal to 0. Because the iteration
polynomial Pi (0) = 1, this could imply that ri is large, or not defined (similar
to the usual behaviour of Krylov methods for nonsingular indefinite systems).
In such cases we can still construct a Krylov basis, but we have to be careful
when solving the reduced system. Of course, we can then solve the reduced
system in a minimum residual way, by MINRES, or use SYMMLQ.

If A is unsymmetric and singular, then we can follow the same arguments
and use, for instance, GMRES as an iterative process. For our theoretical con-
siderations we then have to use a Jordan decomposition of A, similarly to the
convergence analysis in [206]. Also, other Krylov methods can be used, with
the same risks as for indefinite matrices, if the matrix restricted to the subspace
for which the components γ j 	= 0 is indefinite.

10.2 Pure Neumann problems

Singular consistent linear systems arise after discretization of, for instance, a
partial differential equation such as

−uxx − uyy = f (x, y), (10.2)
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over a domain � with Neumann boundary condition

∂u

∂n
= 0,

along the entire boundary δ�. This means that the solution of (10.2) is de-
termined up to a constant and this is, after proper discretization, reflected by
singularity of the matrix A in the discretized system Ax = b. The vector with
all 1s is then an eigenvector of A with eigenvalue 0. If the linear system Ax = b
is consistent, in this case if b is orthogonal to the eigenvector corresponding
to the zero eigenvalue, then we may solve the system with CG without further
complication, as we have seen in the previous section.

However, it might seem a good idea to fix the solution u at one boundary
point and this leads to a nonsingular problem and we might expect to be better
off. This is not always a good idea as is shown by the next example.

A numerical example Consider the problem (10.2) over the unit square with
an equidistant rectangular grid with mesh spacing h = 1/19. This leads, with
the usual 5-point finite volume discretization (see [212, Section 6.2]), and after
multiplication with h, to a linear system A0x = b. We have used the index 0
in order to underline the singularity of the system. The stencil for A0 for an
interior point in the grid is

−1

−1 4 −1

−1

,

while for points on the boundary the stencil has no connections pointing out-
ward of � and the central element 4 is then reduced by 1 for each missing
connection. The matrix A0 is of order 400 and has a block structure with blocks
of dimension 20.

For our experiment we need a consistent system and we construct a meaning-
ful right-hand side b as follows. We take the vector w with elements w j = sin( j)
and we eliminate the component in the direction of the vector with all 1s. The
resulting vector b is then orthogonal to the vector with all 1s (it is easy to see
that that vector is the eigenvector of A0 with eigenvalue 0).

The system can be solved with CG, because the effective eigenvalues are
all positive. The condition number defined by these positive eigenvalues is
κe f f ect ≈ 322.9. In Figure 10.1 we see the convergence history in terms of the
2-norms of the residuals, represented by the solid line.

Now we fix the singularity, by prescribing one value of u at the boundary
δ�: in our experiment we set b60 = 1 and we set all elements of A0, except
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Figure 10.1. CG for a singular (—) and a near-singular (...) systems.

the diagonal element, in the 60-th row and 60-th column to zero. The element
A0(60, 60) = 1. It can be shown that the resulting system A1x = b̄ is non-
singular (using the fact that A1 is irreducibly diagonally dominant and [212,
Theorem 1.8]). The convergence behaviour of CG for this system A1x = b̄ is
represented by the dots in Figure 10.1. Note that we have a noticeably slower
convergence now, which is explained by the condition number of A1, which is
κ2(A1) ≈ 4183.6. Fixing the nonsingularity of A0 has resulted in this case in a
shift of the eigenvalue 0 to a small nonzero eigenvalue of A1 that is about 13
times smaller than the smallest nonzero eigenvalue of A0.

In [125, Section 4], the situation for mildly inconsistent linear systems is
analysed. In that case the norms of the residuals tend to increase after an initial
phase of convergence. This divergence can be avoided by keeping the iteration
vectors in CG explicitly orthogonal with respect to the null space of A. Figure 1
in [124] seems to indicate that the divergence of the residual norms only sets
in after a level of ε has been reached, where ε is the norm of the deviation of b
to the nearest right-hand side that makes the system consistent. If this is true in
general, then it leads to the conclusion that reorthogonalization with respect to
the null space of A is not necessary for consistent singular linear systems.
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Solution of f (A)x = b with Krylov

subspace information

11.1 Introduction

In this chapter, I expand on an idea for exploiting Krylov subspace informa-
tion obtained for the matrix A and the vector b. This subspace information can
be used for the approximate solution of a linear system f (A)x = b, where f
is some analytic function, A ∈ R

n×n , and b ∈ R
n . I will make suggestions

on how to use this for the case where f is the matrix sign function. The
matrix sign function plays an important role in QCD computations, see for
instance [147].

In [197] an approach was suggested for the use of a Krylov subspace for the
computation of approximate solutions of linear systems

f (A)x = b.

The approach was motivated by the function f (A) = A2, which plays a role
in the solution of some biharmonic systems. The approach is easily general-
ized for nonsymmetric complex matrices, but we may have to pay more atten-
tion to the evaluation of f for the reduced system, associated with the Krylov
subspace.

In particular, I will discuss some possible approaches in which the Krylov
subspace is used for the computation of sign(A)p for given vectors p. With
the evaluation of the matrix sign function we have to be extremely careful. A
popular approach, based on a Newton iteration, converges fast, but is sensitive
for rounding errors, especially when A is ill-conditioned. We will briefly discuss
a computational method that was suggested (and analysed) by Bai and Demmel
[15]. This approach can also be combined, in principle, with the subspace
reduction technique.
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11.2 Reduced systems

With equation (3.18) we can construct approximate solutions for Ax = b in
the Krylov subspace K m(A; r0). These approximate solutions can be written
as xm = x0 + Vm y, with y ∈ R

n , since the columns of Vm span a basis for the
Krylov subspace. The Ritz–Galerkin orthogonality condition for the residual
leads to

b − Axm ⊥ {v1, . . . , vm},

or

V H
m (b − A(x0 + Vm y)) = 0.

Now we use b − Ax0 = r0 = ‖r0‖2v1, and with (3.18) we obtain

Hm,m y = ‖r0‖e1, (11.1)

with e1 the first canonical basis vector in R
m . If Hm,m is not singular then we

can write the approximate solution xm as

xm = ‖r0‖2Vm H−1
m,me1. (11.2)

Note that this expression closely resembles the expression x = A−1b for the
exact solution of Ax = b. The matrix Hm,m can be interpreted as the restriction
of A with respect to v1, . . . , vm . The vector ‖r0‖e1 is the expression for the
right-hand side with respect to this basis, and Vm is the operator that expresses
the solution of the reduced system (in R

m) in terms of the canonical basis for R
n .

From now on we will assume, without loss of generality, that x0 = 0. We can
also use the above mechanism for the solution of more complicated systems of
equations. Suppose that we want to find approximate solutions for A2x = b,
with only the Krylov subspace for A and r0 = b available. The solution of
A2x = b can be realized in two steps

(1) Solve zm from Az = b, using the Ritz–Galerkin condition. With z = Vm y
and (3.18), we have that

z = ‖b‖2Vm H−1
m,me1.

(2) Solve xm from Axm = zm , with xm = Vmu. It follows that

AVmu = ‖b‖2Vm H−1
m,me1,

Vm+1 Hm+1,mum = ‖b‖2Vmh−1
m,m .
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The Ritz–Galerkin condition with respect to Vm leads to

Hm,mum = ‖b‖2 H−1
m,me1.

These two steps lead to the approximate solution

xm = ‖b‖2Vm H−2
m,me1. (11.3)

If we compare (11.2) for Ax = b with (11.3) for A2x = b, then we see that the
operation with A2 translates to an operation with H 2

m,m for the reduced system
and that is all.

Note that this approximate solution, xm , does not satisfy a Ritz–Galerkin
condition for the system A2x = b. Indeed, for xm = Vm y, we have that

A2Vm y = AVm+1 Hm+1,m y = Vm+2 Hm+2,m+1 Hm+1,m y.

The Ritz–Galerkin condition with respect to Vm , for b − Axm , leads to

V H
m Vm+2 Hm+2,m+1 Hm+1,m y = ‖b‖2e1.

A straightforward evaluation of Hm+2,m+1 Hm+1,m and the orthogonality of the
v j s, leads to

V H
m Vm+2 Hm+2,m+1 Hm+1,m = H 2

m,m + hm+1,mhm,m+1emeT
m .

This means that the reduced matrix for A2, expressed with respect to the Vm

basis, is given by the matrix H 2
m,m in which the bottom right element hm,m is

updated with hm+1,mhm,m+1. By computing xm as in (11.3), we have ignored
the factor hm+1,mhm,m+1. This is acceptable, since in generic situations the
convergence of the Krylov solution process for Ax = b goes hand in hand with
small elements hm+1,m .

We can go one step further, and try to solve

(A2 + αA + β I )x = b, (11.4)

with Krylov subspace information obtained for Ax = b (with x0 = 0). The
Krylov subspace K m(A, r0) is shift invariant, that is

K m(A, r0) = K m(A − σ I, r0),

for any scalar σ ∈ C. The matrix polynomial A2 + αA + β I can be factored
into

A2 + αA + β I = (A − ω1 I )(A − ω2 I ).
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This can be used to obtain an approximate solution similarly to that for the
system A2x = b, see the next exercise.

Exercise 11.1. Proceed as for A2, that is solve the given system in two steps,
and impose a Ritz–Galerkin condition for each step. Show that this leads to the
approximate solution

xm = ‖b‖2Vm(H 2
m,m + αHm,m + β Im)−1e1.

for the linear system (11.4).

The generalization to higher degree polynomial systems

pn(A)x ≡ (
An + αn−1 An−1 + · · · + α0 I

)
x = b

is straightforward and leads to an approximate solution of the form

xm = ‖b‖2Vm pn(Hm,m)−1e1.

If f is an analytic function, then we can compute the following approximate
solution xm for the solution of f (A)x = b:

xm = ‖b‖2Vm f (Hm,m)−1e1. (11.5)

All these approximations are equal to the exact solution if hm+1,m = 0. Because
hn+1,n = 0, we have the exact solution after at most n iterations. The hope is,
of course, that the approximate solutions are sufficiently good after m � n
iterations. There is little to control the residual for the approximate solutions,
since in general f (A) may be an expensive function. We use the Krylov sub-
space reduction in order to avoid expensive evaluation of f (A)p for p ∈ R

n .
It is possible to compare successive approximations xm and to base a stopping
criterion on this comparison.

11.3 Computation of the inverse of f (Hm,m)

The obvious way of computing f (Hm,m)−1 is to reduce Hm,m first to some
convenient canonical form, for instance to diagonal form. If Hm,m is symmetric
(in that case Hm,m is tridiagonal) then it can be orthogonally transformed to
diagonal form:

Q H
m Hm,m Qm = Dm,
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with Qm an m by m orthogonal matrix and Dm a diagonal matrix. We then have
that

Q H f (Hm,m)−1 Q = f (Dm)−1,

and this can be used for an efficient and stable computation of xm . If Hm,m is
neither symmetric nor (close to) normal (that is H H

m,m Hm,m = Hm,m H H
m,m), then

the transformation to diagonal form cannot be done by an orthogonal operator.
If Hm,m has no Jordan blocks, the transformation can be done by

X−1
m Hm,m Xm = Dm .

This decomposition is not advisable if the condition number of Xm is much
larger than 1. In that case it is much better to reduce the matrix Hm,m to Schur
form:

Q H
m Hm,m Qm = Um,

with Um an upper triangular matrix. The eigenvalues of Hm,m appear along
the diagonal of Um . If A is real, then the computations can be kept in real
arithmetic if we use the property that Hm,m can be orthogonally transformed to
generalized Schur form. In a generalized Schur form, the matrix Um may have
two by two nonzero blocks along the diagonal (but its strict lower triangular
part is otherwise zero). These two by two blocks represent complex conjugate
eigenpairs of Hm,m . For further details on Schur forms, generalized Schur forms,
and their computation see [98].

11.4 Numerical examples

My numerical examples have been taken from [197]. These experiments have
been carried out for diagonal real matrices A, which does not mean a loss of
generality (cf. Section 5.2).

The diagonal matrix A is of order 900. Its eigenvalues are 0.034, 0.082,
0.127, 0.155, 0.190. The remaining 895 eigenvalues are uniformly distributed
over the interval [0.2, 1.2]. This type of eigenvalue distribution is more or less
what we might get with preconditioned Poisson operators. Now suppose that
we want to solve A2x = b, with b a vector with all 1s. We list the results for
two different approaches:

(A) Generate the Krylov subspace with A and b and compute the approximate
solution xnew

m as in (11.3).
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Table 11.1. Residual norms for approaches
A and B

m ‖b − A2xnew
m ‖2 ‖b − A2xold

m ‖2

0 0.21E2 0.21E2
10 0.18 0.15
20 0.27E − 2 0.16E − 1
30 0.53E − 5 0.63E − 2
40 0.16E − 8 0.28E − 2
50 0.36E − 2
60 0.10E − 2
70 0.49E − 4
80 0.18e − 5
100 0.21e − 8

(B) Generate the Krylov subspace for the operator A2 and the vector b (the
‘classical’ approach). This leads to approximations denoted as xold

m .

In Table 11.1 we have listed the norms of the residuals for the two approaches for
some values of m. The analysis in [197] shows that the much faster convergence
for the new approach could have been expected. Note that the new approach
also has the advantage that there are only m matrix vector products. For the
classical approach we need 2m matrix vector products with A, assuming that
vectors like A2 p are computed by applying A twice. Usually, the matrix vector
product is the CPU-dominating factor in the computations, since they operate
in R

n . The operations with Hm,m are carried out in R
m , and in typical applications

m � n.
In [197] an example is also given for a more complicated function of A,

namely the solution of

eAx = b,

with A the same diagonal matrix as in the previous example, and b again the
vector with all ones. This is a type of problem that is encountered in the solution
of linear systems of ODEs. With the Krylov subspace for A and r0 of dimension
20, a residual

‖rm‖2 ≡ ‖b − eAxm‖2 ≈ 8.7E − 12

was observed, working in 48 bits floating point precision.
Others have also suggested working with the reduced system for the compu-

tation of, for instance, the exponential function of a matrix, as part of solution
schemes for (parabolic) systems of equations. See, e.g., [117, 92, 137].
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11.5 Matrix sign function

The matrix sign function sign(A) for a nonsingular matrix A, with no eigen-
values on the imaginary axis, is defined as follows [15, 162]. Let

A = X diag(J+, J−)X−1

denote the decomposition of A ∈ C
n×n . The eigenvalues of J+ lie in the right-

half plane, and those of J− are in the left-half plane. Let I+ denote the identity
matrix with the same dimensions as J+, and I− the identity matrix corresponding
to J−. Then

sign(A) ≡ X diag(I+, −I−)X−1.

The sign function can be used, amongst others, to compute invariant subspaces,
for instance those corresponding to the eigenvalues of A with positive real parts.
It also plays an important role in QCD (cf. [147]). The Jordan decomposition
of A is not a useful vehicle for the computation of this function. It can be shown
that sign(A) is the limit of the Newton iteration

Ak+1 = 1
2 (Ak + A−1

k ), for k = 0, 1, . . . , with A0 = A

see [15]. Unfortunately, the Newton iteration is also not suitable for accurate
computation if A is ill-conditioned. Bai and Demmel consider more accurate
ways of computation, which rely on the (block) Schur form of A:

B = Q H AQ =
[

B11 B12

0 B22

]
.

The matrix Q is orthonormal, and it can easily be shown that

sign(A) = Q sign(B)Q H .

Let this decomposition be such that B11 contains the eigenvalues of A with
positive real part. Then let R be the solution of the Sylvester equation

B11 R − R B22 = −B12.

This Sylvester equation can also be solved by a Newton iteration process. Then
Bai and Demmel proved that

sign(A) = Q

[
I −2R

0 −I

]
Q H .
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See [15] for further details, stability analysis, and examples of actual
computations.

Suppose that we want to solve sign(A)x = b. Then, in view of the previous
section, I suggest we start by constructing the Krylov subspace K m(A; b), and
then compute the sign function for the reduced matrix Hm,m . This leads to the
following approximation for the solution of sign(A) = b:

xm = ‖b‖2Vmsign(Hm,m)−1e1. (11.6)

Our preliminary experiments with this approach have been encouraging, for
more details see [190].
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12.1 Termination criteria

An important point, when using iterative processes, is to decide when to termi-
nate the process. Popular stopping criteria are based on the norm of the current
residual, or on the norm of the update to the current approximation to the solu-
tion (or a combination of these norms). More sophisticated criteria have been
discussed in the literature.

In [124] a practical termination criterion for the conjugate gradient method is
considered. Suppose we want an approximation xi for the solution x for which

‖xi − x‖2/‖x‖2 ≤ ε,

where ε is a tolerance set by the user.
It is shown in [124] that such an approximation is obtained by CG as soon

as

‖ri‖2 ≤ µ1‖xi‖2ε/(1 + ε),

where µ1 stands for the smallest eigenvalue of the positive definite symmetric
(preconditioned) matrix A. Of course, in most applications the value for µ1

will be unknown, but with the iteration coefficients of CG we can build the
tridiagonal matrix Ti , and compute the smallest eigenvalue (Ritz value) µ

(i)
1

of Ti , which is an approximation for µ1. In [124] a simple algorithm for the
computation of µ

(i)
1 , along with the CG algorithm, is described, and it is shown

that a rather robust stopping criterion is formed by

‖ri‖2 ≤ µ
(i)
1 ‖xi‖2ε/(1 + ε).

A similar criterion had also been suggested earlier in [113].

159
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It is tempting to use the same approach for the subspace methods for unsym-
metric systems, but note that for such systems the norm of A−1 is not necessarily
equal to the absolute value of some eigenvalue. Instead, we need the value of√

λmax (A−T A−1. It is tempting to approximate this value from spectral infor-
mation of some reduced information. We could, for instance, use the eigenvalues
of H T

m+1,m Hm+1,m , from the upper Hessenberg matrix Hm+1,m generated by one
cycle of the GMRES(m) process, as approximations for eigenvalues of AT A.
This can be done, because the Arnoldi relation (3.18):

AVm = Vm+1 Hm+1,m

implies

V T
m AT = H T

m+1,m Vm+1,

and combining these two relations gives

Vm AT AVm = H T
m+1,m Hm+1,m .

However, note that Vi has been generated for the Krylov subspace associated
with A and v1 and it is not clear how effective this basis is for the projection
of AT A. We have to build our own experiences with this for relevant classes of
problems.

A quite different, but much more generally applicable, approach has been sug-
gested in [5]. In this approach the approximate solution of an iterative pro-
cess is regarded as the exact solution of some (nearby) linear system, and
computable bounds for the perturbations with respect to the given system
are presented. A nice overview of termination criteria has been presented in
[20, Section 4.2].

12.2 Implementation aspects

For effective use of the given iteration schemes, it is necessary that they can be
implemented in such a way that high computing speeds are achievable. It is most
likely that high computing speeds will be realized only by parallel architectures
and therefore we must see how well iterative methods fit to such computers.

The iterative methods only need a handful of basic operations per iteration step

(1) Vector updates: In each iteration step the current approximation to the
solution is updated by a correction vector. Often the corresponding residual
vector is also obtained by a simple update, and we also have update formulas
for the correction vector (or search direction).
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(2) Inner products: In many methods the speed of convergence is influenced
by carefully constructed iteration coefficients. These coefficients are some-
times known analytically, but more often they are computed by inner prod-
ucts, involving residual vectors and search directions, as in the methods
discussed in the previous sections.

(3) Matrix vector products: In each step at least one matrix vector product has to
be computed with the matrix of the given linear system. Sometimes matrix
vector products with the transpose of the given matrix are also required
(e.g., Bi-CG). Note that it is not necessary to have the matrix explicitly, it
suffices to be able to generate the result of the matrix vector product.

(4) Preconditioning: It is common practice to precondition the given linear
system by some preconditioning operator. Again it is not necessary to have
this operator in explicit form, it is enough to generate the result of the
operator applied to some given vector. The preconditioner is applied as
often as the matrix vector multiply in each iteration step.

For large enough problem sizes the inner products, vector updates, and
matrix vector product are easily parallelized and vectorized. The more suc-
cessful preconditionings, i.e., based upon incomplete LU decomposition, are
not easily parallelizable. For that reason often the use of only diagonal scal-
ing as a preconditioner on highly parallel computers, such as the CM2, is
satisfactory [27].

On distributed memory computers we need large grained parallelism in order
to reduce synchronization overheads. This can be achieved by combining the
work required for a successive number of iteration steps. The idea is first to
construct in parallel a straightforward Krylov basis for the search subspace
in which an update for the current solution will be determined. Once this ba-
sis has been computed, the vectors are orthogonalized, as is done in Krylov
subspace methods. The construction, as well as the orthogonalization, can
be done with large grained parallelism, and contains a sufficient degree of
parallelism.

This approach has been suggested for CG in [40] and for GMRES in [41],
[16], and [52]. One of the disadvantages of this approach is that a straightfor-
ward basis, of the form y, Ay, A2 y, . . . ,Ai y, is usually very ill-conditioned.
This is in sharp contrast to the optimal condition of the orthogonal basis set
constructed by most of the projection type methods and it puts severe limits
on the number of steps that can be combined. However, in [16] and [52], ways
of improving the condition of a parallel generated basis are suggested and
it seems possible to take larger numbers of steps, say 25, together. In [52],
the effects of this approach on the communication overheads are studied and
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compared with experiments done on moderately massive parallel transputer
systems.

12.3 Parallelism and data locality in CG

For successful application of CG the matrix A must be symmetric positive defi-
nite. In other short recurrence methods, other properties of A may be desirable,
but we will not exploit these properties explicitly in the discussion on parallel
aspects.

Most often, the conjugate gradients method is used in combination with some
kind of preconditioning. This means that the matrix A can be thought of as
being multiplied by some suitable approximation K −1 for A−1. Usually, K is
constructed as an approximation of A, such that systems like K y = z are much
easier to solve than Ax = b. Unfortunately, a popular class of preconditioners,
based upon an incomplete factorization of A, do not lend themselves well to
parallel implementation.

For the moment we will assume that the preconditioner is chosen such that the
parallelism in solving K y = z is comparable with the parallelism in computing
Ap, for given p.

For CG it is also required that the preconditioner K be symmetric positive
definite. This aspect will play a role in our discussions because it shows how
some properties of the preconditioner can sometimes be used to our advantage
for an efficient implementation.

The scheme for preconditioned CG is given in Figure 5.2. Note that in that
scheme the updating of x and r can only start after the completion of the inner
product required for αi . Therefore, this inner product is a so-called synchro-
nization point: all computation has to wait for completion of this operation.
We can, as much as possible, try to avoid such synchronization points, or to
formulate CG in such a way that synchronization points can be taken together.
We will look at such approaches later.

Since on a distributed memory machine communication is required to assem-
ble the inner product, it would be nice if we could proceed with other useful
computation while the communication takes place. However, as we see from
our CG scheme, there is no possibility of overlapping this communication time
with useful computation. The same observation can be made for the updating
of p, which can only take place after the completion of the inner product for
βi . Apart from the computation of Ap and the computations with K , we need
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x0 is an initial guess; r0 = b − Ax0;
q−1 = p−1 = 0; β−1 = 0;
Solve w0 from Kw0 = r0;
s0 = Aw0;
ρ0 = (r0, w0); µ0 = (s0, w0);
α0 = ρ0/µ0;
for i = 0, 1, 2, ....

pi = wi + βi−1 pi−1;
qi = si + βi−1qi−1;
xi+1 = xi + αi pi ;
ri+1 = ri − αi qi ;
if xi+1 accurate enough then quit;
Solve wi+1 from Kwi+1 = ri+1;
si+1 = Awi+1;
ρi+1 = (ri+1, wi+1);
µi+1 = (si+1, wi+1);
βi = ρi+1

ρi
;

αi+1 = ρi+1

µi+1−ρi+1βi /αi
;

end i ;

Figure 12.1. Parallel CG; Chronopoulos and Gear variant.

to load seven vectors for ten vector floating point operations. This means that
for this part of the computation only 10

7 floating point operations can be carried
out per memory reference on average.

Several authors [40, 141, 142] have attempted to improve this ratio, and to reduce
the number of synchronization points. In our formulation of CG there are two
such synchronization points, namely the computation of both inner products.
Meurant [141] (see also [163]) has proposed a variant in which there is only
one synchronization point, though at the cost of possibly reduced numerical
stability, and one additional inner product. In this scheme the ratio between
computations and memory references is about 2.

In Figure 12.1, we show a variant that was proposed by Chronopoulos and Gear
[40]. In this scheme all vectors need be loaded only once per pass of the loop,
which leads to better exploitation of the data (improved data locality). However,
the price is that we need another 2n flops per iteration step. Chronopoulos and
Gear [40] claim stability, based upon their numerical experiments.
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Instead of two synchronization points, as in the standard version of CG, we now
have only one synchronization point, as the next loop can only be started when
the inner products at the end of the previous loop have been assembled. Another
slight advantage is that these inner products can be computed in parallel.

Chronopoulos and Gear [40] propose to improve further the data locality and
parallelism in CG by combining s successive steps. Their algorithm is based
upon the following property of CG. The residual vectors r0, . . . ,ri form an
orthogonal basis (assuming exact arithmetic) for the Krylov subspace spanned
by r0, Ar0, . . . ,Ai−1r0. When r j is reached, the vectors r0, r1, . . . ,r j , Ar j , . . . ,

Ai− j−1r j also form a basis for this subspace. Hence, we may combine s succes-
sive steps by first generating r j , Ar j , . . . ,As−1r j , and then doing the orthogo-
nalization and the updating of the current solution with this blockwise extended
subspace. This approach leads to a slight increase in flops in comparison with
s successive steps of the standard CG, and also one additional matrix vector
product is required per s steps.

The main drawback in this approach seems to be potential numerical instability.
Depending on the spectral properties of A, the set r j , . . . ,As−1r j may tend to
converge to a vector in the direction of a dominating eigenvector, or, in other
words, may tend to dependence for increasing values of s. The authors claim
to have seen successful completion of this approach, with no serious stability
problems, for small values of s. Nevertheless, it seems that s-step CG, because
of these problems, has a bad reputation (see also [164]). However, a similar
approach, suggested by Chronopoulos and Kim [41] for other processes such
as GMRES, seems to be more promising. Several authors have pursued this
research direction, and we will come back to this in Section 12.5.

We consider yet another variant of CG, in which there is a possibility of over-
lapping all of the communication time with useful computations [56]. This
variant, represented in Figure 12.2, is just a reorganized version of the original
CG scheme, and is therefore roughly as stable. The key trick in this approach
is to delay the updating of the solution vector by one iteration step. In fact,
it is somewhat more stable because the inner product for ρ is computed in a
more stable way. The computation guarantees that the inner product is always
positive, even for highly ill-conditioned K .

Another advantage over the previous scheme is that no additional operations
are required. It is assumed that the preconditioner K can be written as K = L LT .
Furthermore, it is assumed that the preconditioner has a block structure, corre-
sponding to the gridblocks assigned to the processors, so that communication
(if necessary) can be overlapped with computation.
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x0 is an initial guess; r0 = b − Ax0;
p−1 = 0; β−1 = 0; α−1 = 0;
s = L−1r0;
ρ0 = (s, s);
for i = 0, 1, 2, ....

wi = L−T s; (0)
pi = wi + βi−1 pi−1; (1)
qi = Api ; (2)
γ = (pi , qi ); (3)
xi = xi−1 + αi−1 pi−1; (4)
αi = ρi

γ
; (5)

ri+1 = ri − αi qi ; (6)
s = L−1ri+1; (7)
ρi+1 = (s, s); (8)
if ri+1 small enough then (9)

xi+1 = xi + αi pi

quit;
βi = ρi+1

ρi
;

end i ;

Figure 12.2. Parallel CG; Demmel et al. variant.

Now I discuss how this scheme may lead to an efficient parallel scheme, and
how local memory (vector registers, cache, . . . ) can be exploited.

(1) All computing intensive operations can be carried out in parallel. Commu-
nication between processors is only required for the operations (2), (3), (7),
(8), (9), and (0). I have assumed that the communication in (2), (7), and (0)
can be largely overlapped with computation.

(2) The communication required for the assembly of the inner product in (3)
can be overlapped with the update for x (which could have been done in
the previous iteration step).

(3) The assembly of the inner product in (8) can be overlapped with the com-
putation in (0). Also step (9) usually requires information such as the norm
of the residual, which can be overlapped with (0).

(4) Steps (1), (2), and (3) can be combined: the computation of a segment of pi

can be followed immediately by the computation of a segment of qi in (2),
and this can be followed by the computation of a part of the inner product
in (3). This saves on load operations for segments of pi and qi .
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(5) Depending on the structure of L , the computation of segments of ri+1 in
(6) can be followed by operations in (7), which can be followed by the
computation of parts of the inner product in (8), and the computation of the
norm of ri+1, required for (9).

(6) The computation of βi can be done as soon as the computation in (8) has
been completed. At that moment, the computation for (1) can be started if
the requested parts of wi have been completed in (0).

(7) If no preconditioner is used, then wi = ri , and steps (7) and (0) have to
be skipped. Step (8) has to be replaced by ρi = (ri+1, ri+1). Now we need
useful computation in order to overlap the communication for this inner
product. To this end, we might split the computation in (4) per processor
into two parts. The first of these parts is computed in parallel in overlap
with (3), while the parallel computation of the other parts is used in order
to overlap the communication for the computation of ρi .

12.4 Parallel performance of CG

Some realistic 3D computational fluid dynamics simulation problems, as well
as other problems, lead to the necessity to solve linear systems Ax = b with
a matrix of very large order, say, billions of unknowns. If not of very special
structure, such systems are not likely to be solved by direct elimination methods.
For such very large (sparse) systems we must exploit parallelism in combination
with suitable solution techniques, such as iterative solution methods.

From a parallel point of view CG mimics very well parallel performance proper-
ties of a variety of iterative methods such as Bi-CG, CGS, Bi-CGSTAB, QMR,
and others.

In this section I study the performance of CG on parallel distributed memory
systems and I report on some supporting experiments on actual existing ma-
chines. Guided by experiments I will discuss the suitability of CG for massively
parallel processing systems.

All computationally intensive elements in preconditioned CG (updates, inner
products, and matrix vector operations) are trivially parallelizable for shared
memory machines, see [60], except possibly for the preconditioning step: Solve
wi+1 from Kwi+1 = ri+1. For the latter operation parallelism depends very
much on the choice for K . In this section we restrict ourselves to block Jacobi
preconditioning, where the blocks have been chosen so that each processor can
handle one block independently of the others. For other preconditioners that
allow some degree of parallelism, see [60].
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For a distributed memory machine at least some of the steps require commu-
nication between processors: the accumulation of inner products and the com-
putation of Api (depending on the nonzero structure of A and the distribution
of the nonzero elements over the processors). We consider in more detail the
situation where A is a block-tridiagonal matrix of order N , and we assume that
all blocks are of order

√
N :

A =



A1 D1

D1 A2 D2

D2
. . .

. . .

. . .


,

in which the Di are diagonal matrices, and the Ai are tridiagonal matrices. Such
systems occur quite frequently in finite difference approximations in 2 space
dimensions. Our discussion can easily be adapted to 3 space dimensions.

12.4.1 Processor configuration and data distribution

For simplicity I will assume that the processors are connected as a 2D grid with
p × p = P processors.

The data have been distributed in a straightforward manner over the processor
memories and I have not attempted to exploit fully the underlying grid structure
for the given type of matrix (in order to reduce communication as much as
possible). In fact it will turn out that in our case the communication for the
matrix vector product plays only a minor role for matrix systems of large size.

Because of symmetry only the 3 nonzero diagonals in the upper triangular part
of A need to be stored, and we have chosen to store successive parts of length
N/P of each diagonal in consecutive neighbouring processors. In Figure 12.3
we see which part of A is represented by the data in the memory of a given
processor.

The blocks for block Jacobi are chosen to be the diagonal blocks that are
available on each processor, and the various vectors (ri , pi , etc.), have been
distributed likewise, i.e., each processor holds a section of length N/P of these
vectors in its local memory.
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Figure 12.3. Distribution of A over the processors.

12.4.2 Required communication

Matrix vector product It is easily seen for a 2D processor grid (as well as for
many other configurations, including hypercube and pipeline), that the matrix
vector product can be completed with only neighbour–neighbour communica-
tion. This means that the communication costs do not increase for increasing
values of p. If we follow a domain decomposition approach, in which the fi-
nite difference discretization grid is subdivided into p by p subgrids (p in
x-direction and p in y-direction), then the communication costs are smaller
than the computational costs by a factor of O(

√
N

p ).

In [51] much attention is given to this sparse matrix vector product and it is
shown that the time for communication can be almost completely overlapped
with computational work. Therefore, with adequate coding the matrix vector
products do not necessarily lead to serious communication problems, not even
for relatively small-sized problems.

Vector update In our case these operations do not require any communica-
tion and we should expect linear speedup when increasing the number of
processors P .
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Inner product For the inner product we need global communication for the as-
sembly and we need global communication for the distribution of the assembled
inner product over the processors. For a p × p processor grid these commu-
nication costs are proportional to p. This means that for a constant length of
the vector parts per processor, these communication costs will dominate for
large enough values of p. This is quite unlike the situation for the matrix vector
product and as we will see it may be a severely limiting factor in achieving high
speedups in a massively parallel environment.

The experiments, reported in [47, 48], and the modelling approach (see also
[55]) clearly show that even a method like CG, which might be anticipated to
be highly parallel, may suffer severely from the communication overhead due
to the required inner products. These studies indicate that if we want reasonable
speedup in a massively parallel environment then the local memories should
also be much larger when the number of processors is increased in order to
accommodate systems large enough to compensate for the increased global
communication costs.

Another approach for the reduction of the relative costs for communication is
to do more useful computational work per iteration step, so that the commu-
nication for the two inner products takes relatively less time. One way to do
this is to use polynomial preconditioning, i.e., the preconditioner consists of
a number of matrix vector products with the matrix A. This may work well
in situations where the matrix vector product requires only little (local) com-
munication. Another way is to apply domain decomposition: the given domain
is split into P , say, subdomains with estimated values for the solutions on the
interfaces. Then all the subproblems are solved independently and in parallel.
This way of approximating the solution may be viewed as a preconditioning
step in an iterative method. In this way we do more computational work per
communication step. Unfortunately, depending on the problem and on the way
of decoupling the subdomains, we may need a larger number of iteration steps
for larger values of P , which may then, of course, diminish the overall effi-
ciency of the domain decomposition approach. For more information on this
approach see references given in [20].

12.5 Parallel implementation of GMRES(m)

The time consuming part of GMRES(m) is the construction of a basis for the
Krylov subspace. We isolate this for one full cycle in Figure 12.4.

Obviously, we need 1
2 (m2 + 3m) inner products and vector updates per cycle,

and m + 1 matrix vector operations (and possibly m + 1 operations with a
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r = b − Ax0, for a given initial guess x0

v1 = r/‖r‖2

for i = 1, 2, ..., m
v̂i+1 = Avi

for k = 1, ..., i
hk,i = vT

k v̂i+1

v̂i+1 = v̂i+1 − hk,ivk

end
hi+1,i = ||v̂i+1||2
vi+1 = v̂i+1/hi+1,i

end

Figure 12.4. One cycle of GMRES(m) with modified Gram–Schmidt.

preconditioner). Much can be done in parallel, depending on the structure of the
matrix and the preconditioner, but a bottleneck with respect to communication
and coarse grain parallelism is the inner for loop. The inner products and the
vector updates have to be done consecutively.

We now follow an approach for more coarse grained parallelism that has been
proposed in [55]. The inner loop is modified Gram–Schmidt for the basis of
the Krylov subspace and stable computation requires that the expansion of
the subspace is done with the last computed orthogonal vector vi . If a set
of nonorthogonal basis vectors v̂1, v̂2, . . . , v̂m+1 is available at the start of
a cycle, then the modified Gram–Schmidt process can be rearranged as in
Figure 12.5.

Exercise 12.1. Verify that the Modified Gram–Schmidt process in Figure 12.5
leads to the same orthogonal basis, even in rounded arithmetic, as the process
in Figure 12.4, if v̂i+1 is given as the same vector at the start of Figure 12.5
(instead of being computed as Avi ).

Note that the inner products in the for k loop in Figure 12.5 can be executed in
parallel. This means that their values can be combined in one single communi-
cation step at the end of the loop, so that communication can be reduced to m
messages instead of 1

2 (m2 + 3m)messages. The new rearranged Gram–Schmidt
process allows also for overlap of communication with computations, see [55].

There are two problems with this parallelizable approach. The first one is
that we need a well-conditioned set of basis vectors v̂ j to start with. This
can be handled in different ways. The worst possibility is to use the standard
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r = b − Ax0, for a given initial guess x0

v1 = r/‖r‖2

for i = 1, 2, ..., m
for k = i + 1, ..., m + 1

gi,k−1 = vT
i v̂k

v̂k = v̂k − gi,kvi

end
gi+1,i = ||v̂i+1||2
vi+1 = v̂i+1/gi+1,i

end

Figure 12.5. Rearranged modified Gram–Schmidt.

Krylov vectors v̂ j = A j−1v̂1. In [16] it is suggested that a reasonably well-
conditioned basis with spectral information of A is constructed. A good and
very easy alternative is the following one. The first cycle of GMRES is done
in the standard way (with less exploitable parallelism) and then in each new
cycle the vector v̂ j is generated by the for i loop in Figure 12.4 in which the
computation of the inner products is skipped. For the hi, j elements simply take
the elements of the previous GMRES(m) cycle. A similar approach has been
advocated for the construction of the GMRES(
) part in Bi-CGSTAB(
) [177].

The other problem is that the inner products in the for k loop in Figure 12.5
do not represent the required upper Hessenberg matrix that represents the pro-
jection of A with respect to the final orthogonal basis. In [55, Section 4.4] the
formulas for the construction of this upper Hessenberg matrix are described.
It is shown, by numerical experiments carried out on a 400-processor Parsytec
Supercluster, that the restructured process may be significantly more efficient
than the classical process. Gains in speed by a factor of about 2 are observed
for n = 10 000 and m = 30, 50 in GMRES(m) [55].
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Preconditioning

13.1 Introduction

As we have seen in our discussions on the various Krylov subspace methods,
they are not robust in the sense that they can be guaranteed to lead to acceptable
approximate solutions within modest computing time and storage (modest with
respect to alternative solution methods). For some methods (for instance, full
GMRES) it is obvious that they lead, in exact arithmetic, to the exact solution
in maximal n iterations, but that may not be very practical. Other methods
are restricted to specific classes of problems (CG, MINRES) or suffer from
such nasty side-effects as stagnation or breakdown (Bi-CG, Bi-CGSTAB). Such
poor convergence depends in a very complicated way on spectral properties
(eigenvalue distribution, field of values, condition of the eigensystem, etc.) and
this information is not available in practical situations.

The trick is then to try to find some nearby operator K such that K −1 A has
better (but still unknown) spectral properties. This is based on the observation
that for K = A, we would have the ideal system K −1 Ax = I x = K −1b and all
subspace methods would deliver the true solution in one singe step. The hope is
that for K in some sense close to A a properly selected Krylov method applied
to, for instance, K −1 Ax = K −1b, would need only a few iterations to yield
a good enough approximation for the solution of the given system Ax = b.
An operator that is used for this purpose is called a preconditioner for the
matrix A.

The general problem of finding an efficient preconditioner, is to identify a
linear operator K (the preconditioner) with the properties that1:

(1) K is a good approximation to A in some sense.

1 The presentation in this chapter has partial overlap with [61, Chapter 9].
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(2) The cost of the construction of K is not prohibitive.
(3) The system K y = z is much easier to solve than the original system.

Research on preconditioning is a very broad and active area of research with
only little structure. There is no general theory on which we can safely base
an efficient selection. The main difficulty is that preconditioning is based on
approximation and in the absence of precise information on the behaviour
of the solution of a given system Ax = b and on the spectral properties of
A, it may occur that the convergence depends critically on the information
that is discarded in the approximation process. Selection and construction of
a good preconditioner for a given class of problems is therefore at best an
educated guess. It is not my aim to give a complete overview of all existing
preconditioning techniques. Instead I will consider the main ideas in order to
guide the reader in the construction or selection of a proper preconditioner.

There is a great freedom in the definition and construction of preconditioners
for Krylov subspace methods and that is one reason why these methods are so
popular and so successful. Note that in all the Krylov methods, we never need
to know individual elements of A, and we never have to modify parts of the
given matrix. It is always sufficient to have a rule (subroutine) that generates,
for given input vector y, the output vector z that can mathematically be de-
scribed as z = Ay. This also holds for the nearby operator: it does not have to
be an explicitly given matrix. However, it should be realized that the operator
(or subroutine) that generates the approximation for A can be mathematically
represented as a matrix. It is then important to verify that application of the
operator (or subroutine, or possibly even a complete code) on different inputs
leads to outputs that have the same mathematical relation through some (pos-
sibly explicitly unknown) matrix K . For some methods, in particular Flexible
GMRES and GMRESR, it is permitted that the operator K is (slightly) different
for different input vectors (variable preconditioning). This plays an important
role in the solution of nonlinear systems, if the Jacobian of the system is ap-
proximated by a Frechet derivative and it is also attractive in some domain
decomposition approaches (in particular, if the solution per domain itself is
again obtained by some iterative method).

The following aspect is also important. Except for some trivial situations,
the matrix K −1 A is never formed explicitly. In many cases this would lead
to a dense matrix and destroy all efficiency that could be obtained for the
often sparse A. Even for dense matrix A it might be too expensive to form
the preconditioned matrix explicitly. Instead, for each required application of
K −1 A to some vector y, we first compute the result w of the operator A applied
to y and then we determine the result z of the operator K −1 applied to w. This is
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often done by solving z from K z = w, but there are also approaches by which
approximations M for A−1 are constructed (e.g., sparse approximate inverses)
and then we apply, of course, the operator M to w in order to obtain z. Only
very special and simple preconditioners like diagonal matrices can be applied
explicitly to A. This can be done before and in addition to the construction of
another preconditioning.

Remember always that whatever preconditioner we construct, the goal is
to reduce CPU time (or memory storage) for the computation of the desired
approximated solution.

There are different ways of implementing preconditioning; for the same
preconditioner these different implementations lead to the same eigenvalues
for the preconditioned matrices. However, the convergence behaviour is also
dependent on the eigenvectors or, more specifically, on the components of the
starting residual in eigenvector directions. Since the different implementations
can have quite different eigenvectors, we may thus expect that their conver-
gence behaviour can be quite different. Three different implementations are as
follows:

(1) Left-preconditioning: Apply the iterative method to K −1 Ax = K −1b. We
note that symmetry of A and K does not imply symmetry of K −1 A. How-
ever, if K is symmetric positive definite then [x, y] ≡ (x, K y) defines a
proper inner product. It is easy to verify that K −1 A is symmetric with
respect to the new inner product [ , ], so that we can use methods like
MINRES, SYMMLQ, and CG (when A is also positive definite) in this
case. Popular formulations of preconditioned CG are based on this obser-
vation, see Section 5.2.

If we are using a minimal norm residual method (for instance GMRES or
MINRES), we should note that with left-preconditioning we are minimizing
the preconditioned residual K −1(b − Axk), which may be quite different
from the residual b − Axk . This could have consequences for stopping
criteria that are based on the norm of the residual.

(2) Right-preconditioning: Apply the iterative method to AK −1 y = b, with
x = K −1 y. This form of preconditioning also does not lead to a symmetric
product when A and K are symmetric.

With right-preconditioning we have to be careful with stopping criteria
that are based upon the error: ||y − yk ||2 may be much smaller than the
error-norm ||x − xk ||2 (equal to ||K −1(y − yk)||2) that we are interested
in. Right-preconditioning has the advantage that it only affects the operator
and not the right-hand side. This may be an attractive property in the design
of software for specific applications.
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(3) Two-sided preconditioning: For a preconditioner K with K = K1 K2, the
iterative method can be applied to K −1

1 AK −1
2 z = K −1

1 b, with x = K −1
2 z.

This form of preconditioning may be used for preconditioners that come
in factored form. It can be seen as a compromise between left- and right-
preconditioning. This form may be useful for obtaining a (near) symmetric
operator for situations where K cannot be used for the definition of an inner
product (as described under left-preconditioning).

Note that with all these forms of preconditioning, either explicit or implicit,
we are generating, through a redefinition of the inner product, a Krylov sub-
space for the preconditioned operator. This implies that the reduced matrix Hi,i

(cf. (3.18), gives information about the preconditioned matrix: in particular, the
Ritz values approximate eigenvalues of the preconditioned matrix. The gener-
ated Krylov subspace cannot be used in order to obtain information as well for
the unpreconditioned matrix.

The choice of K varies from purely ‘black box’ algebraic techniques that can
be applied to general matrices to ‘problem dependent’ preconditioners that
exploit special features of a particular problem class. Examples of the last
class are discretized partial differential equations, where the preconditioner is
constructed as the discretization of a nearby (easier to solve) PDE. Although
problem dependent preconditioners can be very powerful, there is still a practical
need for efficient preconditioning techniques for large classes of problems.

We will now discuss some seemingly strange effects of preconditioning.
There is very little theory for what we can expect a priori with a specific type
of preconditioner. It is well known that incomplete LU decompositions exist if
the matrix A is an M-matrix, but that does not say anything about the potential
reduction in the number of iterations. For the discretized Poisson equation, it
has been proved [175] that the number of iterations will be reduced by a factor
larger than 3. This leads to a true reduction in CPU time, because the complexity
per (preconditioned) iteration increases with a factor of about 2.

For systems that are not positive definite, almost anything can happen. For
instance, let us consider a symmetric matrix A that is indefinite. The goal
of preconditioning is to approximate A by K , and a common strategy is to
ensure that the preconditioned matrix K −1 A has its eigenvalues clustered near
1 as much as possible. Now imagine some preconditioning process in which
we can improve the preconditioner continuously from K = I to K = A. For
instance, we might think of incomplete LU factorization with a drop-tolerance
criterion. For K = I , the eigenvalues of the preconditioned matrix are clearly
those of A and thus are at both sides of the origin. Since eventually when the
preconditioner is equal to A all eigenvalues are exactly 1, the eigenvalues have
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to move gradually in the direction of 1, as the preconditioner is improved. The
negative eigenvalues, on their way towards 1 have to pass the origin, which
means that while improving the preconditioner the preconditioned matrix may
from time to time have eigenvalues very close to the origin. In my chapter on
iterative methods, I have explained that the residual in the i-th iteration step can
be expressed as

ri = Pi (B)r0,

where B represents the preconditioned matrix. Since the polynomial Pi has to
satisfy Pi (0) = 1, and since the values of Pi should be small on the eigenvalues
of B, this may help to explain why there may not be much reduction for com-
ponents in eigenvector directions corresponding to eigenvalues close to zero,
if i is still small. This means that, when we improve the preconditioner, in the
sense that the eigenvalues are getting more clustered towards 1, its effect on
the iterative method may be dramatically worse for some ‘improvements’. This
is a qualitative explanation of what we have observed many times in practice.
By increasing the number of fill-in entries in ILU, sometimes the number of
iterations increases. In short, the number of iterations may be a very irregu-
lar function of the level of the incomplete preconditioner. For other types of
preconditioners similar observations may be made.

There are only very few specialized cases where it is known a priori how to
construct a good preconditioner and there are few proofs of convergence except
in very idealized cases. For a general system, however, the following approach
may help to build up our insight into what is happening. For a representative
linear system, we start with unpreconditioned GMRES(m), with m as high as
possible. In one cycle of GMRES(m), the method explicitly constructs an upper
Hessenberg matrix of order m, denoted by Hm . This matrix is reduced to upper
triangular form but, before this takes place, we should compute the eigenvalues
of Hm , called the Ritz values. These Ritz values usually give a fairly good
impression of the most relevant parts of the spectrum of A. Then we do the
same with the preconditioned system and inspect the effect on the spectrum. If
there is no specific trend of improvement in the behaviour of the Ritz values,
when we try to improve the preconditioner, then obviously we have to look for
another class of preconditioner. If there is a positive effect on the Ritz values,
then this may give us some insight as to by how much the preconditioner has
to be further improved in order to be effective. At all times, we have to keep in
mind the rough analysis that we made in this chapter, and check whether the
construction of the preconditioner and its costs per iteration are still inexpensive
enough to be amortized by an appropriate reduction in the number of iterations.
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In this chapter I will describe some of the more popular preconditioning tech-
niques and give references and pointers for other techniques. I refer the reader to
[10, 37, 168, 144] for more complete overviews of (classes of) preconditioners.
See [22] for a very readable introduction to various concepts of preconditioning
and for many references to specialized literature.

Originally, preconditioners were based on direct solution methods in which
part of the computation is skipped. This leads to the notion of Incomplete LU
(or I LU ) factorization [139, 10, 168]. I will now discuss these incomplete
factorizations in more detail.

13.2 Incomplete LU factorizations

Standard Gaussian elimination is equivalent to factoring the matrix A as
A = LU , where L is lower triangular and U is upper triangular. In actual
computations these factors are explicitly constructed. The main problem in
sparse matrix computations is that the factors of A are often a good deal less
sparse than A, which makes solution expensive. The basic idea in the point
ILU preconditioner is to modify Gaussian elimination to allow fill-ins at only
a restricted set of positions in the LU factors. Let the allowable fill-in positions
be given by the index set S, i.e.

li, j = 0 if j > i or (i, j) /∈ S

ui, j = 0 if i > j or (i, j) /∈ S. (13.1)

A commonly-used strategy is to define S by:

S = {(i, j)| ai, j 	= 0}. (13.2)

That is, the only nonzeros allowed in the LU factors are those for which the
corresponding entries in A are nonzero. Before we proceed with different strate-
gies for the construction of effective incomplete factorizations we consider
whether these factorizations exist. It can be shown that they exist for so-called
M-matrices.

The theory of M-matrices for iterative methods is very well covered by Varga
[212]. These matrices occur frequently after discretization of partial differential
equations, and for M-matrices we can identify all sorts of approximating ma-
trices K for which the basic splitting leads to a convergent iteration (3.1). For
preconditioners for Krylov subspace methods it is not important that the basic
iteration converges; primarily we want reduced condition numbers and/or better
eigenvalue distributions for the preconditioned matrices. These latter properties
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are very difficult to prove. In fact, some of these effects have been proven only
for very special model problems, for examples of this, see [195, 205].

I will now first show how the M-matrix theory functions in the construction of
incomplete LU factorizations. I consider first the complete Gaussian elimination
process, for which the following extension of a theorem by Fan [80, p.44] is
useful [139].

Theorem 13.1. Gaussian elimination preserves the M-matrix property.

Proof. We consider one step in the elimination process: the elimination of the
subdiagonal elements in the first column of A. In matrix notation this leads to

A(1) = L(1), (13.3)

with

L(1) =


1

− a2,1

a1,1
1

...
. . .

− an,1

a1,1
1

 ≥ 0 .

The elements of A(1) are given by a(1)
i, j = ai, j − a1, j

a1,1
ai,1, for i > 1, and

a(1)
1, j = a1, j .

Note that a(1)
i, j ≤ 0 for i 	= j.

It remains to be shown that (A(1))−1 ≥ 0. We consider the i-th column

(A(1))−1ei = A−1(L(1))−1ei .

For i = 1 it follows that A−1(L(1))−1e1 = 1
a1,1

e1. For i 	= 1 we have that

(A(1))−1ei = A−1ei ≥ 0. ��

After an elimination step we ignore certain fill-in elements in off-diagonal
positions. Now the following (almost trivial) extension of a theorem of Varga
[212, Theorem 3.12] is helpful [139, Theorem 2.2].

Theorem 13.2. If A = (ai, j ) is a real n × n M-matrix and C = (ci, j ) is a real
n × n matrix with ci,i ≥ ai,i and ai, j ≤ ci, j ≤ 0, for i 	= j , then C is also an
M-matrix.

Exercise 13.1. Suppose that we replace an off-diagonal element in the second
row of A(1) by zero. Let the result after the elimination of the second column of
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the remaining matrix be denoted by Ã(2). Show that

ã(2)
i,i ≥ a(2)

i,i , (13.4)

for all i , and

a(2)
i, j ≤ ã(2)

i, j ≤ 0, (13.5)

for i 	= j .

Theorem 13.1 says that after a Gaussian elimination step on an M-matrix A,
we obtain a reduced matrix that is still an M-matrix. The relations (13.4) and
(13.5), together with Theorem 13.2, show that even after ignoring off-diagonal
elements in the reduced matrix we still have an M-matrix.

Exercise 13.2. Suppose that A is an M-matrix. Consider the Gaussian elimi-
nation corrections to the diagonal of A after one step of Gaussian elimination
(that is, consider the diagonal elements of A(1) − A). Show that after ignoring
some of these diagonal corrections the remaining matrix has still the M-matrix
property.

After n − 1 steps of Gaussian elimination we obtain an upper triangular matrix

U ≡ A(n−1) = L(n−1)L(n−2) · · · L(1) A, (13.6)

with

L−1 ≡ L(n−1)L(n−2) · · · L(1). (13.7)

This gives the decomposition A = LU . Repeated application of Theorem 13.1
leads to the observation that U is an M-matrix. Because of the above given
arguments, we conclude that U is still an M-matrix after ignoring Gaussian
elimination corrections in various stages of the elimination process.

Now we consider the elimination matrices L(i). Obviously the elements of
these matrices are nonnegative.

The following exercise involves the proof of a very well-known fact (see,
for example, [98]).

Exercise 13.3. Show that the inverse of L(i) is obtained by simply multiplying
the off-diagonal elements with −1. Show also that (L(i))−1 is an M-matrix, if
A is an M-matrix.
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Exercise 13.4. Prove that L (cf. (13.7)) is an M-matrix if A is an M-matrix.

Exercise 13.5. Show that if we ignore arbitrary off-diagonal elements in the
L(i), the remaining lower triangular matrix L is still an M-matrix (if A is an
M-matrix).

We have in this way arrived at an incomplete LU decomposition of the
M-matrix A. Obviously, the incomplete factors exist, but there is more. We
have seen that ignoring Gaussian elimination elements in L and U has the
effect that diagonal elements of the upper triangular factor U become larger
and that the off-diagonal elements of the factors L and U become smaller in
absolute value (but remain negative).

The following theorem collects the above results for the situation where we
determine a priori the positions of the elements that we wish to ignore during
the Gaussian elimination process. Note that this is not a serious restriction
because we may also neglect elements during the process according to certain
criteria and this defines the positions implicitly. The indices of the elements to
be ignored are collected in a set S:

S ⊂ Sn ≡ {(i, j)|i 	= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. (13.8)

We can now formulate the theorem that guarantees the existence of incom-
plete decompositions for the M-matrix A (cf. [139, Theorem 2.3]).

Theorem 13.3. Let A = (ai, j ) be an n × n M-matrix, then there exists for
every S ⊂ Sn a lower triangular matrix L̃ = (
i, j ), with 
i,i = 1, an upper
triangular matrix Ũ = (ui, j ), and a matrix N = (ni, j ) with

• 
i, j = 0, ui, j = 0, if (i, j) ∈ S

• ni, j = 0 if (i, j) 	∈ S,

such that the splitting A = L̃Ũ − N leads to a convergent iteration (3.1).
The factors L̃ and Ũ are uniquely defined by S.

We can, of course, make variations on these incomplete splittings, for instance,
by isolating the diagonal of Ũ as a separate factor. When A is symmetric and
positive definite, then S is obviously selected so that it defines a symmetric
sparsity pattern and then we can rewrite the factorization so that the diagonals
of L̃ and Ũ are equal. These are known as incomplete Cholesky decompositions.
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ILU for an n by n matrix A (cf. [10]):
for k = 1, 2, . . . , n − 1

d1/ak,k

for i = k + 1, k + 2, . . . , n
if (i, k) ∈ S

e = dai,k; ai,k = e
for j = k + 1, . . . , n

if (i, j) ∈ S and (k, j) ∈ S
ai, j = ai, j − eak, j

end if
end j

end if
end i

end k

Figure 13.1. ILU for a general matrix A.

A commonly used strategy is to define S by:

S = {(i, j)| ai, j 	= 0}. (13.9)

That is, the only nonzeros allowed in the LU factors are those for which the
corresponding entries in A are nonzero. It is easy to show that the elements ki, j

of K match those of A on the set S:

ki, j = ai, j if (i, j) ∈ S. (13.10)

Even though the conditions (13.1) and (13.10) together are sufficient (for certain
classes of matrices) to determine the nonzero entries of L and U directly,
it is more natural and simpler to compute these entries based on a simple
modification of the Gaussian elimination algorithm; see Figure 13.1. The main
difference from the usual Gaussian elimination algorithm is in the innermost
j-loop where an update to ai, j is computed only if it is allowed by the constraint
set S.

After the completion of the algorithm, the incomplete LU factors are stored
in the corresponding lower and upper triangular parts of the array A. It can be
shown that the computed LU factors satisfy (13.10).

The incomplete factors L̃ and Ũ define the preconditioner K = (L̃Ũ )−1. In
the context of an iterative solver, this means that we have to evaluate expressions
like z = (L̃Ũ )−1 y for any given vector y. This is done in two steps: first obtain
w from the solution of L̃w = y and then compute z from Ũ z = w. Straightfor-
ward implementation of these processes leads to recursions, for which vector
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and parallel computers are not ideally suited. This sort of observation has led to
reformulations of the preconditioner, for example, with reordering techniques
or with blocking techniques. It has also led to different types of precondi-
tioner, including diagonal scaling, polynomial preconditioning, and truncated
Neumann series. These approaches may be useful in certain circumstances, but
they tend to increase the computational complexity, because they often require
more iteration steps or make each iteration step more expensive.

A well-known variant on ILU is the so-called Modified ILU (MILU) factor-
ization [71, 105]. For this variant the condition (13.10) is replaced by

n∑
j=1

ki, j =
n∑

j=1

ai, j + ch2 for i = 1, 2, . . . , n. (13.11)

The term ch2 is for grid-oriented problems with mesh-size h. Although in many
applications this term is skipped (that is, we often take c = 0), this may lead
to ineffective preconditioning [199, 195] or even breakdown of the precondi-
tioner, see [72]. In our context, the row sum requirement in (13.11) amounts to
an additional correction to the diagonal entries, compared to those computed
in Figure 13.1 and to the di in (13.14). This correction leads to the observation
that K z ≈ Az for almost constant z (in fact this was the motivation for the
construction of these preconditioners). This results in very fast convergence for
problems where the solution is very smooth (almost constant for the compo-
nents corresponding to the nonzero elements per row of A). However, quite the
opposite may be observed for problems where the solution is far from smooth.
For such problems MILU may lead to much slower convergence than ILU.

The incomplete factorizations have been generalized with blocks of A instead
of single elements. The inverses of diagonal blocks in these incomplete block
factorizations are themselves again approximated, for instance by their diagonal
only or by the tridiagonal part, for details on this see [10, 144, 43]. In the author’s
experience, block incomplete decompositions can be quite effective for linear
systems associated with 2-dimensional partial differential equations, discretized
over rectangular grids. However, for 3-dimensional problems they appeared to
be less effective.

13.2.1 An example of incomplete decompositions

I will illustrate the above sketched process for a popular type of precondi-
tioner for sparse positive definite symmetric matrices, namely, the Incomplete
Cholesky factorization [98, 139, 140, 211] with no fill-in. We will denote this
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preconditioner as IC(0). CG in combination with IC(0) is often referred to as
ICCG(0). We shall consider IC(0) for the matrix with five nonzero diagonals that
arises after the 5-point finite-difference discretization of the two-dimensional
Poisson equation over a rectangular region, using a grid of dimensions nx by
ny . If the entries of the three nonzero diagonals in the upper triangular part
of A are stored in three arrays a(·, 1) for the main diagonal, a(·, 2) for the
first co-diagonal, and a(·, 3) for the nx -th co-diagonal, then the i-th row of the
symmetric matrix A can be represented as in (13.12).

A =


. . .

. . .
. . .

. . .
. . .

ai−nx ,3 ai−1,2 ai,1 ai,2 ai,3

. . .
. . .

. . .
. . .

. . .

 (13.12)

Exercise 13.6. If we write A as A = L A + diag(A) + L A
T , in which L A is the

strictly lower triangular part of A, show that the IC(0)-preconditioner can be
written as

K = (L A + D)D−1(L A
T + D). (13.13)

Relation (13.13) only holds if there are no corrections to off-diagonal nonzero
entries in the incomplete elimination process for A and if we ignore all fill-in
outside the nonzero structure of A. It is easy to do this for the 5-point Laplacian.
For other matrices, we can force the relation to hold only if we also ignore
Gaussian elimination corrections at places where A has nonzero entries. This
may decrease the effectiveness of the preconditioner, because we then neglect
more operations in the Gaussian elimination process.

For IC(0), the entries di of the diagonal matrix D can be computed from the
relation

diag(K ) = diag(A).

For the 5-diagonal A, this leads to the following relations for the di :

di = ai,1 − a2
i−1,2/di−1 − a2

i−nx ,3/di−nx . (13.14)

Obviously this is a recursion in both directions over the grid. This aspect will
be discussed later when we consider the application of the preconditioner in the
context of parallel and vector processing.

Axelsson and Lindskog [12] describe a relaxed form of modified incom-
plete decomposition that, for the 5-diagonal A, leads to the following relations
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for the di :

di = ai,1 − ai−1,2(ai−1,2 + αai−1,3)/di−1

− ai−nx ,3(ai−nx ,3 + αai−nx ,2)/di−nx .

Note that, for α = 0 we have the standard IC(0) decomposition, whereas for
α = 1 we have the modified Incomplete Cholesky decomposition MIC(0) pro-
posed by Gustafsson [105]. It has been observed that, in many practical situa-
tions, α = 1 does not lead to a reduction in the number of iteration steps, with
respect to α = 0, but in my experience, taking α = 0.95 almost always reduces
the number of iteration steps significantly [200]. The only difference between
the IC(0) and MIC(0) is the choice of the diagonal D; in fact, the off-diagonal
entries of the triangular factors are identical.

For the solution of systems Kw = r , given by

K −1r = (LT
A + D)−1 D(L A + D)−1r,

it will almost never be advantageous to determine the matrices (LT
A + D)−1

and (L A + D)−1 explicitly, since these matrices are usually dense triangular
matrices. Instead, for the computation of, say, y = (L A + D)−1r , y is solved
from the linear lower triangular system (L A + D)y = r . This step then leads
typically to relations for the entries yi , of the form

yi = (ri − ai−1,2 yi−1 − ai−nx ,3 yi−nx )/di ,

which again represents a recursion in both directions over the grid, of the same
form as the recursion for the di .

For differently structured matrices, we can also perform incomplete LU fac-
torizations. Often, many of the ideas shown here for Incomplete Cholesky
factorizations apply for efficient implementation. For more general matrices
with the same nonzero structure as the 5-point Laplacian, some other well-
known approximations lead to precisely the same type of recurrence relations
as for Incomplete LU and Incomplete Cholesky: for example, Gauss–Seidel,
SOR, SSOR [113], and SIP [183]. Hence these methods can often be made
vectorizable or parallel in the same way as in the algorithm for Incomplete
Cholesky preconditioning.

Since vector and parallel computers do not lend themselves well to recur-
sions in a straightforward manner, the recursions just discussed may seriously
degrade the effect of preconditioning on a vector or parallel computer, if carried
out in the form given above. This sort of observation has led to different types of
preconditioners, including diagonal scaling, polynomial preconditioning, and
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truncated Neumann series. Such approaches may be useful in certain circum-
stances, but they tend to increase the computational complexity (by requiring
more iteration steps or by making each iteration step more expensive). On the
other hand, various techniques have been proposed to vectorize the recursions,
mainly based on reordering the unknowns or changing the order of computation.
For regular grids, such approaches lead to highly vectorizable code for the stan-
dard incomplete factorizations (and consequently also for Gauss–Seidel, SOR,
SSOR, and SIP). If our goal is to minimize computing time, there may thus be
a trade-off between added complexity and increased vectorization. However,
before discussing these techniques, I shall present a method of reducing the
computational complexity of preconditioning.

13.2.2 Efficient implementations of ILU(0) preconditioning

Suppose that the given matrix A is written in the form A = L A + diag(A) + UA,
in which L A and UA are the strictly lower and upper triangular part of A, re-
spectively. Eisenstat [74] has proposed an efficient implementation for precon-
ditioned iterative methods, when the preconditioner K can be represented as

K = (L A + D)D−1(D + UA), (13.15)

in which D is a diagonal matrix. Some simple Incomplete Cholesky, incom-
plete LU, modified versions of these factorizations, as well as SSOR can be
written in this form. For the incomplete factorizations, we have to ignore all
the LU factorization corrections to off-diagonal entries [140]; the resulting de-
composition is referred to as ILU(0) in the unsymmetric case, and IC(0) for
the Incomplete Cholesky situation. For the 5-point finite-difference discretized
operator over rectangular grids in two dimensions, this is equivalent to the in-
complete factorizations with no fill-in, since in these situations there are no
Gaussian elimination operations on nonzero off-diagonal entries.

The first step to make the preconditioning more efficient is to eliminate the
diagonal D in (13.15). We rescale the original linear system Ax = b to obtain

D−1/2 AD−1/2 x̃ = D−1/2b, (13.16)

or Ãx̃ = b̃, with Ã = D−1/2 AD−1/2, x̃ = D1/2x, and b̃ = D−1/2b. With Ã =
L Ã + diag( Ã) + UÃ, we can easily verify that

K̃ = (L Ã + I )(I + UÃ). (13.17)
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Note that the corresponding triangular systems, such as (L Ã + I )r = w, are
more efficiently solved, since the division by the entries of D is avoided. Also
note that this scaling does not necessarily have the effect that diag( Ã) = I .

The key idea in Eisenstat’s approach (also referred to as Eisenstat’s trick) is
to apply standard iterative methods (that is, in their formulation with K = I )
to the explicitly preconditioned linear system

(L Ã + I )−1 Ã(I + UÃ)−1 y = (L Ã + I )−1b̃, (13.18)

where y = (I + UÃ)x̃ . This explicitly preconditioned system will be denoted
by Py = c. Now we can write Ã in the form

Ã = L Ã + I + diag( Ã) − 2I + I + UÃ. (13.19)

This expression, as well as the special form of the preconditioner given by
(13.17), is used to compute the vector Pz for a given z by

Pz = (L Ã + I )−1 Ã(I + UÃ)−1z = (L Ã + I )−1(z + (diag( Ã) − 2I )t) + t,
(13.20)

with

t = (I + UÃ)−1z. (13.21)

Note that the computation of Pz is equivalent to solving two triangular systems
plus the multiplication of a vector by a diagonal matrix (diag( Ã) − 2I ) and an
addition of this result to z. Therefore the matrix-vector product for the precondi-
tioned system can be computed virtually at the cost of the matrix-vector product
of the unpreconditioned system. This fact implies that the preconditioned sys-
tem can be solved by any of the iterative methods for practically the same
computational cost per iteration step as the unpreconditioned system. That is to
say, the preconditioning comes essentially for free, in terms of computational
complexity.

In most situations we see, unfortunately, that while we have avoided the fast
part of the iteration process (the matrix-vector product Ap), we are left with
the most problematic part of the computation, namely, the triangular solves.
However, in some cases, as we shall see, these parts can also be optimized to
about the same level of performance as the matrix-vector products.

13.3 Changing the order of computation

In some situations, it is possible to change the order of the computations with-
out changing the results. A prime example is the ILU preconditioner for the
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5-point finite-difference operator over a rectangular m by m grid. Suppose
that we have indexed the unknowns according to their positions in the grid,
lexicographically as x1,1, x1,2, . . . , x1,m , x2,1, . . . , xm,m . Then, for the standard
ILU(0) preconditioner, in which all fill-ins are discarded, it is easily verified
that the computations for the unknowns xi, j can be done independently of each
other along diagonals of the grid (grid points for which the sum of the indices
is constant). This leads to vector code but, because there is only independence
along each diagonal, the parallelism is too fine-grained. In three-dimensional
problems, there are more possibilities to obtain vectorizable or parallel code.
For the standard 7-point finite-difference approximation of elliptic PDEs over
a regular rectangular grid, the equivalent of the diagonal in two dimensions is
known as the hyperplane: a set of grid points for which the sum of the three
indices is constant. It was reported in [171, 199] that this approach can lead
to satisfactory performance on vector computers. For the CM-5 computer, a
similar approach was developed in [27]. The obvious extension of hyperplanes
(or diagonals) to irregular sparse matrices, defines the wavefront ordering, dis-
cussed in [161]. The success of a wavefront ordering depends very much on how
well a given computer can handle indirect addressing. In general, the straight-
forward wavefront ordering approach gives too little opportunity for efficient
parallelization.

Vuik, van Nooyen and Wesseling [214] generalize the wavefront approach to
a block wavefront approach, using ideas that were originally proposed for par-
allel multigrid in [21]. They present results of experiments on a 128-processor
CRAY 3TD. Van Duin [209, Chapter 3] uses graph concepts for the detection of
parallelism. He attempts to identify strongly connected components for which
independent ILU factorizations can be made. A drop tolerance strategy is used
to create a large enough number of such components. This leads to the concept
of MultiILU.

13.4 Reordering the unknowns

A standard trick for exploiting parallelism is to select all unknowns that have
no direct relationship with each other and to number them first. For the 5-point
finite-difference discretization over rectangular grids, this approach is known
as a red-black ordering. For elliptic PDEs, this leads to very parallel precon-
ditioners. The performance of the preconditioning step is as high as the per-
formance of the matrix-vector product. However, changing the order of the
unknowns leads in general to a different preconditioner. Duff and Meurant
[69] report on experiments that show that most reordering schemes (for exam-
ple, the red-black ordering) lead to a considerable increase in iteration steps
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(and hence in computing time) compared with the standard lexicographical
ordering.

For the red-black ordering associated with the discretized Poisson equation,
it can be shown that the condition number of the preconditioned system is only
about one quarter that of the unpreconditioned system for ILU, MILU, and
SSOR, with no asymptotic improvement as the gridsize h tends to zero [128].

One way to obtain a better balance between parallelism and fast conver-
gence, is to use more colours [57]. In principle, since there is not necessarily
any independence between different colours, using more colours decreases the
parallelism but increases the global dependence and hence the convergence. In
[58], up to 75 colours are used for a 762 grid on the NEC SX-3/14 resulting in
a 2 Gflops performance, which is much better than for the wavefront ordering.
With this large number of colours the speed of convergence for the precondi-
tioned process is virtually the same as with a lexicographical ordering [57].

The concept of multi-colouring has been generalized to unstructured prob-
lems by Jones and Plassmann [123]. They propose effective heuristics for the
identification of large independent subblocks of a given matrix. For problems
large enough to get sufficient parallelism in these subblocks, their approach
leads to impressive speedups compared to the natural ordering on a single
processor.

Meier and Sameh [138] report on the parallelization of the preconditioned
CG algorithm for a multivector processor with a hierarchical memory. Their ap-
proach is based on a red-black ordering in combination with forming a reduced
system (Schur complement).

Another approach, suggested by Meurant [142], exploits the idea of the
two-sided (or twisted) Gaussian elimination procedure for tridiagonal matrices.
This is generalized for the incomplete factorization. Van der Vorst [198] has
shown how this procedure can be done in a nested way. For 3D finite-difference
problems, twisting can be used for each dimension, which gives an increase
in parallelism by a factor of two per dimension. This leads, without further
computational overheads, to an incomplete decomposition, as well as triangular
solves, that can be done in eight parallel parts (2 in each dimension). For a
discussion of these techniques see [61]. This parallel ordering technique is
sometimes referred to as ‘vdv’ ordering [69], or ‘van der Vorst’ ordering, see
for example [22].

Meurant [143] reports on timing results obtained on a CRAY Y-MP/832,
using an incomplete repeated twisted block factorization for two-dimensional
problems. For this approach for preconditioned CG, Meurant reports a speedup
of nearly 6 on an 8-processor CRAY Y-MP. This speedup has been measured
relative to the same repeated twisted factorization process executed on a single
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Figure 13.2. Decomposition of the grid into stripes, and assignment of subdomains to processors
for p = 8. Arrows indicate the progressing direction of the line numbering per subdomain. Numbers
along the y-axis give an example of global (line) ordering, which satisfies all the required conditions.
Within each horizontal line, gridpoints are ordered lexicographically.

processor. Meurant also reports an increase in the number of iteration steps as a
result of this repeated twisting. This increase implies that the effective speedup
with respect to the best nonparallel code is only about 4.

A more sophisticated approach that combines ideas from twisting, domain
decomposition with overlap, and reordering, was proposed in [132, 133, 134].
We will explain this idea for the special situation of a discretized second order
elliptic PDE over a rectangular domain. The discretization has been carried out
with the standard 5-point central difference stencil that leads, over a rectangular
grid with lexicographical ordering, to the familiar block matrix with 5 nonzero
diagonals.

The first step is to split the domain into blocks, as in domain decomposition
methods, and to order the unknowns lexicographically per block. This has been
indicated, for the case of 8 horizontal blocks, in Figure 13.2. Per block we start
counting from one side (‘the bottom layer’); the points on the last line (‘the
top layer’) are ordered after all subdomains, as is indicated in Figure 13.3. For
instance, the lines 1, 2, 3, and 26 all belong to the block stored with processor
P0, but in the matrix interpretation the first 3 lines are ordered first and line
26 appears in the matrix only after all other ‘interior’ lines. This means that
the matrix has the following nonzero structure (we give only a relevant part
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

1 2 3 4 · · · 26

∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗
∗

∗



Figure 13.3. The structure of the reordered matrix.

of the matrix). Note that we have already introduced another element in our
ordering, namely the idea of twisting: the lines of the subdomains are ordered
from bottom to top and from top to bottom in Figure 13.2.

Now imagine what happens if we carry out an incomplete LU factorization
with zero fill. That would create level-1 fill in the error matrix. Note that, in
particular, we would introduce fill in the subblock of the matrix that connects
line 26 with line 5, and note also that we would not have seen this level-1 fill if
we had selected all points lexicographically.

Exercise 13.7. Complete the structure in the matrix of Figure 13.3 and check
where fill-in occurs due to incomplete pivoting. Identify the fill positions that
lead to connections of unknowns that would not have occurred with lexico-
graphical ordering.

This means that if we want the block ordering to be at least as effective as the
standard ordering, we have to remove this additional fill. This can be inter-
preted as permitting level-1 fill in a small overlap, and this is the reason for
the name pseudo-overlap for this way of ordering. It is obvious how this idea
is generalized for more arbitrary matrices: the new ordering is compared with
the standard given one and the possibly additional level-1 fill is included in the
preconditioner. The idea can also easily be applied to preconditioners with a
higher level fill.

In [133, 132] an increase in the pseudo-overlap and also inclusion of higher
levels of fill that are introduced by the new block-wise ordering are suggested.
For high dimensional problems and relatively low numbers of processors this
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leads to almost negligible overhead. It is shown by analysis in [134] and by
experiments [133, 132] that the block ordering with pseudo-overlap may lead
to parallelizable incomplete decompositions that are almost perfectly scalable
if the number of processors p is less than

√
(n), where n denotes the order

of the given linear system (the reported experiments include experiments for
16 processors, for n ≈ 260 000).

13.5 Variants of ILU preconditioners

Many variants on the idea of incomplete or modified incomplete decomposition
have been proposed in the literature. These variants are designed to either
reduce the total computational work or improve the performance on vector or
parallel computers or handle special problems. We could, for instance, think of
incomplete variants of the various LU-decomposition algorithms discussed in
[98, Chapter 4.4].

I will describe some of the more popular variants and give references to
where more details can be found for other variants.

A natural approach is to allow more fill-in in the LU factor (that is a larger
set S), than those allowed by the condition (13.2). Several possibilities have
been proposed. The most obvious variant is to allow more fill-ins in specific
locations in the LU factors, for example allowing more nonzero bands in the
L̃ and Ũ matrices (that is larger stencils) [11, 105, 140]. The most common
location-based criterion is to allow a set number of levels of fill-in, where
original entries have level zero, original zeros have level ∞ and a fill-in in
position (i, j) has level determined by

Leveli j = min
1≤k≤min(i, j)

{Levelik + Levelk j + 1}.

In the case of simple discretizations of partial differential equations, this gives a
simple pattern for incomplete factorizations with different levels of fill-in. For
example, if the matrix is from a 5-point discretization of the Laplacian in two
dimensions, level 1 fill-in will give the original pattern plus a diagonal inside
the outermost band (for instance, see [140]).

The other main criterion for deciding which entries to omit is to replace
the drop-by-position strategy in (13.2) by a drop-by-size one. That is, a fill-in
entry is discarded if its absolute value is below a certain threshold value. This
drop-tolerance strategy was first proposed by [145]. For the regular problems
just mentioned, it is interesting that the level fill-in and drop strategies give
a somewhat similar incomplete factorization, because the numerical value of
successive fill-in levels decreases markedly, reflecting the characteristic decay
in the entries in the factors of the LU decomposition of A. For general problems,
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however, the two strategies can be significantly different. Since it is usually not
known a priori how many entries will be above a selected threshold, the dropping
strategy is normally combined with restricting the number of fill-ins allowed in
each column [167]. When using a threshold criterion, it is possible to change it
dynamically during the factorization to attempt to achieve a target density of the
factors [13, 145]. Saad gives a very good overview of these techniques [168].

Although the notation is not yet fully standardized, the nomenclature commonly
adopted for incomplete factorizations is ILU(k), when k levels of fill-in are al-
lowed, and ILUT(α, f ) for the threshold criterion, for which entries of modulus
less than α are dropped and the maximum number of fill-ins allowed in any
column is f . There are many variations on these strategies and the criteria are
sometimes combined. In some cases, constraining the row sums of the incom-
plete factorization to match those of the matrix, as in MILU, can help [105],
but as we noted earlier, successful application of this technique is restricted to
cases where the solution of the (preconditioned) system is rather smooth.

Shifts can be introduced to prevent breakdown of the incomplete factoriza-
tion process. As we have seen, incomplete decompositions exist for general
M-matrices. It is well known that they may not exist if the matrix is positive
definite, but does not have the M-matrix property.

Manteuffel [136] considered Incomplete Cholesky factorizations of diago-
nally shifted matrices. He proved that if A is symmetric positive definite, then
there exists a constant α > 0, such that the Incomplete Cholesky factorization
of A + α I exists. Since we make an incomplete factorization for A + α I , in-
stead of A, it is not necessarily the case that this factorization is also efficient
as a preconditioner; the only purpose of the shift is to avoid breakdown of the
decomposition process. Whether there exist suitable values for α such that the
preconditioner exists and is efficient is a matter of trial and error.

Another point of concern is that for nonM-matrices the incomplete factors
of A may be very ill-conditioned. For instance, it has been demonstrated in
[194] that if A comes from a 5-point finite-difference discretization of �u +
β(ux + uy) = f , then for β sufficiently large, the incomplete LU factors may
be very ill conditioned even though A has a very modest condition number.
Remedies for reducing the condition numbers of L̃ and Ũ have been discussed
in [76, 194].

13.6 Hybrid techniques

In the classical incomplete decompositions fill-in is ignored right from the start
of the decomposition process. However, it might be a good idea to delay this
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until the matrix becomes too dense. This leads to a hybrid combination of direct
and iterative techniques. One of such approaches has been described in [29];
I will describe it here in some detail.

We first permute the given matrix of the linear system Ax = b to a doubly
bordered block diagonal form:

Ã = PT AP =



A00 0 · · · 0 A0m

0 A11
. . .

... A1m

...
. . .

. . . 0
...

0 · · · 0 Am−1m−1
...

Am0 Am1 · · · · · · Amm


. (13.22)

Of course, the parallelism in the eventual method depends on the value of m,
and some problems lend themselves more to this than others. Many circuit
simulation problems can be rewritten in an effective way, as a circuit is often
composed of components that are only locally coupled to others.

We also permute the right-hand side b to b̃ = PT b, which leads to the system

Ãx̃ = b̃, (13.23)

with x = Px .
The parts of b̃ and x̃ that correspond to the block ordering will be denoted by

b̃i and x̃ i . The first step in the (parallelizable) algorithm will be to eliminate the
unknown parts x̃0, · · · , x̃m−1, which is done by the algorithm in Figure 13.4.

Note that S in Figure 13.4 denotes the Schur complement after the elimina-
tion of the blocks 0, 1, . . . , m − 1. In many relevant situations, direct solution
of the reduced system Sxm = ym requires the dominating part of the total com-
putational costs, and this is where we bring in the iterative component of the
algorithm.

Exercise 13.8. Suppose that we solve the reduced system Sxm = ym with an
iterative method and that after termination we have the approximated solution
x̂m, with rm = Sx̂m − ym. When we take this approximated solution for the
computation of the xi in Figure 13.4, then this leads to an approximated solution
x̂ for the system Ax = b.

Show that, in exact computation,

‖Ax̂ − b‖2 = ‖rm‖2. (13.24)
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Parallel for i = 0, 1, . . . , m − 1
Decompose Aii : Aii = LiiUii

Lmi = AmiU
−1
i i

Uim = L−1
i i Aim

yi = L−1
i i b̃i

Si = LmiUim

zi = Lmi yi

end
S = Amm −∑m−1

i=0 Si

ym = b̃m −∑m−1
i=0 zi

Solve Sxm = ym

Parallel for i = 0, 1, . . . , m − 1
xi = U−1

i i (yi − Uim xm)

end

Figure 13.4. Parallel elimination.

The next step is to construct a preconditioner for the reduced system. This
is based on discarding small elements in S. The elements larger than some
threshold value define the preconditioner C :

ci j =
{

si j if |si j > t |sii | or |si j | > t |s j j |
0 elsewhere

(13.25)

with a parameter 0 ≤ t < 1. In the experiments reported in [29] the value t =
0.02 turned out to be satisfactory, but this may need some experimentation for
specific problems.

When we take C as the preconditioner, then we have to solve systems like
Cv = w, and this requires decomposition of C . In order to prevent too much
fill-in, it is suggested that C is reordered with a minimum degree ordering. The
system Sxm = ym is then solved with, for instance, GMRES with precondi-
tioner C . For the examples described in [29] it turns out that the convergence of
GMRES was not very sensitive to the choice of t . The preconditioned iterative
solution approach for the reduced system also offers opportunities for paral-
lelism, although in [29] it is shown that even in serial mode the iterative solution
(to sufficiently high precision) is often more efficient than direct solution of the
reduced system.

Note that, because of (13.24), it is not necessary to iterate on the complete
system.
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In [29] heuristics are described for the decision on when the switch from direct
to iterative should take place. These heuristics are based on mild assumptions
on the speed of convergence of GMRES. The paper also reports on a number
of experiments for linear systems, not only from circuit simulation, but also for
some matrix problems taken from Matrix Market2. These experiments indicate
that attractive savings in computational costs can be achieved, even in serial
computation mode.

13.7 Element by element preconditioners

In finite-element problems, it is not always possible or sensible to assemble the
entire matrix, and it is as easy to form products of the matrix with vectors as it is
when held in assembled form. Furthermore, it is easy to distribute such matrix
multiplications to exploit parallelism. Hence preconditioners are required that
can be constructed at the element level. Hughes et al. [118] were the first to
propose such element by element preconditioners.

A parallel variant is suggested in [106]. For symmetric positive definite
A, they decompose each element matrix Ae as Ae = Le LT

e , and construct the
preconditioner as K = L LT , with

L =
ne∑

e=1

Le.

In this approach, nonadjacent elements can be treated in parallel. An overview
and discussion of parallel element by element preconditioners is given in [210].
To our knowledge, the effectiveness of element by element preconditioners is
limited, in the sense that often they do not give a substantial improvement of
the CPU time.

13.8 Polynomial preconditioning

The main motivation for considering polynomial preconditioning is to improve
the parallel performance of the solver, since the matrix-vector product is often
more parallelizable than other parts of the solver (for instance the inner prod-
ucts). By doing so, all implementation tricks for the matrix-vector product can
easily be exploited. The main problem is to find effective low degree polyno-
mials pk(A), so that the iterative solver can be applied to pk(A)Ax = pk(A)b.

2 Collection of test matrices available at
ftp://ftp.cise.ufl.edu/cis/tech-reports/tr98/tr98-016.ps.
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With m steps of a Krylov solver, this leads to a Krylov subspace

K m(pk(A)A; r0) = span(r0, pk(A)Ar0, . . . , (pk(A)A)m−1r0),

and this is a subspace of the Krylov subspace K (k+1)(m−1)+1(A; r0). The point
is that we have arrived in a high dimensional subspace (with ‘holes’), for the
overhead costs of only m iteration steps. The hope is that for clever choices of
pk , this high dimensional subspace, with holes, will contain almost the same
good approximation to the solution as the full Krylov subspace. If so, then
we have saved ourselves all the overhead associated with the (k + 1)(m − 1)

iteration steps that are needed to create the full subspace.
A big problem with polynomial preconditioning is that the aforementioned

‘holes’ can cause us to miss important directions and so many more iterations
are often required. Thus this form of preconditioning is usually only beneficial
on a platform where inner products are expensive and for methods rich in inner
products, like GMRES.

One approach for obtaining a polynomial preconditioner, reported in [65],
is to use the low order terms of a Neumann expansion of (I − B)−1, if A can be
written as A = I − B and the spectral radius of B is less than 1. It was suggested
in [65] that a matrix splitting A = K − N and a truncated power series for
K −1 N is used when the condition on B is not satisfied. More general polynomial
preconditioners have also been proposed (see, for example, [7, 122, 163]). These
polynomials are usually shifted Chebyshev polynomials over intervals that are
estimated from the iteration parameters of a few steps of the unpreconditioned
solver, or from other spectral information.

13.9 Sparse Approximate Inverse (SPAI)

The main reason why explicit inverses are not used is that, for irreducible
matrices, the inverse will always be structurally dense. That is to say, sparse
factorization techniques that produce sparse L and U will produce a dense in-
verse matrix even if most of the entries in the factors L and U are actually zero
[66]. However, we may follow ideas similar to those used for the construction
of ILU factorizations and compute and use directly a sparse approximation to
the inverse. Perhaps the most obvious technique for this is to solve the problem3

min
K

||I − AK ||F , (13.26)

3 We recall that ‖ ‖F denotes the Frobenius norm of a matrix, viz. ‖A‖F ≡
√∑

i, j a2
i, j .
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where K has some fully or partially prescribed sparsity structure. This prob-
lem can be expressed as n independent least-squares problems for each of the
n columns of K . Each of these least-squares problems only involves a few
variables and, because they are independent, they can be solved in parallel.
With these techniques it is possible to successively increase the density of the
approximation to reduce the value of (13.26) and so, in principle, ensure con-
vergence of the preconditioned iterative method [46]. The small least-squares
subproblems can be solved by standard (dense) QR factorizations [46, 99, 104].

In a further attempt to increase sparsity and reduce the computational cost
of the solution of the subproblems, it has been suggested that a few steps of
GMRES are used to solve the subsystems [39]. A recent study indicates that the
computed approximate inverse may be a good alternative to ILU [99], but it is
much more expensive to compute both in terms of time and storage, at least if
computed sequentially. This means that it is normally only attractive to use this
technique if the computational costs for the construction can be amortized by
using the preconditioner for several right-hand sides. We have seen successful
application of the SPAI approach for the solution of linear systems associ-
ated with electrical circuits, where different right-hand sides represent different
voltage or current inputs.

One other problem with these approaches is that, although the residual for the
approximation of a column of K can be controlled (albeit perhaps at the cost of a
rather dense column in K ), the nonsingularity of the matrix K is not guaranteed.
Partly to avoid this, an approach that approximates the triangular factors of
the inverse has been proposed [127]. The nonsingularity of the factors can be
easily controlled and, if necessary, the sparsity pattern of the factors may also be
controlled. Following this approach, sparse approximations to an A-biconjugate
set of vectors using drop tolerances can be generated [24, 26]. In a scalar or
vector environment, it is also much cheaper to generate the factors in this way
than to solve the least-squares problems for the columns of the approximate
inverse [25]. Van Duin [209, Chapter 5] shows how to compute (sparsified )
inverses for incomplete Cholesky factors and Zhang [224] has developed a
parallel preconditioning using incomplete triangular factors of the inverse.

Parallel implementation is almost an essential condition for efficient use of
sparse approximate inverses. For publications that concentrate on that aspect
see [18, 19, 23]. For highly structured matrices, some experiences have been
reported in [103]. Gustafsson and Lindskog [107] have implemented a fully
parallel preconditioner based on truncated Neumann expansions [196] to ap-
proximate the inverse SSOR factors of the matrix. Their experiments (on a
CM-200) show a worthwhile improvement over a simple diagonal scaling.
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Note that, because the inverse of the inverse of a sparse matrix is sparse, there
are classes of dense matrices for which a sparse approximate inverse might be a
very appropriate preconditioner. This may be the case for matrices that arise
from boundary element type discretizations, for instance, in electromagnetism
[1]. For some classes of problems, it may be attractive to construct the explicit
inverses of the LU factors, even if these are considerably less sparse than the
factors L and U , because such a factorization can be more efficient in parallel
[3]. An incomplete form of this factorization for use as a preconditioner was
proposed in [2].

For a good overview on the SPAI techniques see [22].

13.10 Preconditioning by blocks or domains

Other preconditioners that use direct methods, are those where the direct
method, or an incomplete version of it, is used to solve a subproblem of the
original problem. This can be done in domain decomposition, where problems
on subdomains can be solved by a direct method but the interaction between
the subproblems is handled by an iterative technique.

Domain decomposition methods were motivated by parallel computing, but
it now appears that the approach can also be used with success for the con-
struction of global preconditioners. This is usually done for linear systems that
arise from the discretization of a PDE. The idea is to split the given domain
into subdomains, and to compute an approximation for the solution on each
subdomain. If all connections between subdomains are ignored, this then leads
to a Block Jacobi preconditioner. Chan and Goovaerts [36] showed that the do-
main decomposition approach can actually lead to improved convergence rates,
at least when the number of subdomains is not too large. This is because of
the well-known divide and conquer effect when applied to methods with su-
perlinear complexity such as ILU: it is more efficient to apply such methods to
smaller problems and piece the global solution together.

In order to make the preconditioner more successful, the domains have to be
coupled, that is we have to find proper boundary conditions along the interior
boundaries of the subdomains. From a linear algebra point of view, this amounts
to adapting the diagonal blocks in order to compensate for the neglected off-
diagonal blocks. This is only successful if the matrix comes from a discretized
partial differential equation and if certain smoothness conditions on the solution
are assumed. If, for instance, the solution were constant, then we could remove
the off-diagonal block entries adding them to the diagonal block entries without
changing the solution. Likewise, if the solution is assumed to be fairly smooth



200 13. Preconditioning

along a domain interface, we might expect this technique of diagonal block
correction to be effective. Domain decomposition is used in an iterative fashion
and usually the interior boundary conditions (in matrix language: the corrections
to diagonal blocks) are based upon information from the approximate solutions
on the neighbouring subdomains that are available from a previous iteration
step.

Tang [188] has proposed the concept of matrix enhancement. The idea is to
introduce additional unknowns, which gives elegant possibilities for the for-
mulation of effective domain decomposition of the underlying problem. For
hyperbolic systems, this technique was further refined by Tan in [186] and
by Tan and Borsboom [187]. I will explain the idea for the situation of two
domains.

13.10.1 Canonical enhancement of a linear system

We start with the linear nonsingular system

B y = d, (13.27)

that results from discretization of a given PDE over some domain. Now, we
partition the matrix B, and the vectors y and d correspondingly,

B11 B1
 B1r B12

B
1 B

 B
r B
2

Br1 Br
 Brr Br2

B21 B2
 B2r B22

 ,


y1

y


yr

y2

 , and


d1

d


dr

d2

 . (13.28)

The labels are not chosen arbitrarily: we associate with label 1 (and 2, respec-
tively) elements/operations of the linear system corresponding to subdomain
1 (2, respectively) and with label 
 (r , respectively) elements/operations cor-
responding to the left (right, respectively) of the interface between the two
subdomains. The central blocks B

, B
r , Br
 and Brr are square matrices
of equal size, say, ni by ni . They correspond to the unknowns on the inter-
face. Since the number of unknowns on the interface will typically be much
smaller than the total number of unknowns, ni will be much smaller than n, the
size of B.

For a typical discretization, the matrix B is banded and the unknowns are only
locally coupled. Therefore it is not unreasonable to assume that Br1, B21, B12

and B
2 are zero. For this situation, we define the ‘canonical enhancement’
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B of B, ỹ of y, and d of d, by

B ≡



B11 B1
 B1r 0 0 0
B
1 B

 B
r 0 0 0
0 I 0 −I 0 0
0 0 −I 0 I 0
0 0 0 Br
 Brr Br2

0 0 0 B2
 B2r B22


, ỹ ≡



y1

y


ỹr

ỹ


yr

y2


, (13.29)

and

d ≡ (d1, d
, 0, 0, dr , d2)
T .

We easily verify that B is also nonsingular and that y is the unique solution of

B ỹ = d, (13.30)

with y ≡ (yT
1 , yT


 , yT
r , yT


 , yT
r , yT

2 )T .
With this linear system we can associate a simple iterative scheme for the

two coupled subblocks:

B11 B1
 B1r

B
1 B

 B
r

0 I 0


 y(i+1)

1

y(i+1)



ỹr
(i+1)

 =

 d1

d


ỹ

(i)

 ,

 0 I 0
Br
 Brr Br2

B2
 B2r B22


 ỹ


(i+1)

y(i+1)
r

y2
(i+1)

 =

 ỹr
(i)

dr

d2

 . (13.31)

These systems can be solved in parallel and we recognize this as nothing
else than a simple additive Schwartz iteration (with no overlap and Dirichlet–
Dirichlet coupling). The extra unknowns ỹ
 and ỹr , in the enhanced vector ỹ,
will serve for communication between the subdomains during the iterative so-
lution process of the linear system. After termination of the iterative process,
we have to undo the enhancement. We could simply skip the values of the ad-
ditional elements, but since these also carry information one of the alternatives
could be as follows.

With an approximate solution

ỹ(i) = (y(i)
1

T

, y(i)



T

, (ỹr
(i)

) T , (ỹ(i)

 ) T , y(i)

r
T
, y(i)

2
T

) T
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of (13.31), we may associate the approximate solution Rỹ of (13.27) given by

Rỹ ≡ (y(i)
1

T

, 1
2 (y(i)


 + ỹ(i)

 ) T , 1

2 (y(i)
r + ỹ(i)

r ) T , y(i)
2

T

) T , (13.32)

that is, we simply average the two sets of unknowns that should have been equal
to each other at full convergence.

13.10.2 Interface coupling matrix

From (13.29) we see that the interface unknowns and the additional interface
unknowns are coupled in a straightforward way by[

I 0

0 −I

][
y


ỹr

]
=
[

I 0

0 −I

][
ỹ


yr

]
, (13.33)

but, of course, we may replace the coupling matrix by any other nonsingular
interface coupling matrix C :

C ≡
[

C

 −C
r

−Cr
 Crr

]
. (13.34)

This leads to the following block system

BC ỹ =



B11 B1
 B1r 0 0 0
B
1 B

 B
r 0 0 0

0 C

 C
r −C

 −C
r 0
0 −Cr
 −Crr Cr
 Crr 0
0 0 0 Br
 Brr Br2

0 0 0 B2
 B2r B22





y1

y


ỹr

ỹ


yr

y2


= d. (13.35)

In a domain decomposition context, we will have for the approximate solution
y that ỹr ≈ yr and ỹ
 ≈ y
. If we know some analytic properties about the local
behaviour of the true solution y across the interface, for instance, smoothness
up to some degree, then we may try to identify a convenient coupling matrix C
that takes advantage of this knowledge. We preferably want a C so that

−C

 ỹ
 − C
r yr ≈ −C

y
 − C
r yr ≈ 0

and − Cr
y
 − Crr ỹr ≈ −Cr
y
 − Crr yr ≈ 0.

In that case (13.35) is almost decoupled into two independent smaller linear
systems (identified by the two boxes).
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The matrix consisting of the two blocks is then used as a preconditioner for
the enhanced system. Tan [186, Chapters 2 and 3] (see also [187]) studied the
interface conditions along boundaries of subdomains and forced continuity for
the solution and some low-order derivatives at the interface. He also proposed
including mixed derivatives in these relations, in addition to the conventional
tangential and normal derivatives. The parameters involved are determined lo-
cally by means of normal mode analysis, and they are adapted to the discretized
problem. It is shown that the resulting domain decomposition method defines
a standard iterative method for some splitting A = K − N , and the local cou-
pling aims to minimize the largest eigenvalues of I − AK −1. Of course this
method can be accelerated and impressive results for GMRES acceleration are
shown in [186]. Some attention is paid to the case where the solutions for the
subdomains are obtained with only modest accuracy per iteration step.

13.10.3 Other approaches

Washio and Hayami [217] employed a domain decomposition approach for a
rectangular grid in which one step of SSOR is performed for the interior part
of each subdomain. In order to make this domain-decoupled SSOR more like
global SSOR, the SSOR iteration matrix for each subdomain is modified. In or-
der to further improve the parallel performance, the inverses in these expressions
are approximated by low-order truncated Neumann series. A similar approach
is suggested in [217] for a block modified ILU preconditioner. Experimental
results have been reported for a 32-processor NEC Cenju distributed memory
computer.

Radicati and Robert [160] used an algebraic version of this approach by com-
puting ILU factors within overlapping block diagonals of a given matrix A.
When applying the preconditioner to a vector v, the values on the overlapped
region are taken as the average of the two values computed by the overlap-
ping ILU factors. The approach of Radicati and Robert has been further refined
by de Sturler [53], who studies the effects of overlap from the point of view
of geometric domain decomposition. He introduces artificial mixed boundary
conditions on the internal boundaries of the subdomains. In [53] (Table 5.8),
experimental results are shown for a decomposition into 20×20 slightly over-
lapping subdomains of a 200×400 mesh for a discretized convection-diffusion
equation (5-point stencil). Using a twisted ILU preconditioning on each subdo-
main, it is shown that the complete linear system can be solved by GMRES on a
400-processor distributed memory Parsytec system with an efficiency of about
80% (this means that, with this domain adapted preconditioner, the process is
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about 320 times faster than ILU preconditioned GMRES for the unpartitioned
linear system on a single processor). Since twisting leads to more parallelism,
we can use bigger blocks (which usually means a better approximation). This
helps to explain the good results.

Haase [110] suggests constructing an incomplete Cholesky decomposition on
each subdomain and modifying the decomposition using information from
neighbouring subdomains. His results, for the discretized Poisson equation in
3D, show that an increase in the number of domains scarcely affects the effec-
tiveness of the preconditioner. Experimental results for a realistic finite-element
model, on a 16-processor Parsytec Xplorer, show very good scalability of the
Conjugate Gradient method with this preconditioner.

Heisse and Jung [114] attempt to improve the effectiveness of a domain de-
composition preconditioner by using a multigrid V-cycle with only one pre-
and one post-smoothing step of a parallel variant of Gauss–Seidel type to solve
a coarse grid approximation to the problem. With the usual domain decomposi-
tion technique, effects of local changes in a domain that lead to global changes
in the solution travel a distance of only one layer of neighbouring domains per
iteration. The coarse grid corrections are used to pass this globally relevant
information more quickly to all domains. The combination with Conjugate
Gradients, which is the underlying method used for the local subproblems,
leads to good results on a variety of platforms, including a 64-processor GC
Power Plus machine. In fact, they use combinations of multigrid methods and
iterative methods.

For general systems, we could apply a block Jacobi preconditioning to the
normal equations, which would result in the block Cimmino algorithm [4]. A
similar relationship exists between a block SOR preconditioning and the block
Kaczmarz algorithm [30]. Block preconditioning for symmetric systems is dis-
cussed in [43]; in [45] incomplete factorizations are used within the diagonal
blocks. Attempts have been made to preorder matrices to put large entries into
the diagonal blocks so that the inverse of the matrix is well approximated by
the block diagonal matrix whose block entries are the inverses of the diagonal
blocks [38]. In fact, it is possible to have a significant effect on the convergence
of these methods just by permuting the matrix to put large entries on the diagonal
and then scaling it to reduce the magnitude of off-diagonal entries [68].
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