

Exploring Analytic Geometry
with Mathematica©R

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

ACADEMIC PRESS (“AP”) AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR

PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND DO NOT WAR-

RANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY USING THE PRODUCT.

THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF ANY KIND (EXCEPT AS HEREAFTER

DESCRIBED), EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY WAR-

RANTY OF PERFORMANCE OR ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS

FOR ANY PARTICULAR PURPOSE. AP WARRANTS ONLY THAT THE CD-ROM ON WHICH THE

CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY WORKMANSHIP UN-

DER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY (90) DAYS FROM THE DATE

THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE AND EXCLUSIVE REMEDY IN THE

EVENT OF A DEFECT IS EXPRESSLY LIMITED TO EITHER REPLACEMENT OF THE CD-ROM

OR REFUND OF THE PURCHASE PRICE, AT AP’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY, OR TORT

(INCLUDING NEGLIGENCE), WILL AP OR ANYONE WHO HAS BEEN INVOLVED IN THE CRE-

ATION OR PRODUCTION OF THE PRODUCT BE LIABLE TO PURCHASER FOR ANY DAMAGES,

INCLUDING ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OF INABILITY TO USE THE PRODUCT OR ANY MODIFICA-

TIONS THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF AP HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY.

Any request for replacement of a defective CD-ROM must be postage prepaid and must be accompanied by

the original defective CD-ROM, your mailing address and telephone number, and proof of date of purchase

and purchase price. Send such requests, stating the nature of the problem, to Academic Press Customer

Service, 6277 Sea Harbor Drive, Orlando, FL 32887, 1-800-321-5068. AP shall have no obligation to refund the

purchase price or to replace a CD-ROM based on claims of defects in the nature or operation of the Product.

Some states do not allow limitation on how long an implied warranty lasts, nor exclusions or limitations of

incidental or consequential damages, so the above limitations and exclusions may not apply to you. This

warranty gives you specific legal rights, and you may also have other rights which vary from jurisdiction to

jurisdiction.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO UNITED STATES LAWS

UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY FURTHER SALE OF

THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES DEPARTMENT OF COM-

MERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH SUCH REGULATIONS IS YOUR

RESPONSIBILITY AND NOT THE RESPONSIBILITY OF AP.

Mathematica and MathReader are registered trademarks of Wolfram Research, Inc.

Acrobat Reader is a registered trademark of Adobe Systems, Inc.

Exploring Analytic Geometry
with Mathematica©R

Donald L. Vossler
BME, Kettering University, 1978

MM, Aquinas College, 1981

ACADEMIC PRESS

San Diego London Boston
New York Sydney Tokyo Toronto

Preface

The study of two-dimensional analytic geometry has gone in and out of fashion several times
over the past century, however this classic field of mathematics has once again become popular
due to the growing power of personal computers and the availability of powerful mathematical
software systems, such as Mathematica, that can provide an interactive environment for study-
ing the field. By combining the power of Mathematica with an analytic geometry software
system called Descarta2D, the author has succeeded in meshing an ancient field of study with
modern computational tools, the result being a simple, yet powerful, approach to studying
analytic geometry. Students, engineers and mathematicians alike who are interested in ana-
lytic geometry can use this book and software for the study, research or just plain enjoyment
of analytic geometry.

Mathematica provides an attractive environment for studying analytic geometry. Mathe-
matica supports both numeric and symbolic computations, meaning that geometry problems
can be solved numerically, producing approximate or exact answers, as well as producing gen-
eral formulas with variables. Mathematica also has good facilities for producing graphical
plots which are useful for visualizing the graphs of two-dimensional geometry.

Features

Exploring Analytic Geometry with Mathematica, Mathematica and Descarta2D provide the
following outstanding features:

• The book can serve as classical analytic geometry textbook with in-line Mathematica
dialogs to illustrate key concepts.

• A large number of examples with solutions and graphics is keyed to the textual devel-
opment of each topic.

• Hints are provided for improving the reader’s use and understanding of Mathematica
and Descarta2D.

• More advanced topics are covered in explorations provided with each chapter, and full
solutions are illustrated using Mathematica.

v

vi Preface

• A detailed reference manual provides complete documentation for Descarta2D, with com-
plete syntax for over 100 new commands.

• Complete source code for Descarta2D is provided in 30 well-documented Mathematica
notebooks.

• The complete book is integrated into the Mathematica Help Browser for easy access and
reading.

• A CD-ROM is included for convenient, permanent storage of the Descarta2D software.

• A complete software system and mathematical reference is packaged as an affordable
book.

Classical Analytic Geometry

Exploring Analytic Geometry with Mathematica begins with a traditional development of an-
alytic geometry that has been modernized with in-line chapter dialogs using Descarta2D and
Mathematica to illustrate the underlying concepts. The following topics are covered in 21
chapters:

Coordinates • Points • Equations • Graphs • Lines • Line Segments • Cir-
cles • Arcs • Triangles • Parabolas • Ellipses • Hyperbolas • General Conics •
Conic Arcs • Medial Curves • Transformations • Arc Length • Area • Tan-
gent Lines • Tangent Circles • Tangent Conics • Biarcs.

Each chapter begins with definitions of underlying mathematical terminology and develops
the topic with more detailed derivations and proofs of important concepts.

Explorations

Each chapter in Exploring Analytic Geometry with Mathematica concludes with more advanced
topics in the form of exploration problems to more fully develop the topics presented in each
chapter. There are more than 100 of these more challenging explorations, and the full solutions
are provided on the CD-ROM as Mathematica notebooks as well as printed in Part VIII of the
book. Sample explorations include some of the more famous theorems from analytic geometry:

Carlyle’s Circle • Castillon’s Problem • Euler’s Triangle Formula • Eyeball The-
orem • Gergonne’s Point • Heron’s Formula • Inversion • Monge’s Theorem •
Reciprocal Polars • Reflection in a Point • Stewart’s Theorem • plus many more.

Preface vii

Descarta2D

Descarta2D provides a full-scale Mathematica implementation of the concepts developed in
Exploring Analytic Geometry with Mathematica. A reference manual section explains in detail
the usage of over 100 new commands that are provided by Descarta2D for creating, manipulat-
ing and querying geometric objects in Mathematica. To support the study and enhancement
of the Descarta2D algorithms, the complete source code for Descarta2D is provided, both in
printed form in the book and as Mathematica notebook files on the CD-ROM.

CD-ROM

The CD-ROM provides the complete text of the book in Abode Portable Document Format
(PDF) for interactive reading. In addition, the CD-ROM provides the following Mathematica
notebooks:

• Chapters with Mathematica dialogs, 24 interactive notebooks

• Reference material for Descarta2D, three notebooks

• Complete Descarta2D source code, 30 notebooks

• Descarta2D packages, 30 loadable files

• Exploration solutions, 125 notebooks.

These notebooks have been thoroughly tested and are compatible with Mathematica Version
3.0.1 and Version 4.0. Maximum benefit of the book and software is gained by using it in
conjunction with Mathematica, but a passive reading and viewing of the book and notebook
files can be accomplished without using Mathematica itself.

Organization of the Book

Exploring Analytic Geometry with Mathematica is a 900-page volume divided into nine parts:

• Introduction (Getting Started and Descarta2D Tour)

• Elementary Geometry (Points, Lines, Circles, Arcs, Triangles)

• Conics (Parabolas, Ellipses, Hyperbolas, Conics, Medial Curves)

• Geometric Functions (Transformations, Arc Length, Area)

• Tangent Curves (Lines, Circles, Conics, Biarcs)

• Descarta2D Reference (philosophy and command descriptions)

• Descarta2D Packages (complete source code)

viii Preface

• Explorations (solution notebooks)

• Epilogue (Installation Instructions, Bibliography and a detailed index).

About the Author

Donald L. Vossler is a mechanical engineer and computer software designer with more than
20 years experience in computer aided design and geometric modeling. He has been involved
in solid modeling since its inception in the early 1980’s and has contributed to the theoretical
foundation of the subject through several published papers. He has managed the development
of a number of commercial computer aided design systems and holds a US Patent involving
the underlying data representations of geometric models.

Contents

I Introduction 1

1 Getting Started 3
1.1 Introduction . 3
1.2 Historical Background . 3
1.3 What’s on the CD-ROM . 4
1.4 Mathematica . 5
1.5 Starting Descarta2D . 6
1.6 Outline of the Book . 7

2 Descarta2D Tour 9
2.1 Points . 9
2.2 Equations . 10
2.3 Lines . 12
2.4 Line Segments . 13
2.5 Circles . 14
2.6 Arcs . 15
2.7 Triangles . 16
2.8 Parabolas . 17
2.9 Ellipses . 18
2.10 Hyperbolas . 19
2.11 Transformations . 20
2.12 Area and Arc Length . 20
2.13 Tangent Curves . 21
2.14 Symbolic Proofs . 22
2.15 Next Steps . 23

II Elementary Geometry 25

3 Coordinates and Points 27
3.1 Numbers . 27
3.2 Rectangular Coordinates . 28

ix

x Contents

3.3 Line Segments and Distance . 30
3.4 Midpoint between Two Points . 33
3.5 Point of Division of Two Points . 33
3.6 Collinear Points . 36
3.7 Explorations . 37

4 Equations and Graphs 39
4.1 Variables and Functions . 39
4.2 Polynomials . 39
4.3 Equations . 41
4.4 Solving Equations . 42
4.5 Graphs . 46
4.6 Parametric Equations . 47
4.7 Explorations . 48

5 Lines and Line Segments 51
5.1 General Equation . 51
5.2 Parallel and Perpendicular Lines . 54
5.3 Angle between Lines . 55
5.4 Two–Point Form . 56
5.5 Point–Slope Form . 58
5.6 Slope–Intercept Form . 62
5.7 Intercept Form . 64
5.8 Normal Form . 65
5.9 Intersection Point of Two Lines . 69
5.10 Point Projected Onto a Line . 70
5.11 Line Perpendicular to Line Segment . 72
5.12 Angle Bisector Lines . 73
5.13 Concurrent Lines . 74
5.14 Pencils of Lines . 75
5.15 Parametric Equations . 78
5.16 Explorations . 81

6 Circles 85
6.1 Definitions and Standard Equation . 85
6.2 General Equation of a Circle . 88
6.3 Circle from Diameter . 89
6.4 Circle Through Three Points . 90
6.5 Intersection of a Line and a Circle . 91
6.6 Intersection of Two Circles . 92
6.7 Distance from a Point to a Circle . 95
6.8 Coaxial Circles . 96
6.9 Radical Axis . 97
6.10 Parametric Equations . 99

Contents xi

6.11 Explorations . 101

7 Arcs 105
7.1 Definitions . 105
7.2 Bulge Factor Arc . 107
7.3 Three–Point Arc . 110
7.4 Parametric Equations . 111
7.5 Points and Angles at Parameters . 112
7.6 Arcs from Ray Points . 113
7.7 Explorations . 114

8 Triangles 117
8.1 Definitions . 117
8.2 Centroid of a Triangle . 120
8.3 Circumscribed Circle . 122
8.4 Inscribed Circle . 123
8.5 Solving Triangles . 124
8.6 Cevian Lengths . 128
8.7 Explorations . 128

III Conics 133

9 Parabolas 135
9.1 Definitions . 135
9.2 General Equation of a Parabola . 135
9.3 Standard Forms of a Parabola . 136
9.4 Reduction to Standard Form . 139
9.5 Parabola from Focus and Directrix . 140
9.6 Parametric Equations . 141
9.7 Explorations . 142

10 Ellipses 145
10.1 Definitions . 145
10.2 General Equation of an Ellipse . 147
10.3 Standard Forms of an Ellipse . 147
10.4 Reduction to Standard Form . 150
10.5 Ellipse from Vertices and Eccentricity . 151
10.6 Ellipse from Foci and Eccentricity . 153
10.7 Ellipse from Focus and Directrix . 153
10.8 Parametric Equations . 155
10.9 Explorations . 156

xii Contents

11 Hyperbolas 159
11.1 Definitions . 159
11.2 General Equation of a Hyperbola . 161
11.3 Standard Forms of a Hyperbola . 161
11.4 Reduction to Standard Form . 166
11.5 Hyperbola from Vertices and Eccentricity . 167
11.6 Hyperbola from Foci and Eccentricity . 168
11.7 Hyperbola from Focus and Directrix . 169
11.8 Parametric Equations . 170
11.9 Explorations . 173

12 General Conics 175
12.1 Conic from Quadratic Equation . 175
12.2 Classification of Conics . 184
12.3 Center Point of a Conic . 184
12.4 Conic from Point, Line and Eccentricity . 185
12.5 Common Vertex Equation . 186
12.6 Conic Intersections . 189
12.7 Explorations . 190

13 Conic Arcs 193
13.1 Definition of a Conic Arc . 193
13.2 Equation of a Conic Arc . 194
13.3 Projective Discriminant . 196
13.4 Conic Characteristics . 196
13.5 Parametric Equations . 198
13.6 Explorations . 199

14 Medial Curves 201
14.1 Point–Point . 201
14.2 Point–Line . 202
14.3 Point–Circle . 204
14.4 Line–Line . 206
14.5 Line–Circle . 207
14.6 Circle–Circle . 210
14.7 Explorations . 212

IV Geometric Functions 215

15 Transformations 217
15.1 Translations . 217
15.2 Rotations . 219
15.3 Scaling . 222

Contents xiii

15.4 Reflections . 224
15.5 Explorations . 226

16 Arc Length 229
16.1 Lines and Line Segments . 229
16.2 Perimeter of a Triangle . 230
16.3 Polygons Approximating Curves . 231
16.4 Circles and Arcs . 231
16.5 Ellipses and Hyperbolas . 233
16.6 Parabolas . 234
16.7 Chord Parameters . 235
16.8 Summary of Arc Length Functions . 236
16.9 Explorations . 236

17 Area 237
17.1 Areas of Geometric Figures . 237
17.2 Curved Areas . 240
17.3 Circular Areas . 240
17.4 Elliptic Areas . 242
17.5 Hyperbolic Areas . 245
17.6 Parabolic Areas . 246
17.7 Conic Arc Area . 248
17.8 Summary of Area Functions . 249
17.9 Explorations . 249

V Tangent Curves 253

18 Tangent Lines 255
18.1 Lines Tangent to a Circle . 255
18.2 Lines Tangent to Conics . 266
18.3 Lines Tangent to Standard Conics . 273
18.4 Explorations . 280

19 Tangent Circles 283
19.1 Tangent Object, Center Point . 283
19.2 Tangent Object, Center on Object, Radius . 285
19.3 Two Tangent Objects, Center on Object . 286
19.4 Two Tangent Objects, Radius . 287
19.5 Three Tangent Objects . 288
19.6 Explorations . 289

xiv Contents

20 Tangent Conics 293
20.1 Constraint Equations . 293
20.2 Systems of Quadratics . 294
20.3 Validity Conditions . 296
20.4 Five Points . 296
20.5 Four Points, One Tangent Line . 298
20.6 Three Points, Two Tangent Lines . 301
20.7 Conics by Reciprocal Polars . 306
20.8 Explorations . 310

21 Biarcs 311
21.1 Biarc Carrier Circles . 311
21.2 Knot Point . 314
21.3 Knot Circles . 316
21.4 Biarc Programming Examples . 317
21.5 Explorations . 322

VI Reference 323

22 Technical Notes 325
22.1 Computation Levels . 325
22.2 Names . 326
22.3 Descarta2D Objects . 326
22.4 Descarta2D Packages . 337
22.5 Descarta2D Functions . 338
22.6 Descarta2D Documentation . 339

23 Command Browser 341

24 Error Messages 367

VII Packages 385
D2DArc2D . 387
D2DArcLength2D . 395
D2DArea2D . 399
D2DCircle2D . 405
D2DConic2D . 411
D2DConicArc2D . 415
D2DEllipse2D . 421
D2DEquations2D . 427
D2DExpressions2D . 429
D2DGeometry2D . 437

Contents xv

D2DHyperbola2D . 445
D2DIntersect2D . 453
D2DLine2D . 457
D2DLoci2D . 465
D2DMaster2D . 469
D2DMedial2D . 473
D2DNumbers2D . 477
D2DParabola2D . 479
D2DPencil2D . 485
D2DPoint2D . 489
D2DQuadratic2D . 497
D2DSegment2D . 505
D2DSketch2D . 511
D2DSolve2D . 515
D2DTangentCircles2D . 519
D2DTangentConics2D . 523
D2DTangentLines2D . 531
D2DTangentPoints2D . 537
D2DTransform2D . 539
D2DTriangle2D . 545

VIII Explorations 555
apollon.nb, Circle of Apollonius . 557
arccent.nb, Centroid of Semicircular Arc . 559
arcentry.nb, Arc from Bounding Points and Entry Direction 561
arcexit.nb, Arc from Bounding Points and Exit Direction 563
archimed.nb, Archimedes’ Circles . 565
arcmidpt.nb, Midpoint of an Arc . 567
caarclen.nb, Arc Length of a Parabolic Conic Arc 569
caarea1.nb, Area of a Conic Arc (General) . 571
caarea2.nb, Area of a Conic Arc (Parabola) . 573
cacenter.nb, Center of a Conic Arc . 575
cacircle.nb, Circular Conic Arc . 577
camedian.nb, Shoulder Point on Median . 579
caparam.nb, Parametric Equations of a Conic Arc 581
carlyle.nb, Carlyle Circle . 583
castill.nb, Castillon’s Problem . 585
catnln.nb, Tangent Line at Shoulder Point . 589
center.nb, Center of a Quadratic . 591
chdlen.nb, Chord Length of Intersecting Circles 593
cir3pts.nb, Circle Through Three Points . 595
circarea.nb, One-Third of a Circle’s Area . 597

xvi Contents

cirptmid.nb, Circle–Point Midpoint Theorem . 599
cramer2.nb, Cramer’s Rule (Two Equations) . 601
cramer3.nb, Cramer’s Rule (Three Equations) . 603
deter.nb, Determinants . 605
elfocdir.nb, Focus of Ellipse is Pole of Directrix 607
elimlin.nb, Eliminate Linear Terms . 609
elimxy1.nb, Eliminate Cross-Term by Rotation . 611
elimxy2.nb, Eliminate Cross-Term by Change in Variables 613
elimxy3.nb, Eliminate Cross-Term by Change in Variables 615
elldist.nb, Ellipse Locus, Distance from Two Lines 617
ellfd.nb, Ellipse from Focus and Directrix . 619
ellips2a.nb, Sum of Focal Distances of an Ellipse 623
elllen.nb, Length of Ellipse Focal Chord . 625
ellrad.nb, Apoapsis and Periapsis of an Ellipse 627
ellsim.nb, Similar Ellipses . 629
ellslp.nb, Tangent to an Ellipse with Slope . 631
eqarea.nb, Equal Areas Point . 633
eyeball.nb, Eyeball Theorem . 637
gergonne.nb, Gergonne Point of a Triangle . 639
heron.nb, Heron’s Formula . 641
hyp2a.nb, Focal Distances of a Hyperbola . 643
hyp4pts.nb, Equilateral Hyperbolas . 645
hyparea.nb, Areas Related to Hyperbolas . 647
hypeccen.nb, Eccentricities of Conjugate Hyperbolas 651
hypfd.nb, Hyperbola from Focus and Directrix 653
hypinv.nb, Rectangular Hyperbola Distances . 657
hyplen.nb, Length of Hyperbola Focal Chord . 659
hypslp.nb, Tangent to a Hyperbola with Given Slope 661
hyptrig.nb, Trigonometric Parametric Equations 663
intrsct.nb, Intersection of Lines in Intercept Form 665
inverse.nb, Inversion . 667
johnson.nb, Johnson’s Congruent Circle Theorem 671
knotin.nb, Incenter on Knot Circle . 675
lndet.nb, Line General Equation Determinant 677
lndist.nb, Vertical/Horizontal Distance to a Line 679
lnlndist.nb, Line Segment Cut by Two Lines . 681
lnquad.nb, Line Normal to a Quadratic . 685
lnsdst.nb, Distance Between Parallel Lines . 687
lnsegint.nb, Intersection Parameters of Two Line Segments 689
lnsegpt.nb, Intersection Point of Two Line Segments 691
lnsperp.nb, Equations of Perpendicular Lines . 693
lntancir.nb, Line Tangent to a Circle . 695
lntancon.nb, Line Tangent to a Conic . 697

Contents xvii

mdcircir.nb, Medial Curve, Circle–Circle . 699
mdlncir.nb, Medial Curve, Line–Circle . 703
mdlnln.nb, Medial Curve, Line–Line . 705
mdptcir.nb, Medial Curve, Point–Circle . 707
mdptln.nb, Medial Curve, Point–Line . 711
mdptpt.nb, Medial Curve, Point–Point . 713
mdtype.nb, Medial Curve Type . 715
monge.nb, Monge’s Theorem . 717
narclen.nb, Approximate Arc Length of a Curve 719
normal.nb, Normals and Minimum Distance . 721
pb3pts.nb, Parabola Through Three Points . 723
pb4pts.nb, Parabola Through Four Points . 725
pbang.nb, Parabola Intersection Angle . 727
pbarch.nb, Parabolic Arch . 729
pbarclen.nb, Arc Length of a Parabola . 731
pbdet.nb, Parabola Determinant . 733
pbfocchd.nb, Length of Parabola Focal Chord . 735
pbslp.nb, Tangent to a Parabola with a Given Slope 737
pbtancir.nb, Circle Tangent to a Parabola . 739
pbtnlns.nb, Perpendicular Tangents to a Parabola 743
polarcir.nb, Polar Equation of a Circle . 745
polarcol.nb, Collinear Polar Coordinates . 747
polarcon.nb, Polar Equation of a Conic . 749
polardis.nb, Distance Using Polar Coordinates . 751
polarell.nb, Polar Equation of an Ellipse . 753
polareqn.nb, Polar Equations . 755
polarhyp.nb, Polar Equation of a Hyperbola . 757
polarpb.nb, Polar Equation of a Parabola . 759
polarunq.nb, Non-uniqueness of Polar Coordinates 761
pquad.nb, Parameterization of a Quadratic . 763
ptscol.nb, Collinear Points . 765
radaxis.nb, Radical Axis of Two Circles . 767
radcntr.nb, Radical Center . 769
raratio.nb, Radical Axis Ratio . 771
reccir.nb, Reciprocal of a Circle . 773
recptln.nb, Reciprocals of Points and Lines . 775
recquad.nb, Reciprocal of a Quadratic . 777
reflctpt.nb, Reflection in a Point . 779
rtangcir.nb, Angle Inscribed in a Semicircle . 781
rttricir.nb, Circle Inscribed in a Right Triangle 783
shoulder.nb, Coordinates of Shoulder Point . 785
stewart.nb, Stewart’s Theorem . 787
tancir1.nb, Circle Tangent to Circle, Given Center 789

xviii Contents

tancir2.nb, Circle Tangent to Circle, Center on Circle, Radius 791
tancir3.nb, Circle Tangent to Two Lines, Radius 793
tancir4.nb, Circle Through Two Points, Center on Circle 795
tancir5.nb, Circle Tangent to Three Lines . 797
tancirpt.nb, Tangency Point on a Circle . 799
tetra.nb, Area of a Tetrahedron’s Base . 801
tncirtri.nb, Circles Tangent to an Isosceles Triangle 803
tnlncir.nb, Construction of Two Related Circles 807
triallen.nb, Triangle Altitude Length . 809
trialt.nb, Altitude of a Triangle . 811
triarea.nb, Area of Triangle Configurations . 813
triarlns.nb, Area of Triangle Bounded by Lines . 815
tricent.nb, Centroid of a Triangle . 817
tricev.nb, Triangle Cevian Lengths . 819
triconn.nb, Concurrent Triangle Altitudes . 823
tridist.nb, Hypotenuse Midpoint Distance . 827
trieuler.nb, Euler’s Triangle Formula . 829
trirad.nb, Triangle Radii . 833
trisides.nb, Triangle Side Lengths from Altitudes 835

IX Epilogue 837

Installation Instructions 839

Bibliography 843

Index 845

Part I

Introduction

Chapter 1

Getting Started

1.1 Introduction

The purpose of this book is to provide a broad introduction to analytic geometry using the
Mathematica and Descarta2D computer programs to enhance the numerical, symbolic and
graphical nature of the subject. The book has the following objectives:

• To provide a computer-based alternative to a traditional course in analytic geometry.

• To provide a geometric research tool that can be used to explore numerically and sym-
bolically various theorems and relationships of two-dimensional analytic geometry. Due
to the nature of the Mathematica environment in which Descarta2D was written, the
system can be easily enhanced and extended.

• To provide a reference of geometric formulas from analytic geometry that are not gener-
ally provided in more broad-based mathematical textbooks, nor included in mathemat-
ical handbooks.

• To provide a large-scale Mathematica programming tutorial that is instructive in the
techniques of object oriented programming, modular packaging and good overall system
design. By providing the full source code for the Descarta2D system, students and
researchers can modify and enhance the system for their own purposes.

1.2 Historical Background

The word geometry is derived from the Greek words for “earth measure.” Early geometers
considered measurements of line segments, angles and other planar figures. Analytic geometry
was introduced by René Descartes in his La Géométrie published in 1637. Accordingly, after
his name, analytic or coordinate geometry is often referred to as Cartesian geometry. It is
essentially a method of studying geometry by means of algebra. Earlier mathematicians had

3

4 Chapter 1 Getting Started

MathReader - installation files

Descarta2D - Descarta2D files

Book - * . pdf files

AcrobatReader- installation files

readme. txt

CD

Figure 1.1: Organization of the CD-ROM.

continued to resort to the conventional methods of geometric reasoning as set forth in great
detail by Euclid and his school some 2000 years before. The tremendous advances made in
the study of geometry since the time of Descartes are largely due to his introduction of the
coordinate system and the associated algebraic or analytic methods.

With the advent of powerful mathematical computer software, such as Mathematica, much
of the tedious algebraic manipulation has been removed from the study of analytic geometry,
allowing comfortable exploration of the subject even by amateur mathematicians. Mathe-
matica provides a programmable environment, meaning that the user can extend and expand
the capabilities of the system including the addition of completely new concepts not covered
by the kernel Mathematica system. This notion of expandability serves as the basis for the
implementation of the Descarta2D system, which is essentially an extension of the capabilities
of Mathematica cast into the world of analytic geometry.

1.3 What’s on the CD-ROM

The CD-ROM supplied with this book is organized as shown in Figure 1.1. Detailed instruc-
tions for installing the software can be found in the chapter entitled “Installation Instructions”
near the end of the book. The file readme.txt on the CD contains essentially the same infor-
mation as the “Installation Instructions” chapter.

There are four folders at the highest directory level on the CD. The folder AcrobatReader
contains Adobe’s Acrobat Reader (used to view *.pdf files) and the folder MathReader con-
tains Wolfram Research’s MathReader (used to view *.nb files). The folder Book contains a
complete copy of the book in Adobe Portable Document Format (PFD).

The folder Descarta2D contains the software described in this book as shown in Figure 1.2.
These files are organized so that they can easily be installed for usage by Mathematica. The
correct placement of these files on your computer’s hard drive is described in the “Installation
Instructions” chapter.

1.4 Mathematica 5

Packages - * . nb files

Explorations - * . nb files

Chapters - * . nb

English

Documentation

Descarta2D

Table_of_Contents. nb

BrowserCategories. m

* . m, init . m - Descarta2D files

warranty. txt

Figure 1.2: Organization of the Descarta2D folder.

All of the software packages and explorations in this book were developed on a Pentium
Pro computer system using version 4.0 of the Windows NT operating system and Mathematica
version 3.0.1. Due to the portability of Mathematica, the software should operate identically
on other computer systems, including other Intel-based personal computers, Macintoshes and
a wide range of Unix workstations. The Adobe pdf files on the CD are also portable and
should be readable on a variety of operating systems.

1.4 Mathematica

In this book an assumption is made that you have at least a rudimentary understanding of
how to run the Mathematica program, how to enter commands and receive results, and how to
arrange files on a computer disk so that programs can locate them. A sufficient introduction
to Mathematica would be gained by reading the “Tour of Mathematica” in Stephen Wolfram’s
book Mathematica: A System for Doing Mathematics by Computer.

The syntax Mathematica uses for mathematical operations differs somewhat from tradi-
tional mathematical notation. Since Descarta2D is implemented in the Mathematica pro-
gramming language it follows all the syntactic conventions of the Mathematica system. See
Wolfram’s Mathematica book for more detailed descriptions of the syntax. Once you become
familiar with Mathematica you will begin to appreciate the consistency and predictability of
the system.

6 Chapter 1 Getting Started

1.5 Starting Descarta2D

All of the underlying concepts of analytic geometry presented in this book are implemented in
a Mathematica program called Descarta2D. Descarta2D consists of a number of Mathematica
programs (called packages) that provide a rich environment for the study of analytic geometry.
In order to avoid loading all the packages at one time, a master file of package declarations
has been provided. You must load this file at the beginning of any Mathematica session that
will make use of the Descarta2D packages. Once the package declarations have been loaded,
all of the additional packages will be loaded automatically when they are needed. To load the
Descarta2D package declarations from the file init.m use the command

In[1]: << Descarta2D‘

If this is the first command in the Mathematica session, the Mathematica kernel will be loaded
first, and then the declarations will be loaded. Depending on the speed of your computer this
may take a few seconds or several minutes. After the initial start-up, packages will load at
automatically as new Descarta2D functions are used for the first time. When a package is first
loaded, you may notice a delay in computing results; after the package is loaded, results are
computed immediately and the time taken depends on the complexity of the computation.

The examples in this book that illustrate the usage of Descarta2D were chosen primarily for
their simplicity, rather than to correspond to significant calculations in analytic geometry. At
the end of each chapter a section entitled “Explorations” provides more realistic applications
of Descarta2D. All of the examples in this book were generated by running an actual copy of
Mathematica version 3.0.1. The interactive dialogs of each Mathematica session are provided
in the corresponding chapter notebook on the CD, so very little typing is required to replicate
the output and plots in each chapter. If you choose to enter the commands yourself instead
of using the notebook on the CD, you should enter the commands exactly as they are printed
(including all spaces and line breaks). This will insure that you obtain the same results as
printed in the text. Once you become more familiar with Mathematica and Descarta2D, you
will learn what deviations from the printed text are acceptable.

Plotting Descarta2D Objects

Graphically rendering (plotting) the geometric objects encountered in a study of analytic
geometry greatly enhances the intuitive understanding of the subject. Mathematica provides a
wide variety of commands for plotting objects including Graphics, Plot and ParametricPlot.
There are also specialized commands such as ImplicitPlot and PolarPlot. Each of these
commands has a wide variety of options, giving the user detailed control over the plotted
output.

These Mathematica commands can also be used to plot Descarta2D objects, and, in fact,
the figures found in this book were generated using the Mathematica plotting commands
named above. However, the Descarta2D system provides another command, Sketch2D, for
plotting Descarta2D objects. The Sketch2D command has a very simple syntax as illustrated
in the following example.

1.6 Outline of the Book 7

Example. Plot these objects using the Sketch2D command: Point2D[{-1, 2}],
Line2D[2, -3, 1] and Circle2D[{1, 0}, 2]. (The meaning of these geometric ob-
jects will be explained in subsequent chapters; for now it is sufficient to understand
that we are plotting a point, a line and a circle.)

Solution. The Descarta2D function Sketch2D[objList] plots a list of geometric
objects.

In[2]: Sketch2D@8Point2D@8−1, 2<D, Line2D@2, −3, 1D, Circle2D@81, 0<, 2D<D;

-4 -2 0 2 4

-2

-1

0

1

2

3

1.6 Outline of the Book

The book is divided into nine sections. The first five sections deal with the subject matter
of analytic geometry; the remaining sections provide a reference manual for the use of the
Descarta2D computer program and a listing of the source code for the packages that implement
Descarta2D, as well as the solutions to the explorations.

Part I of the book serves as an introduction and begins with the material in this chapter
aimed at getting started with the subject; the next chapter continues the introduction by
providing a high-level tour of Descarta2D. Part II introduces the basic geometric objects
studied in analytic geometry, including points and coordinates, equations and graphs, lines,
line segments, circles, arcs and triangles. Part III continues by studying second-degree curves,
parabolas, ellipses and hyperbolas. In addition, Part III provides a more general study of
conic curves by examining general conics, conic arcs and medial curves.

Part IV covers geometric functions including transformations (translation, rotation, scaling
and reflection) and the computation of areas and arc lengths. The subject of tangent curves is
covered in Part V with specific chapters dedicated to tangent lines, tangent circles and tangent
conics. The final chapter in Part V is an overview of biarc circles, which are a special form of
tangent circles. The intent of this chapter is to illustrate how new capabilities can be added
to Descarta2D.

8 Chapter 1 Getting Started

Generally, the chapters comprising Parts I through V present material in sections with
simple examples. The examples are sometimes supplemented with Descarta2D and Mathe-
matica Hints that illustrate the more subtle usages of the commands. Each chapter ends with
an “Explorations” section containing several more challenging problems in analytic geometry.
The solutions for the explorations are provided as Mathematica notebooks on the CD, as well
as being listed alphabetically in Part VIII.

Parts VI and VII serve as a reference manual for the Descarta2D system. The reference
manual includes a description of the geometric objects provided by Descarta2D, a browser
for quickly finding command syntax and options, and a listing of the error messages that
may be generated. Part VII provides a complete listing, with comments, of all the packages
comprising Descarta2D.

Part VIII of the book contains reproductions of the notebooks which provide the solutions
to the explorations found at the end of each chapter. The notebooks are listed in alphabetical
order by their file names. The exploration notebook files may also be reviewed directly off the
CD using Mathematica or MathReader.

Part IX contains the instructions for installing Descarta2D on your computer system as
well as a Bibliography and a detailed index.

Chapter 2

Descarta2D Tour

The purpose of this chapter is to provide a tour consisting of examples to show a few of the
things Descarta2D can do. Concepts introduced informally in this chapter will be studied
in detail in subsequent chapters. The tour is not intended to be a complete overview of
Descarta2D, but just a sampling of a few of the capabilities provided by Descarta2D.

2.1 Points

The simplest geometric object is a point in the plane. The location of a point is specified
by a pair of numbers called the x- and y-coordinates of the point and is written as (x, y).
In Mathematica and Descarta2D point coordinates are enclosed in curly braces as {x, y}. In
Descarta2D a point with coordinates (x, y) is represented as Point2D[{x, y}]. The following
commands are used to plot the points (1, 2), (3,−4) and (−2, 3):

In[1]: Sketch2D@8Point2D@81, 2<D, Point2D@83, −4<D,
Point2D@8−2, 3<D<D;

-2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

Mathematica allows us to assign symbolic names to expressions. The commands

9

10 Chapter 2 Descarta2D Tour

In[2]: p1 = Point2D@81, 2<D;
p2 = Point2D@83, −4<D;
p3 = Point2D@8−2, 3<D;

assign the names p1, p2 and p3 to the points sketched previously. After a name is assigned,
we can refer to the object by using its name.

In[3]: 8p1, p2, p3<

Out[3] 8Point2D@81, 2<D, Point2D@83, −4<D, Point2D@8−2, 3<D<

Descarta2D provides numerous commands for constructing points. These commands have
the name Point2D followed by a sequence of arguments, separated by commas and enclosed
in square brackets. For example, the command

In[4]: p3 = Point2D@p1 = Point2D@8−3, −2<D, p2 = Point2D@82, 1<DD

Out[4] Point2DA9−
1
�����
2
, −

1
�����
2

=E

constructs a point, named p3, that is the midpoint of two other points named p1 and p2.

2.2 Equations

The underlying principle of analytic geometry is to link algebra to the study of geometry.
There are two fundamental problems studied in analytic geometry: (1) given the equation
of a curve determine its shape, location and other geometric characteristics; and (2) given a
description of the plot of a curve (its locus) determine the equation of the curve. Equations
are represented in Mathematica and Descarta2D in a manner that is very similar to standard
algebra. For example, the linear equation 2x + 3y − 4 = 0 is entered using the following
command:

In[5]: Clear@x, yD;
2∗x + 3∗y − 4 == 0

Out[5] −4 + 2 x + 3 y == 0

ŸMathematica Hint. Mathematica uses the double equals sign, ==, to represent
the equality in an equation; the single equals sign, =, as has already been shown,
is used to assign names. Also, notice that Mathematica sorts all output into a
standard order that may be different than the order you typed.

The left side of the equation above is called a linear polynomial in two unknowns. The general
form of a linear polynomial in two unknowns is given by

Ax + By + C.

2.2 Equations 11

Since linear polynomials occur frequently in the study of analytic geometry, Descarta2D pro-
vides a special format for linear polynomials which is of the form Line2D[A,B, C] where A
is the coefficient of the x term, B the coefficient of the y term and C is the constant term.
Descarta2D also provides functions for converting between linear polynomials and Line2D
objects.

In[6]: Clear@x, yD;
l1 = Line2D@2, 3, −4D;
poly1 = 2∗x + 3∗y − 4;

In[7]: Polynomial2D@l1, 8x, y<D

Out[7] −4 + 2 x + 3 y

In[8]: Line2D@poly1, 8x, y<D

Out[8] Line2D@2, 3, −4D

Frequently we will also be interested in quadratic equations which represent such curves as
circles, ellipses, hyperbolas and parabolas. The algebraic form of a quadratic equation is

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

Descarta2D provides a special form for representing a quadratic polynomial which is

Quadratic2D[A,B,C, D, E, F]

and functions for converting between polynomials and Quadratic2D objects.

In[9]: Clear@x, yD;
poly1 = 2∗x^2 + 3∗x∗y + 3∗y^2 − 4∗x − 5∗y − 3;

q1 = Quadratic2D@2, 3, 3, −4, −5, −3D;

In[10]: Polynomial2D@q1, 8x, y<D

Out[10] −3 − 4 x + 2 x2 − 5 y + 3 x y + 3 y2

In[11]: Quadratic2D@poly1, 8x, y<D

Out[11] Quadratic2D@2, 3, 3, −4, −5, −3D

Equations are often constructed so that they may be solved for numbers that make the
equality true. For example, the quadratic equation in one unknown, x2−7x+10 = 0 is solved
when x = 2 or x = 5. Mathematica provides powerful functions for solving equations. For
example, the Solve command can be used to find the solutions to the equation given above.

In[12]: Clear@xD;
Solve@x^2 − 7∗x + 10 == 0, xD

Out[12] 88x → 2<, 8x → 5<<

The Solve command returns solutions in the form of Mathematica rules which are useful in
subsequent computations. We will often need to solve equations in order find the solutions to
geometric problems.

12 Chapter 2 Descarta2D Tour

2.3 Lines

Intuitively, a straight line is a curve we might draw with a straightedge ruler. In mathematics,
a line is considered to be infinite in length extending in both directions. We often think of a
line as the shortest path connecting two points, and, in fact, this is one of the many methods
provided by Descarta2D for constructing a line. Mathematically, a line is represented as a
linear equation of the form

Ax + By + C = 0

where A, B and C are called the coefficients of the line and determine its position and direction.
For example, in Descarta2D the line x − 2y + 4 = 0 is represented as Line2D[1, -2, 4]. The
following command constructs a line from two points.

In[13]: l1 = Line2D@p1 = Point2D@8−3, −1<D, p2 = Point2D@83, 2<DD

Out[13] Line2D@−3, 6, −3D

This is the line −3x + 6y − 3 = 0. We can plot the points and the line to get graphical
verification that the line passes through the two points.

In[14]: Sketch2D@8p1, p2, l1<D;

-4 -2 0 2 4

-1

0

1

2

We might be interested in the angle a line makes measured from the horizontal. The angle
can be determined using

In[15]: a1 = Angle2D@l1D êê N;

a2 = a1 ê Degree;

8a1, a2<

Out[15] 80.463648, 26.5651<

which indicates that the line makes an angle of approximately 0.463648 radians, or about
26.5651 degrees, measured from the horizontal.

Descarta2D Hint. All angles in Descarta2D are expressed in radians. A radian
is an angular measure equal to 180/π degrees (about 57.2958 degrees). The
Mathematica constant Degree has the value π/180. Dividing an angle in radians
by Degree converts the angle from radians to degrees.

2.4 Line Segments 13

We may want to construct lines with certain relationships to another line. For example,
the following commands construct lines parallel and perpendicular to a given line through a
given point.

In[16]: p1 = Point2D@82, 1<D;
l1 = Line2D@3, 1, −2D;
8l2 = Line2D@p1, l1, Parallel2DD,
l3 = Line2D@p1, l1, Perpendicular2DD<

Out[16] 8Line2D@−3, −1, 7D, Line2D@1, −3, 1D<

In[17]: Sketch2D@8p1, l1, l2, l3<D;

-4 -2 0 2 4
-6

-4

-2

0

2

4

2.4 Line Segments

Perhaps it is more familiar to us that a line has a definite start point and end point. Such a
line is called a line segment and is represented in Descarta2D as

Segment2D[{x0, y0}, {x1, y1}]
where (x0, y0) and (x1, y1) are the coordinates of the start and end points, respectively, of the
line segment.

In[18]: Sketch2D@8l1 = Segment2D@8−2, 1<, 83, −2<D<D;

-2 -1 0 1 2 3
-2

-1.5
-1

-0.5
0

0.5
1

14 Chapter 2 Descarta2D Tour

We might want to determine the midpoint of a line segment, and we could use the
Point2D[point, point] function to do so, but Descarta2D provides a more convenient func-
tion for directly constructing the midpoint of a line segment.

In[19]: p1 = Point2D@l1D

Out[19] Point2DA9 1
�����
2
, −

1
�����
2

=E

In[20]: Sketch2D@8l1, p1<D;

-2 -1 0 1 2 3
-2

-1.5
-1

-0.5
0

0.5
1

2.5 Circles

A circle’s position is determined by its center point and its size is specified by its radius. The
standard equation of a circle is

(x − h)2 + (y − k)2 = r2

where (h, k) are the coordinates of the center point, and r is the radius of the circle. In
Descarta2D a circle is represented as Circle2D[{h, k}, r].

In[21]: c1 = Circle2D@81, 2<, 2D;
Sketch2D@8c1, Point2D@c1D<D;

-1 0 1 2 3
0

1

2

3

4

2.6 Arcs 15

As demonstrated by the example, the function Point2D[circle] constructs the center point of
the circle. The function Radius2D[circle] returns the radius of a circle.

In[22]: Radius2D@c1D

Out[22] 2

Descarta2D provides many functions for constructing circles. For example, we can construct
a circle that passes through three given points.

In[23]: p1 = Point2D@81, 2<D;
p2 = Point2D@8−1, 2<D;
p3 = Point2D@80, −2<D;
c1 = Circle2D@p1, p2, p3D

Out[23] Circle2DA90, 1
�����
8

=, 17
���������
8

E

In[24]: Sketch2D@8p1, p2, p3, c1<D;

-2 -1 0 1 2
-2

-1

0

1

2

2.6 Arcs

Just as a line segment is a portion of a line, an arc is a portion of a circle. We can specify
the span of the arc in terms of the angles the arc’s sector sides make with the horizontal. In
Descarta2D an arc can be constructed using Arc2D[point, r, {θ1, θ2}] (this is not the standard
representation of an arc, it is merely one of the ways Descarta2D provides for constructing an
arc).

In[25]: A1 = Arc2D@Point2D@82, 1<D, 3, 8Piê6, 5 Piê6<D;
Sketch2D@8A1, Point2D@82, 1<D<D;

16 Chapter 2 Descarta2D Tour

0 1 2 3 4
1

1.5

2

2.5

3

3.5

4

As with a circle, we can construct an arc in many ways. For example, we can construct an
arc passing through three points.

In[26]: p1 = Point2D@82, −1<D;
p2 = Point2D@81, 2<D;
p3 = Point2D@8−2, 1<D;
a1 = Arc2D@p1, p2, p3D

Out[26] Arc2D@82, −1<, 8−2, 1<, 1D

In[27]: Sketch2D@8p1, p2, p3, a1<D;

-2 -1 0 1 2
-1

-0.5

0

0.5

1

1.5

2

2.7 Triangles

Triangles are defined by three line segments connecting three points called the vertices of the
triangle. In Descarta2D a triangle is represented as

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}].

In[28]: t1 = Triangle2D@81, 4<, 88, 8<, 86, 1<D;
Sketch2D@8t1<D;

2.8 Parabolas 17

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

We can inscribe a circle inside a triangle, as well as circumscribe one about a triangle. We
can also compute properties such as its center of gravity.

In[29]: 8c1 = Circle2D@t1, Inscribed2DD,
c2 = Circle2D@t1, Circumscribed2DD,
p1 = Point2D@t1, Centroid2DD< êê N

Out[29] 8Circle2D@84.83161, 3.95924<, 1.9364D, Circle2D@85.03659, 5.06098<, 4.17369D,
Point2D@85., 4.33333<D<

In[30]: Sketch2D@8t1, c1, c2, p1<D;

2 4 6 8

2

4

6

8

2.8 Parabolas

A parabola is the cross-sectional shape required for a reflective mirror to focus light to a
single point. The standard equation of a parabola centered at (0, 0) and opening to the right
is y2 = 4fx, where f is the focal length, the distance from the vertex point to the focus. We
can apply a rotation, θ, to the parabola to produce a parabola of the same shape, but opening
in a different direction. In Descarta2D the expression Parabola2D[{h, k}, f, θ] is used to
represent a parabola.

18 Chapter 2 Descarta2D Tour

In[31]: p1 = Parabola2D@81, 0<, 1ê2, 0D;
p2 = Parabola2D@8−1, 0<, 1ê2, Piê2D;
Sketch2D@8p1, p2<D;

-4 -2 0 2 4
-3

-2

-1

0

1

2

3

4

2.9 Ellipses

An ellipse is a shape of the path a planet makes as it orbits the sun. The standard equation
for an ellipse is given by

x2

a2
+

y2

b2
= 1

where 2a is the length of the longer major axis, and 2b is the length of the minor axis. Ellipses
in other positions and orientations may be obtained by moving the center point or by rotating
the ellipse. In Descarta2D the expression Ellipse2D[{h, k}, a, b, θ] is used to represent an
ellipse.

In[32]: e1 = Ellipse2D@80, 0<, 2, 1, 0D;
e2 = Ellipse2D@82, 1<, 3, 2, Piê4D;
Sketch2D@8e1, e2<D;

-2 -1 0 1 2 3 4

-1

0

1

2

3

An ellipse has two focus points that can also be plotted.

In[33]: pts = Foci2D@e2D

Out[33] 9Point2DA92 + $%%%%%%5�����
2
, 1 + $%%%%%%5�����

2
=E, Point2DA92 − $%%%%%%5�����

2
, 1 − $%%%%%%5�����

2
=E=

2.10 Hyperbolas 19

In[34]: Sketch2D@8e2, pts<D;

0 1 2 3 4

-1

0

1

2

3

2.10 Hyperbolas

A hyperbola in standard position has an equation similar to an ellipse that is given by

x2

a2
− y2

b2
= 1.

As with the ellipse, the constants a and b represent the lengths of certain axes of the hyperbola.
The hyperbola plot consists of two separate pieces, called branches, both extending to infinity
in opposite directions. The lines bounding the extent of the hyperbola are called asymptotes.
A second hyperbola, closely related to the first, is bounded by the same asymptotes and
is called the conjugate hyperbola. Hyperbolas can also be rotated in the plane and moved
by adjusting their center points. The expression Hyperbola2D[{h, k}, a, b, θ] is used to
represent a hyperbola in Descarta2D.

In[35]: h1 = Hyperbola2D@80, 0<, 2, 1, 0D;
lns = Asymptotes2D@h1D;
h2 = Hyperbola2D@h1, Conjugate2DD;
Sketch2D@8lns<D;
Sketch2D@8lns, h1<D;
Sketch2D@8lns, h2<D;

-4 -2 0 2 4
-2

-1

0

1

2

20 Chapter 2 Descarta2D Tour

-6 -4 -2 0 2 4 6-3
-2
-1
0
1
2
3

-4 -2 0 2 4
-2
-1
0
1
2

2.11 Transformations

We can change the position, size and orientation of an object by applying a transformation
to the object. Common transformations include translating, rotating, scaling and reflecting.
A Descarta2D object can be transformed to produce a new object.

In[36]: e1 = Ellipse2D@80, 0<, 2, 1, 0D;
Sketch2D@8e1,

Translate2D@e1, 83, 0<D,
Rotate2D@e1, Piê2D,
Scale2D@e1, 2D,
Reflect2D@e1, Line2D@0, 1, −1DD<D;

-4 -2 0 2 4
-2

-1

0

1

2

3

2.12 Area and Arc Length

Curves possess certain properties of interest such as area and length. These properties are
independent of the position and orientation of the curve.

In[37]: c1 = Circle2D@80, 0<, 2D;
8Area2D@c1D, Circumference2D@c1D<

Out[37] 84 π, 4 π<

Additionally, it may be of interest to compute the arc length of a portion of a curve or
areas bounded by more than one curve. Descarta2D has a variety of functions for performing
such computations.

2.13 Tangent Curves 21

2.13 Tangent Curves

When two curves touch at a single point without crossing, the two curves are said to be tangent
to each other. Descarta2D provides a wide variety of functions for computing tangent lines,
circles and other tangent curves. This example produces the circles tangent to a line and a
circle with a radius of 3/8. There are eight circles that satisfy these criteria.

In[38]: l1 = Line2D@0, 1, −1D;
c1 = Circle2D@80, 0<, 2D;
t1 = TangentCircles2D@8l1, c1<, 3ê8D;
Sketch2D@8l1, c1, t1<D;

-4 -2 0 2 4
-2

-1

0

1

2

This example produces the four lines tangent to two given circles.

In[39]: c1 = Circle2D@82, 0<, 1D;
c2 = Circle2D@8−3, 0<, 2D;
t1 = TangentLines2D@c1, c2D;
Sketch2D@8c1, c2, t1<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

Conic curves (ellipses, parabolas and hyperbolas) can also be constructed passing through
points or tangent to lines. The following example constructs four ellipses that are tangent to
three lines and pass through two points.

In[40]: l1 = Line2D@1, 0, −1D;
l2 = Line2D@0, 1, −1D;
l3 = Line2D@810, 0<, 80, 6<D;
p1 = Point2D@82, 3<D;
p2 = Point2D@84, 2<D;
t1 = TangentConics2D@8l1, l2, l3, p1, p2<D êê N;

22 Chapter 2 Descarta2D Tour

x

y

P1H0, 0L
P2Hd, 0L

P3Ha, bL

Figure 2.1: Triangle altitudes theorem.

In[41]: Sketch2D@8l1, l2, l3, p1, p2, t1<,
PlotRange −> 880, 10<, 80, 6<<,
CurveLength2D −> 20D;

2 4 6 8 10
0
1
2
3
4
5
6

2.14 Symbolic Proofs

As a final exercise on our tour of Descarta2D we will use the symbolic capabilities of Mathe-
matica to prove a theorem about the perpendicular bisectors of the sides of a triangle. The
symbolic capabilities of Mathematica allow us to derive and prove general assertions in analytic
geometry. Many of the built-in Descarta2D functions were derived using these capabilities.

Triangle Altitudes. The three perpendicular bisectors of the sides of a triangle
are concurrent in one point. Further, this point is the center of a circle that passes
through the three vertices of the triangle.

Without loss of generality, we pick a convenient position for the triangle in the plane as shown
in Figure 2.1. One vertex is located at the origin, the second on the +x-axis and the third is
arbitrarily placed.

2.15 Next Steps 23

In[42]: Clear@a, b, dD;
P1 = Point2D@80, 0<D;
P2 = Point2D@8d, 0<D;
P3 = Point2D@8a, b<D;

The perpendicular bisectors of the sides of the triangle pass through the midpoint of each side
and are perpendicular to the side. Each of these lines is constructed using the Descarta2D

command Line2D[point, point, Perpendicular2D].

In[43]: L12 = Line2D@P1, P2, Perpendicular2DD;
L13 = Line2D@P1, P3, Perpendicular2DD;
L23 = Line2D@P2, P3, Perpendicular2DD;

By including the semicolon, ;, at the end of each statement, we instruct Mathematica to
suppress the output from these statements. Since we are treating these lines symbolically,
we have no need at this point to examine the output. If you are curious about the form of
lines L12, L13 and L23, they can be examined by entering the command {L12, L13, L23}. We
now intersect these lines in pairs to determine the points of intersection using the Descarta2D

function Point2D[line, line] that constructs the point of intersection of two lines.

In[44]: 8P4 = Point2D@L12, L13D êê Simplify,

P5 = Point2D@L12, L23D êê Simplify<

Out[44] 9Point2DA9 d
�����
2
,

a2 + b2 − a d
����������������������������������

2 b
=E, Point2DA9 d

�����
2
,

a2 + b2 − a d
����������������������������������

2 b
=E=

By inspection, the coordinates of these two points are identical, which proves the first part
of the theorem. To prove the second part of the theorem we determine the distance from the
intersection point to each of the vertex points and show that the distance is the same for all
three vertex points.

In[45]: 8d1, d2, d3< = Map@Distance2D@#, P4D&, 8P1, P2, P3<D;
8d1 − d2, d2 − d3, d1 − d3< êê FullSimplify

Out[45] 80, 0, 0<

Many of the explorations provided at the end of upcoming chapters were developed using
techniques similar to the one outlined above. Using Mathematica and Descarta2D to prove
general assertions in analytic geometry illustrates the power of these computer programs.

2.15 Next Steps

This completes our high-level tour of Descarta2D. Many of the concepts introduced informally
in this chapter will be studied in detail in subsequent chapters. The explorations provided at
the end of each chapter provide additional insight into the subject matter and will give you an
opportunity to learn the techniques for solving problems using Mathematica. Although many
of the chapters can be studied independently, the concepts introduced in earlier chapters are
the underlying tools used in subsequent chapters. Therefore, a sequential reading and study
of the book is recommended for best understanding and continuity.

Part II

Elementary Geometry

Chapter 3

Coordinates and Points

The fundamental concept of analytic geometry is the one-to-one correspondence established
between points in a plane and (x, y) coordinates. This chapter introduces these concepts and
develops some simple functions involving points.

3.1 Numbers

Integers are the whole numbers used for counting, both negative and positive, as well as zero.
Ratios of integers such as 1/2, 5/7, 4/1 and 23/15 are called rational numbers. Numbers that
can be plotted as distances from a fixed point on a line are called real numbers. Examples are
−8, 0, 2.1387,

√
2, 5/3 and π.

If a and b represent real numbers and i =
√−1, the expression a+ bi is a complex number.

A complex number is the sum of a real number a and a pure imaginary number bi. The two
complex numbers a + bi and a − bi are called conjugate complex numbers.

In general, this book deals with real numbers, but since we are using algebraic techniques to
study geometry, complex numbers naturally arise in the formulations. Mathematica provides
a variety of ways to represent numbers as summarized in Table 3.1.

Table 3.1: Numbers in Mathematica.

Type Examples

Integer -4, 0, 1, 2, 3

Rational 7/5, 3/4

Real 1.25, 3.0, -45.0

Complex 3 + 2 I, -2.45 - 3.57 I

27

28 Chapter 3 Coordinates and Points

Table 3.2: Some common constants in Mathematica.

Constant Mathematica

π ≈ 3.14159 Pi

e ≈ 2.71828 E

π/180 ≈ 0.0174533 Degree

i =
√−1 I

Any given number, integer, rational, real or complex, is a constant. Mathematica provides
symbols for some common numbers that are fixed value constants as shown in Table 3.2.
Sometimes we do not wish to specify what the particular constant is and indicate a general
constant by any one of the letters a, b, c, . . ., A, B, C, . . ., and such constants are referred to
as parameters.

3.2 Rectangular Coordinates

The basic idea in analytic geometry is to establish a one-to-one correspondence between the
points of a plane and number pairs (x, y). This correspondence may be established in many
ways, but the one most commonly used is as follows. Consider two perpendicular lines X ′X
and Y ′Y intersecting in the point O. The horizontal line X ′X is called the x-axis, and the
vertical line Y ′Y the y-axis, and together they form a rectangular coordinate system.

These axes divide the plane into four quadrants labeled I, II, III and IV as shown in
Figure 3.1. The point O is called the origin. When numerical scales are established on
the axes, positive distances x are laid off to the right of the origin and are called abscissas ;
negative abscissas are laid off to the left. Positive distances y are drawn upwards and are
called ordinates; negative ordinates are drawn downward. Thus OX and OY have positive
sense (or direction) while OX ′ and OY ′ have negative sense. The unit scales on the x-axis
and the y-axis need not be the same, but problems in analytic geometry often assume the
units are equal on both axes.

Clearly such a system of coordinates can be used to describe the positions of points in the
plane. For example, by going out +3 units on the x-axis and +2 units on the y-axis a point
labeled A is located as shown in Figure 3.2. The point A is said to have the pair of numbers
3 and 2 as its coordinates, and it is customary to write A(3, 2) or simply (3, 2). Similarly, B
has the coordinates (−2,−1) and lies in the third quadrant. It is evident that for the point P1

pictured in the second quadrant, the x-coordinate is negative and the y-coordinate is positive.
We will write P1(x1, y1) as the general representation of a point P1 in the plane at coordinates
x = x1 and y = y1.

The fundamental principle of analytic geometric is that there exists a one-to-one correspon-
dence between number pairs and points in the plane: to each pair of numbers there corresponds

3.2 Rectangular Coordinates 29

III

III IV

x-x

y

-y

O

Figure 3.1: Coordinate axes and quadrants.

x

y

AH3, 2L

P1Hx1, y1L

BH-2, -1L

Figure 3.2: Coordinates specifying positions in the plane.

30 Chapter 3 Coordinates and Points

one and only one point and, conversely, to each point in the plane there corresponds one and
only one pair of numbers.

Example. Plot the points with the following coordinates: (−2, 3), (4, 2) and
(−4,−1).

Solution. Descarta2D represents a point (x, y) as Point2D[{x, y}]. The function
Sketch2D[objList] plots a list of objects.

In[1]: Sketch2D@8Point2D@8−2, 3<D,
Point2D@84, 2<D,
Point2D@8−4, −1<D<D;

-4 -2 0 2 4
-1

0

1

2

3

The curly brackets surrounding the point’s coordinates are optional and may be
omitted. Descarta2D will automatically add the curly brackets when the point’s
abscissa and ordinate are given as two arguments, Point2D[x, y], as shown below.
A symbolic name may be assigned to a point, and this name can be used later to
refer to the point.

In[2]: p1 = Point2D@−2, 3D

Out[2] Point2D@8−2, 3<D

In[3]: p1

Out[3] Point2D@8−2, 3<D

3.3 Line Segments and Distance

Given two points A and B on the x-axis, or on a line parallel to the x-axis, the line segment
AB from point A to point B extends over a certain number of units of length used as the scale
on the x-axis. If the direction from A to B points to the right, we say that AB is a positive

3.3 Line Segments and Distance 31

x

y

P1Hx1, y1L

P2Hx2, y2L

d

x2 - x1

y2 - y1

Q

Figure 3.3: Distance between points.

segment. On the other hand, if the direction from A to B points to the left, we say that AB
is a negative segment. Then we can assign to the segment AB a positive or negative number
indicating the direction and number of units of the segment. This signed number is indicated
by AB. The absolute value of AB, indicated by

∣∣AB
∣∣, is a positive number called the length

of the line segment. When the context is clear the symbol AB may be used to represent the
line containing the points A and B, the line segment AB, or the length of the segment, |AB|.

To calculate the number (positive or negative) of x-units in the segment AB, let x2 be the
abscissa of B and let x1 be the abscissa of A. Then, if B is to the right of A, the number of
x-units in the segment AB is equal to x2 − x1. We define BA to be the negative of segment
AB. Thus

AB = x2 − x1 and BA = x1 − x2.

In the same fashion we can define a directed segment CD on, or parallel to, the y-axis, to
be positive or negative depending on whether the arrow from C to D points up (positive
direction) or down (negative direction). Thus

CD = y2 − y1 and DC = y1 − y2.

Let P1(x1, y1) and P2(x2, y2) be two points lying in the first quadrant and draw line
segments P1Q and P2Q parallel to the coordinate axes as shown in Figure 3.3. By subtracting
the abscissas, P1Q = x2 − x1; similarly subtracting ordinates, P2Q = y2 − y1. Making use of
the Pythagorean Theorem on the right triangle P1QP2, we have

(P1P2)2 = (x2 − x1)2 + (y2 − y1)2

and the positive distance P1P2, d, is given by

d =
√

(x2 − x1)2 + (y2 − y1)2.

The same formula holds true regardless of the quadrants in which the points lie and regardless
of the order in which the points are taken.

32 Chapter 3 Coordinates and Points

Example. Find the distance between the two points (3,−1) and (−4,−2).

Solution. Taking the points in the given order, we have

d =
√

(−4 − 3)2 + (−2 − (−1))2 =
√

50 = 5
√

2.

Or, taking the points in the opposite order,

d =
√

(3 − (−4))2 + (−1 − (−2))2 =
√

50 = 5
√

2.

The Descarta2D function Distance2D[coord, coord] computes the distance be-
tween two locations given as coordinates. The function Distance2D[point, point]
computes the distance between two points.

In[4]: 8Distance2D@83, −1<, 8−4, −2<D,
Distance2D@Point2D@83, −1<D, Point2D@8−4, −2<DD<

Out[4] 95 è!!!
2 , 5

è!!!
2 =

The coordinates of the points may be symbolic and the points themselves may be
named points.

In[5]: Clear@x1, y1, x2, y2D;
p1 = Point2D@8x1, y1<D; p2 = Point2D@8x2, y2<D;
Distance2D@p1, p2D

Out[5]
"###Hx1 − x2L2 + Hy1 − y2L2

ŸMathematica Hint. The Mathematica function Clear is used in the previous
example and throughout other examples in this book to insure that variable
names used in the examples are not set to some unintended value from a previous
computation.

Descarta2D Hint. There are several Descarta2D functions that are handy for
working with points and coordinates. Coordinates2D[point] returns the (x, y)
coordinates of a point as the list {x, y}. The functions XCoordinate2D[point]
and XCoordinate2D[coord] give the x-coordinate, and YCoordinate2D[point]
and YCoordinate2D[coord] give the y-coordinate.

3.4 Midpoint between Two Points 33

x

y

P1Hx1, y1L

P2Hx2, y2L

P12

Figure 3.4: Midpoint between two points.

3.4 Midpoint between Two Points

The midpoint between two points is the point bisecting the line segment connecting the two
points. If the coordinates of the two points are P1(x1, y1) and P2(x2, y2) as shown in Figure 3.4,
then the midpoint, P12, has coordinates(

x1 + x2

2
,
y1 + y2

2

)
.

Example. Find the midpoint between the points (−2, 1) and (3,−2).

Solution. The function Point2D[point, point] returns the midpoint of the two
points. Alternatively, the function Point2D[lnseg] returns the midpoint of a line
segment.

In[6]: p1 = Point2D@8−2, 1<D;
p2 = Point2D@83, −2<D;
p12 = Point2D@p1, p2D

Out[6] Point2DA9 1
�����
2
, −

1
�����
2

=E

3.5 Point of Division of Two Points

Given a directed line segment such as P1P2, we wish to find the coordinates of the point
P which divides P1P2 into a given ratio r1/r2 as illustrated in Figure 3.5. Let P have the

34 Chapter 3 Coordinates and Points

x

y

P1Hx1, y1L

P2Hx2, y2L

R

PHx, yL

R

S

Q

r1

r2

x - x1 x2 - x

Figure 3.5: Point of division.

coordinates (x, y) which are to be determined. Sense is important here and P must be located
so that P1P/PP2 = r1/r2.

Since 4P1PQ and 4PSP2 are similar, it follows that (x − x1)/r1 = (x2 − x)/r2. Solving
this equation for x yields

x =
x1r2 + x2r1

r1 + r2
. (3.1)

Similarly,

y =
y1r2 + y2r1

r1 + r2
. (3.2)

To find the midpoint of the segment P1P2 the ratio r1/r2 must be unity; hence r1 = r2

and Equations (3.1) and (3.2) specialize to

x =
x1 + x2

2
and y =

y1 + y2

2
. (3.3)

Equations (3.1), (3.2) and (3.3) also have useful physical interpretations. In (3.1) and (3.2),
let x and y be the coordinates of the center of gravity of masses r1 and r2 placed at P1 and
P2, respectively. If the masses are equal, the center of gravity lies halfway between them as
indicated by (3.3).

It is of further interest to note the positions of P for various values of the ratio r1/r2. If
this ratio is zero, then P coincides with P1, and if this ratio is a positive number, P is an
internal point of division. As r1/r2 → +∞, P → P1. For −∞ < r1/r2 < −1, P is an external
point of division (in the direction of P1P2). For −1 < r1/r2 < 0, P is an external point in the
opposite direction with P1P negative and P2P positive.

Example. Find the point that divides the line segment between the points
P1(−2, 5) and P2(4,−1) into the ratio r1/r2 = −2.

3.5 Point of Division of Two Points 35

x

y

P1Hx1, y1L

P2Hx2, y2L
D12

d PHx, yL

Figure 3.6: Point offset a distance towards a point.

Solution. The Descarta2D function Point2D[point, point, r1, r2] returns the
point that divides the line segment between the points into the ratio r1/r2.

In[7]: Point2D@Point2D@8−2, 5<D, Point2D@84, −1<D, −2, 1D

Out[7] Point2D@810, −7<D

Notice that it is invalid for r1 + r2 to equal zero in Equations (3.1) and (3.2) as this would
tend to generate a point at infinity.

Point Offset a Distance

Given two points P1(x1, y1) and P2(x2, y2) we wish to find the point offset a distance, d, from
P1 in the direction of P2. We can use the point of division formula from the previous section
to determine the coordinates of the offset point. As shown in Figure 3.6 the desired point is
a point of division between P1(x1, y1) and P2(x2, y2) where r1/r2 = d/(D12 − d) and D12 is
the distance between P1 and P2. Using the point of division function from Descarta2D yields

In[8]: Clear@x1, y1, x2, y2, d, D12D;
Point2D@Point2D@8x1, y1<D, Point2D@8x2, y2<D, d, D12 − dD

Out[8] Point2DA9 H−d + D12L x1 + d x2
���

D12
,

H−d + D12L y1 + d y2
���

D12
=E

Rearranging and using standard mathematical notation produces

P

(
x1 +

d

D12
(x2 − x1), y1 +

d

D12
(y2 − y1)

)
(3.4)

where d is the (possibly negative) offset distance and D12 is the distance between the two
points.

36 Chapter 3 Coordinates and Points

Example. Find the point offset a distance 2 from the point (3, 1) towards the
point (−2, 4).

Solution. The Descarta2D function Point2D[point, point, d] returns the point
offset a distance d from the first point to the second point.

In[9]: Point2D@Point2D@83, 1<D, Point2D@8−2, 4<D, 2D

Out[9] Point2DA93 − 5 $%%%%%%%%2
���������
17

, 1 + 3 $%%%%%%%%2
���������
17

=E

3.6 Collinear Points

Three distinct points P1(x1, y1), P2(x2, y2) and P3(x3, y3) are said to be collinear if they lie
on the same straight line. We can construct any point, P3, on the line P1P2 by selecting
an appropriate value for d and applying Equation (3.4). All such points P1, P2 and P3 are
obviously collinear by construction. Now consider the value of the determinant

∣∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣ .

Mathematica provides the Det command for expanding the value of such a determinant.

In[10]: Clear@x1, y1, x2, y2, x3, y3, d, D12D;
Det@88x1, y1, 1<, 8x2, y2, 1<, 8x3, y3, 1<<D ê.
8x3 −> x1 + Hx2 − x1L ∗dêD12, y3 −> y1 + Hy2 − y1L ∗dêD12< êê Simplify

Out[10] 0

We see from Mathematica that for any value of d, the determinant given is zero. Therefore,
the necessary and sufficient condition that three points lie on the same line is given by the
determinant equation ∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣ = 0,

where the coordinates of the points are P1(x1, y1), P2(x2, y2) and P3(x3, y3).

3.7 Explorations 37

Example. Show that the three points (1, 2), (7, 6) and (4, 4) are collinear.

Solution. The Mathematica function Det[elemList] returns the determinant of
the nested list of elements.

In[11]: Det@881, 2, 1<, 87, 6, 1<, 84, 4, 1<<D

Out[11] 0

Descarta2D provides a specific function for determining whether three points are
collinear: IsCollinear2D[point,point, point] returns True if the points are col-
linear; otherwise, it returns False.

In[12]: IsCollinear2D@Point2D@81, 2<D, Point2D@87, 6<D, Point2D@84, 4<DD

Out[12] True

Descarta2D Hint. Using IsCollinear2D is preferable to using the Mathematica
function Det for determining collinearity because IsCollinear2D accommodates
slight round-off errors that may occur in the floating point arithmetic in the
computer.

In[13]: Sketch2D@8Point2D@81, 2<D, Point2D@87, 6<D,
Point2D@84, 4<D<, PlotRange −> 88−1, 8<, 8−1, 8<<D;

0 2 4 6 8

0

2

4

6

8

3.7 Explorations

Collinear Points. ptscol.nb
Show that the three points (3a, 0), (0, 3b) and (a, 2b) are collinear.

—–

38 Chapter 3 Coordinates and Points

Distance using Polar Coordinates. .polardis.nb
The location of a point in the plane may be specified using polar coordinates, (r, θ), where

r is the distance from the origin to the point, and θ is the angle the ray to the point from the
origin makes with the +x-axis. Show that the distance, d, between two points (r1, θ1) and
(r2, θ2), given in polar coordinates, is

d =
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2).

—–
Non-uniqueness of Polar Coordinates . polarunq.nb

Show that the polar coordinates of a point (r, θ) are not unique as all points of the form

(r, θ + 2kπ) and (−r, θ + (2k + 1)π)

represent the same position in the plane for integer values of k.
—–
Stewart’s Theorem. .stewart.nb

A B

C

D

ab
d

nm
AB = c

Show that for any 4ABC as shown in the figure above the relationship between the lengths
of the labeled line segments is given by

a2m + b2n = c(d2 + mn).

—–
Collinear Polar Coordinates .polarcol.nb

Show that the points P1(r1, θ1), P2(r2, θ2) and P3(r3, θ3) in polar coordinates are collinear
if and only if

−r1r2 sin(θ1 − θ2) + r1r3 sin(θ1 − θ3) − r2r3 sin(θ2 − θ3) = 0.

—–
Hypotenuse Midpoint Distance. tridist.nb

Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

—–

Chapter 4

Equations and Graphs

Using algebraic techniques to solve geometry problems is the difference in approach between
analytic geometry and planar geometry. Use of such techniques links the algebraic concept of
an equation to the graphical representation of geometry shown in a graph or plot. This chapter
introduces some of the simple algebraic techniques for solving equations that are heavily used
in analytic geometry.

4.1 Variables and Functions

A variable is a quantity to which arbitrary values may be assigned. Let x be a symbol
representing such a variable and let the quantity represented by the symbol y depend on x.
We call y a function of x and say that x is the independent variable, and y the dependent
variable. Using standard mathematical notation, these statements are written as y = f(x)
and is read “y is a function of x.” The value of the function at x = a is written f(a). These
definitions may be expanded so that a variable z depends on two independent quantities x
and y (as in solid analytic geometry), and relationships of this type are written z = f(x, y).

A function y = f(x) is real-valued if y is real when x is real. If there is but one value of
y for a given value of x, y is said to be a single-valued function. If, for a given value of x,
y has more than one value, y is said to be multiple-valued. The function f(x) is periodic if
f(x + P) ≡ f(x) for some period, P . Usually it is assumed that P is the least number for
which this identity is true.

4.2 Polynomials

A mathematical expression consisting of a sum of various positive integer powers of a variable
is called a polynomial. The largest exponent that appears in a polynomial is called the degree
of the polynomial. Polynomials of low-degree have special names as shown in Table 4.1.

Polynomials can involve more than one variable. For example the polynomial x+2y +3 is
a linear polynomial in two unknowns and x2 +3xy +2y2− 2x+4 is a quadratic polynomial in

39

40 Chapter 4 Equations and Graphs

Table 4.1: Low-degree polynomials.

Degree Name Example

0 Constant 3

1 Linear x + 1

2 Quadratic ax2 + bx + c

3 Cubic x3 − 2x + 7

4 Quartic 3t4 − 2t2 + 17

5 Quintic s5 − 1

two unknowns. Descarta2D provides special objects, called equation objects, for representing
linear and quadratic polynomials in two unknowns (see Table 4.2).

Example. Convert the polynomials 4x − 2y + 1 and x2 − 3xy + 3x − 2y + 4 into
equivalent Line2D and Quadratic2D objects. Perform the inverse conversions.

Solution. Line2D[poly, {x, y}] and Quadratic2D[poly, {x, y}] convert linear
and quadratic polynomials into equivalent Line2D and Quadratic2D objects. The
functions Polynomial2D[line,{x, y}] and Polynomial2D[quad,{x, y}] convert
Line2D and Quadratic2D objects, respectively, into polynomials.

In[1]: Clear@x, yD;
8l1 = Line2D@4∗x − 2∗y + 1, 8x, y<D,
q1 = Quadratic2D@x^2 − 3∗x∗y + 3∗x − 2∗y + 4, 8x, y<D<

Out[1] 8Line2D@4, −2, 1D, Quadratic2D@1, −3, 0, 3, −2, 4D<

In[2]: 8Polynomial2D@l1, 8x, y<D, Polynomial2D@q1, 8x, y<D<

Out[2] 81 + 4 x − 2 y, 4 + 3 x + x2 − 2 y − 3 x y<

Table 4.2: Descarta2D equation objects.

Polynomial Descarta2D Object

Ax + By + C Line2D[A,B,C]

Ax2 + Bxy + Cy2 + Dx + Ey + F Quadratic2D[A,B,C, D,E, F]

4.3 Equations 41

ax + by + c

ax2 + bxy + cy2 + dx + ey + f

Polynomials

ax + by + c == 0
ax2 + bxy + cy2 + dx + ey + f == 0

Equations

Line2D[a, b, c]
Quadratic2D[a, b, c, d, e, f]

Objects

�
�
�	

1

�
�
�� 2

@
@
@I3 @

@
@R

4

Figure 4.1: Descarta2D objects, polynomials and equations.

4.3 Equations

If a function of a single variable, f(x), is set equal to zero, the relation f(x) = 0 is called an
equation. This equation imposes a condition on the variable x which then can assume only
certain values. For example, if Ax + B = 0, then x can take on only one value, x = −B/A. If
the equation is sinx = 0, x can assume an unlimited number of values of the form kπ, where k
is any integer. The process of finding the values of x that satisfy the equation is called solving
the equation. The values of x which satisfy f(x) = 0 are called the solutions or roots of the
equation. All of the real solutions of f(x) = 0 may be represented by points on a line such as
the x-axis. These points constitute the graph of the equation in one dimension.

If a function of two variables, f(x, y), is set equal to zero the relation f(x, y) = 0 is also
an equation. But this equation permits one of the variables to be independent, while the
other is dependent and a function of the first. For example, f(x, y) = 0 might be solved for
y in terms of x, yielding y = g1(x), indicating that x is the independent variable and y the
dependent variable. Or f(x, y) = 0 might be solved for x yielding x = g2(y) interchanging the
independent and dependent variables.

In addition to representing polynomials, the Line2D and Quadratic2D objects may also
be used to represent equations (the implicit assumption is that they represent polynomials
set equal to zero). Figure 4.1 shows the relationships between polynomials, equations and
Descarta2D equation objects. Table 4.3 summarizes the Descarta2D functions that accomplish
the conversions labeled 1 to 4 in Figure 4.1.

Example. Convert the Descarta2D linear equation object Line2D[2, 3, -1] into
an equivalent Mathematica equation. Similarly, convert the Descarta2D quadratric
object Quadratic2D[1,-2, 2, 3, -3, 7] into a Mathematica equation.

Solution. The Descarta2D function Equation2D[line, {x, y}] converts a Line2D
object into a Mathematica equation. The function Equation2D[quad, {x, y}]
converts a Quadratic2D object into a Mathematica equation.

42 Chapter 4 Equations and Graphs

Table 4.3: Descarta2D conversion functions.

Descarta2D Function ⇒ Result

1 Line2D[ax + by + c, {x, y}] ⇒ Line2D[a, b, c]
Quadratic2D[ax2 + bxy + cy2 + dx + ey + f, {x, y}] ⇒

Quadratic2D[a, b, c, d, e, f]

2 Polynomial2D[Line2D[a,b, c], {x, y}] ⇒ ax + by + c

Polynomial2D[Quadratic2D[a,b, c, d, e, f], {x, y}] ⇒
ax2 + bxy + cy2 + dx + ey + f

3 Equation2D[Line2D[a,b, c], {x, y}] ⇒ ax + by + c == 0
Equation2D[Quadratic2D[a, b, c, d, e, f], {x, y}] ⇒

ax2 + bxy + cy2 + dx + ey + f == 0

4 Line2D[ax + by + c == 0, {x, y}] ⇒ Line2D[a, b, c]
Quadratic2D[ax2 + bxy + cy2 + dx + ey + f == 0, {x, y}] ⇒

Quadratic2D[a, b, c, d, e, f]

In[3]: Clear@x, yD;
8Equation2D@Line2D@2, 3, −1D, 8x, y<D,
Equation2D@Quadratic2D@1, −2, 2, 3, −3, 7D, 8x, y<D<

Out[3] 8−1 + 2 x + 3 y == 0, 7 + 3 x + x2 − 3 y − 2 x y + 2 y2 == 0<

4.4 Solving Equations

In our study of analytic geometry we will often need to solve linear and quadratic equations.
We will also need to solve systems of two or more equations. Mathematica provides functions
for solving individual equations and systems of equations, either exactly (the Solve function)
or numerically (the NSolve function). The following subsections illustrate the use of these
Mathematica functions.

One Linear, One Unknown

The equation ax+ b = 0 is a linear equation in one unknown. By simple algebra, the solution
to this equation is x = −b/a. The equation is invalid (or trivial) and has no solution if a = 0.

4.4 Solving Equations 43

Example. Solve the equation 3x + 12 = 0.

Solution. The Mathematica function Solve[eqn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

In[4]: Clear@xD;
Solve@3 x + 12 == 0, xD

Out[4] 88x → −4<<

One Quadratic, One Unknown

The quadratic equation ax2 + bx + c = 0 has two solutions

x =
−b ±√

b2 − 4ac

2a
.

The expression under the radical, D ≡ b2−4ac, is called the discriminant of the equation and
determines the type of solutions admitted by the equation. Assuming the coefficients are real
numbers, D > 0 indicates that the equation has two real and distinct solutions; if D = 0 the
equation has two real solutions that are equal; and if D < 0 the equation has two complex
solutions that are conjugates of each other.

Example. Find the solutions of the equation 3x2 − 4x − 5 = 0.

Solution. The Mathematica function Solve[eqn, variable] returns a list of solu-
tions for an equation in one unknown. The solution(s) are returned in the form of
Mathematica rules.

In[5]: Clear@xD;
Solve@3 x^2 − 4 x − 5 == 0, xD

Out[5] 99x →
1
�����
3

I2 −
è!!!!!
19 M=, 9x →

1
�����
3

I2 +
è!!!!!
19 M==

44 Chapter 4 Equations and Graphs

Two Linears, Two Unknowns

A list of two or more equations that are to be solved simultaneously is called a system of
equations. Consider the system of two linear equations

a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0.

Simple algebra yields the formulas for x and y that solve the two equations:

x =
b1c2 − b2c1

a1b2 − a2b1
and y =

a2c1 − a1c2

a1b2 − a2b1
.

If the denominator, a1b2 − a2b1, is equal to zero the equations have no solution and are called
inconsistent.

Example. Find the solution of the two linear equations x − 3y + 4 = 0 and
2x + 5y − 3 = 0.

Solution. The Mathematica function Solve[eqnList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.

In[6]: Clear@x, yD;
Solve@8x − 3 y + 4 == 0, 2 x + 5 y − 3 == 0<, 8x, y<D

Out[6] 88x → −1, y → 1<<

One Linear, One Quadratic, Two Unknowns

Consider the linear and quadratic equations

a1x + b1y + c1 = 0 and
a2x

2 + b2xy + c2y
2 + d2x + e2y + f2 = 0.

In the general case the system of these two equations can be solved by first solving the
linear equation for one of the variables, say x, in terms of the other, y. The expression for
x is then substituted into the quadratic equation, yielding a somewhat more complicated
quadratic equation in y alone. The quadratic equation in one variable is then solved yielding
two values for y which may then be substituted back into the linear equation to determine
the corresponding values of x. While this solution technique is straightforward, it produces
somewhat complicated expressions for x and y, and special cases must be handled individually
(for example, if the linear equation has no y term, then the procedure must be altered to solve
for x instead).

4.4 Solving Equations 45

Example. Solve the system of equations

3x + 4y − 1 = 0 and 2x2 + y2 + 6x − 4y + 1 = 0

using the Mathematica Solve command.

Solution. The Mathematica function Solve[eqnList, varList] returns a list of
solutions for a system of equations in several variables. The solution(s) are returned
in the form of Mathematica rules.
In[7]: Clear@x, yD;

ans = Solve@83 x + 4 y − 1 == 0, 2 x^2 + y^2 + 6 x − 4 y + 1 == 0<, 8x, y<D

Out[7] 99x →
1

���������
41

I−69 − 4
è!!!!!!!!
295 M, y →

1
���������
41

I62 + 3
è!!!!!!!!
295 M=,

9x →
1

���������
41

I−69 + 4
è!!!!!!!!
295 M, y →

1
���������
41

I62 − 3
è!!!!!!!!
295 M==

These somewhat complicated solutions can be approximated by decimal numbers
using the Mathematica N function.

In[8]: N@ansD

Out[8] 88x → −3.35859, y → 2.76894<, 8x → −0.00726205, y → 0.255447<<

Two Quadratics, Two Unknowns

The system of two quadratic equations in two unknowns

a1x
2 + b1xy + c1y

2 + d1x + e1y + f1 = 0 and
a2x

2 + b2xy + c2y
2 + d2x + e2y + f2 = 0

can be solved algebraically using a technique involving a pencil of the two quadratic equations.
This technique will be discussed in more detail in later chapters. Even though the technique
can yield a symbolic formula for the solutions, such a formula is of no practical value, and is
riddled with special cases. In spite of these complications, Mathematica can solve such systems
of equations with numerical coefficients, both in exact form and approximated numerically.
These solutions are very useful in the study of conic curves introduced in later chapters.

Example. Find approximate numerical solutions for the system of equations

3x2 + 2xy − 4y2 − 2x − 3y − 4 = 0
x2 − 4xy + y2 + 3x + 4y + 1 = 0

using the Mathematica NSolve command.

46 Chapter 4 Equations and Graphs

Solution. The Mathematica function NSolve[eqnList, varList] returns a list of
numerical solutions for a system of equations in several variables. The solution(s)
are returned in the form of Mathematica rules. The results shown here were
computed using Mathematica Version 3.0.1. Version 4.0 computes the same roots,
but returns them in a different order.

In[9]: Clear@x, yD;
NSolve@83 x^2 + 2 x∗y − 4 y^2 − 2 x − 3 y − 4 == 0,

x^2 − 4 x∗y + y^2 + 3 x + 4 y + 1 == 0<, 8x, y<D

Out[9] 88x → −0.955121, y → 0.120031<,
8x → 0.476004 − 0.298543 I, y → −0.268381 + 0.962235 I<,
8x → 0.476004 + 0.298543 I, y → −0.268381 − 0.962235 I<,
8x → 3.81264, y → 3.46435<<

Notice that in this example two of the solution pairs involve only real numbers,
and two involve complex numbers. The complex solutions are a conjugate pair.

Descarta2D Hint. Descarta2D provides the function Solve2D to supplement
the capabilities of the Mathematica Solve function. It provides specialized capa-
bilities that are useful in the implementation of the Descarta2D packages. Refer
to the Descarta2D references for a detailed description of the Solve2D function.

4.5 Graphs

Consider that F (x, y) = 0 has been solved for y so that y = f(x). We wish to give a geometric
interpretation to the equation y = f(x). Now if a value, say x1, is assigned to x, then, if f(x)
is single-valued, there will be determined a single value y, say y1. Another value of x, say x2,
will produce a value y2. If f(x) is multiple-valued, there will be several values of y for a given
x. In any event the real number pairs (x1, y1) which satisfy y = f(x) may be plotted in two
dimensions as points in the plane. The aggregate of these points constitutes the graph or plot
of the equation y = f(x) or of the function f(x).

This is one of the central problems in plane analytic geometry: given a function y = f(x),
to plot its graph or to represent it geometrically. We sometimes say that the graph of f(x) is
the locus of f(x). The word locus, in general, carries with it the idea of motion. Thus, the
curve traced by a moving point is called the locus of the point. Such a locus is also referred
to as a curve in the plane.

Through the study of equations much can be learned about the geometric properties of
graphs. Such analysis is one of the roles of analytic geometry. In the study of an equation
y = f(x) there are many analyses that can be made in order to intuitively understand the
behavior of the graph. Mathematica and Descarta2D can be used to aid in this understanding.
Four properties of significant interest in analytic geometry are

4.6 Parametric Equations 47

Intercepts The points at which the curve crosses the x- and y-axes.

Extent The regions of the plane to which the curve is confined and regions where it tends to
infinity.

Symmetry The lines in which the reflection of the curve is a mirror image of the curve itself.
Cases of interest include symmetry about the x- or y-axes, symmetry about the origin,
and symmetry about the lines y = x or y = −x.

Asymptotes The behavior of an unbounded curve in the neighborhood of infinity, where
either x, y, or both become infinite. In particular, it may happen that the distance
from a point P on the curve to some fixed line tends to zero. Such a line is called an
asymptote of the curve.

The set of all points which satisfy a given condition is called the locus of that condition.
An equation is called the equation of the locus if it is satisfied by the coordinates of every
point on the locus and by no other points. There are three common representations of the
locus by means of equations:

Rectangular equations which involve the rectangular coordinates (x, y)

Polar equations which involve the polar coordinates (r, θ)

Parametric equations which express x and y (or r and θ) in terms of a third independent
variable called a parameter.

This book focuses on rectangular and parametric equations, with polar equations covered in
the explorations.

4.6 Parametric Equations

It is often advantageous to use two equations to represent a curve instead of one. The x-
coordinate of a point on the curve will be given by one equation expressing x as some function
of a parameter, say θ or t, and the y-coordinate will be given by another equation express-
ing y as a function of the same parameter. Such equations are called parametric equations.
Upon eliminating the parameter between the two equations the implicit equation, in the form
f(x, y) = 0, of the curve may be found. Some loci problems are treated most readily by means
of parametric equations. Parametric equations are also the most natural means for generating
a sequence of points on a curve, such as those needed to plot the curve. Since a parameter
may be chosen in many ways, the parametric equations of a given curve are not unique, and
in some cases they will only represent a portion of a curve.

Example. Find parametric equations of the locus of a point as it “orbits” about
the origin at a distance of 2 units.

48 Chapter 4 Equations and Graphs

Solution. Let the parameter θ be the angle measured counter-clockwise from the
+x-axis that a line segment of length 2 sweeps when anchored at the origin (0, 0).
Using trigonometry the x- and y-coordinates of the end point of the line segment
are given by the parametric equations

x = 2 sin θ and y = 2 cos θ.

The locus of these parametric equations is a circle. In Mathematica a parametric
curve may be plotted using ParametricPlot[{x(t),y(t)}, {t, t1, t2}] where x(t)
and y(t) are the parametric equations of the curve, t is the parameter, and t1 and
t2 are the start and end values of the parameter.

In[10]: Clear@tD;
ParametricPlot@82 Sin@tD, 2 Cos@tD<, 8t, 0, 2 Pi<,

AspectRatio −> AutomaticD;

-2 -1 1 2

-2

-1

1

2

In our study of curves in the plane we will examine both implicit and parametric equations
for the curves.

4.7 Explorations

Determinants. .deter.nb
Determinants often provide a concise notation for expressing relationships in analytic geom-

etry. Show that the expanded algebraic form for the 2 × 2 determinant∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣
is given by −a2b1 + a1b2. Show that the expanded algebraic form for the 3 × 3 determinant∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣

4.7 Explorations 49

is given by −a3b2c1 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 + a1b2c3.
—–
Cramer’s Rule (Two Equations). .cramer2.nb

Show that the solution to the system of two linear equations in two unknowns

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

is given by the determinants

x =

∣∣∣∣∣ −c1 b1

−c2 b2

∣∣∣∣∣
D

and y =

∣∣∣∣∣ a1 −c1

a2 −c2

∣∣∣∣∣
D

,

where

D =

∣∣∣∣∣ a1 b1

a2 b2

∣∣∣∣∣ .
—–
Cramer’s Rule (Three Equations). .cramer3.nb

Show that the solution to the system of three linear equations in three unknowns

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0
a3x + b3y + c3z + d3 = 0

is given by the determinants

x =

∣∣∣∣∣∣∣
−d1 b1 c1

−d2 b2 c2

−d3 b3 c3

∣∣∣∣∣∣∣
D

, y =

∣∣∣∣∣∣∣
a1 −d1 c1

a2 −d2 c2

a3 −d3 c3

∣∣∣∣∣∣∣
D

, and z =

∣∣∣∣∣∣∣
a1 b1 −d1

a2 b2 −d2

a3 b3 −d3

∣∣∣∣∣∣∣
D

where

D =

∣∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣ .
—–
Polar Equations. polareqn.nb

A curve in polar coordinates may have more than one equation. A given point may have
either of two general coordinate representations

(r, θ + 2kπ),
(−r, θ + (2k + 1)π),

50 Chapter 4 Equations and Graphs

for any integer k. Hence a given curve r = f(θ) may have either of the two equation forms

r = f(θ + 2kπ),
−r = f(θ + (2k + 1)π).

The first equation reduces to r = f(θ) when k = 0, but may lead to an entirely different
equation of the same curve for another value of k. Similarly, the second equation may yield
other equations of the curve. Show that in spite of the potential for multiple equations in
polar coordinates, a linear equation Ax + By + C = 0 has only one representation in polar
coordinates given by

r(A cos θ + B sin θ) + C = 0.

—–

Chapter 5

Lines and Line Segments

The curve with the simplest equation is a straight line. There are many forms the equation
can exhibit, depending on how we wish to construct the line. This chapter develops in detail
the analytic geometry of a line and its close relation, the line segment.

5.1 General Equation

Every linear equation in two unknowns can be written in the form

Ax + By + C = 0.

The graph of such a linear equation is a straight line. In Descarta2D the line Ax+By +C = 0
is represented as Line2D[A,B, C]. Points (x, y) whose coordinates satisfy the equation
Ax + By + C = 0 are said to be on the line.

A line segment is the set of points on a line between two points on the line, P0(x0, y0) and
P1(x1, y1). In Descarta2D a line segment is represented as Segment2D[coords, coords] where
the coords are lists of the (x, y) coordinates of the start and end points of the line segment.

Example. Plot the lines 2x−3y+1 = 0 and x+2y+2 = 0. Plot the line segment
between the points (−1, 2) and (3,−1).

Solution. The Descarta2D function Sketch2D[objList] plots a sketch of the ob-
jects in the object list.

In[1]: Sketch2D@8Line2D@2, −3, 1D, Line2D@1, 2, 2D,
Segment2D@8−1, 2<, 83, −1<D<D;

51

52 Chapter 5 Lines and Line Segments

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

Example. Determine which of the points (−1, 1), (2, 5
3), (3, 1) and (−3,− 5

3) are
on the line 2x − 3y + 1 = 0.

Solution. The Descarta2D function IsOn2D[point, line] returns True if the point
is on the line.

In[2]: l1 = Line2D@2, −3, 1D;

In[3]: 8IsOn2D@p1 = Point2D@8−1, 1<D, l1D,
IsOn2D@p2 = Point2D@82, 5ê3<D, l1D,
IsOn2D@p3 = Point2D@83, 1<D, l1D,
IsOn2D@p4 = Point2D@8−3, −5ê3<D, l1D<

Out[3] 8False, True, False, True<

In[4]: Sketch2D@8l1, p1, p3<D;
Sketch2D@8l1, p2, p4<D;

-4 -2 0 2 4

-2

-1

0

1

2

3

-4 -2 0 2 4

-2

-1

0

1

2

3

5.1 General Equation 53

x

y

P1Hx1, y1L

P2Hx2, y2L

y2 - y1

x2 - x1

q

q

Figure 5.1: Inclination and slope of a line.

Inclination and Slope

The angle, θ, measured counter-clockwise from the +x-axis to a line, is called the inclination
of the line. The tangent of this angle, tan θ, (generally designated by the letter m) is called
the slope of the line. It is evident from Figure 5.1 that the slope of line P1P2 is given by

m = tan θ =
y2 − y1

x2 − x1
.

The formula is independent of the position and order of the two points involved.
Let L ≡ Ax + By + C = 0 be the general equation of a line. It is clear that the points

(−C/A, 0) and (0,−C/B) are on the line since they satisfy the equation of the line. Therefore,
the slope of L is given by

m =
0 − (−C/B)
(−C/A) − 0

= −A

B

and the angle of inclination, θ = tan−1 (−A/B).
The slope of the line containing a line segment from point (x0, y0) to point (x1, y1) can be

determined directly from the formula given for lines as

m =
y1 − y0

x1 − x0
.

Example. Find the angle of inclination (in degrees) and the slope of the line
x − y + 4 = 0. Find the slope of the line segment between the points (−2, 1) and
(3, 2).

Solution. The Descarta2D function Angle2D[line] returns the inclination of
a line (in radians); the function Slope2D[line] returns the slope of a line. The
function Slope2D[lnseg] returns the slope of the line containing the line segment.

54 Chapter 5 Lines and Line Segments

In[5]: l1 = Line2D@1, −1, 4D;
8Angle2D@l1D êDegree êê N, Slope2D@l1D,
Slope2D@Segment2D@81, −2<, 83, 2<DD<

Out[5] 845., 1, 2<

ŸMathematica Hint. The Mathematica symbol Degree equals the constant
π/180. In the previous example dividing by Degree converts the angle from
radians to degrees. The Mathematica function N[expr] produces a numerical
approximation of an expression. The syntax expr //N is equivalent to N[expr].

5.2 Parallel and Perpendicular Lines

If two lines have the same slope they are called parallel lines. If two lines share all their points
they are said to be coincident ; coincident lines are also considered to be parallel. Two lines
are perpendicular if the angle between them is a right angle. Let m1 = tan θ1 and m2 = tan θ2

be the slopes of two perpendicular lines. Since

θ2 = θ1 ± π

2

tan θ2 = tan
(
θ1 ± π

2

)
m2 = − cot θ1

= − 1
tan θ1

= − 1
m1

.

Therefore, the slopes of two perpendicular lines are negative reciprocals of each other related
by the equation, m1 = −1/m2. Descarta2D provides functions for querying whether pairs of
lines are parallel or perpendicular.

Example. Determine which of the following pairs of lines are parallel:

(a) 2x − 3y + 4 = 0 and −4x + 6y − 3 = 0,

(b) x + 2y − 3 = 0 and −2x + y − 1 = 0, and

(c) 3x − 4y + 2 = 0 and 2x + 4y − 1 = 0.

Additionally, determine which pairs are perpendicular.

5.3 Angle between Lines 55

Solution. The function IsParallel2D[line, line] will return True if the two
lines are parallel; otherwise, it returns False. IsPerpendicular2D[line, line]
returns True if the two lines are perpendicular; otherwise, it returns False.

In[6]: l1 = Line2D@2, −3, 4D; l2 = Line2D@−4, 6, −3D;
l3 = Line2D@1, 2, −3D; l4 = Line2D@−2, 1, −1D;
l5 = Line2D@3, −4, 2D; l6 = Line2D@2, 4, −1D;

In[7]: 88IsParallel2D@l1, l2D, IsPerpendicular2D@l1, l2D<,
8IsParallel2D@l3, l4D, IsPerpendicular2D@l3, l4D<,
8IsParallel2D@l5, l6D, IsPerpendicular2D@l5, l6D<<

Out[7] 88True, False<, 8False, True<, 8False, False<<

Therefore, the lines in pair (a) are parallel, the lines in pair (b) are perpendicular,
and the lines in pair (c) are neither parallel or perpendicular.

In[8]: Sketch2D@8l1, l2<D;
Sketch2D@8l3, l4<D;
Sketch2D@8l5, l6<D;

-4 -2 0 2 4
-2
-1
0
1
2
3

-4-2 0 2 4
-4
-2
0
2
4

-4 -2 0 2 4

-2
-1
0
1
2
3

5.3 Angle between Lines

The angle between two non-intersecting (parallel or coincident) lines is zero (radians or de-
grees). In the case of two intersecting lines, L1 and L2, let θ12 be the angle between the lines
measured counter-clockwise from L1 to L2. Since θ12 = θ2 − θ1, it follows that

tan θ12 = tan (θ2 − θ1) =
tan θ2 − tan θ1

1 + tan θ1 tan θ2

which, in terms of slopes of the lines, yields

tan θ12 =
m2 − m1

1 + m1m2
.

56 Chapter 5 Lines and Line Segments

Example. Determine the angle (in radians) between the lines x + 3y − 4 = 0 and
−2x + 2y + 1 = 0.

Solution. The Descarta2D function Angle2D[line, line] returns the angle between
the two lines (measured in radians from the first line to the second line).

In[9]: Angle2D@l1 = Line2D@1, 3, −4D, l2 = Line2D@−2, 2, 1DD êê N

Out[9] 1.10715

The result, 1.10715 radians, is approximately 63.4349◦.

In[10]: Sketch2D@8l1, l2<D;

-4 -2 0 2 4

-3
-2
-1
0
1
2
3

In[11]: Angle2D@l2, l1D êê N

Out[11] 2.03444

The angle between the lines taken in the opposite order is 2.0344 radians (approx-
imately 116.565◦) which is the supplement of the first angle (63.435◦ +116.565◦ =
180◦).

5.4 Two–Point Form

A line is determined by two distinct points on it, P1(x1, y1) and P2(x2, y2). Let P (x, y) be
any other point on the line as illustrated in Figure 5.2. Then by similar triangles

y − y1

x − x1
=

y2 − y1

x2 − x1

which is called the two–point form of a line. The two–point form may also be written as

(x − x1)(y − y2) = (x − x2)(y − y1).

5.4 Two–Point Form 57

x

y

P1Hx1, y1L

P2Hx2, y2L

PHx, yL
y2 - y1

x2 - x1

y - y1

x - x1

Figure 5.2: Two–point form of a line.

In general form the line is given by

− (y2 − y1)x + (x2 − x1) y + x1y2 − x2y1 = 0.

In determinant form the equation is given by

∣∣∣∣∣∣∣
x y 1
x1 y1 1
x2 y2 1

∣∣∣∣∣∣∣ = 0.

Example. Determine the line through the points (−2,−1) and (3, 2).

Solution. The Descarta2D function Line2D[point, point] constructs the line
through the two points. Alternately, the function Line2D[lnseg] constructs a line
defined by the start and end points of a line segment.

In[12]: p1 = Point2D@8−2, −1<D;
p2 = Point2D@83, 2<D;
8l1 = Line2D@p1, p2D, l2 = Line2D@Segment2D@p1, p2DD<

Out[12] 8Line2D@−3, 5, −1D, Line2D@−3, 5, −1D<

In[13]: Sketch2D@8l1, p1, p2<D;

58 Chapter 5 Lines and Line Segments

-4 -2 0 2 4

-2

-1

0

1

2

The Descarta2D function Line2D[{x1, y1}, {x2, y2}] is also provided to allow
construction of a line by specifying two point coordinates.

In[14]: Line2D@8−2, −1<, 83, 2<D

Out[14] Line2D@−3, 5, −1D

Collinear Points

In a previous chapter it was demonstrated that the three points P1(x1, y1), P2(x2, y2) and
P3(x3, y3) are collinear if their coordinates satisfy the determinant equation∣∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣ = 0.

This condition may be stated in a more intuitive form using the two–point form of a line.
The line defined by P1 and P2 must be satisfied by P3 yielding the condition

− (y2 − y1)x3 + (x2 − x1) y3 + x1y2 − x2y1 = 0

which can be put into the more symmetrical form

y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2) = 0.

5.5 Point–Slope Form

Since m =
y2 − y1

x2 − x1
, the two–point form of a line can be reduced to the point–slope form

y − y1 = m (x − x1)

as shown in Figure 5.3. In general form the equation of the line is

mx − y + (y1 − mx1) = 0.

5.5 Point–Slope Form 59

x

y

P1Hx1, y1L

m

1

Figure 5.3: Point–slope form of a line.

A vertical line cannot be represented in point–slope form. In determinant form the point–slope
form is given by ∣∣∣∣∣∣∣

x y 1
x1 y1 1
1 m 0

∣∣∣∣∣∣∣ = 0.

Example. Determine the line through the point (1, 2) with a slope of 1/2.

Solution. The Descarta2D function Line2D[point,m] constructs a line through
the point with a given slope, m.

In[15]: l1 = Line2D@p1 = Point2D@81, 2<D, 1ê2D

Out[15] Line2DA 1
�����
2
, −1,

3
�����
2

E

In[16]: Sketch2D@8p1, l1<D;

-4 -2 0 2 4
-1

0

1

2

3

60 Chapter 5 Lines and Line Segments

Line Through a Point Parallel to a Line

A line through a given point P1(x1, y1) parallel to a given line

A2x + B2y + C2 = 0

would have a slope m = −A2/B2, and using mx − y + (y1 − mx1) = 0 yields

A2x + B2y − (A2x1 + B2y1) = 0.

The equation can also be written

B2(x − x1) = A2(y − y1).

In determinant form the equation is∣∣∣∣∣∣∣
x y 1
x1 y1 1
B2 −A2 0

∣∣∣∣∣∣∣ = 0.

Line Through a Point Perpendicular to a Line

A line through a given point P1(x1, y1) perpendicular to a given line

A2x + B2y + C2 = 0

would have a slope m = −1/m2 = B2/A2, and using mx − y + (y1 − mx1) = 0 yields

B2x − A2y + (A2y1 − B2x1) = 0,

or, in a simpler form,
A2(y − y1) = B2(x − x1).

In determinant form the equation is ∣∣∣∣∣∣∣
x y 1
x1 y1 1
A2 B2 0

∣∣∣∣∣∣∣ = 0.

Example. Find the lines through the point (2, 1) which are parallel and perpen-
dicular to the line 3x − 2y + 1 = 0.

Solution. Line2D[point, line, Parallel2D] constructs a line through the point
and parallel to the line and Line2D[point, line, Perpendicular2D] constructs a
line through the point and perpendicular to the line.

5.5 Point–Slope Form 61

In[17]: p1 = Point2D@82, 1<D;
l1 = Line2D@3, −2, 1D;

In[18]: 8l2 = Line2D@p1, l1, Parallel2DD,
l3 = Line2D@p1, l1, Perpendicular2DD<

Out[18] 8Line2D@−3, 2, 4D, Line2D@−2, −3, 7D<

In[19]: Sketch2D@8p1, l1, l2, l3<D;

-2 0 2 4

-4

-2

0

2

4

Descarta2D Hint. The function Line2D[point, line] returns the same results
as Line2D[point, line, Perpendicular2D]; the keyword Perpendicular2D is op-
tional and may be omitted.

In[20]: Line2D@p1, l1D

Out[20] Line2D@−2, −3, 7D

Horizontal and Vertical Lines Through a Point

Given a point P1(x1, y1), a horizontal line whose slope is 0 will have the equation y − y1 = 0.
In determinant form the equation is ∣∣∣∣∣∣∣

x y 1
x1 y1 1
1 0 0

∣∣∣∣∣∣∣ = 0.

Similarly, a vertical line (whose slope is infinite) has the equation x−x1 = 0 and its determinant
equation is ∣∣∣∣∣∣∣

x y 1
x1 y1 1
0 1 0

∣∣∣∣∣∣∣ = 0.

62 Chapter 5 Lines and Line Segments

Example. Find the horizontal and vertical lines through the point (3, 2).

Solution. The function Line2D[point, 0] constructs a horizontal line through the
point. The function Line2D[point, Infinity] constructs a vertical line through
the point.

In[21]: p1 = Point2D@83, 2<D;
8l1 = Line2D@p1, 0D, l2 = Line2D@p1, InfinityD<

Out[21] 8Line2D@0, −1, 2D, Line2D@1, 0, −3D<

In[22]: Sketch2D@8p1, l1, l2<D;

-4 -2 0 2 4

-4

-2

0

2

4

5.6 Slope–Intercept Form

Specializing the point P1(x1, y1) in the point–slope form of a line to the y-intercept point (0, b)
as shown in Figure 5.4 gives the slope–intercept form of a line y = mx+ b. In general form the
equation of the line is mx − y + b = 0. The slope–intercept form cannot be used to represent
vertical lines. In determinant form the point–slope form is given by∣∣∣∣∣∣∣

x y 1
0 b 1
1 m 0

∣∣∣∣∣∣∣ = 0.

Example. Find the line with a y-intercept of 1 and a slope of 2.

Solution. The Descarta2D function Line2D[point,m] constructs a line through
the point with the given slope.

5.6 Slope–Intercept Form 63

x

y

P1H0, bL

m

1

Figure 5.4: Slope–intercept form of a line.

In[23]: l1 = Line2D@p1 = Point2D@80, 1<D, 2D

Out[23] Line2D@2, −1, 1D

In[24]: Sketch2D@8p1, l1<, PlotRange −> 88−3, 3<, 8−3, 3<<D;

-2-1 0 1 2 3
-3
-2
-1
0
1
2
3

Descarta2D Hint. The Sketch2D command option

PlotRange->{{xmin, xmax}, {ymin, ymax}}
used in the example above explicitly sets the minimum and maximum coordi-
nate range along the x-axis and y-axis, overriding the default setting which is
PlotRange->Automatic. The PlotRange option is useful for focusing on a spe-
cific portion of the plot.

64 Chapter 5 Lines and Line Segments

x

y

P1Ha, 0L

P2H0, bL

Figure 5.5: Intercept form of a line.

5.7 Intercept Form

Specializing the two points in the two–point form to the intercepts (a, 0) and (0, b) as shown
in Figure 5.5 gives (y − b)/x = −b/a, or, rearranging, the intercept form

x

a
+

y

b
= 1.

In general form the equation of the line is bx + ay − ab = 0; or, dividing Ax + By + C = 0 by
C (C 6= 0) gives

x

(−C/A)
+

y

(−C/B)
= 1.

Thus, in the general equation, the intercepts are given by x = −C/A and y = −C/B. Notice
that a line in intercept form cannot pass through the origin, nor can it be horizontal or vertical.
In determinant form the intercept form is given by∣∣∣∣∣∣∣

x y 1
a 0 1
0 b 1

∣∣∣∣∣∣∣ = 0.

Example. Find the line whose x-intercept is 2 and y-intercept is 1.

Solution. The function Line2D[point, point] constructs a line through the two
points.

In[25]: p1 = Point2D@82, 0<D;
p2 = Point2D@80, 1<D;
l12 = Line2D@p1, p2D

Out[25] Line2D@−1, −2, 2D

5.8 Normal Form 65

In[26]: Sketch2D@8p1, p2, l12<D;

-4 -2 0 2 4

-1

0

1

2

3

5.8 Normal Form

Consider a directed line segment OA of length ρ starting at the origin O and making an angle
θ with the +x-axis as shown in Figure 5.6. The line L which is perpendicular to OA and
passes through A is completely determined by the parameters ρ and θ. We wish to determine
the general equation of the line L. The coordinates of A are (ρ cos θ, ρ sin θ) and the slope of L
is − cot θ since L is perpendicular to OA which has slope tan θ. Hence, using the point–slope
form we obtain, as the normal form of the equation of line L,

y − ρ sin θ = − cot θ(x − ρ cos θ)

which reduces to
x cos θ + y sin θ − ρ = 0.

This form of the equation of a straight line is called the normal form (sometimes the per-
pendicular form) because its coefficients involve the parameters ρ and θ associated with the
normal or perpendicular segment OA to the line.

To determine the coefficients of the normal form from the general form

Ax + By + C = 0,

we divide by ±√
A2 + B2 yielding

A

±√
A2 + B2

x +
B

±√
A2 + B2

y +
C

±√
A2 + B2

= 0.

The sign of
√

A2 + B2 is chosen to be opposite to that of C to make the constant term, ρ,
positive. If C is zero, the line passes through the origin. The process of dividing a linear
equation by ±√

A2 + B2 is called normalizing the line.

Example. Normalize the lines 3x − 4y − 5 = 0 and 2x + y − 3 = 0.

66 Chapter 5 Lines and Line Segments

x

y

A

r

q

O r cosHqL

r sinHqL L

Figure 5.6: Normal form of a line.

Solution. The Descarta2D function Line2D[line] constructs a line with normal-
ized coefficients.

In[27]: 8Line2D@Line2D@3, −4, −5DD, Line2D@Line2D@2, 1, −3DD<

Out[27] 9Line2DA 3
�����
5
, −

4
�����
5
, −1E, Line2DA 2

�����������è!!!5
,

1
�����������è!!!5

, −
3

�����������è!!!5
E=

Example. Find the line 4 units from the origin whose normal makes an angle of
30◦ with the positive x-axis.

Solution. We apply directly the normal form of a line to determine the coefficients
of the line in general form.

In[28]: Line2D@Cos@30 DegreeD, Sin@30 DegreeD, −4D êê N

Out[28] Line2D@0.866025, 0.5, −4.D

ŸMathematica Hint. The Mathematica symbol Degree is the constant π/180.
Multiplying an angle in degrees by Degree (as illustrated in the previous exam-
ple) converts the angle to radians; radians are the angular units required in all
Descarta2D functions.

5.8 Normal Form 67

Point Offset a Distance Along a Line

Given a point P1(x1, y1) we wish to offset the point a distance d in the direction of a given
line L2 ≡ A2x + B2y + C2 = 0. We note that the coefficients of the normalized form of L2

immediately give us the unit directions to offset P1, so the desired coordinates of the offset
point are (

x1 +
dA2√

A2
2 + B2

2

, y1 +
dB2√

A2
2 + B2

2

)
.

If the point P1 is on line L2, then the offset point will also be on L2; otherwise, the offset
point will be on a line parallel to L2. The distance d may be positive or negative allowing
offsets in either direction parallel to the line.

Example. Offset the points (−1, 1), (1,−1) and (0, 0) a distance 2 in both direc-
tions along the line 3x − 4y + 1 = 0.

Solution. The Descarta2D function Point2D[point, line, d] offsets a point along
a line a given distance, d. The distance may be positive or negative.

In[29]: p1 = Point2D@8−1, 1<D;
p2 = Point2D@81, −1<D;
p3 = Point2D@80, 0<D;
l1 = Line2D@3, −4, 1D;

In[30]: pts = 88Point2D@p1, l1, 2D, Point2D@p1, l1, −2D<,
8Point2D@p2, l1, 2D, Point2D@p2, l1, −2D<,
8Point2D@p3, l1, 2D, Point2D@p3, l1, −2D<<

Out[30] 99Point2DA9 3
�����
5
,

11
���������
5

=E, Point2DA9−
13
���������
5

, −
1
�����
5

=E=,

9Point2DA9 13
���������
5

,
1
�����
5

=E, Point2DA9−
3
�����
5
, −

11
���������
5

=E=,

9Point2DA9 8
�����
5
,

6
�����
5

=E, Point2DA9−
8
�����
5
, −

6
�����
5

=E==

In[31]: Sketch2D@8p1, p2, p3, l1, pts<D;

-4 -2 0 2 4

-2
-1
0
1
2
3

68 Chapter 5 Lines and Line Segments

Line Offset a Distance from a Line

If a line L1 is parallel to a second line L2, the two lines will be separated by a constant
distance, d. The process of constructing a line such as L2 which is parallel to L1 at a given
distance, d, is called offsetting the line. There are two lines offset a distance d from a line
Ax + By + C = 0. The general equations of these two lines are easily determined from the
normal form as

A√
A2 + B2

x +
B√

A2 + B2
y +

C√
A2 + B2

± d = 0.

Example. Find and plot the two lines offset a distance of two units from the line
x − 3y + 1 = 0.

Solution. The Descarta2D function Line2D[line, d] constructs a line offset a
given distance, d, from a line. The distance may be positive or negative yielding
one of the two possible offset lines.

In[32]: l1 = Line2D@1, −3, 1D;
8l2 = Line2D@l1, 2D, l3 = Line2D@l1, −2D<

Out[32] 9Line2DA1, −3, 1 − 2
è!!!!!
10 E, Line2DA1, −3, 1 + 2

è!!!!!
10 E=

In[33]: Sketch2D@8l1, l2, l3<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

Distance from a Point to a Line

The normal form of a line provides a convenient method for determining the distance from a
point to a line. Consider a normalized line L ≡ px + qy − r = 0, where p2 + q2 = 1. A line
M offset a distance d from L clearly has the equation M ≡ px + qy − r ± d = 0. Any point
P1(x1, y1) on M satisfies the equation of M , therefore, px1 + qy1 − r ± d = 0. Solving for d
and squaring to remove the ambiguous sign yields

d2 = (px1 + qy1 − r)2.

5.9 Intersection Point of Two Lines 69

Thus, the distance d from a point P1(x1, y1) to a line Ax + By + C = 0 in general form is

d = ±Ax1 + By1 + C√
A2 + B2

,

where the sign is selected to produce the positive result.

Example. Find the distance from the point (3,−2) to the line 3x − 4y + 2 = 0.

Solution. The Descarta2D function Distance2D[point, line] returns the distance
from the point to the line.

In[34]: Distance2D@Point2D@83, −2<D, Line2D@3, −4, 2DD

Out[34]
19
���������
5

5.9 Intersection Point of Two Lines

Two lines L1 ≡ A1x+B1y+C1 = 0 and L2 ≡ A2x+B2y+C2 = 0 may be parallel, coincident,
or intersect in a single point. In the case they where intersect in a single point, the coordinates
of the point may be determined by solving the system of equations

A1x + B1y + C1 = 0
A2x + B2y + C2 = 0

for the intersection point P (x, y). The resulting formula for the coordinates of point P is(
B1C2 − B2C1

A1B2 − A2B1
,
A1C2 − A2C1

A1B2 − A2B1

)
, A1B2 − A2B1 6= 0.

In the case where the denominators are zero, the lines are either parallel or coincident. If the
lines are coincident the ratio of their corresponding coefficients will be a constant

k =
A1

A2
=

B1

B2
=

C1

C2
,

and the conditions∣∣∣∣∣ A1 B1

A2 B2

∣∣∣∣∣ = 0,

∣∣∣∣∣ −C1 B1

−C2 B2

∣∣∣∣∣ = 0 and

∣∣∣∣∣ A1 −C1

A2 −C2

∣∣∣∣∣ = 0

are sufficient to insure the lines are coincident.

70 Chapter 5 Lines and Line Segments

Example. Find the intersection point of the two lines whose equations are
2x − 3y + 7 = 0 and 3x + 7y − 2 = 0.

Solution. The Descarta2D function Point2D[line, line] constructs the intersec-
tion point of the two lines.

In[35]: p12 = Point2D@l1 = Line2D@2, −3, 7D, l2 = Line2D@3, 7, −2DD

Out[35] Point2DA9−
43
���������
23

,
25
���������
23

=E

In[36]: Sketch2D@8l1, l2, p12<D;

-4 -2 0 2 4

-1
0
1
2
3
4

5.10 Point Projected Onto a Line

A point P1 is said to be projected onto a point P2 on a line L2, if the line P1P2 is perpendicular
to L2. To determine the coordinates of a point projected onto a line, we can build upon con-
cepts and formulas already established. We construct a line through the point, perpendicular
to the given line. This line is then intersected with the given line which yields the desired
projected point. Using Descarta2D, the sequence of commands to project point P1(x1, y1) onto
the line L2 ≡ A2x + B2y + C2 = 0 is as follows:

In[37]: Clear@x1, y1, A2, B2, C2D;
p1 = Point2D@8x1, y1<D;
l2 = Line2D@A2, B2, C2D;
l1 = Line2D@p1, l2, Perpendicular2DD;
p2 = Point2D@l1, l2D êê Simplify

Out[37] Point2DA9 B22 x1 − A2 HC2 + B2 y1L
���

A22 + B22
,

−B2 HC2 + A2 x1L + A22 y1
���

A22 + B22
=E

5.10 Point Projected Onto a Line 71

In standard mathematical notation the coordinates of the projected point P2 are

(
B2

2x1 − A2(C2 + B2y1)
A2

2 + B2
2

,
A2

2y1 − B2(C2 + A2x1)
A2

2 + B2
2

)
.

The coordinates of the projected point can also be written in a somewhat more intuitive form
given by

(x1 − ad, y1 − bd)

where

a =
A√

A2 + B2
, b =

B√
A2 + B2

and d =
Ax1 + By1 + C√

A2 + B2
.

Simple algebra confirms that the two forms are equivalent. If the point P1(x1, y1) is on the
line, then it is clear from the second form that the projected point P2 has coordinates (x1, y1)
since d, which is the signed distance from the point to the line, is equal to zero when P1 is
on L2. As shown in the next example, Descarta2D provides a specific function that projects a
point onto a line.

Example. Project the point (−3, 2) onto the line 5x − 3y + 4 = 0.

Solution. The Descarta2D function Point2D[point, line] projects a point onto a
line and returns the projected point.

In[38]: p2 = Point2D@p1 = Point2D@8−3, 2<D, l2 = Line2D@5, −3, 4DD

Out[38] Point2DA9−
1
�����
2
,

1
�����
2

=E

In[39]: Sketch2D@8p1, p2, l2<, PlotRange −> 88−4, 1<, 8−1, 4<<D;

-3 -2 -1 0 1
-1

0

1

2

3

4

72 Chapter 5 Lines and Line Segments

5.11 Line Perpendicular to Line Segment

Given a line segment bounded by the points P0(x0, y0) and P1(x1, y1), we wish to find the line
that is the perpendicular bisector of the line segment. Using Descarta2D we merely construct
the line perpendicular to the line segment through its midpoint.

In[40]: Clear@x0, y0, x1, y1D;
ls = Segment2D@8x0, y0<, 8x1, y1<D;
Line2D@Point2D@lsD, Line2D@lsD, Perpendicular2DD êê Simplify

Out[40] Line2DA−x0 + x1, −y0 + y1,
1
�����
2

Hx02 − x12 + y02 − y12LE

In standard mathematical notation the equation of the line is

2(x1 − x0)x + 2(y1 − y0)y + x2
0 − x2

1 + y2
0 − y2

1 = 0.

In determinant form the equation is given by∣∣∣∣∣∣∣
x y 1

x0 + x1 y0 + y1 2
y0 − y1 −(x0 − x1) 0

∣∣∣∣∣∣∣ = 0.

Example. Find the line that is the perpendicular bisector of the line segment
bounded by the points (−3,−1) and (5, 3).

Solution. The function Line2D[lnseg, Perpendicular2D] constructs the per-
pendicular bisector of the line segment.

In[41]: ls1 = Segment2D@8−3, −1<, 85, 3<D;
l1 = Line2D@ls1, Perpendicular2DD

Out[41] Line2D@16, 8, −24D

In[42]: Sketch2D@8ls1, l1, Point2D@8−3, −1<D, Point2D@85, 3<D<D;

-2 0 2 4
-4

-2

0

2

4

5.12 Angle Bisector Lines 73

Descarta2D Hint. In the previous example, the resulting line 16x+8y−24 = 0,
can be expressed in a simpler form by dividing the coefficients by 8, resulting in
the equation 2x+y−3 = 0. The Mathematica function Simplify[expr] (or expr
//Simplify) can be used to simplify the result of any Descarta2D computation.
Be aware, however, that the computation may take a significant amount of time
to complete and, sometimes, no simpler expression is found. The Descarta2D

Line2D object has a special Simplify function that removes common factors
from the coefficients of a line.

In[43]: Line2D@16, 8, −24D êê Simplify

Out[43] Line2D@2, 1, −3D

5.12 Angle Bisector Lines

The angle bisectors of two lines A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0 are defined
by the locus of points equidistant from the two lines. If P (x, y) is an arbitrary point on the
angle bisectors, then using the distance formula for both lines yields

d = ±A1x + B1y + C1√
A2

1 + B2
1

and d = ±A2x + B2y + C2√
A2

2 + B2
2

.

Equating the two yields the equation of the angle bisectors given by

A1x + B1y + C1√
A2

1 + B2
1

= ±A2x + B2y + C2√
A2

2 + B2
2

.

Example. Find and plot the angle bisector lines of the lines x − 3y + 2 = 0 and
x + 4y − 2 = 0.

Solution. The Descarta2D function MedialLoci2D[{line, line}] returns a list of
two lines that are the angle bisectors of the two given lines.

In[44]: l12 = MedialLoci2D@8l1 = Line2D@1, −3, 2D, l2 = Line2D@1, 4, −2D<D

Out[44] 9Line2DAè!!!!!
10 −

è!!!!!
17 , 4

è!!!!!
10 + 3

è!!!!!
17 , −2

è!!!!!
10 − 2

è!!!!!
17 E,

Line2DAè!!!!!
10 +

è!!!!!
17 , 4

è!!!!!
10 − 3

è!!!!!
17 , −2

è!!!!!
10 + 2

è!!!!!
17 E=

In[45]: Sketch2D@8l1, l2, l12<D;

74 Chapter 5 Lines and Line Segments

-4 -2 0 2 4

-4

-2

0

2

4

5.13 Concurrent Lines

Three lines that intersect in a single, common point are called concurrent lines. Using Math-
ematica we will prove that three lines

A1x + B1y + C1 = 0
A2x + B2y + C2 = 0
A3x + B3y + C3 = 0

will be concurrent when the determinant of their coefficients is zero. The determinant equation
is given by ∣∣∣∣∣∣∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣∣ = 0.

We create four points, P0, P1, P3 and P4, where P0 will be the common point of the three
lines l1 = P0P1, l2 = P0P2 and l3 = P0P3.

In[46]: Clear@x0, y0, x1, y1, x2, y2, x3, y3D;
p0 = Point2D@8x0, y0<D;
p1 = Point2D@8x1, y1<D;
p2 = Point2D@8x2, y2<D;
p3 = Point2D@8x3, y3<D;
8l1, l2, l3< = Map@Line2D@p0, #D&, 8p1, p2, p3<D

Out[46] 8Line2D@y0 − y1, −x0 + x1, −x1 y0 + x0 y1D, Line2D@y0 − y2, −x0 + x2, −x2 y0 + x0 y2D,
Line2D@y0 − y3, −x0 + x3, −x3 y0 + x0 y3D<

We now extract the coefficients of the lines and apply the postulated determinant.

In[47]: 8A1, B1, C1< = List @@ l1;

8A2, B2, C2< = List @@ l2;

8A3, B3, C3< = List @@ l3;

Det@88A1, B1, C1<,
8A2, B2, C2<,
8A3, B3, C3<<D êê Simplify

Out[47] 0

5.14 Pencils of Lines 75

The condition defined by the determinant is therefore necessary; it is also sufficient provided
the slopes of the lines are distinct.

ŸMathematica Hint. The Mathematica function Apply[f, expr] (or f @@ expr)
replaces the head of expr by f. In the Mathematica statements above, the Apply
function is used to convert a Line2D object into a list of coefficients.

Example. Verify that the three lines given by x − y + 6 = 0, 2x + y − 5 = 0 and
−x − 2y + 11 = 0 are concurrent.

Solution. The function IsConcurrent2D[line, line, line] returns True if the
three lines are concurrent; otherwise, it returns False.

In[48]: IsConcurrent2D@l1 = Line2D@1, −1, 6D,
l2 = Line2D@2, 1, −5D,
l3 = Line2D@−1, −2, 11DD

Out[48] True

In[49]: Sketch2D@8l1, l2, l3<, CurveLength2D −> 12D;

-6-4-2 0 2 4 6
-4
-2
0
2
4
6

5.14 Pencils of Lines

Pencil of Intersecting Lines

Let L1 ≡ A1x + B1y + C1 = 0 and L2 ≡ A2x + B2y + C2 = 0 be the equations of two lines in
the plane. Consider the equation L ≡ (1 − k)L1 + kL2 = 0, where k is an arbitrary constant.
L is clearly an equation of the first-degree as it can be written

((1 − k)A1 + kA2)x + ((1 − k)B1 + kB2)y + ((1 − k)C1 + kC2) = 0.

76 Chapter 5 Lines and Line Segments

Assume that L1 and L2 intersect in some point P (x, y); then, by definition, L1(x, y) = 0 and
L2(x, y) = 0, since P is on both lines. Furthermore, L now represents a family, or system,
of lines passing through P . Such a family of lines is called a pencil of lines. The variable
k can be set to a value in a manner that produces a line in the pencil that will satisfy one
additional condition. This is a useful technique for solving certain types of geometric problems
as demonstrated in the next example.

Example. Find the family (pencil) of lines that pass through the intersection
point of x−2y +4 = 0 and 2x+3y−2 = 0. Find the value of k and the associated
member of the family that passes through the point (4, 2).

Solution. Line2D[line, line, k, Pencil2D] constructs a line representing the pen-
cil of lines (1 − k)L1 + kL2. Equation2D[line, coords] returns a Mathematica
equation that establishes the condition of the point being on the line.

In[50]: Clear@kD;
L3 = Line2D@L1 = Line2D@1, −2, 4D,

L2 = Line2D@2, 3, −2D, k, Pencil2DD

Out[50] Line2D@1 + k, −2 H1 − kL + 3 k, 4 H1 − kL − 2 kD

In[51]: pt = Point2D@84, 2<D;
eqn = Equation2D@L3, Coordinates2D@ptDD

Out[51] 4 H1 − kL − 2 k + 4 H1 + kL + 2 H−2 H1 − kL + 3 kL == 0

In[52]: ans = Solve@eqnD

Out[52] 99k → −
1
�����
2

==

In[53]: Sketch2D@8L1, L2, HL3 ê. ans@@1DDL, pt<D;

-4 -2 0 2 4
-2
-1
0
1
2
3

5.14 Pencils of Lines 77

x

y

qP1Hx1, y1L

PHx, yL

1

cosHqL

sinHqL

L

Figure 5.7: Pencil of lines through a point.

Pencil of Lines Through a Point

Consider the equation of a line L passing through points P1(x1, y1) and P (x, y) as shown in
Figure 5.7. L is parameterized by the angle θ and the coordinates of P are given by

x = x1 + cos θ and y = y1 + sin θ.

The equation of the line as determined by the two–point form is given by

L ≡ −x sin θ + y cos θ + x1 sin θ − y1 cos θ = 0.

Clearly, the point P1(x1, y1) is on L as the coordinates of P1 satisfy the equation of L. Also,
since the slope m of L is given by

m =
− sin θ

− cos θ
= tan θ

we can create a line with any given slope. A vertical line, whose slope is infinite, can be
represented using θ = π/2. A complete pencil of lines, therefore, can be created for values
0 ≤ θ < π.

Example. Find the parametric equation of a pencil of lines passing through the
point (2, 3).

Solution. The function Line2D[point, θ, Pencil2D] constructs a line parame-
terized by angle θ and passing through the given point.

78 Chapter 5 Lines and Line Segments

In[54]: Clear@tD;
l1 = Line2D@Point2D@82, 3<D, t, Pencil2DD

Out[54] Line2D@−Sin@tD, Cos@tD, −3 Cos@tD + 2 Sin@tDD

The following commands plot several members of this pencil of lines.

In[55]: Sketch2D@Map@Hl1 ê. t −> #L&, Pi∗Range@0, 10D ê10DD;

-4-2 0 2 4 6

-4

-2

0

2

4

6

A simpler parameterization involves applying the point–slope form of a line and using the
slope, m, as the parameter of the pencil. This approach yields the parameterized pencil of
lines

mx − y + y1 − mx1 = 0.

This parameterization, however, cannot represent vertical lines.

5.15 Parametric Equations

We wish to formulate parametric equations for the line L1 ≡ A1x+B1y +C1 = 0. Since there
are an infinite number of valid parameterizations, we will specify that we desire a particular
parameterization with the properties that the point nearest the origin will be at parameter
value t = 0, and the other points on the line will be parameterized by distance along the line.
For example, the parameters t = ±2 will generate the pair of points at a distance two from
the point on the line nearest the origin.

Using Descarta2D we can determine the point P0 on L1 nearest the origin by projecting
the origin onto L1.

In[56]: Clear@A1, B1, C1D;
p0 = Point2D@Point2D@80, 0<D, Line2D@A1, B1, C1DD

Out[56] Point2DA9−
A1 C1

��������������������������
A12 + B12

, −
B1 C1

��������������������������
A12 + B12

=E

Now consider a right triangle with sides at and bt as shown in Figure 5.8. In this triangle
a = A1/

√
A2

1 + B2
1 and b = B1/

√
A2

1 + B2
1). The hypotenuse of this triangle is obviously of

length t since

(at)2 + (bt)2 =

(
A1t√

A2
1 + B2

1

)2

+

(
B1t√

A2
1 + B2

1

)2

= t2.

5.15 Parametric Equations 79

x

y

O

a t

b t

P0Hx0, y0L

PtHx0 - b t, y0 - a tL

t

+

Figure 5.8: Parametric equation of a line.

Also the slope is given by

m =
(y0 − at) − y0

(x0 + bt) − x0
= −a

b
= −A1

B1

which is the slope of the desired line, L1. Therefore, the parametric equations of the line are

x = − A1C1

A2
1 + B2

1

+
B1t√

A2
1 + B2

1

y = − B1C1

A2
1 + B2

1

− A1t√
A2

1 + B2
1

.

Example. Find the coordinates of the points on the line x − 2y + 3 = 0 for
parameter values t = −2,−1, 0, 1, 2. Plot the lines and the points.

Solution. The Descarta2D function Line2D[A,B, C][t] returns the coordinates
of the point at parameter value t on the line.

In[57]: l1 = Line2D@1, −2, 3D;
coords = Map@l1@#D&, 8−2, −1, 0, 1, 2<D êê N

Out[57] 881.18885, 2.09443<, 80.294427, 1.64721<, 8−0.6, 1.2<, 8−1.49443, 0.752786<,
8−2.38885, 0.305573<<

In[58]: Sketch2D@8l1, Map@Point2D@#D&, coordsD<D;

80 Chapter 5 Lines and Line Segments

-4 -2 0 2 4
-1

0

1

2

3

ŸMathematica Hint. The Mathematica function Map[f, expr] (or f /@ expr)
applies to f to each element on the first level in expr. In the previous example
Map is used to evaluate a line using a list of parameter values.

Line Segment

We wish to define the parametric equations for a line segment such that the parameter value
t = 0 produces the coordinates of the start point P0, t = 1 produces the coordinates of the
end point P1, and values 0 < t < 1 produce coordinates of points proportionally spaced in
between P0 and P1. Let d be the distance from P0 to a general point P (x, y) on the directed
line P0P1. We use Descarta2D to produce the formulas for the coordinates of P :

In[59]: Clear@x1, y1, x2, y2, dD;
pt = Point2D@Point2D@8x1, y1<D, Point2D@8x2, y2<D, dD

Out[59] Point2DA9x1 +
d H−x1 + x2L

��è!!
H−x1 + x2L2 + H−y1 + y2L2

, y1 +
d H−y1 + y2L

��è!!
H−x1 + x2L2 + H−y1 + y2L2

=E

Let t = d/D where D =
√

(x2 − x1)2 + (y2 − y1)2 is the distance from P0 to P1. Solving
for d = tD and substituting d into the Mathematica output above yields the parametric
equations

x = x1 + t(x2 − x1)
y = y1 + t(y2 − y1).

Example. Find the coordinates of the points at parameter values 0, 1/2 and 1
on the line segment whose start and end points are (−2, 1) and (1, 0), respectively.
To what point does the parameter value t = −1 correspond? Plot the objects.

Solution. The function Segment2D[{x0, y0}, {x1, y1}][t] returns the coordi-
nates of the point on a line segment at parameter value t.

5.16 Explorations 81

In[60]: l1 = Segment2D@8−2, 1<, 81, 0<D;
coords = Map@l1@#D&, 8−1, 0, 1ê2, 1<D

Out[60] 98−5, 2<, 8−2, 1<, 9−
1
�����
2
,

1
�����
2

=, 81, 0<=

In[61]: Sketch2D@8l1, Map@Point2D, coordsD<D;

-5 -4 -3 -2 -1 0 1
0

0.5

1

1.5

2

The point at parameter value t = −1 is on the line connecting points P0 and P1,
at the same distance from P0 as P1, but in the opposite direction.

5.16 Explorations

Distance between Parallel Lines. .lnsdst.nb
Demonstrate that the distance, d, between two parallel lines

Ax + By + C1 = 0 and Ax + By + C2 = 0

is given by

d =

√
(C2 − C1)2

A2 + B2
.

—–
Intersection of Lines in Intercept Form. .intrsct.nb

Show that the point of intersection of the lines

x

a
+

y

b
= 1 and

x

b
+

y

a
= 1

is (
ab

(a + b)
,

ab

(a + b)

)
.

—–

82 Chapter 5 Lines and Line Segments

Equations of Perpendicular Lines. lnsperp.nb
Show that the pair of lines ax + by + c = 0 and bx − ay + c′ = 0 are perpendicular. Show

that the pair
ax + by + c = 0 and

x

a
− y

b
+ c′ = 0

is also perpendicular.
—–
Vertical/Horizontal Distance to a Line. lndist.nb

Show that the vertical distance, dv, from a point (x1, y1) to a line whose equation is
Ax + By + C = 0 is given by

dv =
∣∣∣∣ (Ax1 + By1 + C)

B

∣∣∣∣
and the horizontal distance, dh, is given by

dh =
∣∣∣∣ (Ax1 + By1 + C)

A

∣∣∣∣ .
—–
Line General Equation Determinant. .lndet.nb

Show that the general equation of a line Ax + By + C = 0 is coincident with the line∣∣∣∣∣∣∣
x y 1

−AC −BC A2 + B2

B −A 0

∣∣∣∣∣∣∣ = 0.

given in determinant form.
—–
Line Segment Cut by Two Lines. .lnlndist.nb

Let L1 and L2 be two intersecting lines and P0 a point. Describe a procedure for finding
the lines through P0 such that L1 and L2 cut off a line segment of length S > 0. Implement
the solution as a numerical Mathematica function.
—–
Intersection Point of Two Line Segments. lnsegpt.nb

Show that the intersection point of the lines underlying two line segments P1P2 and P3P4

in terms of the coordinates of the four points is given by

x =
(x2 − x1)(x3y4 − x4y3) − (x4 − x3)(x1y2 − x2y1)

(x4 − x3)(y1 − y2) − (x2 − x1)(y3 − y4)

y =
(y3 − y4)(x1y2 − x2y1) − (y1 − y2)(x3y4 − x4y3)

(x4 − x3)(y1 − y2) − (x2 − x1)(y3 − y4)
.

—–

5.16 Explorations 83

Intersection Parameters of Two Line Segments. .lnsegint.nb
Show that the parameter values, t1 and t2, of the intersection point of two line segments

in terms of the end point coordinates is given by

t1 =
x1(y3 − y4) − x3(y1 − y4) + x4(y1 − y2)

D

t2 =
−x1(y2 − y3) + x2(y1 − y3) − x3(y1 − y2)

D

where
D = (x1 − x2)(y3 − y4) − (x3 − x4)(y1 − y2).

What is the significance of the values of t1 and t2 with respect to the standard parameter
range for a line segment?
—–

Chapter 6

Circles

The circle is the first curve we will study whose equation is of the second degree. Circles have
been studied since antiquity and there exists an enormous number of interesting properties,
theorems and relationships involving circles. This chapter provides the underlying analytic
geometry of a circle and provides a glimpse at some of the catalog of knowledge about circles.

6.1 Definitions and Standard Equation

A circle is the locus of all points P (x, y) of the plane that have a constant distance r from a
fixed point C(h, k); C is called the center and r the radius of the circle. Using the formula
for the distance between two points, we find the equation of a circle in standard form to be

(x − h)2 + (y − k)2 = r2.

Two particular cases of this equation occur frequently and deserve special mention. If the
center is at the origin the equation reduces to

x2 + y2 = r2.

If the x-axis contains a diameter of the circle, and the y-axis touches the circle at its extremity,
then the equation becomes

x2 + y2 = 2rx.

Example. Write the equation of a circle with center at (−1, 1) and radius 2. Plot
the circle.

Solution. The equation of the circle is (x + 1)2 + (y − 1)2 = 4. The Descarta2D

representation of a circle is Circle2D[{h, k}, r], where {h, k} represents the co-
ordinates of the center point, and r is the radius of the circle.

85

86 Chapter 6 Circles

x

y

r

CHh, kL
x - h

y - k

PHx, yL

Figure 6.1: Circle with center at (h, k) and radius r.

In[1]: Sketch2D@8Circle2D@8−1, 1<, 2D<,
PlotRange −> 88−5, 5<, 8−5, 5<<D;

-4 -2 0 2 4

-4

-2

0

2

4

Example. Determine which of the following points are on the circle centered at
(−2, 1) with radius 3: (a) (3, 4), (b) (1, 1), (c) (−2, 4).

Solution. Points whose coordinates satisfy the equation

(x + 2)2 + (x − 1)2 = 9

are on the circle. The Descarta2D function IsOn2D[point, circle] will return True
if the point is on the circle; otherwise, it returns False.

6.1 Definitions and Standard Equation 87

In[2]: c1 = Circle2D@8−2, 1<, 3D;
p1 = Point2D@83, 4<D;
p2 = Point2D@81, 1<D;
p3 = Point2D@8−2, 4<D;
8IsOn2D@p1, c1D, IsOn2D@p2, c1D, IsOn2D@p3, c1D<

Out[2] 8False, True, True<

Therefore, points (b) and (c) are on the circle, and point (a) is not.

In[3]: Sketch2D@8c1, p1, p2, p3<D;

-4 -2 0 2
-2
-1
0
1
2
3
4

Two circles are said to be concentric if their center points are coincident. Two circles are
coincident if their center points are coincident and their radii are equal.

Example. Show that the two circles whose equations are (x − 1)2 + (y − 2)2 = 4
and (x − 1)2 + (y − 2)2 = 9 are concentric, but not coincident.

Solution. The result is obvious by inspection of the equations. The Descarta2D

function IsConcentric2D[circle, circle] returns True if the two circles are con-
centric; otherwise, it returns False. IsCoincident2D[circle, circle] returns True
if the two circles are coincident; otherwise, it returns False.

In[4]: c1 = Circle2D@81, 2<, 2D; c2 = Circle2D@81, 2<, 3D;
8IsConcentric2D@c1, c2D, IsCoincident2D@c1, c2D<

Out[4] 8True, False<

88 Chapter 6 Circles

6.2 General Equation of a Circle

By expanding the standard equation of a circle with center point C(h, k) and radius r the
equation may be written as

x2 + y2 − 2hx − 2ky + (h2 + k2 − r2) = 0

which is a special case of the general second-degree equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where the coefficients of x2 and y2 are equal and there is no xy term. Therefore, a necessary
and sufficient condition that Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 represent a circle is that
A = C and B = 0. It is not necessary that A = C = 1 since the coefficients of x2 and y2

being equal can be divided out, reducing them to one. The equation

x2 + y2 + ax + by + c = 0

is the general equation of a circle. It can be reduced to standard form by completing the
squares on the x2- and x-terms, then on the y2- and y-terms yielding

x2 + ax +
a2

4
+ y2 + by +

b2

4
+ c − a2

4
− b2

4
= 0

or (
x +

a

2

)2

+
(

y +
b

2

)2

=
a2 + b2 − 4c

4
.

This is the equation of a circle whose center is at (−a/2,−b/2) and whose radius is given by
r = 1

2

√
a2 + b2 − 4c. The equation will be a real circle only if a2+b2−4c > 0; if a2+b2−4c = 0

the equation represents a single point (a circle of zero radius); and if a2 + b2 − 4c < 0 there
are no real points in the locus.

Example. Find the center and radius of the circle 2x2 + 2y2 − 5x + 4y − 7 = 0.

Solution. Descarta2D represents the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

as

Quadratic2D[A,B,C,D, E, F].

The function Loci2D[quad] will convert a quadratic (second-degree) equation to
a list of objects represented by the equation. The function Circle2D[quad] will
return a circle directly if the quadratic is indeed a circle.

6.3 Circle from Diameter 89

In[5]: 8c1 = Loci2D@q1 = Quadratic2D@2, 0, 2, −5, 4, −7DD,
Circle2D@q1D<

Out[5] 99Circle2DA9 5
�����
4
, −1=,

è!!!!!97
���������������
4

E=, Circle2DA9 5
�����
4
, −1=,

è!!!!!97
���������������
4

E=

The center of the circle is (5/4,−1) and the radius is
√

97/4. The Descarta2D

function Quadratic2D[circle] converts a circle to a quadratic equation.

In[6]: Quadratic2D@ c1@@1DD D êê Simplify

Out[6] Quadratic2DA1, 0, 1, −
5
�����
2
, 2, −

7
�����
2

E

Descarta2D Hint. The Descarta2D function Simplify[quad] simplifies the
coefficients of a quadratic by multiplying to remove denominators and factoring
to remove common factors. The form quad //Simplify is an equivalent form of
the function.

ŸMathematica Hint. In Mathematica the elements of a list are indicated by
double square brackets surrounding the index of the element in the list. In the
previous example, c1[[1]] indicates the first element in the list of objects c1.

6.3 Circle from Diameter

Consider two points P1(x1, y1) and P2(x2, y2) defining the end points of a diameter P1P2 of a
circle, C. Clearly the center of the circle, (h, k), must be the midpoint of P1P2 and is given
by

h =
x1 + x2

2
and k =

y1 + y2

2

and the radius of the circle, r, must be one-half the distance between P1 and P2:

r =
1
2

√
(x1 − x2)2 + (y1 − y2)2.

One equation of the circle C has a particularly simple form given by

(x − x1)(x − x2) + (y − y1)(y − y2) = 0

as can be verified by simplifying the equation of C in standard form.

90 Chapter 6 Circles

6.4 Circle Through Three Points

Since the equation of a circle has three effective parameters (h, k, r or a, b, c), in general
three conditions can be imposed upon the parameters to determine one (or more) circles. In
this section we look at the case of a circle passing through three points. In a later chapter we
will explore a large number of conditions for constructing circles satisfying three conditions.

We can find the equation of a circle passing through three points P1(x1, y1), P2(x2, y2)
and P3(x3, y3), by substituting the coordinates of the points into the standard equation for a
circle yielding the three equations

(x1 − h)2 + (y1 − k)2 = r2

(x2 − h)2 + (y2 − k)2 = r2

(x3 − h)2 + (y3 − k)2 = r2.

This system of equations reduces to three linear equations in three unknowns, h, k and r.
Simultaneous solution of the three linear equations gives

h = − H

2D
, k =

K

2D
, and r =

d12d13d23

2|D| ,

where

H =

∣∣∣∣∣∣∣
1 1 1
y1 y2 y3

s1 s2 s3

∣∣∣∣∣∣∣ , K =

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

s1 s2 s3

∣∣∣∣∣∣∣ , D =

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣ ,
and

dij =
√

(xi − xj)2 + (yi − yj)2 and si = x2
i + y2

i .

If D = 0 the points are collinear and no circle passes through the three points.

Example. Find the circle passing through the three points (1, 2), (−3, 1) and
(0,−2).

Solution. The Descarta2D function Circle2D[point, point, point] returns a circle
passing through the three points.

In[7]: c1 = Circle2D@p1 = Point2D@81, 2<D,
p2 = Point2D@8−3, 1<D,
p3 = Point2D@80, −2<DD

Out[7] Circle2DA9−
7

���������
10

,
3

���������
10

=, 17
����������������
5 è!!!2

E

In[8]: Sketch2D@8p1, p2, p3, c1<D;

6.5 Intersection of a Line and a Circle 91

-3 -2 -1 0 1
-2

-1

0

1

2

The quadratic equation of a circle passing through three points P1(x1, y1), P2(x2, y2) and
P3(x3, y3) is given by the determinant equation∣∣∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

∣∣∣∣∣∣∣∣∣∣
= 0.

Example. Find the quadratic equation of the circle passing through the three
points (1, 2), (−3, 1) and (0,−2) given in the previous example.

Solution. The Descarta2D function Quadratic2D[point,point, point] returns a
quadratic representing the circle passing through the three points.

In[9]: Quadratic2D@p1, p2, p3D

Out[9] Quadratic2D@15, 0, 15, 21, −9, −78D

6.5 Intersection of a Line and a Circle

Consider the line Ax + By + C = 0 and the circle (x − h)2 + (y − k)2 = r2. The points
of intersection of the line and circle can be determined by solving the system of these two
equations in two unknowns. The coordinates of the points of intersection, P1 and P2, are
given by

P1,2

(
h − ad ± b

√
r2 − d2, k − bd ∓ a

√
r2 − d2

)
where

a =
A√

A2 + B2
, b =

B√
A2 + B2

and d =
Ah + Bk + C√

A2 + B2
.

92 Chapter 6 Circles

If r2 − d2 > 0 (the radius is greater than the distance from the center point to the line), then
there are two distinct intersection points; if r2 − d2 = 0, then the two intersection points are
coincident (the line is tangent to the circle); and if r2 − d2 < 0, then the line and the circle
do not intersect.

Example. Find the two points of intersection between the line and the circle
whose equations are 2x − y + 3 = 0 and (x − 1)2 + (y − 2)2 = 9.

Solution. The Descarta2D function Points2D[line, circle] returns a list of the
intersection points of the line and the circle.

In[10]: pts = Points2D@l1 = Line2D@2, −1, 3D, c1 = Circle2D@81, 2<, 3DD

Out[10] 9Point2D@81, 5<D, Point2DA9−
7
�����
5
,

1
�����
5

=E=

In[11]: Sketch2D@8l1, c1, pts<,
PlotRange −> 88−3, 5<, 8−2, 6<<,
CurveLength2D −> 15D;

-2-10 1 2 3 4 5
-2
-1
0
1
2
3
4
5
6

6.6 Intersection of Two Circles

Consider two circles (x−h1)2 +(y−k1)2 = r2
1 and (x−h2)2 +(y−k2)2 = r2

2 . The coordinates
of the two intersection points, P1 and P2, of these circles can be determined by solving two
equations in two unknowns. Alternately, the following geometric approach can be applied.
Place the center of a circle with radius r1 at the origin and place the center of a second circle
of radius r2 at (D, 0) as shown in Figure 6.2. The equations of the two circles in standard
form are clearly given by x2 + y2 = r2

1 and (x − D)2 + y2 = r2
2 , respectively. Solving the first

equation for y2 yields y2 = r2
1 −x2. Substituting this value of y2 into the second equation and

solving for x yields

x =
D2 + r2

1 − r2
2

2D
.

6.6 Intersection of Two Circles 93

x

y

r1
r2

D

Figure 6.2: Two circles in a special position.

Substituting this value for x back into the first equation and solving for y2 yields

y2 =
4D2r2

1 − (D2 + r2
1 − r2

2)
4D2

.

Let R = D2 + r2
1 − r2

2 and let (x0, y0) designate the coordinates of the intersection points in
this special position. Then

x0 =
R

2D
and y0 = ±

√
4D2r2

1 − R2

2D
.

If the expression under the radical in the expression for y0 is positive, then there are two
distinct intersection points; if it is zero, the two intersection points are coincident (the circles
are tangent at this point); and if it is negative, the two circles do not intersect. It is easy to
show algebraically that

4D2r2
1 − R2 = (D2 − (r1 + r2)2)((r1 − r2)2 − D2)

which confirms the intuitive insight that the circles do not intersect if either the sum of the
radii is greater than the distance between the centers, or the difference of the radii is less than
the distance between the centers.

Now consider two circles in arbitrary positions with centers C1(h1, k1) and C2(h2, k2) as
shown in Figure 6.3. The x- and y-coordinates of the intersection points can be written in
terms of the distances x0 and y0 determined from the special position shown in Figure 6.2 and
are given by

x = h1 + x1 ± x2 and y = k1 + y1 ∓ y2

where
x1 = x0 cos θ, x2 = y0 sin θ, y1 = x0 sin θ, y2 = y0 cos θ

94 Chapter 6 Circles

x0
y0

y1 y2

x1 x2

C1

C2

q

Figure 6.3: Two circles in arbitrary positions.

and
cos θ =

h2 − h1

D
and sin θ =

k2 − k1

D
.

Therefore, the coordinates (x, y) of the intersection points of two circles without reference to
trigonometric functions are

x = h1 + x0
(h2 − h1)

D
± y0

(k2 − k1)
D

y = k1 + x0
(k2 − k1)

D
∓ y0

(h2 − h1)
D

.

Example. Find the points of intersection between the two circles

(x − 2)2 + (y − 1)2 = 9 and (x + 2)2 + (y + 3)2 = 16

evaluated numerically.

Solution. The Descarta2D function Points2D[circle, circle] returns a list of the
intersection points of the two circles.

In[12]: pts = Points2D@c1 = Circle2D@82, 1<, 3D,
c2 = Circle2D@8−2, −3<, 4DD êê N

Out[12] 8Point2D@81.87228, −1.99728<D, Point2D@8−0.99728, 0.87228<D<

6.7 Distance from a Point to a Circle 95

In[13]: Sketch2D@8c1, c2, pts<D;

-6-4-2 0 2 4

-6

-4

-2

0

2

4

6.7 Distance from a Point to a Circle

The distance, D, from a point P (x0, y0) to the circle (x − h)2 + (y − k)2 = r2 is given by

D =
√

(r −
√

(x0 − h)2 + (y0 − k)2)2.

The inner radical represents the distance from point P the center of the circle. The validity
of the formula is easily verified by considering separately whether the point is inside, outside
or on the circle.

Example. Find the distance from (2, 3) to the circle (x + 2)2 + (y + 1)2 = 1.

Solution. The function Distance2D[point, circle] computes the distance between
a point and a circle.

In[14]: Distance2D@Point2D@82, 3<D,
Circle2D@8−2, −1<, 1DD

Out[14] −1 + 4
è!!!
2

96 Chapter 6 Circles

6.8 Coaxial Circles

Let P1(x1, y1) and P2(x2, y2) be the two points of intersection of the two circles

C1 ≡ (x − h1)2 + (y − k1)2 = r2
1 and

C2 ≡ (x − h2)2 + (y − k2)2 = r2
2 .

Consider the equation C ≡ (1 − κ)C1 + κC2 = 0. This equation represents a circle since
it is of the second degree, the coefficients of x2 and y2 are the same, and there is no xy
term. Moreover, points P1 and P2 are on the circle since both points satisfy the equation C.
Therefore, C represents a family (or pencil) of circles through the points of intersection of the
two given circles. A particular member of this family may be determined by specifying that
it satisfy one other condition. Inspection of the equation reveals that C has a center (H, K)
and radius R, where

H = (1 − κ)h1 + kh2

K = (1 − κ)k1 + kk2

R1 = h2
1 + k2

1 − r2
1

R2 = h2
2 + k2

2 − r2
2

R =
√

H2 + K2 − ((1 − κ)R1 + κR2).

Example. The two circles

C1 ≡ (x − 2)2 + (y − 1)2 = 9 and
C2 ≡ (x + 2)2 + (y + 3)2 = 16

determine a family of circles (1 − κ)C1 + κC2 = 0 passing through the points of
intersection of C1 and C2. Plot members of the family of circles for values of
κ = {0,±1,±2,±3± 4,±5}.

Solution. The function Circle2D[circle, circle, k, Pencil2D] returns a circle
parameterized by the variable k representing the pencil of circles passing through
the intersection points of two circles.

In[15]: Clear@kD;
c1 = Circle2D@82, 1<, 3D;
c2 = Circle2D@8−2, −3<, 4D;
c12 = Circle2D@c1, c2, k, Pencil2DD êê Simplify

Out[15] Circle2DA82 − 4 k, 1 − 4 k<, è!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 − 25 k + 32 k2 E

6.9 Radical Axis 97

In[16]: family = Map@Hc12 ê. k −> #L&, Range@−5, 5DD

Out[16] 9Circle2DA822, 21<, è!!!!!!!!
934 E, Circle2DA818, 17<, 3

è!!!!!
69 E,

Circle2DA814, 13<, 2
è!!!!!
93 E, Circle2DA810, 9<, è!!!!!!!!

187 E, Circle2DA86, 5<, è!!!!!
66 E,

Circle2D@82, 1<, 3D, Circle2D@8−2, −3<, 4D, Circle2DA8−6, −7<, è!!!!!
87 E,

Circle2DA8−10, −11<, è!!!!!!!!
222 E, Circle2DA8−14, −15<, è!!!!!!!!

421 E,

Circle2DA8−18, −19<, 6
è!!!!!
19 E=

In[17]: Sketch2D@8c1, c2, family<D;

-40 -20 0 20 40

-40

-20

0

20

40

6.9 Radical Axis

Let C1 and C2 be the equations of two distinct circles as presented in the previous section.
Consider the equation L ≡ C1 − C2. Upon simplification this equation reduces to the linear
equation

L ≡ 2(h2 − h1)x + 2(k2 − k1)y + (h2
1 + k2

1 − r2
1) − (h2

2 + k2
2 − r2

2) = 0.

This line is called the radical axis of the circles C1 and C2. The radical axis possesses the
following properties which we state without proof.

• It is the line of the common chord if the two circles intersect in distinct real points.

• It is the common tangent line if the circles intersect in coincident points (are tangent
internally or externally).

• It is a real straight line even if the circles do not intersect in real points.

• It is the locus of points from which tangents of equal length can be drawn to the two
circles.

• It is perpendicular to the line of centers of the two circles.

98 Chapter 6 Circles

• It does not exist (tends to infinity) as the defining circles tend to concentricity.

• The radical axes of three circles, taken in pairs, intersect in a point called the radical
center.

Example. Find the radical axis of the circles (x − 4)2 + (y − 1)2 = 16 and
(x − h)2 + (y − 1)2 = 4 for values of h = {5, 6, 10, 11}.

Solution. The Descarta2D function Line2D[circle, circle] returns the radical axis
of the two circles.
In[18]: c1 = Circle2D@84, 1<, 4D;

In[19]: h = 85, 6, 10, 11<;
Map@Hc2@#D = Circle2D@8h@@#DD, 1<, 2DL&, Range@1, 4DD

Out[19] 8Circle2D@85, 1<, 2D, Circle2D@86, 1<, 2D, Circle2D@810, 1<, 2D,
Circle2D@811, 1<, 2D<

In[20]: Map@Hradaxis@#D = Line2D@c1, c2@#DDL&, Range@1, 4DD

Out[20] 8Line2D@2, 0, −21D, Line2D@4, 0, −32D, Line2D@12, 0, −96D, Line2D@14, 0, −117D<

In[21]: Map@Sketch2D@8c1, c2@#D, radaxis@#D<,
PlotRange −> 88−1, 12<, 8−4, 6<<D&,

Range@1, 4DD;

0 2 4 6 8 1012
-4
-2
0
2
4
6

0 2 4 6 8 1012
-4
-2
0
2
4
6

0 2 4 6 8 1012
-4
-2
0
2
4
6

0 2 4 6 8 1012
-4
-2
0
2
4
6

ŸMathematica Hint. The Mathematica function Range[1,4] returns the list
{1, 2, 3, 4}.

6.10 Parametric Equations 99

6.10 Parametric Equations

A circle may be parameterized in terms of the angle, θ, that a ray from the center to the point
at the parameter value makes with the +x-axis. The resulting equations are

x = h + r cos θ and y = k + r sin θ

where (h, k) is the center of the circle and r is the radius of the circle. Values in the range
0 ≤ θ < 2π generate a complete locus of points on the circle.

Example. Generate 12 equally spaced points on the circle x2 + y2 = 4 using the
parametric equations.

Solution. The Descarta2D function Circle2D[{h, k}, r][t] returns the coordi-
nates of a point at parameter t on the circle.

In[22]: c1 = Circle2D@80, 0<, 2D;
pts = Map@Point2D@c1@#DD&, 2∗Pi∗Range@0, 12D ê12D;
Sketch2D@8c1, pts<D;

-2 -1 0 1 2
-2

-1

0

1

2

Alternately, consider the triangle T shown in Figure 6.4. Triangle T is obviously a right
triangle since

(1 − t2)2 + (2t)2 = (1 + t2)2.

Therefore, the rational forms of the trigonometric functions for angle θ are

sin θ =
1 − t2

1 + t2
and

cos θ =
2t

1 + t2
.

Substituting these expressions into the parameterization of a circle previously given yields

x = h + r
1 − t2

1 + t2
and y = k + r

2t

1 + t2
.

100 Chapter 6 Circles

2 t

1 - t2
t2 + 1

q

Figure 6.4: Rational sin θ and cos θ.

These equations are called the rational parameterization of the circle and have the advantage
that they can be evaluated without using trigonometric functions. Parameter values in the
range 0 ≤ t ≤ 1 produce coordinates of points on the circle in the first quadrant, 1 ≤ t < ∞ the
second quadrant, −∞ < t ≤ −1 the third quadrant, and −1 ≤ t ≤ 0 in the fourth quadrant.
The point at θ = π radians cannot be generated using these equations, so they are generally
applied only to coordinates in the first quadrant. Also, notice that the points generated by
these parametric equations do not produce equally spaced points measured by distance along
the circle for equally spaced parameter values.

Example. Plot nine points at equal parameter values on the circle x2 + y2 = 25
in the first quadrant using the rational parametric equations of the circle.

Solution. The points can be generated directly from the equations using para-
meter values 0, 1

8 , 1
4 , 3

8 , 1
2 , 5

8 , 3
4 , 7

8 and 1 .

In[23]: c1 = Circle2D@80, 0<, 5D;
pts = Map@Point2D@5 81 − #^2, 2 #< ê H#^2 + 1LD&, Range@0, 8D ê8D;
Sketch2D@8c1, pts<, PlotRange −> 88−1, 6<, 8−1, 6<<D;

0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

6.11 Explorations 101

6.11 Explorations

Polar Equation of a Circle. polarcir.nb
Show that the polar equation of a circle centered at P (r1, θ1) with radius R is given by

r2 + r2
1 − 2rr1 cos(θ − θ1) = R2.

—–
Angle Inscribed in a Semicircle. rtangcir.nb

Show that an angle inscribed in a semicircle is a right angle.
—–
Chord Length of Intersecting Circles. chdlen.nb

d

D

r1
r2

C1 C2

Show that the distance, d, between the intersection points of two circles is given by

d =

√−(D − r1 − r2)(D + r1 − r2)(D − r1 + r2)(D + r1 + r2)
D

where D is the distance between the centers of the circles, and r1 and r2 are the radii of the
two circles.
—–
Johnson’s Congruent Circle Theorem. .johnson.nb

Take any three circles C1, C2 and C3 which pass through the origin, have equal radii, r,
and intersect in pairs in two distinct points (one of the points is, by construction, the origin).
Prove that the circle passing through the other three points of intersection between the circles
taken in pairs is congruent to the original three circles (that is, this circle has a radius of r).
—–
Radical Center. .radcntr.nb

Prove that the radical axes of three circles taken in pairs intersect in a common point. This
point is called the radical center of the three circles.
—–

102 Chapter 6 Circles

Radical Axis of Two Circles. radaxis.nb
Show that the two circles x2 + y2 + ax + by + c = 0 and x2 + y2 + bx + ay + c = 0 have the

radical axis x − y = 0.
—–
Circle-Point Midpoint Theorem. .cirptmid.nb

x

y

P0

r1

C1

Show that the locus of midpoints from a fixed point P0 to a circle C1 of radius r1, is a circle
of radius 1

2r1. Furthermore, show that the center point of the locus is the midpoint of the
segment between P0 and the center of C1.
—–
Circle Through Three Points. cir3pts.nb

Show that the equation of the circle through the three points (0, 0), (a, 0) and (0, b) is
x2 + y2 − ax − by = 0.
—–
Construction of Two Related Circles. tnlncir.nb

Prove that if OP and OQ are the tangent lines from (0, 0) to the circle

x2 + y2 + 2gx + 2fy + c = 0,

then the equation of circle OPQ is

x2 + y2 + gx + fy = 0.

—–
Circle of Apollonius. apollon.nb

Show that the locus of a point P (x, y) that moves so that the ratio of its distance from two
fixed points P1(x1, y1) and P2(x2, y2) is a circle with radius

r =
dk√

(k2 − 1)2

6.11 Explorations 103

and center (−x1 + k2x2

k2 − 1
,
−y1 + k2y2

k2 − 1

)

where d = |P1P2|. The locus is called the Circle of Apollonius for the points P1 and P2 and
the ratio k.
—–
Carlyle Circle. carlyle.nb

Given a circle, C1, passing through the three points (0, 1), (0,−p) and (s,−p), show that
the x-coordinates of the intersection points P1(x1, 0) and P2(x2, 0) of C1 with the x-axis are
the roots of the quadratic equation x2 − sx − p = 0.
—–
Castillon’s Problem. castill.nb

Let P1, P2 and P3 be three points inside the circle C1 ≡ x2 + y2 = 1. Describe a method
for inscribing a triangle inside C1 such that the sides of the triangle pass through the three
given points.
—–
Radical Axis Ratio. .raratio.nb

Show that the point of intersection of the radical axis and the line of centers of two circles
of radii r1 and r2 divides the segment between the two centers into the ratio

d2 + r2
1 − r2

2

d2 − r2
1 + r2

2

,

where d is the distance between the centers.
—–

Chapter 7

Arcs

We continue our study of circles by focusing on bounded portions of a circle’s circumference
commonly called arcs. Many of the interesting properties of arcs arise when considering how
their end points and slopes meet with other curves. For example, many mechanical artifacts
use arcs to construct transitions between the primary faces of the object giving a smoother
and more durable design.

In addition to the topics presented in this chapter, a subsequent chapter will discuss
another interesting use of arcs, the so-called biarc configuration of two arcs used to blend
curves together smoothly.

7.1 Definitions

Consider the parametric equations of a circle

x = h + r cos θ and y = k + r sin θ

where the point C(h, k) is the center of the circle and r is the radius of the circle. A circle
is defined to be the set of points P (x, y) for all values of θ such that 0 ≤ θ < 2π (radians).
Using the same parametric equations, a circular arc may be defined to be the set of points
P (x, y) for all values of θ such that θ0 ≤ θ ≤ θ1, where 0 ≤ θ0 < 2π and θ0 < θ1 < (θ0 + 2π).
The point P0(x0, y0) where θ = θ0 is called the start point of the arc, and the point P1(x1, y1)
where θ = θ1 is called the end point of the arc. The angle the directed line CP0 makes with
the +x-axis is called the start angle of the arc; the angle the directed line CP1 makes with
the +x-axis is called the end angle of the arc. The center point C(h, k) of the circle is also
the center point of the arc, and the radius, r, of the circle is the radius of the arc.

Let CP0 and CP1 be the lines determined by the center point C and the start and end
point of the arc, respectively. The angle between lines CP0 and CP1 is called the angular
span of the arc. An arc with an angular span of π radians (180◦) is called a semicircle. The
area bounded by line segments CP0 and CP1 and the arc itself is called a sector. The area

105

106 Chapter 7 Arcs

x

y

q0

q1

CHh, kL

P0

P1

r

Figure 7.1: Definition of an arc.

bounded by the arc and P0P1 is called a segment and the line segment P0P1 itself is called
the chord of the arc.

Example. Plot the arc centered at the point (−2, 1) with a radius 6 and start
angle of π/6 radians and end angle of π/2 radians. Include the center point of the
arc in the plot.

Solution. Circle2D[{h, k}, r][{θ1, θ2}] represents an arc of a circle between
parameters θ1 and θ2 when plotting.

In[1]: p1 = Point2D@8−2, 1<D;
a1 = Circle2D@8−2, 1<, 6D@8Piê6, Piê2<D;
Sketch2D@8p1, a1<D;

-2 -1 0 1 2 3
1

2

3

4

5

6

7

7.2 Bulge Factor Arc 107

x

y

D

H

rC
P0

P1

Pm

PM

r

Figure 7.2: Bulge factor arc definition.

7.2 Bulge Factor Arc

We now consider an arc representation involving the arc’s start and end points, the so-called
bulge factor arc as illustrated in Figure 7.2. A bulge factor arc is specified by its start and
end points plus an additional number specifying the “bulge” (or fatness) of the desired arc.
More precisely, if P0 and P1 are the start and end points of the arc, and Pm is the midpoint
of the arc, then the bulge factor, B, is defined to be the (non-zero, positive) ratio

B =
2H

D

where D is the distance between P0 and P1 and H is the distance from Pm to the chordal
line defined by P0 and P1. Thus, an arc with B = 1 will be a semicircle. Closer examination
of the definition of the bulge factor arc reveals that for a given value of B there are two arcs
satisfying the definition. These arcs are mirror images of each other (the line passing through
P0 and P1 is the reflection line). To distinguish between these two arcs we make the arbitrary
definition that the arc will be traversed counter-clockwise from P0 to P1. The mirrored arc is
represented by interchanging the roles of P0 and P1.

Radius and Center

In order to determine defining parameters of the circle underlying the bulge factor arc, we need
to determine the radius, r, and the center point, C(h, k), in terms of the points, P0(x0, y0)
and P1(x1, y1), and the bulge factor, B. Consider the right triangle CP0PM where PM is the
midpoint of the chord P0P1. By the Pythagorean Theorem

|CPM |2 + |P0PM |2 = |CP0|2

108 Chapter 7 Arcs

or

(r − H)2 +
(

D

2

)2

= r2.

Solving for r and substituting H = BD/2 yields

r =
D

4

(
B +

1
B

)

where r > 0, since B > 0 and D > 0.
To find the coordinates C(h, k) of the center point of the arc we note that the center is

offset from point PM a distance (r − H). The direction of the offset is rotated −90 degrees
from the vector P0 − P1. Therefore, the equations for C(h, k) are

h =
x0 + x1

2
+ κ(y0 − y1) and k =

y0 + y1

2
− κ(x0 − x1)

where

κ =
1
4

(
1
B

− B

)
.

It is clear from the expressions for r and C that if we replace B with 1/B we get an arc
with the same radius and center, whose locus is counter-clockwise from P1 to P0. This arc
is the complement of the original arc. The reflection of the original arc in the chord may be
obtained by reversing the roles of P0 and P1 and using the same value, B, as the bulge factor.

Example. Plot the arc with end points (1, 0) and (0, 1) with a bulge factor of
1/2. Find the mirror image of the arc reflected in the chord.

Solution. The standard representation of an arc in Descarta2D is

Arc2D[coords0, coords1,B]

where the start and end point coordinates are given as the first two arguments,
respectively, and the bulge factor is the third argument. The arc reflected in the
chord is constructed by reversing the roles of the start and end points.

In[2]: a1 = Arc2D@81, 0<, 80, 1<, 1ê2D;
a2 = Arc2D@80, 1<, 81, 0<, 1ê2D;

In[3]: Sketch2D@8a1, a2, Point2D@81, 0<D, Point2D@80, 1<D<D;

7.2 Bulge Factor Arc 109

0 0.20.40.60.8 1
0

0.2

0.4

0.6

0.8

1

Descarta2D Hint. The Descarta2D function Arc2D[arc, Complement2D] con-
structs the complement of an arc.

Angles

Let θ be the angular span of a bulge factor arc defined by points P0 and P1 and bulge factor
B. Once again examining the right triangle CP0PM reveals that

tan
(

θ

2

)
=

d/2
(r − H)

=
2B

(1 − B2)
. (7.1)

Using the trigonometric identity

tan(2A) =
2 tanA

(1 − tan2 A)

we find that
B = tan

θ

4
.

From this equation it is clear that if B < 1, the arc is a minor arc whose angular span is in
the range 0 < θ < π; if B > 1 the arc is a major arc with π < θ < 2π.

Let α denote the angle between the initial tangent vector, V0, and the chord vector,
P1 −P0, considered positive when V0 is clockwise from the chord vector, and negative when
V0 is counter-clockwise from the chord. Note that −π < α < π and |α| = θ/2. Therefore,
B = tan(α/2).

From Equation (7.1) we can derive an expression for B in terms of sin α and cosα as
follows

tanα =
sin α

cosα
=

k sinα

k cosα
=

s

c
=

2B

(1 − B2)
.

110 Chapter 7 Arcs

Solving this quadratic for B in terms of s and c yields

B =
s

c +
√

s2 + c2
. (7.2)

(The positive root of the quadratic is selected in order to insure that B has the same sign as
s. If B turns out to be negative, then the arc’s start and end points are interchanged and the
absolute value of B is the positive bulge factor.) The constants s and c are some multiple of
sin α and cosα and immediately provide several useful techniques for constructing arcs. These
techniques are illustrated in the “Explorations” section at the end of this chapter.

7.3 Three–Point Arc

Let P0 and P1 be the start and end points of an arc and let point P be any other point on
the arc. One method for constructing the arc through the three points is to first construct
the underlying circle through the three points and then compute the limiting angles of the
arc from the end points and the center. Alternately, the bulge factor arc form provides an
appealing method for computing the arc. Note that P0 and P1 are the chord end points
required in the bulge factor arc formulation and in order to fully define the arc, we need to
determine its bulge factor, B. As the third point P traverses the arc the angle subtended at
P by the chord P0P1 remains constant at the value (π − α). Thus, using the simpler vector
form,

s = |(P − P0) × (P1 − P)|
c = (P − P0) · (P1 − P).

From s and c we compute B using Equation (7.2).

Example. Find and plot the arc passing through the points (4, 2), (−2, 4), and
(0,−6).

Solution. The function Arc2D[point, point, point] returns an arc through three
points. The first and third points are assumed to be the end points of the arc
chord.

In[4]: p1 = Point2D@84, 2<D;
p2 = Point2D@8−2, 4<D;
p3 = Point2D@80, 6<D;
a1 = Arc2D@p1, p2, p3D êê N

Out[4] Arc2D@80, 6.<, 84., 2.<, 1.61803D

In[5]: Sketch2D@8p1, p2, p3, a1<D;

7.4 Parametric Equations 111

-2-1 0 1 2 3 4
0
1
2
3
4
5
6

7.4 Parametric Equations

One possible set of parametric equations for an arc is very similar to those of a circle since
they both have the same underlying curve. The parameter, t, can be scaled in a different
manner so that parameter value t = 0 produces the start point of the arc, and parameter
value t = 1 produces the end point. The resulting parametric equations are

x = h + r cos(θ0 + t(θ1 − θ0))
y = k + r sin(θ0 + t(θ1 − θ0))

where (h, k) is the center of the arc, r is the radius, and θ0 and θ1 are the start and end angles,
respectively, of the arc.

Alternatively, since the standard form of an arc used in Descarta2D is

Arc2D[{x0, y0}, {x1, y1},B],

we seek parametric equations involving only the start and end point coordinates and the bulge
factor. The equations are given by

x = h + (x0 − h) cos(βt) − (y0 − k) sin(βt)
y = k + (x0 − h) sin(βt) + (y0 − k) cos(βt)

where β = 4 tan−1(B) is the span of the arc and C(h, k) is the center point of the arc.
Parameter values in the range 0 ≤ t ≤ 1 generate coordinates covering the span of the arc.

Example. Plot eight equally spaced points on the arc between the points (−3, 2)
and (2, 1) with a bulge factor of 3/2

Solution. The Descarta2D function Arc2D[{x0, y0}, {x0, y0},B][t] returns the
coordinates at parameter value t on the arc.

112 Chapter 7 Arcs

In[6]: a1 = Arc2D@8−3, 2<, 82, 1<, 3ê2D;
pts = Map@Point2D@a1@#DD&, Range@0, 7D ê7D;
Sketch2D@8a1, pts<D;

-3 -2 -1 0 1 2

-2

-1

0

1

2

7.5 Points and Angles at Parameters

Using the parametric equations of an arc defined in the previous section we can find the
coordinates of any point on the arc corresponding to an angle θ in the range θ1 ≤ θ ≤ θ2. The
parametric equations for an arc as defined in Descarta2D are normalized so that the parameter
value 0 generates the start point of the arc and the parameter value 1 generates the end point
of the arc. Parametric values t, 0 < t < 1, will generate points on the arc between the start
and end points.

Example. For the arc between the points P0(−2, 1) and P1(2, 2) with a bulge
factor of 3/2, use the parametric definition of an arc to find and plot the start
point, end point and midpoint of the arc.

Solution. The function Arc2D[{x0, y0}, {x1, y1},B][t] returns a list of coor-
dinates representing the point on the arc at a given parameter value.

In[7]: a1 = Arc2D@8−2, 1<, 82, 2<, 3ê2D;
coords = 8a1@0D, a1@1ê2D, a1@1D< êê N

Out[7] 88−2., 1.<, 80.75, −1.5<, 82., 2.<<

In[8]: Sketch2D@8a1, Map@Point2D, coordsD<D;

7.6 Arcs from Ray Points 113

-2 -1 0 1 2
-1.5
-1

-0.5
0

0.5
1

1.5
2

Whereas the Descarta2D function arc[t] generates the coordinates of the point on
the arc at parameter t, the function Angle2D[arc, t] returns the angle (in radians)
on the arc at parameter t with respect to a horizontal line such as the x-axis.

In[9]: Angle2D@a1, 1ê2D êê N

Out[9] −1.32582

7.6 Arcs from Ray Points

Sometimes it is more convenient to specify the start and end points of an arc, rather than the
start and end angles. One obvious construction method is to specify the center and radius
along with the start and end points. Let P0(x0, y0) and P1(x1, y1) be the desired start and
end points of an arc centered at C(h, k) with radius r. Using simple trigonometry, the start
and end angles of the arc are given by

θ0 = tan−1

(
x0 − h

y0 − k

)
and θ1 = tan−1

(
x1 − h

y1 − k

)
.

The arc tangent function used to implement these equations must be sophisticated enough
to assign the proper angle based on which quadrant the points are located in. Mathematica
provides such an arc tangent function that takes the numerator and denominator as separate
arguments and computes the angle in the proper quadrant.

Example. Plot the arc centered at the point (2, 1) with radius 1, and with start
and end points of (7, 1) and (2, 6).

Solution. The function Arc2D[point, r, {point, point}] returns a bulge factor arc
given the center point, radius, and start and end points.

114 Chapter 7 Arcs

In[10]: a1 = Arc2D@p0 = Point2D@82, 1<D, 5,

8p1 = Point2D@87, 1<D, p2 = Point2D@82, 6<D<D

Out[10] Arc2DA87, 1<, 82, 6<, 2
�����
5

i
k
jjj−

5
�����
2

+
5

�����������è!!!2
y
{
zzzE

In[11]: Sketch2D@8a1, p0, p1, p2<,
PlotRange −> 880, 8<, 80, 8<<D;

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8

Descarta2D Hint. The Arc2D function introduced in the previous example
allows more flexible input of the arc start and end points than is obvious from
the example. These points may be located at any position on the ray extending
from the center point of the arc to the desired arc start and end points. The
arc will be bounded by the points of intersection between the circle underlying
the arc and the rays defined from the center point to the specified start and end
points.

7.7 Explorations

Arc from Bounding Points and Entry Direction. .arcentry.nb
Let P0 and P1 be the start and end points, respectively, of an arc and P be a third point

on the vector tangent to the arc at P0. Show that

s = |(P − P0) × (P1 − P0)|
c = (P − P0) · (P1 − P0)

represent values of s and c useful for computing the bulge factor of the arc.
—–
Arc from Bounding Points and Exit Direction. .arcexit.nb

Let P0 and P1 be the start and end points of an arc, respectively, and P be a third point
on the vector tangent to the arc at P1. Show that

s = |(P1 − P0) × (P − P1)|
c = (P1 − P0) · (P − P1)

7.7 Explorations 115

represent values of s and c useful for computing the bulge factor of the arc.
—–
Midpoint of Arc. .arcmidpt.nb

P0

P1

P

Show that the midpoint, P of a bulge factor arc between points P0 and P1 whose bulge factor
is B has coordinates

P

(
(x0 + x1) − B(y0 − y1)

2
,
(y0 + y1) + B(x0 − x1)

2

)
.

—–
Centroid of Semicircular Arc. .arccent.nb

Show that the centroid of the area bounded by a semicircular arc of radius r and its chord
is on the axis of symmetry at a distance

H =
4r

3π

from the chord of the arc.
—–

Chapter 8

Triangles

Even though a triangle is not easily represented by a single, simple equation, there exist so
many interesting properties of triangles that it is worth devoting a special chapter to them.
Even today, new relationships involving triangles continue to be discovered. Descarta2D imple-
ments the triangle as a named object to enable easy study of the mathematical relationships
arising from the geometry of a triangle.

8.1 Definitions

A triangle is a composite object consisting of the three line segments connecting three non-
collinear points. The line segments are called the sides of the triangle, and the points are
called the vertices of the triangle. The two line segments adjacent to each vertex form an
angle inside the triangle called a vertex angle.

A triangle is isosceles if two sides are equal in length, and the third side is called the base.
In an equilateral triangle all three sides are equal length. A triangle is called acute if all the
interior angles measure less than 90◦. A right triangle has one interior angle of 90◦, and the
side opposite the right angle is called the hypotenuse. A triangle with an interior angle greater
than 90◦ is called an obtuse triangle. A triangle with three unequal sides is a scalene triangle.
It is clear from Figure 8.1 that the sum of the interior angles of a triangle is 180 degrees (π
radians).

Example. Plot the triangle connecting the points (−1,−1), (2, 0) and (−2, 1).
Use Descarta2D functions to retrieve the vertex points and vertex angles of the
triangle (in degrees).

Solution. In Descarta2D a triangle is represented as

Triangle2D[coords1, coords2, coords3]

117

118 Chapter 8 Triangles

P1 P2

P3

L12

L3q1

q1

q2
q3

q3

Figure 8.1: Sum of triangle interior angles.

where coords1, coords2 and coords3 are the coordinates of the first, second and
third vertex points, respectively. The Descarta2D function Point2D[triangle, n]
returns a point located at vertex n of the triangle. Angle2D[triangle, n] returns
the vertex angle at vertex n of the triangle.

In[1]: t1 = Triangle2D@8−1, −1<, 82, 0<, 8−2, 1<D;
8Map@Point2D@t1, #D&, 81, 2, 3<D,
Map@Angle2D@t1, #D&, 81, 2, 3<D êDegree êê N<

Out[1] 88Point2D@8−1, −1<D, Point2D@82, 0<D, Point2D@8−2, 1<D<,
898.1301, 32.4712, 49.3987<<

In[2]: Sketch2D@8t1<D;

-2 -1 0 1 2
-1

-0.5

0

0.5

1

Example. Given the lines 2x − 3y + 4 = 0, −4x + 2y + 2 = 0 and 4x + 5y − 2 = 0
construct the triangle whose sides lie on the lines.

8.1 Definitions 119

Solution. The Descarta2D function Triangle2D[line, line, line] returns a trian-
gle defined by three lines.

In[3]: l1 = Line2D@2, −3, 4D;
l2 = Line2D@−4, 2, 2D;
l3 = Line2D@4, 5, −2D;
t1 = Triangle2D@l1, l2, l3D

Out[3] Triangle2DA9 7
�����
4
,

5
�����
2

=, 9−
7

���������
11

,
10
���������
11

=, 9 1
�����
2
, 0=E

In[4]: pr = PlotRange −> 88−2, 3<, 8−1, 3<<;
Sketch2D@8l1, l2, l3<, prD;
Sketch2D@8t1<, prD;

-1 0 1 2 3
-1

-0.5
0

0.5
1

1.5
2

2.5
3

-1 0 1 2 3
-1

-0.5
0

0.5
1

1.5
2

2.5
3

Example. Find the line segment and the line associated with the side connecting
vertices 2 and 3 of Triangle2D[{2,3}, {-1, 2}, {-3, 2}].

Solution. The Descarta2D function Segment2D[triangle,n1, n2] returns the line
segment connecting two vertices of a triangle. Line2D[triangle, n1, n2] returns
the line containing the side of a triangle through two vertices.

In[5]: t1 = Triangle2D@82, 3<, 8−1, 2<, 8−3, 2<D;
8Segment2D@t1, 2, 3D, Line2D@t1, 2, 3D<

Out[5] 8Segment2D@8−1, 2<, 8−3, 2<D, Line2D@0, −2, 4D<

120 Chapter 8 Triangles

x

y

x2 - x1

PHa, bL

QHd, 0L

Dy
D

Figure 8.2: Centroid of a triangle.

8.2 Centroid of a Triangle

The “balance point” of a planar area defined by bounding curves is called the center of gravity
of the area. When the material covering the area has a constant density throughout, and the
formulas for the center of gravity depend purely on the size and shape of the area, the center
of gravity is called the centroid of the area. For symmetric geometric figures such as a square,
circle or ellipse, the centroid is obviously the center point of the figure.

Referring to Figure 8.2 it is intuitively obvious that the triangle will “balance” on some
horizontal line at ordinate ȳ. The position of this line can be determined by summing the
moments, ∆M = D(x2 − x1)∆y, of infinitesimal rectangles on either side of the line. The
value of ȳ is the ordinate at which the sum of the moments is equal on both sides of the line.
The usual method for determining ȳ is to use integral calculus and the actual derivation is
included as the exploration tricent.nb. The derivation shows that the line is one-third of
the distance from the base of the triangle to the apex, and the coordinates of the centroid, P ,
of the triangle are given by

P

(
x1 + x2 + x3

3
,
y1 + y2 + y3

3

)

where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of the triangle’s vertex points. The
centroid point coordinates can be determined by intersecting a pair of lines offset from the
sides of the triangle one-third of the distance from the side towards the opposite vertex.

The medians of a triangle are the lines connecting the vertices to the midpoints of the
opposite sides. The medians taken in pairs intersect in coincident points, and the point is the
centroid of the triangle as is shown by the following Descarta2D commands:

8.2 Centroid of a Triangle 121

In[6]: Clear@x1, y1, x2, y2, x3, y3D;
p1 = Point2D@8x1, y1<D;
p2 = Point2D@8x2, y2<D;
p3 = Point2D@8x3, y3<D;
pt1 = Point2D@Line2D@p1, Point2D@p2, p3DD,

Line2D@p2, Point2D@p1, p3DDD êê Simplify

Out[6] Point2DA9 1
�����
3

Hx1 + x2 + x3L, 1
�����
3

Hy1 + y2 + y3L=E

Example. Find the centroid of the triangle whose vertices are (−2,−1), (3, 1),
and (0, 2). Show by plotting that the medians intersect at the centroid.

Solution. The Descarta2D function Point2D[triangle, Centroid2D] returns the
centroid point of a triangle.

In[7]: t1 = Triangle2D@8−2, −1<, 83, 1<, 80, 2<D;
pt = Point2D@t1, Centroid2DD

Out[7] Point2DA9 1
�����
3
,

2
�����
3

=E

In[8]: 8c1, c2, c3< = 88−2, −1<, 83, 1<, 80, 2<<;
s12 = Segment2D@c1, c2D;
s13 = Segment2D@c1, c3D;
s23 = Segment2D@c2, c3D;
m1 = Segment2D@Point2D@c1D, Point2D@s23DD;
m2 = Segment2D@Point2D@c2D, Point2D@s13DD;
m3 = Segment2D@Point2D@c3D, Point2D@s12DD;

In[9]: Sketch2D@8t1, pt, m1, m2, m3<D;

-2 -1 0 1 2 3
-1

-0.5
0

0.5
1

1.5
2

122 Chapter 8 Triangles

8.3 Circumscribed Circle

A circle passing through the three vertex points of a triangle is said to be circumscribed
about the triangle. We have already provided in a previous chapter the equation of a circle
passing through three points. Since the sides of the triangle are chords of the circle, and the
perpendicular bisectors of the chords of a circle intersect at the center point, the center of the
circumscribed circle is the intersection point of the perpendicular bisectors of the triangle’s
sides taken in pairs.

Example. Find the circle circumscribing the triangle whose vertices are (1, 2),
(−2, 4) and (−3, 1). Show by plotting that the perpendicular bisectors of the sides
of the triangle intersect at the center point of the circumscribed circle.

Solution. The function Circle2D[triangle, Circumscribed2D] returns the cir-
cle that circumscribes the triangle.

In[10]: p1 = Point2D@81, 2<D;
p2 = Point2D@8−2, 4<D;
p3 = Point2D@8−3, 1<D;
t1 = Triangle2D@p1, p2, p3D;
c1 = Circle2D@t1, Circumscribed2DD êê N

Out[10] Circle2D@8−1.13636, 2.04545<, 2.13685D

In[11]: Sketch2D@8p1, p2, p3, t1, c1, Point2D@c1D,
Line2D@p1, p2, Perpendicular2DD,
Line2D@p1, p3, Perpendicular2DD,
Line2D@p2, p3, Perpendicular2DD<D;

-3 -2 -1 0 1 2
-1

0

1

2

3

4

5

8.4 Inscribed Circle 123

Descarta2D Hint. Point2D[triangle, Circumscribed2D] directly returns the
center point of the circumscribed circle of a triangle.

The radius, R, of the circle circumscribing a triangle whose sides are of length s1, s2 and
s3 is given by

R =
s1s2s3√

PS

where S = s1 + s2 + s3 and P = (−s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3). This formula is
derived in the exploration trirad.nb.

8.4 Inscribed Circle

A circle inside a triangle that is tangent to all three of the triangle’s sides is said to be
inscribed in the triangle. The center of the inscribed circle must lie on the angle bisectors
of the triangle’s sides because the center must be equidistant from the sides. Therefore, the
point of intersection of a pair of angle bisectors of a triangle is the center of the inscribed
circle. The radius of the inscribed circle is the distance from the center point to any one of
the triangle’s sides. The center (h, k) and radius r of the inscribed circle derived from this
construction yields

h = (s1x1 + s2x2 + s3x3)/2s

k = (s1y1 + s2y2 + s3y3)/2s

r =
√

(s − s1)(s − s2)(s − s3)/s

where

s1 =
√

(x2 − x3)2 + (y2 − y3)2

s2 =
√

(x1 − x3)2 + (y1 − y3)2

s3 =
√

(x1 − x2)2 + (y1 − y2)2

s = (s1 + s2 + s3)/2.

Example. Find the circle inscribed in the triangle whose vertices are (−3, 3),
(3, 3) and (1,−3). Show by plotting that the angle bisectors of the sides of the
triangle intersect at the center of the inscribed circle.

Solution. The function Circle2D[triangle, Inscribed2D] returns the circle
inscribed in the triangle.

124 Chapter 8 Triangles

In[12]: p1 = Point2D@8−3, 3<D;
p2 = Point2D@83, 3<D;
p3 = Point2D@81, −3<D;
t1 = Triangle2D@p1, p2, p3D;
c1 = Circle2D@t1, Inscribed2DD êê N

Out[12] Circle2D@80.443274, 1.15722<, 1.84278D

In[13]: Sketch2D@8p1, p2, p3, t1, c1, Point2D@c1D,
MedialEquations2D@8Line2D@p1, p2D, Line2D@p1, p3D<D@@2DD,
MedialEquations2D@8Line2D@p2, p3D, Line2D@p2, p1D<D@@2DD,
MedialEquations2D@8Line2D@p3, p1D, Line2D@p3, p2D<D@@2DD<D;

-4 -2 0 2 4

-4

-2

0

2

4

Descarta2D Hint. The function Point2D[triangle, Inscribed2D] directly re-
turns the center point of the inscribed circle of a triangle.

The radius, r, of a circle inscribed in a triangle whose sides are of length s1, s2 and s3 is
given by

r =
1
2

√
P

S

where S = s1 + s2 + s3 and P = (−s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3). This formula is
derived in the exploration trirad.nb.

8.5 Solving Triangles

Clearly, the shape of a triangle, independent of its position and orientation, is determined by its
side lengths and vertex angle magnitudes. Labeling the sides and angles as shown in Figure 8.3
relative to the vertices, we pose the problem of determining all of the configuration parameters
(sn and an) given a subset of them. The configuration parameters are always assumed to be

8.5 Solving Triangles 125

V1 V2

V3

a1 a2

a3

s1s2

s3

Figure 8.3: Standard labeling of a triangle’s sides and angles.

positive and the angles less than π radians. Generally, a unique triangle is determined by
specifying three of the six configuration parameters, although in two cases (AAA and SSA),
as outlined below, the configuration is ambiguous. The configurations requiring consideration
are enumerated as

AAA Angle-Angle-Angle: Specifying three angles of a triangle determines the shape of a
family of similar triangles, but is ambiguous as to the lengths of the sides.

AAS Angle-Angle-Side: The AAS configuration is specified by two angles and a side not
between them. For example, the configuration parameters a1, a2 and s1 specify an AAS
configuration. In a valid configuration the sum of the two given angles must be less than
π radians, and such configurations admit a unique solution.

ASA Angle-Side-Angle: The ASA configuration is specified by two angles and the side be-
tween the angles. The configuration parameters a1, s3 and a2, for example, illustrate an
ASA configuration. The ASA configuration allows a unique solution if the sum of the
two angles is less than π radians.

SAS Side-Angle-Side: The SAS configuration involves two sides and the angle between them.
The configuration given by s1, a3 and s2 is an example of an SAS configuration. The SAS
configuration specifies a unique solution for all values of the configuration parameters.

SSA Side-Side-Angle: SSA configurations (s1, s2 and a1, for example) are referred to as the
ambiguous case, because two valid solutions may exist. That is, two different sets of
configuration parameters representing two different triangles may satisfy the configura-
tion. In some cases (right triangles) only one solution may exist, and in other cases the
configuration may be inconsistent allowing no solutions.

SSS Side-Side-Side: Specifying three sides of a triangle determines a unique triangle, or may
be inconsistent if the length of one side is greater than or equal to the sum of the lengths
of the other two sides.

126 Chapter 8 Triangles

The process of determining the full set of configuration parameters given one of the cases
above is called solving the triangle. Solving triangles involves the application of three funda-
mental principles. In terms of the configuration parameters these three principles lead to the
following equations:

• Sum of the angles of a triangle is π radians: a1 + a2 + a3 = π.

• The Law of Sines (three equations):

s1

sin(a1)
=

s2

sin(a2)
=

s3

sin(a3)
.

• The Law of Cosines (three equations):

s2
1 = s2

2 + s2
3 − 2s2s3 cos(a1),

s2
2 = s2

1 + s2
3 − 2s1s3 cos(a2),

s2
3 = s2

1 + s2
2 − 2s1s2 cos(a3).

When applying the Law of Sines or the Law of Cosines, care must be taken to properly
handle the ambiguous cases noting that sin(a) = sin(π − a), for example, when applying the
Law of Sines. The Descarta2D package D2DTriangle2D provides details illustrating how to
solve all the triangle configuration cases using these principles.

Example. Find all the configuration parameters for a triangle with s1 = 1, s2 = 2
and a3 = π/6 radians. Construct a triangle satisfying this SAS configuration.

Solution. SolveTriangle2D[{{s1, s2, s3}, {a1, a2, a3}}] returns a complete
specification a triangle configuration, in the form {{s1, s2, s3}, {a1, a2, a3}},
given three of the six configuration parameters. The three parameters to be
found must be omitted (i.e. entered as Null in the configuration). The func-
tion Triangle2D[config] returns the triangle satisfying the configuration. The
first vertex of the triangle will be the origin and the second vertex will be on the
+x-axis.

In[14]: sa = SolveTriangle2D@881, 2, Null<,
8Null, Null, Piê6<<D êê Simplify

Out[14] 991, 2,
"#################
5 − 2

è!!!
3 =, 9ArcCosA 4 − è!!!3

�������������������������������������
2 "#################5 − 2 è!!!3

E, ArcCosA 1 − è!!!3
��������������������������������
"#################5 − 2 è!!!3

E, π
�����
6

==

In[15]: Triangle2D@saD êê Simplify

Out[15] Triangle2DA80, 0<, 9"#################
5 − 2

è!!!
3 , 0=, 9 4 − è!!!3

��������������������������������
"#################5 − 2 è!!!3

,
1

��������������������������������
"#################5 − 2 è!!!3

=E

8.5 Solving Triangles 127

Descarta2D Hint. Triangle2D[{s1, s2, s3}] constructs a triangle given the
lengths of the sides only.

Example. Find all configuration parameters for a triangle with s1 = 1, s2 = 1.5
and a1 = π/6 radians (an SSA case).

Solution. The function SolveTriangle2D[config] returns a complete triangle
configuration given a partial configuration. Since this is an SSA case, there is
a possibility of two solutions. SolveTriangle2D[config,True] will return the
alternate triangle configuration, if one exists.

In[16]: SolveTriangle2D@881, 1.5, Null<,
8Piê6., Null, Null<<D

Out[16] 881, 1.5, 1.96048<, 80.523599, 0.848062, 1.76993<<

In[17]: SolveTriangle2D@881, 1.5, Null<,
8Piê6., Null, Null<<, TrueD

Out[17] 881, 1.5, 0.6376<, 80.523599, 2.29353, 0.324463<<

In[18]: 8Sketch2D@8Triangle2D@881, 1.5, Null<,
8Piê6., Null, Null<<D<D,

Sketch2D@8Triangle2D@881, 1.5, Null<,
8Piê6., Null, Null<<, TrueD<D<;

0 0.5 1 1.5 2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

128 Chapter 8 Triangles

8.6 Cevian Lengths

A cevian of a triangle is a line segment connecting a vertex to a point on the line containing
the side of the triangle opposite the vertex. Therefore a cevian may be inside the triangle
(if the point is on the opposite side) or it may be outside the triangle (if the point is on the
extension of the line which contains the opposite side). Common cevians include the altitude
of a triangle which is the cevian perpendicular to the opposite side, the median which connects
the vertex to the midpoint of the opposite side and the angle bisector which bisects the angle
at the vertex.

If a triangle has sides whose lengths are s1, s2 and s3 opposite vertices V1, V2 and V3, then
the length of the altitude, h1, from V1 is given by

h1 =

√
PS

2s1

where S = s1 + s2 + s3 and P = (−s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3). The length of the
median, m1, from vertex V1 is given by

m1 =
1
2

√
−s2

1 + 2(s2
2 + s2

3).

The length of the angle bisector, b1, from V1 is given by

b1 =

√
Ss2s3(−s1 + s2 + s3)

s2 + s3
.

The formulas for the lengths of the cevians from vertices V2 and V3 can be found by cyclic
permutation of the subscripts given in the formulas above. The derivations of these formulas
are provided in the exploration tricev.nb.

8.7 Explorations

Circle Inscribed in a Right Triangle. .rttricir.nb
Show that if r is the radius of a circle inscribed in a right triangle with sides a and b and

hypotenuse c, then r = 1
2 (a + b − c).

—–
Euler’s Triangle Formula. trieuler.nb

If T is a triangle, and P and r are the center and radius of the circle inscribed in T , and
Q and R are the center and radius of the circle circumscribing T , show that

d2 = R2 − 2rR

where d is the distance from P to Q.
—–

8.7 Explorations 129

Gergonne Point of a Triangle. gergonne.nb
Let Q12, Q13 and Q23 be the points of contact of the inscribed circle of triangle P1P2P3 with

sides L12, L13 and L23, respectively. Show that lines P1Q23, P2Q13 and P3Q12 are concurrent.
The point of concurrency is called the Gergonne Point of the triangle after J.D. Gergonne
(1771–1859), founder-editor of the mathematics journal Annales de Mathematiques.
—–
Centroid of a Triangle. tricent.nb

x

y

x2 - x1

PHa, bL

QHd, 0L

Dy
D

Show that the centroid of a triangle, as illustrated in the figure, is on a line at a distance
ȳ = b/3 from the base of the triangle.
—–
Altitude of a Triangle. trialt.nb

The altitude from vertex A of 4ABC is a line segment from A perpendicular to the side
BC (or its extension). Show that the equation of the line containing the altitude from A is

(x3 − x2)x + (y3 − y2)y − x1(x3 − x2) − y1(y3 − y2) = 0

where the coordinates of the vertices are A(x1, y1), B(x2, y2) and C(x3, y3).
—–
Triangle Altitude Length. triallen.nb

Show that the length, L, of a triangle’s altitude (from vertex V3 to side s1) is given by

L =

√
(s1 + s2 − s3)(s1 − s2 + s3)(−s1 + s2 + s3)(s1 + s2 + s3)

2s3

where s1, s2 and s3 are the lengths of the triangle’s sides.
—–
Concurrent Triangle Altitudes. .triconn.nb

Show that the three altitudes of any 4ABC are concurrent in a single point (x, y) whose
coordinates are given by

x =
x′

D
and y =

y′

D

130 Chapter 8 Triangles

where

x′ = −(y1 − y2)(x1x2 + y2
3) + (y1 − y3)(x1x3 + y2

2) − (y2 − y3)(x2x3 + y2
1)

y′ = +(x1 − x2)(y1y2 + x2
3) − (x1 − x3)(y1y3 + x2

2) + (x2 − x3)(y2y3 + x2
1)

and

D =

∣∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣
and the coordinates of the vertices are A(x1, y1), B(x2, y2) and C(x3, y3). This point is called
the orthocenter of the triangle.
—–
Triangle Side Lengths from Altitudes. .trisides.nb

Prove that the lengths of a triangle’s sides whose altitudes are of lengths h1, h2 and h3 are
given by

s1 =
2h1H1

H
, s2 =

2h2H2

H
and s3 =

2h3H3

H

where H1 = h2h3, H2 = h1h3 and H3 = h1h2, and

H =
√

(H1 + H2 − H3)(H1 − H2 + H3)(−H1 + H2 + H3)(H1 + H2 + H3).

—–
Triangle Radii. trirad.nb

Prove that the radius, r, of a circle inscribed in a triangle is given by

r =
1
2

√
P

S

where S = s1 + s2 + s3, P = (−s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3) and s1, s2 and s3

are the lengths of the triangle’s sides. Furthermore, prove that the radius, R, of the circle
circumscribing the triangle is given by

R =
s1s2s3√

PS
.

—–
Triangle Cevian Lengths. .tricev.nb

Prove that the length of the altitude, h1, from vertex V1 of a triangle to the opposite side
of the triangle (whose length is s1) is given by

h1 =
√

PS

2s1

8.7 Explorations 131

where S = s1 + s2 + s3 and P = (−s1 + s2 + s3)(s1 − s2 + s3)(s1 + s2 − s3). Prove that the
length of the median, m1, from vertex V1 is given by

m1 =
1
2

√
−s2

1 + 2(s2
2 + s2

3).

Prove that the length of the angle bisector, b1, from V1 is given by

b1 =

√
Ss2s3(−s1 + s2 + s3)

s2 + s3
.

Also show that the formulas for the lengths of the cevians from vertices V2 and V3 can be
found by cyclic permutation of the subscripts given in the formulas above.
—–

Part III

Conics

Chapter 9

Parabolas

In the branch of mathematics known as celestial mechanics it is shown that an object, such as
a comet, that falls toward the sun “from infinity” would, if not deflected by the gravitational
attraction of other bodies, travel in a path whose shape is a parabola with the sun at its focus.
Projectiles in a vacuum on the surface of the earth travel in paths which are nearly parabolic,
and projectiles in the air approximate this path with greater or less precision according to
their speed, shape and weight. Humans also take advantage of the focusing properties of a
parabolic shape in the design of such artifacts as headlights, searchlights and various listening
and broadcasting devices. This chapter develops the underlying mathematics of a parabola.

9.1 Definitions

A parabola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is one. The fixed point, F , is called the focus and the fixed line,
D, the directrix. By definition, the distance from any point P on the parabola to the focus
is equal to its distance to the directrix. The ratio PF/PD is called the eccentricity e and
e = 1. The line FD through the focus perpendicular to the directrix is called the axis of the
parabola. The midpoint V of the segment FD, obviously a point on the locus, is called the
vertex of the parabola. The focal chord perpendicular to the axis is called the latus rectum.

9.2 General Equation of a Parabola

We choose any point F (x1, y1) as the focus and any line D ≡ A1x + B1y + C1 = 0, where
A2

1+B2
1 = 1, as the directrix. The normalized form of the line is used to simplify the derivation.

With reference to these defining elements the equation of the parabola becomes

√
(x − x1)2 + (y − y1)2 = ±(A1x + B1y + C1)

135

136 Chapter 9 Parabolas

x

y

axis

FHx1, y1L

V

PHx, yL

D

Figure 9.1: Definition of a parabola.

which can be written as

−B2
1x

2 + 2A1B1xy − A2
1y

2+
2(x1 + A1C1)x + 2(y1 + B1C1)y + (C1 − x2

1 − y2
1) = 0.

This equation is of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, an equation of the second
degree. One characteristic of the equation is that the second-degree terms in x and y form a
perfect square, so the equation may also be written

−(B1x − A1y)2 + 2(x1 + A1C1)x + 2(y1 + B1C1)y + (C1 − x2
1 − y2

1) = 0.

Moreover, it can be verified that B2 − 4AC = 0. Therefore a necessary condition that the
equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 represent a parabola is that B2 − 4AC = 0.
The general equation of a parabola reveals that if the directrix line is parallel to one of the
coordinate axes then B = 0 since either A1 or B1 will be zero. The equation of a parabola in
this position will have no xy term.

9.3 Standard Forms of a Parabola

The definition of a parabola makes the shape of the curve depend only upon the distance from
the focus to the directrix and not essentially upon the coordinate system. The general equation
is complicated because of the choice of a general point and a general line. By an appropriate
choice of axes this equation can be simplified; but it will then represent only parabolas in
special positions. For example, if axes are chosen so that the focus has coordinates (f, 0) and

9.3 Standard Forms of a Parabola 137

the directrix the equation x = −f , then the locus definition yields

x + f =
√

(x − f)2 + y2,

which reduces to y2 = 4fx. This is one of the standard forms of the equation of a parabola.
It has a vertex V (0, 0). If f is positive the parabola opens to the right; if f is negative it
opens to the left. The distance f is called the focal length of the parabola and is the distance
between the focus and the vertex of the parabola.

Generalizing the location of the vertex point to V (h, k) gives a parabola whose equation is

(y − k)2 = 4f(x − h).

This equation is the standard form used in Descarta2D as illustrated in the following example.

Example. Plot the parabola whose vertex is (2, 1), focal length is 1/2, and opens
to the right.

Solution. Parabola2D[{h, k}, f, θ] is the standard representation of a parabola
in Descarta2D where the coordinates of the vertex are (h, k), the focal length is f
and the rotation angle (in radians) about the vertex is θ.

In[1]: Sketch2D@8Parabola2D@82, 1<, 1ê2, 0D<D;

2 3 4 5 6 7 8

-2
-1
0
1
2
3
4

The axis of the parabola may also be parallel to the y-axis in which case the equation is

(x − h)2 = 4f(y − k).

Descarta2D does not directly use this form of the parabola, but instead simply rotates the y2

form by the appropriate angle.

Example. Plot the parabola whose vertex is (1,−1), focal length is 1/3, and
opens upward.

138 Chapter 9 Parabolas

Solution. Use the same command as in the previous example with a rotation
angle of π/2 radians.

In[2]: Sketch2D@8Parabola2D@81, −1<, 1ê3, Piê2D<D;

-2-1 0 1 2 3 4
-1
0
1
2
3
4
5
6

Example. Plot the four parabolas whose vertices are (1, 1), (−1, 1), (−1,−1) and
(1,−1), focal length 1/3, and axes aligned with the lines x− y = 0 and x+ y = 0.

Solution. The Descarta2D command Parabola2D[{h, k}, f, θ] returns the de-
sired parabolas using the Angle2D[line] command to find the required values for
θ.

In[3]: axis1 = Line2D@1, −1, 0D; axis2 = Line2D@1, 1, 0D;
theta = 8Angle2D@axis1D, Angle2D@axis2D,

Angle2D@axis1D + Pi, Angle2D@axis2D + Pi<;
pts = 881, 1<, 8−1, 1<, 8−1, −1<, 81, −1<<;
Sketch2D@8axis1, axis2,

Map@Parabola2D@pts@@#DD, 1ê3, theta@@#DDD&,
Range@1, 4DD<D;

-6-4-2 0 2 4 6
-6
-4
-2
0
2
4
6

9.4 Reduction to Standard Form 139

9.4 Reduction to Standard Form

The most general equation of a parabola with no xy term present (and hence one whose axis
is parallel to one of the coordinate axes) is one of the two forms

(1) Ax2 + Dx + Ey + F = 0, axis parallel to the y-axis;
(2) Cy2 + Dx + Ey + F = 0, axis parallel to the x-axis.

In either case it is easy to reduce this general equation to the corresponding standard form
by the process of completing the square.

Example. Reduce x2 +4x+4y− 8 = 0 to the equation of a parabola in standard
form.

Solution. The Descarta2D function Loci2D[quadratic] returns a list of geometric
objects represented by a quadratic equation.

In[4]: crv1 = Loci2D@Quadratic2D@1, 0, 0, 4, 4, −8DD

Out[4] 9Parabola2DA8−2, 3<, 1,
3 π
����������
2

E=

The equation in standard form is (y − 3)2 = 4(x + 2), rotated 270◦ (3π/2 radians)
about the point (−2, 3).

In[5]: Sketch2D@8crv1<D;

-6 -4 -2 0 2

-2
-1
0
1
2
3

The following example shows how Descarta2D may be used to find the various geometric
objects associated with a parabola.

Example. Find the focus, directrix, vertex, axis and eccentricity of the parabola
represented by the equation x2 − 2x − 8y − 15 = 0. Plot the geometric objects.

140 Chapter 9 Parabolas

Solution. The function Foci2D[parabola] returns a list of one point which is the
focus of the parabola; Directrices2D[parabola] returns a list of one line which
is the directrix of the parabola; Line2D[parabola] returns the axis line of the
parabola; and the function Eccentricity2D[parabola] returns the eccentricity of
a parabola (always 1).

In[6]: p1 = First@Loci2D@Quadratic2D@1, 0, 0, −2, −8, −15DDD

Out[6] Parabola2DA81, −2<, 2,
π
�����
2

E

In[7]: 8Eccentricity2D@p1D,
geom = Map@H#@p1DL&,

8Foci2D, Directrices2D, Vertices2D, Line2D<D< êê Flatten

Out[7] 81, Point2D@81, 0<D, Line2D@0, 1, 4D, Point2D@81, −2<D, Line2D@−1, 0, 1D<

In[8]: Sketch2D@8p1, geom<D;

-4 -2 0 2 4

-3

-2

-1

0

9.5 Parabola from Focus and Directrix

A parabola may be defined in terms of a focus point F (x1, y1) and a directrix line given
by L ≡ A2x + B2y + C2 = 0. Given these two defining elements the parabola’s parameters
(vertex point V (h, k), focal length f and angle of rotation θ) can be determined. Let

d =
A2x1 + B2y1 + C2√

A2
2 + B2

2

be the signed distance from the focus F to the directrix L, D = |d|, and F ′ be the projection
of F on L. From a previous chapter the coordinates of F ′ are given by (x1−ad, y1−bd), where
a = A2/

√
A2

2 + B2
2 and b = B2/

√
A2

2 + B2
2 . The vertex point V is obviously the midpoint of

the line segment FF ′ and has coordinates V (h, k) = (x1 − ad/2, y1 − bd/2). The focal length
f is half of D, f = D/2. The rotation angle θ is the angle of the line FF ′.

9.6 Parametric Equations 141

Example. Determine the parabola in standard form defined by the focus point
F (1, 1) and the directrix line x + y = 0.

Solution. The Descarta2D function Parabola2D[point, line] returns the parabola
defined by a focus point and a directrix line.

In[9]: p1 = Parabola2D@Point2D@81, 1<D, Line2D@1, 1, 0DD

Out[9] Parabola2DA9 1
�����
2
,

1
�����
2

=, 1
�����������è!!!2

,
π
�����
4

E

In[10]: 8Foci2D@p1D, Directrices2D@p1D< êê Simplify

Out[10] 88Point2D@81, 1<D<, 8Line2D@1, 1, 0D<<

9.6 Parametric Equations

The standard form of a parabola used in Descarta2D has the equation

(y − k)2 = 4f(x − h)

where (h, k) is the vertex of the parabola and f is the focal length. The axis of this parabola
is parallel to the x-axis and the parabola opens to the right (when f > 0). Parabolas in other
orientations are obtained by applying a rotation, θ, to the standard parabola. Since only the
y term is quadratic, it is easy to find one set of parametric equations for a parabola. Let
y = k + 2ft be one of the equations; then, solving for t yields

t =
(y − k)

2f
.

Substituting this into the equation of the parabola and solving for x yields the two parametric
equations

x = h + ft2

y = k + 2ft.

The parameter value t = 0 produces the vertex point (h, k). Increasing values of t produce
points above and to the right of the vertex. Negative values of t produce points that correspond
to positive t values reflected in the axis of the parabola. Parameter values t = ±1 produce
the end points of the focal chord of the parabola.

142 Chapter 9 Parabolas

Example. Generate seven points on the parabola (y + 1)2 = 2(x − 1) at equally
spaced parameter values. Plot the curve using a curve length of 20. Generate a
second plot of the points on the reflected branch of the parabola.

Solution. The Descarta2D command Parabola2D[{h, k}, f, θ][t] returns the
coordinates at parameter t on the parabola. The option CurveLength2D->n sets
the approximate length of unbounded curves plotted by Descarta2D.

In[11]: p1 = Parabola2D@81, −1<, 1ê2, 0D;
pts1 = Map@Point2D@p1@#ê2DD&, Range@0, 6DD;
pts2 = Map@Point2D@p1@#ê2DD&, Range@−6, 0DD;
Sketch2D@8p1, pts1<, CurveLength2D −> 20D;
Sketch2D@8p1, pts2<, CurveLength2D −> 20D;

0 2 4 6 8 10

-4

-2

0

2

0 2 4 6 8 10

-4

-2

0

2

ŸMathematica Hint. Using the CurveLength2D option as part of the Sketch2D
command sets the length of all unbounded curves being plotted. If this option is
not specified, then a default is used. The initial default set by Descarta2D is 10.
To change the default to a new value, n, use the Mathematica command

SetOptions[Sketch2D,CurveLength2D->n].

9.7 Explorations

Length of Parabola Focal Chord. pbfocchd.nb

Prove that the length of the focal chord of a parabola is 4f , where f is the focal length.
—–

9.7 Explorations 143

Parabola Through Three Points. pb3pts.nb

Show that the parabola passing through the points (0, 0), (a, b) and (b, a) whose axis is
parallel to the x-axis has vertex (h, k) and focal length f given by

h =
(a2 + ab + b2)2

4ab(a + b)
, k =

a2 + ab + b2

2(a + b)
and f = − ab

4(a + b)
.

Furthermore, show that the quadratic representing the parabola is

(a + b)y2 + abx − (a2 + ab + b2)y = 0.

—–
Parabolic Arch. pbarch.nb

x

y PJ
b
ÄÄÄÄÄÄÄ
2

, hN

O

h

b

Find the equation of the parabolic arch of base b and height h as shown in the figure. Assume
that b and h are positive.
—–
Parabola Determinant. .pbdet.nb

Show that the determinant ∣∣∣∣∣∣∣∣∣∣

y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1

∣∣∣∣∣∣∣∣∣∣
= 0

represents a parabola Ax2 + Dx + Ey + F = 0 passing through the points (x1, y1), (x2, y2)
and (x3, y3).
—–

144 Chapter 9 Parabolas

Parabola Intersection Angles. .pbang.nb
Show that the parabolas y2 = ax and x2 = by will cut each other at an angle θ given by

θ = − tan−1 a
1
3

2b
1
3

+ tan−1 2b
1
3

a
1
3

.

—–
Circle Tangent to a Parabola. pbtancir.nb

Any line through the point (−3a, 0) cuts the parabola y2 = 4ax in the points P and Q.
Prove that the circle through P , Q and the focus is tangent to the parabola.
—–
Polar Equation of a Parabola. polarpb.nb

Show that the polar equation of a parabola opening to the right with vertex at (0,0) is
given by

r =
4f cos θ

sin2 θ

where f is the focal length of the parabola.
—–

Chapter 10

Ellipses

The visible universe is filled with ellipses, or near ellipses, traced by celestial bodies revolving
around each other, such as planets and the sun. The fact that the angle formed by two focal
radii through a point on an ellipse is bisected by the normal to the curve may be used in a device
for re-concentrating sound waves, at illustrated in the acoustics of the Mormon Tabernacle
in Salt Lake City, Utah. Various types of rotating machinery use elliptical components to
generate special types of linear and rotational motions. This chapter develops the mathematics
of an ellipse.

10.1 Definitions

An ellipse is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a positive constant less than one. As with the parabola, a focus,
directrix and eccentricity are associated with the curve as described in Table 10.1.

Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = e/1 there are obviously two points V and V ′ which divide the (undirected) segment

Table 10.1: Definition of an ellipse.

Element Description

P (x, y) Point on locus

Fixed point F Focus

Fixed line D Directrix

Fixed constant e Eccentricity

e = PF/PD < 1 Ellipse relationship

145

146 Chapter 10 Ellipses

x

y

C

PHx, yL

F¢

F

V¢

V

D

D

¢

Figure 10.1: Ellipse definition.

FD, internally and externally respectively, into the ratio of e/1. Therefore V and V ′ are points
(on the same side of D) on the ellipse; they are called the vertices. The segment V V ′ is called
the major axis. By symmetry there is another point F ′ and another line D′ such that F ′ and
D′ would serve as the definition of this curve. Thus an ellipse has two foci and two directrices
associated in pairs F , D and F ′, D′. The midpoint of FF ′, which is also the midpoint of V V ′,
is called the center C. It is evident that the locus is contained between the vertices, that it
is bounded in all directions and that it is symmetric both with respect to the major axis and
to a line perpendicular to it through C.

The focal chord perpendicular to the major axis is called the latus rectum. The length of
the central chord perpendicular to the major axis is called the minor axis.

Example. Plot the ellipse with center at coordinates (2, 1), major axis length of
6, minor axis length of 2, and rotated 30◦ (π/6 radians) about the center point.

Solution. Ellipse2D[{h, k}, a, b, θ] is the standard representation of an ellipse
in Descarta2D. The ellipse is centered at coordinates {h, k}, has semi-major axis
of a, semi-minor axis of b and is rotated about the center point by an angle θ (the
semi-major axis is half the length of the major axis; the semi-minor axis is half
the length of the minor axis).

In[1]: Sketch2D@8Ellipse2D@82, 1<, 3, 1, Piê6D<D;

10.2 General Equation of an Ellipse 147

0 1 2 3 4
-0.5

0
0.5
1

1.5
2

2.5

10.2 General Equation of an Ellipse

Take any point F (x1, y1) as focus and any line, D ≡ A1x + B1y + C1 = 0 as directrix, where
A2

1 +B2
1 = 1. The normalized form of the line is used to simplify the derivation. By definition

the equation of the ellipse is√
(x − x1)2 + (y − y1)2 = ±e(A1x + B1y + C1)

which may be expanded to

(e2A2
1 − 1)x2 + 2e2A1B1xy + (e2B2

1 − 1)y2+
2(x1 + e2A1C1)x + 2(y1 + e2B1C1)y + (e2C2

1 − x2
1 − y2

1) = 0.

This is of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B2 − 4AC = 4(e2 − 1) < 0 (when e < 1).

Therefore, a necessary condition that Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 represent an
ellipse is that B2 − 4AC < 0. The general equation reveals that if the defining directrix line
is parallel to one of the coordinate axes then B = 0, since either A1 or B1 will be zero. The
equation of an ellipse in this position will have no xy term.

10.3 Standard Forms of an Ellipse

By an appropriate choice of coordinate axes the general equation of an ellipse can be reduced
to one of the following standard forms.

Major Axis Parallel to the x-Axis

The equation of an ellipse in standard position whose major axis is parallel to the x-axis and
whose center is at the origin is

x2

a2
+

y2

b2
= 1

148 Chapter 10 Ellipses

x

y

C

FF

VV

D

D

a

b

Figure 10.2: Ellipse in standard position (x-axis).

x

y

C

F

F

V

F

D

D

a

b

Figure 10.3: Ellipse in standard position (y-axis).

10.3 Standard Forms of an Ellipse 149

Table 10.2: Ellipse equations (x- and y-axis).

x-axis y-axis

Equation
(x − h)2

a2
+

(y − k)2

b2
= 1

(x − h)2

b2
+

(y − k)2

a2
= 1

Center C(h, k) C(h, k)

Semi-major axis a a

Semi-minor axis b b

Vertices V (h ± a, k) V (h, k ± a)

Foci F (h ± ae, k) F (h, k ± ae)

Directrices x = h ± a/e y = k ± a/e

Focal chord length 2b2/a 2b2/a

Eccentricity e =
√

a2 − b2

a
< 1 e =

√
a2 − b2

a
< 1

where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

(x − h)2

a2
+

(y − k)2

b2
= 1

as shown in Figure 10.2. When an ellipse is in this special position, the formulas for the
important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.

Major Axis Parallel to the y-axis

The equation of an ellipse in standard position whose major axis is parallel to the y-axis and
whose center is at the origin is

x2

b2
+

y2

a2
= 1

where a and b are the lengths of the semi-major and semi-minor axes, respectively. If the
ellipse is centered at (h, k), then the equation is

(x − h)2

b2
+

(y − k)2

a2
= 1

as shown in Figure 10.3. When an ellipse is in this special position, the formulas for the
important points, lines and constants associated with the ellipse are simply determined and
are summarized in Table 10.2.

150 Chapter 10 Ellipses

10.4 Reduction to Standard Form

The most general equation of an ellipse with no xy term (and hence one whose axes are parallel
to the coordinate axes) is of the form

Ax2 + Cy2 + Dx + Ey + F = 0, AC > 0.

The condition B2 − 4AC < 0 reduces to AC > 0 which implies that A and C are of like sign.
This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce x2 + 4y2 + 4x = 0 to standard form and plot.

Solution. The Descarta2D function Loci2D[quad] reduces a quadratic equation
to a standard form.

In[2]: crv1 = Loci2D@Quadratic2D@1, 0, 4, 4, 0, 0DD

Out[2] 8Ellipse2D@8−2, 0<, 2, 1, 0D<

The equation in standard form is
(x + 2)2

4
+

y2

1
= 1.

In[3]: Sketch2D@8crv1<D;

-4 -3 -2 -1 0
-1

-0.5

0

0.5

1

Example. Reduce 5x2 + 9y2 − 10x − 54y + 41 = 0 to standard form. Find the
center, foci, vertices, directrices, the lengths of the semi-major and semi-minor
axes and the eccentricity. Plot the geometric objects.

10.5 Ellipse from Vertices and Eccentricity 151

Solution. The function Loci2D[quad] reduces a quadratic equation to a stan-
dard form. The function Point2D[ellipse] returns the center point of an ellipse;
the function Foci2D[ellipse] returns a list of the two foci of an ellipse; the function
Vertices2D[ellipse] returns a list of the two vertex points of an ellipse; the func-
tion Directrices2D[ellipse] returns a list of the two directrix lines of an ellipse;
SemiMajorAxis2D[ellipse] and SemiMinorAxis2D[ellipse] return the lengths of
the semi-major and semi-minor axes of an ellipse, respectively.

In[4]: crv1 = Loci2D@Quadratic2D@5, 0, 9, −10, −54, 41DD

Out[4] 9Ellipse2DA81, 3<, 3,
è!!!
5 , 0E=

The standard form of the equation is
(x − 1)2

9
+

(y − 3)2

5
= 1.

In[5]: objs = Map@H#@ crv1@@1DD DL&,
8Point2D, Foci2D, Vertices2D, Directrices2D,

SemiMajorAxis2D, SemiMinorAxis2D,

Eccentricity2D<D

Out[5] 9Point2D@81, 3<D, 8Point2D@83, 3<D, Point2D@8−1, 3<D<,

8Point2D@84, 3<D, Point2D@8−2, 3<D<, 9Line2DA1, 0, −
11
���������
2

E, Line2DA1, 0,
7
�����
2

E=,

3,
è!!!
5 ,

2
�����
3

=

In[6]: Sketch2D@8crv1, Drop@objs, −3D<,
PlotRange −> 88−5, 7<, 8−1, 6<<,
CurveLength2D −> 15D;

-4 -2 0 2 4 6
-1
0
1
2
3
4
5
6

10.5 Ellipse from Vertices and Eccentricity

Suppose we are given the two vertices, V1(x1, y1) and V2(x2, y2), and the eccentricity, e, of an
ellipse and we wish to find the standard equation of the ellipse. The center point (h, k) of the
ellipse is clearly the midpoint between the vertices and is given by(

x1 + x2

2
,
y1 + y2

2

)
.

152 Chapter 10 Ellipses

The length of the semi-major axis, a, is one-half the distance between the vertices, yielding
a = |V1V2|/2. The eccentricity is given by

e =
√

a2 − b2

a
,

so, solving for b gives the length of the semi-minor axis as

b = a
√

1 − e2.

The line through the two vertex points determines the rotation angle of the ellipse as

θ = tan−1(x2 − x1, y2 − y1).

Example. Find the ellipse whose vertices are (4, 2) and (−2, 1), and whose eccen-
tricity is 7/8.

Solution. The Descarta2D function Ellipse2D[{point, point}, e] returns the
ellipse whose vertices are the given points with the specified eccentricity.

In[7]: p1 = Point2D@84, 2<D;
p2 = Point2D@8−2, 1<D;
e1 = Ellipse2D@8p1, p2<, 7ê8D êê N

Out[7] Ellipse2D@81., 1.5<, 3.04138, 1.4724, 0.165149D

In[8]: Sketch2D@8p1, p2, e1<D;

-2 -1 0 1 2 3 4
0

0.5
1

1.5
2

2.5
3

10.6 Ellipse from Foci and Eccentricity 153

10.6 Ellipse from Foci and Eccentricity

It is evident from Table 10.2 that the distance between the foci of an ellipse is |F1F2| = 2ae
and that the distance between the vertices is |V1V2| = 2a. Therefore, the eccentricity, e, given
by

e =
2ae

2a
=

|F1F2|
|V1V2|

is the ratio of the distance between the foci to the distance between the vertices. This re-
lationship allows us to construct an ellipse by specifying the two foci and the eccentricity.
The semi-major axis length, a, is given by a = |F1F2|/2e and the semi-minor axis length is
b = a

√
1 − e2. The center point of the ellipse is clearly the midpoint of the two foci and the

angle of rotation is
θ = tan−1(x2 − x1, y2 − y1),

where F1(x1, y1) and F2(x2, y2) are the coordinates of the foci.

Example. Find the ellipse whose foci are (−1,−1) and (1, 1) and whose eccen-
tricity is 1/2.

Solution. The Descarta2D function Ellipse2D[point, point, e] constructs an
ellipse given the two foci points and the eccentricity.

In[9]: e1 = Ellipse2D@Point2D@8−1, −1<D, Point2D@81, 1<D, 1ê2D

Out[9] Ellipse2DA80, 0<, 2
è!!!
2 ,

è!!!
6 ,

π
�����
4

E

In[10]: 8Foci2D@e1D, Eccentricity2D@e1D<

Out[10] 98Point2D@81, 1<D, Point2D@8−1, −1<D<, 1
�����
2

=

10.7 Ellipse from Focus and Directrix

Given the focus point F (x1, y1), the directrix line L ≡ px + qy + r = 0, and the eccentricity,
0 < e < 1, of an ellipse we wish to determine the standard equation of the ellipse. The rotation
angle of the ellipse is the angle the line perpendicular to L makes with the +x-axis and is
given by θ = tan−1(p, q). The distance, d, from F to L is given by

d =

√
(px1 + qy1 + r)2

p2 + q2
.

154 Chapter 10 Ellipses

It is clear from Table 10.2 that the distance from F to L is also given by d = a/e−ae. Solving
for a (the length of the semi-major axis) yields

a = d
e

(1 − e2)
.

Table 10.2 shows that the eccentricity, e, is related to the lengths of the semi-major and
semi-minor axes, a and b, respectively, by

e =
√

a2 − b2

a
.

Solving this equation for b yields
b = a

√
1 − e2.

Table 10.2 reveals that the distance from the focus F to the center C(h, k) is given by ae. If F ′

is the projection of F onto L, then we can find the center point C of the ellipse by offsetting F
in the direction from F to F ′ a distance −ae. This computation is easily accomplished using
Descarta2D and is provided in the exploration ellfd.nb. The resulting defining constants of
the ellipse are given by

h = x1 +
paeD

d
, k = y1 +

qaeD

d
,

a = d
e

(1 − e2)
, b = a

√
1 − e2,

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

Example. Find the ellipse whose focus point is (3, 2), directrix line x− y + 2 = 0
and eccentricity is 1/4.

Solution. The Descarta2D function Ellipse2D[point, line, e] constructs an el-
lipse for the focus, directrix and eccentricity.

In[11]: e1 = Ellipse2D@p1 = Point2D@83, 2<D, l2 = Line2D@1, −1, 2D, 1ê4D

Out[11] Ellipse2DA9 31
���������
10

,
19
���������
10

=, 2 è!!!2
����������������
5

, $%%%%%%%%3
���������
10

,
3 π
����������
4

E

In[12]: 8Foci2D@e1D,
Directrices2D@e1D,
Eccentricity2D@e1D< êê Simplify

Out[12] 99Point2D@83, 2<D, Point2DA9 16
���������
5

,
9
�����
5

=E=,

8Line2D@−1, 1, −2D, Line2D@−5, 5, 22D<, 1
�����
4

=

10.8 Parametric Equations 155

10.8 Parametric Equations

The parametric equations for a standard ellipse

(x − h)2

a2
+

(y − k)2

b2
= 1

are very similar to those of a circle, with the exception that the radius is replaced by either
the length of the semi-major axis, a, or the semi-minor axis, b. The appropriate equations are

x = h + a cos θ and y = k + b sin θ

where (h, k) is the center of the ellipse, a and b are the lengths of the semi-major and semi-
minor axes, respectively, and parameter values in the range 0 ≤ t < 2π generate a complete
curve. The validity of these equations can be verified by direct substitution.

Example. Plot 16 points on the ellipse

x2

16
+

y2

4
= 1

at equally spaced parameter values.

Solution. The Descarta2D function Ellipse2D[{h, k}, a, b, θ][t] returns the
coordinates of a point at parameter value t on the ellipse.

In[13]: e1 = Ellipse2D@80, 0<, 4, 2, 0D;
pts = Map@Point2D@e1@2∗Pi∗#ê16DD&, Range@0, 15DD;
Sketch2D@8e1, pts<D;

-4 -2 0 2 4
-2

-1

0

1

2

As with the circle, a pair of rational equations may be used as the parametric equations
for an ellipse. The ellipse

x2

a2
+

y2

b2
= 1

156 Chapter 10 Ellipses

has the parametric equations

x = a

(
1 − t2

1 + t2

)
and y = b

(
2t

1 + t2

)
.

Values of t in the range 0 ≤ t ≤ 1 generate coordinates on the ellipse in the first quadrant.
The point (−a, 0), which is on the ellipse, cannot be generated using these equations.

Example. Plot the ellipse x2/4 + y2 = 1 using the rational parametric equations
in the parameter range −10 ≤ t ≤ 10.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.

In[14]: Clear@tD;
ParametricPlot@82∗ H1 − t^2L ê H1 + t^2L, 2∗1∗tê H1 + t^2L<,

8t, −10, 10<, AspectRatio −> AutomaticD;

-2 -1 1 2

-1

-0.5

0.5

1

10.9 Explorations

Length of Ellipse Focal Chord. elllen.nb
Prove that the length of the focal chord of an ellipse is 2b2/a, where a is the length of the

semi-major axis and b is the length of the semi-minor axis.
—–
Sum of Focal Distances of an Ellipse. .ellips2a.nb

Show that the sum of the distances from the two foci to any point on an ellipse is 2a, where
a is the length of the semi-major axis.
—–

10.9 Explorations 157

Ellipse from Focus and Directrix. .ellfd.nb
Show that the ellipse with focus F (x1, y1), directrix line L ≡ px+qy+r = 0 and eccentricity,

0 < e < 1, is defined by the constants

h = x1 +
paeD

d
, k = y1 +

qaeD

d
,

a = d
e

(1 − e2)
, b = a

√
1 − e2, θ = tan−1(p, q),

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

—–
Focus of Ellipse is Pole of Directrix. .elfocdir.nb

Show that the focus of an ellipse is the pole of the corresponding directrix.
—–
Ellipse Locus, Distance from Two Lines. elldist.nb

A point moves so that the sum of the squares of its distances from two intersecting straight
lines is a constant. Prove that its locus is an ellipse.
—–
Similar Ellipses. .ellsim.nb

All ellipses of equal eccentricity are essentially similar in that by a proper choice of scales
(and axes) they can be made to coincide. Show this property is true for two ellipses of equal
eccentricity centered at the origin.
—–
Polar Equation of an Ellipse .polarell.nb

Show that the polar equation of an ellipse with a horizontal major axis and centered at
(0, 0) is given by

r =
ab√

a2 sin2 θ + b2 cos2 θ

where a and b are the lengths of the semi-major and semi-minor axes, respectively.
—–
Apoapsis and Periapsis of an Ellipse. .ellrad.nb

Show that the greatest (apoapsis) and least (periapsis) radial distance of a point on an
ellipse as measured from a focus point is given by r = a(1 + e) and r = a(1 − e), respectively,
where e is the eccentricity and a is the length of the semi-major axis of the ellipse.
—–

Chapter 11

Hyperbolas

The equations of a hyperbola are in many ways similar to those of an ellipse, the forms often
only differing by a + or − sign. The properties and characteristics of a hyperbola, however, are
somewhat less intuitive than an ellipse, possibly because the curve has two disjoint branches or
because it extends to infinity. This chapter describes the detailed mathematics of a hyperbola.

11.1 Definitions

A hyperbola is the locus of a point that moves so that the ratio of its distance from a fixed
point and from a fixed line is a constant greater than one. As with the parabola and ellipse,
a focus, directrix and eccentricity are associated with the curve as shown in Table 11.1.

Consider the line through the focus perpendicular to the directrix. From the definition
PF/PD = e/1 there are obviously two points V and V ′ which divide the (undirected) segment
FD, internally and externally respectively, in the ratio of e/1. Therefore, V and V ′ are points
(on opposite sides of D) on the hyperbola; they are called the vertices. The segment V V ′ is
called the transverse axis. By symmetry, there is another point F ′ and another line D′ such

Table 11.1: Hyperbola definition.

Element Description

P (x, y) Point on locus

Fixed point F Focus

Fixed line D Directrix

Fixed constant e Eccentricity

e = PF/PD > 1 Hyperbola relationship

159

160 Chapter 11 Hyperbolas

x

y

C

PHx, yL

F¢

F

V¢

V

D

D

¢

Figure 11.1: Hyperbola definition.

that F ′ and D′ would serve in the definition of this curve. Thus, a hyperbola has two foci
and two directrices associated in pairs F , D and F ′, D′. The midpoint of FF ′, which is also
the midpoint of V V ′, is called the center C. There are two tangent lines through C whose
points of contact are at an infinite distance from C. These are called the asymptotes of the
hyperbola. The focal chord perpendicular to the transverse axis is called the latus rectum.

A line through C perpendicular to the transverse axis does not intersect the hyperbola
in real points. But the portion of it, bisected by C, which is equal in length to the parallel
segment through V contained between the asymptotes is called the conjugate axis.

Example. Plot the hyperbola with center at coordinates (2, 1), transverse axis
length of 1, conjugate axis length of 3/4 and rotated 30◦ (π/6 radians) about the
center point.

Solution. Hyperbola2D[{h, k}, a, b, θ] is the standard representation of a hy-
perbola in Descarta2D. The hyperbola is centered at coordinates (h, k), has semi-
transverse axis of a, semi-conjugate axis of b and is rotated about the center point
by an angle θ (the semi-transverse axis is half the length of the transverse axis;
the semi-conjugate axis is half the length of the conjugate axis).

In[1]: Sketch2D@8Hyperbola2D@82, 1<, 1, 3ê4, Piê6D<D;

11.2 General Equation of a Hyperbola 161

-4 -2 0 2 4 6 8

-2
-1
0
1
2
3
4

11.2 General Equation of a Hyperbola

Take any point F (x1, y1) as focus and any line, D ≡ A1x + B1y + C1 = 0 as directrix, where
A2

1 +B2
1 = 1. The normalized form of the line is used to simplify the derivation. By definition

the equation of the hyperbola is√
(x − x1)2 + (y − y1)2 = ±e(A1x + B1y + C1)

which may be expanded to

(e2A2
1 − 1)x2 + 2e2A1B1xy + (e2B2

1 − 1)y2+
2(x1 + e2A1C1)x + 2(y1 + e2B1C1)y + (e2C2

1 − x2
1 − y2

1) = 0.

This is of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, an equation of the second degree.
Moreover, it can be verified that B2 − 4AC = 4(e2 − 1) > 0 (when e > 1).

Therefore, a necessary condition that Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 represent a
hyperbola is that B2 − 4AC > 0. The general equation reveals that if the defining directrix
line is parallel to one of the coordinate axes then B = 0, since either A1 or B1 will be zero.
The equation of a hyperbola in this position will have no xy term.

11.3 Standard Forms of a Hyperbola

By an appropriate choice of coordinate axes the general equation of a hyperbola can be reduced
to one of the following standard forms.

Transverse Axis Parallel to the x-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the x-axis
and whose center is at the origin is

x2

a2
− y2

b2
= 1

162 Chapter 11 Hyperbolas

x

y

C FF
VV

DD

Figure 11.2: Hyperbola in standard position (x-axis).

x

y

C

F

F

V

D

D

Figure 11.3: Hyperbola in standard position (y-axis).

11.3 Standard Forms of a Hyperbola 163

Table 11.2: Hyperbola definition (x- and y-axis).

x-axis y-axis

Equation
(x − h)2

a2
− (y − k)2

b2
= 1 − (x − h)2

b2
+

(y − k)2

a2
= 1

Center C(h, k) C(h, k)

Semi-transverse axis a a

Semi-conjugate axis b b

Vertices V (h ± a, k) V (h, k ± a)

Foci F (h ± ae, k) F (h, k ± ae)

Directrices x = h ± a/e y = k ± a/e

Asymptotes bx ± ay − (bh ± ak) = 0 ax ± by − (ah ± bk) = 0

Focal chord length 2b2/a 2b2/a

Eccentricity e =
√

a2 + b2

a
> 1 e =

√
a2 + b2

a
> 1

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

(x − h)2

a2
− (y − k)2

b2
= 1

as shown in Figure 11.2. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2.

The lengths of the transverse axis, conjugate axis, focal chord and the value of the eccen-
tricity are independent of the origin and are also given in Table 11.2. Note that the equations
of the asymptotes can be obtained directly from the equation of the hyperbola in standard
form by replacing the one on the right-hand side of the equation with a zero. The left-hand
side of the equation will then factor into two linear terms which are the asymptotes of the
hyperbola.

Transverse Axis Parallel to the y-Axis

The equation of a hyperbola in standard position whose transverse axis is parallel to the y-axis
and whose center is at the origin is

−x2

b2
+

y2

a2
= 1

164 Chapter 11 Hyperbolas

Table 11.3: Conjugate hyperbolas.

Transverse Axis Center at (h, k)

H parallel to x-axis
(x − h)2

a2
− (y − k)2

b2
= 1

H ′ parallel to y-axis − (x − h)2

a2
+

(y − k)2

b2
= 1

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively. If
the hyperbola is centered at (h, k), then the equation is

− (x − h)2

b2
+

(y − k)2

a2
= 1

as shown in Figure 11.3. When a hyperbola is in this special position, the formulas for the
important points, lines and constants associated with the hyperbola are simply determined
and are summarized in Table 11.2

The lengths of the semi-transverse axis, semi-conjugate axis, focal chord and the value
of the eccentricity are independent of the origin and are also shown in Table 11.2. These
constants have the same values as a hyperbola whose transverse axis is parallel to the x-axis.

Conjugate and Rectangular Hyperbolas

Two hyperbolas with the same center are conjugate hyperbolas if the transverse axis of one
coincides with the conjugate axis of the other. The equations of two conjugate hyperbolas H
and H ′ in standard form are shown in Table 11.3. It is evident that if a is the semi-transverse
axis of H , then a is the semi-conjugate axis of H ′, and vice versa. Conjugate hyperbolas have
the same asymptotes and their foci lie on a circle with center at the center of the hyperbolas.

Example. Write the equation of the hyperbola whose center is (−2, 1), transverse
axis length 6 (parallel to the x-axis), and conjugate axis length 8. Determine its
eccentricity, foci and vertices. Find the equations of its directrices and asymptotes.
Plot the geometric objects.

Solution. The equation can be written directly using the standard form as

(x + 2)2

9
− (y − 1)2

16
= 1.

In Descarta2D this hyperbola is written as Hyperbola2D[{-2,1}, 3, 4, 0].

11.3 Standard Forms of a Hyperbola 165

In[2]: h1 = Hyperbola2D@8−2, 1<, 3, 4, 0D;

The Descarta2D function Eccentricity2D[hyperbola] returns the eccentricity of
the hyperbola.

In[3]: Eccentricity2D@h1D

Out[3]
5
�����
3

The Descarta2D function Foci2D[hyperbola] returns a list of the two focus points;
the function Vertices2D[hyperbola] returns a list of the two vertex points; the
function Directrices2D[hyperbola] returns a list of the two directrix lines; the
function Asymptotes2D[hyperbola] returns a list of the two asymptote lines.

In[4]: objs = Map@H #@h1D L&,
8Foci2D, Vertices2D, Directrices2D, Asymptotes2D<D

Out[4] 98Point2D@83, 1<D, Point2D@8−7, 1<D<, 8Point2D@81, 1<D, Point2D@8−5, 1<D<,

9Line2DA1, 0,
1
�����
5

E, Line2DA1, 0,
19
���������
5

E=, 8Line2D@4, 3, 5D, Line2D@4, −3, 11D<=

In[5]: Sketch2D@8h1, objs<,
CurveLength2D −> 40,

PlotRange −> 88−14, 10<, 8−9, 11<<D;

-10 -5 0 5 10
-7.5
-5

-2.5
0

2.5
5

7.5
10

Example. Plot the hyperbola whose equation is 4x2 − y2 + 36 = 0 along with its
conjugate.

Solution. The function Loci2D[quad] constructs a list containing the objects
represented by a quadratic equation; Hyperbola2D[hyperbola, Conjugate2D] con-
structs the conjugate of a hyperbola.

166 Chapter 11 Hyperbolas

In[6]: 8h1< = Loci2D@Quadratic2D@4, 0, −1, 0, 0, 36DD

Out[6] 9Hyperbola2DA80, 0<, 6, 3,
π
�����
2

E=

In[7]: h2 = Hyperbola2D@h1, Conjugate2DD

Out[7] Hyperbola2D@80, 0<, 3, 6, 0D

In[8]: f = 88f1a, f1b< = Foci2D@h1D, 8f2a, f2b< = Foci2D@h2D<;
c1 = Circle2D@f1a, f1b, f2aD; IsOn2D@f2b, c1D

Out[8] True

The statement IsOn2D[f2b,c1], by returning True, shows that the foci of both
hyperbolas are on a common circle.

In[9]: Sketch2D@8h1, h2, f, c1<,
CurveLength2D −> 40,

PlotRange −> 88−12, 12<, 8−10, 10<<D;

-10 -5 0 5 10
-10
-7.5
-5

-2.5
0

2.5
5

7.5
10

A rectangular (or equilateral) hyperbola is one in which the transverse and conjugate axes
are equal in length, in which case the asymptotes are at right angles to each other.

11.4 Reduction to Standard Form

The most general equation of a hyperbola with no xy term (and hence one whose axes are
parallel to the coordinate axes) is of the form

Ax2 + Cy2 + Dx + Ey + F = 0, AC < 0.

The condition B2 − 4AC > 0 reduces to AC < 0 which implies that A and C are of opposite
sign. This equation can be reduced to one of the standard forms by completing the square.

Example. Reduce x2 − y2 − 2x − y + 1 = 0 to standard form and plot.

11.5 Hyperbola from Vertices and Eccentricity 167

Solution. The Descarta2D function Loci2D[quad] constructs a list containing the
objects represented by the quadratic.

In[10]: h1 = Loci2D@Quadratic2D@1, 0, −1, −2, −1, 1DD

Out[10] 9Hyperbola2DA91, −
1
�����
2

=, 1
�����
2
,

1
�����
2
,

π
�����
2

E=

The equation in standard form is

− (x − 1)2
1
4

+
(y + 1

2)2
1
4

= 1.

This is a rectangular hyperbola with a = b = 1
2 .

In[11]: Sketch2D@8h1<D;

-2-1 0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

3

4

11.5 Hyperbola from Vertices and Eccentricity

Suppose we are given the two vertices, V1(x1, y1) and V2(x2, y2) and the eccentricity, e, of a
hyperbola and we wish to find the standard equation of the hyperbola. The center point (h, k)
of the hyperbola is clearly the midpoint between the vertices and is given by(

x1 + x2

2
,
y1 + y2

2

)
.

The length of the semi-transverse axis, a, is one-half the distance between the vertices, yielding
a = |V1V2|/2. The eccentricity is given by

e =
√

a2 + b2

a
,

168 Chapter 11 Hyperbolas

so, solving for b gives the length of the semi-conjugate axis as

b = a
√

e2 − 1.

The line through the two vertex points determines the rotation angle of the hyperbola as

θ = tan−1(x2 − x1, y2 − y1).

Example. Find the hyperbola whose vertices are (4, 2) and (−2, 1), and whose
eccentricity is 3/2.

Solution. The Descarta2D function Hyperbola2D[{point,point}, e] returns the
hyperbola whose vertices are the given points with the specified eccentricity.

In[12]: p1 = Point2D@84, 2<D;
p2 = Point2D@8−2, 1<D;
h1 = Hyperbola2D@8p1, p2<, 3ê2D êê N

Out[12] Hyperbola2D@81., 1.5<, 3.04138, 3.40037, 0.165149D

In[13]: Sketch2D@8p1, p2, h1<D;

-4 -2 0 2 4 6

-4

-2

0

2

4

6

11.6 Hyperbola from Foci and Eccentricity

It is evident from Table 11.2 that the distance between the foci of a hyperbola is given by
|F1F2| = 2ae and that the distance between the vertices is |V1V2| = 2a. Therefore, the
eccentricity, e, given by

e =
2ae

2a
=

|F1F2|
|V1V2|

11.7 Hyperbola from Focus and Directrix 169

is the ratio of the distance between the foci to the distance between the vertices. This rela-
tionship allows us to construct a hyperbola by specifying the two foci and the eccentricity.
The semi-transverse axis length, a, is given by a = |F1F2|/2e and the semi-conjugate axis
length is b = a

√
e2 − 1. The center point of the hyperbola is clearly the midpoint of the two

foci and the angle of rotation is arctan(x2 − x1, y2 − y1), where F1(x1, y1) and F2(x2, y2) are
the coordinates of the foci.

Example. Find the hyperbola whose foci are (−1,−1) and (1, 1) and whose
eccentricity is 3/2.

Solution. The function Hyperbola2D[point,point, e] constructs a hyperbola
given the two foci points and the eccentricity.

In[14]: h1 = Hyperbola2D@Point2D@8−1, −1<D, Point2D@81, 1<D, 3ê2D

Out[14] Hyperbola2DA80, 0<, 2 è!!!2
����������������
3

,
è!!!!!10
���������������
3

,
π
�����
4

E

In[15]: 8Foci2D@h1D, Eccentricity2D@h1D<

Out[15] 98Point2D@81, 1<D, Point2D@8−1, −1<D<, 3
�����
2

=

11.7 Hyperbola from Focus and Directrix

Given the focus point F (x1, y1), the directrix line L ≡ px + qy + r = 0 and the eccentricity,
e > 1, of a hyperbola we wish to determine the standard equation of the hyperbola. The
rotation angle of the hyperbola is the angle the line perpendicular to L makes with the
+x-axis and is given by θ = tan−1(p, q). The distance, d, from F to L is given by

d =

√
(px1 + qy1 + r)2

p2 + q2
.

It is clear from Table 11.2 that the distance from F to L is also given by d = ae−a/e. Solving
for a (the length of the semi-transverse axis) yields

a = d
e

(e2 − 1)
.

Table 11.2 shows that the eccentricity, e, is related to the lengths of the semi-transverse and
semi-conjugate axes, a and b, respectively, by

e =
√

a2 + b2

a
.

170 Chapter 11 Hyperbolas

Solving this equation for b yields
b = a

√
e2 − 1.

Table 11.2 reveals that the distance from the focus F to the center C(h, k) is given by ae. If
F ′ is the projection of F onto L, then we can find the center point C(h, k) of the hyperbola
by offsetting F in the direction from F to F ′ a distance ae. This computation is easily
accomplished using Descarta2D and is provided in the exploration hypfd.nb. The defining
constants of the hyperbola so computed are

h = x1 − paeD

d
, k = y1 − qaeD

d
,

a = d
e

(e2 − 1)
, b = a

√
e2 − 1,

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

Example. Find the hyperbola whose focus is (3, 2), directrix line is x− y + 2 = 0
and eccentricity is 5.

Solution. The Descarta2D function Hyperbola2D[point, line, e] constructs a hy-
perbola from the focus, directrix and eccentricity.

In[16]: h1 = Hyperbola2D@p1 = Point2D@83, 2<D, l2 = Line2D@1, −1, 2D, 5D

Out[16] Hyperbola2DA9 23
���������
16

,
57
���������
16

=, 5
����������������
8 è!!!2

,
5 è!!!3
����������������
4

,
3 π
����������
4

E

In[17]: 8Foci2D@h1D,
Directrices2D@h1D,
Eccentricity2D@h1D< êê Simplify

Out[17] 99Point2DA9−
1
�����
8
,

41
���������
8

=E, Point2D@83, 2<D=,

8Line2D@−4, 4, −9D, Line2D@−1, 1, −2D<, 5=

11.8 Parametric Equations

The standard form of a hyperbola used in Descarta2D has the equation

(x − h)2

a2
− (y − k)2

b2
= 1

11.8 Parametric Equations 171

where (h, k) is the center of the hyperbola, and a and b are the lengths of the semi-transverse
and semi-conjugate axes, respectively. The axis of this hyperbola is parallel to the x-axis and
the hyperbola opens to the right and left. Hyperbolas in other orientations are obtained by
applying a rotation, θ, to the standard hyperbola. The parametric equations for a hyperbola
are similar to those of an ellipse, except hyperbolic functions are used instead of standard
trigonometric functions. The parametric equations are

x = h + cosh t and y = k + sinh t.

The parameter value t = 0 produces the vertex point on the right branch of the hyperbola.
Increasing values of t produce points above and to the right of this vertex. Negative values
of t produce points that correspond to positive t values reflected in the transverse axis of the
hyperbola. All of the points on the right branch need to be reflected in the conjugate axis of
the hyperbola to produce the left branch of the curve.

In Descarta2D the parametric equations of a hyperbola are scaled by a factor s so that
the end points of the focal chord are at the parameter values −1 and +1. Specifically, the
equations used in Descarta2D are

x = h + a cosh(st) and y = k + b sinh(st)

where

s = cosh−1 e

and e is the eccentricity of the hyperbola. The validity of these equations can be verified by
direct substitution.

Example. Plot eight points at equal parameter values on the upper and lower
portions of the right branch of the hyperbola x2/4 − y2/2 = 1.

Solution. The command Hyperbola2D[{h, k}, a, b, θ][t] returns the coordi-
nates at parameter t on the hyperbola.

In[18]: h1 = Hyperbola2D@80, 0<, 2, Sqrt@2D, 0D;
pts1 = Map@Point2D@h1@#ê3DD&, Range@0, 7DD;
pts2 = Map@Point2D@h1@#ê3DD&, Range@−7, 0DD;
pr = PlotRange −> 88−6, 10<, 8−5, 5<<;
Sketch2D@8h1, pts1<, prD;
Sketch2D@8h1, pts2<, prD;

172 Chapter 11 Hyperbolas

-4 -2 0 2 4 6 8 10

-4

-2

0

2

4

-4 -2 0 2 4 6 8 10

-4

-2

0

2

4

As with the ellipse, a pair of rational equations may be used as the parametric equations
for a hyperbola. The hyperbola

x2

a2
− y2

b2
= 1

has the parametric equations

x = a

(
1 + t2

1 − t2

)
and y = b

(
2t

1 − t2

)
.

Values of t in the range 0 ≤ t < 1 generate coordinates on the hyperbola in the first quadrant.
The other portions of the curve can be generated by reflecting the coordinates generated by
these equations.

Example. Plot the hyperbola x2/25 − y2 = 1 using the rational parametric
equations in the parameter range −1/2 ≤ t ≤ 1/2.

Solution. The Mathematica function ParametricPlot plots curves defined by
parametric equations.

In[19]: Clear@tD;
ParametricPlot@85∗ H1 + t^2L ê H1 − t^2L, 2∗1∗tê H1 − t^2L<,

8t, −1ê2, 1ê2<, AspectRatio −> AutomaticD;

5.5 6 6.5 7 7.5 8

-1

-0.5

0.5

1

11.9 Explorations 173

11.9 Explorations

Length of Hyperbola Focal Chord. hyplen.nb
Prove that the length of the focal chord of a hyperbola is 2b2/a, where a is the length of

the semi-transverse axis and b is the length of the semi-conjugate axis.
—–
Focal Distances of a Hyperbola. .hyp2a.nb

Show that the difference of the distances from the two foci to any point on a hyperbola is
2a, where a is the length of the semi-transverse axis.
—–
Hyperbola from Focus and Directrix. .hypfd.nb

Show that the hyperbola with focus F (x1, y1), directrix L ≡ px + qy + r = 0 and eccentric-
ity, e > 1 is defined by the constants

h = x1 − paeD

d
, k = y1 − qaeD

d
,

a = d
e

(e2 − 1)
, b = a

√
e2 − 1, θ = tan−1(p, q),

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

—–
Rectangular Hyperbola Distances. .hypinv.nb

Show that the distance of any point on a rectangular hyperbola from its center varies
inversely as the perpendicular distance from its polar to the center.
—–
Eccentricities of Conjugate Hyperbolas. hypeccen.nb

Show that if e1 and e2 are the eccentricities of a hyperbola and its conjugate, then
1/(e2

1) + 1/(e2
2) = 1.

—–
Polar Equation of a Hyperbola . polarhyp.nb

Show that the polar equation of a hyperbola with a horizontal transverse axis and centered
at (0, 0) is given by

r =
ab√

b2 cos2 θ − a2 sin2 θ

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively.
—–
Trigonometric Parametric Equations .hyptrig.nb

Show that the parametric equations

x = a sec θ and y = b tan θ

174 Chapter 11 Hyperbolas

represent the hyperbola
x2

a2
− y2

b2
= 1.

—–

Chapter 12

General Conics

In previous chapters we have examined specific forms of an equation of the second degree
resulting in a detailed understanding of circles, parabolas, ellipses and hyperbolas. In this
chapter we will study the general second-degree equation itself resulting in a more complete
understanding of the equation.

12.1 Conic from Quadratic Equation

In this section we will present a method for converting a general quadratic equation of the form
Q ≡ Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 to a conic curve in a standard form. The method
involves examining the coefficients of the equation and applying algebraic operations to the
equation which successively simplify the equation until a standard form can be recognized by
inspection. The general approach involves the following steps:

• If the quadratic equation is one of several special forms, then the standard form of the
curve can be determined by inspection. The following curves have a quadratic form that
can be directly recognized: (1) a single point, (2) a single line, (3) two lines (parallel, co-
incident or intersecting), (4) a circle, parabola, ellipse or hyperbola in standard position
and (5) several forms with no real locus (imaginary).

• If the quadratic equation has first-degree terms (D 6= 0 or E 6= 0), translate the equation
to a coordinate system that eliminates the x or y terms. Once the curve is identified,
translate the standard curve back to the original position.

• If there is an xy cross-product term in the quadratic equation (B 6= 0), eliminate it by
applying an appropriate rotation. After the standard curve is identified, rotate it back
to the original position.

The following subsections describe each of these reduction steps in more detail.

175

176 Chapter 12 General Conics

Linear Polynomial

Form: Q ≡ Dx + Ey + F = 0, D and E not both zero.

If the first three coefficients of Q are equal to zero, and coefficients D and E are not both
zero, then the equation Q represents a single straight line Dx + Ey + F = 0.

Example. Show that Descarta2D will detect a quadratic equation as a line if the
first three coefficients are zero. Use the line x − 2y + 4 = 0 as an example.

Solution. Use the Descarta2D function Loci2D[quad].

In[1]: Clear@x, yD;
Loci2D@Quadratic2D@x − 2 y + 4 == 0, 8x, y<DD

Out[1] 8Line2D@1, −2, 4D<

Pair of Vertical Lines

Form: Q ≡ Ax2 + Dx + F = 0, A 6= 0.

If Q takes the form Ax2 + Dx + F = 0 and A 6= 0 then Q can be factored into two linear
terms using the quadratic formula. This yields the two equations

x =
−D ±√

D2 − 4AF

2A
.

If the discriminant of this equation, d = D2 − 4AF , is less than zero, then there are no real
points in the locus represented by Q. Otherwise, Q represents a pair of vertical lines whose
equations are

2Ax + (D +
√

d) = 0 and 2Ax + (D −
√

d) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation x2 + x − 6 = 0 represents two vertical lines.

Solution. Use the Descarta2D function Loci2D[quad].

In[2]: Clear@x, yD;
Loci2D@Quadratic2D@x^2 + x − 6 == 0, 8x, y<DD

Out[2] 8Line2D@2, 0, −4D, Line2D@2, 0, 6D<

12.1 Conic from Quadratic Equation 177

Pair of Horizontal Lines

Form: Q ≡ Cy2 + Ey + F = 0, C 6= 0.

If Q takes the form Cy2 +Ey +F = 0 and C 6= 0 then Q can be factored into two linear terms
using the quadratic formula. This yields the two equations

y =
−E ±√

E2 − 4CF

2C
.

If the discriminant of this equation, d = E2 − 4CF , is less than zero, then there are no real
points in the locus represented by Q. Otherwise, Q represents a pair of horizontal lines whose
equations are

2Cy + (E +
√

d) = 0 and 2Cy + (E −
√

d) = 0.

The two lines are coincident if d = 0.

Example. Show that the equation 2y2 − 11y + 12 = 0 represents two horizontal
lines.

Solution. Use the Descarta2D function Loci2D[quad].

In[3]: Clear@x, yD;
Loci2D@Quadratic2D@2 y^2 − 11 y + 12 == 0, 8x, y<DD

Out[3] 8Line2D@0, 4, −16D, Line2D@0, 4, −6D<

Intersecting Lines (or a Single Point)

Form: Q ≡ Ax2 + Cy2 = 0, A 6= 0 and C 6= 0.

If Q consists of x2 and y2 terms only its locus is either a single point or a pair of intersecting
lines. If AC > 0 then the locus is the single point (0,0). If A < 0 and C > 0, then the
equation factors into the two linear terms(√−Ax −

√
Cy
)(√−Ax +

√
Cy
)

= 0.

If A > 0 and C < 0, then the equation factors into the two linear terms given by(√
Ax −√−Cy

)(√
Ax +

√−Cy
)

= 0.

Both of these equations represent a pair of lines that intersect at the origin.

178 Chapter 12 General Conics

Example. Show that the equation 9x2 − 4y2 = 0 represents a pair of intersecting
lines.

Solution. Use the Descarta2D function Loci2D[quad].

In[4]: Clear@x, yD;
Loci2D@Quadratic2D@9 x^2 − 4 y^2 == 0, 8x, y<DD

Out[4] 8Line2D@3, −2, 0D, Line2D@3, 2, 0D<

Circle

Form: Q ≡ Ax2 + Cy2 + F = 0, A = C, A 6= 0, C 6= 0, F 6= 0.

When the coefficients of the x2 and y2 terms of Q are equal and none of the coefficients A, C,
or F are equal to zero, the equation has no locus if F > 0; otherwise, when F < 0, the locus
is a circle centered at the origin with radius

√−F .

Example. Show that the equation 3x2 + 3y2 − 12 = 0 is the equation of a circle.

Solution. Use the Descarta2D function Loci2D[quad].

In[5]: Clear@x, yD;
Loci2D@Quadratic2D@3 x^2 + 3 y^2 − 12 == 0, 8x, y<DD

Out[5] 8Circle2D@80, 0<, 2D<

Parabola (Horizontal Axis)

Form: Q ≡ Cy2 + Dx + Ey + F = 0, C 6= 0 and D 6= 0.

When Q has a y2 term and an x term, and the x2 and xy terms are missing, Q represents
a parabola whose axis is horizontal. The vertex, (h, k), and the focal length, f , may be
determined by completing the square and forming the equation

(y − k)2 = 4f(x − h)

where

h =
E2 − 4CF

4CD
, k = − E

2C
and f = − D

4C
which is clearly a parabola. The parabola will open to the right if f is positive and it will
open to the left if f is negative.

12.1 Conic from Quadratic Equation 179

Example. Find and plot the parabola whose equation is y2 − 8x = 0.

Solution. Use the Descarta2D function Loci2D[quad].

In[6]: Clear@x, yD;
crv = Loci2D@Quadratic2D@y^2 − 8 x == 0, 8x, y<DD

Out[6] 8Parabola2D@80, 0<, 2, 0D<

In[7]: Sketch2D@crv, CurveLength2D −> 60D;

0 5 10 15 20 25
-15

-10

-5

0

5

10

15

Parabola (Vertical Axis)

Form: Q ≡ Ax2 + Dx + Ey + F = 0, A 6= 0 and E 6= 0.

When Q has an x2 term and a y term, and the y2 and xy terms are missing, Q represents a
parabola whose axis is vertical. The vertex, (h, k), and the focal length, f , may be determined
by completing the square and forming the equation

(x − h)2 = 4f(y − k)

where

h = − D

2A
, k =

D2 − 4AF

4AE
, and f = − E

4A

which is clearly a parabola. The parabola will open upward if f is positive and it will open
downward if f is negative.

180 Chapter 12 General Conics

Example. Find the parabola whose equation is 2x2 − 8x + 4y − 1 = 0.

Solution. Use the Descarta2D function Loci2D[quad].

In[8]: Clear@x, yD;
crv = Loci2D@Quadratic2D@2 x^2 − 8 x + 4 y − 1 == 0, 8x, y<DD

Out[8] 9Parabola2DA92, 9
�����
4

=, 1
�����
2
,

3 π
����������
2

E=

Central Conic (Ellipse or Hyperbola)

Form: Q ≡ Ax2 + Cy2 + F = 0, A 6= 0, C 6= 0, F 6= 0, and A 6= C.

If Q has non-zero coefficients on the x2, y2, and constant terms, A 6= C, and all the other
coefficients are zero, then Q can be written in the form

x2(−F
A

) +
y2(−F

C

) = 1.

This equation represents an ellipse, a hyperbola or no real locus depending of the values of
−F/A and −F/C. The real loci (ellipses and hyperbolas) are centered at the origin (0, 0) and
have sizes and orientations as shown in the following table:

Condition Locus a b θ(−F
A

)
< 0 and

(−F
C

)
< 0 no locus - - -(−F

A

)
> 0 and

(−F
C

)
< 0 hyperbola

√
−F

A

√
F
C 0(−F

A

)
< 0 and

(−F
C

)
> 0 hyperbola

√
−F

C

√
F
A

π
2(−F

A

)
>
(−F

C

)
> 0 ellipse

√
−F

A

√
−F

C 0(−F
C

)
>
(−F

A

)
> 0 ellipse

√
−F

A

√
−F

C
π
2

Example. Find and plot the conic curve whose equation is −x2 − 4y2 + 1 = 0.

Solution. Use the Descarta2D function Loci2D[quad].

12.1 Conic from Quadratic Equation 181

In[9]: Clear@x, yD;
crv = Loci2D@Quadratic2D@−x^2 − 4 y^2 + 1 == 0, 8x, y<DD

Out[9] 9Ellipse2DA80, 0<, 1,
1
�����
2
, 0E=

In[10]: Sketch2D@crvD;

-2 -1 0 1 2
-1

-0.5

0

0.5

1

Remove the First-Degree Terms

Form: Q ≡ Ax2 + Cy2 + Dx + Ey + F = 0, A 6= 0, C 6= 0, D or E non-zero.

If both the x2 and y2 terms are present in Q along with at least one of the x or y terms, then
Q can be simplified by introducing a change in variables. Specifically, if the substitutions

x′ = x − D

2A
and y′ = y − E

2C

are made in Q a new equation

Q′ ≡ A′x′2 + C′y′2 + F ′ = 0

will result where

A′ = 4A2C,

C′ = 4AC2 and
F ′ = −CD2 − AE2 + 4ACF. (12.1)

Q′ is now in a form that can be recognized by inspection. The change in variables translates
the origin of the conic. To restore it to its original position we apply the inverse translation
to the standard form of the conic.

Example. Find the conic whose equation is −x2 + 9y2 + 4x − 18y − 4 = 0. Plot
the conic.

182 Chapter 12 General Conics

Solution. Use the Descarta2D function Loci2D[quad].

In[11]: Clear@x, yD;
crv = Loci2D@Quadratic2D@−x^2 + 9 y^2 + 4 x − 18 y − 4 == 0, 8x, y<DD

Out[11] 9Hyperbola2DA82, 1<, 1, 3,
π
�����
2

E=

In[12]: Sketch2D@crvD;

-2 0 2 4 6
-1

0

1

2

3

Eliminate the xy Term

Form: Q ≡ Ax2 + Bxy + Cy2 + Dx + Ey + F = 0, B 6= 0.

All quadratic equations with a non-zero xy term coefficient are standard conics in a rotated
position. It can be shown that rotating such an equation by the angle θ, where

tan (2θ) =
B

C − A
,

will produce a new quadratic equation, Q′, whose x′y′ coefficient B′ will be zero (see explo-
ration elimxy1.nb).

The coefficient of the xy term can also be removed by making the substitutions

x′ = kx + y and y′ = ky − x

where

k =
(C − A)

B
+

√(
C − A

B

)2

+ 1

(see exploration elimxy2.nb). These substitutions are equivalent to a rotation θ where

tan θ =
1
k

and a scaling by the factor

s =
1√

1 + k2
.

12.1 Conic from Quadratic Equation 183

The equation for Q′ resulting from the substitution is given by

A′x′2 + C′y′2 + D′x′ + E′y′ + F ′ = 0

where

A′ = Ak2 − Bk + C,

C′ = Ck2 + Bk + A,

D′ = Dk − E,

E′ = Ek + D and
F ′ = F

as shown in explorations elimxy2.nb and elimxy3.nb. Q′ is then a quadratic equation
without an xy term that can be recognized by the previously presented techniques. A scaling
and rotation is applied to the resulting conic returning it to its original position. This approach
is the one implemented in Descarta2D since no trigonometric functions are involved in the
process, except for the final rotation.

Example. Find the conic curve represented by the equation

−4x2 + 10xy − 4y2 − 12x + 6y − 9 = 0

and plot the curve.

Solution. Use the Descarta2D function Loci2D[quad].

In[13]: Clear@x, yD;
crv = Loci2D@Quadratic2D@−4 x^2 + 10 x∗y − 4 y^2 − 12 x + 6 y − 9 == 0, 8x, y<DD

Out[13] 9Hyperbola2DA81, 2<, 3, 1,
π
�����
4

E=

In[14]: Sketch2D@crvD;

-6 -4 -2 0 2 4 6 8

-4

-2

0

2

4

6

8

184 Chapter 12 General Conics

Table 12.1: Classification of conics.

Degenerate Conic, D = 0 Proper Conic, D 6= 0

K < 0 two intersecting lines hyperbola

J < 0, two parallel lines
K = 0 J = 0, two coincident lines parabola

J > 0, no real locus

ID < 0, circle (a = b, h = 0)
K > 0 single point ID < 0, ellipse

ID > 0, no real locus

12.2 Classification of Conics

We may desire to determine the type of a conic from the general equation without computing
the defining numerical parameters. This can be accomplished by examining the values of a
set of invariant expressions. For simplicity of the invariant expressions we choose to write the
quadratic equation in the form

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0

where the factor 2 is inserted in the xy, x and y terms. For this form of the equation we define

I = a + b,

J = ab + ac + bc − f2 − g2 − h2,

K = ab − h2

and

D =

∣∣∣∣∣∣∣
a h g

h b f

g f c

∣∣∣∣∣∣∣ .
Each of the four expressions is invariant under rotation of the coordinate axes; that is, they
are equal respectively to the corresponding expressions after a rotation is performed. The
invariants are useful in the classification of conics as shown in Table 12.1.

12.3 Center Point of a Conic

The center point of a central conic (a circle, ellipse or hyperbola) can be determined directly
from its equation. The center point, (h, k), of ax2 + bxy + cy2 + dx + ey + f = 0 has a rela-

12.4 Conic from Point, Line and Eccentricity 185

tively simple form given by

h =
2cd − be

b2 − 4ac
and k =

2ae − bd

b2 − 4ac
.

If b2 − 4ac = 0 then the conic is a parabola and has no center.

Example. Find the center point of 5x2 − 6xy + 5y2 − 14x + 2y + 5 = 0.

Solution. The Descarta2D function Point2D[quad] returns the center point of a
central conic.

In[15]: Clear@x, yD;
Point2D@Quadratic2D@5 x^2 − 6 x∗y + 5 y^2 − 14 x + 2 y + 5 == 0, 8x, y<DD

Out[15] Point2D@82, 1<D

12.4 Conic from Point, Line and Eccentricity

Conic curves may be defined as the locus of a point that moves so that the ratio of its distance
from a fixed point and from a fixed line is a constant. The fixed point is called the focus,
the fixed line the directrix and the constant ratio the eccentricity. In previous chapters is has
been shown that if the eccentricity, e, is a positive number less than one, then the conic curve
is an ellipse, if e = 1 a parabola and if e > 1 the curve is a hyperbola.

Consider a focus point F (x1, y1) and a (normalized) directrix line λx + µy − ρ = 0 (where
λ2 + µ2 = 1). The distance, d1, from a point P (x, y) on the locus to the focus F is given by

d1 =
√

(x − x1)2 + (y − y1)2

and the distance, d2, from point P to the directrix line is given by

d2 = ±(λx + µy − ρ).

By definition, the equation of the conic curve is

e =
d1

d2

or √
(x − x1)2 + (y − y1)2 = ±e(λx + µy − ρ).

186 Chapter 12 General Conics

Squaring both sides and rearranging yields

(e2λ2 − 1)x2 + 2e2λµxy + (e2u2 − 1)y2+
2(x1 − e2λρ)x + 2(y1 − e2µρ)y + (e2ρ2 − x2

1 − y2
1) = 0.

This equation is of the form Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 and is, therefore, a conic
curve of the second degree. The equation reveals that if the defining directrix line is parallel
to one of the coordinate axes, then B = 0, since either λ or µ will be zero and the equation
will have no xy term.

Example. Find the quadratic equation of the curve whose focus is the point (2, 1),
directrix is x − 3y + 3 = 0 and eccentricity is 2. Plot the conic curve.

Solution. The Descarta2D function Quadratic2D[point, line, e] returns a qua-
dratic representing the equation of the conic with the given point as a focus, the
line as a directrix and the given eccentricity.

In[16]: q1 = Quadratic2D@pt1 = Point2D@82, 1<D,
ln1 = Line2D@1, −3, 3D, 2D êê Simplify

Out[16] Quadratic2D@−3, −12, 13, 32, −26, −7D

In[17]: Sketch2D@8pt1, ln1, Loci2D@q1D<D;

-1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

12.5 Common Vertex Equation

All of the proper conics (circles, ellipses, hyperbolas and parabolas) can be represented by an
equation involving the vertex of the conic. The expression 2p in the equation of the parabola
y2 = 2px is the length of the chord of the parabola perpendicular to the x-axis through the

12.5 Common Vertex Equation 187

Table 12.2: Parameter of a conic.

Curve Parameter Vertex Equation

parabola 2p y2 = 2px

ellipse 2p = 2b2/a y2 = 2px − (p/a)x2

hyperbola 2p = 2b2/a y2 = 2px + (p/a)x2

focus and represents a measure of the width of the parabola. The expression 2p is called
the parameter of the parabola. This definition can be generalized to the other conics: the
parameter of a conic is defined as the length of the chord perpendicular to the principal axis
through the focus. The length of this chord for each conic is shown in Table 12.2 and is quite
easy to determine from the standard form of each conic.

Consider the equation of an ellipse centered at the origin in standard position

x2

a2
+

y2

b2
= 1.

Transforming the origin to the vertex V (−a, 0) yields the equation

(x − a)2

a2
+

y2

b2
= 1

which can be rearranged into y2 = 2b2x/a−b2x2/a2, or, by using the semi-parameter p = b2/a
of the ellipse, into

y2 = 2px − (p/a)x2.

The relation to the vertex equation of the parabola y2 = 2px is obvious. The term (p/a)x2

is subtracted from the term 2px to obtain the ellipse. This explains the name ellipse: it is
derived from the Greek term elleipsis meaning a deficiency compared with a parabola.

Similarly, the equation of a hyperbola

x2

a2
− y2

b2
= 1

referred to by its vertex can be shown to be

y2 = 2px + (p/a)x2

where p = b2/a is the semi-parameter of the hyperbola. Compared with the parabola y2 = 2px,
there is a term (p/a)x2 in excess of the term 2px. This explains the name hyperbola from the
Greek hyperbole meaning the excess.

By introducing the eccentricity e of the conic, all of the vertex equations can be represented
by the common vertex equation

(y − k)2 = 2p(x − h) − (1 − e2)(x − h)2

188 Chapter 12 General Conics

where (h, k) is the vertex point of the conic, 2p is the parameter of the conic and e is the
eccentricity. The vertex equation also includes the case of a circle by using e = 0 as the
eccentricity.

Example. Plot the four curves represented by the vertex equation

y2 = 2(x − 1) − (1 − e2)(x − 1)2

for the eccentricities e ={0, 3/4, 1, 3/2}.

Solution. The Descarta2D function Loci2D[point, len, e, θ] constructs a conic
(circle, ellipse, hyperbola or parabola) from the vertex point, focal chord length,
eccentricity and rotation angle.

In[18]: con1 = Map@Loci2D@Point2D@81, 0<D, 1, #, 0D&, 80, 3ê4, 1, 3ê2<D

Out[18] 99Circle2DA9 3
�����
2
, 0=, 1

�����
2

E=, 9Ellipse2DA9 15
���������
7

, 0=, 8
�����
7
,

2
�����������è!!!7

, 0E=,

9Parabola2DA81, 0<, 1
�����
4
, 0E=, 9Hyperbola2DA9 3

�����
5
, 0=, 2

�����
5
,

1
�����������è!!!5

, 0E==

In[19]: Sketch2D@con1, PlotRange −> 881ê2, 5<, 8−2, 2<<D;

1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Descarta2D Hint. The Descarta2D function Quadratic2D[point, len, e, θ] re-
turns a quadratic given the vertex point, focal chord length, eccentricity and
rotation angle.

12.6 Conic Intersections 189

12.6 Conic Intersections

Intersecting two curves is most easily accomplished if we can obtain parametric equations
for one of them and an implicit equation for the other. Specifically, suppose that the first
curve has parametric equations x = x(t) and y = y(t) and the second curve has an implicit
equation f(x, y) = 0. By substitution these two curves intersect at values of t satisfying
f (x(t), y(t)) = 0. Once the values for t are known they can be substituted into the parametric
equations to find the (x, y) coordinates of the intersection points.

As a specific application of this technique, suppose we wish to find the intersection points
of a line px + qy + r = 0 and a conic curve ax2 + bxy + cy2 + dx + ey + f = 0. We can take
either x or y as the parameter of the equation px + qy + r = 0; suppose we select x (assuming
q 6= 0), yielding the parametric equations

x = x and y = −px + r

q
.

Substituting these values into the equation for the conic curve yields a quadratic equation in
the variable x given by

ax2 + bx

(
−px + r

q

)
+ c

(
−px + r

q

)2

+ dx + e

(
−px + r

q

)
+ f = 0

which is easy to solve using the quadratic formula. Once the two values for x are known, the
corresponding values for y can be determined using the parametric equations of the line. So,
in the general case, a line and a conic will intersect in two points, the points being real and
distinct, real and coincident (the line being tangent to the conic) or imaginary (the line does
not intersect the conic).

Now consider the case of two intersecting conic curves whose equations are given by

a1x
2 + b1xy + c1y

2 + d1x + e1y + f1 = 0
a2x

2 + b2xy + c2y
2 + d2x + e2y + f2 = 0.

Depending on the values of the coefficients it may or may not be easy to express one of the
equations with a pair of parametric equations; therefore, we look for alternative techniques
for finding the points of intersection. The brute force approach to the problem is to simply
regard it as a problem of solving two non-linear equations in two unknowns. Mathematica
can solve such systems of equations both numerically and symbolically, and this is, in fact,
the method implemented in Descarta2D.

Alternatively, the method of pencils can be used. Suppose we have two curves f(x, y) and
g(x, y). For any given value of λ, we can form the equation f(x, y) + λ g(x, y) = 0 which
obviously passes through all the points of intersection of the original two curves. As λ varies,
an entire family of curves, called a pencil, will be produced. By selecting an appropriate value
for λ we can hope to produce an equation f(x, y) + λ g(x, y) = 0 that is particularly simple.
We can then intersect the simpler curve with one of the original curves. This approach works
well for conic curves because there always exists a value for λ such that f(x, y)+λ g(x, y) = 0

190 Chapter 12 General Conics

represents two straight lines. Intersecting these two lines with either of the original conics
produces the four intersection points (which may be real and distinct, real and coincident
or imaginary). So there may be up to four points of intersection between two conic curves.
Since there exist three pairs of lines passing through four points, there are three values for λ
that represent two lines in the equation of the pencil. Finding the three values for λ involves
solving a cubic equation, which appears to be easier than solving two non-linear equations
in two unknowns. (Since solving two non-linear equations in two unknowns is equivalent to
solving a fourth-degree equation, and solving a fourth-degree equation reduces to solving a
cubic equation, the two techniques are mathematically similar in complexity.)

Example. Find the points of intersection of the line x − 2y + 2 = 0 with (a) the
circle x2 + y2 = 4 and (b) the ellipse x2/9 + y2 = 1.

Solution. The Descarta2D function Points2D[curve, curve] returns a list of
points that are the intersection of the two curves.

In[20]: l1 = Line2D@1, −2, 2D;
c1 = Circle2D@80, 0<, 2D;
e1 = Ellipse2D@80, 0<, 3, 1, 0D;
pts = 8Points2D@l1, e1D, Points2D@c1, e1D< êê N

Out[20] 88Point2D@8−2.76923, −0.384615<D, Point2D@80., 1.<D<,
8Point2D@8−1.83712, −0.790569<D, Point2D@8−1.83712, 0.790569<D,
Point2D@81.83712, −0.790569<D, Point2D@81.83712, 0.790569<D<<

In[21]: Sketch2D@8l1, c1, e1, pts<D;

-4 -2 0 2 4
-2

-1

0

1

2

3

12.7 Explorations

Eliminate Cross-Term by Rotation. .elimxy1.nb
Show that rotating a quadratic ax2 + bxy + cy2 + dx+ ey + f = 0 through an angle θ given

by

tan(2θ) =
b

c − a

12.7 Explorations 191

will cause the xy term to vanish.
—–
Eliminate Cross-Term by Change in Variables. elimxy2.nb

Show that applying the change in variables x′ = kx + y and y′ = ky − x, where

k =
(c − a)

b
+

√(
c − a

b

)2

+ 1,

to the equation ax2 + bxy + cy2 + dx + ey + f = 0 will cause the xy term to vanish and a new
quadratic with the following coefficients will be formed:

a′ = ak2 − bk + c,

b′ = 0,

c′ = ck2 + bk + a,

d′ = dk − e,

e′ = ek + d and
f ′ = f.

—–
Eliminate Cross-Term by Change in Variables. elimxy3.nb

Show that applying the change in variables x′ = kx + y and y′ = ky − x, where

k =
(c − a)

b
+

√(
c − a

b

)2

+ 1,

to the equation ax2 + bxy + cy2 + dx + ey + f = 0 is equivalent to rotating the quadratic by
an angle θ given by

tan θ =
1
k

and scaling the quadratic by a scale factor

s =
1√

1 + k2
.

—–
Eliminate Linear Terms. .elimlin.nb

Show that applying the change in variables

x′ = x − d

2a
and y′ = y − e

2c

192 Chapter 12 General Conics

to the quadratic equation ax2 + cy2 + dx + ey + f = 0 yields the quadratic

ax′2 + cy′2 − d2

4a
− e2

4c
+ f = 0

whose linear terms have vanished.
—–
Center of a Quadratic. center.nb

Show that applying the change in variables

x = x′ +
2cd − be

b2 − 4ac
and y = y′ +

2ae − bd

b2 − 4ac

to the quadratic ax2 + bxy + cy2 + dx+ ey + f = 0 causes the linear terms to vanish, implying
that the center of the conic is

h =
2cd − be

b2 − 4ac
, k =

2ae − bd

b2 − 4ac
.

—–
Polar Equation of a Conic . polarcon.nb

x

y D

r

r q

F

P

Let the focus F of a conic be at the pole of a polar coordinate system and the directrix D be
perpendicular to the polar axis at a distance ρ to the left of the pole as shown in the figure.
Show that the polar equation of the conic is

r =
eρ

1 − e cos θ

where e is the eccentricity of the conic.
—–
Parameterization of a Quadratic . pquad.nb

Show that the quadratic Q ≡ ax2 + bxy+ cy2 +dx+ey = 0, that passes through the origin,
can be parameterized by the equations

x(t) = − d + et

a + t(b + ct)
and y(t) = − t(d + et)

a + t(b + ct)

where −∞ < t < +∞.
—–

Chapter 13

Conic Arcs

In previous chapters we introduced line segments and circular arcs which are pieces of more
complete curves. In this chapter we introduce a conic arc which is a piece of a conic curve.
As with circular arcs, conic arcs are useful for constructing smoothly connected sequences of
curves as well as pleasing aesthetic shapes.

13.1 Definition of a Conic Arc

Let points P0(x0, y0) and P1(x1, y1) be the start and end points, respectively, of a segment of
a conic curve, Q, and let PA(xA, yA) be the point of intersection, or apex, of the two tangent
lines to the curve at P0 and P1 as shown in Figure 13.1. Furthermore, let h equal the maximum
height of the segment measured from the chord P0P1 and k be the distance from PA to the
chord P0P1. The points P0, P1, PA and the ratio ρ, given by ρ = h/k, define a conic arc. The
ratio ρ is called the projective discriminant of the conic arc, and the point at the maximum
height on the curve is called the shoulder point. The points P0, P1 and PA are called control
points of the conic arc.

P0 P1

PA

k

h

r =
h
ÄÄÄÄÄÄÄ
k

Figure 13.1: Definition of a conic arc.

193

194 Chapter 13 Conic Arcs

Example. Plot the conic arc with start and end points (−2, 1) and (3, 0), respec-
tively, apex point (1, 2) and projective discriminant ρ = 0.45.

Solution. Descarta2D represents a conic arc as

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ]

where (x0, y0) and (x1, y1) are the coordinates of the start and end points, respec-
tively, (xA, yA) is the apex point and ρ is the projective discriminant.

In[1]: Sketch2D@8c1 = ConicArc2D@8−2, 1<, 81, 2<, 83, 0<, 0.45D<,
PlotRange −> 88−3, 3<, 8−1, 2<<D;

-2 -1 0 1 2 3 4
-1

-0.5
0

0.5
1

1.5
2

There are several functions provided by Descarta2D to query conic arcs. The func-
tion Rho2D[cnarc] returns the ρ value of the conic arc. Point2D[cnarc, Apex2D]
returns the apex control point of a conic arc. The coordinates of points on a conic
arc at a parameter value t are returned by the function cnarc[t], t = 0 returns the
start point coordinates, t = 1 the end point coordinates and t = 1/2 the shoulder
point coordinates.

In[2]: 8Rho2D@c1D,
Point2D@c1, Apex2DD,
Map@c1@#D&, 80, 1ê2, 1<D<

Out[2] 80.45, Point2D@81, 2<D, 88−2., 1.<, 80.725, 1.175<, 83., 0<<<

13.2 Equation of a Conic Arc

The curve underlying the conic arc is clearly a conic curve since there are five conditions
imposed on the curve (two points, two tangents and the projective discriminant, ρ). The
projective discriminant, ρ, can be interpreted as defining a third line tangent to the curve,

13.2 Equation of a Conic Arc 195

parallel to the line P0P1 at a distance h from P0P1, where h is given by h = ρk and k is the
distance from PA to line P0P1.

In a subsequent chapter we will describe a general procedure for finding the quadratic
equation of a conic constrained by two points and three tangent lines, and we will show that
when the two points are on two of the tangent lines, there is only one quadratic satisfying the
conditions. Specifically, the equation is given by

αβ = k(1 − α − β)2

where,

k =
(1 − ρ)2

4ρ2

α =
(y − yA)(x1 − xA) − (x − xA)(y1 − yA)

(y0 − yA)(x1 − xA) − (x0 − xA)(y1 − yA)

β =
(y − yA)(x0 − xA) − (x − xA)(y0 − yA)

(y1 − yA)(x0 − xA) − (x1 − xA)(y0 − yA)
.

Example. Find the quadratic associated with the conic arc with start and end
points (0, 0) and (3, 0), respectively, apex point (1, 2) and projective discriminant
ρ = 1/4. Find the conic curve associated with the conic arc.

Solution. The function Quadratic2D[cnarc] returns the quadratic associated
with a conic arc. The function Loci2D[cnarc] returns a list containing the conic
curve associated with a conic arc.
In[3]: ca1 = ConicArc2D@80, 0<, 81, 2<, 83, 0<, 1ê4D;

8q1 = Quadratic2D@ca1D êê Simplify,

c1 = Loci2D@ca1D êê N<

Out[3] 8Quadratic2D@−16, −8, −73, 48, −24, 0D,
8Ellipse2D@81.5625, −0.25<, 1.60506, 0.743424, 3.07187D<<

In[4]: Map@Sketch2D@8#<, PlotRange −> 88−1, 4<, 8−2, 1<<D&,
8ca1, c1<D;

0 1 2 3 4
-2

-1.5
-1

-0.5
0

0.5
1

0 1 2 3 4
-2

-1.5
-1

-0.5
0

0.5
1

196 Chapter 13 Conic Arcs

13.3 Projective Discriminant

In this section we will examine the significance of the value of the projective discriminant, ρ.
By definition, ρ may take on values in the range

0 < ρ < 1.

Consider the conic arc, S, with start and end points (0, 0) and (1, 0), respectively, apex
point PA(xA, yA) and projective discriminant ρ. Clearly, any arbitrary conic arc can be
transformed to coincide with S by applying a proper sequence of translations, rotations and
scaling transformations. Such transformations do not change the type of conic curve associated
with the conic arc. Using Mathematica we can find the quadratic equation underlying S as
shown by the following commands.

In[5]: Clear@xA, yA, pD;
S = ConicArc2D@80, 0<, 8xA, yA<, 81, 0<, pD;
Q = Quadratic2D@SD êê Simplify

Out[5] Quadratic2D@−4 p2 yA2, 4 p2 H−1 + 2 xAL yA, −1 + 2 p − p2 H1 − 2 xAL2, 4 p2 yA2,

−4 p2 xA yA, 0D

As has already been shown in a previous chapter, the specific conic type of the quadratic
equation

ax2 + bxy + cy2 + dx + ey + f = 0

is determined by the discriminant, D = b2 − 4ac. For an ellipse D < 0, for a parabola D = 0,
and for a hyperbola D > 0. For the quadratic, Q, representing the conic arc S defined above,
D = 16ρ2(−1 + 2ρ)y2

1 . It is clear by inspection, that if 0 < ρ < 1/2 the conic is an ellipse; if
ρ = 1/2 the conic is a parabola; and for 1/2 < ρ < 1 the conic is a hyperbola.

13.4 Conic Characteristics

In Section 13.2 we showed that the quadratic equation associated with a conic arc is given by

αβ = k(1 − α − β)2

where,

k =
(1 − ρ)2

4ρ2

α =
(y − yA)(x1 − xA) − (x − xA)(y1 − yA)

(y0 − yA)(x1 − xA) − (x0 − xA)(y1 − yA)

β =
(y − yA)(x0 − xA) − (x − xA)(y0 − yA)

(y1 − yA)(x0 − xA) − (x1 − xA)(y0 − yA)
.

Therefore, since we know its quadratic equation, all the geometric characteristics of the conic
curve associated with the conic arc can be expressed in terms of the defining elements of the

13.4 Conic Characteristics 197

conic arc, P0(x0, y0), PA(xA, yA), P1(x1, y1) and ρ. Of particular interest is the formula for
the center of a central conic (circle, ellipse or hyperbola), since this formula is used in the next
section to convert a conic into a conic arc. The center point (H, K) is given by

H =
−ρ2xA + (ρ − 1)2xM

1 − 2ρ
(13.1)

K =
−ρ2yA + (ρ − 1)2yM

1 − 2ρ

where PM (xM , yM) is the midpoint of the conic arc’s chord and has coordinates

xM = (x0 + x1)/2 and yM = (y0 + y1)/2.

This formula is derived in the exploration cacenter.nb.

Example. Find the center of the conic arc with control points (0, 0), (2, 1) and
(3, 0) and ρ = 1/4.

Solution. The Descarta2D function Point2D[cnarc] returns the center point of a
conic arc (the underlying conic cannot be a parabola).

In[6]: ca1 = ConicArc2D@80, 0<, 82, 1<, 83, 0<, 1ê4D;
Point2D@ca1D

Out[6] Point2DA9 23
���������
16

, −
1
�����
8

=E

Let Q be a conic and L be a line that intersects Q in two distinct points. We wish to
determine the conic arc, S cut by L through Q. Clearly, the intersection points of the line L
with Q are the start and end points of S. Also, the line passing through the intersection points
is the polar (line) of the apex point, PA, of S. To complete the definition of the conic arc, we
need to determine ρ. If the conic is a parabola, then ρ = 1/2; otherwise, we can assume that
the conic is a central conic. Assume the center of the conic is (h, k). Then, using the formula
for the x-coordinate of the center of a conic arc given in Equation (13.1), we solve to find the
value of ρ to be

ρ =
1

1 ±√(h − xA)/(h − xM)

where PM (xM , yM) is the midpoint of P0P1. We choose the plus sign in the denominator
because ρ has to be less than one and the radical produces a positive number. In certain
configurations, this formula will be indeterminate and we instead use the y-coordinate of the
center of the conic arc yielding

ρ =
1

1 ±√(k − yA)/(k − yM)

again choosing the plus sign in the denominator.

198 Chapter 13 Conic Arcs

Example. Find the conic arc cut by the line 2x − 4y = 0 through the ellipse

(x − 1)2

9
+

(y + 1)2

4
= 1.

Plot the original curves and the conic arc separately.

Solution. The Descarta2D function ConicArc2D[line, conic] returns a conic arc
defined by a line cutting a conic curve.

In[7]: l1 = Line2D@2, −4, 0D;
e1 = Ellipse2D@81, −1<, 3, 2, 0D;
ca1 = ConicArc2D@l1, e1D

Out[7] ConicArc2DA8−2, −1<, 9−2,
5
�����
3

=, 9 46
���������
25

,
23
���������
25

=, 3
�����
8

E

In[8]: Map@Sketch2D@8#<, PlotRange −> 88−5, 5<, 8−3, 3<<D&,
88l1, e1<, ca1<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

13.5 Parametric Equations

The conic arc defined in this chapter is a special case of a more general curve called a rational
quadratic Bézier. The parametric equations of this simplified formulation are given by

x =
b0(1 − ρ)x0 + b1ρxA + b2(1 − ρ)x1

b0(1 − ρ) + b1ρ + b2(1 − ρ)

y =
b0(1 − ρ)y0 + b1ρyA + b2(1 − ρ)y1

b0(1 − ρ) + b1ρ + b2(1 − ρ)

13.6 Explorations 199

where ρ = h/k is the projective discriminant and

b0 = (1 − t)2

b1 = 2t(1 − t)
b2 = t2.

It is clear from direct substitution that P0 is the point whose coordinates correspond to t = 0,
and P1 corresponds to t = 1. The point where the curve intersects the line through the
midpoint of P0P1 and PA is called the shoulder point of the conic arc. The shoulder point
corresponds to the parameter value t = 1/2.

Example. Plot nine points at equal parameter values on the conic arc with (−2, 1)
and (1, 2) as start and end point, (0, 3) as the apex point and ρ = 0.45.

Solution. The Descarta2D function cnarc[t] returns the coordinates of a point
on a conic arc at a parameter t.

In[9]: ca1 = ConicArc2D@8−2, 1<, 80, 3<, 81, 2<, 0.45D;
Sketch2D@8ca1, Map@Point2D@ca1@#DD&, Range@0, 8D ê8D<D;

-2 -1.5 -1 -0.5 0 0.5 1
1

1.2
1.4
1.6
1.8
2

2.2

13.6 Explorations

Circular Conic Arc. .cacircle.nb
Show that the conic arc with control points (0, 0), (a, b) and (2a, 0) will be a circular arc if

ρ =
a(−a +

√
a2 + b2)

b2
.

—–

200 Chapter 13 Conic Arcs

Center of a Conic Arc. cacenter.nb
Show that the center point (H, K) of a conic arc whose control points are P0(x0, y0),

PA(xA, yA) and P1(x1, y1) and projective discriminant ρ is

H =
−ρ2xA + (ρ − 1)2xM

1 − 2ρ

K =
−ρ2yA + (ρ − 1)2yM

1 − 2ρ

where PM (xM , yM) is the midpoint of the conic arc’s chord and has coordinates

xM =
x0 + x1

2
and yM =

y0 + y1

2
.

—–
Tangent Line at Shoulder Point. catnln.nb

Let P be the point at parameter value t = 1/2 on a unit conic arc, C, whose control points
are P0(0, 0), PA(a, b) and P1(1, 0) and whose projective discriminant is ρ. Let L be the line
tangent to C at t. Show that L is parallel to the chord P0P1 at a distance bρ from P0P1. The
point P is called the shoulder point of the conic arc.
—–
Coordinates of Shoulder Point. shoulder.nb

Show that the coordinates of the shoulder point of a conic arc with control points P0(x0, y0),
PA(xA, yA) and P1(x1, y1) and projective discriminant ρ are given by

(xM + ρ(xA − xM), yM + ρ(yA − yM))

where PM (xM , yM) is the midpoint of the conic arc’s chord and has coordinates

xM =
x0 + x1

2
and yM =

y0 + y1

2
.

—–
Shoulder Point on Median. .camedian.nb

Let C be a conic arc with control points P0(x0, y0), PA(xA, yA) and P1(x1, y1) and projective
discriminant ρ. Let P be the point on the median PAPM associated with vertex PA of triangle
P0PAP1 such that |PPM |/|PAPM | = ρ (PM (xM , yM) is the midpoint of P0P1). Show that P
is coincident with the shoulder point of C, having coordinates

(xM + ρ(xA − xM), yM + ρ(yA − yM)) .

—–
Parametric Equations of a Conic Arc. .caparam.nb

Show that the parametric equations of a unit conic arc represent the same implicit quadratic
equation as the one underlying the conic as derived from the control points P0(0, 0), PA(a, b)
and P1(1, 0) and ρ.
—–

Chapter 14

Medial Curves

A medial curve is the locus of points equidistant from two loci of points. In this chapter we
will derive the equations of medial curves that are equidistant from two points, a point and a
curve (line or circle) and two curves (lines or circles).

14.1 Point–Point

Consider two distinct points P1(x1, y1) and P2(x2, y2) and a point P (x, y). The distance, d1,
from P to P1 is given by

d1 =
√

(x − x1)2 + (y − y1)2.

Likewise, the distance, d2, from P to P2 is given by

d2 =
√

(x − x2)2 + (y − y2)2.

If point P is on the medial curve defined by P1 and P2, then d1 = d2 and√
(x − x1)2 + (y − y1)2 =

√
(x − x2)2 + (y − y2)2.

Squaring both sides of this equation and rearranging yields

2(x2 − x1)x + 2(y2 − y1)y + (x2
1 + y2

1) − (x2
2 + y2

2) = 0

which is easily recognized in this form as the general equation of a line. The medial line is
the perpendicular bisector of the line segment joining P1 and P2. The derivation is provided
in the exploration mdptpt.nb.

Example. Find the equation of the medial line determined by the two points
(1, 2) and (−1,−1). Plot the points and the medial line.

201

202 Chapter 14 Medial Curves

Solution. The function MedialLoci2D[{point,point}] returns a list of one line
that is the medial line determined by the two points.

In[1]: l12 = MedialLoci2D@8p1 = Point2D@81, 2<D,
p2 = Point2D@8−1, −1<D<D

Out[1] 8Line2D@−4, −6, 3D<

In[2]: Sketch2D@8p1, p2, l12<D;

-4 -2 0 2 4

-2

-1

0

1

2

3

Descarta2D Hint. The function Point2D[point, point, Perpendicular2D] re-
turns the perpendicular bisector of the line segment joining two points. This
function may also be used.

14.2 Point–Line

Consider the point P1(x1, y1) and the line L2 ≡ A2x + B2y + C2 = 0, where A2
2 + B2

2 = 1 (to
simplify the derivation, the coefficients of the line are normalized because distance is involved).
The distance, d1, from a point P (x, y) to P1 is given by

d1 =
√

(x − x1)2 + (y − y1)2.

The distance, d2, from a point P (x, y) to the normalized line L2 is given by

d2 = ±(A2x + B2y + C2).

Since P is the locus of points on the medial curve, d1 = d2, and by squaring and rearranging
we obtain the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

14.2 Point–Line 203

where

A = B2
2 ,

B = −2A2B2,

C = A2
2,

D = −2(x1 + A2C2),
E = −2(y1 + B2C2) and
F = x2

1 + y2
1 − C2

2 .

These equations are derived in the exploration mdptln.nb.
The definition of a parabola is the locus of points equidistant from a point and a line, so

it is obvious that in the general case the medial curve of a point and a line will be a parabola.

Example. Find the medial curve of the point (−1,−1) and −x − y + 1 = 0 and
plot.

Solution. The function MedialLoci2D[{point, line}] returns a list of one curve
that is the medial curve of the point and the line.

In[3]: crv1 = MedialLoci2D@8p1 = Point2D@8−1, −1<D,
l2 = Line2D@−1, −1, 1D<D

Out[3] 9Parabola2DA9−
1
�����
4
, −

1
�����
4

=, 3
����������������
2 è!!!2

,
5 π
����������
4

E=

In[4]: Sketch2D@8p1, l2, crv1<D;

-4 -2 0 2 4

-4

-2

0

2

4

If the point P1 is on line L2, then the medial curve will be a line perpendicular to the defining
line.

204 Chapter 14 Medial Curves

Example. Find the medial curve of the point (1, 0) and the line −x − y + 1 = 0
and plot. Notice that the point is on the line.

Solution. The same function, MedialLoci2D[{point, line}], introduced in the
previous example will return a list containing the medial curve, which is a line in
this case.

In[5]: crv1 = MedialLoci2D@8p1 = Point2D@81, 0<D,
l2 = Line2D@−1, −1, 1D<D

Out[5] 9Line2DA2 è!!!
2 , −2

è!!!
2 , −2

è!!!
2 E=

In[6]: Sketch2D@8p1, l2, crv1<D;

-3-2-1 0 1 2 3 4
-4

-2

0

2

4

14.3 Point–Circle

Consider a point P1(x1, y1) and a circle C2 with center (h2, k2) and radius r2. The distance,
d1, from a point P (x, y) to P1 is given by

d1 =
√

(x − x1)2 + (y − y1)2.

The distance, d2, from a point P (x, y) to the circle C2 is given by

d2 =
√

(x − h2)2 + (y − k2)2 − r2

when P is outside of circle C2. When P is inside C2 the distance, d2, is given by

d2 = r2 −
√

(x − h2)2 + (y − k2)2.

14.3 Point–Circle 205

If P is the locus of points equidistant from P1 and C2, then d1 = d2. Squaring both sides
of this equation eliminates the distinction between points P inside the circle and outside the
circle. Rearranging the resulting equation yields the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = 4((x1 − h2)2 − r2
2),

B = 8(x1 − h2)(y1 − k2),
C = 4((y1 − k2)2 − r2

2),
D = 4(R(x1 − h2) + 2r2

2x1),
E = 4(R(y1 − k2) + 2r2

2y1),
F = R2 − 4r2

2(x
2
1 + y2

1) and
R = (h2

2 + k2
2) − (x2

1 + y2
1) − r2

2 .

This derivation is included in the exploration mdptcir.nb.
If the point P1 is outside circle C2, the medial curve will be a hyperbola. If P1 is inside

C2, the medial curve will be an ellipse. In the special case that P1 is on C2, the medial curve
will be a line containing the center point of C2. If P1 is coincident with the center of C2, then
the medial curve will be a circle centered at P1 with a radius of r2/2.

Example. Find the medial curves of four points (−8, 1), (−4, 1), (−2, 1) and (0, 1)
with the circle x2 + (y − 1)2 = 4. Plot each of the curves separately.

Solution. The Descarta2D function MedialLoci2D[{point, circle}] returns a list
of one object equidistant from the point and the circle.

In[7]: pts = 8Point2D@8−8, 1<D, Point2D@8−4, 1<D,
Point2D@8−2, 1<D, Point2D@80, 1<D<;

c2 = Circle2D@80, 1<, 4D;
crvs = Map@MedialLoci2D@8#, c2<D&, ptsD

Out[7] 99Hyperbola2DA8−4, 1<, 2, 2
è!!!
3 , 0E=, 8Line2D@0, −128, 128D<,

9Ellipse2DA8−1, 1<, 2,
è!!!
3 , 0E=, 8Circle2D@80, 1<, 2D<=

In[8]: Map@Sketch2D@8pts@@#DD, c2, crvs@@#DD<D&, 81, 2, 3, 4<D;

206 Chapter 14 Medial Curves

-8 -6 -4 -2 0 2 4
-4

-2

0

2

4

6

-4 -2 0 2 4

-2

0

2

4

-4 -2 0 2 4

-2

0

2

4

-4 -2 0 2 4

-2

0

2

4

14.4 Line–Line

The locus of points equidistant from two lines

L1 ≡ A1x + B1y + C1 = 0 and
L2 ≡ A2x + B2y + C2 = 0

are the two angle bisector lines. The equations of these two lines are

A1x + B1y + C1√
A2

1 + B2
1

= ±A2x + B2y + C2√
A2

2 + B2
2

as shown in the exploration mdlnln.nb.

Example. Find the medial lines for 3x − 4y + 1 = 0 and 2x + 2y − 3 = 0 and
plot.

14.5 Line–Circle 207

Solution. The function MedialLoci2D[{line, line}] returns a list of lines that
are the medial lines of the two given lines. If the lines are parallel, then the list
will contain one line; otherwise, it will contain two lines.

In[9]: lns = MedialLoci2D@8l1 = Line2D@3, −4, 1D,
l2 = Line2D@2, 2, −3D<D

Out[9] 9Line2DA−10 + 6
è!!!
2 , −10 − 8

è!!!
2 , 15 + 2

è!!!
2 E,

Line2DA10 + 6
è!!!
2 , 10 − 8

è!!!
2 , −15 + 2

è!!!
2 E=

In[10]: Sketch2D@8l1, l2, lns<D;

-4 -2 0 2 4

-4

-2

0

2

4

14.5 Line–Circle

Consider a line L1 ≡ A1x + B1y + C1 = 0, where A2
1 + B2

1 = 1 (to simplify the derivation,
the coefficients of the line are normalized because distance is involved), and a circle C2 with
center at (h2, k2) and radius r2. The distance, d1, from a point P (x, y) to line L1 is given by

d1 = ±(A1x + B1y + C1).

The distance, d2, from point P (x, y) to circle C2 is given by

d2 =
√

(x − h2)2 + (y − k2)2 − r2

when P is outside of circle C2. When P is inside C2 the distance, d2, is given by

d2 = −
√

(x − h2)2 + (y − k2)2 + r2.

We introduce a sign constant, s, which takes on the values ±1, so that we can combine the
two equations for d2 yielding

d2 = s
(√

(x − h2)2 + (y − k2)2 − r2

)
.

208 Chapter 14 Medial Curves

If P is the locus of points equidistant from P1 and C2, then d1 = d2. Rearranging the resulting
equation yields the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = B2
1 ,

B = −2A1B1,

C = A2
1,

D = −2(h2 + A1(C1 + sr2)),
E = −2(k2 + B1(C1 + sr2)) and
F = h2

2 + k2
2 − r2

2 − C1(C1 + 2sr2).

This derivation is included in mdlncir.nb. If the line intersects the circle in two distinct
points, then the medial curves will be two parabolas, each passing through the points of
intersection of the line and the circle.

Example. Find the curves that are equidistant from the line y = 1 and the circle
x2 + (y − 1)2 = 4. Plot the curves.

Solution. The function MedialLoci2D[{line,circle}] returns a list of curves
equidistant from a line and a circle.

In[11]: l1 = Line2D@0, 1, −1D;
c2 = Circle2D@80, 1<, 2D;
crvs = MedialLoci2D@8l1, c2<D

Out[11] 9Parabola2DA80, 0<, 1,
π
�����
2

E, Parabola2DA80, 2<, 1,
3 π
����������
2

E=

In[12]: Sketch2D@8l1, c2, crvs<D;

-4 -2 0 2 4

-1

0

1

2

3

14.5 Line–Circle 209

If the line is tangent to the circle then one of the medial curves will be a parabola, and
the other will be a line passing through the tangency point and the center point of the circle.
Strictly speaking, not all of the points on the line are equidistant from the line and the circle,
unless we consider the distance to be measured both from the closest point on the circle and
the farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 3 and the circle
x2 + (y − 1)2 = 4 and plot. Notice that the line is tangent to the circle.

Solution. Use the function MedialLoci2D[{line,circle}] introduced in the pre-
vious example.

In[13]: l1 = Line2D@0, 1, −3D;
c2 = Circle2D@80, 1<, 2D;
crvs = MedialLoci2D@8l1, c2<D

Out[13] 9Line2D@2, 0, 0D, Parabola2DA80, 3<, 2,
3 π
����������
2

E=

In[14]: Sketch2D@8l1, c2, crvs<D;

-4 -2 0 2 4

0

1

2

3

4

5

If the line and the circle do not intersect, then the two medial curves will be parabolas.
Strictly speaking, only one of these parabolas is equidistant from the circle and the line, unless
we consider the distance to be measured both from the closest point on the circle and the
farthest point on the circle.

Example. Find the curves that are equidistant from the line y = 5 and the circle
x2 + (y − 1)2 = 4. Plot the curves.

Solution. Use the function MedialLoci2D[{line,circle}] as described in the
previous examples.

210 Chapter 14 Medial Curves

In[15]: l1 = Line2D@0, 1, −5D;
c2 = Circle2D@80, 1<, 2D;
crvs = MedialLoci2D@8l1, c2<D

Out[15] 9Parabola2DA80, 2<, 1,
3 π
����������
2

E, Parabola2DA80, 4<, 3,
3 π
����������
2

E=

In[16]: Sketch2D@8l1, c2, crvs<D;

-4 -2 0 2 4
-1
0
1
2
3
4
5

14.6 Circle–Circle

Consider two distinct circles

C1 ≡ (x − h1)2 + (y − k1)2 = r2
1 and C2 ≡ (x − h2)2 + (y − k2)2 = r2

2 .

Using the same distance equating techniques outlined in previous sections, and introducing a
sign constant s = ±1, we can obtain the quadratic equation of the curves equidistant from
the two circles

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = 4((h1 − h2)2 − R),
B = 8(h1 − h2)(k1 − k2),
C = 4((k1 − k2)2 − R),
D = 4(h1(−D1 + D2 + R) + h2(D1 − D2 + R)),
E = 4(k1(−D1 + D2 + R) + k2(D1 − D2 + R)) and
F = (D1 − D2)2 − 2(D1 + D2)R + R2

and

R = (r1 − sr2)2,
D1 = h2

1 + k2
1 ,

D2 = h2
2 + k2

2 and
s = ±1.

14.6 Circle–Circle 211

Table 14.1: Medial curves for two circles.

Configuration, C1/C2 r1 6= r2 r1 = r2

externally disjoint two hyperbolas line/hyperbola

externally tangent line/ellipse line/line

intersecting (2 points) ellipse/hyperbola line/ellipse

internally tangent line/ellipse (impossible)

internally disjoint ellipse/ellipse (impossible)

concentric circle/circle (all points)

This derivation is included in the exploration mdcircir.nb. Table 14.1 summarizes the medial
curves associated with a pair of circles in several configurations taking into consideration
differing radii and equal radii. Strictly speaking, some of the branches of these curves are not
equidistant from the two circles, unless we consider the distance to be measured both from
the closest and the farthest point on the circles.

Example. Find and plot the curves equidistant from the two circles x2 + y2 = 9
and x2 + (y − 2)2 = 4.

Solution. Use the function MedialLoci2D[{circle, circle}].
In[17]: c1 = Circle2D@80, 0<, 3D;

c2 = Circle2D@80, 2<, 2D;
crvs = MedialLoci2D@8c1, c2<D

Out[17] 9Ellipse2DA80, 1<, 5
�����
2
,

è!!!!!21
���������������
2

,
π
�����
2

E, Hyperbola2DA80, 1<, 1
�����
2
,

è!!!3
�����������
2

,
π
�����
2

E=

In[18]: Sketch2D@8c1, c2, crvs<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3
4

212 Chapter 14 Medial Curves

Descarta2D Hint. The function MedialLoci2D[{obj1, obj2}] produces the
same result as MedialLoci2D[{obj2, obj1}], that is, the objects may be pro-
vided in any order in the list. In addition, MedialEquations2D[{obj1, obj2}]
will return a list of lines and/or quadratics representing the medial curves.

14.7 Explorations

Medial Curve, Point–Point. mdptpt.nb
Show that the line 2(x2 −x1)x+2(y2 − y1)y +(x2

1 + y2
1)− (x2

2 + y2
2) = 0 is equidistant from

the points P1(x1, y1) and P2(x2, y2).
—–
Medial Curve, Point–Line. mdptln.nb

Show that the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

where

A = B2
2 ,

B = −2A2B2,

C = A2
2,

D = −2(x1 + A2C2),
E = −2(y1 + B2C2) and
F = x2

1 + y2
1 − C2

2

is equidistant from the point P1(x1, y1) and the line L ≡ A2x + B2y + C2 = 0, assuming that
L is normalized (A2

2 + B2
2 = 1).

—–
Medial Curve, Point–Circle. mdptcir.nb

Show that the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = 4((x1 − h2)2 − r2
2),

B = 8(x1 − h2)(y1 − k2),
C = 4((y1 − k2)2 − r2

2),
D = 4(R(x1 − h2) + 2r2

2x1),
E = 4(R(y1 − k2) + 2r2

2y1),
F = R2 − 4r2

2(x
2
1 + y2

1) and
R = (h2

2 + k2
2) − (x2

1 + y2
1) − r2

2

14.7 Explorations 213

is equidistant from the point P1(x1, y1) and the circle

(x − h2)2 + (y − k2)2 = r2
2 .

—–
Medial Curve, Line–Line. .mdlnln.nb

Show that the pair of lines whose equations are

A1x + B1y + C1√
A2

1 + B2
1

= ±A2x + B2y + C2√
A2

2 + B2
2

is equidistant from the two lines A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0.
—–
Medial Curve, Line–Circle. .mdlncir.nb

Show that the two quadratics whose equations are given by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = B2
1 ,

B = −2A1B1,

C = A2
1,

D = −2(h2 + A1(C1 + sr2)),
E = −2(k2 + B1(C1 + sr2)),
F = h2

2 + k2
2 − r2

2 − C1(C1 + 2sr2) and
s = ±1

are equidistant from the line
A1x + B1y + C1 = 0

and the circle
(x − h2)2 + (y − k2)2 = r2

2 ,

assuming A2
1 + B2

1 = 1.
—–
Medial Curve, Circle–Circle. mdcircir.nb

Show that the two quadratics whose equations are given by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

214 Chapter 14 Medial Curves

where

A = 4((h1 − h2)2 − R),
B = 8(h1 − h2)(k1 − k2),
C = 4((k1 − k2)2 − R),
D = 4(h1(−D1 + D2 + R) + h2(D1 − D2 + R)),
E = 4(k1(−D1 + D2 + R) + k2(D1 − D2 + R)) and
F = (D1 − D2)2 − 2(D1 + D2)R + R2

and

R = (r1 − sr2)2,
D1 = h2

1 + k2
1 ,

D2 = h2
2 + k2

2 and
s = ±1

are equidistant from the two circles

(x − h1)2 + (y − k1)2 = r2
1 and (x − h2)2 + (y − k2)2 = r2

2 .

—–
Medial Curve Type. .mdtype.nb

Show that the medial curve equidistant from a point and a circle is a hyperbola when
the point is outside the circle and it is an ellipse when the point is inside the circle. (Hint:
Examine the value of the discriminant B2 − 4AC of the medial quadratic.)
—–

Part IV

Geometric Functions

Chapter 15

Transformations

A transformation is a mathematical operation that changes a function of variables, say f(x, y),
into a new function f ′(x′, y′) where

x′ = f1(x, y) and y′ = f2(x, y).

These equations are called the equations of the transformation. Transformations can often be
constructed so that f ′ is much simpler than f . In this chapter we will study four transforma-
tions that have useful geometric interpretations: translation, rotation, scaling and reflection.

15.1 Translations

A translation is a transformation that maps coordinates (x, y) into

(x + u, y + v).

When a translation is applied to a locus of points, the resulting locus has the same shape and
orientation as the original one, but its position with respect to the coordinate axes is offset by
distances u in the x-direction and v in the y-direction. The equations of the transformation
are

x′ = x + u and y′ = y + v.

Example. Determine the coordinates of the point that results from translating
(3, 2) by u = −1 and v = −3.

Solution. The function Translate2D[{x,y}, {u, v}] translates a coordinate list
(x, y) by the specified offset (u, v), returning a new coordinate list. The function
Translate2D[point,{u, v}] performs the same translation and returns a trans-
lated point.

217

218 Chapter 15 Transformations

In[1]: 8Translate2D@83, 2<, 8−1, −3<D,
Translate2D@Point2D@83, 2<D, 8−1, −3<D<

Out[1] 882, −1<, Point2D@82, −1<D<

A translation can also be applied to an equation. For example, if

f(x, y) = Ax + By + C

is a linear equation in two variables, we can translate this by making the substitutions
x = x′ − u and y = y′ − v. Mathematica provides powerful functions for performing these
transformations.

In[2]: Clear@x, y, u, v, a, b, cD;
a∗x + b∗y + c ê. 8x −> x − u, y −> y − v< êê Expand

Out[2] c − a u − b v + a x + b y

In standard mathematical notation the translated equation is

Ax + By − Au − Bv + C.

ŸMathematica Hint. The Mathematica function Replace, represented by the
/. operator, applies a set of replacement rules to an expression.

In a similar manner a quadratic equation can be translated. Again Mathematica provides
a convenient means for performing the algebraic operations.

In[3]: Clear@x, y, u, v, a, b, c, d, e, fD;
a∗x^2 + b∗x∗y + c∗y^2 + d∗x + e∗y + f ê.

8x −> x − u, y −> y − v< êê Expand

Out[3] f − d u + a u2 − e v + b u v + c v2 + d x − 2 a u x − b v x + a x2 + e y − b u y − 2 c v y + b x y + c y2

Collecting terms and writing in standard mathematical notation yields the translated qua-
dratic equation

A′x2 + B′xy + C′y2 + D′x + E′y + F ′ = 0

where

A′ = A

B′ = B

C′ = C

D′ = D − 2Au − Bv

E′ = E − 2Cv − Bu

F ′ = Au2 + Buv + Cv2 − Du − Ev + F.

15.2 Rotations 219

Using these basic formulas for translations it is easy to translate other objects. The location
of curves, such as circles, ellipses and conic arcs, are defined by points and can be translated
by translating the points themselves. For example, Ellipse2D[{h, k}, a, b, θ] is translated
to Ellipse2D[{h + u, k + v}, a, b, θ].

Example. Translate the ellipse

(x − 1)2

16
+

(y + 3)2

9
= 1

by the offsets u = 2 and v = −2. Plot both the original ellipse and the translated
ellipse.

Solution. The function Translate2D[object, {u, v}] translates an object u in
the x-direction and v in the y-direction. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[4]: e2 = Translate2D@e1 = Ellipse2D@81, −3<, 4, 3, 0D, 82, −2<D

Out[4] Ellipse2D@83, −5<, 4, 3, 0D

In[5]: Sketch2D@8e1, e2<D;

-2 0 2 4 6
-8

-6

-4

-2

0

15.2 Rotations

A rotation by an angle θ about the origin is a transformation that maps coordinates (x, y)
into (x cos θ− y sin θ, y cos θ +x sin θ). The mapping is easily confirmed using trigonometry as
shown in Figure 15.1.

cosα = x/r

sin α = y/r

220 Chapter 15 Transformations

x

y

r1

r

a

q

P

P¢

AA¢O

Figure 15.1: Rotation transformation.

x′ = OA′

= r cos(α + θ)
= r(cos α cos θ − sin α sin θ)
= r((x/r) cos θ − (y/r) sin θ)
= x cos θ − y sin θ.

Similarly, it can be shown that y′ = y cos θ + x sin θ.
In order to rotate about a point (h, k), we first translate the coordinates to the origin,

perform the rotation using the equations above, then apply the inverse translation to restore
the object to its original position with the rotation applied. The general equations of a rotation
so derived are

x′ = h + (x − h) cos θ − (y − k) sin θ

y′ = k + (x − h) sin θ + (y − k) cos θ.

In order to rotate a linear equation Ax + By + C = 0 we need to solve these equations for
x and y so that we can substitute these values into the equation. Solving for x and y in terms
of x′ and y′ (and making use of the identity sin2 θ + cos2 θ = 1) yields the equations

x = h + (x′ − h) cos θ + (y′ − k) sin θ

y = k − (x′ − h) sin θ + (y′ − k) cos θ.

Substituting into Ax + By + C yields the equation

A′x + B′x + C′ = 0

where

A′ = A cos θ − B sin θ

15.2 Rotations 221

B′ = B cos θ + A sin θ

C′ = Ah + Bk + C − (Ah + Bk) cos θ − (Ak − Bh) sin θ.

Rotating the quadratic equation Q ≡ Ax2 +Bxy+Cy2 +Dx+Ey+F = 0 is accomplished
in the same manner, by replacing x and y with the proper rotated coordinates. The resulting
expressions for the coefficients of the rotated quadratic equation,

Q′ ≡ A′x2 + B′xy + C′y2 + D′x + E′y + F ′ = 0,

are somewhat long, but can be written symbolically as

A′ = A cos2 θ − B cos θ sin θ + C sin2 θ

B′ = B(cos2 θ − sin2 θ) + 2(A − C) cos θ sin θ

C′ = A sin2 θ + B cos θ sin θ + C cos2 θ

D′ = (−2Ch + Bk) sin2 θ − (2Ah + Bk) cos2 θ +
2(Bh − (A − C)k) cos θ sin θ +
(2Ah + Bk + D) cos θ − (Bh + 2Ck + E) sin θ

E′ = (Bh − 2Ak) sin2 θ − (Bh + 2Ck) cos2 θ −
2((A − C)h + Bk) cos θ sin θ +
(Bh + 2Ck + E) cos θ + (2Ah + Bk + D) sin θ

F ′ = (Ah2 + Bhk + Ck2) cos2 θ −
(B(h2 − k2) − 2(A − C)hk) cos θ sin θ +
(Ch2 − Bhk + Ak2) sin2 θ −
(2Ah2 + 2Bhk + 2Ck2 + Dh + Ek) cos θ +
(Bh2 − 2(A − C)hk − Bk2 + Eh − Dk) sin θ +
Ah2 + Bhk + Ck2 + Dh + Ek + F.

By applying the formulas for rotating coordinates, linear equations and quadratic equa-
tions, we can now specify how to rotate all of the Descarta2D objects. Points and lines can be
rotated by directly applying the formulas for coordinates and linear equations, respectively.
Curves that are located by points can be rotated by rotating the defining points; addition-
ally, curves that have orientation angles, such as arcs, parabolas, ellipses and hyperbolas, are
rotated by adding the rotation angle, θ, to the angle of the curve.

Example. Rotate the ellipse

(x − 3)2

1
+

y2

4
= 1

π/2 radians about its center point and about the origin. Plot all three ellipses.

222 Chapter 15 Transformations

Solution. The Descarta2D function Rotate2D[object, θ, {x0, y0}] rotates an ob-
ject by angle θ about point (x0, y0). The function Rotate2D[object, θ] rotates
an object by angle θ about the origin. The object may be a coordinate list, a
geometric object or a list of Descarta2D objects.

In[6]: e1 = Ellipse2D@83, 0<, 2, 1, Piê2D;
8e2 = Rotate2D@e1, Piê2, 83, 0<D, e3 = Rotate2D@e1, Piê2D<

Out[6] 8Ellipse2D@83, 0<, 2, 1, 0D, Ellipse2D@80, 3<, 2, 1, 0D<

In[7]: Sketch2D@8e1, e2, e3<D;

-2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

15.3 Scaling

A scaling transformation maps coordinates (x, y) to (x′, y′) using the transformation equations

x′ = h + s(x − h) and y′ = k + s(y − k).

The scale factor, s > 0, indicates the ratio of corresponding lengths of the scaled object with
respect to the original object. The point (h, k) is called the center of scaling. A point at the
center of scaling does not change coordinates during a scaling transformation.

Solving the scaling transformation equations for (x, y) in terms of (x′, y′) yields

x = h +
(x′ − h)

s
and y = k +

(y′ − k)
s

.

Substituting the coordinates (x, y) into the linear polynomial Ax + By + C yields the scaled
linear polynomial

Ax + By + Ah(s − 1) + Bk(s − 1) + sC.

Similarly, applying a scaling transformation to the quadratic polynomial

Ax2 + Bxy + Cy2 + Dx + Ey + F

15.3 Scaling 223

yields
A′x2 + B′xy + C′y2 + D′x + E′y + F ′ = 0

where

A′ = A/s2

B′ = B/s2

C′ = C/s2

D′ = (D + (1 − s)(2Ah + Bk))/s

E′ = (E + (1 − s)(Bh + 2Ck))/s

F ′ = (1 − s)2(Ah2 + Bhk + Ck2) + (1 − s)(Dh + Ek) + F.

The scaling transformation may be applied to Descarta2D geometric objects by apply-
ing the coordinate scaling transformation to the positioning arguments and simultaneously
multiplying the length arguments by the scale factor.

Example. Scale the circle (x − 2)2 + (y − 1)2 = 1 by a factor of 3/2 about its
center point and the origin. Plot the three circles.

Solution. The function Scale2D[object, s, {h, k}] scales the object using scale
factor s about the center of scaling (h, k). Scale2D[object, s] scales the object
about the origin. The object may be a coordinate list, a geometric object or a list
of Descarta2D objects.

In[8]: c1 = Circle2D@82, 1<, 1D;
8c2 = Scale2D@c1, 3ê2, 82, 1<D, c3 = Scale2D@c1, 3ê2D<

Out[8] 9Circle2DA82, 1<, 3
�����
2

E, Circle2DA93, 3
�����
2

=, 3
�����
2

E=

In[9]: Sketch2D@8c1, c2, c3<D;

1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

3

224 Chapter 15 Transformations

15.4 Reflections

A reflection transformation maps the coordinates (x, y) to coordinates that are the “mirror”
reflection of the coordinates with respect to a line that represents the position of the mirror.
Consider the point P1(x1, y1) and the reflection line L2 ≡ A2x+ B2y +C2 = 0. The following
Descarta2D commands can be used to determine the coordinates of the reflection of point P1

in line L2.

In[10]: Clear@x1, y1, A2, B2, C2D;
p1 = Point2D@8x1, y1<D;
l2 = Line2D@A2, B2, C2D;
p2 = Point2D@p1, Point2D@p1, l2D,

2∗Distance2D@p1, l2DD êê Simplify

Out[10] Point2DA9 −A22 x1 + B22 x1 − 2 A2 HC2 + B2 y1L
���

A22 + B22
,

−2 B2 HC2 + A2 x1L + A22 y1 − B22 y1
���

A22 + B22
=E

In standard mathematical notation the coordinates P2(x2, y2) of the reflected point are given
by the transformation equations

x2 = x1 − 2A2(A2x1 + B2y1 + C2)
A2

2 + B2
2

y2 = y1 − 2B2(A2x1 + B2y1 + C2)
A2

2 + B2
2

.

Solving the transformation equations for P1(x1, y1) in terms of P2(x2, y2) yields

x1 =
(B2

2 − A2
2)x2 − 2A2B2y2 − 2A2C2

A2
2 + B2

2

y1 =
−2A2B2x2 + (A2

2 − B2
2)y2 − 2B2C2

A2
2 + B2

2

.

ŸMathematica Hint. While it is feasible to solve these equations manually using
algebra, it is much less effort to let Mathematica do the work using the Solve
function. The command would be of the form

In[11]: Solve@8x2 == XCoordinate2D@p2D,
y2 == YCoordinate2D@p2D<, 8x1, y1<D êê Simplify

Out[11] 99x1 →
−A22 x2 + B22 x2 − 2 A2 HC2 + B2 y2L
���

A22 + B22
, y1 →

−2 B2 HC2 + A2 x2L + A22 y2 − B22 y2
���

A22 + B22
==

Substituting the coordinates (x1, y1) into a linear equation A1x + B1y + C1 yields the
reflected linear equation

A3x + B3y + C3

15.4 Reflections 225

where

A3 = A1(B2
2 − A2

2) − 2B1A2B2

B3 = B1(A2
2 − B2

2) − 2A1A2B2

C3 = C1(A2
2 + B2

2) − 2C2(A1A2 + B1B2).

Substituting the coordinates (x1, y1) into a quadratic polynomial

Q ≡ Ax2 + Bxy + Cy2 + Dx + Ey + F

yields a quadratic Q′ reflected in the line L2 ≡ A2x + B2y + C2 = 0 of the form

Q′ ≡ A′x2 + B′xy + C′y2 + D′x + E′y + F ′

where

A′ = Af1f2 + 2Bpf4 + 4Cp2

B′ = 4Apf4 + B(4p2 − f2
4) − 4Cpf4

C′ = 4Ap2 − 2Bpf4 + Cf1f2

D′ = 4Aqf4 + 2Br(2A2
2 + f4) + 8CqB2

2 − Df4f3 − 2Epf3

E′ = 8AA2
2r + 2Bq(2B2

2 − f4) − 4Crf4 − 2Dpf3 + Ef3f4

F ′ = 4(Aq2 + BpC2
2 + Cr2) − 2f3(Dq + Er) + Ff2

3

and

p = A2B2, q = A2C2, r = B2C2,

f1 = (A2 + B2)2, f2 = (A2 − B2)2,
f3 = (A2

2 + B2
2), f4 = (A2

2 − B2
2).

Reflection of an Angle

What angle does a reflected line make with the +x-axis? Let L be a line that makes an angle
θ with the +x-axis, LR be a reflection line that makes an angle α with the +x-axis, and L′

the reflection of L in LR as shown in Figure 15.2. We wish to determine the angle θ′ that
L′ makes with the +x-axis. Using the fact that supplementary angles sum to π and that the
interior angles of a triangle sum to π, the angle θ′ = 2α − θ. The relationship also holds true
when α = θ, in which case L and L′ do not intersect. By applying the methods for reflecting
coordinates, equations and angles we are able to reflects all of the geometric objects in the
Descarta2D system.

Example. Reflect the arc centered at (3, 2) with radius 1 and start and end angles
of π and 3π/2 in the line x + 3y + 2 = 0.

226 Chapter 15 Transformations

x

y

q¢ q
q

LR

a
a

bb

L
L¢

g p - a

b=a-q
g=p-H2a-qL
q=2a-q

Figure 15.2: A reflected angle.

Solution. The Descarta2D function Reflect2D[object, line] reflects the object
with respect to the line. The object may be a coordinate list, a geometric object,
or a list of objects.

In[12]: a2 = Reflect2D@a1 = Arc2D@Point2D@83, 2<D, 2, 8Pi, 3 Piê2<D,
l1 = Line2D@1, 3, 2DD

Out[12] Arc2DA82, −3<, 9−
4
�����
5
, −

17
���������
5

=, −1 +
è!!!
2 E

In[13]: Sketch2D@8a1, l1, a2<D;

-4 -2 0 2 4

-3

-2

-1

0

1

2

15.5 Explorations

Reflection in a Point. reflctpt.nb
A point P ′(x′, y′) is said to be the reflection of a point P (x, y) in the point C(H, K) if C

is the midpoint of the segment PP ′. Using this definition show that

15.5 Explorations 227

• The transformation equations for a reflection in a point are

x′ = 2H − x x = 2H − x′

y′ = 2K − y y = 2K − y′.

• The reflection of the line ax + by + c = 0 in the point (H, K) is

ax + by − (2aH + 2bK + c) = 0.

• The reflection of the quadratic ax2 + bxy + cy2 + dx + ey + f = 0 in the point (H, K) is

ax2 + bxy + cy2 − (4aH + 2bK + d)x − (2bH + 4cK + e)y+
4aH2 + 4bHK + 4cK2 + 2dH + 2eK + f = 0.

Also, verify that the reflection in a point transformation is equivalent to a rotation of π radians
about the reflection point (H, K).
—–
Inversion. inverse.nb

A point P ′(x′, y′) is said to be the inverse of a point P (x, y) in the circle

C ≡ (x − h)2 + (y − k)2 = r2

if points O(h, k), P and P ′ are collinear and |OP | |OP ′| = r2. Using this definition show that

• The coordinates of P ′(x′, y′) are

x′ = h +
r2(x − h)

(x − h)2 + (y − k)2
and y′ = k +

r2(y − k)
(x − h)2 + (y − k)2

.

• If the circle of inversion is x2 + y2 = 1, the coordinates of P ′ are

x′ =
x

x2 + y2
and y′ =

y

x2 + y2
.

• If the circle of inversion is x2 + y2 = 1, the inverse of the line L ≡ A1x + B1y + C1 = 0,
assuming L does not pass through the origin, is the circle(

x +
A1

2C1

)2

+
(

y +
B1

2C1

)2

=
A2

1 + B2
1

4C2
1

.

• If the circle of inversion is x2 + y2 = 1, the inverse of the line L ≡ A1x + B1y + C1 = 0,
assuming L passes through the origin (C1 = 0), is L itself.

• If the circle of inversion is x2 +y2 = 1, the inverse of the circle (x − h1)2 + (y − k)2 = r2
1

is (
x − h1

D

)2

+
(

y − k1

D

)2

=
r2
1

D
, where D = h2

1 + k2
1 − r2

1 .

• If the circle of inversion is x2 +y2 = 1, the inversion of C ≡ (x−h)2 +(y−k)2 = h2
1 +k2

1,
which passes through the origin, is the line L ≡ 2h1x + 2k1y = 1. L is parallel to the
tangent line to C through the origin. The equation of the tangent line is 2h1x+2k1y = 0.

Inversion is clearly a non-rigid transformation.
—–

Chapter 16

Arc Length

Intuitively, arc length is a measure of distance along a curve. For a straight line the distance
is called the length and is easily computed using the distance formula. For some curves the
arc length has other special names such as the perimeter of a triangle or the circumference
of a circle. This chapter discusses methods for computing the arc lengths of simple geometric
curves, such as those provided in Descarta2D.

16.1 Lines and Line Segments

Length of a Line

By definition, a line is a curve of infinite length. We can, however, specify two parameter values
on the line and determine the distance between the points associated with these parameter
values. Since lines in Descarta2D are parameterized by distance, the distance, s, between the
points represented by any two parameter values, t1 and t2, is simply the absolute value of the
difference of the parameter values, s = |t2 − t1|.

Example. Find the distance between the parameter values −2 and 1 on any line
(assuming the parameterizations defined in the Descarta2D packages).

Solution. The function ArcLength2D[line, {t1, t2}] returns the arc length be-
tween two parameter values on a line.

In[1]: Clear@a, b, cD;
ArcLength2D@Line2D@a, b, cD, 8−2, 1<D

Out[1] 3

229

230 Chapter 16 Arc Length

Length of a Line Segment

The length of a line segment is the distance between its start and end points. In Descarta2D

the start and end points have parameter values of 0 and 1, respectively. The distance, s,
between any two parameter values, t1 and t2, is given by |t2 − t1|l, where l is the length of the
line segment.

Example. Find the length of the line segment connecting the points (1, 3) and
(2, 4). Find the arc length on the line segment between the parameter values 1/4
and 1/2.

Solution. The function Length2D[lnseg] returns the length of a line segment
(the distance between the start and end points). ArcLength2D[lnseg,{t1, t2}]
returns the distance between two parameter values on a line segment.

In[2]: l1 = Segment2D@81, 3<, 82, 4<D;
8Length2D@l1D, ArcLength2D@l1, 81ê4, 1ê2<D<

Out[2] 9è!!!
2 ,

1
����������������
2 è!!!2

=

16.2 Perimeter of a Triangle

The sum of the lengths of the sides of a triangle is called the perimeter, s, and is given by
s = s1 + s2 + s3, where sn is the length of side n of the triangle.

Example. Find the perimeter of a triangle whose vertices are (1, 2), (3, 4) and
(5, 6).

Solution. The Descarta2D function Perimeter2D[triangle] returns the perimeter
of a triangle.

In[3]: Perimeter2D@Triangle2D@81, 2<, 84, 4<, 85, 6<DD

Out[3] 4
è!!!
2 +

è!!!
5 +

è!!!!!
13

16.3 Polygons Approximating Curves 231

r

d

s

q

Figure 16.1: Circle approximated by an inscribed polygon.

16.3 Polygons Approximating Curves

If we inscribe a polygon in any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter of
the curve. Therefore, when investigating the area or arc length of a curve, we may substitute
for the curve an inscribed or circumscribed polygon with an indefinitely increasing number of
sides. These notions are formalized in the study of calculus, but they can be applied intuitively
in the study of areas and perimeters of simple curves as will be shown in the following sections.

16.4 Circles and Arcs

Circumference of a Circle

Consider the circle shown in Figure 16.1. The length, d, of the perpendicular segment from the
center of the circle to one of the sides of a regular, inscribed polygon is given by d = r sin

(
1
2θ
)

where r is the radius of the circle and θ is angle between adjacent radii connecting the sides
of the polygon. The length of the sides of the polygon, s, is given by s = 2r cos

(
1
2θ
)
. Clearly,

the perimeter of the inscribed polygon, S, is given by S = ns, where n represents the number
of sides of the polygon. Now consider the ratio of the perimeter of polygons for two circles,

232 Chapter 16 Arc Length

C1 and C2, which is given by

S1

S2
=

ns1

ns2
=

2nr1 cos
(

1
2θ
)

2nr2 cos
(

1
2θ
) =

r1

r2
.

As n increases S1 and S2 approach the circumferences of C1 and C2; therefore, the ratio of
the circumferences of two circles equals the ratio of their radii. Since the radii of the circles
are proportional to their diameters, the ratio of the circumferences to the diameters is also a
constant which has been given the symbol π. Therefore,

S

D
≡ π

relating the circumference of a circle to its diameter is a constant for all circles; or writing in
a different form, the circumference S of a circle is given by

S = πD = 2πr.

Example. Find the circumference of a circle centered at (0, 0) with a radius of 2.
Also, find the arc length of 1/4 of the circle’s circumference.

Solution. The function Circumference2D[circle] returns the circumference of
a circle. The function ArcLength2D[circle, {t1, t2}] returns the arc length of a
circle between two parameter values.

In[4]: c1 = Circle2D@80, 0<, 2D;
8Circumference2D@c1D, ArcLength2D@c1, 80, Piê2<D<

Out[4] 84 π, π<

Arc Length of an Arc

The arc length, s, (or span) of an arc is the ratio of the angular span of the arc to the angular
span of a full circle (2π) times the circumference of a circle and is given by

s =
θ

2π
(2πr) = (θ2 − θ1)r.

Example. Find the arc length of the sector defined by the arc centered at (0, 0)
with radius 2 and start and end angles of π/4 and 3π/4.

16.5 Ellipses and Hyperbolas 233

Solution. The function Span2D[arc] returns the arc length of an arc.

In[5]: Span2D@a1 = Arc2D@Point2D@80, 0<D, 2, 8Piê4, 3 Piê4<DD êê Simplify

Out[5] π

Example. For the arc defined in the previous example, find the arc length between
the parameter values 0.25 and 0.75.

Solution. The function ArcLength2D[arc, {t1, t2}] returns the arc length of an
arc between two parameter values.

In[6]: ArcLength2D@a1, 80.25, 0.75<D êê N

Out[6] 1.5708

16.5 Ellipses and Hyperbolas

If x = fx(t) and y = fy(t) are the parametric equations of a curve, then the arc length, s, of
the curve between parameter values t1 and t2 is given by the integral

s =
∫ t2

t1

√
(x′)2 + (y′)2 dt

where x′ and y′ are the derivatives of the parametric equations of the curve with respect to
t. For many curves this integral is difficult to evaluate in symbolic form, but by using the
numerical integration capabilities of Mathematica we can find an approximate arc length.

Even for the conic curves (except the parabola, which we will discuss subsequently) the
integral for arc length leads to elliptic integrals, a class of integrals that cannot be expressed in
closed form in terms of elementary functions. This does not mean that these integrals do not
exist, but require the definition of non-elementary functions. Fortunately, the elliptic integral
needed to evaluate the arc lengths of ellipses and hyperbolas is built-in to Mathematica as the
EllipticE[phi,m] function, which is written E(φ|m) in traditional mathematical notation.
The arc length, s, in the parameter range 0 ≤ t ≤ 2π, of an ellipse in terms of this elliptic
integral is given by

s = b E

(
t
∣∣∣ 1 − a2

b2

)

234 Chapter 16 Arc Length

where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse. Since all elliptic arcs can be expressed as sums or differences of such arcs, the formula
serves to provide a means for expressing the arc length between any pair of parameters.

Similarly, the arc length, s, of a hyperbola, using the parametric equations for a hyperbola
defined in Descarta2D, can be expressed in terms of this elliptic integral and is given by

s = i b E

(
i cos−1

(√
a2 + b2

a

)
t
∣∣∣ 1 +

a2

b2

)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively, of
the hyperbola and i =

√−1. Even though complex numbers are present in this formula, the
resulting arc length is a real number.

Example. Find the approximate arc length of the ellipse x2/9+y2/4 = 1 between
parameter values 0 and π/2.

Solution. The Descarta2D function ArcLength2D[curve,{t1, t2}] returns the arc
length of a curve between two parameter values.

In[7]: e1 = Ellipse2D@80, 0<, 3, 2, 0D;
ArcLength2D@e1, 80, Piê2<D êê N

Out[7] 3.96636

16.6 Parabolas

Consider a parabola represented by the parametric equations

x = ft2 and y = 2ft.

The arc length, s, of such a parabola between two parameters, t1 < t2, can be derived in terms
of elementary functions. The derivation is provided in the exploration pbarclen.nb where
the arc length is shown to be s = f(S2 − S1) where

Sn = tn
√

1 + t2n + sinh−1(tn).

Example. Find the arc length of the parabola y2 = 4x between parameter values
−2 and 3. Find the arc length cut off by the focal chord of the parabola.

16.7 Chord Parameters 235

Solution. The Descarta2D function ArcLength2D[parabola, {t1, t2}] returns the
arc length of the parabola between the two parameter values. The focal chord of
a parabola has end points at parameter values ±1.

In[8]: p1 = Parabola2D@80, 0<, 1, 0D;
8ArcLength2D@p1, 8−2, 3<D, ArcLength2D@p1, 8−1, 1<D< êê N

Out[8] 817.2211, 4.59117<

16.7 Chord Parameters

For some curves, such as circles and ellipses, it is fairly easy to determine the parameter value
that corresponds to a particular point on the curve; however, for hyperbolas and parabolas,
whose parametric representation is more complex, it may be difficult to determine the para-
meter values needed to compute the arc length of some specific portion of the curve. The
function Parameters2D provides a more geometric definition of the chord that can be used
with the arc length functions. Essentially, the Parameters2D function computes the parame-
ter values of the points of intersection between a line and a second-degree curve (circle, ellipse,
hyperbola or parabola). This function will also be useful in the area functions introduced in
the next chapter.

Example. Find the arc length of the parabola with vertex at (0, 0), focal length
of 1 (opening upward) cut off by the line 2x + 4y − 5 = 0.

Solution. The Descarta2D function Parameters2D[line, curve] returns a list of
the two parameters which are the points of intersection between the line and the
curve. The curve may be a circle, an ellipse, a hyperbola or a parabola.

In[9]: p1 = Parabola2D@80, 0<, 1, Piê2D;
l1 = Line2D@2, 4, −5D;
t12 = Parameters2D@l1, p1D

Out[9] 9 1
�����
2

I1 −
è!!!
6 M, 1

�����
2

I1 +
è!!!
6 M=

In[10]: ArcLength2D@p1, t12D êê FullSimplify

Out[10]
1
�����
4

"#########################
202 + 10

è!!!!!
97 − LogA1 −

è!!!
6 +

"###################
11 − 2

è!!!
6 E + LogA1 +

è!!!
6 +

"###################
11 + 2

è!!!
6 E

236 Chapter 16 Arc Length

Descarta2D Hint. Only the primary branch of a hyperbola in standard position
is parameterized (the primary branch is the branch opening to the right when the
hyperbola’s rotation angle is zero); positions on the other branch are generated by
reflecting coordinates on the primary branch. As a result of this parameterization,
the Parameters2D function will only return parameter values if the line intersects
the primary branch of the hyperbola.

16.8 Summary of Arc Length Functions

Descarta2D provides a general function, ArcLength2D for computing the arc length of para-
metric curves and several special functions for computing arc lengths of specific curves. The
Descarta2D function ArcLength2D[curve,{t1, t2}] can be used to compute the arc length
of any parametric curve in Descarta2D (arcs, lines, line segments, circles, parabolas, ellipses,
hyperbolas and conic arcs). The function Length2D[lnseg] computes the length of a complete
line segment. The function Circumference2D[curve] computes the arc length of a complete
circle or ellipse. The function Span2D[curve] computes the arc length of a complete arc or
conic arc. The function Perimeter2D[triangle] computes the perimeter of a triangle.

16.9 Explorations

Arc Length of a Parabola. .pbarclen.nb
Show that the arc length, s, of a parabola whose parametric equations are

x = ft2 and y = 2ft

is given by s = f(S2 − S1) where

Sn = tn
√

1 + t2n + sinh−1(tn).

—–
Approximate Arc Length of a Curve. narclen.nb

The arc length of a smooth, parametrically defined curve can be approximated by a polygon
connecting a sequence of points on the curve. Write a Mathematica function of the form
NArcLength2D[crv,{t1, t2}, n] that approximates the arc length of a curve between two
parameter values using a specified number of coordinates at equal parameter intervals between
the two given parameters. Produce a graph illustrating the convergence of the approximation
to the Descarta2D function ArcLength2D[crv, {t1, t2}] //N.
—–
Arc Length of a Parabolic Conic Arc. caarclen.nb

Using exact integration in Mathematica show that the arc length of a parabolic conic arc
with control points P0(0, 0), PA(a, b), and P1(1, 0) can be expressed exactly in symbolic form
in terms elementary functions of a and b.
—–

Chapter 17

Area

Intuitively, area is the measure of the number of unit squares that can be contained inside
a boundary. For a square with sides of length s, the area, A, is given by A = s2. For a
rectangle with sides a and b, A = ab. As the boundary becomes more complex or contains
curved elements, the computation of the area requires more complex considerations. In this
chapter we will derive formulas for the areas of Descarta2D objects.

17.1 Areas of Geometric Figures

Before exploring formulas for computing areas using analytic geometry, we will look at some
formulas from planar geometry. Consider the right triangle ABC shown in Figure 17.1 with
height h and base b. Clearly, the area of 4ABC is one-half of the area of rectangle ABCD,
so the area, A, of a right triangle is

A =
bh

2
.

Now consider the acute 4ABC in the center of Figure 17.1. The area of ABC is given by

Area ABC = Area BCDE − Area ABE − Area ACD

A

B C

D

h

b
b

A

B C

DE

h

b1 b2

h

b2

A

B C

D

E bb1

Figure 17.1: Areas of right, acute and obtuse triangles.

237

238 Chapter 17 Area

b

A B

CD EF a

ab1 b2

h

Figure 17.2: Area of a trapezoid.

or

Area ABC = bh − b1h

2
− b2h

2
.

Simplifying and using b = b1 + b2 yields

A =
bh

2
.

The same formula results for the area of an obtuse triangle (using b = b2 − b1), as shown on
the right in Figure 17.1.

Now consider the trapezoid ABCD shown in Figure 17.2. The area of ABCD is given by

Area ABCD = Area ABEF − Area ADF − Area BCE

or

Area ABCD = bh − hb1

2
− hb2

2
.

Simplifying and using b = a + b1 + b2 yields

A =
(a + b)

2
h.

These formulas from planar geometry will be useful in upcoming sections for deriving the
formulas using analytic geometry.

Triangular Area

There are several formulas for the area, A, of a triangle that involve lengths associated with
the triangle. The simplest is the familiar A = bh/2, where b is the length of one of the sides
of the triangle (the base) and h is the height of the triangle (the distance from the base to the
opposite vertex).

17.1 Areas of Geometric Figures 239

x

y

A

B

C

A¢ B¢ C¢

Figure 17.3: Area of a triangle by coordinates.

The formula of Heron gives the area of the triangle in terms of the lengths of its sides, sn,
alone:

A =
√

s(s − s1)(s − s2)(s − s3)

where s = (s1 + s2 + s3)/2 is the semi-perimeter. This formula is derived in the exploration
heron.nb.

Since a triangle is represented in Descarta2D by the coordinates of the vertices, we wish to
derive a formula based on the coordinates. Consider the triangle ABC as shown in Figure 17.3,
where the coordinates are A(x1, y1), B(x2, y2) and C(x3, y3). Projecting A, B and C onto the
x-axis produces three points A′(x1, 0), B′(x2, 0) and C′(x3, 0). The area of triangle ABC is
given by

Area ABC = Area AA′C′C − Area AA′B′B − Area BB′C′C.

The height and base lengths of these trapezoids can be determined as the difference of the
coordinates of the points, yielding

Area ABC =
(y1 + y3)(x3 − x1)

2
− (y1 + y2)(x2 − x1)

2
− (y2 + y3)(x3 − x2)

2
.

Expanding and rearranging will show that the area of a triangle, A, is given by the determinant

A = ±1
2

∣∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣∣
where (x1, y1), (x2, y2) and (x3, y3) are the coordinates of the vertices of the triangle. The
sign is selected to yield a positive area.

Alternately, if we multiply the length of the line segment joining two of the points, by the
length of the perpendicular line segment on that line from the third point, we have double the
area of the triangle determined by the three points.

240 Chapter 17 Area

Example. Find the area of a triangle whose vertices are (1, 2), (4, 4) and (5, 6).

Solution. The function Area2D[triangle] returns the area of a triangle.

In[1]: Area2D@Triangle2D@81, 2<, 84, 4<, 85, 6<DD

Out[1] 2

17.2 Curved Areas

If we inscribe a polygon inside any closed curve, it is evident that as the number of sides of
the polygon is increased, the area of the polygon approaches the area bounded by the curve.
Likewise, the perimeter of the polygon approaches the perimeter, or arc length, of the curve.
If the number of sides of the polygon is increased ad infinitum, the polygon will coincide with
the curve. In like manner, we can see that as the number of sides of a circumscribing polygon
is increased, the more nearly its area and perimeter will approach the area and perimeter
of the curve. Therefore, when investigating the area or perimeter of a closed curve, we may
substitute for the curve an inscribed or circumscribed polygon with an indefinitely increasing
number of sides. These notions are formalized in the study of calculus, but they can be applied
intuitively in the study of areas of simple curves as will be shown in the following sections.

17.3 Circular Areas

To determine the area of a circle, we examine a polygon inscribed in the circle as shown in
Figure 17.4. The area of any triangle in the figure is given by A4 = 1

2sd, and the area of the
entire polygon is given by nA4, because there are n such triangles. As n increases without
limit, we find that ns approaches S = 2πr and d approaches r. Therefore, the area of the
polygon approaches 1

2Sr or πr2. Accordingly, the area, A, of a circle is given by A = πr2,
where r is the radius of the circle.

Example. Find the area of a circle centered at (0, 0) with a radius of 2.

Solution. The Descarta2D function Area2D[circle] returns the area of a circle.

In[2]: Area2D@Circle2D@80, 0<, 2DD

Out[2] 4 π

17.3 Circular Areas 241

s
q

r

d

Figure 17.4: Circle approximated by an inscribed polygon.

The area of an arc sector of radius r as shown in Figure 17.5 may be determined as the
ratio of the angular span of the arc to the span of a complete circle (2π radians) times the
area of the circle. Since the area of a complete circle is πr2, the area of an arc sector is given
by

A =
r2

2
(θ2 − θ1).

Example. Find the area of the sector defined by the arc centered at (0, 0) with
radius 2 and start and end angles of π/4 and 3π/4.

x

y

r q

x

y

r q

Figure 17.5: Areas of an arc sector and segment.

242 Chapter 17 Area

Solution. The Descarta2D function SectorArea2D[circle, {θ1, θ2}] returns the
area of the sector defined by an arc of a circle.

In[3]: SectorArea2D@Circle2D@80, 0<, 2D, 8Piê4, 3 Piê4<D

Out[3] π

The area of an arc segment, which is the area bounded by the arc and the chord connecting
the end points of the arc as shown in Figure 17.5, is calculated as the difference of the areas
of the sector and the triangle whose vertices are the end points and the center. Since the area
of this triangle is A = 1

2r2 sin θ, the formula for the area of the arc segment is

A = πr2

(
θ

2π

)
− r2

2
sin θ

=
r2

2
(θ − sin θ)

where θ = θ2 − θ1 is the span of the arc, and r is the radius of the arc.

Example. Find the area of the segment defined by the arc centered at (0, 0) with
radius 2 and start and end angles of π/4 and 3π/4.

Solution. The Descarta2D function Area2D[arc] returns the area of the segment
defined by an arc and its chord.

In[4]: Area2D@Arc2D@Point2D@80, 0<D, 2, 8Piê4, 3 Piê4<DD êê Simplify

Out[4] −2 + π

Notice that if the angle θ is greater than π radians, the formula is still valid because sin θ will
be negative and the area of the central triangle will be added to the sector area producing the
correct result.

17.4 Elliptic Areas

The area of an ellipse depends only on the lengths of its semi-major and semi-minor axes,
and is independent of its position and orientation. It is shown in calculus that integrating the
equation y = f(x) of the curve between limits on the x-axis produces the area between the
curve and the x-axis. The equation of an ellipse in standard position is given by

x2

a2
+

y2

b2
= 1.

17.4 Elliptic Areas 243

Solving for y yields y = b
√

1 − x2/a2 for the upper portion of the ellipse. The following steps
outline the integration process that is used to compute the area:

A =
∫ a

−a

y dx

=
∫ a

−a

b
√

1 − x2/a2 dx

=
πab

2
.

Therefore, the area of the complete ellipse (both the upper and lower portions) is given by

A = πab

where a and b are the lengths of the semi-major and semi-minor axes, respectively, of the
ellipse.

Example. Calculate the area of the ellipse
x2

4
+

y2

9
= 1.

Solution. The Descarta2D function Area2D[ellipse] returns the area of an ellipse.

In[5]: Area2D@Ellipse2D@80, 0<, 3, 2, Piê2DD

Out[5] 6 π

Consider an ellipse in standard position with the equation

x2

a2
+

y2

b2
= 1

as shown in Figure 17.6. The area, A, of a segment of the ellipse bounded by the chord
defined from (a, 0) and a general point on the ellipse, (a cos θ, b sin θ), can be determined by
subtracting the area under the chord from the area under the ellipse between limits on the
x-axis. The equation of the line containing the chord is given by

y2 =
b sin θ(a − x)
a(1 − cos θ)

as can be determined from the two-point form of a line. The area of the segment is determined
using integration as follows:

A =
∫ a

a cos θ

(y1 − y2) dx

=
∫ a

a cos θ

(
b
√

1 − x2/a2 − b sin θ(a − x)
a(1 − cos θ)

)
dx

=
ab

4
(
π − 2 sin−1(cos θ) − 2 sin θ

)
.

244 Chapter 17 Area

x

y

r q

x

y

r q

Figure 17.6: Areas of an elliptic segment and sector.

The formula is valid for angles θ in the range 0 ≤ θ ≤ π. Since all segments can be computed
as sums or differences of such segments and simple triangles, the area of all ellipse segments
can be determined using this basic formula.

Example. Find the area of the ellipse segment from π/6 to π/3 radians for an
ellipse with semi-major axis length of 3 and semi-minor axis length of 1.

Solution. The function SegmentArea2D[ellipse, {t1, t2}] returns the area of an
ellipse segment defined by two parameter values.

In[6]: SegmentArea2D@Ellipse2D@80, 0<, 3, 1, 0D, 8Piê6, Piê3<D

Out[6] −
3
�����
4

+
π
�����
4

The area of an ellipse sector, as illustrated in Figure 17.6, can be found by adding the area
of the triangle formed by the sector sides and the chord of the sector. The area of the triangle
is given by

A4 =
bh

2
=

ab sin θ

2
and the resulting formula for the area of the sector is given by

A =
ab

4
(
π − 2 sin−1(cos θ)

)
.

Example. Find the area of the ellipse sector from π/6 to π/3 radians for an ellipse
with semi-major axis length of 3 and semi-minor axis length of 1.

17.5 Hyperbolic Areas 245

x

y

O

P1

P2

x

y

O

P1

P2

Figure 17.7: Areas of a hyperbolic segment and sector.

Solution. The Descarta2D function SectorArea2D[ellipse, {t1, t2}] returns the
area of an ellipse sector defined by two parameter values.

In[7]: SectorArea2D@Ellipse2D@80, 0<, 3, 1, 0D, 8Piê6, Piê3<D

Out[7]
π
�����
4

17.5 Hyperbolic Areas

Using the integration techniques demonstrated previously for ellipses the areas associated with
hyperbolas can also be computed. Consider the hyperbolic segment as shown in Figure 17.7.
In Descarta2D the parametric equations for the hyperbola are

x = a cosh(st) and y = b sinh(st)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s = cosh−1(e), and e is the eccentricity of the hyperbola. The exploration areahyp.nb uses
calculus to derive the formula for the area of the segment, which is given by

Asegment =
ab

2
(sinh(s(t2 − t1)) − s(t2 − t1)).

Interestingly, the area does not depend on the values of t1 and t2 directly, but only upon the
difference between the two parameters.

Since we know the coordinates of the vertex points of the triangle OP1P2 we can compute
its area directly as

A4 =
ab

2
sinh(s(t2 − t1)).

246 Chapter 17 Area

The area of a hyperbolic sector is the difference between the area of the triangle OP1P2

and the hyperbolic segment as illustrated in Figure 17.7. The area of the hyperbolic sector is
given by

Asector = A4 − Asegment

=
abs

2
(t2 − t1).

Example. Find the area of the hyperbolic segment between parameters t1 = −2
and t2 = 1 for a hyperbola centered at the origin with a = 1 and b = 1/2 in
standard position. Also, find the area of the associated hyperbolic sector.

Solution. The Descarta2D function SegmentArea2D[hyperbola, {t1, t2}] returns
the area of a segment of a hyperbola defined by two parameters. The function
SectorArea2D[hyperbola, {t1, t2}] returns the area of the associated hyperbolic
sector.
In[8]: h1 = Hyperbola2D@80, 0<, 1, 1ê2, 0D;

8SegmentArea2D@h1, 8−2, 1<D,
SectorArea2D@h1, 8−2, 1<D< êê N

Out[8] 80.139091, 0.360909<

17.6 Parabolic Areas

Consider a parabola in standard position with vertex at (0, 0), axis parallel to the x-axis,
focal length of f , and opening to the left as shown in Figure 17.8. Such a parabola can be
represented with the set of parametric equations

x = ft2 and y = 2ft.

The area of the chordal area defined by the parameters t1 and t2 can be determined by
subtracting the area between the parabola and the y-axis from the area between the chord
and the y-axis. The end points of the chord are (ft21, 2ft1) and (ft22, 2ft2), and the line
through these two points is given by

x =
(t1 + t2)y − 2ft1t2

2
.

The appropriate integral is then given by

A =
∫ y2

y1

(x2 − x1) dy

=
∫ y2

y1

(
(t1 + t2)y − 2ft1t2

2
− y2

4f

)
dy.

17.6 Parabolic Areas 247

x

y

P1

P2

FH f , 0L

Figure 17.8: Area of a parabolic segment.

Performing the integration and making the substitutions y1 = 2ft1 and y2 = 2ft2 yields the
formula for the area, A, of a parabolic segment to be

A =
f2(t2 − t1)3

3

where t1 and t2 are the parameters of the end points of the chord defining the segment, and
t1 < t2 for positive areas. A parabola has no sector area definition because a parabola does
not have a center point.

Example. Find the area between the parabola y2 = x/2 rotated π/2 radians
about its vertex and its focal chord.

Solution. The function SegmentArea2D[parabola, {t1, t2}] returns the area of a
parabolic segment defined by parameters t1 and t2. In Descarta2D the end points
of the focal chord occur at parameter values t1 = −1 and t2 = 1.

In[9]: p1 = Parabola2D@80, 0<, 1ê2, Piê2D;
SegmentArea2D@p1, 8−1, 1<D

Out[9]
2
�����
3

Descarta2D Hint. Notice that the parabola’s position and orientation have no
bearing on the area of a parabolic segment. The area depends solely on the focal
length and the chord position.

248 Chapter 17 Area

17.7 Conic Arc Area

The area between a conic arc and its chord can also be computed by summing infinitesimal
rectangles through the use of calculus. Consider, for example, a conic arc whose start point
is (0, 0), end point is (d, 0), apex point is (a, b) and projective discriminant is ρ. Intuitively,
since the chord of this conic arc is coincident with the x-axis we can imagine subdividing the
area of the conic arc into a large number of horizontal rectangles of very small height. By
summing the areas of these small rectangles we can provide an approximation to the area of
the conic arc. The methods of integral calculus accomplish this summing process, and in the
limit as the height of the rectangles approaches zero, the area approaches the true area of the
conic arc segment. The details of this process are captured in the exploration caarea1.nb.
The area of the conic arc segment is found to be

A =
bdρ

2r3

(
ρr + (−1 + ρ)2 loge

(
1 − ρ

ρ + r

))

where r =
√−1 + 2ρ (assuming b > 0 and d > 0). Notice that the abscissa, a, of the apex

point has no bearing on the area of the segment bounded by the conic arc and its chord.
If the conic arc is a parabola, then ρ = 1

2 and the formula for the area given above is
invalid. The formula for a parabola is much simpler and is given by

A =
bd

3

as shown in the exploration caarea2.nb.
This process can be generalized to find the segment area of any conic arc. Notice that the

position of the conic arc in the plane has no bearing on its chordal area. Therefore, we can
translate the start point to (0, 0) and rotate the conic so that the end point is on the x-axis.

Example. Find the area between the conic arc with start point (1, 2), end point
(5, 0), apex point (3, 4) and ρ = 0.75 and its chord.

Solution. The Descarta2D function Area2D[cnarc] computes the area between a
conic arc and its chord.

In[10]: Area2D@ConicArc2D@81, 2<, 83, 4<, 85, 0<, 0.75DD êê N

Out[10] 5.34774

17.8 Summary of Area Functions 249

Table 17.1: Descarta2D area functions.

Object Area2D SectorArea2D SegmentArea2D

arc yes no no
circle yes yes yes

conic arc yes no no
ellipse yes yes yes

hyperbola no yes yes
parabola no no yes
triangle yes no no

17.8 Summary of Area Functions

Table 17.1 summarizes the area functions provided by Descarta2D.

Area2D[object] returns the area enclosed by a closed object (circle, ellipse or triangle).

SectorArea2D[object,{t1, t2}] returns the area of a sector defined by two parameters.

SegmentArea2D[object,{t1, t2}] returns the area between a chord and the curve.

17.9 Explorations

Heron’s Formula. .heron.nb
Show that the area, K, of a triangle 4ABC is given by

K =
√

s(s − a)(s − b)(s − c),

where the semi-perimeter s = (a + b + c)/2, and a, b and c are the lengths of the sides.
—–
Area of Triangle Configurations. .triarea.nb

V1 V2

V3

a1 a2

a3

s1s2

s3

250 Chapter 17 Area

For the triangle illustrated in the figure, show that the area, A1, associated with the AAS
(angle-angle-side) configuration whose parameters are a1, a2 and s1 is given by

A1 =
s2
1 sin(a2) sin(a1 + a2)

2 sin(a1)
.

Show that the area, A2, associated with the ASA (angle-side-angle) configuration whose pa-
rameters are a1, s3 and a2 is given by

A2 =
s2
3 sin(a1) sin(a2)
2 sin(a1 + a2)

.

Show that the area, A3, associated with the SAS (side-angle-side) configuration whose para-
meters are s1, a2 and s3 is given by

A3 =
s1s3 sin(a2)

2
.

—–
Area of Triangle Bounded by Lines. triarlns.nb

Show that the area of the triangle bounded by the lines

y = m1x + c1, y = m2x + c2 and x = 0

is given by

A =
1
2

(c1 − c2)2√
(m1 − m2)2

.

—–
Areas Related to Hyperbolas. .hyparea.nb

Referring to Figure 17.7, use calculus to verify that the areas between two parameters t1
and t2 of a segment and a sector of a hyperbola are given by

Asegment =
ab

2
(sinh(s(t2 − t1)) − s(t2 − t1))

Asector =
abs

2
(t2 − t1)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s = cosh−1(e), and e is the eccentricity of the hyperbola (assuming the parameterization
Descarta2D uses for a hyperbola).
—–
Area of a Conic Arc (General) .caarea1.nb

For the conic arc whose control points are (0, 0), (a, b) and (d, 0), show that the area
between the conic arc and its chord is given by

A =
bdρ

2r3

(
ρr + (−1 + ρ)2 loge

(
1 − ρ

ρ + r

))

17.9 Explorations 251

where r =
√−1 + 2ρ (assuming b > 0 and d > 0).

—–
Area of a Conic Arc (Parabola) .caarea2.nb

Show that the area between a conic arc whose projective discriminant is ρ = 1
2 and its

chord is given by

A =
bd

3
when the control points are (0, 0), (a, b) and (d, 0).
—–
One-Third of a Circle’s Area . circarea.nb

Show that the angle, θ, subtended by a segment of a circle whose area is one-third the area
of the full circle is the root of the equation

π

3
=

θ − sin θ

2
.

Also, show that θ is within 1/2 percent of 5π/6 radians.
—–
Equal Areas Point .eqarea.nb

Given 4ABC with vertices A(xA, yA), B(xB , yB) and C(xC , yC) show that there are four
positions of a point Pn(x, y) such that 4APB, 4APC and 4BPC have equal areas. The
coordinates of Pn are given by

P0(1
3 (xA + xB + xC), 1

3 (yA + yB + yC))

P1(−xA + xB + xC ,−yA + yB + yC)

P2(+xA − xB + xC , +yA − yB + yC)

P3(+xA + xB − xC , +yA + yB − yC).

P0 is the centroid of 4ABC and 4P1P2P3. 4ABC connects the midpoints of the sides of
4P1P2P3.
—–
Area of a Tetrahedron’s Base . tetra.nb

A tetrahedron is a three-dimensional geometric object bounded by four triangular faces.
Given a tetrahedron with vertices O(0, 0, 0), A(a, 0, 0), B(0, b, 0) and C(0, 0, c) show that the
areas of the triangular faces are related by the equation

(AABC)2 = (AAOB)2 + (AAOC)2 + (ABOC)2

where Axyz is the area of the triangle whose vertices are x, y and z. Note the similarity to
the Pythagorean Theorem for right triangles.
—–

Part V

Tangent Curves

Chapter 18

Tangent Lines

Let two points, P and Q, be taken on any locally smooth convex curve, and let the point Q
move along the curve nearer and nearer to the point P ; then the limiting position of the line
PQ, as Q moves up to and ultimately coincides with P , is called the tangent line to the curve
at point P . The line through P perpendicular to the tangent line is called the normal to the
curve at the point P .

18.1 Lines Tangent to a Circle

Tangent Through a Point On a Circle

Let (x − h)2 + (y − k)2 = r2 be a circle and P1(x1, y1) a point on it as shown in Figure 18.1.
We desire to find the equation of the tangent line at P1. Since the slope of the line joining
the center (h, k) and P1 is (y1 − k)/(x1 − h), the slope of the line tangent to the circle will be
the negative reciprocal −(x1 − h)/(y1 − k) and the equation of the line tangent to the circle
at point P1 becomes (point–slope form)

y − y1 = − (x1 − h)
(y1 − k)

(x − x1). (18.1)

Since the point P1 is on the circle we also have the equation

(x1 − h)2 + (y1 − k)2 = r2. (18.2)

Adding Equation (18.1) to Equation (18.2) results in

(x1 − h)x + (y1 − k)y + (h2 + k2 − r2 − hx1 − ky1) = 0

or, in a factored form that is easier to remember,

(x − h)(x1 − h) + (y − k)(y1 − k) = r2. (18.3)

255

256 Chapter 18 Tangent Lines

x

y

CHh, kL

P1Hx1, y1L

Figure 18.1: Line tangent to a circle.

If the circle is centered at the origin, x2 + y2 = r2, the equation of the tangent line at P1 is

x1x + y1y = r2.

If the circle is given in general form,

x2 + y2 + ax + by + c = 0

then the tangent line at P1 is

xx1 + yy1 +
a

2
(x + x1) +

b

2
(y + y1) + c = 0.

Example. Confirm that the point (5
2 , 1 +

√
3

2) is on the circle

(x − 2)2 + (y − 1)2 = 1

and find the tangent line at that point.

Solution. The function IsOn2D[point, circle] returns True if the point is on the
circle; otherwise, it returns False. TangentLines2D[point,circle] returns a list
of lines through the point and tangent to the circle.

In[1]: IsOn2D@p1 = Point2D@85ê2, 1 + Sqrt@3D ê2<D,
c1 = Circle2D@82, 1<, 1DD

Out[1] True

In[2]: lns = TangentLines2D@p1, c1D êê Simplify

Out[2] 9Line2DA2, 2
è!!!
3 , −2 I4 +

è!!!
3 ME=

18.1 Lines Tangent to a Circle 257

x

y

r

q D

Q1

Q2

d

è!!!!!!!!!!!!!
d2 - r2

Figure 18.2: Lines through a point, tangent to a circle at the origin.

In[3]: Sketch2D@8p1, c1, lns<, PlotRange −> 880, 4<, 8−1, 3<<D;

0 1 2 3 4 5
-1

0

1

2

3

4

Tangents Through a Point Outside a Circle

If the point P1(x1, y1) is outside of the circle (x − h)2 + (y − k)2 = r2 there will be two
tangent lines from P1 to the circle. Consider the circle x2 + y2 = r2 and the point D(d, 0) in a
convenient position as shown in Figure 18.2. Clearly, the two tangent lines can be determined
directly from the normal form of a line as

x cos θ + y sin θ − r = 0

where

cos θ =
r

d
and sin θ = ±

√
d2 − r2

d
.

If the point D is rotated by an angle α about the origin, as shown in Figure 18.3, it will have
new coordinates P0(x0, y0) and the tangent lines will also be rotated by α resulting in the two
lines

x cos(α + θ) + y sin(α + θ) − r = 0

258 Chapter 18 Tangent Lines

x

y

r

Q1

Q2

P0Hx0, y0L

q

a

Figure 18.3: Lines through a rotated point, tangent to a circle at the origin.

where
cosα =

x0

d
and sinα =

y0

d
.

Using the standard trigonometric formulas for the sine and cosine of the sum of two angles
yields

cos(α + θ) = cosα cos θ − sin α sin θ

=
x0

d

r

d
− y0

d

±√
d2 − r2

d

=
1
d2

(
x0r ∓ y0

√
d2 − r2

)
and

sin(α + θ) = cosα sin θ + cos θ sin α

=
x0

d

±√
d2 − r2

d
+

r

d

y0

d

=
1
d2

(
y0r ± x0

√
d2 − r2

)
.

As a final adjustment we translate the geometry so that the center of the circle may be a
general location (h, k) as shown in Figure 18.4. Translating the tangent lines from (0, 0) to
(h, k) using x0 = x1 + h and y0 = y1 + k yields

x cos(α + θ) + y sin(α + θ) − (r + h cos(α + θ) + k sin(α + θ)) = 0

where cos(α + θ) and sin(α + θ) are functions of (x1, y1), (h, k), and r and d is the distance
between (h, k) and (x1, y1). Notice that after the substitutions are performed no trigonometric
functions are present in the formulas.

18.1 Lines Tangent to a Circle 259

x

y

r

Q1

Q2

CHh, kL

P1Hx1, y1L

Figure 18.4: Lines through a general point, tangent to any circle.

Tangent Contact Points

Given a circle (x − h)2 + (y − k)2 = r2 and a point P1(x1, y1) outside the circle, as shown in
Figure 18.4, we desire the coordinates of the points of contact between the circle and the two
tangent lines. From the previous section it is clear that when the geometry is in the standard
position the coordinates of the contact points are given by

Q1,2(r cos θ, r sin θ)

where

cos θ =
r

d
and sin θ = ±

√
d2 − r2

d
.

If the geometry is rotated and translated to a general position the coordinates of the contact
points are given by

Q1,2 (h + r cos(α + θ), k + r sin(α + θ))

where cos(α + θ) and sin(α + θ) have the same formulas as in the previous section.

Example. Find the lines passing through the point (3,−1) and tangent to the
circle (x + 1)2 + (y − 1)2 = 4. Find the coordinates of the points of tangency and
plot.

Solution. The function TangentLines2D[point, circle] returns a list of lines
through the point and tangent to the circle. TangentPoints2D[point,circle] re-
turns a list of the points of tangency.

260 Chapter 18 Tangent Lines

In[4]: p1 = Point2D@83, −1<D; c1 = Circle2D@8−1, 1<, 2D;
objs = 8TangentLines2D@p1, c1D, TangentPoints2D@p1, c1D<

Out[4] 98Line2D@0, −20, −20D, Line2D@16, 12, −36D<,

9Point2D@8−1, −1<D, Point2DA9 3
�����
5
,

11
���������
5

=E==

In[5]: Sketch2D@8p1, c1, objs<D;

-4 -2 0 2 4

-2

0

2

4

Tangent Line Segment Length

To find the length of the tangent line segment drawn from a given point, P1(x1, y1), to a circle
(x − h)2 + (y − k)2 = r2 without computing the point of tangency, the following method can
be used. Since 4OP1P in Figure 18.2 is a right triangle the distance D between P and P1 is
given by

D2 = d2 − r2

= (x1 − h)2 + (y1 − k)2 − r2.

Therefore the length of the tangent line segment (squared) is found by substituting the coor-
dinates of the point into the equation of the circle.

Example. Find the length of the tangent line segment from the point (4, 3) to
the circle (x + 1)2 + (y + 2)2 = 4.

Solution. Descarta2D does not have a built-in function to compute the length of a
tangent line segment. However, a few built-in functions can be combined to apply
the technique described in this section. The function Quadratic2D[circle] returns
the quadratic equation of a circle. Polynomial2D[quad,{x, y}] substitutes the
coordinates (x, y) into the quadratic equation.

18.1 Lines Tangent to a Circle 261

x

y

L

L¢

L¢

L¢¢

L¢¢

Figure 18.5: Lines tangent to a circle.

In[6]: c1 = Circle2D@8−1, −2<, 2D;
Sqrt@Polynomial2D@Quadratic2D@c1D, 84, 3<DD

Out[6]
è!!!!!
46

Of course this gives the same result as constructing the tangent points and finding
the distance directly.

In[7]: Distance2D@TangentPoints2D@Point2D@84, 3<D, c1D@@1DD,
Point2D@84, 3<DD êê Simplify

Out[7]
è!!!!!
46

Tangents Parallel to a Line

The equations of the two lines parallel to the line L ≡ Ax + By + C = 0 and tangent to the
circle (x − h)2 + (y − k)2 = r2 as shown in Figure 18.5 are given by

L′ ≡ Ax + By −
(
Ah + Bk ± r

√
A2 + B2

)
= 0.

Notice that the constant coefficient C of the line is not involved in the equations of the tangent
lines since only the slope is involved in establishing the parallel condition. The formula is
derived by constructing a line Lc that passes through the center (h, k) of the circle with slope
m = −A/B. The two tangent lines are then determined by offsetting Lc a distance ±r. Using
equations the derivation is

L ≡ Ax + By + C = 0

262 Chapter 18 Tangent Lines

Lc ≡ Ax + By − (Ah + Bk) = 0
ax + by − (ah + bk) = 0

L′ ≡ ax + by − (ah + bk ± r) = 0

Ax + By − (Ah + Bk ± r
√

A2 + B2) = 0.

where

a =
A√

A2 + B2
and b =

b√
A2 + B2

are the normalized coefficients of the line.

Tangents Perpendicular to a Line

To find the equations of the two lines, L′′, perpendicular to the line

Ax + By + C = 0

and tangent to the circle
(x − h)2 + (y − k)2 = r2

as shown in Figure 18.5, simply use the line Bx − Ay + C = 0 (which is perpendicular to
the given line) and apply the formula from the previous section. Once again the value of the
constant coefficient C has no bearing on the equations of the resulting lines.

Example. Find the lines tangent to the circle (x− 3)2 + (y− 2)2 = 1 and parallel
and perpendicular to the line 2x + 3y − 1 = 0 and plot.

Solution. The Descarta2D function TangentLines2D[line, circle, Parallel2D]
returns a list of lines parallel to the line and tangent to the circle. The function
TangentLines2D[line, circle, Perpendicular2D] returns a list of lines perpendic-
ular to the line and tangent to the circle.

In[8]: l1 = Line2D@2, 3, −1D; c1 = Circle2D@83, 2<, 1D;
lns = 8TangentLines2D@l1, c1, Parallel2DD,

TangentLines2D@l1, c1, Perpendicular2DD<

Out[8] 99Line2DA2, 3, −12 −
è!!!!!
13 E, Line2DA2, 3, −12 +

è!!!!!
13 E=,

9Line2DA−3, 2, 5 −
è!!!!!
13 E, Line2DA−3, 2, 5 +

è!!!!!
13 E==

In[9]: Sketch2D@8l1, c1, lns<, PlotRange −> 88−2, 5<, 8−2, 5<<D;

18.1 Lines Tangent to a Circle 263

-10 1 2 3 4 5
-2
-1
0
1
2
3
4
5

Descarta2D Hint. TangentLines2D[line,circle] returns the same result as

TangentLines2D[line, circle, Parallel2D]

because specifying the keyword Parallel2D is optional.

Example. Using the geometric objects from the previous example, find the points
of contact of the four tangent lines.

Solution. The function Point2D[line, circle] will return the point of contact if
the line is tangent to the circle.

In[10]: pts = Map@HPoint2D@#, Quadratic2D@c1DDL&,
Flatten@lnsDD êê Simplify

Out[10] 9Point2DA93 +
2

���������������è!!!!!13
, 2 +

3
���������������è!!!!!13

=E, Point2DA93 −
2

���������������è!!!!!13
, 2 −

3
���������������è!!!!!13

=E,

Point2DA93 −
3

���������������è!!!!!13
, 2 +

2
���������������è!!!!!13

=E, Point2DA93 +
3

���������������è!!!!!13
, 2 −

2
���������������è!!!!!13

=E=

In[11]: Sketch2D@8l1, c1, lns, pts<,
PlotRange −> 88−2, 5<, 8−2, 5<<,
CurveLength2D −> 20D;

-10 1 2 3 4 5
-2
-1
0
1
2
3
4
5

264 Chapter 18 Tangent Lines

x

y

r1

r2

L

d

Figure 18.6: Lines tangent to two circles.

Tangents to Two Circles

Suppose C1 and C2 are two circles and we wish to determine the equations of the lines tangent
to both circles. We proceed by finding the equations of tangent lines when the circles are in
a special position and then we transform the result to a general position.

Let C1 be a circle, with radius r1, centered at the origin with equation x2 + y2 = r2
1 , and

let C2, with radius r2, be positioned so that its center is on the +x-axis a distance d from the
origin with equation (x− d)2 + y2 = r2

2 . Since C1 is centered at the origin any line tangent to
C1 can be written in the form L ≡ Ax + By + 1 = 0 because no line tangent to C1 can pass
through the origin.

Let d1 and d2 be the distances from the center of C1 and C2 to L, respectively. If L is
tangent to the circles then d1 and d2 must equal the radii of the circles, yielding

rn =
Ahn + Bkn + 1√

A2 + B2

r2
n =

(Ahn + Bkn + 1)2

A2 + B2

r2
n(A2 + B2) = (Ahn + Bkn + 1)

where h1 = 0, k1 = 0, h2 = d and k2 = 0. Simplifying, we have the two equations

r2
1(A

2 + B2) = 1
r2
2(A

2 + B2) = (1 + Ad)2.

Solving these two equations for A and B produces four pairs of solutions given by

A = r1 + sAr2

B = sB

√
d2 − (r1 + sAr2)2

18.1 Lines Tangent to a Circle 265

where the sign constants sA ={ − 1,−1, 1, 1} and sB ={1,−1, 1,−1} take on the values ±1
in pairs as shown in the lists. The first pair of solutions gives the external, or direct, tangents
and the second pair gives the internal, or transverse, tangents.

We now use the special solution given above to find the tangent lines when the circles are
in a general position. Let C1 ≡ (x−h1)2 +(y− k1)2 = r2

1 and C2 ≡ (x−h2)2 +(y− k2)2 = r2
2

be the equations of the two circles. To attain a general positioning we first rotate the lines
given in the special solution by an angle θ where sin θ = (h1 − h2)/d and cos θ = (k1 − k2)/d.
After the rotation we translate the lines from (0, 0) to (h1, k1). Applying these transformations
yields the four lines

(AH − BK)x + (BH + AK)y + d2r1 − h1(AH − BK) − k1(BH + AK) = 0

where
H = h1 − h2 and K = k1 − k2

and A and B take the values given as before.

Example. Find the four lines tangent to the circles (x − 3)2 + y2 = 4 and
(x + 3)2 + y2 = 4. Sketch the external tangents and the internal tangents in
separate plots.

Solution. The Descarta2D function TangentLines2D[circle, circle] returns a list
of lines tangent to two circles. The first two lines in the list are the external
tangents (if returned); the third and fourth lines in the list (if returned) are the
internal tangents.

In[12]: 8l1, l2, l3, l4< =

TangentLines2D@c1 = Circle2D@83, 0<, 2D,
c2 = Circle2D@8−3, 0<, 2DD

Out[12] 9Line2D@0, −36, 72D, Line2D@0, 36, 72D, Line2DA24, −12
è!!!
5 , 0E,

Line2DA24, 12
è!!!
5 , 0E=

In[13]: Sketch2D@8c1, c2, l1, l2<, PlotRange −> 88−6, 6<, 8−3, 3<<D;
Sketch2D@8c1, c2, l3, l4<, PlotRange −> 88−6, 6<, 8−3, 3<<D;

-4 -2 0 2 4 6
-3
-2
-1
0
1
2
3

266 Chapter 18 Tangent Lines

-4 -2 0 2 4 6
-3
-2
-1
0
1
2
3

18.2 Lines Tangent to Conics

Tangent Through Point on Conic

Suppose we have the general equation of a conic curve given by

ax2 + bxy + cy2 + dx + ey + f = 0.

The equation of the chord joining any two points, P1(x1, y1) and P2(x2, y2), on the curve may
be written

a(x − x1)(x − x2) + b(x − x1)(y − y2) + c(y − y1)(y − y2)
= ax2 + bxy + cy2 + dx + ey + f

as the equation is clearly first-degree in x and y (the terms above first-degree cancel out), and
it is satisfied by the two points P1 and P2. Putting x1 = x2 and y1 = y2, we get the equation
of the tangent line

a(x − x1)2 + b(x − x1)(y − y1) + c(y − y1)2 = ax2 + bxy + cy2 + dx + ey + f ;

or, expanding,

2ax1x + b(x1y + y1x) + 2cy1y + dx + ey + f = ax2
1 + bx1y1 + cy2

1 .

Adding dx1 + ey1 + f1 to both sides will cause the right-hand side to vanish, because P1

satisfies the equation of the curve. Thus the equation of the tangent becomes

ax1x +
b

2
(x1y + y1x) + cy1y +

d

2
(x + x1) +

e

2
(y + y1) + f = 0. (18.4)

This equation is most easily remembered if we compare it with the equation of the curve
and notice that it is derived by replacing x2 and y2 with x1x and y1y, xy with 1

2 (x1y + y1x)
and x and y with 1

2 (x+ x1) and 1
2 (y + y1). Whether or not P1(x1, y1) is on the curve, the line

represented by Equation (18.4) is called the polar of P1 with respect to the curve, and P1 is
the pole of the line with respect to the curve.

18.2 Lines Tangent to Conics 267

Example. Find the line tangent to the parabola y2 = 4x at the point (4, 4).

Solution. The Descarta2D function Line2D[point, conic] returns the polar (line)
of a pole (point) with respect to a conic. If the point is on the conic, then the line
will be tangent to the conic.

In[14]: l1 = Line2D@p1 = Point2D@84, 4<D,
crv = Parabola2D@80, 0<, 1, 0DD

Out[14] Line2D@−4, 8, −16D

In[15]: Sketch2D@8p1, crv, l1<,
CurveLength2D −> 15,

PlotRange −> 88−1, 7<, 8−1, 5<<D;

0 1 2 3 4 5 6 7
-1
0
1
2
3
4
5

Pole Point and Point of Tangency

Given a line L ≡ px + qy + r = 0 and a conic

Q ≡ Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

we wish to determine the coordinates of the pole point, P1(x1, y1), of L with respect to
Q. The equation of the polar (line) of the pole (point) P1 is derived in general form from
Equation (18.4) and is given by

(2Ax1 + By1 + D)x + (Bx1 + 2Cy1 + E)y + (Dx1 + Ey1 + 2F) = 0.

If this line and line L are the same line, then the coefficients of the polar line must be equal to
some multiple of the coefficients of L yielding the following system of three linear equations
in three unknowns

kp = 2Ax1 + By1 + D

kq = Bx1 + 2Cy1 + E

kr = Dx1 + Ey1 + 2F.

268 Chapter 18 Tangent Lines

Solving theses equations for (x1, y1) and the constant k (k is ignored) gives

x1 =
Q1

Q12
and y1 =

Q2

Q12

where

Q1 = p(4CF − E2) + q(DE − 2BF) + r(BE − 2CD)
Q2 = p(DE − 2BF) + q(4AF − D2) + r(BD − 2AE)

Q12 = p(BE − 2CD) + q(BD − 2AE) + r(4AC − B2).

If the line L is tangent to Q, then (x1, y1) is the point of tangency; otherwise, (x1, y1) is the
pole of the polar L with respect to Q. If Q12 is zero, the coordinates of the pole are invalid.
This condition occurs when the polar L passes through the center of the conic.

Example. Show that the polar (line) found in the previous example corresponds
to the pole (point) of tangency.

Solution. The Descarta2D function Point2D[line, conic] returns the pole (point)
of a polar (line) with respect to a conic.

In[16]: Point2D@l1, crvD

Out[16] Point2D@84, 4<D

Line Tangent to a Conic Condition

To find the relationship between the coefficients of a line px + qy + r = 0 and a general conic
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 such that the line is tangent to the conic we note that
the two intersection points between the line and the conic must be coincident. This condition
is equivalent to

(4CF − E2)p2 + (4AF − D2)q2 + (4AC − B2)r2+
2(BD − 2AE)qr + 2(BE − 2CD)pr + 2(DE − 2BF)pq = 0.

The exploration lntancon.nb derives this equation.

Example. Find the value of c such that the line 2x + 5y + c = 0 is tangent to the
conic represented by 2x + xy − 4y2 − 2x − 3y + 1 = 0 and plot.

18.2 Lines Tangent to Conics 269

Solution. The Descarta2D function TangentEquation2D[line,quad] returns an
equation establishing the condition that a line be tangent to the conic represented
by the quadratic. Solve this equation for the unknown coefficient c.

In[17]: Clear@cD;
l1 = Line2D@2, 5, cD;
q1 = Quadratic2D@2, 1, −4, −2, −3, 1D;
eq1 = TangentEquation2D@l1, q1D

Out[17] 80 + 24 c − 33 c2 == 0

In[18]: ans = Solve@eq1, cD

Out[18] 99c →
4

���������
33

I3 −
è!!!!!!!!
174 M=, 9c →

4
���������
33

I3 +
è!!!!!!!!
174 M==

In[19]: Sketch2D@8Map@Hl1 ê. #L&, ansD, Loci2D@q1D<,
PlotRange −> 88−3, 3<, 8−2, 2<<D;

-2 -1 0 1 2 3
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

Polar of a Conic

As previously shown, if the point P1(x1, y1) is on the conic curve

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

the equation of the tangent line at P1 is

2Axx1 + B(xy1 + x1y) + 2Cyy1 + D(x + x1) + E(y + y1) + 2F = 0.

This equation expresses a relation between the coordinates (x, y) of any point on the tangent
line, and those of the point of contact (x1, y1). But the equation, being symmetrical with
respect to the coordinates (x, y) and (x1, y1), can be interpreted to represent the line passing
through the points of contact from (x1, y1) when (x1, y1) is not on the curve. Thus the polar,
which has the same equation as the tangent line, passes through the points of tangency (when
they are real) when the point is not on the curve.

Without proof we list the following theorems concerning poles and polars that refer to
Figure 18.7.

270 Chapter 18 Tangent Lines

P1

P2

L1

L2

P

Figure 18.7: Poles and polars.

• If the polar L1 of pole P1 passes through pole P2, then the polar L2 of P2 passes through
P1.

• If the polars of P1 and P2 intersect at point P , then P is the pole of the line P1P2.

• The polar of an exterior point P1 is the line joining the points of contact of the tangents
drawn from P1.

• The polar of an interior point P is the locus of the point of intersection of the tangents
at the extremities of every chord through P .

• The polar of a focus is the corresponding directrix.

• There is no (finite) polar of the center of a conic.

Example. Show the inverse functional relationship between the polar and the pole
(3,−1) with respect to the quadratic equation 2x2 + 3xy − y2 + 4x − 2y + 1 = 0.

Solution. The Descarta2D function Line2D[point, quad] returns the polar line
of the point with respect to the quadratic. The function Point2D[line, quad]
returns the pole (point) of the line with respect to the quadratic.

In[20]: l1 = Line2D@Point2D@83, −1<D,
q1 = Quadratic2D@2, 3, −1, 4, −2, 1DD

Out[20] Line2D@13, 9, 16D

In[21]: p1 = Point2D@l1, q1D

Out[21] Point2D@83, −1<D

18.2 Lines Tangent to Conics 271

Tangents Parallel to a Line

Once again, consider the conic curve whose equation is

Q ≡ Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

and the equation of the tangent line at the point P1(x1, y1) on the conic whose equation is

2Axx1 + B(xy1 + x1y) + 2Cyy1 + D(x + x1) + E(y + y1) + 2F = 0

or, in general form,

(2Ax1 + By1 + D)x + (Bx1 + 2Cy1 + E)y + (Dx1 + Ey1 + 2F) = 0.

To find the lines tangent to Q and parallel to a line L1 ≡ A1x + B1y + C1 = 0 the following
technique can be used. Let L2 ≡ A1x + B1y + C2 = 0 be the desired tangent line (the linear
coefficients A1 and B1 of L2 are set equal to the corresponding coefficients of L1 because the
lines are parallel). If L2 is to be tangent to Q, then the pole point P of L2 with respect to
Q must satisfy the equation for Q. The coordinates of P are functions in the variable C2,
therefore, solving this equation for C2 gives the coefficients of the desired tangent line(s) L2.
The Descarta2D function TangentLines2D[line,quad] implements this technique and can be
used to derive the specialized formulas for lines tangent to conics in standard position as
presented later in this chapter.

Lines Tangent to Two Conics

The equation relating the coefficients of a quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

to the coefficients of a line px + qy + r = 0 tangent to the quadratic given previously is

(4CF − E2)p2 + (4AF − D2)q2 + (4AC − B2)r2+
2(BD − 2AE)qr + 2(BE − 2CD)pr + 2(DE − 2BF)pq = 0.

If we select a suitable translation, we can insure that the tangent line does not pass through
the origin (i.e. r 6= 0) and the equation of the tangent line can be written in the form

p

r
x +

q

r
+

r

r
= p′x + q′y + 1 = 0.

Now, given two quadratic equations

Q1 ≡ A1x
2 + B1xy + C1y

2 + D1x + E1y + F1 = 0 and
Q2 ≡ A2x

2 + B2xy + C2y
2 + D2x + E2y + F2 = 0

and using Equation (18.2) we can find the coefficients p′ and q′ of the lines tangent to the
quadratic by solving two quadratic equations in two unknowns, resulting in equations for four
tangent lines. The formulas can be derived in symbolic form, but the results are too unwieldy
to be of practical use. Descarta2D, however, can be used to construct such tangents when the
problem involves numerical coefficients.

272 Chapter 18 Tangent Lines

Example. Find the four lines tangent to the ellipses

x2

16
+

y2

4
= 1 and

x2

4
+

y2

9
= 1.

Plot the ellipses and the tangent lines.

Solution. The Descarta2D function TangentLines2D[curve,curve] returns a list
of lines tangent to the two curves. The following result was computed using Mathe-
matica Version 3.0.1. Version 4.0 produces lines in the same positions with slightly
different coefficients.

In[22]: e1 = Ellipse2D@80, 0<, 4, 2, 0D;
e2 = Ellipse2D@80, 0<, 3, 2, Piê2D;
lns = TangentLines2D@e1, e2D êê N

Out[22] 8Line2D@−0.542326, −0.840168, −2.74398D,
Line2D@−0.542326, 0.840168, −2.74398D,
Line2D@0.542326, −0.840168, −2.74398D, Line2D@0.542326, 0.840168, −2.74398D<

In[23]: Sketch2D@8e1, e2, lns<D;

-4 -2 0 2 4

-4

-2

0

2

4

Line Segments Tangent to Two Conics

Given a line tangent to a conic, the tangent point is the pole point of the line with respect to
the conic. Using this relationship the line segments connecting the points of tangency can be
determined as illustrated in the next example.

Example. Using the geometric objects from the previous example, find the line
segments connecting the contact points of the tangent lines.

18.3 Lines Tangent to Standard Conics 273

Solution. Use the function TangentSegments2D[curve,curve] to construct a list
of line segments connecting the contact points of the lines tangent to the two curves.
The following result was computed using Mathematica Version 3.0.1. Version 4.0
produces the same line segments, but in a different order.

In[24]: lnSegs = TangentSegments2D@e1, e2D êê N

Out[24] 8Segment2D@8−3.16228, −1.22474<, 8−0.790569, −2.75568<D,
Segment2D@8−3.16228, 1.22474<, 8−0.790569, 2.75568<D,
Segment2D@83.16228, −1.22474<, 80.790569, −2.75568<D,
Segment2D@83.16228, 1.22474<, 80.790569, 2.75568<D<

In[25]: Sketch2D@8e1, e2, lnSegs<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

18.3 Lines Tangent to Standard Conics

Lines that are tangent to conics in standard position have particularly simple forms. This sec-
tion summarizes the equations for these tangent lines for the parabola, ellipse and hyperbola.

Tangents to a Parabola

A line that is parallel to the axis of a parabola intersects the parabola in only one (finite)
point; all other lines will cut the parabola in two points real and distinct, real and coincident,
or complex. Any line which meets a parabola in two coincident points is a tangent line.
Table 18.1 provides formulas for the line tangent to a parabola in standard form at a point
P1(x1, y1). Table 18.2 provides the formulas for tangents to a parabola in standard form with
a given slope m.

Example. Find the lines through the point (−1,−1) that are tangent to the
parabola (y + 1)2 = 2(x − 1) and plot.

274 Chapter 18 Tangent Lines

Table 18.1: Tangents to a parabola at a point.

Parabola Equation Tangent at P1(x1, y1)

y2 = 4fx yy1 = 2f(x + x1)

x2 = 4fy xx1 = 2f(y + y1)

(y − k)2 = 4f(x − h) (y − k)(y1 − k) = 2f(x + x1 − 2h)

(x − h)2 = 4f(y − k) (x − h)(x1 − h) = 2f(y + y1 − 2k)

Solution. The function TangentLines2D[point, curve] returns a list of the lines
through the point and tangent to the curve. The function Point2D[line, curve]
will return the point of tangency for each tangent line.

In[26]: Clear@x, yD;
p1 = Point2D@8−1, −1<D;
crv1 = First@Loci2D@Quadratic2D@Hy + 1L^2 == 2 Hx − 1L, 8x, y<DDD;
lns = TangentLines2D@p1, crv1D

Out[26] 8Line2D@2, 4, 6D, Line2D@−2, 4, 2D<

In[27]: Sketch2D@8p1, crv1, lns, Map@Point2D@#, crv1D&, lnsD<D;

-2-1 0 1 2 3 4 5
-4
-3
-2
-1
0
1
2

Tangents to an Ellipse

A line that intersects an ellipse in two coincident points is a tangent line. As in the case
of the circle, but unlike that of the parabola, there will be two tangents with a given slope.
Table 18.3 provides formulas for the line tangent to an ellipse in standard form at a point
P1(x1, y1). In the formulas a is the length of the semi-major axis of the ellipse and b is the
length of the semi-minor axis. Table 18.4 provides the formulas for tangents to an ellipse in
standard form with a given slope m.

18.3 Lines Tangent to Standard Conics 275

Table 18.2: Tangents to a parabola with slope m.

Parabola Equation Tangent with Slope m

y2 = 4fx y = mx + f/m

x2 = 4fy y = mx − fm2

(y − k)2 = 4f(x − h) y − k = m(x − h) + f/m

(x − h)2 = 4f(y − k) y − k = m(x − h) + fm2

Example. Find the lines tangent to the ellipse

(x − 1)2

9
+ y2 = 1

rotated 45◦ counter-clockwise about its center point and passing through the point
(4,−1) and plot.

Solution. The function TangentLines2D[point, curve] returns a list of lines
through the point tangent to the curve. Point2D[line, curve] will return the
tangent point of the line with respect to the curve.

In[28]: p1 = Point2D@84, −1<D;
e1 = Ellipse2D@81, 0<, 3, 1, 45 DegreeD êê N;

lns = TangentLines2D@p1, e1D êê N

Out[28] 8Line2D@1.19166, −4.48728, −9.25392D, Line2D@−2.94842, −0.782995, 11.0107D<

In[29]: Sketch2D@8p1, e1, lns, Map@Point2D@#, e1D&, lnsD<D;

-4 -2 0 2 4
-4

-2

0

2

4

6

276 Chapter 18 Tangent Lines

Table 18.3: Tangents to an ellipse at a point.

Ellipse Equation Tangent at P1(x1, y1)

x2

a2
+

y2

b2
= 1

xx1

a2
+

yy1

b2
= 1

(x − h)2

a2
+

(y − k)2

b2
= 1

(x − h)(x1 − h)
a2

+
(y − k)(y − k1)

b2
= 1

x2

b2
+

y2

a2
= 1

xx1

b2
+

yy1

a2
= 1

(x − h)2

b2
+

(y − k)2

a2
= 1

(x − h)(x1 − h)
b2

+
(y − k)(y − k1)

a2
= 1

Table 18.4: Tangents to an ellipse with slope m.

Ellipse Equation Tangent with Slope m

x2

a2
+

y2

b2
= 1 y = mx ±√

a2m2 + b2

(x − h)2

a2
+

(y − k)2

b2
= 1 y − k = m(x − h) ±√

a2m2 + b2

x2

b2
+

y2

a2
= 1 y = mx ±√

b2m2 + a2

(x − h)2

b2
+

(y − k)2

a2
= 1 y − k = m(x − h) ±√

b2m2 + a2

18.3 Lines Tangent to Standard Conics 277

Tangents to a Hyperbola

A line that intersects a hyperbola in two coincident points is a tangent line. For the hyperbola
there will be two tangent lines (real and distinct, coincident with an asymptote, or complex)
with a given slope. Table 18.5 provides formulas for the line tangent to a hyperbola in standard
form at a point P1(x1, y1). In the formulas a is the length of the semi-transverse axis of the
hyperbola and b is the length of the semi-conjugate axis. Table 18.6 provides the formulas for
tangents to a hyperbola in standard form with a given slope m. Note that for real tangents
with slope m the quantity under the radical must be positive. If, for a given slope, the tangents
are real for a particular hyperbola, then the tangents are complex for the conjugate hyperbola.

Example. Find the lines tangent to the hyperbola

(x − 1)2

9
− (y + 1)2

4
= 1

rotated 30◦ counter-clockwise about its center point passing through the point
(0, 0) and plot.

Solution. The function TangentLines2D[point, curve] returns a list of lines
through the point tangent to the curve. Point2D[line, curve] will return the
tangent point of the line with respect to the curve.

In[30]: p1 = Point2D@80, 0<D;
h1 = Hyperbola2D@81, −1<, 3, 2, 30 DegreeD êê N;

lns = TangentLines2D@p1, h1D êê N

Out[30] 8Line2D@5.38369, −1.8453, 0D, Line2D@1.04481, 8.2738, 0D<

In[31]: Sketch2D@8p1, h1, lns, Map@Point2D@#, h1D&, lnsD<,
CurveLength2D −> 15D;

-5 0 5 10
-10

-7.5

-5

-2.5

0

2.5

5

7.5

278 Chapter 18 Tangent Lines

Table 18.5: Tangents to a hyperbola at a point.

Hyperbola Equation Tangent at P1(x1, y1)

x2

a2
− y2

b2
= 1

xx1

a2
− yy1

b2
= 1

(x − h)2

a2
− (y − k)2

b2
= 1

(x − h)(x1 − h)
a2

− (y − k)(y − k1)
b2

= 1

−x2

a2
+

y2

b2
= 1 −xx1

a2
+

yy1

b2
= 1

− (x − h)2

a2
+

(y − k)2

b2
= 1 − (x − h)(x1 − h)

a2
+

(y − k)(y − k1)
b2

= 1

Table 18.6: Tangents to a hyperbola with slope m.

Hyperbola Equation Tangent with Slope m

x2

a2
− y2

b2
= 1 y = mx ±√

a2m2 − b2

(x − h)2

a2
− (y − k)2

b2
= 1 y − k = m(x − h) ±√

a2m2 − b2

−x2

a2
+

y2

b2
= 1 y = mx ±√

b2 − a2m2

− (x − h)2

a2
+

(y − k)2

b2
= 1 y − k = m(x − h) ±√

b2 − a2m2

18.3 Lines Tangent to Standard Conics 279

Parallel and Perpendicular Tangents

Using the equations from the tables in the previous sections in the columns labeled Tangent

with Slope m, we can easily construct lines parallel or perpendicular to a given line and
tangent to a given second-degree curve.

Example. Find the lines parallel and perpendicular to the line x + 2y − 2 = 0
and tangent to the ellipse

(x + 1)2

4
+

(y − 2)2

16
= 1

and plot.

Solution. The Descarta2D function TangentLines2D[line, curve, Parallel2D]
constructs a list of lines parallel to the given line and tangent to the curve; the
function TangentLines2D[line, curve, Perpendicular2D] returns a list of lines
perpendicular to the given line and tangent to the curve.

In[32]: l1 = Line2D@1, 2, −2D;
e1 = Ellipse2D@8−1, 2<, 4, 2, Piê2D;
lns = 8TangentLines2D@l1, e1, Parallel2DD,

TangentLines2D@l1, e1, Perpendicular2DD<

Out[32] 99Line2DA1, 2, −3 − 2
è!!!!!
17 E, Line2DA1, 2, −3 + 2

è!!!!!
17 E=,

9Line2DA−2, 1, 4 I−1 −
è!!!
2 ME, Line2DA−2, 1, 4 I−1 +

è!!!
2 ME==

In[33]: Sketch2D@8l1, e1, lns<, PlotRange −> 88−8, 6<, 8−5, 7<<D;

-6-4-2 0 2 4 6
-4
-2
0
2
4
6

280 Chapter 18 Tangent Lines

18.4 Explorations

Line Tangent to a Circle. lntancir.nb
Show that the line y = m(x − a) + a

√
1 + m2 is tangent to the circle x2 + y2 = 2ax for all

values of m.
—–
Line Normal to a Quadratic. .lnquad.nb

Show that the normal line passing through the point (x1, y1) on the quadratic whose equa-
tion is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 is given by

k1x − k2y − k1x1 + k2y1 = 0

where
k1 = Bx1 + 2Cy1 + E and k2 = 2Ax1 + By1 + D.

—–
Eyeball Theorem. .eyeball.nb

x

y

r1 r2

d

The tangents to each of two circles from the center of the other are drawn as shown in the
figure. Prove that the chords illustrated are equal in length.
—–
Perpendicular Tangents to a Parabola. .pbtnlns.nb

Show that if L1 and L2 are two lines tangent to a parabola that intersect on the directrix
of the parabola, then L1 and L2 are perpendicular to each other.
—–
Tangent to a Parabola with a Given Slope. .pbslp.nb

Show that the line tangent to the parabola y2 = 4px with slope m is y = mx + p/m.
—–

18.4 Explorations 281

Tangent to an Ellipse with Given Slope. ellslp.nb
Show that the lines tangent to the ellipse x2/a2 + y2/b2 = 1 with slope m are given by

y = mx ±√
a2m2 + b2.

—–
Tangent to a Hyperbola with Given Slope. hypslp.nb

Show that the lines tangent to the hyperbola x2/a2 − y2/b2 = 1 with slope m are given
by y = mx ±√

a2m2 − b2.
—–
Tangency Point on Circle. tancirpt.nb

Show that if a line Ax + By + C = 0 is tangent to a circle (x − h)2 + (y − k)2 = r2 then
the coordinates of the point of tangency are(

h − Ar2

Ah + Bk + C
, k − Br2

Ah + Bk + C

)
.

—–
Monge’s Theorem. monge.nb

Given three circles and the external tangent lines of the circles taken in pairs, show that
the three intersection points of the three tangent pairs lie on a straight line.
—–
Line Tangent to a Conic. lntancon.nb

Show that the relationship between the coefficients of a line px + qy + r = 0 tangent to the
conic Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 is given by

(4CF − E2)p2 + (4AF − D2)q2 + (4AC − B2)r2+
2(BD − 2AE)qr + 2(BE − 2CD)pr + 2(DE − 2BF)pq = 0.

—–
Normals and Minimum Distance. .normal.nb

Given a point P0(x0, y0) and a quadratic Q, find point(s) P (x, y) on Q such that the line
PP0 is perpendicular to Q at P . Such a line is called a normal to the quadratic. Use the
points P to find the minimum distance from P0 to Q. Assume that P0 and Q are defined
numerically.
—–

Chapter 19

Tangent Circles

In our study of circles we noted that the equation of a circle

(x − h)2 + (y − k)2 = r2

has three parameters, h, k and r, that may be varied independently. A circle, therefore, is
said to have three degrees of freedom (DOF). These degrees of freedom allow us to construct
a circle so that it meets three conditions. Some common conditions and the corresponding
equations that establish the condition are shown in Table 19.1.

By specifying a combination of conditions so that the degrees of freedom add up to three,
we can then solve three simultaneous equations in three unknowns (h, k and r) and determine
the (possibly empty) set of circles that satisfy the conditions. For economy of expression in
the following sections, we will use the convention that a point which is on a circle (i.e. satisfies
the equation of the circle) will be said to be tangent to the circle.

19.1 Tangent Object, Center Point

To construct a circle tangent to an object (a point, line or circle) with a given center point,
we select equations as follows from Table 19.1. To establish the condition that a circle be
tangent to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7];
to establish the condition that a circle have a given center point we select the two equations
from case [1]. Solving these three equations in three unknowns produces the values for the
parameters h, k and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle x2 + y2 = 4 with center
point (−1, 0) and plot.

Solution. The function TangentCircles2D[{circle}, point] returns a list of cir-
cles tangent to a circle with a given center point.

283

284 Chapter 19 Tangent Circles

Table 19.1: Circle tangency equations.

Case Condition Equation(s) DOF

[1] Fixed radius r = r1 1
r1

[2] Fixed center point h = x1 and k = y1 2
(x1, y1)

[3] Center on line A1h + B1k + C1 = 0 1
A1x + B1y + C1 = 0

[4] Center on circle (h − h1)2 + (k − k1)2 = r2
1 1

(x − h1)2 + (y − k1)2 = r2
1

[5] Through a point (x1 − h)2 + (y1 − k)2 = r2 1
(x1, y1)

[6] Tangent to a line (A2
1 + B2

1)r2 = 1
A1x + B1y + C1 = 0 (A1h + B1k + C1)2

[7] Tangent to a circle (D − (r1 − r)2)× 1
(x − h1)2 + (y − k1)2 = r2

1 (D − (r1 + r)2) = 0,

where
D = (h1 − h)2 + (k1 − k)2

19.2 Tangent Object, Center on Object, Radius 285

In[1]: cirs = TangentCircles2D@8c1 = Circle2D@80, 0<, 2D<,
p1 = Point2D@8−1, 0<DD

Out[1] 8Circle2D@8−1, 0<, 1D, Circle2D@8−1, 0<, 3D<

In[2]: Sketch2D@8p1, c1, cirs<D;

-4 -3 -2 -1 0 1 2
-3

-2

-1

0

1

2

3

Descarta2D Hint. TangentCircles2D[{pt | ln | cir}, point] is the general func-
tion that returns a list of circles tangent to an object (a point, line or circle) with
a given center point. The vertical bar syntax separating the point, line and circle
arguments indicates that a point, line or circle may be specified.

19.2 Tangent Object, Center on Object, Radius

To construct a circle tangent to an object (a point, line or circle) with center point on an
object (a line or circle), with a given radius, we select equations as follows from Table 19.1.
To establish the condition that a circle be tangent to a point, line or circle, we select the
appropriate equation from cases [5], [6] or [7]; to establish the condition that the center of the
circle be on a given line or circle we select the appropriate equation from cases [3] or [4]; to
establish the condition that the circle have a given radius we select the equation from case [1].
Solving these three equations in three unknowns produces the values for the parameters h, k
and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the circle x2 + y2 = 4, center on the
line x − 2y + 1 = 0 and with radius 1 and plot.

Solution. The function TangentCircles2D[{circle}, line, r] returns a list of
circles tangent to a given circle, with center on a line, with a given radius.

286 Chapter 19 Tangent Circles

In[3]: cirs = TangentCircles2D@8c1 = Circle2D@80, 0<, 2D<,
l1 = Line2D@1, −2, 1D, 1D

Out[3] 9Circle2D@8−1, 0<, 1D,

Circle2DA9 3
�����
5
,

4
�����
5

=, 1E, Circle2DA9 1
�����
5

I−1 − 4
è!!!!!
11 M, 2

�����
5

I1 −
è!!!!!
11 M=, 1E,

Circle2DA9 1
�����
5

I−1 + 4
è!!!!!
11 M, 2

�����
5

I1 +
è!!!!!
11 M=, 1E=

In[4]: Sketch2D@8l1, c1, cirs<D;

-4 -2 0 2 4
-2

-1

0

1

2

Descarta2D Hint. TangentCircles2D[{pt | ln | cir}, ln | cir, r] is the general-
ized function that returns a list of circles tangent to an object (a point, line or
circle) with center on a line or circle, with a given radius, r.

19.3 Two Tangent Objects, Center on Object

To construct a circle tangent to two objects (points, lines or circles) with center point on
an object (a line or circle), we select equations as follows from Table 19.1. To establish the
condition that a circle be tangent to a point, line or circle, we select the appropriate equation
from cases [5], [6] or [7]—this produces two equations (one for each tangent object); to establish
the condition that the center be on a line or circle we select the appropriate equation from
cases [3] or [4]. Solving these three equations in three unknowns produces the values for the
parameters h, k and r of the circles which satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles

(x + 2)2 + y2 = 1 and (x − 2)2 + y2 = 1,

with center point on the line x − 2y + 1 = 0 and plot.

Solution. The function TangentCircles2D[{cir, cir}, line] returns a list of cir-
cles tangent to two circles, with center point on a given line.

19.4 Two Tangent Objects, Radius 287

In[5]: cirs = TangentCircles2D@8c1 = Circle2D@8−2, 0<, 1D,
c2 = Circle2D@82, 0<, 1D<,
l1 = Line2D@1, −2, 1DD

Out[5] 9Circle2D@8−1, 0<, 2D, Circle2DA90, 1
�����
2

=, 1
�����
2

I−2 +
è!!!!!
17 ME,

Circle2DA90, 1
�����
2

=, 1
�����
2

I2 +
è!!!!!
17 ME, Circle2DA9 13

���������
11

,
12
���������
11

=, 26
���������
11

E=

In[6]: Sketch2D@8l1, c1, c2, cirs<D;

-4 -2 0 2 4

-2
-1
0
1
2
3

Descarta2D Hint. TangentCircles2D[{pt | ln | cir, pt | ln | cir}, ln | cir] is the
general function that returns a list of circles tangent to two objects (points, lines
or circles) with center point on a line or circle.

19.4 Two Tangent Objects, Radius

To construct a circle tangent to two objects (points, lines or circles) with a given radius, we
select equations as follows from Table 19.1. To establish the condition that a circle be tangent
to a point, line or circle, we select the appropriate equation from cases [5], [6] or [7]—this
produces two equations (one for each tangent object); to establish the condition that the
circle have a given radius we select the equation from case [1]. Solving these three equations
in three unknowns produces the values for the parameters h, k and r of the circles which
satisfy the stated conditions.

Example. Construct the circle(s) tangent to the two circles

(x + 2)2 + y2 = 9 and (x − 2)2 + y2 = 9,

with a radius of 1 and plot.

Solution. The function TangentCircles2D[{circle, circle}, r] returns a list of
circles tangent to two circles, with a given radius.

288 Chapter 19 Tangent Circles

In[7]: cirs = TangentCircles2D@8c1 = Circle2D@8−2, 0<, 3D,
c2 = Circle2D@82, 0<, 3D<, 1D

Out[7] 9Circle2DA9−
3
�����
2
, −

è!!!!!15
���������������
2

=, 1E, Circle2DA9−
3
�����
2
,

è!!!!!15
���������������
2

=, 1E,

Circle2D@80, 0<, 1D, Circle2DA90, −2
è!!!
3 =, 1E, Circle2DA90, 2

è!!!
3 =, 1E,

Circle2DA9 3
�����
2
, −

è!!!!!15
���������������
2

=, 1E, Circle2DA9 3
�����
2
,

è!!!!!15
���������������
2

=, 1E=

In[8]: Sketch2D@8c1, c2, cirs<D;

-4 -2 0 2 4

-4

-2

0

2

4

Descarta2D Hint. TangentCircles2D[{pt | ln | cir, pt | ln | cir}, r] is the gen-
eral function that returns a list of circles tangent to two objects (points, lines or
circles) with a given radius, r.

19.5 Three Tangent Objects

To construct a circle tangent to three objects (points, lines or circles), we select equations
as follows from Table 19.1. To establish the condition that a circle be tangent to a point,
line or circle, we select the appropriate equation from cases [5], [6] or [7]—this produces three
equations (one for each tangent object). Solving these three equations in three unknowns
produces the values for the parameters h, k and r of the circles which satisfy the stated
conditions.

Example. Construct and plot the circle(s) tangent to the three lines x−y+1 = 0,
x + y − 1 = 0 and y + 1 = 0.

Solution. Use the function TangentCircles2D[{ln, ln, ln}] that returns a list
of circles tangent to the three lines.

19.6 Explorations 289

In[9]: cirs = TangentCircles2D@8
l1 = Line2D@1, −1, 1D,
l2 = Line2D@1, 1, −1D,
l3 = Line2D@0, 1, 1D<D êê Simplify

Out[9] 9Circle2DA90, −3 − 2
è!!!
2 =, 2 + 2

è!!!
2 E, Circle2DA90, −3 + 2

è!!!
2 =, −2 + 2

è!!!
2 E,

Circle2DA9−2
è!!!
2 , 1=, 2E, Circle2DA92 è!!!

2 , 1=, 2E=

In[10]: Sketch2D@8l1, l2, l3, cirs<, PlotRange −> 88−5, 5<, 8−5, 5<<D;

-4 -2 0 2 4

-4

-2

0

2

4

Descarta2D Hint. The function TangentCircles2D[{obj1, obj2, obj3}] is the
general function that returns a list of circles tangent to three objects (points,
lines or circles).

19.6 Explorations

Archimedes’ Circles. .archimed.nb

x

y

r1
r2

r3

C¢

C¢¢

290 Chapter 19 Tangent Circles

Draw the vertical tangent line at the intersection point of the two smaller tangent circles, c1

and c2, in an arbelos (shoemaker’s knife, see figure). Prove that the two circles C′ and C′′

tangent to this line, the large semicircle, c3 and c1 and c2 are congruent (have equal radii).
These circles are known as Archimedes’ Circles.
—–
Circle Tangent to Circle, Given Center . tancir1.nb

Show that the radii of the two circles centered at (h1, k1) and tangent to the circle

(x − h2)2 + (y − k2)2 = r2
2

are given by
r = |d ± r2|

where d =
√

(h1 − h2)2 + (k1 − k2)2. This formula is a special case of the Descarta2D function
TangentCircles2D[{pt | ln | cir}, point].
—–
Circle Tangent to Circle, Center on Circle, Radius. tancir2.nb

Show that the centers (h, k) of the two circles passing through the point (x1, y1) with center
on the circle x2 + y2 = 1 and radius r = 1 are given by

(h, k) =

(
x1

2
± y1

√
4 − d2

1

2d1
,
y1

2
∓ x1

√
4 − d2

1

2d1

)

where d1 =
√

x2
1 + y2

1 . This is a special case of the Descarta2D function

TangentCircles2D[{pt | ln | cir}, ln | cir, r]

that constructs a list of circles.
—–
Circle Tangent to Two Lines, Radius. tancir3.nb

Show that the centers (h, k) of the four circles tangent to the perpendicular lines

A1x + B1y = 0 and − B1x + A1y = 0

with radius r = 1 are given by

(h, k) = (A1 − B1, A1 + B1),
= (A1 + B1,−A1 + B1),
= (−A1 − B1, A1 − B1) and
= (−A1 + B1,−A1 − B1).

Assume that the two lines are normalized, A2
1 + B2

1 = 1. This construction is a special case of
the Descarta2D function TangentCircles2D[{obj1, obj2}, r] when the two objects are lines.
—–

19.6 Explorations 291

Circle Through Two Points, Center on Circle. tancir4.nb
Show that the radii of the two circles passing through the points (0, a) and (0,−a) with

centers on the circle x2 + y2 = r2
2 are both given by

r =
√

a2 + r2
2 .

This is a special case of TangentCircles2D[{obj1, obj2}, ln | cir] where the two objects are
points.
—–
Circle Tangent to Three Lines. .tancir5.nb

Show that the radii of the four circles tangent to the lines

x = 0, y = 0 and Ax + By + C = 0,

are given by

r =
∣∣∣∣ C

1 ± A ± B

∣∣∣∣
taking all four combinations of signs and assuming the lines are normalized. This is a special
case of the function TangentCircles2D[{obj1, obj2, obj3}] where all three of the objects are
lines.
—–
Circles Tangent to an Isosceles Triangle. .tncirtri.nb

A circle is inscribed in an isosceles triangle with sides a, a and 2b in length. A second,
smaller circle is inscribed tangent to the first circle and to the equal sides of the triangle. Show
that the radius of the second circle is

r = b

√
(a − b)3

(a + b)3
.

Assume that a > b.
—–

Chapter 20

Tangent Conics

The most general quadratic equation in two unknowns

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

has six coefficients, but since we can divide the coefficients by any non-zero constant, say F ,
without altering the equality obtaining

A′x2 + B′xy + C′y2 + D′x + E′y + 1 = 0

a quadratic equation only has five degrees of freedom. Thus we may specify five conditions (or
constraints) on a quadratic equation. In this chapter we will investigate the construction of
conic curves (circles, parabolas, ellipses and hyperbolas) that satisfy a set of five conditions,
when the conditions are of two specific types: either passing through a given point, or tangent
to a given line. The resulting equations are sufficiently complex that obtaining the solutions
in symbolic, closed form is of no practical value, so we will illustrate the solution techniques
and use the numerical capabilities of Mathematica to compute specific solutions.

20.1 Constraint Equations

As mentioned in previous chapters, if the curve represented by the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

passes through the point P1(x1, y1), then the point will satisfy the equation yielding the
relationship

Ax2
1 + Bx1y1 + Cy2

1 + Dx1 + Ey1 + F = 0. (20.1)

It has also been shown in previous chapters that the line px + qy + r = 0 will be tangent to
the curve represented by the quadratic equation if the coefficients satisfy the equation

(4CF − E2)p2 + (4AF − D2)q2 + (4AC − B2)r2+
2(BD − 2AE)qr + 2(BE − 2CD)pr + 2(DE − 2BF)pq = 0.

(20.2)

293

294 Chapter 20 Tangent Conics

20.2 Systems of Quadratics

In this section we will outline the general technique for finding quadratics that pass through
the four points of intersection of two quadratic curves. These techniques will be the basis for
subsequent sections wherein we will find quadratics satisfying a variety of conditions.

Two quadratics intersect in four points (four real, two real and two complex, or four
complex) since each equation is of the second degree. If

Q1 ≡ A1x
2 + B1xy + C1y

2 + D1x + E1y + F1 = 0 and
Q2 ≡ A2x

2 + B2xy + C2y
2 + D2x + E2y + F2 = 0

represent the equations of the two quadratics, then Q ≡ Q1 + kQ2 = 0, for any constant k, is
the equation of a quadratic through the points of intersection of Q1 and Q2. The equation Q
is called a system or pencil of quadratics, and placing one additional condition on the equation
for Q allows us to solve for k and find a specific quadratic in the pencil. The equation of the
pencil is sometimes written as Q ≡ (1− k)Q1 + kQ2 in order to allow the original quadratics,
Q1 and Q2, to be in the pencil (for k = 0 and k = 1, respectively).

Example. Find the quadratic that passes through the intersection of the ellipse
x2 + 4y2 − 10x − 39 = 0 and the hyperbola −x2 + y2 − 1 = 0 and also passes
through the point (−4, 0).

Solution. The equation of the quadratic pencil containing the solutions is

(x2 + 4y2 − 10x − 39) + k(−x2 + y2 − 1) = 0,

and this must be satisfied by (−4, 0). Hence, solving for k yields k = 1 and the
final equation of the conic sought is x2 + 2y − 8 = 0 (a parabola).

In[1]: Sketch2D@8Quadratic2D@1, 0, 4, −10, 0, −39D,
Quadratic2D@−1, 0, 1, 0, 0, −1D,
Quadratic2D@0, 0, 1, −2, 0, −8D,
Point2D@8−4, 0<D<,
CurveLength2D −> 40,

PlotRange −> 88−10, 15<, 8−6, 6<<D;

-5 0 5 10 15
-6
-4
-2
0
2
4
6

20.2 Systems of Quadratics 295

Descarta2D Hint. Quadratic2D[quad, quad, k, Pencil2D] returns a quadratic
parameterized by the variable k representing the pencil of quadratics passing
through two quadratics.

A Degenerate Case

If Q = 0 is the equation of a quadratic and L = 0 is the equation of a straight line, then
Q + kL2 = 0 is the equation of a quadratic tangent to Q at the intersection points of Q = 0
and L = 0. We may think of L2 = 0 as a (degenerate) quadratic (two coincident lines)
intersecting Q = 0 in two pairs of coincident points each.

Example. Find the quadratic tangent to Q ≡ x2 − y2 − y +1 = 0 at the points of
intersection of Q and L ≡ 3x− 2y − 1 = 0 and passing through the point (−1, 0).

Solution. The equation is of the form

(x2 − y2 − y + 1) + k(3x − 2y − 1)2 = 0.

Substituting (−1, 0) into this equation we get k = 1/8, which yields as the equation
of the conic sought

x2 − 12xy + 12y2 − 6x + 12y − 7 = 0 (a hyperbola).

In[2]: Sketch2D@8Quadratic2D@1, 0, −1, 0, −1, 1D,
Line2D@3, −2, −1D,
Quadratic2D@1, −12, 12, −6, 12, −7D,
Point2D@8−1, 0<D<D;

-4 -2 0 2 4

-4

-2

0

2

4

296 Chapter 20 Tangent Conics

P1

P2

P3

P4

P5

Figure 20.1: Quadratic through five points.

20.3 Validity Conditions

In the remainder of this chapter we will outline techniques for finding conics that satisfy five
conditions. The conditions will be of two types: either passing through a given point, or
tangent to a given line. The following assumptions are made with respect to the five points
and/or lines:

• no pair of points is coincident,

• no pair of lines is coincident,

• no triple of points is collinear,

• no triple of lines is concurrent,

• no triple of lines is mutually parallel,

• no more than one point is on each line, and

• no more than one line passes through each point.

Degenerate conics may exist that satisfy configurations of points and lines that violate these
restrictions, but we will focus our attention on cases that produce proper conics (circles,
parabolas, ellipses and hyperbolas).

20.4 Five Points

Given five points, P1, P2, P3, P4 and P5, satisfying the validity conditions stated in Sec-
tion 20.3, we wish to find the quadratic that passes through all five points. Consider the
lines L12, L34, L13 and L24 passing through the points in pairs as shown in Figure 20.1. Let

20.4 Five Points 297

Q1 ≡ L12L34 be a (degenerate) quadratic (a pair of lines) passing through P1, P2, P3 and P4.
Similarly, let Q2 ≡ L13L24 = 0 be a second quadratic passing through the same four points.
The equation Q ≡ Q1 + kQ2 = 0 will then represent the pencil of quadratics parameterized
by the variable k passing through the four points.

Applying Equation (20.1), by substituting the coordinates of the point P5 into the equation
for Q, we can solve this linear equation for the value of k, thereby yielding the specific quadratic
in the pencil of quadratics that passes through all five points. Mathematica can be used to
solve for k and form the symbolic equation for Q, although the result is quite cumbersome
in expanded form. A determinant can be used to represent the resulting quadratic in a more
convenient and simplified form and is given by

Q =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 xy y2 x y 1
x2

1 x1y1 y2
1 x1 y1 1

x2
2 x2y2 y2

2 x2 y2 1
x2

3 x3y3 y2
3 x3 y3 1

x2
4 x4y4 y2

4 x4 y4 1
x2

5 x5y5 y2
5 x5 y5 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Example. Find the quadratic passing through the five points (3, 0), (3, 1), (0, 1),
(−3, 0) and (0,−1).

Solution. The function Quadratic2D[pt,pt, pt, pt, pt] returns the quadratic
passing through the five points.

In[3]: pts = 8p1 = Point2D@83, 0<D, p2 = Point2D@83, 1<D,
p3 = Point2D@80, 1<D, p4 = Point2D@8−3, 0<D,
p5 = Point2D@80, −1<D<;

q1 = Quadratic2D@p1, p2, p3, p4, p5D

Out[3] Quadratic2D@36, −108, 324, 0, 0, −324D

Example. Find the conic represented by the quadratic found in the previous
example. Plot the points and the conic curve.

Solution. The conic can be determined directly from the result of the previous
example using the function Loci2D[quad]. Descarta2D also provides the function
TangentConics2D[{pt,pt, pt, pt, pt}] that constructs a list containing the conic
directly from the five points.

298 Chapter 20 Tangent Conics

In[4]: 8Loci2D@q1D, crv1 = TangentConics2D@ptsD< êê N

Out[4] 88Ellipse2D@80, 0<, 3.51606, 0.985223, 0.179385D<,
8Ellipse2D@80, 0<, 3.51606, 0.985223, 0.179385D<<

In[5]: Sketch2D@8pts, crv1<D;

-3 -2 -1 0 1 2 3

-1

-0.5

0

0.5

1

Descarta2D Hint. TangentQuadratics2D[{pt,pt, pt, pt, pt}] constructs a
list containing the single quadratic passing through five points. Except for the
fact the TangentQuadratics2D checks for the validity conditions stated in Sec-
tion 20.3, this function is equivalent to Quadratic2D[pt,pt, pt, pt, pt].

20.5 Four Points, One Tangent Line

In this section we will consider the construction of quadratics and conics passing through four
points and tangent to a line. Two cases are distinguished: the first constructs the quadratic
or conic when none of the given points lie on the tangent line; the second constructs the
quadratic or conic when one of the given points does lie on the tangent line.

Points Not on a Tangent Line

Assume that points P1, P2, P3 and P4 and line L5 as shown in Figure 20.2 satisfy the validity
conditions stated in Section 20.3 and that none of the four points lie on L5. To find the
equation of the quadratic passing through the four points and tangent to the line, we form a
pencil of quadratics passing through the four points parameterized by the variable k that is
given by

Q ≡ L12L34 + kL13L24 = 0.

We now apply the condition that line L5 is tangent to Q by using Equation (20.2) resulting in
a quadratic equation in the variable k. Solving this equation yields two values for k that can
be substituted into the equation for Q, giving two quadratics satisfying the stated conditions.

20.5 Four Points, One Tangent Line 299

P1

P2

P3

P4

L5

Figure 20.2: Four points, one line, no points on the line.

Example. Find the quadratics passing through the points (2, 1), (−2, 1), (−2,−1)
and (2,−1) and tangent to the line 3x+4y−12 = 0. Plot the conic curves associated
with the quadratics.

Solution. The Descarta2D function TangentQuadratics2D[{pt,pt, pt, pt, ln}]
constructs a list of quadratics passing through the four points and tangent to
the line. TangentConics2D[{pt,pt, pt, pt, ln}] constructs a list of conic curves
passing through the four points and tangent to the line. Both functions allow the
points and line to be listed in any order.

In[6]: objs = 8Point2D@82, 1<D, Point2D@8−2, 1<D,
Point2D@8−2, −1<D, Point2D@82, −1<D,
Line2D@3, 4, −12D<;

TangentQuadratics2D@objsD

Out[6] 9Quadratic2DA 1
�����
2

I−23 −
è!!!!!!!!
385 M, 0, −2 I−23 −

è!!!!!!!!
385 M − 16 J1 +

1
�����
8

I23 +
è!!!!!!!!
385 MN,

0, 0, 16 J1 +
1
�����
8

I23 +
è!!!!!!!!
385 MNE, Quadratic2DA 1

�����
2

I−23 +
è!!!!!!!!
385 M, 0,

−2 I−23 +
è!!!!!!!!
385 M − 16 J1 +

1
�����
8

I23 −
è!!!!!!!!
385 MN, 0, 0, 16 J1 +

1
�����
8

I23 −
è!!!!!!!!
385 MNE=

In[7]: crvs = TangentConics2D@objsD êê N

Out[7] 8Ellipse2D@80, 0<, 2.51549, 2.17963, 1.5708D,
Ellipse2D@80, 0<, 3.67034, 1.19261, 0D<

In[8]: Sketch2D@8objs, crvs<D;

300 Chapter 20 Tangent Conics

P1

P2

P3

P4

L1

Figure 20.3: Four points, one line, one point on the line.

-2 0 2 4

-2
-1
0
1
2
3
4
5

One Point on Tangent Line

We now examine the case when one of the four points is on the tangent line. Consider the
points P1, P2, P3 and P4 and the line L1 as shown in Figure 20.3 satisfying the validity
conditions stated in Section 20.3, where the point P1 is on L1. Since the desired quadratic
is tangent to L1 at P1, we can consider P1 to be a pair of coincident intersection points of
the pencil of quadratics passing through the four points P1, P2 and P3 (P1 is counted as two
coincident intersection points). We now form the pencil of quadratics parameterized by the
variable k and given by Q ≡ L12L13 + kL1L23 = 0. The coordinates of the remaining point,
P4, must satisfy the equation of the quadratic, and by applying Equation (20.1) we generate
a linear equation in the variable k that can be solved yielding the single quadratic equation
satisfying the stated conditions.

Example. Find the conic curve passing through the points (2, 0), (0, 1), (−2, 0)
and (0,−1) and tangent to the line y = 1.

20.6 Three Points, Two Tangent Lines 301

Solution. The function TangentConics2D[{pt,pt, pt, pt, ln}] returns a list of
conic curves passing through four points and tangent to a line. The points and
line may be listed in any order.

In[9]: crv = TangentConics2D@
objs = 8Point2D@82, 0<D, Point2D@80, 1<D,

Point2D@8−2, 0<D, Point2D@80, −1<D,
Line2D@0, 1, −1D<D

Out[9] 8Ellipse2D@80, 0<, 2, 1, 0D<

In[10]: Sketch2D@8objs, crv<, PlotRange −> 88−3, 3<, 8−1.5, 1.5<<D;

-2 -1 0 1 2 3
-1.5
-1

-0.5
0

0.5
1

1.5

Descarta2D Hint. In the remaining sections of this chapter we will use the
function TangentConics2D to find the tangent curves satisfying a variety of con-
ditions. The function TangentQuadratics2D is also available in all these cases
and will return a list of quadratics instead of a list of conic curves.

20.6 Three Points, Two Tangent Lines

We now consider the construction of a conic passing through three points and tangent to two
lines. Three cases need to be considered: the first constructs the conic when none of the given
points lie on either of the tangent lines; the second constructs the conic when one of the given
points lies on one of the tangent lines; and, finally, two points lie on two of the tangent lines.

Points Not on Tangent Lines

Consider three points P1, P2 and P3 and two lines L4 and L5 satisfying the validity conditions
stated in Section 20.3. We also assume that none of the points are on either line as shown
in Figure 20.4. The line L45 passing through the points of tangency between lines L4 and L5

and the desired conic curve can be written in the form

L45 ≡ ax + by − 1 = 0

302 Chapter 20 Tangent Conics

P1

P2

P3

L4 L5

L45

Figure 20.4: Three points, two lines, no points on the lines.

assuming we can guarantee that L45 does not pass through the origin. The point P1 is clearly
not on L45 because that would imply that the conic passes through three distinct, collinear
points, which clearly violates the validity conditions. Therefore, if we translate all five of the
original objects so that point P1 is at the origin, we can guarantee that L45 does not pass
through the origin. Of course we need to perform the inverse translation on the resulting conic
curves to produce the solution for the geometry in its original position.

We now proceed with L45 ≡ ax + by − 1 = 0, a line that does not pass through the origin.
Consider the pencil of quadratics parameterized by the variable k and represented by the
equation

Q ≡ L4L5 − kL2
45 = 0.

Solving this equation for k yields

k =
L1L2

L2
45

.

The right side of this equation is an expression in x and y involving the unknowns a and
b. The expression must produce the same value for k for any point (x, y) on the desired
quadratic. In particular, points P1, P2 and P3 must all produce the same value for k. Using
the expression f [Pn] to indicate the expression f evaluated at the point Pn, we can write the
system of equations

L4L5

L2
45

[P1] =
L4L5

L2
45

[P2] =
L4L5

L2
45

[P3]

since all of these expressions must equal k. Rewriting these equations as a system of two
equations and cross-multiplying yields two quadratic equations in two unknowns, a and b,

(L4[P1])(L5[P1])(L2
45[P2]) = (L4[P2])(L5[P2])(L2

45[P1])
(L4[P2])(L5[P2])(L2

45[P1]) = (L4[P1])(L5[P1])(L2
45[P2]).

20.6 Three Points, Two Tangent Lines 303

Solving these equations for a and b yields four pairs of solutions which can be substituted into

k =
L1L2

L2
45

[P1]

producing four quadratics Q satisfying the stated conditions. The resulting quadratics may
be translated back to the original position of the defining objects by translating the origin
back to P1.

Example. Find the conics passing through (1, 0), (0,−1), (1/
√

2,−1/
√

2) and
tangent to the lines x = 1 and y = −1.

Solution. The function TangentConics2D[{pt,pt, pt, ln, ln}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[11]: objs = 8Point2D@81, 0<D, Point2D@80, −1<D,
Point2D@81êSqrt@2D, −1êSqrt@2D<D,
Line2D@0, 1, −1D, Line2D@1, 0, 1D<;

crvs = TangentConics2D@objsD êê N

Out[11] 8Circle2D@80, 0<, 1.D,
Ellipse2D@80.135729, −1.32236<, 2.57181, 0.262711, 1.12421D,
Ellipse2D@80.600884, −0.600884<, 2.259, 0.150221, 0.785398D,
Ellipse2D@81.32236, −0.135729<, 2.57181, 0.262711, 0.446587D<

In[12]: Map@Sketch2D@8objs, #<,
PlotRange −> 88−2, 4<, 8−4, 2<<D&,

crvsD;

-1 0 1 2 3 4
-4
-3
-2
-1
0
1
2

-1 0 1 2 3 4
-4
-3
-2
-1
0
1
2

304 Chapter 20 Tangent Conics

P1

P2

P3

L1
L4

Figure 20.5: Three points, two lines, one point on a line.

-1 0 1 2 3 4
-4
-3
-2
-1
0
1
2

-1 0 1 2 3 4
-4
-3
-2
-1
0
1
2

One Point on Tangent Line

We now consider the case where one of the three points is on one of the two tangent lines.
Assume that point P1 is on line L1 and points P2 and P3 are on neither line L1 or L4 as shown
in Figure 20.5. Also, we assume the points and lines satisfy the validity conditions stated in
Section 20.3. We form the pencil of quadratics

Q ≡ L1L23 + kL12L13

where L12, L13 and L23 are the lines passing through points P1 and P2, P1 and P3 and P2

and P3, respectively. We now apply the tangency condition by using Equation (20.2) with Q
and line L4 to form a quadratic equation in the variable k. Solving the equation for k gives
the two quadratics passing through the points and tangent to the lines.

Example. Find the conic curves passing through the points (0, 1), (−3, 0) and
(0,−1) and tangent to the lines y = 1 and x − 2y − 3 = 0.

20.6 Three Points, Two Tangent Lines 305

P1

P2P3

L1

L3

L13

Figure 20.6: Three points, two lines, two points on the lines.

Solution. The function TangentConics2D[{pt,pt, pt, ln, ln}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[13]: objs = 8Point2D@80, 1<D, Point2D@8−3, 0<D, Point2D@80, −1<D,
Line2D@0, 1, −1D, Line2D@1, −2, −3D<;

crvs = TangentConics2D@objsD êê N

Out[13] 8Ellipse2D@8−2.54874, −1.26827<, 3.8739, 1.32515, 0.530218D,
Ellipse2D@8−0.267309, −0.00955005<, 2.7504, 1.00402, 0.0412054D<

In[14]: Sketch2D@8objs, crvs<D;

-6 -4 -2 0 2 4

-3

-2

-1

0

1

Two Points on Tangent Lines

Let P1 be a point on line L1, P3 be a point on line L3, and P2 a point not on either line as
shown in Figure 20.6 and assume that these points and lines satisfy the validity conditions

306 Chapter 20 Tangent Conics

stated in Section 20.3. We form the pencil of quadratics

Q ≡ L1L3 + kL2
13 = 0

where L13 is the line passing through points P1 and P3. We now apply Equation (20.1)
establishing the condition that P2 must be on Q and, therefore, the coordinates (x2, y2) must
satisfy Q. We can solve this linear equation for k and determine the coefficients of the quadratic
Q satisfying the stated conditions.

Example. Find the conic curve passing through the points (2, 1), (−2, 1) and
(0, 2) and tangent to the lines x − 3y + 1 = 0 and 2x + y + 3 = 0.

Solution. The function TangentConics2D[{pt,pt, pt, ln, ln}] returns a list of
conic curves passing through three points and tangent to two lines. The points
and lines may be listed in any order.

In[15]: objs = 8Point2D@82, 1<D, Point2D@8−2, 1<D, Point2D@80, 2<D,
Line2D@1, −3, 1D, Line2D@2, 1, 3D<;

crvs = TangentConics2D@objsD êê N

Out[15] 8Ellipse2D@80.463576, 1.37086<, 2.50231, 0.689197, 0.122489D<

In[16]: Sketch2D@8objs, crvs<D;

-4 -2 0 2 4

-1

0

1

2

3

4

Notice that a ConicArc2D object is a special case of this construction where the start and
end points are the points P1 and P3 and the apex point defines the lines L1 and L3.

20.7 Conics by Reciprocal Polars

In this section we will introduce the concept of reciprocal polars, and a technique that will
allow us to solve tangent conic problems involving more than two tangent lines. Proofs of all
the concepts involved in these techniques are beyond the scope of this book, but applying the
techniques to solve tangent conic problems is easily grasped.

20.7 Conics by Reciprocal Polars 307

Let C be a circle in the plane and P a point. The reciprocal of P with respect to C is
simply the polar line of P with respect to C. Similarly, let L be a line. The reciprocal of L
with respect to C is the pole point of L with respect to C. It is noteworthy that the center
point of the circle has no reciprocal, and any line passing through the center of the circle has
no reciprocal.

If we have any figure consisting of any number of points and straight lines, and we take the
polars of those points and the poles of the lines, with respect to a circle C, we obtain another
figure which is called the polar reciprocal of the former with respect to the auxiliary circle C.
When a point in one figure and a line in the reciprocal figure are pole and polar with respect
to the auxiliary circle, C, the point and line are said to correspond to one another.

An important theorem from the analytic geometry of conics states that taking the recip-
rocal of all the points of a conic Q with respect to some auxiliary circle C will produce an
envelope of lines tangent to another conic Q′. Furthermore, any line tangent to Q will corre-
spond to a point P ′ on Q′, and any line L′ tangent to Q′ will correspond to a point P on Q
(always using C as the auxiliary circle).

We use this theorem as follows to find conics tangent to three, four or five lines and passing
through a corresponding number of points so the total number of conditions equals five. First
we apply an arbitrary translation to the objects to insure that none of the points lie at the
origin and that none of the lines pass through the origin. We now take the reciprocal of the
points or lines with respect to a unit circle centered at the origin, thereby producing a new
figure of corresponding lines and points. Note that if there are three or more lines in the
original figure, there will be two or fewer lines in its reciprocal.

We now apply the techniques developed in the previous sections of this chapter to find
the quadratics(s) satisfying the conditions imposed by the elements in the reciprocal figure.
Finally, we find the reciprocal of the resulting quadratic with respect to the auxiliary circle
yielding the sought-after quadratics in the original figure. If the equation of the quadratic in
the reciprocal figure is

Q′ ≡ ax2 + bxy + cy2 + dx + ey + f = 0

then its equation in the original figure is given by

Q′ = (4cf − e2)x2 + (2de − 4bf)xy + (4af − d2)y2+
(4cd − 2be)x + (4ae − 2db)y + (4ac − b2) = 0.

The validity of this relationship is demonstrated in the exploration recquad.nb. The rela-
tionship between Q and Q′ is only valid when the auxiliary circle is a unit circle at the origin
(x2 + y2 = 1).

Two Points, Three Tangent Lines

Example. Find the conic curves passing through the points (3,−1) and (1, 0) and
tangent to the lines 4x − y − 3 = 0, x + 2y − 3 = 0 and y = −2.

308 Chapter 20 Tangent Conics

Solution. The function TangentConics2D[{pt,pt, ln, ln, ln}] returns a list of
conic curves passing through two points and tangent to three lines. The points
and lines may be listed in any order. If neither point is on any of the lines, there
are at most four real conic curves; if one of the points is on one of the lines, then
there are at most two real conic curves; if two of the points are on the tangent
lines, then there is at most one real conic curve.

In[17]: objs = 8Point2D@83, −1<D, Point2D@81, 0<D, Line2D@4, −1, −3D,
Line2D@1, 2, −3D, Line2D@0, 1, 2D<;

crvs = TangentConics2D@objsD êê N

Out[17] 8Ellipse2D@81.79784, −0.811805<, 1.30361, 1.13329, 0.587329D,
Ellipse2D@82.03133, −0.577222<, 1.71297, 0.620762, 2.21117D,
Ellipse2D@83.64793, −0.854517<, 3.04088, 0.374464, 2.77469D,
Ellipse2D@83.77722, −0.99446<, 3.18508, 0.250467, 2.82987D<

In[18]: Sketch2D@8objs, crvs<,
CurveLength2D −> 20,

PlotRange −> 88−1, 8<, 8−4, 2<<D;

0 2 4 6 8
-4
-3
-2
-1
0
1
2

One Point, Four Tangent Lines

Example. Find the conic curves passing through the point (−1, 1) and tangent
to the lines 4x − y − 3 = 0, x + 2y − 3 = 0, x = −3 and y = −2.

Solution. The function TangentConics2D[{pt, ln, ln, ln, ln}] returns a list of
conic curves passing through a point and tangent to four lines. The points and
lines may be listed in any order. If the point is not on any of the lines, there will
be at most two real conic curves; if the point is on one of the lines, then there will
be at most one real conic curve.

20.7 Conics by Reciprocal Polars 309

In[19]: objs = 8Point2D@8−1, 1<D, Line2D@4, −1, −3D,
Line2D@1, 2, −3D, Line2D@1, 0, 3D, Line2D@0, 1, 2D<;

crvs = TangentConics2D@objsD êê N

Out[19] 8Ellipse2D@8−1.35291, 0.441105<, 2.88243, 0.602889, 2.14575D,
Ellipse2D@8−1.05825, −0.344658<, 2.29656, 1.11191, 0.656401D<

In[20]: Sketch2D@8crvs, objs<, PlotRange −> 88−4, 2<, 8−3, 3<<D;

-3-2-1 0 1 2
-3
-2
-1
0
1
2
3

Five Tangent Lines

Example. Find the conic curve tangent to the five lines x − 2y + 3 = 0, x = 3,
2x − 3y − 2 = 0, y = 2 and x = −2. Plot the lines and the conic curve.

Solution. The function TangentConics2D[{ln, ln, ln, ln, ln}] returns a list of
at most one conic curve tangent to five lines.

In[21]: objs = 8Line2D@1, −2, 3D, Line2D@1, 0, −3D,
Line2D@2, −3, −2D, Line2D@0, 1, −2D, Line2D@1, 0, 2D<;

crvs = TangentConics2D@objsD êê N

Out[21] 8Ellipse2D@80.5, 0.833333<, 2.64903, 0.770563, 0.352906D<

In[22]: Sketch2D@8objs, crvs<, PlotRange −> 88−4, 4<, 8−2, 3<<D;

-3 -2 -1 0 1 2 3 4
-2

-1

0

1

2

3

310 Chapter 20 Tangent Conics

20.8 Explorations

Reciprocals of Points and Lines. recptln.nb
Show that the polar reciprocal of A1x+B1y+C1 = 0 in the auxiliary conic C ≡ x2+y2 = 1

is the point (−A1/C1,−B1/C1), assuming that the line does not pass through the origin. Also,
show that the line x + y − 1 = 0 is the polar reciprocal of the point (x, y) with respect to C.
—–
Reciprocal of a Circle. reccir.nb

Given a circle C1 ≡ (x− h)2 + (y − k)2 = r2 show that its polar reciprocal in the auxiliary
conic x2 + y2 = 1 is given by the quadratic

Q ≡ (r2 − h2)x2 − 2hkxy + (r2 − k2)y2 + 2hx + 2ky − 1 = 0.

Furthermore, show that Q is an ellipse, if the origin (0, 0) is inside C; a parabola, if the origin
is on C; and a hyperbola, if the origin is outside C.
—–
Reciprocal of a Quadratic. recquad.nb

Given a general quadratic Q ≡ ax2 + bxy + cy2 + dx + ey + f = 0 show that the reciprocal
of Q is the quadratic

(4cf − e2)x2 + (2de − 4bf)xy + (4af − d2)y2+
(4cd − 2be)x + (4ae − 2bd)y + (4ac − b2) = 0

when the auxiliary conic is C ≡ x2 + y2 = 1.
—–
Parabolas Through Four Points. pb4pts.nb

Describe a method for finding the two parabolas passing through four points. Show that
the technique produces the correct results for the points (2, 1), (−1, 1), (−2,−1) and (4,−3)
by plotting the parabolas and the four points.
—–
Equilateral Hyperbolas. .hyp4pts.nb

Describe a method for finding the equilateral hyperbola(s) passing through four points.
Show that the technique produces the correct results for the points (2, 1), (−1, 1), (−2,−1)
and (4,−3) by plotting the hyperbola(s) and the four points.
—–

Chapter 21

Biarcs

In this chapter we will demonstrate some techniques for adding new functions to Descarta2D.
To make the demonstration realistic, we will introduce the mathematics for a new type of
tangent circle construction called a biarc. Biarcs are used in some graphical computer systems
to connect a set of data points with smoothly joined arcs. The mathematics of biarcs is by
itself interesting and will serve as a good example of extending the capabilities of Descarta2D.

21.1 Biarc Carrier Circles

A biarc is a composite curve consisting of two circular arcs, placed end to end with continuity
of slope at the join point. The two circles underlying the arc are called the biarc carrier
circles. The carrier circles may be internally or externally tangent to each other, and the
point of tangency that joins the two arcs is called the knot point of the biarc. Referring
to Figure 21.1, suppose we wish to construct a smooth curve between points P1(x1, y1) and
P2(x2, y2) such that the tangents to the curve at P1 and P2 are the unit vectors T̂1(u1, v1)
and T̂2(u2, v2). P1, P2, T̂1 and T̂2 are called the biarc configuration parameters.

The geometric condition that two circles are tangent can always be expressed as

sum or difference of radii = distance between the centers (21.1)

according to the kind of contact, external (sum of radii) or internal (difference of radii).
We take positive values of r1 and r2 to indicate that the center points of the carrier circles,

C1 and C2, are offset in the direction of T̂ ′
1 and T̂ ′

2, respectively. T̂ ′
1(−v1, u1) and T̂ ′

2(−v2, u2)
are unit vectors constructed by rotating tangent vectors T̂1 and T̂2 90◦ counter-clockwise.
Suppose we now wish to form an expression for the left-hand side of Equation (21.1). It can
be shown that the expressions (r1+r2)2 and (r1−r2)2 represent all cases for the sum (squared)
and difference (squared) of the biarc radii for all combinations of positive or negative r1 and
r2 for both internally and externally tangent carrier circles.

We introduce a radius sign constant, sr, which may take on the values ±1, in order to

311

312 Chapter 21 Biarcs

r1

r2

P1P2

C1

C2

T1

T2

Figure 21.1: Biarc configuration parameters.

accommodate internally or externally tangent carrier circles in the same equation,

(sum or difference of radii)2 = (r1 + srr2)2. (21.2)

Note that it makes no difference whether we associate sr with r1 or r2, since after squaring
and applying s2

r = 1, the relationship is symmetric,

(r1 + srr2)2 = r2
1 + 2srr1r2 + s2

rr
2
2 = r2

1 + 2srr1r2 + r2
2 .

The carrier circle center points, C1 and C2, may be written as

C1 = (x1 − v1r1, y1 + u1r1) (21.3)
C2 = (x2 − v2r2, y2 + u2r2).

Combining Equations (21.2) and (21.3) as suggested by Equation (21.1), the sum or difference
of the radii (squared) equals the distance (squared) between C1 and C2, yields

(r1 + srr2)2 = ((x2 − v2r2) − (x1 − v1r1))2 + ((y2 + u2r2) − (y1 + u1r1))2. (21.4)

When simplifying Equation (21.4), note that the relationships u2
1 + v2

1 = 1 and u2
2 + v2

2 = 1
can be used, since T̂1 and T̂2 are defined as unit vectors. Rearranging Equation (21.4) and
using the following substitutions

f0 = u1u2 + v1v2

f1 = −v1(x2 − x1) + u1(y2 − y1)
f2 = −v2(x2 − x1) + u2(y2 − y1)
d2 = (x2 − x1)2 + (y2 − y1)2

21.1 Biarc Carrier Circles 313

produces the equation

r1r2(sr + f0) + f1r1 − f2r2 =
d2

2
(21.5)

which establishes the general relationship between the radii, r1 and r2, of the carrier circles.
Constants f0, f1, f2 and d are referred to as the biarc defining constants. Geometrically, f0

is the cosine of the angle between the tangent vectors, f1 is the (signed) distance from P2 to
the line defined by T̂1 and P1, f2 is the (signed) distance from P1 to the line defined by P2

and T̂2 and d2 is the distance (squared) between points P1 and P2. Note that these defining
constants depend only on the relative position of the defining geometry and are independent
of the choice of coordinate axes.

Radii Ratio

If a relationship between the carrier circle radii, r1 and r2, is specified, then Equation (21.5)
can be solved for the radii. We choose to specify the biarc radii ratio, κ = r1/r2, as the
defining relationship. Substituting r1 = κr2 into Equation (21.5) produces the equation

κ(sr + f0)r2
2 + (κf1 − f2)r2 =

d2

2
. (21.6)

Solving Equation (21.6) by using the quadratic formula yields

r2 =
(f2 − κf1) ±

√
(f2 − κf1)2 + 2κd2(sr + f0)
2κ(sr + f0)

(21.7)

r1 =
(f2 − κf1) ±

√
(f2 − κf1)2 + 2κd2(sr + f0)
2(sr + f0)

.

In the special case where the tangent vectors are in the same direction, the denominator
(sr + f0) will equal zero, and the quadratic equation degenerates and the solution of the
resulting linear equation is

r1 =
κd2

2(κf1 − f2)
and r2 =

d2

2(κf1 − f2)
. (21.8)

Thus, by specifying a biarc radii ratio, κ, and applying Equation (21.7) or (21.8) we
may calculate values for r1 and r2. Equation (21.3) allows us to calculate the corresponding
coordinates of the carrier circle centers, C1 and C2. In certain configurations only one arc is
needed to satisfy the position and tangent constraints. In this case, the equations will produce
centers and radii for two identical circles.

Number of Solutions

Given a specific pair of points, P1 and P2 and tangent vectors, T̂1 and T̂2, we now consider
how many different carrier circle pairs exist for a given radii ratio, κ. The solutions may be
enumerated as follows:

314 Chapter 21 Biarcs

• Equations (21.7) or (21.8) may produce negative values for r1 or r2. The sign indicates
the directions the center points C1 and C2 should be offset from P1 and P2, respectively.
As a result, both κ and −κ may produce valid biarcs with a specified radii ratio.

• The radius sign constant, sr, may take on two different values, ±1.

• The quadratic formula yields two different solutions due to the sign preceding the radical
sign as shown in Equation (21.7).

Therefore, as many as 2 × 2 × 2 = 8 unique carrier circle pairs may exist for a given biarc
configuration and radii ratio.

21.2 Knot Point

Suppose we wish to compute the coordinates of the knot point, P0(x0, y0), which is the point
of tangency between the two carrier circles. The coordinates of the knot point can be found
by intersecting the two circles and taking advantage of the fact that they intersect in a single
point yielding

x0 =
(h1 + h2)d2 − (h1 − h2)R

2d2
(21.9)

y0 =
(k1 + k2)d2 − (k1 − k2)R

2d2

where

d2 = (h1 − h2)2 + (k1 − k2)2 and
R = r2

1 − r2
2 .

While it is a simple matter to compute the knot point once we have the two carrier circles,
we might instead want to specify the position of the knot point. We will show in this section
that the knot point cannot be selected arbitrarily, but must lie on one of two specific circles,
called the knot circles. The following theorem and corollary from elementary geometry (which
are stated without proof) will be central to exploring the nature of the knot circles.

Theorem. Angles at the circumference of a circle subtended by the same arc are
equal.

Corollary. Given two fixed points P1 and P2 and a variable point Q, the locus of
Q is a circle if 6 P1QP2 is a constant.

Consider two internally tangent carrier circles centered at C1(r1, 0) and C2(r2, 0) and with
radii r1 and r2, respectively, as shown in Figure 21.2. By construction the two circles are
internally tangent at the origin. Pick two arbitrary points P1 and P2 on the circles with
coordinates

P1(r1 + r1 cos θ1, r1 sin θ1) and P2(r2 + r2 cos θ2, r2 sin θ2).

21.2 Knot Point 315

x

y

r1

r2

O C1 C2

w
p - w

P1

P2

L1

L2

q1
q2a

Figure 21.2: Knot point angles.

We will show that the angle α ≡ 6 P1OP2 is a constant angle for all such points P1 and P2

when the angle ω is constant, and, having established this fact, we will apply the corollary
stated above to establish that the knot point must be on one of two circles.

The slopes of lines OP1 and OP2, m1 and m2, are given by

m1 =
r1 sin θ1

r1 + r1 cos θ1
=

sin θ1

1 + cos θ1
= tan

(
1
2θ1

)
m2 =

r2 sin θ2

r2 + r2 cos θ2
=

sin θ2

1 + cos θ2
= tan

(
1
2θ2

)
and the angle, α, between OP1 and OP2 is

tanα =
m2 − m1

1 + m1m2

=
tan

(
1
2θ2

)− tan
(

1
2θ1

)
1 + tan

(
1
2θ1

)
tan

(
1
2θ2

)
= tan

(
1
2 (θ2 − θ1)

)
= ±

√
1 − cos(θ2 − θ1)
1 + cos(θ2 − θ1)

.

316 Chapter 21 Biarcs

w

P1

P2

r¢

r¢¢
P1

¢

P2
¢

P1
¢¢

P2
¢¢

Figure 21.3: Knot circles.

The angle ω between the two tangent lines L1 and L2 is given by

6 L2 − 6 L1 = ω (or π − ω)(
θ2 + π

2

)− (θ1 + π
2

)
= ω (or π − ω)

θ2 − θ1 = ω (or π − ω).

Notice that since ω is a constant, by definition, for any given biarc configuration, θ2 − θ1 is
also a constant. Since α is a function of θ2 − θ1 it must also be a constant. Now applying
the corollary, the knot point must be on one of two circles corresponding to the two constant
values of α. Similar proofs hold for other geometric configurations and also for externally
tangent circles.

21.3 Knot Circles

In the previous section it was established that all the valid knot points for a given biarc con-
figuration must lie on either of two circles. These two circles can be constructed geometrically
by considering the limiting cases of the carrier circle radii, r1 and r2, as shown in Figure 21.3.
First, notice that the tangency points P1 and P2 must be on the knot circles because they
correspond to the knot point in the trivial cases when r1 = 0 and r2 = 0. Now imagine a
circle anchored at P1, tangent to line L1, and increasing in radius from zero. At some value
of r1, the circle will become tangent to line L2 at the point labeled P ′

1 (or P ′′
1 , if the circle is

on the opposite side of L1). At this value of r1, r2 will be infinite and the second biarc circle
will become a line. The three points P1, P2 and P ′

1 determine the first knot circle, and P1,
P2, and P ′′

1 determine the second knot circle.
Since the construction is symmetrical, we could have increased the radius of the second

carrier circle, r2, from zero and found points P ′
2 and P ′′

2 which are on the same two knot circles

21.4 Biarc Programming Examples 317

as those defined by P ′
1 and P ′′

1 .
The center points of the knot circles can be constructed by intersecting the perpendicular

bisector of P1P2 with the angle bisectors of lines L1 and L2. Using simple trigonometric
relationships it can be shown that the radii of the two knot circles, r′ and r′′, are given by

r′ =
d

2 cos
(

1
2ω
) and r′′ =

d

2 sin
(

1
2ω
)

where d is the distance between P1 and P2 and ω is the angle between L1 and L2.

21.4 Biarc Programming Examples

Descarta2D does not provide built-in functions for computing biarcs directly, so we will use
the facilities available in Descarta2D along with the programming capabilities provided by
Mathematica to demonstrate how new functions can be added to Descarta2D. In order to
keep the examples simple, we will ignore special cases and possible error conditions. Better
implementations would check for special cases and report errors in the input arguments when
such errors are detected.

Knot Circles

The first example illustrates a Mathematica function that will return a list of two knot circles
given a biarc configuration (tangent points and tangent lines). For simplicity we will use a
triangle to define the biarc configuration with the implicit understanding that the first and
third vertices of the triangle, V1 and V3, are the tangent points, P1 and P2, and sides V1V2 and
V2V3 of the triangle are the tangent lines, L1 and L2. Using a triangle as an input parameter
has the added advantage that many invalid cases are avoided because they would involve
invalid triangles.

In[1]: H∗1∗L KnotCircles2D@t1 : Triangle2D@p1 : 8x1_, y1_<,
H∗2∗L pA : 8xA_, yA_<,
H∗3∗L p2 : 8x2_, y2_<DD :=

H∗4∗L Module@8pt1, pt2<,
H∗5∗L pt1 = Point2D@t1, Inscribed2DD;
H∗6∗L pt2 = Point2D@Point2D@pAD, Point2D@p1D,
H∗7∗L −Distance2D@p2, pADD;
H∗8∗L Map@Circle2D@Point2D@p1D, Point2D@p2D, #D&,
H∗9∗L 8pt1, pt2<D D;

Lines 1, 2 and 3 define a Mathematica function called KnotCircles2D that takes one para-
meter that is required to pattern match a Descarta2D triangle object. Line 4 opens a Module
statement that defines two local variables pt1 and pt2. Line 5 constructs a point at the center
of a circle inscribed in the triangle. Line 6 constructs a point offset from the apex point, pA,
to the tangency point, p1, a negative distance defined by p2 and pA. Lines 8 and 9 construct
two circles from the two tangency points and a third point, pt1 or pt2.

318 Chapter 21 Biarcs

Example. Construct the two knot circles associated with the triangle whose
vertices are (0, 0), (2, 1) and (3, 0). Plot the geometric objects.

Solution. The function KnotCircles2D[triangle], defined above, returns a list of
two knot circles associated with a triangle.

In[2]: t1 = Triangle2D@p1 = Point2D@80, 0<D,
p2 = Point2D@82, 1<D,
p3 = Point2D@83, 0<DD;

kc = KnotCircles2D@t1D êê N

Out[2] 8Circle2D@81.5, −2.08114<, 2.56537D, Circle2D@81.5, 1.08114<, 1.84902D<

In[3]: Sketch2D@8p1, p2, p3, t1, kc, Point2D@t1, Inscribed2DD<D;

-1 0 1 2 3 4

-1

0

1

2

3

Descarta2D Hint. In the KnotCircles2D function whose implementation is
shown above, the third point on the second knot circle is constructed following
the technique described earlier in the chapter. However, the third point of the
first knot circle is constructed as the center of the circle inscribed in the triangle.
The exploration knotin.nb at the end of the chapter shows that this point is
actually on the first knot circle. Using this point has the added advantage that
it avoids an error condition that would otherwise occur when P1 and P2 are
equidistant from the third point of the triangle (an isosceles biarc configuration).

Arc Construction

In this section we will implement functions for constructing bulge factor arcs given defining
points and tangent vectors. These will be used later to construct biarcs. First, we define a
utility function, Cross2D, that computes a vector cross-product in two dimensions.

In[4]: Cross2D@8u1_, v1_<, 8u2_, v2_<D := u1∗v2 − u2∗v1;

21.4 Biarc Programming Examples 319

Now we define an arc construction function that takes the arc’s start and end points, P0

and P1, as input, plus a point associated with the start point indicating the direction of the
tangent to the arc at the start point. The justification for this function is provided in the
exploration arcentry.nb.

In[5]: Arc2D@8Point2D@p0 : 8x0_, y0_<D, Point2D@p : 8x_, y_<D<,
Point2D@p1 : 8x1_, y1_<DD :=

Module@8v0 = p − p0, chd = p1 − p0, s, c<,
s = Cross2D@v0, chdD;
c = Dot@v0, chdD;
Arc2D@p0, p1, sê Hc + Sqrt@c^2 + s^2DLD D;

The next arc construction function is similar to the previous one, except the point indi-
cating the tangent direction is associated with the end point of the arc. The justification for
this function is provided in the exploration arcexit.nb.

In[6]: Arc2D@Point2D@p0 : 8x0_, y0_<D,
8Point2D@p1 : 8x1_, y1_<D, Point2D@p : 8x_, y_<D<D :=

Module@8v1 = p − p1, chd = p1 − p0, s, c<,
s = Cross2D@chd, v1D;
c = Dot@chd, v1D;
Arc2D@p0, p1, sê Hc + Sqrt@c^2 + s^2DLD D;

Knot Points

Now that we have functions for computing knot circles and constructing arcs involving tangent
vectors, it is fairly easy to construct biarcs. Consider the following Mathematica function:

In[7]: H∗1∗L Biarc2D@t1 : Triangle2D@p0 : 8x0_, y0_<,
H∗2∗L pA : 8xA_, yA_<,
H∗3∗L p1 : 8x1_, y1_<D,
H∗4∗L ptK : Point2D@8xk_, yk_<DD :=

H∗5∗L 8Arc2D@8Point2D@p0D, Point2D@pAD<, ptKD,
H∗6∗L Arc2D@8Point2D@p1D, Point2D@pAD<, ptKD<;

The function Biarc2D takes two arguments, a Descarta2D triangle object defining the biarc
configuration (lines 1–3), and a Descarta2D point object defining the knot point (line 4).
The function Arc2D[{point, point}, point], defined in the previous section, is used twice to
actually construct the biarc which is returned as a list of two arcs (lines 5–6).

Example. Construct the biarc associated with the triangle whose vertices are
(0, 0), (2, 1) and (3, 0) and a knot point on the first knot circle at parameter value
π/2. Plot the geometric objects.

320 Chapter 21 Biarcs

Solution. The function Biarc2D[triangle, point] described above returns a list
of two arcs (a biarc) given a triangle that defines the biarc configuration and the
knot point.

In[8]: t1 = Triangle2D@p1 = Point2D@80, 0<D,
p2 = Point2D@82, 1<D,
p3 = Point2D@83, 0<DD;

kc = KnotCircles2D@t1D êê N;

bi1 = Biarc2D@t1, pk = Point2D@kc@@1DD@Piê2DDD êê N

Out[8] 8Arc2D@81.5, 0.484234<, 80, 0<, 0.075838D,
Arc2D@83., 0<, 81.5, 0.484234<, 0.241083D<

In[9]: Sketch2D@8p1, p2, p3, t1, pk, bi1<D;

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Descarta2D Hint. The Biarc2D function does not check to insure that the
knot point provided is a valid knot point. It will erroneously return two arcs that
are not tangent to each other if it is called with a point not on one of the knot
circles. Other errors will occur if the knot point coincides with one of the triangle
vertices.

It would be convenient if the biarc construction function computed the knot point internally
as shown in the following Mathematica function:

In[10]: H∗1∗L Biarc2D@t1 : Triangle2D@p0 : 8x0_, y0_<,
H∗2∗L pA : 8xA_, yA_<,
H∗3∗L p1 : 8x1_, y1_<D,
H∗4∗L knotCircleNumber_Integer,

H∗5∗L knotPointParameter_?IsScalar2DD :=

H∗6∗L Module@8kc, ptK<,
H∗7∗L kc = KnotCircles2D@t1D@@knotCircleNumberDD;
H∗8∗L ptK = Point2D@kc@knotPointParameterDD êê N;

H∗9∗L Biarc2D@t1, ptKD D;

This Biarc2D function takes three arguments, the first being a triangle defining the biarc
configuration, the second an integer equal to 1 or 2 specifying which biarc circle the knot
point should be on, and the third an angle (in radians) specifying the parameter location on
the knot circle for the desired knot point. Lines 1–5 define the function arguments, line 7
computes the knot circle, line 8 computes the knot point, and line 9 computes the biarc.

21.4 Biarc Programming Examples 321

Example. Construct the biarc associated with the triangle whose vertices are
(0, 0), (2, 1) and (3, 0) and a knot point on the first knot circle at parameter value
π/2.

Solution. The function

Biarc2D[triangle, knotCircleNumber, knotCircleParameter]

as implemented above returns the required biarc.

In[11]: t1 = Triangle2D@p1 = Point2D@80, 0<D,
p2 = Point2D@82, 1<D,
p3 = Point2D@83, 0<DD;

bi1 = Biarc2D@t1, 1, Piê2D êê N

Out[11] 8Arc2D@81.5, 0.484234<, 80, 0<, 0.075838D,
Arc2D@83., 0<, 81.5, 0.484234<, 0.241083D<

The Biarc2D functions implemented above are restrictive in the sense that the tangent
vectors always point toward the apex point of the triangle and no provision is available to
allow either (or both) of the tangent vectors to point away from the apex. In order to overcome
this restriction we will implement a function that takes two line segments to define the biarc
configuration. The line segments will define a position (the start point of the line segment)
and a direction (from the start point towards the end point).

In[12]: H∗1∗L Biarc2D@Segment2D@p0 : 8x0_, y0_<, d0 : 8u0_, v0_<D,
H∗2∗L Segment2D@p1 : 8x1_, y1_<, d1 : 8u1_, v1_<D,
H∗3∗L ptK : Point2D@8xk_, yk_<DD :=

H∗4∗L 8Arc2D@8Point2D@p0D, Point2D@d0D<, ptKD,
H∗5∗L Arc2D@ptK, 8Point2D@p1D, Point2D@d1D<D<;

In[13]: H∗1∗L Biarc2D@L0 : Segment2D@p0 : 8x0_, y0_<, d0 : 8u0_, v0_<D,
H∗2∗L L1 : Segment2D@p1 : 8x1_, y1_<, d1 : 8u1_, v1_<D,
H∗3∗L knotCircleNumber_Integer,

H∗4∗L knotCircleParameter_?IsScalar2DD :=

H∗5∗L Module@8ptA, t1, kc, ptK<,
H∗6∗L ptA = Point2D@Line2D@L0D, Line2D@L1DD;
H∗7∗L t1 = Triangle2D@p0, Coordinates2D@ptAD, p1D;
H∗8∗L kc = KnotCircles2D@t1D@@knotCircleNumberDD;
H∗9∗L ptK = Point2D@kc@knotCircleParameterDD;
H∗10∗L Biarc2D@L0, L1, ptKD D;

These Biarc2D functions are parallel implementations of the previous two, except two line
segments are used to define the biarc configuration instead of a triangle.

322 Chapter 21 Biarcs

Example. Given a biarc configuration defined by the line segments from (0, 0) to
(−3, 2) and from (3, 0) to (4,−2) construct a set of biarcs whose knot points are
on knot circle 1 at parameter values π/3, π/2 and 2π/3.

Solution. Use the function Biarc2D whose implementation is provided above.

In[14]: ls0 = Segment2D@80, 0<, 8−3, 2<D êê N;

ls1 = Segment2D@83, 0<, 84, −2<D êê N;

bi1 = Map@HBiarc2D@ls0, ls1, 1, #D êê NL&, 8Piê6, Piê2, 5 Piê6<D;

In[15]: Map@HSketch2D@8ls0, ls1, #<D;L&, bi1D;

-1 0 1 2 3 4
-1

0

1

2

3

4

-1 0 1 2 3 4
-1

0

1

2

3

4

-1 0 1 2 3 4
-1

0

1

2

3

4

Building on these basic Mathematica programs for computing biarcs, more elaborate con-
struction functions could be provided. For example, we might write a function that attempts
to automatically select the knot point based on some minimization criteria; or we might at-
tempt to construct biarcs that have no reversal of curvature at the knot point (i.e. the carrier
circles are internally tangent to each other). Another interesting exercise is to devise a strategy
for connecting a predefined set of points with a smooth, piecewise curve consisting of biarcs.

21.5 Explorations

Incenter on Knot Circle. knotin.nb
Show that the incenter of a triangle (the center point of the circle inscribed in the triangle)

is on one of the knot circles for the biarc configuration defined by the triangle.
—–

Part VI

Reference

Chapter 22

Technical Notes

This chapter provides an overview of how Descarta2D is implemented using Mathematica.
Descarta2D is an object-oriented application, which means that it provides a collection of
objects (e.g. points, lines, etc.) and a set of methods that compute on these objects. The pro-
grams that comprise Descarta2D are organized into a small number of Mathematica packages
that specify the behavior of the objects.

22.1 Computation Levels

Mathematica provides support for both symbolic and numerical computations. Descarta2D

takes advantage of these capabilities to provide the following four levels of computation:

Symbolic. At the symbolic level, sizes, angles and coefficients are expressed as variables and
general formulas may be derived.

Analytic. At the analytic level variables are replaced with exact numerical quantities that
are not approximated by floating point numbers. Mathematical functions such as square
roots and trigonometric functions are carried without evaluation.

Numerical. At the numerical level numbers and functions are replaced with floating point
representations that are approximations carried to any number of decimal places in
Mathematica. Often, the accuracy is determined by the floating point hardware available
in the computer and is sufficient for such computations.

Approximation. At the approximation level iterative algorithms are used to converge to
an approximation of a value. Generally, the tolerance of the approximation can be
controlled to approach the floating point precision of the computer hardware or better.

Depending on the complexity of the problem, Descarta2D often provides a choice of the level
of computation undertaken for a particular geometric investigation.

325

326 Chapter 22 Technical Notes

Table 22.1: Reserved names in Descarta2D (objects).

Arc2D Hyperbola2D Quadratic2D
Circle2D Line2D Segment2D
ConicArc2D Parabola2D Triangle2D
Ellipse2D Point2D

22.2 Names

In Mathematica symbolic names containing upper case letters are considered different than
names using corresponding lower case letters (i.e. Mathematica is case-sensitive with respect
to the interpretation of symbolic names). Mathematica uses the convention that system-
defined names always begin with upper case letters or the dollar sign symbol and recommends
that user-defined symbols begin with lower case letters to avoid naming conflicts. Descarta2D

follows the same naming conventions as Mathematica. Descarta2D symbolic names begin
with upper case letters; user symbolic names may contain upper case or lower case letters,
but, generally, the first letter is advised to be lower case to prevent conflicts with built-in
Mathematica functions and Descarta2D functions. In order to prevent conflicts with the names
of Descarta2D functions, this chapter provides suggestions for naming Descarta2D objects
to encourage consistency and clear understanding when using Descarta2D. Following these
conventions will avoid most naming conflicts.

All Descarta2D function names are fully spelled out English words and each name has
the ending 2D appended. If more than one word is used (for example, TangentConics2D, or
FocalLength2D), then the first letter of each word is upper case.

Descarta2D adheres to several syntactic conventions for consistency and ease of use. Func-
tions that return (construct) a Descarta2D object, such as Point2D, will always have the
form

objectName[arg1, arg2, ...].

For example, Point2D[point, point] returns the midpoint of two given points. Functions that
return a list of objects are generally plural, such as Points2D, TangentLines2D and Foci2D.

If Descarta2D detects invalid input when constructing an object, it generally displays an
error message and returns the $Failed symbol. Descarta2D functions that return a list of
objects will generally return an empty list, instead of the $Failed symbol (indicating that no
objects can be constructed).

22.3 Descarta2D Objects

In Descarta2D an object is a textual representation of a mathematical concept. Each object is
represented using a Mathematica expression whose head is the name of the object and whose
parameters are the arguments of the expression. Table 22.1 is a list of the object names

22.3 Descarta2D Objects 327

object
geometry

coordinates
point
curve

line
circle
parabola
ellipse
hyperbola
quadratic

curve segment
line segment
arc
conic arc

composite
triangle

polynomial
linear

quadratic

{x, y}
Point2D[{x, y}]

Line2D[A,B,C]
Circle2D[{h, k}, r]
Parabola2D[{h, k}, f, θ]
Ellipse2D[{h, k}, a, b, θ]
Hyperbola2D[{h, k}, a, b, θ]
Quadratic2D[A,B,C, D,E, F]

Segment2D[{x0, y0}, {x1, y1}]
Arc2D[{x0, y0}, {x1, y1},B]
ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ]

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}]

Line2D[a, b, c]
ax + by + c

Quadratic2D[a, b, c, d, e, f]
ax2 + bxy + cy2 + dx + ey + f

conic

Figure 22.1: Descarta2D object hierarchy.

328 Chapter 22 Technical Notes

x

y

D

H

r

C

P0

P1

B =
2 H
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄD

Figure 22.2: Standard representation of an Arc2D.

built into Descarta2D. The objects are organized into a hierarchy as shown in Figure 22.1.
The hierarchy also includes meta-objects, objects that have no implementation, but serve to
organize the Descarta2D objects. Meta-objects are shown in italic font. The following sections
provide detailed descriptions of each object provided by Descarta2D. Each section provides the
name of the object, the syntax of the Mathematica expression for the object, names typically
used to refer to the object, a description of the object (using a mathematical equation when
appropriate) and restrictions on the arguments of the object. All objects have the restriction
that their arguments cannot involve complex numbers. The Line2D and Quadratic2D objects
are listed twice in Figure 22.1 because they can be interpreted to represent geometry or
polynomials.

Arc2D

Arc2D[{x0, y0}, {x1, y1},B] is the standard representation of an arc in Descarta2D as illus-
trated in Figure 22.2. The first and second arguments are the coordinates of the start and
end points of the arc, respectively. The third argument is a positive scalar, B, representing
the bulge factor of the arc. The bulge factor is the ratio of the arc’s height, H , to half the
chord length, D/2; so B = 2H/D. The arc is traversed counter-clockwise from P0 to P1.

In the argument sequence of a function an arc is shown as arc, as in Radius2D[arc].
arc[0] gives the coordinates of the start point, arc[1] gives the coordinates of the end point
and Bulge2D[arc] gives the bulge factor. Suggested symbolic names for an Arc2D include the
series: (a1, a2, . . .), (A1, A2, . . .) and (arc1, arc2, . . .).

The parametric equations of an Arc2D using parameter t are

x(t) = h + (x0 − h) cos(βt) − (y0 − k) sin(βt)

22.3 Descarta2D Objects 329

x

y

r

CHh, kL

PHx, yL

Figure 22.3: Standard representation of a Circle2D.

y(t) = k + (x0 − h) sin(βt) + (y0 − k) cos(βt)

where (h, k) is the center point of the arc, and β is the angular span of the arc. Both the
center point and the angular span are functions of the defining points and the bulge factor
as described in the “Arcs” chapter. Values of t in the range 0 ≤ t ≤ 1 generate coordinates
on the complete span of the arc. Arc2D[{x0, y0}, {x1, y1},B][t] returns the coordinates
of a point on an arc at parameter t. The expression Arc2D[{x0, y0}, {x1, y1},B][{t1, t2}]
when used in a plotting command, such as Sketch2D, will cause the portion of the arc between
parameters t1 and t2 to be plotted.

Circle2D

Circle2D[{h, k}, r] is the standard representation of a circle in Descarta2D as illustrated in
Figure 22.3. The center of the circle is given as a coordinate list, {h, k}, and the radius is the
positive scalar, r. The equation of the circle is

(x − h)2 + (y − k)2 = r2.

In the argument sequence of a function, a Circle2D is shown as circle or cir, as in
Radius2D[circle] or Radius2D[cir]. The function Coordinates2D[circle] gives the center
point coordinates of a circle and Radius2D[circle] gives the radius, r. Suggested symbolic
names for a Circle2D include the series: (c1, c2, . . .), (C1, C2, . . .) and (cir1, cir2, . . .).

The parametric equations of a Circle2D using parameter θ are

x(θ) = h + r cos θ

y(θ) = k + r sin θ.

Values of θ in the range 0 ≤ θ < 2π generate coordinates on the complete circumference of the
circle. Circle2D[{h, k}, r][θ] returns the coordinates of the point on a circle at parameter

330 Chapter 22 Technical Notes

P0 P1

PA

k

h

r =
h
ÄÄÄÄÄÄÄk

Figure 22.4: Standard representation of a ConicArc2D.

θ. The expression Circle2D[{h, k}, r][θ][{θ1, θ2}] when used in a plotting command, such
as Sketch2D, will cause the arc of the circle between parameters θ1 and θ2 to be plotted.

Conic Arc

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] is the standard representation of a conic arc in
Descarta2D as illustrated in Figure 22.4. The first and third arguments are the coordinates of
the start and end points of the conic arc, respectively. The second argument is the coordinates
of the apex point of the conic arc (the apex point is the intersection point of the tangent lines
at the start and end points). The fourth argument, ρ, is a scalar representing the projective
discriminant of the conic arc. Values of ρ in the range 0 < ρ < 1/2 are elliptical arcs; values
in the range 1/2 < ρ < 1 are hyperbolic arcs; and the value 1/2 is a parabolic arc.

In an argument sequence, a ConicArc2D is shown as cnarc, as in Rho2D[cnarc]. The
function Coordinates2D[cnarc,Apex2D] returns the coordinates of the apex point of a conic
arc and Rho2D[cnarc] gives the value of ρ. ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ][t]
with t = 0 gives the coordinates of the start point and with t = 1 gives the coordinates of the
end point. Suggested symbolic names for a ConicArc2D include the series: (ca1, ca2, . . .),
(CA1, CA2, . . .) and (cnarc1, cnarc2, . . .).

The parametric equations of a ConicArc2D using parameter t are

x(t) =
b0(1 − ρ)x0 + b1ρxA + b2(1 − ρ)x1

b0(1 − ρ) + b1ρ + b2(1 − ρ)

y(t) =
b0(1 − ρ)y0 + b1ρyA + b2(1 − ρ)y1

b0(1 − ρ) + b1ρ + b2(1 − ρ)

where b0 = (1 − t)2, b1 = 2t(1 − t) and b2 = t2. Values of t in the range 0 ≤ t ≤ 1 generate
coordinates on the complete span of the conic arc. The expression

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ][{t1, t2}]
when used in a plotting command, such as Sketch2D, will cause the portion of the conic arc
between parameters t1 and t2 to be plotted.

22.3 Descarta2D Objects 331

x

y

CHh, kL

a

b

q

Figure 22.5: Standard representation of an Ellipse2D.

Coordinates

Coordinates {x, y} are used to represent an (x, y) position in Descarta2D. In an argument
sequence coordinates are shown as coords such as Point2D[coords], or in explicit forms such
as {h, k} or {x, y} as in Point2D[{x, y}]. Suggested symbolic names for coordinates include
the series: (c1, c2, . . .), (C1, C2, . . .) and (coords1, coords2, . . .).

Ellipse2D

Ellipse2D[{h, k}, a, b, θ] is the standard representation of an ellipse in Descarta2D as il-
lustrated in Figure 22.5. The first argument, {h, k}, is a list of coordinates representing the
center of the ellipse. The second argument is a positive scalar, a, representing the length of
the semi-major axis. The third argument is a positive scalar, b, representing the length of the
semi-minor axis. In a valid ellipse, the length of the semi-major axis must be greater than
the length of the semi-minor axis, a > b. The fourth argument, θ, is the angle of rotation of
the ellipse measured from the +x-axis counter-clockwise to the major axis of the ellipse and
is normalized to the range 0 ≤ θ < π. The underlying equation of the (non-rotated) ellipse is

(x − h)2

a2
+

(y − k)2

b2
= 1.

In an argument sequence, an ellipse is shown as ellipse, as in Angle2D[ellipse]. The func-
tion Coordinates2D[ellipse] returns the center point coordinates of an ellipse; the function

SemiMajorAxis2D[ellipse]

gives the length of the semi-major axis, a, and the function

332 Chapter 22 Technical Notes

x

y

CHh, kL

a

b

q

Figure 22.6: Standard representation of a Hyperbola2D.

SemiMinorAxis2D[ellipse]

gives the length of the semi-minor axis, b; and Angle2D[ellipse] gives the angle of rotation,
θ. Suggested symbolic names for an Ellipse2D include the series: (e1, e2, . . .), (E1, E2, . . .)
and (ell1, ell2, . . .).

The parametric equations of a (non-rotated) Ellipse2D using the parameter α are

x(α) = h + a cosα

y(α) = k + b sin α.

Values of α in the range 0 ≤ α < 2π generate coordinates on the complete circumference of the
ellipse. Ellipse2D[{h, k}, a, b, θ][α] returns the coordinates of the point on an ellipse at
parameter α. The expression Ellipse2D[{h, k}, a, b, θ][{α1, α2}] when used in a plotting
command, such as Sketch2D, will cause an arc of the ellipse between parameters α1 and α2

to be plotted.

Hyperbola2D

Hyperbola2D[{h, k}, a, b, θ] is the standard representation of a hyperbola in Descarta2D as
illustrated in Figure 22.6. The first argument, {h, k}, is a list of coordinates representing the
center of the hyperbola. The second argument is a positive scalar, a, representing the length
of the semi-transverse axis. The third argument is a positive scalar, b, representing the length
of the semi-conjugate axis. The fourth argument, θ, is the angle of rotation of the hyperbola
measured from the +x-axis counter-clockwise to the transverse axis of the hyperbola and is
normalized to the range 0 ≤ θ < π. The underlying equation of the (non-rotated) hyperbola

22.3 Descarta2D Objects 333

is
(x − h)2

a2
− (y − k)2

b2
= 1.

In an argument sequence, a hyperbola is shown as hyperbola, as in Angle2D[hyperbola].
The function Coordinates2D[hyperbola] returns the center point coordinates of a hyperbola;
the function

SemiTransverseAxis2D[hyperbola]

gives the length of the semi-transverse axis, a, and the function

SemiConjugateAxis2D[hyperbola]

gives the length of the semi-conjugate axis, b; and Angle2D[hyperbola] gives the angle of
rotation, θ. Suggested symbolic names for a Hyperbola2D include the series: (h1, h2, . . .),
(H1, H2, . . .) and (hyp1, hyp2, . . .).

The parametric equations of a (non-rotated) Hyperbola2D using parameter t are

x(t) = h + a cosh(st)
y(t) = k + b sinh(st)

where s = cosh−1(e) and e is the eccentricity of the hyperbola. Values of t in the range
−∞ < t < ∞ generate coordinates on the branch of the hyperbola opening to the right in the
non-rotated position. Hyperbola2D[{h, k}, a, b, θ][t] returns the coordinates of the point
on a hyperbola at parameter t. The values t = ±1 generate coordinates at the ends of the
focal chord of the hyperbola. The expression Hyperbola2D[{h, k}, a, b, θ][{t1, t2}] when
used in a plotting command, such as Sketch2D, will cause an arc of the hyperbola between
parameters t1 and t2 to be plotted. If t1 < t2, the arc will be on the right branch of the
(non-rotated) hyperbola; if t1 > t2, the arc will be on the left branch of the (non-rotated)
hyperbola.

Line2D

Line2D[A,B,C] is the standard representation of an infinite line Ax+By +C = 0. At least
one of the first two coefficients, A or B, must be non-zero. The parametric equations of a line
using parameter t are

x(t) = ac + bt and y(t) = bc − at

where
a =

A√
A2 + B2

, b =
B√

A2 + B2
and c =

C√
A2 + B2

.

The coordinates of the point on the line nearest the origin will be at parameter t = 0 and
other coordinates, parameterized by distance t, −∞ < t < ∞, along the line are given by
Line2D[A,B,C][t]. The expression Line2D[A,B, C][{t1, t2}] when used in a plotting
command, such as Sketch2D, will cause a segment of the line between parameters t1 and t2
to be plotted.

334 Chapter 22 Technical Notes

x

y

axis

F

VHh, kL

f

q

Figure 22.7: Standard representation of a Parabola2D.

In an argument sequence, a Line2D object is shown as line or ln, as in Angle2D[line] or
Angle2D[ln]. Suggested symbolic names for a Line2D include the series: (l1, l2, . . .), (L1,
L2, . . .) and (ln1, ln2, . . .).

Parabola2D

Parabola2D[{h, k}, f, θ] is the standard representation of a parabola in Descarta2D as il-
lustrated in Figure 22.7. The first argument, {h, k}, is a list of coordinates representing the
vertex of the parabola. The second argument is a positive scalar, f , representing the focal
length of the parabola. The third argument, θ, is the angle of rotation of the parabola mea-
sured from the +x-axis counter-clockwise to the axis of the parabola and is normalized to the
range 0 ≤ θ < 2π. The underlying equation of the (non-rotated) parabola is

(y − k)2 = 4f(x − h).

In an argument sequence, a parabola is shown as parabola, as in Angle2D[parabola].
The function Coordinates2D[parabola] returns the vertex point coordinates of the parab-
ola; FocalLength2D[parabola] gives the focal length of the parabola; and Angle2D[parabola]
gives the angle of rotation, θ. Suggested symbolic names for a Parabola2D include the series:
(p1, p2, . . .), (P1, P2, . . .) and (pb1, pb2, . . .).

The parametric equations of a Parabola2D using parameter t are

x(t) = h + ft2 and y(t) = k + 2ft.

Values of t in the range −∞ < t < ∞ generate coordinates on the parabola opening to the
right in the non-rotated position. Parabola2D[{h, k}, f, θ][t] returns the coordinates of the
point on a parabola at parameter t. The values t = ±1 generate coordinates at the ends of the

22.3 Descarta2D Objects 335

focal chord of the parabola. The expression Parabola2D[{h, k}, f, θ][{t1, t2}] when used in
a plotting command, such as Sketch2D, will cause an arc of the parabola between parameters
t1 and t2 to be plotted.

Point2D

Point2D[{x, y}] (which is the same as Point2D[coords]) is the standard representation of a
point. The coordinates define the (x, y) position of the point. In an argument sequence, a
point is shown as point or pt, as in Coordinates2D[point] and Coordinates2D[pt]. Suggested
symbolic names for a Point2D include the series: (p1, p2, . . .), (P1, P2, . . .) and (pt1, pt2,
. . .).

XCoordinate2D[point] and YCoordinate2D[point] return the x- and y-coordinate, re-
spectively, of a point. Coordinates2D[point] returns the (x, y) coordinates of a point as a
coordinate list.

Quadratic2D

Quadratic2D[A,B,C, D,E, F] is the standard representation of the quadratic

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0.

At least one of the first five coefficients must be non-zero. In general, the quadratic will
represent a conic curve, but certain combinations of coefficients may represent degenerate
conics (lines and points) or no locus at all. In an argument sequence, a Quadratic2D is shown
as quad, as in Point2D[quad]. Suggested symbolic names for a Quadratic2D include the
series: (q1, q2, . . .), (Q1, Q2, . . .) and (quad1, quad2, . . .). Descarta2D provides no parametric
representation for a quadratic (the specific conics have parametric representations).

Segment2D

The form Segment2D[{x0, y0}, {x1, y1}] is the standard representation of a line segment
in Descarta2D. The coordinates {x0, y0} and {x1, y1} are the start and end coordinates,
respectively, of the line segment.

In an argument sequence, a Segment2D is shown as lnseg, as in Angle2D[lnseg]. Suggested
symbolic names for a Segment2D include the series: (l1, l2, . . .), (L1, L2, . . .) and (lnseg1,
lnseg2, . . .).

The parametric equations of a Segment2D using parameter t are

x(t) = x0 + t(x1 − x0)
y(t) = y0 + t(y1 − y0).

Values of t in the range 0 ≤ θ ≤ 1 generate coordinates over the complete length of the
line segment. Segment2D[{x0, y0}, {x0, y0}][t] returns the coordinates of the point on a
line segment at parameter t. The parameter value t = 0 generates the coordinates of the
start point of the line segment and the value t = 1 generates the end point coordinates. The

336 Chapter 22 Technical Notes

x

y

V1Hx1, y1L

V2Hx2, y2L

V3Hx3, y3L

Figure 22.8: Standard representation of a Triangle2D.

expression Segment2D[{x0, y0}, {x1, y1}][{t1, t2}] when used in a plotting command, such
as Sketch2D, will cause a portion of the line segment between parameters t1 and t2 to be
plotted.

Triangle2D

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}], as illustrated in Figure 22.8, is the standard rep-
resentation of a triangle with vertex points (x1, y1), (x2, y2) and (x3, y3). The vertex points
cannot be coincident or collinear. Coordinates2D[triangle,n] returns the coordinates of
vertex n of a triangle, n = 1, 2, 3.

In an argument sequence a Triangle2D is shown as triangle, as in Area2D[triangle]. Sug-
gested symbolic names for a Triangle2D include the series: (t1, t2, . . .), (T1, T2, . . .) and
(tri1, tri2, . . .).

Object Queries

Each object in Descarta2D responds to a set of special queries essential to the operation of
Descarta2D. These special queries are listed below:

IsDisplay2D returns True if the object can be displayed using the Sketch2D command.

Is2D returns True if the object’s head is in a given list.

IsValid2D returns True if the object is a Descarta2D object and each of its parameters is of
the proper type and form.

ObjectNames2D returns a list of strings that are the names of all Descarta2D objects.

22.4 Descarta2D Packages 337

Table 22.2: Reserved names in Descarta2D (packages).

D2DArc2D D2DHyperbola2D D2DQuadratic2D
D2DArcLength2D D2DIntersect2D D2DSegment2D
D2DArea2D D2DLine2D D2DSketch2D
D2DCircle2D D2DLoci2D D2DSolve2D
D2DConic2D D2DMaster2D D2DTangentCircles2D
D2DConicArc2D D2DMedial2D D2DTangentConics2D
D2DEllipse2D D2DNumbers2D D2DTangentLines2D
D2DEquations2D D2DParabola2D D2DTangentPoints2D
D2DExpressions2D D2DPencil2D D2DTransform2D
D2DGeometry2D D2DPoint2D D2DTriangle2D

If you add a new object to Descarta2D, the object will need to respond properly to these
queries if you desire that the object behave in an integrated manner. Refer to the source code
listings to determine how each of these queries can be implemented.

22.4 Descarta2D Packages

A relatively small number of Mathematica packages (*.m files) provide support for all the
Descarta2D functions. Your computer system must be set up to allow Mathematica to find
these files before you can use any of the Descarta2D functions. In order to set up Mathematica
to use the Descarta2D package files, you need copy the folder Descarta2D from the Descarta2D

CD-ROM onto your hard drive. Descarta2D must be copied into a folder that Mathematica
searches when loading packages. Typically, in a standard Mathematica installation, this will
be the folder

c:\Program Files\Wolfram Research\Mathematica\3.0\AddOns\Applications\

although this directory path may be different for your installation of Mathematica. The
master package file for Descarta2D will be loaded by issuing the command <<Descarta2D‘.
After this command is entered, Mathematica will automatically find and load all the packages
as required to execute Descarta2D commands.

The package names are listed in Table 22.2. Each package defines symbols that are then
owned by the package. The definitions in each package provide either support for Descarta2D

objects (such as Point2D, Line2D, Circle2D, etc.) or functions (such as Radius2D[circle]
that returns the radius of a circle, or Line2D[point, point] that constructs a line between two
points).

338 Chapter 22 Technical Notes

Table 22.3: Reserved names in Descarta2D (general functions).

Angle2D MedialLoci2D SemiTransverseAxis2D
ArcLength2D Parameters2D SimplifyCoefficients2D
Area2D Perimeter2D Sketch2D
Asymptotes2D Points2D Slope2D
Bulge2D Polynomial2D SolveTriangle2D
Centroid2D PrimaryAngle2D Span2D
Circumference2D PrimaryAngleRange2D TangentCircles2D
Coordinates2D Radius2D TangentConics2D
Directrices2D Reflect2D TangentEquation2D
Distance2D ReflectAngle2D TangentLines2D
Eccentricity2D Rho2D TangentPoints2D
Equation2D Rotate2D TangentQuadratics2D
FocalChords2D Scale2D TangentSegments2D
FocalLength2D SectorArea2D Translate2D
Foci2D SegmentArea2D Vertices2D
Length2D SemiConjugateAxis2D XCoordinate2D
Loci2D SemiMajorAxis2D YCoordinate2D
MedialEquations2D SemiMinorAxis2D

22.5 Descarta2D Functions

Descarta2D provides geometric computing facilities by introducing a number of general func-
tions and queries whose names are listed in Table 22.3 and 22.4.

Some Descarta2D functions require keywords. A complete list of keywords is listed in
Table 22.5.

There are a number of low-level functions provided by Descarta2D that are useful for
implementing new functions. These are listed in Table 22.6.

Table 22.4: Reserved names in Descarta2D (general queries).

IsCoincident2D IsConcurrent2D IsPerpendicular2D
IsCollinear2D IsOn2D IsTangent2D
IsConcentric2D IsParallel2D IsTripleParallel2D

22.6 Descarta2D Documentation 339

Table 22.5: Reserved names in Descarta2D (keywords).

Apex2D Conjugate2D Parallel2D
Circumscribed2D Inscribed2D Pencil2D
Complement2D MaxSeconds2D Perpendicular2D

22.6 Descarta2D Documentation

This entire book, including the subject matter chapters, reference chapters and exploration
notebooks, is provided on the CD-ROM in two formats. The first format provided is Adobe’s
Portable Document Format (PDF) and is useful for passive reading and printing of typeset
renderings of the book identical to the printed version of the book. PDF files may be viewed
and printed using Adobe’s Acrobat Reader program that can be downloaded at no charge
from Abode’s web site, www.adobe.com. The PDF files can be read directly off the CD-ROM
or they can be copied into any convenient location on your disk drive.

The second format provided is Wolfram Research’s Mathematica notebook format. Note-
books can be viewed interactively using Mathematica itself, or in a passive manner using
Wolfram’s MathReader program. MathReader is available at no charge and can be down-
loaded from Wolfram’s web site, www.wolfram.com. Both Mathematica and MathReader can
print notebook files.

Assuming that the Descarta2D folder has been copied from the CD-ROM into the appropri-
ate Mathematica folder on your system, the documentation notebooks can be fully integrated
into the Mathematica Help Browser. This is accomplished by clicking the Mathematica Front
End menu item Help, Rebuild Help Index.... After the index has been rebuilt, all of the text
and documentation for the book will be available interactively in the Help Browser. The
material will be listed by clicking the AddOn button in the Help Browser and then selecting
the item named Descarta2D. Notebooks whose links are clicked in the Help Browser category
listing windows will be opened in the Help Browser; links clicked in the notebooks themselves

Table 22.6: Reserved names in Descarta2D (low-level functions).

AskCurveLength2D IsDisplay2D IsZero2D
ChopImaginary2D IsNegative2D IsZeroOrNegative2D
CurveLength2D IsNumeric2D MakePrimitives2D
CurveLimits2D IsReal2D ObjectNames2D
D2DPath2D IsScalar2D SetDisplay2D
Is2D IsScalarPair2D Solve2D
IsApproximate2D IsTinyImaginary2D
IsComplex2D IsValid2D

340 Chapter 22 Technical Notes

will be opened at live notebooks in the Front End.
For Windows systems, installation files for Adobe Arcrobat Reader and MathReader are

provided on the CD-ROM.

Chapter 23

Command Browser

This chapter is an alphabetical listing of all the commands provided by Descarta2D. The
syntax and usage of each command is described, as well as notes outlining special options
and defaults. Additionally, a cross-reference pointing to related commands is provided in each
section. Commands described as being low-level are used in the internal implementation of
Descarta2D. Low-level commands may be used freely, but they are not generally mentioned in
the subject matter chapters of the book. Page numbers enclosed in square brackets indicate
the page in the package listings where the implementation of the command is found.

Angle2D

Angle2D[line] computes the angle a line makes with the +x-axis, when measured
counter-clockwise from the +x-axis to the line. [460]

Angles in Descarta2D are always specified and returned in radians.

Angle2D[arc] computes the angular span of an arc. [389]

Angle2D[arc, t] computes the angle a radial diameter passing through the point
at parameter t on the arc makes with the +x-axis. [389]

Angle2D[conic] returns the rotation angle of a conic curve. The conic may be an
ellipse [423], hyperbola [448] or parabola [481].

Angle2D[line, line] computes the angle measured counter-clockwise from the
first line to the second line. [460]

Angle2D[triangle, n] computes the vertex angle at vertex n of a triangle. [547]

See also: PrimaryAngle2D, PrimaryAngleRange2D, ReflectAngle2D.

Apex2D

Apex2D is a keyword indicating the construction of the apex control point of a conic arc. [419]

341

342 Command Browser

See also: Point2D.

Arc2D

Arc2D[{x0, y0}, {x1, y1},B] is the standard representation of an arc. The coordinates of
the start point are (x0, y0) and the coordinates of the end point are (x1, y1). The bulge
factor is the positive number B. The arc is traversed counter-clockwise from the start point
to the end point. [387]

The bulge factor, B, is the ratio of the arc’s height, h, to half the chord length,
d/2; so B = 2h/d.
Arc2D[{x0, y0}, {x1, y1},B][t] and arc[t] return the {x, y} coordinates of a
point at parameter t on an arc. Parameter values in the range 0 ≤ t ≤ 1 produce
coordinates covering the complete span of the arc. [388]

Arc2D[{x0, y0}, {x1, y1},B][{t1, t2}] produces graphics primitives for a
portion of an arc between parameters t1 and t2 when plotted. [388]

Arc2D[arc, Complement2D] constructs the complement of an arc. [391]

Arc2D[point, r, {θ1, θ2}] constructs an arc from the center point, radius and
span. The angles, θ1 and θ2, are measured counter-clockwise from the
+x-axis. [392]

Arc2D[point, r, {point1, point2}] constructs an arc from the center point, radius
and the start and end points of the span. The start/end points do not need to lie
on the arc, although they cannot be coincident with the center. [393]

Arc2D[point, point, point] constructs an arc passing through three points. The
first and third points define the span of the arc. [393]

Arc2D[{point, θ}, point] constructs an arc from a start point with entry angle
and an end point. [392]

See also: Bulge2D, Complement2D.

ArcLength2D

ArcLength2D[curve,{t1, t2}] computes the arc length of a curve between two parameter
values.

The curve may be an arc [396], circle [396], ellipse [397], hyperbola [397], line [397],
line segment [397] or parabola [398].
N[ArcLength2D[cnarc,{t1, t2}]] numerically computes the arc length of a conic
arc between two parameter values. [396]

See also: Circumference2D, Length2D, Perimeter2D, Span2D.

Area2D

Area2D[curve] computes the area associated with a curve.

Command Browser 343

The curve may be an arc, circle, conic arc, ellipse or triangle.

Area2D[arc] computes the area between an arc and its chord. [399]

Area2D[circle] computes the area of a circle. [400]

Area2D[cnarc] computes the area between a conic arc and its chord. [401]

Area2D[ellipse] computes the area of an ellipse. [401]

Area2D[triangle] computes the area of a triangle. [403]

See also: SectorArea2D, SegmentArea2D.

AskCurveLength2D

AskCurveLength2D[] is a low-level function that returns the value of the CurveLength2D
option of the Sketch2D command. [513]

See also: CurveLength2D, Sketch2D.

Asymptotes2D

Asymptotes2D[hyperbola] constructs a list containing the two asymptote lines of a
hyperbola. [413]

Bulge2D

Bulge2D[arc] returns the bulge factor of an arc. [390]

See also: Arc2D.

Centroid2D

Centroid2D is a keyword indicating the construction of a triangle’s centroid point. [551]

See also: Point2D.

ChopImaginary2D

ChopImaginary2D[expr, tol] is a low-level function that removes insignificant imaginary
parts of complex numbers in an expression. The imaginary part is considered insignificant if
its absolute value is less than the tolerance. [477]

The tolerance, if omitted, defaults to 10−10.

Circle2D

Circle2D[{h, k}, r] is the standard representation of a circle. The coordinates of the center
point of the circle are {h, k} and the radius is r. [405]

344 Command Browser

Circle2D[{h, k}, r][θ] and circle[θ] return the {x, y} coordinates of a point at
parameter θ on a circle. Parameter values in the range 0 ≤ θ < 2π produce
coordinates covering the complete circumference of the circle. [406]

Circle2D[{h, k}, r][{θ1, θ2}] produces graphics primitives for the arc of the
circle between parameters θ1 and θ2 when plotted. [406]

Circle2D[arc] constructs the circle underlying an arc. [391]

Circle2D[circle, circle, k, Pencil2D] constructs a circle, parameterized by the
variable k, that represents the family (pencil) of circles passing through the
intersection points of the two given circles. The family of circles is valid even if
the two circles do not intersect as they will share a common radical axis. [486]

Circle2D[lnseg] constructs the circle whose diameter chord is a given line
segment. [509]

Circle2D[point, r] constructs the circle centered at a point with a given
radius. [409]

Circle2D[point, point] constructs the circle given a center point and a point on
the circle. [409]

Circle2D[point, point, point] constructs a circle through three points. [410]

Circle2D[point, line] constructs a circle with a given center point and tangent
to a line. [409]

Circle2D[quad] constructs the circle associated with a quadratic. [409]

Circle2D[triangle, Circumscribed2D] constructs a circle circumscribed about a
triangle. [553]

Circle2D[triangle, Inscribed2D] constructs a circle inscribed inside a
triangle. [553]

See also: Inscribed2D, Circumscribed2D, Pencil2D, TangentCircles2D.

Circumference2D

Circumference2D[circle] computes the circumference of a circle. [396]

Circumference[ellipse] computes the circumference of an ellipse. [397]

See also: ArcLength2D.

Circumscribed2D

Circumscribed2D is a keyword indicating a construction involving a triangle’s circumscribed
circle. [552]

See also: Circle2D, Point2D.

Command Browser 345

Complement2D

Complement2D is a keyword indicating the construction of an arc’s complement. [391]

See also: Arc2D.

ConicArc2D

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] is the standard representation of a conic arc.
The coordinates of the start point are {x0, y0}, the coordinates of the apex point are
{xA, yA} and the coordinates of the end point are {x1, y1}. The projective discriminant is
ρ. [415]

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ][t] and cnarc[t] return the {x, y}
coordinates of a point at parameter t on a conic arc. Parameter values in the
range 0 ≤ t ≤ 1 produce coordinates covering the entire length of the conic
arc. [416]

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ][{t1, t2}] produces graphics
primitives representing the portion of the conic arc between parameters t1 and t2
when plotted. [416]

ConicArc2D[line, conic] constructs a conic arc defined by a conic (circle, ellipse,
hyperbola or parabola) and a line containing the conic arc’s chord. [419]

Conjugate2D

Conjugate2D is a keyword indicating the construction of a conjugate hyperbola. [450]

See also: Hyperbola2D.

Coordinates2D

Coordinates2D[args..] returns the {x, y} coordinates of the point that would be returned
by the function Point2D[args..]. [490]

See also: Point2D, XCoordinate2D, YCoordinate2D.

CurveLength2D

CurveLength2D is an option for the Sketch2D command specifying the approximate length
that an unbounded curve should be rendered when plotted. [512]

The initial default, if not specified, is 10. The default can by changed using the
Mathematica SetOptions command.

See also: AskCurveLength2D, Sketch2D.

346 Command Browser

CurveLimits2D

CurveLimits2D[coords, curve] is a low-level function that computes a list of two parameter
values on a curve such that the point whose coordinates are given is a distance
CurveLength2D/2 from the points on the curve at the parameter values. [513]

See also: AskCurveLength2D, CurveLength2D, Sketch2D.

Directrices2D

Directrices2D[conic] returns a list of the directrix line(s) of a conic curve.

The conic may be an ellipse [413], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola there are two directrix lines in the list; if the conic is a
parabola there is one directrix line in the list.

Distance2D

Distance2D[coords, coords] computes the distance between two positions given by
coordinates. [491]

Distance2D[point,point] computes the distance between two points. [491]

Distance2D[point, line] computes the distance between a point and a line. [460]

Distance2D[point, circle] computes the distance between a point and a
circle. [407]

Eccentricity2D

Eccentricity2D[conic] computes the eccentricity of a conic.

The conic may be a ellipse [412], hyperbola [412] or parabola [412].

Ellipse2D

Ellipse2D[{h, k}, a, b, θ] is the standard representation of an ellipse. The coordinates of
the center point are {h, k}, the length of the semi-major axis is a, the length of the
semi-minor axis is b and the angle of rotation, counter-clockwise with respect to the +x-axis,
is θ. [421]

Ellipse2D[{h, k}, a, b, θ][θ1] and ellipse[θ1] return the {x, y} coordinates of
a point at parameter θ1 on an ellipse. Parameter values in the range 0 ≤ θ1 < 2π
produce coordinates covering the complete circumference of the ellipse. [422]

Ellipse2D[{h, k}, a, b, θ][{θ1, θ2}] produces graphics primitives on the
portion of the ellipse between parameter values θ1 and θ2 when plotted. [422]

Ellipse2D[point, line, e] constructs an ellipse defined by a focus point, directrix
line and eccentricity. [426]

Command Browser 347

Ellipse2D[point, point, e] constructs an ellipse from two focus points and the
eccentricity. [426]

Ellipse2D[{point,point}, e] constructs an ellipse from two vertex points and
the eccentricity. [425]

Equation2D

Equation2D[line, {x, y}] returns the equation Ax + By + C == 0, which is the equation of
the line. [428]

Equation2D[quad, {x, y}] returns Ax2 + Bxy + Cy2 + Dx + Ey + F == 0,
which is the equation of the quadratic. [428]

See also: Polynomial2D.

FocalChords2D

FocalChords2D[conic] returns a list containing the focal chords of a conic curve (line
segments).

The conic may be an ellipse [414], hyperbola [414] or parabola [414]. If the conic is
an ellipse or hyperbola the list contains two focal chords (line segments); if the
conic is a parabola the list contains a single focal chord (line segment).

FocalLength2D

FocalLength2D[parabola] returns the focal length of a parabola. [481]

See also: Parabola2D.

Foci2D

Foci2D[conic] returns a list containing the focus point(s) of a conic.

The conic may be an ellipse [412], hyperbola [412] or parabola [412]. If the conic is
an ellipse or hyperbola the list contains two focus points; if the conic is a
parabola the list contains a single focus point.

Hyperbola2D

Hyperbola2D[{h, k}, a, b, θ] is the standard representation of a hyperbola. The
coordinates of the center point are {h, k}, the length of the semi-transverse axis is a, the
length of the semi-conjugate axis is b and the angle of rotation, counter-clockwise with
respect to the +x-axis, is θ. [445]

Hyperbola2D[{h, k}, a, b, θ][t] and hyperbola[t] return the {x, y} coordinates
of a point at parameter t on the primary branch of a hyperbola. Parameter
values in the range −∞ < t < +∞ cover the complete hyperbola branch. The
primary branch opens about the +x-axis when the angle of rotation is zero. [446]

348 Command Browser

Hyperbola2D[{h, k}, a, b, θ, True][t] returns the {x, y} coordinates of a point
at parameter t on the non-primary (reflected) branch of a hyperbola (used only
for graphics rendering). [446]

Hyperbola2D[{h, k}, a, b, θ][{t1, t2}] produces graphics primitives for a
portion of the hyperbola between parameters values t1 and t2 when plotting. If
t1 < t2 the parameters represent a portion of the primary branch of the
hyperbola; if t1 > t2 the parameters represent a portion of the other branch. [446]

Hyperbola2D[hyperbola, Conjugate2D] constructs the conjugate of a
hyperbola. [450]

Hyperbola2D[point, line, e] constructs a hyperbola defined by a focus point,
directrix line and eccentricity. [451]

Hyperbola2D[point,point, e] constructs a hyperbola from two focus points and
the eccentricity. [450]

Hyperbola2D[{point,point}, e] constructs a hyperbola from two vertex points
and the eccentricity. [450]

See also: Conjugate2D.

Inscribed2D

Inscribed2D is a keyword indicating a construction involving a triangle’s inscribed
circle. [552]

See also: Circle2D, Point2D.

Is2D

Is2D[object, objHeadList] is a low-level function that returns True if the object is a valid
Descarta2D object and its head is included in the head list; otherwise, returns False. [472]

IsApproximate2D

IsApproximate2D[expr] is a low-level function that returns True if the expression contains
approximate real numbers; otherwise, returns False. [431]

The function will attempt to detect if the pending evaluation will eventually be
approximated using the N[expr] function. If this condition is detected the
function will also return True.

IsCoincident2D

IsCoincident2D[obj, obj] returns True if two objects are of the same type and are
coincident; otherwise, returns False. The objects may be circles, coordinates, lines, points
or quadratics. [439]

The function returns unevaluated if the two objects are of a different type.

Command Browser 349

IsCoincident2D[objList] returns True if any pair of objects in a list are of the
same type and are coincident; otherwise, returns False. [440]

IsCollinear2D

IsCollinear2D[point,point, point] returns True if three points are collinear; otherwise,
returns False. [440]

IsCollinear2D[ptList] returns True if any triple of points in a list is collinear;
otherwise, returns False. [440]

IsComplex2D

IsComplex2D[expr, tol] is a low-level function that returns True if the expression, when
evaluated, contains a complex number (a number is considered complex if the absolute value
of its imaginary part is greater than the tolerance); otherwise, returns False. [431]

The tolerance, if omitted, defaults to 10−10.

IsComplex2D[exprList, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D[exprList,Or, tol] returns True if any expression in a list, when
evaluated, contains a complex number; otherwise, returns False. [432]

IsComplex2D[exprList,And, tol] returns True if all the expressions in a list,
when evaluated, contain complex numbers; otherwise, returns False. [432]

IsConcentric2D

IsConcentric2D[circle, circle] returns True if two circles are concentric; otherwise, returns
False. [440]

IsConcentric2D[cirList] returns True if any pair of circles in a list are
concentric; otherwise, returns False. [440]

IsConcurrent2D

IsConcurrent2D[line, line, line] returns True if three lines are concurrent (intersect in a
common point); otherwise, returns False. [441]

IsConcurrent2D[lnList] returns True if any triple of lines in a list is concurrent;
otherwise, returns False. [441]

IsDisplay2D

IsDisplay2D[object] is a low-level function that returns True if the object is a displayable
Descarta2D object; otherwise, returns False. [512]

350 Command Browser

IsNegative2D

IsNegative2D[expr, tol] is a low-level function that returns True if the expression, when
evaluated, is negative (a number is considered negative if it is less than zero and its absolute
value is greater than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 10−10.

IsNegative2D[exprList, tol] returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D[exprList,Or, tol] returns True if any expression in a list, when
evaluated, is negative; otherwise, returns False. [434]

IsNegative2D[exprList,And, tol] returns True if all the expressions in a list,
when evaluated, are negative; otherwise, returns False. [434]

See also: IsZero2D, IsZeroOrNegative2D.

IsNumeric2D

IsNumeric2D[expr, tol] is a low-level function that returns True if all the atoms in an
expression can be evaluated to real numbers (a complex number is considered real if the
absolute value of its imaginary part is less than the tolerance); otherwise, returns False. [432]

The tolerance, if omitted, defaults to 10−10.

IsNumeric2D[expr, funcName, tol] returns True if all the atoms in an
expression can be evaluated to real numbers; otherwise, returns False and
displays a message stating that the function, funcName, requires numerical
arguments. This form is a low-level function and is intended to be used for
argument checking. [432]

IsOn2D

IsOn2D[point, curve] returns True if a point is on a curve; otherwise, returns False.

The curve may be a line [441], circle [441] or quadratic [441].

IsOn2D[point, Quadratic2D[conic]] returns True if a point is on a conic;
otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola.

IsParallel2D

IsParallel2D[line, line] returns True if two lines are parallel; otherwise, returns
False. [442]

IsParallel2D[lnList] returns True if any pair of lines in a list is parallel;
otherwise, returns False. [442]

Command Browser 351

See also: IsTripleParallel2D.

IsPerpendicular2D

IsPerpendicular2D[line, line] returns True if two lines are perpendicular; otherwise,
returns False. [442]

IsPerpendicular2D[lnList] returns True if any pair of lines in a list is
perpendicular; otherwise, returns False. [443]

IsReal2D

IsReal2D[expr, tol] is a low-level function that returns True if the expression, when
evaluated, is a real number (a complex number is considered real if the absolute value of its
imaginary part is less than the tolerance); otherwise, returns False. [433]

The tolerance, if omitted, defaults to 10−10.

IsScalar2D

IsScalar2D[expr] is a low-level function that returns True if the expression appears to be a
scalar quantity—that is, it cannot be recognized as a list, a complex number or a Descarta2D

object; otherwise, returns False. [433]

This function is used by Descarta2D for argument checking.

See also: IsScalarPair2D.

IsScalarPair2D

IsScalarPair2D[{expr,expr}] is a low-level function that returns True if both expressions
appear to be scalar quantities—that is, they cannot be recognized as lists, complex numbers
or Descarta2D objects; otherwise, returns False. [434]

This function is used by Descarta2D for argument checking.

See also: IsScalar2D.

IsTangent2D

IsTangent2D[line, circle] returns True if a line is tangent to a circle; otherwise, returns
False. [443]

IsTangent2D[line, quad] returns True if a line is tangent to a quadratic;
otherwise, returns False. [443]

IsTangent2D[line,Quadratic2D[conic]] returns True if a line is tangent to a
conic; otherwise, returns False. The conic may be a circle, ellipse, hyperbola or
parabola. [443]

352 Command Browser

IsTangent2D[circle, circle] returns True if two circles are tangent to each other;
otherwise, returns False. [443]

IsTinyImaginary2D

IsTinyImaginary2D[expr, tol] is a low-level function that returns True if any complex
number in an expression has a tiny imaginary part (the imaginary part is considered tiny if
its absolute value is less than the tolerance); otherwise, returns False. [434]

The tolerance, if omitted, defaults to 10−10.

IsTripleParallel2D

IsTripleParallel2D[line, line, line] returns True if three lines are mutually parallel;
otherwise, returns False. [442]

IsTripleParallel2D[lnList] returns True if any triple of lines in a list is
mutually parallel; otherwise, returns False. [442]

See also: IsParallel2D.

IsValid2D

IsValid2D[object] is a low-level function that returns True if the object is syntactically
valid; otherwise, returns False. [472]

The object may be an arc [389], circle [406], conic arc [417], ellipse [423],
hyperbola [447], line [459], line segment [506], parabola [481], point [490],
quadratic [498] or triangle [546].

IsZero2D

IsZero2D[expr, tol] is a low-level function that returns True if the expression, when
evaluated, is zero (a number is considered zero if its absolute value is less than the
tolerance); otherwise, returns False. [435]

The tolerance, if omitted, defaults to 10−10.

IsZero2D[exprList, tol] returns True if any expression in a list, when evaluated,
is zero; otherwise, returns False. [435]

IsZero2D[exprList, Or, tol] returns True if any expression in a list, when
evaluated, is zero; otherwise, returns False. [435]

IsZero2D[exprList, And, tol] returns True if all the expressions in a list, when
evaluated, are zero; otherwise, returns False. [435]

See also: IsNegative2D, IsZeroOrNegative2D.

Command Browser 353

IsZeroOrNegative2D

IsZeroOrNegative2D[expr, tol] returns True if the expression, when evaluated, is zero or
negative; otherwise, returns False. [435]

The tolerance, if omitted, defaults to 10−10.

IsZeroOrNegative2D[exprList, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D[exprList,Or, tol] returns True if any expression in a list,
when evaluated, is zero or negative; otherwise, returns False. [436]

IsZeroOrNegative2D[exprList,And, tol] returns True if all the expressions in a
list, when evaluated, are zero or negative; otherwise, returns False. [436]

See also: IsNegative2D, IsZero2D.

Length2D

Length2D[lnseg] computes the length of a line segment. [507]

See also: ArcLength2D.

Line2D

Line2D[A,B, C] is the standard representation of the line Ax + By + C = 0. [458]

Line2D[A,B, C][t] and line[t] return the {x, y} coordinates of a point at
parameter t on a line. Parameter values in the range −∞ < t < +∞ produce
coordinates covering the complete line. [458]

Line2D[A,B, C][{t1, t2}] produces graphics primitives for the line segment
between parameters t1 and t2 when plotting. [458]

Line2D[circle, circle] constructs the radical axis line of two circles. [408]

Line2D[coords, coords] constructs a line through two positions specified by
{x, y} coordinates. [462]

Line2D[ellipse] constructs a line which contains the major axis of an ellipse. [425]

Line2D[eqn, {x, y}] constructs a line from the equation
Ax + By + C == 0. [458]

Line2D[hyperbola] constructs a line which contains the transverse axis of a
hyperbola. [449]

Line2D[line] constructs a line with normalized coefficients. [461]

Line2D[line, d] constructs a line offset a distance d from a given line. The
distance may be positive or negative producing one of two possible offsets. [462]

354 Command Browser

Line2D[line, line, k, Pencil2D] constructs a family of lines (pencil),
parameterized by k, passing through the intersection point of two given
lines. [485]

Line2D[lnseg] constructs a line containing a line segment. [508]

Line2D[lnseg, Perpendicular2D] constructs a line that is the perpendicular
bisector of a line segment. [508]

Line2D[parabola] constructs a line which contains the axis of a parabola. [483]

Line2D[point, curve] constructs the polar (line) of a curve given the pole
(point). If the pole (point) is on the curve, then the polar (line) is the tangent to
the curve at the pole (point). The curve may be a circle [408], ellipse [425],
hyperbola [450], parabola [483] or quadratic [463].

Line2D[point, k, Pencil2D] constructs a family of lines (pencil), parameterized
by k, passing through a point. [485]

Line2D[point, line] constructs a line through a point perpendicular to a
line. [463]

Line2D[point, line, Perpendicular2D] also constructs a line through a point
perpendicular to a line. [463]

Line2D[point, line, Parallel2D] constructs a line through a point parallel to a
line. [463]

Line2D[point,m] constructs a line with slope m passing through a point. [462]

Line2D[point, Infinity] constructs a vertical line through a point. [462]

Line2D[point, point] constructs a line through two points. [462]

Line2D[point, point, Perpendicular2D] constructs a line equidistant from two
points. This line is the perpendicular bisector of the line segment defined by the
two points. [463]

Line2D[poly, {x, y}] constructs a line from the polynomial Ax + By + C. [458]

Line2D[triangle,n1, n2] constructs a line containing vertices n1 and n2 of a
triangle. [552]

See also: Parallel2D, Pencil2D, Perpendicular2D.

Loci2D

Loci2D[quad] returns a list of objects represented by a quadratic. The list may contain a
conic, one or two lines, a point or it may be empty. [465]

Loci2D[cnarc] returns a list containing the curve underlying a conic arc. [419]

Loci2D[point, length, e] returns a list containing the conic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The conic is constructed in standard
position. [468]

Command Browser 355

Loci2D[point, length, e, θ] returns a list containing the conic defined by the
vertex equation parameters. The point is the vertex point, the length is the focal
length, the constant, e, is the eccentricity and θ is the angle of rotation. [468]

Loci2D[point, line, e] returns a list containing the conic defined by a focus
point, directrix line and eccentricity. [468]

MakePrimitives2D

MakePrimitives2D[curve,{t1, t2}] is a low-level function that returns a list of
Mathematica graphics primitives approximating a curve between two parameter values. [513]

The curve may be an arc, circle, conic arc, ellipse, hyperbola, line, line segment
or parabola.

MaxSeconds2D

MaxSeconds2D is a keyword indicating the maximum number of seconds allowed for solving
equations. [516]

See also: Solve2D.

MedialEquations2D

MedialEquations2D[{obj,obj}] returns a list of lines or quadratics equidistant from two
given objects. The given objects may be points, lines or circles. [473]

See also: MedialLoci2D.

MedialLoci2D

MedialLoci2D[{obj,obj}] returns a list of objects equidistant from two given objects. The
given objects may be points, lines or circles. [474]

See also: MedialEquations2D.

ObjectNames2D

ObjectNames2D[] returns a list of strings which are the names of all the Descarta2D

objects. [472]

Parabola2D

Parabola2D[{h, k}, f, θ] is the standard representation of a parabola. The coordinates of
the vertex point are {h, k}, the focal length is f and the angle of rotation, counter-clockwise
with respect to the +x-axis, is θ. [479]

Parabola2D[{h, k}, f, θ][t] and parabola[t] return the {x, y} coordinates of a
point at parameter t on a parabola. Parameter values in the range
−∞ < t < +∞ produce coordinates covering the complete parabola. [480]

356 Command Browser

Parabola2D[{h, k}, f, θ][{t1, t2}] produces graphics primitives for the portion
of the parabola between parameters t1 and t2 when plotting. [480]

Parabola2D[point, line] constructs a parabola defined by a focus point and a
directrix line. [483]

Parallel2D

Parallel2D is a keyword indicating a parallel construction. [463]

See also: Line2D, TangentLines2D.

Parameters2D

Parameters2D[line, curve] computes a list of the two parameters where a line intersects a
curve.

The curve may be a circle [455], ellipse [455], hyperbola [455] or parabola [456].
The list of parameters is useful for computing areas and arc lengths defined by
the line and the curve.

See also: ArcLength2D, SectorArea2D, SegmentArea2D.

Pencil2D

Pencil2D is a keyword indicating the construction of a pencil of curves. [485]

See also: Line2D, Circle2D, Quadratic2D.

Perimeter2D

Perimeter2D[triangle] computes the perimeter of a triangle. [398]

See also: ArcLength2D.

Perpendicular2D

Perpendicular2D is a keyword indicating a perpendicular construction. [463]

See also: Line2D, TangentLines2D.

Point2D

Point2D[{x, y}] or Point2D[coords] is the standard representation of a point with
coordinates {x, y}. [489]

Point2D[x, y] constructs a point at coordinates (x, y). [492]

Point2D[arc] constructs the center point of an arc. [391]

Point2D[circle] constructs the center point of a circle. [408]

Command Browser 357

Point2D[cnarc] constructs the center point of the conic underlying a conic
arc. [419]

Point2D[cnarc, Apex2D] constructs the apex control point of a conic arc. [419]

Point2D[conic] constructs the center point of a central conic. The conic may be
a circle [408], ellipse [424] or hyperbola [449].

Point2D[curve[t]] constructs a point at a parameter value on a curve.

Point2D[line, curve] constructs the pole (point) of a curve given the polar
(line). If the polar (line) is tangent to the curve, then the pole (point) is the
point of tangency. The curve may be a circle [408], ellipse [425], hyperbola [449],
parabola [482] or quadratic [494].

Point2D[line, line] constructs the intersection point of two lines. [494]

Point2D[lnseg] constructs the midpoint of a line segment. [508]

Point2D[parabola] constructs the vertex point of a parabola. [482]

Point2D[point, line] constructs a point by projecting a point onto a line. [493]

Point2D[point, line, d] constructs a point by offsetting a point a distance, d, in
the direction of a line. The distance may be positive or negative resulting in one
of two possible offset points. [493]

Point2D[point, line, {u, v}] constructs the point with coordinates {u, v} in the
coordinate system defined by a point and a line. The line defines the y-axis and
the point is on the +x-axis. [494]

Point2D[point, point] constructs the midpoint of two points. [493]

Point2D[point, point, d] constructs a point by offsetting a point a distance, d, in
the direction of a second point. If the distance is negative, the point is offset in
the opposite direction. [493]

Point2D[point, point, r1, r2] constructs a point dividing the segment between
two points into the ratio r1/r2. [493]

Point2D[quad] constructs the center point of a quadratic, assuming the
quadratic is a central conic. [494]

Point2D[triangle, Centroid2D] constructs a point at the centroid of a
triangle. [551]

Point2D[triangle, Circumscribed2D] constructs the center point of a circle
circumscribed about a triangle. [552]

Point2D[triangle, Inscribed2D] constructs the center point of a circle inscribed
inside a triangle. [552]

Point2D[triangle, n] constructs a point at vertex n of a triangle. [552]

See also: Apex2D, Centroid2D, Circumscribed2D, Inscribed2D.

358 Command Browser

Points2D

Points2D[curve, curve] constructs a list containing the intersection points of two
curves. [453]

The curves may be lines, circles, ellipses, hyperbolas, parabolas or quadratics.

Polynomial2D

Polynomial2D[line,{x, y}] returns the polynomial Ax + By + C, which is the polynomial
of the line. [428]

Polynomial2D[quad,{x, y}] returns Ax2 + Bxy + Cy2 + Dx + Ey + F, which is
the polynomial of the quadratic. [428]

See also: Equation2D.

PrimaryAngle2D

PrimaryAngle2D[θ] returns a primary angle in the range 0 ≤ φ < 2π where
φ =Mod[θ, 2π]. [478]

PrimaryAngle2D[θ,2π] returns a primary angle in the range 0 ≤ φ < 2π where
φ is given by Mod[θ, 2π]. [478]

PrimaryAngle2D[θ,π] returns a primary angle in the range 0 ≤ φ < π where φ
is given by Mod[θ, π]. [478]

See also: PrimaryAngleRange2D.

PrimaryAngleRange2D

PrimaryAngleRange2D[{θ1, θ2}] returns a list of two primary angles, {φ1, φ2}, such that
0 ≤ φ1 < 2π and φ1 < φ2 < (φ1 + 2π). [478]

PrimaryAngleRange2D[arc] returns a list of two primary angles, {φ1, φ2}, which
are the spanning angles of the arc. [390]

See also: PrimaryAngle2D.

Quadratic2D

Quadratic2D[A,B, C,D, E, F] is the standard representation of the quadratic given by
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. [497]

Quadratic2D[cnarc] constructs the quadratic underlying a conic arc. [416]

Quadratic2D[conic] constructs the quadratic associated with a conic. The conic
may be a circle [405], ellipse [422], hyperbola [446] or parabola [480].

Quadratic2D[coords] constructs the quadratic representing a position specified
by coordinates (a circle of zero radius). [500]

Command Browser 359

Quadratic2D[eqn,{x, y}] constructs a quadratic from an equation given in the
form Ax2 + Bxy + Cy2 + Dx + Ey + F == 0. [500]

Quadratic2D[line, line] constructs the quadratic representing the product of
two lines. [502]

Quadratic2D[{line, line}, {line, line}, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through the intersection points of four
lines taken in pairs. [486]

Quadratic2D[line, line, line, line, line] constructs the quadratic tangent to five
lines. [501]

Quadratic2D[point] constructs the quadratic representing a point (a circle of
zero radius). [491]

Quadratic2D[point, length, e] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length
and the constant, e, is the eccentricity. The quadratic is constructed in standard
position. [502]

Quadratic2D[point, length, e, θ] constructs the quadratic defined by the vertex
equation parameters. The point is the vertex point, the length is the focal length,
the constant, e, is the eccentricity and θ is the angle of rotation. [502]

Quadratic2D[point, line, e] constructs the quadratic defined by a focus point,
directrix line and eccentricity. [502]

Quadratic2D[point,point, point] constructs the quadratic representing the
circle passing through three points. [501]

Quadratic2D[point,point, point, point, k, Pencil2D] constructs a family of
quadratics, parameterized by k, passing through four points. [487]

Quadratic2D[point,point, point, point, point] constructs a quadratic passing
through five points. [501]

Quadratic2D[poly, {x, y}] constructs a quadratic from the polynomial given in
the form Ax2 + Bxy + Cy2 + Dx + Ey + F. [500]

Quadratic2D[quad] constructs a quadratic with normalized coefficients. [500]

Quadratic2D[quad, quad, k, Pencil2D] constructs a family (pencil) of
quadratics, parameterized by k, and passing through the intersection points of
two quadratics. [486]

See also: Pencil2D.

Radius2D

Radius2D[circle] returns the radius of a circle. [407]

Radius2D[arc] returns the radius of an arc. [390]

See also: Arc2D, Circle2D.

360 Command Browser

Reflect2D

Reflect2D[object, line] reflects an object in a line.

The object may be an arc [390], circle [407], conic arc [418], coordinates [540],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [481],
point [492] or triangle [550].

Reflect2D[objList, line] reflects a list of objects in a line, returning a list of
objects. [540]

Reflect2D[eqn,{x, y}, line] reflects an equation in a line. [540]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax2 + Bxy + Cy2 + Dx + Ey + F == 0. [540]

See also: ReflectAngle2D, Rotate2D, Scale2D, Translate2D.

ReflectAngle2D

ReflectAngle2D[θ, line] computes the reflection of an angle in a line. [540]

If a line L makes an angle θ with the +x-axis and line L′ is the reflection of L in
the given line (the second argument to the function), then the function computes
the angle θ′ that L′ makes with the +x-axis.

See also: Reflect2D.

Rho2D

Rho2D[cnarc] returns the projective discriminant of a conic arc. [417]

See also: ConicArc2D.

Rotate2D

Rotate2D[object, θ, coords] rotates an object by an angle θ (in radians) about a position
whose coordinates are given. If the coordinates are omitted, the default is the origin.

The object may be an arc [389], circle [407], conic arc [418], coordinates [541],
ellipse [424], hyperbola [448], line [461], line segment [507], parabola [482] or
triangle [551].

Rotate2D[objList, θ, coords] rotates a list of objects. [541]

Rotate2D[eqn, {x, y}, θ, coords] rotates an equation by an angle θ (in radians)
about a position whose coordinates are given. [541]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax2 + Bxy + Cy2 + Dx + Ey + F == 0. [541]

See also: Reflect2D, Scale2D, Translate2D.

Command Browser 361

Scale2D

Scale2D[object, s, coords] scales an object from a position given as coordinates. If the
coordinates are omitted, the default is the origin. [541]

The object may be an arc [391], circle [407], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [507], parabola [482] or
triangle [551].

Scale2D[objList, s, coords] scales a list of objects from a position whose
coordinates are given. [542]

Scale2D[eqn, {x, y}, s, coords] scales an equation from a position. [542]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax2 + Bxy + Cy2 + Dx + Ey + F == 0. [542]

See also: Reflect2D, Rotate2D, Translate2D.

SectorArea2D

SectorArea2D[curve,{t1, t2}] computes the area of a sector of a curve between two
parameters.

The curve may be a circle [400], ellipse [401] or hyperbola [402] (the sector is
defined from the center point of the curve to the two points defined by the
parameters on the curve).

See also: Area2D, SegmentArea2D.

Segment2D

Segment2D[{x0, y0}, {x1, y1}] is the standard representation of a line segment. The
coordinates of the start point are {x0, y0} and the coordinates of the end point are
{x1, y1}. [505]

Segment2D[{x0, y0}, {x1, y1}][t] and lnseg[t] return the {x, y} coordinates of
a point at parameter t on a line segment. Parameter values in the range
0 ≤ t ≤ 1 produce coordinates covering the entire length of the line segment. [505]

Segment2D[A,B, C][{t1, t2}] produces graphics primitives for the line segment
between parameters t1 and t2 when plotting. [506]

Segment2D[point, point] constructs a line segment between two points. [508]

Segment2D[triangle,n1, n2] constructs a line segment between vertices n1 and
n2 of a triangle. [552]

SegmentArea2D

SegmentArea2D[curve,{t1, t2}] computes the area of a segment of a curve between two
parameters.

362 Command Browser

The curve may be a circle [400], ellipse [401], hyperbola [402] or parabola [402]

(the segment is the area between the curve and the chord defined by the two
parameters).
See also: Area2D, SectorArea2D.

SemiConjugateAxis2D

SemiConjugateAxis2D[hyperbola] returns the length of the semi-conjugate axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiTransverseAxis2D.

SemiMajorAxis2D

SemiMajorAxis2D[ellipse] returns the length of the semi-major axis of an ellipse. [423]

See also: Ellipse2D, SemiMinorAxis2D.

SemiMinorAxis2D

SemiMinorAxis2D[ellipse] returns the length of the semi-minor axis of an ellipse. [423]

See also: Ellipse2D, SemiMajorAxis2D.

SemiTransverseAxis2D

SemiTransverseAxis2D[hyperbola] returns the length of the semi-transverse axis of a
hyperbola. [448]

See also: Hyperbola2D, SemiConjugateAxis2D.

SetDisplay2D

SetDisplay2D[objPatt,objPrim] is a low-level function that specifies the graphics
primitives to use when plotting a given object pattern. [513]

SimplifyCoefficients2D

SimplifyCoefficients2D[coefList] is a low-level function that returns a list of coefficients
with common factors removed. [427]

Simplify[line] and FullSimplify[line] use SimplifyCoefficients2D to
simplify the coefficients of a line.
Simplify[quad] and FullSimplify[quad] use SimplifyCoefficients2D to
simplify the coefficients of a quadratic.

Sketch2D

Sketch2D[objList, opts] produces a plot of the objects in a list. [513]

Command Browser 363

The list of objects may be nested. Any of the options for the Mathematica
Graphics command may be specified.

Sketch2D[objList, CurveLength2D->n,opts] produces a plot of the objects in a
list, using a specified curve length for unbounded curves. [513]

See also: AskCurveLength2D, CurveLength2D.

Slope2D

Slope2D[line] computes the slope of a line. [460]

Slope2D[lnseg] computes the slope of a line segment. [507]

Solve2D

Solve2D[eqnList, varList] is a low-level function that solves a list of equations for a list of
variables and returns a list of rules representing the solutions. [516]

Solve2D[eqnList, varList, MaxSeconds2D->n] solves a list of equations for a list
of variables with a time limit of n seconds. [516]

See also: MaxSeconds2D.

SolveTriangle2D

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, a3}}] computes a triangle configuration from
three sides and/or angles. Unspecified arguments should be Null. [548]

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, a3}}, True] computes a triangle
configuration from three sides and/or angles, returning an alternate solution, if
one exists. [548]

The configuration is returned in the form {{s1, s2, s3}, {a1, a2, a3}}.
See also: Triangle2D.

Span2D

Span2D[arc] computes the arc length of the complete span of an arc. [395]

N[Span2D[cnarc]] numerically computes the arc length of the complete span of a
conic arc. [396]

See also: ArcLength2D.

TangentCircles2D

TangentCircles2D[{pt | ln | cir, pt | ln | cir, pt | ln | cir}] constructs a list of circles tangent
to three objects (points, lines or circles). [522]

364 Command Browser

For brevity of expression a circle is said to be tangent to a point if the point is on
the circle.

TangentCircles2D[{pt | ln | cir}, pt] constructs a list of circles tangent to an
object (point, line or circle) with a given center point. [521]

TangentCircles2D[{pt | ln | cir}, ln | cir, r] constructs a list of circles tangent to
an object (point, line or circle), whose center is on a line or circle, with a given
radius. [521]

TangentCircles2D[{pt | ln | cir, pt | ln | cir}, r] constructs a list of circles
tangent to two objects (points, lines or circles), with a given radius. [522]

TangentCircles2D[{pt | ln | cir, pt | ln | cir}, ln | cir] constructs a list of circles
tangent to two objects (points, lines or circles), with center on a given line or
circle. [521]

See also: Circle2D.

TangentConics2D

TangentConics2D[{pt | ln, pt | ln, pt | ln, pt | ln, pt | ln}] constructs a list of conics tangent
to five objects (points or lines). [526]

The expressions in the resulting conics can be very complicated and are usually
practical only if evaluated numerically.

See also: TangentQuadratics2D.

TangentEquation2D

TangentEquation2D[line, quad] returns an equation involving the coefficients of a line and
a quadratic that constrains the two curves to be tangent. [532]

TangentLines2D

TangentLines2D[curve, curve] constructs a list of lines tangent to two curves. [533]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

TangentLines2D[line, curve] constructs a list of lines parallel to a line and
tangent to a curve. [532]

TangentLines2D[line, curve, Parallel2D] also constructs a list of lines parallel
to a line and tangent to a curve. [532]

TangentLines2D[line, curve, Perpendicular2D] also constructs a list of lines
perpendicular to a line and tangent to a curve. [532]

TangentLines2D[point, curve] constructs a list of lines from a point and tangent
to a curve. [532]

See also: Parallel2D, Perpendicular2D, TangentSegments2D.

Command Browser 365

TangentPoints2D

TangentPoints2D[point,curve] constructs a list of points that are the points of tangency of
lines from a point to a curve. [537]

The curve may be a circle, ellipse, hyperbola, parabola or quadratic.

TangentQuadratics2D

TangentQuadratics2D[{pt | ln, pt | ln, pt | ln, pt | ln, pt | ln}] constructs a list of quadratics
tangent to five objects (points or lines). [526]

The expressions in the resulting quadratics can be very complicated and are
usually practical only if evaluated numerically.

See also: TangentConics2D.

TangentSegments2D

TangentSegments2D[curve,curve] constructs a list of line segments tangent to two
curves. [534]

The curves may be circles, ellipses, hyperbolas, parabolas or quadratics.

See also: TangentLines2D.

Translate2D

Translate2D[object,{u, v}] translates an object delta distance.

The object may be an arc [391], circle [408], conic arc [418], coordinates [542],
ellipse [424], hyperbola [449], line [461], line segment [508], parabola [482],
quadratic [499] or triangle [551].

Translate2D[objList, {u, v}] translates a list of objects. [543]

Translate2D[eqn,{x, y}, {u, v}] translates an equation delta distance. [543]

The equation may be linear, Ax + By + C == 0, or quadratic,
Ax2 + Bxy + Cy2 + Dx + Ey + F == 0. [543]

See also: Reflect2D, Rotate2D, Scale2D.

Triangle2D

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}] is the standard representation of a triangle
defined by three vertex coordinates. [546]

Triangle2D[{s1, s2, s3}] constructs a triangle from three side lengths. The first
vertex of the triangle will be the origin and the second vertex will be on the
+x-axis. [554]

366 Command Browser

Triangle2D[{{s1, s2, s3}, {a1, a2, a3}}] constructs a triangle from three sides
and/or angles. Unspecified arguments should be Null. The first vertex of the
triangle will be the origin and the second vertex will be on the +x-axis. [554]

Triangle2D[{{s1, s2, s3}, {a1, a2, a3}}, True] constructs a triangle from three
sides and/or angles, returning an alternate solution, if one exists. [554]

Triangle2D[line, line, line] constructs a triangle whose sides are specified by
three lines. [553]

Triangle2D[point,point, point] constructs a triangle whose vertices are
specified by three points. [553]

See also: SolveTriangle2D.

Vertices2D

Vertices2D[conic] returns a list containing the vertex point(s) of a conic curve.

The conic may be an ellipse [412], hyperbola [413] or parabola [413]. If the conic is
an ellipse or hyperbola the list contains two vertex points; if the conic is a
parabola the list contains a single vertex point.

XCoordinate2D

XCoordinate2D[point] returns the x-coordinate of a point. [491]

XCoordinate2D[coords] returns the x-coordinate of a location. [491]

See also: Coordinates2D, Point2D, YCoordinate2D.

YCoordinate2D

YCoordinate2D[point] returns the y-coordinate of a point. [491]

YCoordinate2D[coords] returns the y-coordinate of a location. [491]

See also: Coordinates2D, Point2D, XCoordinate2D.

Chapter 24

Error Messages

This chapter is a listing of all the error messages that can be generated by Descarta2D during
computations. Mathematica may generate additional error messages. The messages are listed
alphabetically by message name. The number in square brackets indicates the page where the
error is defined in the packages.

Arc2D

Arc2D::collinear . [393]

No arc exists; the given points {pt1, pt2, pt3} are collinear.

When specifying an arc through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.
—–

Arc2D::imaginary . [388]

An invalid arc of the form arc1 has been detected; the arguments cannot
be imaginary.

The arguments of an arc cannot involve imaginary numbers. Descarta2D will return the
$Failed symbol whenever the arguments of an object are determined to be invalid.
—–

Arc2D::invalid .[389]

An invalid arc of the form arc has been detected; the bulge factor must
be positive and the defining points must be distinct.

The bounding points of an arc cannot be coincident and the bulge factor must be positive.
Descarta2D will return the $Failed symbol whenever the arguments of an object are deter-
mined to be invalid.
—–

367

368 Error Messages

Arc2D::invalidCoincident . [392]

The defining points are coincident; an arc cannot be constructed.

The defining points of an arc must be distinct. Descarta2D will return the $Failed symbol if
coincident points are detected.
—–

Arc2D::invalidCollinear . [393]

The three defining points are collinear; an arc cannot be constructed.

An arc cannot be constructed through three collinear points. Descarta2D will return the
$Failed symbol if collinear points are detected.
—–

Arc2D::invalidEntryAngle . [392]

The entry angle of the arc is invalid; the entry angle cannot be an
integer multiple of Pi radians.

The entry angle of an arc cannot be an integer multiple of π radians. Descarta2D will return
the $Failed symbol if invalid entry angle is detected.
—–

Arc2D::invalidRadius . [392]

The radius, r, of the arc is invalid; the radius must be positive.

The radius of an arc must be positive. Descarta2D will return the $Failed symbol if a non-
positive radius is detected.
—–

Arc2D::invalidSpan .. [392]

The angular span of the arc is invalid; the span cannot be an integer
multiple of 2Pi radians.

The angular span of an arc cannot be a multiple of 2π radians. The $Failed symbol will be
returned when an invalid span is specified.
—–

Circle2D

Circle2D::coincident . [409]

The points {pt1, pt2} are coincident; no valid circle exists.

Error Messages 369

When specifying a circle by two points, the points cannot be coincident. Descarta2D will
return the $Failed symbol if two coincident points are specified.
—–

Circle2D::collinear .[410]

The points {pt1, pt2, pt3} are collinear; no valid circle exists.

When specifying a circle through three points, the points cannot be collinear. Descarta2D will
return the $Failed symbol if it detects that the three specified points lie on a line.
—–

Circle2D::imaginary .[406]

An invalid circle of the form cir1 has been detected; the arguments cannot
be imaginary.

The arguments defining a circle cannot be imaginary numbers. Descarta2D will return the
$Failed symbol if the arguments of an object involve imaginary numbers.
—–

Circle2D::invalid .. [406]

An invalid circle of the form cir1 has been detected; the radius must be
positive.

When defining a circle the radius must be a positive number. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.
—–

Circle2D::noCircle .. [409]

The curve represented by quad1 is not a circle.

Descarta2D has detected that the curve represented by a Quadratic2D is not a circle. The
$Failed symbol will be returned.
—–

Circle2D::on . [409]

pt1 is on ln1; no valid circle exists.

When specifying a circle tangent to a line with a given center point, the point cannot be on the
line. If Descarta2D detects that the point lies on the line, it will return the $Failed symbol.
—–

Circle2D::radius . [409]

The radius argument, r, is invalid; the radius must be positive.

When specifying a circle by center point and radius, the radius must be positive. Descarta2D

will return the $Failed symbol if a non-positive radius is specified during a circle construction.
—–

370 Error Messages

ConicArc2D

ConicArc2D::center .. [419]

The chord defined by ln1 passes through the center of crv1; a conic arc
cannot be constructed.

The chord of a conic arc cannot pass through the center of a central conic because this
configuration is invalid. If the line defining the chord passes through the center of the conic,
then the $Failed symbol will be returned.
—–

ConicArc2D::imaginary . [416]

An invalid conic arc of the form cnarc1 has been detected; the arguments
cannot be imaginary.

The arguments defining a conic arc cannot be imaginary. If Descarta2D detects an invalid
object the $Failed symbol will be returned.
—–

ConicArc2D::noChord .[419]

No chord exists between ln1 and crv1; a conic arc cannot be constructed.

When constructing a conic arc from a line and a conic curve, the line must intersect the conic
in two points that form the chord of the conic arc. If the intersection consists of less than two
points, or it is on opposite branches of a hyperbola, then the $Failed symbol will be returned.
—–

ConicArc2D::points .. [417]

An invalid conic arc of the form cnarc1 has been detected; the control
points cannot be collinear.

The three control points defining a conic arc cannot be collinear. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.
—–

ConicArc2D::rho . [417]

An invalid conic arc of the form cnarc1 has been detected; the value of
rho must be in the range 0<rho<1.

The value of ρ determines the shape and type of the conic arc. When 0 < ρ < 1/2 an elliptic
conic arc is created, when ρ = 1/2 a parabolic conic arc is created and when 1/2 < ρ < 1 a
hyperbolic conic arc is created. Descarta2D will return the $Failed symbol whenever the
arguments to an object are determined to be invalid.
—–

Error Messages 371

D2DExpressions2D

D2DExpressions2D:badTol . [431]

The tolerance tol is not a valid tolerance specification; the default
tolerance, 10−10, will be used.

Tolerance values used to query expressions must be numbers greater than or equal to zero.
—–

D2DMaster$2D

D2DMaster$2D::loaded . [469]

The package ‘D2DMaster2D’ has already been loaded.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This file only needs to be loaded
once; subsequent requests to load the file will be ignored and will cause no harm.
—–

D2DMaster$2D::noPath . [469]

The path to ’D2DMaster2D.m’ cannot be found; unable to initialize
Descarta2D.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that it can be loaded automatically when referenced. This error indicates that the
software has not been installed correctly.
—–

D2DMaster$2D::tooManyPaths .. [469]

More than one path to ’D2DMaster2D.m’ was found; using path-name.

The package D2DMaster2D.m defines the symbol names associated with each Descarta2D pack-
age so that they can be loaded automatically when referenced. This error indicates that the
software has found more than one copy of this file and may suggest that the software has not
been installed correctly.
—–

Directrices2D

Directrices2D::circular . [413]

The ellipse ellipse1 is circular; it has no (finite) directrix lines.

An ellipse whose semi-major and semi-minor axes are equal in length has no (finite) directrix
lines. Descarta2D will return an empty list.
—–

372 Error Messages

Ellipse2D

Ellipse2D::imaginary . [422]

An invalid ellipse of the form ellipse1 has been detected; the arguments of
an ellipse cannot involve imaginary numbers.

When constructing an ellipse Descarta2D verifies that none of the arguments involve imaginary
numbers. Descarta2D will return the $Failed symbol whenever the arguments to an object
are determined to be invalid.
—–

Ellipse2D::invalid .. [423]

An invalid ellipse of the form ellipse1 has been detected; the length of
both the semi-major and semi-minor axes must be positive.

When constructing an ellipse Descarta2D verifies that both the semi-major and semi-minor
axes have positive lengths. Descarta2D will return the $Failed symbol whenever the argu-
ments to an object are determined to be invalid.
—–

Ellipse2D::invdef .. [425]

The defining geometry or eccentricity is invalid; the eccentricity of an
ellipse must be in the range 0<e<1, the foci and vertices cannot be
coincident, and the focus cannot lie on the directrix.

An invalid ellipse was specified and Descarta2D will return the $Failed symbol.
—–

Hyperbola2D

Hyperbola2D::imaginary . [447]

An invalid hyperbola of the form hyp1 has been detected; the arguments
cannot be imaginary.

When constructing a hyperbola the arguments cannot be imaginary. If imaginary arguments
are detected Descarta2D will return the $Failed symbol.
—–

Hyperbola2D::invalid . [447]

An invalid hyperbola of the form hyp1 has been detected; the lengths of
the semi-transverse and semi-conjugate axes must be positive.

Error Messages 373

When constructing a hyperbola the lengths of both the semi-transverse and the semi-conjugate
axes must be positive. Descarta2D will return the $Failed symbol whenever the arguments
to an object are determined to be invalid.
—–

Hyperbola2D::invdef .[450]

The defining geometry or eccentricity is invalid; the eccentricity of a
hyperbola must be greater than 1, the foci and vertices cannot be coincident
and the focus cannot lie on the directrix.

An invalid hyperbola was specified and Descarta2D will return the $Failed symbol.
—–

IsNumeric2D

IsNumeric2D:notNumeric . [432]

The funcName function requires numerical arguments; symbolic arguments
are not allowed.

Some Descarta2D functions require that their arguments be numeric. These functions will not
allow symbolic arguments.
—–

Line2D

Line2D::concentric .. [408]

The circles {cir1, cir2} are concentric; no radical axis exists.

When specifying the two circles for the construction of a radical axis, the two circles cannot
be concentric. If Descarta2D detects that concentric circles have been specified in the radical
axis construction, it will return the $Failed symbol.
—–

Line2D::imaginary .. [459]

An invalid line of the form ln1 has been detected; the arguments cannot
be imaginary.

The arguments defining a line cannot be imaginary. If Descarta2D detects that an object is
invalid the $Failed symbol will be returned.
—–

Line2D::invalid . [459]

An invalid line of the form ln1 has been detected; at least one of the
first two coefficients must be non-zero.

374 Error Messages

When defining a line at least one of the first two coefficients, A or B, must be non-zero.
Descarta2D will return the $Failed symbol whenever the arguments to an object are deter-
mined to be invalid.
—–

Line2D::noPolar . [463]

Since pt1 is at the center of the conic, no polar line exists.

When creating the polar line of a quadratic with respect to a point, Descarta2D verifies that
the point is not coincident with the center of the conic curve represented by the quadratic.
If the point is at the center of the conic represented by the quadratic Descarta2D returns the
$Failed symbol.
—–

Line2D::noPoly .[458]

The expression expr cannot be recognized as a linear polynomial or
equation in variables x and y.

When converting a polynomial or equation to a line, the expression representing the line
must be recognizable as a linear polynomial or equation. If the expression is not recognizable
Descarta2D returns the $Failed symbol.
—–

Line2D::sameCoords .. [462]

The coordinates {x1, y1} and {x2, y2} are coincident; no valid line can be
constructed.

When creating a line through a pair of coordinates or a pair of points, the positions cannot
be coincident. Descarta2D will return the $Failed symbol if it detects the coordinates are
coincident.
—–

Loci2D

Loci2D::central . [465]

The quadratic is a central conic, but its type cannot be determined.

Due to the nature of the coefficients of the quadratic, the specific conic type cannot be deter-
mined; an empty list will be returned.
—–

Loci2D::eccentricity . [468]

The eccentricity, e, is invalid; the eccentricity must be positive.

Error Messages 375

The eccentricity of a conic must be positive; the $Failed symbol will be returned.
—–

Loci2D::noLocus . [465]

The quadratic has no real locus.

The equation represented by the quadratic has no real points; an empty list will be returned.
—–

MedialEquations2D

MedialEquations2D::coincident . [473]

The objects {obj1, obj2} are coincident; no finite number of medial curves
exist.

When two objects are identical the medial points include all the points in the plane and no
unique curve locus exists. When this situation occurs Descarta2D will return an empty list
indicating that no unique curves satisfy the geometric constraints specified.
—–

Parabola2D

Parabola2D::imaginary . [480]

An invalid parabola of the form parabola1 has been detected; the arguments
cannot be imaginary.

The arguments of a parabola cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.
—–

Parabola2D::invalid .[480]

An invalid parabola of the form parabola1 has been detected; the focal
length cannot be zero.

The focal length, f , of a parabola cannot be zero. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.
—–

Parabola2D::invptln .[483]

The focus pt1 is on the directrix ln1; no valid parabola can be
constructed.

The focus point of a parabola cannot be on the directrix line. Descarta2D returns the $Failed
symbol when it detects an invalid construction.
—–

376 Error Messages

Parameters2D

Parameters2D::noChord . [455]

No chord exists between ln1 and crv2.

The Parameters2D function requires that the defining line intersect the curve in two points.
If the line does not intersect the chord, Descarta2D will return the $Failed symbol.
—–

Point2D

Point2D::coincident .[494]

No unique intersection point exists; lines ln1 and ln2 are coincident.

Coincident lines cannot be intersected. Descarta2D will return the $Failed symbol if it detects
an attempt to intersect coincident lines.
—–

Point2D::imaginary .. [490]

An invalid point of the form pt1 has been detected; the coordinates of a
point cannot be imaginary.

The coordinates of a point cannot be imaginary. If Descarta2D detects an invalid object the
$Failed symbol will be returned.
—–

Point2D::noDir .[493]

Points {pt1, pt2} are coincident and do not define a valid direction.

When defining a point that is offset in a direction specified by two points, the direction points
cannot be coincident. Descarta2D returns the $Failed symbol if the two points are coincident.
—–

Point2D::noPole . [494]

Since ln1 passes through the center of the conic, no pole point exists.

When creating the pole point of a quadratic with respect to a line, Descarta2D verifies that
the line does not pass through the center of the conic curve represented by the quadratic. If
the line does pass through the center Descarta2D returns the $Failed symbol.
—–

Point2D::noRatio . [493]

The sum of the ratio numbers {r1, r2} cannot be zero.

Error Messages 377

When defining a point that divides a segment into a given ratio, the ratio numbers r1 and
r2 cannot sum to zero. Descarta2D will return the $Failed symbol if the ratio numbers are
invalid.
—–

Point2D::notCentral .[494]

quad is not a central conic; it has no center point.

The quadratic is not a central conic and has no center point. Descarta2D will return the
$Failed symbol.
—–

Point2D::notCentral1 . [419]

The conic underlying cnarc is not a central conic; it has no center
point.

The conic underlying a conic arc is not a central conic and has no center point. Descarta2D

will return the $Failed symbol.
—–

Point2D::parallel .. [494]

No intersection point exists; lines ln1 and ln2 are parallel.

Parallel lines cannot be intersected. Descarta2D will return the $Failed symbol if its detects
an attempt to intersect parallel lines.
—–

Quadratic2D

Quadratic2D::coincident . [487]

Two or more of the points are coincident; no valid quadratic pencil
exists.

When constructing a quadratic pencil from four points, no pair of points may be coincident.
The $Failed symbol with be returned if any pair of points is detected to be coincident.
—–

Quadratic2D::eccentricity . [502]

The eccentricity e is invalid; the eccentricity must be positive.

When defining a quadratic using a point, a line and an eccentricity, Descarta2D will report an
error if the eccentricity is not positive and return the $Failed symbol.
—–

378 Error Messages

Quadratic2D::imaginary . [461]

An invalid quadratic of the form quad1 has been detected; the arguments
cannot be imaginary.

The arguments defining a quadratic cannot be imaginary. If Descarta2D detects that an object
is invalid the $Failed symbol will be returned.
—–

Quadratic2D::invalid . [498]

An invalid quadratic of the form quad1 has been detected; at least one of
the first five coefficients must be non-zero.

At least one of the first five coefficients of a quadratic must be non-zero. The $Failed symbol
is returned whenever the arguments to an object are determined to be invalid.
—–

Quadratic2D::invEcc .[499]

A negative eccentricity, expr1, is invalid; no valid quadratic can be
constructed.

The eccentricity of a conic must be non-negative. Descarta2D will return the $Failed symbol
if an invalid eccentricity is specified.
—–

Quadratic2D::invLen .[499]

A non-positive focal chord length, expr1, is invalid; no valid quadratic
can be constructed.

The length of a conic’s focal chord must be positive. Descarta2D will return the $Failed
symbol if an invalid length is specified.
—–

Quadratic2D::noPoly .[500]

The expression expr cannot be recognized as a quadratic polynomial or
equation in variables x and y.

When converting a polynomial or equation to a quadratic, the expression representing the
quadratic must be recognizable as a quadratic polynomial or equation. If the expression is
not recognizable Descarta2D returns the $Failed symbol.
—–

Error Messages 379

Segment2D

Segment2D::imaginary . [506]

An invalid line segment of the form lnseg1 has been detected; the
arguments cannot be imaginary.

A line segment with imaginary arguments has been detected. Descarta2D will return the
$Failed symbol whenever the arguments to an object are determined to be invalid.
—–

Segment2D::invalid .. [506]

An invalid line segment of the form lnseg1 has been detected; the defining
coordinates cannot be coincident.

In order to be valid, a line segment must have two distinct end points, they cannot be coin-
cident. Descarta2D will return the $Failed symbol whenever the arguments to an object are
determined to be invalid.
—–

Sketch2D

Sketch2D::invalidLength . [512]

Setting CurveLength2D→ n1 is invalid; ‘CurveLength2D’ must be positive;
the current value of CurveLength2D→ n2 will be retained.

When using the Mathematica SetOptions command, any attempt to set the CurveLength2D
parameter of the Sketch2D function to a non-positive value will be rejected. The current value
of the CurveLength2D parameter will be retained.
—–

Sketch2D::noObj . [513]

No valid objects to sketch.

If there are no valid geometric objects in the list of objects to sketch, Descarta2D will output
the Sketch2D::noObj message to indicate no graphical output will be plotted.
—–

Sketch2D::notReal .. [513]

n object(s) cannot be sketched.

When plotting objects using the Sketch2D command, Descarta2D will count the number of
objects that have symbolic arguments. Such objects cannot be plotted and will not be included
in the graphics that are displayed.
—–

380 Error Messages

Solve2D

Solve2D::infinite .. [516]

An infinite number of solutions exist; only independent solutions will be
returned.

When solving a system of equations some solutions may exist in which the solutions are
interrelated functions of each other. Such solutions will not be returned.
—–

Solve2D::invalidTime . [516]

Option MaxSeconds2D->n1 is invalid; ’MaxSeconds2D’ must be positive; the
current value of MaxSeconds2D->n2 will be retained.

When setting the MaxSeconds2D option of the Solve2D command, the option value must be
positive.
—–

Solve2D::time . [516]

The equations could not be solved in MaxSeconds2D->n1, an empty list of
solutions will be returned; using approximate numbers may produce a more
complete list of solutions.

Some equations are too complex to be solved in the time allowed by the Descarta2D Solve2D
command. An empty list of solutions will be returned if the maximum time elapses before a
solution is found. To increase the maximum time allowed use the SetOptions command. For
example,

SetOptions[Solve2D,MaxSeconds2D->60].

will set the time limit to 60 seconds.
—–

SolveTriangle2D

SolveTriangle2D::ambiguous .. [550]

Two valid solutions exist for this configuration; set the alternate
solution option to logical to compute the other configuration.

When computing a triangle configuration, Descarta2D will display this warning if more than
one solution is valid. The logical will either be True or False indicating the setting required
to produce the alternate configuration.
—–

Error Messages 381

SolveTriangle2D::anglesOnly . [549]

The triangle configuration is under-constrained; a valid configuration
with the triangle’s perimeter arbitrarily set to 1 will be computed.

When computing a triangle configuration consisting of angles only, Descarta2D will display
this warning to indicate that the length of the sides are arbitrarily set, being correct for the
given angles.
—–

SolveTriangle2D::constrain .. [548]

The triangle configuration is under-constrained; three constraints are
expected.

At least three parameters are needed to compute a triangle configuration. Descarta2D will
return $Failed if a configuration is under-constrained.
—–

SolveTriangle2D::invConfig .. [547]

The configuration of sides and/or angles specified is invalid; no
triangle can be constructed.

An invalid triangle configuration has been specified. Descarta2D will return $Failed.
—–

TangentConics2D

TangentConics2D::coincident . [523]

Two or more of the defining points or lines are coincident; no proper
conic can be constructed.

When constructing a tangent conic from defining points, all of the points must be unique; if
any of the points are coincident, Descarta2D will return an empty list.
—–

TangentConics2D::collinear .. [523]

Three or more of the defining points are collinear; no proper conic can
be constructed.

When constructing a tangent conic from defining points, no triple of three points may be
collinear; if any triple is collinear Descarta2D will return an empty list.
—–

382 Error Messages

TangentConics2D::concurrent . [523]

Three or more of the tangent lines are concurrent; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be concurrent
(meet in a point); if any triple is concurrent Descarta2D will return an empty list.
—–

TangentConics2D::linesThru .. [523]

One of the points is on more than one of the tangent lines; no proper
conic can be constructed.

When constructing a tangent conic from points and lines, each point is allowed to be on at
most one of the tangent lines; if any point is on more than one line, Descarta2D will return
an empty list.
—–

TangentConics2D::parallel . [523]

Three or more of the defining lines are parallel; no proper conic can be
constructed.

When constructing a tangent conic from defining lines, no triple of lines can be parallel; if any
triple is parallel Descarta2D will return an empty list.
—–

TangentConics2D::pointsOn . [523]

Two or more of the points are on a tangent line; no proper conic can be
constructed.

When constructing a tangent conic from points and lines, each line can have at most one point
on it; if any line has more than one point one it, Descarta2D will return an empty list.
—–

Transform2D

Transform2D::invalidScale . [542]

The scale factor s is invalid; the scale factor must be positive.

The scale factor, s, for a scaling transformation must be positive. Descarta2D will return the
$Failed symbol if a non-positive scale factor is specified.
—–

Error Messages 383

Triangle2D

Triangle2D::imaginary . [546]

An invalid triangle of the form triangle1 has been detected; the arguments
cannot be imaginary.

The arguments of a triangle cannot be imaginary. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.
—–

Triangle2D::invalid .[546]

An invalid triangle of the form triangle1 has been detected; the vertex
points cannot be collinear.

The vertex points of a triangle cannot be collinear. Descarta2D will return the $Failed symbol
whenever the arguments to an object are determined to be invalid.
—–

Triangle2D::noTriangle . [553]

Two of the lines {ln1, ln2, ln3} are parallel, or the three are concurrent;
no triangle exists.

When defining a triangle by three lines, the lines must intersect in three distinct points. If any
pair of lines are parallel, or the three lines are concurrent, Descarta2D will return the $Failed
symbol.
—–

Part VII

Packages

D2DArc2D

The package D2DArc2D implements the Arc2D object.

Initialization

BeginPackage["D2DArc2D‘", {"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘",
"D2DPoint2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DArc2D::usage=
 "D2DArc2D is a package that implements the Arc2D object.";

Arc2D::usage=
 "Arc2D[{x0,y0},{x1,y1},B] is the standard form of an arc with start
point (x0,y0), end point (x1,y1) and positive bulge factor ’B’.";

Bulge2D::usage=
 "Bulge2D[arc] returns the bulge factor of an arc.";

Complement2D::usage=
 "Complement2D is a keyword required in Arc2D[arc, Complement2D].";

Begin["‘Private‘"];

Description

Representation

Arc2D[{x0, y0}, {x1, y1},B] Standard representation of an arc in Descarta2D. The first
argument is a list of coordinates representing the start point of the arc. The second argument
is a list of coordinates representing the end point of the arc. The third argument is a scalar
representing the bulge factor of the arc, B > 0. The arc is traversed counter-clockwise from
P1 to P2. The bulge factor is the ratio of the arc’s height, h, to half the chord length, d/2; so
B = 2h/d.

387

388 D2DArc2D - Description

Evaluation

Arc2D[{x0, y0}, {x1, y1},B][t] Evaluates an arc at a parameter value, t, and returns a
list of coordinates {x, y}. Parameters in the range 0 ≤ t ≤ 1 cover the complete span of the
arc.

Arc2D[{x0_,y0_},{x1_,y1_},B_][t_?IsScalar2D] :=
 Module[{arc,h,k,beta},
 arc=Arc2D[{x0,y0},{x1,y1},B];
 {h,k}=Coordinates2D[arc];
 beta=Angle2D[arc];
 {h+(x0-h)*Cos[beta*t]-(y0-k)*Sin[beta*t],
 k+(x0-h)*Sin[beta*t]+(y0-k)*Cos[beta*t]}];

Graphics

Provides graphics primitives for an arc by extending the Mathematica Display command.
Executed when the package is loaded.

SetDisplay2D[
 Arc2D[{x0_,y0_},{x1_,y1_},B_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 Circle[Coordinates2D[Arc2D[{x0,y0},{x1,y1},B]],
 Radius2D[Arc2D[{x0,y0},{x1,y1},B]],
 PrimaryAngleRange2D[{
 Angle2D[Arc2D[{x0,y0},{x1,y1},B],t1],
 Angle2D[Arc2D[{x0,y0},{x1,y1},B],t2]}]]];

SetDisplay2D[
 Arc2D[{x0_,y0_},{x1_,y1_},B_],
 Circle[Coordinates2D[Arc2D[{x0,y0},{x1,y1},B]],
 Radius2D[Arc2D[{x0,y0},{x1,y1},B]],
 PrimaryAngleRange2D[Arc2D[{x0,y0},{x1,y1},B]]]]

Validation

Arc2D[{x0, y0}, {x1, y1},B] Detects an arc with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Arc2D::imaginary=
 "An invalid arc of the form ’Arc2D[‘1‘, ‘2‘, ‘3‘]’ has been detected;
the arguments cannot be imaginary.";

Arc2D[{x0_,y0_},{x1_,y1_},B_] :=
 (Arc2D @@ ChopImaginary2D[Arc$2D[{x0,y0},{x1,y1},B]]) /;
(FreeQ[{x0,y0,x1,y1,B},_Pattern] &&
 IsTinyImaginary2D[{x0,y0,x1,y1,B}]);

Arc2D[{x0_,y0_},{x1_,y1_},B_] :=
 (Message[Arc2D::imaginary,{x0,y0},{x1,y1},B];$Failed) /;
(FreeQ[{x0,y0,x1,y1,B},_Pattern] &&
 IsComplex2D[{x0,y0,x1,y1,B},0]);

D2DArc2D - Scalars 389

Arc2D[{x0, y0}, {x1, y1},B] Detects an arc with a negative bulge factor and returns an
arc with the defining points interchanged and the positive bulge factor.

Arc2D[{x0_,y0_},{x1_,y1_},B_?IsNegative2D] :=
 Arc2D[{x1,y1},{x0,y0},-B];

Arc2D[{x0, y0}, {x1, y1},B] Detects an arc with a zero bulge factor and returns the
$Failed symbol.

Arc2D::invalid=
 "An invalid arc of the form ’Arc2D[‘1‘, ‘2‘, ‘3‘]’ has been detected;
the bulge factor must be positive and the defining points must be
distinct.";

Arc2D[{x0_,y0_},{x1_,y1_},B_] :=
 (Message[Arc2D::invalid,{x0,y0},{x1,y1},B];$Failed) /;
(FreeQ[{x0,y0,x1,y1,B},_Pattern] &&
 IsZero2D[B,0]);

Arc2D[{x0, y0}, {x1, y1},B] Detects an arc whose defining points are coincident and
returns the $Failed symbol.

Arc2D[{x0_,y0_},{x1_,y1_},B_] :=
 (Message[Arc2D::invalid,{x0,y0},{x1,y1},B];$Failed) /;
(FreeQ[{x0,y0,x1,y1,B},_Pattern] &&
 IsZero2D[Distance2D[{x0,y0},{x1,y1}]]);

IsValid2D[arc] Returns True for a syntactically valid arc.

IsValid2D[Arc2D[{x0_?IsScalar2D,y0_?IsScalar2D},
 {x1_?IsScalar2D,y1_?IsScalar2D},
 B_?IsScalar2D]] := True;

Scalars

Angular Span of an Arc

Angle2D[arc] Computes the angular span of an arc. The result is returned in radians.

Angle2D[Arc2D[{x0_,y0_},{x1_,y1_},B_]] := 4*ArcTan[B];

Angle at Parameter on an Arc

Angle2D[arc, t] Computes the angle between a line through the arc center parallel to
the +x-axis and a line through a point at a parameter value, t, on the arc. For example,
Angle2D[arc, 0] gives the start angle, θ1, and Angle2D[arc, 1] gives the end angle, θ2.

Angle2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_],t_?IsScalar2D] :=
 Module[{h,k,xt,yt},
 {h,k}=Coordinates2D[A];
 {xt,yt}=A[t];
 ArcTan[xt-h,yt-k]];

390 D2DArc2D - Transformations

Bulge Factor of an Arc

Bulge2D[arc] Returns the bulge factor of an arc.

Bulge2D[Arc2D[{x0_,y0_},{x1_,y1_},B_]] := B;

Primary Angle Range

PrimaryAngleRange2D[arc] Computes a list of two primary angles measured counter-
clockwise from the +x-axis to the defining points of an arc. The arc is traversed counter-
clockwise from the first angle to the second.

PrimaryAngleRange2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 Module[{h,k},
 {h,k}=Coordinates2D[A];
 PrimaryAngleRange2D[{ArcTan[x0-h,y0-k],
 ArcTan[x1-h,y1-k]}]];

Radius of an Arc

Radius2D[arc] Computes the radius of an arc.

Radius2D[Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 Sqrt[(x0-x1)^2+(y0-y1)^2]*(B+1/B)/4;

Transformations

Reflect

Reflect2D[arc, line] Reflects an arc in a line.

Reflect2D[Arc2D[{x0_,y0_},{x1_,y1_},B_],L:Line2D[a_,b_,c_]] :=
 Arc2D[Reflect2D[{x1,y1},L],Reflect2D[{x0,y0},L],B];

Rotate

Rotate2D[arc, θ, coords] Rotates an arc by an angle θ about a position given by a coordi-
nate list. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rotate2D[Arc2D[{x0_,y0_},{x1_,y1_},B_],theta_?IsScalar2D,
 {xc_?IsScalar2D,yc_?IsScalar2D}] :=
 Arc2D[Rotate2D[{x0,y0},theta,{xc,yc}],
 Rotate2D[{x1,y1},theta,{xc,yc}],B];

D2DArc2D - Construction 391

Scale

Scale2D[arc, s, coords] Scales an arc from a position given by coordinates. If the position
is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Arc2D[{x0_,y0_},{x1_,y1_},B_],s_?IsScalar2D,
 {xc_?IsScalar2D,yc_?IsScalar2D}] :=
 Arc2D[Scale2D[{x0,y0},s,{xc,yc}],
 Scale2D[{x1,y1},s,{xc,yc}],B] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[arc, {u, v}] Translates an arc delta distance.

Translate2D[Arc2D[{x0_,y0_},{x1_,y1_},B_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Arc2D[{x0+u,y0+v},{x1+u,y1+v},B];

Construction

Center Point of an Arc

Point2D[arc] Constructs the center point of the arc.

Point2D[Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 Module[{K},
 K=(1/B-B)/4;
 Point2D[{(x0+x1)/2+K*(y0-y1),(y0+y1)/2-K*(x0-x1)}]];

Circle from Arc

Circle2D[arc] Constructs the circle associated with an arc.

Circle2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 Circle2D[Coordinates2D[A],Radius2D[A]];

Complement Arc

Arc2D[arc, Complement2D] Constructs an arc that is the complement of a given arc.

Arc2D[Arc2D[{x0_,y0_},{x1_,y1_},B_],Complement2D] :=
 Arc2D[{x1,y1},{x0,y0},1/B];

392 D2DArc2D - Construction

Arc from Center Point, Radius and Span

Arc2D[point, r, {θ1, θ2}] Constructs an arc from a center point, radius and angular span
range. The arc is defined counter-clockwise from the start point associated with θ1 to the end
point associated with θ2.

Arc2D::invalidSpan=
 "The angular span of the arc is invalid; the span cannot be an integer
multiple of 2Pi radians.";

Arc2D::invalidRadius=
 "The radius, ‘1‘, of the arc is invalid; the radius must be positive.";

Arc2D[Point2D[c:{h_,k_}], r_?IsZeroOrNegative2D,
 {t0_?IsScalar2D,t1_?IsScalar2D}] :=
 (Message[Arc2D::invalidRadius,r];$Failed);

Arc2D[Point2D[c:{h_,k_}], r_?IsScalar2D,
 {t0_?IsScalar2D,t1_?IsScalar2D}] :=
 (Message[Arc2D::invalidSpan];$Failed) /;
IsZero2D[Distance2D[Circle2D[c,r][t0],Circle2D[c,r][t1]]];

Arc2D[Point2D[c:{h_,k_}], r_?IsScalar2D,
 {t0_?IsScalar2D,t1_?IsScalar2D}] :=
 Module[{T0,T1,p0,p1,d,pm,H,B},
 {T0,T1}=PrimaryAngleRange2D[{t0,t1}];
 p0=Circle2D[c,r][T0];
 p1=Circle2D[c,r][T1];
 d=Distance2D[p0,p1];
 pm=Circle2D[c,r][(T0+T1)/2];
 H=Distance2D[(p0+p1)/2,pm];
 B=2*H/d;
 Arc2D[p0,p1,B]];

Arc from Defining Points and Entry Angle

Arc2D[{point, θ}, point] Constructs an arc from the start and end points and the angle
between the chord and the entry vector. The angle cannot be an integer multiple of π radians.
The angle is positive for counter-clockwise arcs and negative for clockwise arcs.

Arc2D::invalidEntryAngle=
 "The entry angle of the arc is invalid; the entry angle cannot be an
integer multiple of Pi radians.";

Arc2D::invalidCoincident=
 "The defining points are coincident; an arc cannot be constructed.";

D2DArc2D - Construction 393

Arc2D[{P0:Point2D[p0:{x0_,y0_}],A_?IsScalar2D},
 P1:Point2D[p1:{x1_,y1_}]] :=
 Which[
 IsZero2D[PrimaryAngle2D[A,Pi]],
 Message[Arc2D::invalidEntryAngle];$Failed,
 IsCoincident2D[P0,P1],
 Message[Arc2D::invalidCoincident];$Failed,
 True,
 Arc2D[p0,p1,Tan[A/2]]];

Arc from Three Points

Arc2D[point, point, point] Constructs an arc through three points. The first and the third
points are the start and end points of the arc, respectively, and the second point is a general
point on the arc. The private function Minor$2D is the 2D vector cross-product.

Arc2D::invalidCollinear=
 "The three defining points are collinear; an arc cannot be constructed.";

Minor$2D[{u1_,v1_},{u2_,v2_}] := u1*v2-u2*v1;

Arc2D[P0:Point2D[p0:{x0_,y0_}],
 Pon:Point2D[pon:{xon_,yon_}],
 P1:Point2D[p1:{x1_,y1_}]] :=
 Module[{s,c,B},
 Which[
 IsCollinear2D[P0,Pon,P1],
 Message[Arc2D::invalidCollinear];$Failed,
 True,
 s=Minor$2D[pon-p0,p1-pon];
 c=Dot[pon-p0,p1-pon];
 B=s/(c+Sqrt[c^2+s^2]);
 Arc2D[p0,p1,B]]];

Arc from Center, Radius and Ray End Points

Arc2D[point, r, {point, point}] Constructs an arc given the center point, radius and ray
end points. The ray end points do not have to be on the arc, but they cannot be coincident
with the center point.

Arc2D[P:Point2D[{h_,k_}],r_?IsScalar2D,
 {P0:Point2D[{x0_,y0_}],P1:Point2D[{x1_,y1_}]}] :=
 Which[
 IsZeroOrNegative2D[r],
 Message[Arc2D::invalidRadius,r];$Failed,
 IsCoincident2D[P,P0] || IsCoincident2D[P,P1],
 Message[Arc2D::invalidCoincident];$Failed,
 True,
 Arc2D[Point2D[{h,k}],r,
 {ArcTan[x0-h,y0-k],ArcTan[x1-h,y1-k]}]]

394 D2DArc2D - Epilogue

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DArc2D‘" *)

D2DArcLength2D

The package D2DArcLength2D provides functions for computing the arc length of Descarta2D

objects.

Initialization
BeginPackage["D2DArcLength2D‘", {"D2DArc2D‘", "D2DCircle2D‘",
"D2DConicArc2D‘", "D2DEllipse2D‘", "D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DHyperbola2D‘", "D2DLine2D‘", "D2DNumbers2D‘", "D2DParabola2D‘",
"D2DSegment2D‘", "D2DTriangle2D‘"}];

D2DArcLength2D::usage=
 "D2DArcLength2D is a package for computing the arc length of curves.";

ArcLength2D::usage=
 "ArcLength2D[curve,{t0,t1}] computes the arc length of a curve between
two parameters.";

Circumference2D::usage=
 "Circumference2D[circle] computes the circumference of a circle.
Circumference2D[ellipse] computes the circumference of an ellipse.";

Perimeter2D::usage=
 "Perimeter2D[triangle] computes the perimeter of a triangle.";

Span2D::usage=
 "Span2D[arc] computes the span (arc length) of an arc; N[Span2D[cnarc]]
numerically computes the span (arc length) of a conic arc.";

Begin["‘Private‘"];

Arc Length

Arc

Span2D[arc] Computes the arc length of a complete span of an arc.

395

396 D2DArcLength2D - Arc Length

Span2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 Module[{theta1,theta2},
 {theta1,theta2}=PrimaryAngleRange2D[A];
 Radius2D[A]*(theta2-theta1)];

ArcLength2D[arc,{θ1, θ2}] Computes the arc length of an arc between two parameters.

ArcLength2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2},
 {T1,T2}=PrimaryAngleRange2D[{Angle2D[A,t1],Angle2D[A,t2]}];
 Radius2D[A]*(T2-T1)];

Circle

Circumference2D[circle] Computes the circumference of a circle.

Circumference2D[Circle2D[{h_,k_},r_]] := 2*Pi*r;

ArcLength2D[circle, {θ1, θ2}] Computes the arc length of a circle between two parameters.

ArcLength2D[Circle2D[{h_,k_},r_],{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 r*(T2-T1)];

Conic Segment

Span2D[cnarc] //N Computes the arc length of a complete span of a conic arc numerically.

N[Span2D[C1:ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_]]] :=
 NArcLength$2D[C1,{0,1},$MachinePrecision] /;
IsNumeric2D[C1,Span2D];

N[Span2D[C1:ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_]],n_] :=
 NArcLength$2D[C1,{0,1},n] /;
IsNumeric2D[C1,Span2D];

ArcLength2D[cnarc, {θ1, θ2}] //N Computes the arc length of a conic arc between two
parameters numerically.

N[ArcLength2D[C1:ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 {t1_?IsScalar2D,t2_?IsScalar2D}]] :=
 NArcLength$2D[C1,{t1,t2},$MachinePrecision] /;
IsNumeric2D[{C1,t1,t2},ArcLength2D];

N[ArcLength2D[C1:ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 {t1_?IsScalar2D,t2_?IsScalar2D}],
 n_] :=
 NArcLength$2D[C1,{t1,t2},n] /;
IsNumeric2D[{C1,t1,t2},ArcLength2D];

D2DArcLength2D - Arc Length 397

Ellipse

Circumference2D[ellipse] Computes the circumference of an ellipse.

Circumference2D[E1:Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 ArcLength2D[E1,{0,2Pi}];

ArcLength2D[ellipse, {θ1, θ2}] Computes the arc length of an ellipse between two para-
meters.

ArcLength2D[Ellipse2D[{h_,k_},a_,b_,theta_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2,L},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 L=b*(EllipticE[T2,1-a^2/b^2]-EllipticE[T1,1-a^2/b^2]);
 If[IsNegative2D[L],-L,L]];

Hyperbola

The private function ArcLengthHyperbola$2D[hyperbola, {0, t}] computes the arc length
of a hyperbola between parameter values 0 and t. The result may be positive or negative,
depending on the value given for t.

ArcLengthHyperbola$2D[Hyperbola2D[{h_,k_},a_,b_,theta_],{0,t_}] :=
 Re[-I*b*EllipticE[I*ArcCosh[Sqrt[a^2+b^2]/a]*t,1+a^2/b^2]];

ArcLength2D[hyperbola, {θ1, θ2}] Computes the arc length of a hyperbola between two
parameters.

ArcLength2D[H1:Hyperbola2D[{h_,k_},a_,b_,theta_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{L},
 L=ArcLengthHyperbola$2D[H1,{0,t2}]-
 ArcLengthHyperbola$2D[H1,{0,t1}];
 If[IsNegative2D[L],-L,L]];

Line

ArcLength2D[line,{t1, t2}] Computes the arc length of a line between two parameters.

ArcLength2D[Line2D[a_,b_,c_],{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{L},
 L=t2-t1;
 If[IsNegative2D[L],-L,L]];

Line Segment

ArcLength2D[lnseg,{t1, t2}] Computes the arc length of a line segment between two
parameters. The function Length2D[lnseg] computes the length of a complete line segment
(defined in package D2DSegment2D).

398 D2DArcLength2D - Epilogue

ArcLength2D[Segment2D[{x0_,y0_},{x1_,y1_}],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{L},
 L=(t2-t1)*Sqrt[(x0-x1)^2+(y0-y1)^2];
 If[IsNegative2D[L],-L,L]];

Parabola

ArcLength2D[parabola, {t1, t2}] Computes the arc length of a parabola between two
parameter values.

ArcLength2D[Parabola2D[{h_,k_},f_,t_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{S1=Sqrt[1+t1^2],S2=Sqrt[1+t2^2]},
 L=f*((S2*t2+Log[2*f^2(S2+t2)]) -
 (S1*t1+Log[2*f^2(S1+t1)]));
 If[IsNegative2D[L],-L,L]];

Triangle

Perimeter2D[triangle] Computes the perimeter of a triangle.

Perimeter2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}]] :=
 Sqrt[(x1-x2)^2+(y1-y2)^2]+
 Sqrt[(x1-x3)^2+(y1-y3)^2]+
 Sqrt[(x2-x3)^2+(y2-y3)^2];

Arc Length (Numerical)

Parametric Curves

The private function NArcLength$2D[curve,{t1, t2}] numerically computes the arc length of
a parametric curve between two parameter values. The function uses numerical integration,
so the arguments of the function must be numerical. The third argument, n, specifies the
numerical precision.

NArcLength$2D[obj_,{t1_,t2_},n_] :=
 Module[{t,Dx,Dy,L},
 {Dx,Dy}=Map[D[#,t]&,obj[t]];
 L=NIntegrate[Sqrt[Dx^2+Dy^2],{t,t1,t2},WorkingPrecision->n];
 If[IsNegative2D[L],-L,L]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DArcLength2D‘" *)

D2DArea2D

The package D2DArea2D computes areas associated with Descarta2D objects.

Initialization

BeginPackage["D2DArea2D‘", {"D2DArc2D‘", "D2DCircle2D‘", "D2DConicArc2D‘",
"D2DEllipse2D‘", "D2DExpressions2D‘", "D2DGeometry2D‘", "D2DHyperbola2D‘",
"D2DLine2D‘", "D2DNumbers2D‘", "D2DParabola2D‘", "D2DPoint2D‘",
"D2DTriangle2D‘"}];

D2DArea2D::usage=
 "D2DArea2D is a package for computing areas.";

Area2D::usage=
 "Area2D[object] computes the area of a closed object";

SectorArea2D::usage=
 "SectorArea2D[object,{t1,t2}] computes the area of a sector of an
object.";

SegmentArea2D::usage=
 "SegmentArea2D[object,{t1,t2}] computes the area of a segment of an
object.";

Begin["‘Private‘"];

Areas Associated with an Arc

Area

Area2D[arc] Computes the area between an arc and its chord.

Area2D[A:Arc2D[{x0_,y0_},{x1_,y1_},B_]] :=
 SegmentArea2D[Circle2D[A],PrimaryAngleRange2D[A]];

399

400 D2DArea2D - Areas Associated with a Conic Arc

Areas Associated with a Circle

Area

Area2D[circle] Computes the area of a circle.

Area2D[Circle2D[{h_,k_},r_]] := Pi*r^2;

Sector Area

SectorArea2D[circle, {θ1, θ2}] Computes the area of a circle sector defined by two
parameters.

SectorArea2D[Circle2D[{h_,k_},r_],{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 (T2-T1)*r^2/2];

Segment Area

SegmentArea2D[circle,{θ1, θ2}] Computes the area of a circle segment defined by two
parameters.

SegmentArea2D[Circle2D[{h_,k_},r_],{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2,theta},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 theta=T2-T1;
 r^2*(theta-Sin[theta])/2];

Areas Associated with a Conic Arc

Area

Area2D[cnarc] Computes the area between a conic arc and its chord for a conic arc in a
standard position. The first case is for parabolas; the second case is for ellipses and hyperbolas.

Area2D[ConicArc2D[{0,0},{a_,b_},{d_,0},p_]] :=
 Module[{A},
 A=d*b/3;
 If[IsNegative2D[A],-A,A]] /;
IsZero2D[p-1/2];

Area2D[ConicArc2D[{0,0},{a1_,b1_},{d1_,0},p_]] :=
 Module[{b,d,r},
 b*d*p*(p*r+(-1+p)^2*Log[(1-p)/(p+r)])/(2*r^3) //.
 {r->Sqrt[-1+2p],b->Sqrt[b1^2],d->Sqrt[d1^2]}] /;
Not[IsZero2D[p-1/2]];

D2DArea2D - Areas Associated with an Ellipse 401

Area2D[cnarc] Computes the area between a conic arc and its chord. Notice that the
x-coordinate of the apex point in standard position has no bearing on the area, and, therefore,
is not computed.

Area2D[ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_]] :=
 Module[{a,b,d},
 b=Distance2D[Point2D[pA],Line2D[p0,p1]];
 d=Distance2D[p0,p1];
 Area2D[ConicArc2D[{0,0},{a,b},{d,0},p]]];

Areas Associated with an Ellipse

Area

Area2D[ellipse] Computes the area of a complete ellipse.

Area2D[Ellipse2D[{h_,k_},a_,b_,alpha_]] := Pi*a*b;

Sector Area

SectorArea2D[ellipse, {0, θ}] Computes the area of an ellipse sector between parameter
values 0 and θ.

SectorArea2D[E1:Ellipse2D[{h_,k_},a_,b_,alpha_],{0,t_?IsScalar2D}] :=
 Module[{T=PrimaryAngle2D[t]},
 Which[
 IsZero2D[T], Pi*a*b,
 IsNegative2D[Pi-T], Pi*a*b/2+SectorArea2D[E1,{0,T-Pi}],
 True, a*b*(Pi-2*ArcSin[Cos[t]])/4]];

SectorArea2D[ellipse, {θ1, θ2}] Computes the area of an ellipse sector between two
parameter values.

SectorArea2D[E1:Ellipse2D[{h_,k_},a_,b_,alpha_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 Which[
 IsZero2D[2Pi-(T2-T1)],
 Area2D[E1],
 IsNegative2D[2Pi-T2],
 Pi*a*b-SectorArea2D[E1,{T2-2Pi,T1}],
 True,
 SectorArea2D[E1,{0,T2}]-SectorArea2D[E1,{0,T1}]]];

Segment Area

SegmentArea2D[ellipse, {θ1, θ2}] Computes the area of an ellipse segment between two
parameter values.

402 D2DArea2D - Areas Associated with a Parabola

SegmentArea2D[E1:Ellipse2D[{h_,k_},a_,b_,alpha_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2},
 {T1,T2}=PrimaryAngleRange2D[{t1,t2}];
 SectorArea2D[E1,{T1,T2}]-a*b*Sin[T2-T1]/2];

Areas Associated with a Hyperbola

Sector Area

SectorArea2D[hyperbola, {t1, t2}] Computes the area of a hyperbola sector between two
parameter values.

SectorArea2D[Hyperbola2D[{h_,k_},a_,b_,t_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{e,s,A},
 e=Sqrt[a^2+b^2]/a;
 s=ArcCosh[e];
 A=a*b*s*(t2-t1)/2;
 If[IsNegative2D[A],-A,A]];

Segment Area

SegmentArea2D[hyperbola, {t1, t2}] Computes the area of a hyperbola segment between
two parameters.

SegmentArea2D[Hyperbola2D[{h_,k_},a_,b_,t_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{e,s,T,A},
 e=Sqrt[a^2+b^2]/a;
 s=ArcCosh[e];
 T=s*(t2-t1);
 A=a*b*(Sinh[T]-T)/2;
 If[IsNegative2D[A],-A,A]];

Areas Associated with a Parabola

Segment Area

SegmentArea2D[parabola, {t1, t2}] Computes the area of a segment of a parabola between
two parameters.

SegmentArea2D[Parabola2D[{h_,k_},f_,theta_],
 {t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{A},
 A=f^2*(t2-t1)^3/3;
 If[IsNegative2D[A],-A,A]];

D2DArea2D - Areas Associated with a Triangle 403

Areas Associated with a Triangle

Area

Area2D[triangle] Computes the area of a triangle.

Area2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}]] :=
 Module[{A},
 A=Det[{{x1,y1,1},{x2,y2,1},{x3,y3,1}}]/2;
 If[IsNegative2D[A],-A,A]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DArea2D‘" *)

D2DCircle2D

The package D2DCircle2D implements the Circle2D object.

Initialization

BeginPackage["D2DCircle2D‘", {"D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DCircle2D::usage=
 "D2DCircle2D is a package that implements the Circle2D object.";

Circle2D::usage=
 "Circle2D[{h,k},r] is the standard form of a circle with radius ’r’
centered at {h,k}.";

Radius2D::usage=
 "Radius2D[circle] gives the radius of a circle.";

Begin["‘Private‘"];

Description

Representation

Circle2D[{h, k}, r] Standard representation of a circle in Descarta2D. The center of the
circle is (h, k) and the radius is r.

Equation

Quadratic2D[circle] Constructs the quadratic representing the equation of a circle.

Quadratic2D[Circle2D[{h_,k_},r_]] :=
 Quadratic2D[1,0,1,-2*h,-2*k,h^2+k^2-r^2];

405

406 D2DCircle2D - Description

Evaluation

Circle2D[{h, k}, r][θ] Evaluates a parameter, θ, on a circle and returns a coordinate
list {x, y}. Parameters in the range 0 ≤ θ < 2π cover a complete circle.

Circle2D[{h_,k_},r_][t_?IsScalar2D] := {h+r*Cos[t],k+r*Sin[t]};

Graphics

Provides graphics primitives for a circle by extending the Mathematica Display command.
Executed when the package is loaded.

SetDisplay2D[
 Circle2D[{h_,k_},r_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 Circle[{h,k},r,PrimaryAngleRange2D[{t1,t2}]]];

SetDisplay2D[
 Circle2D[{h_,k_},r_],
 Circle[{h,k},r]];

Validation

Circle2D[{h, k}, r] Detects a circle with imaginary arguments and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Circle2D::imaginary=
 "An invalid circle of the form ’Circle2D[‘1‘,‘2‘]’ has been detected;
the arguments cannot be imaginary.";

Circle2D[{h_,k_},r_] :=
 (Circle2D @@ ChopImaginary2D[Circle$2D[{h,k},r]]) /;
(FreeQ[{h,k,r},_Pattern] && IsTinyImaginary2D[{h,k,r}]);

Circle2D[{h_,k_},r_] :=
 (Message[Circle2D::imaginary,{h,k},r];$Failed) /;
(FreeQ[{h,k,r},_Pattern] && IsComplex2D[{h,k,r},0]);

Circle2D[{h, k}, r] Detects a circle whose radius is non-positive and returns the $Failed
symbol.

Circle2D::invalid=
 "An invalid circle of the form ’Circle2D[‘1‘, ‘2‘]’ has been detected;
the radius must be positive.";

Circle2D[{h_,k_},r_] :=
 (Message[Circle2D::invalid,{h,k},r];$Failed) /;
(FreeQ[{h,k,r},_Pattern] && IsZeroOrNegative2D[r,0]);

IsValid2D[circle] Verifies that a circle is syntactically valid.

IsValid2D[Circle2D[{h_?IsScalar2D,k_?IsScalar2D},r_?IsScalar2D]] := True;

D2DCircle2D - Scalars 407

Scalars

Distance Point/Circle

Distance2D[point, circle] Computes the distance between a point and a circle.

Distance2D[Point2D[{x_,y_}],Circle2D[{h_,k_},r_]] :=
 Sqrt[(Distance2D[{x,y},{h,k}]-r)^2];

Radius

Radius2D[circle] Returns the radius of a circle.

Radius2D[Circle2D[{h_,k_},r_]] := r;

Transformations

Reflect

Reflect2D[circle, line] Reflects a circle in a line.

Reflect2D[Circle2D[{h_,k_},r_],L:Line2D[a_,b_,c_]] :=
 Circle2D[Reflect2D[{h,k},L],r];

Rotate

Rotate2D[circle, θ, coords] Rotates a circle by an angle θ about a position speci-
fied by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Circle2D[{h_,k_},r_],theta_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Circle2D[Rotate2D[{h,k},theta,{x0,y0}],r];

Scale

Scale2D[circle, s, coords] Scales a circle from a coordinate position. If the position is
omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Circle2D[{h_,k_},r_],s_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Circle2D[Scale2D[{h,k},s,{x0,y0}],s*r] /;
Not[IsZeroOrNegative2D[s]];

408 D2DCircle2D - Line Construction

Translate

Translate2D[circle, {u, v}] Translates a circle delta distance.

Translate2D[Circle2D[{h_,k_},r_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Circle2D[{h+u,k+v},r];

Point Construction

Center Point

Point2D[circle] Constructs the center point of the circle.

Point2D[Circle2D[{h_,k_},r_]] := Point2D[{h,k}];

Pole Point

Point2D[line, circle] Constructs a point that is the pole point of a line with respect to a
circle. If the line is tangent to the circle then the point is the tangency point.

Point2D[L1:Line2D[a1_,b1_,c1_],C2:Circle2D[{h2_,k2_},r2_]] :=
 Point2D[L1,Quadratic2D[C2]];

Line Construction

Polar Line

Line2D[point, circle] Constructs a line that is the polar line of a point with respect to a
circle. If the point is on the circle then the line is tangent to the circle.

Line2D[P1:Point2D[{x1_,y1_}],C2:Circle2D[{h2_,k2_},r2_]] :=
 Line2D[P1,Quadratic2D[C2]];

Radical Axis

Line2D[circle, circle] Constructs a line that is the radical axis of two circles.

Line2D::concentric=
 "The circles {‘1‘, ‘2‘} are concentric; no radical axis exists.";

Line2D[C1:Circle2D[{h1_,k1_},r1_],C2:Circle2D[{h2_,k2_},r2_]] :=
 If[IsConcentric2D[C1,C2],
 Message[Line2D::concentric,C1,C2];$Failed,
 Line2D[2*(h2-h1),2*(k2-k1),(h1^2-h2^2)+(k1^2-k2^2)+(r2^2-r1^2)]];

D2DCircle2D - Circle Construction 409

Circle Construction

Circle from Quadratic Equation

Circle2D[quad] Constructs a circle from a quadratic. The quadratic must be recognizable
as a circle.

Circle2D::noCircle=
 "The curve represented by ‘1‘ is not a circle.";

Circle2D[Q:Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Module[{s},
 If[IsZero2D[{a-c,b},And] && Not[IsZero2D[{a,c},Or]],
 s=(d^2+e^2-4*a*f)/a^2;
 If[IsZeroOrNegative2D[s],
 Message[Circle2D::noCircle,Q];$Failed,
 Circle2D[{-d/(2a),-e/(2a)},Sqrt[s]/2]],
 Message[Circle2D::noCircle,Q];$Failed]];

Circle from Center Point and Radius

Circle2D[point, r] Constructs a circle from a center point and radius.
Circle2D::radius=
 "The radius argument, ‘1‘, is invalid; the radius must be positive.";

Circle2D[Point2D[{h_,k_}],r_?IsScalar2D] :=
 If[IsZeroOrNegative2D[r],
 Message[Circle2D::radius,r];$Failed,
 Circle2D[{h,k},r]];

Circle from Center Point and Point on Circle

Circle2D[point, point] Constructs a circle from a center point and a point on the circle.
Circle2D::coincident=
 "The points {‘1‘, ‘2‘} are coincident; no valid circle exists.";

Circle2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}]] :=
 If[IsCoincident2D[P1,P2],
 Message[Circle2D::coincident,P1,P2];$Failed,
 Circle2D[{x1,y1},Sqrt[(x1-x2)^2+(y1-y2)^2]]];

Circle from Center and Tangent Line

Circle2D[point, line] Constructs a circle from a center point and a tangent line.
Circle2D::on=
 "‘1‘ is on ‘2‘; no valid circle exists.";

Circle2D[P1:Point2D[{x1_,y1_}],L2:Line2D[A2_,B2_,C2_]] :=
 If[IsOn2D[P1,L2],
 Message[Circle2D::on,P1,L2];$Failed,
 Circle2D[{x1,y1},Sqrt[(A2*x1+B2*y1+C2)^2/(A2^2+B2^2)]]];

410 D2DCircle2D - Epilogue

Circle Through Three Points

Circle2D[point, point, point] Constructs a circle through three points.

Circle2D::collinear=
 "The points {‘1‘, ‘2‘, ‘3‘} are collinear; no valid circle exists.";

Circle2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],
 P3:Point2D[{x3_,y3_}]] :=
 If[IsCollinear2D[P1,P2,P3],
 Message[Circle2D::collinear,P1,P2,P3];$Failed,
 Circle2D[Quadratic2D[P1,P2,P3]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DCircle2D‘" *)

D2DConic2D

The package D2DConic2D provides functions for constructing various points, lines and line
segments associated with conic curves.

Initialization
BeginPackage["D2DConic2D‘", {"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DExpressions2D‘", "D2DHyperbola2D‘", "D2DLine2D‘", "D2DParabola2D‘",
"D2DPoint2D‘", "D2DSegment2D‘", "D2DTransform2D‘"}];

D2DConic2D::usage=
 "D2DConic2D is a package for constructing geometry associated with conic
curves.";

Asymptotes2D::usage=
 "Asymptotes2D[hyperbola] constructs a list containing the two asymptote
lines of a hyperbola.";

Directrices2D::usage=
 "Directrices2D[conic] constructs a list containing the directrix line(s)
of a conic curve (one for a parabola, two for ellipses and hyperbolas).";

Eccentricity2D::usage=
 "Eccentricity2D[conic] computes the eccentricity of a conic curve
(parabola, ellipse or hyperbola).";

FocalChords2D::usage=
 "FocalChords2D[conic] constructs a list containing the focal chords
(line segments) of a conic curve (one for a parabola, two for ellipses and
hyperbolas).";

Foci2D::usage=
 "Foci2D[conic] constructs a list containing the focus point(s) of a
conic curve (one for a parabola, two for ellipses and hyperbolas).";

Vertices2D::usage=
 "Vertices2D[conic] contructs a list containing the vertex point(s) of a
conic curve (one for a parabola, two for ellipses and hyperbolas).";

Begin["‘Private‘"];

411

412 D2DConic2D - Point Construction

Scalars

Eccentricity

Eccentricity2D[ellipse] Computes the eccentricity of an ellipse.

Eccentricity2D[Ellipse2D[{h_,k_},a_,b_,theta_]] := Sqrt[a^2-b^2]/a;

Eccentricity2D[hyperbola] Computes the eccentricity of a hyperbola.

Eccentricity2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] := Sqrt[a^2+b^2]/a;

Eccentricity2D[parabola] Computes the eccentricity of a parabola (e = 1).

Eccentricity2D[Parabola2D[{h_,k_},f_,theta_]] := 1;

Point Construction

Focus Points

Foci2D[ellipse] Constructs a list containing the two focus points of an ellipse.

Foci2D[E1:Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e=Eccentricity2D[E1]},
 {Point2D[Rotate2D[{h+a*e,k},theta,{h,k}]],
 Point2D[Rotate2D[{h-a*e,k},theta,{h,k}]]}];

Foci2D[hyperbola] Constructs a list containing the two focus points of a hyperbola.

Foci2D[H1:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e=Eccentricity2D[H1]},
 {Point2D[Rotate2D[{h+a*e,k},theta,{h,k}]],
 Point2D[Rotate2D[{h-a*e,k},theta,{h,k}]]}];

Foci2D[parabola] Constructs a list containing the single focus point of a parabola.

Foci2D[Parabola2D[{h_,k_},f_,theta_]] :=
 {Point2D[Rotate2D[{h+f,k},theta,{h,k}]]};

Vertex Points

Vertices2D[ellipse] Constructs a list containing the two vertex points of an ellipse.

Vertices2D[Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 {Point2D[Rotate2D[{h+a,k},theta,{h,k}]],
 Point2D[Rotate2D[{h-a,k},theta,{h,k}]]};

D2DConic2D - Line Construction 413

Vertices2D[hyperbola] Constructs a list containing the two vertex points of a hyperbola.

Vertices2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 {Point2D[Rotate2D[{h+a,k},theta,{h,k}]],
 Point2D[Rotate2D[{h-a,k},theta,{h,k}]]};

Vertices2D[parabola] Constructs a list containing the single vertex point of a parabola.

Vertices2D[Parabola2D[{h_,k_},f_,theta_]] := {Point2D[{h,k}]};

Line Construction

Asymptote Lines

Asymptotes2D[hyperbola] Constructs a list containing the two asymptote lines of a hyper-
bola.

Asymptotes2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 {Rotate2D[Line2D[b, a,-a*k-b*h],theta,{h,k}],
 Rotate2D[Line2D[b,-a, a*k-b*h],theta,{h,k}]};

Directrix Lines

Directrices2D[ellipse] Constructs a list containing the two directrix lines of an ellipse.

Directrices2D::circular=
 "The ellipse ‘1‘ is circular; it has no (finite) directrix lines.";

Directrices2D[E1:Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e=Eccentricity2D[E1]},
 If[IsZero2D[e],
 Message[Directrices2D::circular,E1];{},
 {Rotate2D[Line2D[1,0,-(h+a/e)],theta,{h,k}],
 Rotate2D[Line2D[1,0,-(h-a/e)],theta,{h,k}]}]];

Directrices2D[hyperbola] Constructs a list containing the two directrix lines of a hyper-
bola.

Directrices2D[H1:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e=Eccentricity2D[H1]},
 {Rotate2D[Line2D[1,0,-(h+a/e)],theta,{h,k}],
 Rotate2D[Line2D[1,0,-(h-a/e)],theta,{h,k}]}];

Directrices2D[parabola] Constructs a list containing the single directrix line of a parabola.

Directrices2D[Parabola2D[{h_,k_},f_,theta_]] :=
 {Rotate2D[Line2D[1,0,-h+f],theta,{h,k}]};

414 D2DConic2D - Epilogue

Line Segment Construction

Focal Chords

FocalChords2D[ellipse] Constructs a list containing two line segments that are the focal
chords of an ellipse.

FocalChords2D[E1:Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e,l1,l2},
 e=Eccentricity2D[E1];
 l1=Segment2D[{h+a*e,k+b^2/a},{h+a*e,k-b^2/a}];
 l2=Segment2D[{h-a*e,k+b^2/a},{h-a*e,k-b^2/a}];
 Map[Rotate2D[#,theta,{h,k}]&,{l1,l2}]];

FocalChords2D[hyperbola] Constructs a list containing two line segments that are the
focal chords of a hyperbola.

FocalChords2D[H1:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Module[{e,l1,l2},
 e=Eccentricity2D[H1];
 l1=Segment2D[{h+a*e,k+b^2/a},{h+a*e,k-b^2/a}];
 l2=Segment2D[{h-a*e,k+b^2/a},{h-a*e,k-b^2/a}];
 Map[Rotate2D[#,theta,{h,k}]&,{l1,l2}]];

FocalChords2D[parabola] Constructs a list containing one line segment that is the single
focal chord of the parabola.

FocalChords2D[Parabola2D[{h_,k_},f_,theta_]] :=
 {Rotate2D[Segment2D[{h+f,k+2*f},{h+f,k-2*f}],theta,{h,k}]};

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DConic2D‘" *)

D2DConicArc2D

The package D2DConicArc2D implements the ConicArc2D object.

Initialization
BeginPackage["D2DConicArc2D‘",{"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DEquations2D‘", "D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DHyperbola2D‘", "D2DIntersect2D‘", "D2DLine2D‘", "D2DLoci2D‘",
"D2DMaster2D‘", "D2DNumbers2D‘", "D2DParabola2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DConicArc2D::usage=
 "D2DConicArc2D is a package providing the conic arc object.";

Apex2D::usage=
 "Apex2D is a keyword used in Point2D[cnarc,Apex2D] to construct the apex
control point of a conic arc.";

ConicArc2D::usage=
 "ConicArc2D[{x0,y0},{xA,yA},{x1,y1},p] is the standard form of conic arc
with start point (x0,y0), end point (x1,y1), apex point (xA,yA) and
projective discriminant ’p’.";

Rho2D::usage=
 "Rho2D[cnarc] returns the rho value of a conic arc; 0<rho<1/2 is an
ellipse; rho=1/2 is a parabola; 1/2<rho<1 is a hyperbola.";

Begin["‘Private‘"];

Description

Representation

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] Standard representation of a conic arc in
Descarta2D. The first and third arguments are the coordinates of the start and end points
of the conic arc, respectively. The second argument is the coordinates of the apex point of
the conic arc (the apex point is the intersection of the start/end point tangents). The fourth
argument is a scalar representing the ρ value of the conic arc (0 < ρ < 1/2, ellipse; ρ = 1/2,
parabola; 1/2 < ρ < 1, hyperbola).

415

416 D2DConicArc2D - Description

Equation

Quadratic2D[cnarc] Constructs a quadratic representing the equation of the curve asso-
ciated with a conic arc.

Quadratic2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_]] :=
 Module[{eqn,a,b,k,x,y},
 eqn=a*b==k*(1-a-b)^2 /.
 {k->(1-p)^2/(4*p^2),
 a->((y-yA)*(x1-xA)-(x-xA)*(y1-yA))/
 ((y0-yA)*(x1-xA)-(x0-xA)*(y1-yA)),
 b->((y-yA)*(x0-xA)-(x-xA)*(y0-yA))/
 ((y1-yA)*(x0-xA)-(x1-xA)*(y0-yA))};
 Quadratic2D[eqn,{x,y}]];

Evaluation

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ][t] Evaluates a conic arc at a parameter,
t, and returns a list of coordinates {x, y}. Parameter values in the range 0 ≤ t ≤ 1 cover the
complete span of the conic arc.

ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_][t_?IsScalar2D] :=
 Module[{b0,b1,b2},
 b0=(1-t)^2; b1=2*t*(1-t); b2=t^2;
 (b0*(1-p)*p0+b1*p*pA+b2*(1-p)*p1)/(b0*(1-p)+b1*p+b2*(1-p))];

Graphics

Provides graphics primitives for a conic arc by extending the Mathematica Display command.
Executed when the package is loaded.

SetDisplay2D[
 ConicArc2D[{x0_,y0_},{xA_,yA_},
 {x1_,y1_},p_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 MakePrimitives2D[
 ConicArc2D[{x0,y0},{xA,yA},{x1,y1},p],{t1,t2}]];

SetDisplay2D[
 ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 MakePrimitives2D[
 ConicArc2D[{x0,y0},{xA,yA},{x1,y1},p],{0,1}]];

Validation

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] Detects a conic arc with imaginary argu-
ments and returns the $Failed symbol. If the imaginary parts are insignificant, they are
removed.

ConicArc2D::imaginary=
 "An invalid conic arc of the form ’ConicArc2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has
been detected; the arguments cannot be imaginary.";

D2DConicArc2D - Scalars 417

ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_] :=
 (ConicArc2D @@ ChopImaginary2D[ConicArc$2D[p0,pA,p1,p]]) /;
(FreeQ[{p0,pA,p1,p},_Pattern] && IsTinyImaginary2D[{p0,pA,p1,p}]);

ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_] :=
 (Message[ConicArc2D::imaginary,p0,pA,p1,p];$Failed) /;
(FreeQ[{p0,pA,p1,p},_Pattern] && IsComplex2D[{p0,pA,p1,p},0]);

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] Detects a conic arc with collinear control
points and returns the $Failed symbol.

ConicArc2D::points=
 "An invalid conic arc of the form ’ConicArc2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has
been detected; the control points cannot be collinear.";

ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_] :=
 (Message[ConicArc2D::points,p0,pA,p1,p];$Failed) /;
(FreeQ[{p0,pA,p1,p},_Pattern] &&
 IsCollinear2D[Point2D[p0],Point2D[pA],Point2D[p1]]);

ConicArc2D[{x0, y0}, {xA, yA}, {x1, y1}, ρ] Detects a conic arc with an invalid ρ value
and returns the $Failed symbol.

ConicArc2D::rho=
 "An invalid conic arc of the form ’ConicArc2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has
been detected; the value of rho must be in the range 0<rho<1.";

ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_] :=
 (Message[ConicArc2D::rho,p0,pA,p1,p];$Failed) /;
(FreeQ[{p0,pA,p1,p},_Pattern] &&
 (IsZeroOrNegative2D[p,0] || IsZeroOrNegative2D[1-p,0]));

IsValid2D[cnarc] Verifies that a conic arc is syntactically valid.

IsValid2D[
 ConicArc2D[{x0_?IsScalar2D,y0_?IsScalar2D},
 {xA_?IsScalar2D,yA_?IsScalar2D},
 {x1_?IsScalar2D,y1_?IsScalar2D},p_?IsScalar2D]] := True;

Scalars

Rho

Rho2D[cnarc] Returns the ρ value of a conic arc.

Rho2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_]] := p;

418 D2DConicArc2D - Transformations

Transformations

Reflect

Reflect2D[cnarc, line] Reflects a conic arc in a line.

Reflect2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 L:Line2D[A2_,B2_,C2_]] :=
 ConicArc2D[Reflect2D[{x0,y0},L],
 Reflect2D[{xA,yA},L],
 Reflect2D[{x1,y1},L],p];

Rotate

Rotate2D[cnarc, θ, coords] Rotates a conic arc by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 ConicArc2D[Rotate2D[{x0,y0},theta,{h,k}],
 Rotate2D[{xA,yA},theta,{h,k}],
 Rotate2D[{x1,y1},theta,{h,k}],p];

Scale

Scale2D[cnarc, s, coords] Scales a conic arc by a scale factor, s, from a position given by
coordinates. If the position is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 ConicArc2D[Scale2D[{x0,y0},s,{h,k}],
 Scale2D[{xA,yA},s,{h,k}],
 Scale2D[{x1,y1},s,{h,k}],p] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[cnarc,{u, v}] Translates a conic arc delta distance.

Translate2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 ConicArc2D[{x0+u,y0+v},{xA+u,yA+v},{x1+u,y1+v},p];

D2DConicArc2D - Construction 419

Construction

Apex Point

Point2D[cnarc, Apex2D] Constructs the apex control point of a conic arc.

Point2D[ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_],
 Apex2D] := Point2D[{xA,yA}];

Center Point

Point2D[cnarc] Constructs the center point of the central conic underlying a conic arc.

Point2D::notCentral1=
 "The conic underlying ‘1‘ is not a central conic; it has no center
point.";

Point2D[C1:ConicArc2D[p0:{x0_,y0_},pA:{xA_,yA_},p1:{x1_,y1_},p_]] :=
 If[IsZero2D[p-1/2],
 Message[Point2D::notCentral1,C1];$Failed,
 Point2D[(-p^2*pA+(p-1)^2*(p0+p1)/2)/(1-2*p)]];

Conic from Conic Arc

Loci2D[cnarc] Constructs a list containing the conic curve associated with a conic arc.

Loci2D[C1:ConicArc2D[{x0_,y0_},{xA_,yA_},{x1_,y1_},p_]] :=
 Loci2D[Quadratic2D[C1]];

Conic Arc from Conic

ConicArc2D[line, curve] Constructs a conic arc from a portion of a conic curve defined
by a chordal line.

ConicArc2D::noChord=
 "No chord exists between ‘1‘ and ‘2‘; a conic arc cannot be
constructed.";

ConicArc2D::center=
 "The chord defined by ‘1‘ passes through the center of ‘2‘; a conic arc
cannot be constructed.";

The private function FindRho$2D[curve, point, {point, point}] computes ρ for a conic arc
from the apex point and start/end points.

FindRho$2D[Parabola2D[{h_,k_},f_,theta_],
 Point2D[{xA_,yA_}],
 {Point2D[{x0_,y0_}],Point2D[{x1_,y1_}]}] := 1/2;

420 D2DConicArc2D - Epilogue

FindRho$2D[Circle2D[{h_,k_},r_] |
 Ellipse2D[{h_,k_},a_,b_,theta_] |
 Hyperbola2D[{h_,k_},a_,b_,theta_],
 Point2D[{xA_,yA_}],
 {Point2D[{x0_,y0_}],Point2D[{x1_,y1_}]}] :=
 Module[{xM,yM},
 {xM,yM}={x0+x1,y0+y1}/2;
 If[IsZero2D[h-xM],
 1/(1+Sqrt[k-yA]/Sqrt[k-yM]),
 1/(1+Sqrt[h-xA]/Sqrt[h-xM])] //Simplify];

For central conics (circles, ellipses and hyperbolas) there is a restriction that the center point
cannot be on the line defining the chord of the conic arc.

ConicArc2D[L1:Line2D[a1_,b1_,c1_],
 C2_ /; Is2D[C2,{Circle2D,Ellipse2D,Hyperbola2D}]] :=
If[IsOn2D[Point2D[C2],L1],
 Message[ConicArc2D::center,L1,C2];$Failed,
 CnArc$2D[L1,C2,Points2D[L1,C2]]];

Non-central conics (parabolas) have no restrictions on the position of the line defining the
chord of the conic arc.

ConicArc2D[L1:Line2D[a1_,b1_,c1_],C2:Parabola2D[{h_,k_},f_,theta_]] :=
 CnArc$2D[L1,C2,Points2D[L1,C2]];

Both end points of the chord of the conic arc must be on the same branch of a hyperbola.

CnArc$2D[L1:Line2D[a1_,b1_,c1_],
 H2:Hyperbola2D[{h_,k_},a_,b_,theta_],
 {Point2D[{x0_,y0_}],Point2D[{x1_,y1_}]}] :=
 (Message[ConicArc2D::noChord,L1,H2];$Failed) /;
IsNegative2D[Polynomial2D[Quadratic2D[H2],{x0+x1,y0+y1}/2]];

The private function CnArc$2D[line, curve, {point, point}] completes the computation of the
conic arc.

CnArc$2D[L1:Line2D[a1_,b1_,c1_],C2_,
 P:{Point2D[{x0_,y0_}],Point2D[{x1_,y1_}]}] :=
Module[{pt},
 pt=Point2D[L1,C2];
 ConicArc2D[{x0,y0},Coordinates2D[pt],{x1,y1},FindRho$2D[C2,pt,P]]];

No conic arc exists if the intersection of the line and the curve does not result in two points.

CnArc$2D[L1:Line2D[a1_,b1_,c1_],C2_,pts_] :=
 (Message[ConicArc2D::noChord,L1,C2];$Failed)

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DConicArc2D‘" *)

D2DEllipse2D

The package D2DEllipse2D implements the Ellipse2D object.

Initialization

BeginPackage["D2DEllipse2D‘",{"D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSegment2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DEllipse2D::usage=
 "D2DEllipse2D is a package that implements the Ellipse2D object.";

Ellipse2D::usage=
 "Ellipse2D[{h,k},a,b,theta] is the standard form of an ellipse centered
at (h,k), semi-major axis length ’a’, semi-minor axis length ’b’ and
rotation angle ’theta’.";

SemiMajorAxis2D::usage=
 "SemiMajorAxis2D[ellipse] returns the length of the semi-major axis of
an ellipse.";

SemiMinorAxis2D::usage=
 "SemiMinorAxis2D[ellipse] returns the length of the semi-minor axis of
an ellipse.";

Begin["‘Private‘"];

Description

Representation

Ellipse2D[{h, k}, a, b, θ] Standard representation of an ellipse in Descarta2D. The first
argument is a list of coordinates representing the center of the ellipse. The second and third
arguments are (positive) scalars representing the lengths of the semi-major and semi-minor
axes of the ellipse. The fourth argument is the counter-clockwise rotation angle (in radians)
of the ellipse about the center point.

421

422 D2DEllipse2D - Description

Equation

Quadratic2D[ellipse] Constructs a quadratic representing the equation of an ellipse.

Quadratic2D[Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Rotate2D[
 Quadratic2D[b^2,0,a^2,-2*b^2*h,-2*a^2*k,-a^2*b^2+b^2*h^2+a^2*k^2],
 theta,
 {h,k}];

Evaluation

Ellipse2D[{h, k}, a, b, θ][θ1] Evaluates a position on an ellipse at parameter θ1 and
returns a list of coordinates {x, y}. Parameters in the range 0 ≤ θ1 < 2π cover the entire
ellipse.

Ellipse2D[{h_,k_},a_,b_,theta_][t_?IsScalar2D] :=
 Rotate2D[{h+a*Cos[t],k+b*Sin[t]},theta,{h,k}];

Graphics

Provides the graphics primitives for an ellipse by extending the Mathematica Display com-
mand. Executed when the package is loaded.

SetDisplay2D[
 Ellipse2D[{h_,k_},a_,b_,t_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 MakePrimitives2D[Ellipse2D[{h,k},a,b,t],
 PrimaryAngleRange2D[{t1,t2}]]];

SetDisplay2D[
 Ellipse2D[{h_,k_},a_,b_,t_],
 MakePrimitives2D[Ellipse2D[{h,k},a,b,t],{0,2Pi}]];

Validation

Ellipse2D[{h, k}, a, b, θ] Detects an ellipse with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Ellipse2D::imaginary=
 "An invalid ellipse of the form ’Ellipse2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has been
detected; the arguments of an ellipse cannot involve imaginary numbers.";

Ellipse2D[{h_,k_},a_,b_,theta_] :=
 (Ellipse2D @@ ChopImaginary2D[Ellipse$2D[{h,k},a,b,theta]]) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsTinyImaginary2D[{h,k,a,b,theta}]);

Ellipse2D[{h_,k_},a_,b_,theta_] :=
 (Message[Ellipse2D::imaginary,{h,k},a,b,theta];$Failed) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsComplex2D[{h,k,a,b,theta},0]);

D2DEllipse2D - Scalars 423

Ellipse2D[{h, k}, a, b, θ] Detects an ellipse with invalid arguments and returns the
$Failed symbol.

Ellipse2D::invalid=
 "An invalid ellipse of the form ’Ellipse2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has been
detected; the length of both the semi-major and semi-minor axes must be
positive.";

Ellipse2D[{h_,k_},a_,b_,theta_] :=
 (Message[Ellipse2D::invalid,{h,k},a,b,theta];$Failed) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsZeroOrNegative2D[{a,b},0]);

Ellipse2D[{h, k}, a, b, θ] Detects a y-axis ellipse and rotates it π/2 radians.

Ellipse2D[{h_,k_},a_,b_,theta_] :=
 Ellipse2D[{h,k},b,a,theta+Pi/2] /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsNegative2D[a-b,0]);

Ellipse2D[{h, k}, a, b, θ] Normalizes the rotation angle on all ellipses to the range
0 ≤ θ < π.

Ellipse2D[{h_,k_},a_,b_,theta_] :=
 Ellipse2D[{h,k},a,b,PrimaryAngle2D[theta,Pi]] /;
(FreeQ[{h,k,a,b,theta},_Pattern] && (theta=!=PrimaryAngle2D[theta,Pi]));

IsValid2D[ellipse] Verifies that an ellipse is syntactically valid.

IsValid2D[Ellipse2D[{h_?IsScalar2D,k_?IsScalar2D},
 a_?IsScalar2D,b_?IsScalar2D,
 theta_?IsScalar2D]] := True;

Scalars

Angle of Rotation

Angle2D[ellipse] Returns the rotation angle of an ellipse.

Angle2D[Ellipse2D[{h_,k_},a_,b_,theta_]] := theta;

Semi-major Axis Length

SemiMajorAxis2D[ellipse] Returns the length of the semi-major axis of an ellipse.

SemiMajorAxis2D[Ellipse2D[{h_,k_},a_,b_,theta_]] := a;

Semi-minor Axis Length

SemiMinorAxis2D[ellipse] Returns the length of the semi-minor axis of an ellipse.

SemiMinorAxis2D[Ellipse2D[{h_,k_},a_,b_,theta_]] := b;

424 D2DEllipse2D - Point Construction

Transformations

Reflect

Reflect2D[ellipse, line] Reflects an ellipse in a line.

Reflect2D[Ellipse2D[{h_,k_},a_,b_,theta_],L:Line2D[p_,q_,r_]] :=
 Ellipse2D[Reflect2D[{h,k},L],a,b,ReflectAngle2D[theta,L]];

Rotate

Rotate2D[ellipse, θ, coords] Rotates an ellipse by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Ellipse2D[{h_,k_},a_,b_,theta_],alpha_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Ellipse2D[Rotate2D[{h,k},alpha,{x0,y0}],a,b,alpha+theta];

Scale

Scale2D[ellipse, s, coords] Scales an ellipse by a scale factor, s, from a position given by
coordinates. If the position is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Ellipse2D[{h_,k_},a_,b_,theta_],s_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Ellipse2D[Scale2D[{h,k},s,{x0,y0}],s*a,s*b,theta] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[ellipse, {u, v}] Translates an ellipse delta distance.

Translate2D[Ellipse2D[{h_,k_},a_,b_,theta_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Ellipse2D[{h+u,k+v},a,b,theta];

Point Construction

Center Point

Point2D[ellipse] Constructs the center point of an ellipse.

Point2D[Ellipse2D[{h_,k_},a_,b_,theta_]] := Point2D[{h,k}];

D2DEllipse2D - Line Construction 425

Pole Point

Point2D[line, ellipse] Constructs the pole point of a line with respect to an ellipse. If the
line is tangent to the ellipse then the point is the point of tangency.

Point2D[L1:Line2D[a1_,b1_,c1_],E2:Ellipse2D[{h2_,k2_},a2_,b2_,theta2_]] :=
 Point2D[L1,Quadratic2D[E2]];

Line Construction

Axis Line

Line2D[ellipse] Constructs a line containing the major axis of an ellipse.

Line2D[Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Rotate2D[Line2D[0,1,-k],theta,{h,k}];

Polar Line

Line2D[point, ellipse] Constructs the polar (line) of a pole (point) with respect to an
ellipse. If the point is on the ellipse then the line is tangent to the ellipse at the point.

Line2D[P1:Point2D[{x1_,y1_}],E2:Ellipse2D[{h2_,k2_},a2_,b2_,theta2_]] :=
 Line2D[P1,Quadratic2D[E2]];

Ellipse Construction

Ellipse from Vertices and Eccentricity

Ellipse2D[{point, point}, e] Constructs an ellipse from the vertices and eccentricity.

Ellipse2D::invdef=
 "The defining geometry or eccentricity is invalid; the eccentricity of
an ellipse must be in the range 0<e<1, the foci and vertices cannot be
coincident, and the focus cannot lie on the directrix.";

Ellipse2D[{P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}]},e_?IsScalar2D] :=
 Module[{a,b,h,k},
 If[IsZeroOrNegative2D[{e,1-e},Or] || IsCoincident2D[P1,P2],
 Message[Ellipse2D::invdef];$Failed,
 a=Distance2D[P1,P2]/2;
 b=a*Sqrt[1-e^2];
 {h,k}={(x1+x2)/2,(y1+y2)/2};
 Ellipse2D[{h,k},a,b,ArcTan[x2-x1,y2-y1]]]];

426 D2DEllipse2D - Epilogue

Ellipse from Foci and Eccentricity

Ellipse2D[point, point, e] Constructs an ellipse from the foci and eccentricity.

Ellipse2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],e_?IsScalar2D] :=
 Module[{a,b,h,k},
 If[IsZeroOrNegative2D[{e,1-e},Or] || IsCoincident2D[P1,P2],
 Message[Ellipse2D::invdef];$Failed,
 a=Distance2D[P1,P2]/(2*e);
 b=a*Sqrt[1-e^2];
 {h,k}={(x1+x2)/2,(y1+y2)/2};
 Ellipse2D[{h,k},a,b,ArcTan[x2-x1,y2-y1]]]];

Ellipse from Focus, Directrix and Eccentricity

Ellipse2D[point, line, e] Constructs an ellipse from a focus point, directrix line and
eccentricity.

Ellipse2D[P1:Point2D[{x1_,y1_}],L2:Line2D[p_,q_,r_],e_?IsScalar2D] :=
 Module[{d,s,a,b,h,k},
 If[IsZeroOrNegative2D[{e,1-e},Or] || IsOn2D[P1,L2],
 Message[Ellipse2D::invdef];$Failed,
 d=Distance2D[P1,L2];
 s=(p*x1+q*y1+r)/(p^2+q^2);
 a=d*e/(1-e^2);
 b=a*Sqrt[1-e^2];
 {h,k}={x1,y1}+{p,q}*(a*s*e)/d;
 Ellipse2D[{h,k},a,b,ArcTan[p,q]]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DEllipse2D‘" *)

D2DEquations2D

The package D2DEquations2D provides functions for converting Mathematica equations and
polynomials into Descarta2D lines and quadratics, and vice versa.

Initialization
BeginPackage["D2DEquations2D‘", {"D2DExpressions2D‘", "D2DLine2D‘",
"D2DQuadratic2D‘"}];

D2DEquations2D::usage=
 "D2DEquations2D is a package that provides functions for converting
Mathematica polynomials and equations into lines and quadratics, and vice
versa.";

Equation2D::usage=
 "Equation2D[line, {x,y}] forms a linear equation in two unknowns, a*x +
b*y + c == 0; Equation2D[quad, {x,y}] forms a quadratic equation in two
unknowns, a*x^2 + b*x*y + c*y^2 + d*x + e*y + f == 0.";

Polynomial2D::usage=
 "Polynomial2D[line, {x,y}] forms a linear polynomial in two unknowns,
a*x + b*y + c; Polynomial2D[quad, {x,y}] forms a quadratic polynomial in
two unknowns, a*x^2 + b*x*y + c*y^2 + d*x + e*y + f.";

SimplifyCoefficients2D::usage=
 "SimplifyCoefficients2D[coefList] returns a list of coefficients with
common factors removed.";

Begin["‘Private‘"];

Coefficients

Simplify Coefficients

SimplifyCoefficients2D[coefList] Returns a list of coefficients with common factors
removed.

427

428 D2DEquations2D - Epilogue

SimplifyCoefficients2D[coef:{c1_?IsScalar2D,c2__?IsScalar2D}] :=
 Module[{gcd,coef1},
 gcd=PolynomialGCD[Sequence @@ Rationalize[coef]];
 If[IsZero2D[gcd], gcd=1];
 coef1=Map[Simplify[#/gcd]&,coef];
 Map[If[IsZero2D[Round[#]-#],Round[#],#]&,coef1]];

Equations

Linear

Equation2D[line, {x, y}] Forms ax + by + c == 0 from a line.

Equation2D[Line2D[a_,b_,c_],{x_?IsScalar2D,y_?IsScalar2D}] := a*x+b*y+c==0;

Quadratic

Equation2D[quad, {x, y}] Forms ax2 + bxy + cy2 + dx + ey + f == 0 from a quadratic.

Equation2D[Quadratic2D[a_,b_,c_,d_,e_,f_],{x_?IsScalar2D,y_?IsScalar2D}] :=
 a*x^2+b*x*y+c*y^2+d*x+e*y+f==0;

Polynomials

Linear

Polynomial2D[line,{x, y}] Forms ax + by + c from a line.

Polynomial2D[Line2D[a_,b_,c_],{x_?IsScalar2D,y_?IsScalar2D}] := a*x+b*y+c;

Quadratic

Polynomial2D[quad,{x, y}] Forms ax2 + bxy + cy2 + dx + ey + f from a quadratic.

Polynomial2D[Quadratic2D[a_,b_,c_,d_,e_,f_],
 {x_?IsScalar2D,y_?IsScalar2D}] :=
 a*x^2+b*x*y+c*y^2+d*x+e*y+f;

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DEquations2D‘" *)

D2DExpressions2D

The package D2DExpressions2D provides functions for querying Mathematica expressions.

Initialization

BeginPackage["D2DExpressions2D‘", {"D2DMaster2D‘", "D2DNumbers2D‘"}];

D2DExpressions2D::usage=
 "D2DExpressions2D is a package for querying Mathematica expressions.";

IsApproximate2D::usage=
 "IsApproximate2D[expr] returns ’True’ if the expression contains
approximate real numbers, or if the evaluation will eventually be
approximated using the ’N’ function.";

IsComplex2D::usage=
 "IsComplex2D[expr,(tol)] returns ’True’ if the expression evaluates to a
complex number; IsComplex2D[List,(tol)] and IsComplex2D[List,Or,(tol)]
return ’True’ if any expressions in the list evaluate to complex numbers;
IsComplex2D[List,And,(tol)] returns ’True’ if all the expressions in the
list evaluate to complex numbers; the default tolerance, if omitted, is
10^(-10).";

IsNegative2D::usage=
 "IsNegative2D[expr,(tol)] returns ’True’ if the expression is negative;
otherwise, returns ’False’; IsNegative2D[List,(tol)] and
IsNegative2D[List,Or,(tol)] return ’True’ if any expressions in the list
are negative; IsNegative2D[List,And,(tol)] returns ’True’ if all the
expressions in the list are negative; the default tolerance, if omitted, is
10^(-10).";

IsNumeric2D::usage=
 "IsNumeric2D[expr,(tol)] returns ’True’ if the expression consists of
atoms that can be evaluated to real numbers;
IsNumeric2D[expr,funcName,(tol)] provides the same function with a message;
the default tolerance, if omitted, is 10^(-10).";

IsReal2D::usage=
 "IsReal2D[expr,(tol)] returns ’True’ if the expression is real-valued;
otherwise, returns ’False’; the default tolerance, if omitted, is
10^(-10).";

429

430 D2DExpressions2D - Utilities

IsScalar2D::usage=
 "IsScalar2D[expr] returns ’True’ if the expression appears to be a
scalar (not a List, object, or complex number); otherwise, returns
’False’.";

IsScalarPair2D::usage=
 "IsScalarPair2D[{expr1,expr2}] returns ’True’ if both expressions in a
list appear to be a scalars (not a Lists, objects, or complex numbers);
otherwise, returns ’False’.";

IsTinyImaginary2D::usage=
 "IsTinyImaginary2D[expr,(tol)] returns ’True’ if any complex numbers in
the expression have tiny imaginary parts; the default tolerance, if
omitted, is 10^(-10).";

IsZero2D::usage=
 "IsZero2D[expr,(tol)] returns ’True’ if the expression is zero;
otherwise, returns ’False’; IsZero2D[List,(tol)] and
IsZero2D[List,Or,(tol)] return ’True’ if any expressions in the list are
zero; IsZero2D[List,And,(tol)] returns ’True’ if all the expressions in the
list are zero; the default tolerance, if omitted, is 10^(-10).";

IsZeroOrNegative2D::usage=
 "IsZeroOrNegative2D[expr,(tol)] returns ’True’ if the expression is zero
or negative; otherwise, returns ’False’; IsZeroOrNegative2D[List,(tol)] and
IsZeroOrNegative2D[List,Or,(tol)] return ’True’ if any expressions in the
list are zero or negative; IsZeroOrNegative2D[List,And,(tol)] returns
’True’ if all the expressions in the list are zero or negative; the default
tolerance, if omitted, is 10^(-10).";

Begin["‘Private‘"];

Utilities

Chop

The built-in Mathematica function Chop issues an error message if the tolerance is zero. These
modifications to the Chop function allow a zero tolerance to be specified. Executed when the
package is loaded.

protected=Unprotect[Chop];
Chop[expr_,0] := expr;
Chop[expr_,0.] := expr;
Protect[Evaluate[protected]];

Random Evaluation

The private function RandomEvaluation$2D substitutes random numbers for the non-numeric
symbols in the expression and applies the N function to the result. This is useful for determining
whether a symbolic expression represents some specific numerical value (such as zero). There is
a small probability that an erroneous conclusion may be reached if an unfortunate combination
of random numbers arises.

D2DExpressions2D - Number Queries 431

RandomEvaluation$2D[expr_] :=
 Module[{atoms,symbols,rules},
 atoms=Level[N[expr],{-1}];
 symbols=Union[Select[atoms,(Head[#]===Symbol)&]];
 rules=Map[Rule[#,Random[Real,{0.1,0.9}]]&,symbols];
 N[expr /. rules]];

Tolerance

The private function Tolerance$2D[tol] returns tol if it is a valid tolerance value; otherwise,
issues a warning message and returns the default tolerance value, 10−10. The special cases are
provided to improve the performance of heavily used tolerance values.

D2DExpressions2D::badTol=
 "The tolerance ‘1‘ is not a valid tolerance specification; the default
tolerance, 10^(-10), will be used.";

Tolerance$2D[10^(-10)] := 10^(-10);

Tolerance$2D[0] := 0;

Tolerance$2D[tol_] :=
 If[TrueQ[N[tol]>=0],
 tol,
 Message[D2DExpressions2D::badTol,tol];10^(-10)];

Number Queries

Approximate Query

IsApproximate2D[expr] Returns True if any of the atoms in an expression are approximate
real numbers or if the N function will eventually be applied to the expression; otherwise, returns
False.

IsApproximate2D[expr_] :=
 (Not[FreeQ[expr,_Real]] || Stack[N[___]]=!={});

Complex Query

IsComplex2D[expr, (tol)] Returns True if an expression evaluates numerically to a complex
number; otherwise, returns False. The heavily used cases are provided to improve perfor-
mance. The default tolerance, if omitted, is 10−10.

IsComplex2D[n_Real,tol_:(10^(-10))] := False;

IsComplex2D[n_Integer,tol_:(10^(-10))] := False;

IsComplex2D[n_Rational,tol_:(10^(-10))] := False;

432 D2DExpressions2D - Number Queries

IsComplex2D[sym_Symbol,tol_:(10^(-10))] := False;

IsComplex2D[n_Complex,tol_:(10^(-10))] := Abs[Im[n]]>Tolerance$2D[tol];

IsComplex2D[expr_,tol_:(10^(-10))] :=
 Module[{n,tol1},
 tol1=Tolerance$2D[tol];
 n=Chop[N[expr],tol1];
 Head[n]===Complex] /;
(Head[expr] =!= List);

Complex Query (List)

IsComplex2D[exprList,Or | And, (tol)] With the default option, Or, returns True if any
expression in the list evaluates to a complex number; with the And option, returns True if
all the expressions in the list evaluate to complex numbers; otherwise, returns False. The
default tolerance, if omitted, is 10−10.

IsComplex2D[expr_List,bool_:Or,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 bool @@ Map[IsComplex2D[#,tol1]&,expr]] /;
(bool==And || bool==Or);

Numeric Query

IsNumeric2D[expr, (tol)] Returns True if all the atoms in an expression can be evaluated
to real numbers; otherwise, returns False. The default tolerance, if omitted, is 10−10.

IsNumeric2D[expr_,tol_:(10^(-10))] :=
 Not[MemberQ[Chop[expr//N,Tolerance$2D[tol]],
 (_Symbol | _Complex | _String),{-1}]] /;
(Head[tol] =!= Symbol);

Numeric Query (with Message)

IsNumeric2D[expr, funcName] Returns True if all the atoms in an expression can be
evaluated to real numbers; otherwise, returns False. Outputs a message with the function
name if the result is False.

IsNumeric2D::notNumeric=
 "The ‘1‘ function requires numerical arguments; symbolic arguments are
not allowed.";

IsNumeric2D[expr_,funcName_Symbol,tol_:(10^(-10))] :=
 If[IsNumeric2D[expr,Tolerance$2D[tol]],
 True,
 Message[IsNumeric2D::notNumeric,funcName];False];

D2DExpressions2D - Number Queries 433

Real Query

IsReal2D[expr, (tol)] Returns True if the expression can be evaluated to a real number;
otherwise, returns False. A complex number with an insignificant imaginary component will
return True. The default tolerance, if omitted, is 10−10.

IsReal2D[expr_Real,___] := True;

IsReal2D[expr_Integer,___] := True;

IsReal2D[expr_Symbol,___] := False;

IsReal2D[expr_Rational,___] := True;

IsReal2D[expr_Complex,tol_:(10^(-10))] :=
 Chop[Im[expr]//N,Tolerance$2D[tol]]===0;

IsReal2D[expr_,tol_:(10^(-10))] :=
 Module[{n},
 n=Chop[N[expr],Tolerance$2D[tol]];
 (NumberQ[n] && (Im[n]==0))];

Scalar Query

IsScalar2D[n] Returns True if an expression appears to be a scalar quantity—that is,
it cannot be recognized as Null, a list, a complex number or a Descarta2D object; otherwise,
returns False. The special cases for Real, Integer and Symbol are provided to improve the
performance of heavily used queries.

IsScalar2D[_Real] := True;

IsScalar2D[_Integer] := True;

IsScalar2D[_Symbol] := True;

IsScalar2D[_List] := False;

IsScalar2D[_?IsComplex2D] := False;

IsScalar2D[Null] := False;

IsScalar2D[expr_] := False /;
 MemberQ[ObjectNames2D[],ToString[Head[expr]]];

IsScalar2D[expr_] := False /;
 Not[FreeQ[expr,_Pattern]];

IsScalar2D[expr_] := True;

434 D2DExpressions2D - Sign Queries

Scalar Pair Query

IsScalarPair2D[{n1, n2}] Returns True if a list of two expressions appears to be a scalar
pair—that is, neither expression can be recognized as Null, a list, a complex number or a
valid Descarta2D object; otherwise, returns False.

IsScalarPair2D[{n1_,n2_}] := IsScalar2D[n1] && IsScalar2D[n2];

IsScalarPair2D[___] := False;

Tiny Imaginary Query

IsTinyImaginary2D[expr, (tol)] Returns True if any atoms in an expression involve
complex numbers with tiny imaginary parts; otherwise, returns False. The default tolerance,
if omitted, is 10−10.

IsTinyImaginary2D[expr_,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 Or @@ Map[(Head[#]===Complex && Chop[Im[#],tol1]===0)&,
 Level[expr,{-1}]]];

Sign Queries

Negative Query

IsNegative2D[expr, (tol)] Returns True if a number is numerically negative; otherwise
returns False. The default tolerance, if omitted, is 10−10.

IsNegative2D[expr_,tol_:(10^(-10))] :=
 Module[{n},
 n=Chop[N[expr],Tolerance$2D[tol]];
 If[MemberQ[{Real,Integer},Head[n]], n<0, False]] /;
(Head[expr] =!= List);

Negative Query (List)

IsNegative2D[exprList,Or | And, (tol)] With the default option, Or, returns True if
any expression in the list is numerically negative; with the And option, returns True if all
the expressions in the list are numerically negative; otherwise, returns False. The default
tolerance, if omitted, is 10−10.

IsNegative2D[expr_List,bool_:Or,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 bool @@ Map[IsNegative2D[#,tol1]&,expr]] /;
(bool==And || bool==Or);

D2DExpressions2D - Sign Queries 435

Zero Query

IsZero2D[expr, (tol)] Returns True if an expression is numerically zero; otherwise, returns
False. The heavily used cases are provided as special cases to improve performance. The
default tolerance, if omitted or invalid, is 10−10.

IsZero2D[n_Real,tol_:(10^(-10))] := (Abs[n]<=Tolerance$2D[tol]);

IsZero2D[n_Integer,tol_:(10^(-10))] := (Abs[n]<=Tolerance$2D[tol]);

IsZero2D[expr_Symbol,tol_:(10^(-10))] := False;

IsZero2D[n_Complex,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 (Abs[Re[n]]<=tol1 && Abs[Im[n]]<=tol1)];

IsZero2D[h_[___],tol_:(10^(-10))] := False /;
MemberQ[ObjectNames2D[],ToString[h]];

IsZero2D[expr_,tol_:(10^(-10))] :=
 Module[{n,tol1},
 tol1=Tolerance$2D[tol];
 n=Chop[N[expr],tol1];
 If[MemberQ[{Real,Integer,Complex},Head[n]],
 IsZero2D[n,tol1],
 Chop[RandomEvaluation$2D[n],tol1]===0]] /;
(Head[expr] =!= List);

Zero Query (List)

IsZero2D[exprList, Or | And, (tol)] With the default option, Or, returns True if any ex-
pression in the list is numerically zero; with the And option, returns True if all the expressions
in the list are numerically zero; otherwise, returns False. The default tolerance, if omitted,
is 10−10.

IsZero2D[expr_List,bool_:Or,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 bool @@ Map[IsZero2D[#,tol1]&,expr]] /;
(bool==And || bool==Or);

Zero or Negative Query

IsZeroOrNegative2D[expr, (tol)] Returns True if the expression is numerically zero or
negative; otherwise, returns False. The default tolerance, if omitted, is 10−10.

IsZeroOrNegative2D[expr_,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 (IsZero2D[expr,tol1] || IsNegative2D[expr,tol1])] /;
(Head[expr] =!= List);

436 D2DExpressions2D - Epilogue

Zero or Negative Query (List)

IsZeroOrNegative2D[exprList,Or | And, (tol)] With the default option, Or, returns True
if any expression in the list is numerically zero or negative; with the And option, returns True
if all the expressions in the list are numerically zero or negative; otherwise, returns False.
The default tolerance, if omitted, is 10−10.

IsZeroOrNegative2D[expr_List,bool_:Or,tol_:(10^(-10))] :=
 Module[{tol1},
 tol1=Tolerance$2D[tol];
 bool @@ Map[IsZeroOrNegative2D[#,tol1]&,expr]] /;
(bool==And || bool==Or);

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DExpressions2D‘" *)

D2DGeometry2D

The package D2DGeometry2D provides geometric query functions.

Initialization
BeginPackage["D2DGeometry2D‘",{"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DPoint2D‘", "D2DQuadratic2D‘"}];

D2DGeometry2D::usage=
 "D2DGeometry2D is a package providing various geometric queries.";

IsCoincident2D::usage=
 "IsCoincident2D[obj1,obj2] returns ’True’ if the two objects are
coincident; IsCoincident2D[obj_List] returns ’True’ if any pair of objects
in the list is coincident (coordinates, points, lines, circles or
quadratics).";

IsCollinear2D::usage=
 "IsCollinear2D[point,point,point] returns ’True’ if the three points are
collinear; IsCollinear2D[pt_List] returns ’True’ if any triple of points in
the list are collinear.";

IsConcentric2D::usage=
 "IsConcentric2D[circle,circle] returns ’True’ if the two circles are
concentric; IsConcentric2D[cir_List] returns ’True’ if any pair of circles
in the list are concentric.";

IsConcurrent2D::usage=
 "IsConcurrent2D[line,line,line] returns ’True’ if the three lines are
concurrent; IsConcurrent2D[ln_List] returns ’True’ if any triple of lines
in the list is concurrent.";

IsOn2D::usage=
 "IsOn2D[point,line | circle | quad] returns ’True’ if the point is on
the line, circle or quadratic.";

IsParallel2D::usage=
 "IsParallel2D[line,line] returns ’True’ if two lines are parallel;
IsParallel2D[ln_List] returns ’True’ if any pair of lines in a list is
parallel.";

437

438 D2DGeometry2D - Utilities

IsTripleParallel2D::usage=
 "IsTripleParallel2D[line,line,line] returns ’True’ if three lines are
parallel; IsTripleParallel2D[ln_List] returns ’True’ if any triple of lines
in a list is parallel.";

IsPerpendicular2D::usage=
 "IsPerpendicular2D[line,line] returns ’True’ if two lines are
perpendicular; IsPerpendicular2D[ln_List] returns ’True’ if any pair of
lines in a list is perpendicular.";

IsTangent2D::usage=
 "IsTangent2D[line,circle] returns ’True’ if a line is tangent to a
circle; IsTangent2D[circle,circle] returns ’True’ if two circles are
tangent to each other; IsTangent2D[line,quad] returns ’True’ if a line is
tangent to a quadratic.";

Begin["‘Private‘"];

Utilities

Combinations

The private functions PairQ$2D, Pairs$2D, TripleQ$2D and Triples$2D are used to apply
queries over lists of objects.

Pairs$2D[{a_,b_}] := {{a,b}};
Pairs$2D[{a_,b_,c__}] :=
 Flatten[{Map[{a,#}&,{b,c}],Pairs$2D[{b,c}]},1];
Pairs$2D[L_List /; Length[L]<2] := L;

Triples$2D[{a_,b_,c_}] := {{a,b,c}};
Triples$2D[{a_,b_,c_,d__}] :=
 Flatten[{Map[({a,#[[1]],#[[2]]})&,Pairs$2D[{b,c,d}]],
 Triples$2D[{b,c,d}]},1];
Triples$2D[L_List /; Length[L]<3] := L;

PairQ$2D[L:{a_,b__},func_] :=
 MemberQ[Map[func[#[[1]],#[[2]]]&,
 Pairs$2D[L]],
 True];
PairQ$2D[{___},func_] := False;

TripleQ$2D[L:{a_,b_,c__},func_] :=
 MemberQ[Map[func[#[[1]],#[[2]],#[[3]]]&,
 Triples$2D[L]],
 True];
TripleQ$2D[{___},func_] := False;

D2DGeometry2D - Coincident Queries 439

Coincident Queries

Two Coordinates

IsCoincident2D[coords, coords] Returns True if two coordinates are coincident; otherwise,
returns False.

IsCoincident2D[{x1_?IsScalar2D,y1_?IsScalar2D},
 {x2_?IsScalar2D,y2_?IsScalar2D}] :=
 IsZero2D[x1-x2] && IsZero2D[y1-y2];

Two Points

IsCoincident2D[point,point] Returns True if two points are coincident; otherwise, returns
False.

IsCoincident2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}]] :=
 IsZero2D[x1-x2] && IsZero2D[y1-y2];

Two Lines

IsCoincident2D[line, line] Returns True if two lines are coincident; otherwise, returns
False.

IsCoincident2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 IsZero2D[{Det[{{ a1, b1},{ a2, b2}}],
 Det[{{-c1, b1},{-c2, b2}}],
 Det[{{ a1,-c1},{ a2,-c2}}]},And]

Two Circles

IsCoincident2D[circle, circle] Returns True if two circles are coincident; otherwise,
returns False.

IsCoincident2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
 IsCoincident2D[{h1,k1},{h2,k2}] && IsZero2D[r1-r2];

Two Quadratics

IsCoincident2D[quad, quad] Returns True if two quadratics are coincident; otherwise,
returns False.

IsCoincident2D[Q1:Quadratic2D[a1_,b1_,c1_,d1_,e1_,f1_],
 Q2:Quadratic2D[a2_,b2_,c2_,d2_,e2_,f2_]] :=
 Module[{k1,k2},
 {k1}=Select[List @@ Q1,Not[IsZero2D[#]]&,1];
 {k2}=Select[List @@ Q2,Not[IsZero2D[#]]&,1];
 IsZero2D[Map[Simplify[Expand[N[#]]]&,
 {a1*k2-a2*k1,b1*k2-b2*k1,c1*k2-c2*k1,
 d1*k2-d2*k1,e1*k2-e2*k1,f1*k2-f2*k1}],
 And]];

440 D2DGeometry2D - Concentric Queries

List of Objects

IsCoincident2D[objList] Returns True if any pair of objects (points, lines, circles or
quadratics) in a list are coincident; otherwise, returns False.

IsCoincident2D[obj_List] := PairQ$2D[obj,IsCoincident2D];

Collinear Queries

Three Points

IsCollinear2D[point,point, point] Returns True if three points are collinear; otherwise,
returns False.

IsCollinear2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],Point2D[{x3_,y3_}]] :=
 IsZero2D[Det[{{x1,y1,1},{x2,y2,1},{x3,y3,1}}]];

List of Points

IsCollinear2D[ptsList] Returns True if any combination of three points in a list are
collinear; otherwise, returns False.

IsCollinear2D[pts_List] := TripleQ$2D[pts,IsCollinear2D];

Concentric Queries

Two Circles

IsConcentric2D[circle, circle] Returns True if two circles are concentric; otherwise,
returns False.

IsConcentric2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
 IsCoincident2D[{h1,k1},{h2,k2}];

List of Circles

IsConcentric2D[cirList] Returns True if any combination of two circles in a list are
concentric; otherwise, returns False.

IsConcentric2D[cir_List] := PairQ$2D[cir,IsConcentric2D];

D2DGeometry2D - Concurrent Queries 441

Concurrent Queries

Three Lines

IsConcurrent2D[line, line, line] Returns True if three given lines are concurrent; oth-
erwise, returns False. Coincident and parallel lines are not considered to be concurrent and
will return False.

IsConcurrent2D[L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_],
 L3:Line2D[a3_,b3_,c3_]] :=
 IsZero2D[Det[{{a1,b1,c1},{a2,b2,c2},{a3,b3,c3}}]] &&
 Not[IsParallel2D[L1,L2]] && Not[IsParallel2D[L2,L3]] &&
 Not[IsParallel2D[L2,L3]];

List of Lines

IsConcurrent2D[lnsList] Returns True if any combination of three lines in a list are
concurrent; otherwise, returns False. Coincident and parallel lines are not considered to be
concurrent and will return False.

IsConcurrent2D[lns_List] := TripleQ$2D[lns,IsConcurrent2D];

On Queries

Point On Line

IsOn2D[point, line] Returns True if a point is on a line; otherwise, returns False.

IsOn2D[Point2D[{x1_,y1_}],Line2D[a2_,b2_,c2_]] := IsZero2D[a2*x1+b2*y1+c2];

Point On Circle

IsOn2D[point, circle] Returns True if a point is on a circle; otherwise, returns False.

IsOn2D[Point2D[{x1_,y1_}],Circle2D[{h2_,k2_},r2_]] :=
 IsZero2D[(x1-h2)^2+(y1-k2)^2-r2^2];

Point On Quadratic

IsOn2D[point, quad] Returns True if a point is on a quadratic; otherwise, returns False.

IsOn2D[Point2D[{x_,y_}],Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 IsZero2D[a*x^2+b*x*y+c*y^2+d*x+e*y+f];

442 D2DGeometry2D - Perpendicular Queries

Parallel Queries

Two Lines

IsParallel2D[line, line] Returns True if two lines are parallel, otherwise, returns False.

IsParallel2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 IsZero2D[a1*b2-a2*b1];

List of Lines (by Pairs)

IsParallel2D[lnsList] Returns True if any combination of two lines in a list are parallel;
otherwise, returns False.

IsParallel2D[lns_List] := PairQ$2D[lns,IsParallel2D];

Three Lines

IsTripleParallel2D[line, line, line] Returns True if three lines are mutually parallel;
otherwise, returns False.

IsTripleParallel2D[Line2D[a1_,b1_,c1_],
 Line2D[a2_,b2_,c2_],
 Line2D[a3_,b3_,c3_]] :=
 IsZero2D[a1*b2-a2*b1] && IsZero2D[a2*b3-a3*b2];

List of Lines (by Triples)

IsTripleParallel2D[lnsList] Returns True if any combination of three lines in a list is
parallel; otherwise, returns False.

IsTripleParallel2D[lns_List] := TripleQ$2D[lns,IsTripleParallel2D];

Perpendicular Queries

Two Lines

IsPerpendicular2D[line, line] Returns True if two lines are perpendicular; otherwise,
returns False.

IsPerpendicular2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 IsZero2D[a1*a2+b1*b2];

D2DGeometry2D - Tangent Queries 443

List of Lines

IsPerpendicular2D[lnsList] Returns True if any combination of two lines in a list is
perpendicular; otherwise, returns False.

IsPerpendicular2D[lns_List] := PairQ$2D[lns,IsPerpendicular2D];

Tangent Queries

Line and Circle

IsTangent2D[line, circle] Returns True if a line is tangent to a circle; otherwise, returns
False.

IsTangent2D[Line2D[A1_,B1_,C1_],Circle2D[{h_,k_},r_]] :=
 IsZero2D[r^2*(A1^2+B1^2)-(C1+A1*h+B1*k)^2];

Two Circles

IsTangent2D[circle, circle] Returns True if two circles are tangent to each other; otherwise,
returns False.

IsTangent2D[C1:Circle2D[{h1_,k1_},r1_],C2:Circle2D[{h2_,k2_},r2_]] :=
 Module[{d},
 d=(h1-h2)^2+(k1-k2)^2;
 IsZero2D[{d-(r1+r2)^2,d-(r1-r2)^2},Or] &&
 Not[IsCoincident2D[C1,C2]]];

Line and Quadratic

IsTangent2D[line, quad] Returns True if a line is tangent to a quadratic; otherwise,
returns False.

IsTangent2D[Line2D[p_,q_,r_],Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 IsZero2D[(4*c*f-e^2)*p^2 + 2*(d*e-2*b*f)*p*q +
 (4*a*f-d^2)*q^2 + 2*(b*e-2*c*d)*p*r +
 (4*a*c-b^2)*r^2 + 2*(b*d-2*a*e)*q*r];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DGeometry2D‘" *)

D2DHyperbola2D

The package D2DHyperbola2D implements the Hyperbola2D object.

Initialization
BeginPackage["D2DHyperbola2D‘",{"D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSegment2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DHyperbola2D::usage=
 "’D2DHyperbola2D’ is a package providing support for hyperbolas.";

Conjugate2D::usage=
 "Conjugate2D is a keyword used to construct a conjugate hyperbola in
Hyperbola2D[hyperbola, Conjugate2D].";

Hyperbola2D::usage=
 "Hyperbola2D[{h,k},a,b,theta] is the standard form of a hyperbola,
centered at (h,k), semi-transverse axis length ’a’, semi-conjugate axis ’b’
and rotation angle ’theta’.";

SemiConjugateAxis2D::usage=
 "SemiConjugateAxis2D[hyperbola] returns the length of the semi-conjugate
axis of a hyperbola.";

SemiTransverseAxis2D::usage=
 "SemiTransverseAxis2D[hyperbola] returns the length of the
semi-transverse axis of a hyperbola.";

Begin["‘Private‘"];

Description

Representation

Hyperbola2D[{h, k}, a, b, θ] Standard representation of a hyperbola in Descarta2D. The
first argument is a list of coordinates representing the center of the hyperbola. The second
and third arguments are (positive) scalars representing the lengths of the semi-transverse and
semi-conjugate axes. The fourth argument is the counter-clockwise rotation (in radians) of
the hyperbola about the center point.

445

446 D2DHyperbola2D - Description

Equation

Quadratic2D[hyperbola] Constructs the quadratic representing the equation of a hyperbola.

Quadratic2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Rotate2D[
 Quadratic2D[b^2,0,-a^2,-2*b^2*h,2*a^2*k,-a^2*b^2+b^2*h^2-a^2*k^2],
 theta,{h,k}];

Evaluation

Hyperbola2D[{h, k}, a, b, θ, False | True][t] Evaluates the primary branch of a hyper-
bola (when the keyword is False or omitted) or its reflection (when the keyword is True).
The primary branch is the one opening about the +x-axis when the rotation angle is zero.
The end points of the focal chords are at parameter values −1 and +1.

Hyperbola2D[{h_,k_},a_,b_,theta_,reflection_:False][t_?IsScalar2D] :=
 Module[{alpha,e,s},
 alpha=If[reflection==False,0,Pi];
 e=Sqrt[a^2+b^2]/a;
 s=ArcCosh[e];
 Rotate2D[{h+a*Cosh[s*t],k+b*Sinh[s*t]},theta+alpha,{h,k}]] /;
MemberQ[{True,False},reflection];

Graphics

Provides graphics for a hyperbola by extending the Mathematica Display command. Executed
when the package is loaded.

SetDisplay2D[
 Hyperbola2D[{h_,k_},a_,b_,t_][{t1_?IsScalar2D,t2_?IsScalar2D}] /;
 t1<=t2,
 MakePrimitives2D[
 Hyperbola2D[{h,k},a,b,t,False],{t1,t2}]];

SetDisplay2D[
 Hyperbola2D[{h_,k_},a_,b_,t_][{t1_?IsScalar2D,t2_?IsScalar2D}] /;
 t1>t2,
 MakePrimitives2D[
 Hyperbola2D[{h,k},a,b,t,True],{t2,t1}]];

SetDisplay2D[
 Hyperbola2D[{h_,k_},a_,b_,t_],
 Map[MakePrimitives2D[
 Hyperbola2D[{h,k},a,b,t,#],
 CurveLimits2D[{a,0},Hyperbola2D[{0,0},a,b,0]]]&,
 {False,True}]];

D2DHyperbola2D - Description 447

Validation

Hyperbola2D[{h, k}, a, b, θ] Detects a hyperbola with imaginary arguments and returns
the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Hyperbola2D::imaginary=
 "An invalid hyperbola of the form ’Hyperbola2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ has
been detected; the arguments cannot be imaginary.";

Hyperbola2D[{h_,k_},a_,b_,theta_] :=
 (Hyperbola2D @@ ChopImaginary2D[Hyperbola$2D[{h,k},a,b,theta]]) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsTinyImaginary2D[{h,k,a,b,theta}]);

Hyperbola2D[{h_,k_},a_,b_,theta_] :=
 (Message[Hyperbola2D::imaginary,{h,k},a,b,theta];$Failed) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsComplex2D[{h,k,a,b,theta},0]);

Hyperbola2D[{h, k}, a, b, θ] Detects a hyperbola with invalid arguments and returns the
$Failed symbol.

Hyperbola2D::invalid=
 "An invalid hyperbola of the form ’Hyperbola2D[‘1‘, ‘2‘, ‘3‘, ‘4‘]’ was
encountered; the lengths of the semi-transverse and semi-conjugate axes
must be positive.";

Hyperbola2D[{h_,k_},a_,b_,theta_] :=
 (Message[Hyperbola2D::invalid,{h,k},a,b,theta];$Failed) /;
(FreeQ[{h,k,a,b,theta},_Pattern] && IsZeroOrNegative2D[{a,b},Or,0]);

Hyperbola2D[{h, k}, a, b, θ] Normalizes the rotation angle on a hyperbola to the range
0 ≤ θ < π.

Hyperbola2D[{h_,k_},a_,b_,theta_] :=
 Hyperbola2D[{h,k},a,b,PrimaryAngle2D[theta,Pi]] /;
(FreeQ[{h,k,a,b,theta},_Pattern] && (theta=!=PrimaryAngle2D[theta,Pi]));

IsValid2D[hyperbola] Verifies that a hyperbola is syntactically valid.

IsValid2D[Hyperbola2D[{h_,k_},a_,b_,theta_,True]] :=
 IsValid2D[Hyperbola2D[{h,k},a,b,theta]];

IsValid2D[Hyperbola2D[{h_,k_},a_,b_,theta_,False]] :=
 IsValid2D[Hyperbola2D[{h,k},a,b,theta]];

IsValid2D[
 Hyperbola2D[{h_?IsScalar2D,k_?IsScalar2D},
 a_?IsScalar2D,b_?IsScalar2D,
 theta_?IsScalar2D]] := True;

448 D2DHyperbola2D - Transformations

Scalars

Angle of Rotation

Angle2D[hyperbola] Returns the rotation angle of a hyperbola.

Angle2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] := theta;

Semi-transverse Axis Length

SemiTransverseAxis2D[hyperbola] Returns the length of the semi-transverse axis of a
hyperbola.

SemiTransverseAxis2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] := a;

Semi-conjugate Axis Length

SemiConjugateAxis2D[hyperbola] Returns the length of the semi-conjugate axis of a
hyperbola.

SemiConjugateAxis2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] := b;

Transformations

Reflect

Reflect2D[hyperbola, line] Reflects a hyperbola in a line.

Reflect2D[Hyperbola2D[{h_,k_},a_,b_,theta_],L:Line2D[p_,q_,r_]] :=
 Hyperbola2D[Reflect2D[{h,k},L],a,b,ReflectAngle2D[theta,L]];

Rotate

Rotate2D[hyperbola, θ, coords] Rotates a hyperbola by an angle θ about a position
specified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Hyperbola2D[{h_,k_},a_,b_,theta_],alpha_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Hyperbola2D[Rotate2D[{h,k},alpha,{x0,y0}],a,b,alpha+theta];

D2DHyperbola2D - Point Construction 449

Scale

Scale2D[hyperbola, s, coords] Scales a hyperbola from a position given by coordinates. If
the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Hyperbola2D[{h_,k_},a_,b_,theta_],s_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Hyperbola2D[Scale2D[{h,k},s,{x0,y0}],s*a,s*b,theta] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[hyperbola, {u, v}] Translates a hyperbola delta distance.

Translate2D[Hyperbola2D[{h_,k_},a_,b_,theta_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Hyperbola2D[{h+u,k+v},a,b,theta];

Point Construction

Center Point of a Hyperbola

Point2D[hyperbola] Constructs the center point of a hyperbola.

Point2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] := Point2D[{h,k}];

Pole Point

Point2D[line, hyperbola] Constructs the pole (point) of a polar (line) with respect to a
hyperbola. If the line is tangent to the hyperbola then the point is the point of tangency.

Point2D[L1:Line2D[a1_,b1_,c1_],H2:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Point2D[L1,Quadratic2D[H2]];

Line Construction

Axis of a Hyperbola

Line2D[hyperbola] Constructs a line that contains the transverse axis of a hyperbola.

Line2D[Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Rotate2D[Line2D[0,1,-k],theta,{h,k}];

450 D2DHyperbola2D - Hyperbola Construction

Polar Line

Line2D[point, hyperbola] Constructs the polar (line) of a pole (point) with respect to a
hyperbola. If the point is on the hyperbola then the line is tangent to the hyperbola at the
point.

Line2D[P1:Point2D[{x1_,y1_}],H2:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Line2D[P1,Quadratic2D[H2]];

Hyperbola Construction

Conjugate Hyperbola

Hyperbola2D[hyperbola, Conjugate2D] Constructs the conjugate hyperbola of a given
hyperbola.

Hyperbola2D[Hyperbola2D[{h_,k_},a_,b_,theta_],Conjugate2D] :=
 Hyperbola2D[{h,k},b,a,theta+Pi/2]

Hyperbola from Vertices/Eccentricity

Hyperbola2D[{point,point}, e] Constructs a hyperbola from the vertices and eccentricity.

Hyperbola2D::invdef=
 "The defining geometry or eccentricity is invalid; the eccentricity of a
hyperbola must be greater than 1, the foci and vertices cannot be
coincident and the focus cannot lie on the directrix.";

Hyperbola2D[{P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}]},e_?IsScalar2D] :=
 Module[{a,b,h,k},
 If[IsZeroOrNegative2D[e-1] || IsCoincident2D[P1,P2],
 Message[Hyperbola2D::invdef];$Failed,
 a=Distance2D[P1,P2]/2;
 b=a*Sqrt[e^2-1];
 {h,k}={(x1+x2)/2,(y1+y2)/2};
 Hyperbola2D[{h,k},a,b,ArcTan[x2-x1,y2-y1]]]];

Hyperbola from Foci/Eccentricity

Hyperbola2D[point,point, e] Constructs a hyperbola from the foci and eccentricity.

Hyperbola2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],e_?IsScalar2D] :=
 Module[{a,b,h,k},
 If[IsZeroOrNegative2D[e-1] || IsCoincident2D[P1,P2],
 Message[Hyperbola2D::invdef];$Failed,
 a=Distance2D[P1,P2]/(2*e);
 b=a*Sqrt[e^2-1];
 {h,k}={(x1+x2)/2,(y1+y2)/2};
 Hyperbola2D[{h,k},a,b,ArcTan[x2-x1,y2-y1]]]];

D2DHyperbola2D - Epilogue 451

Hyperbola from Focus/Directrix/Eccentricity

Hyperbola2D[point, line, e] Constructs a hyperbola from focus point, directrix line and
eccentricity.

Hyperbola2D[P1:Point2D[{x1_,y1_}],L2:Line2D[p_,q_,r_],e_?IsScalar2D] :=
 Module[{d,s,a,b,h,k},
 If[IsZeroOrNegative2D[e-1] || IsOn2D[P1,L2],
 Message[Hyperbola2D::invdef];$Failed,
 d=Distance2D[P1,L2];
 s=(p*x1+q*y1+r)/(p^2+q^2);
 a=d*e/(e^2-1);
 b=a*Sqrt[e^2-1];
 {h,k}={x1,y1}-{p,q}*(a*s*e)/d;
 Hyperbola2D[{h,k},a,b,ArcTan[p,q]]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DHyperbola2D‘" *)

D2DIntersect2D

The package D2DIntersect2D constructs points that are the intersection points of two curves.
It also computes the parameter values where a chordal line intersects a conic curve.

Initialization

BeginPackage["D2DIntersect2D‘",{"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DEquations2D‘", "D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DHyperbola2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘",
"D2DParabola2D‘", "D2DPoint2D‘", "D2DQuadratic2D‘", "D2DSolve2D‘",
"D2DTransform2D‘"}];

D2DIntersect2D::usage=
 "D2DIntersect2D is a package for constructing the intersection points
between curves.";

Parameters2D::usage=
 "Parameters2D[line, conic] constructs a list containing the two
parameters where a line intersects a conic (circle, ellipse, parabola or
hyperbola).";

Points2D::usage=
 "Points2D[curve ,curve] constructs a list of intersection points of two
curves.";

Begin["‘Private‘"];

Intersection Points

Intersection Point of Two Lines

Points2D[line, line] Constructs a list containing up to one point that is the intersection
point of two lines.

Points2D[L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_]] :=
 If[IsParallel2D[L1,L2], {}, {Point2D[L1,L2]}];

453

454 D2DIntersect2D - Intersection Points

Intersection Points of a Line and a Circle

Points2D[line, circle] Constructs a list containing at most two points that are the
intersection points of a line and a circle.

Points2D[Line2D[a1_,b1_,c1_],Circle2D[{h2_,k2_},r2_]] :=
 Module[{a,b,d,z,mapList},
 {a,b,d}={a1,b1,a1*h2+b1*k2+c1}/Sqrt[a1^2+b1^2];
 z=r2^2-d^2;
 mapList=Which[IsZero2D[z], {0},
 IsNegative2D[z], {},
 True, {-1,1}];
 Map[Point2D[{h2-a*d+#*b*Sqrt[z],k2-b*d-#*a*Sqrt[z]}]&,mapList]];

Intersection Points of Two Circles

Points2D[circle, circle] Constructs a list containing at most two points that are the
intersection points of two circles.

Points2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
 Module[{s,d,R,x0,y0,cos,sin,z,mapList},
 If[IsCoincident2D[{h1,k1},{h2,k2}],{},
 s=(h1-h2)^2+(k1-k2)^2; d=Sqrt[s]; R=s+r1^2-r2^2;
 {x0,y0}={R,Sqrt[z=(4*s*r1^2-R^2)]}/(2d);
 {cos,sin}={h2-h1,k2-k1}/d;
 mapList=Which[IsZero2D[z], {0},
 IsNegative2D[z], {},
 True, {-1,1}];
 Map[Point2D[{h1+cos*x0+#*sin*y0,k1+sin*x0-#*cos*y0}]&,mapList]]];

Intersection Points of Two Curves

Points2D[curve, curve] Constructs a list containing at most four points that are the
intersection points of two curves. Valid curve forms are lines, circles, parabolas, ellipses,
hyperbolas and quadratics. Coincident point solutions appear only once in the list returned.
The private function Eqn$2D returns a line or quadratic representing a curve.

Eqn$2D[crv_] :=
 If[Is2D[crv,{Line2D,Quadratic2D}],crv,Quadratic2D[crv]];

Points2D[crv1_,crv2_] :=
 Module[{x,y,eqns,roots},
 eqns=Map[Equation2D[#,{x,y}]&,Map[Eqn$2D,{crv1,crv2}]];
 roots=Select[Solve2D[eqns,{x,y}],Not[IsComplex2D[{x,y} /. #]]&];
 Union[Map[(Point2D[{x,y}] /. #)&,roots]]] /;
(Is2D[crv1,
 {Circle2D,Ellipse2D,Hyperbola2D,Line2D,Parabola2D,Quadratic2D}] &&
 Is2D[crv2,
 {Circle2D,Ellipse2D,Hyperbola2D,Line2D,Parabola2D,Quadratic2D}]);

D2DIntersect2D - Chordal Parameter Range 455

Chordal Parameter Range

Sort Numerically

The private function SortNumeric$2D sorts a list of two numbers into ascending order, retain-
ing the exact form of the numbers, and returns the sorted list. If the ascending order cannot
be determined (for example, when the arguments are symbolic) then the original ordering is
returned.

SortNumeric$2D[{n1_,n2_}] := If[IsNegative2D[n2-n1],{n2,n1},{n1,n2}];

Circle

Parameters2D[line, circle] Constructs a list containing the two parameters on a cir-
cle where a line intersects the circle. The parameters will be primary angles and sorted in
increasing order (0 ≤ θ1 < θ2 < 2π).

Parameters2D::noChord=
 "No chord exists between ‘1‘ and ‘2‘.";

Parameters2D[L1:Line2D[a1_,b1_,c1_],C2:Circle2D[{h2_,k2_},r2_]] :=
 Module[{pts,x1,x2,y1,y2},
 pts=Points2D[L1,C2];
 If[Length[pts]==2,
 {{x1,y1},{x2,y2}}=Map[Coordinates2D,pts];
 SortNumeric$2D[{PrimaryAngle2D[ArcTan[x1-h2,y1-k2]],
 PrimaryAngle2D[ArcTan[x2-h2,y2-k2]]}],
 Message[Parameters2D::noChord,L1,C2];$Failed]];

Ellipse

Parameters2D[line, ellipse] Returns a list of the two parameters on an ellipse where a line
intersects the ellipse. The parameters will be primary angles and sorted in increasing order
(0 ≤ θ1 < θ2 < 2π).

Parameters2D[L1:Line2D[a1_,b1_,c1_],E2:Ellipse2D[{h_,k_},a_,b_,theta_]] :=
 Module[{ln,pts,x1,y1,x2,y2},
 ln=Rotate2D[Translate2D[L1,{-h,-k}],-theta];
 pts=Points2D[ln,Ellipse2D[{0,0},a,b,0]];
 If[Length[pts]==2,
 {{x1,y1},{x2,y2}}=Map[Coordinates2D,pts];
 SortNumeric$2D[{PrimaryAngle2D[ArcTan[x1/a,y1/b]],
 PrimaryAngle2D[ArcTan[x2/a,y2/b]]}],
 Message[Parameters2D::noChord,L1,E2];$Failed]];

Hyperbola

Parameters2D[line,hyperbola] Returns a list of the two parameters on a hyperbola where
a line intersects the hyperbola. The parameters are sorted in the order (−∞ < t1 < t2 < +∞).

456 D2DIntersect2D - Epilogue

The line must intersect the hyperbola’s primary branch (in standard position) in two points
for a parameter range to be returned.

Parameters2D[L1:Line2D[a1_,b1_,c1_],
 H2:Hyperbola2D[{h_,k_},a_,b_,theta_]] :=
 Module[{ln,pts,t1,t2,x1,x2,y1,y2},
 ln=Rotate2D[Translate2D[L1,{-h,-k}],-theta];
 pts=Points2D[ln,Hyperbola2D[{0,0},a,b,0]];
 If[Length[pts]==2,
 {{x1,y1},{x2,y2}}=Map[Coordinates2D,pts];
 t1=ArcSinh[y1/b]/ArcCosh[Sqrt[a^2+b^2]/a];
 t2=ArcSinh[y2/b]/ArcCosh[Sqrt[a^2+b^2]/a];
 If[IsZero2D[t1-t2],
 Message[Parameters2D::noChord,L1,H2];$Failed,
 If[IsNumeric2D[{t1,t2}] &&
 Not[IsCoincident2D[L1,Line2D[H2[t1],H2[t2]]]],
 Message[Parameters2D::noChord,L1,h2];$Failed,
 SortNumeric$2D[{t1,t2}]]],
 Message[Parameters2D::noChord,L1,H2];$Failed]];

Parabola

Parameters2D[line,parabola] Returns a list of two parameters on a parabola where a line
intersects the parabola. The parameters are sorted in increasing order (∞ < t1 < t2 < +∞).

Parameters2D[L1:Line2D[a1_,b1_,c1_],P2:Parabola2D[{h_,k_},f_,theta_]] :=
 Module[{t,x,y,ans},
 {x,y}=P2[t];
 ans=Select[Solve[a1*x+b1*y+c1==0,t],Not[IsComplex2D[t /. #]]&];
 If[Length[ans]==2,
 SortNumeric$2D[Map[(t /. #)&,ans]],
 Message[Parameters2D::noChord,L1,P2];$Failed]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DIntersect2D‘" *)

D2DLine2D

The package D2DLine2D implements the Line2D object.

Initialization

BeginPackage["D2DLine2D‘", {"D2DEquations2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DLine2D::usage=
 "D2DLine2D is a package that implements the Line2D object.";

Angle2D::usage=
 "Angle2D[line] gives the between the +x-axis and a line;
Angle2D[line,line] gives the angle measured counter-clockwise from the
first line to the second line. Angle2D[conic] gives the angle of rotation
of a conic.";

Line2D::usage=
 "Line2D[A,B,C] is the standard form of a line with the equation
Ax+By+C=0.";

Parallel2D::usage=
 "Parallel2D is the keyword required in Line2D[point, line, Parallel2D].";

Perpendicular2D::usage=
 "Perpendicular2D is the keyword required in Line2D[point, point,
Perpendicular2D]; it is also required in Line2D[point, line,
Perpendicular2D].";

Slope2D::usage=
 "Slope2D[line] gives the slope of a line. Slope[lnseg] gives the slope
of a line segment.";

Begin["‘Private‘"];

457

458 D2DLine2D - Description

Description

Representation

Line2D[A,B,C] Standard representation of a line in Descarta2D. The three arguments
are the coefficients of the line in general form, Ax + By + C = 0. The normal form of a line,
x cos θ + y sin θ−ρ = 0, is also by provided by using the form Line2D[cosθ, sin θ,−ρ], where
θ is the angle the normal to the line makes with the +x-axis, and ρ is the distance of the line
from the origin.

Equations

Line2D[expr, {x, y}] Constructs a line from a linear polynomial in two unknowns. For
example, the polynomial ax+by+c will return Line2D[a, b, c]; the equation ax+by+c == 0
will also return Line2D[a, b, c]. The {x, y} arguments are assumed to be the names of the
variables.

Line2D::noPoly=
 "The expression ‘1‘ cannot be recognized as a linear polynomial or
equation in variables ‘2‘ and ‘3‘.";

Line2D[expr_,{x_,y_}] :=
 Module[{poly,a,b,c},
 poly=If[Head[expr]===Equal,
 expr[[1]]-expr[[2]],
 expr] //Expand;
 a=Coefficient[poly,x];
 b=Coefficient[poly,y];
 c=(poly /. {x->0,y->0}) //Expand;
 If[IsZero2D[a*x+b*y+c-poly],
 Line2D[a,b,c],
 Message[Line2D::noPoly,expr,x,y];$Failed]];

Evaluation

Line2D[A,B, C][t] Evaluates a parameter, t, on a line. Returns a coordinate list {x, y}.
The point nearest the origin is at parameter t = 0. Other points are parameterized by distance
along the line.

Line2D[a1_,b1_,c1_][t_?IsScalar2D] :=
 Module[{a,b,c},
 {a,b,c}={a1,b1,c1}/Sqrt[a1^2+b1^2];
 -{a*c,b*c}+{b,-a}*t];

Graphics

Provides graphics for a line by extending the Mathematica Display command. Executed
when the package is loaded.

D2DLine2D - Description 459

SetDisplay2D[
 Line2D[a_,b_,c_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 Line[{Line2D[a,b,c][t1],
 Line2D[a,b,c][t2]}]];

SetDisplay2D[
 Line2D[a_,b_,c_],
 Line[{Line2D[a,b,c][-AskCurveLength2D[]/2],
 Line2D[a,b,c][AskCurveLength2D[]/2]}]];

Validation

Line2D[A,B,C] Detects a line with imaginary coefficients and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Line2D::imaginary=
 "An invalid line of the form ’Line2D[‘1‘, ‘2‘, ‘3‘]’ has been detected;
the arguments cannot be imaginary.";

Line2D[a_,b_,c_] :=
 (Line2D @@ ChopImaginary2D[Line$2D[a,b,c]]) /;
(FreeQ[{a,b,c},_Pattern] && IsTinyImaginary2D[{a,b,c}]);

Line2D[a_,b_,c_] :=
 (Message[Line2D::imaginary,a,b,c];$Failed) /;
(FreeQ[{a,b,c},_Pattern] && IsComplex2D[{a,b,c},0]);

Line2D[A,B, C] Returns the $Failed symbol when an invalid line is detected (the first
two coefficients are zero). Also, normalizes lines with tiny coefficients to improve numerical
stability.

Line2D::invalid=
 "An invalid line of the form ’Line2D[‘1‘, ‘2‘, ‘3‘]’ was encountered; at
least one of the first two coefficients must be non-zero.";

Line2D[a_,b_,c_] :=
 (Message[Line2D::invalid,a,b,c];$Failed) /;
(FreeQ[{a,b,c},_Pattern] && IsZero2D[{a,b},And,0]);

Line2D[a_,b_,c_] :=
 (Line2D @@ ({a,b,c}/Sqrt[a^2+b^2])) /;
(FreeQ[{a,b,c},_Pattern] && IsZero2D[{a,b},And]);

IsValid2D[line] Verifies that a line is syntactically valid.

IsValid2D[Line2D[a_?IsScalar2D,b_?IsScalar2D,c_?IsScalar2D]] := True;

460 D2DLine2D - Scalars

Simplify and FullSimplify

Simplify[line] and FullSimplify[line] Extends the Mathematica commands Simplify
and FullSimplify to simplify the coefficients of a line by factoring out common factors.
Executed when the package is loaded.

protected=Unprotect[Simplify];
Simplify[expr_?(!FreeQ[#,Line2D[a_,b_,c_]]&),opts___] :=
 Simplify[expr /. Line2D[a_,b_,c_] :>
 (Line$2D @@ SimplifyCoefficients2D[{a,b,c}]),
 opts] /. Line$2D->Line2D;
Protect[Evaluate[protected]];

protected=Unprotect[FullSimplify];
FullSimplify[expr_?(!FreeQ[#,Line2D[a_,b_,c_]]&),
 opts___] :=
 FullSimplify[expr /. Line2D[a_,b_,c_] :>
 (Line$2D @@ SimplifyCoefficients2D[{a,b,c}]),
 opts] /. Line$2D->Line2D;
Protect[Evaluate[protected]];

Scalars

Angle of a Line

Angle2D[line] Computes the angle measured counter-clockwise from the +x-axis to a line.
The result is returned in radians.

Angle2D[Line2D[a_,b_,c_]] :=
 PrimaryAngle2D[If[IsZero2D[b],Pi/2,ArcTan[-a/b]],Pi];

Angle between Two Lines

Angle2D[line, line] Computes the angle measured counter-clockwise from the first line to
the second line. The result is returned in radians.

Angle2D[L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_]] :=
 PrimaryAngle2D[(Angle2D[L2]-Angle2D[L1]),Pi];

Distance from a Point to a Line

Distance2D[point, line] Computes the distance between a point and a line.

Distance2D[Point2D[{x1_,y1_}],Line2D[a2_,b2_,c2_]] :=
 Sqrt[(a2*x1+b2*y1+c2)^2/(a2^2+b2^2)];

Slope of a Line

Slope2D[line] Computes the slope of a line.

Slope2D[Line2D[a_,b_,c_]] := If[IsZero2D[b],Infinity,-a/b];

D2DLine2D - Transformations 461

Transformations

Reflect

Reflect2D[line, line] Reflects the first line in the second line.

Reflect2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 Module[{a,b,c},
 a=a1*(b2^2-a2^2)-2*b1*a2*b2;
 b=b1*(a2^2-b2^2)-2*a1*a2*b2;
 c=c1*(a2^2+b2^2)-2*c2*(a1*a2+b1*b2);
 Line2D[a,b,c]];

Rotate

Rotate2D[line, θ, coords] Rotates a line by an angle θ about a position given by coordi-
nates. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rotate2D[Line2D[a_,b_,c_],theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Line2D[a*Cos[theta]-b*Sin[theta],
 b*Cos[theta]+a*Sin[theta],
 a*h+b*k+c-Cos[theta]*(a*h+b*k)-Sin[theta]*(a*k-b*h)];

Scale

Scale2D[line, s, coords] Scales a line from a position given by coordinates. If the third
argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Line2D[a_,b_,c_],s_?IsScalar2D,{h_?IsScalar2D,k_?IsScalar2D}] :=
 Line2D[a,b,a*(s-1)*h+b*(s-1)*k+c*s] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[line, {u, v}] Translates a line delta distance.

Translate2D[Line2D[a_,b_,c_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Line2D[a,b,-a*u-b*v+c];

Line Construction

Normalize a Line

Line2D[line] Constructs a line with normalized coefficients.

462 D2DLine2D - Line Construction

Line2D[Line2D[a_,b_,c_]] :=
 If[IsZeroOrNegative2D[c],
 Apply[Line2D, {a,b,c}/Sqrt[a^2+b^2]],
 Apply[Line2D,-{a,b,c}/Sqrt[a^2+b^2]]];

Line Through a Point with a Given Slope

Line2D[point,m] Constructs a line through a point with a given slope. If the slope m is
the symbol Infinity then a vertical line is returned.

Line2D[Point2D[{x0_,y0_}],Infinity] := Line2D[1,0,-x0];

Line2D[Point2D[{x0_,y0_}],m_?IsScalar2D] := Line2D[m,-1,-m*x0+y0];

Offset Line

Line2D[line, d] Constructs a line offset a given distance from a given line. The offset
distance may be positive or negative to produce the two possible offset lines.

Line2D[Line2D[a_,b_,c_],d_?IsScalar2D] :=
 Line2D[a,b,c-d*Sqrt[a^2+b^2]];

Line Through Two Coordinates

Line2D[coords, coords] Constructs a line through two points given as coordinates.
Also, using Line2D[{a, 0}, {0, b}] provides a construction of the intercept form of a line,
x/a + y/b = 1.

Line2D::sameCoords=
 "The coordinates ‘1‘ and ‘2‘ are coincident; no valid line can be
constructed.";

Line2D[{x1_?IsScalar2D,y1_?IsScalar2D},{x2_?IsScalar2D,y2_?IsScalar2D}] :=
 If[IsCoincident2D[{x1,y1},{x2,y2}],
 Message[Line2D::sameCoords,{x1,y1},{x2,y2}];$Failed,
 Line2D[-(y2-y1),(x2-x1),(x1*y2-x2*y1)]];

Line Through Two Points

Line2D[point, point] Constructs a line through two points.

Line2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}]] := Line2D[{x1,y1},{x2,y2}];

D2DLine2D - Epilogue 463

Line Equidistant from Two Points

Line2D[point, point, Perpendicular2D] Constructs a line equidistant from two points
(the perpendicular bisector of the line segment joining the two points).

Line2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],Perpendicular2D] :=
 If[IsCoincident2D[{x1,y1},{x2,y2}],
 Message[Line2D::sameCoords,{x1,y1},{x2,y2}];$Failed,
 Line2D[x1-x2,y1-y2,-((x1^2+y1^2)-(x2^2+y2^2))/2]];

Line Perpendicular to a Line Through a Point

Line2D[point, line, Perpendicular2D] Constructs a line perpendicular to a given line
through a given point. The keyword Perpendicular2D is optional and may be omitted.

Line2D[P1:Point2D[{x1_,y1_}],L2:Line2D[a2_,b2_,c2_]] :=
 Line2D[P1,L2,Perpendicular2D];

Line2D[Point2D[{x1_,y1_}],Line2D[a2_,b2_,c2_],Perpendicular2D] :=
 Line2D[b2,-a2,-x1*b2+y1*a2];

Line Parallel to a Line Through a Point

Line2D[point, line, Parallel2D] Constructs a line parallel to a given line through a given
point.

Line2D[Point2D[{x1_,y1_}],Line2D[a2_,b2_,c2_],Parallel2D] :=
 Line2D[-a2,-b2,x1*a2+y1*b2];

Polar Line of a Quadratic

Line2D[point, quad] Constructs a polar (line) of a quadratic with respect to a pole (point).
If the point is on the quadratic then the line is the tangent at the point.

Line2D::noPolar=
 "Since ‘1‘ is at the center of the conic, no polar line exists.";

Line2D[P1:Point2D[{x1_,y1_}],Q2:Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Module[{p,q,r},
 p=2*a*x1+b*y1+d; q=b*x1+2*c*y1+e; r=d*x1+e*y1+2*f;
 If[IsZero2D[{p,q},And],
 Message[Line2D::noPolar,P1,Q2];$Failed,
 Line2D[p,q,r]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DLine2D‘" *)

D2DLoci2D

The package D2DLoci2D provides functions for constructing loci (points, lines and conics) from
equations.

Initialization
BeginPackage["D2DLoci2D‘",{"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DExpressions2D‘", "D2DGeometry2D‘", "D2DHyperbola2D‘", "D2DLine2D‘",
"D2DParabola2D‘", "D2DPoint2D‘", "D2DQuadratic2D‘", "D2DTransform2D‘"}];

D2DLoci2D::usage=
 "D2DLoci2D is a package that provides functions constructing loci
(points, lines and conics) from equations.";

Loci2D::usage=
 "Loci2D[quad] constructs a list of loci (point, lines or conics)
represented by a quadratic; Loci2D[point, line, eccentricity] constructs a
list of loci (point, lines or conics) given the focus point, directrix line
and eccentricity.";

Begin["‘Private‘"];

Utilities

Not Zero Query

The private function NotZero$2D returns the logical negation of IsZero2D.

NotZero$2D[r_] := Not[IsZero2D[r]];

Conic Construction

Conic from Quadratic

Loci2D[quad] Constructs a list of conics (proper or degenerate) represented by a quadratic.

465

466 D2DLoci2D - Conic Construction

Loci2D::central=
 "The quadratic is a central conic, but its type cannot be determined.";

Loci2D::noLocus=
 "The quadratic has no real locus.";

Linear Polynomial, Dx + Ey + F = 0: Constructs a list containing one line represented
by a quadratic whose second-degree coefficients are all zero.

Loci2D[Quadratic2D[a_?IsZero2D,b_?IsZero2D,c_?IsZero2D,d_,e_,f_]] :=
 {Line2D[d,e,f]} /;
(NotZero$2D[d] || NotZero$2D[e]);

Parallel Lines, Ax2 + Dx + F = 0: Constructs a list of two vertical parallel lines.

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?IsZero2D,
 d_,e_?IsZero2D,f_]] :=
 Module[{disc=d^2-4*a*f},
 disc=If[IsZero2D[disc],0,Simplify[disc]];
 If[IsNegative2D[disc],
 Message[Loci2D::noLocus];{},
 Map[Line2D[2*a,0,d+#*Sqrt[disc]]&,{-1,1}]]];

Parallel Lines, Cx2 + Ex + F = 0: Constructs a list of two horizontal parallel lines.

Loci2D[Quadratic2D[a_?IsZero2D,b_?IsZero2D,c_?NotZero$2D,
 d_?IsZero2D,e_,f_]] :=
 Module[{disc=e^2-4*c*f},
 disc=If[IsZero2D[disc],0,Simplify[disc]];
 If[IsNegative2D[disc],
 Message[Loci2D::noLocus];{},
 Map[Line2D[0,2*c,e+#*Sqrt[disc]]&,{-1,1}]]];

Intersecting Lines, Ax2 + Cy2 = 0: Constructs a list of two intersecting lines or a list
containing a single point.

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?NotZero$2D,
 d_?IsZero2D,e_?IsZero2D,f_?IsZero2D]] :=
 Which[
 IsNegative2D[-a*c],
 {Point2D[{0,0}]},
 IsNegative2D[a] && IsNegative2D[-c],
 Map[Line2D[Sqrt[-a],#*Sqrt[c],0]&,{-1,1}],
 True, (* IsNegative2D[-a] && IsNegative2D[c] *)
 Map[Line2D[Sqrt[a],#*Sqrt[-c],0]&,{-1,1}]];

Circle, Ax2 + Cy2 + F = 0, A = C: Constructs a list of one circle.

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?NotZero$2D,
 d_?IsZero2D,e_?IsZero2D,f_?NotZero$2D]] :=
 If[IsNegative2D[-f/a],
 Message[Loci2D::noLocus];{},
 {Circle2D[{0,0},Sqrt[-f/a]]}] /;
IsZero2D[a-c];

D2DLoci2D - Conic Construction 467

Parabola, Cy2 + Dx + Ey + F = 0: Constructs a list of one parabola in standard position
or rotated π radians.

Loci2D[Quadratic2D[a_?IsZero2D,b_?IsZero2D,c_?NotZero$2D,
 d_?NotZero$2D,e_,f_]] :=
 Module[{h,k,p},
 h=(e^2-4*c*f)/(4*c*d);
 k=-e/(2*c);
 p=-d/(4*c);
 If[IsNegative2D[p],
 {Parabola2D[{h,k},-p,Pi]},
 {Parabola2D[{h,k}, p, 0]}]];

Parabola, Ay2 + Dx + Ey + F = 0: Constructs a list of one parabola rotated π
2 or 3π

2
radians.

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?IsZero2D,
 d_,e_?NotZero$2D,f_]] :=
 Module[{h,k,p},
 h=-d/(2*a);
 k=(d^2-4*a*f)/(4*a*e);
 p=-e/(4*a);
 If[IsNegative2D[p],
 {Parabola2D[{h,k},-p,3Pi/2]},
 {Parabola2D[{h,k}, p, Pi/2]}]];

Central Conic, Ax2 + Cy2 + F = 0: Constructs a list of one central conic (ellipse or
hyperbola).

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?NotZero$2D,
 d_?IsZero2D,e_?IsZero2D,f_?NotZero$2D]] :=
 Which[
 IsNegative2D[-f/a] && IsNegative2D[-f/c],
 Message[Loci2D::noLocus];{},
 IsNegative2D[-f/a] && IsNegative2D[f/c],
 {Hyperbola2D[{0,0},Sqrt[-f/c],Sqrt[f/a],Pi/2]},
 IsNegative2D[f/a] && IsNegative2D[-f/c],
 {Hyperbola2D[{0,0},Sqrt[-f/a],Sqrt[f/c],0]},
 IsNegative2D[f/a] && IsNegative2D[f/c],
 If[IsNegative2D[(-f/a)-(-f/c)],
 {Ellipse2D[{0,0},Sqrt[-f/c],Sqrt[-f/a],Pi/2]},
 {Ellipse2D[{0,0},Sqrt[-f/a],Sqrt[-f/c],0]}],
 True,
 Message[Loci2D::central];{}] /;
NotZero$2D[a-c];

Remove First-Degree Terms, Ax2 + Cy2 + Dx + Ey + F = 0: Removes the x- and y-
terms from a quadratic by applying a change of variables to the equation. The Translate2D
function performs the inverse translation, thus returning the geometry to its original position.

Loci2D[Quadratic2D[a_?NotZero$2D,b_?IsZero2D,c_?NotZero$2D,d_,e_,f_]] :=
 Translate2D[Loci2D[Quadratic2D[4*a^2*c,0,4*a*c^2,
 0,0,-c*d^2-a*e^2+4*a*c*f]],
 {-d/(2*a),-e/(2*c)}] /;
(NotZero$2D[d] || NotZero$2D[e]);

468 D2DLoci2D - Epilogue

Eliminate Cross-Term, Ax2 + Bxy + Cy2 + Dx + Ey + F = 0: Eliminates the cross-term
of a quadratic by making the substitution x = kx + y and y = ky − x which is a scaling
and rotation. The subsequent scaling and rotation accomplishes the inverse transformation,
thus returning the geometry to its original position. If k is sufficiently close to zero then the
substitution is not needed.

Loci2D[Quadratic2D[a_,b_?NotZero$2D,c_,d_,e_,f_]] :=
 Module[{k=Sqrt[((c-a)/b)^2+1]+(c-a)/b,Q1},
 If[IsZero2D[k],
 Loci2D[Quadratic2D[a,0,c,d,e,f]],
 Q1=Quadratic2D[a*k^2-b*k+c,0,c*k^2+b*k+a,d*k-e,e*k+d,f];
 Rotate2D[Scale2D[Loci2D[Q1],Sqrt[1+k^2]],
 -ArcTan[1/k]]]];

Conic from Focus, Directrix and Eccentricity

Loci2D[point, line, e] Constructs a list of conics (proper or degenerate) from a focus
point, directrix line and eccentricity.

Loci2D::eccentricity=
 "The eccentricity, ‘1‘, is invalid; the eccentricity must be positive.";

Loci2D[P1:Point2D[{x1_,y1_}],L2:Line2D[a2_,b2_,c2_],e_?IsScalar2D] :=
 If[IsZeroOrNegative2D[e],
 Message[Loci2D::eccentricity,e];$Failed,
 Loci2D[Quadratic2D[P1,L2,e]]];

Conic Vertex Equation

Loci2D[point, fcLen, e, θ] Constructs a conic (circle, ellipse, hyperbola or parabola) from
the vertex point, focal chord length, eccentricity and rotation angle. If the rotation angle is
omitted, it defaults to zero.

Loci2D[P1:Point2D[{x1_,y1_}],fcLen_?IsScalar2D,e_?IsScalar2D] :=
 Loci2D[P1,fcLen,e,0];

Loci2D[P1:Point2D[{x1_,y1_}],fcLen_?IsScalar2D,e_?IsScalar2D,
 theta_?IsScalar2D] :=
 Module[{Q},
 Q=Quadratic2D[P1,fcLen,e,theta];
 If[Q===$Failed,Q,Loci2D[Q]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DLoci2D‘" *)

D2DMaster2D

The package D2DMaster2D is the master package for Descarta2D. It establishes the names
owned by all the other Descarta2D packages (so they will load automatically when referenced),
and it provides the basic environment of queries supporting the Descarta2D objects.

Descarta2D Initialization

Load the Descarta2D package stubs.

If[Names["D2DMaster2D"]=={"D2DMaster2D"},
 D2DMaster$2D::loaded=
 "The package ’D2DMaster2D’ has already been loaded.";
 Message[D2DMaster$2D::loaded]];

D2DMaster$2D::noPath=
 "The path to ’D2DMaster2D.m’ cannot be found; unable to initialize
Descarta2D.";

D2DMaster$2D::tooManyPaths=
 "More than one path to ’D2DMaster2D.m’ was found; using ‘1‘.";

D2D$paths=Map[(#<>"\\Descarta2D")&,$Path];
D2D$dir=Select[D2D$paths,
 (Length[FileNames["D2DMaster2D.m",{#}]]>0)&];
If[Length[D2D$dir]===0,
 Message[D2DMaster$2D::noPath],
 If[Length[D2D$dir]>1,
 Message[D2DMaster$2D::tooManyPaths,First[D2D$dir]]];
 If[!MemberQ[$Path,First[D2D$dir]],AppendTo[$Path,First[D2D$dir]]]];
Remove[D2D$paths,D2D$dir];

DeclarePackage["D2DArc2D‘",{"D2DArc2D", "Arc2D", "Bulge2D",
"Complement2D"}];

DeclarePackage["D2DArcLength2D‘", {"D2DArcLength2D", "ArcLength2D",
"Circumference2D", "Perimeter2D", "Span2D"}];

DeclarePackage["D2DArea2D‘", {"D2DArea2D", "Area2D", "SectorArea2D",
"SegmentArea2D"}];

469

470 D2DMaster2D - Descarta2D Initialization

DeclarePackage["D2DCircle2D‘", {"D2DCircle2D", "Circle2D", "Radius2D"}];

DeclarePackage["D2DConic2D‘", {"D2DConic2D", "Asymptotes2D",
"Directrices2D", "Eccentricity2D", "FocalChords2D", "Foci2D",
"Vertices2D"}];

DeclarePackage["D2DConicArc2D‘", {"D2DConicArc2D", "Apex2D", "ConicArc2D",
"Rho2D"}];

DeclarePackage["D2DEllipse2D‘", {"D2DEllipse2D", "Ellipse2D",
"SemiMajorAxis2D", "SemiMinorAxis2D"}];

DeclarePackage["D2DEquations2D‘", {"D2DEquations2D", "Equation2D",
"Polynomial2D", "SimplifyCoefficients2D"}];

DeclarePackage["D2DExpressions2D‘", {"D2DExpressions2D", "IsApproximate2D",
"IsComplex2D", "IsNegative2D", "IsNumeric2D", "IsReal2D", "IsScalarPair2D",
"IsScalar2D", "IsTinyImaginary2D", "IsZero2D", "IsZeroOrNegative2D"}];

DeclarePackage["D2DGeometry2D‘", {"D2DGeometry2D", "IsCoincident2D",
"IsCollinear2D", "IsConcentric2D", "IsConcurrent2D", "IsOn2D",
"IsParallel2D", "IsTripleParallel2D", "IsPerpendicular2D", "IsTangent2D"}];

DeclarePackage["D2DHyperbola2D‘", {"D2DHyperbola2D", "Conjugate2D",
"Hyperbola2D", "SemiTransverseAxis2D", "SemiConjugateAxis2D"}];

DeclarePackage["D2DIntersect2D‘", {"D2DIntersect2D", "Parameters2D",
"Points2D"}];

DeclarePackage["D2DLine2D‘",{"D2DLine2D", "Angle2D", "Line2D",
"Parallel2D", "Perpendicular2D", "Slope2D"}];

DeclarePackage["D2DLoci2D‘", {"D2DLoci2D", "Loci2D"}];

DeclarePackage["D2DMaster2D‘", {"Is2D", "IsValid2D", "ObjectNames2D"}];

DeclarePackage["D2DMedial2D‘", {"D2DMedial2D", "MedialEquations2D",
"MedialLoci2D"}];

DeclarePackage["D2DNumbers2D‘", {"D2DNumbers2D", "ChopImaginary2D",
"PrimaryAngle2D", "PrimaryAngleRange2D"}];

DeclarePackage["D2DParabola2D‘", {"D2DParabola2D", "FocalLength2D",
"Parabola2D"}];

DeclarePackage["D2DPencil2D‘", {"D2DPencil2D", "Pencil2D"}];

DeclarePackage["D2DPoint2D‘", {"D2DPoint2D", "Coordinates2D", "Distance2D",
"Point2D", "XCoordinate2D", "YCoordinate2D"}];

DeclarePackage["D2DQuadratic2D‘", {"D2DQuadratic2D", "Quadratic2D"}];

DeclarePackage["D2DSegment2D‘", {"D2DSegment2D", "Length2D", "Segment2D"}];

D2DMaster2D - Package Initialization 471

DeclarePackage["D2DSketch2D‘", {"D2DSketch2D", "AskCurveLength2D",
"CurveLength2D", "CurveLimits2D", "IsDisplay2D", "MakePrimitives2D",
"SetDisplay2D", "Sketch2D"}];

DeclarePackage["D2DSolve2D‘", {"D2DSolve2D", "MaxSeconds2D", "Solve2D"}];

DeclarePackage["D2DTangentCircles2D‘", {"D2DTangentCircles2D",
"TangentCircles2D"}];

DeclarePackage["D2DTangentConics2D‘", {"D2DTangentConics2D",
"TangentConics2D", "TangentQuadratics2D"}];

DeclarePackage["D2DTangentLines2D‘", {"D2DTangentLines2D",
"TangentEquation2D", "TangentLines2D", "TangentSegments2D"}];

DeclarePackage["D2DTangentPoints2D‘", {"D2DTangentPoints2D",
"TangentPoints2D"}];

DeclarePackage["D2DTransform2D‘", {"D2DTransform2D", "Reflect2D",
"ReflectAngle2D", "Rotate2D", "Scale2D", "Translate2D"}];

DeclarePackage["D2DTriangle2D‘", {"D2DTriangle2D", "Centroid2D",
"Circumscribed2D", "Inscribed2D", "SolveTriangle2D", "Triangle2D"}];

Package Initialization

BeginPackage["D2DMaster2D‘"];

D2DMaster2D::usage=
 "D2DMaster2D is the master package for Descarta2D.";

D2DMaster2D::loaded=
 "The package ’D2DMaster2D’ has already been loaded.";

Is2D::usage=
 "Is2D[object,headList] returns ’True’ if the object is valid and its
head is included in the list of object heads.";

IsValid2D::usage=
 "IsValid2D[object] returns ’True’ if the object is syntactically valid.";

ObjectNames2D::usage=
 "ObjectNames2D[] returns a list of strings that are the names of all
Descarta2D objects.";

Begin["‘Private‘"];

472 D2DMaster2D - Epilogue

Objects

Object Names

ObjectNames2D[] Returns a list of strings that are the symbolic names for all Descarta2D

objects.

ObjectNames2D[]:={"Arc2D", "Circle2D", "ConicArc2D", "Ellipse2D",
 "Hyperbola2D", "Line2D", "Parabola2D", "Point2D", "Quadratic2D",
 "Segment2D", "Triangle2D"};

Default Queries

Is Query

Is2D[object, objHeadList] Returns True if an object is valid and has its head included in
the objHeadList; otherwise, returns False.

Is2D[obj_,objHead_List] :=
 (IsValid2D[obj] && (Or @@ Map[(Head[obj]===#)&,objHead]));

Valid Query

IsValid2D[object] Returns True if the object is geometric and is syntactically valid;
otherwise, returns False. Only the default case is implemented here.

IsValid2D[___] := False;

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DMaster2D‘" *)

D2DMedial2D

The package D2DMedial2D constructs curves that are equidistant from two points, lines or
circles.

Initialization
BeginPackage["D2DMedial2D‘",{"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DMaster2D‘", "D2DLine2D‘", "D2DLoci2D‘",
"D2DPoint2D‘", "D2DQuadratic2D‘"}];

D2DMedial2D::usage=
 "D2DMedial2D is a package that constructs medial equations and loci.";

MedialEquations2D::usage=
 "MedialEquations2D[{obj,obj}] constructs a list of lines or quadratics
equidistant from two objects (points, lines or circles).";

MedialLoci2D::usage=
 "MedialLoci2D[{obj,obj}] constructs a list of curves equidistant from
two objects (points, lines or circles).";

Begin["‘Private‘"];

MedialEquations2D::coincident=
 "The objects {‘1‘, ‘2‘} are coincident; no finite number of medial
equations exist.";

Medial Equations

Medial Linear or Quadratic

MedialEquations2D[{obj1, obj2}] Constructs a list of lines or quadratics equidistant from
two objects (points, lines or circles).

MedialEquations2D[{obj1_,obj2_}] :=
 If[TrueQ[IsCoincident2D[obj1,obj2]],
 Message[MedialEquations2D::coincident,obj1,obj2];{},
 Medial$2D[Reverse[Sort[{obj1,obj2}]]]] /;
Is2D[obj1,{Point2D,Line2D,Circle2D}] &&
Is2D[obj2,{Point2D,Line2D,Circle2D}];

473

474 D2DMedial2D - Medial Loci

Medial Loci

Medial Loci

MedialLoci2D[{obj1, obj2}] Constructs a list of curves equidistant from two objects
(points, lines or circles).

MedialLoci2D[{obj1_,obj2_}] :=
 Union[
 Flatten[
 Map[If[Head[#]===Line2D,#,Loci2D[#]]&,
 MedialEquations2D[{obj1,obj2}]]]] /;
Is2D[obj1,{Point2D,Line2D,Circle2D}] &&
Is2D[obj2,{Point2D,Line2D,Circle2D}];

Point–Point

The private function Medial$2D constructs a list of one line equidistant from two points.

Medial$2D[{Point2D[{x1_,y1_}],Point2D[{x2_,y2_}]}] :=
 {Line2D[2*(x2-x1),2*(y2-y1),(x1^2+y1^2)-(x2^2+y2^2)]};

Point–Line

The private function Medial$2D constructs a list of one quadratic representing the curve
equidistant from a point and a line.

Medial$2D[{Point2D[{x1_,y1_}],Line2D[a2_,b2_,c2_]}] :=
 Module[{a,b,c,d,e,f,p,q,r},
 {p,q,r}={a2,b2,c2}/Sqrt[a2^2+b2^2];
 a=q^2;
 b=-2*p*q;
 c=p^2;
 d=-2*(x1+p*r);
 e=-2*(y1+q*r);
 f=x1^2+y1^2-r^2;
 {Quadratic2D[a,b,c,d,e,f]}];

Point–Circle

The private function Medial$2D constructs a list of one quadratic representing the curve
equidistant from a point and a circle.

D2DMedial2D - Medial Loci 475

Medial$2D[{Point2D[{x1_,y1_}],Circle2D[{h2_,k2_},r2_]}] :=
 Module[{R,a,b,c,d,e,f},
 R=(h2^2+k2^2)-(x1^2+y1^2)-r2^2;
 a=4((x1-h2)^2-r2^2);
 b=8*(x1-h2)*(y1-k2);
 c=4((y1-k2)^2-r2^2);
 d=4*(R*(x1-h2)+2*r2^2*x1);
 e=4*(R*(y1-k2)+2*r2^2*y1);
 f=R^2-4*r2^2*(x1^2+y1^2);
 {Quadratic2D[a,b,c,d,e,f]}];

Line–Line

The private function Medial$2D constructs a list of two lines equidistant from two lines (the
angle bisectors). If the lines are parallel, only one line is returned in the list.

Medial$2D[{L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_]}] :=
 Module[{a,b,c,f1,f2,s},
 f1=Sqrt[a1^2+b1^2];
 f2=Sqrt[a2^2+b2^2];
 a=a1*f2+s*a2*f1;
 b=b1*f2+s*b2*f1;
 c=c1*f2+s*c2*f1;
 If[IsParallel2D[L1,L2],
 If[IsZero2D[Sqrt[a^2+b^2] /. s->1],
 {Line2D[a,b,c]} /. s->-1,
 {Line2D[a,b,c]} /. s->1],
 Map[(Line2D[a,b,c] /. s->#)&,{-1,1}]]];

Line–Circle

The private function Medial$2D constructs a list of two quadratics representing curves equidis-
tant from a line and a circle.

Medial$2D[{Line2D[a1_,b1_,c1_],Circle2D[{h2_,k2_},r2_]}] :=
 Module[{a,b,c,d,e,f,p,q,r,s},
 {p,q,r}={a1,b1,c1}/Sqrt[a1^2+b1^2];
 a=q^2;
 b=-2*p*q;
 c=p^2;
 d=-2*(h2+p*(r+s*r2));
 e=-2*(k2+q*(r+s*r2));
 f=(h2^2+k2^2)-r2^2-r*(r+2*s*r2);
 Map[(Quadratic2D[a,b,c,d,e,f] /. s->#)&, {-1,1}]];

Circle–Circle

The private function Medial$2D constructs a list of two quadratics representing the curves
equidistant from two circles.

476 D2DMedial2D - Epilogue

Medial$2D[{Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]}] :=
 Module[{s,R,D1,D2,a,b,c,d,e,f},
 R=(r1-s*r2)^2;
 D1=h1^2+k1^2;
 D2=h2^2+k2^2;
 a=4*((h1-h2)^2-R);
 b=8*(h1-h2)*(k1-k2);
 c=4*((k1-k2)^2-R);
 d=4*(h1*(-D1+D2+R)+h2*(D1-D2+R));
 e=4*(k1*(-D1+D2+R)+k2*(D1-D2+R));
 f=(D1-D2)^2-2*(D1+D2)*R+R^2;
 Map[(Quadratic2D[a,b,c,d,e,f] /. s->#)&, {-1,1}]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DMedial2D‘" *)

D2DNumbers2D

The package D2DNumbers2D provides functions for special manipulations of real numbers.

Initialization

BeginPackage["D2DNumbers2D‘", {"D2DExpressions2D‘", "D2DMaster2D‘"}];

D2DNumbers2D::usage=
 "D2DNumbers2D is a package that provides utilities for manipulating
special numbers.";

ChopImaginary2D::usage=
 "ChopImaginary2D[expr,(tol)] removes tiny imaginary parts from complex
numbers; the default tolerance, if omitted, is 10^(-10).";

PrimaryAngle2D::usage=
 "PrimaryAngle2D[theta,period] normalizes an angle to a period; the
period must be Pi or 2Pi radians; if the period is omitted, it defaults to
2Pi.";

PrimaryAngleRange2D::usage=
 "PrimaryAngleRange2D[{t1,t2}] normalizes a range of angles to primary
angles.";

Begin["‘Private‘"];

Chop Imaginary Part

ChopImaginary2D[expr, (tol)] Removes the tiny imaginary parts of complex numbers in
the expression that are less than a given tolerance. The default tolerance, if omitted, is 10−10.

ChopImaginary2D[expr_,tol_:(10^(-10))] :=
 MapAll[If[IsTinyImaginary2D[#],Re[#],#]&,expr] /;
TrueQ[N[tol]>=0];

477

478 D2DNumbers2D - Epilogue

Primary Angle

PrimaryAngle2D[θ,2Pi | Pi] Adjusts an angle to a primary angle in the range 0 ≤ θ < p.
The period, p, may be Pi or 2Pi radians. The default period, if omitted, is 2Pi radians.

PrimaryAngle2D[theta_?IsScalar2D,period_:2Pi] :=
 Module[{theta1=theta},
 While[IsNegative2D[theta1],
 theta1+=period];
 While[IsZeroOrNegative2D[period-theta1],
 theta1-=period];
 If[Head[theta]===Real,N[theta1],theta1]] /;
(period==Pi || period==2Pi);

Primary Angle Range

PrimaryAngleRange2D[{θ1, θ2}] Normalizes a list of two angles so that the first is in the
range 0 ≤ φ1 < 2π, and the second is in the range φ1 < φ2 < (φ1 + 2π).

PrimaryAngleRange2D[{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{T1,T2,twoPi},
 T1=PrimaryAngle2D[t1];
 T2=PrimaryAngle2D[t2];
 twoPi=If[Head[T2]===Real,N[2Pi],2Pi];
 If[IsZeroOrNegative2D[T2-T1],
 {T1,T2+twoPi},
 {T1,T2}]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DNumbers2D‘" *)

D2DParabola2D

The package D2DParabola2D implements the Parabola2D object.

Initialization

BeginPackage["D2DParabola2D‘",{"D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DQuadratic2D‘", "D2DSegment2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DParabola2D::usage=
 "D2DParabola2D is a package that implements the Parabola2D object.";

FocalLength2D::usage=
 "FocalLength2D[parabola] returns the focal length of a parabola.";

Parabola2D::usage=
 "Parabola2D[{h,k},f,theta] is the standard form of a parabola that opens
to the right (when theta=0); {x,y} is the vertex point of the parabola; ’f’
is the distance from the vertex point to the focus; ’theta’ is the
counter-clockwise rotation (in radians) of the parabola about the vertex
point.";

Begin["‘Private‘"];

Description

Representation

Parabola2D[{h, k}, f, θ] Standard representation of a parabola in Descarta2D. The first
argument is a list of coordinates representing the position of the vertex of the parabola. The
second argument is a (positive) scalar representing the distance from the vertex to the focus
(the focal length). The third argument is the counter-clockwise rotation (in radians) of the
parabola about the vertex point.

479

480 D2DParabola2D - Description

Equation

Quadratic2D[parabola] Constructs the quadratic representing the equation of a parabola.

Quadratic2D[Parabola2D[{h_,k_},f_,theta_]] :=
 Rotate2D[Quadratic2D[0,0,1,-4*f,-2*k,k^2+4*h*f],theta,{h,k}];

Evaluation

Parabola2D[{h, k}, f, θ][t] Evaluates a parabola at a parameter t (−∞ < t < +∞).
The end points of the latus rectum are at t = −1 and t = 1.

Parabola2D[{h_,k_},f_,theta_][t_?IsScalar2D] :=
 Rotate2D[{h+f*t^2,k+2*f*t},theta,{h,k}];

Graphics

Provides graphics for a parabola by extending the Mathematica Display command. Executed
when the package is loaded.

SetDisplay2D[
 Parabola2D[{h_,k_},f_,t_][{t1_?IsScalar2D,t2_?IsScalar2D}],
 MakePrimitives2D[Parabola2D[{h,k},f,t],{t1,t2}]];

SetDisplay2D[
 Parabola2D[{h_,k_},f_,t_],
 MakePrimitives2D[Parabola2D[{h,k},f,t],
 CurveLimits2D[{0,0},
 Parabola2D[{0,0},f,0]]]];

Validation

Parabola2D[{h, k}, f, θ] Detects a parabola with imaginary arguments and returns the
$Failed symbol. If the imaginary parts are insignificant, they are removed.

Parabola2D::imaginary=
 "An invalid parabola of the form ’Parabola2D[‘1‘, ‘2‘, ‘3‘]’ has been
detected; the arguments cannot be imaginary.";

Parabola2D[{h_,k_},f_,theta_] :=
 (Parabola2D @@ ChopImaginary2D[Parabola$2D[{h,k},f,theta]]) /;
(FreeQ[{h,k,f,theta},_Pattern] && IsTinyImaginary2D[{h,k,f,theta}]);

Parabola2D[{h_,k_},f_,theta_] :=
 (Message[Parabola2D::imaginary,{h,k},f,theta];$Failed) /;
(FreeQ[{h,k,f,theta},_Pattern] && IsComplex2D[{h,k,f,theta},0]);

Parabola2D[{h, k}, f, θ] Detects a parabola with an invalid focal length. If the focal
length is negative, the parabola is rotated π radians to make it positive; if the focal length is
zero, the $Failed symbol is returned.

D2DParabola2D - Scalars 481

Parabola2D::invalid=
 "An invalid parabola of the form ’Parabola2D[‘1‘, ‘2‘, ‘3‘]’ has been
detected; the focal length cannot be zero.";

Parabola2D[{h_,k_},f_,theta_] :=
 (Message[Parabola2D::invalid,{h,k},f,theta];$Failed) /;
(FreeQ[{h,k,f,theta},_Pattern] && IsZero2D[f,0]);

Parabola2D[{h_,k_},f_,theta_] :=
 Parabola2D[{h,k},-f,theta+Pi] /;
(FreeQ[{h,k,f,theta},_Pattern] && IsNegative2D[f,0]);

Parabola2D[{h, k}, f, θ] Adjusts the rotation angle on a parabola to the range 0 ≤ θ < 2π.

Parabola2D[{h_,k_},f_,theta_] :=
 Parabola2D[{h,k},f,PrimaryAngle2D[theta]] /;
(FreeQ[{h,k,f,theta},_Pattern] && (theta=!=PrimaryAngle2D[theta]));

IsValid2D[parabola] Verifies that a parabola is syntactically valid.

IsValid2D[Parabola2D[{h_?IsScalar2D,k_?IsScalar2D},
 f_?IsScalar2D,
 theta_?IsScalar2D]] := True;

Scalars

Angle of Rotation

Angle2D[parabola] Returns the rotation angle of a parabola.

Angle2D[Parabola2D[{h_,k_},f_,theta_]] := theta;

Focal Length

FocalLength2D[parabola] Returns the focal length of a parabola.

FocalLength2D[Parabola2D[{h_,k_},f_,theta_]] := f;

Transformations

Reflect

Reflect2D[parabola, line] Reflects a parabola in a line.

Reflect2D[Parabola2D[{h_,k_},f_,theta_],L2:Line2D[a2_,b2_,c2_]] :=
 Parabola2D[Reflect2D[{h,k},L2],f,ReflectAngle2D[theta,L2]];

482 D2DParabola2D - Point Construction

Rotate

Rotate2D[parabola, θ, coords] Rotates a parabola by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Parabola2D[{h_,k_},f_,theta_],alpha_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Parabola2D[Rotate2D[{h,k},alpha,{x0,y0}],f,theta+alpha];

Scale

Scale2D[parabola, s, coords] Scales a parabola from a position given by coordinates. If
the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Parabola2D[{h_,k_},f_,theta_],s_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Parabola2D[Scale2D[{h,k},s,{x0,y0}],s*f,theta] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[parabola, {u, v}] Translates a parabola delta distance.

Translate2D[Parabola2D[{h_,k_},f_,theta_],{u_?IsScalar2D,v_?IsScalar2D}] :=
 Parabola2D[{h+u,k+v},f,theta];

Point Construction

Vertex Point

Point2D[parabola] Returns the vertex point of a parabola.

Point2D[Parabola2D[{h_,k_},f_,theta_]] := Point2D[{h,k}];

Pole Point

Point2D[line, parabola] Constructs the pole (point) of a polar (line) with respect to a
parabola. If the line is tangent to the parabola then the point is the point of tangency.

Point2D[L1:Line2D[a1_,b1_,c1_],P2:Parabola2D[{h_,k_},f_,theta_]] :=
 Point2D[L1,Quadratic2D[P2]];

D2DParabola2D - Line Construction 483

Line Construction

Axis Line

Line2D[parabola] Constructs a line that contains the axis of a parabola.

Line2D[Parabola2D[{h_,k_},f_,theta_]] :=
 Rotate2D[Line2D[0,1,-k],theta,{h,k}];

Polar Line

Line2D[point, parabola] Constructs the polar (line) of a pole (point) with respect to a
parabola. If the point is on the parabola then the line is tangent to the parabola at the point.

Line2D[P1:Point2D[{x1_,y1_}],P2:Parabola2D[{h_,k_},f_,theta_]] :=
 Line2D[P1,Quadratic2D[P2]];

Parabola Construction

Parabola from Focus/Directrix

Parabola2D[point, line] Constructs a parabola from a focus point and a directrix line.

Parabola2D::invptln=
 "The focus ‘1‘ is on the directrix ‘2‘; no valid parabola can be
constructed.";

Parabola2D[P1:Point2D[{x1_,y1_}],L2:Line2D[a2_,b2_,c2_]] :=
 Module[{pt},
 If[IsOn2D[P1,L2],
 Message[Parabola2D::invptln,P1,L2];$Failed,
 pt=Point2D[P1,L2];
 Parabola2D[Coordinates2D[Point2D[P1,pt]],
 Distance2D[P1,pt]/2,
 ArcTan[x1-XCoordinate2D[pt],
 y1-YCoordinate2D[pt]]]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DParabola2D‘" *)

D2DPencil2D

The package D2DPencil2D implements functions for computing families of Descarta2D curves
(lines, circles and quadratics).

Initialization
BeginPackage["D2DPencil2D‘",{"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DLine2D‘", "D2DQuadratic2D‘", "D2DPoint2D‘"}];

D2DPencil2D::usage=
 "D2DPencil2D is a package that construction pencil curves.";

Pencil2D::usage=
 "Pencil2D is a keyword used to specify the formation of a pencil of
objects.";

Begin["‘Private‘"];

Line Pencils

Pencil of Lines Through a Point

Line2D[point, θ, Pencil2D] Constructs a line parameterized by the variable θ representing
the pencil of lines through a point. The variable θ is the angle of rotation of the line.

Line2D[Point2D[{x_,y_}],t_?IsScalar2D,Pencil2D] :=
 Line2D[-Sin[t],Cos[t],x*Sin[t]-y*Cos[t]];

Pencil of Lines Through Intersection Point

Line2D[line, line, k, Pencil2D] Constructs a line parameterized by the variable k repre-
senting the pencil of lines through the intersection of two lines.

Line2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_],k_?IsScalar2D,Pencil2D] :=
 Line2D[(1-k)*a1+k*a2,(1-k)*b1+k*b2,(1-k)*c1+k*c2];

485

486 D2DPencil2D - Quadratic Pencils

Circle Pencils

Pencil of Circles from Two Circles

Circle2D[circle, circle, k, Pencil2D] Constructs a circle parameterized by the variable k
representing the pencil of circles having common intersection points with two given circles.

Circle2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_],
 k_?IsScalar2D,Pencil2D] :=
 Module[{H,K,R1,R2,R},
 H=(1-k)*h1+k*h2;
 K=(1-k)*k1+k*k2;
 R1=h1^2+k1^2-r1^2;
 R2=h2^2+k2^2-r2^2;
 R=Sqrt[H^2+K^2-(1-k)*R1-k*R2];
 Circle2D[{H,K},R]];

Quadratic Pencils

Pencil of Quadratics from Two Quadratics

Quadratic2D[quad, quad, k, Pencil2D] Constructs a quadratic parameterized by the
variable k representing the pencil of quadratics through the intersection points of two given
quadratics.

Quadratic2D[Quadratic2D[a1_,b1_,c1_,d1_,e1_,f1_],
 Quadratic2D[a2_,b2_,c2_,d2_,e2_,f2_],
 k_?IsScalar2D,Pencil2D] :=
 Quadratic2D[(1-k)*a1+k*a2,(1-k)*b1+k*b2,(1-k)*c1+k*c2,
 (1-k)*d1+k*d2,(1-k)*e1+k*e2,(1-k)*f1+k*f2];

Pencil of Quadratics from Four Lines

Quadratic2D[{line, line}, {line, line}, k, Pencil2D] Constructs a quadratic parameter-
ized by the variable k representing the pencil of quadratics passing through the four inter-
section points of four lines taken in predetermined pairs (1–2 with 3–4, and 1–3 with 2–4).

Quadratic2D[{L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_]},
 {L3:Line2D[a3_,b3_,c3_],L4:Line2D[a4_,b4_,c4_]},
 k_?IsScalar2D,Pencil2D] :=
 Module[{Q1,Q2},
 Q1=Quadratic2D[L1,L2];
 Q2=Quadratic2D[L3,L4];
 Quadratic2D[Q1,Q2,k,Pencil2D]];

D2DPencil2D - Epilogue 487

Pencil of Quadratics from Four Points

Quadratic2D[point, point, point, point, k, Pencil2D] Constructs a quadratic parame-
terized by the variable k representing the pencil of quadratics passing through four points.

Quadratic2D::coincident=
 "Two or more of the points are coincident; no valid quadratic pencil
exists.";

Quadratic2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],
 P3:Point2D[{x3_,y3_}],P4:Point2D[{x4_,y4_}],
 k_?IsScalar2D,Pencil2D] :=
 If[IsCoincident2D[{P1,P2,P3,P4}],
 Message[Quadratic2D::coincident];$Failed,
 Quadratic2D[{Line2D[P1,P2],Line2D[P3,P4]},
 {Line2D[P1,P3],Line2D[P2,P4]},k,Pencil2D]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DPencil2D‘" *)

D2DPoint2D

The package D2DPoint2D implements the Point2D object.

Initialization
BeginPackage["D2DPoint2D‘", {"D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DQuadratic2D‘",
"D2DSketch2D‘", "D2DTransform2D‘"}];

D2DPoint2D::usage=
 "D2DPoint2D is a package that implements the Point2D object.";

Coordinates2D::usage=
 "Coordinates2D[a1,a2,...] gives the {x,y} coordinates of the point
returned by Point2D[a1,a2,...].";

Distance2D::usage=
 "Distance2D[coords,coords] gives the distance between two positions
given by coordinates; Distance2D[point,pt | ln | cir] gives the distance
between a point and a point, line or circle.";

Point2D::usage=
 "Point2D[{x,y}] is the standard form of a point at coordinates {x,y}.";

XCoordinate2D::usage=
 "XCoordinate2D[point] gives the x-coordinate of a point;
XCoordinate2D[coords] gives the x-coordinate of a coordinate location.";

YCoordinate2D::usage=
 "YCoordinate2D[point] gives the y-coordinate of a point;
YCoordinate[coords] gives the y-coordinate of a coordinate location.";

Begin["‘Private‘"];

Description

Representation

{x, y} Standard representation of a location specified by (x, y) in Descarta2D.

489

490 D2DPoint2D - Scalars

Point2D[{x, y}] or Point2D[coords] Standard representation of a point in Descarta2D.
The coordinates define the (x, y) position of the point.

Graphics

Provides graphics for a point by extending the Mathematica Display command. Executed
when the package is loaded.

SetDisplay2D[
 Point2D[{x_,y_}],
 {AbsolutePointSize[4],Point[{x,y}]}];

Validation

Point2D[{x, y}] Detects that a point has imaginary coordinates and returns the $Failed
symbol. If the imaginary parts are insignificant, they are removed.

Point2D::imaginary=
 "An invalid point of the form ’Point2D[{‘1‘,‘2‘}]’ has been detected;
the coordinates of a point cannot be imaginary.";

Point2D[{x_,y_}] :=
 (Point2D @@ ChopImaginary2D[Point$2D[{x,y}]]) /;
(FreeQ[{x,y},_Pattern] && IsTinyImaginary2D[{x,y}]);

Point2D[{x_,y_}] :=
 (Message[Point2D::imaginary,x,y];$Failed) /;
(FreeQ[{x,y},_Pattern] && IsComplex2D[{x,y},0]);

IsValid2D[point] Verifies that a point is syntactically valid.

IsValid2D[Point2D[{x_?IsScalar2D,y_?IsScalar2D}]] := True;

Scalars

Coordinates Function

Coordinates2D[args..] Returns the {x, y} coordinates of Point2D[args..].

Coordinates2D[a___]:=
 Module[{pt},
 If[pt===$Failed,pt,{XCoordinate2D[pt],YCoordinate2D[pt]}] /;
 (pt=Point2D[a] /. Point2D[Point2D[x___]]->Point2D[x];
 (Is2D[pt,{Point2D}] || pt===$Failed))];

D2DPoint2D - Equations 491

Distance between Coordinates

Distance2D[coords, coords] Computes the distance between two locations defined by
coordinates.

Distance2D[{x1_?IsScalar2D,y1_?IsScalar2D},
 {x2_?IsScalar2D,y2_?IsScalar2D}] :=
 Sqrt[(x1-x2)^2+(y1-y2)^2];

Distance between Two Points

Distance2D[point, point] Computes the distance between two points.

Distance2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}]] :=
 Sqrt[(x1-x2)^2+(y1-y2)^2];

X-Coordinate (Abscissa)

XCoordinate2D[coords] Returns the x-coordinate.

XCoordinate2D[{x_?IsScalar2D,y_?IsScalar2D}] := x;

X-Coordinate of a Point (Abscissa)

XCoordinate2D[point] Returns the x-coordinate of a point.

XCoordinate2D[Point2D[{x_,y_}]] := x;

Y-Coordinate (Ordinate)

YCoordinate2D[coords] Returns the y-coordinate.

YCoordinate2D[{x_?IsScalar2D,y_?IsScalar2D}] := y;

Y-Coordinate of a Point (Ordinate)

YCoordinate2D[point] Returns the y-coordinate of a point.

YCoordinate2D[Point2D[{x_,y_}]] := y;

Equations

Quadratic

Quadratic2D[point] Constructs the quadratic representing the equation of a point (a point
circle).

Quadratic2D[Point2D[{x_,y_}]] := Quadratic2D[1,0,1,-2*x,-2*y,x^2+y^2];

492 D2DPoint2D - Point Construction

Transformations

Reflect

Reflect2D[point, line] Reflects a point in a line.

Reflect2D[Point2D[{x_,y_}],L:Line2D[a_,b_,c_]] :=
 Point2D[Reflect2D[{x,y},L]];

Rotate

Rotate2D[point, θ, coords] Rotates a point by an angle θ about a position specified by co-
ordinates. If the third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Rotate2D[Point2D[{x_,y_}],theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Point2D[Rotate2D[{x,y},theta,{h,k}]];

Scale

Scale2D[point, s, coords] Scales a point from a position given by coordinates. If the
argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Point2D[{x_,y_}],s_?IsScalar2D,
 {x0_?IsScalar2D,y0_?IsScalar2D}] :=
 Point2D[{x0,y0}+s*{x-x0,y-y0}] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[point,{u, v}] Translates a point delta distance.

Translate2D[Point2D[{x_,y_}],{u_?IsScalar2D,v_?IsScalar2D}] :=
 Point2D[{x+u,y+v}];

Point Construction

Point from Coordinates

Point2D[coords] Constructs a point from the x- and y-coordinates.

Point2D[x_?IsScalar2D,y_?IsScalar2D] := Point2D[{x,y}];

D2DPoint2D - Point Construction 493

Midpoint of Two Points

Point2D[point, point] Constructs the midpoint of two given points.

Point2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}]] := Point2D[{x1+x2,y1+y2}/2];

Offset Point from Two Points

Point2D[point, point, d] Constructs a point at a given distance from the first point on
the line joining the two given points.

Point2D::noDir=
 "Points {‘1‘, ‘2‘} are coincident and do not define a valid direction.";

Point2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],d_?IsScalar2D] :=
 Module[{d12=Sqrt[(x2-x1)^2+(y2-y1)^2]},
 If[IsZero2D[d12],
 Message[Point2D::noDir,P1,P2];$Failed,
 Point2D[{x1,y1}+{d*(x2-x1),d*(y2-y1)}/d12]]];

Point of Division

Point2D[point, point, r1, r2] Constructs a point which divides a line segment determined
by two points into the ratio r1/r2.

Point2D::noRatio=
 "The sum of the ratio numbers {‘1‘, ‘2‘} cannot be zero.";

Point2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],
 r1_?IsScalar2D,r2_?IsScalar2D] :=
 If[IsZero2D[r1+r2],
 Message[Point2D::noRatio,r1,r2];$Failed,
 Point2D[{x1*r2+x2*r1,y1*r2+y2*r1}/(r1+r2)]];

Point Offset Along a Line

Point2D[point, line, d] Constructs a point at a distance d from a given point in the
direction of a given line. If the given point is on the line then the offset point will also be on
the line. The distance may be positive or negative producing one of the two possible points.

Point2D[Point2D[{x1_,y1_}],Line2D[A2_,B2_,C2_],d_?IsScalar2D] :=
 Point2D[{x1,y1}+{-d*B2,d*A2}/Sqrt[A2^2+B2^2]];

Point Projected Onto a Line

Point2D[point, line] Constructs a point on a line by projecting a given point onto the
line.

Point2D[Point2D[{x1_,y1_}],Line2D[A2_,B2_,C2_]] :=
 Point2D[{(B2^2*x1-A2*B2*y1-A2*C2),
 (-A2*B2*x1+ A2^2*y1-B2*C2)}/(A2^2+B2^2)];

494 D2DPoint2D - Point Construction

General Offset Point

Point2D[point, line, {u, v}] Constructs a point offset from the origin of an inferred
coordinate system. The given point is on the +x-axis of the inferred coordinate system and
the given line is the y-axis. The point constructed has coordinates (u, v) in the inferred
coordinate system.

Point2D[P1:Point2D[{x1_,y1_}],L2:Line2D[A2_,B2_,C2_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Module[{a,b,d,D,x=x1,y=y1},
 If[IsOn2D[P1,L2],x=x1+A2;y=y1+B2];
 {a,b,d}={A2,B2,A2*x+B2*y+C2}/Sqrt[A2^2+B2^2];
 D=Sqrt[d^2];
 Point2D[{x-a*d+(a*u-b*v)*d/D,y-b*d+(a*v+b*u)*d/D}]];

Intersection Point of Two Lines

Point2D[line, line] Constructs the intersection point of two lines.

Point2D::coincident=
 "No unique intersection point exists; lines ‘1‘ and ‘2‘ are coincident.";

Point2D::parallel=
 "No intersection point exists; lines ‘1‘ and ‘2‘ are parallel.";

Point2D[L1:Line2D[A1_,B1_,C1_],L2:Line2D[A2_,B2_,C2_]] :=
 Which[
 IsCoincident2D[L1,L2],
 Message[Point2D::coincident,L1,L2];$Failed,
 IsParallel2D[L1,L2],
 Message[Point2D::parallel,L1,L2];$Failed,
 True,
 Point2D[{B1*C2-B2*C1,A2*C1-A1*C2}/(A1*B2-A2*B1)]];

Center Point of a Quadratic

Point2D[quad] Constructs the center point of a central quadratic.

Point2D::notCentral=
 "‘1‘ is not a central conic; it has no center point.";

Point2D[Q1:Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Module[{disc=b^2-4*a*c},
 If[IsZero2D[disc],
 Message[Point2D::notCentral,Q1];$Failed,
 Point2D[{2*c*d-b*e,2*a*e-b*d}/(b^2-4*a*c)]]];

Pole Point of a Quadratic

Point2D[line, quad] Constructs a pole (point) of a quadratic with respect to a polar (line).

D2DPoint2D - Epilogue 495

Point2D::noPole=
 "Since ‘1‘ passes through the center of the conic, no pole point
exists.";

Point2D[L1:Line2D[A1_,B1_,C1_],Q2:Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Module[{q12,q1,q2},
 q12=A1*(b*e-2*c*d)+B1*(b*d-2*a*e)+C1*(4*a*c-b^2);
 If[IsZero2D[q12],
 Message[Point2D::noPole,L1,Q2];$Failed,
 q1=A1*(4*c*f-e^2)+B1*(d*e-2*b*f)+C1*(b*e-2*c*d);
 q2=A1*(d*e-2*b*f)+B1*(4*a*f-d^2)+C1*(b*d-2*a*e);
 Point2D[{q1,q2}/q12]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DPoint2D‘" *)

D2DQuadratic2D

The package D2DQuadratic2D implements the Quadratic2D object.

Initialization

BeginPackage["D2DQuadratic2D‘", {"D2DEquations2D‘", "D2DExpressions2D‘",
"D2DLine2D‘", "D2DLoci2D‘", "D2DMaster2D‘", "D2DNumbers2D‘", "D2DPoint2D‘",
"D2DSketch2D‘", "D2DTransform2D‘"}];

D2DQuadratic2D::usage=
 "D2DQuadratic2D is a package providing support for the quadratic
object.";

Quadratic2D::usage=
 "Quadratic2D[a,b,c,d,e,f] represents the polynomial
a*x^2+b*x*y+c*y^2+d*x+e*y+f.";

Begin["‘Private‘"];

Description

Representation

Quadratic2D[a, b, c, d, e, f] A quadratic is used to represent a quadratic polynomial in
two unknowns. Quadratic2D[a, b, c, d, e, f] represents ax2 + bxy + cy2 + dx + ey + f .

Graphics

Provides graphics primitives for a quadratic by extending the Mathematica Display command.
Executed when the package is loaded.

SetDisplay2D[
 Quadratic2D[a_,b_,c_,d_,e_,f_],
 Loci2D[Quadratic2D[a,b,c,d,e,f]]];

497

498 D2DQuadratic2D - Transformations

Validation

Quadratic2D[a, b, c, d, e, f] Detects a quadratic with imaginary coefficients and returns
the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Quadratic2D::imaginary=
 "An invalid quadratic of the form ’Quadratic2D[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘,
‘6‘]’ has been detected; the arguments cannot be imaginary.";

Quadratic2D[a_,b_,c_,d_,e_,f_] :=
 (Quadratic2D @@ ChopImaginary2D[Quadratic$2D[a,b,c,d,e,f]]) /;
(FreeQ[{a,b,c,d,e,f},_Pattern] && IsTinyImaginary2D[{a,b,c,d,e,f}]);

Quadratic2D[a_,b_,c_,d_,e_,f_] :=
 (Message[Quadratic2D::imaginary,a,b,c,d,e,f];$Failed) /;
(FreeQ[{a,b,c,d,e,f},_Pattern] && IsComplex2D[{a,b,c,d,e,f},0]);

Quadratic2D[a, b, c, d, e, f] Returns the $Failed symbol when an invalid quadratic is
detected (the first five coefficients are zero). Also, normalizes quadratics with tiny coefficients
to improve numerical stability.

Quadratic2D::invalid=
 "An invalid quadratic of the form ’Quadratic2D[‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘,
‘6‘]’ was encountered; at least one of the first five coefficients must be
non-zero.";

Quadratic2D[a_,b_,c_,d_,e_,f_] :=
 (Message[Quadratic2D::invalid,a,b,c,d,e,f];$Failed) /;
(FreeQ[{a,b,c,d,e,f},_Pattern] && IsZero2D[{a,b,c,d,e},And,0]);

Quadratic2D[a_,b_,c_,d_,e_,f_] :=
 (Quadratic2D @@ ({a,b,c,d,e,f}/Sqrt[a^2+b^2+c^2+d^2+e^2])) /;
(FreeQ[{a,b,c,d,e,f},_Pattern] && IsZero2D[{a,b,c,d,e},And]);

IsValid2D[quad] Verifies that a quadratic is valid.

IsValid2D[
 Quadratic2D[a_?IsScalar2D,b_?IsScalar2D,
 c_?IsScalar2D,d_?IsScalar2D,
 e_?IsScalar2D,f_?IsScalar2D]] := True;

Transformations

Reflect

Reflect2D[quad, line] Reflects a quadratic in a line.

Reflect2D[Q:Quadratic2D[a_,b_,c_,d_,e_,f_],L:Line2D[p_,q_,r_]] :=
 Module[{eq1,eq2,x,y},
 eq1=Equation2D[Q,{x,y}];
 eq2=Reflect2D[eq1,{x,y},L];
 Quadratic2D[eq2,{x,y}]];

D2DQuadratic2D - Quadratic Construction 499

Rotate

Rotate2D[quad, θ, coords] Rotates a quadratic by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Q:Quadratic2D[a_,b_,c_,d_,e_,f_],theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Module[{eq1,eq2,x,y},
 eq1=Equation2D[Q,{x,y}];
 eq2=Rotate2D[eq1,{x,y},theta,{h,k}];
 Quadratic2D[eq2,{x,y}]];

Scale

Scale2D[quad, s, coords] Scales a quadratic from a position given by coordinates. If the
third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Q:Quadratic2D[a_,b_,c_,d_,e_,f_],s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Module[{eq1,eq2,x,y},
 eq1=Equation2D[Q,{x,y}];
 eq2=Scale2D[eq1,{x,y},s,{h,k}];
 Quadratic2D[eq2,{x,y}]] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[quad, {u, v}] Translates a quadratic delta distance.

Translate2D[Quadratic2D[a_,b_,c_,d_,e_,f_],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Quadratic2D[a,b,c,d-2*a*u-b*v,e-2*c*v-b*u,
 a*u^2+b*u*v+c*v^2-u*d-v*e+f];

Quadratic Construction

Simplify and FullSimplify

Simplify[quad] and FullSimplify[quad] Extends the Mathematica Simplify and
FullSimplify commands to simplify the coefficients of a quadratic by factoring out com-
mon factors. Executed when the package is loaded.

protected=Unprotect[Simplify];
Simplify[expr_?(!FreeQ[#,Quadratic2D[a_,b_,c_,d_,e_,f_]]&),
 opts___] :=
 Simplify[expr /. Quadratic2D[a_,b_,c_,d_,e_,f_] :>
 (Quadratic$2D @@
 SimplifyCoefficients2D[{a,b,c,d,e,f}]),
 opts] /. Quadratic$2D->Quadratic2D;
Protect[Evaluate[protected]];

500 D2DQuadratic2D - Quadratic Construction

protected=Unprotect[FullSimplify];
FullSimplify[expr_?(!FreeQ[#,Quadratic2D[a_,b_,c_,d_,e_,f_]]&),
 opts___] :=
 FullSimplify[expr /. Quadratic2D[a_,b_,c_,d_,e_,f_] :>
 (Quadratic$2D @@
 SimplifyCoefficients2D[{a,b,c,d,e,f}]),
 opts] /. Quadratic$2D->Quadratic2D;
Protect[Evaluate[protected]];

Normalize

Quadratic2D[quad] Normalizes the coefficients of a quadratic so that the sum of the
squares of the first five coefficients equals one.

Quadratic2D[Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 (Quadratic2D @@ ({a,b,c,d,e,f}/Sqrt[a^2+b^2+c^2+d^2+e^2]));

Quadratic from Equation/Polynomial

Quadratic2D[expr,{x, y}] Forms a quadratic from a polynomial or equation in two
unknowns. For example, the expression ax2 + bxy + cy2 + dx + ey + f == 0 will return
Quadratic2D[a, b, c, d, e, f]; the polynomial ax2 + bxy + cy2 + dx + ey + f will also return
Quadratic2D[a, b, c, d, e, f]. The x and y arguments are assumed to be the names of the
variables.

Quadratic2D::noPoly=
 "The expression ‘1‘ cannot be recognized as a quadratic polynomial or
equation in variables ‘2‘ and ‘3‘.";

Quadratic2D[expr_,{x_,y_}] :=
 Module[{eqn,a,b,c,d,e,f},
 eqn=If[Head[expr]===Equal,
 expr[[1]]-expr[[2]],
 expr] //Expand;
 a=Coefficient[eqn,x^2];
 b=Coefficient[eqn,x*y];
 c=Coefficient[eqn,y^2];
 d=Coefficient[Expand[eqn /. {x*y->0}],x];
 e=Coefficient[Expand[eqn /. {x*y->0}],y];
 f=(eqn /. {x->0,y->0}) //Expand;
 If[IsZero2D[a*x^2+b*x*y+c*y^2+d*x+e*y+f-eqn],
 Quadratic2D[a,b,c,d,e,f],
 Message[Quadratic2D::noPoly,expr,x,y];$Failed]];

Quadratic from Coordinates

Quadratic2D[coords] Forms a (degenerate) quadratic from a point given by a coordinate
list (a point circle).

Quadratic2D[{x_?IsScalar2D,y_?IsScalar2D}] :=
 Quadratic2D[1,0,1,-2*x,-2*y,x^2+y^2];

D2DQuadratic2D - Quadratic Construction 501

Quadratic Through Three Points

Quadratic2D[point,point, point] Constructs a quadratic (circle) that passes through three
points.

Quadratic2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],Point2D[{x3_,y3_}]] :=
 Module[{eqn,x,y},
 eqn=Det[{{ x^2+ y^2, x, y,1},
 {x1^2+y1^2,x1,y1,1},
 {x2^2+y2^2,x2,y2,1},
 {x3^2+y3^2,x3,y3,1}}];
 Quadratic2D[eqn,{x,y}]];

Quadratic Through Five Points

Quadratic2D[point,point, point, point, point] Constructs a quadratic that passes through
five points.

Quadratic2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],Point2D[{x3_,y3_}],
 Point2D[{x4_,y4_}],Point2D[{x5_,y5_}]] :=
 Module[{full,a,b,c,d,e,f},
 full={{x1^2, x2^2, x3^2, x4^2, x5^2},
 {x1*y1,x2*y2,x3*y3,x4*y4,x5*y5},
 {y1^2, y2^2, y3^2, y4^2, y5^2},
 {x1, x2, x3, x4, x5},
 {y1, y2, y3, y4, y5},
 {1, 1, 1, 1, 1}};
 {a,b,c,d,e,f}=Map[Det[Transpose[Drop[full,{#}]]]&,{1,2,3,4,5,6}];
 Quadratic2D[a,-b,c,-d,e,-f]];

Quadratic Tangent to Five Lines

Quadratic2D[line, line, line, line, line] Constructs a quadratic tangent to five lines. The
private function Reciprocal$2D constructs the reciprocal of a conic with respect to the unit
circle x2 + y2 = 1. If any of the lines pass through the origin, the entire configuration is
transformed to avoid the infinities involved.

Reciprocal$2D[Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Quadratic2D[4*c*f-e^2,2*d*e-4*b*f,4*a*f-d^2,
 4*c*d-2*b*e,4*a*e-2*d*b,4*a*c-b^2];

Quadratic2D[L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_],
 L3:Line2D[a3_,b3_,c3_],L4:Line2D[a4_,b4_,c4_],
 L5:Line2D[a5_,b5_,c5_]] :=
 Module[{u,v,lns,Q},
 {u,v}={Random[Integer,{-5,5}],Random[Integer,{-5,5}]};
 lns=Translate2D[{L1,L2,L3,L4,L5},{u,v}];
 Q=Quadratic2D[lns];
 Translate2D[Q,{-u,-v}]] /;
IsZero2D[{c1,c2,c3,c4,c5},Or];

502 D2DQuadratic2D - Quadratic Construction

Quadratic2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_],
 Line2D[a3_,b3_,c3_],Line2D[a4_,b4_,c4_],
 Line2D[a5_,b5_,c5_]] :=
 Reciprocal$2D[
 Quadratic2D[
 Point2D[{-a1/c1,-b1/c1}],Point2D[{-a2/c2,-b2/c2}],
 Point2D[{-a3/c3,-b3/c3}],Point2D[{-a4/c4,-b4/c4}],
 Point2D[{-a5/c5,-b5/c5}]]] /;
Not[IsZero2D[{c1,c2,c3,c4,c5},Or]];

Quadratic from Two Lines

Quadratic2D[line, line] Constructs a quadratic representing two lines multiplied together.

Quadratic2D[Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 Quadratic2D[a1*a2,a1*b2+a2*b1,b1*b2,a1*c2+a2*c1,b1*c2+b2*c1,c1*c2];

Quadratic from Focus/Directrix/Eccentricity

Quadratic2D[point, line, e] Constructs a quadratic from a focus point, directrix line and
eccentricity.

Quadratic2D::eccentricity=
 "The eccentricity ‘1‘ is invalid; the eccentricity must be positive.";

Quadratic2D[Point2D[{x1_,y1_}],L2:Line2D[a2_,b2_,c2_],e_?IsScalar2D] :=
 Module[{l,m,r},
 If[IsZeroOrNegative2D[e],
 Message[Quadratic2D::eccentricity,e];$Failed,
 {p,q,r}=List @@ Line2D[L2];
 Quadratic2D[e^2*p^2-1, 2*e^2*p*q, e^2*q^2-1,
 2*(x1+e^2*p*r), 2*(y1+e^2*q*r),e^2*r^2-x1^2-y1^2]]];

Quadratic Vertex Equation

Quadratic2D[point, fcLen, e, θ] Constructs a quadratic from the vertex point, focal chord
length, eccentricity and rotation angle. If the rotation angle is omitted, it defaults to zero.

Quadratic2D::invLen=
 "A non-positive focal chord length, ‘1‘, is invalid; no valid quadratic
can be constructed.";

Quadratic2D::invEcc=
 "A negative eccentricity, ‘1‘, is invalid; no valid quadratic can be
constructed.";

Quadratic2D[P1:Point2D[{x1_,y1_}],fcLen_?IsScalar2D,e_?IsScalar2D] :=
 Quadratic2D[P1,fcLen,e,0];

D2DQuadratic2D - Epilogue 503

Quadratic2D[Point2D[{x1_,y1_}],fcLen_?IsScalar2D,
 e_?IsScalar2D,theta_?IsScalar2D] :=
 Module[{eqn,x,y},
 Which[
 IsZeroOrNegative2D[fcLen],
 Message[Quadratic2D::invLen,fcLen];$Failed,
 IsNegative2D[e],
 Message[Quadratic2D::invEcc,e];$Failed,
 True,
 eqn=(y-y1)^2==fcLen*(x-x1)-(1-e^2)(x-x1)^2;
 Rotate2D[Quadratic2D[eqn,{x,y}],theta,{x1,y1}]]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DQuadratic2D‘" *)

D2DSegment2D

The package D2DSegment2D implements the Segment2D object.

Initialization
BeginPackage["D2DSegment2D‘", {"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘",
"D2DPoint2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DSegment2D::usage=
 "D2DSegment2D is a package providing support for line segments.";

Length2D::usage=
 "Length2D[lnseg] computes the length of a line segment.";

Segment2D::usage=
 "Segment2D[{x0,y0},{x1,y1}] is the standard form of a line segment with
end points {x0,y0} and {x1,y1}.";

Begin["‘Private‘"];

Description

Representation

Segment2D[{x0, y0}, {x1, y1}] Standard representation of a line segment in Descarta2D.
The coordinates {x0, y0} and {x1, y1} are start and end points, respectively, of the line
segment.

Evaluation

Segment2D[{x0, y0}, {x1, y1}][t] Evaluates a parameter, −∞ < t < ∞, on a line
segment. The parameter values 0 and 1 are the start and end points, respectively. Returns a
coordinate list {x, y}.

Segment2D[{x0_,y0_},{x1_,y1_}][t_?IsScalar2D] :=
 {x0+t*(x1-x0), y0+t*(y1-y0)};

505

506 D2DSegment2D - Description

Graphics

Provides graphics primitives for a line segment by extending the Mathematica Display com-
mand. Executed when the package is loaded.

SetDisplay2D[
 Segment2D[{x0_,y0_},{x1_,y1_}][{t1_?IsScalar2D,t2_?IsScalar2D}],
 Line[{Segment2D[{x0,y0},{x1,y1}][t1],
 Segment2D[{x0,y0},{x1,y1}][t2]}]];

SetDisplay2D[
 Segment2D[{x0_,y0_},{x1_,y1_}],
 Line[{{x0,y0},{x1,y1}}]];

Validation

Segment2D[{x0, y0}, {x1, y1}] Detects line segments with imaginary arguments and
returns the $Failed symbol. If the imaginary parts are insignificant, they are removed.

Segment2D::imaginary=
 "An invalid line segment of the form Segment2D[‘1‘,‘2‘] has been
detected; the arguments cannot be imaginary.";

Segment2D[{x0_,y0_},{x1_,y1_}] :=
 (Segment2D @@ ChopImaginary2D[Segment$2D[{x0,y0},{x1,y1}]]) /;
(FreeQ[{x0,y0,x1,y1},_Pattern] && IsTinyImaginary2D[{x0,y0,x1,y1}]);

Segment2D[{x0_,y0_},{x1_,y1_}] :=
 (Message[Segment2D::imaginary,{x0,y0},{x1,y1}];$Failed) /;
(FreeQ[{x0,y0,x1,y1},_Pattern] && IsComplex2D[{x0,y0,x1,y1},0]);

Segment2D[{x0, y0}, {x1, y1}] Returns the $Failed symbol for line segments with coin-
cident start and end points.

Segment2D::invalid=
 "An invalid line segment of the form Segment2D[‘1‘,‘2‘] has been
detected; the defining coordinates cannot be coincident.";

Segment2D[{x0_,y0_},{x1_,y1_}] :=
 (Message[Segment2D::invalid,{x0,y0},{x1,y1}];$Failed) /;
(FreeQ[{x0,y0,x1,y1},_Pattern] && IsCoincident2D[{x0,y0},{x1,y1}]);

IsValid2D[lnseg] Verifies that a line segment is syntactically valid.

IsValid2D[
 Segment2D[{x0_?IsScalar2D,y0_?IsScalar2D},
 {x1_?IsScalar2D,y1_?IsScalar2D}]] := True;

D2DSegment2D - Scalars 507

Scalars

Length

Length2D[lnseg] Computes the length of a line segment.

Length2D[Segment2D[{x0_,y0_},{x1_,y1_}]] := Sqrt[(x0-x1)^2+(y0-y1)^2];

Slope

Slope2D[lnseg] Computes the slope of a line segment.

Slope2D[Segment2D[{x0_,y0_},{x1_,y1_}]] :=
 If[IsZero2D[x1-x0],Infinity,(y1-y0)/(x1-x0)];

Transformations

Reflect

Reflect2D[lnseg, line] Reflects a line segment in a line.

Reflect2D[Segment2D[{x0_,y0_},{x1_,y1_}],L2:Line2D[a_,b_,c_]] :=
 Segment2D[Reflect2D[{x0,y0},L2],Reflect2D[{x1,y1},L2]];

Rotate

Rotate2D[lnseg, θ, coords] Rotates a line segment by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Segment2D[{x0_,y0_},{x1_,y1_}],theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Segment2D[Rotate2D[{x0,y0},theta,{h,k}],
 Rotate2D[{x1,y1},theta,{h,k}]];

Scale

Scale2D[lnseg, s, coords] Scales a line segment from a position given by coordinates. If
the third argument is omitted it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Segment2D[{x0_,y0_},{x1_,y1_}],s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Segment2D[Scale2D[{x0,y0},s,{h,k}],Scale2D[{x1,y1},s,{h,k}]] /;
Not[IsZeroOrNegative2D[s]];

508 D2DSegment2D - Line Construction

Translate

Translate2D[lnseg,{u, v}] Translates a line segment delta distance.

Translate2D[Segment2D[{x0_,y0_},{x1_,y1_}],{u_?IsScalar2D,v_?IsScalar2D}]
:=
 Segment2D[{x0+u,y0+v},{x1+u,y1+v}];

Point Construction

Midpoint

Point2D[lnseg] Constructs the midpoint of a line segment.

Point2D[Segment2D[{x0_,y0_},{x1_,y1_}]] := Point2D[{x0+x1,y0+y1}/2];

Line Segment Construction

Line Segment from Two Points

Segment2D[point, point] Constructs a line segment from two points.

Segment2D[Point2D[{x0_,y0_}],Point2D[{x1_,y1_}]] :=
 Segment2D[{x0,y0},{x1,y1}];

Line Construction

Line from Line Segment

Line2D[lnseg] Constructs a line containing a line segment.

Line2D[Segment2D[{x0_,y0_},{x1_,y1_}]] :=
 Line2D[-(y1-y0),(x1-x0),(x0*y1-x1*y0)];

Line Bisecting a Line Segment

Line2D[lnseg, Perpendicular2D] Constructs a line that is the perpendicular bisector of
a line segment.

Line2D[Segment2D[{x0_,y0_},{x1_,y1_}],Perpendicular2D] :=
 Line2D[2*(x1-x0),2*(y1-y0),x0^2-x1^2+y0^2-y1^2];

D2DSegment2D - Circle Construction 509

Circle Construction

Circle from Diameter Chord

Circle2D[lnseg] Constructs a circle from a line segment that is one of the circle’s diameter
chords.

Circle2D[Segment2D[{x0_,y0_},{x1_,y1_}]] :=
 Circle2D[{(x0+x1)/2,(y0+y1)/2},Sqrt[(x0-x1)^2+(y0-y1)^2]/2];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DSegment2D‘" *)

D2DSketch2D

The package D2DSketch2D provides the Sketch2D command which is the basic command for
plotting Descarta2D objects.

Initialization

BeginPackage["D2DSketch2D‘", {"D2DExpressions2D‘", "D2DMaster2D‘"}];

D2DSketch2D::usage=
 "D2DSketch2D is a package providing sketching functions.";

AskCurveLength2D::usage=
 "AskCurveLength2D[] returns the value of the option CurveLength2D for
the Sketch2D function (the approximate sketched length of an unbounded
curve).";

CurveLength2D::usage=
 "CurveLength2D->n is an option for the Sketch2D function to specify the
approximate sketched length of an unbounded curve.";

CurveLimits2D::usage=
 "CurveLimits2D[{x,y},curve] returns a list of two parameter values,
{-t,t}, so that the distance the point on the unbounded curve at the
parameter ’t’ is a distance CurveLength2D/2 from the given coordinates.";

IsDisplay2D::usage=
 "IsDisplay2D[object] returns ’True’ if the object can be displayed.";

MakePrimitives2D::usage=
 "MakePrimitives2D[object,{t1,t2}] returns a list of graphics primitives
between a pair of parameters for a parametrically defined curve.";

SetDisplay2D::usage=
 "SetDisplay2D[objPatt,objPrim] modifies the Display command to allow
plotting of a new object.";

Sketch2D::usage=
 "Sketch2D[objList,opts] sketches a list of geometric objects.";

Begin["‘Private‘"];

511

512 D2DSketch2D - Plotting

Utilities

Filter Options

The private function FilterOptions$2D filters a list of options and provides a Sequence of
valid options for the specified command.

FilterOptions$2D[command_Symbol,opts___] :=
 Module[{keywords = First /@ Options[command]},
 Sequence @@ Select[{opts},MemberQ[keywords,First[#]]&]];

Plotting

Set Display

SetDisplay2D[objPatt,objPrim] Modifies the Mathematica Display command to enable
plotting of a new object. The argument objPatt is a pattern which matches the standard
form of the object used in Descarta2D; the argument objPrim provides the commands that
generate the primitives required to plot the object.

SetAttributes[SetDisplay2D,HoldAll];
SetDisplay2D[objPatt_,objPrim_] :=
 Module[{protected},
 protected=Unprotect[Display];
 Display[ch_,prim_?(!FreeQ[#,objPatt]&),format___] :=
 Display[ch,prim /. {objPatt :> objPrim},format];
 Protect[Evaluate[protected]];
 IsDisplay2D[obj:objPatt] :=
 IsValid2D[obj /. h_[a___][t___]->h[a]] &&
 IsNumeric2D[obj /. h_[a___][t___]->h[a]] &&
 IsNumeric2D[obj /. h_[a___][t___]->{t}];
 Null];

Display Query

IsDisplay2D[object] Returns True if the object can be displayed and has parameters that
can be evaluated to real numbers; otherwise, returns False. The function SetDisplay2D,
above, provides the implementation of IsDisplay2D for each object after its display graphics
are defined.

IsDisplay2D[___] := False;

Curve Length

CurveLength2D->n The option CurveLength2D of the Sketch2D command specifies the
plotted length of an infinite curve and is measured from the midpoint to one of the plotted
end points of the curve.

D2DSketch2D - Plotting 513

Sketch2D::invalidLength=
 "Option CurveLength2D->‘1‘ is invalid; ’CurveLength2D’ must be positive;
the current value of CurveLength2D->‘2‘ will be retained.";

protected=Unprotect[SetOptions];
SetOptions[Sketch2D,opts1___,CurveLength2D->n_,opts2___] :=
 Message[Sketch2D::invalidLength,n,AskCurveLength2D[]] /;
(IsZeroOrNegative2D[n] || !IsReal2D[n]);
Protect[Evaluate[protected]];

AskCurveLength2D[] Returns the value of the Sketch2D command CurveLength2D option.

AskCurveLength2D[] := Options[Sketch2D,CurveLength2D][[1,2]];

Curve Parameter Limits

CurveLimits2D[{x,y}, curve] Returns a list of two parameter values {−t, t} on an
unbounded curve such that the points at the parameter values on the curve are at a distance
CurveLength2D/2 from the given base-point coordinates. This is a numerical function used
to support plotting, and, therefore, requires numerical arguments.

CurveLimits2D[p0:{x0_,y0_},crv_?IsValid2D] :=
 Module[{xt,yt,t,eqn,root},
 {xt,yt}=crv[t];
 eqn=Sqrt[(xt-x0)^2+(yt-y0)^2]==AskCurveLength2D[]/2;
 root=FindRoot[Evaluate[eqn],{t,1}];
 {-t,t} /. root[[1]]] /;
IsNumeric2D[{p0,crv},CurveLimits2D];

Make Graphics Primitives

MakePrimitives2D[curve,{t1, t2}] Provides graphics primitives for a parametrically
defined curve between two parameters.

MakePrimitives2D[crv_?IsValid2D,{t1_?IsScalar2D,t2_?IsScalar2D}] :=
 Module[{saveMsg,t,parPlot},
 saveMsg=Head[ParametricPlot::ppcom];Off[ParametricPlot::ppcom];
 parPlot=ParametricPlot[crv[t] //Evaluate,{t,t1,t2},
 DisplayFunction->Identity];
 If[saveMsg===String,On[ParametricPlot::ppcom]];
 parPlot[[1,1,1]]];

Sketch

Sketch2D[objList, opts] Plots a list of Descarta2D objects. The options may be any
options supported by the Mathematica Graphics command. The list is flattened before it is
plotted.

Sketch2D::noObj="No valid objects to sketch.";

514 D2DSketch2D - Epilogue

Sketch2D::notReal=
 "<‘1‘> object(s) cannot be sketched.";

Options[Sketch2D] =
 {Axes->True,
 Frame->True,
 AspectRatio->Automatic,
 PlotRange->Automatic,
 CurveLength2D->10};

Sketch2D[obj_List,opts___?OptionQ] :=
 Module[{sketchOptsList,inputOptsList,allOptsList,
 grOptsSequence,realObj,n,grafix},
 sketchOptsList=Options[Sketch2D];
 inputOptsList=Flatten[{opts}];
 SetOptions[Sketch2D,
 FilterOptions$2D[Sketch2D,
 Sequence @@ inputOptsList]];
 allOptsList=Flatten[Join[inputOptsList,sketchOptsList]];
 grOptsSequence=FilterOptions$2D[Graphics, Sequence @@ allOptsList];
 realObj=Select[Flatten[obj],IsDisplay2D] //N;
 If[(n=Length[Flatten[obj]]-Length[realObj])>0,
 Message[Sketch2D::notReal,n]];
 grafix=If[Length[realObj]>0,
 Show[Graphics[realObj,grOptsSequence]],
 Message[Sketch2D::noObj];Null];
 SetOptions[Sketch2D,Sequence @@ sketchOptsList];
 grafix];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DSketch2D‘" *)

D2DSolve2D

The package D2DSolve2D provides the Solve2D function which is a specialized version of the
Mathematica Solve and NSolve commands.

Initialization

BeginPackage["D2DSolve2D‘", {"D2DExpressions2D‘"}];

D2DSolve2D::usage=
 "D2DSolve2D is a package for solving equations.";

MaxSeconds2D::usage=
 "MaxSeconds2D is an option of the Solve2D function that time constrains
the solution of the equations.";

Solve2D::usage=
 "Solve2D[eqns,vars] solves a list of equations for variables in given in
a list.";

Options[Solve2D]=
 {MaxSeconds2D->30};

Begin["‘Private‘"];

Symbol Queries

Single Symbol Query

The private function IsSymbol$2D[expr, symbol] returns True if the expression contains a
given symbol; otherwise, returns False.

IsSymbol$2D[expr_,sym_Symbol] := MemberQ[Level[expr,{-1}],sym];

Symbol List Query

The private function IsSymbol$2D[expr, symbolList] returns True if the expression contains
any of the symbols in a list; otherwise, returns False.

IsSymbol$2D[expr_,sym_List] := Or @@ Map[IsSymbol$2D[expr,#]&,sym];

515

516 D2DSolve2D - Solve

Solve

Maximum Seconds Option

MaxSeconds2D->n The option MaxSeconds2D specifies the maximum number of seconds
allowed to solve equations using Solve2D. The private function AskMaxSeconds$2D returns
the current setting for MaxSeconds2D.

Solve2D::invalidTime=
 "Option MaxSeconds2D->‘1‘ is invalid; ’MaxSeconds2D’ must be positive;
the current value of MaxSeconds2D->‘2‘ will be retained.";

protected=Unprotect[SetOptions];
SetOptions[Solve2D,opts1___,MaxSeconds2D->n_,opts2___] :=
 Message[Solve2D::invalidTime,n,AskMaxSeconds$2D[]] /;
(IsZeroOrNegative2D[n] || !IsReal2D[n]);
Protect[Evaluate[protected]];

AskMaxSeconds$2D[] := Options[Solve2D,MaxSeconds2D][[1,2]];

Solve

Solve2D[eqnList, varsList, opts] Solves a list of equations for a list of variables. Uses
the Mathematica function NSolve if any real numbers are involved, or if the Mathematica
function N is in the evaluation stack; otherwise, uses the Mathematica function Solve. An
empty list is returned (and a warning message output) if the equations cannot be solved in
the number of seconds specified by the option MaxSeconds2D->n.

Solve2D::infinite=
 "An infinite number of solutions exist; only independent solutions will
be returned.";

Solve2D::time=
 "The equations could not be solved in MaxSeconds2D->‘1‘, an empty list
of solutions will be returned; using approximate numbers may produce a more
complete list of solutions.";

SimplifyEquation$2D[eqn_Equal] :=
 (eqn[[1]]//ExpandAll)==(eqn[[2]]//ExpandAll);

Solve2D[eqns:{HoldPattern[Equal[_,_]..]},
 vars:{_Symbol..},
 MaxSeconds2D->secs_] :=
 Module[{save,result},
 save=AskMaxSeconds$2D[];
 SetOptions[Solve2D,MaxSeconds2D->secs];
 result=Solve2D[eqns,vars];
 SetOptions[Solve2D,MaxSeconds2D->save];
 result];

D2DSolve2D - Epilogue 517

Solve2D[eqns:{HoldPattern[Equal[_,_]..]},vars:{_Symbol..}] :=
 Module[{save,ans},
 save=Head[Solve::svars];Off[Solve::svars];
 ans=TimeConstrained[
 If[IsApproximate2D[eqns],
 NSolve[Map[SimplifyEquation$2D,eqns]//N,vars,
 WorkingPrecision->$MachinePrecision],
 Solve[Map[SimplifyEquation$2D,eqns],vars]],
 AskMaxSeconds$2D[],
 Message[Solve2D::time,AskMaxSeconds$2D[]];{}];
 If[save===String,On[Solve::svars]];
 If[IsSymbol$2D[Map[(vars /. #)&,ans],vars],
 Message[Solve2D::infinite];
 Select[ans,Not[IsSymbol$2D[(vars /. #),vars]]&],
 ans]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DSolve2D‘" *)

D2DTangentCircles2D

The package D2DTangentCircles2D provides a variety of functions for constructing tangent
circles that satisfy three conditions. The conditions include passing through a given point,
center at a given point or on a given curve, tangent to a given line and tangent to a given
circle.

Initialization
BeginPackage["D2DTangentCircles2D‘", {"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DPoint2D‘",
"D2DSolve2D‘"}];

D2DTangentCircles2D::usage=
 "D2DTangentCircles2D is a package for constructing tangent circles.";

TangentCircles2D::usage=
 "TangentCircles2D[objList,(center),(radius)] constructs a list of
circles tangent to one, two or three objects (points, lines or circles);
optionally, the center may be constrained to a point, line or circle;
optionally, the radius may be specified; the total number of constraints
must be three (constraining the center to a point is two constraints).";

Begin["‘Private‘"];

Queries

Point, Line or Circle Query

The private function IsSimple$2D returns True if an object is a point, line or circle; otherwise,
returns False.

IsSimple$2D[obj_] := Is2D[obj,{Point2D,Line2D,Circle2D}];

Line or Circle Query

The private function IsSimpleCurve$2D returns True if an object is a line or a circle; otherwise,
returns False.

519

520 D2DTangentCircles2D - Tangent/On Equations

IsSimpleCurve$2D[obj_] := Is2D[obj,{Line2D,Circle2D}];

Tangent/On Equations

Point Tangent to a Circle (On Circle)

The private function TangentEquation$2D returns an equation constraining a point to be on
a circle.

TangentEquation$2D[Point2D[{x1_,y1_}],Circle2D[{h2_,k2_},r2_]] :=
 (x1-h2)^2+(y1-k2)^2==r2^2;

Line Tangent to a Circle

The private function TangentEquation$2D returns an equation constraining a line to be
tangent to a circle.

TangentEquation$2D[Line2D[a1_,b1_,c1_],Circle2D[{h2_,k2_},r2_]] :=
 (a1^2+b1^2)*r2^2==(a1*h2+b1*k2+c1)^2;

Circle Tangent to a Circle

The private function TangentEquation$2D returns an equation constraining two circles to be
tangent.

TangentEquation$2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
 ((h1-h2)^2+(k1-k2)^2-(r1-r2)^2)*((h1-h2)^2+(k1-k2)^2-(r1+r2)^2) == 0;

Point on a Point

The private function OnEquation$2D returns a pair of equations constraining two points to
be coincident.

OnEquation$2D[{x1_,y1_},Point2D[{x2_,y2_}]] := {x1==x2, y1==y2};

Point on a Line

The private function OnEquation$2D returns equation constraining a point to be on a line.

OnEquation$2D[{x1_,y1_},Line2D[a2_,b2_,c2_]] := {a2*x1+b2*y1+c2==0};

Point on a Circle

The private function OnEquation$2D returns an equation constraining a point to be on a
circle.

OnEquation$2D[{x1_,y1_},Circle2D[{h2_,k2_},r2_]] :=
 {(x1-h2)^2+(y1-k2)^2==r2^2};

D2DTangentCircles2D - General Circle Tangency 521

General Circle Tangency

Tangent Circles

The private function TangentCircles$2D is a general function that constructs a list of circles
tangent to a list of one, two or three objects, optionally with center on a given object, optionally
with a given radius.

TangentCircles$2D[obj_List,cenObj_,radius_] :=
 Module[{h,k,r,c1,eq1,eq2,eq3,ans,circles},
 c1=Circle2D[{h,k},r];
 eq1=Map[TangentEquation$2D[#,c1]&,obj];
 eq2=If[cenObj===Null,{},OnEquation$2D[{h,k},cenObj]];
 eq3=If[radius===Null,{},{r==radius}];
 ans=Solve2D[Join[eq1,eq2,eq3],{h,k,r}];
 ans=Select[ans,Not[IsComplex2D[{h,k,r} /. #]]&];
 ans=Select[ans,Not[IsZeroOrNegative2D[r /. #]]&];
 circles=Map[(c1 /. #)&, ans];
 Complement[Union[circles],obj]];

Tangent Circle Construction

Tangent Object, Center Point

TangentCircles2D[{pt | ln | cir}, point] Constructs a list of circles tangent to a point, line
or circle and passing through a point.

TangentCircles2D[{obj_?IsSimple$2D},P:Point2D[{x_,y_}]] :=
 TangentCircles$2D[{obj},P,Null];

Tangent Object, Center on Object, Radius

TangentCircles2D[{pt | ln | cir}, ln | cir, r] Constructs a list of circles tangent to a point,
line or circle, with center point on a line or circle and with a given radius.

TangentCircles2D[{obj1_?IsSimple$2D},obj2_?IsSimpleCurve$2D,
 r3_?IsScalar2D] :=
 TangentCircles$2D[{obj1},obj2,r3] /;
Not[IsZeroOrNegative2D[r3]];

Two Tangent Objects, Center On Object

TangentCircles2D[{pt | ln | cir, pt | ln | cir}, ln | cir] Constructs a list of circles tangent
to two objects (points, lines or circles) centered on a line or circle.

TangentCircles2D[{obj1_?IsSimple$2D,obj2_?IsSimple$2D},
 obj3_?IsSimpleCurve$2D] :=
 TangentCircles$2D[{obj1,obj2},obj3,Null];

522 D2DTangentCircles2D - Epilogue

Two Tangent Objects, Radius

TangentCircles2D[{pt | ln | cir, point | ln | cir}, r] Constructs a list of circles tangent to
two objects (points, lines or circles) with a given radius.

TangentCircles2D[{obj1_?IsSimple$2D,obj2_?IsSimple$2D},
 r3_?IsScalar2D] :=
 TangentCircles$2D[{obj1,obj2},Null,r3] /;
Not[IsZeroOrNegative2D[r3]];

Three Tangent Objects

TangentCircles2D[{pt | ln | cir, pt | ln | cir, pt | ln | cir}] Constructs a list of circles tangent
to three objects (points, lines or circles).

TangentCircles2D[{obj1_?IsSimple$2D,obj2_?IsSimple$2D,
 obj3_?IsSimple$2D}] :=
 TangentCircles$2D[{obj1,obj2,obj3},Null,Null];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentCircles2D‘" *)

D2DTangentConics2D

The package D2DTangentConics2D provides functions for constructing conics and quadratics
that satisfy five conditions. Each condition may be either passing through a given point or
tangent to a given line.

Initialization
BeginPackage["D2DTangentConics2D‘",{"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DExpressions2D‘", "D2DGeometry2D‘", "D2DHyperbola2D‘", "D2DLine2D‘",
"D2DLoci2D‘", "D2DMaster2D‘", "D2DParabola2D‘", "D2DPencil2D‘",
"D2DPoint2D‘", "D2DQuadratic2D‘", "D2DSolve2D‘", "D2DTransform2D‘"}];

D2DTangentConics2D::usage=
 "D2DTangentConics2D is a package for constructing tangent conics and
quadratics.";

TangentConics2D::usage=
 "TangentConics2D[{obj1,obj2,obj3,obj4,obj5}] constructs list of conic
curves given five objects; the objects may be any combination of points and
lines; the conics will pass through the given points and be tangent to the
given lines.";

TangentQuadratics2D::usage=
 "TangentQuadratics2D[{obj1,obj2,obj3,obj4,obj5}] constructs list of
quadratics given five objects; the objects may be any combination of points
and lines; the quadratics will pass through the given points and be tangent
to the given lines.";

Begin["‘Private‘"];

Error Messages

General Error Messages

TangentConics2D::coincident=
 "Two or more of the defining points or lines are coincident; no proper
conic can be constructed.";

523

524 D2DTangentConics2D - Utilities

TangentConics2D::collinear=
 "Three or more of the defining points are collinear; no proper conic can
be constructed.";

TangentConics2D::concurrent=
 "Three or more of the tangent lines are concurrent; no proper conic can
be constructed.";

TangentConics2D::linesThru=
 "One of the points is on more than one of the tangent lines; no proper
conic can be constructed.";

TangentConics2D::parallel=
 "Three or more of the defining lines are parallel; no proper conic can
be constructed.";

TangentConics2D::pointsOn=
 "Two or more of the points are on a tangent line; no proper conic can be
constructed.";

Utilities

Numeric Computations

The private function N$2D numerically normalizes lines and quadratics (or lists of such objects)
if approximate numerical computations are underway; otherwise, no action is taken.

N$2D[expr_List] := Map[N$2D,expr];

N$2D[L:Line2D[a_,b_,c_]] :=
 If[IsApproximate2D[L],Line2D[N[L]],L];

N$2D[P:Point2D[{x_,y_}]] :=
 If[IsApproximate2D[P],N[P],P];

N$2D[Q:Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 If[IsApproximate2D[Q],Quadratic2D[N[Q]],Q];

Number of Points on a Line

The private function CountPointsOn$2D returns the number of points from a given list that
are on a given line.

CountPointsOn$2D[pts_List,L:Line2D[a_,b_,c_]] :=
 Count[Map[IsOn2D[#,L]&, pts], True];

The private function MaxPointsOn$2D returns the maximum number of points from a given
list that are on any of the lines in a list.

MaxPointsOn$2D[pts_List,lns_List] :=
 If[Length[pts]<1 || Length[lns]<1,
 0,
 Max @@ Map[CountPointsOn$2D[pts,#]&,lns]];

D2DTangentConics2D - Utilities 525

Number of Lines Through a Point

The private function CountLinesThru$2D returns the number of lines from a given list that
pass through a given point.

CountLinesThru$2D[lns_List,P:Point2D[{x_,y_}]] :=
 Count[Map[IsOn2D[P,#]&, lns], True];

The private function MaxLinesThru$2D returns the maximum number of lines from a given
list that pass through any of the points in a list.

MaxLinesThru$2D[lns_List,pts_List] :=
 If[Length[lns]<1 || Length[pts]<1,
 0,
 Max @@ Map[CountLinesThru$2D[lns,#]&,pts]];

Validity Queries

The private function ValidObjects$2D verifies that the object list contains valid objects.
The function private ValidConfigurationQ$2D verifies that the configuration of the objects
is valid.

ValidObjectsQ$2D[obj_List,funcName_] :=
 ((Count[Map[IsValid2D,obj],True]==
 Count[Map[Is2D[#,{Point2D,Line2D}]&,obj],True]==
 Length[obj]==5) &&
 IsNumeric2D[obj,funcName]);

ValidConfigurationQ$2D[obj_List] :=
 Module[{pts,lns},
 pts=Select[N$2D[obj],Is2D[#,{Point2D}]&];
 lns=Select[N$2D[obj],Is2D[#,{Line2D}]&];
 Which[
 IsCoincident2D[pts],
 Message[TangentConics2D::coincident];False,
 IsCoincident2D[lns],
 Message[TangentConics2D::coincident];False,
 IsCollinear2D[pts],
 Message[TangentConics2D::collinear];False,
 IsConcurrent2D[lns],
 Message[TangentConics2D::concurrent];False,
 IsTripleParallel2D[lns],
 Message[TangentConics2D::parallel];False,
 MaxPointsOn$2D[pts,lns]>1,
 Message[TangentConics2D::pointsOn];False,
 MaxLinesThru$2D[lns,pts]>1,
 Message[TangentConics2D::linesThru];False,
 True,
 True]];

526 D2DTangentConics2D - Quadratic and Conic Construction

Polynomials

Point on Line

The private function Polynomial$2D forms a polynomial by substituting the coordinates of a
point into the equation of a line.

Polynomial$2D[Point2D[{x_,y_}],Line2D[a_,b_,c_]] := a*x+b*y+c;

Point on Quadratic

The private function Polynomial$2D forms a polynomial by substituting the coordinates of a
point into a quadratic equation.

Polynomial$2D[Point2D[{x_,y_}],Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 a*x^2+b*x*y+c*y^2+d*x+e*y+f;

Line Tangent to Quadratic

The private function Polynomial$2D forms a polynomial of coefficients from a line and a
quadratic when the line is tangent to the quadratic.

Polynomial$2D[Line2D[p_,q_,r_],Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 ((4*c*f-e^2)*p^2+(4*a*f-d^2)*q^2+(4*a*c-b^2)*r^2+
 2*(b*d-2*a*e)*q*r+2*(b*e-2*c*d)*p*r+2*(d*e-2*b*f)*p*q);

Quadratic and Conic Construction

Quadratic Tangent to Five Objects

TangentQuadratics2D[{obj1, obj2, obj3, obj4, obj5}] Constructs a list of conics tangent
to five objects. The objects may be any combination of points or lines.

TangentQuadratics2D[obj_List] :=
 If[ValidConfigurationQ$2D[obj],
 TangentQuadratic$2D[obj//N$2D],
 {}] /;
ValidObjectsQ$2D[obj,TangentQuadratics2D];

Conic Tangent to Five Objects

TangentConics2D[{obj1, obj2, obj3, obj4, obj5}] Constructs a list of conics tangent to five
objects. The objects may be any combination of points or lines.

D2DTangentConics2D - Quadratic and Conic Construction 527

TangentConics2D[obj_List] :=
 Module[{Q,conics},
 If[ValidConfigurationQ$2D[obj],
 Q=TangentQuadratics2D[obj//N$2D];
 conics=Flatten[Map[Loci2D,Q]];
 Union[
 Select[conics,
 Is2D[#,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D}]&]],
 {}]] /;
ValidObjectsQ$2D[obj,TangentConics2D];

Preprocess Arguments

Preprocesses the arguments to private function TangentQuadratic$2D to match the imple-
mented functions.

TangentQuadratic$2D[{a_,b_,c_,d_,e_}] :=
 TangentQuadratic$2D[a,b,c,d,e];

TangentQuadratic$2D[a___,L1_Line2D,b___,L2_Line2D,c___,L3_Line2D,d___] :=
 TangentInverse$2D[{L1,L2,L3,a,b,c,d}];

TangentQuadratic$2D[a___,L_Line2D,b___,P_Point2D,c___] :=
 TangentQuadratic$2D[a,P,b,c,L];

TangentQuadratic$2D[a___,P_Point2D,b___,L_Line2D,c___] :=
 (TangentQuadratic$2D[{P,L},a,b,c]) /;
IsOn2D[P,L];

Five Points

Private function that constructs a list containing one quadratic passing through five points.

TangentQuadratic$2D[P1_,P2_,P3_,P4_,P5_] :=
 {Quadratic2D[P1,P2,P3,P4,P5] //N$2D};

Four Points, One Line (No Points on Line)

Private function that constructs a list containing two quadratics passing through four points
and tangent to one line. None of the points can be on the tangent line.

TangentQuadratic$2D[P1_Point2D,P2_Point2D,P3_Point2D,P4_Point2D,
 L5_Line2D] :=
 Module[{Q,k,allRoots,realRoots},
 Q=Quadratic2D[{Line2D[P1,P2],Line2D[P3,P4]},
 {Line2D[P1,P3],Line2D[P2,P4]},k,Pencil2D] //N$2D;
 allRoots=Solve2D[{Polynomial$2D[L5,Q]==0},{k}];
 realRoots=Select[allRoots,IsReal2D[k /. #]&];
 N$2D[Map[(Q /. #)&, realRoots]]];

528 D2DTangentConics2D - Quadratic and Conic Construction

Four Points, One Line (One Point on Line)

Private function that constructs a list containing one quadratic passing through four points
and tangent to one line. One of the points must be on the tangent line.

TangentQuadratic$2D[{P1_Point2D,L1_Line2D},P2_Point2D,P3_Point2D,
 Point2D[{x4_,y4_}]] :=
 Module[{x,y,L12,L13,L23,ln,k},
 L12=Polynomial$2D[Point2D[{x,y}],Line2D[P1,P2]];
 L13=Polynomial$2D[Point2D[{x,y}],Line2D[P1,P3]];
 L23=Polynomial$2D[Point2D[{x,y}],Line2D[P2,P3]];
 ln=Polynomial$2D[Point2D[{x,y}],L1];
 k=(L12*L13)/(ln*L23) /. {x->x4,y->y4};
 {Quadratic2D[L12*L13-k*ln*L23,{x,y}] //N$2D}];

Three Points, Two Lines (No Points on Lines)

Private function that constructs a list containing four quadratics given three points and two
tangent lines. None of the points can be on the tangent lines.

TangentQuadratic$2D[Point2D[{0,0}],Point2D[{x2_,y2_}],Point2D[{x3_,y3_}],
 Line2D[a1_,b1_,c1_],Line2D[a2_,b2_,c2_]] :=
 Module[{p11,p12,p13,p21,p22,p23,p31,p32,p33,a,b,ans,k,Q},
 p11=c1; p12=a1*x2+b1*y2+c1; p13=a1*x3+b1*y3+c1;
 p21=c2; p22=a2*x2+b2*y2+c2; p23=a2*x3+b2*y3+c2;
 p31=1; p32=a*x2+b*y2+1; p33=a*x3+b*y3+1;
 ans=Solve2D[{p11*p21*p32^2==p12*p22*p31^2,
 p12*p22*p33^2==p13*p23*p32^2},{a,b}];
 ans=Select[ans,(IsReal2D[a /. #] && IsReal2D[b /. #])&];
 k=c1*c2;
 Q=(a1*x+b1*y+c1)*(a2*x+b2*y+c2)-k*(a*x+b*y+1)^2;
 N$2D[Map[Quadratic2D[(Q /. #),{x,y}]&,ans]]];

TangentQuadratic$2D[P1:Point2D[{x1_,y1_}],P2:Point2D[{x2_,y2_}],
 P3:Point2D[{x3_,y3_}],
 L1:Line2D[a1_,b1_,c1_],L2:Line2D[a2_,b2_,c2_]] :=
 Module[{pt2,pt3,ln1,ln2,Q},
 {pt2,pt3,ln1,ln2}=Translate2D[{P2,P3,L1,L2},{-x1,-y1}] //N$2D;
 Q=TangentQuadratic$2D[Point2D[{0,0}],pt2,pt3,ln1,ln2];
 N$2D[Translate2D[Q,{x1,y1}]]];

Three Points, Two Lines (One Point on Line)

Private function that constructs a list containing up to two quadratics through three points,
tangent to two lines when one of the points is on a tangent line.

TangentQuadratic$2D[{P1_Point2D,L1_Line2D},P2_Point2D,P3_Point2D,
 L4_Line2D] :=
 Module[{Q,k,allRoots,roots},
 Q=Quadratic2D[{L1,Line2D[P2,P3]},
 {Line2D[P1,P2],Line2D[P1,P3]},k,Pencil2D];
 allRoots=Solve2D[{Polynomial$2D[L4,Q]==0},{k}];
 roots=Select[allRoots,IsReal2D[k /. #]&];
 N$2D[Map[(Q /. #)&,roots]]];

D2DTangentConics2D - Quadratic and Conic Construction 529

Three Points, Two Lines (Two Points On Lines)

Private function that constructs a list containing up to one quadratic through three points,
tangent to two lines when two of the points are on the tangent lines (one point on each tangent
line).

TangentQuadratic$2D[{P1_Point2D,L1_Line2D},
 {P3_Point2D,L3_Line2D},P2:Point2D[{x2_,y2_}]] :=
 Module[{x,y,ln13,ln1,ln3,k},
 ln13=Polynomial$2D[Point2D[{x,y}],Line2D[P1,P3]];
 ln1=Polynomial$2D[Point2D[{x,y}],L1];
 ln3=Polynomial$2D[Point2D[{x,y}],L3];
 k=(ln1*ln3)/ln13^2 /. {x->x2,y->y2};
 {Quadratic2D[ln1*ln3-k*ln13^2,{x,y}] //N$2D}];

Reciprocal Method

Private function that constructs a list containing quadratics given five elements (points or
tangent lines). The method of reciprocals is used. Using the reciprocal method converts a
case with more than two tangent lines to its reciprocal, which has two or fewer tangent lines.

TangentInverse$2D[origObjs_List] :=
 Module[{offset,objsTrans,invertedObjs,Q},
 offset=SaveOffset$2D[origObjs];
 objsTrans=Translate2D[origObjs,-offset];
 invertedObjs=Map[Invert$2D,objsTrans] //N$2D;
 Q=TangentQuadratic$2D[invertedObjs];
 Translate2D[Map[Reciprocal$2D,Q],offset] //N$2D];

Private functions that construct the pole point of a line with respect to a unit circle and the
polar line of a point with respect to a unit circle.

Invert$2D[Line2D[a_,b_,c_]] := Point2D[{-a/c,-b/c}];

Invert$2D[Point2D[{x_,y_}]] := Line2D[x,y,-1];

Private function that constructs the reciprocal quadratic of a quadratic with respect to a unit
circle.

Reciprocal$2D[Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 Quadratic2D[4*c*f-e^2,2*d*e-4*b*f,4*a*f-d^2,
 4*c*d-2*b*e,4*a*e-2*d*b,4*a*c-b^2] //N$2D;

Private functions that determine an offset that will safely position a list of objects insuring
that no line passes through the center of inversion and no point is coincident with the center
of inversion.

InvalidOffsetQ$2D[P1:Point2D[{x1_,y1_}],offset:{dx_,dy_}] :=
 IsCoincident2D[P1,Point2D[offset]];

530 D2DTangentConics2D - Epilogue

InvalidOffsetQ$2D[L1:Line2D[a1_,b1_,c1_],offset:{dx_,dy_}] :=
 IsOn2D[Point2D[offset],L1];

SaveOffset$2D[obj_List] :=
 Module[{offset={0,0}},
 While[MemberQ[Map[InvalidOffsetQ$2D[#,offset]&,obj],
 True],
 offset={Random[Integer,{-4,4}],
 Random[Integer,{-4,4}]}];
 offset];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentConics2D‘" *)

D2DTangentLines2D

The package D2DTangentLines2D provides functions for computing lines that are tangent to
curves using a variety of defining conditions.

Initialization

BeginPackage["D2DTangentLines2D‘", {"D2DCircle2D‘", "D2DConic2D‘",
"D2DEllipse2D‘", "D2DEquations2D‘", "D2DExpressions2D‘", "D2DGeometry2D‘",
"D2DHyperbola2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DParabola2D‘",
"D2DPoint2D‘", "D2DQuadratic2D‘", "D2DSegment2D‘", "D2DSolve2D‘",
"D2DTangentPoints2D‘", "D2DTransform2D‘"}];

D2DTangentLines2D::usage=
 "D2DTangentLines2D is a package for constructing tangent lines and line
segments.";

TangentEquation2D::usage=
 "TangentEquation2D[line, quad] constructs an equation involving the
coefficients of a line and a quadratic constraining the line to be tangent
to the quadratic.";

TangentLines2D::usage=
 "TangentLines2D[point, curve] constructs a list of lines through a point
and tangent to a second-degree curve; TangentLines2D[line, curve,
Parallel2D] constructs a list of tangent lines parallel to a given line;
TangentLines2D[line, curve, Perpendicular2D] constructs a list of tangent
lines perpendicular to a given line; TangentLines2D[curve, curve]
constructs a list of lines tangent to two curves.";

TangentSegments2D::usage=
 "TangentSegments2D[curve,curve] constructs a list of line segments
tangent to two curves.";

Begin["‘Private‘"];

531

532 D2DTangentLines2D - Line Construction

Tangent Equation

Line Tangent to a Quadratic

TangentEquation2D[line,quad] Forms an equation between the coefficients of a line and
a quadratic constraining the line to be tangent to the quadratic.

TangentEquation2D[Line2D[p_,q_,r_],
 Quadratic2D[a_,b_,c_,d_,e_,f_]] :=
 ((4*c*f-e^2)*p^2+(4*a*f-d^2)*q^2+(4*a*c-b^2)*r^2+
 2*(b*d-2*a*e)*q*r+2*(b*e-2*c*d)*p*r+2*(d*e-2*b*f)*p*q)==0;

Line Construction

Lines Through a Point Tangent to a Circle

TangentLines2D[point,circle] Constructs a list containing up to two lines through a point
and tangent to a circle.

TangentLines2D[Point2D[{x1_,y1_}],Circle2D[{h2_,k2_},r2_]] :=
 Union[TangentLine$2D[{x1,y1},0,{h2,k2},r2,1]];

Lines Through a Point Tangent to a Curve

TangentLines2D[point, curve] Constructs a list containing up to two lines through a point
and tangent to a curve or quadratic.

TangentLines2D[P1:Point2D[{x1_,y1_}],crv2_] :=
 Module[{pts},
 pts=TangentPoints2D[P1,crv2];
 Which[
 pts=={}, {},
 Length[pts]==1, {Line2D[P1,crv2]},
 True, Map[Line2D[P1,#]&,pts]]] /;
Is2D[crv2,{Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

Parallel or Perpendicular Tangent Lines

TangentLines2D[line, curve, Parallel2D | Perpendicular2D] Constructs a list containing
up to two lines which are parallel or perpendicular to a given line and tangent to a conic
curve quadratic. If the Parallel2D | Perpendicular2D keyword is omitted, the default is
Parallel2D.

D2DTangentLines2D - Line Construction 533

TangentLines2D[L:Line2D[p_,q_,r_],Q:Quadratic2D[a_,b_,c_,d_,e_,f_],
 Parallel2D] :=
 Module[{z,eq1,R,ans},
 z=R*(-b^2+4*a*c)+q*(b*d-2*a*e)+p*(-2*c*d+b*e);
 If[IsZero2D[z],{},
 eq1=TangentEquation2D[Line2D[p,q,R],Q];
 ans=Select[Solve2D[{eq1},{R}],
 Not[IsComplex2D[R /. #]]&];
 Map[Line2D[p,q,(R /. #)]&,ans]]];

TangentLines2D[L:Line2D[a_,b_,c_],crv_,Parallel2D] :=
 TangentLines2D[L,Quadratic2D[crv],Parallel2D] /;
Is2D[crv,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D}];

TangentLines2D[L:Line2D[a_,b_,c_],crv_] :=
 TangentLines2D[L,crv,Parallel2D] /;
Is2D[crv,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

TangentLines2D[Line2D[a_,b_,c_],crv_,Perpendicular2D] :=
 TangentLines2D[Line2D[-b,a,c],crv,Parallel2D] /;
Is2D[crv,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

Lines Tangent to Two Circles

TangentLines2D[circle, circle] Constructs a list containing up to four lines which are
tangent to two circles. The first two lines in the list (if present) are the external tangents;
the last two lines (if present) are the internal tangents. The private function TangentLine$2D
implements the mathematics.

TangentLines2D[Circle2D[{h1_,k1_},r1_],Circle2D[{h2_,k2_},r2_]] :=
 Flatten[{Map[Union[TangentLine$2D[{h1,k1},r1,{h2,k2},r2,#]]&,{-1,1}]}];

TangentLine$2D[{h1_,k1_},r1_,{h2_,k2_},r2_,s_] :=
 Module[{H=h1-h2,K=k1-k2,R=r1+s*r2,L,A2,B2,C2,lns,sv1,sv2},
 L=H^2+K^2;
 A2=A1*H-B1*K; B2=B1*H+A1*K; C2 =L*r1-h1*A2-k1*B2;
 sv1=Head[Line2D::imaginary];Off[Line2D::imaginary];
 sv2=Head[Line2D::invalid];Off[Line2D::invalid];
 lns=Map[(Line2D[A2, B2, C2] /. #)&,
 {{A1->R, B1-> Sqrt[L-R^2]},
 {A1->R, B1->-Sqrt[L-R^2]}}];
 If[sv1===String,On[Line2D::imaginary]];
 If[sv2===String,On[Line2D::invalid]];
 Select[lns,IsValid2D]];

Lines Tangent to Two Quadratics

TangentLines2D[quad, quad] Constructs a list containing up to four lines tangent to two
quadratics. The private function TanLn$2D computes the candidate tangent lines, and the
private function DeleteCoincident$2D removes coincident solutions.

534 D2DTangentLines2D - Line Construction

TanLn$2D[Q1:Quadratic2D[a1_,b1_,c1_,d1_,e1_,f1_],
 Q2:Quadratic2D[a2_,b2_,c2_,d2_,e2_,f2_]] :=
 Module[{L,p,q,r,ans,lns,svMsg1,svMsg2},
 L=Line2D[p,q,r];
 ans=Solve2D[{TangentEquation2D[L,Q1],
 TangentEquation2D[L,Q2],
 p^2+q^2==1},{p,q,r}];
 svMsg1=Head[Line2D::imaginary];Off[Line2D::imaginary];
 svMsg2=Head[Line2D::invalid];Off[Line2D::invalid];
 lns=Map[(L /. #)&,ans];
 If[svMsg1===String,On[Line2D::imaginary]];
 If[svMsg2===String,On[Line2D::invalid]];
 Select[lns,IsValid2D]];

DeleteCoincident$2D[{s1___,
 L1:Line2D[a1_,b1_,c1_],s2___,
 L2:Line2D[a2_,b2_,c2_],s3___}]:=
 DeleteCoincident$2D[{s1,L1,s2,s3}] /;
IsCoincident2D[L1,L2];

DeleteCoincident$2D[lns_List]:=lns;

TangentLines2D[Q1:Quadratic2D[a1_,b1_,c1_,d1_,e1_,f1_],
 Q2:Quadratic2D[a2_,b2_,c2_,d2_,e2_,f2_]] :=
 If[IsCoincident2D[Q1,Q2],{},
 DeleteCoincident$2D[TanLn$2D[Q1,Q2]]];

Lines Tangent to Two Conics

TangentLines2D[curve,curve] Constructs a list containing up to four lines tangent to
two conic curves (circles, ellipses, hyperbolas, parabolas or quadratics).

TangentLines2D[crv1_,crv2_] :=
 Module[{Q1,Q2},
 Q1=If[Is2D[crv1,{Quadratic2D}],crv1,Quadratic2D[crv1]];
 Q2=If[Is2D[crv2,{Quadratic2D}],crv2,Quadratic2D[crv2]];
 TangentLines2D[Q1,Q2]] /;
Is2D[crv1,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}] &&
Is2D[crv2,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

Line Segments Tangent to Two Curves

TangentSegments2D[curve,curve] Constructs a list containing up to four line segments
tangent to two curves (circles, ellipses, hyperbolas, parabolas or quadratics).

D2DTangentLines2D - Epilogue 535

TangentSegments2D[crv1_,crv2_] :=
 Module[{lns,svMsg1,svMsg2},
 lns=TangentLines2D[crv1,crv2];
 svMsg1=Head[Segment2D::imaginary];Off[Segment2D::imaginary];
 svMsg2=Head[Segment2D::invalid];Off[Segment2D::invalid];
 lns=Map[Segment2D[Point2D[#,crv1],Point2D[#,crv2]]&,lns];
 If[svMsg1===String,On[Segment2D::imaginary]];
 If[svMsg2===String,On[Segment2D::invalid]];
 Select[lns,IsValid2D]] /;
Is2D[crv1,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}] &&
Is2D[crv2,{Circle2D,Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentLines2D‘" *)

D2DTangentPoints2D

The package D2DTangentPoints2D provides functions for constructing the point of contact
between a curve and a tangent line.

Initialization
BeginPackage["D2DTangentPoints2D‘", {"D2DCircle2D‘", "D2DEllipse2D‘",
"D2DExpressions2D‘", "D2DGeometry2D‘", "D2DHyperbola2D‘",
"D2DIntersect2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DParabola2D‘",
"D2DPoint2D‘", "D2DQuadratic2D‘"}];

D2DTangentPoints2D::usage=
 "D2DTangentPoints2D is a package for constructing tangent points.";

TangentPoints2D::usage=
 "TangentPoints2D[point,curve] constructs a list containing points that
are the tangency points of the lines from a point to a curve.";

Begin["‘Private‘"];

Point Construction

Circle Contact Points

TangentPoints2D[point, circle] Constructs a list containing up to two points that are the
contact points of the lines tangent to a circle from a point. This is a simplified formula for
circles; the general second-degree form also produces the correct points (see below).

TangentPoints2D[Point2D[{x1_,y1_}],Circle2D[{h_,k_},r_]] :=
 Module[{d,R,c,s,S},
 d=(x1-h)^2+(y1-k)^2;
 If[IsZero2D[d],{},
 R=If[IsZero2D[d-r^2],0,d-r^2];
 c=(r*(x1-h)-S*Sqrt[R]*(y1-k))/d;
 s=(r*(y1-k)+S*Sqrt[R]*(x1-h))/d;
 Map[(Point2D[{h+r*c,k+r*s}] /. S->#)&,
 Which[IsZero2D[R],{1},
 IsNegative2D[R], {},
 True, {-1,1}]]]];

537

538 D2DTangentPoints2D - Epilogue

Conic Contact Points

TangentPoints2D[point, curve] Constructs a list containing up to two points that are the
contact points of the lines tangent to a second-degree curve (ellipse, parabola, hyperbola or
quadratic) from a point. The circle is handled as a special case (see above).

TangentPoints2D[P1:Point2D[{x1_,y1_}],crv2_] :=
 Module[{Q,a,b,c,d,e,f,p,q,r,pts},
 Q=If[Head[crv2]===Quadratic2D,crv2,Quadratic2D[crv2]];
 {a,b,c,d,e,f}=List @@ Q;
 p=2*a*x1+b*y1+d; q=b*x1+2*c*y1+e; r=d*x1+e*y1+2*f;
 Which[
 IsZero2D[{p,q},And], {},
 IsOn2D[P1,Q], {Point2D[Line2D[p,q,r],crv2]},
 True, Points2D[Line2D[p,q,r],crv2]]] /;
Is2D[crv2,{Ellipse2D,Hyperbola2D,Parabola2D,Quadratic2D}];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTangentPoints2D‘" *)

D2DTransform2D

The package D2DTransform2D provides the basic support for the transformations provided
by Descarta2D (reflect, rotate, scale and translate). Each Descarta2D object provides specific
support for the transformations using these basic capabilities.

Initialization
BeginPackage["D2DTransform2D‘", {"D2DExpressions2D‘", "D2DLine2D‘",
"D2DMaster2D‘"}];

D2DTransform2D::usage=
 "D2DTransform2D is a package providing transformations.";

Reflect2D::usage=
 "Reflect2D[obj,line] reflects an object in a line;
Reflect2D[objList,line] reflects a list of objects in a line;
Reflect[eqn,{x,y},line] reflects an equation in variables ’x’ and ’y’ in a
line.";

ReflectAngle2D::usage=
 "ReflectAngle2D[theta,line] reflects an angle in a line.";

Rotate2D::usage=
 "Rotate2D[obj,theta,{h,k}] rotates an object an angle ’theta’ about a
point with coordinates {h,k}; Rotate2D[objList,theta,{h,k}] rotates a list
of objects; Rotate2D[eqn,{x,y},{h,k}] rotates an equation in variables ’x’
and ’y’; if the {h,k} coordinates are omitted, the default is {0,0}.";

Scale2D::usage=
 "Scale2D[obj,s,{h,k}] scales an object about coordinates {h,k} by scale
factor ’s’; Scale2D[objList,s,{h,k}] scales a list of objects;
Scale2D[eqn,{x,y},{h,k}] scales an equation in variables ’x’ and ’y’; if
the center of scaling {h,k} is omitted, the default is {0,0}.";

Translate2D::usage=
 "Translate2D[obj,{u,v}] translates an object delta distance {u,v};
Translate2D[objList,{u,v}] translates a list of objects;
Translate2D[eqn,{x,y},{u,v}] translates an equation in variables ’x’ and
’y’.";

Begin["‘Private‘"];

539

540 D2DTransform2D - Reflect

Queries

Transformable Query

The private function IsTransformable$2D[] returns True if an object or all the objects in
a list are transformable; otherwise, returns False.

IsTransformable$2D[obj_List] :=
 (And @@ Map[IsTransformableSingleLevel$2D[#]&,obj]) /;
Not[IsScalarPair2D[obj]];

IsTransformable$2D[obj_] := IsTransformableSingleLevel$2D[obj];

IsTransformableSingleLevel$2D[obj_] :=
 (IsValid2D[obj] || IsScalarPair2D[obj]);

Reflect

Reflect Angle

ReflectAngle2D[θ, line] Reflects an angle in a line. This function is useful for reflecting
objects that are defined by rotation angles.

ReflectAngle2D[theta_?IsScalar2D,Line2D[a_,b_,c_]] :=
 2*ArcTan[b,-a]-theta;

Reflect Coordinates

Reflect2D[{x, y}, line] Reflects a list of coordinates {x, y} in a line.

Reflect2D[{x_?IsScalar2D,y_?IsScalar2D},Line2D[a_,b_,c_]] :=
 {x,y}-2*(a*x+b*y+c)*{a,b}/(a^2+b^2);

Reflect Equation

Reflect2D[eqn, {x, y}, line] Reflects an equation in the variables x and y in a line.

Reflect2D[eqn_Equal,{x_?IsScalar2D,y_?IsScalar2D},Line2D[a_,b_,c_]] :=
 eqn /. {x->((b^2-a^2)*x-2*a*b*y-2*a*c)/(a^2+b^2),
 y->((a^2-b^2)*y-2*a*b*x-2*b*c)/(a^2+b^2)};

Reflect List

Reflect2D[objList, line] Reflects a list of {x, y} coordinates or objects.

Reflect2D[obj_List?IsTransformable$2D,L:Line2D[a_,b_,c_]] :=
 Map[Reflect2D[#,L]&, obj] /;
Not[IsScalarPair2D[obj]];

D2DTransform2D - Rotate 541

Rotate

Rotate About Origin

Rotate2D[object, θ] Rotates an object by an angle θ about the origin.

Rotate2D[obj_?IsTransformable$2D,theta_?IsScalar2D] :=
 Rotate2D[obj,theta,{0,0}];

Rotate Coordinates

Rotate2D[coords, θ, coords] Rotates a coordinate list {x, y} by an angle θ about a position
specified by a coordinate list. If the third argument is omitted, it defaults to the origin.

Rotate2D[{x1_?IsScalar2D,y1_?IsScalar2D},theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 {h+((x1-h)*Cos[theta]-(y1-k)*Sin[theta]),
 k+((x1-h)*Sin[theta]+(y1-k)*Cos[theta])};

Rotate Equation

Rotate2D[eqn, {x, y}, θ, coords] Rotates an equation in the variables x and y by an angle
θ about a position given by coordinates.

Rotate2D[eqn_Equal,{x_?IsScalar2D,y_?IsScalar2D},theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 eqn /. {x->h+(x-h)*Cos[theta]+(y-k)*Sin[theta],
 y->k-(x-h)*Sin[theta]+(y-k)*Cos[theta]};

Rotate List

Rotate2D[objList, θ, coords] Rotates a list of {x, y} coordinates or objects by an angle
θ about a position specified by a coordinate list. If the third argument is omitted, it defaults
to the origin.

Rotate2D[obj_List?IsTransformable$2D,theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Map[Rotate2D[#,theta,{h,k}]&, obj] /;
Not[IsScalarPair2D[obj]];

Scale

Scale from Origin

Scale2D[object, s] Scales an object about the origin.

Scale2D[obj_?IsTransformable$2D,s_?IsScalar2D] :=
 Scale2D[obj,s,{0,0}] /;
Not[IsZeroOrNegative2D[s]];

542 D2DTransform2D - Translate

Scales Coordinates

Scale2D[coords, s, coords] Scales a coordinate list from a position given by coordinates.
If the position is omitted, it defaults to the origin.

Scale2D[{x1_?IsScalar2D,y1_?IsScalar2D},s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 ({h,k}+s*{x1-h,y1-k}) /;
Not[IsZeroOrNegative2D[s]];

Scale Equation

Scale2D[eqn, {x, y}, s, coords] Scales an equation in the variables x and y from a position
given by coordinates.

Scale2D[eqn_Equal,{x_?IsScalar2D,y_?IsScalar2D},s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 (eqn /. {x->h+(x-h)/s,y->k+(y-k)/s}) /;
Not[IsZeroOrNegative2D[s]];

Scale List

Scale2D[objList, s, coords] Scales a list of {x, y} coordinates or objects from a position
given by coordinates. If the position is omitted, it defaults to the origin.

Scale2D[obj_List,s_?IsScalar2D,{h_?IsScalar2D,k_?IsScalar2D}] :=
 Map[Scale2D[#,s,{h,k}]&, obj] /;
(Not[IsScalarPair2D[obj]] && Not[IsZeroOrNegative2D[s]]);

Invalid Scale

Returns the $Failed symbol when Scale2D is called with a non-positive scale, s.

Scale2D::invalidScale=
 "The scale factor ‘1‘ is invalid; the scale factor must be positive.";

Scale2D[obj_?IsTransformable$2D,s_?IsScalar2D,___] :=
 (Message[Scale2D::invalidScale,s];$Failed) /;
IsZeroOrNegative2D[s];

Translate

Translate Coordinates

Translate2D[coords, {u, v}] Translates a coordinate list delta distance.

Translate2D[{x_?IsScalar2D,y_?IsScalar2D},
 {u_?IsScalar2D,v_?IsScalar2D}] := {x+u,y+v};

D2DTransform2D - Epilogue 543

Translate Equation

Translate2D[eqn,{x, y}, {u, v}] Translates an equation in the variables x and y by delta
distance.

Translate2D[eqn_Equal,{x_?IsScalar2D,y_?IsScalar2D},
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 (eqn /. {x->x-u,y->y-v});

Translate List

Translate2D[objList, {u, v}] Translates a list of {x, y} coordinates or objects delta
distance.

Translate2D[obj_List?IsTransformable$2D,
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Map[Translate2D[#,{u,v}]&, obj] /;
Not[IsScalarPair2D[obj]];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTransform2D‘" *)

D2DTriangle2D

The package D2DTriangle2D implements the Triangle2D object.

Initialization

BeginPackage["D2DTriangle2D‘",{"D2DCircle2D‘", "D2DExpressions2D‘",
"D2DGeometry2D‘", "D2DLine2D‘", "D2DMaster2D‘", "D2DNumbers2D‘",
"D2DPoint2D‘", "D2DSegment2D‘", "D2DSketch2D‘", "D2DTransform2D‘"}];

D2DTriangle2D::usage=
 "D2DTriangle2D is a package that implements the Triangle2D object.";

Centroid2D::usage=
 "Centroid2D is the keyword required in Point2D[triangle, Centroid2D].";

Circumscribed2D::usage=
 "Circumscribed2D is the keyword required in Circle2D[triangle,
Circumscribed2D]; it is also required in Point2D[triangle,
Circumscribed2D].";

Inscribed2D::usage=
 "Inscribed2D is the keyword required in Circle2D[triangle, Inscribed2D];
it is also required in Point2D[triangle, Inscribed2D].";

SolveTriangle2D::usage=
 "SolveTriangle2D[{{s1,s2,s3},{a1,a2,a3}}] computes a complete triangle
configuration of the form {{s1,s2,s3},{a1,a2,a3}} given three of the six
sides and/or angles; unspecified sides and/or angles should be specified as
Null; SolveTriangle2D[{{s1,s2,s3},{a1,a2,a3}}, True] computes an alternate
configuration, if one exists.";

Triangle2D::usage=
 "Triangle2D[{x1,y1},{x2,y2},{x3,y3}] is the standard form of a triangle,
the coordinates being the vertices of the triangle.";

Begin["‘Private‘"];

545

546 D2DTriangle2D - Description

Description

Representation

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}] Standard representation of a triangle object in
Descarta2D. The three arguments are the vertex coordinates of the triangle.

Graphics

Provides graphics for a triangle by extending the Mathematica Display command. Executed
when the package is loaded.

SetDisplay2D[
 Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],
 Line[{{x1,y1},{x2,y2},{x3,y3},{x1,y1}}]];

Validation

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}] Detects that the arguments of a triangle are
imaginary and returns the $Failed symbol. If the imaginary parts are insignificant, they are
removed.

Triangle2D::imaginary=
 "An invalid triangle of the form ’Triangle2D[‘1‘, ‘2‘, ‘3‘]’ has been
detected; the arguments cannot be imaginary.";

Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}] :=
 (Triangle2D @@
 ChopImaginary2D[Triangle$2D[p1,p2,p3]]) /;
(FreeQ[{p1,p2,p3},_Pattern] && IsTinyImaginary2D[{p1,p2,p3}]);

Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}] :=
 (Message[Triangle2D::imaginary,p1,p2,p3];$Failed) /;
(FreeQ[{p1,p2,p3},_Pattern] && IsComplex2D[{p1,p2,p3},0]);

Triangle2D[{x1, y1}, {x2, y2}, {x3, y3}] Detects that the vertex points of a triangle are
collinear and returns the $Failed symbol.

Triangle2D::invalid=
 "An invalid triangle of the form ’Triangle2D[‘1‘, ‘2‘, ‘3‘]’ has
detected; the vertex points cannot be collinear.";

Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}] :=
 (Message[Triangle2D::invalid,{x1,y1},{x2,y2},{x3,y3}];$Failed) /;
(FreeQ[{p1,p2,p3},_Pattern] &&
 IsCollinear2D[Point2D[p1],Point2D[p2],Point2D[p3]]);

IsValid2D[triangle] Verifies that a triangle is valid.

IsValid2D[Triangle2D[
 {x1_?IsScalar2D,y1_?IsScalar2D},
 {x2_?IsScalar2D,y2_?IsScalar2D},
 {x3_?IsScalar2D,y3_?IsScalar2D}]] := True;

D2DTriangle2D - Queries 547

Queries

Configuration Query and Check

The private function IsValidConfiguration$2D[{{s1, s2, s3}, {a1, a2, a3}}] checks the va-
lidity of a complete triangle configuration and returns True if it is valid; otherwise, returns
False.

IsValidConfiguration$2D[{
 S:{s1_?IsScalar2D,s2_?IsScalar2D,s3_?IsScalar2D},
 A:{a1_?IsScalar2D,a2_?IsScalar2D,a3_?IsScalar2D}}]:=True /;
Not[IsZeroOrNegative2D[{s1,s2,s3,a1,a2,a3}]] &&
(IsZero2D[s1*Sin[a2]-s2*Sin[a1]] ||
 Not[IsReal2D[s1*Sin[a2]-s2*Sin[a1]]]) &&
(IsZero2D[s2*Sin[a3]-s3*Sin[a2]] ||
 Not[IsReal2D[s2*Sin[a3]-s3*Sin[a2]]]) &&
(IsZero2D[s1*Sin[a3]-s3*Sin[a1]] ||
 Not[IsReal2D[s1*Sin[a3]-s3*Sin[a1]]]) &&
(IsZero2D[Pi-(a1+a2+a3)] ||
 Not[IsReal2D[Pi-(a1+a2+a3)]]);

IsValidConfiguration$2D[___]:=False;

The private function CheckConfiguration$2D[{{s1, s2, s3}, {a1, a2, a3}}] checks the va-
lidity of a complete triangle configuration and returns the configuration unchanged if it is
valid; otherwise, reports an error and returns $Failed.

SolveTriangle2D::invConfig=
 "The configuration of sides and/or angles specified is invalid; no
triangle can be constructed.";

CheckConfiguration$2D[{
 S:{s1_?IsScalar2D,s2_?IsScalar2D,s3_?IsScalar2D},
 A:{a1_?IsScalar2D,a2_?IsScalar2D,a3_?IsScalar2D}}]:={S,A} /;
IsValidConfiguration$2D[{S,A}];

CheckConfiguration$2D[___]:=
 (Message[SolveTriangle2D::invConfig];$Failed);

Vertex Query

The private function IsVertex$2D[n] returns True if n is a valid triangle vertex number (1,
2 or 3); otherwise, returns False.

IsVertex$2D[n_] := (n==1 || n==2 || n==3);

Scalars

Angle

Angle2D[triangle, n] Computes the angle at a vertex of a triangle.

548 D2DTriangle2D - Scalars

Angle2D[Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}],n_] :=
 Angle2D[Triangle2D[p2,p3,p1],n-1] /;
(n==2 || n==3);

Angle2D[Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}],n_] :=
 Module[{a,b,c},
 a=Distance2D[p1,p2];
 b=Distance2D[p1,p3];
 c=Distance2D[p2,p3];
 ArcCos[(a^2+b^2-c^2)/(2*a*b)]] /;
(n==1);

Solve Triangle

SolveTriangle2D[{{s1, s2, s3}, {a1, a2, a3}}, True | False] Completely solves a triangle
given a partial configuration of side lengths and angles and returns the complete configuration
of sides and angles. Three of the six configuration parameters are expected, and the others
should be set to Null. If more than three configuration parameters are specified, then they
must be consistent. The second argument, when set to True, returns an alternate configuration
if two solutions exist; if omitted, it defaults to False. The global variable is used at lower
levels to resolve ambiguous cases. The private function SolveTriangle$2D must be called
three times to compute up to three missing configuration parameters.

D2D$SolveTriangle2D$AlternateSolution=False;

SolveTriangle2D[{
 S:{s1_?IsScalar2D | Null,s2_?IsScalar2D | Null,s3_?IsScalar2D | Null},
 A:{a1_?IsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
 alternateSolution_:False]:=
 (D2D$SolveTriangle2D$AlternateSolution=alternateSolution;
 CheckConfiguration$2D[Nest[SolveTriangle$2D,{S,A},3]]) /;
MemberQ[{True,False},alternateSolution];

Checks for under-constrained configurations, and, if detected, displays an error message.

SolveTriangle2D::constrain=
 "The triangle configuration is under-constrained; three constraints are
expected.";

SolveTriangle2D[{
 S:{s1_?IsScalar2D | Null,s2_?IsScalar2D | Null,s3_?IsScalar2D | Null},
 A:{a1_?IsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
 alternateSolution_:False]:=
 (Message[SolveTriangle2D::constrain];$Failed) /;
(Count[A,Null]>1 && Count[Join[S,A],Null]>3) &&
MemberQ[{True,False},alternateSolution];

Two angles are known, compute the third using θ1 + θ2 + θ3 = π.

SolveTriangle$2D[{S:{s1_,s2_,s3_},
 A:{a1_?IsScalar2D,a2_?IsScalar2D,Null} |
 A:{a1_?IsScalar2D,Null,a2_?IsScalar2D} |
 A:{Null,a1_?IsScalar2D,a2_?IsScalar2D}}]:=
 {S,A /. Null->Pi-(a1+a2)};

D2DTriangle2D - Scalars 549

Three sides are known (SSS), but not all the angles. Compute the missing angles directly.

SolveTriangle$2D[{S:{s1_?IsScalar2D,s2_?IsScalar2D,s3_?IsScalar2D},
 A:{a1_,a2_,a3_} /; Count[A,Null]>0}]:=
 {S,{If[a1===Null,ArcCos[(-s1^2+s2^2+s3^2)/(2*s2*s3)],a1],
 If[a2===Null,ArcCos[(s1^2-s2^2+s3^2)/(2*s1*s3)],a2],
 If[a3===Null,ArcCos[(s1^2+s2^2-s3^2)/(2*s1*s2)],a3]}};

Three angles are known (AAA) but no sides. Compute all the sides directly. Since this case is
under-constrained, we use the added constraint that the perimeter is set equal to 1 and issue
a warning message.

SolveTriangle2D::anglesOnly=
 "The triangle configuration is under-constrained; a valid configuration
with the triangle’s perimeter arbitrarily set to 1 will be computed.";

SolveTriangle$2D[{S:{Null,Null,Null},
 A:{a1_?IsScalar2D,a2_?IsScalar2D,a3_?IsScalar2D}}]:=
Module[{SA},
 SA={{Sin[a1],Sin[a2],Sin[a3]}/(Sin[a1]+Sin[a2]+Sin[a3]),A};
 If[IsValidTriangleQ$2D[SA],Message[SolveTriangle2D::anglesOnly]];
 SA];

Three angles are known and at least one side. Compute the missing side(s) using the Law of
Sines.

SolveTriangle$2D[{S:{___,_?IsScalar2D,___} /; Count[S,Null]>0,
 A:{a1_?IsScalar2D,a2_?IsScalar2D,a3_?IsScalar2D}}]:=
Module[{n=1,sides=S},
 While[S[[n]]===Null,n++];
 Map[(If[S[[#]]===Null,sides[[#]]=S[[n]]*Sin[A[[#]]]/Sin[A[[n]]]])&,
 {1,2,3}];
 {sides,A}];

Two sides and the included angle are known (SAS). Compute the third side using the Law of
Cosines.

SolveTriangle$2D[
 {S:{s1_?IsScalar2D,Null,s3_?IsScalar2D},A:{a1_,a2_?IsScalar2D,a3_}} |
 {S:{Null,s3_?IsScalar2D,s1_?IsScalar2D},A:{a2_?IsScalar2D,a3_,a1_}} |
 {S:{s3_?IsScalar2D,s1_?IsScalar2D,Null},A:{a3_,a1_,a2_?IsScalar2D}}]:=
{S /. Null->Sqrt[s1^2+s3^2-2*s1*s3*Cos[a2]],A};

Two sides and one angle (not the included angle) are known (SSA-CCW).

SolveTriangle$2D[
 {S:{s1_?IsScalar2D,s2_?IsScalar2D,Null},A:{a1_?IsScalar2D,Null,Null}} |
 {S:{s2_?IsScalar2D,Null,s1_?IsScalar2D},A:{Null,Null,a1_?IsScalar2D}} |
 {S:{Null,s1_?IsScalar2D,s2_?IsScalar2D},A:{Null,a1_?IsScalar2D,Null}}
]:=
{S /. Null->SolveTriangleSSA2D[{s1,s2,a1}],A};

550 D2DTriangle2D - Transformations

One angle (not the included angle) and two sides are known (SSA-CW).

SolveTriangle$2D[
 {S:{s1_?IsScalar2D,Null,s3_?IsScalar2D},A:{a1_?IsScalar2D,Null,Null}} |
 {S:{Null,s3_?IsScalar2D,s1_?IsScalar2D},A:{Null,Null,a1_?IsScalar2D}} |
 {S:{s3_?IsScalar2D,s1_?IsScalar2D,Null},A:{Null,a1_?IsScalar2D,Null}}
]:=
{S /. Null->SolveTriangleSSA2D[{s1,s3,a1}],A};

Special function for solving SSA cases. Returns the length of the third side of the configuration,
or Null if the configuration is invalid.

SolveTriangle2D::ambiguous=
 "Two valid solutions exist for this configuration; set the alternate
solution option to ’‘1‘’ to compute the other configuration.";

SolveTriangleSSA2D[{s1_,s2_,a1_}]:=
Module[{a2,a2alt,a3,a3alt,s3,s3alt,normValid,altValid},
 a2=ArcSin[s2*Sin[a1]/s1]; a2alt=Pi-a2;
 a3=Pi-(a1+a2); a3alt=Pi-(a1+a2alt);
 s3=Sqrt[s1^2+s2^2-2*s1*s2*Cos[a3]];
 s3alt=Sqrt[s1^2+s2^2-2*s1*s2*Cos[a3alt]];
 normValid=IsValidConfiguration$2D[{{s1,s2,s3},{a1,a2,a3}}];
 altValid=IsValidConfiguration$2D[{{s1,s2,s3alt},{a1,a2alt,a3alt}}];
 If[normValid && altValid && Not[IsZero2D[s3-s3alt]],
 Message[SolveTriangle2D::ambiguous,
 Not[D2D$SolveTriangle2D$AlternateSolution]]];
 Switch[{normValid,altValid,D2D$SolveTriangle2D$AlternateSolution},
 {True ,True ,True }, s3alt,
 {True ,True ,False}, s3,
 {True ,False,True }, s3,
 {True ,False,False}, s3,
 {False,True, True }, s3alt,
 {False,True, False}, s3alt,
 {False,False,True }, Null,
 {False,False,False}, Null]];

No other cases match, just return the configuration.

SolveTriangle$2D[{S:{s1_,s2_,s3_},A:{a1_,a2_,a3_}}]:={S,A};

Transformations

Reflect

Reflect2D[triangle, line] Reflects a triangle in a line.

Reflect2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],
 L2:Line2D[A2_,B2_,C2_]] :=
 Triangle2D[Reflect2D[{x1,y1},L2],
 Reflect2D[{x2,y2},L2],
 Reflect2D[{x3,y3},L2]];

D2DTriangle2D - Point Construction 551

Rotate

Rotate2D[triangle, θ, coords] Rotates a triangle by an angle θ about a position spec-
ified by a coordinate list. If the third argument is omitted, it defaults to the origin (see
D2DTransform2D.nb).

Rotate2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],theta_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Triangle2D[Rotate2D[{x1,y1},theta,{h,k}],
 Rotate2D[{x2,y2},theta,{h,k}],
 Rotate2D[{x3,y3},theta,{h,k}]];

Scale

Scale2D[triangle, s, coords] Scales a triangle from a position given by coordinates. If the
third argument is omitted, it defaults to the origin (see D2DTransform2D.nb).

Scale2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],s_?IsScalar2D,
 {h_?IsScalar2D,k_?IsScalar2D}] :=
 Triangle2D[Scale2D[{x1,y1},s,{h,k}],
 Scale2D[{x2,y2},s,{h,k}],
 Scale2D[{x3,y3},s,{h,k}]] /;
Not[IsZeroOrNegative2D[s]];

Translate

Translate2D[triangle, {u, v}] Translates a triangle delta distance.

Translate2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],
 {u_?IsScalar2D,v_?IsScalar2D}] :=
 Triangle2D[{x1+u,y1+v},{x2+u,y2+v},{x3+u,y3+v}];

Point Construction

Centroid

Point2D[triangle, Centroid2D] Constructs the centroid point of a triangle. The centroid
is the intersection of the medians of the triangle (the lines connecting the vertices to the
midpoints of the sides).

Point2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],Centroid2D] :=
 Point2D[{x1+x2+x3,y1+y2+y3}/3];

552 D2DTriangle2D - Line Segment Construction

Center of Circumscribed Circle

Point2D[triangle, Circumscribed2D] Constructs the center of the circle that circumscribes
a triangle. The center of the circumscribed circle is the intersection of the perpendicular
bisectors of the triangle sides.

Point2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],Circumscribed2D] :=
 Point2D[Circle2D[Point2D[{x1,y1}],Point2D[{x2,y2}],Point2D[{x3,y3}]]];

Center of Inscribed Circle

Point2D[triangle, Inscribed2D] Constructs the center of the circle that inscribes a
triangle. The center of the inscribed circle is the intersection of the angle bisectors of the
triangle sides.

Point2D[T1:Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],Inscribed2D] :=
 Point2D[Circle2D[T1,Inscribed2D]];

Vertex Point

Point2D[triangle, n] Constructs a vertex point of a triangle. The vertex points are
numbered from 1 to 3.

Point2D[T1:Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],n_?IsVertex$2D] :=
 Point2D[T1[[n]]];

Line Construction

Side of a Triangle

Line2D[triangle, n1, n2] Constructs the line associated with vertices n1 and n2 of a
triangle.

Line2D[T:Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],
 n1_?IsVertex$2D,
 n2_?IsVertex$2D] :=
 Line2D[T[[n1]],T[[n2]]] /;
(n1!=n2);

Line Segment Construction

Side of a Triangle

Segment2D[triangle,n1, n2] Constructs the line segment associated with vertices n1 and
n2 of a triangle.

D2DTriangle2D - Circle Construction 553

Segment2D[T:Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],
 n1_?IsVertex$2D,
 n2_?IsVertex$2D] :=
 Segment2D[T[[n1]],T[[n2]]] /;
(n1!=n2);

Circle Construction

Circumscribed Circle

Circle2D[triangle, Circumscribed2D] Constructs a circle that circumscribes a triangle.

Circle2D[Triangle2D[{x1_,y1_},{x2_,y2_},{x3_,y3_}],Circumscribed2D] :=
 Circle2D[Point2D[{x1,y1}],Point2D[{x2,y2}],Point2D[{x3,y3}]];

Inscribed Circle

Circle2D[triangle, Inscribed2D] Constructs a circle inscribed in a triangle.

Circle2D[Triangle2D[p1:{x1_,y1_},p2:{x2_,y2_},p3:{x3_,y3_}],Inscribed2D] :=
 Module[{s1,s2,s3,s,r,h,k},
 s1=Distance2D[p2,p3];
 s2=Distance2D[p1,p3];
 s3=Distance2D[p1,p2];
 s=(s1+s2+s3)/2;
 r=Sqrt[(s-s1)*(s-s2)*(s-s3)/s];
 {h,k}=(s1*{x1,y1}+s2*{x2,y2}+s3*{x3,y3})/(2*s);
 Circle2D[{h,k},r]];

Triangle Construction

Triangle from Three Points

Triangle2D[point, point, point] Constructs a triangle from three vertex points.

Triangle2D[Point2D[{x1_,y1_}],Point2D[{x2_,y2_}],Point2D[{x3_,y3_}]] :=
 Triangle2D[{x1,y1},{x2,y2},{x3,y3}];

Triangle from Three Lines

Triangle2D[line, line, line] Constructs a triangle from three lines that define the sides of
the triangle.

Triangle2D::noTriangle=
 "Two of the lines ‘1‘ are parallel, or the three are concurrent; no
triangle exists.";

554 D2DTriangle2D - Epilogue

Triangle2D[L1:Line2D[a1_,b1_,c1_],
 L2:Line2D[a2_,b2_,c2_],
 L3:Line2D[a3_,b3_,c3_]] :=
 If[IsParallel2D[{L1,L2,L3}] || IsConcurrent2D[L1,L2,L3],
 Message[Triangle2D::noTriangle,{L1,L2,L3}];$Failed,
 Triangle2D[Point2D[L1,L2],Point2D[L1,L3],Point2D[L2,L3]]];

Triangle from Sides/Angles

Triangle2D[{s1, s2, s3}] Constructs a triangle in standard position from a configuration
of three side lengths. The first vertex will be at the origin and the second on the +x-axis.

Triangle2D[{s1_?IsScalar2D,s2_?IsScalar2D,s3_?IsScalar2D}]:=
 Triangle2D[{{s1,s2,s3},{Null,Null,Null}}];

Triangle2D[{{s1, s2, s3}, {a1, a2, a3}}, True | False] Constructs a triangle in standard
position from a configuration of side lengths and angles. The first vertex will be at the origin
and the second on the +x-axis. Three of the six configuration parameters are expected, and
the others should be set to Null. If more than three configuration parameters are specified,
then they must be consistent. The second argument, when set to True, returns an alternate
solution if two solutions exist; if omitted, it defaults to False.

Triangle2D[{
 S:{s1_?IsScalar2D | Null,s2_?IsScalar2D | Null,s3_?IsScalar2D | Null},
 A:{a1_?IsScalar2D | Null,a2_?IsScalar2D | Null,a3_?IsScalar2D | Null}},
 alternateSolution_:False]:=
Module[{SA,S1,S2,S3,A1,A2,A3,f1,f2,a,b,d},
 SA=SolveTriangle2D[{S,A},alternateSolution];
 If[SA===$Failed,$Failed,
 {{S1,S2,S3},{A1,A2,A3}}=SA;
 f1=-S1^2+S2^2+S3^2;
 f2=-(S1-S2-S3)(S1+S2-S3)(S1-S2+S3)(S1+S2+S3);
 Triangle2D[{0,0},{d,0},{a,b}] /.
 {a->f1/(2*S3),b->Sqrt[f2/S3^2]/2,d->S3}]] /;
MemberQ[{True,False},alternateSolution];

Epilogue

End[]; (* end of "‘Private" *)
EndPackage[]; (* end of "D2DTriangle2D‘" *)

Part VIII

Explorations

apollon.nb

Circle of Apollonius

Exploration

Show that the locus of a point P (x, y) that moves so that the ratio of its distance from two
fixed points P1(x1, y1) and P2(x2, y2) is a circle with radius

r =
dk√

(k2 − 1)2

and center (−x1 + k2x2

k2 − 1
,
−y1 + k2y2

k2 − 1

)

where d = |P1P2|. The locus is called the Circle of Apollonius for the points P1 and P2 and
the ratio k.

Approach

Form the equation of the locus directly from the conditions. Show that the locus is the circle
described.

Solution

Construct the points.

In[1]: Clear@x1, y1, x2, y2, x, yD;
P1 = Point2D@8x1, y1<D;
P2 = Point2D@8x2, y2<D;
P = Point2D@8x, y<D;

557

558 apollon.nb

Compute the distances.

In[2]: d1 = Distance2D@P1, PD;
d2 = Distance2D@P2, PD;

Form the equation representing the relationship.

In[3]: Clear@kD
eq1 = k^2∗d2^2 − d1^2 êê Expand

Out[3] −x2 + k2 x2 + 2 x x1 − x12 − 2 k2 x x2 + k2 x22 − y2 + k2 y2 + 2 y y1 − y12 − 2 k2 y y2 + k2 y22

Construct the circle from its equation. The numerator under the radical is dk.

In[4]: C1 = Circle2D@Quadratic2D@eq1, 8x, y<DD êê FullSimplify

Out[4] Circle2DA9 −x1 + k2 x2
��������������������������������

−1 + k2
,

−y1 + k2 y2
��������������������������������

−1 + k2
=, $%%k2 HHx1 − x2L2 + Hy1 − y2L2L

��
H−1 + k2L2 E

In[5]: Clear@d, E1, E2, E3D;
C2 = C1 êê. 8
k^2∗ HHx1 − x2L^2 + Hy1 − y2L^2L −> d^2∗k^2,

Sqrt@E1_^2∗E2_^2∗E3_D −> E1∗E2êSqrt@1êE3D<

Out[5] Circle2DA9 −x1 + k2 x2
��������������������������������

−1 + k2
,

−y1 + k2 y2
��������������������������������

−1 + k2
=, d k

������������������������������������è!!!!!!!!!!!!!!!!!!!!
H−1 + k2L2

E

Discussion

This is a plot of a numerical example with P1(1, 1), P2(−1,−2) and k = 1.5.

In[6]: d = Distance2D@P1, P2D;
Sketch2D@8P1, P2, C2< êê. 8
x1 −> 1, y1 −> 1, x2 −> −1, y2 −> −2, k −> 1.5<D;

-6 -4 -2 0

-8

-6

-4

-2

0

arccent.nb

Centroid of Semicircular Arc

Exploration

Show that the centroid of the area bounded by a semicircular arc of radius r and its chord is
on the axis of symmetry at a distance

H =
4r

3π

from the chord of the arc.

Approach

Construct representative geometry for the semicircular arc. Using symbolic computations,
compute the width of a horizontal rectangle spanning the arc having infinitesimal height. Use
integration to find moments of inertia on each side of the centroid. Equate the moments of
inertia on each side of the centroid and solve for the y-coordinate of the centroid.

Solution

Construct a semicircular arc of radius r (the portion of the circle above the x-axis).

In[1]: Clear@rD;
C1 = Circle2D@80, 0<, rD;

Construct a horizontal line at height y.

In[2]: Clear@yD;
L1 = Line2D@Point2D@0, yD, 0D;

Compute the intersection points of the horizontal line with the arc.

559

560 arccent.nb

In[3]: pts = Points2D@L1, C1D

Out[3] 9Point2DA9è!!!!!!!!!!!!!
r2 − y2 , y=E, Point2DA9−

è!!!!!!!!!!!!!
r2 − y2 , y=E=

The width of the arc is the difference between the abscissas of the intersection points.

In[4]: L = XCoordinate2D@First@ptsDD − XCoordinate2D@Last@ptsDD

Out[4] 2
è!!!!!!!!!!!!!
r2 − y2

By integrating Ld find the moment of inertia of an area, where d is the distance from the
centroid line (y = y). I1 is the expression for the moment of inertia of the upper area with
respect to y.

In[5]: Clear@yBD;
int1 = Integrate@L∗ HyB − yL, yD êê Simplify

Out[5]
1
�����
3

è!!!!!!!!!!!!!
r2 − y2 H2 r2 + y H−2 y + 3 yBLL + r2 yB ArcTanA y

��������������������������è!!!!!!!!!!!!!
r2 − y2

E

The next few steps show the output computed by Mathematica Version 3.0.1. Version 4.0
produces slightly different results that are algebraically equivalent. The final step is the same
in both versions.

In[6]: I1 = Hint1 ê. y −> yBL − Hint1 ê. y −> 0L ê. Hr^2L^H3ê2L −> r^3

Out[6] −
2 r3
�������������
3

+
1
�����
3

è!!!!!!!!!!!!!!!
r2 − yB2 H2 r2 + yB2L + r2 yB ArcTanA yB

�����������������������������è!!!!!!!!!!!!!!!
r2 − yB2

E

I2 is the expression for the moment of inertia of the upper area with respect to y.

In[7]: int2 = Integrate@L∗ Hy − yBL, yD êê Simplify

Out[7] −
1
�����
3

è!!!!!!!!!!!!!
r2 − y2 H2 r2 + y H−2 y + 3 yBLL − r2 yB ArcTanA y

��������������������������è!!!!!!!!!!!!!
r2 − y2

E

In[8]: I2 = −Limit@int2, y −> rD − Hint2 ê. y −> yBL êê Simplify

Out[8] −
1
�����
2

π r2 yB +
1
�����
3

è!!!!!!!!!!!!!!!
r2 − yB2 H2 r2 + yB2L + r2 yB ArcTanA yB

�����������������������������è!!!!!!!!!!!!!!!
r2 − yB2

E

The moments of inertia must be the same on each side of the centroid line.

In[9]: eq1 = I2 − I1 == 0

Out[9]
2 r3
�������������
3

−
1
�����
2

π r2 yB == 0

Solve for y.

In[10]: Solve@eq1, yBD

Out[10] 99yB →
4 r
����������
3 π

==

arcentry.nb

Arc from Bounding Points and Entry Direction

Exploration

Let P0 and P1 be the start and end points of an arc, respectively, and P be a third point on
the vector tangent to the arc at P0. Show that

s = |(P − P0) × (P1 − P0)|

c = (P − P0) · (P1 − P0)

represent values of s and c useful for computing the bulge factor of the arc.

Approach

Use the trigonometric definition of a cross-product to justify the value for s. Use the trigono-
metric definition of a dot product to justify the value for c.

Solution

The cross-product definition in two dimensions is A × B = |A||B| sin(α) where α is the angle
between vectors A and B. Therefore, |(P − P0) × (P1 − P0)| is equal to |PP 0||PP 1| sin(α)
which is a scalar multiple of sin(α). The dot product trigonometric definition in two di-
mensions is A · B = |A||B| cos(α) where α is the angle between vectors A and B. Therefore,
(P − P0) · (P1 − P0) is equal to |PP 0||PP 1| cos(α) which is the same scalar multiple of cos(α).
Therefore, s and c are multiples of the sine and cosine of the angle between the chord and the
entry angle as required.

561

562 arcentry.nb

Discussion

Example: Construct and sketch the arc with start point (3, 0) and end point (0, 0) with an
entry angle vector through the point (4, 1). First define functions for the two-dimensional
cross-product and magnitude.

In[1]: Cross2D@8u1_, v1_<, 8u2_, v2_<D := Cross@8u1, v1, 0<, 8u2, v2, 0<D;

In[2]: Magnitude2D@8u1_, v1_, w1_: 0<D := Sqrt@u1^2 + v1^2 + w1^2D;

Compute the bulge factor using s and c. The bulge factor is given by

B =
s

c +
√

c2 + s2
.

In[3]: P0 = Point2D@p0 = 83, 0<D;
P1 = Point2D@p1 = 80, 0<D;
P = Point2D@p = 84, 1<D;
s = Magnitude2D@Cross2D@p − p0, p1 − p0DD;
c = Dot@p − p0, p1 − p0D;
B = sê Hc + Sqrt@c^2 + s^2DL

Out[3]
3

�����������������������������
−3 + 3 è!!!2

Plot the geometry.

In[4]: Sketch2D@8P0, P1, P, Arc2D@p0, p1, BD, Segment2D@P, P0D<D;

0 1 2 3 4
0

0.5
1

1.5
2

2.5
3

3.5

arcexit.nb

Arc from Bounding Points and Exit Direction

Exploration

Let P0 and P1 be the start and end points, respectively, of an arc and P be a third point on
the vector tangent to the arc at P1. Show that

s = |(P1 − P0) × (P − P1)|

c = (P1 − P0) · (P − P1)

represent values of s and c useful for computing the bulge factor of the arc.

Approach

Use the trigonometric definition of a cross-product to justify the value for s. Use the trigono-
metric definition of a dot product to justify the value for c.

Solution

Let Q be the point of intersection of the tangents at end points P0 and P1. The entry angle
QP0P1 = α is equal to the angle QP1P0 because triangle 4QP0P1 is an isosceles triangle.
The cross-product definition in two dimensions is given by A × B = |A||B| sin(α) where α
is the angle between vectors A and B. Therefore, the expression |(P1 − P0) × (P − P1)| is
|P0P1||PP1| sin(α) which is a scalar multiple of sin(α). The dot product trigonometric defini-
tion in two dimensions is given by A · B = |A||B| cos(α) where α is the angle between vectors
A and B. (P1 − P0) · (P − P1) is |P0P1||PP1| cos(α) and, therefore, is the same scalar multiple
of cos(α). Therefore, s and c are multiples of the sine and cosine of the angle between the
chord and the entry angle as required.

563

564 arcexit.nb

Discussion

Example: Construct and sketch the arc with end points (3, 0) and (0, 0) with an exit angle
vector through the point (1,−1). First define functions for the two-dimensional cross-product
and magnitude.

In[1]: Cross2D@8u1_, v1_<, 8u2_, v2_<D := Cross@8u1, v1, 0<, 8u2, v2, 0<D;

In[2]: Magnitude2D@8u1_, v1_, w1_: 0<D := Sqrt@u1^2 + v1^2 + w1^2D;

Compute the bulge factor using s and c. The bulge factor is given by

B =
s

c +
√

c2 + s2
.

In[3]: P0 = Point2D@p0 = 83, 0<D;
P1 = Point2D@p1 = 80, 0<D;
P = Point2D@p = 81, −1<D;
s = Magnitude2D@Cross2D@p1 − p0, p − p1DD;
c = Dot@p1 − p0, p − p1D;
B = sê Hc + Sqrt@c^2 + s^2DL

Out[3]
3

�����������������������������
−3 + 3 è!!!2

Plot the geometry.

In[4]: Sketch2D@8P0, P1, P, Arc2D@p0, p1, BD, Segment2D@P, P1D<D;

0 1 2 3
-1

0

1

2

3

archimed.nb

Archimedes’ Circles

Exploration

x

y

r1
r2

r3

C¢

C¢¢

Draw the vertical tangent line at the intersection point of the two smaller tangent circles, c1

and c2, in an arbelos (shoemaker’s knife, see figure). Prove that the two circles C′ and C′′

tangent to this line, the large semicircle, c3, and c1 and c2, are congruent (have equal radii).
These circles are known as Archimedes’ Circles.

Approach

Position the arbelos from the origin using circles whose radii are r1, r2 and r3 = 2 (r1 + r2) (see
definitions, below). Compute the tangent circles as described in the exploration statement.
Compare the radii of these circles to show they are equal.

Solution

Construct the arbelos circles and the tangent line.

565

566 archimed.nb

In[1]: Clear@r1, r2D;
c1 = Circle2D@8r1, 0<, r1D;
c2 = Circle2D@82∗r1 + r2, 0<, r2D;
c3 = Circle2D@8Hr1 + r2L, 0<, r1 + r2D;
l12 = Line2D@Point2D@2∗r1, 0D, InfinityD

Out[1] Line2D@1, 0, −2 r1D

Construct the tangent circles.

In[2]: Off@Solve2D::infiniteD;
t1 = TangentCircles2D@8c1, c3, l12<D;
t2 = TangentCircles2D@8c2, c3, l12<D;
On@Solve2D::infiniteD;

Compare the radii. Since negative radii are invalid, the radius of the Archimedes’ Circle is
given by R = r1r2/ (r1 + r2). One pair is above the x-axis, the other pair is below.

In[3]: 8Map@Radius2D, t1D,
Map@Radius2D, t2D< êê Simplify

Out[3] 99−r1, −r2, r2, −
r1 r2

���������������������
r1 + r2

,
r1 r2

���������������������
r1 + r2

, −
r1 r2

���������������������
r1 + r2

,
r1 r2

���������������������
r1 + r2

=,

9−r1, r1, −r2, −
r1 r2

���������������������
r1 + r2

,
r1 r2

���������������������
r1 + r2

, −
r1 r2

���������������������
r1 + r2

,
r1 r2

���������������������
r1 + r2

==

arcmidpt.nb

Midpoint of an Arc

Exploration

P0

P1

P

Show that the midpoint, P , of a bulge factor arc between points P0 and P1 whose bulge factor
is B has coordinates

P

(
(x0 + x1) − B(y0 − y1)

2
,

(y0 + y1) + B(x0 − x1)
2

)
.

Approach

Construct the perpendicular bisector of the arc’s chord. Offset the midpoint of the chord an
appropriate direction and distance to find the arc’s midpoint.

Solution

Create the arc end points.

In[1]: Clear@x0, y0, x1, y1D;
P0 = Point2D@8x0, y0<D;
P1 = Point2D@8x1, y1<D;

567

568 arcmidpt.nb

Construct the midpoint of the arc’s chord.

In[2]: PM = Point2D@P0, P1D;

Rotate P0 about PM π/2 radians to find Q, which is on the vector from PM to P .

In[3]: Q = Rotate2D@P0, Piê2, Coordinates2D@PMDD

Out[3] Point2DA9 x0 + x1
���������������������

2
− y0 +

y0 + y1
���������������������

2
, x0 +

1
�����
2

H−x0 − x1L +
y0 + y1
���������������������

2
=E

Offset PM in the direction of Q by distance h = Bd/2, where d is the distance between P0

and P1.

In[4]: Clear@B, dD;
P = Point2D@PM, Q, B∗dê2D ê. d −> Sqrt@Hx0 − x1L^2 + Hy0 − y1L^2D êê Simplify

Out[4] Point2DA9 1
�����
2

Hx0 + x1 + B H−y0 + y1LL, 1
�����
2

HB Hx0 − x1L + y0 + y1L=E

The coordinates of the point at the parameter t = 1/2 produce the same result.

In[5]: Arc2D@8x0, y0<, 8x1, y1<, BD@1ê2D êê FullSimplify

Out[5] 9 1
�����
2

Hx0 + x1 + B H−y0 + y1LL, 1
�����
2

HB Hx0 − x1L + y0 + y1L=

Discussion

Example: Construct the midpoint of the bulge factor arc with end points (4, 0) and (0, 4) and
bulge factor B = 2. First, define a function for computing the midpoint.

In[6]: ArcMidPoint2D@P0 : Point2D@8x0_, y0_<D,
P1 : Point2D@8x1_, y1_<D,
B_?IsScalar2DD :=

Point2D@HHx0 + x1L − B Hy0 − y1LL ê2, HHy0 + y1L + B Hx0 − x1LL ê2D;

Construct the midpoint and plot the geometry.

In[7]: P0 = Point2D@p0 = 84, 0<D;
P1 = Point2D@p1 = 80, 4<D;
P = ArcMidPoint2D@P0, P1, 2D;
Sketch2D@8P0, P1, P, Arc2D@p0, p1, 2D<D;

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

caarclen.nb

Arc Length of a Parabolic Conic Arc

Exploration

Using exact integration in Mathematica show that the arc length of a parabolic conic arc with
control points P0(0, 0), PA(a, b) and P1(1, 0) can be expressed exactly in symbolic form in
terms of elementary functions of a and b.

Approach

Create the conic arc. Compute the arc length using the standard formula. Show that the
result is a function of a and b only.

Solution

Create the conic arc.

In[1]: Clear@a, bD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 81, 0<, 1ê2D;

Find the parametric equations.

In[2]: Clear@tD;
8xt, yt< = ca1@tD êê Simplify

Out[2] 8t H−2 a H−1 + tL + tL, −2 b H−1 + tL t<

Compute the derivatives.

In[3]: 8Dx, Dy< = Map@D@#, tD&, 8xt, yt<D êê Simplify

Out[3] 82 Ha + t − 2 a tL, b H2 − 4 tL<

569

570 caarclen.nb

Integrate to find the arc length. The resulting function involves elementary functions of a
and b only. The result shown here was computed by Mathematica Version 3.0.1. Version 4.0
produces a different result that is algebraically equivalent and involves elementary functions
of a and b only.

In[4]: I1 = Integrate@Sqrt@Dx^2 + Dy^2D, tD;
arclen1 = HI1 ê. t −> 1L − HI1 ê. t −> 0L êê Simplify

Out[4]
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 − 2 a + a2 + b2 H1 − 3 a + 2 a2 + 2 b2L

���
1 − 4 a + 4 a2 + 4 b2

+
è!!!!!!!!!!!!!
a2 + b2 H−a + 2 a2 + 2 b2L

��
1 − 4 a + 4 a2 + 4 b2

−

b2 LogA4 Iè!!!!!!!!!!!!!
a2 + b2 + a−2 a2−2 b2������������������������������������è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1−4 a+4 a2+4 b2
ME

��
H1 − 4 a + 4 a2 + 4 b2L3ê2 +

b2 LogA4 Iè!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 − 2 a + a2 + b2 + 1−3 a+2 a2+2 b2������������������������������������è!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1−4 a+4 a2+4 b2
ME

���
H1 − 4 a + 4 a2 + 4 b2L3ê2

caarea1.nb

Area of a Conic Arc (General)

Exploration

For the conic arc whose control points are (0, 0), (a, b) and (d, 0), show that the area between
the conic arc and its chord is given by

A =
bdρ

2r3

(
ρr + (−1 + ρ)2loge

(
1 − ρ

ρ + r

))

where r =
√

−1 + 2ρ (ρ 6= 1/2). Assume b > 0 and d > 0.

Approach

Construct the conic arc in the given position and use integration to find the area.

Solution

Construct the conic arc.

In[1]: Clear@a, b, d, pD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 8d, 0<, pD;

Determine the coordinates of a point at parameter t.

In[2]: Clear@tD;
8X1, Y1< = ca1@tD êê FullSimplify

Out[2] 9 t H2 a p H−1 + tL + d H−1 + pL tL
���

−1 + p H1 − 2 tL2 − 2 H−1 + tL t
,

2 b p H−1 + tL t
��
−1 + p H1 − 2 tL2 − 2 H−1 + tL t

=

Form an implicit equation of the curve by eliminating t.

571

572 caarea1.nb

In[3]: Clear@x, yD;
eq1 = Eliminate@8x == X1, y == Y1<, tD

Out[3] 4 a2 p2 y2 + a p2 y H4 b d − 8 b x − 4 d yL ==

4 b2 d p2 x − 4 b2 p2 x2 − 4 b d p2 x y − d2 y2 + 2 d2 p y2 − d2 p2 y2

Solve the implicit equation for x.

In[4]: ans = Solve@eq1, xD êê FullSimplify

Out[4] 99x →
b d p + 2 a p y − d Ip y + è!!Hb p − yL Hb p + y − 2 p yL M
��

2 b p
=,

9x →
b d p + 2 a p y + d I−p y + è!!Hb p − yL Hb p + y − 2 p yL M
���

2 b p
==

The length, L, of an area element in terms of y is the difference between the two x locations
on the curve.

In[5]: L = Hx ê. ans@@2, 1DDL − Hx ê. ans@@1, 1DDL êê FullSimplify

Out[5]
d è!!Hb p − yL Hb p + y − 2 p yL
���

b p

The area between the curve and the x-axis is the integral of L evaluated between the limits
on the y-axis. The curve is smooth, so we ignore the convergence warning by turning the
warning message off. The result shown in this step was computed using Mathematica Version
3.0.1. Version 4.0 produces a slightly different result that is algebraically equivalent.

In[6]: Off@Integrate::generD;
Clear@E1, E2, rD;
A1 = Integrate@L, 8y, 0, b∗p<D êê FullSimplify

Out[6]
1

��è!!!!!!!!!!!!!1 − 2 p H−2 + 4 pL

i

k

jjjjjjd
i

k

jjjjjj

I H−1 + pL è!!!!!!!!!!!!!!!!!!!!!!!!!−b H−1 + pL p
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!

−b2 H−1 + pL p2 LogA 2 I b H−1+pL p����������������������������è!!!!!!!!!!!1−2 p
E

���è!!!!!!b p
+

è!!!!!!!!!!
b2 p2

i
k
jjjè!!!!!!!!!!!!!

1 − 2 p p + I H−1 + pL2 LogA2 b p i
k
jjj1 −

I p
�������������������������è!!!!!!!!!!!!!1 − 2 p

y
{
zzzEy

{
zzz

y

{

zzzzzz

y

{

zzzzzz

This is the area formula given in the exploration statement above.

In[7]: On@Integrate::generD;
A2 = b∗d∗p∗ Hp∗r + H−1 + pL^2∗Log@H1 − pL ê

Hp + rLDL ê H2∗r^3L ê. r −> Sqrt@−1 + 2∗pD

Out[7]
b d p Ip è!!!!!!!!!!!!!!!−1 + 2 p + H−1 + pL2 LogA 1−p�����������������������

p+è!!!!!!!!!!!!!−1+2 p
EM

��
2 H−1 + 2 pL3ê2

The area under the curve is the same as the area given by the formula.

In[8]: IsZero2D@A1 − A2D

Out[8] True

caarea2.nb

Area of a Conic Arc (Parabola)

Exploration

Show that the area between a conic arc whose projective discriminant is ρ = 1/2 and its chord
is given by

A =
bd

3

when the control points are (0, 0), (a, b) and (d, 0).

Approach

Place the conic arc in the position given and use integration to find the area.

Solution

Create the conic arc.

In[1]: Clear@a, b, dD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 8d, 0<, 1ê2D;

Solve for t in terms of the y-coordinate.

In[2]: Clear@tD;
ans = Solve@ca1@tD@@2DD == y, tD êê Simplify

Out[2] 99t →
1
�����
2

−
è!!!!!!!!!!!!!b − 2 y
�������������������������
2 è!!!b

=, 9t →
1
�����
2

i

k
jjj1 +

è!!!!!!!!!!!!!b − 2 y
�������������������������è!!!b

y

{
zzz==

Find the x-coordinate of the left side of the rectangle.

573

574 caarea2.nb

In[3]: X1 = ca1@tD@@1DD ê. ans@@1, 1DD êê Simplify

Out[3]
b d − è!!!b d è!!!!!!!!!!!!!b − 2 y + 2 a y − d y
��

2 b

Find the x-coordinate of the right side of the rectangle.

In[4]: X2 = ca1@tD@@1DD ê. ans@@2, 1DD êê Simplify

Out[4]
b d + è!!!b d è!!!!!!!!!!!!!b − 2 y + 2 a y − d y
��

2 b

Find the width of the rectangle.

In[5]: L = X2 − X1 êê Simplify

Out[5]
d è!!!!!!!!!!!!!b − 2 y
������������������������������è!!!b

Find the area by integration (ρ = 1/2, so the limits of integration are 0 to b/2).

In[6]: I1 = Integrate@L, yD êê Simplify;

A1 = HI1 ê. y −> bê2L − HI1 ê. y −> 0L

Out[6]
b d
����������
3

cacenter.nb

Center of a Conic Arc

Exploration

Show that the center (H, K) of a conic arc whose control points are P0(x0, y0), PA(xA, yA)
and P1(x1, y1) and whose projective discriminant is ρ is

H =
−ρ2xA + (ρ − 1)2xM

1 − 2ρ

K =
−ρ2yA + (ρ − 1)2yM

1 − 2ρ

where PM (xM , yM) is the midpoint of the conic arc’s chord and has coordinates

xM =
x0

x1
2 and yM =

y0 + y1

2
.

Approach

Form the quadratic equation of a conic arc and convert it to a quadratic. Find the center
point of the quadratic and simplify.

Solution

Determines the quadratic equation of a conic arc. The following steps were computed us-
ing Mathematica Version 3.0.1. Version 4.0 produces different results that are algebraically
equivalent. Both versions produce the same final step.

575

576 cacenter.nb

In[1]: Clear@a, b, k, x, y, x0, y0, xA, yA, x1, y1, FD;
eq1 = a∗b − k H1 − a − bL^2 ê.

8a −> HHy − yAL Hx1 − xAL − Hx − xAL Hy1 − yALL êF,
b −> HHy − yAL Hx0 − xAL − Hx − xAL Hy0 − yALL ê H−FL< êê Simplify

Out[1]
1

��������
F2

H−k HF + x0 y − x1 y − x y0 + xA y0 + x y1 − xA y1 − x0 yA + x1 yAL2 +

HxA Hy − y1L + x Hy1 − yAL + x1 H−y + yALL HxA H−y + y0L + x0 Hy − yAL + x H−y0 + yALLL

Multiply through by F 2.

In[2]: eq2 = eq1∗F^2

Out[2] −k HF + x0 y − x1 y − x y0 + xA y0 + x y1 − xA y1 − x0 yA + x1 yAL2 +

HxA Hy − y1L + x Hy1 − yAL + x1 H−y + yALL HxA H−y + y0L + x0 Hy − yAL + x H−y0 + yALL

Construct the quadratic and the center points of the quadratic.

In[3]: q1 = Quadratic2D@eq1, 8x, y<D êê Simplify;

c1 = Point2D@q1D êê Simplify

Out[3] Point2DA

9 2 F k Hx0 + x1 − 2 xAL + H−1 + 4 kL xA H−xA y0 − x0 y1 + xA y1 + x1 Hy0 − yAL + x0 yAL
���H−1 + 4 kL Hx1 y0 − xA y0 − x0 y1 + xA y1 + x0 yA − x1 yAL ,

2 F k Hy0 + y1 − 2 yAL + H−1 + 4 kL yA H−xA y0 − x0 y1 + xA y1 + x1 Hy0 − yAL + x0 yAL
���H−1 + 4 kL Hx1 y0 − xA y0 − x0 y1 + xA y1 + x0 yA − x1 yAL =E

Simplify.

In[4]: Clear@pD;
c2 = c1 ê.

8F −> Hy0 − yAL Hx1 − xAL − Hx0 − xAL Hy1 − yAL,
k −> H1 − pL^2ê H4 p^2L,
x0 + x1 −> 2∗xM,

y0 + y1 −> 2∗yM< êê FullSimplify

Out[4] Point2DA9 p2 xA − H−1 + pL2 xM
���

−1 + 2 p
,

p2 yA − H−1 + pL2 yM
���

−1 + 2 p
=E

Change the signs on the numerator and denominator to get the desired formulas.

In[5]: Map@HH−1∗Numerator@#DL ê H−1∗Denominator@#DLL&, c2D

Out[5] Point2DA9 −p2 xA + H−1 + pL2 xM
���

1 − 2 p
,

−p2 yA + H−1 + pL2 yM
���

1 − 2 p
=E

cacircle.nb

Circular Conic Arc

Exploration

Show that the conic arc with control points (0, 0), (a, b) and (2a, 0) will be a circular arc if

ρ =
a(−a +

√
a2 + b2)

b2
.

Approach

Create the conic arc and find the quadratic associated with it. Force the quadratic’s coefficients
to represent a circle and solve for ρ.

Solution

Create the conic arc.

In[1]: Clear@a, b, pD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 82 a, 0<, pD;

Construct the quadratic associated with the conic arc.

In[2]: Q1 = Quadratic2D@ca1D;

Extract and simplify the coefficients.

In[3]: 8a1, b1, c1, d1, e1, f1< = Map@Together, List @@ Q1D

Out[3] 9−
1

�������������
4 a2

, 0,
−1 + 2 p
�����������������������
4 b2 p2

,
1

����������
2 a

, −
1

����������
2 b

, 0=

Find ρ that makes the quadratic a circle.

577

578 cacircle.nb

In[4]: ans1 = Solve@a1 == c1, pD êê Simplify

Out[4] 99p → −
a Ia +

è!!!!!!!!!!!!!
a2 + b2 M

��
b2

=, 9p →
a I−a +

è!!!!!!!!!!!!!
a2 + b2 M

��
b2

==

Use the positive result.

In[5]: ans2 = Last@ans1D@@1DD

Out[5] p →
a I−a +

è!!!!!!!!!!!!!
a2 + b2 M

��
b2

Discussion

A numerical example with a = 6 and b = 40.

In[6]: ca2 = ca1 êê. 8a −> 6, b −> 20, ans2<;
Sketch2D@8ca2<D;

0 2 4 6 8 10 12
0

1

2

3

4

camedian.nb

Shoulder Point on Median

Exploration

Let C be a conic arc with control points P0(x0, y0), PA(xA, yA) and P1(x1, y1) and projective
discriminant ρ. Let P be the point on the median PAPM associated with vertex PA of
4P 0PAP1 such that |PPM |/|PAPM | = ρ (PM (xM , yM) is the midpoint of P0P1). Show that
P is coincident with the shoulder point of C, having coordinates

(xM + ρ(xA − xM), yM + ρ(yA − yM)).

Approach

Construct the geometry and compare the coordinates of P to the shoulder point coordinates.

Solution

Create the conic arc control points.

In[1]: Clear@x0, y0, xA, yA, x1, y1D;
p0 = Point2D@P0 = 8x0, y0<D;
pA = Point2D@PA = 8xA, yA<D;
p1 = Point2D@P1 = 8x1, y1<D;

Construct the midpoint of the chord.

In[2]: pM = Point2D@p0, p1D

Out[2] Point2DA9 x0 + x1
���������������������

2
,

y0 + y1
���������������������

2
=E

Construct the point on the median. This result was computed using Mathematica Version
3.0.1. Version 4.0 computes a slightly different result that is algebraically equivalent. Both
versions verify that the points are coincident in the final step.

579

580 camedian.nb

In[3]: Clear@pD;
P = Point2D@pM, pA, p∗Distance2D@pM, pADD êê Simplify

Out[3] Point2DA9 1
�����
2

Hx0 − p x0 + x1 − p x1 + 2 p xAL, 1
�����
2

Hy0 − p y0 + y1 − p y1 + 2 p yAL=E

Construct the shoulder point.

In[4]: Clear@xM, yMD;
Q = Point2D@8
xM + p HxA − xML ê. xM −> Hx0 + x1L ê2,
yM + p HyA − yML ê. yM −> Hy0 + y1L ê2<D êê Simplify

Out[4] Point2DA9 1
�����
2

Hx0 − p x0 + x1 − p x1 + 2 p xAL, 1
�����
2

Hy0 − p y0 + y1 − p y1 + 2 p yAL=E

The point on the median is coincident with the shoulder point.

In[5]: IsCoincident2D@P, QD

Out[5] True

Discussion

This is a plot of a numerical example.

In[6]: ca1 = ConicArc2D@P0, PA, P1, pD;
Sketch2D@8ca1, p0, pA, p1, pM, Q,

Segment2D@pM, pAD< êê. 8
x0 −> 0, y0 −> 0, xA −> 2, yA −> 6, x1 −> 6, y1 −> 0, p −> 0.65<,
PlotRange −> AllD;

0 1 2 3 4 5 6
0

1

2

3

4

5

6

caparam.nb

Parametric Equations of a Conic Arc

Exploration

Show that the parametric equations of a unit conic arc represent the same implicit quadratic
equation as the one underlying the conic as derived from the control points P0(0, 0), PA(a, b)
and P2(1, 0) and ρ.

Approach

Create the unit conic arc. Eliminate t from the parametric equations and construct a quadratic
from the result. Construct a quadratic directly from the conic arc. Verify that the two
quadratics are identical.

Solution

Create the unit conic arc.

In[1]: Clear@a, b, pD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 81, 0<, pD;

Eliminate t from the parametric equations.

In[2]: Clear@xt, yt, tD;
eq1 = Eliminate@8xt == First@ca1@tDD, yt == Last@ca1@tDD<, 8t<D

Out[2] a p2 H4 b − 8 b xt − 4 ytL yt + 4 a2 p2 yt2 ==

4 b2 p2 xt − 4 b2 p2 xt2 − 4 b p2 xt yt − yt2 + 2 p yt2 − p2 yt2

Construct the quadratic represented by the parametric equations.

In[3]: q1 = Quadratic2D@eq1, 8xt, yt<D êê Simplify

Out[3] Quadratic2D@4 b2 p2, 4 H1 − 2 aL b p2, 1 − 2 p + H1 − 2 aL2 p2, −4 b2 p2, 4 a b p2, 0D

581

582 caparam.nb

Construct the quadratic from the conic arc.

In[4]: q2 = Map@Simplify, Quadratic2D@ca1DD êê Simplify

Out[4] Quadratic2D@−4 b2 p2, 4 H−1 + 2 aL b p2, −1 + 2 p − H1 − 2 aL2 p2, 4 b2 p2, −4 a b p2, 0D

Both quadratics are the same, ignoring the −1 factor.

In[5]: IsCoincident2D@q1, q2D

Out[5] True

carlyle.nb

Carlyle Circle

Exploration

Given a circle, C1, passing through the three points (0, 1), (0,−p) and (s,−p), show that the
x-coordinates of the intersection points P1(x1, 0) and P2(x2, 0) of C1 with the x-axis are the
roots of the quadratic equation x2 − sx − p = 0.

Approach

Construct the circle through three points and intersect it with the x-axis. Solve the quadratic
equation directly and show that the roots are equal to the x-coordinates of the intersection
points.

Solution

Construct the circle through three points.

In[1]: Clear@p, sD;
C1 = Circle2D@

p1 = Point2D@80, 1<D,
p2 = Point2D@80, −p<D,
p3 = Point2D@8s, −p<DD êê FullSimplify

Out[1] Circle2DA9 s
�����
2
,

1 − p
���������������
2

=, 1
�����
2

"#######################H1 + pL2 + s2 E

Intersect the circle with the x-axis.

In[2]: pts = Points2D@Line2D@0, 1, 0D, C1D êê FullSimplify

Out[2] 9Point2DA9 1
�����
2

Is −
è!!!!!!!!!!!!!!
4 p + s2 M, 0=E, Point2DA9 1

�����
2

Is +
è!!!!!!!!!!!!!!
4 p + s2 M, 0=E=

Solve the quadratic directly which produces the same roots as the x-axis intersections.

583

584 carlyle.nb

In[3]: Clear@xD;
Solve@x^2 − s∗x − p == 0, xD

Out[3] 99x →
1
�����
2

Is −
è!!!!!!!!!!!!!!
4 p + s2 M=, 9x →

1
�����
2

Is +
è!!!!!!!!!!!!!!
4 p + s2 M==

Discussion

This is a plot of a numerical example with p = 2 and s = 4.

In[4]: Sketch2D@8C1, pts, p1, p2, p3< ê. 8p −> 2, s −> 4<D;

0 1 2 3 4
-3

-2

-1

0

1

2

The intersection points on the x-axis are the same as the roots of the equation.

In[5]: NSolve@x^2 − 4∗x − 2 == 0, xD

Out[5] 88x → −0.44949<, 8x → 4.44949<<

castill.nb

Castillon’s Problem

Exploration

Let P1, P2 and P3 be three points inside the circle C1 ≡ x2 + y2 = 1. Describe a method for
inscribing a triangle inside C1 such that the sides of the triangle pass through the three given
points.

Approach

Let V1, V2 and V3 be the vertex points of the inscribed triangle. Using the rational parametric
equations of the circle, express the coordinates of the vertex points in terms of parameters t1,
t2 and t3. Form three equations in three unknowns, t1, t2 and t3, using the condition that
each of the given points must lie on a line containing one side of the triangle. Solve the three
equations for the parameter values of the vertex points.

Solution

This is a function that returns the rational parameterization of a unit circle at the origin given
a parameter value, t.

In[1]: RationalParameterization2D@t_D :=

8H1 − t^2L ê H1 + t^2L, 2 tê H1 + t^2L<;

Construct three points on C1 at parameters t1, t2 and t3.

In[2]: Clear@t1, t2, t3D;
8V1, V2, V3< = Map@Point2D@RationalParameterization2D@#DD&,

8t1, t2, t3<D

Out[2] 9Point2DA9 1 − t12
��������������������
1 + t12

,
2 t1

��������������������
1 + t12

=E, Point2DA9 1 − t22
��������������������
1 + t22

,
2 t2

��������������������
1 + t22

=E,

Point2DA9 1 − t32
��������������������
1 + t32

,
2 t3

��������������������
1 + t32

=E=

585

586 castill.nb

Construct three lines containing the three sides of the triangle.

In[3]: L12 = Line2D@V1, V2D êê FullSimplify;

L23 = Line2D@V2, V3D êê FullSimplify;

L13 = Line2D@V1, V3D êê FullSimplify;

8L12, L23, L13<

Out[3] 8Line2D@1 − t1 t2, t1 + t2, −1 − t1 t2D, Line2D@1 − t2 t3, t2 + t3, −1 − t2 t3D,
Line2D@1 − t1 t3, t1 + t3, −1 − t1 t3D<

Form three equations by forcing the points P1, P2 and P3 to be on the lines containing the
sides of the triangle.

In[4]: Clear@x1, y1, x2, y2, x3, y3D;
P1 = Point2D@8x1, y1<D;
P2 = Point2D@8x2, y2<D;
P3 = Point2D@8x3, y3<D;
eq1 = Equation2D@L12, 8x1, y1<D;
eq2 = Equation2D@L23, 8x2, y2<D;
eq3 = Equation2D@L13, 8x3, y3<D;
eqns = 8eq1, eq2, eq3<

Out[4] 8−1 − t1 t2 + H1 − t1 t2L x1 + Ht1 + t2L y1 == 0,

−1 − t2 t3 + H1 − t2 t3L x2 + Ht2 + t3L y2 == 0,

−1 − t1 t3 + H1 − t1 t3L x3 + Ht1 + t3L y3 == 0<

Solve the equations for the parameter values. The resulting expressions are complicated and
uninteresting, so we suppress them and use them in the graphical illustrations below. Notice
that in general there are two solutions to the problem.

In[5]: ans = Solve2D@eqns, 8t1, t2, t3<D êê FullSimplify;

Length@ansD

Out[5] 2

Discussion

Example 1: Plot the solutions for the points P1(0.25, 0.25), P2(0.5,−0.5) and P3(−0.5,−0.5).

In[6]: Sketch2D@8Circle2D@80, 0<, 1D,
Map@H8V1, V2, V3, P1, P2, P3, Segment2D@V1, V2D,

Segment2D@V2, V3D, Segment2D@V1, V3D< ê. #L&,
ansD< ê.

8x1 −> −0.25, y1 −> 0.25,

x2 −> 0.5, y2 −> −0.5,

x3 −> −0.5, y3 −> −0.5<D;

castill.nb 587

-1-0.5 0 0.5 1
-1

-0.5

0

0.5

1

Example 2: Plot the solutions for the points P1(0.5, 0.5), P2(−0.5, 0.5) and P3(0,−0.5).

In[7]: Sketch2D@8Circle2D@80, 0<, 1D,
Map@H8V1, V2, V3, P1, P2, P3, Segment2D@V1, V2D,

Segment2D@V2, V3D, Segment2D@V1, V3D< ê. #L&,
ansD< ê.

8x1 −> 0.5, y1 −> 0.5,

x2 −> −0.5, y2 −> 0.5,

x3 −> 0, y3 −> −0.5<D;

-1-0.5 0 0.5 1
-1

-0.5

0

0.5

1

catnln.nb

Tangent Line at Shoulder Point

Exploration

Let P be the point at parameter value t = 1/2 on a unit conic arc, C, whose control points
are P0(0, 0), PA(a, b) and P1(1, 0) and whose projective discriminant is ρ. Let L be the line
tangent to C at t. Show that L is parallel to the chord P0P1 at a distance bρ from P0P1. The
point P is called the shoulder point of the conic arc.

Approach

Create the conic arc and construct a point at t = 1/2. Construct the quadratic underlying
the conic arc. Construct the polar of P with respect to the quadratic (the tangent, L). Show
that L is horizontal and, therefore, parallel to the conic arc’s chord.

Solution

Create the conic arc.

In[1]: Clear@a, b, pD;
ca1 = ConicArc2D@80, 0<, 8a, b<, 81, 0<, pD;

Construct the point at t = 1/2.

In[2]: P = Point2D@ca1@1ê2DD êê Simplify

Out[2] Point2DA9 1
�����
2

+ J−
1
�����
2

+ aN p, b p=E

Construct the underlying quadratic.

In[3]: Q = Quadratic2D@ca1D êê Simplify

Out[3] Quadratic2D@−4 b2 p2, 4 H−1 + 2 aL b p2, −1 + 2 p − H1 − 2 aL2 p2, 4 b2 p2, −4 a b p2, 0D

589

590 catnln.nb

The tangent line at P is horizontal and at a distance bρ from P0P2.

In[4]: L = Line2D@P, QD êê Simplify

Out[4] Line2D@0, 1, −b pD

Discussion

Plot a numerical example with a = 1, b = 2 and ρ = 0.45.

In[5]: Sketch2D@8ca1, P, L< ê. 8a −> 1, b −> 2, p −> 0.45<,
CurveLength2D −> 5, PlotRange −> 88−0.25, 1.25<, 8−0.25, 1.25<<D;

-0.2 0 0.20.40.60.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

center.nb

Center of a Quadratic

Exploration

Show that applying the change in variables

x = x′ +
2cd − be

b2 − 4ac
and y = y′ +

2ae − bd

b2 − 4ac

to the quadratic equation ax2 + bxy + cy2 + dx + ey + f = 0 causes the linear terms to vanish,
implying that the center of the conic is

h =
2cd − be

b2 − 4ac
, k =

2ae − bd

b2 − 4ac
.

Approach

Directly apply the change in variables to the equation and simplify the resulting quadratic.

Solution

Apply the specified change in variables.

In[1]: Clear@a, b, c, d, e, f, x, yD;
eq1 = a∗x^2 + b∗x∗y + c∗y^2 + d∗x + e∗y + f ê.

8x −> x + H2 c∗d − b∗eL ê Hb^2 − 4 a∗cL,
y −> y + H2 a∗e − b∗dL ê Hb^2 − 4 a∗cL<

Out[1] f + d J 2 c d − b e
�����������������������������
b2 − 4 a c

+ xN + a J 2 c d − b e
�����������������������������
b2 − 4 a c

+ xN
2

+ e J −b d + 2 a e
��������������������������������
b2 − 4 a c

+ yN +

b J 2 c d − b e
�����������������������������
b2 − 4 a c

+ xN J −b d + 2 a e
��������������������������������
b2 − 4 a c

+ yN + c J −b d + 2 a e
��������������������������������
b2 − 4 a c

+ yN
2

Simplify the quadratic and notice that the linear terms have vanished. This result was com-
puted using Mathematica Version 3.0.1. Version 4.0 produces a slightly different result for the
constant term that is algebraically equivalent to the one shown here.

591

592 center.nb

In[2]: Q1 = Quadratic2D@eq1, 8x, y<D êê FullSimplify

Out[2] Quadratic2DAa, b, c, 0, 0,
c d2 + e H−b d + a eL
��

b2 − 4 a c
+ fE

Discussion

Notice that the coefficients a, b and c are unaffected by this change in variables.

chdlen.nb

Chord Length of Intersecting Circles

Exploration

d

D

r1
r2

C1 C2

Show that the distance, d, between the intersection points of two circles is given by

d =

√− (D − r1 − r2) (D + r1 − r2) (D − r1 + r2) (D + r1 + r2)
D

where D is the distance between the centers of the circles, and r1 and r2 are the radii of the
two circles.

Approach

Assume the radii of the two circles centered at C1 and C2 are r1 and r2, respectively, P1 is
one of the intersection points, and the distance between the centers is D. The length of the
common chord, d, can be found by equating the area (squared) of 4C1C2P1 using Heron’s
formula and the standard area formula A = bh/2.

593

594 chdlen.nb

Solution

A1 is the area (squared) by Heron’s formula.

In[1]: Clear@r1, r2, D1D;
s = Hr1 + r2 + D1L ê2;
A1 = s Hs − r1L Hs − r2L Hs − D1L êê Simplify

Out[1] −
1

���������
16

HD1 − r1 − r2L HD1 + r1 − r2L HD1 − r1 + r2L HD1 + r1 + r2L

A2 is the area (squared) by the standard area formula A = bh/2 (d is the distance between
the intersection points, i.e. the length of the chord).

In[2]: Clear@dD;
A2 = HD1∗ Hdê2L ê2L^2 êê Simplify

Out[2]
d2 D12
������������������
16

Set the areas equal and solve for d. Take the positive value. This result was computed using
Mathematica Version 3.0.1. Version 4.0 produces a different result involving

√−1 that is
algebraically equivalent.

In[3]: ans = Solve@A1 == A2, dD êê FullSimplify

Out[3] 99d → −
è!!!−HD1 − r1 − r2L HD1 + r1 − r2L HD1 − r1 + r2L HD1 + r1 + r2L
���

D1
=,

9d →
è!!!−HD1 − r1 − r2L HD1 + r1 − r2L HD1 − r1 + r2L HD1 + r1 + r2L
���

D1
==

Discussion

If the radii are equal the result can be significantly simplified. This result was computed
using Mathematica Version 3.0.1. Version 4.0 produces a different result involving

√−1 that
is algebraically equivalent.

In[4]: Clear@rD;
ans2 = Last@ansD êê. 8r1 −> r, r2 −> r< êê FullSimplify;

ans2 êê. Sqrt@−D1^4 + 4 D1^2 r^2D −> D1∗Sqrt@−D1^2 + 4 r^2D

Out[4] 9d → "#####################−D12 + 4 r2 =

cir3pts.nb

Circle Through Three Points

Exploration

Show that the equation of the circle through the three points (0, 0), (a, 0) and (0, b) is
x2 + y2 − ax − by = 0.

Approach

Find the quadratic (circle) through the three points, then convert it to an equation.

Solution

Construct the quadratic.

In[1]: Clear@a, bD;
Q = Quadratic2D@Point2D@0, 0D, Point2D@a, 0D, Point2D@0, bDD

Out[1] Quadratic2D@a b, 0, a b, −a2 b, −a b2, 0D

Simplify and convert the quadratic to an equation.

In[2]: Clear@x, yD;
Equation2D@
Quadratic2D @@ SimplifyCoefficients2D@List@@QD,
8x, y<D

Out[2] −a x + x2 − b y + y2 == 0

595

circarea.nb

One-Third of a Circle’s Area

Exploration

Show that the angle, θ, subtended by a segment of a circle whose area is one-third of the full
circle is the root of the equation

π

3
=

θ − sin θ

2
.

Also, show that θ is within 1/2 percent of 5π/6 radians.

Approach

Create an expression for the area, A1, of a segment in terms of a generic angular span, θ1.
Create an expression for the area of a full circle, A2. Solve the equation A1 = A2/3 for θ1.

Solution

Find the area of a circle’s segment.

In[1]: Clear@r, t1D;
A1 = SegmentArea2D@c1 = Circle2D@80, 0<, rD, 80, t1<D

Out[1]
1
�����
2
r2 Ht1 − Sin@t1DL

Find the area of a full circle.

In[2]: A2 = Area2D@c1D

Out[2] π r2

Form the equation.

597

598 circarea.nb

In[3]: eq1 = A1 − A2ê3 == 0

Out[3] −
π r2
�������������
3

+
1
�����
2
r2 Ht1 − Sin@t1DL == 0

Divide both sides by r2.

In[4]: eq2 = eq1 ê. r^2 −> 1

Out[4] −
π
�����
3

+
1
�����
2

Ht1 − Sin@t1DL == 0

Discussion

Solve the equation A1 = A2/3 for θ1.

In[5]: rt = FindRoot@Piê3 == Ht1 − Sin@t1DL ê2,
8t1, Pi<D

Out[5] 8t1 → 2.60533<

Show that t1 is close to 5π/6.

In[6]: Rationalize@N@t1êPiD ê. rt, .005D

Out[6]
5
�����
6

Perform a numerical check.

In[7]: 8SegmentArea2D@Circle2D@80, 0<, 1D, 80, t1 ê. rt<D,
Area2D@Circle2D@80, 0<, 1DD ê3< êê N

Out[7] 81.0472, 1.0472<

cirptmid.nb

Circle–Point Midpoint Theorem

Exploration

x

y

P0

r1

C1

Show that the locus of midpoints from a fixed point P0 to a circle C1 of radius r1, is a circle
of radius r1/2. Furthermore, show that the center point of the locus is the midpoint of the
segment between P0 and the center of C1.

Approach

Without loss of generality, choose the point P0 to be the origin and the circle C1 to have
center (h1, 0). Construct the locus of midpoints and examine its form.

Solution

Construct the circle and the locus of points.

599

600 cirptmid.nb

In[1]: Clear@h1, r1, tD;
C1 = Circle2D@8h1, 0<, r1D;
pts = Point2D@Point2D@0, 0D, Point2D@C1@tDDD

Out[1] Point2DA9 1
�����
2

Hh1 + r1 Cos@tDL, 1
�����
2
r1 Sin@tD=E

This locus is clearly a circle of radius r1/2 centered at (h1/2, 0), which is the midpoint of the
line segment from the point to the circle’s center.

Discussion

Here’s a function that computes the midpoint circle in the special position.

In[2]: Circle2D@Circle2D@8h_, 0<, r_DD :=

Circle2D@8hê2, 0<, rê2D;

The first plot is a numerical example with the origin outside the circle (r1 = 1), while the
second plot’s origin is inside the circle (r1 = 3).

In[3]: Map@Hp0 = Point2D@0, 0D;
p1 = Point2D@C1@Piê6DD;
l1 = Segment2D@p0, Point2D@C1@Piê6DDD;
C2 = Circle2D@C1D;
P = Point2D@p0, p1D;
Sketch2D@8C1, C2, p0, p1, l1, P< ê. #DL&,

88h1 −> 2, r1 −> 1<, 8h1 −> 2, r1 −> 3<<D;

0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

cramer2.nb

Cramer’s Rule (Two Equations)

Exploration

Show that the solution to the system of two linear equations in two unknowns

a1x + b1y + c1 = 0
a2x + b2y + c2 = 0

is given by

x =

∣∣∣∣ −c1 b1

−c2 b2

∣∣∣∣
D

and y =

∣∣∣∣ a1 −c1

a2 −c2

∣∣∣∣
D

,

where

D =
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ .

Approach

Use the Mathematica Det command to compute the appropriate determinants and then sub-
stitute the solutions back into the original equations to demonstrate that they solve the equa-
tions.

Solution

Compute the necessary determinants.

In[1]: Clear@a1, b1, c1, a2, b2, c2D;
dx = Det@88−c1, b1<, 8−c2, b2<<D;
dy = Det@88a1, −c1<, 8a2, −c2<<D;
dD = Det@88a1, b1<, 8a2, b2<<D;

601

602 cramer2.nb

Compute the solutions.

In[2]: 8x1, y1< = 8dxêdD, dyêdD<

Out[2] 9 −b2 c1 + b1 c2
���
−a2 b1 + a1 b2

,
a2 c1 − a1 c2

���
−a2 b1 + a1 b2

=

Show that the solutions solve the original equations.

In[3]: Clear@x, yD;
8a1∗x + b1∗y + c1, a2∗x + b2∗y + c2< ê.

8x −> x1, y −> y1< êê Simplify

Out[3] 80, 0<

Discussion

The Solve command produces the same result in Mathematica Version 3.0.1. Version 4.0
computes a slightly different result that is algebraically equivalent.

In[4]: Solve@8a1∗x + b1∗y + c1 == 0,

a2∗x + b2∗y + c2 == 0<, 8x, y<D êê Simplify

Out[4] 99x →
−b2 c1 + b1 c2
���
−a2 b1 + a1 b2

, y →
a2 c1 − a1 c2

���
−a2 b1 + a1 b2

==

cramer3.nb

Cramer’s Rule (Three Equations)

Exploration

Show that the solution to the system of three linear equations in three unknowns

a1x + b1y + c1z + d1 = 0
a2x + b2y + c2z + d2 = 0
a3x + b3y + c3z + d3 = 0

is given by

x =

∣∣∣∣∣∣
−d1 b1 c1

−d2 b2 c2

−d3 b3 c3

∣∣∣∣∣∣
D

, y =

∣∣∣∣∣∣
a1 −d1 c1

a2 −d2 c2

a3 −d3 c3

∣∣∣∣∣∣
D

and z =

∣∣∣∣∣∣
a1 b1 −d1

a2 b2 −d2

a3 b3 −d3

∣∣∣∣∣∣
D

where

D =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣.

Approach

Use the Mathematica Det command to compute the appropriate determinants and then sub-
stitute the solutions back into the original equations to demonstrate that they solve the equa-
tions.

Solution

Compute the necessary determinants.

603

604 cramer3.nb

In[1]: Clear@a1, b1, c1, d1, a2, b2, c2, d2, a3, b3, c3, d3D;
dx = Det@88−d1, b1, c1<, 8−d2, b2, c2<, 8−d3, b3, c3<<D;
dy = Det@88a1, −d1, c1<, 8a2, −d2, c2<, 8a3, −d3, c3<<D;
dz = Det@88a1, b1, −d1<, 8a2, b2, −d2<, 8a3, b3, −d3<<D;
dD = Det@88a1, b1, c1<, 8a2, b2, c2<, 8a3, b3, c3<<D;

Compute the solutions.

In[2]: 8x1, y1, z1< = 8dxêdD, dyêdD, dzêdD<

Out[2] 9 b3 c2 d1 − b2 c3 d1 − b3 c1 d2 + b1 c3 d2 + b2 c1 d3 − b1 c2 d3
��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

,

−a3 c2 d1 + a2 c3 d1 + a3 c1 d2 − a1 c3 d2 − a2 c1 d3 + a1 c2 d3
��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

,

a3 b2 d1 − a2 b3 d1 − a3 b1 d2 + a1 b3 d2 + a2 b1 d3 − a1 b2 d3
��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

=

Show that the solutions solve the original equations.

In[3]: Clear@x, yD;
8a1∗x + b1∗y + c1∗z + d1,

a2∗x + b2∗y + c2∗z + d2,

a3∗x + b3∗y + c3∗z + d3< ê.
8x −> x1, y −> y1, z −> z1< êê Simplify

Out[3] 80, 0, 0<

Discussion

The Solve command produces the same result in Mathematica Version 3.0.1. Version 4.0
computes a slightly different expression that is algebraically equivalent.

In[4]: Clear@zD;
Simplify@
Solve@8a1∗x + b1∗y + c1∗z + d1 == 0,

a2∗x + b2∗y + c2∗z + d2 == 0,

a3∗x + b3∗y + c3∗z + d3 == 0<, 8x, y, z<D
D

Out[4] 99x →
b3 c2 d1 − b2 c3 d1 − b3 c1 d2 + b1 c3 d2 + b2 c1 d3 − b1 c2 d3

��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

,

y →
−a3 c2 d1 + a2 c3 d1 + a3 c1 d2 − a1 c3 d2 − a2 c1 d3 + a1 c2 d3
��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

,

z →
a3 b2 d1 − a2 b3 d1 − a3 b1 d2 + a1 b3 d2 + a2 b1 d3 − a1 b2 d3

��
−a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

==

deter.nb

Determinants

Exploration

Determinants often provide a concise notation for expressing relationships in analytic geome-
try. Show that the expanded algebraic form for the 2 × 2 determinant∣∣∣∣ a1 b1

a2 b2

∣∣∣∣
is given by −a2b1 + a1b2.

Show that the expanded algebraic form for the 3 × 3 determinant∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
is given by −a3b2c1 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 + a1b2c3.

Approach

Use the Mathematica Det command to compute the desired determinants.

Solution

The Det command produces the desired results directly.

In[1]: Clear@a1, b1, a2, b2D;
Det@88a1, b1<, 8a2, b2<<D

Out[1] −a2 b1 + a1 b2

605

606 deter.nb

In[2]: Clear@a1, b1, c1, a2, b2, c2, a3, b3, c3D;
Det@88a1, b1, c1<, 8a2, b2, c2<, 8a3, b3, c3<<D

Out[2] −a3 b2 c1 + a2 b3 c1 + a3 b1 c2 − a1 b3 c2 − a2 b1 c3 + a1 b2 c3

elfocdir.nb

Focus of Ellipse is Pole of Directrix

Exploration

Show that the focus of an ellipse is the pole of the corresponding directrix.

Approach

Construct the directrix and the pole of the focus and verify that they are the same lines.

Solution

Construct the required geometry.

In[1]: Clear@a, bD;
e1 = Ellipse2D@80, 0<, a, b, 0D;
fpts = Foci2D@e1D;
dlns = Directrices2D@e1D êê Simplify

Out[1] 9Line2DA1, 0, −
a2

��������������������������è!!!!!!!!!!!!!
a2 − b2

E, Line2DA1, 0,
a2

��������������������������è!!!!!!!!!!!!!
a2 − b2

E=

Construct the polars of the foci.

In[2]: lns = 8Line2D@fpts@@1DD, e1D, Line2D@fpts@@2DD, e1D< êê Simplify

Out[2] 9Line2DAè!!!!!!!!!!!!!
a2 − b2 , 0, −a2E, Line2DA−

è!!!!!!!!!!!!!
a2 − b2 , 0, −a2E=

The lines in pairs are coincident.

In[3]: 8IsCoincident2D@dlns@@1DD, lns@@1DDD,
IsCoincident2D@dlns@@2DD, lns@@2DDD<

Out[3] 8True, True<

607

608 elfocdir.nb

Discussion

This is a plot of a numerical example with a = 1.5 and b = 1.

In[4]: Sketch2D@8e1, fpts, dlns< ê. 8a −> 1.5, b −> 1<,
CurveLength2D −> 3D;

-2 -1 0 1 2
-1.5
-1

-0.5
0

0.5
1

1.5

elimlin.nb

Eliminate Linear Terms

Exploration

Show that applying the change in variables

x′ = x − d

2a
and y′ = y − e

2a

to the quadratic equation ax2 + cy2 + dx + ey + f = 0 yields the quadratic

ax′2 + cy′2 − d2

4a
− e2

4c
+ f = 0

whose linear terms have vanished.

Approach

Apply the transformation rules directly to the quadratic equation.

Solution

Apply the transformation rules to the equation.

In[1]: Clear@a, c, d, e, f, x, yD;
a∗x^2 + c∗y^2 + d∗x + e∗y + f ê.

8x −> x − dê H2 aL, y −> y − eê H2 cL< êê Expand

Out[1] −
d2

����������
4 a

−
e2

����������
4 c

+ f + a x2 + c y2

609

elimxy1.nb

Eliminate Cross-Term by Rotation

Exploration

Show that by rotating a quadratic ax2 + bxy + cy2 + dx + ey + f = 0 through an angle θ given
by

tan(2θ) =
b

c − a

the xy term will vanish.

Approach

Create a quadratic and rotate it by an angle θ. Show that the coefficient of the xy term is
zero.

Solution

Create a quadratic.

In[1]: Clear@a, b, c, d, e, fD;
Q = Quadratic2D@a, b, c, d, e, fD;

Rotate the quadratic.

In[2]: Q1 = Rotate2D@Q, ArcTan@bê Hc − aLD ê2D;

Simplify the coefficient of the xy term.

In[3]: Q1@@2DD êê Simplify

Out[3] 0

611

elimxy2.nb

Eliminate Cross-Term by Change in Variables

Exploration

Show that applying the change in variables x′ = kx + y and y′ = ky − x, where

k =
(c − a)

b
+

√(
c − a

b

)2

+ 1,

to the equation ax2 + bxy + cy2 + dx + ey + f = 0 will cause the xy term to vanish and a new
quadratic with the following coefficients will be formed:

a′ = ak2 − bk + c

b′ = 0

c′ = ck2 + bk + a

d′ = dk − e

e′ = ek + d

f ′ = f.

Approach

Create a quadratic and form a quadratic equation. Apply the change in variables and examine
the coefficients.

613

614 elimxy2.nb

Solution

Create a quadratic.

In[1]: Clear@a, b, c, d, e, fD;
Q1 = Quadratic2D@a, b, c, d, e, fD;

Form the quadratic equation and apply the change in variables.

In[2]: Clear@x, y, kD;
eq1 = Equation2D@Q1, 8x, y<D ê.

8x −> k∗x + y, y −> k∗y − x<

Out[2] f + d Hk x + yL + a Hk x + yL2 + e H−x + k yL + b Hk x + yL H−x + k yL + c H−x + k yL2 == 0

Examine the resulting coefficients.

In[3]: Q2 = Quadratic2D@eq1, 8x, y<D

Out[3] Quadratic2D@c − b k + a k2, −b + 2 a k − 2 c k + b k2, a + b k + c k2, −e + d k, d + e k, fD

The xy term is zero.

In[4]: Q2@@2DD ê. k −> Hc − aL êb + Sqrt@HHc − aL êbL^2 + 1D êê Simplify

Out[4] 0

elimxy3.nb

Eliminate Cross-Term by Change in Variables

Exploration

Show that applying the change in variables x′ = kx + y and y′ = ky − x, where

k =
(c − a)

b
+

√(
c − a

b

)2

+ 1,

to the equation ax2 + bxy + cy2 + dx + ey + f = 0 is equivalent to rotating the quadratic by
an angle θ given by

tan θ =
1
k

and scaling the quadratic by a scale factor

s =
1√

1 + k2
.

Approach

Create a quadratic and rotate and scale it as specified. Compare the result to the result of
elimxy2.nb.

Solution

Create a quadratic.

In[1]: Clear@a, b, c, d, e, fD;
Q1 = Quadratic2D@a, b, c, d, e, fD;

615

616 elimxy3.nb

Rotate it by the specified angle. The results shown in the next few steps were computed using
Mathematica Version 3.0.1. Version 4.0 produces similar results except the coefficients are
multiplied by a constant. Both versions produce the same result in the final step.

In[2]: Clear@kD;
Q2 = Rotate2D@Q1, ArcTan@1êkDD êê Simplify

Out[2] Quadratic2DAc + k H−b + a kL, 2 Ha − cL k + b H−1 + k2L, a + k Hb + c kL,

$%%%%%%%%%%%%%1 +
1

��������
k2

k H−e + d kL, $%%%%%%%%%%%%%1 +
1

��������
k2

k Hd + e kL, f H1 + k2LE

As shown in elimxy2.nb, the xy term must vanish.

In[3]: Q2@@2DD = 0; Q2

Out[3] Quadratic2DAc + k H−b + a kL, 0, a + k Hb + c kL, $%%%%%%%%%%%%%1 +
1

��������
k2

k H−e + d kL,

$%%%%%%%%%%%%%1 +
1

��������
k2

k Hd + e kL, f H1 + k2LE

Scale as specified.

In[4]: Q3 = Scale2D@Q2, 1êSqrt@1 + k^2DD êê Simplify

Out[4] Quadratic2DAH1 + k2L Hc + k H−b + a kLL, 0, H1 + k2L Ha + k Hb + c kLL,

$%%%%%%%%%%%%%1 +
1

��������
k2

k H−e + d kL è!!!!!!!!!!!
1 + k2 , $%%%%%%%%%%%%%1 +

1
��������
k2

k Hd + e kL è!!!!!!!!!!!
1 + k2 , f H1 + k2LE

Simplify, showing the same result as elimxy2.nb.

In[5]: Q4 = Q3 ê. 8Sqrt@1 + k^H−2LD ∗k −> Sqrt@1 + k^2D< êê Simplify

Out[5] Quadratic2D@c + k H−b + a kL, 0, a + k Hb + c kL, −e + d k, d + e k, fD

elldist.nb

Ellipse Locus, Distance from Two Lines

Exploration

A point moves so that the sum of the squares of its distances from two intersecting straight
lines is a constant. Prove that its locus is an ellipse.

Approach

Compute the distances from a generic point (x, y) to the lines and show that the equation
must be an ellipse.

Solution

Create the two lines and a generic point.

In[1]: Clear@A1, B1, C1, A2, B2, C2, x, yD;
l1 = Line2D@A1, B1, C1D;
l2 = Line2D@A2, B2, C2D;
pt = Point2D@x, yD;

Sum of distances squared is a constant, K.

In[2]: Clear@KD;
eq1 = Distance2D@pt, l1D^2 + Distance2D@pt, l2D^2 − K

Out[2] −K +
HC1 + A1 x + B1 yL2

��
A12 + B12

+
HC2 + A2 x + B2 yL2

��
A22 + B22

Form the quadratic equation (without loss of generality, assume the lines are normalized).

In[3]: Q1 = Quadratic2D@eq1, 8x, y<D ê.
8A1^2 + B1^2 −> 1, A2^2 + B2^2 −> 1<

Out[3] Quadratic2D@A12 + A22, 2 A1 B1 + 2 A2 B2, B12 + B22, 2 A1 C1 + 2 A2 C2,

2 B1 C1 + 2 B2 C2, C12 + C22 − KD

617

618 elldist.nb

Compute the discriminant of the quadratic, B2 − 4AC.

In[4]: disc = Q1@@2DD^2 − 4∗Q1@@1DD ∗Q1@@3DD êê Simplify

Out[4] −4 HA2 B1 − A1 B2L2

The discriminant of the quadratic, B2 − 4AC, is negative; therefore, the curve is an ellipse.
Note that the expression (A2B1 − A1B2)

2 cannot be zero if the lines intersect.

Discussion

This is a plot of a numerical example using three different values of K.

In[5]: Sketch2D@8l1, l2,

Map@HQ1 ê. #L&, 8K −> 2, K −> 3, K −> 6<D< ê. 8
A1 −> 1, B1 −> 1.5, C1 −> −1,

A2 −> −0.5, B2 −> 2.5, C2 −> −1<,
CurveLength2D −> 5D;

-2 -1 0 1 2

-0.5

0

0.5

1

1.5

ellfd.nb

Ellipse from Focus and Directrix

Exploration

Show that the ellipse with focus F (x1, y1), directrix line L ≡ px + qy + r = 0 and eccentricity,
0 < e < 1, is defined by the constants

h = x1 +
paeD

d
, k = y1 +

qaeD

d
,

a = d
e

(1 − e2)
, b = a

√
1 − e2, θ = tan−1(p, q),

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

Approach

Apply the definition of an ellipse to the supplied focus and directrix for a general point (x, y)
and show that the derived locus is an ellipse.

Solution

The rotation angle of the ellipse is the angle the line perpendicular to L makes with the
+x-axis (in Mathematica ArcTan[p, q] is ArcTan[q/p], the first form takes into account the
quadrant of the point (p, q)).

In[1]: Clear@p, q, rD;
L = Line2D@p, q, rD;
theta = Angle2D@Line2D@0, 1, 0D, Line2D@Point2D@0, 0D, LDD;
theta êê Simplify

Out[1] ArcTanA q
�����
p

E

619

620 ellfd.nb

Now we must show that the lengths a and b are given by the formulas. In standard position
the distance from the focus of an ellipse to its directrix is given by d = a/e− ae. Solving
for a gives the following result in Mathematica Version 3.0.1. Version 4.0 produces a slightly
different result that is algebraically equivalent.

In[2]: Clear@d, a, eD;
Solve@d == aêe − a∗e, aD êê Simplify

Out[2] 99a →
d e

�����������������
1 − e2

==

Also, the eccentricity is given by e =
√

a2 − b2/a and solving for b gives (take the positive
result).

In[3]: Solve@e == Sqrt@a^2 − b^2D êa, bD

Out[3] 99b → −a
è!!!!!!!!!!!
1 − e2 =, 9b → a

è!!!!!!!!!!!
1 − e2 ==

The eccentricity is the ratio of the distance from a general point to the focus to the distance
to the directrix.

In[4]: Clear@x1, y1, x, yD;
F = Point2D@x1, y1D;
P = Point2D@x, yD;
8dF = Distance2D@P, FD,
dL = Distance2D@P, LD<

Out[4] 9"######################################Hx − x1L2 + Hy − y1L2 , $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Hr + p x + q yL2

��
p2 + q2

=

Form the equation for the eccentricity squared.

In[5]: eq1 = e^2∗dL^2 − dF^2 êê Expand êê Together

Out[5]
1

��������������������
p2 + q2

He2 r2 + 2 e2 p r x − p2 x2 + e2 p2 x2 − q2 x2 + 2 p2 x x1 + 2 q2 x x1 − p2 x12 − q2 x12 +

2 e2 q r y + 2 e2 p q x y − p2 y2 − q2 y2 + e2 q2 y2 + 2 p2 y y1 + 2 q2 y y1 − p2 y12 − q2 y12L

Find the coordinates (h1, k1) of the center of the quadratic.

In[6]: 8h1, k1< =

Coordinates2D@
Point2D@
Q1 = Quadratic2D@eq1, 8x, y<D êê SimplifyDD êê Simplify

Out[6] 9 −Hp2 + q2L x1 + e2 Hq2 x1 − p Hr + q y1LL
���H−1 + e2L Hp2 + q2L , −

Hp2 + q2L y1 + e2 Hq Hr + p x1L − p2 y1L
��H−1 + e2L Hp2 + q2L =

Find the coordinates of the center using the formula provided.

ellfd.nb 621

In[7]: Clear@D1D;
8h2, k2< = 8x1 + p∗a∗e∗D1êd, y1 + q∗a∗e∗D1êd< êê.

8a −> d∗eê H1 − e^2L,
b −> a∗Sqrt@1 − e^2D,
d −> Sqrt@Hp∗x1 + q∗y1 + rL^2ê Hp^2 + q^2LD,
D1 −> Hp∗x1 + q∗y1 + rL ê Hp^2 + q^2L<

Out[7] 9x1 +
e2 p Hr + p x1 + q y1L
���H1 − e2L Hp2 + q2L , y1 +

e2 q Hr + p x1 + q y1L
���H1 − e2L Hp2 + q2L =

This shows that the center indeed has the same coordinates as the point from the formula.

In[8]: 8h1 − h2, k1 − k2< êê Simplify

Out[8] 80, 0<

Discussion

An example showing the construction of an ellipse from its focus, directrix and eccentricity.

In[9]: focus1 = Point2D@81ê2, 1<D;
directrix1 = Line2D@5, 8, −20D;
eccentricity1 = 3ê4;
ellipse1 = Ellipse2D@focus1, directrix1, eccentricity1D

Out[9] Ellipse2DA9−
116
������������
623

, −
61

������������
623

=, 114
�������������������
7 è!!!!!89

,
57

�����������������������
2 è!!!!!!!!623

, ArcTanA 8
�����
5

EE

In[10]: Sketch2D@8focus1, directrix1, ellipse1<,
CurveLength2D −> 5D;

-1 0 1 2 3

-1

0

1

2

3

ellips2a.nb

Sum of Focal Distances of an Ellipse

Exploration

Show that the sum of the distances from the two foci to any point on an ellipse is 2a, where
a is the length of the semi-major axis.

Approach

Construct a generic point on an ellipse. Construct the two foci of the ellipse. Find the distance
from each focus to the generic point. Show that the sum of the distances is 2a.

Solution

Create the ellipse and a generic point on it.

In[1]: Clear@a, b, tD;
e1 = Ellipse2D@80, 0<, a, b, 0D;
p1 = Point2D@e1@tDD

Out[1] Point2D@8a Cos@tD, b Sin@tD<D

Construct the focus points of the ellipse.

In[2]: 8f1, f2< = Foci2D@e1D

Out[2] 9Point2DA9è!!!!!!!!!!!!!
a2 − b2 , 0=E, Point2DA9−

è!!!!!!!!!!!!!
a2 − b2 , 0=E=

Find the sum of the distances from the generic point to the foci.

In[3]: sum1 = Distance2D@p1, f1D + Distance2D@p1, f2D

Out[3] $%%%I−
è!!!!!!!!!!!!!
a2 − b2 + a Cos@tDM

2
+ b2 Sin@tD2 + $%%%Iè!!!!!!!!!!!!!

a2 − b2 + a Cos@tDM
2

+ b2 Sin@tD2

623

624 ellips2a.nb

Work on the expressions under the radicals.

In[4]: 8e1, e2< = Map@Expand@# ê. Sin@tD^2 −> 1 − Cos@tD^2D&,
8sum1@@1, 1DD, sum1@@2, 1DD<D

Out[4] 9a2 − 2 a
è!!!!!!!!!!!!!
a2 − b2 Cos@tD + a2 Cos@tD2 − b2 Cos@tD2,

a2 + 2 a
è!!!!!!!!!!!!!
a2 − b2 Cos@tD + a2 Cos@tD2 − b2 Cos@tD2=

This shows that both expressions factor into perfect squares.

In[5]: 8He3 = Ha − Sqrt@a^2 − b^2D ∗Cos@tDL^2L − e1,

He4 = Ha + Sqrt@a^2 − b^2D ∗Cos@tDL^2L − e2< êê Expand

Out[5] 80, 0<

Replace the expressions under the radicals with the equivalent perfect square expressions.

In[6]: sum2 = Sqrt@e3D + Sqrt@e4D

Out[6] $%%%Ia −
è!!!!!!!!!!!!!
a2 − b2 Cos@tDM

2
+ $%%%Ia +

è!!!!!!!!!!!!!
a2 − b2 Cos@tDM

2

Since a > b > 0, both expressions are clearly the square root of a squared positive number,
which simply reduces to the positive number itself.

In[7]: Clear@E1D;
sum2 ê. Sqrt@E1_^2D −> E1

Out[7] 2 a

elllen.nb

Length of Ellipse Focal Chord

Exploration

Prove that the length of the focal chord of an ellipse is 2b2/a, where a is the length of the
semi-major axis and b is the length of the semi-minor axis.

Approach

Construct an ellipse in standard position. Construct a line perpendicular to the axis of the
ellipse through one of the focal points (the line containing the focal chord). Compute the
distance between the points of intersection of the ellipse and the line.

Solution

Create the ellipse.

In[1]: Clear@a1, b1D;
e1 = Ellipse2D@80, 0<, a1, b1, 0D;

Construct one of the focal points.

In[2]: fpt = First@Foci2D@e1DD

Out[2] Point2DA9"#################a12 − b12 , 0=E

Construct a line perpendicular to the x-axis through the focus.

In[3]: fln = Line2D@fpt, InfinityD

Out[3] Line2DA1, 0, −"#################a12 − b12 E

Intersect the line with the ellipse.

625

626 elllen.nb

In[4]: pts = Points2D@fln, e1D

Out[4] 9Point2DA9"#################a12 − b12 , −
b12
�����������
a1

=E, Point2DA9"#################a12 − b12 ,
b12
�����������
a1

=E=

The length of the focal chord is the distance between the intersection points.

In[5]: d = Distance2D@Sequence @@ ptsD

Out[5] 2 $%%%%%%%%%b14
�����������
a12

Notice that since a > 0 and b > 0 the solution reduces to 2b2/a.

In[6]: d ê. 8Sqrt@b1^4êa1^2D −> b1^2êa1<

Out[6]
2 b12
����������������
a1

ellrad.nb

Apoapsis and Periapsis of an Ellipse

Exploration

Show that the greatest, apoapsis, and least, periapsis, radial distance of a point on an ellipse
as measured from a focus point is given by r = a(1 + e) and r = a(1 − e), respectively, where
e is the eccentricity and a is the length of the semi-major axis of the ellipse.

Approach

Create a standard ellipse centered at the origin and create an expression representing the
distance from a focus point to a point on the ellipse (in terms of the eccentricity and semi-
major axis). Find the parameter value on the ellipse where the distance is a minimum or a
maximum.

Solution

The eccentricity is given by e =
√

a2 − b2/a; therefore,
√

a2 − b2 = ea. Find the focus points
and use this substitution.

In[1]: Clear@a, b, eD;
e1 = Ellipse2D@80, 0<, a, b, 0D;
fpts1 = Foci2D@e1D ê. Sqrt@a^2 − b^2D −> a∗e

Out[1] 8Point2D@8a e, 0<D, Point2D@8−a e, 0<D<

Find a general point on the ellipse in terms parameter t.

In[2]: Clear@tD;
pt = Point2D@e1@tDD

Out[2] Point2D@8a Cos@tD, b Sin@tD<D

Solve for b in terms of a and e, where b > 0.

627

628 ellrad.nb

In[3]: ans = Solve@Sqrt@a^2 − b^2D êa == e, bD

Out[3] 99b → −a
è!!!!!!!!!!!
1 − e2 =, 9b → a

è!!!!!!!!!!!
1 − e2 ==

Determine the distance, d, from the point to the focus.

In[4]: d = Distance2D@fpts1@@1DD, ptD ê. ans@@2DD êê Simplify

Out[4]
"#####################################a2 H−1 + e Cos@tDL2

The maximum value of d occurs when cos(θ) = −1, or θ = π; the minimum value of d occurs
when cos(θ) = 1, or θ = 0.

In[5]: 8apoapsis, periapsis< = Map@Hd ê. #L&, 8Cos@tD −> −1, Cos@tD −> 1<D

Out[5] 9"#######################a2 H−1 − eL2 , "#######################a2 H−1 + eL2 =

Since e < 1, the sign must be reversed outside the radical.

In[6]: Clear@E1D;
8apoapsis, periapsis< ê.
Sqrt@a^2∗E1_^2D −> a∗ H−E1L êê Factor

Out[6] 8a H1 + eL, −a H−1 + eL<

ellsim.nb

Similar Ellipses

Exploration

All ellipses of equal eccentricity are essentially similar in that by a proper choice of scales
(and axes) they can be made to coincide. Show this property is true for two ellipses of equal
eccentricity centered at the origin.

Approach

Construct two ellipses with equal eccentricity. Show that one can be scaled to coincide with
the other.

Solution

Construct the two ellipses by vertex points.

In[1]: Clear@e1, a, a1, a2D;
8E1, E2< = 8Ellipse2D@8Point2D@−a1, 0D, Point2D@a1, 0D<, e1D,

Ellipse2D@8Point2D@−a2, 0D, Point2D@a2, 0D<, e1D< ê.
Sqrt@a_^2D −> a

Out[1] 9Ellipse2DA80, 0<, a1, a1 "#############1 − e12 , ArcTan@2 a1, 0DE,

Ellipse2DA80, 0<, a2, a2 "#############1 − e12 , ArcTan@2 a2, 0DE=

Scale the first to coincide with the second

In[2]: Scale2D@E1, a2êa1D

Out[2] Ellipse2DA80, 0<, a2, a2 "#############1 − e12 , ArcTan@2 a1, 0DE

629

630 ellsim.nb

Discussion

This is a plot of a pair of similar ellipses.

In[3]: Sketch2D@8E1, E2< ê. 8a1 −> 1, a2 −> 2, e1 −> .75<D;

-2 -1 0 1 2

-1

-0.5

0

0.5

1

ellslp.nb

Tangent to an Ellipse with Slope

Exploration

Show that the lines tangent to the ellipse x2/a2 + y2/b2 = 1 with slope m are given by
y = mx ±

√
a2m2 + b2.

Approach

Construct a line with slope m and use the function TangentLines2D[ln,quad] to construct
the desired tangent lines.

Solution

Construct a line with slope m.

In[1]: Clear@x, y, mD;
l1 = Line2D@Point2D@x, yD, mD

Out[1] Line2D@m, −1, −m x + yD

Construct the lines tangent to the ellipse and parallel to the line.

In[2]: Clear@a, bD;
tln = TangentLines2D@l1, e1 = Ellipse2D@80, 0<, a, b, 0DD

Out[2] 9Line2DAm, −1, −
è!!!!!!!!!!!!!!!!!!
b2 + a2 m2 E, Line2DAm, −1,

è!!!!!!!!!!!!!!!!!!
b2 + a2 m2 E=

Show the lines in equation form.

In[3]: Map@Equation2D@#, 8x, y<D&, tlnD

Out[3] 9−
è!!!!!!!!!!!!!!!!!!
b2 + a2 m2 + m x − y == 0,

è!!!!!!!!!!!!!!!!!!
b2 + a2 m2 + m x − y == 0=

631

632 ellslp.nb

Discussion

Plot a numerical example.

In[4]: Sketch2D@8tln, e1< ê.
8m −> 1ê2, a −> 2, b −> 1<D;

-4 -2 0 2 4
-3
-2
-1
0
1
2
3

eqarea.nb

Equal Areas Point

Exploration

Given 4ABC with vertices A(xA, xB), B(xB , yB) and C(xC , yC) show that there are four
positions of a point Pn(x, y) such that 4APB, 4APC and 4BPC have equal areas. The
coordinates of Pn are given by

P0((xA + xB + xC) /3, (yA + yB + yC) /3)
P1(−xA + xB + xC ,−yA + yB + yC)
P2(+xA − xB + xC , +yA − yB + yC)
P3(+xA + xB − xC , +yA + yB − yC).

P0 is the centroid of 4ABC and 4P 1P2P3. 4ABC connects the midpoints of the sides of
4P 1P2P3.

Approach

Construct the geometry and solve a system of equations that equates the areas of the three
triangles. Compare the centroid and midpoints as specified.

Solution

Create the points.

In[1]: Clear@xA, yA, xB, yB, xC, yC, x, yD;
A1 = Point2D@xA, yAD;
B1 = Point2D@xB, yBD;
C1 = Point2D@xC, yCD;
P = Point2D@x, yD;

Compute the areas of the triangles.

633

634 eqarea.nb

In[2]: a1 = Area2D@Triangle2D@A1, P, B1DD;
a2 = Area2D@Triangle2D@A1, P, C1DD;
a3 = Area2D@Triangle2D@B1, P, C1DD;

Form equations by equating the areas (squared). Squaring is required because the area calcu-
lation may produce a symbolically negative number for the area.

In[3]: 8eq1 = a1^2 == a2^2, eq2 = a2^2 == a3^2<

Out[3] 9 1
�����
4

HxA y − xB y − x yA + xB yA + x yB − xA yBL2 ==

1
�����
4

HxA y − xC y − x yA + xC yA + x yC − xA yCL2,

1
�����
4

HxA y − xC y − x yA + xC yA + x yC − xA yCL2 ==

1
�����
4

HxB y − xC y − x yB + xC yB + x yC − xB yCL2=

Solve the system of equations.

In[4]: ans = Solve@8eq1, eq2<, 8x, y<D

Out[4] 98x → xA + xB − xC, y → yA + yB − yC<, 8x → xA − xB + xC, y → yA − yB + yC<,

8x → −xA + xB + xC, y → −yA + yB + yC<, 9x →
1
�����
3

HxA + xB + xCL, y →
1
�����
3

HyA + yB + yCL==

Construct points at the solutions.

In[5]: 8P3, P2, P1, P0< = Map@HPoint2D@x, yD ê. #L&,
ansD;

8P0, P1, P2, P3<

Out[5] 9Point2DA9 1
�����
3

HxA + xB + xCL, 1
�����
3

HyA + yB + yCL=E,

Point2D@8−xA + xB + xC, −yA + yB + yC<D, Point2D@8xA − xB + xC, yA − yB + yC<D,
Point2D@8xA + xB − xC, yA + yB − yC<D=

Show that P0 is the centroid of 4ABC and 4P 1P2P3.

In[6]: Point2D@Triangle2D@A1, B1, C1D, Centroid2DD

Out[6] Point2DA9 1
�����
3

HxA + xB + xCL, 1
�����
3

HyA + yB + yCL=E

In[7]: Point2D@Triangle2D@P1, P2, P3D, Centroid2DD

Out[7] Point2DA9 1
�����
3

HxA + xB + xCL, 1
�����
3

HyA + yB + yCL=E

Show that 4ABC connects the midpoints of the sides of 4P 1P2P3.

In[8]: 8Point2D@P1, P2D, Point2D@P1, P3D, Point2D@P2, P3D<

Out[8] 8Point2D@8xC, yC<D, Point2D@8xB, yB<D, Point2D@8xA, yA<D<

eqarea.nb 635

Discussion

This is a plot of a numerical example.

In[9]: Sketch2D@8Triangle2D@A1, B1, C1D,
Triangle2D@P1, P2, P3D,
P0, P1, P2, P3< ê.

8xA −> −1, yA −> −1,

xB −> 3, yB −> 0,

xC −> 1, yC −> 3<D;

-2 0 2 4
-4

-2

0

2

4

eyeball.nb

Eyeball Theorem

Exploration

x

y

r1 r2

d

The tangents to each of two circles from the center of the other are drawn as shown in the
figure. Prove that the chords illustrated are equal in length.

Approach

Construct the chords and compare their lengths.

Solution

Without loss of generality, scale the circles so that the distance between the centers is 1.
Position them at the origin and along the positive x-axis.

637

638 eyeball.nb

In[1]: Clear@r1, r2D;
c1 = Circle2D@80, 0<, r1D;
c2 = Circle2D@81, 0<, r2D;
l12 = TangentLines2D@Point2D@c1D, c2D;
l21 = TangentLines2D@Point2D@c2D, c1D;

Compute the tangent points.

In[2]: pt1 = TangentPoints2D@Point2D@c1D, c2D;
pt2 = TangentPoints2D@Point2D@c2D, c1D;

Show that (half) the heights of the segments are equal

In[3]: sin1 = YCoordinate2D@pt1@@1DDD ê
Distance2D@Point2D@0, 0D, pt1@@1DDD;

sin2 = YCoordinate2D@pt2@@2DDD ê
Distance2D@Point2D@1, 0D, pt2@@2DDD;

8h1 = Simplify@r1∗sin1D,
h2 = Simplify@r2∗sin2D<

Out[3] 8r1 r2, r1 r2<

Discussion

This is a plot of a numerical example.

In[4]: example = 8r1 −> 0.25, r2 −> 0.375<;
Sketch2D@

8c1, c2, l12, l21, pt1, pt2< ê.
example,

PlotRange −> 88−1ê2, 2<, 8−1, 1<<D;

0 0.5 1 1.5 2

-0.75
-0.5
-0.25

0
0.25
0.5
0.75

1

gergonne.nb

Gergonne Point of a Triangle

Exploration

Let Q12, Q13 and Q23 be the points of contact of the inscribed circle of 4P 1P2P3 with sides
L12, L13 and L23, respectively. Show that lines P1Q23, P2Q13 and P3Q12 are concurrent.
The point of concurrency is called the Gergonne Point of the triangle after J.D. Gergonne
(1771–1859), founder-editor of the mathematics journal Annales de Mathematiques.

Approach

Create the triangle in a simplified position and construct the inscribed circle. Construct the
tangency points and the prescribed lines. Show that the lines are concurrent.

Solution

Without loss of generality, create the triangle’s vertex points and the triangle itself in a
convenient position.

In[1]: Clear@a, bD;
P1 = Point2D@0, 0D;
P2 = Point2D@a, bD;
P3 = Point2D@1, 0D;
T1 = Triangle2D@P1, P2, P3D;

Construct the circle inscribed in the triangle.

In[2]: C1 = Circle2D@T1, Inscribed2DD êê FullSimplify;

Construct the lines through the sides of the triangle.

In[3]: 8L12 = Line2D@P1, P2D, L13 = Line2D@P1, P3D, L23 = Line2D@P2, P3D<

Out[3] 8Line2D@−b, a, 0D, Line2D@0, 1, 0D, Line2D@b, 1 − a, −bD<

639

640 gergonne.nb

Construct tangency points which are the poles of the sides with respect to the inscribed circle.

In[4]: 8Q12, Q13, Q23< =

Map@FullSimplify,
8Point2D@L12, C1D, Point2D@L13, C1D, Point2D@L23, C1D<D;

Construct the lines defining the Gergonne point.

In[5]: 8L1, L2, L3< =

Map@FullSimplify,
8Line2D@P1, Q23D, Line2D@P2, Q13D, Line2D@P3, Q12D<D;

The three lines are concurrent if the determinant of their coefficients is zero.

In[6]: Det@8List@@L1, List@@L2, List@@L3<D êê FullSimplify

Out[6] 0

Discussion

This plots a numerical example with specific points.

In[7]: Sketch2D@8P1, P2, P3, T1, C1, Q12, Q13, Q23, L1, L2, L3,

Point2D@L1, L2D< êê. 8a −> 2ê3, b −> 1<,
PlotRange −> 88−0.25, 1.25<, 8−0.25, 1.25<<D;

-0.2 0 0.20.40.60.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

heron.nb

Heron’s Formula

Exploration

Show that the area, K, of a 4ABC is given by

K =
√

s(s − a) (s − b) (s − c)

where the semi-perimeter s = (a + b + c) /2 and a, b and c are the lengths of the sides.

Approach

In a 4ABC with side lengths a, b and c, derive an expression for cosA (the cosine of the angle
at vertex A of the triangle) using the Law of Cosines. Using the identity (sinA)2 = 1 − (cosA)2

the area can be computed using K = (1/2) bc sinA. Simplify the resulting expression for the
area, K, to Heron’s formula.

Solution

Find an expression for the cosA using the Law of Cosines.

In[1]: Clear@a, b, c, s, cosA, sinA, E1D;
cA = Solve@a^2 == b^2 + c^2 − 2∗b∗c∗cosA, cosAD êê Simplify

Out[1] 99cosA →
−a2 + b2 + c2
�����������������������������������

2 b c
==

Find an expression for the sinA using the previous expression for cosA. Use the positive
result.

In[2]: sA = Solve@HsinA^2 + cosA^2 == 1L ê. cA, sinAD êê Last

Out[2] 9sinA →
1
�����
2

$%%%2 +
2 a2
�������������
b2

+
2 a2
�������������
c2

−
a4

���������������
b2 c2

−
b2
��������
c2

−
c2
��������
b2

=

641

642 heron.nb

Compute the area of the triangle from one-half the product of the base and height.

In[3]: K1 = b∗c∗sinA ê2 ê. sA êê FullSimplify

Out[3]
1
�����
4
b c $%%%−

H−a + b − cL Ha + b − cL H−a + b + cL Ha + b + cL
���

b2 c2

Simplify to Heron’s formula. The following steps were computed using Mathematica Version
3.0.1. Version 4.0 produces slightly different results that are algebraically equivalent.

In[4]: K2 = K1 ê. Sqrt@E1_D :> Sqrt@Factor@E1DD

Out[4]
1
�����
4
b c $%%%−

H−a + b − cL Ha + b − cL H−a + b + cL Ha + b + cL
���

b2 c2

In[5]: K3 = K2 ê. Sqrt@−E1_ ê Hb^2∗c^2LD :> Sqrt@−E1D ê Hb∗cL

Out[5]
1
�����
4

è!!!
−H−a + b − cL Ha + b − cL H−a + b + cL Ha + b + cL

In[6]: K4 = K3 êê.
8a + b −> 2∗s − c,

b + c −> 2∗s − a,

−a − c −> −H2∗s − bL< êê FullSimplify

Out[6]
è!!
s H−a + sL H−b + sL H−c + sL

hyp2a.nb

Focal Distances of a Hyperbola

Exploration

Show that the difference of the distances from the two foci to any point on a hyperbola is 2a,
where a is the length of the semi-transverse axis.

Approach

Construct a generic point on a hyperbola. Construct the two foci of the hyperbola. Find the
distance from each focus to the generic point. Show that the difference of the distances is 2a.

Solution

Create the hyperbola and a generic point on it.

In[1]: Clear@a, b, tD;
h1 = Hyperbola2D@80, 0<, a, b, 0D;
p1 = Point2D@a∗Cosh@tD, b∗Sinh@tDD

Out[1] Point2D@8a Cosh@tD, b Sinh@tD<D

Create the focus points of the hyperbola.

In[2]: 8f1, f2< = Foci2D@h1D

Out[2] 9Point2DA9è!!!!!!!!!!!!!
a2 + b2 , 0=E, Point2DA9−

è!!!!!!!!!!!!!
a2 + b2 , 0=E=

Compute the difference of the distances from the generic point to the foci.

In[3]: diff1 = Distance2D@p1, f2D − Distance2D@p1, f1D

Out[3] −$%%I−
è!!!!!!!!!!!!!
a2 + b2 + a Cosh@tDM

2
+ b2 Sinh@tD2 + $%%%Iè!!!!!!!!!!!!!

a2 + b2 + a Cosh@tDM
2

+ b2 Sinh@tD2

643

644 hyp2a.nb

Work on the expressions under the radicals.

In[4]: 8e1, e2< = Map@Expand@# ê. Sinh@tD^2 −> Cosh@tD^2 − 1D&,
8diff1@@1, 2, 1DD, diff1@@2, 1DD<D

Out[4] 9a2 − 2 a
è!!!!!!!!!!!!!
a2 + b2 Cosh@tD + a2 Cosh@tD2 + b2 Cosh@tD2,

a2 + 2 a
è!!!!!!!!!!!!!
a2 + b2 Cosh@tD + a2 Cosh@tD2 + b2 Cosh@tD2=

This shows that both expressions factor into perfect squares.

In[5]: 8He3 = Ha − Sqrt@a^2 + b^2D ∗Cosh@tDL^2L − e1,

He4 = Ha + Sqrt@a^2 + b^2D ∗Cosh@tDL^2L − e2< êê Expand

Out[5] 80, 0<

Replace the expressions under the radicals with the equivalent perfect square expressions.

In[6]: diff2 = −Sqrt@e3D + Sqrt@e4D

Out[6] −$%%%Ia −
è!!!!!!!!!!!!!
a2 + b2 Cosh@tDM

2
+ $%%%Ia +

è!!!!!!!!!!!!!
a2 + b2 Cosh@tDM

2

Since a > 0, b > 0 and cosh(θ) ≥ 1 the expression under the radicals are reduced as follows.

In[7]: Clear@E1, E2D;
diff2 ê. 8−Sqrt@E1_^2D + Sqrt@E2_^2D −> −H−E1L + E2<

Out[7] 2 a

hyp4pts.nb

Equilateral Hyperbolas

Exploration

Describe a method for finding the equilateral hyperbola(s) passing through four points. Show
that the technique produces the correct results for the points (2, 1), (−1, 1), (−2,−1) and
(4,−3) by plotting the hyperbola(s) and the four points.

Approach

Form a quadratic, parameterized by the variable k, representing the pencil of quadratics
passing through the four points. The first and third coefficients of the quadratic, a and c,
must satisfy the relationship a = −c, if the quadratic represents an equilateral hyperbola.
Solve the equation for k.

Solution

This is a function that implements the approach.

In[1]: Quadratic2D@p1 : Point2D@8x1_, y1_<D, p2 : Point2D@8x2_, y2_<D,
p3 : Point2D@8x3_, y3_<D, p4 : Point2D@8x4_, y4_<D,
Hyperbola2DD :=

Module@8Q1, k, a, b, c<,
Q1 = Quadratic2D@p1, p2, p3, p4, k, Pencil2DD;
8a, b, c< = List @@ Take@Q1, 3D;
ans = Solve@a == −c, kD;
Map@HQ1 ê. #L&, ansD D;

Discussion

Here’s the plot of the solution for the four points specified.

645

646 hyp4pts.nb

In[2]: pts = 8p1 = Point2D@82, 1<D, p2 = Point2D@8−1, 1<D,
p3 = Point2D@8−2, −1<D, p4 = Point2D@84, −3<D<;

q1 = Quadratic2D@p1, p2, p3, p4, Hyperbola2DD êê N

Out[2] 8Quadratic2D@24., −6., −24., −18., 36., −60.D<

In[3]: hyp1 = Map@Loci2D, q1D

Out[3] 88Hyperbola2D@80.461538, 0.692308<, 1.46192, 1.46192, 3.07942D<<

In[4]: Sketch2D@8pts, hyp1<, CurveLength2D −> 20D;

-7.5 -5 -2.5 0 2.5 5 7.5

-2

0

2

4

hyparea.nb

Areas Related to Hyperbolas

Exploration

x

y

O

P1

P2

x

y

O

P1

P2

Referring to the figures, use calculus to verify that the areas between two parameters t1 and
t2 of a segment and a sector of a hyperbola are given by

647

648 hyparea.nb

Asegment =
ab

2
(sinh(s(t2 − t1)) − s(t2 − t1))

Asector =
abs

2
(t2 − t1)

where a and b are the lengths of the semi-transverse and semi-conjugate axes, respectively,
s = cosh−1 (e) and e is the eccentricity of the hyperbola (assuming the parameterization
Descarta2D uses for a hyperbola).

Approach

Find the coordinates of x1 and x2, the coordinates of the ends of the infinitesimal rectangle.
Integrate (x2 − x1) dx from y1 to y2 to find the area of the segment. Find the area of the
4OP1P2 from its vertex points. Subtract the area of the segment from the area of the triangle
to find the area of the sector.

Solution

The x-coordinate of a point on the hyperbola (found by solving x2/a2 − y2/b2 = 1 for x) in
terms of the y-coordinate.

In[1]: Clear@x, y, a, bD;
X1 = a∗Sqrt@1 + y^2êb^2D

Out[1] a $%%%%%%%%%%%%%1 +
y2
��������
b2

The x-coordinate of a point on a line between (x1, y1) and (x2, y2) . This is found by intersecting
a horizontal line through the point on the hyperbola with the line between P1 and P2. This
step and the one immediately following show the results computed by Mathematica Version
3.0.1. Version 4.0 produces slightly different results that are algebraically equivalent.

In[2]: Clear@x1, y1, x2, y2D;
X2 = XCoordinate2D@

Point2D@Line2D@8x1, y1<, 8x2, y2<D,
Line2D@Point2D@x, yD, 0DDD êê FullSimplify

Out[2]
x2 H−y + y1L + x1 Hy − y2L
���

y1 − y2

L is the length of the horizontal line segment between the hyperbola and the line through P1

and P2.

In[3]: L = X2 − X1 êê FullSimplify

Out[3] −a $%%%%%%%%%%%%%1 +
y2
��������
b2

+
x2 H−y + y1L + x1 Hy − y2L
���

y1 − y2

hyparea.nb 649

Find the indefinite integral L 4 y, which represents an infinitesimal rectangular area.

In[4]: I1 = Integrate@L, yD êê FullSimplify

Out[4]
y J−x2 y + 2 x2 y1 + x1 Hy − 2 y2L + a "############1 + y2������b2 H−y1 + y2LN + a b H−y1 + y2L ArcSinh@ y����b D
��

2 Hy1 − y2L

Find the area of the hyperbolic segment between the chord and the hyperbola by evaluating
the integral at the vertical limits. Simplify.

In[5]: A1 = HI1 ê. y −> y2L − HI1 ê. y −> y1L êê FullSimplify

Out[5]
1
�����
2

i

k

jjjjjjj
a y1 $%%%%%%%%%%%%%%%%1 +

y12
�����������
b2

− Hx1 + x2L Hy1 − y2L − a y2 $%%%%%%%%%%%%%%%%1 +
y22
�����������
b2

+

a b JArcSinhA y1
���������
b

E − ArcSinhA y2
���������
b

EN
y

{

zzzzzzz

In[6]: A2 = A1 êê. 8
a∗Sqrt@1 + y1^2êb^2D −> x1,

a∗Sqrt@1 + y2^2êb^2D −> x2<

Out[6]
1
�����
2

Jx1 y1 − Hx1 + x2L Hy1 − y2L − x2 y2 + a b JArcSinhA y1
���������
b

E − ArcSinhA y2
���������
b

ENN

Create the hyperbola.

In[7]: H1 = Hyperbola2D@80, 0<, a, b, 0D;

Find the coordinates of a point at a general parameter t on a hyperbola.

In[8]: Clear@sD;
P = H1@tD ê. ArcCosh@Sqrt@a^2 + b^2D êaD −> s

Out[8] 8a Cosh@s tD, b Sinh@s tD<

Simplify.

In[9]: Clear@t1, t2D;
A3 = A2 êê. 8
x1 −> HP@@1DD ê. t −> t1L,
x2 −> HP@@1DD ê. t −> t2L,
y1 −> HP@@2DD ê. t −> t1L,
y2 −> HP@@2DD ê. t −> t2L< êê FullSimplify

Out[9] −
1
�����
2
a b H−ArcSinh@Sinh@s t1DD + ArcSinh@Sinh@s t2DD + Sinh@s Ht1 − t2LDL

650 hyparea.nb

In[10]: Clear@E1D;
A4 = A3 ê.
ArcSinh@Sinh@E1_DD −> E1 êê FullSimplify

Out[10] −
1
�����
2
a b Hs H−t1 + t2L + Sinh@s Ht1 − t2LDL

In[11]: AreaSegment = A4 ê.
Sinh@s Ht1 − t2LD −> −Sinh@s Ht2 − t1LD

Out[11] −
1
�����
2
a b Hs H−t1 + t2L − Sinh@s H−t1 + t2LDL

Find the area of the triangle OP1P2.

In[12]: AreaTriangle = Area2D@
Triangle2D@80, 0<, 8x1, y1<, 8x2, y2<DD ê. 8
x1 −> HP@@1DD ê. t −> t1L,
x2 −> HP@@1DD ê. t −> t2L,
y1 −> HP@@2DD ê. t −> t1L,
y2 −> HP@@2DD ê. t −> t2L< êê FullSimplify

Out[12] −
1
�����
2
a b Sinh@s Ht1 − t2LD

The area of the sector is the difference.

In[13]: AreaSector = AreaTriangle − AreaSegment êê Simplify

Out[13]
1
�����
2
a b s H−t1 + t2L

hypeccen.nb

Eccentricities of Conjugate Hyperbolas

Exploration

Show that if e1 and e2 are the eccentricities of a hyperbola and its conjugate, then

1
e2
1

+
1
e2
2

= 1.

Approach

Create the hyperbolas, compute their eccentricities and verify the relationship.

Solution

Create a hyperbola and its conjugate.

In[1]: Clear@a, bD;
h1 = Hyperbola2D@80, 0<, a, b, 0D;
h2 = Hyperbola2D@h1, Conjugate2DD;

Compute the eccentricities of the hyperbolas.

In[2]: 8e1 = Eccentricity2D@h1D,
e2 = Eccentricity2D@h2D<

Out[2] 9
è!!!!!!!!!!!!!
a2 + b2

��������������������������
a

,
è!!!!!!!!!!!!!
a2 + b2

��������������������������
b

=

Verify the relationship.

In[3]: 1êe1^2 + 1êe2^2 êê Simplify

Out[3] 1

651

hypfd.nb

Hyperbola from Focus and Directrix

Exploration

Show that the hyperbola with focus F (x1, y1), directrix line L ≡ px + qy + r = 0 and eccen-
tricity e > 1, is defined by the constants

h = x1 − paeD

d
, k = y1 − qaeD

d
,

a = d
e

(e2 − 1)
, b = a

√
e2 − 1, θ = tan−1(p, q),

where

d =

√
(px1 + qy1 + r)2

p2 + q2
and D =

px1 + qy1 + r

p2 + q2
.

Approach

Apply the definition of a hyperbola to the supplied focus and directrix for a general point
(x, y) and show that the derived locus is a hyperbola.

Solution

The rotation angle of the hyperbola is the angle the line perpendicular to L makes with the
+x-axis (in Mathematica ArcTan[p, q] is ArcTan[q/p], the first form takes into account the
quadrant of the point (p, q)).

In[1]: Clear@p, q, rD;
L = Line2D@p, q, rD;
theta = Angle2D@Line2D@0, 1, 0D, Line2D@Point2D@0, 0D, LDD;
theta êê Simplify

Out[1] ArcTanA q
�����
p

E

653

654 hypfd.nb

Now we must show that the lengths a and b are given by the formulas. In standard position
the distance from the focus of an ellipse to its directrix is given by d = ae − a/e. Solving for
a gives the following.

In[2]: Clear@d, a, eD;
Solve@d == a∗e − aêe, aD êê Simplify

Out[2] 99a →
d e

���������������������
−1 + e2

==

Also, the eccentricity is given by e =
√

a2 + b2/a and solving for b gives (take the positive
result).

In[3]: Solve@e == Sqrt@a^2 + b^2D êa, bD

Out[3] 99b → −a
è!!!!!!!!!!!!!!

−1 + e2 =, 9b → a
è!!!!!!!!!!!!!!

−1 + e2 ==

The eccentricity is the ratio of the distance from a general point to the focus to the distance
to the directrix.

In[4]: Clear@x1, y1, x, yD;
F = Point2D@x1, y1D;
P = Point2D@x, yD;
8dF = Distance2D@P, FD,
dL = Distance2D@P, LD<

Out[4] 9"######################################Hx − x1L2 + Hy − y1L2 , $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Hr + p x + q yL2

��
p2 + q2

=

Form the equation for the eccentricity squared.

In[5]: eq1 = e^2∗dL^2 − dF^2 êê Expand êê Together

Out[5]
1

��������������������
p2 + q2

He2 r2 + 2 e2 p r x − p2 x2 + e2 p2 x2 − q2 x2 + 2 p2 x x1 + 2 q2 x x1 − p2 x12 − q2 x12 +

2 e2 q r y + 2 e2 p q x y − p2 y2 − q2 y2 + e2 q2 y2 + 2 p2 y y1 + 2 q2 y y1 − p2 y12 − q2 y12L

Find the coordinates (h1, k1) of the center of the quadratic.

In[6]: 8h1, k1< =

Coordinates2D@
Point2D@
Q1 = Quadratic2D@eq1, 8x, y<D êê SimplifyDD êê Simplify

Out[6] 9 −Hp2 + q2L x1 + e2 Hq2 x1 − p Hr + q y1LL
���H−1 + e2L Hp2 + q2L , −

Hp2 + q2L y1 + e2 Hq Hr + p x1L − p2 y1L
��H−1 + e2L Hp2 + q2L =

Find the coordinates of the center using the formula provided.

hypfd.nb 655

In[7]: Clear@D1D;
8h2, k2< = 8x1 − p∗a∗e∗D1êd, y1 − q∗a∗e∗D1êd< êê.

8a −> d∗eê He^2 − 1L,
b −> a∗Sqrt@e^2 − 1D,
d −> Sqrt@Hp∗x1 + q∗y1 + rL^2ê Hp^2 + q^2LD,
D1 −> Hp∗x1 + q∗y1 + rL ê Hp^2 + q^2L<

Out[7] 9x1 −
e2 p Hr + p x1 + q y1L
���H−1 + e2L Hp2 + q2L , y1 −

e2 q Hr + p x1 + q y1L
���H−1 + e2L Hp2 + q2L =

This shows that the center indeed has the same coordinates as the point from the formula.

In[8]: 8h1 − h2, k1 − k2< êê Simplify

Out[8] 80, 0<

Discussion

An example showing the construction of a hyperbola from its focus, directrix and eccentricity.

In[9]: focus1 = Point2D@81ê2, 1<D;
directrix1 = Line2D@5, 8, −15D;
eccentricity1 = 5ê4;
hyperbola1 = Hyperbola2D@focus1, directrix1, eccentricity1D

Out[9] Hyperbola2DA9 107
������������
89

,
189
������������
89

=, 10
���������������è!!!!!89

,
15

�������������������
2 è!!!!!89

, ArcTanA 8
�����
5

EE

In[10]: Sketch2D@8focus1, directrix1, hyperbola1<,
CurveLength2D −> 5D;

-1 0 1 2 3 4
-1

0

1

2

3

4

5

hypinv.nb

Rectangular Hyperbola Distances

Exploration

Show that the distance of any point on a rectangular hyperbola from its center varies inversely
as the perpendicular distance from its polar to the center.

Approach

Construct a generic point on a rectangular hyperbola and compare the appropriate distances.

Solution

Create a generic point on a rectangular hyperbola.

In[1]: Clear@a, tD;
h1 = Hyperbola2D@80, 0<, a, a, 0D;
p1 = Point2D@a∗Cosh@tD, a∗Sinh@tDD

Out[1] Point2D@8a Cosh@tD, a Sinh@tD<D

Compute the distances.

In[2]: p0 = Point2D@0, 0D;
8D1, D2< =

8Distance2D@p0, p1D,
Distance2D@p0, l1 = Line2D@p1, h1DD< êê Simplify

Out[2] 9è!!!!!!!!!!!!!!!!!!!!!!!!!
a2 Cosh@2 tD ,

è!!!!!!!!!!!!!!!!!!!!!!!!!
a2 Sech@2 tD =

Use a trigonometric identity.

In[3]: 1êSech@2 tD êê Simplify

Out[3] Cosh@2 tD

657

658 hypinv.nb

Therefore, since D1D2 is a constant, D1 varies inversely as D2.

In[4]: Clear@E1D;
D1∗D2 êê. 8
Sqrt@a^2∗E1_D −> a∗Sqrt@E1D,
Sqrt@Cosh@E1_DD ∗Sqrt@Sech@E1_DD −> 1<

Out[4] a2

Discussion

This is a plot of a numerical example of the geometric objects.

In[5]: Sketch2D@8h1, p1, p0, l1< ê. 8a −> 1, t −> 0.5<D;

-4 -2 0 2 4
-2

-1

0

1

2

hyplen.nb

Length of Hyperbola Focal Chord

Exploration

Prove that the length of the focal chord of a hyperbola is 2b2/a, where a is the length of the
semi-transverse axis and b is the length of the semi-conjugate axis.

Approach

Construct a hyperbola in standard position. Construct a line perpendicular to the axis of the
hyperbola through one of the focal points (the line containing the focal chord). Compute the
distance between the points of intersection of the hyperbola and the line.

Solution

Create the hyperbola.

In[1]: Clear@a1, b1D;
h1 = Hyperbola2D@80, 0<, a1, b1, 0D;

Construct one of the focal points.

In[2]: fpt = First@Foci2D@h1DD

Out[2] Point2DA9"#################a12 + b12 , 0=E

Construct a line perpendicular to the x-axis through the focus.

In[3]: fln = Line2D@fpt, Line2D@0, 1, 0D, Perpendicular2DD

Out[3] Line2DA1, 0, −"#################a12 + b12 E

Intersect the line with the hyperbola.

659

660 hyplen.nb

In[4]: pts = Points2D@fln, h1D

Out[4] 9Point2DA9"#################a12 + b12 , −
b12
�����������
a1

=E, Point2DA9"#################a12 + b12 ,
b12
�����������
a1

=E=

The length of the focal chord is the distance between the intersection points.

In[5]: d1 = Distance2D@Sequence @@ ptsD

Out[5] 2 $%%%%%%%%%b14
�����������
a12

Notice that since a > 0 and b > 0 the solution reduces to 2b2/a.

In[6]: d1 ê. 8Sqrt@b1^4êa1^2D −> b1^2êa1<

Out[6]
2 b12
����������������
a1

hypslp.nb

Tangent to a Hyperbola with Given Slope

Exploration

Show that the lines tangent to the hyperbola x2/a2 − y2/b2 = 1 with slope m are given by
y = mx ±

√
a2m2 − b2.

Approach

Construct a line with slope m and use TangentLines2D[ln,quad] to construct the desired
tangent lines.

Solution

Construct a line with slope m.

In[1]: Clear@x, y, mD;
l1 = Line2D@Point2D@x, yD, mD;

Construct the lines tangent to the hyperbola and parallel to the line.

In[2]: Clear@a, bD;
tln = TangentLines2D@l1, h1 = Hyperbola2D@80, 0<, a, b, 0DD

Out[2] 9Line2DAm, −1, −
è!!!!!!!!!!!!!!!!!!!!

−b2 + a2 m2 E, Line2DAm, −1,
è!!!!!!!!!!!!!!!!!!!!

−b2 + a2 m2 E=

Show the lines in equation form.

In[3]: Map@Equation2D@#, 8x, y<D&, tlnD

Out[3] 9−
è!!!!!!!!!!!!!!!!!!!!

−b2 + a2 m2 + m x − y == 0,
è!!!!!!!!!!!!!!!!!!!!

−b2 + a2 m2 + m x − y == 0=

661

662 hypslp.nb

Discussion

This is a plot of a numerical example.

In[4]: Sketch2D@8tln, h1< ê. 8m −> 1, a −> 2, b −> 1<D;

-6 -4 -2 0 2 4 6

-2

-1

0

1

2

hyptrig.nb

Trigonometric Parametric Equations

Exploration

Show that the parametric equations

x = a sec(θ)

y = b tan(θ)

represent the hyperbola

x2

a2
− y2

b2
= 1.

Approach

Demonstrate that the parametric equations satisfy the equation of the hyperbola.

Solution

Substitute the parametric values into the equation and observe that the equation is satisfied.

In[1]: Clear@x, y, a, b, tD;
x^2êa^2 − y^2êb^2 − 1 ê.

8x −> a∗Sec@tD, y −> b∗Tan@tD< êê Simplify

Out[1] 0

663

intrsct.nb

Intersection of Lines in Intercept Form

Exploration

Show that the point of intersection of the lines

x

a
+

y

b
= 1 and

x

b
+

y

a
= 1

is
(

ab

(a + b)
,

ab

(a + b)

)
.

Approach

Create the two lines and intersect them.

Solution

Create the two lines.

In[1]: Clear@a, bD;
l1 = Line2D@8a, 0<, 80, b<D;
l2 = Line2D@8b, 0<, 80, a<D;

Intersect the lines.

In[2]: Point2D@l1, l2D êê Simplify

Out[2] Point2DA9 a b
���������������
a + b

,
a b

���������������
a + b

=E

665

666 intrsct.nb

Discussion

Notice that the formula cannot be used if a = ±b, because in both cases the two lines are
coincident. This limitation is more obvious if we do not simplify the equation for the point of
intersection (the denominators are zero when a = ±b).

In[3]: Point2D@l1, l2D

Out[3] Point2DA9 −a2 b + a b2
���������������������������������

−a2 + b2
,

−a2 b + a b2
���������������������������������

−a2 + b2
=E

inverse.nb

Inversion

Exploration

A point P ′ (x′, y′) is said to be the inverse of a point P (x, y) in the circle

C ≡ (x − h)2 + (y − k)2 = r2

if points O(h, k), P and P ′ are collinear and |OP ||OP ′| = r2. Using this definition show that

A. The coordinates of P ′(x′, y′)) are

x′ = h +
r2(x − h)

(x − h)2 + (y − k)2
and y′ = k +

r2(y − k)
(x − h)2 + (y − k)2

.

B. If the circle of inversion is x2 + y2 = 1, the coordinates of P ′ are

x′ =
x

x2 + y2
and y′ =

y

x2 + y2
.

C. If the circle of inversion is x2 + y2 = 1, the inverse of the line L ≡ A1x + B1y + C1 = 0,
assuming L does not pass through the origin, is the circle

(
x +

A1

2C1

)2

+
(

y +
B1

2C1

)2

=
A2

1 + B2
1

4C2
1

.

D. If the circle of inversion is x2 + y2 = 1, the inverse of the line L ≡ A1x + B1y + C1 = 0,
assuming L passes through the origin (C1 = 0), is L itself.

E. If the circle of inversion is x2 + y2 = 1, the inverse of the circle (x − h1)2 + (y − k)2 = r2
1 is

(
x − h1

D

)2

+
(

y − k1

D

)2

=
r2
1

D
,

667

668 inverse.nb

where D = h2
1 + k2

1 − r2
1 .

F. If the circle of inversion is x2 + y2 = 1, the inversion of C ≡ (x− h)2 + (y − k)2 = h2
1 + k2

1 ,
which passes through the origin, is the line L ≡ 2h1x + 2k1y = 1. L is parallel to the tangent
line to C through the origin. The equation of the tangent line is 2h1x + 2k1y = 0.

G. Inversion is clearly a non-rigid transformation.

Approach

See the commentary below.

Solution

Use the definition of inversion to find the coordinates of a point (x, y) inverted in the circle
(x − h)2 + (y − k)2 = r2. This is the solution to proposition A as stated above.

In[1]: Clear@x, y, h, k, rD;
Coordinates2D@
Point2D@
Point2D@h, kD,
Point2D@x, yD,
r^2êSqrt@Hx − hL^2 + Hy − kL^2DDD

Out[1] 9h +
r2 H−h + xL

���
H−h + xL2 + H−k + yL2 , k +

r2 H−k + yL
���
H−h + xL2 + H−k + yL2 =

Define a function for inverting coordinates.

In[2]: Inverse2D@8x_, y_<, Circle2D@8h_, k_<, r_DD :=

8h + Hr^2∗ Hx − hLL ê HHx − hL^2 + Hy − kL^2L,
k + Hr^2∗ Hy − kLL ê HHx − hL^2 + Hy − kL^2L<

Here’s the inversion in a unit circle at the origin.

In[3]: invPts = Inverse2D@8x, y<, Circle2D@80, 0<, 1DD

Out[3] 9 x
��������������������
x2 + y2

,
y

��������������������
x2 + y2

=

Determine the inverse inversion equations. This is the solution to proposition B as stated
above.

In[4]: Clear@x1, y1D;
eqn1 = Solve@8x1, y1< == invPts, 8x, y<D

Out[4] 99x →
x1

��������������������������
x12 + y12

, y →
y1

��������������������������
x12 + y12

==

inverse.nb 669

Find the inversion of a line.

In[5]: Clear@A1, B1, C1D;
eq1 = A1∗x + B1∗y + C1 ê. First@eqn1D

Out[5] C1 +
A1 x1

��������������������������
x12 + y12

+
B1 y1

��������������������������
x12 + y12

Clear the denominators of the equations.

In[6]: eq2 = eq1∗ Hx1^2 + y1^2L êê Simplify

Out[6] A1 x1 + B1 y1 + C1 Hx12 + y12L

Determine the quadratic (a circle). This is the solution to proposition C as stated above.

In[7]: Circle2D@Quadratic2D@eq2, 8x1, y1<DD

Out[7] Circle2DA9−
A1

�������������
2 C1

, −
B1

�������������
2 C1

=, 1
�����
2

$%%%%%%%%%%%%%%%%%%%A12 + B12
��������������������������

C12
E

Find a line passing through the center of inversion (0, 0).

In[8]: eq3 = A1∗x + B1∗y ê. First@eqn1D

Out[8]
A1 x1

��������������������������
x12 + y12

+
B1 y1

��������������������������
x12 + y12

Clear the denominator.

In[9]: eq4 = eq3 ê. 8x1^2 + y1^2 −> 1<

Out[9] A1 x1 + B1 y1

The line inverts into itself. This is the solution to proposition D as stated above.

In[10]: Line2D@eq4, 8x1, y1<D

Out[10] Line2D@A1, B1, 0D

Inversion of a circle.

In[11]: Clear@h1, k1, r1D;
eq5 = Hx − h1L^2 + Hy − k1L^2 − r1^2 ê. First@eqn1D

Out[11] −r12 + i
k
jj−h1 +

x1
��������������������������
x12 + y12

y
{
zz
2

+ i
k
jj−k1 +

y1
��������������������������
x12 + y12

y
{
zz
2

Clear the denominators.

In[12]: eq6 = eq5∗ Hx1^2 + y1^2L^2 êê Together;

eq7 = eq6@@3DD

Out[12] −1 + 2 h1 x1 − h12 x12 − k12 x12 + r12 x12 + 2 k1 y1 − h12 y12 − k12 y12 + r12 y12

670 inverse.nb

Find the circle. If the resulting denominators are zero, then the circle passes through the
center of inversion and the inversion is invalid. This is the solution to proposition E as stated
above.

In[13]: Circle2D@Quadratic2D@eq7, 8x1, y1<DD êê Simplify

Out[13] Circle2DA9 h1
���
h12 + k12 − r12

,
k1

���
h12 + k12 − r12

=, $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
r12

��
Hh12 + k12 − r12L

2 E

A circle not passing through the origin.

In[14]: eq8 = Hx − h1L^2 + Hy − k1L^2 − Hh1^2 + k1^2L ê. First@eqn1D êê Simplify

Out[14]
1 − 2 h1 x1 − 2 k1 y1
��

x12 + y12

Clear the denominator and find the line. This is the solution to the first part of proposition
F as stated above.

In[15]: eq9 = Numerator@eq8D;
Line2D@eq9, 8x1, y1<D

Out[15] Line2D@−2 h1, −2 k1, 1D

The line is parallel to the tangent at the origin. This is the solution to the second part of
proposition F as stated above.

In[16]: Line2D@Point2D@0, 0D,
Circle2D@8h1, k1<, Sqrt@h1^2 + k1^2DDD

Out[16] Line2D@−2 h1, −2 k1, 0D

johnson.nb

Johnson’s Congruent Circle Theorem

Exploration

Take any three circles C1, C2 and C3 which pass through the origin, have equal radii, r, and
intersect in pairs in two distinct points (one of the points is, by construction, the origin).
Prove that the circle passing through the other three points of intersection between the circles
taken in pairs is congruent to the original three circles (that is, this circle has a radius of r).

Approach

Find the coordinates of the intersection points, P1, P2 and P3. Use the circle through three
points function to find Johnson’s Circle. Show that the radius of this circle is r.

Solution

Without loss of generality, assume the circles have a radius of one and one of them has its
center at (1, 0). The centers of the other two circles can be written as functions of the angles
the lines through (0, 0) and the centers makes with the +x axis.

In[1]: Clear@t2, t3D;
P1 = Point2D@1, 0D;
P2 = Point2D@Cos@t2D, Sin@t2DD;
P3 = Point2D@Cos@t3D, Sin@t3DD;

Create the circles.

In[2]: C1 = Circle2D@P1, 1D;
C2 = Circle2D@P2, 1D;
C3 = Circle2D@P3, 1D;

671

672 johnson.nb

Intersect the first and second circle to find the intersection points. The head ImPoint2D is
introduced to avoid failures during simplification when the coordinates of the points pass
through a temporary phase involving complex numbers.

In[3]: pts12 = Points2D@C1, C2D;
pts12 = Map@FullSimplify, Map@HImPoint2D @@ #L&, pts12DD;
pts12 = Map@HPoint2D @@ #L&, pts12D

Out[3] 9Point2DA9 1
�����
2
CotA t2

���������
2

E JSin@t2D − "##################Sin@t2D2 N, 1
�����
2

JSin@t2D − "##################Sin@t2D2 N=E,

Point2DA9 1
�����
2
CotA t2

���������
2

E JSin@t2D + "##################Sin@t2D2 N, 1
�����
2

JSin@t2D + "##################Sin@t2D2 N=E=

Intersect the first and third circle to find the intersection points.

In[4]: pts13 = Points2D@C1, C3D;
pts13 = Map@FullSimplify, Map@HImPoint2D @@ #L&, pts13DD;
pts13 = Map@HPoint2D @@ #L&, pts13D

Out[4] 9Point2DA9 1
�����
2
CotA t3

���������
2

E JSin@t3D − "##################Sin@t3D2 N, 1
�����
2

JSin@t3D − "##################Sin@t3D2 N=E,

Point2DA9 1
�����
2
CotA t3

���������
2

E JSin@t3D + "##################Sin@t3D2 N, 1
�����
2

JSin@t3D + "##################Sin@t3D2 N=E=

Intersect the second and third circle to find the intersection points.

In[5]: pts23 = Points2D@C2, C3D;
pts23 = Map@FullSimplify, Map@HImPoint2D @@ #L&, pts23DD;
pts23 = Map@HPoint2D @@ #L&, pts23D

Out[5] 9Point2DA9 1
�����
2
CosA t2 + t3

���������������������
2

E CscA t2 − t3
���������������������

2
E JSin@t2 − t3D + "###########################Sin@t2 − t3D2 N,

1
�����
2
CscA t2 − t3

���������������������
2

E JSin@t2 − t3D + "###########################Sin@t2 − t3D2 N SinA t2 + t3
���������������������

2
E=E,

Point2DA9−
1
�����
2
CosA t2 + t3

���������������������
2

E CscA t2 − t3
���������������������

2
E J−Sin@t2 − t3D + "###########################Sin@t2 − t3D2 N,

−
1
�����
2
CscA t2 − t3

���������������������
2

E J−Sin@t2 − t3D + "###########################Sin@t2 − t3D2 N SinA t2 + t3
���������������������

2
E=E=

One of the intersection points must be the origin. Which one depends on whether the expres-
sion under the radical is positive or negative. We introduce the sign variables s1, s2 and s3

which may only take values of ±1 to cover all the cases.

In[6]: Clear@s2, s3, s23D;
pts12 = pts12 êê. Sqrt@Sin@t2D^2D −> s2∗Sin@t2D;
pts13 = pts13 êê. Sqrt@Sin@t3D^2D −> s3∗Sin@t3D;
pts23 = pts23 êê. Sqrt@Sin@t2 − t3D^2D −> s23∗Sin@t2 − t3D;

Each pair of intersection points must include the origin as one point. Notice that the other
point has the same coordinates no matter which sign is used.

In[7]: pts12 = Map@Hpts12 ê. s2 −> #L&, 8−1, 1<D

Out[7] 99Point2DA9CotA t2
���������
2

E Sin@t2D, Sin@t2D=E, Point2D@80, 0<D=,

9Point2D@80, 0<D, Point2DA9CotA t2
���������
2

E Sin@t2D, Sin@t2D=E==

johnson.nb 673

In[8]: pts13 = Map@Hpts13 ê. s3 −> #L&, 8−1, 1<D

Out[8] 99Point2DA9CotA t3
���������
2

E Sin@t3D, Sin@t3D=E, Point2D@80, 0<D=,

9Point2D@80, 0<D, Point2DA9CotA t3
���������
2

E Sin@t3D, Sin@t3D=E==

In[9]: pts23 = Map@Hpts23 ê. s23 −> #L&, 8−1, 1<D

Out[9] 99Point2D@80, 0<D, Point2DA9CosA t2 + t3
���������������������

2
E CscA t2 − t3

���������������������
2

E Sin@t2 − t3D,

CscA t2 − t3
���������������������

2
E Sin@t2 − t3D SinA t2 + t3

���������������������
2

E=E=,

9Point2DA9CosA t2 + t3
���������������������

2
E CscA t2 − t3

���������������������
2

E Sin@t2 − t3D,

CscA t2 − t3
���������������������

2
E Sin@t2 − t3D SinA t2 + t3

���������������������
2

E=E,

Point2D@80, 0<D==

Use one of the non-origin points from each of the intersection lists.

In[10]: p12 = Union@Flatten@pts12DD@@2DD;
p13 = Union@Flatten@pts13DD@@2DD;
p23 = Union@Flatten@pts23DD@@2DD;

Construct a circle through the three points and examine its radius. Since its radius is one,
the circle through the three points is congruent to the other three.

In[11]: Radius2D@C123 = Circle2D@p12, p13, p23DD êê FullSimplify

Out[11] 1

Discussion

This is a plot of a numerical example.

In[12]: Sketch2D@8C1, C2, C3, C123,

p12, p13, p23< ê. 8t2 −> Piê3, t3 −> −5 Piê6<D;

-1 0 1 2
-1.5
-1

-0.5
0

0.5
1

1.5

knotin.nb

Incenter on Knot Circle

Exploration

Show that the incenter of a triangle (the center point of the circle inscribed in the triangle) is
on one of the knot circles for the biarc configuration defined by the triangle.

Approach

Construct a triangle in a simplified position. Construct the incenter. Construct the knot
circles. Show that the incenter is on one of the knot circles.

Solution

Define a function to compute the knot circles.

In[1]: KnotCircles2D@
t1 : Triangle2D@p1 : 8x1_, y1_<,

pA : 8xA_, yA_<,
p2 : 8x2_, y2_<DD :=

Module@8pt1, pt2<,
pt1 = Point2D@t1, Inscribed2DD;
pt2 = Point2D@Point2D@pAD,

Point2D@p1D,
−Distance2D@p2, pADD;

Map@Circle2D@Point2D@p1D,
Point2D@p2D, #D&,

8pt1, pt2<D D;

Create the triangle.

In[2]: Clear@a, bD;
t1 = Triangle2D@80, 0<, 8a, b<, 81, 0<D;

675

676 knotin.nb

Construct the incenter of the triangle

In[3]: pt1 = Point2D@t1, Inscribed2DD êê Simplify

Out[3] Point2DA9 a +
è!!!!!!!!!!!!!
a2 + b2

��
1 +

è!!!!!!!!!!!!!!!!!!!!!!!!!!
H−1 + aL2 + b2 +

è!!!!!!!!!!!!!
a2 + b2

,
b

��
1 +

è!!!!!!!!!!!!!!!!!!!!!!!!!!
H−1 + aL2 + b2 +

è!!!!!!!!!!!!!
a2 + b2

=E

Construct knot circles for the triangle. This result was computed using Mathematica Version
3.0.1. Version 4.0 computes a different expression for the circle’s radius that is algebraically
equivalent. The result shown in the final step is not affected by this difference.

In[4]: kc1 = KnotCircles2D@t1D@@1DD êê FullSimplify

Out[4] Circle2DA9 1
�����
2
,

H−1 + aL a + b2 −
è!!!!!!!!!!!!!!!!!!!!!!!!!!

H−1 + aL2 + b2
è!!!!!!!!!!!!!
a2 + b2

���
2 b

=, &''
1

���
2 + 2 HH−1+aL a+b2L���è!!!!!!!!!!!!!!!!!!!!!!!H−1+aL2+b2

è!!!!!!!!!!!!
a2+b2

E

Show that the incenter is on the circle.

In[5]: eq1 = Polynomial2D@
Quadratic2D@kc1D,
Coordinates2D@pt1DD êê Simplify

Out[5] 0

lndet.nb

Line General Equation Determinant

Exploration

Show that the general equation of a line Ax + By + C = 0 is coincident with the line∣∣∣∣∣∣
x y 1

−AC −BC A2 + B2

B −A 0

∣∣∣∣∣∣ = 0

given in determinant form.

Approach

Evaluate the determinant and show that the result is equivalent to the equation of the specified
line.

Solution

Use the Det command to form the determinant.

In[1]: Clear@x, y, A1, B1, C1D;
d = Det@88x, y, 1<,

8−A1∗C1, −B1∗C1, A1^2 + B1^2<,
8B1, −A1, 0<<D êê Simplify

Out[1] HA12 + B12L HC1 + A1 x + B1 yL

The line represented by the determinant is coincident to the given line.

In[2]: Line2D@d, 8x, y<D êê Simplify

Out[2] Line2D@A1, B1, C1D

677

678 lndet.nb

Discussion

If the constant coefficient of the line is non-zero (C 6= 0) then a simpler determinant represents
the line and is given by ∣∣∣∣∣∣

x y 1
−C 0 A
0 −C B

∣∣∣∣∣∣ = 0.

In[3]: d = Det@88x, y, 1<, 8−C1, 0, A1<, 80, −C1, B1<<D

Out[3] C12 + A1 C1 x + B1 C1 y

In[4]: Line2D@d, 8x, y<D êê Simplify

Out[4] Line2D@A1, B1, C1D

lndist.nb

Vertical/Horizontal Distance to a Line

Exploration

Show that the vertical distance, dv, from a point (x1, y1) to a line whose equation is

Ax + By + C = 0

is given by

dv =
∣∣∣∣ (Ax1 + By1 + C)

B

∣∣∣∣
and the horizontal distance, dh, is given by

dh =
∣∣∣∣ (Ax1 + By1 + C)

A

∣∣∣∣.
Approach

Construct a vertical (horizontal) line through the given point. Intersect the vertical (horizon-
tal) line with the given line. The required distance, dv (dh), is the distance between P1 and
the intersection point.

Solution

Construct the vertical (horizontal) line through the given point.

In[1]: Clear@x1, y1D;
p1 = Point2D@x1, y1D;
8lv = Line2D@p1, InfinityD, lh = Line2D@p1, 0D<

Out[1] 8Line2D@1, 0, −x1D, Line2D@0, −1, y1D<

679

680 lndist.nb

Intersect the vertical (horizontal) line with the given line.

In[2]: Clear@a, b, cD;
l1 = Line2D@a, b, cD;
8pv = Point2D@l1, lvD, ph = Point2D@l1, lhD<;

Find the distance between the intersection point and P1. The expressions given by Mathe-
matica are equivalent to the desired results.

In[3]: 8Distance2D@p1, pvD, Distance2D@p1, phD<

Out[3] 9$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%J c + a x1
�����������������������

b
+ y1N

2

, $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Jx1 +
c + b y1
�����������������������

a
N
2

=

Discussion

If the point is on the line, then both distances are clearly zero since the point satisfies the
equation of the line. If the line has a slope of ±1 (A = ±B), then dv = dh. If the given line is
vertical (horizontal), then the vertical (horizontal) distance formula is invalid (i.e. A or B is
zero). Here’s a function for vertical distance. The function for horizontal distance would be
similar.

In[4]: Distance2D@Point2D@8x1_, y1_<D,
Line2D@A2_, B2_, C2_D,
Vertical2DD :=

Abs@HA2∗x1 + B2∗y1 + C2L êB2D ê;
Not@IsZero2D@B2DD

This computes the vertical distance from (9, 2) to the line 2x − 4y − 3 = 0.

In[5]: Distance2D@Point2D@89, 2<D, Line2D@2, −4, −3D, Vertical2DD

Out[5]
7
�����
4

lnlndist.nb

Line Segment Cut by Two Lines

Exploration

Let L1 and L2 be two intersecting lines and P0 a point. Describe a procedure for finding the
lines through P0 such that L1and L2 cut off a line segment of length S > 0. Implement the
solution as a Mathematica function.

Approach

Translate L1 and L2 so that their intersection point is at the origin. L1 and L2 can then
be written as A1x + B1y = 0 and A2x + B2y = 0. The line L12 through P0 can then be
written as A12x + B12y + 1 = 0, since L12 cannot pass through the origin. Since P0 is on
L12, A12x0 + B12y0 + 1 = 0. A second equation can be formed using the condition that the
distance between the points of intersection of (L1 and L12) and (L2 and L12) must be S.
Solve the two equations for A12 and B12. There are two or four solutions depending on the
geometric configuration and the value of S. Translate the resulting solutions back to the
original position.

Solution

Special case first, the lines intersect at the origin. The equations are solved using NSolve to
avoid complicated exact solutions.

681

682 lnlndist.nb

In[1]: Line2D@p0 : Point2D@8x0_, y0_<D,
l1 : Line2D@A1_, B1_, C1_ ê; IsZero2D@C1DD,
l2 : Line2D@A2_, B2_, C2_ ê; IsZero2D@C2DD,
S_?IsScalar2DD :=

Module@8L12, A12, B12, eq1, eq2, ans<,
eq1 = Equation2D@L12 = Line2D@A12, B12, 1D, 8x0, y0<D;
eq2 = Distance2D@Point2D@l1, L12D, Point2D@l2, L12DD^2 == S^2;

ans = Select@NSolve@8eq1, eq2<, 8A12, B12<D,
HNot@IsComplex2D@A12 ê. #DD &&

Not@IsComplex2D@B12 ê. #DDL&D;
Map@HLine2D@A12, B12, 1D ê. #L&, ansD D ê;

Not@IsZeroOrNegative2D@SDD && Not@IsParallel2D@l1, l2DD;

Here’s the general case. It uses the special case for the core computation.

In[2]: Line2D@p0 : Point2D@8x0_, y0_<D,
l1 : Line2D@A1_, B1_, C1_D,
l2 : Line2D@A2_, B2_, C2_D,
S_?IsScalar2DD :=

Module@8u, v, lns<,
8u, v< = Coordinates2D@Point2D@l1, l2DD;
lns = Line2D@Translate2D@p0, −8u, v<D,

Translate2D@l1, −8u, v<D,
Translate2D@l2, −8u, v<D, SD;

Translate2D@lns, 8u, v<D D ê;
Not@IsZeroOrNegative2D@SDD && Not@IsParallel2D@l1, l2DD;

Discussion

Here’s an example of the special case that has two solutions:
L1 ≡ 2x − 3y = 0 and L2 ≡ 4x + 3y = 0 with S = 2 through the point (2,−1).

In[3]: P0 = Point2D@2, −1D;
L1 = Line2D@2, −3, 0D;
L2 = Line2D@4, 3, 0D;
L12 = Line2D@P0, L1, L2, 2D

Out[3] 8Line2D@−1.32353, −1.64706, 1D, Line2D@0.0466406, 1.09328, 1D<

In[4]: Sketch2D@8P0, L1, L2, L12<D;

-4 -2 0 2 4
-4

-2

0

2

4

lnlndist.nb 683

Here’s an example of the general case that has four solutions:
L1 ≡ 2x + y − 2 = 0 and L2 ≡ −x + 3y − 1 = 0 with S = 4 through the point (−1, 2).

In[5]: P0 = Point2D@1, 2D;
L1 = Line2D@2, 1, −2D;
L2 = Line2D@−1, 3, −1D;
L12 = Line2D@P0, L1, L2, 4D

Out[5] 8Line2D@−1.39545, −0.42091, 2.23727D, Line2D@−0.54985, −0.59003, 1.72991D,
Line2D@−0.086206, −0.682759, 1.45172D, Line2D@0.531505, −0.806301, 1.0811D<

In[6]: Sketch2D@8P0, L1, L2, L12<D;

-4 -2 0 2 4
-4

-2

0

2

4

lnquad.nb

Line Normal to a Quadratic

Exploration

Show that the normal line passing through the point (x1, y1) on the quadratic whose equation
is Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 is given by

k1x − k2y − k1x1 + k2y1 = 0

where

k1 = Bx1 + 2Cy1 + E and k2 = 2Ax1 + By1 + D.

Approach

Construct the polar line of the quadratic with respect to the quadratic. Construct the line
normal to the polar through the point. This is the desired normal line.

Solution

Construct the polar line (which is tangent to the quadratic if the point is on the quadratic).

In[1]: Clear@x1, y1, a, b, c, d, e, fD;
p1 = Point2D@x1, y1D;
q1 = Quadratic2D@a, b, c, d, e, fD;
l1 = Line2D@p1, q1D

Out[1] Line2D@d + 2 a x1 + b y1, e + b x1 + 2 c y1, 2 f + d x1 + e y1D

Construct the normal line.

In[2]: l2 = Line2D@p1, l1D êê Simplify

Out[2] Line2D@e + b x1 + 2 c y1, −d − 2 a x1 − b y1, y1 Hd + 2 a x1 + b y1L − x1 He + b x1 + 2 c y1LD

685

686 lnquad.nb

Discussion

Define a function for constructing the normal line.

In[3]: Line2D@
p1 : Point2D@8x1_, y1_<D,
q1 : Quadratic2D@a_, b_, c_, d_, e_, f_D,
Normal2DD :=

Simplify@Line2D@p1, Line2D@p1, q1DDD;

This is the plot of a numerical example.

In[4]: q1 = Quadratic2D@e1 = Ellipse2D@80, 0<, 2, 1, 0DD;
p1 = Point2D@e1@Piê9DD;
l1 = Line2D@p1, q1, Normal2DD

Out[4] Line2DA2 SinA π
�����
9

E, −CosA π
�����
9

E, −3 CosA π
�����
9

E SinA π
�����
9

EE

In[5]: Sketch2D@8e1, p1, l1<, CurveLength2D −> 7D;

-2 -1 0 1 2 3

-2

-1

0

1

lnsdst.nb

Distance Between Parallel Lines

Exploration

Demonstrate that the distance, d, between two parallel lines

Ax + By + C1 = 0 and Ax + By + C2 = 0

is given by

d =

√
(C2 − C1)

2

A2 + B2
.

Approach

Create two lines perpendicular to both given lines and passing through the origin. Find the
points of intersection between the original lines and the perpendicular lines. Compute the
distance between the intersection points, with is the distance between the parallel lines.

Solution

Create the two given lines.

In[1]: Clear@A, B, C1, C2D;
l1 = Line2D@A, B, C1D;
l2 = Line2D@A, B, C2D;

Construct two lines perpendicular to the given lines.

In[2]: L1 = Line2D@Point2D@0, 0D, l1D;
L2 = Line2D@Point2D@0, 0D, l2D;

Intersect the lines in pairs to find the intersection points.

687

688 lnsdst.nb

In[3]: p1 = Point2D@l1, L1D;
p2 = Point2D@l2, L2D;

Find the distance between the intersection points.

In[4]: Distance2D@p1, p2D êê Simplify

Out[4] $%%%%%%%%%%%%%%%%%%%%%%HC1 − C2L2

������������������������������
A2 + B2

Discussion

Define a new function to compute the distance between two parallel lines. A more general
function could be developed that allows parallel lines whose linear coefficients are multiples
of each other.

In[5]: Distance2D@Line2D@A_, B_, C1_D,
Line2D@A_, B_, C2_DD :=

Sqrt@HC1 − C2L^2ê HA^2 + B^2LD;

Find the distance between the two lines 2x + 3y + 4 = 0 and 2x + 3y − 3 = 0 using the new
function.

In[6]: Distance2D@Line2D@2, 3, 4D, Line2D@2, 3, −3DD

Out[6]
7

���������������è!!!!!13

lnsegint.nb

Intersection Parameters of Two Line Segments

Exploration

Show that the parameter values, t1and t2, of the intersection point of two line segments in
terms of the end point coordinates is given by

t1 = (x1(y3 − y4) − x3(y1 − y4) + x4(y1 − y2)) /D

t2 = (−x1(y2 − y3) + x2(y1 − y3) − x3(y1 − y2)) /D

where

D = (x1 − x2) (y3 − y4) (x3 − x4) (y1 − y2).

What is the significance of the values of t1and t2 with respect to the standard parameter range
for a line segment?

Approach

Create the two line segments and express points on each parametrically. Set the x- and
y-coordinates equal to each other and solve for t1 and t2.

Solution

Create the two line segments.

In[1]: Clear@x1, y1, x2, y2, x3, y3, x4, y4D;
L1 = Segment2D@8x1, y1<, 8x2, y2<D;
L2 = Segment2D@8x3, y3<, 8x4, y4<D;

Find the point coordinates in terms of parameters.

689

690 lnsegint.nb

In[2]: Clear@t1, t2D;
8pt1 = Point2D@L1@t1DD, pt2 = Point2D@L2@t2DD<

Out[2] 8Point2D@8x1 + t1 H−x1 + x2L, y1 + t1 H−y1 + y2L<D,
Point2D@8x3 + t2 H−x3 + x4L, y3 + t2 H−y3 + y4L<D<

Equate the abscissas and ordinates and solve for the parameters.

In[3]: ans = Solve@8XCoordinate2D@pt1D == XCoordinate2D@pt2D,
YCoordinate2D@pt1D == YCoordinate2D@pt2D<,

8t1, t2<D êê FullSimplify

Out[3] 99t1 →
x4 Hy1 − y3L + x1 Hy3 − y4L + x3 H−y1 + y4L
���
−Hx3 − x4L Hy1 − y2L + Hx1 − x2L Hy3 − y4L ,

t2 →
x3 Hy1 − y2L + x1 Hy2 − y3L + x2 H−y1 + y3L
���Hx3 − x4L Hy1 − y2L − Hx1 − x2L Hy3 − y4L ==

Discussion

The significance of the values of t1 and t2 lies in the range of values which determine if the two
line segments actually intersect. If 0 ≤ t1 ≤ 1 at the intersection point, then the intersection
point is on the first line segment; if 0 ≤ t2 ≤ 1 at the intersection point, then the intersection
point is on the second line segment.

lnsegpt.nb

Intersection Point of Two Line Segments

Exploration

Show that the intersection point of the lines underlying two line segments P1P2 and P3P4 in
terms of the coordinates of the four points is given by

x =
(x2 − x1) (x3y4 − x4y3) − (x4 − x3) (x1y2 − x2y1)

(x4 − x3) (y1 − y2) − (x2 − x1) (y3 − y4)

y =
(y3 − y4) (x1y2 − x2y1) − (y1 − y2) (x3y4 − x4y3)

(x4 − x3) (y1 − y2) − (x2 − x1) (y3 − y4)
.

Approach

Construct the two lines underlying the line segments and intersect the lines.

Solution

Define the lines underlying the two line segments.

In[1]: Clear@x1, y1, x2, y2, x3, y3, x4, y4D;
L1 = Line2D@p1 = 8x1, y1<, p2 = 8x2, y2<D;
L2 = Line2D@p3 = 8x3, y3<, p4 = 8x4, y4<D;

Compute the intersection point.

In[2]: pt = Point2D@L1, L2D

Out[2] Point2DA9 −H−x3 + x4L H−x2 y1 + x1 y2L + H−x1 + x2L H−x4 y3 + x3 y4L
��H−x3 + x4L Hy1 − y2L − H−x1 + x2L Hy3 − y4L ,

H−x2 y1 + x1 y2L Hy3 − y4L − Hy1 − y2L H−x4 y3 + x3 y4L
��H−x3 + x4L Hy1 − y2L − H−x1 + x2L Hy3 − y4L =E

691

692 lnsegpt.nb

Discussion

Notice that the denominators of the abscissa and ordinate are equal, and that these denomi-
nators cannot be zero unless the line segments are parallel, in which case the underlying lines
do not intersect. The following is a plot of a numerical example.

In[3]: Sketch2D@8Segment2D@p1, p2D, Segment2D@p3, p4D,
pt, Map@Point2D, 8p1, p2, p3, p4<D< ê. 8
x1 −> 2, y1 −> 1, x2 −> −2, y2 −> −2,

x3 −> 2, y3 −> −2, x4 −> −3, y4 −> 1<D;

-3 -2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

lnsperp.nb

Equations of Perpendicular Lines

Exploration

Show that the pair of lines ax + by + c = 0 and bx − ay + c′ = 0 are perpendicular. Show that
the pair

ax + by + c = 0 and
x

a
− y

b
+ c′ = 0

is also perpendicular.

Approach

The two lines A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0 are perpendicular if the equation
A1A2+B1B2 = 0 is true. The two pairs of lines given can be shown to be perpendicular by
examining this equation.

Solution

Formulate the perpendicular condition for the first pair of lines.

In[1]: Clear@A1, B1, A2, B2, a, bD;
A1∗ A2 + B1∗B2 ê. 8
A1 −> a, B1 −> b, A2 −> b, B2 −> −a<

Out[1] 0

Formulate the perpendicular condition for the second pair of lines.

In[2]: A1∗ A2 + B1∗B2 ê. 8
A1 −> a, B1 −> b, A2 −> 1êa, B2 −> −1êb<

Out[2] 0

693

694 lnsperp.nb

Discussion

Notice that the second pair of lines can be derived from the first by dividing the first equation
by the quantity ab. However, this is invalid if either a or b is zero. The relationship shown for
the first pair is valid for all lines. The Descarta2D function IsPerpendicular2D also verifies
that the pairs are perpendicular.

In[3]: Clear@c1D;
8IsPerpendicular2D@Line2D@a, b, cD, Line2D@b, −a, c1DD,
IsPerpendicular2D@Line2D@a, b, cD, Line2D@1êa, −1êb, c1DD<

Out[3] 8True, True<

lntancir.nb

Line Tangent to a Circle

Exploration

Show that the line y = m(x − a) + a
√

1 + m2 is tangent to the circle x2 + y2 = 2ax for all
values of m.

Approach

Show that the pole point (which is the point of tangency if the line is tangent to the circle) is
on the circle.

Solution

Construct the line.

In[1]: Clear@x, y, a, mD;
l1 = Line2D@y == m Hx − aL + a∗Sqrt@1 + m^2D, 8x, y<D

Out[1] Line2DA−m, 1, a m − a
è!!!!!!!!!!!
1 + m2 E

Construct the circle.

In[2]: c1 = Circle2D@q1 = Quadratic2D@x^2 + y^2 == 2 a∗x, 8x, y<DD

Out[2] Circle2DA8a, 0<, è!!!!!
a2 E

Construct the pole point.

In[3]: p1 = Point2D@l1, c1D êê Simplify

Out[3] Point2DA9a −
a m

�����������������������è!!!!!!!!!!!
1 + m2

,
a

�����������������������è!!!!!!!!!!!
1 + m2

=E

The coordinates of the pole point satisfy the equation of the circle.

695

696 lntancir.nb

In[4]: Polynomial2D@q1, Coordinates2D@p1DD êê Simplify

Out[4] 0

Discussion

This is a plot of a numerical example.

In[5]: Sketch2D@8c1 ê. a −> 1,

Map@H8l1, p1< ê. 8a −> 1, m −> #<L&,
80, .5, 1, 2, 5, −5, −2, −1, −.5<D<,

CurveLength2D −> 4D;

-2 -1 0 1 2
-2

-1

0

1

2

lntancon.nb

Line Tangent to a Conic

Exploration

Use Mathematica to show that the relationship between the coefficients of a line

px + qy + r = 0

tangent to the conic

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

is given by (
4CF − E2

)
p2 +

(
4AF − D2

)
q2 +

(
4AC − B2

)
r2+

(BD − 2AE) qr + 2 (BE − 2CD) pr + 2 (DE − 2BF) pq = 0.

Approach

Intersect the line and the conic and force the intersection points to be coincident by setting
the appropriate terms in the resulting expression to zero.

Solution

Solve the equation of the line for y.

In[1]: Clear@p, q, r, x, yD;
ans1 = Solve@p∗x + q∗y + r == 0, yD

Out[1] 99y → −
r + p x
�������������������

q
==

Substitute y into the equation of the conic.

697

698 lntancon.nb

In[2]: Clear@A1, B1, C1, D1, E1, F1D;
eq1 = A1∗x^2 + B1∗x∗y + C1∗y^2 + D1∗x + E1∗y + F1 ê. First@ans1D

Out[2] F1 + D1 x + A1 x2 −
E1 Hr + p xL
����������������������������������

q
−
B1 x Hr + p xL
���������������������������������������

q
+
C1 Hr + p xL2

������������������������������������
q2

Solve the equation for x.

In[3]: ans2 = Solve@eq1 == 0, xD

Out[3] 99x → IE1 p q − D1 q2 − 2 C1 p r + B1 q r − ,IH−E1 p q + D1 q2 + 2 C1 p r − B1 q rL2
−

4 HC1 p2 − B1 p q + A1 q2L HF1 q2 − E1 q r + C1 r2LMM ë

H2 HC1 p2 − B1 p q + A1 q2LL=,

9x → IE1 p q − D1 q2 − 2 C1 p r + B1 q r + ,IH−E1 p q + D1 q2 + 2 C1 p r − B1 q rL2
−

4 HC1 p2 − B1 p q + A1 q2L HF1 q2 − E1 q r + C1 r2LMM ë

H2 HC1 p2 − B1 p q + A1 q2LL==

The line is tangent if the expression under the radical is zero (i.e. the points of tangency are
coincident).

In[4]: expr1 = ans2@@1, 1, 2, 3, 5, 2, 1DD

Out[4] H−E1 p q + D1 q2 + 2 C1 p r − B1 q rL2
− 4 HC1 p2 − B1 p q + A1 q2L HF1 q2 − E1 q r + C1 r2L

Put the expression into the desired form.

In[5]: expr2 = expr1 êê Expand êê Factor

Out[5] q2 HE12 p2 − 4 C1 F1 p2 − 2 D1 E1 p q + 4 B1 F1 p q + D12 q2 − 4 A1 F1 q2 + 4 C1 D1 p r −

2 B1 E1 p r − 2 B1 D1 q r + 4 A1 E1 q r + B12 r2 − 4 A1 C1 r2L

Divide both sides by q2.

In[6]: expr3 = expr2@@2DD

Out[6] E12 p2 − 4 C1 F1 p2 − 2 D1 E1 p q + 4 B1 F1 p q + D12 q2 − 4 A1 F1 q2 + 4 C1 D1 p r −

2 B1 E1 p r − 2 B1 D1 q r + 4 A1 E1 q r + B12 r2 − 4 A1 C1 r2

Pick out the coefficients of each of the desired terms (multiplied by −1 to match the desired
sign).

In[7]: Map@−Coefficient@expr3, #D&,
8p^2, q^2, r^2, q ∗r, p∗r, p∗q<D

Out[7] 8−E12 + 4 C1 F1, −D12 + 4 A1 F1, −B12 + 4 A1 C1, 2 B1 D1 − 4 A1 E1, −4 C1 D1 + 2 B1 E1,

2 D1 E1 − 4 B1 F1<

mdcircir.nb

Medial Curve, Circle–Circle

Exploration

Show that the two quadratics whose equations are given by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = 4
(
(h1 − h2)

2 − R
)
,

B = 8 (h1 − h2) (k1 − k2),

C = 4
(
(k1 − k2)

2 − R
)
,

D = 4 (h1(−D1 + D2 + R) + h2(D1 − D2 + R)),

E = 4(k1(−D1 + D2 + R) + k2(D1 − D2 + R)) and

F = (D1 − D2)
2 − 2 (D1 + D2)R + R2

and

R = (r1 − sr2)
2,

D1 = h2
1 + k2

1 ,

D2 = h2
2 + k2

2 and

s = ±1

are equidistant from the two circles

(x − h1)2 + (y − k1)2 = r2
1 and (x − h2)2 + (y − k2)2 = r2

2 .

699

700 mdcircir.nb

Approach

Create the two circles and form an equation by equating the distance to each circle from a
generic point.

Solution

Create the geometry.

In[1]: Clear@x, y, h1, k1, r1, h2, k2, r2D;
P = Point2D@x, yD;
C1 = Circle2D@8h1, k1<, r1D;
C2 = Circle2D@8h2, k2<, r2D;

Find the distances to the two circles, where s1 = ±1 and s2 = ±1.

In[2]: Clear@s1D;
d1 = s1∗ HDistance2D@P, Point2D@C1DD − r1L

Out[2] s1 J−r1 + "###H−h1 + xL2 + H−k1 + yL2 N

In[3]: Clear@s2D;
d2 = s2∗ HDistance2D@P, Point2D@C2DD − r2L

Out[3] s2 J−r2 + "###H−h2 + xL2 + H−k2 + yL2 N

Equate the two distances and simplify by making substitutions.

In[4]: Clear@E1D;
eq1 = d1 − d2 ê. Sqrt@E1_D :> Sqrt@Expand@E1DD

Out[4] s1 J−r1 + "##h12 + k12 − 2 h1 x + x2 − 2 k1 y + y2 N −

s2 J−r2 + "##h22 + k22 − 2 h2 x + x2 − 2 k2 y + y2 N

In[5]: Clear@D1, D2D;
eq2 = eq1 ê. 8h1^2 + k1^2 −> D1, h2^2 + k2^2 −> D2<

Out[5] s1 I−r1 +
è!!!
D1 − 2 h1 x + x2 − 2 k1 y + y2 M − s2 I−r2 +

è!!!
D2 − 2 h2 x + x2 − 2 k2 y + y2 M

Rearrange the equation and square both sides (twice).

In[6]: 8lhs = eq2@@1DD êê Expand, rhs = eq2@@2DD êê Expand<

Out[6] 9−r1 s1 + s1
è!!!
D1 − 2 h1 x + x2 − 2 k1 y + y2 , r2 s2 − s2

è!!!
D2 − 2 h2 x + x2 − 2 k2 y + y2 =

In[7]: Clear@s, RD;
eq3 = HHlhs@@1DD + rhs@@1DDL^2 − Hlhs@@2DD + rhs@@2DDL^2 êê ExpandL êê.

8s1^2 −> 1, s2^2 −> 1, s1∗s2 −> s, r1^2 − 2∗s∗r1∗r2 + r2^2 −> R<

Out[7] −D1 − D2 + R + 2 h1 x + 2 h2 x − 2 x2 + 2 k1 y + 2 k2 y − 2 y2 +

2 s
è!!!
D1 − 2 h1 x + x2 − 2 k1 y + y2

è!!!
D2 − 2 h2 x + x2 − 2 k2 y + y2

mdcircir.nb 701

In[8]: eq4 = Drop@eq3, −1D^2 − Last@eq3D^2

Out[8] H−D1 − D2 + R + 2 h1 x + 2 h2 x − 2 x2 + 2 k1 y + 2 k2 y − 2 y2L2
−

4 s2 HD1 − 2 h1 x + x2 − 2 k1 y + y2L HD2 − 2 h2 x + x2 − 2 k2 y + y2L

Form a quadratic and simplify.

In[9]: Q1 = Map@Factor,
Quadratic2D@eq4 ê. s^2 −> 1, 8x, y<DD êê. 8
s^2 −> 1,

h1^2 − 2∗h1∗h2 + h2^2 −> Hh1 − h2L^2,
k1^2 − 2∗k1∗k2 + k2^2 −> Hk1 − k2L^2,
D1^2 − 2∗D1∗D2 + D2^2 −> HD1 − D2L^2<

Out[9] Quadratic2D@4 HHh1 − h2L2 − RL, 8 Hh1 − h2L Hk1 − k2L,
4 HHk1 − k2L2 − RL, −4 HD1 h1 − D2 h1 − D1 h2 + D2 h2 − h1 R − h2 RL,
−4 HD1 k1 − D2 k1 − D1 k2 + D2 k2 − k1 R − k2 RL, HD1 − D2L2 − 2 D1 R − 2 D2 R + R2D

By inspection, the resulting quadratic is the same as the desired one. This result was computed
using Mathematica Version 3.0.1. Version 4.0 computes a slightly different result that is
algebraically equivalent.

In[10]: Q2 = Quadratic2D@Q1@@1DD, Q1@@2DD, Q1@@3DD,
Collect@Q1@@4DD, 8h1, h2<D,
Collect@Q1@@5DD, 8k1, k2<D,
Q1@@6DD D

Out[10] Quadratic2D@4 HHh1 − h2L2 − RL, 8 Hh1 − h2L Hk1 − k2L,
4 HHk1 − k2L2 − RL, h2 H4 D1 − 4 D2 + 4 RL + h1 H−4 D1 + 4 D2 + 4 RL,
k2 H4 D1 − 4 D2 + 4 RL + k1 H−4 D1 + 4 D2 + 4 RL, HD1 − D2L2 − 2 D1 R − 2 D2 R + R2D

mdlncir.nb

Medial Curve, Line–Circle

Exploration

Show that the two quadratics whose equations are given by

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = B2
1 ,

B = −2A1B1,

C = A2
1,

D = −2 (h2 + A1(C1 + sr2)),

E = −2 (k2 + B1(C1 + sr2)),

F = h2
2 + k2

2 − r2
2 − C1(C1 + 2sr2) and

s = ±1.

are equidistant from the line

A1x + B1y + C1 = 0

and the circle

(x − h)2 + (y − k)2 = r2

assuming A2
1 + B2

1 = 1.

703

704 mdlncir.nb

Approach

Create the line and the circle. Form an equation of the distances from a generic point to the
line and circle.

Solution

Create the geometry.

In[1]: Clear@x, y, A1, B1, C1, h2, k2, r2D;
P = Point2D@x, yD;
l1 = Line2D@A1, B1, C1D;
c2 = Circle2D@8h2, k2<, r2D;

Find the distance from the point to the line, where s1 = ±1.

In[2]: Clear@s1, E1D;
d1 = s1∗Distance2D@P, l1D êê.

8A1^2 + B1^2 −> 1, Sqrt@E1_^2D −> E1<

Out[2] s1 HC1 + A1 x + B1 yL

Find the distance from the point to the circle, where s2 = ±1.

In[3]: Clear@s2D;
d2 = s2∗ HDistance2D@P, Point2D@c2DD − r2L êê Expand

Out[3] −r2 s2 + s2 "###H−h2 + xL2 + H−k2 + yL2

Rearrange the equation d1 = d2 and square both sides.

In[4]: eq1 = Hd1 − d2@@1DDL^2 == d2@@2DD^2 ê. 8s1^2 −> 1, s2^2 −> 1<

Out[4] Hr2 s2 + s1 HC1 + A1 x + B1 yLL2 == H−h2 + xL2 + H−k2 + yL2

Form a quadratic and simplify.

In[5]: Q1 = Quadratic2D@eq1, 8x, y<D êê.
8s1^2 −> 1,

s2^2 −> 1,

A1^2 − 1 −> −B1^2,

B1^2 − 1 −> −A1^2<

Out[5] Quadratic2D@−B12, 2 A1 B1, −A12, 2 A1 C1 + 2 h2 + 2 A1 r2 s1 s2,

2 B1 C1 + 2 k2 + 2 B1 r2 s1 s2, C12 − h22 − k22 + r22 + 2 C1 r2 s1 s2D

Put the quadratic into the desired form, and use s = s1s2 = ±1.

In[6]: Clear@s, a, b, cD;
Q2 = HMap@Factor@−1∗#D&, Q1D ê. s1∗s2 −> sL ê. a_ ∗b_ + a_ ∗c_ −> a Hb + cL

Out[6] Quadratic2D@B12, −2 A1 B1, A12, −2 Hh2 + A1 HC1 + r2 sLL, −2 Hk2 + B1 HC1 + r2 sLL,
−C12 + h22 + k22 − r22 − 2 C1 r2 sD

mdlnln.nb

Medial Curve, Line–Line

Exploration

Show that the pair of lines whose equations are

A1x + B1y + C1√
A2

1 + B2
1

= ±A2x + B2y + C2√
A2

2 + B2
2

is equidistant from the two lines A1x + B1y + C1 = 0 and A2x + B2y + C2 = 0.

Approach

Create both lines. Compute the distances to an arbitrary point. Form an equation by setting
the distances equal to each other.

Solution

Create the two lines.

In[1]: Clear@x, y, A1, B1, C1, A2, B2, C2D;
P = Point2D@x, yD;
l1 = Line2D@A1, B1, C1D;
l2 = Line2D@A2, B2, C2D;

Compute the distance from the first line. Use s1 = ±1 to eliminate the radical.

In[2]: Clear@E1, E2, s1D;
d1 = Distance2D@P, l1D ê.

Sqrt@E1_^2êE2_D :> s1∗E1êSqrt@E2D

Out[2]
s1 HC1 + A1 x + B1 yL
��è!!!!!!!!!!!!!!!!!

A12 + B12

705

706 mdlnln.nb

Compute the distance from the second line. Use s2 = ±1 to eliminate the radical.

In[3]: Clear@s2D;
d2 = Distance2D@P, l2D ê.

Sqrt@E1_^2êE2_D :> s2∗E1êSqrt@E2D

Out[3]
s2 HC2 + A2 x + B2 yL
��è!!!!!!!!!!!!!!!!!

A22 + B22

Form the equation.

In[4]: eq1 = d1 == d2

Out[4]
s1 HC1 + A1 x + B1 yL
��è!!!!!!!!!!!!!!!!!

A12 + B12
==

s2 HC2 + A2 x + B2 yL
��è!!!!!!!!!!!!!!!!!

A22 + B22

Combine s1 and s2 into a single sign constant s = ±1.

In[5]: Clear@sD;
eq1 ê. 8s1 −> 1, s2 −> s<

Out[5]
C1 + A1 x + B1 y
���è!!!!!!!!!!!!!!!!!

A12 + B12
==

s HC2 + A2 x + B2 yL
���è!!!!!!!!!!!!!!!!!

A22 + B22

mdptcir.nb

Medial Curve, Point–Circle

Exploration

Show that the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = 4
(
(x1 − h2)

2 − r2
2

)
,

B = 8 (x1 − h2) (y1 − k2),

C = 4
(
(y1 − k2)

2 − r2
2

)
,

D = 4
(
R(x1 − h2) + 2r2

2x1

)
,

E = 4
(
R(y1 − k2) + 2r2

2y1

)
,

F = R2 − 4r2
2(x

2
1 + y2

1) and

R =
(
h2

2 + k2
2

)− (x2
1 + y2

1

)− r2
2

is equidistant from the point P1(x1, y1) and the circle

(x − h2)
2 + (y − k2)

2 = r2
2 .

Approach

Create the point and the circle. Compute the distances to an arbitrary point. Set the distances
equal to form the equation.

707

708 mdptcir.nb

Solution

Create the point and the circle.

In[1]: Clear@x, y, x1, y1, h2, k2, r2D;
P = Point2D@x, yD;
p1 = Point2D@x1, y1D;
c2 = Circle2D@8h2, k2<, r2D;

Compute the distance between the two points.

In[2]: d1 = Distance2D@P, p1D^2

Out[2] Hx − x1L2 + Hy − y1L2

The distance to the circle is either D − r or r − D, where D is the distance from the point to
the center of the circle. Squaring removes the ambiguity.

In[3]: Clear@a, bD;
d2 = HDistance2D@P, Point2D@c2DD − r2L^2 ê.

Ha_ + b_L^2 −> a^2 + 2 a∗b + b^2

Out[3] r22 + H−h2 + xL2 + H−k2 + yL2 − 2 r2 "###H−h2 + xL2 + H−k2 + yL2

Simplify the equations d1 = d2.

In[4]: 8ls1 = d1 − d2@@81, 2, 3<DD êê Expand,

rs1 = d2@@4DD<

Out[4] 9−h22 − k22 − r22 + 2 h2 x − 2 x x1 + x12 + 2 k2 y − 2 y y1 + y12,

−2 r2 "###H−h2 + xL2 + H−k2 + yL2 =

In[5]: Clear@RD;
ls2 = ls1 ê.

8−h2^2 − k2^2 + x1^2 + y1^2 − r2^2 −> −2∗r2^2 − R<

Out[5] −R − 2 r22 + 2 h2 x − 2 x x1 + 2 k2 y − 2 y y1

In[6]: Q1 = Quadratic2D@ls2^2 == rs1^2, 8x, y<D

Out[6] Quadratic2D@4 h22 − 4 r22 − 8 h2 x1 + 4 x12, 8 h2 k2 − 8 k2 x1 − 8 h2 y1 + 8 x1 y1,

4 k22 − 4 r22 − 8 k2 y1 + 4 y12, −4 h2 R + 4 R x1 + 8 r22 x1, −4 k2 R + 4 R y1 + 8 r22 y1,

R2 − 4 h22 r22 − 4 k22 r22 + 4 R r22 + 4 r24D

In[7]: Clear@E1, E2D;
a = Factor@Q1@@1DDD êê. 8

HE1_ − E2_L HE1_ + E2_L −> E1^2 − E2^2,

Hh2 − x1L^2 −> Hx1 − h2L^2<

Out[7] 4 H−r22 + H−h2 + x1L2L

mdptcir.nb 709

In[8]: b = Factor@Q1@@2DDD ê. Hh2 − x1L Hk2 − y1L −> Hx1 − h2L Hy1 − k2L

Out[8] 8 H−h2 + x1L H−k2 + y1L

In[9]: c = Factor@Q1@@3DDD êê. 8
HE1_ − E2_L HE1_ + E2_L −> E1^2 − E2^2,

Hk2 − y1L^2 −> Hy1 − k2L^2<

Out[9] 4 H−r22 + H−k2 + y1L2L

In[10]: d = Factor@Q1@@4DDD êê. 8
h2∗R − x1∗R −> R Hh2 − x1L,
−4 HR Hh2 − x1L − 2∗r2^2∗x1L −>

4 HR Hx1 − h2L + 2∗r2^2∗x1L<

Out[10] 4 H2 r22 x1 + R H−h2 + x1LL

In[11]: e = Factor@Q1@@5DDD êê. 8
k2∗R − y1∗R −> R Hk2 − y1L,
−4 HR Hk2 − y1L − 2∗r2^2∗y1L −>

4 HR Hy1 − k2L + 2∗r2^2∗y1L<

Out[11] 4 H2 r22 y1 + R H−k2 + y1LL

In[12]: f = Factor@Q1@@6DDD ê.
4∗R ∗r2^2 −> 4∗r2^2∗ Hh2^2 + k2^2 − Hx2^2 + y2^2L − r2^2L êê Expand;

f1 = f@@1DD + Factor@f@@82, 3<DDD

Out[12] R2 − 4 r22 Hx22 + y22L

In[13]: Quadratic2D@a, b, c, d, e, f1D

Out[13] Quadratic2D@4 H−r22 + H−h2 + x1L2L, 8 H−h2 + x1L H−k2 + y1L, 4 H−r22 + H−k2 + y1L2L,
4 H2 r22 x1 + R H−h2 + x1LL, 4 H2 r22 y1 + R H−k2 + y1LL, R2 − 4 r22 Hx22 + y22LD

mdptln.nb

Medial Curve, Point–Line

Exploration

Show that the quadratic equation

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

where

A = B2
2 ,

B = −2A2B2,

C = A2
2,

D = −2 (x1 + A2C2),

E = −2(y1 + B2C2) and

F = x2
1 + y2

1 − C2
2

is equidistant from the point P1(x1, y1) and the line L ≡ A1x + B1y + C1 = 0, assuming that
L is normalized (A2

2 + B2
2 = 1).

Approach

Create the point and the line. Compute distances to an arbitrary point. Form an equation by
setting the distances equal to each other.

711

712 mdptln.nb

Solution

Create the point and the line.

In[1]: Clear@x, y, x1, y1, A2, B2, C2D;
P = Point2D@x, yD;
p1 = Point2D@x1, y1D;
l2 = Line2D@A2, B2, C2D;

Form an equation by setting the distances (squared) equal to each other.

In[2]: eq1 = Distance2D@P, p1D^2 ==

Distance2D@P, l2D^2 êê Simplify

Out[2] Hx − x1L2 + Hy − y1L2 ==
HC2 + A2 x + B2 yL2

��
A22 + B22

Form the quadratic and simplify.

In[3]: Q1 = Quadratic2D@eq1, 8x, y<D êê. 8
A2^2 + B2^2 −> 1,

1 − A2^2 −> B2^2,

1 − B2^2 −> A2^2<;
Map@Factor, Q1D

Out[3] Quadratic2D@B22, −2 A2 B2, A22, −2 HA2 C2 + x1L, −2 HB2 C2 + y1L, −C22 + x12 + y12D

mdptpt.nb

Medial Curve, Point–Point

Exploration

Show that the line 2 (x2 − x1)x + 2 (y2 − y1) y +
(
x2

1 + y2
1

)− (x2
2 + y2

2

)
= 0 is equidistant from

the points P1(x1, y1) and P2(x2, y2).

Approach

Create the points and compute distances to an arbitrary point. Form an equation by setting
the distances equal to each other.

Solution

Create the points.

In[1]: Clear@x, y, x1, y1, x2, y2D;
P = Point2D@x, yD;
p1 = Point2D@x1, y1D;
p2 = Point2D@x2, y2D;

Form an equation by setting the distances (squared) to the arbitrary point equal to each other.

In[2]: eq1 = Distance2D@P, p1D^2 ==

Distance2D@P, p2D^2

Out[2] Hx − x1L2 + Hy − y1L2 == Hx − x2L2 + Hy − y2L2

Construct a line from the equation and simplify.

In[3]: Map@Factor,
Line2D@eq1, 8x, y<D êê SimplifyD

Out[3] Line2D@−2 Hx1 − x2L, −2 Hy1 − y2L, x12 − x22 + y12 − y22D

713

mdtype.nb

Medial Curve Type

Exploration

Show that the medial curve equidistant from a point and a circle is a hyperbola when the point
is outside the circle, and it is an ellipse when the point is inside the circle. (Hint: Examine
the value of the discriminant B2 − 4AC of the medial quadratic.)

Approach

Create the expression B2 − 4AC from the coefficients of the medial quadratic. Consider
B2 − 4AC with the circle at the origin. Show that the expression is negative when the point
is inside the circle and positive when the point is outside the circle.

Solution

Set the coefficients of the quadratic (from equations listed in the book).

In[1]: Clear@x1, y1, h2, k2, r2D;
a = 4∗ HHx1 − h2L^2 − r2^2L;
b = 8∗ Hx1 − h2L Hy1 − k2L;
c = 4∗ HHy1 − k2L^2 − r2^2L;

Find the discriminant, B2 − 4AC, at the origin.

In[2]: disc = b^2 − 4∗a∗c ê. 8h2 −> 0, k2 −> 0< êê Simplify

Out[2] 64 r22 H−r22 + x12 + y12L

Using the distance formula, the point is outside the circle then the discriminant is positive,
implying a hyperbola; if the point is inside the circle than the discriminant is negative, implying
an ellipse.

715

monge.nb

Monge’s Theorem

Exploration

Given three circles and the external tangent lines of the circles taken in pairs, show that the
three intersection points of the three tangent pairs lie on a straight line.

Approach

Construct the three circles in a simplified position (without loss of generality). Construct the
intersection point of the tangent pairs of lines. Show that the points are collinear.

Solution

Create the three circles.

In[1]: Clear@r1, r2, r3, a, b, dD;
c1 = Circle2D@80, 0<, r1D;
c2 = Circle2D@8d, 0<, r2D;
c3 = Circle2D@8a, b<, r3D;

Find the intersection point of the external tangents for the first pair.

In[2]: t12 = TangentLines2D@c1, c2D;
p12 = Point2D@t12@@1DD êê Simplify,

t12@@2DD êê SimplifyD êê Simplify

Out[2] Point2DA9 d r1
���������������������
r1 − r2

, 0=E

Find the intersection point of the external tangents for the second pair.

717

718 monge.nb

In[3]: t23 = TangentLines2D@c2, c3D;
p23 = Point2D@t23@@1DD êê Simplify,

t23@@2DD êê SimplifyD êê Simplify

Out[3] Point2DA9 a r2 − d r3
�������������������������������
r2 − r3

,
b r2

���������������������
r2 − r3

=E

Find the intersection point of the external tangents for the third pair.

In[4]: t13 = TangentLines2D@c1, c3D;
p13 = Point2D@t13@@1DD êê Simplify,

t13@@2DD êê SimplifyD êê Simplify

Out[4] Point2DA9 a r1
���������������������
r1 − r3

,
b r1

���������������������
r1 − r3

=E

The three points are collinear as shown by the zero value of the determinant. The function
IsCollinear2D produces the same result.

In[5]: MakeRow$2D@Point2D@8x_, y_<DD := 8x, y, 1<;
8Det@Map@MakeRow$2D, 8p12, p23, p13<DD êê Simplify,

IsCollinear2D@p12, p23, p13D<

Out[5] 80, True<

Discussion

This is the plot of a numerical example.

In[6]: Sketch2D@8c1, c2, c3,

t12, p12, t13, p13, t23, p23,

Line2D@p12, p23D< ê.
8r1 −> 1, r2 −> 2, r3 −> 3, d −> 5, a −> 3, b −> 6<,
CurveLength2D −> 35D;

-15-10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

narclen.nb

Approximate Arc Length of a Curve

Exploration

The arc length of a smooth, parametrically defined curve can be approximated by a polygon
connecting a sequence of points on the curve. Write a Mathematica function of the form
NArcLength2D[crv,{t1, t2}, n] that approximates the arc length of a curve between two
parameter values using a specified number of coordinates at equal parameter intervals between
the two given parameters. Produce a graph illustrating the convergence of the approximation
to the Descarta2D function ArcLength2D[crv, {t1, t2}].

Approach

Sum the distances between the points on the curve.

Solution

Define a function for the arc length by polygonal approximation.

In[1]: Off@General::spell1D;
NArcLength2D@obj_, 8t1_, t2_<, n_D :=

Module@8incr = Ht2 − t1L ên<,
Sum@
Distance2D@
obj@t1 + i∗incrD êê N,

obj@t1 + Hi + 1L ∗incrD êê ND,
8i, 0, n − 1<D D;

On@General::spell1D;

Create an object for validating the function.

In[2]: ca1 = ConicArc2D@80, 0<, 82, 1<, 83, 0<, 3ê4D;

719

720 narclen.nb

Create a table of coordinates to plot. The x-coordinate is the number of points used in the
approximation and the y-coordinate is the difference between the Descarta2D function and
the polygonal approximation.

In[3]: t1 = 1ê4;
t2 = 3ê4;
arclen1 = ArcLength2D@ca1, 8t1, t2<D êê N;

pts = Table@8n, arclen1 − NArcLength2D@ca1, 8t1, t2<, nD<,
8n, 10, 100, 5<D

Out[3] 8810, 0.000274241<, 815, 0.000121761<, 820, 0.0000684662<, 825, 0.0000438112<,
830, 0.0000304217<, 835, 0.0000223494<, 840, 0.0000171107<,
845, 0.0000135192<, 850, 0.0000109504<, 855, 9.0498×10−6<,
860, 7.60427×10−6<, 865, 6.47933×10−6<, 870, 5.58673×10−6<,
875, 4.86664×10−6<, 880, 4.27731×10−6<, 885, 3.78888×10−6<,
890, 3.37958×10−6<, 895, 3.03319×10−6<, 8100, 2.73745×10−6<<

Plot the results.

In[4]: ListPlot@pts, PlotJoined −> TrueD;

20 40 60 80 100

0.00002

0.00004

0.00006

0.00008

0.0001

normal.nb

Normals and Minimum Distance

Exploration

Given a point P0(x0, y0) and a quadratic Q, find the point(s) P (x, y) on Q such that the line
PP0 is perpendicular to the line tangent to Q at P . Such a line PP0 is called a normal to
the quadratic. Use the points P to find the minimum distance from P0 to Q. Assume that P0

and Q are defined numerically.

Approach

The point P (x, y) is clearly on Q, so P must satisfy the equation for Q. In addition, since the
normal line PP0 is perpendicular to the tangent line, its slope must be the negative reciprocal
of the tangent line’s slope. The tangent line is the polar of P with respect to Q. These two
equations can be solved simultaneously for the (x, y) coordinates of the point P .

Solution

Define a function to construct the point(s) P based on the approach described above.

In[1]: NormalPoints2D@
P0 : Point2D@8x0_, y0_<D,
Q : Quadratic2D@a_, b_, c_, d_, e_, f_DD :=

Module@8P, x, y, ln, eq1, eq2, ans<,
eq1 = Equation2D@Q, 8x, y<D;
P = Point2D@8x, y<D;
ln = Line2D@P, −1êSlope2D@Line2D@P0, PDDD;
eq2 = TangentEquation2D@ln, QD;
ans = Solve2D@8eq1, eq2<, 8x, y<D;
ans = Select@ans, HIsReal2D@x ê. #D &&

IsReal2D@y ê. #DL&D;
Map@HP ê. #L&, ansDD ê;

IsNumeric2D@8P0, Q<, NormalPoints2DD

721

722 normal.nb

Define a function to construct the normal lines using the normal points.

In[2]: NormalLines2D@
P0 : Point2D@8x0_, y0_<D,
Q : Quadratic2D@a_, b_, c_, d_, e_, f_DD :=

Map@Line2D@#, QD&, NormalPoints2D@P0, QDD ê;
IsNumeric2D@8P0, Q<, NormalLines2DD

Select the minimum distance from the normal point(s).

In[3]: MinimumDistance2D@
P0 : Point2D@8x0_, y0_<D,
Q : Quadratic2D@a_, b_, c_, d_, e_, f_DD :=

Min@Map@Distance2D@P0, #D&, NormalPoints2D@P0, QDDD ê;
IsNumeric2D@8P0, Q<, MinimumDistance2DD;

Discussion

Here we illustrate the solution with a numerical example. The following steps were computed
using Mathematica Version 3.0.1. Version 4.0 computes the same points and lines without
duplicating the solutions.

In[4]: p0 = Point2D@2., 2.D;
q1 = Quadratic2D@Ellipse2D@80, 0<, 2, 1, 0DD;
pts = NormalPoints2D@p0, q1D

Out[4] 8Point2D@8−1.92052, −0.279113<D, Point2D@8−1.92052, −0.279113<D,
Point2D@81.38564, 0.72111<D, Point2D@81.38564, 0.72111<D<

In[5]: lns = NormalLines2D@p0, q1D

Out[5] 8Line2D@−3.84103, −2.23291, −8D, Line2D@−3.84103, −2.23291, −8D,
Line2D@2.77128, 5.76888, −8D, Line2D@2.77128, 5.76888, −8D<

In[6]: Sketch2D@8p0, pts, lns, q1<, CurveLength2D −> 6D;

-3-2-1 0 1 2 3
-3
-2
-1
0
1
2

In[7]: MinimumDistance2D@p0, q1D

Out[7] 1.4188

pb3pts.nb

Parabola Through Three Points

Exploration

Show that the parabola passing through the points (0, 0), (a, b) and (b, a) whose axis is parallel
to the x-axis has vertex (h, k) and focal length f given by

h =
(a2 + ab + b2)2

4ab(a + b)
, k =

a2 + ab + b2

2(a + b)
and f = − ab

4(a + b)
.

Furthermore, show that the quadratic representing the parabola is

(a + b) y2 + abx − (a2 + ab + b2
)
y = 0.

Approach

Create the equation of a parabola in standard position with variables (h, k) for the vertex
point and f for the focal length. The three given points must satisfy the equation. Solve three
equations in three unknowns (h, k and f). Find the quadratic representing the equation.

Solution

Write the equation of the parabola in standard position.

In[1]: Clear@x, y, h, k, fD;
eq1 = Hy − kL^2 == 4 f Hx − hL;

Solve for the constants.

723

724 pb3pts.nb

In[2]: Clear@a, bD;
ans = Solve@Map@Heq1 ê. #L&,

88x −> 0, y −> 0<,
8x −> a, y −> b<,
8x −> b, y −> a<<D,

8h, k, f<D êê Simplify

Out[2] 99h →
Ha2 + a b + b2L2

���
4 a b Ha + bL , f → −

a b
��������������������������
4 Ha + bL , k →

a2 + a b + b2
����������������������������������
2 Ha + bL ==

Form the quadratic representing the parabola.

In[3]: q1 = Quadratic2D@eq1 ê. ans@@1DD, 8x, y<D êê Simplify

Out[3] Quadratic2DA0, 0, 1,
a b

���������������
a + b

, −
a2 + a b + b2
����������������������������������

a + b
, 0E

Multiply through by (a + b) to arrive at the desired form of the equation.

In[4]: Equation2D@Map@H#∗ Ha + bLL&, q1D, 8x, y<D

Out[4] a b x + H−a2 − a b − b2L y + Ha + bL y2 == 0

Discussion

This is a plot of a numerical example with a = 2 and b = 3.

In[5]: Sketch2D@8Point2D@80, 0<D, Point2D@8a, b<D,
Point2D@8b, a<D, q1< ê. 8

a −> 2, b −> 3<D;

-1 0 1 2 3

0

1

2

3

4

pb4pts.nb

Parabola Through Four Points

Exploration

Describe a method for finding the two parabolas passing through four points. Show that the
technique produces the correct results for the points (2, 1), (−1, 1), (−2,−1) and (4,−3) by
plotting the parabola and the four points.

Approach

Form a quadratic, parameterized by the variable k, representing the pencil of quadratics
passing through the four points. The first three coefficients of the quadratic, a, b, and c must
satisfy the relationship b2 = 4ab because the quadratic is a parabola. Solve the equation for
k.

Solution

Define a function that implements the approach.

In[1]: Quadratic2D@
p1 : Point2D@8x1_, y1_<D,
p2 : Point2D@8x2_, y2_<D,
p3 : Point2D@8x3_, y3_<D,
p4 : Point2D@8x4_, y4_<D,
Parabola2DD :=

Module@8q1, k, a, b, c<,
q1 = Quadratic2D@p1, p2, p3, p4, k, Pencil2DD;
8a, b, c< = List @@ Take@q1, 3D;
ans = Solve@b^2 == 4∗a∗c, kD;
Map@Hq1 ê. #L&, ansD D;

725

726 pb4pts.nb

Discussion

The following is a numerical example using the points specified.

In[2]: pts = 8p1 = Point2D@2, 1D,
p2 = Point2D@−1, 1D,
p3 = Point2D@−2, −1D,
p4 = Point2D@4, −3D<;

q1 = Quadratic2D@p1, p2, p3, p4, Parabola2DD êê N

Out[2] 8Quadratic2D@−71.4965, −6., −0.12588, 77.4965, −154.993, 298.112D,
Quadratic2D@−0.503521, −6., −17.8741, 6.50352, −13.007, 31.8882D<

In[3]: par1 = Map@Loci2D, q1D

Out[3] 88Parabola2D@80.411031, 2.0156<, 0.551872, 4.75432D<,
8Parabola2D@8−3.94012, 0.337128<, 0.116538, 6.11689D<<

In[4]: Sketch2D@8pts, par1<, CurveLength2D −> 20D;

-4 -2 0 2 4 6

-3

-2

-1

0

1

2

pbang.nb

Parabola Intersection Angle

Exploration

Show that the parabolas y2 = ax and x2 = by will cut each other at an angle θ given by

θ = − tan−1

(
1
2

a1/3

b1/3

)
+ tan−1

(
2
b1/3

a1/3

)
.

Approach

Find the (real) intersection points of the two parabolas (the origin point is an intersection,
but the cut angle at the origin is π, so use one of the other (real) angles). Construct the polars
to each parabola at the intersection point (the polars are the tangent lines). Find the angle
between the polars.

Solution

Intersect the two parabolas.

In[1]: Clear@x, y, a, bD;
ans = Solve@8y^2 == a∗x, x^2 == b∗y<, 8x, y<D

Out[1] 88x → 0, y → 0<,
8x → a1ê3 b2ê3, y → a2ê3 b1ê3<, 8x → −H−1L1ê3 a1ê3 b2ê3, y → H−1L2ê3 a2ê3 b1ê3<,
8x → H−1L2ê3 a1ê3 b2ê3, y → −H−1L1ê3 a2ê3 b1ê3<<

The first solution is the origin, so it is excluded. The third and fourth solutions are imaginary,
so they are ignored. The second solution is the desired one.

In[2]: p0 = Point2D@x, yD ê. ans@@2DD

Out[2] Point2D@8a1ê3 b2ê3, a2ê3 b1ê3<D

727

728 pbang.nb

Construct the two parabolas.

In[3]: 8parab1 = Loci2D@q1 = Quadratic2D@y^2 == a∗x, 8x, y<DD,
parab2 = Loci2D@q2 = Quadratic2D@x^2 == b∗y, 8x, y<DD<

Out[3] 99Parabola2DA80, 0<, a
�����
4
, 0E=, 9Parabola2DA80, 0<, b

�����
4
,

π
�����
2

E==

Construct the tangent lines at the points.

In[4]: 8l1 = Line2D@p0, q1D, l2 = Line2D@p0, q2D<

Out[4] 8Line2D@−a, 2 a2ê3 b1ê3, −a4ê3 b2ê3D, Line2D@2 a1ê3 b2ê3, −b, −a2ê3 b4ê3D<

Find the angle between the tangent lines.

In[5]: eq1 = Angle2D@l1, l2D

Out[5] −ArcTanA a1ê3
�����������������
2 b1ê3 E + ArcTanA 2 a1ê3

�����������������
b1ê3 E

Discussion

Here’s an example with a = 1 and b = 2.

In[6]: Sketch2D@8parab1, parab2, l1, l2, p0< ê. 8a −> 1, b −> 2<D;

-2-1 0 1 2 3 4
-2

-1

0

1

2

3

4

The angle is about 36 degrees.

In[7]: eq1 ê. 8a −> 1, b −> 2<

Out[7] −ArcTanA 1
�����������������
2 21ê3 E + ArcTan@22ê3D

In[8]: Heq1 ê. 8a −> 1, b −> 2<L êDegree êê N

Out[8] 36.145

pbarch.nb

Parabolic Arch

Exploration

x

y PJ
b
ÄÄÄÄÄÄÄ
2

, hN

O

h

b

Find the equation of the parabolic arch of base b and height h as shown in the figure. Assume
that b and h are positive.

Approach

Create a parabola rotated −π/2 radians with variables (h, k) and f for the vertex point and
focal length. Find the quadratic equation of the parabola. The three given points (0, 0),
(b/2, h) and (b, 0) must satisfy the equation. Solve three equations in the three unknowns h,
k and f .

Solution

Construct the parabola.

729

730 pbarch.nb

In[1]: Clear@h, k, fD;
par1 = Parabola2D@8h, k<, f, −Piê2D;

Create the equation of the parabola.

In[2]: Clear@x, yD;
eq1 = Equation2D@Quadratic2D@par1D, 8x, y<D

Out[2] h2 − 4 f k − 2 h x + x2 + 4 f y == 0

The three points must satisfy the equation of the parabola.

In[3]: Clear@B, HD;
ans = Solve@Map@Heq1 ê. #L&,

88x −> 0, y −> 0<, 8x −> Bê2, y −> H<, 8x −> B, y −> 0<<D,
8f, h, k<D

Out[3] 99k → H, f →
B2

�������������
16 H

, h →
B
�����
2

==

Here’s the equation of the parabolic arch.

In[4]: eq1 ê. First@ansD

Out[4] −B x + x2 +
B2 y
�������������
4 H

== 0

Discussion

This is an example of the arch with B = 4 and H = 3.

In[5]: Sketch2D@8par1 ê. First@ansD ê. 8B −> 4, H −> 3<<,
CurveLength2D −> 9D;

0 1 2 3 4

0

1

2

3

pbarclen.nb

Arc Length of a Parabola

Exploration

Show that the arc length, s, of a parabola whose parametric equations are

x = ft2 and y = 2ft

is given by s = f(S2 − S1) where

Sn = tn
√

1 + t2n + sinh−1 (tn).

Approach

Directly apply the integral definition of arc length.

Solution

Compute the indefinite integral first. The results shown in the next few steps were computed
using Mathematica Version 3.0.1. Version 4.0 computes slightly different results that are
algebraically equivalent. Both versions compute the same final step.

In[1]: Clear@f, tD;
I1 = Integrate@

Sqrt@D@f∗t^2, tD^2 +

D@2∗f∗t, tD^2D,
tD êê Simplify

Out[1]
è!!!!!!!!!!!!!!!!!!!!
f2 H1 + t2L i

k
jjjt +

ArcSinh@tD
�����������������������������������è!!!!!!!!!!!

1 + t2
y
{
zzz

Evaluate the indefinite integral at the limits.

731

732 pbarclen.nb

In[2]: Clear@t1, t2D;
s1 = HI1 ê. t −> t2L − HI1 ê. t −> t1L êê Simplify

Out[2] −"#######################f2 H1 + t12L i
k
jjjt1 +

ArcSinh@t1D
��������������������������������������è!!!!!!!!!!!!!

1 + t12
y
{
zzz + "#######################f2 H1 + t22L i

k
jjjt2 +

ArcSinh@t2D
��������������������������������������è!!!!!!!!!!!!!

1 + t22
y
{
zzz

The focal length, f , is positive

In[3]: Clear@E1D;
s2 = s1 ê. Sqrt@f^2∗E1_D −> f∗Sqrt@E1D

Out[3] −f "#############1 + t12
i
k
jjjt1 +

ArcSinh@t1D
��������������������������������������è!!!!!!!!!!!!!

1 + t12
y
{
zzz + f "#############1 + t22

i
k
jjjt2 +

ArcSinh@t2D
��������������������������������������è!!!!!!!!!!!!!

1 + t22
y
{
zzz

Simplify.

In[4]: s3 = Factor@s2D

Out[4] −f Jt1 "#############1 + t12 − t2 "#############1 + t22 + ArcSinh@t1D − ArcSinh@t2DN

In[5]: s4 = f∗ Map@H−1∗#L&, s3@@3DDD

Out[5] f J−t1 "#############1 + t12 + t2 "#############1 + t22 − ArcSinh@t1D + ArcSinh@t2DN

pbdet.nb

Parabola Determinant

Exploration

Show that the determinant ∣∣∣∣∣∣∣∣
y x2 x 1
y1 x2

1 x1 1
y2 x2

2 x2 1
y3 x2

3 x3 1

∣∣∣∣∣∣∣∣
=0

represents a parabola Ax2 + Dx + Ey + F = 0 passing through the points (x1, y1), (x2, y2)
and (x3, y3).

Approach

Expand the determinant. Convert it to a quadratic and show that the three points satisfy the
equation.

Solution

Expand the determinant and form a quadratic.

In[1]: Clear@x, y, x1, y1, x2, y2, x3, y3D;
eq1 = Det@88y, x^2, x, 1<,

8y1, x1^2, x1, 1<,
8y2, x2^2, x2, 1<,
8y3, x3^2, x3, 1<<D;

q1 = Quadratic2D@eq1, 8x, y<D

Out[1] Quadratic2D@−x2 y1 + x3 y1 + x1 y2 − x3 y2 − x1 y3 + x2 y3,

0, 0, x22 y1 − x32 y1 − x12 y2 + x32 y2 + x12 y3 − x22 y3,

x12 x2 − x1 x22 − x12 x3 + x22 x3 + x1 x32 − x2 x32,

−x22 x3 y1 + x2 x32 y1 + x12 x3 y2 − x1 x32 y2 − x12 x2 y3 + x1 x22 y3D

733

734 pbdet.nb

Form an equation of the quadratic.

In[2]: poly1 = Polynomial2D@q1, 8x, y<D

Out[2] Hx12 x2 − x1 x22 − x12 x3 + x22 x3 + x1 x32 − x2 x32L y − x22 x3 y1 + x2 x32 y1 + x12 x3 y2 −

x1 x32 y2 − x12 x2 y3 + x1 x22 y3 + x2 H−x2 y1 + x3 y1 + x1 y2 − x3 y2 − x1 y3 + x2 y3L +

x Hx22 y1 − x32 y1 − x12 y2 + x32 y2 + x12 y3 − x22 y3L

Check if each of the points is on the quadratic.

In[3]: Map@Hpoly1 ê. #L&, 88x −> x1, y −> y1<,
8x −> x2, y −> y2<,
8x −> x3, y −> y3<<D êê Simplify

Out[3] 80, 0, 0<

Discussion

This is a plot of a numerical example.

In[4]: p1 = Point2D@8x1, y1<D;
p2 = Point2D@8x2, y2<D;
p3 = Point2D@8x3, y3<D;
Sketch2D@8p1, p2, p3, q1< êê. 8
x1 −> 1, y1 −> 1, x2 −> 6, y2 −> −1,

x3 −> 4, y3 −> 2<D;

0 1 2 3 4 5 6

-1

0

1

2

pbfocchd.nb

Length of Parabola Focal Chord

Exploration

Prove that the length of the focal chord of a parabola is 4f , where f is the focal length.

Approach

Construct a parabola in a standard position. Construct a line perpendicular to the axis of the
parabola through the focus point (the line containing the focal chord). Compute the distance
between the points of intersection of the parabola and the line.

Solution

Create the parabola.

In[1]: Clear@f1D;
par1 = Parabola2D@80, 0<, f1, 0D;

Construct the focus point.

In[2]: fpt = First@Foci2D@par1DD

Out[2] Point2D@8f1, 0<D

Construct a line perpendicular to the x-axis through the focus.

In[3]: fln = Line2D@fpt, Line2D@0, 1, 0D, Perpendicular2DD

Out[3] Line2D@1, 0, −f1D

Intersect the line with the parabola.

735

736 pbfocchd.nb

In[4]: pts = Points2D@fln, par1D

Out[4] 8Point2D@8f1, −2 f1<D, Point2D@8f1, 2 f1<D<

The length of the focal chord is the distance between the points.

In[5]: Distance2D@Sequence @@ ptsD ê.
Sqrt@f1^2D −> f1

Out[5] 4 f1

pbslp.nb

Tangent to a Parabola with a Given Slope

Exploration

Show that the line tangent to the parabola y2 = 4px with slope m is given by y = mx + p/m.

Approach

Construct a line with slope m and use the function TangentLines2D[ln,quad] to construct
the desired tangent line.

Solution

Construct a line with slope m.

In[1]: Clear@x, y, mD;
l1 = Line2D@Point2D@x, yD, mD

Out[1] Line2D@m, −1, −m x + yD

Construct a line parallel to the line and tangent to the parabola. The tangent line has the
form expected.

In[2]: Clear@pD;
l2 = TangentLines2D@l1,

p1 = Parabola2D@80, 0<, p, 0DD

Out[2] 9Line2DAm, −1,
p
�����
m

E=

Discussion

This is the plot of a numerical example.

737

738 pbslp.nb

In[3]: Sketch2D@8l2, p1< ê. 8p −> 1ê2, m −> 2<D;

-2-1 0 1 2 3 4
-4

-2

0

2

4

pbtancir.nb

Circle Tangent to a Parabola

Exploration

Any line through the point (−3a, 0) cuts the parabola y2 = 4ax in the points P and Q. Prove
that the circle through P , Q and the focus is tangent to the parabola.

Approach

Construct the geometry and show that the lines tangent to the parabola and the circle at the
intersection point are coincident.

Solution

Construct the point, parabola and a line through the point.

In[1]: Clear@a, mD;
p1 = Point2D@−3 a, 0D;
parab1 = Parabola2D@80, 0<, a, 0D;
l1 = Line2D@p1, mD

Out[1] Line2D@m, −1, 3 a mD

Intersect the lines in pairs to find the intersection points, P and Q.

In[2]: 8P, Q< = Points2D@l1, parab1D êê Simplify

Out[2] 9Point2DA9 −2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

, −
2 I−a +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E,

Point2DA9 2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

,
2 Ia +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E=

Construct the circle through P , Q and the focus.

739

740 pbtancir.nb

In[3]: fpt = Foci2D@parab1D@@1DD;
c1 = Circle2D@P, Q, fptD êê Simplify

Out[3] Circle2DA9 a H3 + m2L
�����������������������������

2 m2
,

a − 3 a m2
���������������������������

2 m3
=, 1

�����
2

$%%%%%%%%%%%%%%%%%%%%%%%%a2 H1 + m2L3

����������������������������������
m6

E

Intersect the circle and the parabola.

In[4]: pts = Points2D@c1, parab1D êê Simplify

Out[4] 9Point2DA9 a
��������
m2

, −
2 a
����������
m

=E,

Point2DA9 −2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

, −
2 I−a +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E,

Point2DA9 2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

,
2 Ia +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E=

Two of the points are P and Q, as expected; the third must be the tangency point.

In[5]: pts = Points2D@c1, parab1D êê Simplify

Out[5] 9Point2DA9 a
��������
m2

, −
2 a
����������
m

=E,

Point2DA9 −2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

, −
2 I−a +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E,

Point2DA9 2
è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L + a H2 − 3 m2L

��
m2

,
2 Ia +

è!!!!!!!!!!!!!!!!!!!!!!!!
a2 H1 − 3 m2L M

��
m

=E=

Two of the points are P and Q, as expected; the third must be the tangency point.

In[6]: 8IsCoincident2D@pts@@2DD, PD, IsCoincident2D@pts@@3DD, QD<

Out[6] 8True, True<

Construct the tangents to the circle and the parabola at the intersection point.

In[7]: 8tln1 = Line2D@pts@@1DD, c1D,
tln2 = Line2D@pts@@1DD, parab1D< êê Simplify

Out[7] 8Line2D@−m2, −m, −aD, Line2D@−m2, −m, −aD<

The tangents are coincident, therefore, the parabola and the circle are tangent.

In[8]: Map@SimplifyCoefficients2D@List @@ #D&,
8tln1, tln2<D

Out[8] 88−m2, −m, −a<, 8−m2, −m, −a<<

Discussion

This is the plot of a numerical example.

pbtancir.nb 741

In[9]: Sketch2D@8c1, fpt, p1, parab1, l1, P, Q, pts@@1DD< ê.
8a −> 2ê3, m −> 1ê2<,

PlotRange −> 88−3, 10<, 8−7, 7<<,
CurveLength2D −> 25D;

-2 0 2 4 6 8 10
-6
-4
-2
0
2
4
6

pbtnlns.nb

Perpendicular Tangents to a Parabola

Exploration

Show that if L1 and L2 are two lines tangent to a parabola that intersect on the directrix of
the parabola, then L1 and L2 are perpendicular to each other.

Approach

Since the shape (not the position or orientation) of the parabola is relevant, pick a parabola
in standard position and a point on the parabola’s directrix. Construct the tangent lines from
the point to the parabola and show that the lines are perpendicular (i.e. their slopes are
negative reciprocals).

Solution

Create the parabola and its directrix.

In[1]: Clear@fD;
parab1 = Parabola2D@80, 0<, f, 0D;
dln = First@Directrices2D@parab1DD

Out[1] Line2D@1, 0, fD

Construct a general point on the directrix.

In[2]: Clear@yD;
p1 = Point2D@−f, yD;

Construct the two tangent lines from the point.

743

744 pbtnlns.nb

In[3]: 8l1, l2< = TangentLines2D@p1, parab1D êê Simplify

Out[3] 9Line2DA2 f è!!!!!!!!!!!!!!!!
4 f2 + y2 , 4 f2 + y Iy −

è!!!!!!!!!!!!!!!!
4 f2 + y2 M,

2 f2 I−2 y +
è!!!!!!!!!!!!!!!!
4 f2 + y2 M + y2 I−y +

è!!!!!!!!!!!!!!!!
4 f2 + y2 ME, Line2DA−2 f

è!!!!!!!!!!!!!!!!
4 f2 + y2 ,

4 f2 + y Iy +
è!!!!!!!!!!!!!!!!
4 f2 + y2 M, −y2 Iy +

è!!!!!!!!!!!!!!!!
4 f2 + y2 M − 2 f2 I2 y +

è!!!!!!!!!!!!!!!!
4 f2 + y2 ME=

Show that the slopes are negative reciprocal (therefore the lines are perpendicular to each
other).

In[4]: Slope2D@l1D ∗Slope2D@l2D êê Simplify

Out[4] −1

Discussion

This is the plot of a numerical example.

In[5]: Sketch2D@8parab1, dln, p1, l1, l2< ê.
8f −> 1, y −> 2<,
CurveLength2D −> 20D;

-4-2 0 2 4 6 8
-10

-5

0

5

10

polarcir.nb

Polar Equation of a Circle

Exploration

Show that the polar equation of a circle centered at P (r1, θ1) with radius R is given by

r2 + r2
1 − 2rr1 cos(θ − θ1) = R2.

Approach

Represent the circle in rectangular coordinates. Convert the equation to polar coordinates.

Solution

Define a function to convert from polar coordinates to rectangular coordinates.

In[1]: Point2D@PolarPoint2D@r_, theta_DD :=

Point2D@8r∗Cos@thetaD, r∗Sin@thetaD<D;

Create the circle.

In[2]: Clear@r1, t1, RD;
P = Point2D@PolarPoint2D@r1, t1DD;
C1 = Circle2D@P, RD

Out[2] Circle2D@8r1 Cos@t1D, r1 Sin@t1D<, RD

Convert to a polynomial in polar coordinates.

In[3]: Clear@x, y, r, tD;
eq1 = Polynomial2D@Quadratic2D@C1D, 8x, y<D ê.

8x −> r∗Cos@tD, y −> r∗Sin@tD< êê FullSimplify

Out[3] r2 − R2 + r12 − 2 r r1 Cos@t − t1D

745

polarcol.nb

Collinear Polar Coordinates

Exploration

Show that the points P1(r1, θ1), P2(r2, θ2) and P3(r3, θ3) in polar coordinates are collinear if
and only if

−r1r2 sin(θ1 − θ2) + r1r3 sin(θ1 − θ3) − r2r3 sin(θ2 − θ3) = 0.

Approach

Convert the given polar coordinates of the points to rectangular coordinates and then apply
the condition for collinearity ∣∣∣∣∣∣

x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.

Solution

This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D@PolarPoint2D@r_, theta_DD :=

Point2D@8r∗Cos@thetaD, r∗Sin@thetaD<D;

Define three arbitrary points in polar coordinates.

In[2]: Clear@r1, r2, r3, theta1, theta2, theta3D;
p1 = Point2D@PolarPoint2D@r1, theta1DD;
p2 = Point2D@PolarPoint2D@r2, theta2DD;
p3 = Point2D@PolarPoint2D@r3, theta3DD;

Apply the condition for collinearity.

747

748 polarcol.nb

In[3]: Simplify@
Det@8

8XCoordinate2D@p1D, YCoordinate2D@p1D, 1<,
8XCoordinate2D@p2D, YCoordinate2D@p2D, 1<,
8XCoordinate2D@p3D, YCoordinate2D@p3D, 1<
<D

D

Out[3] −r1 r2 Sin@theta1 − theta2D + r1 r3 Sin@theta1 − theta3D − r2 r3 Sin@theta2 − theta3D

Discussion

Here’s a function based on the equation above that returns True if three points in polar
coordinates are collinear.

In[4]: IsCollinear2D@
p1 : PolarPoint2D@r1_, theta1_D,
p2 : PolarPoint2D@r2_, theta2_D,
p3 : PolarPoint2D@r3_, theta3_DD :=

IsZero2D@−r1∗r2∗Sin@theta1 − theta2D +

r1∗r3∗Sin@theta1 − theta3D −

r2∗r3∗Sin@theta2 − theta3DD

Show that the polar coordinate points (1, π/3), (3, π/3) and (5, 4π/3) are collinear using the
new function.

In[5]: p1 = PolarPoint2D@1, Piê3D;
p2 = PolarPoint2D@3, Piê3D;
p3 = PolarPoint2D@5, 4∗Piê3D;
IsCollinear2D@p1, p2, p3D

Out[5] True

polarcon.nb

Polar Equation of a Conic

Exploration

Let the focus F of a conic be at the pole of a polar coordinate system and the directrix D be
perpendicular to the polar axis at a distance ρ to the left of the pole. Show that the polar
equation of the conic is

r =
eρ

1 − e cos θ

where e is the eccentricity of the conic.

Approach

Use the definition of eccentricity e = PF/PD and substitute the expressions for distances.
Solve the resulting equations for r.

Solution

Use the definition of eccentricity.

In[1]: Clear@e, PF, PDD;
eq1 = e == PFêPD

Out[1] e ==
PF
���������
PD

Substitute the distances for the segment lengths.

In[2]: Clear@r, p, tD;
eq2 = eq1 ê.

8PF −> r, PD −> p + r∗Cos@tD<

Out[2] e ==
r

������������������������������������
p + r Cos@tD

749

750 polarcon.nb

Solve for r.

In[3]: Solve@eq2, rD êê Simplify

Out[3] 99r →
e p

������������������������������������
1 − e Cos@tD ==

polardis.nb

Distance Using Polar Coordinates

Exploration

The location of a point in the plane may be specified using polar coordinates, (r, θ), where r
is the distance from the origin to the point, and θ is the angle the ray to the point from the
origin makes with the +x-axis. Show that the distance, d, between two points (r1, θ1) and
(r2, θ2) given in polar coordinates is

d =
√

r2
1 + r2

2 − 2r1r2 cos(θ1 − θ2).

Approach

Convert the given polar coordinates of the points to rectangular coordinates and then apply
the Distance2D function to the converted points.

Solution

This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D@PolarPoint2D@r_, theta_DD :=

Point2D@8r∗Cos@thetaD, r∗Sin@thetaD<D;

Define two arbitrary points in polar coordinates.

In[2]: Clear@r1, r2, theta1, theta2D;
p1 = Point2D@P1 = PolarPoint2D@r1, theta1DD;
p2 = Point2D@P2 = PolarPoint2D@r2, theta2DD;

Find the distance between the two points.

In[3]: d = Distance2D@p1, p2D êê Simplify

Out[3]
"###r12 + r22 − 2 r1 r2 Cos@theta1 − theta2D

751

752 polardis.nb

Discussion

Distance2D can be defined to handle polar coordinates directly as shown here.

In[4]: Distance2D@PolarPoint2D@r1_, theta1_D,
PolarPoint2D@r2_, theta2_DD :=

Sqrt@r1^2 + r2^2 − r1∗r2∗Cos@theta1 − theta2DD

Try out the new Distance2D function.

In[5]: Distance2D@P1, P2D êê Simplify

Out[5]
"###r12 + r22 − r1 r2 Cos@theta1 − theta2D

polarell.nb

Polar Equation of an Ellipse

Exploration

Show that the polar equation of an ellipse with a horizontal major axis and centered at (0, 0)
is given by

r =
ab√

a2sin2θ + b2cos2θ

where a and b are the lengths of the semi-major and semi-minor axes, respectively.

Approach

Create the ellipse in rectangular coordinates. Convert the equation to polar coordinates.

Solution

Create a quadratic representing the ellipse.

In[1]: Clear@a, bD;
Q1 = Quadratic2D@Ellipse2D@80, 0<, a, b, 0DD

Out[1] Quadratic2D@b2, 0, a2, 0, 0, −a2 b2D

Convert the rectangular equation to a polar equation.

In[2]: Clear@x, y, r, thetaD
eq1 = Equation2D@Q1, 8x, y<D ê.

8x −> r∗Cos@thetaD, y −> r∗Sin@thetaD<

Out[2] −a2 b2 + b2 r2 Cos@thetaD2 + a2 r2 Sin@thetaD2 == 0

Put into the desired form by solving for r (taking the positive result).

753

754 polarell.nb

In[3]: Solve@eq1, rD

Out[3] 99r → −
a b

��è!!
b2 Cos@thetaD2 + a2 Sin@thetaD2

=,

9r →
a b

��è!!
b2 Cos@thetaD2 + a2 Sin@thetaD2

==

polareqn.nb

Polar Equations

Exploration

A curve in polar coordinates may have more than one equation. A given point may have either
of two general coordinate representations

(r, θ + 2kπ)

(−r, θ + (2k + 1)π)

for any integer k. Hence a given curve r = f(θ) may have either of the two equation forms

r = f(θ + 2kπ)

−r = f(θ + (2k + 1)π).

The first equation reduces to r = f(θ) when k = 0, but may lead to an entirely different
equation of the same curve for another value of k. Similarly, the second equation may yield
other equations of the curve. Show that in spite of the potential for multiple equations in
polar coordinates, a linear equation Ax + By + C = 0 has only one representation in polar
coordinates given by

r(A cos θ + B sin θ) + C = 0.

Approach

Derive an equation for a linear equation in polar coordinates using the primary form (r, θ).
Investigate and compare the primary form to the equation derived from the forms (r, θ + 2kπ)
and (−r, θ + (2k + 1)π).

755

756 polareqn.nb

Solution

Create the primary form of a linear equation in polar coordinates.

In[1]: Clear@A1, B1, C1, x, yD;
A1∗x + B1∗y + C1 ê.

8x −> r∗Cos@tD,
y −> r∗Sin@tD<

Out[1] C1 + A1 r Cos@tD + B1 r Sin@tD

Compare to the form (r, θ + 2kπ), using two trigonometric identities.

In[2]: Clear@r, t, kD;
A1∗x + B1∗y + C1 êê.

8x −> r∗Cos@t + 2 k∗PiD,
y −> r∗Sin@t + 2 k∗PiD,
Cos@t + 2 k∗PiD −> Cos@tD,
Sin@t + 2 k∗PiD −> Sin@tD<

Out[2] C1 + A1 r Cos@tD + B1 r Sin@tD

Compare to the form (−r, θ + (2k + 1)π), using two trigonometric identities.

In[3]: A1∗x + B1∗y + C1 êê.
8x −> −r∗Cos@t + H2 k + 1L ∗PiD,
y −> −r∗Sin@t + H2 k + 1L ∗PiD,
Cos@t + H2 k + 1L ∗PiD −> −Cos@tD,
Sin@t + H2 k + 1L ∗PiD −> −Sin@tD<

Out[3] C1 + A1 r Cos@tD + B1 r Sin@tD

polarhyp.nb

Polar Equation of a Hyperbola

Exploration

Show that the polar equation of a hyperbola with a horizontal transverse axis and centered
at (0, 0) is given by

r =
ab√

b2cos2θ − a2sin2θ
.

Approach

Create the hyperbola in rectangular coordinates and convert the equation to polar coordinates.

Solution

Define a quadratic representing the hyperbola.

In[1]: Clear@a, bD;
Q1 = Quadratic2D@Hyperbola2D@80, 0<, a, b, 0DD

Out[1] Quadratic2D@b2, 0, −a2, 0, 0, −a2 b2D

Convert from rectangular to polar coordinates.

In[2]: Clear@x, y, r, thetaD;
eq1 = Equation2D@Q1, 8x, y<D ê.

8x −> r∗Cos@thetaD, y −> r∗Sin@thetaD<

Out[2] −a2 b2 + b2 r2 Cos@thetaD2 − a2 r2 Sin@thetaD2 == 0

Solve for r to put the equation into the desired form. This result was computed using Math-
ematica Version 3.0.1. Version 4.0 produces a slightly different result that is algebraically
equivalent with

√−1 already factored out.

757

758 polarhyp.nb

In[3]: ans = Solve@eq1, rD

Out[3] 99r → −
I a b

���è!!!
−b2 Cos@thetaD2 + a2 Sin@thetaD2

=,

9r →
I a b

���è!!!
−b2 Cos@thetaD2 + a2 Sin@thetaD2

==

Multiply the fraction by i =
√−1 to get the desired form.

In[4]: Clear@E1, E2D;
Last@ansD ê. 8I∗E1_ êSqrt@E2_D −> E1êSqrt@−E2D<

Out[4] 9r →
a b

��è!!
b2 Cos@thetaD2 − a2 Sin@thetaD2

=

polarpb.nb

Polar Equation of a Parabola

Exploration

Show that the polar equation of a parabola opening to the right with vertex at (0, 0) is given
by

r =
4f cos θ

sin2θ

where f is the focal length of the parabola.

Approach

Create the parabola in rectangular coordinates. Convert the equation to polar coordinates.

Solution

Construct the quadratic representing the parabola.

In[1]: Clear@fD;
Q1 = Quadratic2D@Parabola2D@80, 0<, f, 0DD

Out[1] Quadratic2D@0, 0, 1, −4 f, 0, 0D

Convert the equation from rectangular coordinates to polar coordinates.

In[2]: Clear@x, y, r, thetaD;
eq1 = Equation2D@Q1, 8x, y<D ê.

8x −> r∗Cos@thetaD, y −> r∗Sin@thetaD<

Out[2] −4 f r Cos@thetaD + r2 Sin@thetaD2 == 0

Solve for r to get the desired form of the equation.

759

760 polarpb.nb

In[3]: Solve@eq1, rD

Out[3] 88r → 0<, 8r → 4 f Cot@thetaD Csc@thetaD<<

The trigonometric identity 4f cot(θ) csc(θ) = 4f cos(θ)/sin2 (θ) completes the demonstration.

In[4]: 4 f∗Cos@thetaD êSin@thetaD^2 êê Simplify

Out[4] 4 f Cot@thetaD Csc@thetaD

polarunq.nb

Non-uniqueness of Polar Coordinates

Exploration

Show that the polar coordinates of a point (r, θ) are not unique as all points of the form

(r, θ + 2kπ) and (−r, θ + (2k + 1)π)

represent the same position in the plane for integer values of k.

Approach

Convert the given polar coordinates of the points to rectangular coordinates and demonstrate
that the rectangular coordinates are coincident.

Solution

This is a function for converting a polar point to rectangular coordinates.

In[1]: Point2D@PolarPoint2D@r_, theta_DD :=

Point2D@8r∗Cos@thetaD, r∗Sin@thetaD<D;

Convert the two points to rectangular coordinates.

In[2]: Clear@r, theta, kD;
pts = 8Point2D@PolarPoint2D@r, theta + 2 k∗PiDD,

Point2D@PolarPoint2D@−r, theta + H2 k + 1L PiDD<;

Simplifying shows that the points are identical for all values of k.

In[3]: pts êê Simplify

Out[3] 8Point2D@8r Cos@2 k π + thetaD, r Sin@2 k π + thetaD<D,
Point2D@8r Cos@2 k π + thetaD, r Sin@2 k π + thetaD<D<

761

762 polarunq.nb

Discussion

The principal polar coordinates of a point (r, θ) are given when r > 0 and 0 ≤ θ < 2π. These
functions convert a PolarPoint2D to principal coordinates.

In[4]: PolarPoint2D@r_?IsNegative2D, theta_D :=

PolarPoint2D@−r, theta + PiD;
PolarPoint2D@r_, theta_D :=

PolarPoint2D@r, PrimaryAngle2D@thetaDD ê;
theta =!= PrimaryAngle2D@thetaD

Convert some polar points to principal form.

In[5]: 8PolarPoint2D@−1, Piê2D, PolarPoint2D@2, −Piê3D<

Out[5] 9PolarPoint2DA1, 3 π
����������
2

E, PolarPoint2DA2, 5 π
����������
3

E=

pquad.nb

Parameterization of a Quadratic

Exploration

Show that the quadratic Q ≡ ax2 + bxy + cy2 + dx + ey = 0, that passes through the origin,
can be parameterized by the equations

x(t) = − d + et

a + t(b + ct)
and y(t) = − t(d + et)

a + t(b + ct)

where −∞ < t < +∞.

Approach

Let the parameter, t, be the slope of a line, L, passing through the origin. The coordinates
of the point P (x(t), y(t)), which is the desired parameterization, is the intersection point of L
with Q that is not coincident with the origin.

Solution

Define a function that returns parametric equations of a quadratic, given a point on the
quadratic, in terms of a parameter, t.

In[1]: Parameterize2D@Q : Quadratic2D@a_, b_, c_, d_, e_, f_D,
P : Point2D@8x0_, y0_<D,
t_SymbolD :=

Coordinates2D@First@Select@Points2D@Line2D@P, tD, QD,
Not@IsCoincident2D@P, #DD&DDD;

If the point on the quadratic is the origin, (0, 0), then the equations are given by the following.

763

764 pquad.nb

In[2]: Clear@a, b, c, d, e, tD;
Parameterize2D@Quadratic2D@a, b, c, d, e, 0D, Point2D@80, 0<D, tD êê Simplify

Out[2] 9−
d + e t

��
a + t Hb + c tL , −

t Hd + e tL
��
a + t Hb + c tL =

Discussion

As an example, parameterize the quadratic 5x2 − 3
√

3xy + 4y2 − 8x − 14y = 0.

In[3]: Clear@tD;
Q = Quadratic2D@5, −3∗Sqrt@3D, 4, −8, −14, 0D;
XtYt = Parameterize2D@Q, Point2D@80, 0<D, tD

Out[3] 9 2 H4 + 7 tL
���
5 − 3 è!!!3 t + 4 t2

,
2 H4 t + 7 t2L

���
5 − 3 è!!!3 t + 4 t2

=

Plot the quadratic using the parametric equations. Notice the gap in the graph as the para-
meter, t, approaches ±∞.

In[4]: ParametricPlot@Evaluate@XtYtD, 8t, −25, 25<,
AspectRatio −> AutomaticD;

1 2 3 4 5
1
2
3
4
5
6
7

Determine the locus of the quadratic in standard form.
In[5]: crv = Loci2D@QD êê N

Out[5] 8Ellipse2D@82.58012, 3.42583<, 4.30102, 2.19094, 0.880461D<

An identical graph is produced from the equation in standard form. The gap is not present in
this plot because the trigonometric parameterization of the ellipse, used to plot the standard
form, avoids passing through infinity.

In[6]: Sketch2D@8crv<D;

0 1 2 3 4 5
0
1
2
3
4
5
6
7

ptscol.nb

Collinear Points

Exploration

Show that the three points (3a, 0), (0, 3b) and (a, 2b) are collinear.

Approach

Three points P1(x1, y1), P2(x2, y2) and P3(x3, y3) are collinear if the determinant

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
is zero.

Solution

Use the Mathematica Det command to evaluate the determinant.

In[1]: Clear@a, bD;
Det@883 a, 0, 1<,

80, 3 b, 1<,
8a, 2 b, 1<<D

Out[1] 0

Discussion

The function IsCollinear2D also reveals if three points are collinear.

765

766 ptscol.nb

In[2]: IsCollinear2D@
p1 = Point2D@3 a, 0D,
p2 = Point2D@0, 3 bD,
p3 = Point2D@a, 2 bDD

Out[2] True

This is the plot of a numerical example.

In[3]: Sketch2D@8p1, p2, p3,

Line2D@p1, p3D< ê. 8a −> 2, b −> 1.75<D;

-1 0 1 2 3 4 5 6
0
1
2
3
4

5
6

radaxis.nb

Radical Axis of Two Circles

Exploration

Show that the two circles x2 + y2 + ax + by + c = 0 and x2 + y2 + bx + ay + c = 0 have the
radical axis x − y = 0.

Approach

Convert the equations to circles and find the radical axis of the circles.

Solution

Construct the circles from the equations.

In[1]: Clear@a, b, cD;
8C1, C2< = 8Circle2D@Quadratic2D@1, 0, 1, a, b, cDD,

Circle2D@Quadratic2D@1, 0, 1, b, a, cDD<

Out[1] 9Circle2DA9−
a
�����
2
, −

b
�����
2

=, 1
�����
2

è!!!!!!!!!!!!!!!!!!!!!!
a2 + b2 − 4 c E, Circle2DA9−

b
�����
2
, −

a
�����
2

=, 1
�����
2

è!!!!!!!!!!!!!!!!!!!!!!
a2 + b2 − 4 c E=

Construct the radical axis.

In[2]: L1 = Line2D@C1, C2D êê Simplify

Out[2] Line2D@1, −1, 0D

Convert the line to an equation.

In[3]: Clear@x, yD;
Equation2D@L1, 8x, y<D

Out[3] x − y == 0

767

768 radaxis.nb

Discussion

This is a plot of a numerical example with a = 1, b = 5 and c = −1.

In[4]: Sketch2D@8C1, C2, L1< ê. 8
a −> 1, b −> 5, c −> −1<D;

-4 -2 0 2

-4

-2

0

2

radcntr.nb

Radical Center

Exploration

Prove that the radical axes of three circles taken in pairs intersect in a common point. This
point is called the radical center of the three circles.

Approach

Create the three radical axes, intersect them in pairs and show that the coordinates of the
points of intersection are equal.

Solution

Create three general circles.

In[1]: Clear@h1, k1, r1, h2, k2, r2, h3, k3, r3D;
C1 = Circle2D@8h1, k1<, r1D;
C2 = Circle2D@8h2, k2<, r2D;
C3 = Circle2D@8h3, k3<, r3D;

Construct the radical axis lines in pairs.

In[2]: L12 = Line2D@C1, C2D;
L13 = Line2D@C1, C3D;
L23 = Line2D@C2, C3D;

Intersect the lines in pairs to find the intersection points.

In[3]: p1 = Point2D@L12, L13D;
p2 = Point2D@L12, L23D;
p3 = Point2D@L13, L23D;

769

770 radcntr.nb

Show that the coordinates of the intersection points are equal.

In[4]: 8XCoordinate2D@p1D − XCoordinate2D@p2D,
XCoordinate2D@p1D − XCoordinate2D@p3D,
YCoordinate2D@p1D − YCoordinate2D@p2D,
YCoordinate2D@p1D − YCoordinate2D@p3D< êê FullSimplify

Out[4] 80, 0, 0, 0<

Discussion

This is the plot of a numerical example.

In[5]: Sketch2D@8C1, C2, C3, L12, L13, L23, p1, p2, p3< ê.
8h1 −> −2, k1 −> 0, r1 −> 1,

h2 −> 3, k2 −> 3, r2 −> 1.5,

h3 −> 5, k3 −> −2, r3 −> 2<,
CurveLength2D −> 14D;

-6-4-2 0 2 4 6

-6
-4
-2
0
2
4
6

raratio.nb

Radical Axis Ratio

Exploration

Show that the point of intersection of the radical axis and the line of centers of two circles of
radii r1 and r2 divides the segment between the two centers into the ratio

d2 + r2
1 − r2

2

d2 − r2
1 + r2

2

where d is the distance between the centers.

Approach

Create the two circles in a simplified, but sufficiently general, position. Construct the radical
axis and intersect it with the line segment between the centers. Inspect the appropriate ratio.

Solution

Create the two circles, one with center at the origin, the other with center at (d, 0).

In[1]: Clear@r1, r2, dD;
c1 = Circle2D@80, 0<, r1D;
c2 = Circle2D@8d, 0<, r2D;

Construct the radical axis of the two circles.

In[2]: l1 = Line2D@c1, c2D

Out[2] Line2D@2 d, 0, −d2 − r12 + r22D

Intersect the radical axis with the x-axis to find the point of division.

771

772 raratio.nb

In[3]: pt = Point2D@l1, Line2D@0, 1, 0DD

Out[3] Point2DA9 d2 + r12 − r22
��������������������������������������

2 d
, 0=E

Form the desired ratio.

In[4]: ratio1 = Distance2D@Point2D@0, 0D, ptD ê
Distance2D@pt, Point2D@d, 0DD êê Simplify

Out[4]
"######################Hd2+r12−r22L2������������������������������d2��
"######################Hd2−r12+r22L2������������������������������d2

Since all the expressions under the radical are positive, we can simplify the radicals.

In[5]: Clear@E1, E2D;
ratio2 = ratio1 êê. 8
Sqrt@E1_^2êE2_^2D −> E1êE2,
1êSqrt@E1_^2êE2_^2D −> E2êE1<

Out[5]
d2 + r12 − r22
��������������������������������������
d2 − r12 + r22

reccir.nb

Reciprocal of a Circle

Exploration

Given a circle C1 ≡ (x − h)2 + (y − k)2 = r2 show that its polar reciprocal in the auxiliary
conic x2 + y2 = 1 is given by the quadratic

Q ≡ (r2 − h2
)
x2 − 2hkxy +

(
r2 − k2

)
y2 + 2hx + 2ky − 1 = 0.

Furthermore, show that Q is an ellipse if the origin (0, 0) is inside C; a parabola, if the origin
is on C; and a hyperbola, if the origin is outside C.

Approach

Create a general circle and the auxiliary conic. Construct five points on the circle. Construct
five tangent lines at the points. Construct reciprocals of the lines (five points). Construct a
quadratic through five points. Examine the discriminant of the quadratic.

Solution

Create a general circle and an auxiliary circle.

In[1]: Clear@h, k, rD;
cir1 = Circle2D@8h, k<, rD;
c1 = Circle2D@80, 0<, 1D;

Define five points on the circle.

In[2]: pts = Map@
Point2D@cir1@#DD&,
80, Piê4, Piê2, Pi, 3 Piê2<D êê Simplify

Out[2] 9Point2D@8h + r, k<D, Point2DA9h +
r

�����������è!!!2
, k +

r
�����������è!!!2

=E, Point2D@8h, k + r<D,

Point2D@8h − r, k<D, Point2D@8h, k − r<D=

773

774 reccir.nb

Determine the tangent lines at the points. This result was computed using Mathematica
Version 3.0.1. Version 4.0 computes a simpler result that is algebraically equivalent to this
one.

In[3]: lns1 = Map@Line2D@#, cir1D&, ptsD êê Simplify

Out[3] 9Line2D@1, 0, −h − rD, Line2DAè!!!
2 ,

è!!!
2 , −

è!!!
2 h −

è!!!
2 k − 2 rE, Line2D@0, 1, −k − rD,

Line2D@−1, 0, h − rD, Line2D@0, −1, k − rD=

Define the reciprocal function.

In[4]: Reciprocal2D@
Line2D@A1_, B1_, C1_D,
Circle2D@80, 0<, 1DD :=

Point2D@8−A1êC1, −B1êC1<D;

Find the reciprocal points.

In[5]: pts1 = Map@Reciprocal2D@#, c1D&, lns1D êê Simplify

Out[5] 9Point2DA9 1
���������������
h + r

, 0=E, Point2DA9
è!!!2

��è!!!2 h + è!!!2 k + 2 r
,

è!!!2
��è!!!2 h + è!!!2 k + 2 r

=E,

Point2DA90, 1
���������������
k + r

=E, Point2DA9 1
���������������
h − r

, 0=E, Point2DA90, 1
���������������
k − r

=E=

Find the quadratic through the points.

In[6]: q1 = Quadratic2D@Sequence @@ pts1D êê Simplify;

Map@H−1∗#ê2L&, q1D

Out[6] Quadratic2D@Hh − rL Hh + rL, 2 h k, −H−k + rL Hk + rL, −2 h, −2 k, 1D

Discussion

Examine the discriminant, d.

In[7]: disc1 = q1@@2DD^2 − 4∗q1@@1DD ∗q1@@3DD êê Simplify

Out[7] 16 r2 Hh2 + k2 − r2L

If d < 0 the quadratic is an ellipse and (0, 0) is inside the circle; if d = 1 the quadratic is a
parabola and (0, 0) is on the circle; and if d > 1 the quadratic is a hyperbola and (0, 0) is
outside the circle.

recptln.nb

Reciprocals of Points and Lines

Exploration

Show that the polar reciprocal of A1x + B1y + C1 = 0 in the auxiliary conic C ≡ x2 + y2 = 1
is the point (−A1/C1,−B1/C1), assuming that the line does not pass through the origin.
Also, show that the line x + y − 1 = 0 is the polar reciprocal of the point (x, y) with respect
to C.

Approach

Create the auxiliary conic, C. The pole point is the reciprocal of the line. The polar line is
the reciprocal of the point.

Solution

Define the auxiliary conic (circle), C.

In[1]: c1 = Circle2D@80, 0<, 1D;

The pole point is the reciprocal.

In[2]: Clear@A1, B1, C1D;
Point2D@Line2D@A1, B1, C1D, c1D

Out[2] Point2DA9−
A1
���������
C1

, −
B1
���������
C1

=E

The polar line is the reciprocal.

In[3]: Clear@x, yD;
Line2D@Point2D@x, yD, c1D êê Simplify

Out[3] Line2D@x, y, −1D

775

recquad.nb

Reciprocal of a Quadratic

Exploration

Given the general quadratic Q = ax2 + bxy + cy2 + dx + ey + f = 0, show that the reciprocal
of Q in C is the quadratic

(4cf − e2)x2 + (2de − 4bf)xy +
(
4af − d2

)
y2+

(4cd − 2be)x + (4ae − 2bd) y +
(
4ac − b2

)
= 0

when the auxiliary conic C ≡ x2 + y2 = 1.

Approach

Create a general conic, Q, and the auxiliary conic. Construct a point P1(x1, y1), assumed to
be on Q. Construct the tangent line, L, at P1. Take the reciprocal of L with respect to C,
producing P2. Show that P2 is on the postulated quadratic.

Solution

Create a general quadratic.

In[1]: Clear@a, b, c, d, e, fD;
q1 = Quadratic2D@a, b, c, d, e, fD;

The point P1(x1, y1) is a point on Q, and L is tangent to Q at P1.

In[2]: Clear@x1, y1D;
p1 = Point2D@x1, y1D;
l1 = Line2D@p1, q1D

Out[2] Line2D@d + 2 a x1 + b y1, e + b x1 + 2 c y1, 2 f + d x1 + e y1D

777

778 recquad.nb

Find the auxiliary conic (a unit circle at the origin).

In[3]: c1 = Circle2D@80, 0<, 1D;

Define the reciprocal function.

In[4]: Reciprocal2D@
Line2D@A1_, B1_, C1_D,
Circle2D@80, 0<, 1DD :=

Point2D@−A1êC1, −B1êC1D;

Find the reciprocal of L.

In[5]: p2 = Reciprocal2D@l1, c1D

Out[5] Point2DA9−
d + 2 a x1 + b y1
���
2 f + d x1 + e y1

, −
e + b x1 + 2 c y1
���
2 f + d x1 + e y1

=E

Find the reciprocal quadratic.

In[6]: q2 = Quadratic2D@
4∗c∗f − e^2, 2∗d∗e − 4∗b∗f,

4∗a∗f − d^2, 4∗c∗d − 2∗b∗e,

4∗a∗e − 2∗d∗b, 4∗a∗c − b^2D;

Construct a polynomial.

In[7]: eq1 = Polynomial2D@q2, Coordinates2D@p2DD êê Together

Out[7] −
1

��
H2 f + d x1 + e y1L2 H4 Hc d2 f − b d e f + a e2 f + b2 f2 − 4 a c f2 + c d3 x1 − b d2 e x1 +

a d e2 x1 + b2 d f x1 − 4 a c d f x1 + a c d2 x12 − a b d e x12 + a2 e2 x12 + a b2 f x12 −

4 a2 c f x12 + c d2 e y1 − b d e2 y1 + a e3 y1 + b2 e f y1 − 4 a c e f y1 +

b c d2 x1 y1 − b2 d e x1 y1 + a b e2 x1 y1 + b3 f x1 y1 − 4 a b c f x1 y1 +

c2 d2 y12 − b c d e y12 + a c e2 y12 + b2 c f y12 − 4 a c2 f y12LL

Ignore the denominator and the constant (the numerator will be shown to be zero).

In[8]: eq2 = Numerator@eq1D@@2DD

Out[8] c d2 f − b d e f + a e2 f + b2 f2 − 4 a c f2 + c d3 x1 − b d2 e x1 + a d e2 x1 + b2 d f x1 −

4 a c d f x1 + a c d2 x12 − a b d e x12 + a2 e2 x12 + a b2 f x12 − 4 a2 c f x12 + c d2 e y1 −

b d e2 y1 + a e3 y1 + b2 e f y1 − 4 a c e f y1 + b c d2 x1 y1 − b2 d e x1 y1 + a b e2 x1 y1 +

b3 f x1 y1 − 4 a b c f x1 y1 + c2 d2 y12 − b c d e y12 + a c e2 y12 + b2 c f y12 − 4 a c2 f y12

Factor.
In[9]: eq3 = Factor@eq2D

Out[9] Hc d2 − b d e + a e2 + b2 f − 4 a c fL Hf + d x1 + a x12 + e y1 + b x1 y1 + c y12L

One of the terms is zero, therefore the expression is zero.

In[10]: eq3 ê.
Hf + d x1 + a x1^2 + e y1 + b x1 y1 +

c y1^2L −> 0

Out[10] 0

reflctpt.nb

Reflection in a Point

Exploration

A point P ′ (x′, y′) is said to be the reflection of a point P (x, y) in the point C(H, K) if C is
the midpoint of the segment PP ′. Using this definition show the following.

A. The transformation equations for a reflection in a point are

x′ = 2H − x and x = 2H − x′;

y′ = 2K − y and y = 2K − y′;

B. The reflection of the line ax + by + c = 0 in the point (H, K) is

ax + by − (2aH + 2bK + c) = 0;

C. The reflection of the quadratic ax2 + bxy + cy2 + dx + ey + f = 0 in the point (H, K) is

ax2 + bxy + cy2 − (4aH + 2bK + d)x − (2bH + 4cK + e) y+

4aH2 + 4bHK + 4cK2 + 2dH + 2eK + f = 0.

Also, verify that the reflection in a point transformation is equivalent to a rotation of π radians
about the reflection point (H, K).

Approach

Solve the midpoint relationship for the coordinates of the transformation. Substitute the
reflected coordinates into the equation of a line to produce a reflected line. Substitute the
reflected coordinates into the equation of a quadratic to produce the reflected quadratic. Apply
the proposed rotation to show it is equivalent to the reflection.

779

780 reflctpt.nb

Solution

(H, K) is the midpoint of PP ′. Solve for (x, y) and (x′, y′). This is the solution to proposition
A.

In[1]: Clear@x, y, x1, y1, H, KD;
88Solve@Hx + x1L ê2 == H, x1D,
Solve@Hy + y1L ê2 == K, y1D<,

8Solve@Hx + x1L ê2 == H, xD,
Solve@Hy + y1L ê2 == K, yD<<

Out[1] 8888x1 → 2 H − x<<, 88y1 → 2 K − y<<<, 888x → 2 H − x1<<, 88y → 2 K − y1<<<<

Reflect a line through a point. This is the solution to proposition B.

In[2]: Clear@a, b, cD;
eq1 = a∗x + b∗y + c ê. 8x −> 2 H − x, y −> 2 K − y<;
Map@Times@−1, #D&, Line2D@eq1, 8x, y<DD

Out[2] Line2D@a, b, −c − 2 a H − 2 b KD

Reflect a quadratic through a point. This is the solution to proposition C.

In[3]: Clear@d, e, fD;
eq2 = a∗x^2 + b∗x∗y + c∗y^2 + d∗x + e∗y + f ê. 8x −> 2 H − x, y −> 2 K − y<;
Quadratic2D@eq2, 8x, y<D

Out[3] Quadratic2D@a, b, c, −d − 4 a H − 2 b K, −e − 2 b H − 4 c K,

f + 2 d H + 4 a H2 + 2 e K + 4 b H K + 4 c K2D

The reflection is the same as the specified rotation. This is the solution to the final proposition.

In[4]: Rotate2D@8x, y<, Pi, 8H, K<D

Out[4] 82 H − x, 2 K − y<

rtangcir.nb

Angle Inscribed in a Semicircle

Exploration

Show that an angle inscribed in a semicircle is a right angle.

Approach

Find the parametric coordinates of the points that define the angle and use the Pythagorean
Theorem to show they form a right angle.

Solution

Create a circle at the origin.

In[1]: Clear@rD;
C1 = Circle2D@80, 0<, rD;

Construct the points on the semicircle. P1 and P3 are the end points of the semicircle, P2 is
the (right) angle vertex.

In[2]: Clear@tD;
P1 = C1@0D;
P2 = C1@tD;
P3 = C1@PiD;

Apply the Pythagorean Theorem. First compute a2 + b2 and then show it is equal to c2 and
independent of the parameter value of the vertex point (it turns out that it is a function of
the circle’s radius only).

In[3]: 8Distance2D@P1, P2D^2 + Distance2D@P2, P3D^2,
Distance2D@P1, P3D^2< êê Simplify

Out[3] 84 r2, 4 r2<

781

rttricir.nb

Circle Inscribed in a Right Triangle

Exploration

Show that if r is the radius of a circle inscribed in a right triangle with sides a and b and
hypotenuse c, then r = (a + b − c) /2.

Approach

Position the triangle so that the sides of length a and b align with the x- and y-axes and the
vertex opposite the hypotenuse is at the origin. Create the circle inscribed in this triangle and
examine its radius.

Solution

The radius of the inscribed circle is found here.

In[1]: Clear@a, bD;
r1 = Radius2D@
Circle2D@
Triangle2D@8a, 0<, 80, b<, 80, 0<D,
Inscribed2DDD êê Simplify

Out[1]
"###
a2 + b2 +

è!!!!!
a2

è!!!!!
b2 −

è!!!!!
a2

è!!!!!!!!!!!!!
a2 + b2 −

è!!!!!
b2

è!!!!!!!!!!!!!
a2 + b2

���è!!!2

Simplify the expression for the radius.

783

784 rttricir.nb

In[2]: Clear@cD;
r2 = r1 êê. 8
Sqrt@a^2D −> a,

Sqrt@b^2D −> b,

Sqrt@c^2D −> c,

a^2 + b^2 −> c^2< êê Simplify

Out[2]
è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Ha − cL Hb − cL
��è!!!2

Since r2 and r are clearly positive we can square each of them and compare the squared values
for equality.

In[3]: r2^2 êê Expand

Out[3]
a b
����������
2

−
a c
����������
2

−
b c
����������
2

+
c2
��������
2

This is clearly the same as r2.

In[4]: r = Ha + b − cL ê2;
Expand@r^2D ê. b^2 −> c^2 − a^2 êê Expand

Out[4]
a b
����������
2

−
a c
����������
2

−
b c
����������
2

+
c2
��������
2

shoulder.nb

Coordinates of Shoulder Point

Exploration

Show that the coordinates of the shoulder point of a conic arc with control points P0(x0, y0),
PA(xA, yA) and P1(x1, y1) and projective discriminant ρ are given by

(xM + ρ(xA − xM), yM + ρ(yA − yM))

where PM (xM , yM) is the midpoint of the conic arc’s chord and has coordinates

xM =
x0 + x1

2
and yM =

y0 + y1

2
.

Approach

Create the conic arc and construct the point at parameter t = 1/2.

Solution

Create the conic arc.

In[1]: Clear@x0, y0, xA, yA, x1, y1, pD;
ca1 = ConicArc2D@8x0, y0<, 8xA, yA<, 8x1, y1<, pD;

Find the point at parameter t = 1/2.

In[2]: pt1 = Point2D@ca1@1ê2DD êê Simplify

Out[2] Point2DA9 1
�����
2

Hx0 − p x0 + x1 − p x1 + 2 p xAL, 1
�����
2

Hy0 − p y0 + y1 − p y1 + 2 p yAL=E

This is the same as the specified point, when simplified.

785

786 shoulder.nb

In[3]: pt2 = Point2D@
Hx0 + x1L ê2 + p HxA − Hx0 + x1L ê2L,
Hy0 + y1L ê2 + p HyA − Hy0 + y1L ê2LD êê Simplify

Out[3] Point2DA9 1
�����
2

Hx0 − p x0 + x1 − p x1 + 2 p xAL, 1
�����
2

Hy0 − p y0 + y1 − p y1 + 2 p yAL=E

In[4]: SameQ@pt1, pt2D

Out[4] True

stewart.nb

Stewart’s Theorem

Exploration

A B

C

D

ab
d

nm
AB = c

Show that for any 4ABC as shown in the figure the relationship between the lengths of the
labeled line segments is given by

a2m + b2n = c(d2 + mn).

Approach

Without loss of generality, place the triangle in a convenient position and use the distance
formula repeatedly to verify the relationship.

Solution

Create points A, B, C and D in a convenient position.

In[1]: Clear@c, m, x, yD;
ptA = Point2D@80, 0<D;
ptB = Point2D@8c, 0<D;
ptC = Point2D@8x, y<D;
ptD = Point2D@8m, 0<D;

787

788 stewart.nb

Compute the distances between the points.

In[2]: a = Distance2D@ptB, ptCD;
b = Distance2D@ptA, ptCD;
d = Distance2D@ptC, ptDD;

Verify that the relationship is an identity.

In[3]: a^2∗ m + b^2∗n − c∗ Hd^2 + m ∗nL ê. n −> c − m êê Expand

Out[3] 0

tancir1.nb

Circle Tangent to Circle, Given Center

Exploration

Show that the radii of the two circles centered at (h1, k1) and tangent to the circle

(x − h2)
2 + (y − k2)

2 = r2
2

are given by

r = |d ± r2|

where

d =
√

(h1 − h2)
2 + (k1 − k2)

2.

This formula is a special case of TangentCircles2D[{pt | ln | cir}, point].

Approach

Fix the center point using the equations h = h1 and k = k1. The circles are tangent if

(d − (r2 − r))2(d − (r2 + r))2 = 0

where d =
√

(h1 − h2)
2 + (k1 − k2)

2. Solve the three equations for r.

Solution

Solve the three equations.

789

790 tancir1.nb

In[1]: Clear@h, h1, k, k1, d, r, r2D;
ans1 = Solve@8h == h1 &&

k == k1,

Hd^2 − Hr2 − rL^2L ∗ Hd^2 − Hr2 + rL^2L == 0<,
8h, k, r<D êê Simplify

Out[1] 88h → h1, k → k1, r → −d − r2<, 8h → h1, k → k1, r → d − r2<,
8h → h1, k → k1, r → −d + r2<, 8h → h1, k → k1, r → d + r2<<

Assuming d > 0 and r2 > 0: (1) r = −d − r2 is always negative, hence invalid; (2) r = d − r2

is positive if d > r2, i.e. (h1, k1) is outside circle c2; (3) r = −d + r2 is positive if d < r2, i.e.
(h1, k1) is inside circle c2; and (4) r = d + r2 is always positive and valid.

tancir2.nb

Circle Tangent to Circle, Center on Circle, Radius

Exploration

Show that the centers (h, k) of the two circles passing through the point (x1, y1) with center
on the circle x2 + y2 = 1 and radius r = 1 are given by

(h, k) =

(
x1

2
± y1

√
4 − d2

1

2d1
,
y1

2
∓ x1

√
4 − d2

1

2d1

)

where d1 =
√

x2
1 + y2

1 . This is a special case of TangentCircles2D[{obj}, ln | cir, r], where
the object is a point.

Approach

The radius is given, r = 1, so the center point (h, k) needs to be found. The equation
(x1 − h)2 + (y1 − k)2 = 1 is formed noting that the given point is on the circle. The equation
h2 + k2 = 1 is formed noting that the center is on this circle. Solve two equations in two
unknowns.

Solution

Solve the two equations.

791

792 tancir2.nb

In[1]: Clear@h, k, x1, y1, d1D;
ans1 = Solve@8Hx1 − hL^2 + Hy1 − kL^2 == 1, h^2 + k^2 == 1<,

8h, k<D êê. 8
x1^2 + y1^2 −> d1^2< êê FullSimplify

Out[1] 99h →
d14 − y1 Ix12 y1 + y13 +

è!!!
−x12 H−4 + x12 + y12L Hx12 + y12L M

��
2 d12 x1

,

k →
x12 y1 + y13 +

è!!!
−x12 H−4 + x12 + y12L Hx12 + y12L

��
2 d12

=,

9h →
d14 − y1 Ix12 y1 + y13 −

è!!!
−x12 H−4 + x12 + y12L Hx12 + y12L M

��
2 d12 x1

,

k →
x12 y1 + y13 −

è!!!
−x12 H−4 + x12 + y12L Hx12 + y12L

��
2 d12

==

Simplify. Without loss of generality, assume all the point coordinates are positive.

In[2]: Clear@E1D;
ans2 = ans1 êê. 8
x1^2∗y1 + y1^3 −> y1∗d1^2,

x1^2 + y1^2 −> d1^2,

Sqrt@d1^2∗E1_D −> d1∗Sqrt@E1D,
Sqrt@x1^2∗E1_D −> x1∗Sqrt@E1D< êê FullSimplify

Out[2] 99h →
d13 −

è!!!!!!!!!!!!!
4 − d12 x1 y1 − d1 y12

���
2 d1 x1

, k →
è!!!!!!!!!!!!!
4 − d12 x1 + d1 y1

���
2 d1

=,

9h →
d13 +

è!!!!!!!!!!!!!
4 − d12 x1 y1 − d1 y12

���
2 d1 x1

, k →
−

è!!!!!!!!!!!!!
4 − d12 x1 + d1 y1

���
2 d1

==

In[3]: ans3 = ans2 êê. 8
d1^3 − d1∗y1^2 −> d1∗ Hd1^2 − y1^2L,
d1^2 − y1^2 −> x1^2<

Out[3] 99h →
d1 x12 −

è!!!!!!!!!!!!!
4 − d12 x1 y1

��
2 d1 x1

, k →
è!!!!!!!!!!!!!
4 − d12 x1 + d1 y1

���
2 d1

=,

9h →
d1 x12 +

è!!!!!!!!!!!!!
4 − d12 x1 y1

��
2 d1 x1

, k →
−

è!!!!!!!!!!!!!
4 − d12 x1 + d1 y1

���
2 d1

==

In[4]: ans4 = Map@Apart, ans3, 3D

Out[4] 99h →
x1
���������
2

−
è!!!!!!!!!!!!!
4 − d12 y1

����������������������������������
2 d1

, k →
è!!!!!!!!!!!!!
4 − d12 x1

����������������������������������
2 d1

+
y1
���������
2

=,

9h →
x1
���������
2

+
è!!!!!!!!!!!!!
4 − d12 y1

����������������������������������
2 d1

, k → −
è!!!!!!!!!!!!!
4 − d12 x1

����������������������������������
2 d1

+
y1
���������
2

==

tancir3.nb

Circle Tangent to Two Lines, Radius

Exploration

Show that the centers (h, k) of the four circles tangent to the perpendicular lines

A1x + B1y = 0 and − B1x + A1y = 0

with radius r = 1 are given by

(A1 − B1, A1 + B1),

(A1 + B1,−A1 + B1),

(−A1 − B1, A1 − B1),

(−A1 + B1,−A1 − B1).

Assume that the two lines are normalized, A2
1 + B2

1 = 1.

Approach

A circle (x − h)2 + (y − k)2 = r2 tangent to a line Ax + By + C = 0 implies that

(
A2 + B2

)
r2 = (Ah + Bk + C)2

giving two equations. The fixed radius r = 1 is a third equation. Solve three equations in
three unknowns.

793

794 tancir3.nb

Solution

Solve the three equations.

In[1]: Clear@r, h, k, A1, B1D;
ans1 = Solve@8r^2 == H A1∗h + B1∗kL^2,

r^2 == H−B1∗h + A1∗kL^2,
r == 1<,

8h, k, r<D

Out[1] 99h → −
−A1 − B1
��������������������������
A12 + B12

, k → −
A1 − B1

��������������������������
A12 + B12

, r → 1=, 9h → −
A1 − B1

��������������������������
A12 + B12

, k → −
A1 + B1

��������������������������
A12 + B12

, r → 1=,

9h → −
−A1 + B1
��������������������������
A12 + B12

, k → −
−A1 − B1
��������������������������
A12 + B12

, r → 1=, 9h → −
A1 + B1

��������������������������
A12 + B12

, k → −
−A1 + B1
��������������������������
A12 + B12

, r → 1==

Simplify.

In[2]: ans2 = ans1 êê. A1^2 + B1^2 −> 1

Out[2] 88h → A1 + B1, k → −A1 + B1, r → 1<, 8h → −A1 + B1, k → −A1 − B1, r → 1<,
8h → A1 − B1, k → A1 + B1, r → 1<, 8h → −A1 − B1, k → A1 − B1, r → 1<<

tancir4.nb

Circle Through Two Points, Center on Circle

Exploration

Show that the radii of the two circles passing through the points (0, a) and (0,−a) with centers
on the circle x2 + y2 = r2

2 are both given by

r =
√

a2 + r2
2 .

This is a special case of TangentCircles2D[{obj1, obj2}, line | circle] where the two objects
are points.

Approach

Two equations can be formed using the fact that points (0, a) and (0,−a) are on the circle.
A third equation can be formed since the center is on a given circle. Solve three equations in
three unknowns.

Solution

Solve three equations in three unknowns. The solutions with negative radii are invalid and
discarded.

795

796 tancir4.nb

In[1]: Clear@h, k, rD;
ans1 = Solve@8H0 − hL^2 + Ha − kL^2 == r^2,

H0 − hL^2 + H−a − kL^2 == r^2,

h^2 + k^2 == r2^2<,
8h, k, r<D

Out[1] 99r → −"###c2 + r22 − 2 c x + x2 + y2 , h → −r2, k → 0=,

9r → −"###c2 + r22 − 2 c x + x2 + y2 , h → r2, k → 0=,

9r → "###c2 + r22 − 2 c x + x2 + y2 , h → −r2, k → 0=,

9r → "###c2 + r22 − 2 c x + x2 + y2 , h → r2, k → 0==

tancir5.nb

Circle Tangent to Three Lines

Exploration

Show that the radii of the four circles tangent to the lines x = 0, y = 0 and Ax + By + C = 0,
are given by

r =
∣∣∣∣ C

1 ± A ± C

∣∣∣∣
taking all four combinations of signs and assuming that the lines are normalized. This is a
special case of TangentCircles2D[{obj1, obj2, obj3}] where all three of the objects are lines.

Approach

A line ax + by + c = 0 is tangent to a circle (x − h)2 + (y − k)2 = r2 if the equation(
a2 + b2

)
r2 = (ah + bk + c)2

holds. Form three equations in three unknowns from this equation and solve.

Solution

Solve three equations in three unknowns.

In[1]: Clear@r, h, k, A1, B1, C1D;
ans1 = Solve@8r^2 == h^2,

r^2 == k^2,

r^2 == HA1∗h + B1∗k + C1L^2<,
8h, k, r<D ê.

8A1^2 + B1^2 −> 1<;

Extract the value of r.

797

798 tancir5.nb

In[2]: ans2 = Map@Hr ê. #L&, ans1D

Out[2] 9−
C1

����������������������������������
−1 + A1 − B1

,
C1

����������������������������������
−1 + A1 − B1

, −
C1

������������������������������
1 + A1 − B1

,
C1

������������������������������
1 + A1 − B1

, −
C1

����������������������������������
−1 + A1 + B1

,

C1
����������������������������������
−1 + A1 + B1

, −
C1

������������������������������
1 + A1 + B1

,
C1

������������������������������
1 + A1 + B1

=

Put all the negative signs in the denominator.

In[3]: Clear@E1D;
ans3 = ans2 êê. Times@−1, Power@E1_, −1D, C1D :>

Times@Power@Expand@−E1D, −1D, C1D

Out[3] 9 C1
������������������������������
1 − A1 + B1

,
C1

����������������������������������
−1 + A1 − B1

,
C1

����������������������������������
−1 − A1 + B1

,
C1

������������������������������
1 + A1 − B1

,
C1

������������������������������
1 − A1 − B1

,

C1
����������������������������������
−1 + A1 + B1

,
C1

����������������������������������
−1 − A1 − B1

,
C1

������������������������������
1 + A1 + B1

=

Change all the minus signs to positive.

In[4]: ans4 = ans3 êê. Times@Power@Plus@−1, E1__D, −1D, C1D :>

Times@Power@Plus@1 + E1D, −1D, −C1D

Out[4] 9 C1
������������������������������
1 − A1 + B1

, −
C1

������������������������������
1 + A1 − B1

, −
C1

������������������������������
1 − A1 + B1

,
C1

������������������������������
1 + A1 − B1

,
C1

������������������������������
1 − A1 − B1

,

−
C1

������������������������������
1 + A1 + B1

, −
C1

������������������������������
1 − A1 − B1

,
C1

������������������������������
1 + A1 + B1

=

Take the absolute value and return only the unique terms.

In[5]: Union@Abs@ans4DD

Out[5] 9AbsA C1
������������������������������
1 − A1 − B1

E, AbsA C1
������������������������������
1 + A1 − B1

E, AbsA C1
������������������������������
1 − A1 + B1

E, AbsA C1
������������������������������
1 + A1 + B1

E=

tancirpt.nb

Tangency Point on a Circle

Exploration

Show that if a line Ax + By + C = 0 is tangent to a circle (x − h)2 + (y − k)2 = r2 then the
coordinates of the point of tangency are(

h − Ar2

Ah + Bk + C
, k − Br2

Ah + Bk + C

)
.

Approach

The pole (point) of the line is the point of tangency.

Solution

Create the line, circle and pole point. This result was computed using Mathematica Version
3.0.1. Version 4.0 computes a different result that is algebraically equivalent. Both versions
produce the same final step.

In[1]: Clear@A1, B1, C1, h, k, rD;
p1 = Point2D@

l1 = Line2D@A1, B1, C1D,
c1 = Circle2D@8h, k<, rDD êê Simplify

Out[1] Point2DA9 C1 h + B1 h k + A1 Hh2 − r2L
��

C1 + A1 h + B1 k
,

C1 k + A1 h k + B1 Hk2 − r2L
��

C1 + A1 h + B1 k
=E

Simplify to the desired form.

In[2]: Map@Apart, p1D

Out[2] Point2DA9h −
A1 r2

���
C1 + A1 h + B1 k

, k −
B1 r2

���
C1 + A1 h + B1 k

=E

799

tetra.nb

Area of a Tetrahedron’s Base

Exploration

A tetrahedron is a three-dimensional geometric object bounded by four triangular faces. Given
a tetrahedron with vertices O(0, 0, 0), A(a, 0, 0), B(0, b, 0) and C(0, 0, c) show that the areas
of the triangular faces are related by the equation

(AABC)2 = (AAOB)2 + (AAOC)2 + (ABOC)2

where Axyz is the area of the triangle whose vertices are x, y and z. Note the similarity to
the Pythagorean Theorem for right triangles.

Approach

Compute the area of 4ABC using Heron’s formula and compare it to the areas of the other
triangles.

Solution

Compute the semi-perimeter, s, of 4ABC.

In[1]: Clear@AB, AC, BCD;
s = HAB + AC + BCL ê2

Out[1]
1
�����
2

HAB + AC + BCL

Compute the areas of 4ABC using Heron’s formula. Replace the lengths of each side by
expressions in a, b and c, the coordinates on the axes.

801

802 tetra.nb

In[2]: Clear@a, b, cD;
A1 = Expand@s Hs − ABL Hs − ACL Hs − BCLD êê. 8
AB^2 −> a^2 + b^2, AB^4 −> Ha^2 + b^2L^2,
AC^2 −> a^2 + c^2, AC^4 −> Ha^2 + c^2L^2,
BC^2 −> b^2 + c^2, BC^4 −> Hb^2 + c^2L^2<

Out[2] −
1

���������
16

Ha2 + b2L2
+
1
�����
8

Ha2 + b2L Ha2 + c2L −
1

���������
16

Ha2 + c2L2
+
1
�����
8

Ha2 + b2L Hb2 + c2L +

1
�����
8

Ha2 + c2L Hb2 + c2L −
1

���������
16

Hb2 + c2L2

Replace certain expressions with the areas of the triangles involved.

In[3]: A2 = Expand@A1D êê. 8
a^2∗b^2 −> H2 Area@AOBDL^2,
a^2∗c^2 −> H2 Area@AOCDL^2,
b^2∗c^2 −> H2 Area@BOCDL^2<

Out[3] Area@AOBD2 + Area@AOCD2 + Area@BOCD2

tncirtri.nb

Circles Tangent to an Isosceles Triangle

Exploration

A circle is inscribed in an isosceles triangle with sides a, a and 2b in length. A second, smaller
circle is inscribed tangent to the first circle and to the equal sides of the triangle. Show that
the radius of the second circle is

r = b

√
(a − b)3

(a + b)3
.

Assume that a > b.

Approach

Construct an isosceles triangle whose sides are the given lengths. Construct the circle inscribed
in the triangle. The point of tangency between the first and second circle is at the parameter
θ = π/2 on the first circle. Construct a second triangle from the equal-length sides and a line
tangent to the first circle at the tangency point. The second circle can then be inscribed inside
the second triangle. Find and simplify the radius of the second inscribed circle.

Solution

Construct the isosceles triangle with the proper side lengths.

In[1]: Clear@a, bD;
T1 = Triangle2D@8a, a, 2 b<D êê FullSimplify

Out[1] Triangle2DA80, 0<, 82 b, 0<, 9b, è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Ha − bL Ha + bL =E

Construct the first inscribed circle and simplify the result.

803

804 tncirtri.nb

In[2]: Clear@E1, E2D;
C1 = HCircle2D@T1, Inscribed2DD êê FullSimplifyL êê.

8Sqrt@a^2D −> a, Sqrt@b^2D −> b,

Sqrt@E1_ ∗b^2êE2_D −> b∗Sqrt@E1êE2D< êê FullSimplify

Out[2] Circle2DA9b, b
è!!!!!!!!!!!!!
a2 − b2

������������������������������
a + b

=, b $%%%%%%%%%%%%%%%%%%%%−1 +
2 a

���������������
a + b

E

Construct the point of tangency between the first circle and the second.

In[3]: P1 = Point2D@C1@Piê2DD êê FullSimplify

Out[3] Point2DA9b, b
i

k

jjjjjj

è!!!!!!!!!!!!!!!!!!!!!!!!!!!!Ha − bL Ha + bL
��

a + b
+ $%%%%%%%%%%%%%%%%%%%%−1 +

2 a
���������������
a + b

y

{

zzzzzz=E

Construct the second triangle. The results are complicated, so we define and use some sim-
plification rules that are applied to the result.

In[4]: rules1 = 8
−1 + 2 aê Ha + bL −> Ha − bL ê Ha + bL,
Sqrt@Ha − bL Ha + bLD ê Ha + bL −> Sqrt@Ha − bLD êSqrt@Ha + bLD,
Sqrt@Ha − bL ê Ha + bLD −> Sqrt@a − bD êSqrt@a + bD,
1êSqrt@a^2 − b^2D −> 1ê HSqrt@a − bD ∗Sqrt@a + bDL,
Sqrt@a^2 − b^2D −> Sqrt@a − bD ∗Sqrt@a + bD<;

L1 = Line2D@Segment2D@T1, 2, 3DD êê FullSimplify;

L2 = Line2D@Segment2D@T1, 1, 3DD êê FullSimplify;

T2 = Triangle2D@L1, L2, Line2D@P1, 0DD;
T2 = HT2 êê. rules1 êê SimplifyL êê. rules1

Out[4] Triangle2DA9b, è!!!!!!!!!
a − b

è!!!!!!!!!
a + b =, 9 2 a b

���������������
a + b

,
2 è!!!!!!!!!a − b b
������������������������������è!!!!!!!!!a + b

=, 9 2 b2
���������������
a + b

,
2 è!!!!!!!!!a − b b
������������������������������è!!!!!!!!!a + b

=E

Construct the circle inscribed in the second triangle and find the radius. The results are
complicated, so we define and use some simplification rules that are applied to the result.

In[5]: rules2 = 8
Sqrt@a^2∗ Ha − bL^2ê Ha + bL^2D −> a Ha − bL ê Ha + bL,
Sqrt@Ha − bL^2∗b^2ê Ha + bL^2D −> b Ha − bL ê Ha + bL,
Sqrt@Ha − bL^3∗b^2ê Ha + bL^3D −> b∗Sqrt@Ha − bL^3ê Ha + bL^3D<;

R2 = HHRadius2D@C2 = Circle2D@T2, Inscribed2DDD êê SimplifyL êê.
rules2 êê SimplifyL êê. rules2

Out[5] b $%%%%%%%%%%%%%%%%%%Ha − bL3

������������������������
Ha + bL3

Mathematica Version 3.0.1 produces the desired result in the previous step. Version 4.0 needs
the following additional step to produce the desired result. This step doesn’t change the
expression generated by Version 3.0.1.

tncirtri.nb 805

In[6]: R2 êê. 8
Sqrt@E1_ ∗b^2ê HE2_L^3D −> b∗Sqrt@E1êE2^3D,
Sqrt@E1_D :> Sqrt@Factor@E1DD<

Out[6] b $%%%%%%%%%%%%%%%%%%Ha − bL3

������������������������
Ha + bL3

Discussion

This is the plot of a numerical example with a = 10 and b = 3.5.

In[7]: Sketch2D@8T1, C1, P1, T2, C2< ê. 8a −> 10, b −> 3.5<D;

0 1 2 3 4 5 6 7
0

2

4

6

8

This is another example with a = 10 and b = 6.

In[8]: Sketch2D@8T1, C1, P1, T2, C2< ê. 8a −> 10, b −> 6<D;

0 2 4 6 8 10 12
0

2

4

6

8

tnlncir.nb

Construction of Two Related Circles

Exploration

Prove that if OP and OQ are the tangent lines from (0, 0) to the circle

x2 + y2 + 2gx + 2fy + c = 0

then the equation of the circle OPQ is

x2 + y2 + gx + fy = 0.

Approach

Create the circle from the given quadratic and construct the polar (line) of the origin with
respect to the circle. Intersect the polar with the circle to find P and Q. Construct a circle
through O, P and Q and find its equation.

Solution

Create the origin point and the circle from the given equation.

In[1]: Clear@g, f, cD;
P0 = Point2D@0, 0D;
C1 = Circle2D@Quadratic2D@1, 0, 1, 2 g, 2 f, cDD êê Simplify

Out[1] Circle2DA8−g, −f<, è!!!!!!!!!!!!!!!!!!!!!
−c + f2 + g2 E

Construct the polar line.

In[2]: L1 = Line2D@P0, C1D êê Simplify

Out[2] Line2D@g, f, cD

807

808 tnlncir.nb

Find the intersection points.

In[3]: pts = Points2D@L1, C1D êê FullSimplify

Out[3] 9Point2DA9−
c g

��������������������
f2 + g2

−
f "#################c − c2�������������f2+g2�������������������������������������è!!!!!!!!!!!!!

f2 + g2
, −

c f
��������������������
f2 + g2

+
g "#################c − c2�������������f2+g2�������������������������������������è!!!!!!!!!!!!!

f2 + g2
=E,

Point2DA9−
c g

��������������������
f2 + g2

+
f "#################c − c2�������������f2+g2�������������������������������������è!!!!!!!!!!!!!

f2 + g2
, −

c f
��������������������
f2 + g2

−
g "#################c − c2�������������f2+g2�������������������������������������è!!!!!!!!!!!!!

f2 + g2
=E=

Construct the circle through the three points.

In[4]: C2 = Circle2D@P0, pts@@1DD, pts@@2DDD êê FullSimplify

Out[4] Circle2DA9−
g
�����
2
, −

f
�����
2

=, 1
�����
2

è!!!!!!!!!!!!!
f2 + g2 E

Convert the circle to an equation.

In[5]: Clear@x, yD;
Equation2D@Quadratic2D@C2D êê Simplify, 8x, y<D

Out[5] g x + x2 + f y + y2 == 0

Discussion

Construct the circle related to x2 + y2 − 6x − 4y + 12 = 0.

In[6]: P0 = Point2D@0, 0D;
C1 = Circle2D@Quadratic2D@x^2 + y^2 − 6 x − 4 y + 12 == 0, 8x, y<DD;
L1 = TangentLines2D@P0, C1D;
P1 = Point2D@First@L1D, C1D;
P2 = Point2D@Last@L1D, C1D;
C2 = Circle2D@Quadratic2D@x^2 + y^2 − 3 x − 2∗y == 0, 8x, y<DD;
Sketch2D@8P0, C1, L1, P1, P2, C2<D;

-4 -2 0 2 4-4

-2

0

2

4

triallen.nb

Triangle Altitude Length

Exploration

Show that the length, L, of a triangle’s altitude (from vertex V3 to side s1) is given by

L2 = s2s3

(
1 − s2

1

(s2 + s3)2

)

where s1, s2 and s3 are the lengths of the triangle’s sides.

Approach

Construct a triangle in a convenient, yet sufficiently general position. Then construct the
triangle’s altitude. Show that the length of the altitude is given by the expression. Since the
length of each triangle side, sn, is positive,

√
s2

n = sn.

Solution

Construct a triangle with sides s1, s2 and s3. By default, the triangle’s first vertex is located
at the origin.

In[1]: Clear@s1, s2, s3, E1D;
T1 = Triangle2D@8s1, s2, s3<D ê. Sqrt@−E1_ ês3^2D −> Sqrt@−E1D ês3

Out[1] Triangle2DA80, 0<, 8s3, 0<,

9 −s12 + s22 + s32
���

2 s3
,

è!!!−Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L Hs1 + s2 + s3L
���

2 s3
=E

The length of the altitude is the distance from the triangle’s third vertex to the x-axis. This re-
sult was computed using Mathematica Version 3.0.1. Version 4.0 computes a slightly different
result that is algebraically equivalent.

809

810 triallen.nb

In[2]: Lx = Line2D@0, 1, 0D;
altitude = Distance2D@Point2D@T1, 3D, LxD ê. Sqrt@E1_ ês3^2D −> Sqrt@E1D ês3

Out[2]
è!!!Hs1 + s2 − s3L Hs1 − s2 + s3L H−s1 + s2 + s3L Hs1 + s2 + s3L
���

2 s3

trialt.nb

Altitude of a Triangle

Exploration

The altitude from vertex A of 4ABC is a line segment from A perpendicular to side BC (or
the extension of BC). Show that the equation of the line containing the altitude from A is

(x3 − x2)x + (y3 − y2) y − x1(x3 − x2) − y1(y3 − y2) = 0

where the coordinates of the vertices are A(x1, y1), B(x2, y2) and C(x3, y3).

Approach

Construct the altitude and show that the line containing it is the line given.

Solution

Construct the line BC.

In[1]: Clear@x2, y2, x3, y3D;
BC = Line2D@8x2, y2<, 8x3, y3<D;

Construct the altitude from A perpendicular to BC.

In[2]: Clear@x1, y1D;
alt = Line2D@Point2D@x1, y1D, BCD

Out[2] Line2D@−x2 + x3, −y2 + y3, −x1 H−x2 + x3L + y1 Hy2 − y3LD

Convert the line to an equation.

In[3]: Clear@x, yD;
Equation2D@alt, 8x, y<D

Out[3] x H−x2 + x3L − x1 H−x2 + x3L + y1 Hy2 − y3L + y H−y2 + y3L == 0

811

812 trialt.nb

Discussion

This defines a new function that constructs all the lines underlying the altitudes of a triangle.

In[4]: Altitudes2D@Triangle2D@8x1_, y1_<, 8x2_, y2_<, 8x3_, y3_<DD :=

8Altitude$2D@8x1, y1<, 8x2, y2<, 8x3, y3<D,
Altitude$2D@8x2, y2<, 8x3, y3<, 8x1, y1<D,
Altitude$2D@8x3, y3<, 8x1, y1<, 8x2, y2<D<;

Altitude$2D@8x1_, y1_<, 8x2_, y2_<, 8x3_, y3_<D :=

Line2D@x3 − x2, y3 − y2, −x1 Hx3 − x2L − y1 Hy3 − y2LD;

This is the plot of a numerical example.

In[5]: T1 = Triangle2D@8−1, −2<, 8−2, 3<, 84, 0<D;
Sketch2D@8T1, Altitudes2D@T1D,

Map@Point2D, List @@ T1D<D;

-4 -2 0 2 4

-4

-2

0

2

4

triarea.nb

Area of Triangle Configurations

Exploration

V1 V2

V3

a1 a2

a3
s1s2

s3

For the triangle illustrated in the figure, show that the area, A1, associated with the AAS
(angle-angle-side) configuration whose parameters are a1, a2 and s1 is given by

A1 =
s2
1 sin(a2) sin(a1 + a2)

2 sin(a1)
.

Show that the area, A2, associated with the ASA (angle-side-angle) configuration whose pa-
rameters are a1, s3 and a2 is given by

A2 =
s2
3 sin(a1) sin(a2)
2 sin(a1 + a2)

.

Show that the area, A3, associated with the SAS (side-angle-side) configuration whose para-
meters are s1, a2 and s3 is given by

A3 =
s1s3 sin(a2)

2
.

Approach

Construct the triangle associated with each configuration, and then compute the expression
for the area and simplify.

813

814 triarea.nb

Solution

Construct the triangle for the AAS configuration.

In[1]: Clear@a1, a2, a3, s1, s2, s3D;
T1 = HTriangle2D@88s1, Null, Null<, 8a1, a2, Null<<D êê FullSimplifyL êê.

Sqrt@s1^2∗Sin@a2D^2D −> s1∗Sin@a2D

Out[1] Triangle2D@80, 0<, 8s1 Csc@a1D Sin@a1 + a2D, 0<,
8s1 Cot@a1D Sin@a2D, s1 Sin@a2D<D

Compute the area for the AAS configuration and simplify. The sine function is introduced to
prevent simplification back to the cosecant form.

In[2]: A1 = Area2D@T1D êê. Csc@a1D −> 1êsine@a1D

Out[2]
s12 Sin@a2D Sin@a1 + a2D
���

2 sine@a1D

Construct the triangle for the ASA configuration.

In[3]: Clear@a1, a2, a3, s1, s2, s3D;
T2 = HTriangle2D@88Null, Null, s3<, 8a1, a2, Null<<D êê FullSimplifyL êê.

Sqrt@s3^2∗Csc@a1 + a2D^2∗Sin@a1D^2∗Sin@a2D^2D −>

s3∗Csc@a1 + a2D ∗Sin@a1D ∗Sin@s2D

Out[3] Triangle2D@80, 0<, 8s3, 0<,
8s3 Cos@a1D Csc@a1 + a2D Sin@a2D, s3 Csc@a1 + a2D Sin@a1D Sin@s2D<D

Compute the area for the ASA configuration and simplify. The sine function is transformed
to lower case to prevent simplification back to the cosecant form.

In[4]: A2 = Area2D@T2D êê. Csc@a1 + a2D −> 1êsine@a1 + a2D

Out[4]
s32 Sin@a1D Sin@s2D
��

2 sine@a1 + a2D

Construct the triangle for the SAS configuration.

In[5]: Clear@a1, a2, a3, s1, s2, s3D;
T3 = HTriangle2D@88s1, Null, s3<, 8Null, a2, Null<<D êê FullSimplifyL êê.

Sqrt@a1^2∗Sin@a2D^2D −> s1∗Sin@a2D

Out[5] Triangle2DA80, 0<, 8s3, 0<, 9s3 − s1 Cos@a2D, "#########################s12 Sin@a2D2 =E

Compute the area for the SAS configuration and simplify.

In[6]: A3 = Area2D@T3D êê. Sqrt@s1^2∗Sin@a2D^2D −> s1∗Sin@a2D

Out[6]
1
�����
2
s1 s3 Sin@a2D

triarlns.nb

Area of Triangle Bounded by Lines

Exploration

Show that the area of the triangle bounded by the lines

y = m1x + c1, y = m2x + c2 and x = 0

is given by

A =
(c1 − c2)

2

2
√

(m1 − m2)
2
.

Approach

Create the triangle and compute the area.

Solution

Create the triangle.

In[1]: Clear@m1, c1, m2, c2D;
t1 = Triangle2D@Line2D@m1, −1, c1D,

Line2D@m2, −1, c2D,
Line2D@1, 0, 0DD

Out[1] Triangle2DA9 c1 − c2
�������������������������
−m1 + m2

,
−c2 m1 + c1 m2
���

−m1 + m2
=, 80, c1<, 80, c2<E

Get the vertex points of the triangle.

In[2]: 8p1, p2, p3< = Map@Point2D@t1, #D&, 81, 2, 3<D

Out[2] 9Point2DA9 c1 − c2
�������������������������
−m1 + m2

,
−c2 m1 + c1 m2
���

−m1 + m2
=E, Point2D@80, c1<D, Point2D@80, c2<D=

815

816 triarlns.nb

Compute the area of the triangle using Heron’s formula.

In[3]: Clear@sD;
a = Distance2D@p1, p2D;
b = Distance2D@p2, p3D;
c = Distance2D@p3, p1D;
s = Ha + b + cL ê2;
A1 = Sqrt@s Hs − aL Hs − bL Hs − cLD êê FullSimplify

Out[3]
1
�����
2

$%%%%%%%%%%%%%%%%%%%%%%Hc1 − c2L4

������������������������������
Hm1 − m2L2

Since (c1 − c2)
2 is positive, the formula simplifies to the desired result.

In[4]: A1 ê. Sqrt@E1_^4êE2_^2D −>

E1^2êSqrt@E2^2D

Out[4]
Hc1 − c2L2

���
2

è!!!!!!!!!!!!!!!!!!!!
Hm1 − m2L2

tricent.nb

Centroid of a Triangle

Exploration

x

y

x2 - x1

PHa, bL

QHd, 0L

Dy
D

Show that the centroid of a triangle, as illustrated in the figure, is on a line at a distance
y = b/3 from the base of the triangle.

Approach

Place the triangle in a convenient position as shown in the figure. Create equations for the
moments of inertia of infinitesimal areas on either side of the centroid line. Use integration to
find the ordinate of the line.

Solution

Create lines for two sides of the triangle whose vertices are (0, 0), (d, 0) and (a, b).

817

818 tricent.nb

In[1]: Clear@a, b, dD;
L1 = Line2D@8a, b<, 80, 0<D;
L2 = Line2D@8a, b<, 8d, 0<D;

Construct a horizontal line at a general coordinate, y, which is the height of the centroid.

In[2]: Clear@yD;
L = Line2D@Point2D@0, yD, 0D;

The width of the triangle, W , is the difference between the abscissa of the intersection points
of the sides and the horizontal line.

In[3]: W = XCoordinate2D@Point2D@L, L2DD −

XCoordinate2D@Point2D@L, L1DD êê Simplify

Out[3] d −
d y
����������
b

The moments of inertia on each side of the horizontal line must be equal.

In[4]: Clear@yBD;
Solve@Integrate@W ∗ HyB − yL, 8y, 0, yB<D ==

Integrate@W ∗ Hy − yBL, 8y, yB, b<D, yBD

Out[4] 99yB →
b
�����
3

==

Discussion

Notice that the centroid only depends on the height of the triangle, b. The centroid’s height
does not depend on the horizontal location of the apex point, a, nor on the width of the base,
d.

tricev.nb

Triangle Cevian Lengths

Exploration

Prove that the length of the altitude, h1, from vertex V1 of a triangle to the opposite side of
the triangle (whose length is s1) is given by

h1 =

√
PS

2s1

where S = s1 + s2 + s3, P = (−s1 + s2 + s3) (s1 − s2 + s3) (s1 + s2 − s3) and s1, s2 and s3

are the lengths of the triangle’s sides. Prove that the length of the median, m1, from vertex
V1 is given by

m1 =
1
2

√
−s2

1 + 2 (s2
2 + s2

3).

Prove that the length of the angle bisector, b1, from vertex V1 is given by

b1 =

√
Ss2s3(−s1 + s2 + s3)

s2 + s3
.

Also show that the formulas for the lengths of the cevians from vertices V2 and V3 can be
found by cyclic permutation of the subscripts given in the formulas above.

Approach

Construct a triangle with the given side lengths. Construct the associated cevians (altitude,
median and angle bisector) and compute and simplify the expressions for their lengths.

819

820 tricev.nb

Solution

Construct a triangle with the given side lengths and simplify.

In[1]: Clear@s, s1, s2, s3, S, P, e1D;
T = HTriangle2D@8s1, s2, s3<D êê FullSimplifyL ê.

Sqrt@−e1_ ês_Symbol^2D −> Sqrt@−e1D ês

Out[1] Triangle2DA80, 0<, 8s3, 0<,

9 −s12 + s22 + s32
���

2 s3
,

è!!!−Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L Hs1 + s2 + s3L
���

2 s3
=E

The altitude of a triangle is the cevian perpendicular to the opposite side. These functions
return the length of the altitude (the height) for each vertex, 1, 2 or 3. The perpendicular is
found by projecting the vertex on the line containing the opposite side.

In[2]: Height2D@Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D,
n_ ê; Hn == 2 »» n == 3LD :=

Height2D@Triangle2D@p2, p3, p1D, n − 1D;

In[3]: Height2D@Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D, 1D :=

Distance2D@p1, Coordinates2D@Point2D@p1D, Line2D@p2, p3DDD;

Compute the length of each altitude (the height) using the functions defined above and sim-
plify.

In[4]: HMap@Height2D@T, #D&, 81, 2, 3<D êê FullSimplifyL êê.
8Sqrt@−e1_ ês_Symbol^2D −> Sqrt@−e1D ês,
Sqrt@e1_ ês_Symbol^2D −> Sqrt@e1D ês,
s1 + s2 + s3 −> S,

Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L −> −P,

H−s1 + s2 − s3L Hs1 + s2 − s3L H−s1 + s2 + s3L −> −P,

Hs1 + s2 − s3L Hs1 − s2 + s3L H−s1 + s2 + s3L −> P<

Out[4] 9
è!!!!!!P S
����������������
2 s1

,
è!!!!!!P S
����������������
2 s2

,
è!!!!!!P S
����������������
2 s3

=

The median of a triangle is the cevian connecting a vertex to the midpoint of the opposite
side. These functions return the length of the median for each vertex, 1, 2 or 3.

In[5]: Median2D@Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D,
n_ ê; Hn == 2 »» n == 3LD :=

Median2D@Triangle2D@p2, p3, p1D, n − 1D;

In[6]: Median2D@Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D, 1D :=

Distance2D@p1, Hp2 + p3L ê2D;

Compute the length of each median using the functions defined above and simplify.

In[7]: Map@Median2D@T, #D&, 81, 2, 3<D êê FullSimplify

Out[7] 9 1
�����
2

"#####################################−s12 + 2 Hs22 + s32L ,
1
�����
2

"##################################2 s12 − s22 + 2 s32 ,
1
�����
2

"###################################2 Hs12 + s22L − s32 =

tricev.nb 821

The angle bisector of a triangle is the cevian bisecting the angle of the vertex. These functions
return the length of the angle bisector for each vertex, 1, 2 or 3. Note that the angle bisector
must pass through the center of the inscribed circle.

In[8]: Bisector2D@Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D,
n_ ê; Hn == 2 »» n == 3LD :=

Bisector2D@Triangle2D@p2, p3, p1D, n − 1D;

In[9]: Bisector2D@T : Triangle2D@p1 : 8x1_, y1_<, p2 : 8x2_, y2_<, p3 : 8x3_, y3_<D, 1D :=

Module@8pt, ln<,
pt = Coordinates2D@Circle2D@T, Inscribed2DDD;
ln = Line2D@p1, ptD;
Distance2D@p1, Coordinates2D@ln, Line2D@p2, p3DDD D;

Compute the length of each angle bisector using the functions defined above and simplify.

In[10]: HHHMap@Bisector2D@T, #D&, 81, 2, 3<D êê FullSimplifyL êê.
8Sqrt@s_Symbol^2D −> s< êê FullSimplifyL ê.
H1 − s3^2ê Hs1 + s2L^2L :> Factor@Hs1 + s2L^2 − s3^2D ê Hs1 + s2L^2L êê.
8Sqrt@e1_ ê Hs1_Symbol + s2_SymbolL^2D :> Sqrt@e1D ê Hs1 + s2L,
Hs1 + s2 + s3L −> S<

Out[10] 9
è!!!S s2 s3 H−s1 + s2 + s3L
���

s2 + s3
,

è!!!S s1 s3 Hs1 − s2 + s3L
���

s1 + s3
,

è!!!S s1 s2 Hs1 + s2 − s3L
���

s1 + s2
=

triconn.nb

Concurrent Triangle Altitudes

Exploration

Show that the three altitudes of any 4ABC are concurrent in a single point (x, y) whose
coordinates are given by

x =
x′

D
and y =

y′

D

where

x′ = − (y1 − y2)
(
x1x2 + y2

3

)
+ (y1 − y3)

(
x1x3 + y2

2

)− (y2 − y3)
(
x2x3 + y2

1

)
y′ = + (x1 − x2)

(
y1y2 + x2

3

)− (x1 − x3)
(
y1y3 + x2

2

)
+ (x2 − x3)

(
y2y3 + x2

1

)
and

D =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣
and the coordinates of the vertices are A(x1, y1), B(x2, y2) and C(x3, y3). This point is called
the orthocenter of the triangle.

Approach

From the exploration trialt.nb the altitude from vertex A of 4ABC to side BC (or the
extension of BC) is the line

(x3 − x2)x + (y3 − y2) y − x1(x3 − x2) − y1(y3 − y2) = 0

where the coordinates of the vertices are A(x1, y1), B(x2, y2) and C(x3, y3). Use this formula
to show that the three altitudes are concurrent and intersect one pair of the altitudes to find
the coordinates of the orthocenter.

823

824 triconn.nb

Solution

Define a function for constructing the altitude line of a triangle (the altitude from the first
vertex).

In[1]: Altitude2D@Triangle2D@8x1_, y1_<, 8x2_, y2_<, 8x3_, y3_<DD :=

Line2D@x3 − x2, y3 − y2, −x1∗ Hx3 − x2L − y1∗ Hy3 − y2LD

Define a function for constructing the orthocenter.

In[2]: Orthocenter2D@Triangle2D@8x1_, y1_<, 8x2_, y2_<, 8x3_, y3_<DD :=

Module@8X1, Y1, D1<,
Point2D@X1êD1, Y1êD1D êê. 8
X1 −> −Hy1 − y2L Hx1∗x2 + y3^2L

+ Hy1 − y3L Hx1∗x3 + y2^2L
− Hy2 − y3L Hx2∗x3 + y1^2L,

Y1 −> Hx1 − x2L Hy1∗y2 + x3^2L
− Hx1 − x3L Hy1∗y3 + x2^2L
+ Hx2 − x3L Hy2∗y3 + x1^2L,

D1 −> Det@88x1, y1, 1<, 8x2, y2, 1<, 8x3, y3, 1<<D< D;

Create the three vertex points.

In[3]: Clear@x1, y1, x2, y2, x3, y3D;
A1 = Point2D@x1, y1D;
B1 = Point2D@x2, y2D;
C1 = Point2D@x3, y3D;

Construct the three altitudes.

In[4]: lnA = Altitude2D@Triangle2D@A1, B1, C1DD;
lnB = Altitude2D@Triangle2D@B1, C1, A1DD;
lnC = Altitude2D@Triangle2D@C1, A1, B1DD;

Show that they are concurrent by showing that the determinant of their coefficients is zero.

In[5]: Det@8List @@ lnA,

List @@ lnB,

List @@ lnC<D

Out[5] 0

Find the coordinates of the orthocenter by intersecting a pair of altitudes.

In[6]: p1 = Point2D@lnA, lnBD

Out[6] Point2DA

9 H−x2 Hx1 − x3L − y2 Hy1 − y3LL H−y2 + y3L − Hy1 − y3L H−x1 H−x2 + x3L − y1 H−y2 + y3LL
���H−x2 + x3L Hy1 − y3L − Hx1 − x3L H−y2 + y3L
, H−H−x2 + x3L H−x2 Hx1 − x3L − y2 Hy1 − y3LL +

Hx1 − x3L H−x1 H−x2 + x3L − y1 H−y2 + y3LLL ê
HH−x2 + x3L Hy1 − y3L − Hx1 − x3L H−y2 + y3LL=E

triconn.nb 825

Compute the orthocenter using the formula.

In[7]: p2 = Orthocenter2D@Triangle2D@A1, B1, C1DD

Out[7] Point2DA9 Hx1 x3 + y22L Hy1 − y3L − Hx2 x3 + y12L Hy2 − y3L − Hy1 − y2L Hx1 x2 + y32L
���

−x2 y1 + x3 y1 + x1 y2 − x3 y2 − x1 y3 + x2 y3
,

Hx1 − x2L Hx32 + y1 y2L − Hx1 − x3L Hx22 + y1 y3L + Hx2 − x3L Hx12 + y2 y3L
���

−x2 y1 + x3 y1 + x1 y2 − x3 y2 − x1 y3 + x2 y3
=E

The x- and y-coordinates of the intersection point and the orthocenter are identical.

In[8]: 8XCoordinate2D@p1D − XCoordinate2D@p2D,
YCoordinate2D@p1D − YCoordinate2D@p2D< êê FullSimplify

Out[8] 80, 0<

Discussion

This is the plot of a numerical example.

In[9]: Sketch2D@8Triangle2D@A1, B1, C1D, lnA, lnB, lnC, p2< êê.
8x1 −> −1, y1 −> −2, x2 −> 4, y2 −> 0, x3 −> −2, y3 −> 3<D;

-4 -2 0 2 4

-4

-2

0

2

4

tridist.nb

Hypotenuse Midpoint Distance

Exploration

Prove that the midpoint of the hypotenuse of a right triangle is equidistant from the vertices.

Approach

Without loss of generality, create a triangle in a convenient position with the right angle
vertex at the origin and the other two vertices at (a, 0) and (0, b). Create the midpoint of the
hypotenuse and then examine the distance from the midpoint to each of the vertices.

Solution

Create the points defining the triangle’s vertices.

In[1]: Clear@a, bD;
p1 = Point2D@0, 0D;
p2 = Point2D@a, 0D;
p3 = Point2D@0, bD;

Construct the midpoint of the hypotenuse.

In[2]: P = Point2D@p2, p3D

Out[2] Point2DA9 a
�����
2
,

b
�����
2

=E

The distances from the midpoint to the vertices are equal by inspection.

In[3]: Map@Distance2D@P, #D&, 8p1, p2, p3<D

Out[3] 9$%%%%%%%%%%%%%%%%%a2
��������
4

+
b2
��������
4

, $%%%%%%%%%%%%%%%%%a2
��������
4

+
b2
��������
4

, $%%%%%%%%%%%%%%%%%a2
��������
4

+
b2
��������
4

=

827

828 tridist.nb

Discussion

This is the plot of a numerical example.

In[4]: Sketch2D@8p1, p2, p3, P,

Segment2D@p1, PD,
Segment2D@p2, p3D< ê.

8a −> 3, b −> 2<D;

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

trieuler.nb

Euler’s Triangle Formula

Exploration

If T is a triangle, and P and r are the center and radius of the circle inscribed in T , and Q
and R are the center and radius of the circle circumscribing T , show that

d2 = R2 − 2rR

where d is the distance from P to Q.

Approach

Construct the required geometry using a triangle in a special, but sufficiently general, position.
Show the equation is true by showing that the difference of the left and right side of the
equation is identically zero.

Solution

Construct the required geometry and find symbolic expressions for d, r and R.

In[1]: Clear@a, bD;
P1 = Point2D@0, 0D;
P2 = Point2D@1, 0D;
P3 = Point2D@a, bD;
T = Triangle2D@P1, P2, P3D;
Ci = Circle2D@T, Inscribed2DD;
Cc = Circle2D@T, Circumscribed2DD;
8P, r< = 8Point2D@CiD, Radius2D@CiD<;
8Q, R< = 8Point2D@CcD, Radius2D@CcD<;
d = Distance2D@P, QD;

829

830 trieuler.nb

In this step we take a slight diversion to show that b2 +
(
a − a2 − b2

)2
= A2B2. We will use

this substitution in a subsequent step. Variables A and B are the lengths of the sides of the
triangle, that is a2 + b2 = A2 and (1 − a)2 + b2 = B2.

In[2]: Clear@A, BD;
Factor@b^2 + Ha − a^2 − b^2L^2D êê. 8
1 − 2∗a + a^2 −> Ha − 1L^2,
H−1 + aL^2 + b^2 −> B^2,

a^2 + b^2 −> A^2<

Out[2] A2 B2

The expression d2 − (R2 − 2rR
)

should be zero if the equation d2 = R2 − 2rR is true, so we
will apply a series of simplifications to show that the expression is identically zero. Notice
throughout expressions of the form

√
Z2 = Z whenever Z is known to be positive.

In[3]: e1 = d^2 − HR^2 − 2∗r∗RL êê. 8
a^2 + b^2 −> A^2,

1 − 2 a + a^2 + b^2 −> H1 − aL^2 + b^2,

H1 − aL^2 + b^2 −> B^2,

Sqrt@A^2D −> A,

Sqrt@B^2D −> B,

b^2 + Ha − a^2 − b^2L^2 −> A^2∗B^2<

Out[3] −
A2 B2
���������������
4 b2

+ J−
1
�����
2

+
a + A

������������������������
1 + A + B

N
2

+ J a − a2 − b2
�����������������������������

2 b
+

b
������������������������
1 + A + B

N
2

+

è!!!
2 $%%%%%%%%%%%%A2 B2

���������������
b2

$%%%H−1 + 1����2 H1 + A + BLL H−A + 1����2 H1 + A + BLL H−B + 1����2 H1 + A + BLL
��

1 + A + B

Make substitutions to remove some of the radicals. S is the semi-perimeter of the triangle,
S = (1 + A + B) /2.

In[4]: Clear@SD;
e2 = e1 êê. 8
1 + A + B −> 2∗S,

Sqrt@A^2∗B^2êb^2D −> A ∗Bêb<

Out[4] −
A2 B2
���������������
4 b2

+ J−
1
�����
2

+
a + A
���������������
2 S

N
2

+ J a − a2 − b2
�����������������������������

2 b
+

b
����������
2 S

N
2

+
A B "###############################H−1+SL H−A+SL H−B+SL���S���

b

This is the crucial substitution. Using Heron’s formula for the area of a triangle,

Area =
√

S(S − A) (S − B) (S − C)

(C = 1 in this case) and the standard formula for area,

Area = base × height = 1 × b/2 = b/2,

we can eliminate the remaining radical.

trieuler.nb 831

In[5]: e3 = e2 êê. 8
Sqrt@H−1 + SL H−A + SL H−B + SL êSD −> Area1êS,
Area1 −> bê2<

Out[5] −
A2 B2
���������������
4 b2

+ J−
1
�����
2

+
a + A
���������������
2 S

N
2

+ J a − a2 − b2
�����������������������������

2 b
+

b
����������
2 S

N
2

+
A B
����������
2 S

If the expression is a fraction, we don’t care what value the denominator is, so long as the
numerator is zero.

In[6]: e4 = Numerator@Together@e3DD

Out[6] a2 b2 + 2 a A b2 + A2 b2 + b4 − 2 a2 b2 S − 2 A b2 S − 2 b4 S + 2 A b2 B S + a2 S2 − 2 a3 S2 +

a4 S2 + b2 S2 − 2 a b2 S2 + 2 a2 b2 S2 + b4 S2 − A2 B2 S2

Repeated expansions and substitutions confirm that the expression is zero and that the original
equation is an identity.

In[7]: FixedPoint@
HExpand@H# êê. 8A^2 −> a^2 + b^2,

B^2 −> H1 − aL^2 + b^2,

S −> H1 + A + BL ê2,
A^4 −> Ha^2 + b^2L^2<LDL&,

e4D

Out[7] 0

trirad.nb

Triangle Radii

Exploration

Prove that the radius, r, of a circle inscribed in a triangle is given by

r =
1
2

√
P

S

where S = s1 + s2 + s3, P = (−s1 + s2 + s3) (s1 − s2 + s3) (s1 + s2 − s3) and s1, s2 and s3

are the lengths of the triangle’s sides. Furthermore, prove that the radius, R, of the circle
circumscribing the triangle is given by

R =
s1s2s3√

PS
.

Approach

Construct a triangle with the given side lengths. Construct the associated inscribed and
circumscribed circles and examine the radius of these circles.

Solution

Construct the triangle with the given side lengths.

In[1]: Clear@s1, s2, s3, S, P, e1, e2D;
T = HTriangle2D@8s1, s2, s3<D êê FullSimplifyL êê.

8Sqrt@−e1_ ês_Symbol^2D :> Sqrt@−e1D ês<

Out[1] Triangle2DA80, 0<, 8s3, 0<,

9 −s12 + s22 + s32
���

2 s3
,

è!!!−Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L Hs1 + s2 + s3L
���

2 s3
=E

Construct the inscribed circle and compute its radius. Simplify the resulting expression using
appropriate substitutions.

833

834 trirad.nb

In[2]: HHRadius2D@Circle2D@T, Inscribed2DDD êê FullSimplifyL êê.
8Sqrt@s_Symbol^2D −> s< ê.
Sqrt@−e1_ êe2_D :> Sqrt@e1êFactor@−e2DDL êê.
8Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L −> −P,

s1 + s2 + s3 −> S<

Out[2]
"#####P����S��������������
2

Construct the circumscribed circle and compute its radius. Simplify the resulting expression
using appropriate substitutions.

In[3]: HRadius2D@Circle2D@T, Circumscribed2DDD êê FullSimplifyL êê.
8Sqrt@−s1^2∗s2^2∗s3^2êe1_D :> s1∗s2∗s3êSqrt@Factor@−e1DD,
−Hs1 − s2 − s3L Hs1 + s2 − s3L Hs1 − s2 + s3L Hs1 + s2 + s3L −> P∗S<

Out[3]
s1 s2 s3
�������������������������è!!!!!!P S

trisides.nb

Triangle Side Lengths from Altitudes

Exploration

Prove that the lengths of a triangle’s sides whose altitudes are of lengths h1, h2 and h3 are
given by

s1 =
2h1H1

H
, s2 =

2h2H2

H
and s3 =

2h3H3

H

where H1 = h2h3, H2 = h1h3 and H3 = h1h2, and

H =
√

(H1 + H2 − H3) (H1 − H2 + H3) (−H1 + H2 + H3) (H1 + H2 + H3).

Approach

Construct a triangle with the formulas given for the side lengths and show that the altitude
lengths are h1, h2 and h3.

Solution

Construct the triangle with the given side lengths.

In[1]: Clear@h1, h2, h3, H1, H2, H3, HD;
T = Triangle2D@2∗ 8h1∗H1^2, h2∗H2^2, h3∗H3^2< êHD êê FullSimplify

Out[1] Triangle2DA80, 0<, 9 2 h3 H32
������������������������

H
, 0=, 9 −h12 H14 + h22 H24 + h32 H34

���
H h3 H32

,

$%%%−
h14 H18 + Hh22 H24 − h32 H34L

2
− 2 h12 H14 Hh22 H24 + h32 H34L

��
H2 h32 H34

=E

Compute the lengths of each altitude (squared), which is the distance from the vertex to the
opposite side.

835

836 trisides.nb

In[2]: alts1 = 8
Distance2D@Point2D@T, 1D, Line2D@T, 2, 3DD^2,
Distance2D@Point2D@T, 2D, Line2D@T, 1, 3DD^2,
Distance2D@Point2D@T, 3D, Line2D@T, 1, 2DD^2< êê FullSimplify

Out[2] 9−
h14 H18 + Hh22 H24 − h32 H34L

2
− 2 h12 H14 Hh22 H24 + h32 H34L

��
H2 h12 H14

,

−
h14 H18 + Hh22 H24 − h32 H34L

2
− 2 h12 H14 Hh22 H24 + h32 H34L

��
H2 h22 H24

,

−
h14 H18 + Hh22 H24 − h32 H34L

2
− 2 h12 H14 Hh22 H24 + h32 H34L

��
H2 h32 H34

=

A few substitutions verify that the altitude lengths (squared) are the expected values.

In[3]: alts2 =

alts1 êê. 8H1 −> h2∗h3, H2 −> h1∗h3, H3 −> h1∗h2< êê FullSimplify êê Factor

Out[3] 9−
1

��������
H2

Hh12 Hh1 h2 − h1 h3 − h2 h3L

Hh1 h2 + h1 h3 − h2 h3L Hh1 h2 − h1 h3 + h2 h3L Hh1 h2 + h1 h3 + h2 h3LL,

−
1

��������
H2

Hh22 Hh1 h2 − h1 h3 − h2 h3L

Hh1 h2 + h1 h3 − h2 h3L Hh1 h2 − h1 h3 + h2 h3L Hh1 h2 + h1 h3 + h2 h3LL,

−
1

��������
H2

Hh32 H−h1 h2 − h1 h3 + h2 h3L Hh1 h2 − h1 h3 + h2 h3L H−h1 h2 + h1 h3 + h2 h3L

Hh1 h2 + h1 h3 + h2 h3LL=

In[4]: alts3 = alts2 êê. 8h2∗h3 −> H1, h1∗h3 −> H2, h1∗h2 −> H3<

Out[4] 9−
h12 H−H1 − H2 + H3L HH1 − H2 + H3L H−H1 + H2 + H3L HH1 + H2 + H3L
���

H2
,

−
h22 H−H1 − H2 + H3L HH1 − H2 + H3L H−H1 + H2 + H3L HH1 + H2 + H3L
���

H2
,

−
h32 HH1 − H2 − H3L HH1 + H2 − H3L HH1 − H2 + H3L HH1 + H2 + H3L
��

H2
=

In[5]: alts4 = alts3 ê. 8
H H1 − H2 − H3L HH1 + H2 − H3L H H1 − H2 + H3L HH1 + H2 + H3L −> −H^2,

H−H1 − H2 + H3L HH1 − H2 + H3L H−H1 + H2 + H3L HH1 + H2 + H3L −> −H^2<

Out[5] 8h12, h22, h32<

Part IX

Epilogue

Installation Instructions

To make full use of the files provided on the CD-ROM, two software applications need to be
installed on your computer: Adobe’s Acrobat Reader and Wolfram Research’s Mathematica.
Acrobat Reader is used to view and print the PDF (Portable Document Format) files on the
CD-ROM. The PDF files contain typeset text reproducing all the material in the book Ex-
ploring Analytic Geometry with Mathematica. Mathematica is used to view the notebook files
and execute the Descarta2D packages. If Mathematica is not available, Wolfram Research’s
MathReader application may be used to view the notebook files, although the Descarta2D

packages cannot be interactively executed using MathReader.

Installing Acrobat Reader and Viewing PDF Files

Acrobat Reader is a licensed product of Adobe Systems Incorporated. It is available as a
free download from Adobe’s web site, www.adobe.com. For Windows systems, a version of
Acrobat Reader is provided on the CD-ROM and may be installed by double-clicking the
ar302.exe file icon in the AcrobatReader folder. For other computer systems, you should
download the appropriate files from Adobe’s web site and follow the installation instructions
provided. Acrobat Reader may already be installed on your computer system since PDF files
are commonly used as a format for typeset files downloaded from the World Wide Web.

The entire typeset text of this book is stored on the CD-ROM in the Book folder. Double-
clicking any PDF file in the Book folder will cause Acrobat Reader to open the file and will
allow viewing or printing of the typeset text and illustrations. The PDF files can be read
directly off the CD-ROM using Acrobat Reader, or they can be copied to any convenient
location on your computer’s hard disk drive.

Installing Mathematica and Viewing Notebook Files

This book is designed around Mathematica, a product developed and licensed by Wolfram
Research Incorporated. To gain maximum benefit from the book and the files provided on the
CD-ROM, Mathematica should be installed on your computer. Information about licensing
Mathematica is available at Wolfram’s web site, www.wolfram.com. Instructions for installing

839

840 Installation Instructions

Mathematica are provided with Mathematica itself. Mathematica should be installed before
installing the Descarta2D files provided on the CD-ROM.

If Mathematica is not installed on your computer system, you can still view the contents
of the notebook files on the CD-ROM using Wolfram’s MathReader application (notebook
files have the extension .nb). MathReader is also a licensed product of Wolfram Research
Incorporated. It is available as a free download from Wolfram’s web site, www.wolfram.com.
For Windows systems, a version of MathReader is provided on the CD-ROM and may be
installed by double-clicking the Setupex.exe file icon in the MathReader folder on the CD-
ROM. If Mathematica is installed on your computer system, do not install the MathReader
software. Mathematica provides all the capabilities of MathReader.

By using Mathematica or MathReader you can view any notebook file directly off the
CD-ROM. However, it is recommended that you install the files in the folder Descarta2D as
described in the next section prior to viewing them. Generally, you will not be able to follow
the hyperlinks in the notebook files unless they are installed on your computer’s hard disk
drive as described in the next section.

Installing the Descarta2D Files

When Mathematica or MathReader is installed on your computer system, a directory structure
is created providing a standard location for installing applications such as Descarta2D. On a
Windows system the standard Mathematica installation creates a directory structure whose
path name is

c:\Program Files\Wolfram Research\Mathematica\3.0\AddOns\Applications\
Mathematica and MathReader will search this directory when trying to locate packages (.m
files) and notebook files (.nb files). In order to install Descarta2D and related documentation
so that Mathematica can find these files, copy the Descarta2D folder and all its contents from
the CD-ROM into the Applications folder of the directory path named above.

If you plan to use Descarta2D on a different operating system, refer to the installation in-
structions for your Mathematica system to determine the name of the proper directory path for
add-on applications. This information is also provided in Wolfram’s Mathematica book. For
example, the high-level directory name for Mathematica on a Macintosh is Mathematica 3.0.
On a Unix or NeXT system the high-level directory name is /usr/local/Mathematica3.0.

Mathematica Help Browser

The interactive Front End program that serves as the user interface for Mathematica provides
a Help Browser for accessing Mathematica documentation (in fact, the entire text of Stephen
Wolfram’s Mathematica book can be accessed using the Help Browser). The Help Browser is
activated by clicking the Help>Help... item on the Front End’s menu bar. The Descarta2D

documentation and this entire book can also be linked into the Mathematica Help Browser.
This is accomplished by clicking the Help>Rebuild Help Index... item on the Front End’s

Installation Instructions 841

menu bar after the Descarta2D folder has been copied into the proper folder. After the help
index is rebuilt, the Descarta2D documentation and the notebooks representing this book can
be accessed by clicking the Add-ons radio button on the Help Browser dialog. The high-level
category name that opens access to the Descarta2D categories is Descarta2D.

Package Loading

In order to initialize the Descarta2D software in any Mathematica session enter the command
<<Descarta2D‘. This command will load the initialization file for Descarta2D and will enable
Mathematica to find and load any other Descarta2D package as it is needed.

Bibliography

[1] Bowyer, Adrian and John Woodwark, A Programmer’s Geometry, First Edition, Butter-
worths, London, UK, 1983.

[2] Bowyer, Adrian and John Woodwark, Introduction to Computing with Geometry, First
Edition, Information Geometers Ltd., Winchester, UK, 1993.

[3] Copland, Sr., Arthur H., Geometry, Algebra, and Trigonometry by Vector Methods, First
Edition, The Macmillan Company, New York, 1962.

[4] Dörrie, Heinrich, 100 Great Problems of Elementary Mathematics, Second Edition, Dover
Publications, Inc., New York, 1965.

[5] Eisenhart, Luther Pfahler, Coordinate Geometry, Dover Edition, Dover Publications, Inc.,
New York, 1960.

[6] Gasson, Peter C., Geometry of Spatial Forms, Revised Edition, Ellis Horwood Limited,
Chichester, West Sussex, England, 1983.

[7] Gellert W., H. Küster, M. Hellwich, H. Kästner (editors), The VNR Concise Encyclopedia
of Mathematics, First Edition, Van Nostrand Reinhold Company, New York, 1977.

[8] Gray, Alfred, Modern Differential Geometry of Curves and Surfaces, First Edition, CRC
Press, Boca Raton, Florida, 1993.

[9] Gullberg, Jan, Mathematics From the Birth of Numbers, First Edition, W. W. Norton &
Company, New York, 1997.

[10] Itô, Kiyosi (editor), Encyclopedic Dictionary of Mathematics, Second Edition, The MIT
Press, Cambridge, Massachusetts, 1987.

[11] Lee, Eugene T. Y., Gerald E. Farin (editor), Geometric Modeling: Algorithms and New
Trends, First Edition, Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, 1987.

[12] Lehmann, Charles H., Analytic Geometry, Third Printing, John Wiley & Sons, Inc., New
York, 1947.

843

844 Bibliography

[13] Meserve, Bruce E., Fundamental Concepts of Geometry, First Edition, Dover Publica-
tions, Inc., New York, 1983.

[14] Mortenson, Michael E., Geometric Modeling, First Edition, John Wiley & Sons, New
York, 1985.

[15] Oakley, C. O., An Outline of Analytic Geometry, First Edition, Barnes & Nobel, Inc.,
New York, 1949.

[16] Ogilvy, C. Stanley, Excursions in Geometry, First Edition, Oxford University Press, New
York, 1969.

[17] Peck, William G., An Treatise on Analytical Geometry, First Edition, A. S. Barnes &
Company, New York and Chicago, 1873.

[18] Pedoe, Dan, Geometry: A Comprehensive Course, Dover Edition, Dover Publications,
Inc., New York, 1988.

[19] Salmon, George, A Treatise on Conic Sections, Sixth Edition, Chelsea Publishing Com-
pany, New York, date unknown.

[20] Selby, Samuel M. (editor), Standard Mathematical Tables, Nineteenth Edition, The Chem-
ical Rubber Co., Cleveland, Ohio, 1971.

[21] Smith, Charles, An Elementary Treatise on Conic Sections by the Methods of Coordinate
Geometry, New Edition, Macmillan and Co., Limited, London, 1927.

[22] Smith, Edward S. and Meyer Salkover and Howard K. Justice, Analytic Geometry, Fifth
Edition, John Wiley & Sons, Inc., London, 1943.

[23] Smith, Percey F. and Arthur S. Gale and John H. Neelley, New Analytic Geometry,
Revised Edition, Ginn and Company, Boston, 1928.

[24] Thomas, Jr., George B., Calculus and Analytic Geometry, Alternate Edition, Addison-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1972.

[25] Underwood, R. S. and Fred W. Sparks, Analytic Geometry, First Edition, Houghton
Mifflin Company, Boston, 1948.

[26] Weisstein, Eric W., CRC Concise Encyclopedia of Mathematics, First Edition, CRC Press
LLC, Boca Raton, Florida, 1999.

[27] Wells, David, The Penguin Dictionary of Curious and Interesting Geometry, First Edi-
tion, Penguin Books, London, England, 1991.

[28] Wolfram, Stephen, Mathematica, A System for Doing Mathematics by Computer, Second
Edition, Addison-Wesley Publishing Company, Inc., Redwood City, California, 1991.

Index

[Index Usage: see footnote 1]

altitude
triangle, 128–130

angle
arc end angle, 105
arc start angle, 105
bulge factor arc, 109
triangle, 117
two lines, 55

angle bisector
triangle, 128, 130
two lines, 73

Angle2D
Arc2D, 389
Ellipse2D, 423
example, 53, 56, 117, 138
help, 341
Hyperbola2D, 448
Line2D, 460
Parabola2D, 481
Triangle2D, 547
usage, 457

Apex2D
ConicArc2D, 419
help, 341
usage, 415

1
Index Usage: The keyword index is set up

with main and sub-entries. If a keyword cannot
be found as a main entry, one should try to find
it as a sub-entry of some more general term. Page
numbers in normal times font refer to sections in
the main body of the book. Page numbers in sans
serif font refer to entries in the Descarta2D Com-
mand Browser. Page numbers in slanted font are
references in the Descarta2D Packages.

arc
arc length, 232
bulge factor, 107
center point, 105
centroid, 115
complement, 108
definition, 105
description, 328
end angle, 105
end point, 105
midpoint, 115
overview, 15
parametric equations, 111, 112
radius, 105
ray points, 113
reflection, 108
sector, 106
sector area, 241
segment area, 242
semicircle, 105
span, 105, 232
start angle, 105
start point, 105
three–point, 110

arc length
approximate, 236
arc, 232
conic arc, 236
definition, 229
ellipse, 234
general curve, 233
hyperbola, 234
overview, 20
parabola, 234, 236

845

846 Index

summary of functions, 236
Arc2D

Angle2D, 389
ArcLength2D, 396
Area2D, 399
Bulge2D, 390
Circle2D, 391
Complement2D, 391
construction, 392, 393
description, 328
evaluation, 388
example, 106, 108, 110–113
graphics, 388
help, 342
IsValid2D, 389
Point2D, 391
PrimaryAngleRange2D, 390
Radius2D, 390
Reflect2D, 390
representation, 387
Rotate2D, 390
Scale2D, 391
Span2D, 395
Translate2D, 391
usage, 387
validation, 388, 389

ArcLength2D
Arc2D, 396
Circle2D, 396
ConicArc2D, 396
Ellipse2D, 397
example, 229, 230, 232–235
help, 342
Hyperbola2D, 397
Line2D, 397
Parabola2D, 398
Segment2D, 397
usage, 395

area
arc sector, 241
arc segment, 242
circle, 240, 251
conic arc, 248, 250, 251

definition, 237
ellipse, 242
ellipse sector, 244
ellipse segment, 243
Heron’s formula, 238, 249
hyperbola, 250
hyperbola sector, 245
hyperbola segment, 245
overview, 20
parabola segment, 246
polygon, 231
rectangle, 237
square, 237
summary of functions, 249
triangle, 237, 238, 249–251

Area2D
Arc2D, 399
Circle2D, 400
ConicArc2D, 400, 401
Ellipse2D, 401
example, 240, 242, 243, 248
help, 342
Triangle2D, 403
usage, 399

AskCurveLength2D
command, 513
help, 343
usage, 511

asymptote
curve, 47
hyperbola, 159

Asymptotes2D
help, 343
Hyperbola2D, 413
usage, 411

biarc
carrier circles, 311
configuration parameters, 311
defining constants, 313
definition, 311
entry direction, 114
exit direction, 114
knot circle, 314, 316

Index 847

knot point, 314
knot point, incenter, 322
number of solutions, 313
radii ratio, 313
radius sign constant, 311

bulge factor
arc, 107
associated angles, 109
complement arc, 108
reflected arc, 108
semicircle, 107

Bulge2D
Arc2D, 390
help, 343
usage, 387

CD-ROM
organization, 4

center
arc, 105
circle, 85
ellipse, 146
hyperbola, 159

centroid
arc, 115
triangle, 120, 129

Centroid2D
example, 121
help, 343
usage, 545

cevian
triangle, 128, 130

ChopImaginary2D
computation, 477
help, 343
usage, 477

chord
parameters, 235

circle
Apollonius, 102
area, 240, 251
biarc carrier, 311
biarc knot circle, 314, 316
Carlyle, 103

Castillon, 103
center, 85
circumference, 231
circumscribed, 122
coaxial, 96
coincident, 87
concentric, 87
definition, 85
description, 329
from diameter, 89
from quadratic, 178
general equation, 88
inscribed, 123, 128
overview, 14
parametric equations, 99
pencil, 96
polar equation, 101
radical axis, 97, 102, 103
radical center, 98, 101
radius, 85
rational parameterization, 100
reciprocal, 310
standard equation, 85
tangent, 283, 285–288, 290, 291
tangent line, 255, 264, 280
three points, 90, 102

Circle2D
Arc2D, 391
ArcLength2D, 396
Area2D, 400
Circumference2D, 396
construction, 409, 410, 509
description, 329
evaluation, 406
example, 85, 88, 90, 96, 99, 100, 106,

122, 123
graphics, 406, 497
help, 343
IsValid2D, 406
Parameters2D, 455
Pencil2D, 486
Point2D, 408
Quadratic2D, 405, 409

848 Index

radical axis, 408
Radius2D, 407
Reflect2D, 407
representation, 405
Rotate2D, 407
Scale2D, 407
SectorArea2D, 400
SegmentArea2D, 400
Translate2D, 408
Triangle2D, 553
usage, 405
validation, 406

circumference
circle, 231
ellipse, 234

Circumference2D
Circle2D, 396
Ellipse2D, 397
example, 232
help, 344
usage, 395

Circumscribed2D
example, 122
help, 344
usage, 545

coaxial
circles, 96

coincident
circle, 87
line, 54

collinear
point, 36, 38, 58

complement
arc, 108

Complement2D
Arc2D, 391
help, 345
usage, 387

concentric
circle, 87

concurrent
line, 74

configuration parameters

biarc, 311
conic

center point, 184, 192
classification, 184
conic arc, 197
construction, 185
description, 330
intersection points, 189
MedialEquations2D, 473
pencil, 189
polar equation, 192
tangent, 293, 296, 298, 301
tangent line, 266, 271, 273
tangent line segment, 272
translate, 191
vertex equation, 186

conic arc
arc length, 236
area, 248, 250
center point, 200
conic, 197
defining points, 193
definition, 193
equation, 194
parametric equations, 198, 200
projective discriminant, 193, 196
rho, ρ, 193, 196
shoulder point, 200

ConicArc2D
Apex2D, 419
ArcLength2D, 396
Area2D, 400, 401
description, 330
evaluation, 416
example, 194, 198, 199
graphics, 416
help, 345
IsValid2D, 417
Loci2D, 419
Point2D, 419
Quadratic2D, 416
Reflect2D, 418
representation, 415

Index 849

Rho2D, 417
Rotate2D, 418
Scale2D, 418
Span2D, 396
Translate2D, 418
usage, 415
validation, 416, 417

conjugate
hyperbola, 164

conjugate axis
hyperbola, 160

Conjugate2D
example, 165
help, 345
Hyperbola2D, 450
usage, 445

coordinates
rectangular, 28

Coordinates2D
help, 345
Point2D, 490
usage, 489

coords
XCoordinate2D, 491
YCoordinate2D, 491

Cramer’s Rule
three equations, 49
two equations, 49

curve
approximated by polygon, 231
asymptotes, 47
definition, 46
extent, 47
intercepts, 47
symmetry, 47

CurveLength2D
help, 345
option, 512
usage, 511

CurveLimits2D
command, 513
help, 346
usage, 511

Directrices2D
Ellipse2D, 413
example, 140, 151
help, 346
Hyperbola2D, 413
Parabola2D, 413
usage, 411

directrix
ellipse, 145
hyperbola, 159
parabola, 135

distance
between points, 30
line, 82
parallel lines, 81
point to circle, 95
point to line, 68
point to quadratic, 281
polar coordinates, 38

Distance2D
example, 32, 69, 95
help, 346
point to circle, 407
point to line, 460
two coordinates, 491
two points, 491
usage, 489

eccentricity
ellipse, 145
hyperbola, 159, 173
parabola, 135

Eccentricity2D
Ellipse2D, 412
example, 140, 165
help, 346
Hyperbola2D, 412
Parabola2D, 412
usage, 411

ellipse
apoapsis, 157
arc length, 234
area, 242
center, 146

850 Index

circumference, 234
construction, 151, 153
definition, 145
description, 331
directrix, 145
eccentricity, 145
focal chord, 146
focal chord length, 156
focus, 145
from quadratic, 180
general equation, 147
latus rectum, 146
major axis, 146
minor axis, 146
overview, 18
parametric equations, 155
periapsis, 157
polar equation, 157
rational equations, 155
sector area, 244
segment area, 243
similar, 157
standard equation, 147
tangent line, 274, 281
vertex equation, 187
vertices, 146

Ellipse2D
Angle2D, 423
ArcLength2D, 397
Area2D, 401
Circumference2D, 397
construction, 425, 426
description, 331
Directrices2D, 413
Eccentricity2D, 412
equation, 422
evaluation, 422
example, 146, 152–155
FocalChords2D, 414
Foci2D, 412
graphics, 422
help, 346
IsValid2D, 423

Line2D, 425
Line2D, polar, 425
Parameters2D, 455
Point2D, 424
Point2D, pole, 425
Reflect2D, 424
representation, 421
Rotate2D, 424
Scale2D, 424
SectorArea2D, 401
SegmentArea2D, 401
SemiMajorAxis2D, 423
SemiMinorAxis2D, 423
Translate2D, 424
usage, 421
validation, 422, 423
Vertices2D, 412

entry direction
biarc, 114

equation
circle, 85, 88
conic arc, 194
conic, vertex, 186
definition, 41
graph, 41
hyperbola, 161, 166
locus, 46, 47
overview, 10
parabola, 135, 136, 139
parametric, 47
polar, 47, 49
rectangular, 47
reflect, 224
Reflect2D, 540
root, 41
rotate, 220
Rotate2D, 541
scale, 222
Scale2D, 542
solution, 41
solving, 42
TangentEquation2D, 532
translate, 218

Index 851

Translate2D, 543
Equation2D

example, 41, 76
help, 347
Line2D, 428
Quadratic2D, 428
usage, 427

exit direction
biarc, 114

Exploration
apollon.nb, 102, 557
arccent.nb, 115, 559
arcentry.nb, 114, 561
arcexit.nb, 114, 563
archimed.nb, 289, 565
arcmidpt.nb, 115, 567
caarclen.nb, 236, 569
caarea1.nb, 250, 571
caarea2.nb, 251, 573
cacenter.nb, 200, 575
cacircle.nb, 199, 577
camedian.nb, 200, 579
caparam.nb, 200, 581
carlyle.nb, 103, 583
castill.nb, 103, 585
catnln.nb, 200, 589
center.nb, 192, 591
chdlen.nb, 101, 593
cir3pts.nb, 102, 595
circarea.nb, 251, 597
cirptmid.nb, 102, 599
cramer2.nb, 49, 601
cramer3.nb, 49, 603
deter.nb, 48, 605
elfocdir.nb, 157, 607
elimlin.nb, 191, 609
elimxy1.nb, 190, 611
elimxy2.nb, 191, 613
elimxy3.nb, 191, 615
elldist.nb, 157, 617
ellfd.nb, 157, 619
ellips2a.nb, 156, 623
elllen.nb, 156, 625

ellrad.nb, 157, 627
ellsim.nb, 157, 629
ellslp.nb, 281, 631
eqarea.nb, 251, 633
eyeball.nb, 280, 637
gergonne.nb, 129, 639
heron.nb, 249, 641
hyp2a.nb, 173, 643
hyp4pts.nb, 310, 645
hyparea.nb, 250, 647
hypeccen.nb, 173, 651
hypfd.nb, 173, 653
hypinv.nb, 173, 657
hyplen.nb, 173, 659
hypslp.nb, 281, 661
hyptrig.nb, 173, 663
intrsct.nb, 81, 665
inverse.nb, 227, 667
johnson.nb, 101, 671
knotin.nb, 322, 675
lndet.nb, 82, 677
lndist.nb, 82, 679
lnlndist.nb, 82, 681
lnquad.nb, 280, 685
lnsdst.nb, 81, 687
lnsegint.nb, 83, 689
lnsegpt.nb, 82, 691
lnsperp.nb, 82, 693
lntancir.nb, 280, 695
lntancon.nb, 281, 697
mdcircir.nb, 213, 699
mdlncir.nb, 213, 703
mdlnln.nb, 213, 705
mdptcir.nb, 212, 707
mdptln.nb, 212, 711
mdptpt.nb, 212, 713
mdtype.nb, 214, 715
monge.nb, 281, 717
narclen.nb, 236, 719
normal.nb, 281, 721
pb3pts.nb, 143, 723
pb4pts.nb, 310, 725
pbang.nb, 144, 727

852 Index

pbarch.nb, 143, 729
pbarclen.nb, 236, 731
pbdet.nb, 143, 733
pbfocchd.nb, 142, 735
pbslp.nb, 280, 737
pbtancir.nb, 144, 739
pbtnlns.nb, 280, 743
polarcir.nb, 101, 745
polarcol.nb, 38, 747
polarcon.nb, 192, 749
polardis.nb, 38, 751
polarell.nb, 157, 753
polareqn.nb, 49, 755
polarhyp.nb, 173, 757
polarpb.nb, 144, 759
polarunq.nb, 38, 761
pquad.nb, 192, 763
ptscol.nb, 37, 765
radaxis.nb, 102, 767
radcntr.nb, 101, 769
raratio.nb, 103, 771
reccir.nb, 310, 773
recptln.nb, 310, 775
recquad.nb, 310, 777
reflctpt.nb, 226, 779
rtangcir.nb, 101, 781
rttricir.nb, 128, 783
shoulder.nb, 200, 785
stewart.nb, 38, 787
tancir1.nb, 290, 789
tancir2.nb, 290, 791
tancir3.nb, 290, 793
tancir4.nb, 291, 795
tancir5.nb, 291, 797
tancirpt.nb, 281, 799
tetra.nb, 251, 801
tncirtri.nb, 291, 803
tnlncir.nb, 102, 807
triallen.nb, 129, 809
trialt.nb, 129, 811
triarea.nb, 249, 813
triarlns.nb, 250, 815
tricent.nb, 129, 817

tricev.nb, 130, 819
triconn.nb, 129, 823
tridist.nb, 38, 827
trieuler.nb, 128, 829
trirad.nb, 130, 833
trisides.nb, 130, 835

focal chord
ellipse, 146
hyperbola, 159
parabola, 135

FocalChords2D
Ellipse2D, 414
help, 347
Hyperbola2D, 414
Parabola2D, 414
usage, 411

FocalLength2D
help, 347
Parabola2D, 481
usage, 479

Foci2D
Ellipse2D, 412
example, 140, 151
help, 347
Hyperbola2D, 412
Parabola2D, 412
usage, 411

focus
ellipse, 145
hyperbola, 159
parabola, 135

FullSimplify
Line2D, 460
Quadratic2D, 499

function
definition, 39
graph, 46
multiple-valued, 39
periodic, 39
real-valued, 39

Gergonne Point
of a triangle, 129

Index 853

Heron’s formula
triangle area, 238, 249

horizontal
line, 61

hyperbola
arc length, 234
area, 250
asymptote, 159
center, 159
conjugate, 164
conjugate axis, 160
construction, 167–169, 310
definition, 159
description, 332
directrix, 159
eccentricity, 159, 173
equilateral, 166, 310
focal chord, 159
focal chord length, 173
focus, 159
from quadratic, 180
general equation, 161
latus rectum, 159
overview, 19
parametric equations, 170, 173
polar equation, 173
rational equations, 172
rectangular, 166
sector area, 245
segment area, 245
standard equation, 161, 166
tangent line, 277, 281
transverse axis, 159
vertex equation, 187
vertices, 159

Hyperbola2D
Angle2D, 448
ArcLength2D, 397
Asymptotes2D, 413
Conjugate2D, 450
construction, 450, 451
description, 332
Directrices2D, 413

Eccentricity2D, 412
evaluation, 446
example, 160, 164, 168–171
FocalChords2D, 414
Foci2D, 412
graphics, 446
help, 347
IsValid2D, 447
Line2D, 449
Line2D, polar, 450
Parameters2D, 456
Point2D, 449
Point2D, pole, 449
Quadratic2D, 446
Reflect2D, 448
representation, 445
Rotate2D, 448
Scale2D, 449
SectorArea2D, 402
SegmentArea2D, 402
SemiConjugateAxis2D, 448
SemiTransverseAxis2D, 448
Translate2D, 449
usage, 445
validation, 447
Vertices2D, 413

inclination
line, 53

Inscribed2D
example, 123
help, 348
usage, 545

installation
Acrobat Reader, 839
Descarta2D, 840
Help Browser, 840
Mathematica, 839
MathReader, 839

intersection
line and circle, 91
line and conic, 189
two circles, 92
two conics, 189

854 Index

two line segments, 82, 83
two lines, 69, 81

inversion
transformation, 227

Is2D
definition, 472
help, 348
usage, 471

IsApproximate2D
help, 348
query, 431
usage, 429

IsCoincident2D
circles, 439
coordinates, 439
example, 87
help, 348
lines, 439
list of objects, 440
points, 439
quadratics, 439
usage, 437

IsCollinear2D
example, 37
help, 349
list of points, 440
points, 440
usage, 437

IsComplex2D
help, 349
query, 431
usage, 429

IsConcentric2D
circles, 440
example, 87
help, 349
list of circles, 440
usage, 437

IsConcurrent2D
example, 75
help, 349
lines, 441
list of lines, 441

usage, 437
IsDisplay2D

default, 512
help, 349
usage, 511

IsNegative2D
help, 350
query, 434
usage, 429

IsNumeric2D
help, 350
query, 432
usage, 429

IsObject2D
usage, 471

IsOn2D
example, 52, 86, 256
help, 350
point on circle, 441
point on line, 441
point on quadratic, 441
usage, 437

IsParallel2D
example, 55
help, 350
lines, 442
list of lines, 442
usage, 437

IsPerpendicular2D
example, 55
help, 351
lines, 442
list of lines, 443
usage, 437

IsReal2D
help, 351
query, 433
usage, 429

IsScalar2D
help, 351
query, 433
usage, 429

IsScalarPair2D

Index 855

help, 351
query, 434
usage, 429

IsTangent2D
help, 351
line and circle, 443
line and quadratic, 443
two circles, 443
usage, 437

IsTinyImaginary2D
help, 352
query, 434
usage, 429

IsTripleParallel2D
help, 352
lines, 442
list of lines, 442
usage, 437

IsValid2D
Arc2D, 389
Circle2D, 406
ConicArc2D, 417
default, 472
Ellipse2D, 423
help, 352
Hyperbola2D, 447
Line2D, 459
Parabola2D, 481
Point2D, 490
Quadratic2D, 498
Segment2D, 506
Triangle2D, 546
usage, 471

IsZero2D
help, 352
query, 432, 435
usage, 429

IsZeroOrNegative2D
help, 353
query, 435, 436
usage, 429

knot circle
biarc, 314, 316

center, 317
knot point

biarc, 314, 318

latus rectum
ellipse, 146
hyperbola, 159
parabola, 135

length
chord, intersecting circles, 101
line, 229
line segment, 230

Length2D
example, 230
help, 353
Segment2D, 507
usage, 505

line
angle, 55
angle bisectors, 73
coincident, 54
concurrent, 74
definition, 51
description, 333
determinant form, 82
distance, 82
from quadratic, 176, 177
horizontal, 61
inclination, 53
intercept form, 64
length, 229
normal form, 65
offset from a line, 68
overview, 12
parallel, 54, 60
parametric equations, 78
pencil, 75
perpendicular, 54, 60, 72, 82
perpendicular form, 65
point–slope form, 58
quadratic normal, 280
reciprocal, 310
slope, 53
slope–intercept form, 62

856 Index

two–point form, 56
vertical, 61

line segment
definition, 51
description, 335
end point, 51
length, 230
overview, 13
parametric equations, 80
slope, 53
start point, 51

Line2D
Angle2D, 460
ArcLength2D, 397
construction, 462, 463, 508
description, 333
Ellipse2D, 425
equation, 458
Equation2D, 428
evaluation, 458
example, 40, 57, 59, 60, 62, 64, 66, 68,

72, 76, 77, 79, 98, 119, 140, 267,
270

FullSimplify, 460
graphics, 458
help, 353
Hyperbola2D, 449
IsValid2D, 459
normalize, 461
offset, 462
Parabola2D, 483
Parallel2D, 463
Pencil2D, 485
Perpendicular2D, 463
polar (circle), 408
Polynomial2D, 428
radical axis, 408
Reflect2D, 461
representation, 458
Rotate2D, 461
Scale2D, 461
Simplify, 460
slope, 462

Slope2D, 460
Translate2D, 461
Triangle2D, 552
usage, 457
validation, 459

Line2D, polar
Ellipse2D, 425
Hyperbola2D, 450
Parabola2D, 483
Quadratic2D, 463

Loci2D
ConicArc2D, 419
construction, 465, 468
example, 88, 139, 150, 151, 165, 167,

176–180, 182, 183, 188, 195, 297
help, 354
usage, 465

locus
equation, 46, 47

major axis
ellipse, 146

MakePrimitives2D
command, 513
help, 355
usage, 511

MaxSeconds2D
help, 355
option, 516
usage, 515

medial curve
circle–circle, 210, 213
definition, 201
line–circle, 207, 213
line–line, 206, 213
point–circle, 204, 212
point–line, 202, 212
point–point, 201, 212

MedialEquations2D
conic, 473
help, 355
usage, 473

MedialLoci2D
circle–circle, 475

Index 857

construction, 474
example, 73, 202–205, 207–209, 211
help, 355
line–circle, 475
line–line, 475
point–circle, 474
point–line, 474
point–point, 474
usage, 473

median
triangle, 120, 128, 130

midpoint
arc, 115
Point2D, 493, 508

minor axis
ellipse, 146

Monge’s Theorem
tangent lines, 281

names
general conventions, 326

normal
quadratic, 281

normalize
Line2D, 461
Quadratic2D, 500

numbers
complex, 27
conjugate complex, 27
imaginary, 27
integers, 27
rational, 27
real, 27

ObjectNames2D
definition, 472
help, 355

offset
Line2D, 462
Point2D, 493

orthocenter
triangle, 129

package

D2DArc2D, 387
D2DArcLength2D, 395
D2DArea2D, 399
D2DCircle2D, 405
D2DConic2D, 411
D2DConicArc2D, 415
D2DEllipse2D, 421
D2DEquations2D, 427
D2DExpressions2D, 429
D2DGeometry2D, 437
D2DHyperbola2D, 445
D2DIntersect2D, 453
D2DLine2D, 457
D2DLoci2D, 465
D2DMaster2D, 469
D2DMedial2D, 473
D2DNumbers2D, 477
D2DParabola2D, 479
D2DPencil2D, 485
D2DPoint2D, 489
D2DQuadratic2D, 497
D2DSegment2D, 505
D2DSketch2D, 511
D2DSolve2D, 515
D2DTangentCircles2D, 519
D2DTangentConics2D, 523
D2DTangentLines2D, 531
D2DTangentPoints2D, 537
D2DTransform2D, 539
D2DTriangle2D, 545

parabola
arc length, 234, 236
construction, 140, 143, 310
definition, 135
description, 334
directrix, 135
eccentricity, 135
focal chord, 135
focal chord length, 142
focus, 135
from quadratic, 178, 179
general equation, 135
latus rectum, 135

858 Index

overview, 17
parametric equations, 141
polar equation, 144
segment area, 246
standard equation, 136, 139
tangent line, 273, 280
vertex, 135
vertex equation, 186

Parabola2D
Angle2D, 481
ArcLength2D, 398
construction, 483
description, 334
Directrices2D, 413
Eccentricity2D, 412
equation, 480
evaluation, 480
example, 137, 138, 141, 142
FocalChords2D, 414
FocalLength2D, 481
Foci2D, 412
graphics, 480
help, 355
IsValid2D, 481
Line2D, 483
Line2D, polar, 483
Parameters2D, 456
Point2D, 482
Point2D, pole, 482
Reflect2D, 481
representation, 479
Rotate2D, 482
Scale2D, 482
SegmentArea2D, 402
Translate2D, 482
usage, 479
validation, 480, 481
Vertices2D, 413

parallel
line, 54, 60
tangent line, 261, 279

Parallel2D
example, 60, 262, 279

help, 356
Line2D, 463
usage, 457

parameters
chord, 235

Parameters2D
Circle2D, 455
Ellipse2D, 455
example, 235
help, 356
Hyperbola2D, 456
Parabola2D, 456
usage, 453

parametric equations
arc, 111, 112
circle, 99
conic arc, 198, 200
definition, 47
ellipse, 155
hyperbola, 170
line, 78
line segment, 80
parabola, 141
quadratic, 192

pencil
circle, 96
conic, 189
line, 75
quadratic, 294

Pencil2D
Circle2D, 486
example, 76, 77, 96
help, 356
Line2D, 485
Quadratic2D, 486, 487
usage, 485

perimeter
polygon, 231
triangle, 230

Perimeter2D
example, 230
help, 356
Triangle2D, 398

Index 859

usage, 395
periodic

function, 39
perpendicular

line, 54, 60, 82
tangent line, 262, 279

Perpendicular2D
example, 60, 72, 262, 279
help, 356
Line2D, 463
usage, 457

pi, π
definition, 232

point
arc center, 105
arc centroid, 115
arc end point, 105
arc start point, 105
biarc knot point, 314
center, conic, 192
center, quadratic, 192
circle, radical center, 98, 101
collinear, 36, 38, 58
conic center, 184
division point, 33
Gergonne point, 129
knot circle center, 317
midpoint, 33
midpoint of arc, 115
offset, 35
offset along line, 67
orthocenter, 129
overview, 9
polar coordinates, 38
projected on line, 70
reciprocal, 310
shoulder point, 200
tangency, 259, 281

Point2D
Arc2D, 391
Circle2D, 408
ConicArc2D, 419
construction, 492–494

Coordinates2D, 490
Ellipse2D, 424
example, 30, 33, 35, 36, 67, 70, 71, 117,

121, 151, 185, 197, 263, 268, 270,
274, 275, 277

graphics, 490
help, 356
Hyperbola2D, 449
IsValid2D, 490
midpoint, 493, 508
offset, 493
Parabola2D, 482
point of division, 493
quadratic center, 494
Quadratic2D, 491
Reflect2D, 492
representation, 490
Rotate2D, 492
Scale2D, 492
translate, 492
Triangle2D, 551, 552
usage, 489
validation, 490
XCoordinate2D, 491
YCoordinate2D, 491

Point2D, pole
Ellipse2D, 425
Hyperbola2D, 449
Parabola2D, 482
Quadratic2D, 494

Points2D
circle/circle, 454
curve/curve, 454
example, 92, 94, 190
help, 358
line/circle, 454
line/line, 453
usage, 453

polar
Circle2D, 408

polar (line)
definition, 269

polar equation

860 Index

circle, 101
conic, 192
ellipse, 157
hyperbola, 173
parabola, 144

pole
definition, 267

polygon
approximating a curve, 231
area, 231
perimeter, 231

polynomial
definition, 39
linear, 39
quadratic, 39

Polynomial2D
example, 40, 260
help, 358
Line2D, 428
Quadratic2D, 428
usage, 427

PrimaryAngle2D
computation, 478
help, 358
usage, 477

PrimaryAngleRange2D
Arc2D, 390
computation, 478
help, 358
usage, 477

projective discriminant
conic arc, 193, 196

quadratic
center point, 184, 192
circle, 178
classification, 184
description, 335
distance to a point, 281
ellipse, 180
hyperbola, 180
linear polynomial, 176
lines, 176, 177
normal, 280, 281

parabola, 178, 179
parametric equations, 192
pencil, 294
reciprocal, 310
rotation, 182, 190, 191
standard conic, 175
tangent, 293, 296, 298, 301
translation, 181

Quadratic2D
Circle2D, 405, 409
ConicArc2D, 416
construction, 500–502
description, 335
Equation2D, 428
example, 40, 88, 91, 186, 195, 260, 297
FullSimplify, 499
help, 358
IsValid2D, 498
Line2D, polar, 463
normalize, 500
Pencil2D, 486, 487
Point2D, 491
Point2D, pole, 494
Polynomial2D, 428
Reflect2D, 498
representation, 497
Rotate2D, 499
Scale2D, 499
Simplify, 499
Translate2D, 499
usage, 497
validation, 498
vertex equation, 502

query
IsApproximate2D, 431
IsComplex2D, 431
IsNegative2D, 434
IsNumeric2D, 432
IsReal2D, 433
IsScalar2D, 433
IsScalarPair2D, 434
IsTinyImaginary2D, 434
IsZero2D, 432, 435

Index 861

IsZeroOrNegative2D, 435, 436
query, object

Is2D, 336
IsDisplay2D, 336
IsValid2D, 336
ObjectNames2D, 336

radical axis
circle, 97, 102

radical center
circle, 98, 101

radius
arc, 105
biarc, radii ratio, 313
circle, 85

Radius2D
Arc2D, 390
Circle2D, 407
help, 359
usage, 405

rational equations
ellipse, 155
hyperbola, 172

rational parameterization
circle, 100

ray points
arc, 113

reciprocal
circle, 310
line, 310
point, 310
quadratic, 310

rectangle
area, 237

rectangular coordinates
abscissa, 28
ordinate, 28
origin, 28
quadrants, 28

reflect
definition, 224
equation, 224
in a point, 226

Reflect2D

Arc2D, 390
Circle2D, 407
ConicArc2D, 418
coordinates, 540
Ellipse2D, 424
equation, 540
example, 226
help, 360
Hyperbola2D, 448
Line2D, 461
list of objects, 540
Parabola2D, 481
Point2D, 492
Quadratic2D, 498
Segment2D, 507
Triangle2D, 550
usage, 539

ReflectAngle2D
command, 540
help, 360
usage, 539

rho, ρ
conic arc, 193, 196

Rho2D
ConicArc2D, 417
help, 360
usage, 415

rotate
definition, 219
equation, 220

rotate
list of objects, 541

Rotate2D
about origin, 541
Arc2D, 390
Circle2D, 407
ConicArc2D, 418
coordinates, 541
Ellipse2D, 424
equation, 541
example, 222
help, 360
Hyperbola2D, 448

862 Index

Line2D, 461
Parabola2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 507
Triangle2D, 551
usage, 539

scale
definition, 222
equation, 222

Scale2D
Arc2D, 391
Circle2D, 407
ConicArc2D, 418
coordinates, 542
Ellipse2D, 424
equation, 542
example, 223
from origin, 541
help, 361
Hyperbola2D, 449
Line2D, 461
list of objects, 542
Parabola2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 507
Triangle2D, 551
usage, 539

sector
arc, 106
arc, area of, 241
ellipse, area of, 244
hyperbola, area of, 245, 250

SectorArea2D
Circle2D, 400
Ellipse2D, 401
example, 242, 245, 246
help, 361
Hyperbola2D, 402
usage, 399

segment
arc, area of, 242

ellipse, area of, 243
hyperbola, area of, 245, 250
parabola, area of, 246

Segment2D
ArcLength2D, 397
construction, 508
description, 335
evaluation, 505
example, 80, 119
graphics, 506
help, 361
IsValid2D, 506
Length2D, 507
Reflect2D, 507
representation, 505
Rotate2D, 507
Scale2D, 507
Slope2D, 507
Translate2D, 508
Triangle2D, 552
usage, 505
validation, 506

SegmentArea2D
Circle2D, 400
Ellipse2D, 401
example, 244, 246, 247
help, 361
Hyperbola2D, 402
Parabola2D, 402
usage, 399

semicircle
definition, 105
inscribed angle, 101

SemiConjugateAxis2D
help, 362
Hyperbola2D, 448
usage, 445

SemiMajorAxis2D
Ellipse2D, 423
example, 151
help, 362
usage, 421

SemiMinorAxis2D

Index 863

Ellipse2D, 423
example, 151
help, 362
usage, 421

SemiTransverseAxis2D
help, 362
Hyperbola2D, 448
usage, 445

SetDisplay2D
command, 512
help, 362
usage, 511

Simplify
Line2D, 460
Quadratic2D, 499

SimplifyCoefficients2D
function, 427
help, 362
usage, 427

Sketch2D
command, 513
example, 7, 30, 51
help, 362
usage, 511

slope
line, 53
line segment, 53
Line2D, 462

Slope2D
example, 53
help, 363
Line2D, 460
Segment2D, 507
usage, 457

Solve2D
command, 516
help, 363
usage, 515

SolveTriangle2D
example, 126, 127
help, 363
usage, 545

span

arc, 105, 232
Span2D

Arc2D, 395
ConicArc2D, 396
example, 233
help, 363
usage, 395

square
area, 237

Stewart’s Theorem
triangle, 38

tangent
Archimedes’ circles, 289
circle, 283, 285–288, 290, 291
conic, 293, 296, 298, 301
overview, 21
quadratic, 293, 296, 298, 301
reciprocal polars, 306

tangent line
circle, 255, 280
conic, 266, 273
contact points, 259
definition, 255
ellipse, 274, 281
eyeball theorem, 280
hyperbola, 277, 281
line segment length, 260
Monge’s Theorem, 281
parabola, 273, 280
parallel, 261, 279
perpendicular, 262, 279
polar, 269
pole, 267
two circles, 264
two conics, 271

tangent line segment
two conics, 272

TangentCircles2D
construction, 521, 522
example, 283, 285–288
help, 363
usage, 519

TangentConics2D

864 Index

construction, 526
example, 297, 299, 301, 303, 305, 306,

308, 309
help, 364
usage, 523

TangentEquation2D
equation, 532
example, 269
help, 364
usage, 531

TangentLines2D
construction, 532–534
example, 256, 259, 262, 265, 272, 274,

275, 277, 279
help, 364
usage, 531

TangentPoints2D
construction, 537, 538
example, 259
help, 365
usage, 537

TangentQuadratics2D
construction, 526
example, 299
help, 365
usage, 523

TangentSegments2D
construction, 534
example, 273
help, 365
usage, 531

transformation
definition, 217
inversion, 227
reflect, 224
rotate, 219
scale, 222
translate, 217

translate
definition, 217
equation, 218

Translate2D
Arc2D, 391

Circle2D, 408
ConicArc2D, 418
coordinates, 542
Ellipse2D, 424
equation, 543
example, 217, 219
help, 365
Hyperbola2D, 449
Line2D, 461
list of objects, 543
Parabola2D, 482
Point2D, 492
Quadratic2D, 499
Segment2D, 508
Triangle2D, 551
usage, 539

transverse axis
hyperbola, 159

triangle
altitude, 128–130
angle bisector, 128, 130
area, 237, 238, 249–251
centroid, 120, 129
cevian, 128, 130
circumscribed circle, 122, 130
definition, 117
description, 336
equilateral, 117
Euler’s formula, 128
Gergonne point, 129
hypotenuse, 117
inscribed circle, 123, 128, 130
isosceles, 117
Law of Cosines, 126
Law of Sines, 126
median, 120, 128, 130
orthocenter, 129
overview, 16
perimeter, 230
right, 117
scalene, 117
solve, 124
Stewart’s Theorem, 38

Index 865

vertex, 117
vertex angle, 117

Triangle2D
Angle2D, 547
Area2D, 403
Circle2D, 553
construction, 548, 553, 554
description, 336
example, 117, 119, 126
graphics, 546
help, 365
IsValid2D, 546
Line2D, 552
Perimeter2D, 398
Point2D, 551, 552
Reflect2D, 550
representation, 546
Rotate2D, 551
Scale2D, 551
Segment2D, 552
Translate2D, 551
usage, 545
validation, 546

variable
definition, 39
dependent, 39
independent, 39

vertex
parabola, 135
triangle, 117

vertex equation
ellipse, 187
hyperbola, 187
parabola, 186
Quadratic2D, 502

vertical
line, 61

vertices
ellipse, 146
hyperbola, 159

Vertices2D
Ellipse2D, 412
example, 151

help, 366
Hyperbola2D, 413
Parabola2D, 413
usage, 411

XCoordinate2D
coords, 491
help, 366
Point2D, 491
usage, 489

YCoordinate2D
coords, 491
help, 366
Point2D, 491
usage, 489

	Cover
	Exploring Analytic Geometry with Mathematica
	Preface
	Features
	Classical Analytic Geometry
	Explorations
	Descarta2D
	CD-ROM
	Organization of the Book
	About the Author

	Contents
	Part I Introduction
	Chapter 1 Getting Started
	1.1 Introduction
	1.2 Historical Background
	1.3 What's on the CD-ROM
	1.4 Mathematica
	1.5 Starting Descarta2D
	Plotting Descarta2D Objects

	1.6 Outline of the Book

	Chapter 2 Descarta2D Tour
	2.1 Points
	2.2 Equations
	2.3 Lines
	2.4 Line Segments
	2.5 Circles
	2.6 Arcs
	2.7 Triangles
	2.8 Parabolas
	2.9 Ellipses
	2.10 Hyperbolas
	2.11 Transformations
	2.12 Area and Arc Length
	2.13 Tangent Curves
	2.14 Symbolic Proofs
	2.15 Next Steps

	Part II Elementary Geometry
	Chapter 3 Coordinates and Points
	3.1 Numbers
	3.2 Rectangular Coordinates
	3.3 Line Segments and Distance
	3.4 Midpoint between Two Points
	3.5 Point of Division of Two Points
	Point Offset a Distance���

	3.6 Collinear Points
	3.7 Explorations

	Chapter 4 Equations and Graphs
	4.1 Variables and Functions
	4.2 Polynomials
	4.3 Equations
	4.4 Solving Equations
	One Linear, One Unknown
	One Quadratic, One Unknown
	Two Linears, Two Unknowns
	One Linear, One Quadratic, Two Unknowns
	Two Quadratics, Two Unknowns

	4.5 Graphs
	4.6 Parametric Equations
	4.7 Explorations

	Chapter 5 Lines and Line Segments
	5.1 General Equation
	Inclination and Slope

	5.2 Parallel and Perpendicular Lines
	5.3 Angle between Lines
	5.4 Two-Point Form��
	Collinear Points

	5.5 Point-Slope Form��
	Line Through a Point Parallel to a Line
	Line Through a Point Perpendicular to a Line
	Horizontal and Vertical Lines Through a Point

	5.6 Slope-Intercept Form��
	5.7 Intercept Form
	5.8 Normal Form
	Point Offset a Distance Along a Line��
	Line Offset a Distance from a Line��
	Distance from a Point to a Line

	5.9 Intersection Point of Two Lines
	5.10 Point Projected Onto a Line
	5.11 Line Perpendicular to Line Segment
	5.12 Angle Bisector Lines
	5.13 Concurrent Lines
	5.14 Pencils of Lines
	Pencil of Intersecting Lines
	Pencil of Lines Through a Point

	5.15 Parametric Equations
	Line Segment

	5.16 Explorations

	Chapter 6 Circles
	6.1 Definitions and Standard Equation���
	6.2 General Equation of a Circle
	6.3 Circle from Diameter
	6.4 Circle Through Three Points
	6.5 Intersection of a Line and a Circle
	6.6 Intersection of Two Circles
	6.7 Distance from a Point to a Circle
	6.8 Coaxial Circles
	6.9 Radical Axis
	6.10 Parametric Equations
	6.11 Explorations

	Chapter 7 Arcs
	7.1 Definitions���
	7.2 Bulge Factor Arc
	Radius and Center
	Angles

	7.3 Three-Point Arc���
	7.4 Parametric Equations
	7.5 Points and Angles at Parameters
	7.6 Arcs from Ray Points
	7.7 Explorations

	Chapter 8 Triangles
	8.1 Definitions���
	8.2 Centroid of a Triangle
	8.3 Circumscribed Circle
	8.4 Inscribed Circle
	8.5 Solving Triangles
	8.6 Cevian Lengths
	8.7 Explorations

	Part III Conics
	Chapter 9 Parabolas
	9.1 Definitions���
	9.2 General Equation of a Parabola
	9.3 Standard Forms of a Parabola
	9.4 Reduction to Standard Form
	9.5 Parabola from Focus and Directrix
	9.6 Parametric Equations
	9.7 Explorations

	Chapter 10 Ellipses
	10.1 Definitions��
	10.2 General Equation of an Ellipse
	10.3 Standard Forms of an Ellipse
	Major Axis Parallel to the x-Axis
	Major Axis Parallel to the y-axis

	10.4 Reduction to Standard Form
	10.5 Ellipse from Vertices and Eccentricity
	10.6 Ellipse from Foci and Eccentricity
	10.7 Ellipse from Focus and Directrix
	10.8 Parametric Equations
	10.9 Explorations

	Chapter 11 Hyperbolas
	11.1 Definitions��
	11.2 General Equation of a Hyperbola
	11.3 Standard Forms of a Hyperbola
	Transverse Axis Parallel to the x-Axis
	Transverse Axis Parallel to the y-Axis
	Conjugate and Rectangular Hyperbolas

	11.4 Reduction to Standard Form
	11.5 Hyperbola from Vertices and Eccentricity
	11.6 Hyperbola from Foci and Eccentricity
	11.7 Hyperbola from Focus and Directrix
	11.8 Parametric Equations
	11.9 Explorations

	Chapter 12 General Conics
	12.1 Conic from Quadratic Equation
	Linear Polynomial
	Pair of Vertical Lines
	Pair of Horizontal Lines
	Intersecting Lines (or a Single Point)
	Circle
	Parabola (Horizontal Axis)
	Parabola (Vertical Axis)
	Central Conic (Ellipse or Hyperbola)
	Remove the First-Degree Terms
	Eliminate the xy Term

	12.2 Classi cation of Conics
	12.3 Center Point of a Conic
	12.4 Conic from Point, Line and Eccentricity
	12.5 Common Vertex Equation
	12.6 Conic Intersections
	12.7 Explorations

	Chapter 13 Conic Arcs
	13.1 Definition of a Conic Arc��
	13.2 Equation of a Conic Arc
	13.3 Projective Discriminant
	13.4 Conic Characteristics
	13.5 Parametric Equations
	13.6 Explorations

	Chapter 14 Medial Curves
	14.1 Point-Point��
	14.2 Point-Line���
	14.3 Point-Circle���
	14.4 Line-Line��
	14.5 Line-Circle��
	14.6 Circle-Circle��
	14.7 Explorations

	Part IV Geometric Functions
	Chapter 15 Transformations
	15.1 Translations
	15.2 Rotations
	15.3 Scaling
	15.4 Reflections��
	Reflection of an Angle��

	15.5 Explorations

	Chapter 16 Arc Length
	16.1 Lines and Line Segments
	Length of a Line
	Length of a Line Segment

	16.2 Perimeter of a Triangle
	16.3 Polygons Approximating Curves
	16.4 Circles and Arcs
	Circumference of a Circle
	Arc Length of an Arc

	16.5 Ellipses and Hyperbolas
	16.6 Parabolas
	16.7 Chord Parameters
	16.8 Summary of Arc Length Functions
	16.9 Explorations

	Chapter 17 Area
	17.1 Areas of Geometric Figures
	Triangular Area

	17.2 Curved Areas
	17.3 Circular Areas
	17.4 Elliptic Areas
	17.5 Hyperbolic Areas
	17.6 Parabolic Areas
	17.7 Conic Arc Area
	17.8 Summary of Area Functions
	17.9 Explorations

	Part V Tangent Curves
	Chapter 18 Tangent Lines
	18.1 Lines Tangent to a Circle
	Tangent Through a Point On a Circle
	Tangents Through a Point Outside a Circle
	Tangent Contact Points
	Tangent Line Segment Length
	Tangents Parallel to a Line
	Tangents Perpendicular to a Line
	Tangents to Two Circles

	18.2 Lines Tangent to Conics
	Tangent Through Point on Conic
	Pole Point and Point of Tangency
	Line Tangent to a Conic Condition
	Polar of a Conic
	Tangents Parallel to a Line
	Lines Tangent to Two Conics
	Line Segments Tangent to Two Conics

	18.3 Lines Tangent to Standard Conics
	Tangents to a Parabola
	Tangents to an Ellipse
	Tangents to a Hyperbola
	Parallel and Perpendicular Tangents

	18.4 Explorations

	Chapter 19 Tangent Circles
	19.1 Tangent Object, Center Point
	19.2 Tangent Object, Center on Object, Radius
	19.3 Two Tangent Objects, Center on Object
	19.4 Two Tangent Objects, Radius
	19.5 Three Tangent Objects
	19.6 Explorations

	Chapter 20 Tangent Conics
	20.1 Constraint Equations
	20.2 Systems of Quadratics
	A Degenerate Case

	20.3 Validity Conditions
	20.4 Five Points
	20.5 Four Points, One Tangent Line
	Points Not on a Tangent Line
	One Point on Tangent Line

	20.6 Three Points, Two Tangent Lines
	Points Not on Tangent Lines
	One Point on Tangent Line
	Two Points on Tangent Lines

	20.7 Conics by Reciprocal Polars
	Two Points, Three Tangent Lines
	One Point, Four Tangent Lines
	Five Tangent Lines

	20.8 Explorations

	Chapter 21 Biarcs
	21.1 Biarc Carrier Circles
	Radii Ratio
	Number of Solutions

	21.2 Knot Point
	21.3 Knot Circles
	21.4 Biarc Programming Examples
	Knot Circles
	Arc Construction
	Knot Points @ DLDD;

	21.5 Explorations

	Part VI Reference
	Chapter 22 Technical Notes
	22.1 Computation Levels
	22.2 Names
	22.3 Descarta2D Objects
	Coordinates
	Object Queries

	22.4 Descarta2D Packages
	22.5 Descarta2D Functions
	22.6 Descarta2D Documentation

	Chapter 23 Command Browser
	Chapter 24 Error Messages
	Arc2D
	Circle2D
	ConicArc2D
	D2DExpressions2D
	D2DMaster$2D
	Directrices2D
	Ellipse2D
	Hyperbola2D
	IsNumeric2D
	Line2D
	Loci2D
	MedialEquations2D
	Parabola2D
	Parameters2D
	Point2D
	Quadratic2D
	Segment2D
	Sketch2D
	Solve2D
	SolveTriangle2D
	TangentConics2D
	Transform2D
	Triangle2D

	Part VII Packages
	D2DArc2D
	Initialization
	Description
	Representation
	Evaluation
	Graphics
	Validation

	Scalars
	Angular Span of an Arc
	Angle at Parameter on an Arc
	Bulge Factor of an Arc
	Primary Angle Range
	Radius of an Arc

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Construction
	Center Point of an Arc
	Circle from Arc
	Complement Arc
	Arc from Center Point, Radius and Span
	Arc from De ning Points and Entry Angle
	Arc from Three Points
	Arc from Center, Radius and Ray End Points

	Epilogue

	D2DArcLength2D
	Initialization
	Arc Length
	Arc
	Circle
	Conic Segment
	Ellipse
	Hyperbola
	Line
	Line Segment
	Parabola
	Triangle

	Arc Length (Numerical)
	Parametric Curves

	Epilogue

	D2DArea2D
	Initialization
	Areas Associated with an Arc
	Area

	Areas Associated with a Circle
	Area
	Sector Area
	Segment Area

	Areas Associated with a Conic Arc
	Area

	Areas Associated with an Ellipse
	Area
	Sector Area
	Segment Area

	Areas Associated with a Hyperbola
	Sector Area
	Segment Area

	Areas Associated with a Parabola
	Segment Area

	Areas Associated with a Triangle
	Area

	Epilogue

	D2DCircle2D
	Initialization
	Description
	Representation
	Equation
	Evaluation
	Graphics
	Validation

	Scalars
	Distance Point/Circle
	Radius

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Center Point
	Pole Point

	Line Construction
	Polar Line
	Radical Axis

	Circle Construction
	Circle from Quadratic Equation
	Circle from Center Point and Radius
	Circle from Center Point and Point on Circle
	Circle from Center and Tangent Line
	Circle Through Three Points

	Epilogue

	D2DConic2D
	Initialization
	Scalars
	Eccentricity

	Point Construction
	Focus Points
	Vertex Points

	Line Construction
	Asymptote Lines
	Directrix Lines

	Line Segment Construction
	Focal Chords

	Epilogue

	D2DConicArc2D
	Initialization
	Description
	Representation
	Equation
	Evaluation
	Graphics
	Validation

	Scalars
	Rho

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Construction
	Apex Point
	Center Point
	Conic from Conic Arc
	Conic Arc from Conic

	Epilogue

	D2DEllipse2D
	Initialization
	Description
	Representation
	Equation
	Evaluation
	Graphics
	Validation

	Scalars
	Angle of Rotation
	Semi-major Axis Length
	Semi-minor Axis Length

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Center Point
	Pole Point

	Line Construction
	Axis Line
	Polar Line

	Ellipse Construction
	Ellipse from Vertices and Eccentricity
	Ellipse from Foci and Eccentricity
	Ellipse from Focus, Directrix and Eccentricity

	Epilogue

	D2DEquations2D
	Initialization
	Coe cients
	Simplify Coe cients

	Equations
	Linear
	Quadratic

	Polynomials
	Linear
	Quadratic

	Epilogue

	D2DExpressions2D
	Initialization
	Utilities
	Chop
	Random Evaluation
	Tolerance

	Number Queries
	Approximate Query
	Complex Query
	Complex Query (List)
	Numeric Query
	Numeric Query (with Message)
	Real Query
	Scalar Query
	Scalar Pair Query
	Tiny Imaginary Query

	Sign Queries
	Negative Query
	Negative Query (List)
	Zero Query
	Zero Query (List)
	Zero or Negative Query
	Zero or Negative Query (List)

	Epilogue

	D2DGeometry2D
	Initialization
	Utilities
	Combinations

	Coincident Queries
	Two Coordinates
	Two Points
	Two Lines
	Two Circles
	Two Quadratics
	List of Objects

	Collinear Queries
	Three Points
	List of Points

	Concentric Queries
	Two Circles
	List of Circles

	Concurrent Queries
	Three Lines
	List of Lines

	On Queries
	Point On Line
	Point On Circle
	Point On Quadratic

	Parallel Queries
	Two Lines
	List of Lines (by Pairs)
	Three Lines
	List of Lines (by Triples)

	Perpendicular Queries
	Two Lines
	List of Lines

	Tangent Queries
	Line and Circle
	Two Circles
	Line and Quadratic

	Epilogue

	D2DHyperbola2D
	Initialization
	Description
	Representation
	Equation
	Evaluation
	Graphics
	Validation

	Scalars
	Angle of Rotation
	Semi-transverse Axis Length
	Semi-conjugate Axis Length

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Center Point of a Hyperbola
	Pole Point

	Line Construction
	Axis of a Hyperbola
	Polar Line

	Hyperbola Construction
	Conjugate Hyperbola
	Hyperbola from Vertices/Eccentricity
	Hyperbola from Foci/Eccentricity
	Hyperbola from Focus/Directrix/Eccentricity

	Epilogue

	D2DIntersect2D
	Initialization
	Intersection Points
	Intersection Point of Two Lines
	Intersection Points of a Line and a Circle
	Intersection Points of Two Circles
	Intersection Points of Two Curves

	Chordal Parameter Range
	Sort Numerically
	Circle
	Ellipse
	Hyperbola
	Parabola

	Epilogue

	D2DLine2D
	Initialization
	Description
	Representation
	Equations
	Evaluation
	Graphics
	Validation
	Simplify and FullSimplify

	Scalars
	Angle of a Line
	Angle between Two Lines
	Distance from a Point to a Line
	Slope of a Line

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Line Construction
	Normalize a Line
	Line Through a Point with a Given Slope
	Offset Line���
	Line Through Two Coordinates
	Line Through Two Points
	Line Equidistant from Two Points
	Line Perpendicular to a Line Through a Point
	Line Parallel to a Line Through a Point
	Polar Line of a Quadratic

	Epilogue

	D2DLoci2D
	Initialization
	Utilities
	Not Zero Query

	Conic Construction
	Conic from Quadratic
	Conic from Focus, Directrix and Eccentricity
	Conic Vertex Equation

	Epilogue

	D2DMaster2D
	Descarta2D Initialization
	Package Initialization
	Objects
	Object Names

	Default Queries
	Is Query
	Valid Query

	Epilogue

	D2DMedial2D
	Initialization
	Medial Equations
	Medial Linear or Quadratic

	Medial Loci
	Medial Loci
	Point-Point���
	Point-Line��
	Point-Circle��
	Line-Line���
	Line-Circle���
	Circle-Circle���

	Epilogue

	D2DNumbers2D
	Initialization
	Chop Imaginary Part
	Primary Angle
	Primary Angle Range

	Epilogue

	D2DParabola2D
	Initialization
	Description
	Representation
	Equation
	Evaluation
	Graphics
	Validation

	Scalars
	Angle of Rotation
	Focal Length

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Vertex Point
	Pole Point

	Line Construction
	Axis Line
	Polar Line

	Parabola Construction
	Parabola from Focus/Directrix

	Epilogue

	D2DPencil2D
	Initialization
	Line Pencils
	Pencil of Lines Through a Point
	Pencil of Lines Through Intersection Point

	Circle Pencils
	Pencil of Circles from Two Circles

	Quadratic Pencils
	Pencil of Quadratics from Two Quadratics
	Pencil of Quadratics from Four Lines
	Pencil of Quadratics from Four Points

	Epilogue

	D2DPoint2D
	Initialization
	Description
	Representation
	Graphics
	Validation

	Scalars
	Coordinates Function
	Distance between Coordinates
	Distance between Two Points
	X-Coordinate (Abscissa)
	X-Coordinate of a Point (Abscissa)
	Y-Coordinate (Ordinate)
	Y-Coordinate of a Point (Ordinate)

	Equations
	Quadratic

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Point from Coordinates
	Midpoint of Two Points
	Offset Point from Two Points��
	Point of Division
	Point Offset Along a Line���
	Point Projected Onto a Line
	General Offset Point��
	Intersection Point of Two Lines
	Center Point of a Quadratic
	Pole Point of a Quadratic

	Epilogue

	D2DQuadratic2D
	Initialization
	Description
	Representation
	Graphics
	Validation

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Quadratic Construction
	Simplify and FullSimplify
	Normalize
	Quadratic from Equation/Polynomial
	Quadratic from Coordinates
	Quadratic Through Three Points
	Quadratic Through Five Points
	Quadratic Tangent to Five Lines
	Quadratic from Two Lines
	Quadratic from Focus/Directrix/Eccentricity
	Quadratic Vertex Equation

	Epilogue

	D2DSegment2D
	Initialization
	Description
	Representation
	Evaluation
	Graphics
	Validation

	Scalars
	Length
	Slope

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Midpoint

	Line Segment Construction
	Line Segment from Two Points

	Line Construction
	Line from Line Segment
	Line Bisecting a Line Segment

	Circle Construction
	Circle from Diameter Chord

	Epilogue

	D2DSketch2D
	Initialization
	Utilities
	Filter Options

	Plotting
	Set Display
	Display Query
	Curve Length
	Curve Parameter Limits
	Make Graphics Primitives
	Sketch

	Epilogue

	D2DSolve2D
	Initialization
	Symbol Queries
	Single Symbol Query
	Symbol List Query

	Solve
	Maximum Seconds Option
	Solve

	Epilogue

	D2DTangentCircles2D
	Initialization
	Queries
	Point, Line or Circle Query
	Line or Circle Query

	Tangent/On Equations
	Point Tangent to a Circle (On Circle)
	Line Tangent to a Circle
	Circle Tangent to a Circle
	Point on a Point
	Point on a Line
	Point on a Circle

	General Circle Tangency
	Tangent Circles

	Tangent Circle Construction
	Tangent Object, Center Point
	Tangent Object, Center on Object, Radius
	Two Tangent Objects, Center On Object
	Two Tangent Objects, Radius
	Three Tangent Objects

	Epilogue

	D2DTangentConics2D
	Initialization
	Error Messages
	General Error Messages

	Utilities
	Numeric Computations
	Number of Points on a Line
	Number of Lines Through a Point
	Validity Queries

	Polynomials
	Point on Line
	Point on Quadratic
	Line Tangent to Quadratic

	Quadratic and Conic Construction
	Quadratic Tangent to Five Objects
	Conic Tangent to Five Objects
	Preprocess Arguments
	Five Points
	Four Points, One Line (No Points on Line)
	Four Points, One Line (One Point on Line)
	Three Points, Two Lines (No Points on Lines)
	Three Points, Two Lines (One Point on Line)
	Three Points, Two Lines (Two Points On Lines)
	Reciprocal Method

	Epilogue

	D2DTangentLines2D
	Initialization
	Tangent Equation
	Line Tangent to a Quadratic

	Line Construction
	Lines Through a Point Tangent to a Circle
	Lines Through a Point Tangent to a Curve
	Parallel or Perpendicular Tangent Lines
	Lines Tangent to Two Circles
	Lines Tangent to Two Quadratics
	Lines Tangent to Two Conics
	Line Segments Tangent to Two Curves

	Epilogue

	D2DTangentPoints2D
	Initialization
	Point Construction
	Circle Contact Points
	Conic Contact Points

	Epilogue

	D2DTransform2D
	Initialization
	Queries
	Transformable Query

	Reflect�������������������������������������
	Reflect Angle���
	Reflect Coordinates���
	Reflect Equation��
	Reflect List��

	Rotate
	Rotate About Origin
	Rotate Coordinates
	Rotate Equation
	Rotate List

	Scale
	Scale from Origin
	Scales Coordinates
	Scale Equation
	Scale List
	Invalid Scale

	Translate
	Translate Coordinates
	Translate Equation
	Translate List

	Epilogue

	D2DTriangle2D
	Initialization
	Description
	Representation
	Graphics
	Validation

	Queries
	Con guration Query and Check
	Vertex Query

	Scalars
	Angle
	Solve Triangle

	Transformations
	Reflect�������������������������������������
	Rotate
	Scale
	Translate

	Point Construction
	Centroid
	Center of Circumscribed Circle
	Center of Inscribed Circle
	Vertex Point

	Line Construction
	Side of a Triangle

	Line Segment Construction
	Side of a Triangle

	Circle Construction
	Circumscribed Circle
	Inscribed Circle

	Triangle Construction
	Triangle from Three Points
	Triangle from Three Lines
	Triangle from Sides/Angles

	Epilogue

	Part VIII Explorations
	apollon.nb
	Exploration
	Approach
	Solution
	Discussion

	arccent.nb
	Exploration
	Approach
	Solution

	arcentry.nb
	Exploration
	Approach
	Solution
	Discussion

	arcexit.nb
	Exploration
	Approach
	Solution
	Discussion

	archimed.nb
	Exploration
	Approach
	Solution

	arcmidpt.nb
	Exploration
	Approach
	Solution
	Discussion

	caarclen.nb
	Exploration
	Approach
	Solution

	caarea1.nb
	Exploration
	Approach
	Solution

	caarea2.nb
	Exploration
	Approach
	Solution

	cacenter.nb
	Exploration
	Approach
	Solution

	cacircle.nb
	Exploration
	Approach
	Solution
	Discussion

	camedian.nb
	Exploration
	Approach
	Solution
	Discussion

	caparam.nb
	Exploration
	Approach
	Solution

	carlyle.nb
	Exploration
	Approach
	Solution
	Discussion

	castill.nb
	Exploration
	Approach
	Solution
	Discussion

	catnln.nb
	Exploration
	Approach
	Solution
	Discussion D

	center.nb
	Exploration
	Approach
	Solution
	Discussion

	chdlen.nb
	Exploration
	Approach
	Solution
	Discussion

	cir3pts.nb
	Exploration
	Approach
	Solution

	circarea.nb
	Exploration
	Approach
	Solution
	Discussion

	cirptmid.nb
	Exploration
	Approach
	Solution
	Discussion

	cramer2.nb
	Exploration
	Approach
	Solution
	Discussion8 <

	cramer3.nb
	Exploration
	Approach
	Solution
	Discussion

	deter.nb
	Exploration
	Approach
	Solution

	elfocdir.nb
	Exploration
	Approach
	Solution
	Discussion

	elimlin.nb
	Exploration
	Approach
	Solution

	elimxy1.nb
	Exploration
	Approach
	Solution

	elimxy2.nb
	Exploration
	Approach
	Solution

	elimxy3.nb
	Exploration
	Approach
	Solution

	elldist.nb
	Exploration
	Approach
	Solution
	Discussion

	ellfd.nb
	Exploration
	Approach
	Solution
	Discussion

	ellips2a.nb
	Exploration
	Approach
	Solution

	elllen.nb
	Exploration
	Approach
	Solution

	ellrad.nb
	Exploration
	Approach
	Solution

	ellsim.nb
	Exploration
	Approach
	Solution
	Discussion

	ellslp.nb
	Exploration
	Approach
	Solution
	Discussion

	eqarea.nb
	Exploration
	Approach
	Solution
	Discussion

	eyeball.nb
	Exploration
	Approach
	Solution
	Discussion

	gergonne.nb
	Exploration
	Approach
	Solution
	Discussion

	heron.nb
	Exploration
	Approach
	Solution

	hyp2a.nb
	Exploration
	Approach
	Solution

	hyp4pts.nb
	Exploration
	Approach
	Solution
	Discussion

	hyparea.nb
	Exploration
	Approach
	Solution

	hypeccen.nb
	Exploration
	Approach
	Solution

	hypfd.nb
	Exploration
	Approach
	Solution
	Discussion

	hypinv.nb
	Exploration
	Approach
	Solution
	Discussion

	hyplen.nb
	Exploration
	Approach
	Solution

	hypslp.nb
	Exploration
	Approach
	Solution
	Discussion

	hyptrig.nb
	Exploration
	Approach
	Solution

	intrsct.nb
	Exploration
	Approach
	Solution
	Discussion

	inverse.nb
	Exploration
	Approach
	Solution

	johnson.nb
	Exploration
	Approach
	Solution
	Discussion

	knotin.nb
	Exploration
	Approach
	Solution

	lndet.nb
	Exploration
	Approach
	Solution
	Discussion

	lndist.nb
	Exploration
	Approach
	Solution
	Discussion

	lnlndist.nb
	Exploration
	Approach
	Solution
	Discussion @DD @ @ DD

	lnquad.nb
	Exploration
	Approach
	Solution
	Discussion

	lnsdst.nb
	Exploration
	Approach
	Solution
	Discussion

	lnsegint.nb
	Exploration
	Approach
	Solution
	Discussion

	lnsegpt.nb
	Exploration
	Approach
	Solution
	Discussion

	lnsperp.nb
	Exploration
	Approach
	Solution
	Discussion

	lntancir.nb
	Exploration
	Approach
	Solution
	Discussion

	lntancon.nb
	Exploration
	Approach
	Solution

	mdcircir.nb
	Exploration
	Approach
	Solution

	mdlncir.nb
	Exploration
	Approach
	Solution

	mdlnln.nb
	Exploration
	Approach
	Solution

	mdptcir.nb
	Exploration
	Approach
	Solution

	mdptln.nb
	Exploration
	Approach
	Solution

	mdptpt.nb
	Exploration
	Approach
	Solution

	mdtype.nb
	Exploration
	Approach
	Solution

	monge.nb
	Exploration
	Approach
	Solution
	Discussion

	narclen.nb
	Exploration
	Approach
	Solution

	normal.nb
	Exploration
	Approach
	Solution
	Discussion

	pb3pts.nb
	Exploration
	Approach
	Solution
	Discussion

	pb4pts.nb
	Exploration
	Approach
	Solution
	Discussion

	pbang.nb
	Exploration
	Approach
	Solution
	Discussion

	pbarch.nb
	Exploration
	Approach
	Solution
	Discussion

	pbarclen.nb
	Exploration
	Approach
	Solution

	pbdet.nb
	Exploration
	Approach
	Solution
	Discussion <

	pbfocchd.nb
	Exploration
	Approach
	Solution

	pbslp.nb
	Exploration
	Approach
	Solution
	Discussion

	pbtancir.nb
	Exploration
	Approach
	Solution
	Discussion

	pbtnlns.nb
	Exploration
	Approach
	Solution
	Discussion

	polarcir.nb
	Exploration
	Approach
	Solution

	polarcol.nb
	Exploration
	Approach
	Solution
	Discussion @ D

	polarcon.nb
	Exploration
	Approach
	Solution

	polardis.nb
	Exploration
	Approach
	Solution
	Discussion

	polarell.nb
	Exploration
	Approach
	Solution

	polareqn.nb
	Exploration
	Approach
	Solution

	polarhyp.nb
	Exploration
	Approach
	Solution

	polarpb.nb
	Exploration
	Approach
	Solution

	polarunq.nb
	Exploration
	Approach
	Solution
	Discussion

	pquad.nb
	Exploration
	Approach
	Solution
	Discussion

	ptscol.nb
	Exploration
	Approach
	Solution
	Discussion

	radaxis.nb
	Exploration
	Approach
	Solution
	Discussion

	radcntr.nb
	Exploration
	Approach
	Solution
	Discussion <

	raratio.nb
	Exploration
	Approach
	Solution

	reccir.nb
	Exploration
	Approach
	Solution
	Discussion D

	recptln.nb
	Exploration
	Approach
	Solution

	recquad.nb
	Exploration
	Approach
	Solution

	re ctpt.nb
	Exploration
	Approach
	Solution

	rtangcir.nb
	Exploration
	Approach
	Solution

	rttricir.nb
	Exploration
	Approach
	Solution

	shoulder.nb
	Exploration
	Approach
	Solution

	stewart.nb
	Exploration
	Approach
	Solution

	tancir1.nb
	Exploration
	Approach
	Solution

	tancir2.nb
	Exploration
	Approach
	Solution

	tancir3.nb
	Exploration
	Approach
	Solution

	tancir4.nb
	Exploration
	Approach
	Solution

	tancir5.nb
	Exploration
	Approach
	Solution

	tancirpt.nb
	Exploration
	Approach
	Solution

	tetra.nb
	Exploration
	Approach
	Solution

	tncirtri.nb
	Exploration
	Approach
	Solution
	DiscussionH L

	tnlncir.nb
	Exploration
	Approach
	Solution
	Discussion

	triallen.nb
	Exploration
	Approach
	Solution

	trialt.nb
	Exploration
	Approach
	Solution
	Discussion

	triarea.nb
	Exploration
	Approach
	Solution

	triarlns.nb
	Exploration
	Approach
	Solution

	tricent.nb
	Exploration
	Approach
	Solution
	Discussion

	tricev.nb
	Exploration
	Approach
	Solution

	triconn.nb
	Exploration
	Approach
	Solution
	Discussion

	tridist.nb
	Exploration
	Approach
	Solution
	Discussion

	trieuler.nb
	Exploration
	Approach
	Solution

	trirad.nb
	Exploration
	Approach
	Solution

	trisides.nb
	Exploration
	Approach
	Solution

	Part IX Epilogue
	Installation Instructions
	Installing Acrobat Reader and Viewing PDF Files
	Installing Mathematica and Viewing Notebook Files
	Installing the Descarta2D Files
	Mathematica Help Browser
	Package Loading

	Bibliography
	Index

