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Preface

The classical theory of Fourier series and integrals, as well as Laplace trans-
forms, is of great importance for physical and technical applications, and
its mathematical beauty makes it an interesting study for pure mathemati-
cians as well. I have taught courses on these subjects for decades to civil
engineering students, and also mathematics majors, and the present volume
can be regarded as my collected experiences from this work.

There is, of course, an unsurpassable book on Fourier analysis, the trea-
tise by Katznelson from 1970. That book is, however, aimed at mathemat-
ically very mature students and can hardly be used in engineering courses.
On the other end of the scale, there are a number of more-or-less cookbook-
styled books, where the emphasis is almost entirely on applications. I have
felt the need for an alternative in between these extremes: a text for the
ambitious and interested student, who on the other hand does not aspire to
become an expert in the field. There do exist a few texts that fulfill these
requirements (see the literature list at the end of the book), but they do
not include all the topics I like to cover in my courses, such as Laplace
transforms and the simplest facts about distributions.

The reader is assumed to have studied real calculus and linear algebra
and to be familiar with complex numbers and uniform convergence. On
the other hand, we do not require the Lebesgue integral. Of course, this
somewhat restricts the scope of some of the results proved in the text, but
the reader who does master Lebesgue integrals can probably extrapolate
the theorems. Our ambition has been to prove as much as possible within
these restrictions.
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Some knowledge of the simplest distributions, such as point masses and
dipoles, is essential for applications. I have chosen to approach this mat-
ter in two separate ways: first, in an intuitive way that may be sufficient
for engineering students, in star-marked sections of Chapter 2 and sub-
sequent chapters; secondly, in a more strict way, in Chapter 8, where at
least the fundaments are given in a mathematically correct way. Only the
one-dimensional case is treated. This is not intended to be more than the
merest introduction, to whet the reader’s appetite.

Acknowledgements. In my work I have, of course, been inspired by exist-
ing literature. In particular, I want to mention a book by Arne Broman,
Introduction to Partial Differential Equations... (Addison–Wesley, 1970), a
compendium by Jan Petersson of the Chalmers Institute of Technology in
Gothenburg, and also a compendium from the Royal Institute of Technol-
ogy in Stockholm, by Jockum Aniansson, Michael Benedicks, and Karim
Daho. I am grateful to my colleagues and friends in Uppsala. First of all
Professor Yngve Domar, who has been my teacher and mentor, and who
introduced me to the field. The book is dedicated to him. I am also partic-
ularly indebted to Gunnar Berg, Christer O. Kiselman, Anders Källström,
Lars-Åke Lindahl, and Lennart Salling. Bengt Carlsson has helped with
ideas for the applications to control theory. The problems have been worked
and re-worked by Jonas Bjermo and Daniel Domert. If any incorrect an-
swers still remain, the blame is mine.

Finally, special thanks go to three former students at Uppsala University,
Mikael Nilsson, Matthias Palmér, and Magnus Sandberg. They used an
early version of the text and presented me with very constructive criticism.
This actually prompted me to pursue my work on the text, and to translate
it into English.

Uppsala, Sweden Anders Vretblad
January 2003
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1
Introduction

1.1 The classical partial differential equations

In this introductory chapter, we give a brief survey of three main types of
partial differential equations that occur in classical physics. We begin by
establishing some convenient notation.

Let Ω be a domain (an open and connected set) in three-dimensional
space R3, and let T be an open interval on the time axis. By Ck(Ω), resp.
Ck(Ω × T ), we mean the set of all real-valued functions u(x, y, z), resp.
u(x, y, z, t), with all their partial derivatives of order up to and including
k defined and continuous in the respective regions. It is often practical to
collect the three spatial coordinates (x, y, z) in a vector x and describe the
functions as u(x), resp. u(x, t). By ∆ we mean the Laplace operator

∆ = ∇2 :=
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 .

Partial derivatives will mostly be indicated by subscripts, e.g.,

ut =
∂u

∂t
, uyx =

∂2u

∂x∂y
.

The first equation to be considered is called the heat equation or the
diffusion equation:

∆u =
1
a2

∂u

∂t
, (x, t) ∈ Ω × T.
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As the name indicates, this equation describes conduction of heat in a
homogeneous medium. The temperature at the point x at time t is given
by u(x, t), and a is a constant that depends on the conducting properties
of the medium. The equation can also be used to describe various processes
of diffusion, e.g., the diffusion of a dissolved substance in the solvent liquid,
neutrons in a nuclear reactor, Brownian motion, etc.

The equation represents a category of second-order partial differential
equations that is traditionally categorized as parabolic. Characteristically,
these equations describe non-reversible processes, and their solutions are
highly regular functions (of class C∞).

In this book, we shall solve some special problems for the heat equa-
tion. We shall be dealing with situations where the spatial variable can be
regarded as one-dimensional: heat conduction in a homogeneous rod, com-
pletely isolated from the exterior (except possibly at the ends of the rod).
In this case, the equation reduces to

uxx =
1
a2 ut .

The wave equation has the form

∆u =
1
c2
∂2u

∂t2
, (x, t) ∈ Ω × T.

where c is a constant. This equation describes vibrations in a homogeneous
medium. The value u(x, t) is interpreted as the deviation at time t from
the position at rest of the point with rest position given by x.

The equation is a case of hyperbolic equations. Equations of this category
typically describe reversible processes (the past can be deduced from the
present and future by “reversion of time”). Sometimes it is even suitable
to allow solutions for which the partial derivatives involved in the equation
do not exist in the usual sense. (Think of shock waves such as the sonic
bangs that occur when an aeroplane goes supersonic.) We shall be studying
the one-dimensional wave equation later on in the book. This case can, for
instance, describe the motion of a vibrating string.

Finally we consider an equation that does not involve time. It is called
the Laplace equation and it looks simply like this:

∆u = 0.

It occurs in a number of physical situations: as a special case of the heat
equation, when one considers a stationary situation, a steady state, that
does not depend on time (so that ut = 0); as an equation satisfied by the
potential of a conservative force; and as an object of considerable purely
mathematical interest. Together with the closely related Poisson equa-
tion, ∆u(x) = F (x), where F is a known function, it is typical of equations
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classified as elliptic. The solutions of the Laplace equation are very regular
functions: not only do they have derivatives of all orders, there are even cer-
tain possibilities to reconstruct the whole function from its local behaviour
near a single point. (If the reader is familiar with analytic functions, this
should come as no news in the two-dimensional case: then the solutions
are harmonic functions that can be interpreted (locally) as real parts of
analytic functions.)

The names elliptic, parabolic, and hyperbolic are due to superficial sim-
ilarities in the appearance of the differential equations and the equations
of conics in the plane. The precise definitions of the different types are as
follows: The unknown function is u = u(x) = u(x1, x2, . . . , xm). The equa-
tions considered are linear; i.e., they can be written as a sum of terms equal
to a known function (which can be identically zero), where each term in
the sum consists of a coefficient (constant or variable) times some deriva-
tive of u, or u itself. The derivatives are of degree at most 2. By changing
variables (possibly locally around each point in the domain), one can then
write the equation so that no mixed derivatives occur (this is analogous to
the diagonalization of quadratic forms). It then reduces to the form

a1u11 + a2u22 + · · · + amumm + {terms containing uj and u} = f(x),

where uj = ∂u/∂xj etc. If all the aj have the same sign, the equation is
elliptic; if at least one of them is zero, the equation is parabolic; and if
there exist aj ’s of opposite signs, it is hyperbolic.

An equation can belong to different categories in different parts of the
domain, as, for example, the Tricomi equation uxx + xuyy = 0 (where
u = u(x, y)), which is elliptic in the right-hand half-plane and hyperbolic
in the left-hand half-plane. Another example occurs in the study of the
so-called velocity potential u(x, y) for planar laminary fluid flow. Consider,
for instance, an aeroplane wing in a streaming medium. In the case of ideal
flow one has ∆u = 0. Otherwise, when there is friction (air resistance), the
equation looks something like (1−M2)uxx+uyy = 0, withM = v/v0, where
v is the speed of the flowing medium and v0 is the velocity of sound in the
medium. This equation is elliptic, with nice solutions, as long as v < v0,
while it is hyperbolic if v > v0 and then has solutions that represent shock
waves (sonic bangs). Something quite complicated happens when the speed
of sound is surpassed.

1.2 Well-posed problems

A problem for a differential equation consists of the equation together with
some further conditions such as initial or boundary conditions of some form.
In order that a problem be “nice” to handle it is often desirable that it have
certain properties:
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1. There exists a solution to the problem.

2. There exists only one solution (i.e., the solution is uniquely deter-
mined).

3. The solution is stable, i.e., small changes in the given data give rise
to small changes in the appearance of the solution.

A problem having these properties (the third condition must be made
precise in some way or other) is traditionally said to be well posed. It is,
however, far from true that all physically relevant problems are well posed.
The third condition, in particular, has caught the attention of mathemati-
cians in recent years, since it has become apparent that it is often very
hard to satisfy it. The study of these matters is part of what is popularly
labeled chaos research.

To satisfy the reader’s curiosity, we shall give some examples to illuminate
the concept of well-posedness.

Example 1.1. It can be shown that for suitably chosen functions f ∈ C∞,
the equation ux + uy + (x + 2iy)ut = f has no solution u = u(x, y, t) at
all (in the class of complex-valued functions) (Hans Lewy, 1957). Thus, in
this case, condition 1 fails. ��
Example 1.2. A natural problem for the heat equation (in one spatial
dimension) is this one:

uxx(x, t) = ut(x, t), x > 0, t > 0; u(x, 0) = 0, x > 0; u(0, t) = 0, t > 0.

This is a mathematical model for the temperature in a semi-infinite rod,
represented by the positive x-axis, in the situation when at time 0 the rod
is at temperature 0, and the end point x = 0 is kept at temperature 0 the
whole time t > 0. The obvious and intuitive solution is, of course, that the
rod will remain at temperature 0, i.e., u(x, t) = 0 for all x > 0, t > 0. But
the mathematical problem has additional solutions: let

u(x, t) =
x

t3/2 e
−x2/(4t) , x > 0, t > 0.

It is a simple exercise in partial differentiation to show that this function
satisfies the heat equation; it is obvious that u(0, t) = 0, and it is an
easy exercise in limits to check that lim

t↘0
u(x, t) = 0. The function must be

considered a solution of the problem, as the formulation stands. Thus, the
problem fails to have property 2.

The disturbing solution has a rather peculiar feature: it could be said to
represent a certain (finite) amount of heat, located at the end point of the
rod at time 0. The value of u(

√
2t, t) is

√
(2/e)/t, which tends to +∞ as

t ↘ 0. One way of excluding it as a solution is adding some condition to
the formulation of the problem; as an example it is actually sufficient to
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demand that a solution must be bounded. (We do not prove here that this
does solve the dilemma.) ��
Example 1.3. A simple example of instability is exhibited by an ordinary
differential equation such as y′′(t) + y(t) = f(t) with initial conditions
y(0) = 1, y′(0) = 0. If, for example, we take f(t) = 1, the solution is y(t) =
1. If we introduce a small perturbation in the right-hand member by taking
f(t) = 1 + ε cos t, where ε �= 0, the solution is given by y(t) = 1 + 1

2 εt sin t.
As time goes by, this expression will oscillate with increasing amplitude
and “explode”. The phenomenon is called resonance. ��

1.3 The one-dimensional wave equation

We shall attempt to find all solutions of class C2 of the one-dimensional
wave equation

c2 uxx = utt.

Initially, we consider solutions defined in the open half-plane t > 0.
Introduce new coordinates (ξ, η), defined by

ξ = x− ct, η = x+ ct.

It is an easy exercise in applying the chain rule to show that

uxx =
∂2u

∂x2 =
∂2u

∂ξ2
+ 2

∂2u

∂ξ ∂η
+
∂2u

∂η2

utt =
∂2u

∂t2
= c2

(
∂2u

∂ξ2
− 2

∂2u

∂ξ ∂η
+
∂2u

∂η2

)
.

Inserting these expressions in the equation and simplifying we obtain

c2 · 4
∂2u

∂ξ ∂η
= 0 ⇐⇒ ∂

∂ξ

(
∂u

∂η

)
= 0.

Now we can integrate step by step. First we see that ∂u/∂η must be a
function of only η, say, ∂u/∂η = h(η). If ψ is an antiderivative of h, another
integration yields u = ϕ(ξ) + ψ(η), where ϕ is a new arbitrary function.
Returning to the original variables (x, t), we have found that

u(x, t) = ϕ(x− ct) + ψ(x+ ct). (1.1)

In this expression, ϕ and ψ are more-or-less arbitrary functions of one
variable. If the solution u really is supposed to be of class C2, we must
demand that ϕ and ψ have continuous second derivatives.

It is illuminating to take a closer look at the significance of the two terms
in the solution. First, assume that ψ(s) = 0 for all s, so that u(x, t) =
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t=0

t=1

x

t

u

u(x,0)

u(x,1)

c

FIGURE 1.1.

D

x

t

x − ct =const.

FIGURE 1.2.

ϕ(x − ct). For t = 0, the graph of the function x �→ u(x, 0) looks just like
the graph of ϕ itself. At a later moment, the graph of x �→ u(x, t) will
have the same shape as that of ϕ, but it is pushed ct units of length to the
right. Thus, the term ϕ(x− ct) represents a wave moving to the right along
the x-axis with constant speed equal to c. See Figure 1.1! In an analogous
manner, the term ψ(x + ct) describes a wave moving to the left with the
same speed. The general solution of the one-dimensional wave equation
thus consists of a superposition of two waves, moving along the x-axis in
opposite directions.

The lines x± ct = constant, passing through the half-plane t > 0, consti-
tute a net of level curves for the two terms in the solution. These lines are
called the characteristic curves or simply characteristics of the equation.
If, instead of the half-plane, we study solutions in some other region D, the
derivation of the general solution works in the same way as above, as long
as the characteristics run unbroken through D. In a region such as that
shown in Figure 1.2, the function ϕ need not take on the same value on the
two indicated sections that do lie on the same line but are not connected
inside D. In such a case, the general solution must be described in a more
complicated way. But if the region is convex, the formula (1.1) gives the
general solution.
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Remark. In a way, the general behavior of the solution is similar also in higher
spatial dimensions. For example, the two-dimensional wave equation

∂2u

∂x2 +
∂2u

∂y2 =
1
c2

∂2u

∂t2

has solutions that represent wave-shapes passing the plane in all directions, and
the general solution can be seen as a sort of superposition of such solutions. But
here the directions are infinite in number, and there are both planar and circular
wave-fronts to consider. The superposition cannot be realized as a sum — one
has to use integrals. It is, however, usually of little interest to exhibit the general
solution of the equation. It is much more valuable to be able to pick out some
particular solution that is of importance for a concrete situation. ��

Let us now solve a natural initial value problem for the wave equation
in one spatial dimension. Let f(x) and g(x) be given functions on R. We
want to find all functions u(x, t) that satisfy

(P)
{
c2 uxx = utt , −∞ < x < ∞, t > 0;
u(x, 0) = f(x), ut(x, 0) = g(x), −∞ < x < ∞.

(The initial conditions assert that we know the shape of the solution at
t = 0, and also its rate of change at the same time.) By our previous
calculations, we know that the solution must have the form (1.1), and so
our task is to determine the functions ϕ and ψ so that

f(x) = u(x, 0) = ϕ(x)+ψ(x), g(x) = ut(x, 0) = −c ϕ′(x)+c ψ′(x). (1.2)

An antiderivative of g is given byG(x) =
∫ x

0 g(y) dy, and the second formula
can then be integrated to

−ϕ(x) + ψ(x) =
1
c
G(x) +K,

where K is the integration constant. Combining this with the first formula
of (1.2), we can solve for ϕ and ψ:

ϕ(x) =
1
2

(
f(x) − 1

c
G(x) −K

)
, ψ(x) =

1
2

(
f(x) +

1
c
G(x) +K

)
.

Substitution now gives

u(x, t) = ϕ(x− ct) + ψ(x+ ct)

=
1
2

(
f(x− ct) − 1

c
G(x− ct) −K + f(x+ ct) +

1
c
G(x+ ct) +K

)
=
f(x− ct) + f(x+ ct)

2
+
G(x+ ct) −G(x− ct)

2c

=
f(x− ct) + f(x+ ct)

2
+

1
2c

x+ct∫
x−ct

g(y) dy. (1.3)
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x
x0

(x0,t0)

x − ct = const. x + ct = const.

x0−ct0 x0+ct0

FIGURE 1.3.

The final result is called d’Alembert’s formula. It is something as rare
as an explicit (and unique) solution of a problem for a partial differential
equation.

Remark. If we want to compute the value of the solution u(x, t) at a particular
point (x0, t0), d’Alembert’s formula tells us that it is sufficient to know the initial
values on the interval [x0 − ct0, x0 + ct0]: this is again a manifestation of the fact
that the “waves” propagate with speed c. Conversely, the initial values taken on
[x0 − ct0, x0 + ct0] are sufficient to determine the solution in the isosceles triangle
with base equal to this interval and having its other sides along characteristics.
See Figure 1.3. ��

In a similar way one can solve suitably formulated problems in other
regions. We give an example for a semi-infinite spatial interval.

Example 1.4. Find all solutions u(x, t) of uxx = utt for x > 0, t > 0, that
satisfy u(x, 0) = 2x and ut(x, 0) = 1 for x > 0 and, in addition, u(0, t) = 2t
for t > 0.

Solution. Since the first quadrant of the xt-plane is convex, all solutions of
the equation must have the appearance

u(x, t) = ϕ(x− t) + ψ(x+ t), x > 0, t > 0.

Our task is to determine what the functions ϕ and ψ look like. We need
information about ψ(s) when s is a positive number, and we must find out
what ϕ(s) is for all real s.

If t = 0 we get 2x = u(x, 0) = ϕ(x) + ψ(x) and 1 = ut(x, 0) = −ϕ′(x) +
ψ′(x); and for x = 0 we must have 2t = ϕ(−t)+ψ(t). To liberate ourselves
from the magic of letters, we neutralize the name of the variable and call
it s. The three conditions then look like this, collected together:

2s= ϕ(s) + ψ(s)
1 = −ϕ′(s) + ψ′(s)

2s= ϕ(−s) + ψ(s)
s > 0.
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The second condition can be integrated to −ϕ(s) + ψ(s) = s + C, and
combining this with the first condition we get

ϕ(s) = 1
2 s− 1

2 C, ψ(s) = 3
2 s+ 1

2 C for s > 0.

The third condition then yields ϕ(−s) = 2s − ψ(s) = 1
2 s − 1

2 C, s > 0,
where we switch the sign of s to get

ϕ(s) = − 1
2 s− 1

2 C for s < 0.

Now we put the solution together:

u(x, t) = ϕ(x− t) + ψ(x+ t) =

{
1
2 (x− t) + 3

2 (x+ t) = 2x+ t, x > t > 0,
1
2 (t− x) + 3

2 (x+ t) = x+ 2t, 0 < x < t.

Evidently, there is just one solution of the given problem.
A closer look shows that this function is continuous along the line x = t,

but it is in fact not differentiable there. It represents an “angular” wave.
It seems a trifle fastidious to reject it as a solution of the wave equation,
just because it is not of class C2. One way to solve this conflict is furnished
by the theory of distributions, which generalizes the notion of functions in
such a way that even “angular” functions are assigned a sort of derivative.

��

Exercise

1.1 Find the solution of the problem (P), when f(x) = e−x2
, g(x) =

1
1 + x2 .

1.4 Fourier’s method

We shall give a sketch of an idea that was tried by Jean-Baptiste Joseph

Fourier in his famous treatise of 1822, Théorie analytique de la chaleur.
It constitutes an attempt at solving a problem for the one-dimensional
heat equation. If the physical units for heat conductivity, etc., are suitably
chosen, this equation can be written as

uxx = ut ,

where u = u(x, t) is the temperature at the point x on a thin rod at time
t. We assume the rod to be isolated from its surroundings, so that no
exchange of heat takes place, except possibly at the ends of the rod. Let
us now assume the length of the rod to be π, so that it can be identified
with the interval [0, π] of the x-axis. In the situation considered by Fourier,
both ends of the rod are kept at temperature 0 from the moment when
t = 0, and the temperature of the rod at the initial moment is assumed to
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be equal to a known function f(x). It is then physically reasonable that we
should be able to find the temperature u(x, t) at any point x and at any
time t > 0. The problem can be summarized thus:

(E) uxx = ut, 0 < x < π, t > 0;
(B) u(0, t) = u(π, t) = 0, t > 0;
(I) u(x, 0) = f(x), 0 < x < π.

(1.4)

The letters on the left stand for equation, boundary conditions, and ini-
tial condition, respectively. The conditions (E) and (B) share a specific
property: if they are satisfied by two functions u and v, then all linear
combinations αu+ βv of them also satisfy the same conditions. This prop-
erty is traditionally expressed by saying that the conditions (E) and (B)
are homogeneous. Fourier’s idea was to try to find solutions to the partial
problem consisting of just these conditions, disregarding (I) for a while.

It is evident that the function u(x, t) = 0 for all (x, t) is a solution of
the homogeneous conditions. It is regarded as a trivial and uninteresting
solution. Let us instead look for solutions that are not identically zero.
Fourier chose, possibly for no other reason than the fact that it turned out
to be fruitful, to look for solutions having the particular form u(x, t) =
X(x)T (t), where the functions X(x) and T (t) depend each on just one of
the variables.

Substituting this expression for u into the equation (E), we get

X ′′(x)T (t) = X(x)T ′(t), 0 < x < π, t > 0.

If we divide this by the product X(x)T (t) (consciously ignoring the risk
that the denominator might be zero somewhere), we get

X ′′(x)
X(x)

=
T ′(t)
T (t)

, 0 < x < π, t > 0. (1.5)

This equality has a peculiar property. If we change the value of the variable
t, this does not affect the left-hand member, which implies that the right-
hand member must also be unchanged. But this member is a function of
only t; it must then be constant. Similarly, if x is changed, this does not
affect the right-hand member and thus not the left-hand member, either.
Indeed, we get that both sides of the equality are constant for all the values
of x and t that are being considered. This constant value we denote (by
tradition) by −λ. This means that we can split the formula (1.5) into two
formulae, each being an ordinary differential equation:

X ′′(x) + λX(x) = 0, 0 < x < π; T ′(t) + λT (t) = 0, t > 0.

One usually says that one has separated the variables, and the whole method
is also called the method of separation of variables.
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We shall also include the boundary condition (B). Inserting the expres-
sion u(x, t) = X(x)T (t), we get

X(0)T (t) = X(π)T (t) = 0, t > 0.

Now if, for example, X(0) �= 0, this would force us to have T (t) = 0 for
t > 0, which would give us the trivial solution u(x, t) ≡ 0. If we want to
find interesting solutions we must thus demand that X(0) = 0; for the same
reason we must have X(π) = 0. This gives rise to the following boundary
value problem for X:

X ′′(x) + λX(x) = 0, 0 < x < π; X(0) = X(π) = 0. (1.6)

In order to find nontrivial solutions of this, we consider the different possible
cases, depending on the value of λ.
λ < 0: Then we can write λ = −α2, where we can just as well assume

that α > 0. The general solution of the differential equation is then X(x) =
Aeαx +Be−αx. The boundary conditions become{

0 = X(0) = A+B,

0 = X(π) = Aeαπ +Be−απ.

This can be seen as a homogeneous linear system of equations with A and
B as unknowns and determinant e−απ − eαπ = −2 sinhαπ �= 0. It has thus
a unique solution A = B = 0, but this leads to an uninteresting function
X.
λ = 0: In this case the differential equation reduces to X ′′(x) = 0 with

solutions X(x) = Ax + B, and the boundary conditions imply, as in the
previous case, that A = B = 0, and we find no interesting solution.
λ > 0: Now let λ = ω2, where we can assume that ω > 0. The general

solution is given by X(x) = A cosωx + B sinωx. The first boundary con-
dition gives 0 = X(0) = A, which leaves us with X(x) = B sinωx. The
second boundary condition then gives

0 = X(π) = B sinωπ. (1.7)

If here B = 0, we are yet again left with an uninteresting solution. But,
happily, (1.7) can hold without B having to be zero. Instead, we can arrange
it so that ω is chosen such that sinωπ = 0, and this happens precisely if ω
is an integer. Since we assumed that ω > 0 this means that ω is one of the
numbers 1, 2, 3, . . ..

Thus we have found that the problem (1.6) has a nontrivial solution
exactly if λ has the form λ = n2, where n is a positive integer, and then
the solution is of the form X(x) = Xn(x) = Bn sinnx, where Bn is a
constant.

For these values of λ, let us also solve the problem T ′(t) + λT (t) = 0 or
T ′(t) = −n2T (t), which has the general solution T (t) = Tn(t) = Cne

−n2t.
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If we let BnCn = bn, we have thus arrived at the following result: The
homogeneous problem (E)+(B) has the solutions

u(x, t) = un(x, t) = bn e
−n2t sinnx, n = 1, 2, 3, . . . .

Because of the homogeneity, all sums of such expressions are also solutions
of the same problem. Thus, the homogeneous sub-problem of the original
problem (1.4) certainly has the solutions

u(x, t) =
N∑

n=1

bn e
−n2t sinnx, (1.8)

where N is any positive integer and the bn are arbitrary real numbers. The
great question now is the following: among all these functions, can we find
one that satisfies the non-homogeneous condition (I): u(x, 0) = f(x) = a
known function?

Substitution in (1.8) gives the relation

f(x) = u(x, 0) =
N∑

n=1

bn sinnx, 0 < x < π. (1.9)

If the function f happens to be a linear combination of sine functions of
this kind, we can consider the problem as solved. Otherwise, it is rather
natural to pose a couple of questions:

1. Can we permit the sum in (1.8) to consist of an infinity of terms?

2. Is it possible to approximate a (more or less) arbitrary function f
using sums like the one in (1.9)?

The first of these questions can be given a partial answer using the theory
of uniform convergence. The second question will be answered (in a rather
positive way) later on in this book. We shall return to our heat conduction
problem in Chapter 6.

Exercise
1.2 Find a solution of the problem treated in the text if the initial condition

(I) is u(x, 0) = sin 2x+ 2 sin 5x.

Historical notes

The partial differential equations mentioned in this section evolved during the
eighteenth century for the description of various physical phenomena. The La-
place operator occurs, as its name indicates, in the works of Pierre Simon de

Laplace, French astronomer and mathematician (1749–1827). In the theory of



Historical notes 13

analytic functions, however, it had surely been known to Euler before it was
given its name.

The wave equation was established in the middle of the eighteenth century
and studied by several famous mathematicans, such as J. L. R. d’Alembert

(1717–83), Leonhard Euler (1707–83) and Daniel Bernoulli (1700–82).
The heat equation came into focus at the beginning of the following century.

The most important name in its early history is Joseph Fourier (1768–1830).
Much of the contents of this book has its origins in the treatise Théorie analytique
de la chaleur. We shall return to Fourier in the historical notes to Chapter 4.
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2
Preparations

2.1 Complex exponentials

Complex numbers are assumed to be familiar to the reader. The set of all
complex numbers will be denoted by C. The reader has probably come
across complex exponentials at some occasion previously, but, to be on the
safe side, we include a short introduction to this subject here.

It was discovered by Euler during the eighteenth century that a close
connection exists between the exponential function ez and the trigonomet-
ric functions cos and sin. One way of seeing this is by considering the
Maclaurin expansions of these functions. The exponential function can be
described by

ez = 1 + z +
z2

2!
+
z3

3!
+
z4

4!
+ · · · =

∞∑
n=0

zn

n!
,

where the series is nicely convergent for all real values of z. Euler had the
idea of letting z be a complex number in this formula. In particular, if z is
purely imaginary, z = iy with real y, the series can be rewritten as

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+ · · ·

= 1 + iy − y2

2!
− i

y3

3!
+
y4

4!
+ i

y5

5!
− · · ·

= =
(

1 − y2

2!
+
y4

4!
− y6

6!
+ · · ·

)
+ i

(
y − y3

3!
+
y5

5!
− y7

7!
+ · · ·

)
.
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In the brackets we recognize the well-known expansions of cos and sin:

cos y = 1 − y2

2!
+
y4

4!
− y6

6!
+ · · · ,

sin y = y − y3

3!
+
y5

5!
− y7

7!
+ · · · .

Accordingly, we define
eiy = cos y + i sin y. (2.1)

This is one of the so-called Eulerian formulae. The somewhat adventurous
motivation through our manipulation of a series can be completely justified,
which is best done in the context of complex analysis. For this book we shall
be satisfied that the formula is true and can be used.

What is more, one can define exponentials with general complex argu-
ments:

ex+iy = exeiy = ex(cos y + i sin y) if x and y are real.

The function thus obtained obeys most of the well-known rules for the real
exponential function. Notably, we have these rules:

ezew = ez+w,
1
ez

= e−z,
ez

ew
= ez−w.

It is also true that ez �= 0 for all z, but it need no longer be true that
ez > 0.

Example 2.1. eiπ = cosπ + i sinπ = −1 + i · 0 = −1. Also, eniπ = (−1)n

if n is an integer (positive, negative, or zero). Furthermore, eiπ/2 = i is
not even real. Indeed, the range of the function ez for z ∈ C contains all
complex numbers except 0. ��
Example 2.2. The modulus of a complex number z = x + iy is defined
as |z| =

√
zz =

√
x2 + y2. As a consequence,

|ez| = |ex+iy| = |ex · eiy| = ex| cos y + i sin y| = ex

√
cos2 y + sin2 y = ex.

In particular, if z = iy is a purely imaginary number, then |ez| = |eiy| = 1.
��

Example 2.3. Let us start from the formula eixeiy = ei(x+y) and rewrite
both sides of this, using (2.1). On the one hand we have

eixeiy = (cosx+ i sinx)(cos y + i sin y)
= cosx cos y − sinx sin y + i(cosx sin y + sinx cos y),

and on the other hand,

ei(x+y) = cos(x+ y) + i sin(x+ y).
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If we identify the real and imaginary parts of the trigonometric expressions,
we see that

cos(x+ y) = cosx cos y − sinx sin y, sin(x+ y) = cosx sin y + sinx cos y.

Thus the addition theorems for cos and sin are contained in a well-known
exponential law! ��

By changing the sign of y in (2.1) and then manipulating the formulae
obtained, we find the following set of equations:

eiy = cos y + i sin y

e−iy = cos y − i sin y

cos y =
eiy + e−iy

2

sin y =
eiy − e−iy

2i

These are the “complete” set of Euler’s formulae. They show how one can
pass back and forth between trigonometric expressions and exponentials.

Particularly in Chapters 4 and 7, but also in other chapters, we shall
use the exponential expressions quite a lot. For this reason, the reader
should become adept at using them by doing the exercises at the end of
this section. If these things are quite new, the reader is also advised to find
more exercises in textbooks where complex numbers are treated.

Exercises
2.1 Compute the numbers eiπ/2, e−iπ/4, e5πi/6, eln 2−iπ/6.

2.2 Prove that the function f(z) = ez has period 2πi, i.e., that f(z+2πi) = f(z)
for all z.

2.3 Find a formula for cos 3t, expressed in cos t, by manipulating the identity
e3it =

(
eit
)3

.

2.4 Prove the formula sin3 t = 3
4 sin t− 1

4 sin 3t.

2.5 Show that if |ez| = 1, then z is purely imaginary.

2.6 Prove the de Moivre formula:

(cos t+ i sin t)n = cosnt+ i sinnt, n integer.

2.2 Complex-valued functions of a real variable

In order to perform calculus on complex-valued functions, we should define
limits of such objects. As long as the domain of definition lies on the real
axis, this is quite simple and straightforward. One can use similar formu-
lations as in the all-real case, but now modulus signs stand for moduli of
complex numbers. For example: if we state that

lim
t→∞ f(t) = A,
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then we are asserting the following: for every positive number ε, there exists
a number R such that as soon as t > R we are assured that |f(t) −A| < ε.

If we split f(t) into real and imaginary parts,

f(t) = u(t) + iv(t), u(t) and v(t) real,

the following inequalities hold:

|u(t)| ≤ |f(t)|, |v(t)| ≤ |f(t)|; |f(t)| ≤ |u(t)| + |v(t)|. (2.2)

This should make it rather clear that convergence in a complex-valued
setting is equivalent to the simultaneous convergence of real and imaginary
parts. Indeed, if the latter are both small, then the complex expression
is small; and if the complex expression is small, then both its real and
imaginary parts must be small. In practice this means that passing to
a limit can be done in the real and imaginary parts, which reduces the
complex-valued situation to the real-valued case.

Thus, if we want to define the derivative of a complex-valued function
f(t) = u(t) + iv(t), we can go about it in two ways. Either we define

f ′(t) = lim
h→0

f(t+ h) − f(t)
h

,

which stands for an ε-δ notion involving complex numbers, or we can just
say that

f ′(t) = u′(t) + iv′(t). (2.3)

These definitions are indeed equivalent. The derivative of a complex-valued
function of a real variable t exists if and only if the real and imaginary parts
of f both have derivatives, and in this case we also have the formula (2.3).
The following example shows the most frequent case of this, at least in this
book.

Example 2.4. If f(t) = ect with a complex coefficient c = α+ iβ, we can
find the derivative, according to (2.3), like this:

f ′(t) =
d

dt

(
eαt(cosβt+ i sinβt)

)
=

d

dt

(
eαt cosβt

)
+ i

d

dt

(
eαt sinβt

)
= αeαt cosβt− eαtβ sinβt+ i

(
αeαt sinβt+ eαtβ cosβt

)
= eαt(α+ iβ)(cosβt+ i sinβt) = cect.

��
Similarly, integration can be defined by splitting into real and imaginary

parts. If I is an interval, bounded or unbounded,∫
I

f(t) dt =
∫

I

(u(t) + iv(t)) dt =
∫

I

u(t) dt+ i

∫
I

v(t) dt.
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If the interval is infinite, the convergence of the integral on the left is
equivalent to the simultaneous convergence of the two integrals on the
right.

A number of familiar rules of computation for differentiation and inte-
gration can easily be shown to hold also for complex-valued functions, with
virtually unchanged proofs. This is true for, among others, the differentia-
tion of products and quotients, and also for integration by parts. The chain
rule for derivatives of composite functions also holds true for an expression
such as f(g(t)), when g is real-valued but f may take complex values.

Absolute convergence of improper integrals follows the same pattern.
From (2.2) it follows, by the comparison test for generalized integrals, that∫
f is absolutely convergent if and only if

∫
u and

∫
v are both absolutely

convergent.
The fundamental theorem of calculus holds true also for integrals of com-

plex-valued functions:

d

dx

∫ x

a

f(t) dt = f(x).

Example 2.5. Let c be a non-zero real number. To compute the integral
of ect over an interval [a, b], we can use the fact that ect is the derivative of
a known function, by Example 2.4:∫ b

a

ect dt =
[
ect

c

]t=b

t=a

=
ecb − eca

c
.

��
When estimating the size of an integral the following relation is often

useful: ∣∣∣∣∫ b

a

f(t) dt
∣∣∣∣ ≤

∫ b

a

|f(t)| dt.

Here the limits a and b can be finite or infinite. This is rather trivial if f
is real-valued, so that the integral of f can be interpreted as the difference
of two areas; but it actually holds also when f is complex-valued. A proof
of this runs like this: The value of

∫ b

a
f(t) dt is a complex number I, which

can be written in polar form as |I|eiα for some angle α. Then we can write
as follows:∣∣∣∣∫ b

a

f(t) dt
∣∣∣∣= |I| = e−iα

∫ b

a

f(t) dt =
∫ b

a

e−iαf(t) dt = Re
∫ b

a

e−iαf(t) dt

=
∫ b

a

Re
{
e−iαf(t)

}
dt ≤

∫ b

a

∣∣e−iαf(t)
∣∣ dt =

∫ b

a

|f(t)| dt.

Here we used that the left-hand member is real and thus equal to its own
real part.
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Exercises
2.7 Compute the derivative of f(t) = eit2 by separating into real and imaginary

parts. Compare the result with that obtained by using the chain rule, as if
everything were real.

2.8 Show that the chain rule holds for the expression f(g(t)), where g is real-
valued and f is complex-valued, and t is a real variable.

2.9 Compute the integral ∫ π

−π

eint dt,

where n is an arbitrary integer (positive, negative, or zero).

2.3 Cesàro summation of series

We shall study a method that makes it possible to assign a sort of “sum
value” to certain divergent series. For a convergent series, the new method
yields the ordinary sum; but, as will be seen in Chapter 4, the method is
really valuable when studying a series which may or may not be convergent.

Let ak be terms (real or complex numbers), and define the partial sums
sn and the arithmetic means σn of the partial sums like this:

sn =
n∑

k=1

ak, σn =
s1 + s2 + · · · + sn

n
=

1
n

n∑
k=1

sk. (2.4)

Lemma 2.1 Suppose that the series
∞∑

k=1
ak is convergent with the sum s.

Then also
lim

n→∞σn = s.

Proof. Let ε > 0 be given. The assumption is that sn → s as n → ∞. This
means that there exists an integer N such that |sn −s| < ε/2 for all n > N .
For these n we can write

|σn − s| =
∣∣∣∣s1 + s2 + · · · + sn − ns

n

∣∣∣∣
=

1
n

∣∣(s1 − s) + · · · + (sN − s) + (sN+1 − s) + · · · + (sn − s)
∣∣

≤ 1
n

N∑
k=1

|sk − s| +
1
n

n∑
k=N+1

|sk − s| ≤ 1
n

· C +
1
n

· (n−N)
ε

2
≤ C

n
+
ε

2
.

Here, C is a non-negative constant (that does not depend on n), and so,
if n > 2C/ε, the first term in the last member is also less than ε/2. Put
n0 = max(N, 2C/ε). For all n > n0 we have then |σn − s| < ε, which is the
assertion. ��
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Definition 2.1 Let sn and σn be defined as in (2.4). We say that the
series

∑∞
k=1 ak is summable according to Cesàro or Cesàro summable

or summable (C, 1) to the value, or “sum”, s, if lim
n→∞σn = s.

We write ∞∑
k=1

ak = s (C, 1).

The lemma above states that if a series is convergent in the usual sense,
then it is also summable (C, 1), and the Cesàro sum coincides with the
ordinary sum.

Example 2.6. Let ak = (−1)k−1, k = 1, 2, 3, . . ., which means that we
have the series 1 − 1 + 1 − 1 + 1 − 1 + · · ·. Then sn = 0 if n is even and
sn = 1 if n is odd. The means σn are

σn =
1
2

if n is even, σn =
1
2 (n+ 1)

n
=
n+ 1
2n

if n is odd.

Thus we have σn → 1
2 as n → ∞. This divergent series is indeed summable

(C, 1) with sum 1
2 . ��

The reason for the notation (C, 1) is that it is possible to iterate the
process. If the σn do not converge, we can form the means τn = (σ1 + · · ·+
σn)/n. If the τn converge to a number s one says that the original series is
(C, 2)-summable to s, and so on.

These methods can be efficient if the terms in the series have different
signs or are complex numbers. A positive divergent series cannot be summed
to anything but +∞, no matter how many means you try.

Exercises

2.10 Study the series 1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − · · ·, i.e., the series
∑∞

k=1 ak,
where a3k+1 = 1, a3k+2 = 0 and a3k+3 = −1. Compute the Cesàro means
σn and show that the series has the Cesàro sum 2

3 .

2.11 The results of Example 2.6 and the previous exercise can be generalized as
follows. Assume that the sequence of partial sums sn is periodic, i.e., that
there is a positive integer p such that sn+p = sn for all n. Then the series
is summable (C, 1) to the sum σ = (s1 + s2 + · · · + sp)/p. Prove this!

2.12 Show that if
∑

ak has a finite (C, 1) value, then

lim
n→∞

sn

n
= 0.

What can be said about lim
k→∞

ak/k ?

2.13 Prove that if ak ≥ 0 and
∑

ak is (C, 1)-summable, then the series is con-
vergent in the usual sense. (Assume the contrary – what does that entail
for a positive series?)
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2.14 Show that the series
∑∞

k=1(−1)k k is not summable (C, 1). Also show that
it is summable (C, 2). Show that the (C, 2) sum is equal to − 1

4 .

2.15 Show that, if x �= n · 2π (n ∈ Z),

1
2 +

∞∑
k=1

cos kx = 0 (C, 1).

2.16 Prove that
∞∑

n=0

zn =
1

1 − z
(C, 1) for |z| ≤ 1, z �= 1.

2.4 Positive summation kernels

In this section we prove a theorem that is useful in many situations for
recovering the values of a function from various kinds of transforms. The
main idea is summarized in the following formulation.

Theorem 2.1 Let I = (−a, a) be an interval (finite or infinite). Suppose
that {Kn}∞

n=1 is a sequence of real-valued, Riemann-integrable functions
defined on I, with the following properties:

(1) Kn(s) ≥ 0.

(2)
∫ a

−a

Kn(s) ds = 1.

(3) If δ > 0, then lim
n→∞

∫
δ<|s|<a

Kn(s) ds = 0.

If f : I → C is integrable and bounded on I and continuous for s = 0, we
then have

lim
n→∞

∫ a

−a

Kn(s) f(s) ds = f(0).

Proof. Let ε be a positive number. Since f is continous at the origin there
exists a number δ > 0 such that

|s| ≤ δ ⇒ |f(s) − f(0)| < ε.

Furthermore, f is bounded on I, i.e., there exists a number M such that
|f(s)| ≤ M for all s. Because of the property 2 we have

∆ :=
∫ a

−a

Kn(s) f(s) ds− f(0) =
∫ a

−a

Kn(s) f(s) ds− f(0)
∫ a

−a

Kn(s) ds

=
∫ a

−a

Kn(s)
(
f(s) − f(0)

)
ds.
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We want to prove that ∆ → 0 as n → ∞. Let us estimate the absolute
value of ∆, assuming that |s| ≤ δ:

|∆| =
∣∣∣∣∣∣

a∫
−a

Kn(s)
(
f(s) − f(0)

)
ds

∣∣∣∣∣∣ ≤
a∫

−a

Kn(s) |f(s) − f(0)| ds

=

δ∫
−δ

Kn(s) |f(s) − f(0)| ds+
∫

δ<|s|<a

Kn(s) |f(s) − f(0)| ds

≤ ε

δ∫
−δ

Kn(s) ds+
∫

δ<|s|<a

Kn(s) 2M ds ≤ ε+ 2M
∫

δ<|s|<a

Kn(s) ds.

The last integral tends to zero, by the assumptions, and so the second term
of the last member is also less than ε if n is large enough. This means that
for large n we have |∆| < 2ε, which proves the theorem. ��

A sequence {Kn}∞
n=1 having the properties 1–3 is called a positive sum-

mation kernel. We illustrate with a few simple examples.

Example 2.7. Define Kn : R → R by

Kn(s) =
{
n, |s| < 1/(2n),
0, |s| > 1/(2n)

(see Figure 2.1a). It is obvious that the conditions 1–3 are fullfilled. See
also Exercise 2.17. ��
Example 2.8. Let ϕ(s) = e−s2/2/

√
2π, the density function of the normal

probability distribution (Figure 2.1b). Define Kn(s) = nϕ(ns). Then {Kn}
is a positive summation kernel on R (check it!). ��
Example 2.9. The preceding example can be generalized in the following
way: Let ψ : R → R be some function satisfying ψ(s) ≥ 0 and

∫
R ψ(s) ds =

1. Putting Kn(s) = nψ(ns), we have a positive summation kernel. ��
The examples should help the reader to understand what is going on: a

positive summation kernel creates a weighted mean value of the function f ,
with the weight being successively concentrated towards the point s = 0.
If f is continuous at that point, the limit will yield precisely the value of f
at s = 0.

A corollary of Theorem 2.1 is the following, where we move the concen-
tration of mass to some other point than the origin:

Corollary 2.1 If {Kn}∞
n=1 is a positive summation kernel on the interval

I, s0 is an interior point of I, and f is continuous at s = s0, then

lim
n→∞

∫
I

Kn(s) f(s0 − s) ds = f(s0).
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1
2n− 1

2n

n

s

(a)

s
K1

K3

(b)

FIGURE 2.1.

The proof is left as an exercise (do the change of variable s0 − s = u).

Remark. The choice of the interval I is often rather unimportant. It is also easy
to see that the condition 2 can be weakened, e.g., it suffices that the integrals of
Kn over the interval tend to 1 as n → ∞. In consequence, kernels on all of R can
also be used on any subinterval R having the origin in its interior. ��

Remark. The reader who is familiar with the notion of uniform continuity , can
appreciate a sharper formulation of the corollary: if f is continuous on a compact
interval K, the functions

Fn(t) =
∫

I

Kn(s)f(t− s) ds

will converge to f(t) uniformly on K. The proof is practically unchanged, with
the only addition that the number δ occuring in the proof of Theorem 2.1 can be
chosen so that it can be used simultaneously for all values of t that are involved.

��

Exercises
2.17 Prove directly, without using the theorem, that if Kn is as in Example 2.7

and f is continuous at the origin, then lim
n→∞

∫
R
Kn(s)f(s) ds = f(0).

2.18 Prove that the “roof functions” gn, defined by gn(t) = n − n2t for 0 ≤
t ≤ 1/n, gn(t) = 0 for t > 1/n and gn(−t) = gn(t), make up a positive
summation kernel. Draw pictures!

2.19 (a) Show that Kn(t) = 1
2ne

−n|t| describes a positive summation kernel.
(b) Suppose that f is bounded and piecewise continuous on R, and
lim
t↗0

f(t) = 1, lim
t↘0

f(t) = 3. Show that

lim
n→∞

n

2

∫
R

e−n|t| f(t) dt = 2.



2.5 The Riemann–Lebesgue lemma 25

2.20 Show that if f is bounded on R and has a derivative f ′ that is also bounded
on R and continuous at the origin, then

lim
n→∞

n3

√
2π

∫
R

s e−n2s2/2 f(s) ds = f ′(0).

2.21 Let ϕ be defined by ϕ(x) = 15
16 (x2 −1)2 for |x| < 1 and ϕ(x) = 0 otherwise.

Let f be a function with a continuous derivative. Find the limit

lim
n→∞

∫ 1

−1

n2ϕ′(nx) f(x) dx.

2.5 The Riemann–Lebesgue lemma

The following theorem plays a central role in Fourier Analysis. It takes
its name from the fact that it holds even for functions that are integrable
according to the definition of Lebesgue. We prove it for functions that are
absolutely integrable in the Riemann sense. First, let us very briefly recall
what this means.

A bounded function f on a finite interval [a, b] is integrable if it can be
approximated by Riemann sums from above and below in such a way that
the difference of the integrals of these sums can be made as small as we
wish. This definition is then extended to unbounded functions and infinite
intervals by taking limits; these cases are often called improper integrals. If
I is any interval and f is a function on I such that the (possibly improper)
integral ∫

I

|f(u)| du

has a finite value, then f is said to be absolutely integrable on I.

Theorem 2.2 (Riemann–Lebesgue lemma) Let f be absolutely inte-
grable in the Riemann sense on a finite or infinite interval I. Then

lim
λ→∞

∫
I

f(u) sinλu du = 0.

Proof. We do it in four steps. First, assume that the interval is compact,
I = [a, b], and that f is constant and equal to 1 on the entire interval. Then∫ b

a

f(u) sinλu du =
∫ b

a

sinλu du =
[
−cosλu

λ

]u=b

u=a

=
1
λ

(cosλa− cosλb),

which gives ∣∣∣∣∣
∫ b

a

f(u) sinλu du

∣∣∣∣∣ ≤ 2
λ

−→ 0 as λ → ∞.
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The assertion is thus true for this f .
Now assume that f is piecewise constant, which means that I (still as-

sumed to be compact) is subdivided into a finite number of subintervals
Ik = (ak−1, ak), k = 1, 2, . . . , N (a0 = a, aN = b), and that f(u) has a
certain constant value ck for u ∈ Ik. This means that we can write

f(u) =
N∑

k=1

ck gk(u),

where gk(u) = 1 on Ik and gk(u) = 0 outside of Ik. We get

∫ b

a

f(u) sinλu du =
N∑

k=1

∫ b

a

ck gk(u) sinλu du =
N∑

k=1

ck

∫ ak

ak−1

sinλu du.

This is a sum of finitely many terms, and by the preceding case each of
these terms tends to zero as λ → ∞. Thus the assertion is true also for this
f .

Let now f be an arbitrary function that is Riemann integrable on I =
[a, b]. Let ε be an arbitrary positive number. By the definition of the Rie-
mann integral, there exists a piecewise constant function g such that∫ b

a

|f(u) − g(u)| du < ε

2
.

(Let g be a function whose integral is a Riemann sum of f .) Then,∣∣∣∣∣
∫ b

a

f(u) sinλu du

∣∣∣∣∣=
∣∣∣∣∣
∫ b

a

(f(u) − g(u)) sinλu du+
∫ b

a

g(u) sinλu du

∣∣∣∣∣
≤
∫ b

a

|f(u) − g(u)|| sinλu| du+

∣∣∣∣∣
∫ b

a

g(u) sinλu du

∣∣∣∣∣
≤
∫ b

a

|f(u) − g(u)| du+

∣∣∣∣∣
∫ b

a

g(u) sinλu du

∣∣∣∣∣ .
The last integral tends to zero as λ → ∞, by the preceding case. Thus there
is a value λ0 such that this integral is less that ε/2 for all λ > λ0. For these
λ, the left-hand member is thus less than ε, which proves the assertion.

Finally, we no longer require that I is compact. Let ε > 0 be prescribed.
Since f is absolutely integrable, there is a compact subinterval J ⊂ I such
that

∫
I\J

|f(u)| du < ε. We can write∣∣∣∣∫
I

f(u) sinλu du
∣∣∣∣ ≤

∣∣∣∣∫
J

f(u) sinλu du
∣∣∣∣+ ∫

I\J

|f(u)| du,
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where the first term tends to zero by the preceding case, and thus it is less
than ε if λ is large enough; the second term is always less than ε. This
completes the proof. ��

The intuitive content of the theorem is not hard to understand: For large
values of |λ|, the integrated function f(u) sinλu is an amplitude-modulated
sine function with a high frequency; its mean value over a fixed interval
should reasonably approach zero as the frequency increases. Of course,
the factor sinλu in the integral can be replaced by cosλu or the complex
function eiλu, with the same result. And, of course, we can just as well let
λ tend to −∞.

2.6 *Some simple distributions

In this section, we introduce, in an informal way, a sort of generalization of
the notion of a function. (A more coherent and systematic way of defining
these objects is given in Chapter 8.) As a motivation for this generalization,
we begin with a few “examples.”

Example 2.10. In Sec. 1.3 (on the wave equation) we saw difficulties in the
usual requirement that solutions of a differential equation of order n shall
actually have (maybe even continuous) derivatives of order n. Quite natural
solutions are disqualified for reasons that seem more of a “bureaucratic”
nature than physically motivated. This indicates that it would be a good
thing to widen the notion of differentiability in one way or another. ��

Example 2.11. Ever since the days of Newton, physicists have been
dealing with situations where some physical entity assumes a very large
magnitude during a very short period of time; often this is idealized so
that the value is infinite at one point in time. A simple example is an elas-
tic collision of two bodies, where the forces are thought of as infinite at
the moment of impact. Nevertheless, a finite and well-defined amount of
impulse is transferred in the collision. How is this to be treated mathemat-
ically? ��

Example 2.12. A situation that is mathematically analogous to the
previous one is found in the theory of electricity. An electron is considered
(at least in classical quantum theory) to be a point charge. This means that
there is a certain finite amount of electric charge localized at one point in
space. The charge density is infinite at this point, but the charge itself has
an exact, finite value. What mathematical object describes this? ��

Example 2.13. In Sec. 2.4 we studied positive summation kernels. These
consisted of sequences of nonnegative functions with integral equal to 1,
that concentrate toward a fixed point as a parameter, say, N , tends to
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infinity, for example. Can we invent a mathematical object that can be
interpreted as the limit of such a sequence? ��

The problems in Examples 2.11 and 2.12 above have been addressed by
many physicists ever since the later years of the nineteenth century by
using the following trick. Let us assume that the independent variable is t.
Introduce a “function” δ(t) with the following properties:

(1) δ(t) ≥ 0 for − ∞ < t < ∞,

(2) δ(t) = 0 for t �= 0,

(3)
∫ ∞

−∞
δ(t) dt = 1.

Regrettably, there is no ordinary real-(or complex)-valued function that
satisfies these conditions. Condition 2 irrevocably implies that the integral
in condition 3 must be zero. Nevertheless, using formal calculations involv-
ing the “function” δ, it was possible to arrive at results that were both
physically meaningful and “correct.” A name that is commonly associated
with this is P. Dirac, but he was not the only person (nor even the first
one) to reason in this way. He has, however, given his name to the object
δ: it is often called the Dirac delta function (or the Dirac measure, or the
Dirac distribution).

One way of making legitimate the formal δ calculus is to follow an idea
that is indicated in Example 2.13. If δ occurs in a formula, it is at first
replaced by a positive summation kernel KN ; upon this we then do our
calculations, and finally we pass to the limit. In a certain sense (which will
be made precise in Chapter 8), it is true that δ = lim

N→∞
KN .

In this section, and in certain star-marked sections in the following chap-
ters, we shall accept the delta function and some of its relatives in an intu-
itive way. Thus, δ(t) stands for an object that acts on a continuous function
ϕ according to the formula∫

δ(t)ϕ(t) dt = ϕ(0),

where the integral is taken over some interval that contains the origin in
its interior. We also introduce the translates δa, which can be described
by either δa(t) = δ(t − a) or

∫
δa(t)ϕ(t) dt = ϕ(a). It is essential that the

point a, where the “pulse” appears, is located in the interior of the interval
of integration. If the point coincides with an endpoint of the interval, the
integral is not considered to be well-defined.

Example 2.14. The Laplace transform of a function f is defined to be
another function f̃ , given by

f̃(s) =
∫ ∞

0
f(t)e−st dt
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for all s such that the integral is convergent (see Chapter 3). The Laplace
transform of δ cannot be defined in this way. We can, however, modify the
definition so as to include the origin. It is indeed customary to write

f̃(s) =
∫ ∞

0−
f(t)e−st dt = lim

k↗0

∫ ∞

k

f(t)e−st dt.

With this definition one finds that δ̃(s) = 1 for all s. Similarly, δ̃a(s) = e−as,
if a > 0. ��

The Heaviside function, or unit step function, H is defined by

H(t) =

{
0 for t < 0,
1 for t > 0.

The value of H(0) is mostly left undefined, because it is normally of no
importance. The Heaviside function is useful in many contexts. One of
these is when we are dealing with functions that are given by different
formulae in different intervals.

If a < b, the expression H(t−a)−H(t−b) is equal to 1 for a < t < b and
equal to 0 outside the interval [a, b]. It might be called a “window” that
lights up the interval (a, b) (we do not in these situations care much about
whether an interval is open or closed). For unbounded intervals we can also
find “windows”: the function H(t − a) lights up the interval (a,∞), and
the expression 1 −H(t− b) the interval (−∞, b).

Example 2.15. Consider the function f : R → R that is given by

f(t) =


1 − t2 for t < −2,
t+ 2 for − 2 < t < 1,
1 − t for t > 1.

This can now be compressed into one formula:

f(t)
= (1 − t2)(1 −H(t+ 2)) + (t+ 2)(H(t+ 2)−H(t− 1)) + (1 − t)H(t− 1)
= (1 − t2) + (−1 + t2 + t+ 2)H(t+ 2) + (−t− 2 + 1 − t)H(t− 1)
= 1 − t2 + (t2 + t+ 1)H(t+ 2) − (2t+ 1)H(t− 1).

��
Heaviside’s function is connected with the δ function via the formula

H(t) =
∫ t

−∞
δ(u) du.

A very bold differentiation of this formula would give the result

H ′(t) = δ(t). (2.5)
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Since H is constant on the intervals ]−∞, 0[ and ]0,∞[, and δ(t) is consid-
ered to be zero on these intervals, the formula (2.5) is reasonable for t �= 0.
What is new is that the “derivative” of the jump discontinuity of H should
be considered to be the “pulse” of δ. In fact, this assertion can be given a
completely coherent background; this will be done in Chapter 8.

If ϕ is a function in the class C1, i.e., it has a continuous derivative, and
if in addition ϕ is zero outside some finite interval, the following calculation
is clear:∫ ∞

−∞
ϕ′(t)H(t) dt =

∫ ∞

0
ϕ′(t) dt =

[
ϕ(t)

]∞
t=0 = 0 − ϕ(0) = −ϕ(0).

The same result can also be obtained by the following formal integration
by parts: ∫ ∞

−∞
ϕ′(t)H(t) dt=

[
ϕ(t)H(t)

]∞

−∞
−
∫ ∞

−∞
ϕ(t)H ′(t) dt

= (0 − 0) −
∫ ∞

−∞
ϕ(t)δ(t) dt = −ϕ(0).

This is characteristic of the way in which these generalized functions can be
treated: if they occur in an integral together with an “ordinary” function
of sufficient regularity, this integral can be treated formally, and the results
will be true facts.

One can go further and introduce derivatives of the δ functions. What
would be, for example, the first derivative of δ = δ0 ? One way of finding out
is by operating formally as in the preceding situation. Let ϕ be a function
in C1, and let it be understood that all integrals are taken over an interval
that contains 0 in its interior. Since δ(t) = 0 if t �= 0, it is reasonable that
also δ′(t) = 0 for t �= 0. Integration by parts gives∫ b

a

δ′(t)ϕ(t) dt =
[
δ(t)ϕ(t)

]b

a

−
∫ b

a

δ(t)ϕ′(t) dt = (0 − 0) − ϕ′(0) = −ϕ′(0).

If δ itself serves to pick out the value of a function at the origin, the
derivative of δ can thus be used to find the value at the same place of
the derivative of a function.

Another way of seeing δ′ is to consider δ to be the limit of a differentiable
positive summation kernel, and taking the derivative of the kernel. An
example is actually given in Exercise 2.20. As in Example 2.8 on page 23,
we study the summation kernel

Kn(t) =
n√
2π

e−n2t2/2,

(which consists in rescaling the normal probability density function). The
derivatives are

Kn
′(t) = − n3t√

2π
e−n2t2/2.
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These are illustrated in Figure 2.2. The fact that they approach −δ′(t) is
proved by integration by parts (which is what Exercise 2.20 is all about).

In the theory of electricity, there occurs a phenomenon known as an
electric dipole. This consists of two equal but opposite charges ±q at a
small distance from each other (see Figure 2.3). If the distance is made
smaller and charges increase in proportion to the inverse of the distance,
the “limit object” is an idealized dipole. A mathematical model of this
object consists of δ′, just as a a point charge can be represented by δ.

Higher derivatives of δ can also be defined. Using integration by parts
one finds that the nth derivative δ(n) should act according to the formula∫

δ(n)(t)ϕ(t) dt = (−1)n ϕ(n)(0),

provided the function ϕ has an nth derivative that is continuous at the
origin.
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Exercises
2.22 Compute the following integrals (taken over the entire real axis if nothing

else is indicated):
(a)

∫
(t2 + 3t)(δ(t) − δ(t+ 2)) dt (b)

∫∞
0
e−stδ′(t− 1) dt

(c)
∫
e2tδ′(t) dt (d)

∫∞
0− δ

(n)(t) e−st dt

2.23 What should be meant by δ(2t), expressed using δ(t) ? Investigate this by
manipulating

∫
ϕ(t)δ(2t) dt in a suitable way. Generalize to δ(at), a �= 0.

(The cases a > 0 and a < 0 should be considered separately.)

2.24 Rewrite, using Heaviside windows, the expressions f1(t) = t|t+ 1|, f2(t) =
e−|t|, f3(t) = sgn t = t/|t| (t �= 0), f4(t) = A if t < a, = B if t > a.

2.7 *Computing with δ

We shall now show how one can solve certain problems involving the δ
distribution and its derivatives.

The ordinary rules for computing with derivatives will still hold true.
(We cannot really prove this at the present stage.) For example, the rule
for differentiating a product is valid: (fg)′ = f ′g + fg′.

Example 2.16. If χ is a function that is continuous at a, what should be
meant by the product χ(t)δa(t) ? Since δa(t) is “zero” except for at t = a, it
can be expected that the values of χ(t) for t �= a should not really matter.
And we can write as follows:∫ (

χ(t)δa(t)
)
ϕ(t) dt =

∫
δa(t)

(
χ(t)ϕ(t)

)
dt = χ(a)ϕ(a).

There is no way to distinguish χ(t)δa(t) from χ(a)δa(t). Thus we have a
simplification rule: the product of a delta and a continuous function is equal
to a scalar multiple of the delta, with coefficient equal to the value of the
function at the point where the pulse sits:

χ(t)δa(t) = χ(a)δa(t). (2.6)

If we encounter derivatives of δ, the matter is more complicated. What
happens is this: start from (2.6) and differentiate:

χ′(t)δa(t) + χ(t)δ′
a(t) = χ(a)δ′

a(t).

In the first term we can replace χ′(t) by χ′(a) and then move this term to
the other side. We get

χ(t)δ′
a(t) = χ(a)δ′

a(t) − χ′(a)δa(t).

(On second thought, it should not be surprising that the product of a
function and a δ′ somehow takes into account the value of the derivative
of the function as well.)
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What happens when the second derivative is multiplied by a function is
left to the reader to find out (in Exercise 2.25). ��
Example 2.17. Find the first two derivatives of f(t) = |t|.
Solution. Rewrite the function without modulus signs, using Heaviside win-
dows:

f(t) = |t| = −t(1 −H(t)) + tH(t) = 2tH(t) − t.

Differentiation then gives

f ′(t) = 2H(t) + 2tδ(t) − 1 = 2H(t) − 1.

In the last step we used the formula (2.6). In plain language, the derivative
of |t| is plus one for positive t and minus one for negative t, just as we
know from elementary calculus; at the origin, the value of the derivative is
undecided. We proceed to the second derivative:

f ′′(t) = 2δ(t) − 0 = 2δ(t).

This formula reflects the fact that f ′ has derivative zero everywhere outside
the origin; whereas at the origin, the delta term indicates that f ′ has a
positive jump of two units. This is characteristic of the derivative of a
function with jumps. ��
Example 2.18. Another example of the same type, though more compli-
cated. The function f(x) = |x2 − 1| can be rewritten as

f(x) = (x2 − 1)H(x− 1) + (1 − x2)(H(x+ 1) −H(x− 1))
+(x2 − 1)(1 −H(x+ 1))

= (x2 − 1)
(
2H(x− 1) − 2H(x+ 1) + 1

)
.

This formula can be differentiated, using the rule for differentiating a prod-
uct:

f ′(x) = 2x
(
2H(x− 1) − 2H(x+ 1) + 1

)
+ (x2 − 1)

(
2δ(x− 1) − 2δ(x+ 1)

)
= 2x

(
2H(x− 1) − 2H(x+ 1) + 1

)
.

In the last step, we used (2.6). One more differentiation gives

f ′′(x) = 2
(
2H(x− 1) − 2H(x+ 1) + 1

)
+ 2x

(
2δ(x− 1) − 2δ(x+ 1)

)
= 2

(
2H(x− 1) − 2H(x+ 1) + 1

)
+ 4δ(x− 1) + 4δ(x+ 1).

The first term contains the classical second derivative of |x2 − 1|, which
exists for x �= ±1; the two δ terms demonstrate that f ′ has upward jumps
of size 4 for x = ±1. The reader should draw pictures of f , f ′, and f ′′. ��

In the two last examples, the first derivative at the “corners” of f is
considered to be undecided. The classical point of view is to say that f does
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not have a derivative at such a point; when working with distributions, the
derivative is thought of as more of a global notion, that always exists, but
may lack a precise value at certain points.

Example 2.19. Solve the differential equation y′ +2y = δ(t− 1) for t > 0
with the initial value y(0) = 1.

Solution. The method of integrating factor can be used. An integrating
factor is e2t:

e2ty′ + 2e2ty = e2tδ(t− 1) ⇐⇒ d

dt

(
e2t y

)
= e2δ(t− 1).

In rewriting the right-hand side we used (2.6). Now we can integrate:

e2t y = e2H(t− 1) + C,

where C is a constant. To satisfy the initial condition, we must take C = 1.
Thus the solution is

y = e2−2tH(t− 1) + e−2t, t > 0.

(The reader is recommended to check the solution by differentiation and
substitution into the original equation.) ��
Example 2.20. Find all solutions of the differential equation y′′ +4y = δ.

Solution. The classical method for this sort of problem amounts to first
finding the general solution of the corresponding homogeneous equation,
which is yH = C1 cos 2t + C2 sin 2t, where C1 and C2 are arbitrary con-
stants. Then we should find some particular solution of the inhomogeneous
equation. What kind of expression yP could possibly, after differentiation
and substitution into the left-hand side of the equation, yield the result
δ? Apparently, something drastic happens at t = 0. Since δ(t) = 0 for
t < 0, the equation can be said to be homogeneous during this period
of time. Let us then guess that there is a particular solution of the form
yP (t) = u(t)H(t), where u(t) is to be determined. Differentiation gives

y′
P (t) = u′(t)H(t) + u(t)H ′(t) = u′(t)H(t) + u(0)δ(t),
y′′

P (t) = u′′(t)H(t)+u′(t)H ′(t)+u(0)δ′(t)
= u′′(t)H(t)+u′(0)δ(t)+u(0)δ′(t).

Substitution into the equation gives(
u′′(t)H(t) + u′(0)δ(t) + u(0)δ′(t)

)
+ 4u(t)H(t) = δ(t)

or (
u′′(t) + 4u(t)

)
H(t) + u′(0)δ(t) + u(0)δ′(t) = δ(t).
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The function u should be chosen so that u′′ + 4u = 0, u′(0) = 1 and
u(0) = 0. This means that u(t) = a cos 2t+b sin 2t, where 0 = u(0) = a and
1 = u′(0) = 2b. Thus, u = 1

2 sin 2t, and yP = 1
2 sin 2tH(t). The solutions of

the problem are thus

y = C1 cos 2t+ (C2 + 1
2H(t)) sin 2t.

Again, the reader is recommended to check the solution. ��
Example 2.21. In Sec. 1.3, on the wave equation, the final example turned
out to have a solution that was not really a differentiable function. Now
we can put this right, by allowing the generalized derivatives introduced in
this section. The solution involved the function ϕ, defined by

ϕ(s) = 1
2 s− 1

2 C for s > 0, ϕ(s) = − 1
2 s− 1

2 C for s < 0.

We can rewrite this definition, using Heaviside windows:

ϕ(s) = (− 1
2 s− 1

2 C)(1 −H(s)) + ( 1
2 s− 1

2 C)H(s) = − 1
2 s− 1

2 C + sH(s).

The two first derivatives are

ϕ′(s) = − 1
2 +H(s) + sδ(s) = − 1

2 +H(s), ϕ′′(s) = δ(s).

The complete solution of the problem in Sec. 1.3 can be written

u(x, t) = ϕ(x− t) + ψ(x+ t) = ϕ(x− t) + 3
2 (x+ t) + 1

2 C.

Differentiating, and trusting that the chain rule holds as usual (which it
does, as will be proved in Chapter 8), we find

ux = ϕ′(x− t) + 3
2 = 1 +H(x− t), uxx = δ(x− t)

and
ut = −ϕ′(x− t) + 3

2 = 2 −H(x− t), utt = δ(x− t).

Thus, uxx = utt as distributions, and u can be considered as a worthy
solution of the wave equation. ��

Exercises
2.25 Find a simpler expression for χ(t)δ′′

a (t), where χ is a C2 function.

2.26 Determine the derivatives of order ≤ 2 of the functions f(t) = e−|t|, g(t) =
|t|e−|t| and h(t) = | sin t |. Draw pictures!

2.27 Let f : R → R be given by f(x) = 1 − x2 if −1 < x < 1 and f(x) = 0
otherwise. Find f ′′, and then simplify the expression (x2 − 1)f ′′(x) as far
as possible.

2.28 Find the derivatives f ′ and f ′′, if f(t) = |t3 − t|. Sketch the graphs of f ,
f ′ of f ′′ in separate pictures.
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2.29 Find the general solution of the differential equation
dy

dt
+ 2ty = δ(t− a).

2.30 Solve the problems (a) y′′−y = tH(t+1), (b) y′′+3y′+2y = tH(t)+δ′(t).
2.31 Find y = y(x) that satisfies (1 + x2)y′ − 2xy = δ(x− 1) and y(0) = 1.
2.32 Establish the following formula for an antiderivative (F being an antideriva-

tive of f): ∫
f(t)H(t− a) dt = (F (t) − F (a))H(t− a) + C.

2.33 Find a function y = y(x) such that y′ + 2xy = 2xH(x) − δ(x − 1) and
y(2) = 1. (Hint: the result of the preceding exercise may be useful.)

Historical notes

Complex numbers began to pop up as early as the Renaissance era, when scholars
such as Cardano began solving equations of third and fourth degrees. But not
until Leonhard Euler (1707–83) did they begin to be accepted as just as natural
as the real numbers. The study of complex-valued functions was intensified in the
nineteenth century; some famous names are Augustin Cauchy (1789–1857),
Bernhard Riemann (1826–66), and Karl Weierstrass (1815–97).

The idea of “summing” certain divergent series was made precise by math-
ematicians such as the young Norwegian Niels Henrik Abel (1802–29) and
Carl Friedrich Gauss (1777–1855). The method presented in Sec. 2.3 is due
to the Italian mathematician Ernesto Cesàro (1859–1906), but the German
Otto Hölder (1859–1937) had the same idea at about the same time.

Riemann is the originator of an integral definition which is even today in uni-
versal use for elementary education. His definition has certain disadvantages, that
were remedied by Henri Lebesgue (1875–1941) in his 1900 thesis. The Lebesgue
integral is, however, even after one century considered to be too complicated to
be included in elementary courses.

The theory of distributions is chronicled after Chapter 8.

Problems for Chapter 2

2.34 Show that the function f(z) = e4z has period πi/2.
2.35 Let f be a continuous function on R. Assume that we know that it has

period 2π and that it satisfies the equation

f(t) = 1
2

(
f
(
t− 1

2π
)

+ f
(
t+ 1

2π
))

for all t ∈ R.

Show that f in fact has a period shorter than 2π, and determine this period.
2.36 Let ϕ be a C1 function such that ϕ and ϕ′ are bounded on the real axis.

Compute the limit

lim
n→∞

2n3

π

∫ ∞

−∞

x

(1 + n2x2)2
ϕ(x) dx.
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2.37 Let F (x) = (1 − x2)(H(x + 1) − H(x − 1)). Let g be continuous on the
interval [−1, 1]. Find the limit

lim
n→∞

3
4

∫ 1

−1

nF (nx) g(x) dx.

2.38 Find the derivatives of order ≤ 4 of f(t) = t2H(t).

2.39 Find y(x) that solves the differential equation y′ +
x2 + 1
x

y = δ(x−2) and

satisfies y(1) = 1.

2.40 Let f : R → R be described by f(x) = (x2 − 1)2(H(x + 1) − H(x − 1)).
Show that f belongs to the class C1 but not to C2. Also compute its third
derivative.
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3
Laplace and Z transforms

3.1 The Laplace transform

Let f be a function defined on the interval R+ = [0,∞[. Alternatively, we
can think of f(t) as being defined for all real t, but satisfying f(t) = 0 for
all t < 0. This can be expressed by writing

f(t) = f(t)H(t),

where H is the Heaviside function. Now let s be a real (or complex, if you
like) number. If the integral

f̃(s) =
∫ ∞

0
f(t) e−st dt (3.1)

exists (with a finite value), we say that it is the Laplace transform of f ,
evaluated at the point s. We shall write, interchangeably, f̃(s) or L[f ](s).
In applications, one also often uses the notation F (s) (capital letter for the
transform of the corresponding lower-case letter).

Example 3.1. Let f(t) = eat, t ≥ 0. Then,∫ ∞

0
f(t) e−st dt =

∫ ∞

0
eat−st dt =

[
e(a−s)t

a− s

]∞

t=0
=

1
s− a

,

provided that a− s < 0 so that the evaluation at infinity yields zero. Thus
we have f̃(s) = 1/(s− a) for s > a, or

L[eat](s) =
1

s− a
, s > a.
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In particular, if a = 0, we have the Laplace transform of the constant
function 1: it is equal to 1/s for s > 0. ��
Example 3.2. Let f(t) = t, t > 0. Then, integrating by parts, we get

f̃(s) =
∫ ∞

0
t e−st dt =

[
t · e

−st

−s
]∞

t=0
+

1
s

∫ ∞

0
1 · e−st dt

= 0 +
1
s
L[1](s) =

1
s2
.

This works for s > 0. ��
It may happen that the Laplace transform does not exist for any real

value of s. Examples of this are given by f(t) = 1/t, f(t) = et2 .
A profound understanding of the workings of the Laplace transform re-

quires considering it to be a so-called analytic function of a complex vari-
able, but in most of this book we shall assume that the variable s is real. We
shall, however, permit the function f to take complex values: it is practical
to be allowed to work with functions such as f(t) = eiαt.

Furthermore, we shall assume that the integral (3.1) is not merely conver-
gent, but that it actually converges absolutely. This enables us to estimate
integrals, using the inequality | ∫ f | ≤ ∫ |f |.
Example 3.3. Let f(t) = eibt. Then we can imitate Example 3.1 above
and write ∫ ∞

0
f(t) e−st dt=

∫ ∞

0
e(ib−s)t dt =

[
e(ib−s)t

ib− s

]∞

t=0

=
1

ib− s

[
e−st(cos bt+ i sin bt)

]∞
t=0.

For s > 0 the substitution as t → ∞ will tend to zero, because the factor
e−st tends to zero and the rest of the expression is bounded. The result is
thus that L[eibt](s) = 1/(s − ib), which means that the formula that we
proved in Example 3.1 holds true also when a is purely imaginary. It is
left to the reader to check that the same formula holds if a is an arbitrary
complex number and s > Re a. ��

It would be convenient to have some simple set of conditions on a function
f that ensure that the Laplace transform is absolutely convergent for some
value of s. Such a set of conditions is given in the following definition.

Definition 3.1 Let k be a positive number. Assume that f has the follow-
ing properties:
(i) f is continuous on [0,∞[ except possibly for a finite number of jump

discontinuities in every finite subinterval;
(ii) there is a positive number M such that |f(t)| ≤ Mekt for all t ≥ 0.
Then we say that f belongs to the class Ek. If f ∈ Ek for some value of k,
we say that f ∈ E.
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Using set notation we can say that E =
⋃
k>0

Ek. Condition (ii) means that

f grows at most exponentially; this word lies behind the use of the letter
E. If f ∈ Ek for one value of k, then also f ∈ Ek for all larger k.

Theorem 3.1 If f ∈ Ek, then f̃(s) exists for all s > k.

Proof. We begin by observing that condition (i) for the class Ek implies
that the integral ∫ T

0
f(t) e−st dt

exists finitely for all s and all T > 0. Now assume s > k. Thus there exists
a number M and a number t0 so that f(t)e−kt ≤ M for t > t0. Then we
can estimate as follows:∫ T

t0

|f(t)| e−st dt=
∫ T

t0

|f(t)| e−kt e−(s−k)t dt ≤
∫ T

t0

Me−(s−k)t dt

≤M

∫ ∞

t0

e−(s−k)t dt ≤ M

∫ ∞

0
e−(s−k)t dt =

M

s− k
< ∞.

This means that the generalized integral over [t0,∞[ converges absolutely,
and then this is equally true for the integral over [0,∞[. ��

The result of the theorem can be “bootstrapped” in the following way.
If σ0 = inf{k : f ∈ Ek}, then the Laplace transform exists for all s > σ0.
Indeed, let k = (s + σ0)/2, so that σ0 < k < s; then f ∈ Ek (why?), and
the theorem can be applied. The number σ0 is a reasonably exact measure
of the rate of growth of the function f . In what follows we shall sometimes
use the notation σ0 or σ0(f) for this measure.

As a consequence of the theorem we now know that a large set of common
functions do have Laplace transforms. Among them are, e.g., polynomials,
trigonometric functions such as sin and cos and ordinary exponential func-
tions; also sums and products of such functions. If you have studied simple
differential equations you may recall that these functions are precisely the
possible solutions of homogeneous linear differential equations with con-
stant coefficients, such as, for example,

y(v) + 4y(iv) − 8y′′′ + 15y′′ − 24y′ = 0.

We shall soon see that Laplace transforms give us a new technique for solv-
ing these equations. We shall also be able to solve more general problems,
like integral equations of this kind:∫ t

0
f(t− x) f(x) dx+ 3

∫ t

0
f(x) dx+ 2t = 0, t > 0. (3.2)

Another consequence of the theorem is worth emphasizing: if a Laplace
transform exists for one value of s, then it is also defined for all larger
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values of s. If we are dealing with several different transforms having various
domains, we can always be sure that they are all defined at least in one
common semi-infinite interval. It is customary to be rather sloppy about
specifying the domains of definition for Laplace transforms: we make a tacit
agreement that s is large enough so that all transforms occuring in a given
situation are defined.

Exercises
3.1 Let f(t) = et2 , g(t) = e−t2 . Show that f /∈ E, whereas g ∈ Ek for all k.
3.2 Compute the Laplace transform of f(t) = eat, where a = α + iβ is a

complex constant.
3.3 Let f(t) = sin t for 0 ≤ t ≤ π, f(t) = 0 otherwise. Find f̃(s).

3.2 Operations

The Laplace transformation obeys some simple rules of computation and
also some less simple rules. The simplest ones are collected in the follow-
ing table. Everywhere we assume that s takes sufficiently large values, as
discussed at the end of the preceding section.

1. L[αf + βg](s) = αf̃(s) + βg̃(s), if α and β are constants.

2. L[eatf(t)](s) = f̃(s− a), if a is a constant (damping rule).

3. If we define f(t) = 0 for t < 0 and if a > 0, then

L[f(t− a)](s) = e−asf̃(s) (delaying rule).

4. L[f(at)](s) =
1
a
f̃(s/a), if a > 0.

The proofs of these rules are easy. As an example we give the computa-
tions that yield rules 3 and 4:

L[f(t− a)](s) =
∫ ∞

0
f(t− a) e−st dt

 u= t− a
du= dt

t = 0 ⇔ u = −a


=
∫ ∞

−a

f(u) e−s(u+a) du = e−as

∫ ∞

−a

f(u) e−su du

= e−as

∫ ∞

0
f(u) e−su du = e−asf̃(s);

L[f(at)](s) =
∫ ∞

0
f(at) e−st dt

{
u= at
du= a dt

}
=
∫ ∞

0
f(u) e−s·u/a du

a

=
1
a

∫ ∞

0
f(u) exp

(
− s

a
· u
)
du =

1
a
f̃

(
s

a

)
.
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Example 3.4. Using rule 1 and the result of Example 3.3 in the preceding
section, we can find the Laplace transforms of cos and sin:

L[cos bt](s) = 1
2L[eibt + e−ibt](s) = 1

2

(
1

s− ib
+

1
s+ ib

)
=

s

s2 + b2
,

L[sin bt](s) =
1
2i

L[eibt − e−ibt](s) =
1
2i

(
1

s− ib
− 1
s+ ib

)
=

b

s2 + b2
.

��
Example 3.5. Applying rule 2 to the result of Example 3.4 we get

L[eat cos bt](s) =
s− a

(s− a)2 + b2
, L[eat sin bt](s) =

b

(s− a)2 + b2
.

��
A couple of deeper rules are given in the following theorems.

Theorem 3.2 If f ∈ Ek0 , then (t �→ tf(t)) ∈ Ek1 for k1 > k0 and

L[tf(t)](s) = − d

ds
f̃(s).

Proof. We shall use a theorem on differentiation of integrals. In order to keep
it lucid, we assume that f is continuous on the whole of R+; otherwise we
would have to split into integrals over subintervals where f is continuous,
and this introduces certain purely technical complications. Since f ∈ Ek0 ,
we know that |f(t)| ≤ Mek0t for some number M and all sufficiently large
t, say t > t1. Let δ > 0. Then there is a t2 such that |t| < eδt for t > t2. If
t > t0 = max(t1, t2) we have

|tf(t)| ≤ eδt ·Mek0t = Me(k0+δ)t = Mek1t,

which means that tf(t) belongs to Ek1 and has a Laplace transform.
If we differentiate the formula f̃(s) =

∫∞
0 f(t) e−st dt formally with re-

spect to s, we get
(
f̃
)′(s) =

∫∞
0 (−t)f(t) e−st dt. According to the theorem

concerning differentiation of integrals, this maneuver is permitted if we can
find a “dominating” function g (that may depend on t but not on s) such
that the integrand in the differentiated formula can be estimated by g for
all t ≥ 0 and all values of s that we consider, and which is such that

∫∞
0 g

is convergent. Let a be a number greater than the constant k1 and put
g(t) = |tf(t) e−at|. For all s ≥ a we have then |(−t) f(t) e−st| ≤ g(t), and∫ ∞

0
g(t) dt=

∫ ∞

0
|tf(t)|e−at dt ≤ M

∫ ∞

0
ek1t · e−at dt

=M

∫ ∞

0
e−(a−k1)t dt =

M

a− k1
< ∞.



44 3. Laplace and Z transforms

This shows that the conditions for differentiating formally are fulfilled, and
the theorem is proved. ��
Example 3.6. We know that L[1](s) = 1/s for s > 0. Then we can say
that

L[t](s) = L[t · 1](s) = − d

ds

1
s

= −
(

− 1
s2

)
=

1
s2
, s > 0.

Repeating this argument (do it!) we find that

L[tn](s) =
n!
sn+1 , s > 0.

��
Example 3.7. Also, rule 2 allows us to conclude that

L[tn eat](s) =
n!

(s− a)n+1 , s > 0.

��
A sort of reverse of Theorem 3.2 is the following. The notation f(0+)

stands for the right-hand limit lim
t→0+

f(t) = lim
t↘0

f(t).

Theorem 3.3 Assume that f ∈ E is continuous on R+. Also assume that
the derivative f ′(t) exists for all t ≥ 0 (with f ′(0) interpreted as the right-
hand derivative) and that f ′ ∈ E. Then

L[f ′](s) = s f̃(s) − f(0+).

Proof. Suppose that f ∈ Ek0 and f ′ ∈ Ek1 , and take s to be larger than
both k0 and k1. Let T be a positive number. Integration by parts gives∫ T

0
f ′(t) e−st dt = f(T ) e−sT − f(0+) e0 + s

∫ T

0
f(t) e−st dt.

When T → ∞, the first term in the right-hand member tends to zero, and
the result is the desired formula. ��

Theorem 3.3 will be used for solving differential equations.

The following theorem states a few additional properties of the Laplace
transform.

Theorem 3.4 (a) If f ∈ E, then

lim
s→∞ f̃(s) = 0. (3.3)

(b) The initial value rule: If f(0+) exists, then

lim
s→∞ sf̃(s) = f(0+). (3.4)
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(c) The final value rule: If f(t) has a limit as t → +∞, then

lim
s↘0+

sf̃(s) = f(+∞) = lim
t→∞ f(t). (3.5)

In applications, the rule (3.5) is useful for deciding the ultimate or
“steady-state” behavior of a function or a signal.
Proof. (a) Let ε > 0 be given and choose δ > 0 so small that∫ δ

0
|f(t)| dt < ε.

Let k > 0 be such that f ∈ Ek and let s0 > k. Then for s > s0 we get

|f̃(s)| ≤
∫ δ

0
|f(t)| e−st dt+

∫ ∞

δ

|f(t)| e−st dt

≤
∫ δ

0
|f(t)| dt+

∫ ∞

δ

|f(t)| e−s0te−(s−s0)t dt

≤ ε+ e−(s−s0)δ
∫ ∞

δ

|f(t)|e−s0t dt ≤ ε+ Ce−(s−s0)δ = ε+ Ceδs0 · e−δs.

The last term tends to zero as s → ∞ and thus it is less than ε if s is large
enough. This proves that |f̃(s)| < 2ε for all sufficiently large s, and since ε
can be arbitrarily small, we have proved (3.3).

(b) The idea of proof is similar to the preceding. ε > 0 is arbitrary, but
now we choose δ > 0 so small that |f(t) − f(0+)| < ε for 0 < t < δ. With
s0 as above we get, for s > s0,

sf̃(s)

= s

∫ δ

0
(f(t) − f(0+)) e−st dt+ sf(0+)

∫ δ

0
e−st dt+ s

∫ ∞

δ

f(t) e−st dt.

The modulus of the first term is

≤ sε

∫ δ

0
e−st dt ≤ sε

∫ ∞

0
e−st dt = sε · 1

s
= ε, if s > 0.

The second term can be computed:

= sf(0+)
1 − e−sδ

s
= f(0+)(1 − e−sδ) → f(0+) as s → ∞.

Finally, the modulus of the third term can be estimated:

≤ s

∫ ∞

δ

|f(t)|e−s0te−(s−s0)t dt ≤ se−sδ · es0δ

∫ ∞

δ

|f(t)| e−s0t dt = Cse−δs,

which tends to zero as s → ∞. Just as in the proof of (3.3) we can draw
the conclusion (3.4).
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(c) This proof also runs along similar paths. We begin by writing

sf̃(s) = s

∫ T

0
f(t) e−st dt+ s

∫ ∞

T

(f(t) − f(∞))e−st dt+ f(∞)e−sT .

Choose T so large that |f(t) − f(∞)| < ε for t ≥ T . The modulus of the

first term can be estimated by s
∫ T

0 |f | → 0 as s → 0+, and the modulus
of the second one is

≤ s

∫ ∞

T

ε · e−st dt = ε e−sT ≤ ε.

The proof is finished in an analogous way to the others. ��
We round off this section by a generalization of the rule for Laplace

transformation of a power t (cf. Example 3.6). To this end we need a gener-
alization of factorials to non-integers. This is provided by Euler’s Gamma
function, whis is defined by

Γ(x) =
∫ ∞

0
ux−1e−u du, x > 0.

It is easy to see that this integral converges for positive x. It is also easy
to see that Γ(1) = 1. Integrating by parts we find

Γ(x+ 1) =
∫ ∞

0
uxe−u du =

[
−uxe−u

]∞

0
+ x

∫ ∞

0
ux−1e−u du = xΓ(x).

From this we deduce that Γ(2) = 1 · Γ(1) = 1, Γ(3) = 2, and, by induction,
Γ(n + 1) = n! for integral n. Thus, this function can be viewed as an
interpolation of the factorial.

Now we let f(t) = ta, where a > −1. It is then clear that f has a Laplace
transform, and we find, for s > 0,

f̃(s) =
∫ ∞

0
tae−st dt

{
st = u
dt = du/s

}
=
∫ ∞

0

(u
s

)a
e−u du

s

=
1

sa+1

∫ ∞

0
uae−u du =

Γ(a+ 1)
sa+1 .

If a is an integer, this reduces to the formula of Example 3.6.

Exercises
3.4 Find the Laplace transforms of (a) 2t2 − e−t

(b) (t2 + 1)2 (c) (sin t− cos t)2 (d) cosh2 4t (e) e2t sin 3t (f) t3 sin 3t.

3.5 Compute the Laplace transform of f(t) =

{
1/ε for 0 < t < ε,

0 otherwise.

3.6 Find the transform of f(t) =

{
(t− 1)2 for t > 1,
0 otherwise.
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3.7 Solve the same problem for f(t) =
∫ t

0

1 − e−u

u
du.

3.8 Compute
∫ ∞

0

t e−3t sin t dt. (Hint: f̃(3) !)

3.9 Find the Laplace transform of f , if we define f(t) = t sin t for 0 ≤ t ≤ π,
f(t) = 0 otherwise. (Hint: use the result of Exercise 3.3, p. 42.)

3.10 Find the Laplace transform of the function f defined by

f(t) = na for n− 1 ≤ x < n, n = 1, 2, 3, . . . .

3.11 Compute L[te−t sin t](s).

3.12 Explain why the function
s2

s2 + 1
cannot be the Laplace transform of any

f ∈ E.

3.13 Show that if f is periodic with period a, then

f̃(s) =
1

1 − e−as

∫ a

0

f(t) e−st dt.

(Hint:
∫∞
0

=
∑∞

0

∫ a(k+1)

ak
. Let u = t− ak, use the formula for the sum of

a geometric series.)

3.14 Find the Laplace transform of the function with period 1 that is described
by f(t) = t for 0 < t < 1.

3.15 Verify the final value rule (3.5) for f̃(s) = 1/(s(s+ 1)) by comparing f(t)
and lim

s→0+
sf̃(s).

3.16 Prove that Γ
(

1
2

)
=

√
π. What are the values of Γ

(
3
2

)
and Γ

(
5
2

)
?

3.3 Applications to differential equations

Example 3.8. Let us try to solve the initial value problem

y′′ − 4y′ + 3y = t, t > 0; y(0) = 3, y′(0) = 2. (3.6)

We assume that y = y(t) is a solution such that y, as well as y′ and y′′, has
a Laplace transform. By Theorem 3.3 we have then

L[y′](s) = sỹ − y(0) = sỹ − 3,
L[y′′](s) = sL[y′](s) − y′(0) = s(sỹ − 3) − 2 = s2ỹ − 3s− 2.

Due to linearity, we can transform the left-hand side of the equation to get

(s2ỹ − 3s− 2) − 4(sỹ − 3) + 3ỹ = (s2 − 4s+ 3)ỹ − 3s+ 10,
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and this must be equal to the transform of the right-hand side, which is
1/s2. The result is an algebraic equation, which we can solve for ỹ:

(s2 −4s+3)ỹ−3s+10 =
1
s2

⇐⇒ ỹ =
3s3 − 10s2 + 1
s2(s2 − 4s+ 3)

=
3s3 − 10s2 + 1
s2(s− 1)(s− 3)

.

The last expression can be expanded into partial fractions. Assume that

3s3 − 10s2 + 1
s2(s− 1)(s− 3)

=
A

s2
+
B

s
+

C

s− 1
+

D

s− 3
.

Multiplying by the common denominator and identifying coefficients we
find that A = 1

3 , B = 4
9 , C = 3, and D = − 4

9 . Thus we have

ỹ = 1
3 · 1

s2
+ 4

9 · 1
s

+ 3 · 1
s− 1

− 4
9 · 1

s− 3
.

It so happens that there exists a function with precisely this Laplace trans-
form, namely, the function

z = 1
3 t+ 4

9 + 3et − 4
9e

3t.

Could it be the case that y = z ? One way of finding this out is by differ-
entiating and investigating if indeed z does satisfy the equation and initial
conditions. And it does (check for yourself)! By the general theory of dif-
ferential equations, the problem (3.6) has a unique solution, and it follows
that z must be the solution we are looking for. ��

The example demonstrates a very useful method for treating linear in-
titial value problems. There is one difficulty that is revealed at the end of
the example: could it be possible that two different functions might have
the same Laplace transform? This question is answered by the following
theorem.

Theorem 3.5 (Uniqueness for Laplace transforms) If f and g both
belong to E, and f̃(s) = g̃(s) for all (sufficiently) large values of s, then
f(t) = g(t) for all values of t where f and g are continuous.

We omit the proof of this at this point. It is given in Sec. 7.10. In that
section we also prove a formula for the reconstruction of f(t) when f̃(s)
is known — a so-called inversion formula for the Laplace transform. The
present theorem, however, gives us the possibility to invert Laplace trans-
forms by recognizing functions, just as we did in the example.

This requires that we have access to a table of Laplace transforms of
such functions that can be expected to occur. Such a table is found at the
end of the book (p. 247 ff), and similar tables are included in all decent
handbooks on the subject. Several of the entries in such tables have already
been proved in the examples of this chapter; others can be done as exercises
by the interested student.
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We point out that the uniqueness result as such does not rule out the
possibility that a differential equation (or other problem) may have solu-
tions that have no Laplace transforms, e.g., solutions that grow faster than
exponentially. To preclude such solutions one must look into the theory
of differential equations. For linear equations there is a result on unique
solutions for initial value problems, which may serve the purpose. If the
coefficients are constants and the equation is homogeneous, one actually
knows that all solutions have at most exponential growth.

The Laplace transform method is ideally adapted to solving initial value
problems. Strictly speaking, the method takes into consideration only what
goes on for t ≥ 0. Very often, however, the expressions obtained for the
solutions are also valid for t < 0.

We include some examples on using a table of Laplace transforms in a
few more complicated situations. The technique may remind the reader of
the integration of rational functions.

Example 3.9. Find f(t), when f̃(s) =
2s+ 3

s2 + 4s+ 13
.

Solution. Complete the square in the denominator: s2+4s+13 = (s+2)2+9.
Then split the numerator to enable us to recognize transforms of cosines
and sines:

2s+ 3
s2 + 4s+ 13

=
2(s+ 2) − 1
(s+ 2)2 + 32 = 2 · s+ 2

(s+ 2)2 + 32 − 1
3 · 3

(s+ 2)2 + 32 ,

and now we can see that this is the transform of f(t) = 2e−2t cos 3t −
1
3e

−2t sin 3t. ��

Example 3.10. Find g(t), if g̃(s) =
2s

(s2 + 1)2
.

Solution. We recognize the transform as a derivative:

g̃(s) = − d

ds

1
s2 + 1

.

By Theorem 3.2 and the known transform of the sine we get g(t) = t sin t.
��

Example 3.11. Solve the initial value problem

y′′ + 4y′ + 13y = 13, y(0) = y′(0) = 0.

Solution. Transformation gives

(s2 + 4s+ 13)ỹ =
13
s

⇐⇒ ỹ =
13

s
(
(s+ 2)2 + 9

) .
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Expand into partial fractions:

ỹ =
1
s

− s+ 4
(s+ 2)2 + 9

=
1
s

− s+ 2
(s+ 2)2 + 9

− 2
3 · 3

(s+ 2)2 + 9
.

The solution is found to be

y(t) =
(
1 − e−2t(cos 3t+ 2

3 sin 3t)
)
H(t).

(Here we have multiplied the result by a Heaviside factor, to indicate that
we are considering the solution only for t ≥ 0. This factor is often omitted.
Whether or not it should be there is often a matter of dispute among users
of the transform.) ��

We can also treat systems of differential equations.

Example 3.12. Solve the initial value problem{
x′ = x+ 3y,
y′ = 3x+ y;

x(0) = 5, y(0) = 1.

Solution. Laplace transformation gives{
sx̃− 5 = x̃+ 3ỹ
sỹ − 1 = 3x̃+ ỹ

⇐⇒
{

(1 − s)x̃+ 3ỹ = −5
3x̃+ (1 − s)ỹ = −1

We can, for example, solve the second equation for x̃ = 1
3 (s− 1)ỹ − 1

3 and
substitute this into the first, whereupon simplification yields (s2−2s−8)ỹ =
s+ 14 and

ỹ =
s+ 14

(s− 4)(s+ 2)
=

3
s− 4

− 2
s+ 2

.

We see that y = 3e4t − 2e−2t, and then we deduce, in one way or another,
that x = 3e4t +2e−2t. (Think of at least three different ways of performing
this last step!) ��

Finally, we demonstrate how even a partial differential equation can be
treated by Laplace transforms. The trick is to transform with respect to one
of the independent variables and let the others stand. Using this technique
often involves taking rather bold chances in the hope that rules of compu-
tation be valid. One way of regarding this is to view it precisely as taking
chances – if we arrive at a tentative solution, it can always be checked by
substitution in the original problem.

Example 3.13. Find a solution of the problem

∂2u

∂x2 =
∂u

∂t
, 0 < x < 1, t > 0;

u(0, t) = 1, u(1, t) = 1, t > 0;
u(x, 0) = 1 + sinπx, 0 < x < 1.
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Solution. We introduce the Laplace transform U(x, s) of u(x, t), i.e.,

U(x, s) = L[t �→ u(x, t)](s) =
∫ ∞

0
u(x, t) e−st dt.

Here, x is thought of as a constant. Then we change our attitude and
assume that this integral can be differentiated with respect to x, indeed
twice, so that

∂2U

∂x2 =
∂2

∂x2

∫ ∞

0
u(x, t) e−st dt =

∫ ∞

0

∂2

∂x2u(x, t) e
−st dt.

The differential equation is then transformed into

∂2U

∂x2 = sU − (1 + sinπx), 0 < x < 1,

and the boundary conditions into

U(0, s) =
1
s
, U(1, s) =

1
s
.

Now we switch attitudes again: think of s as a constant and solve the
boundary value problem. Just to feel comfortable we could write the equa-
tion as

U ′′ − sU = −1 − sinπx. (3.7)

The homogeneous equation has a characteristic equation r2 − s = 0 and
its solution is UH = Aex

√
s + Be−x

√
s. (Here, the “constants” A and B

are in general functions of s.) A particular solution to the inhomogeneous
equation could have the form UP = a + b sinπx + c cosπx, and insertion
and identification gives a = 1/s, b = 1/(s + π2), c = 0. Thus the general
solution of (3.7) is

U(x, s) = A(s)ex
√

s +B(s)e−x
√

s +
1
s

+
sinπx
s+ π2 .

The boundary conditions force us to take A(s) = B(s) = 0, so we are left

with U(x, s) =
1
s

+
sinπx
s+ π2 . Now we again consider x as a constant and

recognize that U is the Laplace transform of u(x, t) = 1 + e−π2t sinπx.
The fact that this function really does solve the original problem must be
checked directly (since we have made an assumption on differentiability of
an integral, which might have been too bold). ��
Remark. This problem can also be attacked by other methods developed in later
parts of the book (Chapter 6). ��
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Exercises

3.17 Invert the following Laplace transforms: (a)
1

s(s+ 1)
(b)

3
(s− 1)2

(c)
1

s(s+ 2)2
(d)

5
s2(s− 5)2

(e)
1

(s− a)(s− b)
(f)

1
s2 + 4s+ 29

.

3.18 Use partial fractions to find f when f̃(s) is given by
(a) s−2(s+ 1)−1, (b) b2s−1(s2 + b2)−1, (c) s(s− 3)−5,
(d) (s2 + 2)s−1(s+ 1)−1(s+ 2)−1.

3.19 Invert the following Laplace transforms: (a)
1 + e−s

s
(b)

e−s

(s− 1)(s− 2)

(c) ln
s+ 3
s+ 2

(d) ln
s2 + 1
s(s+ 3)

(e)
s+ 1
s4/3 (f)

√
s− 1
s

.

3.20 Solve the initial value problem y′′ + y = 2et, t > 0, y(0) = y′(0) = 2.

3.21 Solve the initial value problem

{
y′′(t) − 2y′(t) + y(t) = t et sin t,
y(0) = 0, y′(0) = 0.

3.22 Solve

{
y(3)(t) − y′′(t) + 4y′(t) − 4y(t) = −3et + 4e2t,

y(0) = 0, y′(0) = 5, y′′(0) = 3.

3.23 Solve the system


x′(t) + y′(t) = t,

x′′(t) − y(t) = e−t,

x(0) = 3, x′(0) = −2, y(0) = 0.

3.24 Solve the system


x′(t) − y′(t) − 2x(t) + 2y(t) = sin t,
x′′(t) + 2y′(t) + x(t) = 0,
x(0) = x′(0) = y(0) = 0.

3.25 Solve the problem

y′′(t) − 3y′(t) + 2y(t) =

{
1, t > 2
0, t < 2

; y(0) = 1, y′(0) = 0.

3.26 Solve the system
dy

dt
= 2z − 2y + e−t

dz

dt
= y − 3z

t > 0; y(0) = 1, z(0) = 2.

3.27 Solve the differential equation

2y(iv) + y′′′ − y′′ − y′ − y = t+ 2, t > 0,

with initial conditions y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1.

3.28 Solve the differential equation

y′′ + 3y′ + 2y = e−t sin t, t > 0; y(0) = 1, y′(0) = −3.
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3.4 Convolution

In control theory, for example, one studies the effect on an incoming signal
by a “black box” that transforms it into an “outsignal”:

insignal black outsignal→ →
box

Let the insignal be represented by the function t �→ x(t), t ≥ 0, and the
outsignal by t �→ y(t), t ≥ 0. We assume that the system has four important
properties:

(a) it is linear, which means that a linear combination of inputs results in
the corresponding linear combination of outputs;

(b) it is translation invariant, which means, loosely, that the black box
operates in the same way at all points in time;

(c) it is continuous in the sense that “small” changes in the input generate
“small” changes in the output (which should be formulated more
precisely when necessary);

(d) it is causal, i.e., the outsignal at a certain moment t does not depend
on the insignal at moments later than t.

It can then be shown (see Appendix A) that there exists a function
t �→ g(t), t ≥ 0, such that

y(t) =
∫ t

0
x(u)g(t− u) du =

∫ t

0
x(t− u)g(u) du. (3.8)

The function g can be said to contain all information about the system.
The formula (3.8) is an example of a notion called the convolution of

the two functions x and g. (We shall encounter other versions of convolu-
tion in other parts of this book.) We shall now study this notion from a
mathematical point of view.

Thus, we assume that f and g are two functions, both belonging to E.
The convolution f ∗ g is a new function defined by the formula

(f ∗ g)(t) = f ∗ g(t) =
∫ t

0
f(u) g(t− u) du, t ≥ 0.

It is not hard to see that this function is continuous on [0,∞[, and it might
possibly belong to E. Indeed, it is not very difficult to show directly that
if f ∈ Ek1 and g ∈ Ek2 , then f ∗ g ∈ Ek for all k > max(k1, k2). (See
Exercise 3.38.) Using the notation σ0(f), introduced after Theorem 3.1, we
could express this as σ0(f ∗ g) ≤ max

(
σ0(f), σ0(g)

)
.)
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Convolution can be regarded as an operation for functions, a sort of
“multiplication.” For this operation a few simple rules hold; the reader is
invited to check them out:

f ∗ g = g ∗ f (commutative law)
f ∗ (g ∗ h) = (f ∗ g) ∗ h (associative law)
f ∗ (g + h) = f ∗ g + f ∗ h (distributive law)

Example 3.14. Let f(t) = et, g(t) = e−2t. Then

f ∗ g(t) =
∫ t

0
eu e−2(t−u) du =

∫ t

0
eu−2t+2u du = e−2t

∫ t

0
e3u du

= e−2t
[ 1
3 e

3u
]u=t

u=0 = 1
3e

−2t
(
e3t − 1

)
=
et − e−2t

3
.

��
Example 3.15. If g(t) = 1, then f ∗g(t) =

∫ t

0 f(u) du. Thus, “integration”
can be considered to be convolution with the function 1. ��

When dealing with convolutions, the Laplace transform is useful because
of the following theorem.

Theorem 3.6 The Laplace transform of a convolution is the product of
the Laplace transforms of the two convolution factors:

L[f ∗ g](s) = f̃(s) g̃(s).

Proof. Let s be so large that both f̃(s) and g̃(s) exist. We have agreed
in section 3.1 that this means that the corresponding integrals converge
absolutely. Now consider the improper double integral∫∫

Q

|f(u)g(v)|e−s(u+v) du dv,

where Q is the first quadrant in the uv plane. The integrated function being
positive, the integral can be calculated just as we choose. For example, we
can write∫∫

Q

|f(u)g(v)|e−s(u+v) du dv =
∫ ∞

0
du

∫ ∞

0
|f(u)||g(v)|e−sue−sv dv

=
∫ ∞

0
|f(u)|e−su du

∫ ∞

0
|g(v)|e−sv dv.

The two one-dimensional integrals here are assumed to be convergent,
which means that the double integral also converges. But this in turn means
that the improper double integral without modulus signs,

Φ(s) =
∫∫

Q

f(u)g(v)e−s(u+v) du dv
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is absolutely convergent. It can then also be computed in any manner, and
we do it in two ways. One way is imitating the previous calculation:

Φ(s) =
∫ ∞

0
du

∫ ∞

0
f(u)g(v)e−sue−sv dv

=
∫ ∞

0
f(u)e−su du

∫ ∞

0
g(v)e−sv dv = f̃(s) g̃(s).

Another way is integrating on triangles DT : u ≥ 0, v ≥ 0, u+ v ≤ T . But∫ T

0
f ∗ g(t)e−st dt =

∫ T

0

(∫ t

0
f(u)g(t− u) du

)
e−su dt

=
∫ T

0
dt

∫ t

0
f(u)e−su g(t− u)e−s(t−u) du

=
∫ T

0
f(u)e−su du

∫ T

u

g(t− u)e−s(t−u) dt =
{
t− u = v
dt = dv

}
=
∫ T

0
f(u)e−su du

∫ T−u

0
g(v)e−sv dv

=
∫∫
DT

f(u)g(v)e−sue−sv du dv → Φ(s)

as T → ∞. This proves the formula in the theorem. ��
Example 3.16. As an illustration of the theorem we can take the situation
in Example 3.14. There we have

f̃(s) =
1

s− 1
, g̃(s) =

1
s+ 2

,

f̃(s)g̃(s) =
1

(s− 1)(s+ 2)
=

1
3

s− 1
−

1
3

s+ 2
= L[f ∗ g](s).

��
Example 3.17. Find a function f that satisfies the integral equation

f(t) = 1 +
∫ ∞

0
f(t− u) sinu du, t ≥ 0.

Solution. Suppose that f ∈ E. Then we can transform the equation to get

f̃(s) =
1
s

+ f̃(s) · 1
s2 + 1

,

from which we solve

f̃(s) =
s2 + 1
s2

· 1
s

=
s2 + 1
s3

=
1
s

+
1
s3
,
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and we see that f(t) = 1 + 1
2 t

2 ought to be a solution. Indeed it is, be-
cause this function belongs to E, and then our successive steps make up a
sequence of equivalent statements. (It is also possible to check the solution
by substitution in the given integral equation. This should be done, if time
permits.) ��

Exercises

3.29 Calculate directly the convolution of eat and ebt (consider separately the
cases a �= b and a = b). Check the result by taking Laplace transforms.

3.30 Use the convolution formula to determine f if f̃(s) is given by
(a) s−1(s+ 1)−1, (b) s−1(s2 + a2)−1.

3.31 Find a function with the Laplace transform
s2

(s2 + 1)2
.

3.32 Find a function f such that∫ x

0

e−y cos y f(x− y) dy = x2 e−x, x ≥ 0.

3.33 Find a solution of the integral equation∫ t

0

(t− u)2f(u) du = t3, t ≥ 0.

3.34 Find two solutions of the integral equation (3.2) on page 41.

3.35 Find a function y(t) that satisfies y(0) = 0 and

2
∫ t

0

(t− u)2 y(u) du+ y′(t) = (t− 1)2 for t > 0.

3.36 Find a function f(t) for t ≥ 0, that satisfies

f(0) = 1, f ′(t) + 3f(t) +
∫ t

0

f(u)eu−t du =

{
0, 0 ≤ t < 2,
1, t > 2

.

3.37 Find a solution f of the integral-differential equation

5e−t

∫ t

0

ey cos 2(t− y) f(y) dy = f ′(t) + f(t) − e−t, f(0) = 0.

3.38 Prove the following result: if f ∈ Ek1 and g ∈ Ek2 , then f ∗ g ∈ Ek for all
k > max{k1, k2}.
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3.5 *Laplace transforms of distributions

Laplace transforms can be used in the study of physical phenomena that
take place in a time interval that starts at a certain moment, at which the
clock is set to t = 0. It is possible to allow the functions to include instan-
taneous pulses and even more far-reaching generalizations of the classical
notion of a function – i.e., to allow so-called distributions into the game.
When we do so, it will normally be a good thing to allow such things to
happen also at the very moment t = 0, so we modify slightly the definition
of the Laplace transform into the following formula:

f̃(s) =
∫ ∞

0−
f(t)e−st dt = lim

ε↘0

∫ ∞

−ε

f(t)e−st dt.

If f is an ordinary function, the modified definition agrees with the former
one. But if f is a distribution, something new may occur.

As an example, let δa(t) be the Dirac pulse at the point a, where a ≥ 0.
Then

δ̃a(s) =
∫ ∞

0−
δa(t)e−st dt = e−as.

In particular, if a = 0, we get δ̃(s) = 1. We see that the rule that a Laplace
transform must tend to zero as s → ∞ no longer need hold for transforms
of distributions.

The formula for the transform of a derivative must also be slightly mod-
ified. Indeed, integration by parts gives

f̃ ′(s) =
∫ ∞

0−
f ′(t)e−st dt =

[
f(t)e−st

]∞

0−
+s

∫ ∞

0−
f(t)e−st dt = sf̃(s)−f(0−),

where f(0−) is the left-hand limit of f(t) at 0. This may cause some confu-
sion when dealing with functions that are considered to be zero for negative
t but nonzero for positive t. In this case it may now happen that f ′ includes
a multiple of δ, which explains the different appearance of the formula. In
this situation, it is preferable to be very explicit in supplying the factor
H(t) in the description of functions.

Example 3.18. Solve the initial value problem

y′′ + 4y′ + 13y = δ′(t), y(0−) = y′(0−) = 0.

Solution. Transformation gives

(s2+4s+13)ỹ = s ⇐⇒ ỹ =
s

(s+ 2)2 + 9
=

s+ 2
(s+ 2)2 + 9

− 2
3
· 3
(s+ 2)2 + 9

.
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The solution is found to be

y(t) = e−2t(cos 3t− 2
3 sin 3t)H(t).

We check it by differentiating:

y′(t) = e−2t(−2 cos 3t+ 4
3 sin 3t− 3 sin 3t− 2 cos 3t)H(t) + δ(t)

= e−2t(−4 cos 3t− 5
3 sin 3t)H(t) + δ(t),

y′′(t) = e−2t(8 cos 3t+ 10
3 sin 3t+ 12 sin 3t− 5 cos 3t)H(t) − 4δ(t) + δ′(t)

= e−2t(3 cos 3t+ 46
3 sin 3t)H(t) − 4δ(t) + δ′(t).

Substituting this into the left-hand member of the equation, one sees that
it indeed solves the problem. ��
Example 3.19. Find the general solution of the differential equation
y′′ + 3y′ + 2y = δ.

Solution. It should be wellknown that the solution can be written as the
sum of the general solution yH of the corresponding homogeneous equation
y′′ +3y′ +2y = 0, and one particular solution yP of the given equation. We
easily find yH = C1e

−t +C2e
−2t, and proceed to look for yP . In doing this

we assume that yP (0−) = y′
P (0−) = 0, which gives the simplest Laplace

transforms. Indeed, ỹ′
P = sỹP and ỹ′′

P = s2ỹP , so that

s2ỹP + 3sỹP + 2ỹP = 1 ⇐⇒ ỹP =
1

(s+ 1)(s+ 2)
=

1
s+ 1

− 1
s+ 2

.

Thus it turns out that

yP =
(
e−t − e−2t

)
H(t).

This means that the solution of the given problem is

y =C1e
−t + C2e

−2t +
(
e−t − e−2t

)
H(t)

= (C1+H(t))e−t + (C2−H(t))e−2t

=
{
C1e

−t + C2e
−2t, t < 0,

(C1 + 1)e−t + (C2 − 1)e−2t, t > 0.

We can see that in each of the intervals t < 0 and t > 0 these expressions
are solutions of the homogeneous equation, which is in accordance with
the fact that δ = 0 in the intervals. What happens at t = 0 is that the
constants change value in such a way that the first derivative has a jump
discontinuity and the second derivative contains a δ pulse (draw pictures!).

��
The particular solution yP found in the preceding problem is called a

fundamental solution of the equation. Let us now denote it by E; thus,

E(t) =
(
e−t − e−2t

)
H(t).
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It is useful in the following situation. Let f be any function, continuous for
t ≥ 0. We want to find a solution of the problem y′′ + 3y′ + 2y = f . If we
assume y(0−) = y′(0−) = 0, we get

ỹ =
f̃(s)

s2 + 3s+ 2
= f̃(s) · 1

s2 + 3s+ 2
= f̃(s)Ẽ(s).

This means that y can be found as the convolution of f and E:

y(t) = f ∗ E(t) =
∫ t

0
f(t− u)

(
e−u − e−2u

)
du.

The fundamental solution thus provides a means for finding a particular
solution for any inhomogeneuous equation with the given left-hand side.

This idea can be applied to any linear differential equation with constant
coefficients. The left-hand member of such an equation can be written in
the form P (D)y, where D is the differentiation operator and P (·) is a
polynomial. For example, if P (r) = r2 + 3r + 2, then

P (D)y = (D2 + 3D + 2)y = y′′ + 3y′ + 2y.

The fundamental solution E is, in the general case, the function such that

Ẽ(s) =
1

P (s)
, E(t) = 0 for t < 0.

Exercises

3.39 Find a solution of the differential equation y′′′ +3y′′ +3y′ +y = H(t−1)+
δ(t− 2), that satisfies y(0) = y′(0) = y′′(0) = 0.

3.40 Solve the differential equation y′′ +4y′ +5y = δ(t), y(t) = 0 for t < 0. Then
deduce a formula for a particular solution of the equation y′′ + 4y′ + 5y =
f(t), where f is any continuous function such that f(t) = 0 for t < 0.

3.41 Find fundamental solutions for the following equations: (a) y′′ + 4y = δ,
(b) y′′ + 4y′ + 8y = δ, (c) y′′′ + 3y′′ + 3y′ + y = δ.

3.42 Find a function y such that y(t) = 0 for t ≤ 0 and

y′(t) + 3y(t) + 2
∫ t

0

y(u) du = 2
(
H(t− 1) −H(t− 2)

)
for t > 0.

3.43 Find a function f(t) such that f(t) = 0 for t < 0 and

e−t

∫ t+

0−
f(p) ep dp− f(t) + f ′(t) = δ(t) − t e−t H(t), −∞ < t < ∞.
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3.6 The Z transform

In this section we sketch the theory of a discrete analogue of the Laplace
transform. We have so far been considering functions t �→ f(t), where t is a
real variable (mostly thought of as representing time). Now, we shall think
of t as a variable that only assumes the values 0, 1, 2, . . . , i.e., non-negative
integer values. In applications, this is sometimes more realistic than con-
sidering a continuous variable; it corresponds to taking measurements at
equidistant points in time.

A function of an integer variable is mostly written as a sequence of num-
bers. This will be the way we do it, at least at the beginning of the section.

Let {an}∞
n=0 be a sequence of numbers. We form the infinite series

A(z) =
∞∑

n=0

an

zn
=

∞∑
n=0

anz
−n .

If the series is convergent for some z, then it converges absolutely outside of
some circle in the complex plane. More precisely, the domain of convergence
is a set of the type |z| > σ, where 0 ≤ σ ≤ ∞. (It may also happen that
the series converges at certain points on the circle |z| = σ, but this is
rarely of any importance.) Power series of this kind, that may encompass
both positive and negative powers of z, are called Laurent series. (A
particular case is Taylor series that do not contain any negative powers of z;
in the present situation we are considering a reversed case, with no positive
powers.) A necessary and sufficient condition for the series to converge at
all is that there exist constants M and R such that |an| ≤ MRn for all
n. This condition is analogous to the condition of exponential growth for
functions to have a Laplace transform.

The function A(z) is called the Z transform of the sequence {an}∞
n=0.

It can be employed to solve certain problems concerning sequences, in a
manner that is largely analogous to the way that Laplace transforms can
be used for solving problems for ordinary functions. Important applications
occur in the theory of electronics, systems engineering, and automatic con-
trol.

When working with the Z transformation, one should be familiar with
the geometric series. Recall that this is the series

∞∑
n=0

wn,

where w is a real or complex number. It is convergent precisely if |w| < 1,
and its sum is then 1/(1−w). This fact is used “in both directions,” as the
following example shows.



3.6 The Z transform 61

Example 3.20. If an = 1 for all n ≥ 0, the Z transform is

∞∑
n=0

1
zn

=
∞∑

n=0

(1
z

)n
=

1

1 − 1
z

=
z

z − 1
,

which is convergent for all z such that |z| > 1. On the other hand, if λ is a
nonzero complex number, we can rewrite the function B(z) = z/(z − λ) in
this way:

B(z) =
z

z − λ
=

1

1 − λ

z

=
∞∑

n=0

(λ
z

)n
=

∞∑
n=0

λn

zn
, |z| > |λ|,

which shows that B(z) is the transform of the sequence bn = λn (n ≥ 0).
(Here we actually use the fact that Laurent expansions are unique, which
implies that two different sequences cannot have the same transform.) ��

We next present a simple, but typical, problem where the transform can
be used.

Example 3.21. If we know that a0 = 1, a1 = 2 and

an+2 = 3an+1 − 2an , n = 0, 1, 2, . . . , (3.9)

find a formula for an.
An equation of the type (3.9) is often called a difference equation. In many

respects, it is analogous to a differential equation: if differential equations
are used for the description of processes taking place in “continuous time,”
difference equations can do the corresponding thing in “discrete time.”

To solve the problem in Example 3.21, we multiply the formula (3.9) by
z−n and add up for n = 0, 1, 2, . . .:

∞∑
n=0

an+2z
−n = 3

∞∑
n=0

an+1z
−n − 2

∞∑
n=0

anz
−n. (3.10)

Now we introduce the Z transform of the sequence {an}∞
n=0:

A(z) =
∞∑

n=0

anz
−n = 1 +

2
z

+
a2

z2 +
a3

z3 + · · · . (3.11)

We notice that, firstly,

∞∑
n=0

an+1z
−n =

∞∑
k=1

akz
−(k−1) = z

( ∞∑
k=1

akz
−k

)
= z

( ∞∑
n=0

anz
−n − a0

)
= z(A(z) − 1),

and, secondly,
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∞∑
n=0

an+2z
−n =

∞∑
k=2

akz
−(k−2) = z2

( ∞∑
k=2

akz
−k

)

= z2

( ∞∑
n=0

anz
−n − a0 − a1

z

)
= z2

(
A(z) − 1 − 2

z

)
.

Thus, the equation (3.10) can be written as

z2
(
A(z) − 1 − 2

z

)
= 3z(A(z) − 1) − 2A(z),

from which A(z) can be solved. After simplification we have

A(z) =
z

z − 2
.

We saw in the preceding example that this is the Z transform of the se-
quence

an = 2n, n = 0, 1, 2, . . . .

We can check the result by returning to the statement of the problem:
a0 = 1 and a1 = 2 are all right; and if an = 2n and an+1 = 2n+1, then

3an+1 − 2an = 3 · 2n+1 − 2 · 2n = 3 · 2n+1 − 2n+1 = 2 · 2n+1 = 2n+2,

which is also right. ��
In the example, it is obvious from the beginning that the solution is

unique. If a0 and a1 are given, the formula (3.9) produces the subsequent
values of the an in an unequivocal way. In general, problems about number
sequences are often uniquely determined in the same manner. However,
just as for the Laplace transform, the Z transform cannot be expected to
give solutions if these are very fast-growing sequences.

We take a closer look at the correspondence between sequences {an}∞
n=0

and their Z transforms A(z). In order to have an efficient notation we write
a = {an}∞

n=0 and A = Z[a]. Thus, Z denotes a mapping from (a subset of)
the set of number sequences to the set of Laurent series convergent outside
of some circle.

Example 3.22. We have already seen that if a = {λn}∞
0 , then

Z[a](z) =
∞∑

n=0

λnz−n =
z

z − λ
, |z| > |λ|.

��

Example 3.23. If a = {1/n!}∞
0 , then Z[a](z) =

∞∑
n=0

z−n

n!
= e1/z, |z| > 0.

��
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Example 3.24. The sequence a = {n!}∞
0 has no Z transform, because

the series
∞∑

n=0

n! z−n diverges for all z. ��

As stated at the beginning of this section, a sufficient (and actually nec-
essary) condition for A(z) to exist is that the numbers an grow at most
exponentially: |an| ≤ MRn for some numbers M and R. It is easy to
see that this condition implies the convergence of the series for all z with
|z| > R.

Some computational rules for the transformation Z have been collected in
the following theorem. In the interest of brevity we introduce some notation
for operations on number sequences (which can be viewed as functions N →
C). If we let a = {an}∞

n=0 and b = {bn}∞
n=0, we write a+ b = {an + bn}∞

n=0;
and if furthermore λ is a complex number, we put λa = {λan}∞

n=0. We also
agree to write

A = Z[a], B = Z[b].

The “radius of convergence” of the Z transform of a is denoted by σa:
this means that the series is convergent for |z| > σa (and divergent for
|z| < σa).

Theorem 3.7 (i) The transformation Z is linear, i.e.,

Z[λa](z) = λZ[a](z), |z| > σa,

Z[a+ b](z) = Z[a](z) + Z[b](z), |z| > max(σa, σb).

(ii) If λ is a complex number and bn = λnan, n = 0, 1, 2, . . ., then

B(z) = A(z/λ), |z| > λσa.

(iii) If k is a fixed integer > 0 and bn = an+k, n = 0, 1, 2, . . ., then

B(z) = zk

(
A(z) − a0 − a1

z
− · · · − ak−1

zk−1

)
= zkA(z) − a0z

k − a1z
k−1 − · · · − ak−1z, |z| > σa.

(iv) Conversely, if k is a positive integer and bn = an−k for n ≥ k and
bn = 0 for n < k, then B(z) = z−kA(z).

(v) If bn = nan, n = 0, 1, 2, . . ., then

B(z) = −z A′(z), |z| > σa.

Proof. The assertions follow rather immediately from the definitions. We
saw a couple of cases of (iii) in Example 3.21 above. We content ourselves
by sketching the proofs of (ii) and (v). For (ii) we find

B(z) =
∞∑

n=0

bnz
−n =

∞∑
n=0

λnanz
−n =

∞∑
n=0

an

(
z

λ

)−n

= A(z/λ).
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And as for (v), the right-hand side is

−z· d
dz

∞∑
n=0

anz
−n = −z

∞∑
n=0

(−n)anz
−n−1 =

∞∑
n=0

nanz
−n = left-hand side.

��
Example 3.25. Example 3.23 and rule (ii) give us the transform of the
sequence {λn/n!}∞

0 , viz.,

Λ(z) = e1/(z/λ) = eλ/z.

��
When solving problems concerning the Z transform, you should have a

table at hand, containing rules of computation as well as actual transforms.
Such a table is included at the end of this book (p. 250).

Example 3.26. Find a formula for the so-called Fibonacci numbers,
which are defined by f0 = f1 = 1, fn+2 = fn+1 + fn for n ≥ 0.

Solution. Let F = Z[f ]. If we Z-transform the recursion formula, using (iii)
from the theorem, we get

z2F (z) − z2 − z = (zF (z) − z) + F (z),

whence (z2 − z − 1)F (z) = z2 and

F (z) =
z2

z2 − z − 1
= z · z

z2 − z − 1
.

In order to recover fn, a good idea would be to expand into partial fractions,
in the hope that simple expressions could be looked up in the table on
page 250. A closer look at this table reveals, however, that it would be a
good thing to have a z in the numerator of the partial fractions, instead
of just a constant. Thus, here we have peeled off a factor z from F (z) and
proceed to expand the remaining expression:

F (z)
z

=
z

z2 − z − 1
=

A

z − α
+

B

z − β
,

where

α =
1 +

√
5

2
, β =

1 − √
5

2
, A =

√
5 + 1
2
√

5
, B =

√
5 − 1
2
√

5
.

This gives

F (z) =
Az

z − α
+

Bz

z − β
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and from the table we conclude that

fn = Aαn +Bβn =
√

5 + 1
2
√

5

(
1 +

√
5

2

)n

+
√

5 − 1
2
√

5

(
1 − √

5
2

)n

.

This can be rewritten as

fn =
1√
5

[(
1 +

√
5

2

)n+1

−
(

1 − √
5

2

)n+1
]
, n = 0, 1, 2, . . . .

(In spite of all the appearances of
√

5 in the expression, it is an integer for
all n ≥ 0.) ��

As you can see in this example, the method of expanding rational func-
tions into partial fractions can be useful in dealing with Z transforms,
provided one starts out by securing an extra factor z to be reintroduced in
the numerators after the expansion.

If a and b are two number sequences, we can form a third sequence, c,
called the convolution of a and b, by writing

cn =
n∑

k=0

an−kbk =
n∑

k=0

akbn−k, n = 0, 1, 2, . . . .

One writes c = a ∗ b, and we also permit ourselves to write things like
cn = (a ∗ b)n. We determine the Z transform C = Z[c]:

C(z) =
∞∑

n=0

n∑
k=0

an−kbk z
−n =

∞∑
k=0

∞∑
n=k

an−kbk z
−n

=
∞∑

k=0

∞∑
n=k

an−kz
−(n−k) bkz

−k =
∞∑

k=0

bkz
−k

∞∑
n=k

an−kz
−(n−k)

=
∞∑

k=0

bkz
−k

∞∑
m=0

amz
−m = A(z)B(z).

The manipulations of the double series are permitted for |z| > max(σa, σb),
because in that region everything converges absolutely.

This notion of convolution appears in, e.g., control theory, if a system is
considered in discrete time (see Appendix A).

Example 3.27. Find x(t), t = 0, 1, 2, . . ., from the equation

t∑
k=0

3−k x(t− k) = 2−t, t = 0, 1, 2, . . . .
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Solution. The left-hand side is the convolution of x and the function t �→
(1/3)t, so that taking Z transforms of both members gives

z

z − 1
3

·X(z) =
z

z − 1
2

.

(We have used the result of Example 3.22.) We get

z) =
z − 1

3

z − 1
2

=
z

z − 1
2

− 1
3 · 1

z − 1
2

,

and, using Example 3.22 and rule (iv) of Theorem 3.7, we see that

x(t) =

{
1 for t = 0,( 1

2

)t − 1
3 · ( 1

2

)t−1 for t ≥ 1.

The final expression can be rewritten as

x(t) =
( 1

2 − 1
3

) · ( 1
2

)t−1 = 1
6 · 21−t = 1

3 · 2−t, t ≥ 1.

��
In a final example, we indicate a way of viewing the Z transform as

a particular case of the Laplace transform. Here we use translates of the
Dirac delta “function,” as in Sec. 3.5.

Example 3.28. Let {an}∞
n=0 be a sequence having a Z transform A(z),

and define a function f by

f(t) =
∞∑

n=0

anδn(t) =
∞∑

n=0

anδ(t− n).

The convergence of this series is no problem, because for any particular t
at most one of the terms is different from zero. Its Laplace transform must
be

f̃(s) =
∞∑

n=0

∫ ∞

0−
e−stanδ(t− n) dt =

∞∑
n=0

ane
−ns =

∞∑
n=0

an

(
es
)−n = A(es).

Thus, via a change of variable z = es, the two transforms are more or less
the same thing. ��

Exercises
3.44 Determine the Z transforms of the following sequences {an}∞

n=0 :

(a) an =
1
2n

(b) an = n · 3n (c) an = n2 · 2n

(d) an =

(
n

p

)
=
n(n− 1) · · · (n− p+ 1)

p!
for n ≥ p, = 0 for 0 ≤ n ≤ p (p

is a fixed integer).
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3.45 Determine the sequence a = {an}∞
n=0, if its Z transform is (a) A(z) =

z

3z − 2
, (b) A(z) =

1
z

.

3.46 Determine the numbers an and bn, n = 0, 1, 2, . . ., if a0 = 0, b0 = 1 and{
an+1 + bn = −2n,
an + bn+1 = 1,

n = 0, 1, 2, . . . .

3.47 Find the numbers an and bn, n = 0, 1, 2, . . ., if a0 = 0, b0 = 1 and{
an+1 + bn = 2,
an − bn+1 = 0,

n = 0, 1, 2, . . . .

3.48 Find an, n = 0, 1, 2, . . ., such that a0 = a1 = 0 and an+2 − 3an+1 + 2an =
1 − 2n for n = 0, 1, 2, . . ..

3.49 Find an, n = 0, 1, 2, . . ., if a0 = a1 = 0 and

an+2 + 2an+1 + an = (−1)nn, n = 0, 1, 2, . . . .

3.50 Find an, n = 0, 1, 2, . . ., if a0 = 1, a1 = 3 and an+2 + an = 2n + 4 when
n ≥ 0.

3.51 Determine the numbers y(t) for t = 0, 1, 2, . . . , so that

t∑
k=0

(t− k) 3t−k y(k) =

{
0, t = 0,
1, t = 1, 2, 3, . . . .

3.52 Find an for n ≥ 0, if a0 = 0 and
n∑

k=0

kan−k − an+1 = 2n for n ≥ 0.

3.53 Determine x(n) for n = 0, 1, 2, . . ., so that

x(n) + 2
n∑

k=0

(n− k)x(k) = 2n, n = 0, 1, 2, . . . .

3.7 Applications in control theory

We return to the “black box” of Sec. 3.4 (p. 53). Such a box can often be
described by a differential equation of the type P (D)y(t) = x(t), where x is
the input and y the output. If x(t) is taken to be a unit pulse, x(t) = δ(t),
the solution y(t) with y(t) = 0 for t < 0 is called the pulse response, or
impulse response, of the black box. The pulse response is the same thing as
the fundamental solution. In the general case, Laplace transformation will
give P (s)ỹ(s) = 1 and thus ỹ(s) = 1/P (s). The function

G(s) =
1

P (s)
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is called the transfer function of the box. When solving the general problem

P (D)y(t) = x(t), y(t) = 0 for t < 0,

Laplace transformation will now result in

P (s)ỹ(s) = x̃(s)

or
ỹ(s) = G(s)x̃(s).

This formula is actually the Laplace transform of the convolution formula
(3.8) of page 53. It provides a quick way of finding the outsignal y to
any insignal x. The function g in the convolution is actually the impulse
response.

In control theory, great importance is attached to the notion of stability.
A black box is stable, if its impulse response is transient, i.e., g(t) tends
to zero as time goes by. This means that disturbances in the input will
affect the output only for a short time and will not accumulate. If P (s) is
a polynomial, the impulse response will be transient if and only if all its
zeroes have negative real parts.

Example 3.29. The polynomial P1(s) = s2 + 2s + 2 has zeroes s =
−1±i. Both have real part −1, so that the device described by the equation
y′′+2y′+2y = x(t) is stable. In contrast, the polynomial P2(s) = s2+2s−1
has zeroes s = −1 ± √

2. One of these is positive, which implies that the
corresponding black box is unstable. Finally, the polynomial P3(s) = s2 +1
has zeroes s = ±i. These have real part zero; the impulse reponse is g(t) =
sin t, which is not transient. The situation is considered as unstable. (It is
unstable also inasmuch as a small disturbance of the coefficients of P3(s)
can cause the zeroes to move into the right half-plane, which gives rise to
exponentially growing solutions.) ��

So far, we have assumed that the black box is described in continuous
time. In the real world, it is often more realistic to assume that time is
discrete, i.e., that input and output are sampled at equidistant points in
time. For simplicity, we assume that the sampling is done at t = 0, 1, 2, . . .,
and that the input signal x(t) and the output y(t) are both zero for t < 0.
Then, of course, the Z transform is the adequate tool.

A black box is often described by a difference equation of the type

y(t+k)+ak−1y(t+k−1)+· · ·+a2y(t+2)+a1y(t+1)+a0y(t) = x(t), t ∈ Z.
(3.12)

We introduce the characteristic polynomial

P (z) = zk + ak−1z
k−1 + · · · + a2z

2 + a1z + a0.

We assumed that x(t) and y(t) were both zero for negative t. Putting
t = −k in (3.12), we find that

y(0) = x(−k) − ak−1y(−1) − · · · − a1y(−k + 1) − a0y(−k),
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which implies that also y(0) = 0. Consequently, putting t = −k + 1, also
y(1) = 0, and so on. Not until we have an x(t) that is different from
zero do we find a y(t + k) different from zero. Thus we have initial values
y(0) = · · · = y(k − 1) = 0. By the rules for the Z transform, we can then
easily transform the equation (3.12). With obvious notation we get

P (z)Y (z) = X(z).

Thus,

Y (z) =
X(z)
P (z)

= G(z)X(z),

where G(z) = 1/P (z) is the transfer function. Just as in the previous
situation, it is also the impulse response, because it is the output resulting
from inputting the signal

δ(t) = 1 for t = 0, δ(t) = 0 otherwise.

The stability of equation (3.12) hinges on the localization of the zeroes
of the polynomial P (z). As can be seen from a table of Z transforms, a
zero a of P (z) implies that the solution contains terms involving at. Thus
we have stability precisely if all the zeroes of P (z) are in the interior of the
unit disc |z| < 1.

Example 3.30. The difference equation y(t+2)+ 1
2y(t+1)+ 1

4y(t) = x(t)
has P (z) = z2+ 1

2z+
1
4 with zeroes z = − 1

4 ±
√

3
4 i. These satisfy |z| = 1

2 < 1,
so that the equation is stable. The equation

y(t+ 3) + 2y(t+ 2) − y(t+ 1) + 2y(t) = x(t)

is unstable. This can be seen from the constant term (= 2) of the char-
acteristic polynomial; as is well known, this term is (plus or minus) the
product of the zeroes, which implies that these cannot all be of modulus
less than one. ��

More sophisticated methods for localizing the zeroes of polynomials can
be found in the literature on complex analysis and in books dealing with
these applications.

Exercises

3.54 Investigate the stability of the following equations:
(a) y′′+2y′+3y = x(t), (b) y′′′+3y′′+3y′+y = x(t), (c) y′′+4y = x(t).

3.55 Are these difference equations stable or unstable?
(a) 2y(t+ 2) − 2y(t+ 1) + y(t) = x(t),
(b) y(t+ 2) − y(t+ 1) + y(t) = x(t),
(c) 2y(t+ 3) − y(t+ 2) + 3y(t+ 1) + 3y(t) = x(t).
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Summary of Chapter 3

To provide an overview of the results of this chapter, we collect the main defini-
tions and theorems here. The precise details of the conditions for the validity of
the results are sometimes indicated rather sketchily. Thus, this summary should
serve as a memory refresher. Details should be looked up in the core of the text.
Facts that rather belong in a table of transforms, such as rules of computation,
are not included here, but can be found at the end of the book (p. 247 ff).

Definition
If f(t) is defined for t ∈ R and f(t) = 0 for t < 0, its Laplace transform is
defined by

f̃(s) =
∫ ∞

0
f(t)e−st dt,

provided the integral is abolutely convergent for some value of s.

Theorem
For f̃ to exist it is sufficient that f grows at most exponentially, i.e., that
|f(t)| ≤ Mekt for some constants M and k.

Theorem
If f̃(s) = g̃(s) for all (sufficiently large) s, then f(t) = g(t) for all t where
both f and g are continuous.

Theorem
If we define the convolution h = f ∗ g by

h(t) = f ∗ g(t) =
∫ t

0
f(t− u)g(u) du =

∫ t

0
f(u)g(t− u) du,

then its Laplace transform is h̃ = f̃ g̃.

Definition
If {an}∞

n=0 is a sequence of numbers, its zeta transform is defined by

A(z) =
∞∑

n=0

anz
−n,

provided the series is convergent for some value of z. This holds if |an| ≤
MRn for some constants M and R.

Historical notes

The Laplace transform is, not surprisingly, found in the works of Pierre Simon
de Laplace, notably his Théorie analytique des probabilités of 1812. In this book,
he made free use of Laplace transforms and also generating functions (which are
related to the Z transform) in a way that baffled his contemporaries. During the
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nineteenth century, the technique was developed further, and also influenced by
similar ideas such as the “operational calculus” of Oliver Heaviside (British
physicist and applied mathematician, 1850–1925). With the development of mod-
ern technology in computing and control theory, the importance of these methods
has grown enormously.

Problems for Chapter 3

3.56 Solve the system y′ − 2z = (1 − t)e−t, z′ + 2y = 2te−t, t > 0, with initial
conditions y(0) = 0, z(0) = 1.

3.57 Solve the problem y′′ + 2y′ + 2y = 5et, t > 0; y(0) = 1, y′(0) = 0.

3.58 Solve the problem y′′′ + y′′ + y′ − 3y = 1, t > 0, when y(0) = y′(0) = 0,
y′′(0) = 1.

3.59 Solve the problem y′′ + 4y = f(t), t > 0; y(0) = 0, y′(0) = 1, where

f(t) =

{
(t− 1)2, t ≥ 1
0, 0 < t < 1.

3.60 Find y = y(t) for t > 0 that solves y′′−4y′+5y = ϕ(t), y(0) = 2, y′(0) = 0,
where ϕ(t) = 0 for t < 2, ϕ(t) = 5 for t > 2.

3.61 Find f(t) for t ≥ 0, such that f(0) = 1 and

8
∫ t

0

f(t− u) e−u du+ f ′(t) − 3f(t) + 2e−t = 0, t > 0.

3.62 Let f be the function described by

f(t) = 0, t ≤ 0; f(t) = t, 0 < t ≤ 1; f(t) = 1, t > 1.

Solve the differential equation y′′(t)+y(t) = f(t) with initial values y(0) =
0, y′(0) = 1.

3.63 Solve y′′′ + y′ = t− 1, y(0) = 2, y′(0) = y′′(0) = 0.

3.64 Solve y′′′ + 3y′′ + 3y′ + y = t+ 3, t > 0; y(0) = 0, y′(0) = 1, y′′(0) = 2.

3.65 Solve the initial value problem{
z′′ − y′ = e−t,

y′′ + y′ + z′ + z = 0,
t > 0;

y(0) = 0, y′(0) = 1;
z(0) = 0, z′(0) = −1.

3.66 Find f such that f(0) = 1 and

2e−t

∫ t

0

(t− u) eu f(u) du+ f ′(t) + 2t2e−t = 0.

3.67 Solve the problem{
y′′(t) + 2z′(t) − y(t) = 4et,

z′′(t) − 2y′(t) − z(t) = 0,
t > 0;

y(0) = 0, y′(0) = 2,
z(0) = z′(0) = 0.
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3.68 Solve y′′′ + y′′ + y′ + y = 4e−t, t > 0; y(0) = 0, y′(0) = 3, y′′(0) = −6.

3.69 Find f that solves∫ t

0

f(u)(t− u) sin(t− u) du− 2f ′(t) = 12e−t, t > 0; f(0) = 6.

3.70 Solve y′′′ + 3y′′ + y′ − 5y = 0, t > 0; y(0) = 1, y′(0) = −2, y′′(0) = 3.

3.71 Solve y′′′(t) + y′′(t) + 4y′(t) + 4y(t) = 8t + 4, t > 0, with initial values
y(0) = −1, y′(0) = 4, y′′(0) = 0.

3.72 Solve y′′′ + y′′ + y′ + y = 2e−t, t > 0; y(0) = 0, y′(0) = 2, y′′(0) = −2.

3.73 Find a solution y = y(t) for t > 0 to the initial value problem y′′ + 2ty′ −
4y = 1, y(0) = y′(0) = 0.

3.74 Find a solution of the partial differential equation utt +2ut +xux +u = xt
for x > 0, t > 0, such that u(x, 0) = ut(x, 0) = 0 for x > 0 and u(0, t) = 0
for t > 0.

3.75 Use Laplace transformation to find a solution of

y′′(t) − ty′(t) + y(t) = 5, t > 0; y(0) = 5, y′(0) = 3.

3.76 Find f such that f(t) = 0 for t < 0 and

5e−t

∫ t

0

ey cos 2(t− y) f(y) dy = f ′(t) + f(t) − e−t, t > 0.

3.77 Solve the integral equation y(t) +
∫ t

0
(t− u) y(u) du = 3 sin 2t.

3.78 Solve the difference equation an+2 − 2an+1 +an = bn for n ≥ 0 with initial
values a0 = a1 = 0 and right-hand member (a) bn = 1, (b) bn = en,
(c) b0 = 1, bn = 0 for n > 0.



4
Fourier series

4.1 Definitions

We are going to solve, as far as we can, the approximation problem that
was presented in Sec. 1.4. The strategy will perhaps appear somewhat
surprising: starting from a function f , we shall define a certain series, and
in due time we shall find that the function can be recovered from this series
in various ways.

All functions that we consider will have period 2π. The whole theory
could just as well be carried through for functions having some other period.
This is equivalent to the standard case that we treat, via a simple linear
transformation of the independent variable. The formulae that hold in the
general case are collected in Sec. 4.5.

A function defined on R with period 2π can alternatively be thought of
as defined on the unit circle T, the variable being the polar coordinate.
We shall frequently take this point of view. For example, the integral of f
over an interval of one period can be written

∫
T f(t) dt. When we want to

compute this integral, we can choose any convenient period interval for the
actual calculations:

∫
T

=
∫ π

−π

=
∫ 2π

0
=
∫ a+2π

a

, a ∈ R.

(If T is viewed as a circle, the integral
∫
T f(t) dt is not to be considered as a

line integral of the sort used to calculate amounts of work in mechanics, or
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that appears in complex analysis. Instead, it is a line integral with respect
to arc length.)

One must be careful when working on T and speaking of notions such as
continuity. The statement that f ∈ C(T) must mean that f is continuous at
all points of the circle. If we switch to viewing f as a 2π-periodic function,
this function must also be continuous. The formula f(t) = t for −π < t < π,
for instance, defines a function that cannot be made continuous on T: at
the point on T that corresponds to t = ±π, the limits of f(t) from different
directions are different.

Similar care must be taken when speaking of functions belonging to
Ck(T), i.e., having continuous derivatives of orders up to and including
k. As an example, the definition g(t) = t2, |t| ≤ π, describes a function
that is in C(T), but not in C1(T). The first derivative does not exist at
t = ±π. This can be seen graphically by drawing the periodic continuation,
which has corners at these points (sketch a picture!).

Let us now do a preparatory maneuver. Suppose that a function f is the
sum of a series

f(t) =
∞∑

n=−∞
cn e

int =
∑
n∈Z

cn e
int. (4.1)

We assume that the coefficients cn are complex numbers such that∑
n∈Z

|cn| < ∞.

By the Weierstrass M -test, the series actually converges absolutely and
uniformly, since |eint| is always equal to 1. Each term of the series is con-
tinuous and has period 2π, and the sum function f inherits both these
properties.

Now let m be any integer (positive, negative, or zero), and multiply the
series by e−imt. It will still converge uniformly, and it can be integrated
term by term over a period, such as the interval (−π, π):

π∫
−π

f(t) e−imt dt =

π∫
−π

∑
n∈Z

cn e
i(n−m)t dt =

∑
n∈Z

cn

∫ π

−π

ei(n−m)t dt.

But it is readily seen that∫ π

−π

eikt dt =

{
2π, k = 0,
0, k �= 0.

It follows that all the terms in the sum vanish, except the one where n−m =
0, which is the same thing as n = m, and the result is that∫ π

−π

f(t) e−imt dt = 2πcm.
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Thus, for an absolutely convergent series of the form (4.1), the coefficients
can be computed from the sum function using this formula. This fact can
be taken as a motivation for the following definition.

Definition 4.1 Let f be a function with period 2π that is absolutely Rie-
mann-integrable over a period. Define the numbers cn, n ∈ Z, by

cn =
1
2π

∫
T
f(t) e−int dt =

1
2π

∫ π

−π

f(t) e−int dt.

These numbers are called the Fourier coefficients of f , and the Fourier
series of f is the series ∑

n∈Z

cn e
int.

Notice that the definition does not state anything about the convergence
of the series, even less what its sum might be if it happens to converge. It
is the main task of this chapter to investigate these questions.

When dealing simultaneously with several functions and their Fourier
coefficients it is convenient to indicate to what function the coefficients be-
long by writing things like cn(f). Another commonly used way of denoting
the Fourier coefficients of f is f̂(n).

When we want to state, as a formula, that f has a certain Fourier series,
we write

f(t) ∼
∑
n∈Z

cn e
int.

This means nothing more or less than the fact that the numbers cn are
computable from f using certain integrals.

There are a number of alternative ways of writing the terms in a Fourier
series. For instance, when dealing with real-valued functions, the complex-
valued functions eint are often felt to be rather “unnatural.” One can then
write eint = cosnt + i sinnt and reshape the two terms corresponding to
±n like this:

cne
int + c−ne

−int = cn(cosnt+ i sinnt) + c−n(cosnt− i sinnt)
= (cn + c−n) cosnt+ i(cn − c−n) sinnt = an cosnt+ bn sinnt,

n = 1, 2, . . . .

In the special case n = 0 we have only one term, c0. This gives a series of
the form

c0 +
∞∑

n=1

(an cosnt+ bn sinnt).

The coefficients in this series are given by new integral formulae:

an = cn + c−n =
1
2π

∫
T
f(t)e−int dt+

1
2π

∫
T
f(t)eint dt
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=
1
π

∫
T
f(t) 1

2 (eint + e−int) dt =
1
π

∫
T
f(t) cosnt dt, n = 1, 2, 3, . . . ,

and similarly one shows that

bn =
1
π

∫
T
f(t) sinnt dt, n = 1, 2, 3, . . . .

If we extend the validity of the formula for an to n = 0, we find that
a0 = 2c0. For this reason the Fourier series is commonly written

f(t) ∼ 1
2a0 +

∞∑
n=1

(an cosnt+ bn sinnt). (4.2)

This is sometimes called the “real” or trigonometric version of the Fourier
series for f . It should be stressed that this is nothing but a different way
of writing the series — it is really the same series as in the definition.

The terms in the series (4.2) can be interpreted as vibrations of differ-
ent frequencies. The constant term 1

2 a0 is a “DC component,” the term
a1 cos t + b1 sin t has period 2π, the term with n = 2 has half the period
length, for n = 3 the period is one-third of 2π, etc. These terms can be
written in yet another way, that emphasizes this physical interpretation.
The reader should be familiar with the fact that the sum of a cosine and
a sine with the same period can always be rewritten as a single cosine (or
sine) function with a phase angle:

a cosnt+ b sinnt=
√
a2 + b2

(
a√

a2 + b2
cosnt+

b√
a2 + b2

sinnt
)

=
√
a2 + b2(cosα cosnt+ sinα sinnt) =

√
a2 + b2 cos(nt− α),

where the phase angle α is a number such that cosα = a/
√
a2 + b2, sinα =

b/
√
a2 + b2. This means that (4.2) can be written in the form

∞∑
n=0

An cos(nt− αn). (4.3)

This is sometimes called the physical version of the Fourier series. In this
formula one can immediately see the amplitude An of each partial fre-
quency. In this text, however, we shall not work with this form of the
series, since it is slightly unwieldy from a mathematical point of view.

When asked to compute the Fourier series of a specific function, it is
normally up to the reader to choose what version to work with. This is
illustrated by the following examples.

Example 4.1. Define f by saying that f(t) = et for −π < t < π and
f(t + 2π) = f(t) for all t. (This leaves f(t) undefined for t = (2n + 1)π,
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but this does not matter. The value of a function at one point or another
does not affect the values of its Fourier coefficients!) We get a function with
period 2π (see Figure 4.1). Its Fourier coefficients are

cn =
1
2π

∫ π

−π

et e−int dt =
1
2π

∫ π

−π

e(1−in)t dt =
1
2π

[
e(1−in)t

1 − in

]π

t=−π

=
eπ−inπ − e−π+inπ

2π(1 − in)
=

(−1)n(eπ − e−π)
2π(1 − in)

=
(−1)n sinhπ
π(1 − in)

.

Here we used the fact that e±inπ = (−1)n. Now we can write

f(t) ∼ 1
π

∑
n∈Z

(−1)n sinhπ
1 − in

eint =
sinhπ
π

∑
n∈Z

(−1)n

1 − in
eint.

��
We remind the reader of a couple of notions of symmetry that turn out

to be useful in connection with Fourier series. A function f defined on R
is said to be even, if f(−t) = f(t) for all t ∈ R. A function f is odd,
if f(−t) = −f(t). (The terms should bring to mind the special function
f(t) = tn, which is even if n is an even integer, odd if n is an odd integer.)
An odd function f on a symmetric interval (−a, a) has the property that
the integral over (−a, a) is equal to zero. This has useful consequences
for the so-called real Fourier coefficients an and bn. If f is even and has
period 2π, the sine coefficients bn will be zero, and furthermore the cosine
coefficients will be given by the formula

f even ⇒ an =
2
π

∫ π

0
f(t) cosnt dt.

In an analogous way, an odd function has all cosine coefficients equal to
zero, and its sine coefficients are given by

f odd ⇒ bn =
2
π

∫ π

0
f(t) sinnt dt.
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When computing the Fourier series for an even or odd function these facts
are often useful.

Example 4.2. Let f be an odd function with period 2π, that satisfies
f(t) = (π − t)/2 for 0 < t < π. Find its Fourier series! (See Figure 4.2.)

Solution. Notice that the description as given actually determines the func-
tion completely (except for its value at one point in each period, which does
not matter). Because the function is odd we have an = 0 and

bn =
2
π

∫ π

0

π − t

2
sinnt dt

=
1
π

[
(π − t)

− cosnt
n

]π

t=0
+

1
nπ

∫ π

0
(−1) cosnt dt

=
1
n

− 1
n2π

[
sinnt

]π

t=0
=

1
n
.

Thus,

f(t) ∼
∞∑

n=1

sinnt
n

.

��
Example 4.3. Let f(t) = t2 for |t| ≤ π and define f outside of this
interval by proclaiming it to have period 2π (draw a picture!). Find the
Fourier series of this function.

Solution. Now the function is even, and so bn = 0 and

an =
2
π

∫ π

0
t2 cosnt dt

n �= 0
↓
=

2
π

[
t2

sinnt
n

]π

0
− 2
nπ

∫ π

0
2t sinnt dt

=− 4
nπ

[
t
− cosnt

n

]π

0
− 4
n2π

∫ π

0
1 · cosnt dt =

4π cosnπ
n2π

− 0 =
4(−1)n

n2 .

For n = 0 we must do a separate calculation:

a0 =
2
π

∫ π

0
t2 dt =

2
π

· π
3

3
=

2π2

3
.
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Collecting the results we get

f(t) ∼ π2

3
+ 4

∞∑
n=1

(−1)n

n2 cosnt.

��
The series obtained in Example 4.3 is clearly convergent; indeed it even

converges uniformly, by Weierstrass. At this stage we cannot tell what its
sum is. The goal of the next few sections is to investigate this. For the
moment, we can notice two facts about Fourier coefficients:

Lemma 4.1 Suppose that f is as in the definition of Fourier series. Then

1. The sequence of Fourier coefficients is bounded; more precisely,

|cn| ≤ 1
2π

∫
T

|f(t)| dt for all n.

2. The Fourier coefficients tend to zero as |n| → ∞.

Proof. For the cn we have

|cn| =
1
2π

∣∣∣∣∫
T
f(t) e−int dt

∣∣∣∣ ≤ 1
2π

∫
T

|f(t)||e−int| dt =
1
2π

∫
T

|f(t)| dt = M,

where M is a fixed number that does not depend on n. (In just the same
way one can estimate an and bn.) The second assertion of the lemma is just
a case of Riemann–Lebesgue’s lemma. ��

The constant term in a Fourier series is of particular interest:

c0 =
a0

2
=

1
2π

∫ π

−π

f(t) dt.

This can be interpreted as the mean value of the function f over one period
(or over T). This can often be useful in problem-solving. It is also intuitively
reasonable in that all the other terms of the series have mean value 0 over
any period (think of the graph of, say, sinnt).

Exercises

4.1 Prove the formulae cn = 1
2 (an − ibn) and c−n = 1

2 (an + ibn) for n ≥ 0
(where b0 = 0).

4.2 Assume that f and g are odd functions and h is even. Find out which of
the following functions are odd or even: f + g, fg, fh, f2, f + h.

4.3 Show that an arbitrary function f on a symmetric interval (−a, a) can be
decomposed as fE + fO, where fE is even and fO is odd. Also show that
this decomposition is unique. Hint: put fE(t) = (f(t) + f(−t))/2.
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4.4 Determine the Fourier series of the 2π-periodic function described by f(t) =
t+ 1 for |t| < π.

4.5 Prove the following relations for a (continuous) function f and its “com-
plex” Fourier coefficients cn:
(a) If f is even, then cn = c−n for all n.
(b) If f is odd, then cn = −c−n for all n.
(c) If f is real-valued, then cn = c−n for all n (where denotes complex
conjugation).

4.6 Find the Fourier series (in the “real” version) of the functions (a) f(t) =
cos 2t, (b) g(t) = cos2 t, (c) h(t) = sin3 t. Sens moral?

4.7 Let f have the Fourier coefficients {cn}. Prove the following rules for
Fourier coefficients (F.c.’s):
(a) Let a ∈ Z. Then the function t �→ eiatf(t) has F.c.’s {cn−a}.
(b) Let b ∈ R. Then the function t �→ f(t− b) has F.c.’s {e−inbcn}.

4.8 Find the Fourier series of h(t) = e3itf(t − 4), when f has period 2π and
satisfies f(t) = 1 for |t| < 2, f(t) = 0 for 2 < |t| < π.

4.9 Compute the Fourier series of f , where f(t) = e−|t|, |t| < π, f(t + 2π) =
f(t), t ∈ R.

4.10 Let f and g be defined on T with Fourier coefficients cn(f) resp. cn(g).
Define the function h by

h(t) =
1
2π

∫
T

f(t− u) g(u) du.

Show that h is welldefined on T (i.e., h has also period 2π), and prove that
cn(h) = cn(f) cn(g). (The function h is called the convolution of f and g.)

4.2 Dirichlet’s and Fejér’s kernels; uniqueness

It is a regrettable fact that a Fourier series need not be convergent. For
example, it is possible to construct a continuous function such that its
Fourier series diverges at a specified point (see, for example, the book by
Thomas Körner mentioned in the bibliography). We shall see, in due
time, that if we impose somewhat harder requirements on the function,
such as differentiability, the results are more positive.

It is, however, true that the Fourier series of a continuous function is
Cesàro summable to the values of the function, and this is the main result
of this section.

We start by establishing a closed formula for the partial sums of a Fourier
series. To this end we shall use the following formula:

Lemma 4.2

DN (u) :=
1
π

(
1
2 +

N∑
n=1

cosnu
)

=
1
2π

N∑
n=−N

einu =
sin(N + 1

2 )u
2π sin 1

2u
.
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Proof. The equality of the two sums follows easily from Euler’s formulae.
Let us then start from the “complex” version of the sum and compute it
as a finite geometric sum:

2πDN (u) =
N∑

n=−N

einu = e−iNu
2N∑
n=0

einu = e−iNu · 1 − ei(2N+1)u

1 − eiu

= e−iNu · e
i(N+ 1

2 )u
(
e−i(N+ 1

2 )u − ei(N+ 1
2 )u

)
eiu/2

(
e−iu/2 − eiu/2

)
=
e−iNu+i(N+ 1

2 )u

eiu/2 · −2i sin(N + 1
2 )u

−2i sin 1
2 u

=
sin(N + 1

2 )u
sin 1

2u
.

��
The function DN is called the Dirichlet kernel. Its graph is shown in

Figure 4.3 on page 87.
When discussing the convergence of Fourier series, the natural partial

sums are those containing all frequencies up to a certain value. Thus we
define the partial sum sN (t) to be

sN (t) := 1
2 a0 +

N∑
n=1

(an cosnt+ bn sinnt) =
N∑

n=−N

cne
int.

Using the Dirichlet kernel we can obtain an integral formula for this sum,
assuming the cn to be the Fourier coefficients of a function f :

sN (t) =
N∑

n=−N

cne
int =

N∑
n=−N

1
2π

∫ π

−π

f(u) e−inu du · eint

=
1
π

∫ π

−π

f(u) · 1
2

N∑
n=−N

ein(t−u) du =
∫ π

−π

f(u)DN (t− u) du

=
1
2π

∫ π

−π

f(t− u)
sin(N + 1

2 )u
sin 1

2u
du.

In the last step we change the variable (t − u is replaced by u) and make
use of the periodicity of the integrand. We shall presently take another step
and form the arithmetic means of the N + 1 first partial sums. To achieve
this we need a formula for the mean of the corresponding Dirichlet kernels:

Lemma 4.3

FN (u) :=
1

N + 1

N∑
n=0

Dn(u) =
1

2π(N + 1)

(
sin 1

2 (N + 1)u
sin 1

2u

)2
.
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The proof can be done in a way similar to Lemma 4.2 (or in some other
way). It is left as an exercise. The function FN (t) is called the Fejér kernel.

Now we can form the mean of the partial sums:

σN (t) =
s0(t) + s1(t) + · · · + sN (t)

N + 1
=

1
N + 1

N∑
n=0

∫ π

−π

f(t− u)Dn(u) du

=
∫ π

−π

f(t− u) · 1
N + 1

N∑
n=0

Dn(u) du =
∫ π

−π

f(t− u)FN (u) du.

Lemma 4.4 The Fejér kernel FN (u) has the following properties:

1. FN is an even function, and FN (u) ≥ 0.

2.
∫ π

−π
FN (u) du = 1.

3. If δ > 0, then limN→∞
∫ π

δ
FN (u) du = 0.

Proof. Property 1 is obvious. Number 2 follows from∫ π

−π

Dn(u) du =
1
π

∫ π

−π

( 1
2 +cosu+· · ·+cosnu

)
du = 1, n = 0, 1, 2, . . . , N,

and the fact that FN is the mean of these Dirichlet kernels. Finally, property
3 can be proved thus:

0 ≤
∫ π

δ

FN (u) du =
1

2π(N + 1)

∫ π

δ

sin2 1
2 (N + 1)u
sin2 1

2u
du

≤ 1
2π(N + 1)

∫ π

δ

1
sin2 1

2δ
du =

1
2π(N + 1)

π − δ

sin2 1
2δ

=
Cδ

N + 1
→ 0

as N → ∞. ��
The lemma implies that {FN}∞

N=1 is a positive summation kernel such
as the ones studied in Sec. 2.4. Applying Corollary 2.1 we then have the
result on Cesàro sums of Fourier series.

Theorem 4.1 (Fejér’s theorem) If f is piecewise continuous on T and
continuous at the point t, then lim

N→∞
σN (t) = f(t).

Remark. Using the remark following Corollary 2.1, we can sharpen the result of
the theorem a bit. If f is continuous in an interval I0 =]a0, b0[, and I = [a, b] is
a compact subinterval of I0, then σN (t) will converge to f(t) uniformly on I. ��

If a series is convergent in the traditional sense, then its sum coincides
with the Cesàro limit. This means that if a continuous function happens to
have a Fourier series, which is seen to be convergent, in one way or another,
then it actually converges to the function it comes from. In particular we
have the following theorem.
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Theorem 4.2 If f is continuous on T and its Fourier coefficients cn are
such that

∑ |cn| is convergent, then the Fourier series is convergent with
sum f(t) for all t ∈ T, and the convergence is even uniform on T.

The uniform convergence follows using the Weierstrass M -test just as at
the beginning of this chapter.

This result can be applied to Example 4.3 of the previous section, where
we computed the Fourier series of f(t) = t2 (|t| ≤ π). Applying the usual
comparison test, the series obtained is easily seen to be convergent, and
now we know that its sum is also equal to f(t). We now have this formula:

t2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2 cosnt, −π ≤ t ≤ π. (4.4)

(Why does this formula hold even for t = ±π ?) In particular, we can amuse
ourselves by inserting various values of t just to see what we get. For t = 0
the result is

0 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2 .

From this we can conclude that
∞∑

n=1

(−1)n

n2 = −π2

12
.

If t = π is substituted into (4.4), we have

π2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2 (−1)n =
π2

3
+ 4

∞∑
n=1

1
n2 ,

which enables us to state that
∞∑

n=1

1
n2 =

π2

6
.

Thus, Fourier series provide a means of computing the sums of numeri-
cal series. Regrettably, it can hardly be called a “method”: if one faces a
more-or-less randomly chosen series, there is no general method to find a
function whose Fourier expansion will help us to sum it. As an illustration
we mention that it is rather easy to find nice expressions for the values of

ζ(s) =
∞∑

n=1

1
ns

for s = 2, 4, 6, . . ., but no one has so far found such an expression for, say,
ζ(3).

The following uniqueness result is also a consequence of Theorem 4.2.
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Theorem 4.3 Suppose that f is piecewise continuous and that all its Fou-
rier coefficients are 0. Then f(t) = 0 at all points where f is continuous.

In fact, all the partial sums are zero and the series is trivially convergent,
and by Theorem 4.2 it must then converge to the function from which it is
formed.

Corollary 4.1 If two continuous functions f and g have the same Fourier
coefficients, then f = g.

Proof. Apply Theorem 4.3 to the function h = f − g. ��

Exercises

4.11 Prove the formula for the Fejér kernel (i.e., Lemma 4.3).

4.12 Study the function f(t) = t4 − 2π2t2, |t| < π, and compute the value of
ζ(4).

4.13 Determine the Fourier series of f(t) = |cos t|. Prove that the series con-
verges uniformly to f and find the value of

s =
∞∑

n=1

(−1)n

4n2 − 1
.

4.14 Prove converse statements to the assertions in Exercise 4.5; i.e., show that
if f is continuous (say), we can say that
(a) if cn = c−n for all n, then f is even;
(b) If cn = −c−n for all n, then f is odd;
(c) If cn = c−n for all n, then f is real-valued.

4.3 Differentiable functions

Suppose that f ∈ C1(T), which means that both f and its derivative f ′

are continuous on T. We compute the Fourier coefficients of the derivative:

cn(f ′) =
1
2π

π∫
−π

f ′(t) e−int dt =
1
2π

[
f(t) e−int

]π
−π

− 1
2π

π∫
−π

f(t)(−in)e−int dt

=
1
2π

(
f(π)(−1)n − f(−π)(−1)n

)
+ in cn(f) = in cn(f).

(The fact that f is continuous on T implies that f(−π) = f(π).) This means
that if f has the Fourier series

∑
cn e

int, then f ′ has the series
∑
in cn e

int.
This indeed means that the Fourier series can be differentiated termwise
(even if we have no information at all concerning the convergence of either
of the two series).
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If f ∈ C2(T), the argument can be repeated, and we find that the Fourier
series of the second derivative is

∑
(−n2)cn eint. Since the Fourier coeffi-

cients of f ′′ are bounded, by Lemma 4.1, we conclude that | − n2cn| ≤ M
for some constant M , which implies that |cn| ≤ M/n2 for n �= 0. But then
we can use Theorem 4.2 to conclude that the Fourier series of f converges
to f(t) for all t. Here we have a first, simple, sufficient condition on the
function f itself that ensures a nice behavior of its Fourier series.

In the next section, we shall see that C2 can be improved to C1 and
indeed even less demanding conditions.

By iteration of the argument above, the following general result follows.

Theorem 4.4 If f ∈ Ck(T), then |cn| ≤ M/|n|k for some constant M .

The smoother the function, the smaller the Fourier coefficients: a function
with high differentiability contains small high-frequency components.

The assertion of the theorem is really rather weak. Indeed, one can say
more, which is exemplified in Exercises 4.15 and 4.17.

The situation concerning integration of Fourier series is extremely favor-
able. It turns out that termwise integration is always possible, both when
talking about antiderivatives and integrals over an interval. There is one
complication: if the constant term in the series is not zero, the formally
integrated series is no longer a Fourier series. However, we postpone the
treatment of these matters until later on, when it will be easier to carry
through. (Sec. 5.4, Theorem 5.9 on p. 122.)

The fact that termwise differentiation is possible can be used when look-
ing for periodic solutions of differential equations and similar problems. We
give an example of this.

Example 4.4. Find a solution y(t) with period 2π of the differential-
difference equation y′(t) + 2y(t− π) = sin t, −∞ < t < ∞.

Solution. Assume the solution to be the sum of a “complex” Fourier series
(a “real” series could also be used):

y(t) =
∑
n∈Z

cn e
int.

If we differentiate termwise and substitute into the given equation, we get

y′(t)+2y(t−π) =
∑

incn e
int+2

∑
cn e

int−inπ =
∑

(in+2(−1)n)cn eint.

(4.5)
This should be equal to sin t = (eit − e−it)/(2i) = 1

2 i e
−it − 1

2 i e
it. The

equality must imply that the coefficients in the last series of (4.5) are zeroes
for all n �= ±1, and furthermore

(i− 2)c1 = − i

2
, (−i− 2)c−1 =

i

2
.
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From this we solve c1 = 1
10 (2i− 1), c−1 = 1

10 (−2i− 1) (and cn = 0 for all
other n), which gives

y(t) = c1 e
it + c−1 e

−it = − 1
10 (eit + e−it) + 2

10 i(e
it − e−it)

= − 1
5 cos t+ 1

5 i · 2i sin t = 1
5 (− cos t− 2 sin t).

Check the solution by substituting into the original equation! ��

Exercises
4.15 Prove the following improvement on Theorem 4.4: If f ∈ Ck(T), then

lim
n→±∞

nkcn = 0.

4.16 Find the values of the constant a for which the problem y′′(t) + ay(t) =
y(t+π), t ∈ R, has a solution with period 2π which is not identically zero.
Also, determine all such solutions.

4.17 Try to prove the following partial improvements on Theorem 4.4:
(a) If f ′ is continuous and differentiable on T except possibly for a finite
number of jump discontinuities, then |cn| ≤ M/|n| for some constant M .
(b) If f is continuous on T and has a second derivative everywhere except
possibly for a finite number of points, where there are “corners” (i.e., the
left-hand and right-hand first derivatives exist but are different from each
other), then |cn| ≤ M/n2 for some constant M .

4.4 Pointwise convergence

Time is now ripe for the formulation and proof of our most general theorem
on the pointwise convergence of Fourier series. We have already mentioned
that continuity of the function involved is not sufficient. Now let us assume
that f is defined on T and continuous except possibly for a finite number of
finite jumps. This means that f is permitted to be discontinuous at a finite
number of points in each period, but at these points we assume that both
the one-sided limits exist and are finite. For convenience, we introduce this
notation for these limits:

f(t0−) = lim
t↗t0

f(t), f(t0+) = lim
t↘t0

f(t).

In addition, we assume that the “generalized left-hand derivative” f ′
L(t0)

exists:

f ′
L(t0) = lim

h↗0

f(t0 + h) − f(t0−)
h

= lim
u↘0

f(t0 − u) − f(t0−)
−u .

If f happens to be continuous at t0, this coincides with the usual left-hand
derivative; if f has a discontinuity at t0, we take care to use the left-hand
limit instead of just writing f(t0).
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−π π t

21/(2π)

FIGURE 4.3. The graph of D10

Symmetrically, we shall also assume that the “generalized right-hand
derivative” exists:

f ′
R(t0) = lim

h↘0+

f(t0 + h) − f(t0+)
h

.

Intuitively, the existence of these generalized derivatives amounts to the
fact that at a jump discontinuity, the graphs of the two parts of the function
on either side of the jump have each an end-point tangent direction.

In Sec. 4.2 we proved the following formula for the partial sums of the
Fourier series of f :

sN (t) =
1
2π

∫ π

−π

f(t− u)
sin(N + 1

2 )u
sin 1

2u
du. (4.6)

What complicates matters is that the Dirichlet kernel occurring in the
integral is not a positive summation kernel. On the contrary, it takes a lot
of negative values, which causes a proof along the lines of Theorem 2.1 to
fail completely (see Figure 4.3).

We shall make use of the following formula:

1
π

∫ π

0

sin(N + 1
2 )u

sin 1
2u

du = 1. (4.7)

This follows directly from the fact that the integrated function is 2πDN (u)
= 1+2

∑N
1 cosnu, where all the cosine terms have integral zero over [0, π].

We split the integral (4.6) in two parts, each covering half of the interval
of integration, and begin by taking care of the right-hand half:
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Lemma 4.5

lim
N→∞

1
π

∫ π

0
f(t0 − u)

sin(N + 1
2 )u

sin 1
2u

du = f(t0−).

Proof. Rewrite the difference between the integral on the left and the num-
ber on the right, using (4.7):

1
π

∫ π

0
f(t0 − u)

sin(N + 1
2 )u

sin 1
2u

du− f(t0−)

=
1
π

∫ π

0
(f(t0 − u) − f(t0−))

sin(N + 1
2 )u

sin 1
2u

du

=
1
π

∫ π

0

f(t0 − u) − f(t0−)
−u · −u

sin 1
2u

· sin(N + 1
2 )u du.

The last integrand consists of three factors: The first one is continuous
(except for jumps), and it has a finite limit as u → 0+, namely, f ′

L(t0).
The second factor is continuous and bounded. The product of the two
first factors is thus a function g(u) which is clearly Riemann-integrable on
the interval [0, π]. By the Riemann–Lebesgue lemma we can then conclude
that the whole integral tends to zero as N goes to infinity, which proves
the lemma. ��

In just the same way one can prove that if f has a generalized right-hand
derivative at t0, then

lim
N→∞

1
π

∫ 0

−π

f(t0 − u)
sin(N + 1

2 )u
sin 1

2u
du = f(t0+).

Taking the arithmetic mean of the two formulae, we have proved the con-
vergence theorem:

Theorem 4.5 Suppose that f has period 2π, and suppose that t0 is a point
where f has one-sided limiting values and (generalized) one-sided deriva-
tives. Then the Fourier series of f converges for t = t0 to the mean value
1
2 (f(t0+) + f(t0−)). In particular, if f is continuous at t0, the sum of the
series equals f(t0).

We emphasize that if f is continuous at t0, the sum of the series is simply
f(t0). At a point where the function has a jump discontinuity, the sum is
instead the mean value of the right-hand and left-hand limits.

It is important to realize that the convergence of a Fourier series at
a particular point is really dependent only on the local behavior of the
function in the neighborhood of that point. This is sometimes called the
Riemann localization principle.
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Example 4.5. Let us return to Example 4.2 on page 78. Now we finally
know that the series

∞∑
n=1

sinnt
n

is indeed convergent for all t. If, for example, t = π/2, we have sinnt equal
to zero for all even values of n, while sin(2k + 1)t = (−1)k. Since f is
continuous and has a derivative at t = π/2, and f(π/2) = π/4, we obtain

π

4
=

∞∑
k=0

(−1)k

2k + 1
= 1 − 1

3 + 1
5 − 1

7 + · · · .

(In theory, this formula could be used to compute numerical approximations
to π, but the series converges so extremely slowly that it is of no practical
use whatever.) ��

The most comprehensive theorem concerning pointwise convergence of
Fourier series of continuous functions was proved in 1966 by Lennart Car-

leson. In order to formulate it we first introduce the notion of a zero set:
a set E ⊂ T is called a zero set if, for every ε > 0, it is possible to construct
a sequence of intervals {ωn}∞

n=1 on the circle, that together cover the set
E and whose total length is less that ε.

Theorem 4.6 (Carleson’s theorem) If f is continuous on T, then its
Fourier series converges at all points of T except possibly for a zero set.

In fact, it is not even necessary that f be continuous; it is sufficient
that f ∈ L2(T), which will be explained in Chapter 5. The proof is very
complicated.

Carleson’s theorem is “best possible” in the following sense:

Theorem 4.7 (Kahane and Katznelson) If E is a zero set on T, then
there exists a continuous function such that its Fourier series diverges pre-
cisely for all t ∈ E.

Exercises

4.18 Define f by letting f(t) = t sin t for |t| < π and f(t + 2π) = f(t) for all t.
Determine the Fourier series of f and investigate for which values of t it
converges to f(t).

4.19 If f(t) = (t+ 1) cos t for −π < t < π, what is the sum of the Fourier series
of f for t = 3π? (Note that you do not have to compute the series itself!)

4.20 The function f has period 2π and satisfies

f(t) =

{
t+ π, −π < t < 0,
0, 0 ≤ t ≤ π.
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(a) Find the Fourier series of f and sketch the sum of the series on the
interval [−3π, 3π].

(b) Sum the series
∞∑

n=1

1
(2n− 1)2

.

4.21 Let f(x) be defined for −π < x < π by f(x) = cos 3
2x and for other values

of x by f(x) = f(x+ 2π). Determine the Fourier series of f . For all real x,
investigate whether the series is convergent. Find its sum for x = n · π/2,
n = 1, 2, 3.

4.22 Let α be a complex number but not an integer. Determine the Fourier
series of cosαt (|t| ≤ π). Use the result to prove the formula

π cotπz = lim
N→∞

N∑
n=−N

1
z − n

(z /∈ Z)

(“expansion into partial fractions of the cotangent”).

4.5 Formulae for other periods

Here we have collected the formulae for Fourier series of functions with a
period different from 2π. It is convenient to have a notation for the half-
period, so we assume that the period is 2P , where P > 0:

f(t+ 2P ) = f(t) for all t ∈ R.

Put Ω = π/P . The number Ω could be called the fundamental angular
frequency . A linear change of variable in the usual formulae results in the
following set of formulae:

f(t) ∼
∑
n∈Z

cn e
inΩt , where cn =

1
2P

∫ P

−P

f(t) e−inΩt dt,

and, alternatively,

f(t) ∼ 1
2 a0+

∞∑
n=1

(an cosnΩt+bn sinnΩt), where
an

bn
=

1
P

P∫
−P

f(t)
cos
sin nΩt dt.

In all cases, the intervals of integration can be changed from (−P, P ) to
an arbitrary interval of length 2P . If f is even or odd, we have the special
cases

f even ⇒ bn = 0, an =
2
P

∫ P

0
f(t) cosnΩt dt,

f odd ⇒ an = 0, bn =
2
P

∫ P

0
f(t) sinnΩt dt.
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All results concerning summability, convergence, differentiability, etc.,
that we have proved in the preceding sections, will of course hold equally
well for any period length.

Exercises

4.23 (a) Determine the Fourier series for the even function f with period 2 that
satisfies f(t) = t for 0 < t < 1.
(b) Determine the Fourier series for the odd function f with period 2 that
satisfies f(t) = t for 0 < t < 1.
(c) Compare the convergence properties of the series obtained in (a) and
(b). Illuminate by drawing pictures!

4.24 Find, in the guise of a “complex” Fourier series, a periodic solution with a
continuous first derivative on R of the differential equation y′′ +y′ +y = g,
where g has period 4π and g(t) = 1 for |t| < π, g(t) = 0 for π < |t| < 2π.

4.25 Determine a solution with period 2 of the differential-difference equation
y′(t) + y(t− 1) = cos2 πt.

4.26 Compute the Fourier series of the odd function f with period 2 that satifies
f(x) = x− x2 for 0 < x < 1. Use the result to find the sum of the series

∞∑
n=0

(−1)n

(2n+ 1)3
.

4.6 Some worked examples

In this section we give a few more examples of the computational work that
may occur in calculating the Fourier coefficients of a function.

Example 4.6. Take f(t) = t cos 2t for −π < t < π, and assume f to have
period 2π. First of all, we try to see if f is even or odd — indeed, it is odd.
This means that it should be a good idea to compute the Fourier series
in the “real” version; because all an will be zero, and bn is given by the
half-range integral

bn =
2
π

∫ π

0
t cos 2t sinnt dt.

The computation is now greatly simplified by using the product formula

sinx cos y = 1
2

(
sin(x+ y) + sin(x− y)

)
.

Integrating by parts, we get

bn =
1
π

∫
t
(
sin(n+ 2)t+ sin(n− 2)t

)
dt (n �= 2)

=
1
π

[
t
(
−cos(n+ 2)t

n+ 2
− cos(n− 2)t

n− 2

)]π

0
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+
1
π

∫ π

0

(cos(n+ 2)t
n+ 2

+
cos(n− 2)t
n− 2

)
dt

= − 1
π

· π
(cos(n+ 2)π

n+ 2
+

cos(n− 2)π
n− 2

)
+ 0 = −

( (−1)n

n+ 2
+

(−1)n

n− 2

)
= −2n(−1)n

n2 − 4
.

This computation fails for n = 2. For this n we get instead

b2 =
1
π

∫ π

0
t(sin 4t+ 0) dt =

1
π

[
t
− cos 4t

4

]
+

1
4π

∫ π

0
cos 4t dt

= − 1
4 + 0 = − 1

4 .

Noting that b1 = − 2
3 , we can conveniently describe the Fourier series as

f(t) ∼ − 2
3 sin t− 1

4 sin 2t− 2
∞∑

n=3

n(−1)n

n2 − 4
sinnt.

��
Example 4.7. Find the Fourier series of the odd function of period 2 that
is described by f(t) = t(1− t) for 0 ≤ t ≤ 1. Using the result, find the value
of the sum

s1 =
∞∑

k=0

(−1)k

(2k + 1)3
.

Solution. Since the function is odd, we compute a sine series. The coeffi-
cients are

bn = 2
∫ 1

0
t(1 − t) sinnπt dt = (integrations by parts) =

4(1 − (−1)n)
n3π3 ,

which is zero for all even values of n. Writing n = 2k + 1 when n is odd,
we get the series

f(t) ∼ 8
π3

∞∑
k=0

sin(2k + 1)πt
(2k + 1)3

.

A sketch of the function shows that f is everywhere continuous and has both
right- and left-hand derivatives everywhere, which permits us to replace
the sign ∼ by =. In particular we note that if t = 1

2 , then sin(2k + 1)πt =
sin(k + 1

2 )π = (−1)k, so that

1
4 = f( 1

2 ) =
8
π3 · s1 ⇒ s1 =

π3

32
.

��
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Exercises
4.27 Find the Fourier series of f with period 1, when f(x) = x for 1 < x < 2.

Indicate the sum of the series for x = 0 and x = 1
2 . Explain your answer!

4.28 Develop into Fourier series the function f given by

f(x) = sin
x

2
, −π < x ≤ π; f(x+ 2π) = f(x), x ∈ R.

4.29 Compute the Fourier series of period 2π for the function f(x) = (|x|−π)2,
|x| ≤ π, and use it to find the sums

∞∑
n=1

(−1)n−1

n2 and
∞∑

n=1

1
n2 .

4.7 The Gibbs phenomenon

Let f be a function that satisfies the conditions for pointwise convergence
of the Fourier series (Theorem 4.5) and that has a jump discontinuity at a
certain point t0. If we draw a graph of a partial sum of the series, we discover
a peculiar behavior: When t approaches t0, for example, from the left, the
graph of sn(t) somehow grows restless; you might say that it prepares to
take off for the jump; and when the jump is accomplished, it overshoots
the mark somewhat and then calms down again. Figure 4.4 shows a typical
case.

This sort of behavior had already been observed during the nineteenth
century by experimental physicists, and it was then believed to be due to
imperfection in the measuring apparatuses. The fact that this is not so, but
that we are dealing with an actual mathematical phenomenon, was proved
by J. W. Gibbs, after whom the behavior has also been named.

The behavior is fundamentally due to the fact that the Dirichlet kernel
Dn(t) is restless near t = 0. We are going to analyze the matter in detail
in one special case and then, using a simple maneuver, show that the same
sort of thing occurs in the general case.
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Let f(t) be a so-called square-wave function with period 2π, described
by f(t) = 1 for 0 < t < π, f(t) = −1 for −π < t < 0 (see Figure 4.5). Since
f is odd, it has a sine series, with coefficients

bn =
2
π

∫ π

0
sinnt dt =

2
π

[
−cosnt

n

]π

0
=

2
nπ

(1 − (−1)n),

which is zero if n is even. Thus,

f(t) ∼ 4
π

∞∑
k=0

sin(2k + 1)t
2k + 1

=
4
π

(
sin t+

sin 3t
3

+
sin 5t

5
+ · · ·

)
. (4.8)

Because of symmetry we can restrict our study to the interval (0, π/2). For
a while we dump the factor 4/π and consider the partial sums of the series
in the brackets:

Sn(t) = sin t+ 1
3 sin 3t+ 1

5 sin 5t+ · · · +
1

2n+ 1
sin(2n+ 1)t.

By differentiation we find

S′
n(t) = cos t+ cos 3t+ · · · + cos(2n+ 1)t = 1

2

n∑
k=0

(
ei(2k+1)t + e−i(2k+1)t)

= 1
2e

−i(2n+1)t
2n+1∑
k=0

ei2kt = 1
2e

−i(2n+1)t 1 − ei2(2n+2)t

1 − ei2t
=

sin 2(n+ 1)t
2 sin t

(compare the method that we used to sum Dn(t)). The last formula does
not hold for t = 0, but it does hold in the half-open interval 0 < t ≤ π/2.
The derivative has zeroes in this interval; they are easily found to be where
2(n+1)t = kπ or t = τk = (kπ)/((2(n+1)), k = 1, 2, . . . , n. Considering the
sign of the derivative between the zeroes one realizes that these points are
alternatingly maxima and minima of Sn. More precisely, since Sn(0) = 0,
integration gives

Sn(t) =
∫ t

0

sin 2(n+ 1)u
2 sinu

du,

where the numerator of the integrand oscillates in a smooth fashion between
the successive τk, while the denominator increases throughout the interval.
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This means that the first maximum value, for t = τ1, is also the largest,
and the oscillations in Sn then quiet down as t increases (see Figure 4.6).

It follows that the maximal value of Sn(t) on ]0, π/2] is given by

An = Sn(τ1) = Sn

(
π

2(n+ 1)

)
=

n∑
k=0

1
2k + 1

sin
(2k + 1)π
2(n+ 1)

.

We can interpret the last sum as a Riemann sum for a certain integral: Let
tk = kπ/(n+1) and ξk = 1

2 (tk+tk+1). Then the points 0 = t0, t1, . . . , tn+1 =
π describe a subdivision of the interval (0, π), the point ξk lies in the subin-
terval (xk, xk+1) and, in addition, ξk = (2k + 1)π/(2(n + 1)). Thus we
have

An = 1
2

n∑
k=0

sin ξk
ξk

∆xk → 1
2

∫ π

0

sinx
x

dx as n → ∞.

A more detailed scrutiny of the limit process would show that the numbers
An decrease toward the limit.

Now we reintroduce the factor 4/π. We have then established that the
partial sums of the Fourier series (4.8) have maximum values that tend to
the limit

2
π

∫ π

0

sin t
t

dt ≈ 1.1789797,

and the maximal value of Sn(t) is taken at t = π/(2(n+ 1)). On the right-
hand side of the maximum, the partial sums oscillate around the value 1
with a decreasing amplitude, up to the point t = π/2. Because of symmetry,
the behavior to the left will be analogous. What we want to stress is the
fact that the maximal oscillation does not tend to zero when more terms
of the series are added; on the contrary, it stabilizes toward a value that
is approximately 9 percent of the total size of the jump. The point where
the maximum oscillation takes place moves indefinitely closer to the point
of the jump. It is even possible to prove that the Fourier series is actually
uniformly convergent to 1 on intervals of the form [a, π − a], where a > 0.

Now let g be any function with a jump discontinuity at t0 with the size
of the jump equal to δ = g(t0+) − g(t0−), and assume that g satisfies the
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conditions of Theorem 4.5 for convergence of the Fourier series in some
neighborhood of t0. Form the function h(t) = g(t) − 1

2δf(t − t0), where
f is the square-wave function just investigated. Then, h(t0+) = h(t0−),
so that h is actually continuous at t0 if one defines h(t0) in the proper
way. Furthermore, h has left- and right-hand derivatives at t0, and so the
Fourier series of h will converge nicely to h in a neighborhood of t = t0. The
Fourier series of g can be written as the series of h plus some multiple of a
translate of the series of f ; the former series is calm near t0, but the latter
oscillates in the manner demonstrated above. It follows that the series of g
exhibits on the whole the same restlessness when we approach t0, as does
the series of f when we approach 0. The size of the maximum oscillation is
also approximately 9 percent of the size of the whole jump.

If a Fourier series is summed according to Cesàro (Theorem 4.1) or
Poisson–Abel (see Sec. 6.3), the Gibbs phenomenon disappears completely.
Compare the graphs of s15(t) in Figure 4.4 and σ15(t) (for the same f) in
Figure 4.7.

4.8 *Fourier series for distributions

We shall here consider the generalized functions of Sec. 2.6 and 2.7 and
their Fourier series. Since the present chapter deals with objects defined on
T, or, equivalently, periodic phenomena, we begin by considering periodic
distributions as such.

In this context, the Heaviside function H is not really interesting. But
we can still think of the object δa(t) as a “unit pulse” located at a point
a ∈ T, having the property∫

T
ϕ(t)δa(t) dt = ϕ(a) if ϕ is continuous at a.

The periodic description of the same object consists of a so-called pulse
train consisting of unit pulses at all the points a + n · 2π, n ∈ Z. As an
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object defined on R, this pulse train could be described by

∞∑
n=−∞

δa+2πn(t) =
∞∑

n=−∞
δ(t− a− 2πn).

The convergence of this series is uncontroversial, because at any individual
point t at most one of the terms is different from zero.

The derivatives of δa can be described using integration by parts, just as
in Sec. 2.6, but now the integrals are taken over T (i.e., over one period).
Because everything is periodic, the contributions at the ends of the interval
will cancel:∫

T
ϕ(t)δ′

a(t) dt =
[
ϕ(t)δa(t)

]b+2π

b

−
∫
T
ϕ′(t)δa(t) dt = −ϕ′(a).

What would be the Fourier series of these distributions? Let us first
consider δa. The natural approach is to define Fourier coefficients by the
formula

cn =
1
2π

∫
T
δa(t)e−int dt =

1
2π

· e−ina.

The series then looks like this:

δa(t) ∼ 1
2π

∑
n∈Z

e−ina · eint.

In particular, when a = 0, the Fourier coefficients are all equal to 1/(2π),
and the series is

δ(t) ∼ 1
2π

∑
n∈Z

eint.

By pairing terms with the same values of |n|, we can formally rewrite this
as

δ(t) ∼ 1
2π

+
1
π

∞∑
n=1

cosnt.

Compare the Dirichlet kernel! We might say that δ is the limit of DN as
N → ∞.

These series cannot be convergent in the usual sense, since their terms do
not tend to zero. But for certain values of t they can be summed according
to Cesàro. Indeed, we can use the result of Exercise 2.16 on page 22. The
series for 2πδa can be written (with z = ei(t−a))

∑
n∈Z

ein(t−a) =
∞∑

n=0

(
ei(t−a)

)n

+
−1∑

n=−∞

(
ei(t−a)

)n

=
∞∑

n=0

zn +
∞∑

n=1

(
e−i(t−a)

)n

=
∞∑

n=0

zn + z

∞∑
n=0

zn
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According to Exercise 2.16, both the series in the last expression can be
summed (C, 1) if |z| = 1 but z �= 1, which is the case if t �= a, and the
result will be

1
1 − z

+
z

1 − z
=

1 − z + z(1 − z)
|1 − z|2 =

1 − zz

|1 − z|2 =
1 − |z|2
|1 − z|2 = 0.

If t = a, all the terms are ones, and the series diverges to infinity.
Thus the series behaves in a way that is most satisfactory, as it enhances

our intuitive image of what δa looks like.
Next we find the Fourier series of δ′

a. The coefficients are

cn =
1
2π

∫ π

−π

δ′
a(t)e−int dt = − 1

2π
· d

dt
e−int

∣∣∣∣
t=a

= − 1
2π

(−ine−int)
∣∣
t=a

=
in

2π
e−ina.

We recognize that the rule in Sec. 4.3 for the Fourier coefficients of a deriva-
tive holds true. The summation of the series

δ′
a(t) =

i

2π

∑
n∈Z

ne−ianeint =
i

2π

∑
n∈Z

nein(t−a)

is tougher than that of δa itself, because the terms now have moduli that
even tend to infinity as |n| → ∞. It can be shown, however, that for t �= a
the series is summable (C, 2) to 0.

We give a couple of examples to illustrate the use of these series.

Example 4.8. Consider the function of Example 4.2 on page 78. Its
Fourier series can be written

f(t) ∼
∞∑

n=1

sinnt
n

=
∑
n 	=0

1
2in

eint.

(Notice that the last version is correct — the minus sign in the Euler
formula for sin is incorporated in the sign of the n in the coefficient.)

The derivative of f consists of an “ordinary” term − 1
2 , which takes care

of the slope between the jumps, and a pulse train that on T is identified
with π · δ(t). This would mean that the Fourier series of the derivative is
given by

f ′(t) = − 1
2 + πδ(t) ∼ − 1

2 + π · 1
2π

∑
n∈Z

eint

= − 1
2 + 1

2

∑
n∈Z

eint = 1
2

∞∑
n=1

(eint + e−int) =
∞∑

n=1

cosnt.

Notice that this is precisely what a formal differentiation of the original
series would yield. ��
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Example 4.9. Find a 2π-periodic solution of the differential equation
y′ + y = 1 + δ(t) (−π < t < π).

Solution. We try a solution of the form y =
∑
cne

int. Differentiating this
and expanding the right-hand member in Fourier series, we get∑

n∈Z

incne
int +

∑
n∈Z

cne
int = 1 +

∑
n∈Z

1
2π

eint,

or

c0 +
∑
n 	=0

(in+ 1)cn eint =
(

1 +
1
2π

)
+
∑
n 	=0

1
2π

eint.

Identification of coefficients yields c0 = 1 + 1/(2π) and, for n �= 0, cn =
1/(2π(1 + in)). A solution should thus be given by

y(t) ∼
(

1 +
1
2π

)
+

1
2π

∑
n 	=0

eint

1 + in
.

By a stroke of luck, it happens that this series has been almost encountered
before in the text: in Example 4.1 on page 76 f. we found that

f(u) ∼ sinhπ
π

(
1 +

∑
n 	=0

(−1)n

1 − in
einu

)
,

where f(u) = eu for −π < u < π and f has period 2π. From this we can
find that ∑

n 	=0

(−1)n

1 − in
einu =

π

sinhπ
f(u) − 1.

On the other hand, the series on the left of this equation can be rewritten,
using (−1)n = einπ and letting t = π − u:

∑
n 	=0

(−1)n

1 − in
einu =

∑
n 	=0

(−1)n

1 + in
e−inu =

∑
n 	=0

ein(π−u)

1 + in
=
∑
n 	=0

eint

1 + in
.

This means that our solution can be expressed in the following way:

y(t) ∼
(

1+
1
2π

)
+

1
2π

(
π

sinhπ
f(u)−1

)
= 1+

1
2 sinhπ

f(u) = 1+
f(π − t)
2 sinhπ

.

In particular,

y(t) = 1 +
eπ−t

2 sinhπ
= 1 +

eπ

2 sinhπ
e−t, 0 < t < 2π,

since this condition on t is equivalent to −π < π − t < π. At the points
t = n · 2π, y(t) has an upward jump of size 1 (check this!).
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Let us check the solution by substitution into the equation. Differenti-
ating, we find that y′(t) contains the pulse δ(t) at the origin, and between
jumps one has y′(t) = −(y(t) − 1). This proves that we have indeed found
a solution. ��

Exercises

4.30 Let f be the even function with period 2π that satisfies f(t) = π − t for
0 ≤ t ≤ π. Determine f ′ and f ′′, and use the result to find the Fourier
series of f .

4.31 Let f have period 2π and satisfy

f(t) =

{
et, |t| < π/2,

0, π/2 < |t| < π.

Compute f ′ − f , and then determine the Fourier series of f .

Summary of Chapter 4

Definition
If f is a sufficiently nice function defined on T, we define its Fourier coef-
ficients by

cn =
1
2π

∫
T
f(t)e−int dt or

an

bn
=

1
π

∫
T
f(t)

cos
sinnt dt.

The Fourier series of f is the series

∑
n∈Z

cne
int, resp. 1

2a0 +
∞∑

n=1

(an cosnt+ bn sinnt).

If f has a period other than 2π, the formulae have to be adjusted accord-
ingly. If f is even or odd, the formulae for an and bn can be simplified.
Theorem
If two continuous functions f and g have the same Fourier coefficients, then
f = g.

Theorem
If f is piecewise continuous on T and continuous at the point t, then, for
this value of t, its Fourier series is summable (C, 1) to the value f(t).

Theorem
If f is continuous on T and its Fourier coefficients satisfy

∑ |cn| < ∞, then
its Fourier series converges absolutely and uniformly to f(t) on all of T.
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Theorem
If f is differentiable on T, then the Fourier series of the derivative f ′ can
be found by termvise differentiation.

Theorem
If f ∈ Ck(T), then its Fourier coefficients satisfy |cn| ≤ M/|n|k.

Theorem
If f is continuous except for jump discontinuities, and if it has (generalized)
one-sided derivatives at a point t, then its Fourier series for this value of t
converges with the sum 1

2 (f(t+) + f(t−)).
Formulae for Fourier series are found on page 251.

Historical notes

Joseph Fourier was not the first person to consider trigonometric series of
the kind that came to bear his name. Around 1750, both Daniel Bernoulli and
Leonhard Euler were busy investigating these series, but the standard of rigor in
mathematics then was not sufficient for a real understanding of them. Part of the
problem was the fact that the notion of a function had not been made precise,
and different people had different opinions on this matter. For example, a graph
pieced together as in Figure 4.2 on page 78 was not considered to represent one
function but several. It was not until the times of Bernhard Riemann and Karl

Weierstrass that something similar to the modern concept of a function was
born. In 1822, when Fourier’s great treatise appeared, it was generally regarded as
absurd that a series with terms that were smooth and nice trigonometric functions
should be able to represent functions that were not everywhere differentiable, or
even worse—discontinuous!

The convergence theorem (Theorem 4.5) as stated in the text is a weaker
version of a result by the German mathematician J. Peter Lejeune-Dirichlet

(1805–59). At the age of 19, the Hungarian Lipót Fejér (1880–1959) had the
bright idea of applying Cesàro summation to Fourier series.

In the twentieth century the really hard questions concerning the convergence
of Fourier series were finally resolved, when Lennart Carleson (1928–) proved
his famous Theorem 4.6. The author of this book, then a graduate student,
attended the series of seminars in the fall of 1965 when Carleson step by step
conquered the obstacles in his way. The final proof consists of 23 packed pages in
one of the world’s most famous mathematical journals, the Acta Mathematica.

Problems for Chapter 4

4.32 Determine the Fourier series of the following functions. Also state what is
the sum of the series for all t.
(a) f(t) = 2 + 7 cos 3t− 4 sin 2t, −π < t < π.
(b) f(t) = |sin t|, −π < t < π.
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(c) f(t) = (π − t)(π + t), −π < t < π.
(d) f(t) = e|t|, −π < t < π.

4.33 Find the cosine series of f(t) = sin t, 0 < t < π.
4.34 Find the sine series of f(t) = cos t, 0 < t < π. Use this series to show that

π
√

2
16

=
1

22 − 1
− 3

62 − 1
+

5
102 − 1

− 7
142 − 1

+ · · · .

4.35 Let f be the 2π-periodic continuation of the function H(t− a) −H(t− b),
where −π < a < b < π. Find the Fourier series of f . For what values of t
does it converge? Indicate its sum for for all such t ∈ [−π, π].

4.36 Let f be given by f(x) = −1 for −1 < x < 0, f(x) = x for 0 ≤ x ≤ 1 and
f(x + 2) = f(x) for all x. Compute the Fourier series of f . State the sum
of this series for x = 10, x = 10.5, and x = 11.

4.37 Develop f(t) = t(t − 1), 0 < t < 1, period 1, in a Fourier series. Quote
some criterion that implies that the series converges to f(t) for all values
of t.

4.38 The function f is defined by f(t) = t2 for 0 ≤ t ≤ 1, f(t) = 0 for 1 < t < 2
and by the statement that it has period 2.
(a) Develop f in a Fourier series with period 2 and indicate the sum of the
series in the interval [0, 5].

(b) Compute the value of the sum s =
∞∑

n=1

(−1)n

n2 .

4.39 Suppose that f is integrable, has period T , and Fourier series

f(t) ∼
∞∑

n=−∞
cn e

2πint/T .

Determine the Fourier series of the so-called autocorrelation function r of
f , which is defined by

r(t) =
1
T

∫ T

0

f(t+ u) f(u) du.

4.40 An application to sound waves: Suppose the variation in pressure, p, that
causes a sound has period 1

262 s (seconds), and satisfies

p(t) = 1, 0 < t < 1
1048 ,

p(t) = 7
8 ,

1
524 < t < 3

1048 ,

p(t) = − 7
8 ,

1
1048 < t < 1

524 ,

p(t) = −1, 3
1048 < t < 1

262 .

What frequencies can be heard in this sound? Which is the dominant fre-
quency?

4.41 Compute the Fourier series of f , given by

f(x) =
∣∣∣sin x2 ∣∣∣ , −π < x ≤ π; f(x+ 2π) = f(x), x ∈ R.

Then find the values of the sums

s1 =
∞∑

n=1

1
4n2 − 1

and s2 =
∞∑

n=1

(−1)n

4n2 − 1
.
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4.42 Let f be an even function of period 2π described by f(x) = cos 2x for
0 ≤ x ≤ 1

2π and f(x) = −1 for 1
2π < x ≤ π. Find its Fourier series and

compute the value of the sum

s =
∞∑

k=1

(−1)k

(2k + 1)(2k − 1)(2k + 3)
.

4.43 Find all solutions y(t) with period 2π of the differential-difference equation

y′(t) + y(t− 1
2π) − y(t− π) = cos t, −∞ < t < ∞.

4.44 Let f be an even function with period 4 such that f(x) = 1−x for 0 ≤ x ≤ 1
and f(x) = 0 for 1 < x ≤ 2. Find its Fourier series and compute

s =
∞∑

k=0

1
(2k + 1)2

.

4.45 Let α be a real number but not an integer. Define f(x) by putting f(x) =
eiαx for −π < x < π and f(x+ 2π) = f(x). By studying its Fourier series,
prove the following formulae:

π

sinπα
=

1
α

+
∞∑

n=1

2(−1)nα

α2 − n2 .

(
π

sinπα

)2

=
∞∑

n=−∞

1
(α− n)2

.

4.46 Compute the Fourier series of the 2π-periodic function f given by f(x) =
x3 − π2x for −π < x < π. Find the sum

s =
∞∑

n=1

(−1)n+1

(2n− 1)3
.

4.47 Let f be a 2π-periodic function with (“complex”) Fourier coefficients cn

(n ∈ Z). Assume that for an integer k > 0 it holds that∑
n∈Z

|n|k |cn| < ∞.

Prove that f is of class Ck, i.e., that the kth derivative of f is continuous.

4.48 Find the Fourier series of f with period 2 which is given for |x| < 1 by
f(x) = 2x2 − x4. The result can be used to find the value of the sum

ζ(4) =
∞∑

n=1

1
n4 .
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5
L2 Theory

5.1 Linear spaces over the complex numbers

We assume that the reader is familiar with vector spaces, where the scalars
are real numbers. It is also possible, and indeed very fruitful, to allow scalars
to be complex numbers. Thus, we consider now a set V , whose elements can
be added to each other, and also can be multiplied by complex numbers,
to produce new elements in V ; and these operations are to obey the same
rules of calculation as in ordinary real vector spaces. Simple examples of
such complex vector spaces are given by Cn, which consists of n-tuples
z = (z1, z2, . . . , zn) of complex numbers. Another example is the set of all
complex-valued functions f defined on an interval [a, b].

It turns out that elementary complex linear algebra can be developed in
almost exact parallel to its real counterpart. Linear dependence, subspaces,
and dimension can be defined word for word in the same way, with the un-
derstanding that all scalars occurring in the process are complex numbers.
This gives a new significance to the notion of dimension. For example, C
is a one-dimensional complex vector space. It could also be considered as
a real vector space, but then the dimension is 2. In the same manner, Cn

has complex dimension n but real dimension 2n.
When we reach the notions of scalar product and distance, we must,

however, modify the details. The old formula for the (standard) scalar
product of two vectors z and w in n-space has the form 〈z,w〉 = z1w1 +
z2w2 + · · · + znwn. This cannot be allowed to hold any more, because it
does not work in a reasonable way.
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Example 5.1. Consider the vector z = (1, i) ∈ C 2. With the usual
formula for the scalar product we would get |z|2 = 1 · 1 + i · i = 1 − 1 = 0.
The length of the vector would be 0, which is no good. Still more strange
would be the case for the vector w = (1, 2i), which would not even have
real length. ��

By considering the one-dimensional space C, we can get an idea for a
more suitable definition. The vector, or number, z = x+iy is normally iden-
tified with the vector (x, y) in R2. The length of this vector is the number
|z| =

√
x2 + y2 =

√
zz. If the scalar product of two complex numbers z

and w is defined to be 〈z, w〉 = zw, we get the formula |z|2 = 〈z, z〉. This
means that we have to modify a few rules for the scalar product, but that
price is well worth paying. Just to indicate that the rules of computation
are no longer exactly the same, we choose to use the name inner product
instead of scalar product.

Definition 5.1 Let V be a complex vector space. An inner product on V
is a complex-valued function 〈u, v〉 of u and v ∈ V having the following
properties:

(1) 〈u, v〉 = 〈v, u〉 (Hermitian symmetry)
(2) 〈αu+ βv,w〉 = α〈u,w〉 + β〈v, w〉 (Linearity in the first argument)
(3) 〈u, u〉 ≥ 0
(4) 〈u, u〉 = 0 ⇒ u = 0

(Positive-definiteness)

Combining rules 1 and 2 we find the rule

(5) 〈u, αv + βw〉 = α〈u, v〉 + β〈u,w〉.

Example 5.2. In Cn, we can define an inner product (using natural
notation) by the formula

〈z,w〉 = z1w1 + z2w2 + · · · + znwn.

��

Example 5.3. Let C(a, b) be the set of continuous, complex-valued func-
tions defined on the compact interval [a, b], and put

〈f, g〉 =
∫ b

a

f(x) g(x) dx.

The fact that this is an inner product is almost trivial, except possibly
for condition 4. That implication follows from the fact that if a continu-
ous function is non-negative on an interval and its integral is 0, then the
function must indeed be identically 0 (see textbooks on calculus). ��
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Example 5.4. More generally, let w be a fixed continuous function on
[a, b] such that w(x) > 0, and put

〈f, g〉 =
∫ b

a

f(x) g(x)w(x) dx.

��
A complex vector space with a chosen inner product is called an inner

product space. Because of rules 3 and 4 it is natural to define a measure of
the size of a vector in such a space, corresponding to the length in the real
case. One prefers to use the word norm instead of length and write

the norm of u = ‖u‖ =
√

〈u, u〉.

In the case described in Example 5.3 we thus have

‖f‖2 =
∫ b

a

|f(x)|2 dx.

The following inequalities are wellknown in the real case, and they hold
just as well in the new setting:

Theorem 5.1

|〈u, v〉| ≤ ‖u‖ ‖v‖ (Cauchy–Schwarz inequality)
‖u+ v‖ ≤ ‖u‖ + ‖v‖ (Triangle inequality)

Proof. (a) If u = 0, then both members are 0 and the statement is true.
Thus, let us assume that u �= 0. Put α = −〈v, u〉/〈u, u〉. Then,

0 ≤ ‖αu+ v‖2 = 〈αu+ v, αu+ v〉 = αα〈u, u〉 + α〈u, v〉 + α〈v, u〉 + 〈v, v〉
=

〈v, u〉 · 〈u, v〉
〈u, u〉2 〈u, u〉 − 〈v, u〉

〈u, u〉 〈u, v〉 − 〈u, v〉
〈u, u〉 〈v, u〉 + 〈v, v〉

= −|〈u, v〉|2
〈u, u〉 + 〈v, v〉.

Rearranging this we arrive at the Cauchy–Schwarz inequality.
(b) The triangle inequality is proved using Cauchy–Schwarz:

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + 〈u, v〉 + 〈v, u〉 + ‖v‖2

= ‖u‖2 + 2 Re 〈u, v〉 + ‖v‖2 ≤ ‖u‖2 + 2|〈u, v〉| + ‖v‖2

≤ ‖u‖2 + 2‖u‖ ‖v‖ + ‖v‖2 =
(‖u‖ + ‖v‖)2.

Since both ‖u + v‖ and ‖u‖ + ‖v‖ are non-negative numbers, the triangle
inequality follows. ��
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Two vectors u and v are called orthogonal with respect to the chosen
inner product, if 〈u, v〉 = 0. A vector u is normed if ‖u‖ = 1; and an
orthonormal , or simply ON, set of vectors consists of normed and pairwise
orthogonal vectors.

Example 5.5. C(T) consists of the continuous complex-valued functions
on the unit circle T, and let the inner product be defined by

〈f, g〉 =
1
2π

∫
T
f(x) g(x) dx.

Let ϕk(x) = eikx, k ∈ Z. Then we have

〈ϕm, ϕn〉 =
1
2π

∫
T
eimx e−inx dx =

1
2π

∫ π

−π

ei(m−n)x dx =
{

0, m �= n
1, m = n

The sequence {ϕk}∞
k=−∞ is thus an orthonormal set in C(T). ��

Just as in the case of real spaces one can show that a set of non-zero,
pairwise orthogonal vectors is linearly independent. In a space with finite
(complex) dimension N , an orthonormal set can thus contain at most N
vectors. On the other hand, there always exists such a set. Starting from
an arbitrary basis in the space, one can use the Gram–Schmidt process to
construct an ON basis, working precisely as in the real case.

Example 5.6. As a reminder of the Gram–Schmidt process, we construct an
orthonormal basis in the space of polynomials of degree at most 2, with the inner
product

〈f, g〉 =
∫ 1

0

f(x)g(x)(1 + x) dx.

The “raw material” consists of the vectors u0, u1, u2 defined by

u0(x) = 1, u1(x) = x, u2(x) = x2.

As a tentative first vector in the new basis we choose v0 = u0, which is to be
adjusted to have unit norm. Since

‖v0‖2 = 〈v0, v0〉 =
∫ 1

0

1 · 1 · (1 + x) dx = 3
2 ,

the normed vector is described by

ϕ0(x) =
v0(x)
‖v0‖ =

√
2
3 .

Next we adjust u1 so that it is orthogonal to ϕ0. This is done by subtracting a
certain multiple of ϕ0 according to the following recipe:

v1 = u1 − 〈u1, ϕ0〉ϕ0.

The inner product is

〈u1, ϕ0〉 =
∫ 1

0

x ·
√

2
3 (1 + x) dx = 5

6

√
2
3 .
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Thus,

v1(x) = x− 5
6

√
2
3 ·
√

2
3 = x− 5

9 .

The squared norm of v1 is

‖v1‖2 = 〈v1, v1〉 =
∫ 1

0

(
x− 5

9

)2
(x+ 1) dx = 13

108 .

Thus the second normed basis vector is

ϕ1(x) =
x− 5

9√
13
108

= 6
√

3
13

(
x− 5

9 ).

The third vector is obtained by the following steps:

v2 = u2 − 〈u2, ϕ0〉ϕ0 − 〈u2, ϕ1〉ϕ1, 〈u2, ϕ0〉 = 7
36

√
6, 〈u2, ϕ1〉 = 34

585

√
39,

v2 = x2 − 68
65 x+ 5

26 , 〈v2, v2〉 = 21
2600 ,

ϕ2 = 10
21

√
546

(
x2 − 68

65 x+ 5
26

)
.

It is obvious that the computations quickly grow very involved, not least be-
cause the norms turn out to be rather hideous numbers. Mostly, therefore, one is
satisfied with just orthogonal sets, instead of orthonormal sets. ��

There is also the following theorem, which should be proved by the
reader:

Theorem 5.2 If ϕ1, ϕ2, . . . , ϕN is an ON basis in an N -dimensional inner

product space V , then every u ∈ V can be written as u =
N∑

j=1
〈u, ϕj〉ϕj, and

furthermore one has

‖u‖2 =
N∑

j=1

|〈u, ϕj〉|2 (theorem of Pythagoras).

For the inner product of two vectors one also has the following formula:

〈u, v〉 =
N∑

j=1

〈u, ϕj〉〈v, ϕj〉.

Exercises
5.1 Let u = (1 − 2i, 3, 2 + i) and v = (i, 1 − 3i, 0) be vectors in C 3. Compute

‖u‖, ‖v‖, and 〈u,v〉.
5.2 Let C(−1, 1) be as in Example 5.3 above, and let f and g ∈ C(−1, 1) be

described by f(x) = x+ 2, g(x) = ix+ x2. Compute 〈f, g〉.
5.3 Are the functions 1, x, x2, . . . , xn, sinx, cosx, ex linearly independent,

considered as vectors in C(0, 1) ? (n is some positive integer.)
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5.4 Apply the Gram–Schmidt orthogonalization procedure to construct an or-
thogonal basis in the subspace of C(0, 1) spanned by the polynomials 1, x
and x2.

5.5 Orthogonalize the following sets of vectors:
(a) the vectors (1, 2, 3), (3, 1, 4) and (2, 1, 1) in C 3;
(b) the functions 1, x, x2 i C(−1, 1);
(c) the functions e−x, xe−x, x2e−x in C(0,∞).

5.6 Prove the following formula for the inner product:

4〈u, v〉 = ‖u+ v‖2 + i‖u+ iv‖2 − ‖u− v‖2 − i‖u− iv‖2.

5.2 Orthogonal projections

The reader should recall the following fact from real linear algebra: Let
{ϕk}N

k=1 be an orthonormal set in the space V , and let u be an arbitrary
vector in V . The orthogonal projection of u on to the subspace of V spanned
by {ϕk}N

k=1 is the vector

PN (u) = 〈u, ϕ1〉ϕ1 + 〈u, ϕ2〉ϕ2 + · · · + 〈u, ϕN 〉ϕN =
N∑

k=1

〈u, ϕk〉ϕk.

This definition works just as well in the complex case, and the projection
thus defined has also the least-squares property described in the following
theorem.

Theorem 5.3 (Least squares approximation) Let {ϕk}N
k=1 be an or-

thonormal set in an inner product space V and let u be a vector in V .
Among all the linear combinations Φ =

∑N
k=1 γkϕk, the one that minimizes

the value of ‖u−Φ‖ is the one with the coefficients γk equal to 〈u, ϕk〉, i.e.,
Φ = PN (u).

Proof. For brevity, we write 〈u, ϕk〉 = ck. We get

‖u− Φ‖2 = 〈u− Φ, u− Φ〉 =

〈
u−

N∑
k=1

γkϕk, u−
N∑

k=1

γkϕk

〉

= 〈u, u〉 −
〈
u,

N∑
k=1

γkϕk

〉
−
〈

N∑
k=1

γkϕk, u

〉
+

〈
N∑

k=1

γkϕk,

N∑
k=1

γkϕk

〉

= 〈u, u〉 −
N∑

k=1

γk〈u, ϕk〉 −
N∑

k=1

γk〈ϕk, u〉 +
N∑

k=1

N∑
j=1

γkγj〈ϕk, ϕj〉

= 〈u, u〉 −
N∑

k=1

(γkck + γkck) +
N∑

k=1

γkγk
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= ‖u‖2 +
N∑

k=1

(γkγk − γkck − γkck + ckck) −
N∑

k=1

|ck|2

= ‖u‖2 +
N∑

k=1

|γk − ck|2 −
N∑

k=1

|ck|2.

In the last expression, we note that u is given in the formulation of the
theorem; also, since the ϕk are given, the ck = 〈u, ϕk〉 are given. But we
have the γk at our disposal, to minimize the value of the expression. In
order to make it as small as possible, we choose the numbers γk to be equal
to ck, which proves the assertion. ��

A couple of consequences of the proof are worth emphasizing. When a
vector u is approximated by the orthogonal projection PN (u), then the
“error” u − PN (u) is called the residual. An important fact is that the
residual is orthogonal to the projection. As for the “size” of the residual,
we have the identity (“Pythagoras’ theorem”)

‖u− PN (u)‖2 = ‖u‖2 − ‖PN (u)‖2.

If this is written out in full, it becomes

∥∥∥u−
N∑

k=1

〈u, ϕk〉ϕk

∥∥∥2
= ‖u‖2 −

N∑
k=1

|〈u, ϕk〉|2. (5.1)

Since the left-hand member of these equations is non-negative, we also have

‖PN (u)‖2 ≤ ‖u‖2, or ‖PN (u)‖ ≤ ‖u‖,

or, indeed,
N∑

k=1

|〈u, ϕk〉|2 ≤ ‖u‖2.

If the ON set contains infinitely many vectors, we can let N → ∞ and get
what is known as the Bessel inequality:

∞∑
k=1

|〈u, ϕk〉|2 ≤ ‖u‖2.

Let us now concentrate on the case when the space V has infinite dimen-
sion. A system {ϕj}∞

j=1 in V is said to be complete in V if, for every u ∈ V

and every ε > 0, there exists a linear combination
∑N

j=1 ajϕj such that∥∥∥∥∥∥u−
N∑

j=1

ajϕj

∥∥∥∥∥∥ < ε.
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This means that every u in V can be approximated arbitrarily closely, in the
sense of the norm, by linear combinations of the elements in the set {ϕj}.
The theorem above shows that the best approximation must be given by
the “infinite projection”

∑∞
j=1〈u, ϕj〉ϕj of u. A condition that is equivalent

to completeness is given by the following theorem:

Theorem 5.4 The ON system {ϕj}∞
j=1 is complete in V if and only if for

every u ∈ V it holds that

‖u‖2 =
∞∑

j=1

|〈u, ϕj〉|2

(the Parseval formula or the completeness relation).

The proof follows from (5.1).
As a corollary we also have the following:

Theorem 5.5 (Expansion theorem) If the ON system {ϕj}∞
j=1 is com-

plete in V , then every u ∈ V can be written as u =
∑∞

j=1〈u, ϕj〉ϕj, where

the series converges in the sense of the norm (i.e.,
∥∥∥u−∑N

j=1〈u, ϕj〉ϕj

∥∥∥ →
0 as N → ∞).

Furthermore, one has the following theorem, which generalizes the usual
formula (in finite dimension) for computing the inner product in an ON
basis:

Theorem 5.6 If the ON system {ϕj}∞
j=1 is complete in V , then

〈u, v〉 =
∞∑

j=1

〈u, ϕj〉〈v, ϕj〉

for all u, v ∈ V .

Proof. Let Pn(u) be the projection of u on to the subspace spanned by the
n first ϕ’s:

Pn(u) =
n∑

j=1

〈u, ϕj〉ϕj .

By Theorem 5.2 we have

〈Pn(u), Pn(v)〉 =
n∑

j=1

〈u, ϕj〉〈v, ϕj〉.

Using the triangle and Cauchy–Schwarz inequalities, we get

|〈u, v〉 − 〈Pn(u), Pn(v)〉|
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= |〈u, v〉 − 〈u, Pn(v)〉 + 〈u, Pn(v)〉 − 〈Pn(u), Pn(v)〉|
≤ |〈u, v − Pn(v)〉| + |〈u− Pn(u), Pn(v)〉|
≤ ‖u‖ ‖v − Pn(v)‖ + ‖u− Pn(u)‖ ‖Pn(v)‖
≤ ‖u‖ ‖v − Pn(v)‖ + ‖u− Pn(u)‖ ‖v‖.

In the last part we also used Bessel’s inequality. Now we know, because of
completeness, that ‖v − Pn(v)‖ → 0 as n → ∞, and similarly for u, which
implies that the final member of the estimate tends to zero. Then also the
first member must tend to zero, and so

〈u, v〉 = lim
n→∞〈Pn(u), Pn(v)〉 =

∞∑
j=1

〈u, ϕj〉〈v, ϕj〉,

and the proof is complete. ��
Remark. Using an estimate of the same kind as in the proof, one can see that
〈u, v〉 is a continuous function of u and v in the sense that if un → u and vn → v
(in the sense of the norm), then 〈un, vn〉 → 〈u, v〉. ��

In the interest of simplicity, we have throughout this section been working
with orthonormal systems. In practice one is often satisfied with using
orthogonal systems, since the normalizing factors can be quite unwieldy
numbers. In such a case, our formulae have to be somewhat modified.

The projection of u on to an orthogonal set of vectors {ϕj}N
j=1 is given

by

PN (u) =
N∑

j=1

〈u, ϕj〉
〈ϕj , ϕj〉 ϕj =

N∑
j=1

〈u, ϕj〉
‖ϕj‖2 ϕj .

The other formulae must be adjusted in the same vein: every ϕj that occurs
has to be divided by its norm, and this holds whether ϕj is “free” or is part
of an inner product. For example, the Parseval formula takes the form

‖u‖2 =
∞∑

j=1

|〈u, ϕj〉|2
‖ϕj‖2 ,

and the formula for inner products is

〈u, v〉 =
∞∑

j=1

〈u, ϕj〉〈v, ϕj〉
‖ϕj‖2 .

Exercises
5.7 Determine the polynomial p of degree at most 1 that minimizes∫ 2

0
|ex −p(x)|2 dx. (Hint: first find an orthogonal basis for a suitably chosen

space of polynomials of degree ≤ 1.)
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5.8 Determine the constants a and b in order to minimize the integral∫ 1

−1
|ax+ bx2 − sinπx|2 dx.

5.9 Find the polynomial p(x) of degree at most 2 that minimizes the integral∫ π/2

−π/2

| sinx− p(x)|2 cosx dx.

5.3 Some examples

We have already seen the finite-dimensional inner-product spaces Cn. A
generalization of these spaces can be constructed in the following manner.
Let M be an arbitrary set (with finitely or infinitely many elements). Let
l2(M) be the set of all functions a : M → C such that∑

x∈M

|a(x)|2 < ∞. (5.2)

The fact that this defines a linear space can be proved in the following way.
Because of the inequality

|pq| ≤ 1
2 (|p|2 + |q|2), (5.3)

that holds for all complex numbers p and q, the following estimate is true:

|λa+ µb|2 = (λa+ µb)(λa+ µb) = |λ|2|a|2 + |µ|2|b|2 + 2Re {λµab}
≤ |λ|2|a|2 + |µ|2|b|2 + 2|λa||µb| ≤ 2

(|λ|2|a|2 + |µ|2|b|2).
Using this, and the comparison test for positive series, one finds that if∑ |a(x)|2 and

∑ |b(x)|2 are both convergent, then
∑ |λa(x) + µb(x)|2 is

also convergent. This means that linear combinations of elements in l2(M)
also belong to l2(M). Using (5.3) we also see that if both a and b are
members of l2(M), then the series∑

x∈M

a(x) b(x)

will converge absolutely. This expression can be taken as the definition of
an inner product 〈a, b〉. The square of the norm of a is then given by the
left member of (5.2).

If, as an example, we choose M = N = {0, 1, 2, . . .}, we can write an

instead of a(n) and get the inner product
∑∞

n=0 an bn. This certainly looks
like a natural generalization of Cn.

When we gave examples of inner products in function spaces in Sec. 5.1,
we assumed, for convenience, that all the functions were continuous. It is,
however, often desirable to be able to work with more general functions.
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One such class is the class of Riemann-integrable functions, which consists
of functions that can be approximated in a certain way by so-called step
functions; the class includes, for example, functions with a finite number of
jumps. In order to get a really efficient theory, one should actually go still
further and allow measurable functions in the sense of Lebesgue. However,
this is a rather complicated step, and in this text we shall confine ourselves
to more “ordinary” functions. At one point (p. 121), we shall, however,
mention how the Lebesgue functions obtrude upon us.

In what follows, it will often be of no interest whether an interval contains
its endpoints or not. For simplicity, we shall write (a, b), which can be
interpreted at will to mean either [a, b] or [a, b[, etc.

Let I be an interval, bounded or unbounded, and let w : I → ]0,∞[ be a
positive, continuous, real-valued function on I. Let finally p be a number
≥ 1. The set Lp(I, w) is defined to consist of all (Lebesgue-measurable)
functions f such that ∫

I

|f(x)|p w(x) dx < ∞.

(The integral may be improper in one way or another, without this being
indicated when we write it.) It can be proved that this defines a linear
space: if f and g belong to it, then the same goes for all linear combinations
αf + βg. The proof is very simple in the case p = 1:∫

I

|αf + βg|w dx ≤ |α|
∫

I

|f |w dx+ |β|
∫

I

|g|w dx.

For p = 2, it can be done in a way that is analogous to what was done
for l2(M) above (integrals replacing sums). For other values of p it is more
difficult, and we skip it here.

The space Lp(I, w) is called the Lebesgue space with weight function w
and exponent p. If the weight is identically 1 on all of I, one simply writes
Lp(I). For f ∈ Lp(I, w) one can define a norm

‖f‖p,w =
(∫

I

|f(x)|p w(x) dx
)1/p

,

that can be used to introduce a notion of distance ‖f − g‖p,w between two
functions f and g. This, in turn, gives rise to a notion of convergence: we say
that a sequence of functions fn converges to g in Lp(I, w) if ‖fn−g‖p,w → 0
as n → ∞.

In order for this to make sense, it is necessary to modify slightly what is
meant by equality between functions. Two functions f and g are considered
to be equal if their mutual distance is zero; explicitly this means that∫

I

|f(x) − g(x)|p w(x) dx = 0.
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This does not necessarily imply that f(x) = g(x) for all x, it means only
that they are equal “almost everywhere”: the set where they differ is a
so-called zero set (see the text preceding Theorem 4.6 on page 89). When
working with “nice” functions, which are continuous except for a finite
number of jumps, this means that the function values are actually equal
except possibly for at a finite number of points.

We shall almost exclusively consider the case p = 2. It can be proved
that only in this case can there exist an inner product 〈f, g〉 in Lp(I, w)
such that the norm is recovered through the formula ‖f‖2 = 〈f, f〉. This
inner product must be defined by

〈f, g〉 =
∫

I

f(x) g(x)w(x) dx.

Let us now look at a few important cases.

Example 5.7. Let I = (−π, π) or, equivalently, interpret I as the unit
circle T, and take w(x) = 1. The inner product here is almost the same as in
Example 5.5, page 108. There we showed that the functions ϕn(x) = einx

are orthogonal in C(T), and this holds equally well in L2(T). Because
the factor 1/(2π) is now missing in the inner product, they are no longer
normed, however, but the norm of each ϕn is now

√
2π.

The formula for projections on to an orthogonal set of vectors has the
form

PN (f) =
N∑

n=1

〈f, ϕn〉
〈ϕn, ϕn〉 ϕn =

N∑
n=1

〈f, ϕn〉
‖ϕn‖2 ϕn =

N∑
n=1

cnϕn,

where

cn =
〈f, ϕn〉
‖ϕn‖2 =

1
2π

∫
T
f(x) einx dx =

1
2π

∫
T
f(x) e−inx dx.

We recognize our good old Fourier coefficients. ��
Example 5.8. In the same space as in the preceding example we study the
system consisting of firstly all the functions ϕn(x) = cosnx, n = 0, 1, 2, . . .,
secondly all the functions ψn(x) = sinnx, n = 1, 2, 3, . . .. Using some suit-
able trigonometric formula (or Euler’s formulae), it is easily proved that all
these functions are mutually orthogonal, and furthermore 〈ϕ0, ϕ0〉 = 2π,
while all the other members of the system have the square of the norm
equal to π. Here, too, the coefficients in the orthogonal projections turn
out to be the well-known classical Fourier coefficients. ��
Example 5.9. In the space L2(0, π), the functions ϕn(x) = cosnx,
n = 0, 1, 2, . . . form an orthogonal set, and ψn(x) = sinnx, n = 1, 2, 3, . . .
another orthogonal set (check it!). However, as a rule, a ϕm is not orthog-
onal to a ψn. ��
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Examples 5.7 and 5.8 provide a new viewpoint for considering Fourier
series. Such series can be regarded as representations with respect to an
orthogonal system. The general results in Sections 5.1–2 concerning such
representations are thus valid for our Fourier expansions. As an example,
we formulate what Theorem 5.3 purports in the case of “real” Fourier series.

Theorem 5.7 Let f ∈ L2(T) and let N be a fixed non-negative integer.
Among all trigonometric polynomials of the form

PN (x) = 1
2α0 +

N∑
n=1

(αn cosnx+ βn sinnx),

the polynomial that minimizes the value of the integral∫
T

|f(x) − PN (x)|2 dx

is the one where the coefficients are the usual Fourier coefficients of f , viz.,
(using the ordinary notation) where αn = an and βn = bn.

We have also, for example, Bessel’s inequality, which can be written, in
complex and real guise, respectively, as

∑
n∈Z

|cn|2 ≤ 1
2π

∫
T

|f(x)|2 dx, 1
2 |a0|2+

∞∑
n=1

(|an|2+|bn|2) ≤ 1
π

∫
T

|f(x)|2 dx.

The question of completeness will be addressed in the next section.

Remark. At this point, the reader will have been confronted by a number of
different notions of convergence for sequences of functions. There is pointwise
convergence and uniform convergence, and now we have also various versions of
Lp convergence. It is natural to ask whether there are any sensible connections
between all these notions.

It is trivial that uniform convergence implies pointwise convergence. If one
works on a finite interval (a, b) with weight 1, it is also easy to see that uni-
form convergence implies convergence in Lp(a, b). Indeed, suppose that fn → f
uniformly on (a, b). Then (p ≥ 1)

‖fn − f‖p =

(∫ b

a

|fn(t) − f(t)|p dt
)1/p

≤
(∫ b

a

sup
(a,b)

|fn(t) − f(t)|p dt
)1/p

= sup
(a,b)

|fn(t) − f(t)|
(∫ b

a

dt

)1/p

= C sup
(a,b)

|fn(t) − f(t)| → 0

as n → ∞.
In the converse direction, Lp convergence does not even imply pointwise con-

vergence. This is shown by the following example; for simplicity it is formulated
in L1(0, 1), but the same functions can be used to prove the same thing in all
Lp(0, 1), and they are easily rescaled to suit other intervals.



118 5. L2 Theory
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FIGURE 5.1.

Let f1(t) = 1 on the interval I = (0, 1). Then ‖f1‖1 = 1. Let then f2 be 1
on (0, 1

2 ) and 0 on the rest of I; f3 is set to 1 on ( 1
2 ,

5
6 ) and 0 otherwise; f4 is

1 on the intervals ( 5
6 , 1) and (0, 1

12 ), and 0 otherwise. In general: fn is equal to
1 on one or two intervals with total length equal to 1/n, and, in a manner of
speaking, fn starts where fn−1 ends; and if you exceed the right-hand end of I
you put the remainder on the far left of I and start again moving to the right
(see Figure 5.1). Then it holds that ‖fn‖1 = 1/n, and so fn → 0 in the sense of
norm convergence in L1(I).

Since the series ∞∑
n=1

1
n

is divergent, in the sense that its partial sums tend to plus infinity, the “piling of
intervals” described above must run to an infinite number of “turns.” If x is an
arbitrary point in I, there will thus exist arbitrarily large values of n such that
fn(x) = 1, but also arbitrarily large values of n for which fn(x) = 0. In other
words, the sequence of numbers {fn(x)}∞

n=1 has no limit at all, which means that
the sequence of functions {fn} does not converge pointwise anywhere.

The functions in this example are close to zero “in the mean”: when n is large,
fn(x) is equal to zero on most of the interval. For this reason, Lp convergence is
often called convergence in the mean, more precisely in the Lp mean. ��

Exercises
5.10 Find the three first orthonormal polynomials with respect to the inner

product

〈f, g〉 =
∫ 1

0

f(x) g(x)x dx,

by orthogonalizing the polynomials 1, x, x2.

5.11 Solve the same problem as the preceding, when

〈f, g〉 =
∫
R

f(x) g(x) e−x2
dx.

5.12 Determine the polynomial of degree ≤ 2, that is the best approximation to
f(x) =

√
|x| in the space L2(I, w), where I = [−1, 1], w(x) = 1.

5.13 Determine the complex numbers cj (j = 0, 1, 2, 3) in order to make the
integral

∫ π

0
|c0 + c1 cosx + c2 cos 2x + c3 cos 3x − cos4 x|2 dx as small as

possible.
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FIGURE 5.2.

5.4 The Fourier system is complete

We are now prepared to prove the following result, which, in a way, crowns
the classical Fourier theory.

Theorem 5.8 The two orthogonal systems {eint}n∈Z and {cosnt, n ≥
0; sinnt, n ≥ 1} are each complete in L2(T).

Proof. We want to prove that if f ∈ L2(T), then f can be approximated
arbitrarily well by linear combinations of elements from one of the systems.
Since the elements of one system are simple linear combinations of elements
from the other system, it does not matter which of the systems we consider.
Our proof will be incomplete in one way: we only show that functions f
that happen to be piecewise continuous can be approximated; but this is
really just due to the fact that we have not said anything about what a
more general f might look like.

Thus we assume that f is piecewise continuous. It is then bounded on T,
so that |f(t)| ≤ M for some constant M and all t. Now let ε > 0 be given.
By the definition of the Riemann integral, there exists a step function (i.e.,
a piecewise constant function) g such that∫

T
|f(t) − g(t)| dt < ε2

2M
.

Clearly we can choose g in such a way that |g(t)| ≤ M , and then it follows
that

‖f − g‖2 =
∫
T

|f(t) − g(t)|2 dt ≤
∫
T

2M |f(t) − g(t)| dt ≤ 2M · ε2

2M
= ε2,

and so ‖f − g‖ < ε.
In the next step of the proof we round off the corners of the step function

g to obtain a C2 function h such that ‖g − h‖ < ε. At this point, the
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author appeals to the reader’s willingness to accept that this is possible
(see Figure 5.2). The function h has a Fourier series

∑
γne

int, where the
coefficients satisfy |γn| ≤ C/n2 for some C (by Theorem 4.4), which implies
that the series converges uniformly. If we take N sufficiently large, the
partial sum sN (t;h) of this series will thus satisfy

|h(t) − sN (t;h)| < ε√
2π

, t ∈ T.

From this we conclude that

‖h− sN ( · ;h)‖2 =
∫
T

|h(t) − sN (t;h)|2 dt ≤ ε2

2π
· 2π = ε2,

so that ‖h−sN ( · ;h)‖ ≤ ε. Finally, let sN be the corresponding partial sum
of the Fourier series of the function f that we started with. Because of the
Approximation theorem (Theorem 5.3), it is certainly true that ‖f−sN‖ ≤
‖f − sN ( · ;h)‖. Time is now ripe for combining all our approximations in
this manner:

‖f − sN‖ ≤ ‖f − sN ( · ;h)‖ = ‖f − g + g − h+ h− sN ( · ;h)‖
≤ ‖f − g‖ + ‖g − h‖ + ‖h− sN ( · ;h)‖ < ε+ ε+ ε = 3ε.

This means that f can be approximated to within 3ε by a certain linear
combination of the functions eint, and since ε can be chosen arbitrarily
small we have proved the theorem. ��

As a consequence we now have the Parseval formula and the formula for
the inner product (which is also often called Parseval’s formula, sometimes
qualified as the polarized Parseval formula). For the “complex” system these
formulae take the form

1
2π

∫
T

|f(t)|2 dt =
∑
n∈Z

|cn|2, 1
2π

∫
T
f(t) g(t) dt =

∑
n∈Z

cn dn,

and for the “real” system,

1
π

∫
T

|f(t)|2 dt= 1
2 |a0|2 +

∞∑
n=1

(|an|2 + |bn|2),

1
π

∫
T
f(t) g(t) dt= 1

2a0α0 +
∞∑

n=1

(anαn + bnβn).

(The reader will have to figure out independently how the letters on the
right correspond to the functions involved.)

Example 5.10. In Sec. 4.1, we saw that the odd function f with period
2π that is described by f(t) = (π − t)/2 for 0 < t < π has Fourier series
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1 (sinnt)/n. Parseval’s formula looks like this

∞∑
n=1

1
n2 =

∞∑
n=1

b2n =
1
π

∫
T

(f(t))2 dt =
2
π

∫ π

0

(π − t)2

4
dt =

1
2π

[
(π − t)3

−3

]π

0

=
1

−6π
(0 − π3) =

π2

6
.

This provides yet another way of finding the value of ζ(2). ��
Example 5.11. For f(t) = t2 on |t| ≤ π we had a0 = 2π2/3, an =
4(−1)n/n2 for n ≥ 1 and all bn = 0. Parseval’s formula becomes

1
π

∫ π

−π

t4 dt = 1
2

(
2π2

3

)2
+ 16

∞∑
n=1

1
n4 ,

which can be solved for ζ(4) = π4/90. ��
Suppose that f is defined only on the interval (0, π). Then f can be

extended to an odd function on (−π, π) by defining f(t) = −f(−t) for
−π < t < 0 (if f(0) happens to be defined already, this value may have
to be changed to 0, but changing the value of a function at one point does
not matter when dealing with Fourier series). The extended function can
be expanded in a series containing only sine terms. Since ordinary Fourier
series present a complete system in L2(−π, π), f can be approximated as
closely as we want in this space by partial sums of this series. But then f
is also approximated in L2(0, π) by the same partial sums (for the square
of the norm in this space is exactly one half of the norm in L2(−π, π) for
odd functions, and, for that matter, even functions). We interpret this to
say that the system ψn(t) = sinnt, n ≥ 1, is a complete orthogonal system
on the interval (0, π) (the orthogonality was pointed out in Example 5.9).

In an analogous way, a function on (0, π) can be extended to an even
function and be approximated by the partial sums of a cosine series. This
shows that the orthogonal system ϕn(t) = cosnt, n ≥ 0, is also complete
on (0, π).

We see that a function on (0, π) can be represented by either a sine series
or a cosine series, whichever is suitable, and both these series converge
to the function in the norm of L2(0, π). This turns out to be useful in
applications to problems for differential equations.

Remark. The reader may now be asking the following question: suppose that
{cn}n∈Z is a sequence of numbers such that

∑ |cn|2 converges. Does there then
exist some f ∈ L2(T) having these numbers as its Fourier coefficients? The
answer is yes — provided we admit functions that are Lebesgue-measurable but
not necessarily Riemann-integrable. If we do this, we actually have a bijective
mapping between L2(T) and the space l2(Z), so that f ∈ L2(T) corresponds to
the sequence of its Fourier coefficients, considered as an element of l2(Z). ��

As an application of Parseval we can prove the following nice theorem.
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Theorem 5.9 Let f ∈ L2(T). If the Fourier series of f is integrated term
by term over a finite interval (a, b), the series obtained is convergent with
the sum

∫ b

a
f(t) dt.

Note that we do not assume that the Fourier series of f is convergent in
itself!
Proof. Let us first assume that the interval (a, b) is contained within a
period, for instance, −π ≤ a < b ≤ π. We define a function g on T by
letting g(t) = 1 for a < t < b and 0 otherwise. We compute the Fourier
coefficients of g:

ĝ(n) =
1
2π

∫ b

a

e−int dt =
[
e−int

−2πin

]b

a

=
i

2πn
(
e−inb − e−ina

)
, n �= 0;

ĝ(0) =
1
2π

∫ b

a

1 dt =
b− a

2π
.

If now f ∼ ∑
cn e

int, the polarized Parseval relation takes the form

1
2π

∫
T
f(t) g(t) dt=

∑
n 	=0

cn
i

2πn
(
e−inb − e−ina

)
+ c0

b− a

2π

=
1
2π

∑
n 	=0

cn
einb − eina

in
+ c0(b− a)

 .

But the integral on the left is nothing but
∫ b

a
f(t) dt divided by 2π, and the

terms in the sum on the right are just what you get if you integrate cn eint

from a to b. After multiplication by 2π we have the assertion for this case.
If the interval (a, b) is longer than 2π, it can be subdivided into pieces,

each of them shorter than 2π, and then we can use the case just proved
on each piece. When the results are added, the contributions from the
subdivision points will cancel (convergent series can be added termwise!),
and the result follows also in the general case. ��

If we choose a = 0 and let the upper limit of integration be variable
and equal to t, the theorem gives a formula for the primitive functions
(antiderivatives) of f :

F (t) =
∫ t

0
f(u) du+K =

∑
n 	=0

cn
eint − 1
in

+ c0t+K,

where K is some constant. We shall rewrite this constant; first notice that,
by the Cauchy–Schwarz inequality for sums,

∑
n 	=0

|cn|
|n| ≤

(∑
n 	=0

|cn|2
)1/2(∑

n 	=0

1
n2

)1/2

≤
(‖f‖

2π

)1/2(
π2

3

)1/2

< ∞,
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which means that the series
∑

n 	=0 cn/(in) converges absolutely with sum
equal to some number K1. Write C = K − K1 and use the fact that
convergent series can be added term by term, and we find that

F (t) =
∑
n 	=0

cn
in
eint + c0t+ C.

This is the simplest form of the “formally” integrated Fourier series of
f , and we have thus shown that this integration is permitted and indeed
results in a series convergent for all t.

In general, the integrated series is no longer a Fourier series; this happens
only if c0 = 0, i.e., if f has mean value 0.

Exercises

5.14 Using the result of Exercise 4.13 on page 84, find the value of the sum

∞∑
n=1

1
(4n2 − 1)2

.

5.15 We reconnect to Exercise 4.22 on page 90. By studying the series estab-
lished there on the interval (0, π/2), prove the formula

∞∑
k=0

(−1)k

(2k + 1)((2k + 1)2 − α2)
=

π

4α2

(
1

cos 1
2απ

− 1

)
, α /∈ Z.

5.16 Let f be a continuous real-valued function on 0 < x < π such that f(0) =
f(π) = 0 and f ′ ∈ L2(0, π).
(a) Prove that

∫ π

0
(f(x))2 dx ≤ ∫ π

0
(f ′(x))2 dx.

(b) For what functions does equality hold?
(Hint: extend f to an odd function on (−π, π).)

5.5 Legendre polynomials

A number of “classical” ON systems in various L2 spaces consist of poly-
nomials. Polynomials are very practical functions because their values al-
ways can be computed exactly using elementary operations (addition and
multiplication), which makes them immediately accessible to computers.
If you want a value of a function such as ex or cosx, the effective calcu-
lation always has to be performed using some sort of approximation, and
this approximation often consists of some polynomial (or a combination of
polynomials).

The success of such approximations depends fundamentally on the va-
lidity of the following theorem.
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Theorem 5.10 (The Weierstrass approximation theorem) An arbi-
trary continuous function f on a compact interval K can be approximated
uniformly arbitrarily well by polynomials.

In greater detail, the assertion is the following: If K is compact, f :
K → C is continuous and ε is any positive number, then there exists a
polynomial P (x) such that |f(x) − P (x)| < ε for all x ∈ K.

A proof can be conducted along the following lines (which are best un-
derstood by a reader who is familiar with slightly more than the barest
elements about power series expansions of analytic functions): By a linear
change of variable, the interval can be assumed to be, say, K = [0, π]. On
this interval, f can be represented by a cosine series (which involves, if you
like, considering f to be extended to an even function). The Fejér sums σn

of this series converge uniformly to f , according to the remark following
Theorem 4.1. We can then choose n to make supK |f(x) − σn(x)| < ε/2.
The function σn is a finite linear combination of functions of the form
cos kx. These can be developed in Maclaurin series, each converging to
its cosine function uniformly on every compact set, in particular on K.
Take partial sums of these series and construct a polynomial P , such that
supK |σn(x) − P (x)| < ε/2. Using the triangle inequality one sees that P
is a polynomial with the required property.

Now we make things concrete. Let the interval be K = [−1, 1], so that
we live in the space L2(−1, 1), where the inner product is given by

〈f, g〉 =
∫ 1

−1
f(x) g(x) dx.

If we orthogonalize the polynomials 1, x, x2, . . . , according to the Gram–
Schmidt procedure with respect to this inner product, the result is a se-
quence {Pn} of polynomials of degree 0, 1, 2, . . .. They are traditionally
scaled by the condition Pn(1) = 1. The polynomials obtained are called
Legendre polynomials. The first few Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), P3(x) = 1

2 (5x3 − 3x).

We notice a few simple facts that are easily seen to be universally valid.
The polynomial Pn has degree exactly n; for odd n it contains only odd
powers of x and for even n only even powers of x. An arbitrary polynomial
p(x) of degree n can, in a unique way, be written as a linear combination
of P0, . . . , Pn, with the coefficient in front of Pn different from zero. We
illustrate this with the example p(x) = x2 + 3x:

x2 + 3x = 2
3 (P2(x) + 1

2 ) + 3P1(x) = 2
3P2(x) + 3P1(x) + 1

3P0(x).

We saw in Sec. 5.3 that uniform convergence implies L2-convergence on
bounded intervals. By Theorem 5.10, continuous functions can be uniformly
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approximated by polynomials; these can be rewritten as linear combina-
tions of Legendre polynomials, and thus a continuous function on [−1, 1]
can be approximated arbitrarily well by such expressions in the sense of
L2. Just as in the proof of Theorem 5.8 it follows that the Legendre poly-
nomials make up a complete orthogonal system in L2(−1, 1). For historical
reasons, they are not normed; instead one has ‖Pn‖2 = 2/(2n + 1) (see
Exercise 5.17).

The following so-called Rodrigues formula holds for the Legendre poly-
nomials:

Pn(x) =
1

2nn!
Dn

(
(x2 − 1)n

)
. (5.4)

Example 5.12. Find the polynomial p(x) of degree at most 4 that mini-
mizes the value of ∫ 1

−1
| sinπx− p(x)|2 dx.

Solution. By the general theory, the required polynomial can be obtained
as the orthogonal projection of f(x) = sinπx onto the first five Legendre
polynomials:

p(x) =
4∑

k=0

〈f, Pk〉
〈Pk, Pk〉 Pk(x).

Since f is an odd function, its inner products with even functions are zero.
Thus the sum reduces to just two terms:

p(x) =
〈f, P1〉
〈P1, P1〉 P1(x) +

〈f, P3〉
〈P3, P3〉 P3(x).

The denominators are taken from a table, 〈Pk, Pk〉 = 2/(2k + 1), and the
numerators are computed (taking advantage of symmetries):

〈f, P1〉 =
∫ 1

−1
(sinπx) · x dx = 2

∫ 1

0
x sinπx dx =

2
π
,

〈f, P3〉 = 2
∫ 1

0

1
2 (5x3 − 3x) sinπx dx =

2π2 − 30
π3 .

Putting everything together, we arrive at

p(x) =
315 − 15π2

2π3 x− 525 − 35π2

2π3 x3 ≈ 2.6923x− 2.8956x3.

In Figure 5.3 we can see the graphs of f and p. For comparison, we have
also included the Taylor polynomial T (x) of degree 3, that approximates
f(x) near x = 0. It is clear that T and p serve quite different purposes: T
is a very good approximation when we are close to the origin, but quite
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FIGURE 5.3. Solid line: f , dashed: p, dotted: T

worthless away from that point, whereas p is a reasonable approximation
over the whole interval. ��

We have standardized the situation in this section by choosing the inter-
val to be (−1, 1). By a simple linear change of variable everything can be
transferred to an arbitrary finite interval (a, b). Here, the polynomials Qn

make up a complete orthogonal system, if we let

Qn(x) = Pn

(
2x− (a+ b)

b− a

)
,

and the norm is given by

‖Qn‖2 =
∫ b

a

|Qn(x)|2 dx =
b− a

2n+ 1
.

When solving problems, use the formula collection in Appendix C, page
254.

Exercises
5.17 Show that the polynomials defined by (5.4) are orthogonal and that ‖Pn‖2

=
2

2n+ 1
. (Hint: write down 〈Pm, Pn〉, where m ≤ n, and, integrating by

parts, move differentiations from Pn to Pm. It is also possible to keep track
of the leading coefficients.)
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5.18 Find the best approximations with polynomials of degree at most 3, in the
sense of L2(−1, 1), to the functions (a) H(x) (the Heaviside function),
(b) 1/(1 + x2). Draw pictures!

5.19 Compare the result of Exercise 5.4, page 110, with what is said in the text
about Legendre polynomials on an interval (a, b).

5.20 Let p0(x) = 1, p1(x) = x, and define pn for n ≥ 2 by the recursion formula
(n+ 1)pn+1(x) = (2n+ 1)x pn(x) − n pn−1(x) for n = 1, 2, . . .. Prove that
pn is the same as Pn.

5.21 *Prove that u(x) = Pn(x), as defined by Rodrigues’ formula, satisfies the
differential equation

(1 − x2)u′′(x) − 2xu′(x) + n(n+ 1)u(x) = 0.

5.6 Other classical orthogonal polynomials

In this section we collect data concerning some orthogonal systems that
have been studied ever since the nineteenth century, because they occur,
for instance, in the study of problems for differential equations. Proofs
may sometimes be supplied by an interested reader; see the exercises at
the end of the section. When solving problems in the field, a handbook
containing the formulae should of course be consulted. A small collection
of such formulae is found on page 254 f.

First we consider the L2 space on the semi-infinite interval (0,∞) with
the weight function w(x) = e−x, which means that the inner product is
given by

〈f, g〉 =
∫ ∞

0
f(x) g(x) e−x dx.

The Laguerre polynomials Ln(x) can be defined by a so-called Rodrigues
formula (where D denotes differentiation with respect to x):

Ln(x) =
ex

n!
Dn

(
xn e−x

)
. (5.5)

It is not hard to see that Ln is actually a polynomial of degree n; it is
somewhat more laborious to check that 〈Lm, Ln〉 = δmn; indeed these poly-
nomials are not only orthogonal but even normed. See Exercises 5.22–23.

Next we take the interval to be the whole axis R and the weight to be
w(x) = e−x2

. Thus the inner product is

〈f, g〉 =
∫
R
f(x) g(x) e−x2

dx.

The Hermite polynomials Hn(x) can be defined by

Hn(x) = (−1)n ex2
Dn

(
e−x2)

. (5.6)
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The facts that these functions are actually polynomials of degree equal to
the index n and that they are orthogonal with respect to the considered
inner product are left to the reader in Exercises 5.24–25. The polynomials
are not normed; instead one has ‖Hn‖2 = n! 2n

√
π.

Finally, we return to a finite interval, taken to be (−1, 1), and let the
weight function be 1/

√
1 − x2:

〈f, g〉 =
∫ 1

−1
f(x) g(x)

dx√
1 − x2

.

Orthogonal polynomials are defined by the formula Tn(x) = cos(n arccosx).
They are called Chebyshev polynomials (which can be spelled in various
ways: Čebyšev, Chebyshev, Tschebyschew, Tchebycheff, and Qebyxev are
a few variants seen in the literature, the last one being (more or less)
the original). That the formula actually defines polynomials is most easily
recognized after the change of variable x = cos θ, 0 ≤ θ ≤ π, which gives
the formula Tn(cos θ) = cosnθ, and it is well known that cosnθ can be
expressed as a polynomial in cos θ. In the case n = 2, for example, one has
cos 2θ = 2 cos2 θ− 1, which means that T2(x) = 2x2 − 1. The orthogonality
is proved by making the same change of variable in the integral 〈Tm, Tn〉.
One also finds that ‖T0‖2 = π and ‖Tn‖2 = π/2 for n > 0.

It can be proved that the polynomials named after Laguerre, Hermite,
and Chebyshev actually constitute complete orthogonal systems in their
respective spaces.

We round off with a couple of examples.

Example 5.13. Find the polynomial p(x) of degree at most 2, that min-
imizes the value of the integral∫ ∞

0
|x3 − p(x)|2 e−x dx.

Solution. The norm occurring in the problem belongs together with the
Laguerre polynomials. These even happen to be orthonormal (not merely
orthogonal), which means that the wanted polynomial must be

p(x) = 〈f, L0〉L0(x) + 〈f, L1〉L1(x) + 〈f, L2〉L2(x),

where f(x) = x3. From a handbook we fetch L0(x) = 1, L1(x) = 1 − x,
L2(x) = 1−2x+ 1

2 x
2. When computing the inner products it is convenient

to notice that
∫∞
0 xn e−x dx = n!. We get

〈f, L0〉 =
∫ ∞

0
x3 e−x dx = 3! = 6,
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〈f, L1〉 =
∫ ∞

0
x3(1 − x) e−x dx = 3! − 4! = 6 − 24 = −18,

〈f, L2〉 =
∫ ∞

0
x3(1 − 2x+ 1

2 x
2) e−x dx = 3! − 2 · 4! + 1

2 · 5! = 18.

Thus, p(x) = 6L0(x)−18L1(x)+18L2(x) = 6−18(1−x)+18(1−2x+ 1
2 x

2) =
6 − 18x+ 9x2. ��
Example 5.14. Let f(x) =

√
1 − x2 for |x| ≤ 1. Find the polynomial

p(x), of degree at most 3, that minimizes the value of the integral∫ 1

−1
|f(x) − p(x)|2 dx√

1 − x2
.

Solution. This inner product belongs with the Chebyshev polynomials. Be-
cause of “odd-even” symmetry, these have the property that a polynomial
of even index contains only terms of even degree, and similarly for odd
indices. Since f is an even function and the inner product itself has “even”
symmetry, the wanted polynomial will only contain terms of even degree:

p(x) =
〈f, T0〉
〈T0, T0〉 T0(x) +

〈f, T2〉
〈T2, T2〉 T2(x).

The data required are taken from a handbook: T0(x) = 1, T2(x) = 2x2 − 1,
and the denominators are found above (and in the handbook), so all that
remains to be computed are the numerators:

〈f, T0〉 = 2
∫ 1

0

√
1 − x2 · 1 · dx√

1 − x2
= 2,

〈f, T2〉 = 2
∫ 1

0

√
1 − x2 · (2x2 − 1) · dx√

1 − x2
= 2

∫ 1

0
(2x2 − 1) dx = − 2

3 .

Substituting we get

p(x) =
2
π

· 1 − 2/3
π/2

(2x2 − 1) =
1
3π

(6 − 8x2 + 4) =
2
3π

(5 − 4x2).

��

Exercises
5.22 Show that the formula (5.5) defines a polynomial of degree n.

5.23 Show that the Laguerre polynomials are orthonormal. (Hint: the same as
for Exercise 5.17.)

5.24 Show that the formula (5.6) gives a polynomial of degree n.

5.25 Show that the Hermite polynomials are orthogonal and ‖Hn‖2 = n! 2n √
π.
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5.26 Expand ex/3 in a Laguerre series; i.e., determine the coefficients cn in the
formula

ex/3 ∼
∞∑

n=0

cnLn(x), x ≥ 0.

(The formula
∫∞
0
e−at tn dt = n!/an+1 may come in handy.)

5.27 Let f(x) = ex2
(H(x + 1) − H(x − 1)) Approximate f with a polynomial

p(x) of degree at most 3 so as to minimize the expression∫ ∞

−∞
|f(x) − p(x)|2e−x2

dx.

5.28 Let f(t) =
√

1 − t2 for |t| ≤ 1. Find a polynomial p(t) of degree at most 3
that minimizes ∫ 1

−1

|f(t) − p(t)|2 dt√
1 − t2

.

5.29 Approximate f(x) = |x| on the interval (−1, 1) with a polynomial of degree
≤ 3, first with the weight function 1 and secondly with weight 1/

√
1 − x2.

Thirdly, do the same with weight function (1−x2) (but here you’ll have to
construct your own orthogonal polynomials). Compare the approximating
polynomials obtained in the three cases. Draw pictures! Comment!

Summary of Chapter 5

In this chapter we studied vector spaces where the scalars are the complex
numbers. Practically all results from real linear algebra remain valid in this
case. The only important exception to this is the appearance of the inner
product.

A typical example of an inner product space is given by the set L2(I, w),
where I is an interval on the real axis and w is a weight function, i.e., a
function such that w(x) > 0 on I; the inner product in L2(I, w) is defined
by

〈f, g〉 =
∫

I

f(x)g(x)w(x) dx.

With the norm defined by ‖u‖ =
√〈u, u〉, a notion of distance is given by

‖u− v‖.
Theorem
In an inner product space the inequalities

|〈u, v〉| ≤ ‖u‖‖v‖, ‖u+ v‖ ≤ ‖u‖ + ‖v‖
are valid.
With respect to an inner product, one defines orthogonality and orthonor-
mal sets (or ON sets), as in the real case. Gram–Schmidt’s method can be
used to construct such sets.
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If {ϕk}N
k=1 is an ON set, the orthogonal projection of a u ∈ V on to the

subspace spanned by this set is the vector

P (u) =
N∑

k=1

〈u, ϕk〉ϕk.

Theorem
If {ϕ1, ϕ2, . . . , ϕN} is an ON basis in an N -dimensional inner product space

V , then every u ∈ V can be written as u =
N∑

j=1
〈u, ϕj〉ϕj , and furthermore

one has

‖u‖2 =
N∑

j=1

|〈u, ϕj〉|2 (theorem of Pythagoras).

For the inner product of two vectors one also has the following formula:

〈u, v〉 =
N∑

j=1

〈u, ϕj〉〈v, ϕj〉.
Theorem
Let {ϕk}N

k=1 be an orthonormal set in an inner product space V and let u
be a vector in V . Among all the linear combinations Φ =

∑N
k=1 γkϕk, the

one that minimizes the value of ‖u − Φ‖ is the orthogonal projection of u
on to the subspace spanned by the ON set, i.e., Φ = P (u). Also, it holds
that ∥∥∥∥∥u−

N∑
k=1

〈u, ϕk〉ϕk

∥∥∥∥∥
2

= ‖u‖2 −
N∑

k=1

|〈u, ϕk〉|2.

Theorem
If {ϕk}∞

k=1 is an ON set in V and u ∈ V , then

∞∑
k=1

|〈u, ϕk〉|2 ≤ ‖u‖2 (Bessel’s inequality).

If every element in V can be approximated arbitrarily closely by linear
combinations of the elements of {ϕk}, then this set is said to be complete
in V .
Theorem
The system {ϕk}∞

k=1 is complete in V if and only if for every u ∈ V it holds
that

‖u‖2 =
∞∑

k=1

|〈u, ϕk〉|2

(the Parseval formula or the completeness relation).
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Theorem
If the system {ϕk}∞

k=1 is complete in V , then every u ∈ V can be written
as u =

∑∞
k=1〈u, ϕk〉ϕk where the series converges in the sense of the norm,

i.e.,
∥∥∥u−∑N

k=1〈u, ϕk〉ϕk

∥∥∥ → 0 as N → ∞).

Theorem
If the system {ϕk}∞

k=1 is complete in V , then

〈u, v〉 =
∞∑

k=1

〈u, ϕk〉〈v, ϕk〉

for all u, v ∈ V .
If the set {ϕk} is not ON but merely orthogonal, all these formulae must
be adjusted by dividing each occurrence of a ϕk by its norm.
Theorem
The two orthogonal systems {eint}n∈Z and {cosnt, n ≥ 0; sinnt, n ≥ 1}
are each complete in L2(T).
As a consequence of this, Parseval’s identities hold for ordinary Fourier
series (with conventional notation):

1
2π

∫
T

|f(t)|2 dt =
∑
n∈Z

|cn|2, 1
2π

∫
T
f(t) g(t) dt =

∑
n∈Z

cn dn;

1
π

∫
T

|f(t)|2 dt= 1
2 |a0|2 +

∞∑
n=1

(|an|2 + |bn|2),

1
π

∫
T
f(t) g(t) dt= 1

2a0α0 +
∞∑

n=1

(anαn + bnβn).

Theorem
The Fourier series of a function f ∈ L2(T) can always be integrated term by
term over any bounded interval (a, b). The series obtained by this operation
is always convergent, regardless of the convergence of the original Fourier
series.

Theorem
(The Weierstrass approximation theorem) An arbitrary continuous func-
tion f on a compact interval K can be approximated uniformly arbitrarily
well using polynomials.

Historical notes

The insight that certain notions of geometry, such as orthogonality and projec-
tions, can be fruitfully applied to sets of functions dawned upon mathematicians
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in various situations during the nineteenth century. Round the turn of the cen-
tury, the Swedish mathematician Ivar Fredholm (1866–1927) treated certain
problems for linear integral equations in a way that made obvious analogies with
problems for systems of linear equations. Building on these ideas, the German
David Hilbert (1862–1943) and the Pole Stefan Banach (1892–1945) intro-
duced notions such as Hilbert and Banach spaces. The Lp spaces mentioned in
the present text are all Banach spaces (if one uses the Lebesgue integral in the
definitions); and in particular L2 spaces are Hilbert spaces. The latter spaces are
infinite-dimensional, complex-scalar counterparts of ordinary Euclidean spaces,
with a concept of distance that is coupled to an inner product.

Parseval’s formula, which can be seen as a counterpart of the theorem of
Pythagoras, is named after an obscure French amateur mathematician, Marc-

Antoine Parseval des Chênes (1755–1836).
Adrien-Marie Legendre (1752–1833) was an influential French mathemati-

cian who worked in many areas. Edmond Laguerre (1834-86) and Charles

Hermite (1822–1901) were also French. Hermite is most famous for his proof
that the number π is transcendental. Pafnuty Lvovich Chebyshev (1821–94)
founded the great Russian mathematical tradition that lives on to this day.

Problems for Chapter 5

5.30 Determine the Fourier series of the function

f(x) =

{
cosx, 0 < x < π,

− cosx, −π < x < 0.

Also compute the sum S =
∞∑

n=1

n2

(4n2 − 1)2
.

5.31 Let f be the even function with period 2π described by f(x) = sin 3
2 x for

0 < x < π. Using the Fourier series of f , find the values of the sums

s1 =
∞∑

n=1

1
4n2 − 9

, s2 =
∞∑

n=1

(−1)n

4n2 − 9
, s3 =

∞∑
n=1

1
(4n2 − 9)2

.

5.32 Use the result of Problem 4.46 on page 103 to compute the value of

∞∑
n=1

1
(2n− 1)6

.

5.33 Use the result of Problem 4.48 on page 103 to compute the value of ζ(8).

5.34 Find a polynomial p(x) of degree at most 1 that minimizes the integral∫ 1

0

(p(x) − x2)2(1 + x) dx.
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5.35 Let Q be the square {(x, y) : |x| ≤ π, |y| ≤ π}, and let L2(Q) denote the
set of functions f : Q → C that satisfy

∫∫
Q

|f(x, y)|2 dx dy < ∞. In this
space we define an inner product by the formula

〈f, g〉 =
∫∫

Q

f(x, y) g(x, y) dx dy.

Define the functions ϕmn ∈ L2(Q) by ϕmn(x, y) = ei(mx+ny), m,n ∈ Z.
Show that these functions are orthogonal with respect to 〈·, ·〉, and deter-
mine their norms in L2(Q).

5.36 Expand the function f(x) = e−ax in a Fourier–Hermite series:

f(x) ∼
∞∑

n=0

cnHn(x).

5.37 Expand f(x) = x3, x ≥ 0, in a Fourier–Laguerre series:

f(x) ∼
∞∑

n=0

cnLn(x).

5.38 Prove this formula for Legendre polynomials:

(2n+ 1)Pn(x) = P ′
n+1(x) − P ′

n−1(x), n ≥ 1.

5.39 A function f(x), defined on (−1, 1), can be expanded in a Fourier–Legendre
series:

f(x) ∼
∞∑

n=0

cnPn(x).

What does the Parseval formula look like for this expansion?

5.40 Determine the distance in L2(−1, 1) from sinπx to the subspace spanned
by 1, x, x2. (The distance is the norm of the residual.)

5.41 The functions 1 and
√

3 (2x − 1) constitute an orthogonal system in the
space L2(0, 1). Find the linear combination of these that is the best ap-
proximation of cosx in L2(0, 1).

5.42 f is continuous on the interval [0, 1]. Moreover,∫ 1

0

f(x)xn dx = 0, n = 0, 1, 2, . . . , .

Prove that f(x) = 0 for all x in [0, 1].

5.43 Determine the coefficients ak, k = 0, 1, 2, 3, so that the integral∫ 1

−1

|a0 + a1x+ a2x
2 + a3x

3 − x4|2 dx

is made as small as possible.
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5.44 Let f(x) = cosπx. Let V be the space of continuous functions on the
interval [−1, 1] with the inner product

〈u, v〉 =
∫ 1

−1

u(x) v(x) dx.

M is the subspace in V consisting of polynomials of degree at most 3. Find
the orthogonal projection of f onto M .

5.45 Determine the numbers a, b och c so as to make the expression∫ 1

−1

∣∣∣∣cos
πx

2
− (a+ bx+ cx2)

∣∣∣∣2 dx
as small as possible.

5.46 Let f(x) = sgnx = 2H(x)−1 for x ∈ R. Approximate f with a third-degree
polynomial in the sense of Hermite.

5.47 Let f(x) = (1 − x2)3/2. Find a polynomial P (x) of degree at most 3 that
minimizes ∫ 1

−1

|f(x) − P (x)|√
1 − x2

dx.
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6
Separation of variables

6.1 The solution of Fourier’s problem

We now return, at last, to the problem stated in Sec. 1.4: heat conduction
in a rod of finite length, with its end points kept at temperature 0. The
mathematical formulation of the problem was this:

(E) uxx = ut, 0 < x < π, t > 0;
(B) u(0, t) = u(π, t) = 0, t > 0; (6.1)
(I) u(x, 0) = f(x), 0 < x < π.

We had found the following solutions of the homogeneous sub-problem
consisting of the conditions (E) and (B):

u(x, t) =
N∑

n=1

bn e
−n2t sinnx. (6.2)

Then we asked two questions: can we allow N → ∞ in this sum? And can
the coefficients be chosen so that (I) is also satisfied? Now we can answer
these questions.

Let f(x) be the initial values for 0 < x < π. By defining f(x) = −f(−x)
for −π < x < 0 we get an odd function. It can be expanded in a Fourier
series, which is a sine series with coefficients

bn =
2
π

∫ π

0
f(x) sinnx dx.
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The coefficients are bounded, |bn| ≤ M , they even tend to zero as n → ∞.
This implies that the series

u(x, t) =
∞∑

n=1

bn e
−n2t sinnx (6.3)

converges very nicely as soon as t > 0. If a > 0, we can estimate the terms
like this for t ≥ a :

|bn e−n2t sinnx| ≤ M e−n2a ≤ M e−na = Mn,

and
∑
Mn is a convergent geometric series. The considered series then

converges uniformly in the region t ≥ a. If it is differentiated termwise
with respect to t once, or with respect to x twice, the new series are also
uniformly convergent in the same region (check this!). According to the
theorem on differentiation of series, the function u, defined by (6.3), is
differentiable to the extent needed, and since all the partial sums satisfy
(E)+(B), so will the sum.

To check that the initial values are right is somewhat more tricky. If f
happens to be so nice that

∑ |bn| < ∞, then we are home; for in this case
the series will actually converge uniformly in the closed set 0 ≤ x ≤ π,
t ≥ 0, and so the sum is continuous in this set, making

lim
t↘0

u(x, t) = u(x, 0) =
∞∑

n=1

bn sinnx = f(x)

(cf. Theorem 4.2, page 83). This holds, say, if the odd, 2π-periodic extension
of f belongs to C2; it even holds under weaker assumptions, but this is
harder to prove.

If f ∈ L2(0, π), we can alternatively study convergence in the L2 sense.
Let vt be the restriction of u to time t, i.e., vt(x) = u(x, t), 0 < x < π
(here the subscript t does not stand for a derivative). The function vt has
Fourier coefficients bn e−n2t, and by Parseval we have

‖vt‖2 =
∫ π

0
|vt(x)|2 dx =

π

2

∞∑
n=1

|bn|2 e−2n2t ≤ π

2

∞∑
n=1

|bn|2 = ‖f‖2 < ∞.

Thus, vt also belongs to L2(0, π) for each t > 0. Now we investigate what
happens if t ↘ 0:

‖f − vt‖2 =
π

2

∞∑
n=1

|bn|2(1 − e−n2t)2 = Φ(t).

The series defining Φ(t) converges uniformly on t ≥ 0 and its terms are
continuous functions of t. Thus Φ(t) is continuous on the right for t = 0,
and

lim
t↘0

Φ(t) = Φ(0) = 0,
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which means that ‖f − vt‖ → 0 as t decreases to 0. The solution u thus
has the L2-limit f , which is our way of saying that

lim
t↘0

∫ π

0
|u(x, t) − f(x)|2 dx = 0.

The terms of the series representing the solution consist of sine functions,
multiplied by exponentially decreasing factors. The higher the frequency of
the sine factor, the faster does the term containing it tend to zero – small
fluctuations in the temperature along the rod are faster to even out than
fluctuations of longer period. As time goes by, the temperature of the entire
rod will approach zero – which should be expected, considering the physical
experiment that we have attempted to describe with our model.

Remark. For t > 0, the series in (6.3) can actually be differentiated an in-
definite number of times with respect to both variables. What happens to the
term bne

−n2t sinnx when it is differentiated is that one or more factors n come
out, that sin and cos may interchange and also the sign may change. But, for
t ≥ a > 0, the resulting term can always be estimated by an expression of the
form M nP e−n2t ≤ M nP e−na = Qn, and it is easy to see that

∑
Qn < ∞

(apply the ratio test). We conclude that all functions such as (6.3) are indeed of
class C∞; they are “infinitely smooth.” ��

Exercises

6.1 Find the solution of Fourier’s problem when (a) f(x) = sin3 x for 0 < x < π;
(b) f(x) = cos 3x for 0 < x < π.

6.2 Find a solution to the following modified Fourier problem (heat conduction
in a rod of length 1; a is a positive constant):

ut =
1
a2 uxx, 0 < x < 1, t > 0;

u(0, t) = u(1, t) = 0, t > 0; u(x, 0) = f(x), 0 < x < 1.

6.2 Variations on Fourier’s theme

In this section we perform some slight variations on the theme that has just
been concluded. Later on in the chapter we shall indicate the possibility of
more far-reaching variations.

Example 6.1. Let us study the problem of heat conduction in a completely
isolated rod, where there is no exchange of heat with the surroundings, not
even at the end points. As before, the rod is represented by the interval
[0, π], and the temperature at the point x at time t is denoted by u(x, t).
Within the mathematical model that gives rise to the heat equation, the
flow of heat is assumed to run from warmer to colder areas in such a way
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that the velocity of the flow is proportional to the gradient of the temper-
ature (and having the opposite direction). The mathematical formulation
of the condition that no heat shall flow past the end points is then that the
gradient of the temperature be zero at these points; in the one-dimensional
case this condition is simply ux(0, t) = ux(π, t) = 0. If the temperature of
the rod at time 0 is called f(x), we have the following problem:

(E) uxx = ut, 0 < x < π, t > 0;
(B) ux(0, t) = ux(π, t) = 0, t > 0; (6.4)
(I) u(x, 0) = f(x), 0 < x < π.

This problem is largely similar to the previous one, and we attack it
by the same means (cf. Sec. 1.4). Thus we start by looking for nontrivial
solutions of the homogeneous sub-problem (E)+(B), and we try to find
solutions having the form u(x, t) = X(x)T (t). Substituting into (E) leads,
just as before, to the separated conditions

X ′′(x) + λX(x) = 0, T ′(t) + λT (t) = 0.

To satisfy (B) without having u identically zero we must also have X ′(0) =
X ′(π) = 0. This leaves us with the following boundary value problem for
X:

X ′′(x) + λX(x) = 0, 0 < x < π; X ′(0) = X ′(π) = 0. (6.5)

Just as in Sec. 1.4, we look through the different cases according to the
value of λ. It will be sufficient for us to give account of “basis vectors,” so
we omit scalar factors that can always be adjoined.

For all λ < 0 one finds that the only possible solution is X(x) ≡ 0
(the reader should check this). If λ = 0, the equation is X ′′(x) = 0 with
solutions X(x) = A+Bx. The boundary conditions are satisfied if B = 0.
This means that we have the solutions X(x) = X0(x) = A = constant. For
the same value of λ, the T -equation also has the solutions T = constants;
as a “basis vector” we can choose

u0(x, t) = X0(x)T0(t) = 1
2 . (6.6)

When λ > 0 we can put λ = ω2 with ω > 0. Thus we have X ′′ + ω2X = 0
with solutions X(x) = A cosωx + B sinωx and X ′(x) = −ωA sinωx +
ωB cosωx. The conditionX ′(0) = 0 directly gives B = 0, and thenX ′(π) =
0 means that 0 = −ωA sinωπ. This can be satisfied with A �= 0 precisely
if ω is a (positive) integer. Thus, for λ = n2 we have the solution X(x) =
Xn(x) = cosnx and multiples of this function. The corresponding equation
for T is solved by Tn(t) = e−n2t. In addition to (6.6), the problem (E)+(B)
thus has the solutions

un(x, t) = Xn(x)Tn(t) = e−n2t cosnx, n = 1, 2, 3, . . . .
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By homogeneity, series of the form

u(x, t) = 1
2 a0 +

∞∑
n=1

an e
−n2t cosnx (6.7)

are solutions of (E)+(B), provided they converge nicely enough. It remains
to be seen if it is possible to choose the constants an so that (I) can be
satisfied. Direct substitution of t = 0 in the solution would give

f(x) = u(x, 0) = 1
2 a0 +

∞∑
n=1

an cosnx, 0 < x < π.

We can see that if f is extended to an even function on the interval (−π, π)
and we let the an be the Fourier coefficients of this function, then we ought
to have a solution to the whole problem.

And, just as in the preceding section, everything works excellently if we
know, for example, that

∑ |an| < ∞.
It can be noted that the solution (6.7) has the property that all terms

except for the first one tend rapidly to zero when t tends to infinity. One
is left with the term 1

2 a0. As we have seen, this is equal to the mean value
of f , and this is in accordance with the intuitive feeling for what ought to
happen in the physical situation: a completely isolated rod will eventually
assume a constant temperature, which is precisely the mean of the initial
temperature distribution. ��
Example 6.2. Let us now modify the original problem in a few different
ways. We let the rod be the interval (0, 2), and the end points are kept
each at a constant temperature, but these are different at the two ends.
To be specific, say that u(0, t) = 2 and u(2, t) = 5. Let us take the initial
temperature to be given by f(x) = 1 − x2. The whole problem is

(E) uxx = ut, 0 < x < 2, t > 0;
(B) u(0, t) = 2, u(2, t) = 5, t > 0; (6.8)
(I) u(x, 0) = 1 − x2, 0 < x < 2.

Here, separation of variables cannot be applied directly; an important
feature of that method is making use of the homogeneity of the conditions,
enabling us to add solutions to each other to obtain other solutions. For this
reason, we now start by homogenizing the problem in the following way.
Since the boundary values are constants, independent of time, it should be
possible to write u(x, t) = v(x, t) + ϕ(x), where ϕ(x) should be chosen to
make v the solution of a modified problem with homogeneous boundary
conditions. Substitution into (E) gives

vxx(x, t) + ϕ′′(x) = vt(x, t),



142 6. Separation of variables

so it is desirable to have ϕ′′(x) = 0. If we can also achieve ϕ(0) = 2 and
ϕ(2) = 5, we would get v(0, t) = v(2, t) = 0.

Thus we are faced with this simple problem for an ordinary differential
equation:

ϕ′′(x) = 0; ϕ(0) = 2, ϕ(2) = 5.

The unique solution is easily found to be ϕ(x) = 3
2 x+ 2. Substituting this

into the initial condition of the original problem, we have

1 − x2 = u(x, 0) = v(x, 0) + ϕ(x) = v(x, 0) + 3
2 x+ 2.

We collect all the conditions to be satisfied by v:

(E′) vxx = vt, 0 < x < 2, t > 0;
(B′) v(0, t) = 0, v(2, t) = 0, t > 0; (6.9)
(I′) v(x, 0) = −x2 − 3

2 x− 1, 0 < x < 2.

This problem is essentially of the sort considered and solved in Sec. 1.4 and
6.1. A slight difference is the fact that the length of the rod is 2 instead of π,
but the only consequence of this is that the sine functions in the solution will
be adapted to this interval (as in Sec. 4.5). The reader is urged to perform
all the steps that lead to the following formula for “general” solutions of
(E′)+(B′):

v(x, t) =
∞∑

n=1

an exp
(

−n2π2

4
t

)
sin

nπ

2
x.

Next, the coefficients are adapted to (I′):

an =
2
2

∫ 2

0

(−x2 − 3
2 x− 1) sin

nπ

2
x dx =

16(−1)n − 2
nπ

+
16(1 − (−1)n)

n3π3 .

Finally, we put together the answer to the original problem:

u(x, t) = 3
2 x+2+

∞∑
n=1

(
16(−1)n − 2

nπ
+

16(1 − (−1)n)
n3π3

)
e−n2π2t/4 sin

nπ

2
x.

As time goes by, the temperature along the rod will stabilize at the distri-
bution given by the function ϕ(x). This is called the stationary distribution
of the problem. ��
Example 6.3. In our next variation we consider a rod with a built-in
source of heat. The length of the rod is again π, and we assume that at the
point with coordinate x there is generated an amount of heat per unit of
time and unit of length along the rod, described by the function sin(x/2).
It can be shown that this leads to the following modification of the heat
equation:

(E) ut = uxx + sin
x

2
, 0 < x < π, t > 0.
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We also assume that both ends are kept at temperature 0 for t > 0 and
that the initial temperature along the rod is 1:

(B) u(0, t) = u(π, t) = 0, t > 0; (I) u(x, 0) = 1, 0 < x < π.

Here there is an inhomogeneity in the equation itself. We try to amend this
by using the same trick as in Example 2: put u(x, t) = v(x, t) + ϕ(x) and
substitute into (E) and (B). (Do it!) We conclude that it would be very
nice to have

ϕ′′(x) = − sin
x

2
, ϕ(0) = ϕ(π) = 0.

The first condition implies that ϕ must be of the form ϕ(x) = 4 sin(x/2) +
Ax+B, and the boundary conditions force us to take B = 0 and A = −4/π.
As a consequence, v shall be a solution of the problem

(E′) vxx = vt, 0 < x < π, t > 0;
(B′) v(0, t) = 0, v(π, t) = 0, t > 0; (6.10)
(I′) v(x, 0) = 1 − 4 sin(x/2) + (4x)/π, 0 < x < π.

The reader is asked to complete the calculations; the answer is

u(x, t) = 4 sin
x

2
− 4
π
x+

2
π

∞∑
n=1

1 − (−1)n(4n2 − 5)
n(4n2 − 1)

e−n2t sinnx.

��
Example 6.4. We leave the heat equation and turn to the wave equation.
We shall solve the problem of the vibrating string.

Imagine a string (a violin string or guitar string), stretched between the
points 0 and π of an x-axis. The point with coordinate x at time t has
a position deviating from the equilibrium by the amount u(x, t). If the
string is homogeneous, its vibrations are small and considered to be at
right angles to the x-axis, gravitation can be disregarded; and the units of
mass, length, and time are suitably chosen, then the function u will satisfy
the wave equation in the simple form uxx = utt. The fact that the string
is anchored at its ends means that u(0, t) = u(π, t) = 0. At time t = 0,
every point of the string is located at a certain position and has a certain
speed of movement. We want to find u(x, t) for t > 0 and all the interesting
values of x. This is collected into a problem of the following appearance:

(E) uxx = utt, 0 < x < π, t > 0;
(B) u(0, t) = u(π, t) = 0, t > 0;
(I1) u(x, 0) = f(x), 0 < x < π,
(I2) ut(x, 0) = g(x), 0 < x < π;

(6.11)

Again, (E) and (B) are homogeneous conditions. The usual attempt u(x, t)
= X(x)T (t) this time leads up to this set of coupled problems:{

X ′′(x) + λX(x) = 0,
X(0) = X(π) = 0; T ′′(t) + λT (t) = 0.
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The X problem is familiar by now: it has nontrivial solutions exactly for
λ = n2 (n = 1, 2, 3, . . .), viz., multiples of Xn(x) = sinnx. For these values
of λ, the T problem is solved by Tn(t) = an cosnt + bn sinnt. Because of
homogeneity we obtain the following solutions of the sub-problem (E)+(B):

u(x, t) =
∞∑

n=1

Xn(x)Tn(t) =
∞∑

n=1

(an cosnt+ bn sinnt) sinnx. (6.12)

Letting t = 0 in order to investigate (I1), we get

f(x) = u(x, 0) =
∞∑

n=1

an sinnx.

Termwise differentiation with respect to t and then substitution of t = 0
gives for the second initial condition (I2) that

g(x) = ut(x, 0) =
∞∑

n=1

nbn sinnx.

Thus, if we choose an to be the sine coefficients of (the odd extension of)
f , and choose bn so that nbn are the corresponding coefficients of g, then
the series (6.12) ought to represent the wanted solution.

As we saw already in Sec. 1.3, the wave equation may have rather irreg-
ular, non-smooth solutions. This is reflected by the fact that the series in
(6.12) can converge quite “badly.” See, for example, the solution of Exer-
cise 6.7, which is, after all, an attempt at a quite natural situation. If we
allow distributions as derivatives, as indicated in Sec. 2.6–7, the mathemat-
ical troubles go away. It should also be borne in mind that the conditions
of Exercise 6.7 are not physically realistic: a string does not really have
thickness 0 and cannot really take on the shape of an angle. ��
Remark. The typical term in the sum (6.12) can be rewritten in the form
An sin(nt + αn) sinnx. Its musical significance is the nth partial tone in the
sound emitted by the string. (The first partial is often called the fundamen-
tal.) Figure 6.1 illustrates in principle the shapes of the string that correspond to
different values of n. These are also called the modes of vibrations of the string.
��

Remark. Of considerable musical importance is the fact that the nth partial
also vibrates in time with a frequency that is the nth multiple of the fundamental.
This is what was noted already by Pythagoras: if the length of the string is
halved (making it vibrate in the same manner as the whole string would vibrate
in the second mode), one hears a note sounding one octave higher. The successive
partials are illustrated in Figure 6.2. The accidental �↓ stands for lowering the pitch

by slightly more than a (tempered) semi-tone, while �↓ and �
↑ indicate raising the

pitch by slightly less or respectively more, than a semi-tone. Partial number 7 is



6.2 Variations on Fourier’s theme 145

n=1 n=2 n=3

n=4 n=5 n=6

FIGURE 6.1.
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FIGURE 6.2.

wellknown to musicians (especially brass players) as an ugly pitch that is to be
avoided in normal music. Partials 11 and 13 are also bad approximations of the
pitches indicated in the figure, but they are so high up that they cause relatively
little trouble in normal playing. ��

We round off this section with a problem for the Laplace equation in a
square. This sort of problem is called a Dirichlet problem: the Laplace
equation in a region of the plane, with values prescribed on the boundary
of the region.

Example 6.5. Find u(x, y) that solves uxx + uyy = 0, 0 < x < π, 0 <
y < π, with boundary conditions u(x, 0) = sin 3x− 3 sin 2x for 0 < x < π,
u(x, π) = u(0, y) = u(π, y) = 0, 0 < x, y < π.

Solution. Draw a picture! We have a homogeneous equation,

(E) uxx + uyy = 0,

together with three homogeneous boundary conditions,

(B1,2,3) u(0, y) = u(π, y) = 0, u(x, π) = 0,
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and one non-homogeneous boundary condition,

(B4) u(x, 0) = sin 3x− 3 sin 2x.

We begin by disregarding (B4) and look for nontrivial functions u of the
special form u(x, y) = X(x)Y (y) satisfying the homogeneous conditions.
Substitution into (E) gives

X ′′(x)Y (y) +X(x)Y ′′(y) = 0,

which can be separated to look like

X ′′(x)
X(x)

= −Y ′′(y)
Y (y)

,

and by the same argument as in preceding cases we conclude that the two
sides of this equation must be constant. This constant is (again by force of
tradition) given the name −λ. The boundary conditions (B1,2) can be met
by saying that X(0) = X(π) = 0, and (B3) by putting Y (π) = 0. We find
that we have the following couple of problems for X and Y :{

X ′′(x) + λX(x) = 0
X(0) = X(π) = 0

{
Y ′′(y) − λY (y) = 0
Y (π) = 0

The problem for X is, by now, wellknown. It has nontrivial solutions if
and only if λ = n2 for n = 1, 2, 3, . . ., and these solutions are of the form
Xn(x) = sinnx. For the same values of λ, the Y problem is solved by
Yn(y) = Aeny+Be−ny, whereA andB shall be chosen to meet the condition
Yn(π) = 0. This is done by letting B = −Ae2nπ. We thus have the solutions

un(x, y) = An

(
eny − en(2π−y)) sinnx, n = 1, 2, 3, . . . ,

of the homogeneous conditions (E) and (B1,2,3). Because of the homogene-
ity, sums of these solutions are again solutions. A “general” solution is given
by

u(x, y) =
∞∑

n=1

An

(
eny − en(2π−y)) sinnx.

We now have to choose the coefficients An to meet the remaining condition
(B4). The reader should check the computations that lead to the final result

u(x, y) =
−3

1 − e4π

(
e2y − e2(2π−y)) sin 2x+

1
1 − e6π

(
e3y − e3(2π−y)) sin 3x.

��
In the last example, the boundary condition was homogeneous on three of

the edges of the square. A general Dirichlet problem for a square might be
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taken care of by solving four problems of this kind, with non-homogeneous
boundary values on one edge at a time, and adding the solutions.

In the exercises the reader will have the opportunity to apply the basic
ideas of the method of separation of variables to a variety of problems. In
all cases, the success of the method is coupled to the fact that one reaches
a problem for an ordinary differential equation together with boundary
conditions. This problem turns out to have nontrivial solutions only for
certain values of the “separation constant,” and these solutions are a sort of
building blocks out of which the solutions are constructed. This sort of ODE
problem is called a Sturm–Liouville problem and will be considered in
Sec. 6.4 for its own sake.

It is even possible to treat partial differential equations with more than
two independent variables in much the same way.

Exercises
6.3 Find a solution of the heat problem ut = uxx for 0 < x < π, t > 0, such

that ux(0, t) = ux(π, t) = 0 for t > 0 and u(x, 0) = 1
2 (1 + cos 3x) for

0 < x < π.

6.4 Determine a solution of the problem{
uxx = t ut, 0 < x < π, t > 1;
u(0, t) = u(π, t) = 0, t > 1,
u(x, 1) = sinx+ 2 sin 3x, 0 < x < π.

6.5 Find a solution of the non-homogeneous heat conduction problem{
uxx = ut + sinx, 0 < x < π, t > 0;
u(0, t) = u(π, t) = 0, t > 0;
u(x, 0) = sinx+ sin 2x, 0 < x < π.

6.6 Solve the following problem for the vibrating string:{
uxx = utt, 0 < x < π, t > 0;
u(x, 0) = 3 sin 2x, ut(x, 0) = 5 sin 3x, 0 < x < π;
u(0, t) = u(π, t) = 0, t > 0.

6.7 The plucked string: a point on the string is pulled from its resting position
and then released with no initial speed. If the string is plucked at its middle
point, what tones are heard? In a mathematical formulation: Solve the
problem (6.11), when f is given by

f(x) = ax, 0 ≤ x ≤ 1
2 π, f(x) = a(π − x), 1

2 π ≤ x ≤ π,

and g(x) = 0.

6.8 Find u(x, t) if{
uxx(x, t) = utt(x, t), 0 < x < 1, t > 0;
u(0, t) = u(1, t) = 0, t > 0;
u(x, 0) = sin 3πx, ut(x, 0) = sinπx cos2 πx, 0 < x < 1.
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6.9 Find a solution of the following problem (one-dimensional heat conduction
with loss of heat to the surrounding medium) for h > 0 constant: ut =
uxx − hu, 0 < x < π, t > 0, together with u(0, t) = 0, u(π, t) = 1 for t > 0
and u(x, 0) = 0 for 0 < x < π.

6.10 A Dirichlet problem: uxx + uyy = 0 for 0 < x, y < 1, u(x, 0) = u(x, 1) = 0,
u(0, y) = 0 and u(1, y) = sin3 πy.

6.11 Find a solution u = u(x, t) of this problem:{
uxx + 1

4 u = ut, 0 < x < π, t > 0;
u(0, t) = 0, u(π, t) = 1, t > 0;
u(x, 0) = 0, 0 < x < π.

6.3 The Dirichlet problem in the unit disk

We shall study a problem for the Laplace equation in two dimensions. Let
u = u(x, y) be a function defined in an open, connected set Ω in R2. The
Laplace equation in Ω is

∆u :=
∂2u

∂x2 +
∂2u

∂y2 = 0, (x, y) ∈ Ω.

The solutions of this equation are called harmonic functions in Ω. The
Dirichlet problem is the task of finding all such functions with prescribed
values on the boundary ∂Ω. We shall study this problem in the case when
Ω is the unit disk D : x2 + y2 < 1, so that the boundary ∂Ω is the unit
circle T : x2 + y2 = 1. Concisely, the problem is

∆u(x, y) = 0, (x, y) ∈ D; u(x, y) = g(x, y) = known function, (x, y) ∈ T.
(6.13)

We shall describe two lines of attack: first a method that requires know-
ledge of the elementary theory of analytic (or holomorphic) functions, then
a different approach involving separation of variables.

Method 1. Interpret (x, y) as a complex number z = reiθ. The boundary
function g can then conveniently be considered as a function of the polar
coordinate θ, so that we are looking for harmonic functions u = u(z) =
u(reiθ) for r < 1 with boundary values

u(eiθ) = lim
r↗1

u(reiθ) = g(θ), −π < θ ≤ π.

The unit disk D is simply connected. By the theory of analytic functions,
every harmonic function u in D has a conjugate-harmonic partner v such
that the expression f(z) = u(z) + iv(z) is analytic in D. An analytic func-
tion in the unit disk is the sum of a power series:

u(z) + iv(z) = f(z) =
∞∑

n=0

Anz
n =

∞∑
n=0

Anr
n einθ
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=
∞∑

n=0

(Bn + iCn) rn (cosnθ + i sinnθ)

=
∞∑

n=0

rn
(
(Bn cosnθ − Cn sinnθ) + i(Cn cosnθ +Bn sinnθ)

)
,

where the An are Taylor coefficients with real parts Bn and imaginary parts
Cn. Taking the real part of the whole equation one sees that u(z) must be
representable by a series of the form

u(z) = u(reiθ) =
∞∑

n=0

rn
(
Bn cosnθ − Cn sinnθ

)
,

and, conversely, one realizes (by reading the equation backward) that all
such series represent harmonic functions (provided the corresponding series∑
Anz

n converges in D).
In order to make the formula neater, we switch letters: put an = Bn and

bn = −Cn for n ≥ 1, a0 = 2B0, and note that the value of C0 is immaterial
(since sin 0θ = 0 for all θ), and we get

u(reiθ) = 1
2 a0 +

∞∑
n=1

rn
(
an cosnθ + bn sinnθ

)
.

Method 2. We want to find solutions of the Laplace equation in the region
described in polar coordinates by r < 1, −π ≤ θ ≤ π. First we transform
the equation into polar coordinates. Using the chain rule one finds that
∆u = 0 (for r > 0) is equivalent to

r
∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂θ2
= 0

(the computations required are usually carried through in calculus text-
books as examples of the chain rule). We then proceed to find nontrivial
solutions of the special form u(r, θ) = R(r) Θ(θ), i.e., solutions that are
products of one function of r and one function of θ. Substitution into the
equation results in

r
∂

∂r

(
r
dR

dr
Θ(θ)

)
+R(r)

d2Θ
dθ2

= 0 ⇐⇒ r
(
rR′)′Θ = −RΘ′′.

We divide by RΘ and get

1
R
r
(
rR′)′ = −Θ′′

Θ
.

The left-hand member in this equation is independent of θ and the right-
hand member is independent of r. Just as in Sec. 1.4 we can conclude that
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both members must then be constant, and this constant value is called λ.
The situation splits into the two ordinary differential equations

Θ′′ + λΘ = 0, r
(
rR′)′ − λR = 0.

In addition, there are a couple of “boundary conditions”: in order that the
function u = RΘ be uniquely determined in D, the function Θ(θ) must
have period 2π. Furthermore, since u shall have a finite value at the origin,
we demand that R(r) have a finite limit R(0+) as r ↘ 0 .

We begin with the problem for Θ:{
Θ′′(θ) + λΘ(θ) = 0,
Θ(θ + 2π) = Θ(θ) for all θ.

As in Sec. 1.4, we work through the cases λ < 0, λ = 0 and λ > 0. In
the first case there are no periodic solutions (except for Θ(θ) ≡ 0). In
the case λ = 0, all constant functions will do: Θ0(θ) = A0. When λ > 0,
let λ = ω2 with ω > 0, and we find the solutions Θω(θ) = Aω cosωθ +
Bω sinωθ. These have period 2π precisely if ω is a positive integer: ω = n,
n = 1, 2, 3, . . .. Summarizing, we have found interesting solutions of the Θ
problem precisely when λ = n2, n = 0, 1, 2, . . ..

For these λ we solve the R-problem. When λ = 0, the equation becomes

r
(
rR′)′ = 0 ⇐⇒ rR′ = C ⇐⇒ R′ =

C

r
⇐⇒ R = C ln r +D.

The value R(0+) exists only if C = 0. In this case we thus have a solution
u = u0 = Θ0(θ)R0(r) = A0 ·D = constant. For reasons that will presently
become evident we denote this constant by 1

2a0.
When λ = n2 with n > 0 we have a so-called Euler equation:

r
(
rR′)′ = n2R ⇐⇒ r2R′′ + rR′ − n2R = 0.

To solve it, we change the independent variable by putting r = es, which
results in

d2R

ds2
− n2R = 0,

which has the solutions R = Cens +De−ns = Crn +Dr−n. We must take
D = 0 to ascertain that R(0+) exists. Piecing together with Θ we arrive
at the solution

u(reiθ) = un(reiθ) = Θn(θ)Rn(r) =Cn r
n (An cosnθ +Bn sinnθ)

= rn (an cosnθ + bn sinnθ).

The Laplace equation is homogeneous. Assuming convergence for the
series, the solutions of ∆u = 0 in the unit disk should be representable by
series of the form

u(reiθ) = 1
2 a0 +

∞∑
n=1

rn
(
an cosnθ + bn sinnθ

)
.
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This is the same form for harmonic functions in D as obtained by “Method
1” above.

The formal solutions that we have obtained can, of course, also be written
in “complex” form. Via Euler’s formulae we find

u(r, θ) = u(reiθ) =
∑
n∈Z

cnr
|n|einθ. (6.14)

Notice that the exponents on r have a modulus sign.
Now we turn to the boundary condition. As r ↗ 1, we wish that the

values of the solution approach a prescribed function g(θ). For simplicity, we
assume that g is continuous. Let the numbers cn be the Fourier coefficients
of g:

cn =
1
2π

∫
T
g(θ) e−inθ dθ,

and, using these coefficients, form the function u(r, θ) as in (6.14). By
Lemma 4.1, there exists a number M such that |cn| ≤ M . Using the Weier-
strass M -test we can easily conclude that the series defining u converges
absolutely and uniformly in every inner closed circular disk r ≤ r0, where
r0 < 1, and this still holds after differentiations with respect to r as well as
θ. According to the theorem on differentiation of series, termwise differenti-
ation is thus possible, and since each term of the series satisfies the Laplace
equation and this equation is homogeneous, the sum function u will also
satisfy the same equation. Now we turn to the boundary condition. The
uniform convergence in r ≤ r0 allows us to interchange the order of sum
and integral in the following formula:

u(r, θ) =
∑
n∈Z

cn r
|n| einθ =

∑
n∈Z

r|n| einθ 1
2π

∫
T
g(t) e−int dt

=
∫
T

(
1
2π

∑
n∈Z

r|n| ein(θ−t)

)
g(t) dt.

The sum in brackets can be computed explicitly – it is made up of two
geometric series:

∑
n∈Z

r|n| eins =
−1∑

n=−∞
r−n eins +

∞∑
n=0

rn eins

=
∞∑

n=1

rn e−ins +
∞∑

n=0

rn eins =
r e−is

1 − r e−is
+

1
1 − r eis

=
(1 − reis)re−is + 1 − re−is

|1 − r eis|2 =
1 − r2

1 + r2 − 2r cos s
.
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We define the Poisson kernel to be the function

Pr(s) = P (s, r) =
1
2π

∑
n∈Z

r|n| eins =
1
2π

· 1 − r2

1 + r2 − 2r cos s
.

This gives the following formula for u:

u(r, θ) =
∫
T
Pr(θ − t) g(t) dt =

∫
T
Pr(t) g(θ − t) dt.

The Poisson kernel has some interesting properties:

1. Pr(s) = Pr(−s) ≥ 0 for r < 1, s ∈ T.

2.
∫
T Pr(s) ds = 1 for r < 1.

3. If δ > 0, then

lim
r↗1

∫ π

δ

Pr(s) ds = 0.

The proofs of 1 and 2 are simple (2 follows by integrating the series term
by term, which is legitimate). The property 3 can be shown thus: since
Pr(s) is decreasing as s goes from 0 to π, we have Pr(s) ≤ Pr(δ) on the
interval, and∫ π

δ

Pr(s) ds ≤ Pr(δ)
∫ π

δ

ds = (π − δ)Pr(δ) → 0 as r ↗ 1.

This sort of properties of a collection of functions should be familiar to the
reader. They actually amount to the fact that Pr is a positive summation
kernel of the kind studied in Sec. 2.4. The only difference is the fact that
the present kernel is “numbered” by a variable r that tends to 1, instead
of using an integer N tending to infinity. Theorem 2.1 can be used, and we
get the result that we have constructed a solution of the Dirichlet problem
with boundary values g(θ) in the sense that

lim
r↗1

u(r, θ) = g(θ)

at all points θ where g is continuous.
In addition, the solution is actually unique. This can be proved using

a technique similar to that employed at the end of Sec. 4.2. First one
proves that the problem with boundary values identically zero has only the
solution identically zero, and then this is applied to the difference of two
solutions corresponding to the same boundary values.

Remark. We have here touched upon another method of summing series that
may not be convergent. It is called Poisson or Abel summation. For a numerical
series

∑∞
n=0 an it consists in forming the function

f(r) =
∞∑

n=0

anr
n, 0 < r < 1.
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If this function exists in the interval indicated, and if it has a limit as r ↗ 1, then
this limit is called the Poisson or Abel sum of the series. It can be proved that this
method sums a convergent series to its ordinary sum. It is also a quite powerful
method: it is stronger than Cesàro summation in the sense that every Cesàro
summable series is also Abel summable; and there exist series summable by Abel
that are not summable by Cesàro, not even after any number of iterations. ��

Example 6.6. Find a solution of the Dirichlet problem in the disk having
boundary values u(1, θ) = cos 4θ − 1. Express the solution in rectangular
coordinates!

Solution. It is immediately seen that in polar coordinates the solution must
be

u(r, θ) = −1 + r4 cos 4θ.

We rewrite the cosine to introduce cos and sin of the single value θ:

u= −1 + r4(cos2 2θ − sin2 2θ)
= −1 + r4((cos2 θ − sin2 θ)2 − (2 sin θ cos θ)2)
= −1 + r4(cos4 θ − 2 cos2 θ sin2 θ + sin4 θ − 4 sin2 θ cos2 θ)
= −1 + x4 − 6x2y2 + y4.

��

Exercises

6.12 Find a solution of the Dirichlet problem in the unit disk such that u(eiθ) =
2 + cos 3θ + sin 4θ.

6.13 Find a solution of the same problem such that u(x, y) = x4 + y4 for
x2 + y2 = 1.

6.14 Solve the Dirichlet problem with boundary values u(1, θ) = sin3 θ.

6.15 Perform the details of the proof of the uniqueness of the solution of Dirich-
let’s problem.

6.4 Sturm–Liouville problems

In our solutions of the problems in the preceding sections, a central role was
played by a boundary value problem for an ordinary differential equation
containing a parameter λ. This problem proved to have nontrivial solu-
tions for certain values of λ, but these values had the character of being
“exceptional”. The situation seems loosely similar to a kind of problem that
the reader should have been faced with in a seemingly completely different
context, namely linear algebra: eigenvalue problems for an operator or a
matrix. We shall see that this similarity is really not loose at all!
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We start with a few definitions. Let V be a space with an inner product
〈·, ·〉. A linear mapping A, defined in some subspace DA of V and having its
values in V , is called an operator on V . Notice that this definition is slightly
different from the one that is common in the case of finite-dimensional
spaces: we do not demand that the domain of definition of the operator be
the entire space V . We write V ⊇ DA

A−→ V or A : DA → V . The image
of a vector u ∈ DA is written A(u) or, mostly, simply Au.

Definition 6.1 An operator A : DA → V is said to be symmetric, if

〈Au, v〉 = 〈u,Av〉 for all u, v ∈ DA.

Example 6.7. Let V = L2(T), DA = V ∩C2(T) and let A be the operator
−D2, so that Au = −u′′. Since u ∈ C2(T), the image Au is a continuous
function and thus belongs to V . We have

〈Au, v〉 = −
∫
T
u′′(x) v(x) dx = −[u′(x) v(x)

]π
−π

+
∫
T
u′(x) v′(x) dx

=
[
u(x) v′(x)

]π
−π

−
∫
T
u(x) v′′(x) dx = 〈u,Av〉.

The integrated parts are zero, because all the functions are periodic and
thus have the same values at −π and π. ��
Definition 6.2 An operator A : DA → V is said to have an eigenvalue λ,
if there exists a vector u ∈ DA such that u �= 0 and Au = λu. Such a vector
u is called an eigenvector, more precisely, an eigenvector belonging to the
eigenvalue λ. The set of eigenvectors belonging to a particular eigenvalue
λ (together with the zero vector) make up the eigenspace belonging to λ.

Example 6.8. We return to the situation in Example 6.7. If u(x) =
a cosnx+b sinnx, where a and b are arbitrary constants and n is an integer
≥ 0, then clearly Au = n2u. In this situation we have thus the eigenvalues
λ = 0, 1, 4, 9, . . .. For λ = 0, the eigenspace has dimension 1 (it consists of
the constant functions), for the other eigenvalues the dimension is 2. (The
fact that this is the complete story of the eigenvalues of this operator was
shown in Sec. 6.3, “Method 2.”) ��

For symmetric operators on a finite-dimensional space there is a spectral
theorem, which is a simple adjustment to the case of complex scalars of the
theorem from real linear algebra: If A is a symmetric operator defined on all
of Cn (for example), then there is an orthogonal basis for Cn, consisting
of eigenvectors for A. The proof of this can be performed as a replica of
the corresponding proof for the real case (if anything, the complex case is
rather easier to do than a purely “real” proof). In infinite dimensions things
are more complicated, but in many cases similar results do hold there as
well.

First we give a couple of simple results that do not depend on dimension.
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Lemma 6.1 A symmetric operator has only real eigenvalues, and eigen-
vectors corresponding to different eigenvalues are orthogonal.

Proof. Suppose that Au = λu and Av = µv, where u �= 0 and v �= 0. Then
we can write

λ〈u, v〉 = 〈λu, v〉 = 〈Au, v〉 = 〈u,Av〉 = 〈u, µv〉 = µ〈u, v〉. (6.15)

First, choose v = u, so that also µ = λ, and we have that λ‖u‖2 = λ‖u‖2.
Because of u �= 0 we conclude that λ = λ, and thus λ is real. It follows
that all eigenvalues must be real. But then we can return to (6.15) with the
information that µ is also real, and thus (λ−µ)〈u, v〉 = 0. If now λ−µ �= 0,
then we must have that 〈u, v〉 = 0, which proves the second assertion. ��

Regrettably, it is not easy to prove in general that there are “sufficiently
many” eigenvectors (to make it possible to construct a “basis,” as in finite
dimensions). We shall here mention something about one situation where
this does hold, the study of which was initiated by Sturm and Liouville

during the nineteenth century. As special cases of this situation we shall
recognize some of the boundary value problems studied in this text, starting
in Sec. 1.4.

We settle on a compact interval I = [a, b]. Let p ∈ C1(I) be a real-valued
function such that p(a) �= 0 �= p(b); let q ∈ C(I) be another real-valued
function; and let w ∈ C(I) be a positive function on the same interval
(i.e., w(x) > 0 for x ∈ I). We are going to study the ordinary differential
equation

(E) (pu′)′ + qu+ λwu = 0 ⇐⇒
d

dx

(
p(x)

du

dx

)
+ q(x)u(x) + λw(x)u(x) = 0, x ∈ I.

Here, λ is a parameter and u the “unknown” function. Furthermore, we
shall consider boundary conditions, initially of the form

(B) A0u(a) +A1u
′(a) = 0, B0u(b) +B1u

′(b) = 0.

Here, Aj and Bj are real constants such that (A0, A1) �= (0, 0) �= (B0, B1).

Remark. If we take p(x) = w(x) = 1, q(x) = 0, A0 = B0 = 1 and A1 = B1 = 0,
we recover the problem studied in Sec. 1.4. ��

The problem (E)+(B) is called a regular Sturm–Liouville problem. We
introduce the space L2(I, w), where w is the function occurring in (E). This
means that we have an inner product

〈u, v〉 =
∫

I

u(x) v(x)w(x) dx.

In particular, all functions u ∈ C(I) will belong to L2(I, w), since the
interval is compact.
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We define an operator A by the formula

Au = − 1
w

(
(pu′)′ + qu

)
,

DA = {u ∈ C2(I) : Au ∈ L2(I, w) and u satisfies (B)}.
Then, (E) can be written simply as Au = λu. The problem of finding non-
trivial solutions of the problem (E)+(B) has been rephrased as the problem
of finding eigenvectors of the operator A. (The fact that DA is a linear space
is a consequence of the homogeneity of the boundary conditions.)

The symmetry of A can be shown as a slightly more complicated parallel
of Example 6.7 above. On the one hand,

〈Au, v〉 = −
b∫

a

1
w

(
(pu′)′ + qu

)
v w dx = −

b∫
a

(
(pu′)′ + qu)v dx

= −
b∫

a

(pu′)′v dx−
b∫

a

q u v dx = −[p u′ v
]b
a

+

b∫
a

(p u′v′ − q u v) dx.

On the other hand (using the fact that p, q and w are real-valued),

〈u,Av〉 =

b∫
a

u ·
(

− 1
w

)(
(pv′)′ + qv

)
w dx = −

b∫
a

u(p v′)′ dx−
b∫

a

u q v dx

= −[u p v′]b
a

+

b∫
a

(u′ p v′ − u q v) dx.

We see that

〈Au, v〉 − 〈u,Av〉 =
[
puv′ − pu′v

]b
a

=

[
p(x)

∣∣∣∣∣u(x) u
′(x)

v(x) v′(x)

∣∣∣∣∣
]x=b

x=a

.

But the determinant in this expression, for x = a, must be zero: indeed, we
assume that both u and v satisfy the boundary condition (B) at a, which
means that {

A0u(a) +A1u
′(a) = 0,

A0v(a) +A1v′(a) = 0.

This can be considered to be a homogeneous linear system of equations
with (the real numbers) A0 and A1 as unknowns, and it has a nontrivial
solution (since we assume that (A0, A1) �= (0, 0)). Thus the determinant is
zero. In the same way it follows that the determinant is zero at x = b. We
conclude then that

〈Au, v〉 = 〈u,Av〉,
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so that A is symmetric.
In this case, the symmetry is achieved by the fact that a certain substi-

tution of values results in zero at each end of the interval. Clearly, this is
not necessary. An operator can be symmetric for other reasons, too. We
shall not delve deeper into this in this text, but refer the reader to texts
on ordinary differential equations.

For the case we have sketched above, the following result holds.

Theorem 6.1 (Sturm–Liouville’s theorem) The operator A, belong-
ing to the problem (E)+(B), has infinitely many eigenvalues, which can
be arranged in an increasing sequence:

λ1 < λ2 < λ3 < · · · , where λn → ∞ as n → ∞.

The eigenspace of each eigenvalue has dimension 1, and if ϕn is an eigen-
vector corresponding to λn, then {ϕn}∞

n=1 is a complete orthogonal system
in L2(I, w).

This can be rewritten to refer directly to the differential equation prob-
lem:

Theorem 6.2 The problem (E)+(B) has solutions for an infinite num-
ber of values of the parameter λ, which can be arranged in an increasing
sequence:

λ1 < λ2 < λ3 < · · · , where λn → ∞ as n → ∞.

For each of these values of λ, the solutions make up a one-dimensional
space, and if ϕn is a non-zero solution corresponding to λn, the set {ϕn}∞

n=1
is a complete orthogonal system in L2(I, w).

Proofs can be found in texts on ordinary differential equations.
It is of considerable interest that one gets a complete orthogonal system.

We already know this to be true in a couple of special cases. First we have
the problem

u′′(x) + λu(x) = 0, 0 < x < π; u(0) = u(π) = 0, (6.16)

that we first met already in Sec. 1.4; here the eigenfunctions are ϕn(x) =
sinnx, and according to Sec. 5.4 these are complete in L2(0, π) (with weight
function 1). Secondly, we have seen this problem, treated in Example 6.1
of Sec. 6.2:

u′′(x) + λu(x) = 0, 0 < x < π; u′(0) = u′(π) = 0. (6.17)

There we found the eigenfunctions ϕ0(x) = 1
2 and ϕn(x) = cosnx, and we

have seen that they are also complete in L2(0, π).
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In the exercises, the reader is invited to investigate a few more problems
that fall within the conditions of Theorem 6.2.

If the assumptions are changed, the results may deviate from those of
Theorem 6.2. We have already seen this in Examples 6.7 and 6.8 of the
present section. There, we studied the operator −D2 on T, which corre-
sponds to the problem

u′′(x) + λu(x) = 0, −π ≤ x ≤ π; u(−π) = u(π), u′(−π) = u′(π).

The boundary conditions are of a different character from (B): they mean
that u and u′ have periodic extensions with period 2π (so that they can
truly be considered to be functions on the unit circle T). They are also
commonly called periodic boundary conditions. (In contrast, the conditions
considered in (B) are said to be separated: the values at a and b have no
connection with each other.) In this case the eigenspaces (except for one)
have dimension 2. If we choose orthogonal bases in each of the eigenspaces
and pool all these together, the result is again a complete system in the
relevant space, which is L2(T).

Yet another few examples are given in the next section. In one of these
cases it happens that the function p goes to zero at the ends of the compact
interval; in others the interval is no longer compact. It can be finite, but
open, and one or more of the functions p, q, and w may have singularities at
the ends; the interval may also be a half-axis or even the entire real line. All
these situations give rise to what are known as singular Sturm–Liouville
problems, and they sometimes occur when treating classical situations for
partial differential equations.

Exercises

6.16 Determine a complete orthogonal system in L2(0, π) consisting of solutions
of the problem

u′′(x) + λu(x) = 0, 0 < x < π; u(0) = u′(π) = 0.

6.17 The same problem, but with boundary conditions

u(0) = u(π) + u′(π) = 0.

6.18 Show that the problem

d

dx

(√
1 − x2 du

dx

)
+

λ√
1 − x2

u(x) = 0, −1 < x < 1

has the eigenvalues λ = n2 (n = 0, 1, 2, . . .) and eigenfunctions Tn(x) =
cos(n arccosx) for λ = n2. (You are not expected to prove that these are
all the eigenvalues and eigenfunctions of the problem.)
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6.5 Some singular Sturm–Liouville problems

Some celebrated problems in classical physics lead up to problems for or-
dinary differential equations that are similar to the problems considered
in the preceding section. We review some of these problems here, partly
because of their historical interest, but also because they have solutions
that are polynomials that we met in Sec. 5.5–6.

The Legendre polynomials are solutions of the following singular Sturm–
Liouville problem. Let I = [−1, 1] and study the problem

d

dx

(
(1 − x2)u′(x)

)
+ λu(x) = 0, −1 < x < 1,

with no boundary conditions at all (except that u(x) should be defined
in the closed interval). Here we can identify p(x) = 1 − x2, q(x) = 0 and
w(x) = 1. Since p(x) = 0 at both ends of the interval, the corresponding
operator A will be symmetric if one takes DA = {u ∈ C2(I) : Au ∈ L2(I)}
(the reader should check this, which is not difficult). It can be proved that
this problem has eigenvalues λ = n(n + 1), n = 0, 1, 2, . . ., and that the
eigenfunctions are actually (multiples of) the Legendre polynomials.

Remark. The origin of this problem is the three-dimensional Laplace equation
in spherical coordinates (r, θ, φ), defined implicitly by{

x = r sinφ cos θ
y = r sinφ sin θ
z = r cosφ

r ≥ 0,
0 ≤ φ ≤ π,

−π < θ ≤ π.

In these coordinates, the equation takes the form

∆u ≡ ∂2u

∂r2
+

2
r

∂u

∂r
+

1
r2

∂2u

∂φ2 +
cotφ
r2

∂u

∂φ
+

1
r2 sin2 φ

∂2u

∂θ2
= 0.

This can also be written as

r
(
ru
)

rr
+

1
sinφ

(
sinφ uφ

)
φ

+
1

sin2 φ
uθθ = 0. (6.18)

A function f(x, y, z) is said to be homogeneous of degree n, if f(tx, ty, tz) =
tnf(x, y, z) for t > 0. This means that f is completely determined by its values
on, say, the unit sphere, so that it can be written f(x, y, z) = rng(φ, θ) for a
certain function g. We now look for solutions un of (6.18) that are homogeneous
of degree n; these solutions are called spherical harmonics. Write

un(x, y, z) = rnSn(φ, θ),

where Sn is called a spherical surface harmonic. Substitution into (6.18) and
subsequent division by rn gives

(n+ 1)nSn +
1

sinφ
∂

∂φ

(
sinφ

∂Sn

∂φ

)
+

1
sin2 φ

∂2Sn

∂θ2
= 0.
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Now we specialize once more and restrict ourselves to solutions Sn that are in-
dependent of θ; denote them by Zn(φ). The equation reduces to

(n+ 1)nZn +
1

sinφ
d

dφ

(
sinφ

dZn

dφ

)
= 0. (6.19)

Finally, we put x = cosφ and Pn(x) = Zn(φ). The reader is asked (in Exer-
cise 6.19) to check that the equation ends up as

(1 − x2)P ′′(x) − 2xP ′(x) + n(n+ 1)Pn(x) = 0. (6.20)

This is the Legendre equation. ��
The Laguerre polynomials are solutions of the following singular Sturm–

Liouville problem. Take I = [0,∞[, p(x) = x e−x, q(x) = 0 and w(x) = e−x.
The differential equation is

d

dx

(
x e−x u′(x)

)
+ λ e−x u(x) = 0 ⇐⇒

xu′′(x) + (1 − x)u′(x) + λu(x) = 0, x ≥ 0,

and the “boundary conditions” are that u(0) shall exist (of course) and
that u(x)/xm shall tend to 0 as x → ∞ for some number m. (The latter
condition can be phrased thus: u(x) is majorized by some power of x, as
x → ∞, or u(x) “increases at most like a polynomial”.) The eigenvalues of
this problem are λ = n = 0, 1, 2, . . ., and the Laguerre polynomials Ln are
eigenfunctions.

The Hermite polynomials come from the following singular Sturm–Liou-
ville problem. On I = R one studies the equation

d

dx

(
e−x2

u′(x)
)

+ λ e−x2
u(x) = 0

with the “boundary condition” that the solutions are to satisfy u(x)/xm →
0 as |x| → ∞ for some m > 0. Eigenvalues are the numbers λ = 2n,
n = 0, 1, 2, . . . and the Hermite polynomials Hn are eigenfunctions.

Exercise

6.19 Check that the change of variable x = cosφ does transform the equation
(6.19) into (6.20).

Summary of Chapter 6

The Method of Separation of Variables
Given a linear partial differential equation of order 2, with independent vari-
ables (x, y) and unknown function u(x, y), together with boundary and/or
initial conditions—
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1. If necessary (and possible), homogenize the equation and as many as
possible of the other conditions.

2. Look for solutions of the homogeneous sub-problem having the par-
ticular form u(x, y) = X(x)Y (y). This normally leads to a Sturm–
Liouville problem, and the result should be a sequence of solutions
un = un(x, y) = Xn(x)Yn(y), n = 1, 2, 3, . . ..

3. The homogeneous problem has the “general” solution u =
∑
cnun,

where the cn are constants.

4. Adapt the constants cn to make the solutions satisfy also the non-
homogeneous conditions.

5. If you began by homogenizing the problem, don’t forget to re-adapt
the solution to suit the original problem.

Definition
Assume p, q real, w > 0 on an interval I = [a, b]. Then the following is a
regular Sturm–Liouville problem on I:{

(pu′)′ + qu+ λwu = 0
A0u(a) +A1u

′(a) = 0, B0u(b) +B1u
′(b) = 0

With the Sturm–Liouville problem we associate the operator A, defined for
functions u that satisfy the boundary conditions by the formula

Au = − 1
w

(
(pu′)′ + qu

)
.

Theorem
(The Sturm–Liouville theorem) The operator A, belonging to the Sturm–
Liouville problem, has infinitely many eigenvalues, which can be arranged
in an increasing sequence:

λ1 < λ2 < λ3 < · · · , where λn → ∞ as n → ∞.

The eigenspace of each eigenvalue has dimension 1, and if ϕn is an eigen-
vector corresponding to λn, then {ϕn}∞

n=1 is a complete orthogonal system
in L2(I, w).

Formulae for orthogonal polynomials are found on page 254 f.

Historical notes

Jacques Charles François Sturm (1803–55) and Joseph Liouville (1809–
82) both worked in Paris. Sturm was chiefly concerned with differential equations;
Liouville also did remarkable work in the field of analytic functions and the theory
of numbers.
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Problems for Chapter 6

6.20 Using separation of variables, solve the problem ut = uxx, 0 < x < 1, t > 0;
u(0, t) = 1, u(1, t) = 3, u(x, 0) = 2x+ 1 − sin 2πx.

6.21 Find a solution of the problem


uxx = utt + 2ut, 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0;

u(x, 0) = 0, ut(x, 0) = sin3 x, 0 < x < π.

6.22 Find a solution of the differential equation uxx = ut + u, 0 < x < π, t > 0,
that satisfies the boundary conditions u(0, t) = u(π, t) = 0, t > 0, and
u(x, 0) = x(π − x), 0 < x < π.

6.23 Find a function u(x, t) such that
ut = 4uxx, 0 < x < 4, t > 0;

u(0, t) = 10, u(4, t) = 50, t > 0;

u(x, 0) = 30, 0 < x < 4.

6.24 Find a solution of the following problem:
uxx = utt, 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0;

u(x, 0) = x(π − x), 0 < x < π;

ut(x, 0) = sin 2x, 0 < x < π.

6.25 Determine a solution of the boundary value problem
uxx + uyy = x, 0 < x < 1, 0 < y < 1;

u(x, 0) = u(x, 1) = 0, 0 < x < 1;

u(0, y) = u(1, y) = 0, 0 < y < 1.

6.26 Find a solution in the form of a series to the Dirichlet problem{
uxx + uyy = 0, x2 + y2 < 1;

u(x, y) = |x|, x2 + y2 = 1.

6.27 Solve the following problem for the two-dimensional Laplace equation
uxx + uyy = 0, 0 < x < π, 0 < y < π;

ux(0, y) = ux(π, y) = 0, 0 < y < π;

u(x, 0) = sin2 x, u(x, π) = 0, 0 < x < π.

6.28 Find a function u(x, t) such that

ut = uxx + cosx, 0 < x < π, t > 0;

ux(0, t) = ux(π, t) = 0, t > 0; u(x, 0) = cos2 x+ 2 cos4 x, 0 < x < π.
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6.29 Solve the following problem for a modified wave equation:

uxx = utt + 2ut, 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = sinx+ sin 3x, ut(x, 0) = 0, 0 < x < π.

6.30 Find u = u(x, t) that satisfies the equation uxx = ut + tu, 0 < x < π,
t > 0, with boundary conditions u(0, t) = u(π, t) = 0 for t > 0 and initial
condition u(x, 0) = sin 2x, 0 < x < π.

6.31 Find a bounded solution of the problem for a vibrating beam:
utt + uxxxx = 0, 0 < x < π, t > 0;

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0, t > 0;

u(x, 0) = x(π − x), ut(x, 0) = 0, 0 < x < π.

6.32 A (very much) simplified model of a nuclear reactor is given by the problem{
ut = Auxx +Bu, 0 < x < l, t > 0;

u(0, t) = u(l, t) = 0, t > 0.

Here, u is the concentration of neutrons, while A and B are positive con-
stants. The term Auxx describes the scattering of neutrons by diffusion,
and the term Bu the creation of neutrons through fission. Prove that there
is a critical value L of the length l such that if l > L, then there exist
unbounded solutions; whereas if l < L, then all solutions are bounded.

6.33 In order to get good tone quality from a piano, it is desirable to have
vibrations rich in overtones. An exception is the seventh partial, which
results in musical dissonance, and should thus be kept low. Under certain
idealizations the vibrations of a piano string are described by

utt = uxx, 0 < x < π, t > 0;

u(0, t) = u(π, t) = 0, t > 0;

u(x, 0) = 0, ut(x, 0) =

{
1/h, for a < x < a+ h,

0 otherwise.

Here a describes the point of impact of the hammer; and h, the width of
the hammer, is a small number.
(a) In the form of a series, compute the limit of u(x, t) as h ↘ 0.
(b) Where should the point a be located so as to eliminate the seventh
partial tone? There are a number of possible answers. Which would you
choose? Explain why!
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7
Fourier transforms

7.1 Introduction

Suppose that f is piecewise continuous on [−P, P ] (and periodic with period
2P ). For the “complex” Fourier series of f we have

f(t) ∼
∞∑

n=−∞
cn exp

(
in

π

P
t
)
, (7.1)

where
cn =

1
2P

∫ P

−P

f(t) exp
(
−in π

P
t
)
dt. (7.2)

One might say that f is represented by a (formal) sum of oscillations with
frequencies nπ/P and complex amplitudes cn.

Now imagine that P → ∞, and we want to find a corresponding represen-
tation of functions defined on the whole real axis (without being periodic).
We define, provisionally,

f̂(P, ω) =
∫ P

−P

f(t) e−iωt dt, ω ∈ R, (7.3)

so that cn =
1

2P
f̂(P, nπ/P ). The formula (7.1) is translated into

f(t) ∼ 1
2P

∞∑
n=−∞

f̂(P, ωn) eiωnt =
1
2π

∞∑
n=−∞

f̂(P, ωn) eiωnt · π
P
, ωn =

nπ

P
.

(7.4)
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Because of ∆ωn = ωn+1 − ωn =
π

P
, this last sum looks rather like a

Riemann sum. Now we let P → ∞ in (7.3) and define

f̂(ω) = lim
P→∞

f̂(P, ω) =
∫ ∞

−∞
f(t) e−iωt dt, ω ∈ R (7.5)

(at this point we disregard all details concerning convergence). If (7.4) had
contained f̂(ωn) instead of f̂(P, ωn), the limiting process P → ∞ would
have resulted in

f(t) ∼ 1
2π

∫ ∞

−∞
f̂(ω) eiωt dω. (7.6)

The formula couple (7.5) + (7.6) actually will prove to be the desired coun-
terpart of Fourier series for functions defined on all of R. Our strategy will
be the following. Placing suitable conditions on f , we let (7.5) define a
new function f̂ , called the Fourier transform of f . We then investigate the
properties of f̂ and show that the formula (7.6) with a suitable interpreta-
tion (and under certain additional conditions on f) constitutes a means of
recovering f from f̂ .

Loosely speaking this means that while a function defined on a finite
interval (such as (−P, P )) can be constructed as a sum of harmonic os-
cillations with discrete frequencies {ωn = nπ/P : n ∈ Z}, a function on
the infinite interval ] − ∞,∞[ demands a continuous frequency spectrum
{ω : ω ∈ R}, and the sum is replaced by an integral.

7.2 Definition of the Fourier transform

Assume that f is a function on R, such that the (improper) integral∫ ∞

−∞
|f(t)| dt =

∫
R

|f(t)| dt (7.7)

is convergent; using the notation introduced in Chapter 5, this is the same
as saying that f ∈ L1(R). In practice we shall only encounter functions
that are piecewise continuous, i.e., they are continuous apart from possibly
a finite number of finite jumps in every finite sub-interval of R. For such
an f , the following integral converges absolutely, and for every real ω its
value is some complex number:

f̂(ω) =
∫
R
f(t)e−iωt dt. (7.8)

Definition 7.1 The function f̂ , defined by (7.8), is called the Fourier
transform or Fourier integral of f .
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Common notations, besides f̂ , are F [f ] and F (“capital letter = the
transform of lower-case letter”). In this connection, it is useful to work on
two distinct real axes: one where f is defined, and the variable is called
such things as t, x, y; and one where the transforms live and the variable is
ω, ξ, λ, etc. We denote the former axis by R and the latter by R̂.

Example 7.1. If f(t) = e−|t|, t ∈ R, then f ∈ L1(R), and

f̂(ω) =
∫
R
e−|t|e−iωt dt =

∫ ∞

0
e−(1+iω)t dt+

∫ 0

−∞
e(1−iω)t dt

=
1

1 + iω
+

1
1 − iω

=
2

1 + ω2 ,

which can be summarized in the formula

F [e−|t|](ω) =
2

1 + ω2 .

��
Example 7.2. Let f(t) = 1 for |t| < 1, = 0 for |t| > 1 (i.e., f(t) =
H(t+1)−H(t−1), where H is the Heaviside function as in Sec. 2.6). Then
clearly f ∈ L1(R), and

f̂(ω) =
∫ 1

−1
e−iωt dt =

[
e−iωt

−iω
]1

−1
=

2
ω

· e
iω − e−iω

2i
=

2 sinω
ω

, ω �= 0.

For ω = 0 one has e−iωt = 1, so that f̂(0) = 2 = lim
ω→0

f̂(ω). ��
The fact noticed at the end of the last example is not accidental. It is a

case of (b) in the following theorem.

Theorem 7.1 If f ∈ L1(R), the following holds for the Fourier transform
f̂ :

(a) f̂ is bounded; more precisely, |f̂(ω)| ≤
∫
R

|f(t)| dt.
(b) f̂ is continuous on R̂.
(c) lim

ω→±∞ f̂(ω) = 0.

Proof. (a) follows immediately from the estimate
∣∣∫

I
ϕ(t) dt

∣∣ ≤ ∫
I
|ϕ(t)| dt,

which holds for any interval I and any Riemann-integrable function ϕ (even
if it is complex-valued).

(b) is more complicated, and we leave the proof as an exercise (see Ex-
ercise 7.3).

(c) is a case of the Riemann–Lebesgue Lemma (Theorem 2.2, page 25).
��

When dealing with Fourier series on the interval (−π, π), we have made
use of special formulae in the case when the functions happen to be even or
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odd. Something similar can be done for Fourier transforms. For example,
if f is even, so that f(−t) = f(t), we have

f̂(ω) =
1
2π

∫ π

−π

f(t)(cosωt− i sinωt) dt = 2
∫ ∞

0
f(t) cosωt dt, (7.9)

from which is seen that f̂ is real if f is real, and that f̂ is even (because
cos(−ωt) = cosωt). Similarly, for an odd function g, g(−t) = −g(t), it
holds that

ĝ(ω) = −2i
∫ ∞

0
g(t) sinωt dt; (7.10)

if g is real, then ĝ is purely imaginary, and furthermore ĝ is odd.
Integrals such as those in (7.9) and (7.10) are sometimes called cosine

and sine transforms.

Exercises
7.1 Compute the Fourier transforms of the following functions, if they exist:

(a) f(t) = t if |t| < 1, = 0 otherwise.
(b) f(t) = 1 − |t| if |t| < 1, = 0 otherwise.
(c) f(t) = sin t.
(d) f(t) = 1/(t− i).
(e) f(t) = (sin t)(H(t+ π) −H(t− π)) (H is the Heaviside function).
(f) f(t) = (cosπt)

(
H(t+ 1

2 ) −H(t− 1
2 )
)
.

7.2 Find the Fourier transforms of f(t) = e−tH(t) and g(t) = et(1 −H(t)).

7.3 A proof of the assertion (b) in Theorem 7.1 can be accomplished along the
following lines:
(i) Prove that |f̂(ω + h) − f̂(ω)| ≤ 2

∫
R

|f(t)|
∣∣sin( 1

2ht
)∣∣ dt.

(ii) Approximate f by a function g which is zero outside some bounded
interval, as in the last step of the proof of Theorem 2.2, and use that
| sin t | ≤ |t|. The proof even gives the result that f̂ is uniformly continuous
on R̂.

7.3 Properties

In this section we mention some properties of Fourier transforms that are
useful when applying them to, say, differential equations.

Theorem 7.2 The mapping F : f �→ f̂ is a linear map from the space
L1(R) to the space C0(R̂) of those continuous functions defined on R̂ that
tend to 0 at ±∞.

Proof. The fact that f̂ ∈ C0(R̂) is the content of (b) and (c) in Theorem 7.1.
The linearity of F means just that

F [f + g] = F [f ] + F [g], F [λf ] = λF [f ]
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when f, g ∈ L1(R) and λ is a scalar (i.e., a complex number). This is an
immediate consequence of the definition. ��

Theorem 7.3 Suppose that f ∈ L1(R) and let a be a real number. Then
the translated function fa(t) = f(t−a) and the function eiatf(t) also belong
to L1(R), and

f̂a(ω) = F [f(t− a)](ω) = e−iaω f̂(ω), (7.11)

F [eiatf(t)](ω) = f̂(ω − a). (7.12)

Proof. For the first formula, start with f̂a(ω) =
∫
R f(t − a) e−iωt dt. The

change of variable t−a = y gives the result. The proof of the second formula
is maybe even simpler. ��

These results are often called the delay rule and the damping rule for
Fourier transforms. Notice the pleasant mathematical symmetry of the for-
mulae. A similar symmetry holds for the next set of formulae.

Theorem 7.4 Suppose that f is differentiable and that both f and f ′ be-
long to L1(R). Then

̂(Df)(ω) = f̂ ′ (ω) = F [f ′](ω) = iωf̂(ω). (7.13)

If both f(t) and tf(t) belong to L1(R), then f̂ is differentiable, and

F [tf(t)](ω) = if̂ ′(ω) = iDf̂(ω). (7.14)

The proof of (7.13) relies, in principle, on integration by parts:

f̂ ′(ω) =
∫ ∞

−∞
f ′(t)e−iωt dt =

[
f(t)e−iωt

]∞
−∞ −

∫ ∞

−∞
f(t)(−iω)e−iωt dt,

and one has to prove that the integrated part is zero. We omit the details,
which are somewhat technical; even though f ∈ L1(R), it does not neces-
sarily have to tend to zero in a simple way as the variable tends to ±∞.
The second formula can be proved using some theorem on differentiation
under the integral sign. Indeed, if this operation is permissible, we will have

iDf̂(ω) = i
d

dω

(∫
R
f(t)e−iωt dt

)
= i

∫
R

∂

∂ω

(
f(t)e−iωt

)
dt

= i

∫
R
f(t)(−it)e−iωt dt =

∫
R
tf(t)e−iωt dt.

We shall immediately use Theorem 7.4 to find the Fourier transform of
the function f(t) = e−t2/2.

Differentiating, we get f ′(t) = −te−t2/2, and we see that

f ′(t) + tf(t) = 0.
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It is easy to see that the assumptions for Theorem 7.4, both formulae, are
fulfilled. Transformation gives iωf̂(ω) + if̂ ′(ω) = 0 or, after division by i,

f̂ ′(ω) + ωf̂(ω) = 0.

Thus, f̂ satisfies the same differential equation as f . The general solution of
this equation is easily determined, for instance, using an integrating factor:
y′ + ty = 0 gives y = Ce−t2/2, C = y(0). Thus, f̂(ω) = Ce−ω2/2, where

C = f̂(0) =
∫
R
f(t)e−i0t dt =

∫
R
e−t2/2 dt =

√
2π.

Summarizing, we have found that

F
[
e− 1

2 t2
]
(ω) =

√
2π e− 1

2 ω2
.

Theorem 7.4 implies that Fourier transformation converts differentiation
into an algebraic operation. This hints at the possibility of using Fourier
transformation for solving differential equations, in a way that is analogous
to the use of the Laplace transform. The usefulness of this idea is, how-
ever (at our present standpoint), somewhat limited, because the Fourier
integral has problems with its own convergence. For example, the common
homogeneous ordinary linear differential equations with constant coeffi-
cients cannot be treated at all: all solutions of this sort of equation consist
of linear combinations and products of functions of the types cos at, sin at,
ebt, and polynomials in the variable t. The only function of these types that
belongs to L1(R) is the function that is identically zero.

There are, however, categories of problems that can be treated. Later in
this chapter, we shall attack some problems for the heat equation and the
Laplace equation with Fourier transforms. Also, the introduction of distri-
butions has widened the range of functions that have Fourier transforms.
We shall have a glimpse of this in Sec. 7.11, and a fuller treatment is found
in Chapter 8.

Exercises

7.4 Assume that a is a real number �= 0 and that f ∈ L1(R). Let g(t) = f(at).
Express ĝ in terms of f̂ .

7.5 Find the Fourier transform of (a) f(t) = e−|t| cos t, (b) g(t) = e−|t| sin t.

7.6 If f is defined as in Exercise 7.1 (b), page 168, then f ′(t) = 0 for |t| > 1,
f ′(t) = 1 for −1 < t < 0, f ′(t) = −1 for 0 < t < 1. Compute F [f ′] in two
ways, on the one hand using Theorem 7.4 and on the other hand by direct
computation.
Remark. The fact that f ′(t) fails to exist at some points evidently does
not destroy the validity of (7.13). But f must be continuous.
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7.7 Find f̂(ω) if f(t) = (a) t e−t2/2, (b) e−(t2+2t).
Hint for (b): complete the square, combine formula (7.11), the example fol-
lowing Theorem 7.4 and Exercise 7.4. Another way of solving the problem
is indicated in the remark below.

7.8 Suppose that f(t) has Fourier transform f̂(ω) = e−ω4
. Determine the trans-

forms of f(2t), f(2t+ 1), f(2t+ 1) eit.

7.9 Does there exist an f ∈ L1(R) such that f̂(ω) = 1 − cosω ?

7.10 Suppose that f has the Fourier transform f̂ . Find the transforms of
f(t) cos at and f(t) cos2 at (a real �= 0).

Remark on Exercise 7.7: Problems such as 7.7 (b) and 7.8 can also be solved by
writing out the Fourier integral, then rewriting it and changing variables so as to
reshape the integral into a recognizable transform. For example,

F
[
e−(t2+2t)](ω) =

∫
R

e−(t2+2t+1)+1 e−iωt dt = e

∫
R

e−(t+1)2 e−iωt dt
t+ 1 = y/

√
2,

t =
y√
2

− 1

dt = dy/
√

2

 =
e√
2

∫
R

e−y2/2 e−iω(y/
√

2−1) dy

=
e1+iω

√
2

∫
R

e−y2/2 e−iyω/
√

2 dy.

The last integral is the Fourier transform of e−t2/2, computed at the point ω/
√

2,

which means
√

2π exp

(
− 1

2

(
ω√
2

)2)
=

√
2π e−ω2/4. The answer to the problem is

thus

F
[
e−(t2+2t)](ω) =

e1+iω

√
2

·
√

2π e−ω2/4 =
√
π e1+iω− 1

4 ω2
.

7.4 The inversion theorem

We now formulate the result that constitutes our promised precise version
of the formula (7.6) on page 166.

Theorem 7.5 (Inversion theorem) Suppose that f ∈ L1(R), that f is
continuous except for a finite number of finite jumps in any finite interval,
and that f(t) = 1

2 (f(t+) + f(t−)) for all t. Then

f(t0) = lim
A→∞

1
2π

∫ A

−A

f̂(ω) eiωt0 dω (7.15)

for every t0 where f has (generalized) left and right derivatives. In partic-
ular, if f is piecewise smooth (i.e., continuous and with a piecewise contin-
uous derivative), then the formula holds for all t0 ∈ R.
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The result, and also the proof, is very similar to the convergence theorem
for Fourier series. Just as for these series, the convergence properties depend
essentially on the local behavior of f(t) for t near t0. To accomplish the
proof we need an auxiliary lemma.

Lemma 7.1 ∫ ∞

0

sinAu
u

du =
π

2
for A > 0.

It is easy to check, by the change of variable Au = t, that the integral is
independent of A (if A > 0), so one can just as well assume that A = 1. The
integral is not absolutely convergent, and

∫∞
0 in this case stands for the

limit of
∫X

0 as X → ∞. There is no quite simple way to compute it. One
method is using the calculus of residues, and textbooks on complex analysis
usually contain precisely this integral as an example of that technique.

Another attempt could build on the idea that 1/u =
∫∞
0 e−ux dx, which

might be substituted into the integral:∫ ∞

0

sinu
u

du=
∫ ∞

0

∫ ∞

0
e−ux sinu dx du =

∫ ∞

0

(∫ ∞

0
e−ux sinu du

)
dx

=
∫ ∞

0

dx

1 + x2 =
π

2
.

There is, however, a difficulty here: the double integral is not absolutely
convergent (the integrand is too large when x is close to 0), which makes
it hard to justify the change of order of integration. However, we will not
delve deeper into this problem.

Proof of Theorem 7.5. Put

s(t0, A) =
1
2π

∫ A

−A

f̂(ω) eit0ω dω

and rewrite this expression by inserting the definition of f̂(ω):

s(t0, A) =
1
2π

∫ A

−A

(∫ ∞

−∞
f(t) e−iωt dt

)
eiωt0 dω

=
1
2π

∫ ∞

−∞

∫ A

−A

f(t) eiω(t0−t) dω dt =
1
2π

∫ ∞

−∞
f(t)

[
eiω(t0−t)

i(t0 − t)

]ω=A

ω=−A

dt

=
1
π

∫ ∞

−∞
f(t)

sinA(t0 − t)
t0 − t

dt =
1
π

∫ ∞

−∞
f(t0 − u)

sinAu
u

du.

Switching the order of integration is permitted, because the improper dou-
ble integral is absolutely convergent over the strip (t, ω) ∈ R× [−A,A], and
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in the last step we have put t0−t = u. We are now in a situation very much
the same as in the proof of the convergence of Fourier series; but there is a
complication inasmuch as the interval of integration is unbounded. Using
the lemma we can write
2
π

∫ ∞

0
f(t0−u) sinAu

u
du−f(t0−) =

2
π

∫ ∞

0

(
f(t0−u)−f(t0−)

) sinAu
u

du.

(7.16)
Now let ε > 0 be given. Since we have assumed that f ∈ L1(R), there
exists a number X such that

2
π

∫ ∞

X

|f(t0 − u)| du < ε.

Changing the variable, we find that∫ ∞

X

sinAu
u

du =
∫ ∞

AX

sin t
t

dt → 0 as A → ∞. (7.17)

The last integral in (7.16) can be split into three terms:

2
π

∫ X

0

f(t0 − u) − f(t0−)
u

· sinAudu+
2
π

∫ ∞

X

f(t0 − u)
sinAu
u

du

− 2
π
f(t0−)

∫ ∞

X

sinAu
u

du = I1 + I2 − I3.

The term I3 tends to zero as A → ∞ because of (7.17). The term I2 can
be estimated:

|I2| =
∣∣∣∣ 2π

∫ ∞

X

f(t0 − u)
sinAu
u

du

∣∣∣∣ ≤ 2
π

∫ ∞

X

|f(t0 − u)| du ≤ ε.

In the term I1 we have the function u �→ g(u) = (f(t0 − u) − f(t0))/(−u).
This is continuous except for jumps in the interval (0, X), and it has the
finite limit g(0+) = f ′

L(t0) as u ↘ 0; this means that g is bounded and thus
integrable on the interval. By the Riemann–Lebesgue lemma, we conclude
that I1 → 0 as A → ∞. All this together gives, since ε can be taken as
small as we wish,

2
π

∫ ∞

0
f(t0 − u)

sinAu
u

du → f(t0−) as A → ∞.

A parallel argument implies that the corresponding integral over (−∞, 0)
tends to f(t0+). Taking the mean value of these two results, we have com-
pleted the proof of the theorem. ��
Remark. If

∫
R̂

|f̂(ω)| dω is convergent, i.e., f̂ ∈ L1(R̂), then (7.15) can be written
as the absolutely convergent integral

f(t0) =
1
2π

∫ ∞

−∞
f̂(ω) eiωt0 dω,



174 7. Fourier transforms

but in general one has to make do with the symmetric limit in (7.15). ��

Example 7.3. For f(t) = e−|t| we have f̂(ω) =
2

1 + ω2 . Since f is piece-

wise smooth it follows that

e−|t| =
1
π

lim
A→∞

∫ A

−A

eiωt

1 + ω2 dω.

In this case f̂ happens to be absolutely integrable, and we can write simply

e−|t| =
1
π

∫ ∞

−∞

eiωt

1 + ω2 dω.

We can switch letters in this formula — t and ω are exchanged for each other
— and then we also change the sign of ω, and we get (after multiplication
by π) the formula

π e−|ω| =
∫
R

e−iωt

1 + t2
dt.

In this way we have found the Fourier transform of 1/(1 + t2), which is
rather difficult to reach by other methods:

F
[

1
1 + t2

]
(ω) = π e−|ω|.

��
Example 7.4. For the function f in Example 7.2 (page 167) we have

f̂(ω) =
2 sinω
ω

. In this case, the inversion integral is not absolutely conver-
gent. The theorem here says that

lim
A→∞

1
π

∫ A

−A

sinω
ω

eiωt dω =


1 as |t| < 1,
1
2 as t = ±1,
0 as |t| > 1.

��
Example 7.5. When using a table of Fourier transforms (such as on page
252 f. of this book), one can make use of the evident symmetry properties
of the transform itself and the inversion formula in order to transform
functions that are found “on the wrong side of the table.” We have actually
seen an instance of this idea in Example 7.3 above. As a further example,
suppose that a table contains an item like this:

f(t) f̂(ω)

te−|t| −4iω
(1 + ω2)2
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From this one can find the transform of the function

g(t) =
−4it

(1 + t2)2

by performing two steps:

1. Switch sides in the table, switching variables at the same time:

−4it
(1 + t2)2

ωe−|ω|

2. Multiply the right-hand side by 2π and change the sign of the variable
there:

−4it
(1 + t2)2

− 2πωe−|−ω|

This is now a true entry in the table. It may be an aesthetic gain to divide
it by −4i to get

t

(1 + t2)2
− 1

2 iπωe
−|ω|

��

Example 7.6. When working with even or odd functions, the Fourier
transform can be rewritten as a so-called cosine or sine integral, respectively
(see p. 168). In these cases, the inversion formula can also be rewritten so
as to contain a cosine or a sine, instead of a complex exponential. Indeed,
if g is even, one gets the following couple of formulae:

ĝ(ω) = 2
∫ ∞

0
g(t) cosωt dt, g(t) =

1
π

∫ ∞

0
ĝ(ω) cos tω dω,

and if h is odd, it looks like this:

ĥ(ω) = −2i
∫ ∞

0
h(t) sinωt dt, h(t) =

i

π

∫ ∞

0
ĥ(ω) sin tω dω.

(The reader should check this.) In applied literature, one often meets these
“cosine” and “sine” transforms with slightly modified definitions. ��

Remark. In the literature one can find many variations of the definition of the
Fourier transform. We have chosen the conventions illustrated by the formula
couple

f̂(ω) =
∫ ∞

−∞
f(t)e−iωt dt, f(t) ∼ 1

2π

∫ ∞

−∞
f̂(ω)eiωt dω.



176 7. Fourier transforms

Other common conventions are described by

f̂(ω) =
1
2π

∫ ∞

−∞
f(t)e−iωt dt, f(t) ∼

∫ ∞

−∞
f̂(ω)eiωt dω,

f̂(ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt, f(t) ∼ 1√

2π

∫ ∞

−∞
f̂(ω)eiωt dω,

f̂(ω) =
∫ ∞

−∞
f(t)e−2πiωt dt, f(t) ∼

∫ ∞

−∞
f̂(ω)e2πitω dω.

It also happens that the minus sign in the exponent is moved from one integral
to the other. As soon as Fourier transformation is encountered in real life, one
must check what definition is actually being used. This is true also for tables and
handbooks. ��

Exercises
7.11 Find the Fourier transforms of the following functions:

(a)
1

t2 + 2t+ 2
, (b)

1
t2 + 6t+ 13

, (c)
t

(1 + t2)2
.

7.12 Find the Fourier transform of
1 − cos t

t2
.

7.13 Find a function f(x), defined for x > 0, such that∫ ∞

0

f(y) cosxy dy =
1

1 + x2 .

(Hint: extend f to an even function and take a look at Example 7.3.)

7.14 Assume that f is differentiable and has the Fourier transform

f̂(ω) =
1 + iω

1 + ω6 .

Compute f ′(0). (Note that you do not have to find a formula for f(t).)

7.15 Suppose that f ∈ L1(R) and that f̂ has a finite number of zeroes. Prove
that there cannot exist a function g ∈ L1(R) and a number a such that
g(t+ a) − g(t) = f(t) for −∞ < t < ∞.

7.16 A consequence of Theorem 7.5 is that if f̂(ω) = 0 for all ω, then it must
hold that f(t) = 0 for all t where f is continuous. Using this, formulate
and prove a uniqueness theorem for Fourier transforms.

7.5 The convolution theorem

Let f and g be two functions belonging to L1(R). The convolution f ∗ g of
them is now defined to be the function defined on R by the formula

(f ∗ g)(t) = f ∗ g(t) =
∫
R
f(t− y) g(y) dy =

∫
R
f(y) g(t− y) dy.
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It can be proved, using deeper insights in the theory of integration, that
this integral is actually convergent and that the new function also belongs
to L1(R). We content ourselves here with accepting these facts as true.
The act of forming f ∗ g is also phrased as convolving f and g.

Theorem 7.6 (Convolution theorem)

F [f ∗ g] = F [f ] F [g].

Formally, the proof runs like this:

F [f ∗ g](ω) =
∫
R
e−iωt

(∫
R
f(t− y) g(y) dy

)
dt

=
∫∫
R2

e−iω(t−y+y) f(t− y) g(y) dt dy

=
∫
R
e−iωy g(y) dy

∫
R
e−iω(t−y) f(t− y) dt

=
∫
R
e−iωy g(y) dy

∫
R
e−iωt f(t) dt = ĝ(ω) f̂(ω).

The legitimacy of changing the order of integration is taken for granted.

Example 7.7. What function f has the Fourier transform

f̂(ω) =
1

(1 + ω2)2
?

Solution. We start from the formula

ĝ(ω) =
2

1 + ω2 if g(t) = e−|t|.

By the convolution theorem we get

F [g ∗ g](ω) =
(
ĝ(ω)

)2 =
4

(1 + ω2)2
= 4f̂(ω).

Clearly, f = 1
4 (g ∗ g), and we thus have to convolve g with itself. For t > 0

we get

4f(t) = g ∗ g(t) =
∫ ∞

−∞
e−|t−y| e−|y| dy =

∫ 0

−∞
+
∫ t

0
+
∫ ∞

t

=
∫ 0

−∞
e−(t−y) ey dy +

∫ t

0
e−(t−y) e−y dy +

∫ ∞

t

et−y e−y dy

= e−t

∫ 0

−∞
e2y dy + e−t

∫ t

0
dt+ et

∫ ∞

t

e−2y dy = (1 + t) e−t.
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(Check the computations for yourself!) Since f̂ is an even function, f is
also even, and so we must have

f(t) = 1
4 (1 + |t|) e−|t|.

��
Example 7.8. If f(t) = 1/(1 + t2), find f ∗ f .

Solution. Put g = f ∗ f . Computing the convolution directly is toilsome.
Instead, we make use of Theorem 7.6. Let us start from the fact that
f̂(ω) = π e−|ω| (Example 7.3, p. 174), which means that∫

R

e−iωt

1 + t2
dt = π e−|ω|. (7.18)

Theorem 7.6 gives ĝ(ω) =
(
f̂(ω)

)2 = π2e−|2ω|. In (7.18) we now exchange
ω for 2ω, multiply by π and make the change of variable 2t = y:

ĝ(ω) = π2 e−2|ω| =
∫
R

πe−it·2ω

1 + t2
dt =

∫
R

πe−iyω

1 +
(
y

2

)2 dy2 =
∫
R

2πe−iωt

4 + t2
dt.

We find that g(t) =
2π

4 + t2
. Thus, we have proved the formula∫ ∞

−∞

dy

(1 + y2)(1 + (t− y)2)
=

2π
4 + t2

, t ∈ R.

��
Just as in Example 7.7, convolution can be employed to find inverse

Fourier transforms. Other applications occur in the solution of certain par-
tial differential equations, whose solutions are given in the form of convo-
lution integrals; and convolutions occur frequently in probability theory.

Example 7.9. Prove the formula∫ 1

−1

sin(t− y)
t− y

dy =
∫ 1

−1

sin y
y

eiyt dy, t ∈ R. (7.19)

Solution. Let f(t) = H(t + 1) − H(t − 1), and g(t) = (sin t)/t. From the
table of Fourier transforms we recognize that f̂(ω) = g(ω)/π, and by the
inversion formula we have ĝ(ω) = 1

2f(ω). The right-hand member of (7.19)
can be written like this:∫ 1

−1

sin y
y

eiyt dy =
∫
R
f(y)g(y)eiyt dy

=
∫
R̂

2g(ω) · πf(ω) eiωt dω = 2π
∫
R̂
ĝ(ω) f̂(ω) eiωt dω.
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The last formula consists of the inversion formula for the function whose
Fourier transform is 2πf̂ ĝ, and this function must be the convolution of f
and g. But that convolution is just the left-hand member of (7.19). ��

Example 7.10. Because of the formal symmetry between the Fourier
transformation and the inversion formula, one can expect that there exists
a formula involvning the convolution of transforms. Indeed, if f̂ and ĝ are
sufficiently nice, to ensure that the necessary integrals converge, it is true
that the Fourier transform of the product fg is the convolution of the
transforms (modified by a factor of 1/(2π)):

f̂g(ω) =
1
2π

∫
R̂
f̂(ω − α) g(α) dα =

1
2π

f̂ ∗ ĝ(ω).

��

Exercises

7.17 Let fa be defined for a positive number a as the function

fa(t) =
1
π

a

a2 + t2
, t ∈ R.

Compute the convolution fa1∗fa2 . Generalize to more than two convolution
factors.

7.18 Find a solution of the integral equation∫ ∞

−∞
f(t− y) e−|y| dy = 4

3 e
−|t| − 2

3 e
−2|t|.

7.19 Determine some f such that
∫ ∞

−∞
f(t− y) e−y2/2 dy = e−t2/4.

7.20 Find a function f such that
∫ 1

−1
f(t− y) dy = e−|t−1| − e−|t+1|, t ∈ R.

7.21 Compute the integral∫ ∞

−∞

sin[5(t− u)] sin(6u)
u(t− u)

du, t ∈ R.

7.22 Let f ∈ L1(R) be such that f ′ is continuous and f ′ ∈ L1(R). Find a
function g ∈ L1(R) such that

g(t) =
∫ t

−∞
eu−t g(u) du+ f ′(t), t ∈ R.
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7.6 Plancherel’s formula

We shall now indicate an intuitive deduction of a formula that corresponds
to the Parseval formula for Fourier series. If these series are written in the
“complex” version, we have

∞∑
n=−∞

|cn|2 =
1
2π

∫ π

−π

|f(t)|2 dt, where cn =
1
2π

∫ π

−π

f(t) e−int dt.

A simple change of variables yields the corresponding formula on the in-
terval (−P, P ): put

cn =
1

2P

∫ P

−P

f(t) e−inπt/P dt,

and we will have ∞∑
n=−∞

|cn|2 =
1

2P

∫ P

−P

|f(t)|2 dt. (7.20)

Just as on page 165 we introduce the “truncated” Fourier transform

f̂(P, ω) =
∫ P

−P

f(t) e−iωt dt,

so that cn =
1

2P
f̂(P, nπ/P ), and (7.20) takes the form

1
4P 2

∞∑
n=−∞

∣∣∣f̂(P, nπ
P

)∣∣∣2 =
1

2P

∫ P

−P

|f(t)|2 dt

or ∫ P

−P

|f(t)|2 dt =
1
2π

∞∑
n=−∞

∣∣∣f̂(P, nπ
P

)∣∣∣2 · π
P
.

In the same way as on page 165 we can consider the right-hand member to
be almost a Riemann sum, and if we let P → ∞ we ought to obtain∫ ∞

−∞
|f(t)|2 dt =

1
2π

∫ ∞

−∞
|f̂(ω)|2 dω. (7.21)

In fact, this formula is actually true as soon as one knows that one of
the integrals is convergent — if so, the other one will automatically con-
verge as well. A correct and consistent theory of these matters cannot be
achieved without having access to the integration theory of Lebesgue. The
formula (7.21) is known as the Plancherel formula (also sometimes as
the Parseval formula).
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Example 7.11. The Plancherel formula enables us to compute certain
integrals. If f(t) = 1 for |t| < 1 and = 0 otherwise, then (see Example 7.2

p. 167) f̂(ω) =
2 sinω
ω

. Plancherel now gives∫ 1

−1
1 dt =

1
2π

∫ ∞

−∞

4 sin2 ω

ω2 dω,

or, after rewriting, ∫ ∞

−∞

sin2 t

t2
dt = π.

This integral is not very easy to compute using other methods. ��
Just as in Chapter 5, we can denote by L2(R) the set of functions f

defined on R such that the integral
∫

R
|f(t)|2 dt is convergent. If f and g

are both in L2(R), it can be seen (just as in Sec. 5.3) that we can define
an inner product by the integral

〈f, g〉 =
∫
R
f(x) g(x) dx.

Introducing the L2 norm in the usual way, ‖f‖ =
√〈f, f〉, Plancherel’s

formula can be written in the compact form

‖f‖2 =
1
2π

‖f̂‖2.

There are a number of variants of the Plancherel formula. One is related
to the formula for inner products in an ON basis and looks like this:∫ ∞

−∞
f(t) g(t) dt =

1
2π

∫ ∞

−∞
f(ω) g(ω) dω.

This can be obtained from the ordinary Plancherel formula using the iden-
tity

〈f, g〉 = 1
4

(‖f + g‖2 + i‖f + ig‖2 − ‖f − g‖2 − i‖f − ig‖2),
which is easily proved (it is Exercise 5.6 on page 110).

The following formula is another variation. Let f ∈ L1(R) and g ∈
L1(R̂). (Thus, g is defined on the “wrong” real line.) Then it holds that∫ ∞

−∞
f(t) ĝ(t) dt =

∫ ∞

−∞
f̂(ω) g(ω) dω. (7.22)

This is easily proved by considering the double integral∫∫
R×R̂

f(t) g(ω) e−itω dt dω,
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and computing this in two different ways. The computation is completely
legitimate, because the double integral is easily seen to be absolutely con-
vergent. The resulting formula (7.22) plays a central role in Chapter 8.

Example 7.12. As an application of the last formula, we give a new proof
of the formula∫ 1

−1

sin(t− y)
t− y

dy =
∫ 1

−1

sin y
y

eiyt dy, t ∈ R. (7.23)

(see Example 7.9 above). Let f(y) = H(y + 1) − H(y − 1) and g(ω) =
eitωf(ω). Then

f̂(ω) =
2 sinω
ω

and ĝ(y) =
2 sin(y − t)

y − t
=

2 sin(t− y)
t− y

.

The identity
∫
fĝ =

∫
f̂g then gives the formula (after some preening). ��

Exercises
7.23 Compute the integral ∫ ∞

−∞

t2

(1 + t2)2
dt

by studying the odd function f defined by f(t) = e−t for t > 0.

7.24 Using the results of Exercise 7.5, compute the integrals∫ ∞

0

t2

(t4 + 4)2
dt and

∫ ∞

0

(t2 + 2)2

(t4 + 4)2
dt.

7.7 Application 1

We consider the following problem for the heat equation:

(E) uxx = ut, t > 0, x ∈ R,
(I) u(x, 0) = f(x), x ∈ R.

The solution u(x, t) represents the temperature at the point x of an infinite
rod, isolated from its surroundings, if the temperature at time t = 0 is given
by the function f(x).

Initially, we adopt the extra assumptions that f ∈ L1(R) and that for
every fixed t > 0 the function x �→ u(x, t) also belongs to L1(R). Then the
Fourier transforms

f̂(ω) =
∫
R
f(x) e−iωx dx,

U(ω, t) = Fx[u(x, t)](ω) =
∫
R
u(x, t) e−iωx dx
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exist for all t ≥ 0. (The subscript x on F signifies that the transform is
taken with respect to the variable x.) We also assume that we can treat
the differentiations in a formal manner, by which we mean for one thing
that the rule (7.13) of Theorem 7.4 can be used twice, for another that

Fx[ut] = Fx

[
∂u

∂t

]
=

∂

∂t
Fx[u] =

∂U

∂t
.

In this case, (E) and (I) are transformed into

(Ê) −ω2U =
∂U

∂t
, t > 0, ω ∈ R̂,

(̂I) U(ω, 0) = f̂(ω) ω ∈ R̂.

(Ê) can be solved like a common ordinary differential equation (think for a
moment of ω as a constant): we get U = C exp(−ω2t), where the constant
of integration C need not be the same for different values of ω. Indeed,
adapting to the initial condition (̂I) we find that we should have C = f̂(ω),
so that

U(ω, t) = f̂(ω) e−ω2t.

For recovering u(x, t) we notice that U is a product of two Fourier trans-
forms. By performing a suitable change of variables in the formula

F [exp(− 1
2x

2)](ω) =
√

2π exp(− 1
2ω

2)

we can find that

Fx

[
1√
4πt

exp
(

−x2

4t

)]
(ω) = e−ω2t.

Let E(x, t) be the expression that is being transformed here. Then we have

U(ω, t) = Fx[E(x, t)](ω) · F [f ](ω).

By the convolution theorem,

u(x, t) = E(x, t) ∗ f(x) =
1√
4πt

∫ ∞

−∞
e−y2/(4t) f(x− y) dy, t > 0.

This integral formula has been deduced by formal calculations with Fourier
transforms, but in its final appearance it does not contain any such trans-
forms. In fact, it works in far more general situations than those indicated
by our assumptions. Indeed, it is sufficient to assume that f is a continuous
and bounded function on R. Then the integral in the formula exists for all
x ∈ R and t > 0 (show it!) and satisfies the equation uxx = ut, and in ad-
dition it holds that lim

t↘0
u(x, t) = f(x). The last assertion follows from the
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fact that E(x, t) is a positive summation kernel in the variable x, indexed
by the variable t tending to 0 from above.

The solution obtained also has a nice statistical interpretation. It is the
convolution of the initial values by the density function of a normal prob-
ability distribution with expected value zero and a variance growing with
time. Loosely speaking, this can be said to mean that the temperature is
“smeared out” in a very regular way along the axis.

Remark. As an example of this, let the initial temperature be given by u(x, 0) =
1 for |x| < 1 and 0 otherwise. The solution will be

u(x, t) =
1√
4πt

∫ 1

−1

exp(−(x− y)2/(4t)) dy =
1√
4πt

∫ x+1

x−1

e−y2/(4t) dy.

It is easy to see that the value of this integral is positive for all (x, t) with t > 0.
This is really a cause of concern: it means that points at arbitrary distance far
away on the rod will, immediately after the initial moment, be aware of the fact
that the temperature near the origin was positive when t was 0. The information
from the vicinity of the origin thus travels with infinite speed along the rod, which
is in conflict with the wellknown statement from the theory of relativity: nothing
can travel faster than light!

This indicates that the mathematical model that gives rise to the heat equa-
tion must be physically incorrect. What is wrong? Well, for one thing, in this
model, matter is considered to be a perfectly homogeneous medium, which is a
macroscopic approximation that does not hold at all on a small scale: in reality,
matter is something discrete, consisting of atoms and subatomic particles. Yet
another thing is that in the model heat itself is considered to be a homogeneous,
flowing substance: in reality, heat is a macroscopic “summary” of the movements
of all the particles of matter.

Yet another example of the strange behaviour of the heat equation is the fol-
lowing, taken from Thomas Körner’s book Fourier Analysis. Define a function
h by letting

h(t) = exp

(
− 1

2t2

)
, t > 0; h(t) = 0, t ≤ 0.

This function belongs to C∞(R), which is not very hard to prove. If we go on
to define g(t) = h(t − 1)h(2 − t), then g is a C∞-function which is positive for
1 < t < 2 and zero elsewhere. Finally let

u(x, t) =
∞∑

m=0

g(m)(t)
(2m)!

x2m.

Now we have a function u : R2 → R with the following properties:

(a) ut(x, t) = uxx(x, t) for all (x, t) ∈ R2,
(b) u(x, t) = 0 for all t /∈ [1, 2], x ∈ R,
(c) u(x, t) > 0 for all t ∈]1, 2[, x ∈ R.

The proof of these assertions can be found in Körner’s book, Sec. 67.
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Thus, here we have an infinite rod, which has at time 0 the temperature 0
everywhere. This state of affairs remains until time reaches 1: then suddenly the
whole rod acquires positive temperature, which rises and then again falls back to
zero at time 2. Körner calls this “the great blast of heat from infinity.”

We see again (cf. page 4) that the “natural” initial value problem for the heat
equation behaves very badly as concerns uniqueness: indeed there are heaps of
solutions. I cannot abstain from quoting Körner’s rounding-off comment on this
example:

To the applied mathematician . . . [this example] is simply an embar-
rassment reminding her of the defects of a model which allows an
unbounded speed of propagation. To the numerical analyst it is just
a mild warning that the heat equation may present problems which
the wave equation does not. But the pure mathematician looks at
it with the same simple pleasure with which a child looks at a rose
which has just been produced from the mouth of a respectable uncle
by a passing magician.

��

Exercises

7.25 Show that the function E(x, t) =
1√
4πt

exp

(
−x2

4t

)
is a solution of the

heat equation in the region t > 0. What are the initial values as t ↘ 0 ?
7.26 For an infinite rod the units of length x and time t are chosen so that the

heat equation takes the form uxx = ut. The temperature at time t = 0 is
given by the function e−x2

+e−x2/2. Determine the function that describes
the temperature at every moment t > 0.

7.27 A semi-infinite rod, materialized as the interval [0,∞[, has at time t = 0
the temperature ex2

for 0 < x < 1, 0 for x > 1. When t > 0, the end point
(i.e., the point x = 0) is kept at a constant temperature of 0. Determine
the temperature for every x at time t = 1

4 .
Hint: define boundary values f(x) for x < 0 by f(x) = −f(−x), to make f
an odd function. Then solve the problem as if the rod were doubly infinite.
Show that this actually gives a solution with the correct boundary values
for x > 0.

7.28 Find, in the form of an integral, a solution u of uxx = ut for t > 0, such
that u(x, 0) = 1 if |x| < 1, = 0 if |x| > 1.

7.8 Application 2

We shall treat the following problem for the Laplace differential equation:
uxx + uyy = 0, x ∈ R, y > 0,
u(x, 0) = f(x), x ∈ R,

u bounded for y > 0.
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Under the additional assumption that, for every fixed y, the function x �→
u(x, y) is of class L1(R), we can Fourier transform the problem with respect
to x. Let U(ω, y) denote this Fourier transform:

U(ω, y) = Fx[u(x, y)](ω) =
∫
R
u(x, y) e−iωx dx.

Let us also assume that differentiation with respect to y commutes with
Fourier transformation:

Fx[uyy] =
∂2

∂y2 Fx[u].

Then the Laplace equation is transformed into

−ω2 U(ω, y) +
∂2

∂y2 U(ω, y) = 0.

Now we temporarily regard ω as a constant and solve this differential equa-
tion with the independent variable y. The general solution is

U(ω, y) = A(ω)e−yω +B(ω)eyω.

For U to be bounded for y > 0 one must have A(ω) = 0 for ω < 0 and
B(ω) = 0 for ω > 0, which means that we can write U(ω, y) = C(ω)e−y|ω|,
where C(ω) = A(ω) + B(ω). For y = 0 we get U(ω, 0) = f̂(ω) = C(ω),
which implies that

U(ω, y) = f̂(ω) e−y|ω|. (7.24)

By inversion of this Fourier transform one can obtain the desired function
u. Using the convolution theorem, we can also establish a solution formula
in the form of an integral. Since

e−y|ω| is the Fourier transform of
y

π

1
y2 + x2 = Py(x),

it holds that

u(x, y) = (Py ∗ f)(x) =
y

π

∫ ∞

−∞

f(t)
(x− t)2 + y2 dt. (7.25)

This formula is commonly called the Poisson integral formula for the half-
plane y > 0. Indeed, this formula holds under more general conditions
than our derivation demands (for instance, it is sufficient to assume that
f is continuous and bounded.) The boundary values are right, because the
functions {Py} constitute a positive summation kernel, as y ↘ 0.

In practice, it may sometimes be easier to invert the Fourier transform
(7.24), in other cases it is better to use the integral formula (7.25).

Exercise
7.29 In the unbounded plane sheet {(x, y) : y ≥ 0} there is a stationary and

bounded temperature distribution u. It is known that u(x, 0) = 1/(x2 +1).
Determine u(x, y) for all y > 0.
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7.9 Application 3: The sampling theorem

Here we give an important theorem with applications in the technology of
sound recording. Let c be a positive number. Assuming that a signal f(t)
is built up using angular frequencies ω satisfying |ω| ≤ c, it is possible to
reconstruct the entire signal by sampling it at discrete time intervals at
distance π/c. More precisely, we shall prove the following

Theorem 7.7 (Shannon’s sampling theorem) Suppose that f is con-
tinuous on R, that f ∈ L1(R) and that f̂(ω) = 0 for |ω| > c. Then

f(t) =
∑
n∈Z

f
(nπ
c

) sin(ct− nπ)
ct− nπ

,

where the sum is uniformly convergent on R.

Proof. By the Fourier inversion formula, we have

f(t) =
1
2π

∫ c

−c

f̂(ω) eitω dω. (7.26)

We shall rewrite this integral. We introduce a function g as follows:

g(ω) =
c

π
f̂(ω), |ω| < c.

This can be considered as a restriction to the interval (−c, c) of a 2c-periodic
function with Fourier series

g(ω) ∼
∑
n∈Z

cn(g)ei(nπ/c)ω,

where

cn(g) =
1
2c

∫ c

−c

g(ω) e−i(nπ/c)ω dω =
1
2π

∫ c

−c

f̂(ω) e−i(nπ/c)ω dω = f
(
−nπ

c

)
.

We also consider the function h given by

h(ω) = e−itω, |ω| < c.

In the same way as for g, we have

h(ω) ∼
∑
n∈Z

cn(h)ei(nπ/c)ω,

with

cn(h) =
1
2c

∫ c

−c

e−itω e−i(nπ/c)ω dω =
1
2c

[
e−itω−i(nπ/c)ω

−it− i
nπ

c

]ω=c

ω=−c

=
sin(ct+ πn)
ct+ πn

.
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We now go back to (7.26) and rewrite it, using the polarized Parseval
formula for functions with period 2c:

f(t) =
1
2c

∫ c

−c

c

π
f̂(ω) e−iωt dω =

1
2c

∫ c

−c

g(ω)h(ω) dω

=
∑
n∈Z

cn(g)cn(h) =
∑
n∈Z

f
(
−nπ

c

) sin(ct+ πn)
ct+ πn

=
∑
n∈Z

f
(nπ
c

) sin(ct− πn)
ct− πn

.

The convergence of the series is clear, since both g and h are L2 functions.
Indeed, the convergence of symmetric partial sums sN =

∑N
−N is uniform in

t, because estimates of the remainder are uniform. The theorem is proved.
��

Remark. The theorem explains why CD recordings and DAT tapes are possible.
The human ear cannot hear sounds with a frequency above, say, 20 kHz. The
sound signal can thus be considered to have its frequency spectrum totally within
this range. If it is sampled at sufficiently small intervals, and if the sampling is
precise enough, it is then possible to recover the sound from the digitalized sample
record. Ordinary CD recorders use a sampling frequency of 44.1 kHz. ��

7.10 *Connection with the Laplace transform

In this section we return to the Laplace transform. We also assume that
the reader has some knowledge of complex analysis, in particular the the-
ory of residues. We shall demonstrate how the Laplace transform can be
considered as a special case of the Fourier transform.

Assume that f(t) is defined and piecewise continuous for t ∈ R and
that f(t) = 0 for t < 0. Also suppose that there exist constants t0, M ,
and k so that |f(t)| ≤ Mekt for all t > t0: we say that f grows (at most)
exponentially. Let s = σ + iω be a complex variable, where σ and ω are
real. The Laplace transform of f is defined as the function

f̃(s) =
∫ ∞

0
f(t)e−st dt =

∫ ∞

−∞
f(t)e−σt e−iωt dt. (7.27)

The integral converges absolutely as soon as σ > k, where k is the number
introduced just above. The integral then defines a function f̃ , which is
analytic at least in the half-plane σ > k. This can be seen by noting that
the functions

Fn(s) =
∫ n

0
f(t) e−st dt

are analytic and that Fn → f̃ uniformly in every interior half-plane σ ≥ σ0,
where σ0 > k. The details are omitted here.



7.10 *Connection with the Laplace transform 189

What is now of interest is the fact that the formula (7.27) shows that the
Laplace transform of f can be seen as the Fourier transform of the function
f(t)e−σt. If we assume that f is such that the Fourier inversion formula
can be applied, we can then write

f(t)e−σt =
1
2π

lim
A→∞

∫ A

−A

f̃(σ + iω) eitω dω.

If this equality is multiplied by eσt and we reintroduce σ + iω = s, we get

f(t) =
1

2πi
lim

A→∞

∫ σ+iA

σ−iA

f̃(s)ets ds, (7.28)

where the notation i dω = ds serves to indicate that the integral is a contour
integral in the complex plane. The contour is a vertical line in the half-plane
σ > k.

Since we have assumed that f(t) = 0 for t < 0, the integral in (7.28)
will always be zero for negative values of t. For t positive, it can sometimes
be calculated using residues and a half-circular contour to the left of the
vertical line. We demonstrate this by an example.

Example 7.13. Find the function whose Laplace transform is f̃(s) =
1/(s2 + 1).

Solution. We want to compute

1
2πi

lim
A→∞

∫ σ+iA

σ−iA

ets

s2 + 1
ds.

The integrand has simple poles at s = ±i and is analytic in the rest of the
s-plane. We can choose σ = 1, say, and make a closed contour by adjoining
CA, the left-hand half of the circle |s−1| = A. Taking account of the factor
1/(2πi) in the formula, the integral over the closed contour is the sum of
the residues:

Res
s=i

ets

s2 + 1
= lim

s→i

ets

s+ i
=
eit

2i
, Res

s=−i

ets

s2 + 1
= lim

s→−i

ets

s− i
=
e−it

−2i
,

∑
Res =

eit − e−it

2i
= sin t.

The integral along the circular arc can be estimated, using the fact that
|s| = |s− 1 + 1| ≥ |s− 1| − 1 = A− 1 and σ = Re s ≤ 1:∣∣∣∣ 1

2πi

∫
CA

est

s2 + 1
ds

∣∣∣∣≤ 1
2π

∫
CA

eσt

|s|2 − 1
|ds| ≤ et

2π

∫
CA

|ds|
(A− 1)2 − 1

=
et

2π
· Aπ

(A− 1)2 − 1
→ 0 as A → ∞.
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The conclusion is that the desired limit, which is f(t) for t > 0, is sin t. ��

Exercises
7.30 Check that the integral in Example 7.13 is zero for t < 0. What is its value

for t = 0 ?

7.31 Find the inverse Laplace transform of s/(s2 + 1) by the method of Exam-
ple 7.13. What is the value of the integral for t = 0 ?

7.32 Example 7.13 can be generalized thus: Suppose that f̃(s) is analytic in the
entire s-plane except for a finite number of isolated singularities, that f̃ is
analytic in Re s > k, and that there is an estimate of the form |f̃(s)| ≤
M/|s|α for |s| ≥ R, where α > 0. Then, for t > 0, f(t) = the sum of all the
residues for the function etsf̃(s). Prove this (or “check” it)!

7.11 *Distributions and Fourier transforms

We shall now see what happens if we try to obtain Fourier transforms of
simple distributions such as those considered in Sec. 2.6–7. At this point,
we treat only expressions such as δ(n)

a (t). The more revolutionary aspects
of the theory are postponed to Chapter 8.

It is rather obvious what the indicated transforms should be. We recall
that δ(n)

a (t) was defined so as to have the following effect on a sufficiently
smooth function ϕ: ∫

δ(n)
a (t)ϕ(t) dt = (−1)n ϕ(n)(a).

In particular, if we take ϕ(t) = e−iωt, we should have

δ̂
(n)
a (ω) =

∫
δ(n)
a (t)e−iωt dt = (−1)n(−iω)ne−iωa = (iω)ne−iaω.

As a special case, we have that δ̂(ω) = 1 for all ω. A physical interpretation
of this is that the δ “function” is composed out of all frequencies with
equal amplitudes (or, rather, equal amplitude density). This kind of signal
is sometimes given the name “white noise.” If the situation is interpreted
literally, it means that δ has infinite energy, and thus it cannot be realized
in physical reality. However, it can be treated as a formalism that turns
out to be useful.

The convolution of δ and a (smooth) function ϕ should reasonably work
like this:

δ ∗ ϕ(t) =
∫
R
δ(t− u)ϕ(u) du = ϕ(t).

Thus, δ acts as an algebraic identity with respect to the convolution op-
eration. Let us also accept that the convolution operation is commutative
and associative, even when one of the objects involved is a δ.
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If the functions involved are sufficiently nice, a convolution can be dif-
ferentiated past the integral sign. The result is the simple formula

(f ∗ g)′ = f ′ ∗ g = f ∗ g′.

The applications in Sec. 7.7–8 can then be attacked along the following
lines. Let us first study the heat equation, and assume that the initial values
are δ:

uxx = ut, x ∈ R, t > 0; u(x, 0) = δ(x), x ∈ R.

Fourier transformation gives, just as in Sec. 7.7,

−ω2U =
dU

dt
, ω ∈ R̂, t > 0; U(ω, 0) = 1, ω ∈ R̂.

Solving this differential equation we get

U(ω, t) = e−ω2t,

and inverting this Fourier transform gives

u(x, t) = E(x, t) =
1√
4πt

exp
(

−x2

4t

)
.

Now assume that f is some (continuous) function, not necessarily in L1(R),
and consider the general initial value problem:

uxx = ut, x ∈ R, t > 0; u(x, 0) = f(x), x ∈ R.

If we put u = E ∗ f , we will now have a solution of this problem. Indeed,
since E satisfies the heat equation, it is clear that

uxx−ut =
∂2

∂x2 E∗f− ∂

∂t
E∗f = Exx∗f−Et∗f = (Exx−Et)∗f = 0∗f = 0.

And since E → δ as t ↘ 0, it should also follow that the boundary values
are right:

u(x, t) = E(x, t) ∗
x
f(x) → δ ∗ f(x) = f(x).

We also give an example where we use Fourier transformation to solve
an ordinary differential equation.

Example 7.14. Find a solution of the equation y′′(t) − y(t) = δ(t).

Solution. Fourier transformation, and using the rule for the transform of a
derivative, gives

(iω)2ŷ(ω) − ŷ(ω) = 1.

If we solve for ŷ, we find ŷ(ω) = −1/(1 +ω2), which is a well-known trans-
form: apparently y(t) = − 1

2 e
−|t|. And, indeed, if we look at this function,
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we see that y′′(t) = y(t) for all t �= 0; and at t = 0, the first derivative has
an upward jump of one unit, which confirms that we have found a solution.

The reader should recognize this type of equation. Its homogeneous coun-
terpart has the solutions yH = Aet + Be−t, and thus the given equation
has the general solution y = − 1

2 e
−|t| + yH . We seem to have lost all these

solutions except for one. This depends on the fact that all the others ac-
tually cannot be Fourier transformed at all, not even as distributions. But
as a means of finding a particular solution, the method obviously works in
this case. ��
Exercise
7.33 Find a solution of the equation y′′(t) + 3y′(t) + 2y(t) = δ(t).

Summary of Chapter 7

Definition
If f ∈ L1(R), the Fourier transform of f is the function F [f ] = f̂ given by

f̂(ω) =
∫
R
f(t)e−iωt dt, ω ∈ R̂.

Theorem
If f ∈ L1(R), then f̂ is a continuous function on R̂ that tends to 0 as
|ω| → ∞.

Theorem
(Inversion theorem) Suppose that f ∈ L1(R), that f is continuous except
for a finite number of finite jumps in any finite interval, and that f(t) =
1
2 (f(t+) + f(t−)) for all t. Then

f(t0) = lim
A→∞

1
2π

∫ A

−A

f̂(ω) eiωt0 dω

for every t0 where f has (generalized) left and right derivatives. In partic-
ular, if f is piecewise smooth (i.e., continuous and with a piecewise contin-
uous derivative), then the formula holds for all t0 ∈ R.

A collection of formulae for the Fourier transform begins on page 252.

Historical notes

The Fourier transform, or Fourier integral, first appears in the works of Fourier

himself. Its development has run parallel to that of Fourier series ever since.
Recent developments in signal processing have triggered the result known as the
sampling theorem, which is attributed to Claude Shannon (1916–2001). He was
the founder of information theory.
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Problems for Chapter 7

7.34 Compute the Fourier transform of f , defined by

f(x) =

{
2 − |x|, |x| < 2,
0, |x| > 2.

Use the result to compute
∫ ∞

−∞

( sin t
t

)4
dt.

7.35 The function f is continuous on R, and both f and f ′ belong to L1(R).
Compute the Fourier transform of f , if 2f(x)−f(x+1)+f ′(x) = exp(−|x|),
x ∈ R.

7.36 Find the Fourier transform of
1

x2 + 4x+ 13
.

7.37 Find the Fourier transforms of (a)
1

1 + 9x2 , (b)
eix

1 + 9x2 , (c)
sinx

1 + 9x2 .

7.38 Find the Fourier transform of f(x) =
x

(1 + x2)2
.

7.39 A function f is defined by f(x) = 2x if |x| < 1, f(x) = 0 otherwise.
(a) Compute the Fourier transform f̂ of f .
(b) For all x ∈ R, determine lim

a→∞

∫ a

−a
f̂(t) eitx dt.

(c) Compute
∫ ∞

−∞

( sin t
t2

− cos t
t

)2
dt.

7.40 Let fN (t) = πN2 for 0 < t < 1/N , f(t) = 0 for t > 1/N , and define fN (t)
for t < 0 through the condition that fN be an odd function. Compute the
Fourier transform of fN , and then find lim

N→∞
f̂N (ω).

7.41 Find the Fourier transform of f , when f(t) = sin t for |t| < π, = 0 for
|t| ≥ π, and use the result to compute∫ ∞

−∞

sin2 πt

(t2 − 1)2
dt.

7.42 Show that
∫ ∞

−∞

( sinx
x

)2
dx = π by transforming the function

f(x) =

{
1, |x| ≤ 1,
0, |x| > 1

and using the Plancherel formula.

7.43 Let f(t) = 1 − t2 for |t| < 1, = 0 otherwise. Find f̂ and use the result to
find the values of the integrals∫ ∞

−∞

sin t− t cos t
t3

dt and
∫ ∞

−∞

(sin t− t cos t)2

t6
dt.

7.44 Compute the integral

F (ω) =
∫ ∞

−∞

sinα
α(1 + (ω − α)2)

dα, −∞ < ω < ∞.
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7.45 Solve the integral equation∫ ∞

−∞

f(y)
(x− y)2 + 1

dy =
a

a2 + x2 , x ∈ R

using Fourier transforms. Conditions on a?

7.46 (a) Let f(x) = e−|x|. Find f ∗ f(x) =
∫ ∞

−∞
f(y) f(x− y) dy.

(b) Using Fourier transforms, solve the differential equation

y′′(x) − y(x) = e−|x| x ∈ R.

7.47 Let the signal f(t) = A1 cos(ω1t+θ1)+A2 cos(ω2t+θ2) be given. Compute

rxx(t) = lim
T→∞

1
T

∫ T/2

−T/2

f(u) f(t+ u) du

(the auto-correlation function, ACF). Try to find the frequency spectrum
Pxx(ω) of rxx (this is called the energy spectrum of f ; the connection be-
tween Pxx and rxx is called the Wiener–Khinchin relations). To determine
Pxx correctly, you should know something about distributions (e.g., the
Dirac measure δ).

7.48 Suppose that a certain linear system transforms an incoming signal f into
an outgoing signal y that is a solution of

y′′(t) + ay′(t) + by(t) = f(t),

where a and b are constants. Show that if the roots of the characteristic
equation r2 + ar+ b = 0 both have their real parts < 0, then the system is
causal; i.e., the value y(t) at any time t depends only on the values of f(u)
for u ≤ t.

7.49 Find all functions f ∈ L1(R) that satisfy the integral equation∫ ∞

−∞
f(t− y) e−|y| dy = e−t2/2, t ∈ R.

7.50 Find the Fourier transform of the function f(x) = x e−|x|.

7.51 Determine the Fourier transform of

f(x) =

{
e−x, x > 0,
−ex, x < 0,

and then compute the integral
∫ ∞

−∞

x2

(1 + x2)2
dx.

7.52 Find a solution of the integral equation∫ ∞

−∞
f(x− y) e−|y| dy = (1 + |x|) e−|x|.
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7.53 Find a solution of the integral equation

f(x) = e−|x| + 1
2 e

x

∫ ∞

x

e−yf(y) dy, −∞ < x < ∞.

7.54 Using Fourier transformation, find a solution of the integral equation

e−x2
=
∫ ∞

−∞
e−4(x−y)2 f(y) dy.

7.55 Compute
∫ ∞

−∞

sin t
t

· eitx

1 + t2
dt for −1 < x < 1. Be careful about the details!



This page intentionally left blank 



8
Distributions

8.1 History

In star-marked sections in the previous chapters we have sketched how it is
possible to extend the notion of function to include things such as “instan-
taneous pulses” and similar phenomena. The present chapter will present
a more coherent introduction to these distributions. The presentation is
biased in the way that it centers on the kind of distribution theory that
appears to be natural in connection with Fourier theory, and it is not very
far-reaching. A complete study of the theory of distributions is beyond the
intended scope of this book.

The reader should be able to study this chapter without having read the
starred sections in the former chapters. This means that there is a certain
duplication of examples, etc. This applies in particular to this introductory
section, where a number of the following examples are repetitions of things
that are also found in Sec. 2.6.

We are going to indicate a number of more-or-less puzzling difficulties that
had vexed mathematicians for a long time. Various ways of going around
the problems were suggested, until at last time was ripe, in the 1930s and
1940s, for the modern theory that we shall touch upon in this chapter.

Example 8.1. Already in Sec. 1.3 (on the wave equation) we saw difficul-
ties in the usual demand that solutions of a differential equation of order n
shall actually have (maybe even continuous) derivatives of order n. Quite
natural solutions, such as those of Exercise 6.7, get disqualified for reasons
that seem more of a “bureaucratic” than physical nature. This indicates
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that it would be a good thing to widen the notion of differentiability in one
way or another. ��
Example 8.2. Ever since the days of Newton, physicists have been
dealing with situations where some physical entity assumes a very large
magnitude during a very short period of time; often this is idealized so
that the value is infinite at one point in time. A simple example is an elas-
tic collision of two bodies, where the forces are thought of as infinite at
the moment of impact. Nevertheless, a finite and well-defined amount of
impulse is transferred in the collision. How is this to be treated mathemat-
ically? ��
Example 8.3. A situation that is mathematically analogous to the pre-
vious one is found in the theory of electricity. An electron is considered (at
least in classical quantum theory) to be a point charge. This means that
there is a certain finite amount of electric charge localized at one point in
space. The charge density is infinite at this point, but the charge itself has
an exact, finite value. What mathematical object describes this? ��
Example 8.4. In Sec. 2.4 we studied positive summation kernels. These
consist of sequences of non-negative functions with integral equal to 1, that
concentrate toward a fixed point, as a parameter tends to infinity. Can we
invent a mathematical object that can be interpreted as the limit of such
a sequence? ��
Example 8.5. There is also a sort of inverted problem, compared with the
ones in Examples 8.2–3 above. Suppose that we want to measure a physical
quantity f(t), that depends on time t. Is it really possible to determine
f(t) at a particular point in time? Every measurement takes some time
to perform. A speedometer, for example, must be constructed so that it
deals with time intervals of positive length, and the value indicated by it
is necessarily some kind of mean value of the speed attained during the
latest period of time. Heisenberg’s undecidedness principle actually tells
us that certain types of measurement cannot be exact at all ; the best we
can hope for is to get some mean value. ��
Example 8.6. In Sec. 7.7 and 7.8 we solved a couple of problems for partial
differential equations using Fourier transformation. In order to be able to
use this method we had to impose rather restrictive conditions on the
solutions — they had to be integrable in a certain way, and differentiability
past an integral sign had to be explicitly assumed. But in both of these
cases, the result of the calculations was a formula that was actually valid
in far more general situations than those demanded by the method. Is there
something going on behind the stage, that we could drag out in clear view
and enable us to do our Fourier transformations without hesitations and
bad conscience? ��
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The problems in Examples 8.2 and 8.3 above have been treated by many
physicists ever since the later years of the nineteenth century by using the
following trick. Let us assume that the independent variable is t. Introduce
a “function” δ(t) with the following properties:

(1) δ(t) ≥ 0 for − ∞ < t < ∞,

(2) δ(t) = 0 for t �= 0,

(3)
∫ ∞

−∞
δ(t) dt = 1.

Regrettably, there is no ordinary real-(or complex)-valued function that
satisfies these conditions. Condition 2 irrevocably implies that the inte-
gral in condition 3 must be zero. Nevertheless, using formal calculations
involving the object δ, it was possible to arrive at results that were both
physically meaningful and “correct.” A name that is commonly associated
with this is P. Dirac, but he was not the only person (nor even the first
one) to reason in this way. He has, however, given his name to the object
δ: it is often called the Dirac delta function (or the Dirac measure, or the
Dirac distribution).

One way of making legitimate the formal δ calculus is to follow the idea
that is hinted at in Example 8.4. If δ occurs in a formula, it is replaced by a
positive summation kernel KN ; upon this one then does one’s calculations,
and finally one passes to the limit. In a certain sense (which will be made
precise at the end of Sec. 8.4), it is true that δ = lim

N→∞
KN .

The problems presented by Example 8.5 can be tackled in a very uncon-
ventional way. We simply give up the requirement (or aspiration) that the
“function” f actually does possess any values f(t) at all at precise points t.
Instead, it is thought to have values at “fuzzy points”; i.e., it is possible to
account for (weighted) means of f over intervals of positive length, these
means being real or complex numbers.

Our strategy now is the following. First we make precise what we mean by
a fuzzy point (in Sec. 8.2). Then, in Sec. 8.3, we define our generalization of
the notion of a function, which will be called a distribution. After that, we
build the machinery that will lead to the solution of the dilemmas presented
as Examples 8.1–6 (including numbers 1 and 6, which have not been more
closely examined in the present discussion).

The whole exposition is very sketchy. For a more complete theory we refer
to more penetrating literature, such as the monumental standard work by
Lars Hörmander, The Analysis of Linear Partial Differential Operators,
Volume 1.
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8.2 Fuzzy points – test functions

Here we introduce so-called test functions, which shall serve, among other
things, as the “fuzzy points” mentioned at the end of last section. We do
it in one dimension, but the whole theory is easily redone in an arbitrary
finite dimension.

Thus, we consider a real x-axis denoted by R, as usual. A test function
is an infinitely differentiable complex-valued function, ϕ : R → C, ϕ ∈
C∞(R). In these connections one normally uses a more concise notation
for the last-mentioned set: we write E = C∞(R).

We shall define two important subsets of E. First we define the support
of a function ϕ:

support of ϕ = suppϕ = {x ∈ R : ϕ(x) �= 0}.
Thus, a point x belongs to suppϕ if every neighborhood of x contains
points where ϕ(x) �= 0; the fact that x is not in the support of ϕ means
that ϕ(y) = 0 for all y in some neighbourhood of x. The support is always
a closed set.

Example 8.7. If ϕ(x) = 1 − x2 for |x| < 1 and ϕ(x) = 0 for |x| ≥ 1, then
suppϕ = [−1, 1]. ��
Example 8.8. If ϕ is defined by ϕ(x) = sinx for |x| < π and 0 elsewhere,
then suppϕ = [−π, π]. Although ϕ(0) = 0, the point x = 0 belongs to the
support, because every neighborhood of this point contains points where
ϕ(x) �= 0. ��

Saying that suppϕ is compact means that ϕ(x) = 0 outside of some
compact interval. The set of test functions on R with compact support is
denoted by D. The fact that such functions exist may not appear obvious
to some readers, but indeed there are a wealth of them. If the reader is not
prepared to accept this fact, some examples are constructed at the end of
this section.

We shall also introduce a class of test functions situated between D and
E, which is the most important class in our exposition of the theory.

Definition 8.1 We say that a function ϕ belongs to the Schwartz class S

if ϕ has derivatives of all orders and these satisfy inequalities of the form

(1 + |x|)n|ϕ(k)(x)| ≤ Cn,k, x ∈ R,

where Cn,k are constants, for all integers n and k that are ≥ 0.

The import of the definition is that ϕ and all its derivatives tend to zero as
x → ±∞ faster than the inverted value of every polynomial. In particular,
D ⊂ S, but, in addition to this, S contains the function ϕ(x) = e−x2

(and lots of others). The class S is named after Laurent Schwartz, who
founded the theory of distributions in the 1940s.
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In connection with S, there is sometimes reason to talk about moderately
increasing or tempered functions. These are functions χ that increase at
most as fast as some polynomial, i.e., there are constants C andm such that
|χ(x)| ≤ C(1 + |x|)m for all x. If χ belongs to E, if χ and all its derivatives
are tempered, and if ϕ ∈ S, then the product χϕ will also belong to S.
Such a function χ is called a multiplicator (more precisely, a multiplicator
on the space S). The set of these multiplicators has no generally accepted
notation, but we shall occasionally use the letter M for it.

The sets D, S and E are vector spaces of infinite dimension. We want
to be able to speak about convergence of sequences of elements in these
spaces. In Chapter 5 we saw examples of how convergence could be defined
by referring to various norms. The kind of convergence that we want now
is more complicated to describe. Since our interest will be centered on the
space S, we content ourselves with defining convergence in this space.

Definition 8.2 A sequence {ϕj}∞
j=1 ⊂ S is said to converge in S to a

function ψ ∈ S, if for all integers n ≥ 0 and k ≥ 0 it holds that

lim
j→∞

max
x∈R

(1 + |x|)n|ϕ(k)
j (x) − ψ(k)(x)| = 0.

Thus, the functions ϕj and all their derivatives are to converge toward ψ
and the respective derivatives of ψ in such a manner that the convergence is
uniform even after multiplication by arbitrary polynomials in the variable
x. This is quite a restrictive notion of convergence, but it turns out to be
“correct” for our future needs. We write

ϕj
S−→ ψ as j → ∞.

Remark. The spaces E, S, and D contain many more functions than those that
justify the name “fuzzy points.” It is, however, desirable to be able to work
with linear spaces of test functions: and if such a space contains “fuzzy points”
around all points x of the real axis, it will automatically contain a great number
of functions that are not particularly “localized” (since a linear space is closed
under addition and multiplication by scalars). For this reason, it is just as well
to define test functions in the more generous way that we have done. ��

The fact that there actually exist test functions with compact support may
not be obvious to everybody. We shall give a few examples to show that this is
actually the case. First we prove a lemma (which is often taken for granted by
students without really thinking).

Lemma 8.1 Suppose that f is continuous in [a, b] and differentiable in ]a, b[,
and suppose that the derivative f ′(x) has a limit A, as x ↘ a. Then f has a
right-hand derivative for x = a, and this derivative has the value A.

Proof. The mean-value theorem of Lagrange can be used on the subinterval [a, a+
h], where h > 0:

f(a+ h) − f(a) = f ′(ξ) · h ⇐⇒ f(a+ h) − f(a)
h

= f ′(ξ),
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y=ϕ(x)

FIGURE 8.1.

where a < ξ < a+h. If we let h ↘ 0, the right-hand member of the last equation
tends to A, by the assumption; thus, the left-hand member also has the limit A,
and the limit of the left-hand member is, by definition, the right-hand derivative
of f at a. ��

Example 8.9. First define a function ϕ by putting

ϕ(x) =

{
0, x ≤ 0;

e−1/x, x > 0.

The substitution 1/x = t and letting t → +∞, corresponding to x ↘ 0, shows
that ϕ is continuous also at x = 0. For x > 0, a few differentiations give

ϕ′(x) = e−1/x · 1
x2 , ϕ

′′(x) = e−1/x

(
1
x4 − 2

x3

)
, ϕ′′′(x) = e−1/x

(
1
x6 − 6

x5 +
6
x4

)
.

From this, one should realize that all the derivatives will have the form e−1/x

multiplied by a polynomial in the variable 1/x. The limit as x ↘ 0 will in all
cases be 0. According to the lemma, ϕ has then right-hand derivatives of all
orders equal to 0 at the origin. The left-hand derivatives are also 0, trivially.
This means that ϕ is indefinitely differentiable everywhere and its support is the
interval [0,∞[. See Figure 8.1 ! Now define ψ(x) = ϕ(x)ϕ(1 − x). This is a C∞

function with support [0, 1]. ��
For the ψ of the example we thus have ψ ∈ D. Other elements of D can be

constructed by translations, dilatations, multiplication by arbitrary functions in
E, addition, etc. In fact, D is quite a rich space.

The function ψ, after division by the number B =
∫ 1

0
ψ(x) dx, can be inter-

preted as a “fuzzy point,” localized around x = 1
2 . If we translate the localization

to the origin by forming ω(x) = ψ(x − 1
2 )/B and then re-scale according to the

model nω(nx), we do indeed obtain a positive summation kernel as in Sec. 2.4,
which becomes less and less fuzzy as n increases.

Example 8.10. With ψ and B as before, let

Ψ(x) =
1
B

∫ x

−∞
ψ(y) dy.

This gives a function in E, having the value 0 for x ≤ 0 and 1 for x ≥ 1. Then
put Ω(x) = Ψ(x) − Ψ(x − 1). Then Ω ∈ D, with support [0, 2]. Furthermore, Ω
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has the following property:

Φ(x) ≡
∞∑

n=−∞
Ω(x− n) = 1 for all x ∈ R.

This can be shown in the following way (compare Figure 8.2). For any fixed x,
at most two terms in the sum are different from zero, and so the series is very
much convergent. Furthermore, it is easy to see that Φ(x+ 1) = Φ(x), so that Φ
has period 1. Thus we can restrict our study to the interval 1 ≤ x < 2. For these
x, the sum reduces to the terms Ω(x) + Ω(x− 1), and we get

Φ(x) = Ω(x) + Ω(x− 1) = Ψ(x) − Ψ(x− 1) + Ψ(x− 1) − Ψ(x− 2)

= Ψ(x) − Ψ(x− 2) = 1 − 0 = 1.

��
Example 8.10 shows that the function that is identically 1 for all real x can be

decomposed as a sum of infinitely differentiable functions with compact supports.
Such a representation of 1 is called a partition of unity.

Exercise

8.1 Show that if ϕ ∈ S, then also ϕ′ ∈ S. Is the converse true: i.e., must an
antiderivative of a test function in S also be in the same set?

8.3 Distributions

Distributions are mappings that assign to every test function in some space
a complex number. If f is a distribution, we denote this value for a test
function ϕ by writing f [ϕ], using square brackets. (In literature one often
sees the notation 〈f, ϕ〉, but we shall avoid this, since it does not completely
share the properties of the inner product in previous chapters.) Depending
on which space of test functions one chooses, one gets different classes of
distributions. In connection with Fourier analysis, it turns out that the
space S is the most natural one. The distributions belonging to these test
functions are called tempered distributions.

Definition 8.3 A tempered distribution f is a mapping f : S → C having
the properties
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(1) linearity: f [c1ϕ1 + c2ϕ2] = c1f [ϕ1] + c2f [ϕ2] for all ϕk ∈ S and scalars
ck;

(2) continuity: if ϕj
S−→ ψ as j → ∞, then also lim

j→∞
f [ϕj ] = f [ψ].

The set of all tempered distributions is denoted S′.

We give some examples.

Example 8.11. Let f be a continuous function on R such that there are
constants M and m such that |f(x)| ≤ M(1 + |x|)m for all x. Then we can
define a tempered distribution Tf by letting

Tf [ϕ] =
∫
R
f(x)ϕ(x) dx.

It is clear that Tf is a linear mapping; the fact that it is continuous follows
from the fact that convergence in S implies uniform convergence even after
multiplication by expressions such as (1 + |x|)m+2:

|Tf [ϕj ] − Tf [ψ]| =
∣∣∣∣∫

R
f(x)(ϕj(x) − ψ(x)) dx

∣∣∣∣
≤
∫
R
M(1 + |x|)m|ϕj(x) − ψ(x)| dx

=
∫
R
M(1 + |x|)m+2|ϕj(x) − ψ(x)| · dx

(1 + |x|)2

≤M max
x∈R

{
(1 + |x|)m+2|ϕj(x) − ψ(x)|} ·

∫
R

dx

(1 + |x|)2 → 0

as j → ∞. It is customary to identify the distribution Tf with the function
f and write f [ϕ] instead of Tf [ϕ]. In this way, every continuous, moderately
increasing function can be considered to be a distribution, and it is in this
way that distributions can be seen as generalizations of ordinary functions.

��
It is not necessary that the f in Example 8.11 be continuous. It is suffi-

cient that it is locally integrable, i.e., that
∫ b

a
|f(x)| dx exists and is finite for

all compact intervals [a, b]; on the other hand, it cannot be allowed to grow
too fast as |x| → ∞. An important distribution of this type is exhibited in
the next example:

Example 8.12. Let H be the Heaviside function, defined by

H(x) = 0 if x < 0, H(x) = 1 if x > 0.

(The value ofH(0) is immaterial.) This defines a distribution by the formula

H[ϕ] =
∫
R
H(x)ϕ(x) dx =

∫ ∞

0
ϕ(x) dx. ��
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Example 8.13. Define δ ∈ S′ by δ[ϕ] = ϕ(0). (The reader is asked to
check linearity and continuity.) This distribution is called the Dirac distri-
bution (Dirac function, Dirac measure), and this is the object announced
in Examples 8.2 and 8.3. ��

If f is an arbitrary distribution, as a rule there exists no “value at the
point x” to be denoted by f(x). In spite of this, one often writes the effect
of f on a test function ϕ as an integral:

f [ϕ] =
∫
R
f(x)ϕ(x) dx.

This is indeed a very symbolic notation, but, nevertheless, it turns out
to be quite useful. The whole theory develops in such a way that those
suggestions that are invoked by the integral symbolism will be “correct.”
As an example, one writes

ϕ(0) = δ[ϕ] =
∫
R
δ(x)ϕ(x) dx.

If we symbolically translate the δ function and write δ(x−a), the ordinary
rules for changing variables yield∫

R
δ(x− a)ϕ(x) dx =

∫
R
δ(y)ϕ(y + a) dy =

[
ϕ(y + a)

]
y=0 = ϕ(a).

One often writes δa(x) = δ(x − a), so that δa is the distribution given by
δa[ϕ] = ϕ(a).

We include another few very mixed examples.

Example 8.14. The mapping f that is defined by

f [ϕ] = 3ϕ(2) − 4ϕ′(2) + 7ϕ(8)(π) +
∫ 3

2
ϕ′′(x) cos 7x dx

is a tempered distribution. ��
Example 8.15. The function 1/x cannot play the role of f in Exam-
ple 8.11, since the integral will be divergent at the origin, However, we can
define f [ϕ] using a symmetric limit:

f [ϕ] = lim
ε↘0

∫
|x|>ε

ϕ(x)
x

dx = lim
ε↘0

(∫ −ε

−∞
+
∫ ∞

ε

)
ϕ(x)
x

dx

= lim
ε↘0

∫ ∞

ε

ϕ(x) − ϕ(−x)
x

dx.

The integral converges because the integrand in the last version has a finite
limit as x ↘ 0, namely, 2ϕ′(0). It is not difficult to prove that the formula
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actually defines a tempered distribution. This distribution is commonly
called P.V.1/x, where P.V. stands for principal value, which means the
symmetric limit in the formula. ��

Example 8.16. If f(x) = ex2
, then f does not describe a tempered dis-

tribution according to Example 8.11. Indeed, if we choose the test function
ϕ(x) = e−x2

, which clearly belongs to S, the integral will diverge. The
function f increases too fast. ��

Remark. If, instead of S, one starts with the test function sets D or E (with suit-
able definitions of convergence, which are omitted here), one obtains other classes
of distributions. Starting from D, consisting of test functions with compact sup-
port, one gets the class D′ of, simply, distributions. These comprise the tempered
distributions as a subset, but also lots of others. For example, the function f in
Example 8.16 defines such a general distribution.

If one starts with E — i.e., all C∞ functions are included among the test
functions — one gets a more restricted set E′, consisting of all distributions with
compact support, which is defined in the next section. ��

Exercises

8.2 Show that f(x) = ln |x| defines a distribution according to Example 8.11.
(What has to be proved is essentially that f is locally integrable.)

8.3 Which of the following formulae define elements of S′?

(a) f [ϕ] =
∫
R

(2x2 + 3)ϕ′′(x) dx, (b) f [ϕ] =
∫
R

exϕ(x) dx,

(c) f [ϕ] = (ϕ(0))2.

8.4 Properties

We are going to introduce some fundamental notions describing various
properties of tempered distributions. (In the interest of brevity, we shall
mostly omit the word “tempered.”)

Two distributions f and g are equal (or globally equal), if f [ϕ] = g[ϕ]
for all ϕ ∈ S.

For f, g ∈ S′, the sum f + g is defined by (f + g)[ϕ] = f [ϕ] + g[ϕ] for all
ϕ ∈ S. If c is a scalar (a complex number), then cf is the distribution that
is described by (cf)[ϕ] = c · f [ϕ]. With these operations, S′ itself becomes
a linear space.

A distribution f is zero on an open interval I =]a, b[, if f [ϕ] = 0 for all
ϕ ∈ S that have suppϕ ⊂ I. Two distributions f and g are equal on an
open interval I if f − g is zero on I. For example, δ = 0 on the interval
]0,∞[.
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If f and g are ordinary functions, equality on I means that f(x) = g(x)
for all x ∈ I except possibly for a set of measure zero (a zero set, cf. page
89). Just as in Chapter 5, we consider such functions to be equivalent (or,
loosely speaking, to be the same).

The support supp f of a distribution f should be the smallest closed set
where, loosely speaking, it really does matter what values are taken by the
test functions; more precisely, a point x does not belong to the support if
there is a neighborhood (an open interval) around x where f is zero. The
support is always a closed set.

Example 8.17. For a distribution that is a continuous function, f [ϕ] =∫
R fϕ dx, the support of f as a distribution coincides with the support of
f as a function. If f is discontinuous, the expression “f is zero” in the
definition above should be changed to “f is zero except possibly for a set
of measure zero”. ��
Example 8.18. With the notation of Sec. 8.3, suppH = [0,∞[, supp δ =
{0}, supp δa = {a}. The support of the distribution in Example 8.14 is the
set [2, 3] ∪ {π}. ��

If χ is a multiplicator function and f ∈ S′, we can define the product
χf ∈ S′ by putting (χf)[ϕ] = f [χϕ] for all ϕ ∈ S. (Check that this is
reasonable if f is an ordinary function, and that χf actually turns out to
be a tempered distribution!)

Example 8.19. What is the product χδ ? According to the definition we
have

(χδ)[ϕ] = δ[χϕ] = χ(0)ϕ(0) = χ(0) · δ[ϕ].

This result is often written in the form

χ(x)δ(x) = χ(0)δ(x).

In the same way one sees that in general

χ(x)δ(x− a) = χ(a)δ(x− a). (8.1)

��
Example 8.20. Let f be P.V.1/x, and χ(x) = x. What is χf ? Indeed,

χf [ϕ] = f [χϕ] = lim
ε↘0

∫
|x|>ε

x · ϕ(x)
x

dx = lim
ε↘0

∫
|x|>ε

ϕ(x) dx

=
∫ ∞

−∞
ϕ(x) dx =

∫
R

1 · ϕ(x) dx.

We see that χf can be identified with the function which is identically 1,
which we write simply as x · P.V.1/x = 1. ��
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Now, at last, we arrive at the promised generalization of the notion of a
derivative. The starting point is the formula for integration by parts:∫ b

a

f ′(x)ϕ(x) dx = f(b)ϕ(b) − f(a)ϕ(a) −
∫ b

a

f(x)ϕ′(x) dx.

If f is a moderately increasing function of class C1, and ϕ ∈ S, we can let
a → −∞ and b → ∞. The contributions at a and b will both tend to zero,
and we are left with∫

R
f ′(x)ϕ(x) dx = −

∫
R
f(x)ϕ′(x) dx.

This inspires the following definition:

Definition 8.4 If f ∈ S′, a new tempered distribution f ′ is defined by

f ′[ϕ] = −f [ϕ′] for all ϕ ∈ S.

We call f ′ the derivative of f .

It is not hard to check that actually f ′ ∈ S′; here we profit from the
rigorous conditions that we have placed upon our test functions! Let us
investigate some common cases. If f ∈ C1(R), the new derivative will coin-
cide with the old one. But now, functions that did not have a derivative in
the traditional sense will find themselves to have one, this being a distribu-
tion rather than an ordinary function. Also, the definition of the derivative
can be iterated any number of times, and we find that all f ∈ S′ suddenly
are endowed with derivatives of all orders!

Example 8.21. Find the derivative of the Heaviside function H ! By
definition, it should emerge from the following calculation:

H ′[ϕ] = −H[ϕ′] = −
∫ ∞

0
ϕ′(x) dx = −[ϕ(x)

]∞
x=0 = −(0 − ϕ(0))

= ϕ(0) = δ[ϕ].

We see that H ′ = δ, the derivative of the Heaviside function is the Dirac
“function.” The latter is commonly illustrated graphically by a “spike” (see
Figure 8.3). In general, it can be seen that the derivative of a jump of size
c at a point x = a is given by cδa (or cδ(x− a) ). ��

Example 8.22. Find the derivatives of δ:

δ′[ϕ] = −δ[ϕ′] = −ϕ′(0), δ′′[ϕ] = −δ′[ϕ′] = δ[ϕ′′] = ϕ′′(0).

In general, δ(n)[ϕ] = (−1)n ϕ(n)(0). ��
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Example 8.23. What is the derivative of χf , where χ belongs to M and
f ∈ S′ ? On the one hand,

(χf)′[ϕ] = −(χf)[ϕ′] = −f [χϕ′],

and on the other,

(χ′f + χf ′)[ϕ] = (χ′f)[ϕ] + (χf ′)[ϕ] = f [χ′ϕ] + f ′[χϕ]
= f [χ′ϕ] − f [(χϕ)′] = f [χ′ϕ] − f [χ′ϕ+ χϕ′] = −f [χϕ′].

(Give some thought to what motivates each individual equality sign in these
calculations!) One can see that the distributions (χf)′ and χ′f + χf ′ have
the same effect on arbitrary test functions; thus we have proved the rule

(χf)′ = χ′f + χf ′ if χ is moderately increasing and f ∈ S′.

��
In calculations involving functions that are defined by different formulae

in different intervals, it is practical to make use of translated Heaviside
functions. If a < b, the expression H(t − a) − H(t − b) is equal to 1 for
a < t < b and equal to 0 outside the interval [a, b]. It might be called a
“window” that lights up the interval (a, b) (we do not in these situations
care much about whether an interval is open or closed). For unbounded
intervals we can also find “windows”: the function H(t − a) lights up the
interval (a,∞), and the expression 1 −H(t− b) the interval (−∞, b).

Example 8.24. Consider the function f : R → R that is given by

f(t) =


1 − t2 for t < −2,
t+ 2 for − 2 < t < 1,
1 − t for t > 1.
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This can now be compressed into one formula:

f(t) = (1 − t2)(1 −H(t+ 2)) + (t+ 2)(H(t+ 2) −H(t− 1))
+(1 − t)H(t− 1)

= (1 − t2) + (−1 + t2 + t+ 2)H(t+ 2) + (−t− 2 + 1 − t)H(t− 1)
= 1 − t2 + (t2 + t+ 1)H(t+ 2) − (2t+ 1)H(t− 1).

��

Example 8.25. The function f(x) = |x2 − 1| can be rewritten as

f(x) = (x2 − 1)H(x− 1) + (1 − x2)(H(x+ 1) −H(x− 1))
+(x2 − 1)(1 −H(x+ 1))

= (x2 − 1)
(
2H(x− 1) − 2H(x+ 1) + 1

)
.

This formula can be differentiated, using the rule for differentiating a prod-
uct:

f ′(x) = 2x
(
2H(x− 1) − 2H(x+ 1) + 1

)
+ (x2 − 1)

(
2δ(x− 1) − 2δ(x+ 1)

)
= 2x

(
2H(x− 1) − 2H(x+ 1) + 1

)
.

In the last step, we used the formula (8.1). One more differentiation gives

f ′′(x) = 2
(
2H(x− 1) − 2H(x+ 1) + 1

)
+ 2x

(
2δ(x− 1) − 2δ(x+ 1)

)
= 2

(
2H(x− 1) − 2H(x+ 1) + 1

)
+ 4δ(x− 1) + 4δ(x+ 1).

The first term contains the classical second derivative of |x2 − 1|, which
exists for x �= ±1; the two δ terms demonstrate that f ′ has upward jumps
of size 4 for x = ±1. See Figure 8.4. ��

Example 8.26. Let a > 0 and b be real constants. If f ∈ S′, define g by
g(x) = f(ax+ b). This means that (using symbolic integrals)

g[ϕ] =
∫
f(ax+b)ϕ(x) dx =

∫
f(y)ϕ

(
y − b

a

)
dy

a
=
∫
f(x)ϕ

(
x− b

a

)
dx

a
,

(8.2)
i.e.,

g[ϕ] =
1
a
f

[
x �→ ϕ

(
x− b

a

)]
.

What connection holds between the derivatives of f and g ? By the defini-
tion of g′ we should have

g′[ϕ] = −g[ϕ′] = −
∫
f(ax+ b)ϕ′(x) dx.



8.4 Properties 211

1

1

f

◦

◦

◦

◦

1

2

f ′

1

2◦

◦

◦

◦

f ′′

FIGURE 8.4.

What is the effect of the distribution h that is symbolically written h(x) =
af ′(ax+ b) ? Well, using the same change of variable as in (8.2) we get

h[ϕ] = a

∫
f ′(ax+ b)ϕ(x) dx = a

∫
f ′(x)ϕ

(
x− b

a

)
dx

a

=
∫
f ′(x)ϕ

(
x− b

a

)
dx,

and the definition of f ′ then yields

h[ϕ] = −
∫
f(x)

d

dx
ϕ

(
x− b

a

)
dx = −1

a

∫
f(x)ϕ′

(
x− b

a

)
dx,

which, after a change of variable, proves to be − ∫
f(ax + b)ϕ′(x) dx. If

a < 0, the computations are analogous (there will occur a couple of minus
signs that cancel in the end). We have then proved that the formula g′(x) =
af ′(ax + b) holds even for distributions. (In fact, the chain rule will hold
also for more general changes of variable than these, but we will not delve
deeper into this. Too “general” changes of variable may lead us out of the
spaces S and S′ where we have chosen to stay in this exposition.) ��

Using the new notion of derivative, we have now a solution of the old
trouble with the wave equation, c2uxx = utt. If we let f and g be two
functions on R and form

u(x, t) = f(x− ct) + g(x+ ct),

we can take derivatives of f and g in the distribution sense. Using the chain
rule as in Example 8.26 it is seen immediately that u satisfies the equation.

In what follows we shall need the following result.
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Theorem 8.1 If f ∈ S′, then f ′ = 0 if and only if f is a constant function.

To prove the theorem we need a lemma.

Lemma 8.2 A test function ϕ ∈ S is the derivative of another function in
S if and only if

∫
R ϕ(x) dx = 0.

Clearly, if ϕ = Φ′, then
∫
ϕ = Φ(∞) − Φ(−∞) = 0, so the hard part

is to prove the converse statement. If
∫
ϕ = 0, we can define a primitive

function Φ by

Φ(x) =
∫ x

−∞
ϕ(y) dy = −

∫ ∞

x

ϕ(y) dy.

Obviously, Φ is infinitely differentiable, for Φ(k) = ϕ(k−1), and estimates of
these derivatives are no problem. What remains is to show that the function
itself tends to zero quickly enough. However, if n is an integer, we do know
that |ϕ(y)| ≤ C/(1 + |y|)n+2 for some C, and for x ≥ 0 we then have

(1 + |x|)n|Φ(x)| ≤ (1 + |x|)n

∫ ∞

x

C dy

(1 + |y|)n+2

≤ (1 + |x|)n

(1 + |x|)n

∫ ∞

x

C dy

(1 + |y|)2 ≤ C1.

For x < 0, we can do the analogous thing to the other one of the integrals
that define Φ. This shows that Φ ∈ S′, and the lemma is proved.

Proof of Theorem 8.1. Saying that f is the constant c means that f is
identified with the differentiable function f(x) = c; in this case, the new
derivative coincides with the traditional one, so that f ′ = 0. The converse
is harder. Assume that f ′ = 0. Then

f [ϕ′] = −f ′[ϕ] = 0 for all ϕ ∈ S. (8.3)

However, we must know what f ′ does to an arbitrary test function. Let ψ0
be a fixed test function such that

∫
ψ0(x) dx = 1. For an arbitrary ϕ ∈ S,

put A =
∫
ϕ(x) dx. Then ϕ − Aψ0 is a test function with integral 0, and

by the lemma it is the derivative of some function belonging to S. Put
c = f [ψ0]. Using (8.3) we find that

0 = f [ϕ−Aψ0] = f [ϕ] −Af [ψ0] = f [ϕ] −
∫
ϕ(x) dx · f [ψ0]

= f [ϕ] − c

∫
ϕ(x) dx,

and it follows that f [ϕ] =
∫
cϕ(x) dx, which means that f can be identified

with the constant c. ��
Let fj ∈ S′ for j = 1, 2, 3, . . .. Suppose that g ∈ S′ has the property

that limj→∞ fj [ϕ] = g[ϕ] for all ϕ ∈ S. Then we say that the sequence
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{fj} converges in S′ to g, which we write as fj → g or, when precision is

needed, fj
S′

−→ g. This sort of convergence is clearly simple and natural. An
immediate consequence is that every positive summation kernel (Sec. 2.4)
converges to the Dirac distribution.

Remark. A curious reader is probably missing one operation among the defi-
nitions that we have made: multiplication. It turns out, however, that it is not
possible to define the product of two distributions in general. It is possible to
multiply certain couples, but other products cannot be given a meaningful inter-
pretation. In this text we have treated a simple case: the product of a so-called
multiplicator function and a distribution. This case will be sufficient for our
present needs. ��

Exercises
8.4 Show that x2δ′′′ = 6δ′.

8.5 Prove the following formula: χ(x)δ′(x−a) = χ(a)δ′(x−a)−χ′(a)δ(x−a).

8.6 Find the third derivative of |x3 − x2 − x+ 1|.
8.7 Show that the distributional derivative of ln |x| is P.V.(1/x).

8.8 Show that the derivative of f = P.V.(1/x) is described by the formula

f ′[ϕ] = − lim
ε↘0

∫
|x|≥ε

ϕ(x) − ϕ(0)
x2 dx.

8.9 Consider Exercise 2.20, page 25. Interpret this exercise as a result in distri-
bution theory. Sketch the graph of the “kernel” occurring in the problem.

8.5 Fourier transformation

If ϕ ∈ S, it is certainly true that ϕ ∈ L1(R), and in addition ϕ(k) ∈
L1(R) for all k ≥ 1. This means that ϕ and all its derivatives have Fourier
transforms:

ϕ̂(k)(ω) =
∫
R
ϕ(k)(x) e−iωx dx.

Integrating by parts and using the fact that ϕ(m)(x) decreases rapidly as
x → ±∞, one can see that

ϕ̂(k)(ω) = (−1)k

∫
R
ϕ(x)Dk

x

(
e−iωx

)
dx = (iω)k ϕ̂(ω).

Since the transform of ϕ(k) is bounded (Theorem 7.1), it follows that
|ω|k|ϕ̂(ω)| ≤ Ck, i.e., ϕ̂ decreases at least as fast as 1/|ω|k at infinity;
and this is true for all k ≥ 0. Furthermore, we can form the derivative of
ϕ̂:

dn

dωn
ϕ̂(ω) =

∫
R
ϕ(x) (−ix)n e−iωx dx,
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where differentiation under the integral sign is allowed because the resulting
integral converges uniformly (again we use that ϕ(x) is small when |x| is
large). Thus, ϕ̂ ∈ C∞. But on the last integral we can again apply the
same procedure as above to see that the derivatives also decrease rapidly
as ω → ±∞. Collecting our results, we have proved part of the following
theorem.

Theorem 8.2 The Fourier transformation F is a continuous bijection of
the space S onto itself.

In plain words: if ϕ ∈ S on the x-axis, then F(ϕ) = ϕ̂ ∈ S on the ω-axis,
and every function ψ(ω) belonging to S is the Fourier transform of some
function ϕ ∈ S. The latter statement follows from the fact that if ψ(ω)
belongs to S, then one can form the inverse Fourier transform ϕ of ψ:

ϕ(x) =
1
2π

∫
R̂
ψ(ω) eixω dω. (8.4)

Just as in the argument before the theorem, one sees that ϕ will be a
member of S on the x-axis and that the Fourier inversion formula gives
that ϕ̂ = ψ.

The fact that the Fourier transformation is a continuous mapping from
S to S means that if ϕj

S−→ ψ, then also ϕ̂j
S−→ ψ̂. We omit the details of

the proof of this fact; essentially it hinges on the fact that the expressions

max
ω∈R̂

(1 + |ω|)n|ϕ̂j
(k)(ω) − ψ̂(k)(ω)|

can be estimated by the corresponding expressions for (1+|x|)k|ϕ(n)
j −ψ(n)|.

(Roughly speaking, differentiation on one side corresponds to multiplication
by the variable on the other side.)

Again we stress that if ϕ ∈ S, then the Fourier inversion formula (8.4)
will always hold. There are no convergence problems for the integral, since
ϕ̂(ω) tends rapidly to zero at both infinities. The definition of S is tailored
so that the Fourier transformation shall have all these nice properties.

Now we want to define the Fourier transform of a distribution. As a
preparation, we do a “classical” calculation. Assume that f(x) and g(ω)
are functions belonging to L1, each on its own axis:

‖f‖1 =
∫
R

|f(x)| dx < ∞, ‖g‖1 =
∫
R̂

|g(ω)| dω < ∞.

The Fourier transforms f̂ and ĝ both exist:

f̂(ω) =
∫
R
f(x) e−iωx dx, ĝ(x) =

∫
R̂
g(ω) e−ixω dω,

and they satisfy the inequalities |f̂(ω)| ≤ ‖f‖1 and |ĝ(x)| ≤ ‖g‖1. The
function f(x) g(ω) e−ixω will then be absolutely integrable over the plane
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R × R̂, and the integral can be computed by iteration in two ways. This
gives the identity∫∫

R×R̂

f(x) g(ω) e−ixω dx dω =
∫
R
f(x) ĝ(x) dx =

∫
R̂
f̂(ω) g(ω) dω.

The equality of the two last members is our inspiration. It is, for example,
true if g = ϕ ∈ S and f is any L1 function. We extend its domain of validity
in the following definition.

Definition 8.5 The Fourier transform of f ∈ S′ is the distribution f̂ that
is defined by the formula

f̂ [ϕ] = f [ϕ̂] for all ϕ ∈ S.

Just as in Chapter 7, we shall also write f̂ = F(f) (but now we use
ordinary brackets instead of square ones, in order to avoid confusing it
with the notation f [ϕ]).

Remark. The equality
∫
fĝ =

∫
f̂g is sometimes considered to be a variant of

the polarized version of the Plancherel formula. ��
We proceed to check that f̂ is actually a tempered distribution. It is clear

that it is linear:

f̂ [c1ϕ1 + c2ϕ2] = f
[
(c1ϕ1 + c2ϕ2)∧] = f [c1ϕ̂1 + c2ϕ̂2]

= c1f [ϕ̂1] + c2[ϕ̂2] = c1f̂ [ϕ1] + c2f̂ [ϕ2].

The continuity is a simple consequence of the continuity of the Fourier
transformation on S: if ϕj

S−→ ψ, then

f̂ [ϕj ] = f [ϕ̂j ] → f [ψ̂] = f̂ [ψ],

which tells us precisely that f̂ is continuous, and thus a distribution.
Let us compute the Fourier transforms of some distributions. We start

with a few examples that are ordinary functions, but do not belong to
L1(R).

Example 8.27. Let f(x) = 1 for all x. What is the Fourier transform f̂ ?
We should have

f̂ [ϕ] = f [ϕ̂] =
∫
R
f(x) ϕ̂(x) dx =

∫
R
ϕ̂(x) dx

= 2π · 1
2π

∫
R
ϕ̂(x) ei0x dx = 2πϕ(0) = 2πδ[ϕ].

It follows that f̂ = 2π δ, or f̂(ω) = 2π δ(ω) if we want to stress the name of
the independent variable. (Notice that the test functions and their trans-
forms have reversed independent variables in this connection!) ��
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Example 8.28. Take f(x) = xn (n integer ≥ 0). This function defines a
tempered distribution, and its transform satisfies

f̂ [ϕ] = f [ϕ̂] =
∫
R
xn ϕ̂(x) dx.

By the ordinary rules for Fourier transforms we have that (ix)n ϕ̂(x) is the
transform of the function ϕ(n), which means that xn ϕ̂(x) is the transform
of (−i)n ϕ(n). The inversion formula then gives that f̂ [ϕ] = 2π(−i)nϕ(n)(0).
In the preceding section we saw that the nth derivative of δ is described
by δ(n)[ϕ] = (−1)nϕ(n)(0). Thus we must have f̂ = 2πinδ(n). ��

Before giving further examples we present a list of rules of computation,
which on the face look quite familiar, but now are in need of new proofs. To
simplify the formulation, we introduce two new notations. First, if f ∈ S′,
then f̌ is what could be symbolically written as f(−x); more precisely,
we define f̌ [ϕ] =

∫
f(x)ϕ(−x) dx. We say that f is even if f̌ = f , odd if

f̌ = −f .
Secondly, if a ∈ R and ϕ ∈ S, we define the translated function ϕa by

ϕa(x) = ϕ(x − a). For f ∈ S′ the translated distribution fa is f(x − a),
which means fa[ϕ] =

∫
f(x)ϕ(x + a) dx = f [ϕ−a]. (This notation is a

generalization of the notation δa to arbitary distributions.)

Theorem 8.3 If f, g ∈ S′, then

(a) f is even/odd ⇐⇒ f̂ is even/odd.

(b) ̂̂
f=2πf̌ .

(c) f̂a = e−iaω f̂ .

(d) F(eiaxf) =
(
f̂
)
a
.

(e) f̂ ′ = iωf̂ .

(f) x̂f = i
(
f̂
)′.

Proving these formulae are excellent exercises in the definitions of the
notions involved. As examples, we perform the proofs of rules (d) and (e):

(d): The effect of the left-hand member on a test function ϕ is rewritten:

F(eiaxf)[ϕ] = (eiaxf)[ϕ̂] = f [eiaxϕ̂] = f [F(ϕ−a)] = f̂ [ϕ−a] = (f̂)a[ϕ].

Each equality sign corresponds to a definition or a theorem: the first one
is the definition of the Fourier transform; the second one is the definition
of the product of a function and a distribution; the third one is a rule
for “classical” Fourier transforms; the fourth is again the definition of the
Fourier transform; and the last one is the definition of the translate of a
distribution.
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(e) is proved similarly; the reader is asked to identify the reason for each
equality sign in the following formula:

f̂ ′[ϕ] = f ′[ϕ̂] = −f [(ϕ̂)′] = −f [F(−iωϕ)] = f [F(iωϕ)] = f̂ [iωϕ]

= (iωf̂)[ϕ].

��
We proceed to give more examples of transforms of distributions.

Example 8.29. Transform f = P.V.1/x (Example 8.15, page 205): we
have seen that xf = 1. Transformation gives iDf̂ = 2πδ = 2πH ′, which
can be rewritten as iD(f̂ + 2πiH) = 0. By Theorem 8.1 it follows that
f̂+2πiH = c = constant, whence f̂ = c−2πiH. To determine the constant
we notice that f is odd, and thus f̂ must also be odd. This gives c = πi
and f̂ = πi(1 − 2H).

If we introduce the function sgnx = x/|x| (the sign of x), we can write
the result as f̂ = −πi sgnx. ��
Example 8.30. H = the Heaviside function. In Example 8.29 we saw that

F(P.V.
1
x

)
(ω) = πi(1 − 2H(ω)).

Since both sides are odd distributions, rule (b) gives

πiF(1 − 2H)(ω) = 2π
(

P.V.
1
ω

)∨
= −2πP.V.

1
ω
.

On the other hand, F(1 − 2H) = 1̂ − 2Ĥ = 2πδ − 2Ĥ. From this we can
solve

Ĥ = πδ(ω) − iP.V.
1
ω
.

��
As a finale to this section we prove the following result.

Theorem 8.4 If f ∈ S′, then xf(x) is the zero distribution if and only if
f = Aδ for some constant A.

Proof. Transformation of the equation xf(x) = 0 gives if̂ ′ = 0, and by
Theorem 8.1 this means that f̂ = C, where C is a constant. Transform
back again: since 1̂ = 2πδ, we find that f must be a constant times δ, and
the proof is complete. ��

By translation of the situation in the theorem, it is seen that the following
also holds: if f ∈ S′ and (x− a)f(x) = 0, then f = Aδa for some constant
A. This can be further generalized. If χ is a multiplicator function that has
a simple zero at the point x = a, and χf = 0, then f = Aδa. The proof is
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built on writing χ(x) = (x−a)ψ(x), where ψ(a) �= 0, and then the previous
result is applied to the distribution ψf .

A different kind of generalization of Theorem 8.4 is given in Exercise 8.14.

Exercises

8.10 Determine the Fourier transform of f(x) = e−xH(x). What is the transform
of 1/(1 + ix) ? Of x/(1 − ix) ?

8.11 Let f1 = P.V.1/x. Define recursively fn for n = 2, 3, . . . by fn+1 = −f ′
n/n.

Prove that xnfn = 1 for n = 1, 2, 3, . . ..

8.12 Find the Fourier transform of x3/(1 + x2) .

8.13 Find a tempered distribution f that solves the integral equation∫ ∞

0

e−uf(t− u) du = H(t), −∞ < t < ∞, t �= 0.

Check your result by substituting into the equation.

8.14 Suppose that f ∈ S′ is such that xnf = 0 for an integer n. Prove that f is
a linear combination of δ(k), k = 0, 1, . . . , n− 1.

8.15 Let f be a function of moderate growth on R such that

f(x) =
1
2

∫ 1

−1

f(x− t) dt for all x ∈ R.

(That is, f(x) is always equal to its mean value over the interval of length
2 with x in its middle.) Prove that f must be a polynomial of degree at
most 1. (Hint: take Fourier transforms and use the result of the preceding
exercise.)

8.6 Convolution

Two test functions in S can always be convolved according to the recipe in
Sec. 7.5, because the defining integral

f ∗ g(x) =
∫
R
f(x− y)g(y) dy =

∫
R
f(y)g(x− y) dy

converges very nicely. But the operation of convolution can be extended to
more general situations. If one of the functions is continuous and bounded,
and the other one belongs to L1(R), it works nicely, too. Now we shall take
one of them to be a distribution and the other one a test function: thus let
f ∈ S′ and ϕ ∈ S. By the convolution of f and ϕ we mean the function f ∗ϕ
given by f ∗ ϕ(x) = f [ϕ̌x] = fy[ϕ(x − y)], where the subscript y indicates
that the distribution acts with respect to the variable y. With a symbolic
integral: f ∗ ϕ(x) =

∫
f(y)ϕ(x− y) dy.
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The convolution is thus an ordinary function of the variable x. One can
also prove that it is infinitely differentiable. This follows from the fact that
for each fixed x, the sequence of functions ψh, defined by

y �→ ψh(y) =
ϕ(x+ h− y) − ϕ(x− y)

h
,

will converge in the sense of S, as h → 0 (with the function y �→ ϕ′(x− y)
as the limit). (The verification of this statement is somewhat complicated;
it involves the notion of uniform continuity.) This implies that

f ∗ ϕ(x+ h) − f ∗ ϕ(x)
h

=
fy[ϕ(x+ h− y)] − fy[ϕ(x− y)]

h
= f [ψh]

→ fy[ϕ′(x− y)] = f ∗ ϕ′(x).

The reasoning can be iterated, and one finds that f ∗ ϕ has derivatives of
all orders, that also satisfy

Dn(f ∗ ϕ) = f ∗ ϕ(n).

What is the result of Fourier transforming a convolution of this type?
The reader should be prepared for the answer. A proof of this runs along
these lines: let ψ be an arbitrary test function:

ϕ̂ ∗ f [ψ] = ϕ ∗ f [ψ̂] =
∫
ϕ ∗ f(x) ψ̂(x) dx =

∫∫
ϕ(x− y) f(y) ψ̂(x) dx dy,

ϕ̂ f̂ [ψ] = f̂ [ϕ̂ ψ] = f [̂̂ϕψ] = f

[
1
2π

̂̂ϕ ∗ ψ̂
]

= f [ϕ̌ ∗ ψ̂]

= fx[∫ ϕ(y − x)ψ̂(y) dy] =
∫∫

f(x)ϕ(y − x) ψ̂(y) dx dy.

Since ϕ̂ ∗ f and ϕ̂f̂ have the same effect on any test function, they are
the same distribution. (The proof may seem defective inasmuch as certain
integrals are “symbolic”, but this can be justified.)

The definition of convolution can be extended further by going a round-
about way via the Fourier transform and the formula f ∗ g = F−1(f̂ ĝ), but
for this we refer to deeper texts.

The Dirac distribution δ has a special relation to the convolution oper-
ation. As soon as the convolution is defined, one has δ ∗ f = f . Indeed, if
f is continuous, we have

δ ∗ f(x) =
∫
δ(y)f(x− y) dy = [f(x− y)]y=0 = f(x).

Algebraically, this means that δ is a unit element for the operation ∗.

Exercises
8.16 Compute the convolution δ(n) ∗ f , where f is a function belonging to E.
8.17 Prove that f ∗ ϕ[ψ] = f [ϕ̌ ∗ ψ], whenever f ∈ S and ϕ,ψ ∈ S′. (This could

be taken as an alternative definition of f ∗ ϕ.)
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8.7 Periodic distributions and Fourier series

The intention of this section is to give just a hint about how distribution
theory actually can be used to unify the classical notions of Fourier series
and Fourier transforms to make them special cases of one notion.

A tempered distribution f is said to be periodic with period 2P , if f [ϕ] =
f [ϕ2P ] for all ϕ ∈ S or, symbolically,

∫
f(x)ϕ(x) dx =

∫
f(x)ϕ(x− 2P ) dx

for all ϕ ∈ S.

Example 8.31. A simple example of a distribution with period 2π is the
so-called pulse train (see Figure 8.5):

X =
∑
n∈Z

δ2πn or X(x) =
∑
n∈Z

δ(x− n · 2π).

That this is actually a tempered distribution hinges essentially on the fact
that the sum

X[ϕ] =
∑
n∈Z

ϕ(x+ n · 2π)

is convergent, which follows from the estimate |ϕ(x+n ·2π)| ≤ M/(1+n2),
which is true for all ϕ ∈ S (with wide margins). ��

Let us investigate what the Fourier transform of a periodic distribution f
should look like. For simplicity, we assume that the period is 2π, so that we
have f2π = f . Direct transformation gives, using rule (c) in Theorem 8.3,

f̂ = e−2πiω f̂ ⇐⇒ (1 − e−2πiω)f̂ = 0.

Evidently, for all ω such that e−2πiω �= 1, f̂ must be zero; this holds for all
ω �= integer. At integer points ω = n, the factor 1 − e−2πiω has a simple
zero, i.e., it behaves essentially like a nonzero constant times the factor
(ω−n). Using Theorem 8.4 (in a “local” version) we see that f̂ has a point
mass at ω = n, i.e., a multiple of δn. Thus we can write

f̂ =
∑
n∈Z

γnδn or f̂(ω) =
∑
n∈Z

γnδ(ω − n)

for certain constants γn.



8.8 Fundamental solutions 221

In order to identify the coefficients γn, we consider the particular case
when f is a “nice” 2π-periodic function. Then f has a nicely convergent
ordinary Fourier series, so that we can write

f(x) =
∑
n∈Z

cne
inx, cn =

1
2π

∫ π

−π

f(x) e−inx dx.

If it is permissible to form the Fourier transform term by term, we could
use the fact that the transform of eiαx is 2πδα, and we would get

f̂(ω) =
∑
n∈Z

cn · 2πδ(ω − n).

Thus it seems that the coefficients of the pulse train that makes up f̂ are
nothing but the classical Fourier coefficients of f (multiplied by the factor
2π).

Formally, the inversion formula for the periodic distribution f would look
like this:

f(x) ∼ 1
2π

∫
R̂
f̂(ω)eixω dω =

1
2π

∫
R̂

∑
n∈Z

cn · 2πδ(ω − n) eixω dω

=
∑
n∈Z

cnδn[eixω] =
∑
n∈Z

cne
inx,

i.e., the inversion formula is the ordinary Fourier series.
All these calculations can in fact be justified, and this is done in more

complete texts. It turns out that an arbitrary 2π-periodic distribution f
has a Fourier series/transform of the form

∑
cne

inx and 2π
∑
cnδn, re-

spectively, where the coefficients satisfy an equality of the form |cn| ≤
M(1 + |n|)k for some constants M and k; and, conversely, a pulse train
with such coefficients is the Fourier transform of some periodic distribu-
tion.

Exercise
8.18 Find the Fourier transform of the pulse train X in Example 8.31.

8.8 Fundamental solutions

Let P (r) be a polynomial in the variable r, with constant coefficients. P (r)
is the characteristic polynomial of the differential operator P (D), which
can operate on functions or distributions:

P (r) = anr
n + an−1r

n−1 + · · · + a1r + a0,

P (D) = anD
n + an−1D

n−1 + · · · + a1D + a0,

P (D)y = any
(n) + an−1y

(n−1) + · · · + a1y
′ + a0y.
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For example, P (D) can be considered as a linear mapping S′ → S′.
If P (D) operates on a convolution f ∗ ϕ, where, say, f ∈ S′ and ϕ ∈ S,

then the linearity and the rule for differentiation of a convolution imply
that the result can be written

P (D)(f ∗ ϕ) = (P (D)f) ∗ ϕ = f ∗ (P (D)ϕ).

Now suppose that E ∈ S′ is a distribution such that P (D)E = δ, and let
f be an arbitrary continuous function. Then we have

P (D)(E ∗ f) = (P (D)E) ∗ f = δ ∗ f = f.

Thus, if we have found such an E, we have a recipe for finding a particu-
lar solution of the differential equation P (D)y = f , where the right-hand
member f is an arbitrary (continuous) function. One says that E is a fun-
damental solution of the operator P (D).

Example 8.32. Let a > 0. Let us find a fundamental solution of the
familiar operator P (D) = D2 + a2, i.e., we want to find a distribution E
such that E′′ + a2E = δ. Fourier transformation gives

(iω)2Ê + a2Ê = δ̂ = 1,

and at least one solution of this ought to be found by solving for Ê like
this:

Ê =
1

−ω2 + a2 =
1
2a

(
1

ω + a
− 1
ω − a

)
=

i

4a

(
2

i(ω + a)
− 2
i(ω − a)

)
.

(The two fractions in the last expression are interpreted as P.V.’s, as in
Example 8.15.). We recognize that the Fourier transform of sgn t is 2/(iω),
which gives

y(t) =
i

4a
(
e−iatsgn t− eiatsgn t

)
=

1
2a

sgn t sin at =
1
2a

sin at · (2H(t) − 1).

Just to be safe, we check by differentiating:

y′(t) =
1
2a

(a cos at(2H(t) − 1) + sin at · 2δ(t)) = 1
2 (cos at(2H(t) − 1)),

y′′(t) = 1
2 (−a sin at(2H(t) − 1) + cos at · 2δ(t))

= −a

2
sin at · (2H(t) − 1) + δ(t) = −a2y(t) + δ(t).

��

Exercise
8.19 Find fundamental solutions of the operators (a) P (D) = D−a, (b) P (D) =

D2 + 3D + 2, (c) P (D) = D2 + 2D + 1, (d) P (D) = D2 + 2D + 2.
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8.9 Back to the starting point

We round off the chapter by looking back at the first section, 8.1, where
we presented a number of “problems.” Most of these have now found some
sort of solution.

Problem 8.1 was settled in Example 8.26: even an angular wave-shape
has derivatives in the distributional sense, and these derivatives satisfy the
wave equation.

Problems 8.2–4 dealt with point charges of different kinds; the solution,
as we have seen throughout the chapter, is to make the δ notion legitimate
by viewing it as a distribution.

Problem 8.5 may be said to have been solved by the very idea of consid-
ering distributions as linear functionals on a space of test functions.

There remains Problem 8.6. Let us first take the heat problem with the
unknown function u = u(x, t):

uxx = ut, x ∈ R, t > 0; u(x, 0) = f(x), x ∈ R.

We can now let f be a tempered distribution on R. Assume that for every
fixed t, the thing that is symbolically denoted by x �→ u(x, t) is a tempered
distribution, and also assume that one can reverse the order of differen-
tiation with respect to t and Fourier transformation with respect to x. If
the Fourier transform of u with respect to x is denoted by U(ω, t), as in
Sec. 7.7, we get the same transformed problem as we got there:

−ω2U =
∂U

∂t
, t > 0; U(ω, 0) = f̂ .

This differential equation can be solved just as before, and we get U(ω, t) =
e−ω2t · f̂ , where the right-hand member is now a product of a test function
and a tempered distribution. Transforming back again we get u(x, t) =
E(x, t) ∗ f , which is a convolution of a test function and a tempered dis-
tribution, as in Sec. 8.6. An interesting fact is now that such a convolution
is actually an ordinary function, and furthermore this function has deriva-
tives of all orders that actually satisfy the heat equation. The initial values
are the distribution f in the sense that

u( · , t) S′
−→ f as t ↘ 0.

The Dirichlet problem in the half-plane, which was considered in Sec. 7.8,
can be treated in a similar way. A minor complication is the fact that the
Poisson kernel

Py(x) =
y

π

1
y2 + x2

is not a test function, but the definition of convolution in Sec. 8.6 can be
extended to encompass this case as well.
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Summary of Chapter 8

Definition
We say that a function ϕ belongs to the Schwartz class S if ϕ has derivatives
of all orders and these satisfy inequalities of the form

(1 + |x|)n|ϕ(k)(x)| ≤ Cn,k, x ∈ R,

where Cn,k are constants for all integers n and k that are ≥ 0.

Definition
A sequence {ϕj}∞

j=1 ⊂ S is said to converge in S to a function ψ ∈ S if for
all integers n ≥ 0 and k ≥ 0 it holds that

lim
j→∞

max
x∈R

(1 + |x|)n|ϕ(k)
j (x) − ψ(k)(x)| = 0.

Definition
A tempered distribution f is a mapping f : S → C having the properties

(1) linearity: f [c1ϕ1 + c2ϕ2] = c1f [ϕ1] + c2f [ϕ2] for all ϕk ∈ S and scalars
ck;

(2) continuity: if ϕj
S−→ ψ as j → ∞, then also lim

j→∞
f [ϕj ] = f [ψ].

The set of all tempered distributions is denoted by S′.
Intuitively, a distribution on R is a sort of generalized function; it need

not have ordinary function values, but somehow it lives on the axis, and
its “global” behavior is a sort of sum of its “local behavior”. For example,
the Dirac distribution δ is zero everywhere except at the origin, where it is
in a certain sense infinitely large.
Definition
If f ∈ S′, a new tempered distribution f ′ is defined by

f ′[ϕ] = −f [ϕ′] for all ϕ ∈ S.

We call f ′ the derivative of f .

Theorem
If f ∈ S′, then f ′ = 0 if and only if f is a constant function.

Theorem
The Fourier transformation F is a continuous bijection of the space S onto
itself.
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Definition
The Fourier transform of f ∈ S′ is the distribution f̂ that is defined by the
formula

f̂ [ϕ] = f [ϕ̂] for all ϕ ∈ S.

If f ∈ S′, then f̌ is what could be symbolically written as f(−x); more
precisely, f̌ [ϕ] =

∫
f(x)ϕ(−x) dx. We say that f is even if f̌ = f , odd if

f̌ = −f .
If a ∈ R and ϕ ∈ S, we define the translated function ϕa by ϕa(x) =

ϕ(x−a). For f ∈ S′ the translated distribution fa is f(x−a), which means
fa[ϕ] =

∫
f(x)ϕ(x+ a) dx = f [ϕ−a].

Theorem
If f, g ∈ S′, then

(a) f is even/odd ⇐⇒ f̂ is even/odd.

(b) ̂̂
f = 2πf̌ .

(c) f̂a = e−iaω f̂ .

(d) F(eiaxf) =
(
f̂
)
a
.

(e) f̂ ′ = iωf̂ .

(f) x̂f = i
(
f̂
)′.

Historical notes

The notion of a point mass was imagined already by Isaac Newton (1642–1727)
in his description of the laws of gravity. Many physicists and applied mathe-
maticians, such as Oliver Heaviside, in the nineteenth century, used this and
analogous concepts, with a varying sense of bad conscience, because they had no
stringent mathematical formulation. Paul Dirac (1902–84), who won the No-
bel Prize in Physics in 1933, discussed the problem closely and his name was
associated to the object δ.

A mathematically acceptable definition of distributions was given around the
middle of the twentieth century by Laurent Schwarz (1915–2002). Simulta-
neously, a number of Russian mathematicians developed a similar theory in a
quite different way. They talked about generalized functions, defined as limits of
sequences of ordinary functions in a certain manner. It was soon discovered that
the two definitions in fact give rise to equivalent notions.

The definitions are easily extended to several dimensions, so that one talks
about distributions on Rn. These objects have an enormous importance in the
study of partial differential equations. There are also other sorts of generalizations
to even more general objects, such as hyperfunctions. Research in the field is
intensive today.



226 8. Distributions

Problems for Chapter 8

If the star-marked sections in Chapters 2–7 have not been studied previously,
the exercises there could now be looked up and solved. Here are another few
problems.

8.20 Which of the following functions belong to S or/and M: e−x2
, e−|x|5 ,

sin(x2), xn (n integer), 1/(1 + x2).

8.21 Decide which of these functions can be considered as distributions: e2x,
e−2x, e2xH(x), e−2xH(x), esin x, (x2 − 1)3.

8.22 Find the first and second derivatives (in the sense of distributions) of
(a) xH(x), (b) |x|, (c) |x2 − x|.

8.23 Simplify f(x) = ψ(x)δ′′(x− a), where ψ ∈ M.

8.24 Compute f ′′, where f(x) = | sinx|. Draw pictures of f , f ′, and f ′′.

8.25 An electric charge q at a point a on the x-axis can be represented by
q δ(x − a). Suppose that we have one charge n at the point 1/n and an
opposite charge −n at the point −1/n. The “limit” of this system, as
n → ∞, is called an electric dipole. Describe this limit as a distribution!

8.26 Find all tempered distributions f satisfying the differential equation
f ′(x) + 2xf(x) = δ(x− 2).

8.27 Determine the Fourier transforms of (a) sin ax, (b) cos bx,
(c) xnH(x) (n = 0, 1, 2, . . .), (d) δ(x− a) + δ(x+ a), (e) xδ′(x).

8.28 Let a > 0. Find the Fourier transforms of e−axH(x) and eax(1−H(x)) and
finally of 1/(x+ bi), where b is a real number.

8.29 Find a solution in the form of a tempered distribution of the problem
y′′ + a2y = δ. Then show how this distribution can be used to construct a
solution of the equation y′′ + a2y = f , where f is an “arbitrary” function
(i.e., a function belonging to some suitable class).
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Multi-dimensional Fourier analysis

In this chapter we give a sketch of what Fourier series and integrals look like
in the multivariable case. There are almost no proofs. Sections 9.1–2 tackle the
problem of summing a series when the terms have no natural sequential order,
which happens as soon as they are numbered in some other way than by index
sequences such as 1, 2, 3, . . . and similar sequences. In the next few sections we
indicate what the Fourier analysis looks like. The intention behind these sections
is to provide a sort of moral support for a student who comes across, say, in his
physics studies, such things as Fourier transforms taken over all of 3-space – here
a real mathematician is saying that these things do exist and can be used!

We have not included anything about distributions. This would have gone far
beyond the intended scope of this book. But the interested reader should know
that distributions in Rn are an extremely useful tool, and the theory of these
objects is both beautiful and exciting. Those who are interested should go on to
some of the books mentioned in the bibliography.

9.1 Rearranging series

In this section we presuppose that the reader is acquainted with the ele-
ments of the theory of numerical series. By this we mean notions such as
convergence, absolute convergence, and comparison tests.

As is well known, if we want to compute the sum of finitely many terms,
the order in which the terms are taken does not matter:

1 + 2 + 3 + 4 + 5 = 4 + 1 + 5 + 3 + 2.
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This need not be the case when there are infinitely many terms, i.e., when
the sum is a series.

Example 9.1. The series

∞∑
k=1

(−1)k+1

k
= 1 − 1

2 + 1
3 − 1

4 + 1
5 − 1

6 + · · ·

is convergent according to the so-called Leibniz test and has a certain sum
s > 1

2 (it can actually be shown that s = ln 2). If we rearrange the terms so
that each positive term is followed by two negative terms, so that we try
to sum

1 − 1
2 − 1

4 + 1
3 − 1

6 − 1
8 + 1

5 − 1
10 − 1

12 + 1
7 − 1

14 − 1
16 + · · · ,

it is rather easy to show that the partial sums now tend to s/2 �= s. ��
The reason things can be as bad as in the example is the following: If we

add those terms of the original series that are positive, which means that
we write

1 + 1
3 + 1

5 + 1
7 + · · · + 1

2k−1 + · · · ,
we get a divergent series; in like manner the negative terms also make up
a divergent series:

− 1
2 − 1

4 − 1
6 − 1

8 − · · · − 1
2k − · · · .

This means that the sum of the original series is really an expression of
the type “∞ − ∞”: there is an infinity of “positive mass” and an infinity
of “negative mass.” Actually, it is not very difficult to describe a process
that can assign any given number as the sum of such a series, by taking the
terms in a suitable order. It can also be made to diverge in various different
ways. Se Exercise 9.1 below.

A convergent series
∑∞

k=1 ak of this type, i.e., such that
∑∞

k=1 |ak| is
divergent (= +∞, as it is often written), is said to be conditionally conver-
gent. The alternative is an absolutely convergent series. For such a series the
troubles indicated above cannot happen. We are going to prove a theorem
about this. First we want to give a proper definition of a rearrangement of
a series. Let Z+ be the positive integers: Z+ = {1, 2, 3, . . .}.

Definition 9.1 Let ϕ : Z+ → Z+ be a bijection, i.e., a one-to-one map-
ping of the positive integers onto themselves. Then we say that the series
∞∑

k=1

aϕ(k) is a rearrangement of the series
∞∑

k=1

ak.

Theorem 9.1 An absolutely convergent series remains absolutely conver-
gent and its sum does not change as a result of any rearrangement of its
terms.
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Proof. Put s =
∑∞

k=1 ak. Let ϕ be a rearrangement bijection and put
tn =

∑n
k=1 aϕ(k). The starting point is that

∑
ak is absolutely convergent,

i.e., that
∞∑

k=1

|ak| = σ < +∞.

Let M(n) = max1≤k≤n ϕ(k). Then certainly

n∑
k=1

|aϕ(k)| ≤
M(n)∑
j=1

|aj | ≤ σ < +∞,

and since σ does not depend on n it follows that the rearranged series is
also absolutely convergent. Now let ε > 0 be an arbitrary positive number.
Then there exists an N0 = N0(ε) such that

∑∞
j=N0+1 |aj | < ε. If m is large

enough, the numbers ϕ(1), ϕ(2), ϕ(3), . . . , ϕ(m) will surely include all the
numbers 1, 2, 3, . . . , N0 (and probably a lot of other numbers). Then we can
estimate: for all sufficiently large values of m it holds that

|tm − s| =
∣∣∣∣ m∑
k=1

aϕ(k) −
∞∑

j=1

ak

∣∣∣∣ =
∣∣∣∣ ∑
some
j>N0

aj

∣∣∣∣ ≤
∑
some
j>N0

|aj | ≤
∞∑

j=N0+1

|aj | < ε,

which means that tm → s as m → ∞, and this is what we wanted to prove.
��

In certain situations it is natural to consider series with terms indexed by
all integers: we have seen Fourier series in Chapter 4, and in complex anal-
ysis one considers Laurent series. Such a series

∑
k∈Z ak is (classically) con-

sidered as convergent if the two “halves”
∑∞

k=0 ak and
∑∞

k=1 a−k are both
separately convergent. As we have seen in Chapter 4, there are also other
ways to define the convergence of such a series. In the case of Fourier series
it turns out to be natural to study the symmetric partial sums

∑n
k=−n ak.

The example
∞∑

k=−∞
k

shows that these may well converge, although the series is divergent in the
classical sense.

Exercise
9.1 (a) Describe (in principle) how to rearrange a conditionally convergent

series (for example the one in the introductory example above) to make it
converge to the sum 4.
(b) Describe how to rearrange the same series so that it diverges to −∞.
(c) The series can also be rearranged so that its partial sums make up a
sequence that is dense in the interval [−13, 2003]. How?
(d) The partial sums can be dense on the whole real axis. How?
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FIGURE 9.1.

9.2 Double series

Let there be given a doubly indexed sequence of numbers, i.e., a set of
numbers aij , where both i and j are integers (positive, say). We want to
add all these numbers, that is to say we want to compute what could be

denoted by
∞∑

i,j=1

aij . We immediately meet a difficulty: there is no “natural”

order in which to take the terms, when we want to define partial sums. The
problem can be illustrated as in Figure 9.1: to each lattice point (i, j) (i.e.,
point with integer coordinates) in the first quadrant there corresponds the
term aij . The terms can be enumerated in different ways, as indicated in
the figure. None of these orderings is really more natural than the others.
As seen in the previous section, we must expect to get different end results
when we try different orderings.

The mathematician’s way out of this dilemma is to evade it. He restricts
the choice of series that he cares to consider. Each way of enumerating
the terms in the double series actually amounts to re-thinking it as an
“ordinary” series with a certain ordering of the terms. Suppose that one
enumeration results in a series that turns out to be absolutely convergent.
By Theorem 9.1, every other enumeration will also result in a series that is
absolutely convergent, and which even has the same sum as the first one.
This means that the order of summation does not really matter, and it can
be chosen so as to be convenient in some way or other.

We summarize: A double series
∞∑

i,j=1

aij is accepted as convergent only if

it is absolutely convergent.
The following theorem, which deals with a different kind of rearrange-

ment, can also be proved.
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Theorem 9.2 Suppose that the double series
∞∑

i,j=1

aij is (absolutely) con-

vergent with sum s. Put

Vi =
∞∑

j=1

aij , Hj =
∞∑

i=1

aij .

Then also

s =
∞∑

i=1

Vi =
∞∑

j=1

Hj , (9.1)

where all the occurring series are also absolutely convergent.

In plain words, the formula (9.1) says that the series can be summed
“first vertically and then horizontally,” or the other way round; (9.1) can
be written as

∞∑
i,j=1

aij =
∞∑

i=1

( ∞∑
j=1

aij

)
=

∞∑
j=1

( ∞∑
i=1

aij

)
.

We omit the proof.
An important case of double series occurs when two simple series are

multiplied.

Theorem 9.3 Suppose that s =
∞∑

i=1

ai and t =
∞∑

j=1

bj are absolutely con-

vergent series. Then the double series
∞∑

i,j=1

aibj is also absolutely convergent

and has the sum s · t.
Again, we omit the proof and round off with a few examples.

Example 9.2. It is well known that
1

1 − x
=

∞∑
k=0

xk, where the series is

absolutely convergent for |x| < 1. Then, by Theorem 9.3, we also have

1
(1 − x)2

=
1

1 − x
· 1
1 − x

=
∞∑

j=0

xj
∞∑

k=0

xk =
∞∑

j,k=0

xj+k.

We choose to sum this series “diagonally” (draw a picture!): j + k = n,
n = 0, 1, 2, . . ., and for fixed n we let j run from 0 to n:

1
(1 − x)2

=
∞∑

n=0

( ∑
j+k=n

xj+k

)
=

∞∑
n=0

( n∑
j=0

xn

)
=

∞∑
n=0

xn

( n∑
j=0

1
)

=
∞∑

n=0

(n+ 1)xn (= 1 + 2x+ 3x2 + 4x3 + · · ·),
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which must be absolutely convergent for |x| < 1. (The doubtful reader can
check this by, say, the ratio test.) ��

Compare the calculations in the example and the ordinary maneuvers
when switching the order of integration in a double integral!

Example 9.3. Convolutions have been encountered a few times in dif-
ferent situations earlier in the book. (A unified discussion of this notion is
found in Appendix A.) Here we take a look at the case of convolutions of
sequences. If a = {ai}∞

i=−∞ and b = {bi}∞
i=−∞ are two sequences of num-

bers, a third sequence c = {ci}∞
i=−∞, the convolution of a and b, is formed

by the prescription

ci =
∞∑

j=−∞
ai−jbj =

∑
j∈Z

ai−jbj , all i ∈ Z,

provided the series is convergent. If, say, a and b are absolutely summable,
which means that the series

∑∞
−∞ |ai| = s and

∑∞
−∞ |bi| = t are convergent,

this is true, as is seen by the following computations:

∑
i∈Z

|ci| =
∑
i∈Z

∣∣∣∣∑
j∈Z

ai−jbj

∣∣∣∣ ≤
∑

i

∑
j

|ai−jbj | =
∑

j

|bj |
∑

i

|ai−j |

=
∑

j

|bj | · s = t · s < +∞.

Not only does the convolution c exist, it is actually absolutely summable,
too! One writes c = a ∗ b. ��

In what follows, we shall even encounter series where the terms are num-
bered by indices of dimension greater than 2. For these series, the same
results apply as in the case we have considered: by “convergence” one must
mean absolute convergence, or else some particular order of summation
must be explicitly indicated.

Exercises

9.2 For a > 0, compute the value of the sum
∞∑

k=1

∞∑
j=1

2−(ak+j).

9.3 Compute
∞∑

k,n=2

k−n.

9.4 Suppose that f(x) ∼ ∑
ane

inx and g(x) ∼ ∑
bne

inx, where the Fourier
series are assumed to be absolutely convergent (i.e.,

∑ |an| < ∞ and∑ |bn| < ∞). Find the Fourier coefficients of h = fg.
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9.3 Multi-dimensional Fourier series

We shall indicate how to treat Fourier series in several variables. Practical
computation with such series in concrete cases easily leads to volumes of
computation that are hardly manageable by hand. Thus, there is no reason
to try to acquire much skill at such computations; but it is of great interest
for applications that these series exist.

We shall study functions defined on Td, where d is a positive integer.
Td is the Cartesian product of d copies of the circle T and is called the
d-dimensional torus. A typical element of Td is thus a d-tuple

x = (x1, x2, . . . , xd),

where xk ∈ T for k = 1, 2, . . . , d. Thus, a function f : Td → C is a rule
that to each x ∈ Td assigns a complex number f(x) = f(x1, x2, . . . , xd).

An alternative description is to consider functions f : Rd → C that are
2π-periodic in each argument, i.e.,

f(x1 + 2πn1, x2 + 2πn2, . . . , xd + 2πnd) = f(x1, x2, . . . , xd)

for all xk ∈ R and all integers nk, k = 1, 2, . . . , d.
Integration over Td should be interpreted and described in the following

way:∫
Td

f(x) dx =
∫
T

∫
T

· · ·
∫
T
f(x1, x2, . . . , xn) dx1 dx2 · · · dxd

=
∫ a1+2π

a1

∫ a2+2π

a2

· · ·
∫ ad+2π

ad

f(x1, x2, . . . , xn) dx1 dx2 · · · dxd,

where the numbers a1, a2, . . . , ad can be chosen at will (because of the peri-
odicity). The space Lp(Td) consists of all (Lebesgue measurable) functions
such that

‖f‖p
Lp(Td) :=

∫
Td

|f(x)|p dx < ∞.

Most important are, as earlier in the book, the cases p = 1, when the
functions are also called absolutely integrable, and p = 2. In the latter
case, there is also an inner product

〈f, g〉 =
∫
Td

f(x) g(x) dx.

Functions that agree except for a zero set are identified, just as before; what
is meant by a zero set is, however, someting new. A zero set is something
with the d-dimensional volume measure equal to zero. Thus, in T2 a part
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of a straight line is a zero set, in T3 a part of a plane (or some other smooth
surface) is a zero set.

We shall work with d-tuples of integers, which we write as

n = (n1, n2, . . . , nd).

These are the elements of the set Zd. For x ∈ Td and n ∈ Zd we form the
“scalar product”

n · x = n1x1 + n2x2 + · · ·ndxd =
d∑

k=1

nkxk.

For this product, a few natural rules hold. Some of these are the following,
which the reader may want to prove (if it seems necessary):

(m + n) · x = m · x + n · x, n · (x + y) = n · x + n · y.

We shall also need the functions ϕn, defined by

ϕn(x) = ein·x = exp(i(n1x1 + n2x2 + · · ·ndxd)).

They have a nice property in the space L2(Td):

〈ϕm, ϕn〉 =
∫
Td

eim·x ein·x dx =
∫
Td

ei(m−n)·x dx

=
∫
Td

ei(m1−n1)x1 ei(m2−n2)x2 · · · ei(md−nd)xd dx1 dx2 · · · dxd

=
d∏

k=1

∫
T
ei(mk−nk)xk dxk = 0 as soon as mk �= nk for some k.

It follows that ϕm is orthogonal to ϕn as soon as the d-tuple m is different
from the d-tuple n. But if m = n, each of the integrals in the last product
will be equal to 2π, so that

‖ϕn‖2 = 〈ϕn, ϕn〉 = (2π)d.

For a function f ∈ L2(Td), we can define the Fourier coefficients

cn = f̂(n) =
1

(2π)d

∫
Td

f(x) e−in·x dx

=
1

(2π)d

∫
· · ·
∫

Tp

f(x1, x2, . . . , xd) e−i(n1x1+n2x2+···+ndxd) dx1 dx2 · · · dxd.
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The formal Fourier series can be written

f(x) ∼
∑
n∈Zd

cn e
in·x

=
∞∑

n1=−∞

∞∑
n2=−∞

· · ·
∞∑

nd=−∞
f̂(n1, n2, . . . , nd)ei(n1x1+n2x2+···+ndxd).

Because of Bessel’s inequality, it will converge in the sense of L2. Indeed,
it can be proved that the system {ϕn}n∈Zd is complete in L2(Td).

The Fourier coefficients can also be defined if we only assume that
f ∈ L1(Td), and we could try to imitate the theory of Chapter 4. Conver-
gence theorems are, however, considerably more complicated to formulate
and prove. For most practical purposes it is sufficient to know that the
Fourier series “represents” the function, without actually knowing whether
it converges pointwise in some sense or other.

Remark. A sufficient condition for pointwise convergence in the case d = 2 is that
f ∈ C1(T2) and that in addition the mixed second derivative fxy is continuous
on T2. Conditions of this type can, in principle, be established for any value of
d. Higher dimension requires, in general, higher regularity of the function. ��

When the dimension is low, say, 2, it can be practical to write such things
as (x, y) and (m,n) instead of (x1, x2) and (n1, n2). We shall do so in the
following example.

Example 9.4. Let f be defined by f(x, y) = xy for |x| < π, |y| < π. We
compute its Fourier coefficients cmn. We shall need the value of the integral

αk :=
∫ π

−π

t e−ikt dt =
[
t
e−ikt

−ik
]π

−π

− 1
−ik

∫ π

−π

e−ikt dt

= 2πi
(−1)k

k
for k ∈ Z \ {0}, α0 = 0.

We get

cmn =
1

4π2

∫ π

−π

∫ π

−π

xy e−i(mx+ny) dx dy

=
1

4π2

∫ π

−π

x e−imx dx

∫ π

−π

y e−iny dy

=
αmαn

4π2 = − (−1)m

m

(−1)n

n
=

(−1)m+n+1

mn
if mn �= 0,

cmn = 0 if mn = 0.

The series can be written

f(x, y) ∼
∑

m,n∈Z
mn�=0

(−1)m+n+1

mn
ei(mx+ny) .
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��
Example 9.5. Of course, other periods than 2π can be treated, and the
periods need not be the same in different directions. Define f by f(x, y) =
xy − x2 for −1 < x < 1 and 0 < y < 2π, and assume the period to be 2 in
the x variable and 2π in the y variable. The Fourier coefficients are given
by the formula

cmn =
1

2 · 2π

∫ 1

−1
dx

∫ 2π

0
(xy − x2) e−i(mπx+ny) dy.

(Effective computation of these coefficients is rather messy, because there
occur a number of cases such as for one or the other of m and n being zero,
etc.) ��

It is also possible to study Fourier series for periodic distributions on Rd,
but we leave this out.

9.4 Multi-dimensional Fourier transforms

The theory of Fourier transforms is extended to Rd in a way that is com-
pletely analogous to our treatment of Fourier series in the last section.
Notation: elements of Rd are x = (x1, x2, . . . , xd), and elements of what
is often called the dual space R̂d are written as ω = (ω1, ω2, . . . , ωd). We
define a “scalar product”

ω · x = ω1x1 + ω2x2 + · · · + ωdxd.

The fact that f : Rd → C belongs to the class L1(Rd) means that (f is
Legesgue measurable and) the integral

‖f‖1 :=
∫
Rd

|f(x)| dx =
∫

· · ·
∫

Rd

|f(x1, x2, . . . , xd)| dx1 dx2 · · · dxd

is convergent. Then for all ω ∈ R̂d, the integral

f̂(ω) =
∫
Rd

f(x) e−iω·x dx,

exists, and the function f̂ : R̂d → C is called the Fourier transform of
f . Under suitable conditions, one can recover f , in principle, through the
formula

f(x) =
1

(2π)d

∫
R̂d

f̂(ω) eix·ω dω.

Sufficient conditions for this to hold pointwise are, for example, that f̂ ∈
L1(R̂d) or that f is sufficiently regular (has continuous derivatives of suffi-
ciently high order, and this order depends on the dimension d). But also in
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other cases, the Fourier transform can be said to “represent” the function
in some sense, and it can be used in various kinds of calculations. The L2

theory indicated in Section 7.6 (including Plancherel’s theorem) can also
be generalized to higher dimensions.

Example 9.6. An important application of the transform is found in
the theory of probability, where the multi-dimensional normal distribution
is used. In dimension d, a normalized version of this is described by the
density function

f(x) =
1

(2π)d/2 exp(− 1
2 (x2

1 + x2
2 + · · · + x2

d)) =
1

(2π)d/2 exp(− 1
2 |x|2).

It holds that ‖f‖1 = 1, and it is easy to compute the Fourier transform or
characteristic function

f̂(ω) =
1

(2π)d/2

∫
Rd

e−|x|2/2 e−iω·x dx =
d∏

k=1

1
(2π)1/2

∫
R
e−x2

k/2 e−iωkxk dxk

=
d∏

k=1

e−ω2
k/2 = exp(− 1

2 |ω|2).

Here we have made use of our knowledge of the ordinary one-dimensional
transform of the function e−x2/2. ��
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Appendix A
The ubiquitous convolution

The operation known as convolution appears, in a variety of versions,
throughout the theory. We shall here indicate what also makes this op-
eration so important in applications.

In a purely mathematical setting, we find that convolutions of number
sequences occur when we multiply polynomials and related objects such as
power series. Given two polynomials

P (x) = a0 + a1x+ a2x+ · · · + amx
m, Q(x) = b0 + b1 + b2x

2 + · · · + bnx
n,

we multiply these term by term to get a polynomial

PQ(x) = c0 + c1x+ c2x
2 + · · · + cm+nx

m+n.

It is easily seen that its coefficients are given by

c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b0,

and, in general

ck = a0bk + a1bk−1 + a2bk−2 + · · · + akb0 =
∑

i+j=k

ajbj .

This formula exhibits the characteristic property of a convolution: two
“numbered objects” are combined so that the sums of indices is constant,
to form a new “numbered object”. If the objects are “numbered” using a
continuous variable, we have to deal with integrals instead of sums.

Now we turn to applications. We study a “black box,” i.e., a device that
converts an insignal f(t) into an outsignal g(t). We shall assume that the
device satisfies a few reasonable conditions, namely, the following:
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(a) It is invariant under translation of time, which means that if we feed it
a translated input f(t− a), then the output is similarly translated to
have the shape of g(t− a). In plain words, this condition amounts to
saying that the device operates in the same way whatever the clock
says.

(b) It is linear, which means that if we input a linear combination such
as αf1(t) + βf2(t), the output looks like αg1(t) + βg2(t) (with the
natural interpretation of letters). This is a reasonable assumption for
many (but certainly not all) black boxes.

(c) It is continuous in some way (which we shall not specify explicitly here),
so that “small” alterations of the input generate “small” changes in
the output.

(d) It is causal, which means that the output at any point t0 in time cannot
be influenced by the values taken by f(t) for t < t0.

In the first case to consider, we assume that we sample both input and
output at discrete points in time. This means that the input can be rep-
resented by a sequence f = {ft}∞

t=−∞, and the output is another sequence
g = {gt}∞

t=−∞. For a start, we assume that the input is 0 for all t < 0. The
conditions (d) and (b) then force the output to have the same property. It
will be practical to denote these sequences as f = (f0, f1, f2, . . .).

Let δ be the input sequence (1, 0, 0, 0, . . .), and suppose that it results
in the output a := (a0, a1, a2, . . .) (the impulse response). By causality
and translation invariance, it is then clear that the postponed input δn =
(0, . . . , 0, 1, 0, 0, . . .) yields the output an = (0, . . . , 0, a0, a1, a2, . . .). By lin-
earity, then, the input

f = (f0, f1, . . . , fn, 0, 0, . . .) =
n∑

k=0

fkδk

must produce the output

n∑
k=0

fkak

=
(
f0a0, f0a1 + f1a0, f0a2 + f1a1 + f2a0, . . . ,

∑n
j=0 fjan−j , 0, 0, . . .

)
.

Finally, by continuity, we find that an arbitrary input f = (f0, f1, f2, . . .)
must produce an output g = (g0, g1, g2, . . .), where

gn = f0an + f1an−1 + f2an−2 + · · · + fna0, n = 0, 1, 2, . . . .

We call g the convolution of f and a, and we write g = f ∗ a.
Now we remove the condition that everything starts at time 0. We return

to the notation f = {ft} = {ft}∞
t=−∞. We we assume that an input f may
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start at any time t = −T , where T may also be positive. The invariance
of the black box under translation of time indicates what must happen
now. Let f̃ and g̃ be the translated sequences defined by f̃t = ft−T and
g̃t = gt−T for t ≥ 0. By property (a) we must have g̃ = f̃ ∗ a, where a is
the sequence a above, extended by zeroes for negative indices. This means
that g̃t =

∑t
k=0 akf̃t−k for all t ≥ 0. We rewrite this with t replaced by

t+ T and get

gt = g̃t+T =
t+T∑
k=0

akf̃t+T−k =
t+T∑
k=0

akft−k, t ≥ −T.

If we let ft = 0 for all t < −T , we can write this as

gt =
∞∑

k=0

akft−k =
t∑

k=−∞
at−kft.

This formula defines the convolution of two sequences a and f , where now
all the ft may be different from zero — we can treat the case, theoretically
possible, of an “input” that has no beginning.

It is also possible to consider the same sort of notion where the other
convolution factor a also has “no beginning.” This leads us to the formula
for the convolution of two doubly infinite sequences a = {at}∞

−∞ and f =
{ft}∞

−∞:

(f ∗ a)t =
∞∑

k=−∞
akft−k =

∞∑
k=−∞

fkat−k. (A.1)

This case may not be physically interesting for the description of (causal)
black boxes and the like, but it is interesting as a mathematical construc-
tion.

We now turn our interest to functions defined on a continuous t-axis. The
analysis above, that depends on simple notions of linear algebra, cannot be
imitated directly. Also, we do not attempt a completely stringent treatment,
but content ourselves by a more intuitive approach.

Let f(t) be the input and g(t) the output, as before, and introduce a
“black box function” ϕ(t) that describes the device. In fact, let ϕ(t) be
the impulse response, i.e., it descibes the output resulting from inputting a
Dirac pulse δ(t) at t = 0. By causality and linearity, ϕ(t) = 0 for t < 0. For
any number u, by translation invariance, the input δ(t− u) must result in
the output ϕ(t− u). Now consider an arbitrary input f(t). The properties
of δ imply that

f(t) =
∫ ∞

−∞
f(u)δ(t− u) du. (A.2)

Linearity and continuity now imply that the output due to f should be

g(t) = f ∗ ϕ(t) =
∫ ∞

−∞
f(u)ϕ(t− u) du. (A.3)
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(This conclusion could be supported in the following way: the integral
in (A.2) might be approximated by “Riemann sums”

∑
f(uk)δ(t − uk),

and linearity tells us that the response to this is the corresponding sum∑
f(uk)ϕ(t − uk), which is an approximation to (A.3). This is, however,

not logically rigorous, because a Riemann sum involving δ is really rather
nonsensical.)

In the considerations leading up to (A.3) we assumed that ϕ(t) = 0 for
t < 0, which means that the interval of integration is actually ] − ∞, t[.
If, in addition, the input does not start before t = 0, the integral is to be
taken over just [0, t], and we recognize the variant of the convolution that
appears in connection with the Laplace transform.

Just as in the discussion of sequences, these restrictions on f and ϕ can
be totally removed for more general applications.



Appendix B
The discrete Fourier transform

This appendix is an introduction to a discrete (i.e., “non-continuous”) coun-
terpart of Fourier series. If you like, you can view it as an approximation
to ordinary Fourier series, but it has considerable interest on its own. In
applications during the last half-century, it has acquired great importance
for treating numerical data. One then uses a further development of the
elementary ideas that are presented here, called the fast Fourier transform
(FFT).

For convenience, we study the interval (0, 2π). In this interval we single
out the points xk = k · 2π/N , k = 0, 1, . . . , N − 1, which make up a set
G = GN :

G = GN = {xk : k = 0, 1, 2, . . . , N − 1} =
{

2πk
N

: k = 0, 1, 2, . . . , N − 1
}
.

Consider the set lN = l2(GN ) of functions f : GN → C (cf. Sec. 5.3). For
each k, f(xk) is thus a complex number. The set lN is a complex vector
space. It is easy to construct a natural basis in this space: let en be the
function on GN defined by en(xk) = 1 for k = n, = 0 for k �= n; then it is
easily seen that {en}N−1

n=0 makes up a linearly independent set, and for each
f ∈ lN it holds that f =

∑N−1
k=0 f(xk)ek, which means that {en} spans the

space lN . Thus, the dimension of the complex vector space is N .
In lN we define (just as in Sec. 5.3) an inner product by putting

〈f, g〉 =
N−1∑
k=0

f(xk) g(xk) .
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The basis {en} is orthonormal with respect to this inner product. We now
proceed to construct another basis, which will prove to be orthogonal. Begin
by letting ω = ωN = exp(2πi/N) (ω is a so-called primitive Nth root
of unity). Then define a function ϕn by putting ϕn(x) = einx, or, more
precisely,

ϕn(xk) = exp
(
in · k

N
· 2π

)
= ωnk.

Notice that this definition implies that ϕn(xk) = ω−nk.

Theorem B.1 {ϕn}N−1
n=0 is an orthogonal basis in lN , and ‖ϕn‖2 = N .

Proof. The number of vectors is right, so all that remains is to show that
they are orthogonal. Let 0 ≤ m,n ≤ N − 1, and form

〈ϕm, ϕn〉 =
N−1∑
k=0

ωmkω−nk =
N−1∑
k=0

ω(m−n)k.

If m = n, all the terms in the sum are equal to 1, which gives 〈ϕn, ϕn〉 = N .
If m �= n, we have a finite geometric sum with the ratio ωm−n �= 1. (Since
0 ≤ m,n ≤ N − 1, it must hold that −N +1 ≤ m−n ≤ N − 1, and in that
case ωm−n = 1 is possible only if m− n = 0.) The formula for a geometric
sum then gives

〈ϕm, ϕn〉 =
1 − ω(m−n)N

1 − ωm−n
.

But ω(m−n)N = exp
(

2πi
N

· (m−n)N
)

= e2πi(m−n) = 1, which implies that

〈ϕm, ϕn〉 = 0, and the theorem is proved. ��
Since we have an orthogonal basis, we can represent an arbitrary f ∈ lN

as f =
∑
cnϕn, where the coefficients are given by

cn =
〈f, ϕn〉
〈ϕn, ϕn〉 =

1
N

〈f, ϕn〉.

It is also common to write cn = f̂(n), which results in the formula

f̂(n) =
1
N

〈f, ϕn〉 =
1
N

N−1∑
k=0

f(xk)ω−kn =
1
N

N−1∑
k=0

f(xk)e−i2πkn/N .

With these Fourier coefficients we have thus

f =
N−1∑
n=0

f̂(n)ϕn,
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or, written out in full,

f(xk) =
N−1∑
n=0

f̂(n)ϕn(xk) =
N−1∑
n=0

f̂(n)ωnk =
N−1∑
n=0

f̂(n)ei2πkn/N

=
N−1∑
n=0

f̂(n)einxk .

Compare the “complex” form of an ordinary Fourier series. (We could for-
mulate a “real” counterpart of this, too, but the formulae for that con-
struction are messier.)

The theorem of Pythagoras or the Parseval formula for the system {ϕn}
looks like ‖f‖2 =

∑N−1
n=0 |f̂(n)|2‖ϕn‖2, or

1
N

N−1∑
k=0

|f(xk)|2 =
N−1∑
n=0

|f̂(n)|2.

In practical use, the computation of f̂(n) can be speeded up by the use
of an idea by Cooley and Tukey (1965) (the fast Fourier transform). The
idea is that the right-hand member in the formula

f̂(n) =
1
N

N−1∑
k=0

f(xk)ω−nk =
1
N

N−1∑
k=0

f(xk)
(
ω−n

)k

can be seen as a polynomial in the variable ω−n, which is swiftly computed
using the method of Horner; this reduces the number of operations con-
siderably. Further rationalizations are possible, using factorization of the
number N . More about this can be found in books on numerical analysis.



This page intentionally left blank 



Appendix C
Formulae

C.1 Laplace transforms

Take care to use the correct definition when dealing with distributions
(cf. Sec 3.5, p. 57).

f(t) f̃(s) = F (s) = L[f ](s)

General rules

L01. f(t)
∫ ∞

0
e−st f(t) dt

L02. αf(t) + βg(t) αF (s) + βG(s)

L03. tnf(t) (−1)n F (n)(s)

L04. e−at f(t), a constant F (s+ a)

L05. f(t− a)H(t− a), a > 0 e−as F (s)

L06. f(at), a > 0
1
a
F
( s
a

)
L07. f ′(t) sF (s) − f(0)

L08. f (n)(t) snF (s) − sn−1f(0)

−sn−2f ′(0) − · · · − f (n−1)(0)

L09.
∫ t

0
f(u) du

F (s)
s

L10. f ∗ g(t) =
∫ t

0
f(u)g(t− u) du F (s)G(s)
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Laplace transforms of particular functions

L11. δ(t) 1

L12. δ(n)(t) sn

L13. H(t)
1
s

L14. tn, n = 0, 1, 2, . . .
n!
sn+1

L15. e−at 1
s+ a

L16. ta ect, a > −1, c ∈ C
Γ(a+ 1)

(s− c)a+1

L17. cos bt
s

s2 + b2

L18. sin bt
b

s2 + b2

L19. t sin bt
2bs

(s2 + b2)2

L20. t cos bt
s2 − b2

(s2 + b2)2

L21.
1

2b3
(sin bt− bt cos bt)

1
(s2 + b2)2

L22. δ(t− a), a ≥ 0 e−as

L23.
sin t
t

arctan
1
s

L24.
a√
4πt3

e−a2/(4t) , a > 0 e−a
√

s

L25. ln(t) =
et/n

n!
dn

dtn
(
tne−t

) (
s− 1

2

)n(
s+ 1

2

)n+1

L26. ln t − ln s+ γ

s
, γ = 0.5772156 . . .

L27. Γ′(t) − ln t
ln s
s

L28.
ebt − eat

t
, a, b ∈ R ln

∣∣∣∣s− a

s− b

∣∣∣∣
L29. Erf (

√
t) =

2√
π

∫ √
t

0
e−u2

du
1

s
√
s+ 1

L30. Ei (t) =
∫ ∞

t

e−u

u
du

ln(s+ 1)
s
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L31. Si (t) =
∫ ∞

t

sinu
u

du
arctan s

s

L32. Ci (t) =
∫ ∞

t

cosu
u

du
ln(s2 + 1)

2s

L33. J0(t) (Bessel function)
1√

s2 + 1

L34. J0
(
2
√
t
) e−1/s

s

Γ(x) =
∫ ∞

0
tx−1e−t dt, x > 0. Γ(x+ 1) = xΓ(x).

Γ(n+ 1) = n! for n = 0, 1, 2, . . .. Γ
( 1

2

)
=

√
π.

γ = Euler’s constant = lim
n→∞

(
n∑

k=1

1
k

− lnn

)
≈ 0.5772156.
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C.2 Z transforms

A(z) = Z[a](z) =
∞∑

n=0

anz
−n, |z| > σ = σa.

Inversion: an =
1

2πi

∫
|z|=r

A(z)zn−1 dz, n ∈ N, r > σa.

an A(z)

General rules

Z1. λan + µbn λA(z) + µB(z)

Z2. λnan A(z/λ)

Z3. (k ≥ 0) : an+k zk

(
A(z) − a(0) − a(1)

z
− · · · − a(k − 1)

zk−1

)
Z4. nan −zA′(z)

Z5. (a ∗ b)n =
n∑

k=0

akbn−k A(z)B(z)

Particular sequences

Z6. 1
z

z − 1
Z7. n

z

(z − 1)2

Z8. n2 z2 + z

(z − 1)3

Z9. λn z

z − λ

Z10. nλn λz

(z − λ)2

Z11. (n+ 1)λn z2

(z − λ)2

Z12.
(
n+m

m

)
λn zm+1

(z − λ)m+1

Z13.
(
n

m

)
λn λmz

(z − λ)m+1

Z14. cosαn
z2 − z cosα

z2 − 2z cosα+ 1
Z15. sinαn

z sinα
z2 − 2z cosα+ 1

Z16.
λn

n!
eλ/z
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C.3 Fourier series

f(x) ∼
∞∑

−∞
cne

inx ∼ a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx)

where cn =
1
2π

∫ π

−π

f(x) e−inx dx resp.

{
an = 1

π

∫ π

−π
f(x) cosnx dx

bn = 1
π

∫ π

−π
f(x) sinnx dx

.

{
cn = 1

2 (an − ibn), n ≥ 0
c−n = 1

2 (an + ibn), n ≥ 0

{
an = cn + c−n, n ≥ 0
bn = i(cn − c−n), n ≥ 1

f even =⇒ bn = 0 and an =
2
π

∫ π

0
f(x) cosnx dx.

f odd =⇒ an = 0 and bn =
2
π

∫ π

0
f(x) sinnx dx.

Parseval:


1
2π

∫ π

−π

|f(x)|2 dx=
∞∑

n=−∞
|cn|2

1
π

∫ π

−π

|f(x)|2 dx=
|a0|2

2
+

∞∑
n=1

(|an|2 + |bn|2)

Polarized Parseval:


1
2π

∫ π

−π

f(x) g(x) dx=
∞∑

n=−∞
cn γn

1
π

∫ π

−π

f(x) g(x) dx=
a0 α0

2
+

∞∑
n=1

(
an αn + bn βn

)
If f has period 2P , then (PΩ = π)

f(x) ∼
∞∑

−∞
cn e

inΩx ∼ a0

2
+

∞∑
n=1

(
an cosnΩx+ bn sinnΩx

)
,

1
2P

∫ a+2P

a

|f(x)|2 dx =
∞∑

−∞
|cn|2,

1
P

∫ a+2P

a

|f(x)|2 dx =
|a0|2

2
+

∞∑
n=1

(|an|2 + |bn|2),
cn =

1
2P

∫ a+2P

a

f(x)e−inΩx dx,
an

bn
=

1
P

∫ a+2P

a

f(x)
cos
sinnΩx dx.
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C.4 Fourier transforms

General rules

f(t) f̂(ω)

F01. f(t)
∫ ∞

−∞
f(t) e−iωt dt

F02.
1
2π

∫ ∞

−∞
f̂(ω) eiωt dω f̂(ω)

F03. f even ⇐⇒ f̂ even, f odd ⇐⇒ f̂ odd

F04. Linearity αf(t) + βg(t) αf̂(ω) + βĝ(ω)

F05. Scaling f(at) (a �= 0)
1
|a| f̂

(ω
a

)
F06. f(−t) f̂(−ω)

F07. f(t) f̂(−ω)

F08. Time translation f(t− T ) e−iTω f̂(ω)

F09. Frequency
translation eiΩt f(t) f̂(ω − Ω)

F10. Symmetry ĝ(t) 2πg(−ω)

F11. Time derivative
dn

dtn
f(t) (iω)n f̂(ω)

F12. Frequency
derivative (−it)n f(t)

dn

dωn
f̂(ω)

F13. Time convolution
∫ ∞

−∞
f(t− u) g(u) du f̂(ω) ĝ(ω)

F14. Frequency
convolution f(t) g(t)

1
2π

∫ ∞

−∞
f̂(ω − α) ĝ(α) dα

Plancherel’s formulae:∫ ∞

−∞
f(t) g(t) dt =

1
2π

∫ ∞

−∞
f̂(ω) ĝ(ω) dω,

∫ ∞

−∞
|f(t)|2 dt =

1
2π

∫ ∞

−∞
|f̂(ω)|2 dω.
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Fourier transforms of particular functions

f(t) f̂(ω)

F15. δ(t) 1

F16. δ(n)(t) (iω)n

F17. f(t) = 1 for |t| < 1, = 0 otherwise
2 sinω
ω

F18. f(t) = 1 − |t| for |t| < 1, = 0 otherwise
(

2 sin 1
2ω

ω

)2
F19. e−tH(t)

1
1 + iω

F20. et(1 −H(t))
1

1 − iω

F21. e−|t| 2
1 + ω2

F22. e−|t| sgn t
−2iω
1 + ω2

F23. sgn t
2
iω

F24. H(t)
1
iω

+ πδ(ω)

F25. 1 2πδ(ω)

F26.
sinΩt
πt

H(ω + Ω) −H(ω − Ω)

F27.
1√
2π

e−t2/2 e−ω2/2

F28.
1√
4πA

e−t2/(4A) (A > 0) e−Aω2
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C.5 Orthogonal polynomials

L2
w(a, b): 〈f, g〉 =

∫ b

a
f(t) g(t)w(t) dt, ‖f‖ =

√〈f, f〉 .

δkn = 1 if k = n, δkn = 1 if k �= n (“Kronecker delta”).

Legendre polynomials Pn(x): (a, b) = (−1, 1), w(t) ≡ 1.

P1. Pn(t) =
1

2nn!
Dn

(
(t2 − 1)n

)
.

P2. P0(t) = 1, P1(t) = t, P2(t) = 1
2 (3t2 − 1), P3(t) = 1

2 (5t3 − 3t).

P3. (1 − 2tz + z2)−1/2 =
∞∑

n=0

Pn(t) zn (|z| < 1, |t| ≤ 1).

P4. (n+ 1)Pn+1(t) = (2n+ 1)t Pn(t) − nPn−1(t).

P5.
∫ 1

−1
Pn(t)Pk(t) dt =

2
2n+ 1

δnk.

P6. (1 − t2)P ′′
n (t) − 2t P ′

n(t) + n(n+ 1)Pn(t) = 0.

Laguerre polynomials Ln(t): (a, b) = (0,∞), w(t) = e−t.

L1. Ln(t) =
et

n!
Dn

(
tne−t

)
.

L2. L0(t) = 1, L1(t) = 1 − t, L2(t) = 1 − 2t+ 1
2 t

2.

L3.
1

1 − z
exp

( −tz
1 − z

)
=

∞∑
n=0

Ln(t) zn (|z| < 1).

L4. (n+ 1)Ln+1(t) = (2n+ 1 − t)Ln(t) − nLn−1(t).

L5.
∫ ∞

0
Lk(t)Ln(t) e−t dt = δkn .

L6. tL′′
n(t) + (1 − t)L′

n(t) + nLn(t) = 0.

Hermite polynomials Hn(t): (a, b) = (−∞,∞), w(t) = e−t2 .

H1. Hn(t) = (−1)n et2 Dn
(
e−t2

)
.

H2. H0(t) = 1, H1(t) = 2t, H2(t) = 4t2 − 2, H3(t) = 8t3 − 12t.

H3. e2tz−z2
=

∞∑
n=0

Hn(t)
zn

n!
.

H4. Hn+1(t) = 2tHn(t) − 2nHn−1(t).

H5.
∫ ∞

−∞
Hk(t)Hn(t) e−t2 dt = n! 2n

√
π δkn .

H6. H ′′
n(t) − 2tH ′

n(t) + 2nHn(t) = 0.
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Chebyshev polynomials Tn(t): (a, b) = (−1, 1), w(t) = 1/
√

1 − t2.

T1. Tn(t) = cos(n arccos t), Tn(cos θ) = cosnθ, 0 ≤ θ ≤ π.

T2. T0(t) = 1, T1(t) = t, T2(t) = 2t2 − 1, T3(t) = 4t3 − 3t.

T3. Tn(t) = 2tTn−1(t) − Tn−2(t).

T4.
∫ 1

−1
Tk(t)Tn(t)

dt√
1 − t2

= 1
2πδkn if k > 0 or n > 0;

= π if k = n = 0.

T5. (1 − t2)T ′′
n (t) − tT ′

n(t) + n2Tn(t) = 0.
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Appendix D
Answers to selected exercises

Chapter 1

1.1. u(x, t) = 1
2 (e−(x−ct)2 + e−(x+ct)2) +

1
2c

(arctan(x+ ct) − arctan(x− ct)).

Chapter 2

2.1. i, (1 − i)/
√

2, (−√
3 + i)/2,

√
3 − i.

2.3. cos 3t = 4 cos3 t− 3 cos t.

2.12. lim ak/k = 0.

2.23. δ(2t) = 1
2δ(t); δ(at) =

1
|a| δ(t).

2.25. χ(t)δ′′
a (t) = χ(a)δ′′

a (t) − 2χ′(a)δ′
a(t) + χ′′(a)δa(t).

2.27. f ′′(x) = −2H(x+ 1) + 2H(x− 1) + 2δ(x+ 1) + 2δ(x− 1);

(x2 − 1)f ′′(x) = 2f(x).

2.29. y = ea2−t2H(t− a) + Ce−t2 , where C is an arbitrary constant.

2.31. y = 1
4 (1 + x2)H(x− 1) + 1 + x2.

2.33. y = (1 − e−x2
)H(x) − e1−x2

H(x− 1) + (1 + e)e−x2
.

2.36. ϕ′(0).

2.38. f ′(t) = 2tH(t), f ′′(t) = 2H(t), f ′′′(t) = 2δ(t), f (4)(t) = 2δ′(t).
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2.40. f ′′′(x) = 24x(H(x+ 1) −H(x− 1) + 8(δ(x+ 1) − δ(x− 1)).

Chapter 3

3.3. f̃(s) = (1 + e−πs)/(s2 + 1).

3.4. (a)
4
s3

− 1
2 + 1

(b)
s4 + 4s2 + 24

s5
. (c)

1
s

− 2
s2 + 4

.

3.6. f̃(s) =
2e−s

s3
.

3.7. f̃(s) =
1
s

ln
∣∣∣s+ 1

s

∣∣∣.
3.9. f̃(s) =

πe−πs

s2 + 1
+

2s(e−πs + 1)
(s2 + 1)2

.

3.11.
2(s+ 1)

((s+ 1)2 + 1)2
.

3.14.
1 − (1 + s)e−s

s2(1 − e−s)
.

3.17. (a) 1 − e−t. (b) 3tet. c) 1
4

(
1 − (2t+ 1)e−2t

)
.

3.18. (a) e−t − 1 + t. (b) 1 − cos bt.

3.19. (a) f(t) = 1 +H(t− 1). (b) f(t) = (e2(t−1) − et−1)H(t− 1).

(c)
e−2t − e−3t

t
.

3.21. y = et(2 − 2 cos t− t sin t).

3.23. x = 2 + 1
2 (t2 + e−t + cos t− 3 sin t), y = 1

2 (2 − e−t − cos t+ 3 sin t).

3.25. y(t) = 2et − e2t + 1
2 (1 − e2(t−2) − 2et−2)H(t− 2).

3.27. y = et − t− 1.

3.29.
1

a− b
(eat − ebt) if a �= b; teat if a = b.

3.31. 1
2 (t cos t+ sin t).

3.33. f(t) = 3.

3.35. y(t) = e−t sin t.

3.37. f(t) = 5
2 (1 − e−2t) − 4te−t.

3.39. y =
(
1 − 1

2 (t2 + 1)e1−t
)
H(t− 1) + 1

2 (t− 2)2e2−tH(t− 2).

3.41. (a) E(t) = 1
2 sin 2tH(t). (b) E(t) = 1

2e
−2t sin 2tH(t).

(c) E(t) = 1
2 t

2e−tH(t).

3.43. f(t) = (2 − e−t)H(t).

3.44. (a)
2z

2z − 1
. (b)

3z
(z − 3)2

. (c)
2z2 + 4z
(z − 2)3

. (d)
z

(z − 1)p+1 .

3.45. (a) an = 1
3

(
2
3

)n
. (b) a1 = 1, an = 0 for all n �= 1.

3.47. an = 1 − cos
nπ

2
, bn = 1 − sin

nπ

2
.
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3.49. an = (−1)n
(

n
3

)
= 1

6 (−1)n(n3 − 3n2 + 2n).

3.51. y(0) = 1
3 , y(1) = − 5

3 , y(n) = 4
3 for all n ≥ 2.

3.53. x(n) = 1
5 · 2n + 4

5 cos
nπ

2
− 2

5 sin
nπ

2
.

3.55. (a) is stable, (b) and (c) are unstable.

3.57. y = et − e−t sin t.

3.59. y = 1
2 sin 2t+

(
1
4 (t− 1)2 − 1

8 + 1
8 cos 2(t− 1)

)
H(t− 1).

3.61. f(t) = et cos 2t, t > 0.

3.63. y(t) = 1
2 t

2 − t+ 1 + cos t+ sin t.

3.65. y(t) = sin t, z(t) = e−t − cos t.

3.67. y(t) = 2(t+ 1) sin t, z = 2et − 2(t+ 1) cos t.

3.69. f(t) = 3t− 3 + 8e−t + cos
(
t
√

2
)

− 1√
2

sin
(
t
√

2
)
.

3.71. y(t) = 2t− 1 + sin 2t.

3.73. y(t) = 1
2 t

2.

3.75. y(t) = 3t+ 5.

3.77. y(t) = 4 sin 2t− 2 sin t.

Chapter 4

4.4. f(t) ∼ 1 + 2
∞∑

n=1

(−1)n+1

n
sinnt.

4.6. (a) f(t) ∼ cos 2t. (b) g(t) ∼ 1
2 + 1

2 cos 2t. (c) h(t) ∼ 3
4 sin t− 1

4 sin 3t.
Sens moral: If a function consists entirely of terms that can be terms
in a Fourier series, then the function is its own Fourier series.

4.9. f(t) ∼ 1 − e−π

π
+

2
π

∞∑
n=1

1 − (−1)ne−π

1 + n2 cosnt.

4.12. f(t) ∼ − 7
15 π

4 − 48
∞∑

n=1

(−1)n

n4 cosnt; ζ(4) =
π4

90
.

4.16. If a has the form n2 + (−1)n for some integer n �= 0, then the problem
has the solutions y(t) = Aeint + Be−int, where A and B are arbitrary
constants (the solutions can also be written in “real” form as y(t) =
C1 cosnt+C2 sinnt). If a = 1 there are the solutions y(t) = constant. For
other values of a there are no nontrivial solutions.

4.18. f(t) ∼ 1 − 1
2 cos t+ 2

∞∑
n=2

(−1)n+1

n2 − 1
cosnt. Converges to f(t) for all t.

(Sketch the graph of f !)

4.20. (a) f(t) ∼ π

4
+

2
π

∞∑
n=1

cos(2n− 1)t
(2n− 1)2

−
∞∑

n=1

sinnt
n

; (b) 1
8 π

2.
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4.22. cosαt ∼ sinαπ
απ

− 2α sinαπ
π

∞∑
n=1

(−1)n

n2 − α2 cosnt. The series converges

for all t to the periodic continuation of cosαt. Substitute t = π, divide by
sinαπ, and stir around; and the formula for the cotangent will materialize.

4.24. y(t) = 1
2 +

1
π

∑
n∈Z\{0}

sin 1
2nπ

n
(
1 − 1

4n
2 + 1

2 in
) eint/2.

4.26. f(x) ∼ 8
π3

∞∑
k=0

sin(2k + 1)πx
(2k + 1)3

; the particular sum is
π3

32
.

4.28. f(t) ∼ − 8
π

∞∑
n=1

n(−1)n

4n2 − 1
sinnt.

4.30. f(t) ∼ π

2
+

2
π

∑
n odd

eint

n2 .

4.32. (a) f(t) ∼ 4
2 − 4 sin 2t+ 7 cos 3t.

(b) f(t) ∼ 2
π

− 4
π

∞∑
n=1

cos 2nt
4n2 − 1

.

4.33. The same as 4.32 (b) (draw pictures, as always!).

4.35. f(t) ∼ b− a

2π
+

1
2πi

∑
n∈Z\{0}

e−ina − e−inb

n
eint . It is convergent for all t.

The sum is s(t) = 1 for a < t < b, s(t) = 1
2 for t = a ∨ t = b, s(t) = 0 for

all other t ∈ [−π, π].

4.37. f(t) ∼ − 1
6 +

1
π2

∞∑
n=1

cos 2πnt
n2 .

4.39. r(t) ∼
∑
n∈Z

|cn|2e2πint/T .

4.41. f(x) ∼ 2
π

− 4
π

∞∑
n=1

cosnx
4n2 − 1

; s1 = 1
2 , s2 = 1

2 − 1
4 π.

4.43. y(t) = c0 + cos t, where c0 is any constant.

4.45. f(x) ∼ 1
π

∑
n∈Z

(−1)n sinαπ
α− n

einx.

4.48. f(x) ∼ 7
15 +

48
π4

∞∑
n=1

(−1)n

n4 cosnπx ; ζ(4) =
π4

90
.

Chapter 5

5.1. ‖u‖ =
√

19, ‖v‖ =
√

11, 〈u,v〉 = 1 + 8i.

5.3. Yes.

5.5. (a) (1, 2, 3), (5,−4, 1), (1, 1,−1). (b) 1, x, x2 − 1
3 .
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5.7. p(x) = 3x+ 1
2 (e2 − 7).

5.9. p(x) =
π

2π2 − 16
x.

5.11. π−1/4, π−1/4√2 · x, π−1/4√2(x2 − 1
2 ).

5.13. c0 = 3
8 , c2 = 1

2 , c1 = c3 = 0.

5.18. (a) p(x) = 1
2 + 45

32 x− 35
32 x

3. (b) p(x) = 15
4 (3 − π)x2 + 3

4 (2π − 5).

5.27. p(x) =
1

3
√
π

(7 − 2x2).

5.29. First 3
16 + 15

16x
2; second

2
3π

(1 + 4x2); third 5
32 + 35

32x
2.

5.31. s1 = 1
18 , s2 = (2 + 3π)/36, s3 = 1

144 π
2 − 1

162 .

5.33. ζ(8) = 1
9,450π

8.

5.35. ‖ϕmn‖ = 2π.

5.37. f(x) ∼ 6L0(x) − 18L1(x) + 18L2(x) − 6L3(x).

5.39.
∫ 1

−1

|f(x)|2 dx =
∞∑

n=0

(n+ 1
2 )|cn|2.

5.41. The coefficients are sin 1 resp. (2 cos 1 + sin 1 − 2)
√

3.

5.43. a0 = − 3
35 , a2 = 6

7 , a1 = a3 = 0.

5.45. a =
3(20 − π2)

π3 , b = 0, c =
15(π2 − 12)

π3 .

5.47. P (x) =
4

15π
(11 − 12x2).

Chapter 6

6.1. (a) u(x, t) = 3
4e

−t sinx− 1
4e

−9t sin 3x.

(b) u(x, t) =
8
π

∞∑
k=1

k

4k2 − 9
e−4k2t sin 2kx.

6.3. u(x, t) = 1
2 (1 + e−9t cos 3x).

6.5. u(x, t) = (2e−t − 1) sinx+ e−4t sin 2x.

6.7. The solution is u(x, t) =
4a
π

∞∑
k=0

(−1)k

(2k + 1)2
cos(2k + 1)t sin(2k + 1)x.

Only partials with odd numbers are heard, which is natural because the
even partials have vibration nodes at the middle point of the string.

6.9. u(x, t) =
2
π

N−1∑
k=0

n(−1)n

n2 + h
e−(n2+h)t sinnx+

sinhx
√
h

sinhπ
√
h

.

6.11. u(x, t) = sin
x

2
+

2
π

∞∑
n=1

(−1)nn

n2 − 1
4

e(
1
4 −n2)t sinnx.

6.13. u(x, y) = 3
4 + 1

4 (x4 − 6x2y2 + y4).

6.14. u(r, θ) = 3
4 r sin θ − 1

4 r
3 sin 3θ.
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6.17. ϕn(x) = sinωnx, where ωn are the positive solutions of the equation
tan(ωπ) = −ω, n = 1, 2, 3, . . .. Draw a picture: it holds that
n− 1

2 < ωn < n.

6.21. u(x, t) = 3
4 e

−t t sinx− 1
8
√

2
e−t sin

(
t
√

8
)
sin 3x.

6.23. u(x, t) = 10(x+ 1) +
40
π

∞∑
n=1

1
n
e−n2π2t sin

nπx

2
.

6.25. u(x, y) =
2
π3

∞∑
n=1

(−1)n+1

n3(enπ + 1)

(
enπy + enπ−nπy

)
sinnπx+ 1

6

(
x3 − x

)
.

6.27. u(x, y) =
π − y

2π
+
e2y − e4π−2y

2(e4π − 1)
cos 2x.

6.29. u(x, t) = e−t
(
(1 + t) sinx+ (cos t

√
8 + 1√

8
sin t

√
8) sin 3x

)
.

6.31. u(x, t) =
8
π

∞∑
k=1

cos(2k − 1)2t sin(2k − 1)x
(2k − 1)3

.

6.33. (a) u(x, t) =
2
π

∞∑
n=1

sinna
n

sinnt sinnx.

(b) a should satisfy sin 7a = 0, i.e., a =
kπ

7
for some k = 1, 2, . . . , 6.

For practical reasons one prefers k = 1 or 6 for a grand piano.
(For an upright piano some other value may be more practical.)

Chapter 7

7.1. (a) f̂(ω) = 2i
ω cosω − sinω

ω2 , ω �= 0; f̂(0) = 0.

(b) f̂(ω) = 2(1 − cosω)/(ω2) = 4 sin2(ω/2)/(ω2), ω �= 0; f̂(0) = 1.

(c) and (d) f /∈ L1(R), and f̂ does not exist.

7.5. (a) f̂(ω) = 2(2 + ω2)/(ω4 + 4), (b) ĝ(ω) = −4iω/(ω4 + 4).

7.7. (a) −i√2π ω exp
(
− 1

2ω
2
)
. (b) See the remark following the exercises.

7.9. No (because 1 − cosω does not tend to 0 as ω → ∞).

7.11. (a) πeiω−|ω|, (b) 1
2π e

3iω−2|ω|, (c) − 1
2 πiωe

−|ω|.

7.13. f(x) = e−x for x > 0.

7.17. fa1 ∗ fa2 = fa1+a2 . In general,
n∗

k=1
fak = fΣn

k=1ak
.

7.19. f(t) =
1√
π

exp
(
− 1

2 t
2
)
.

7.21.
π sin 5t

t
for t �= 0, 5π for t = 0.

7.23. The value of the integral is 1
2π.

7.25. Boundary values are 0 for all x �= 0, ∞ for x = 0 (if one approaches
the boundary at right angles).
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7.26. u(x, t) =
1√

1 + 4t
exp

(
− x2

1 + 4t

)
+

1√
1 + 2t

exp

(
− x2

2 + 4t

)
.

7.29. u(x, y) =
y + 1

x2 + (y + 1)2
, y ≥ 0.

7.31. cos t; if t = 0, the integral is 1
2 .

7.33. The solution that is attainable by Fourier transformation is
y(t) = (e−t − e−2t)H(t).

7.35. f̂(ω) =
2

(1 + ω2)(2 − eiω + iω)
.

7.37. (a) 1
3 πe

−|ω|/3. (b) 1
3 πe

−|ω−1|/3. (c)
π

6i

(
e−|ω−1|/3 − e−|ω+1|/3

)
.

7.39. (a) f̂(ω) = 4i · ω cosω − sinω
ω2 ; (c)

π

3
.

7.41. f̂(ω) =
2 sinπω
i(1 − ω2)

. The integral is
π2

2
.

7.43. f̂(ω) = 4
sinω − ω cosω

ω3 . The integrals are π/2 resp. 2
15π.

7.45. f(x) =
1
2π

2(a− 1)
(a− 1)2 + x2 , a > 1.

7.47. rxx = 1
2 A

2
1 cosω1t+ 1

2 A
2
2 cosω2t.

pxx(ω)
↑

1
4 A

2
2

1
4 A

2
2

1
4 A

2
1

1
4 A

2
1

−ω2 −ω1 ω1 ω2
→ ω

7.49.
(
1 − 1

2 x
2
)
e−x2/2.

7.51. f̂(ω) = −2iω/(1 + ω2), integral = 1
2 π .

7.53. f(x) = 4
3 e

−xH(x) + 4
3e

x/2(1 −H(x)).

7.55. π

(
1 − 1

e
coshx

)
, |x| < 1.

Chapter 8

8.1. An antiderivative of ϕ ∈ S belongs to S only if
∫
ϕ(x) dx = 0.

8.3. (a) Yes. (b) No (ex grows to fast as x → +∞). (c) No (not linear).

8.6. f ′′′(x) = 12H(x+ 1) − 6 − 16δ(x+ 1) + 8δ′(x+ 1).

8.10. 1/(1 + iω), 2πeω(1 −H(ω)) resp. 2πi(δ(ω) − e−ωH(ω)).

8.13. f(t) = δ(t) +H(t).
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8.18.
∑

n∈Z
δ(ω − n).

8.19. (a) E(t) = eat(H(t) − 1) if a > 0, E(t) = 1
2 sgn t if a = 0,

E(t) = eatH(t) if a < 0. (b) E(t) = (e−t − e−2t)H(t).

8.20. e−x2
belongs to S (and thus also to M); e−|x|5 has a discontinuous

fifth derivative and belongs to none of the classes; all the others
belong to M but not to S.

8.21. Not e±2x and e2xH(x), but all the others.

8.23. ψ(x)δ′′(x− a) = ψ′′(a)δ(x− a) − 2ψ′(a)δ′(x− a) + ψ(a)δ′′(x− a).

8.24. f ′′(x) = −| sinx| + 2
∑

n∈Z δ(x− nπ).

8.25. nδ(x− 1/n) − nδ(x+ 1/n) → −2δ′(x) as n → ∞.

8.27. (a) iπ(δ(ω + a) − δ(ω − a)). (b) π(δ(ω − b) + δ(ω + b)).

(c) in
(
πδ(n)(ω) − i(−1)nn!

ωn+1

)
. (d) 2 cos aω. (e) −1.

Chapter 9

9.1. Let the positive terms be a1 ≥ a2 ≥ ax ≥ · · · → 0 and the negative terms be
b1 ≤ b2 ≤ b3 ≤ · · · → 0. Then

∑
an = +∞ and

∑
bn = −∞. We can agree that

we always take terms from the positive bunch in order of decreasing magnitude,
and negative terms in order of increasing magnitude. Then we can obtain the
various behaviours in the following ways:
(a) Take positive terms until their sum exceeds 4. Then take negative terms until
the sum becomes less than 4. Then switch to positive terms again, etc. Since
the terms tend to 0, the sequence of partial sums will oscillate around 4 with
diminishing amplitudes and their limit will be 4.
(b) Take negative terms until we get a sum less than −1. Then take one positive
term. Then negative terms until we pass −2; one positive term; negative terms
past −3; etc.
(c) Take negative terms until we pass −13; then positive terms until we exceed
2003; negative terms again until we pass −13; and carry on like this till the cows
come home.
(d) Take positive terms until the sum exceeds 1; then negative terms until we
come below −2; then positive terms to pass 3; negative to pass −4; etc.

9.3. 1.



Appendix E
Literature

This list does not attempt to be complete in any way whatsoever. First
we mention a few books that cover approximately the same topics as the
present volume, and on a similar level.

R. V. Churchill & J. W: Brown, Fourier Series and Boundary Value
Problems. McGraw–Hill, New York, 1978.

J. Ray Hanna & John H. Rowland, Fourier Series, Transforms, and
Boundary Value Problems. Wiley, New York, 1990.

P. L. Walker, The Theory of Fourier Series and Integrals. Wiley, Chich-
ester, 1986.

The following books are on a more advanced mathematical level.

Thomas W. Körner, Fourier Analysis. Cambridge University Press; first
paperback edition, 1989.

Thomas W. Körner, Exercises for Fourier Analysis. Cambridge Univer-
sity Press, 1993.

These books are excellent reading for the student who wants to go deeper
into classical Fourier analysis and its applications. The applications treated
cover a wide range: they include matters such as Monte Carlo methods,
Brownian motion, linear oscillators, code theory, and the question of the
age of the earth. The style is engaging, and the mathematics is 100 percent
stringent.
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Yitzhak Katznelson, An Introduction to Harmonic Analysis. Wiley,
New York, 1968.
This work goes into generalizations of Fourier analysis that have not been
mentioned at all in the present text. It presupposes knowledge of Banach
spaces and other parts of functional analysis.

Lars Hörmander, The Analysis of Linear Partial Differential Operators,
I–IV. Springer-Verlag, Berlin–Heidelberg, 1983–85.
This monumental work is the standard source for distribution theory. It is
not an easy read, but it is famous for its depth, breadth, and elegance.

Finally, for the really curiuos student, we mention a couple of research
papers referred to in this text.

Lennart Carleson, On convergence and growth of partial sums of
Fourier series. Acta Mathematica 116 (1966), 135–157.

Hans Lewy, An example of a smooth linear partial differential equation
without solution. Annals of Mathematics (2) 66 (1957), 91–107.



Index

Abel summation, 152
almost everywhere, 116
amplitude, 76
angular frequency, 90
autocorrelation function, 102, 194

Bessel inequality, 111, 117
black box, 53, 67, 239
boundary condition, 10
boundary values, 10, 137

Carleson’s theorem, 89
CD recordning, 188
Cesàro summation, 20, 82, 96,

97
chain rule, 211
characteristic curve, 6
Chebyshev polynomials, 128
compact support, 200
completeness, 111, 119
complex exponential, 15
complex vector space, 105
continuity on T, 74
convergence

of distributions, 213

of test functions, 201
pointwise, 86, 87, 117
uniform, 12, 24, 83, 117
various notions, 117

convolution, 53, 65, 80, 176, 218,
232, 239

d’Alembert formula, 8
delta “function”, 28, 57, 96, 199,

205
derivative of distribution, 208
difference equation, 61
diffusion equation, 1
dipole, 31, 226
Dirac “function”, 28, 57, 96,

199, 205
Dirichlet

kernel, 81, 87, 93
problem, 145, 148

distance 115
distribution, 27, 57, 96, 190, 203
domain, 1
double series, 230

eigenvalue, 154
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eigenvector, 154
electric dipole, 31, 226
elliptic equation, 3
equality

of distributions, 206
of functions, 115

Euler’s formulae, 16, 17
even function, 77
expansion theorem, 112

Fejér

kernel, 81
theorem, 82

FFT, 243
Fibonacci numbers, 64
Fourier

coefficients, 75, 116
series, 75, 220

multi-dimensional, 233
transform, 165

discrete, 243
fast, 243
inversion, 171
of distributions, 213
multi-dimensional, 236

fundamental solution, 58, 221
fundamental tone, 144
fuzzy point, 199, 200

generalized derivative, 86
Gibbs phenomenon, 93

heat equation, 1, 9, 137, 139, 182,
223

Heaviside

function, 29, 204
window, 29, 209

Heisenberg principle, 198
Hermite polynomials, 127, 160
homogeneous condition, 10
hyperbolic equation, 2

impulse response, 67, 69, 240
initial values, 7, 10
inner product, 106

Kahane and Katznelson, 89

Laguerre polynomials, 127, 160
Laplace

equation, 2, 145, 159, 185,
223

operator, 1
transform, 28, 39, 188

inversion, 189
uniqueness, 48

Laurent series, 60
least squares approximation, 110
Lebesgue spaces, 115
Legendre polynomials, 124, 159

mean value, 79
moderately increasing function,

201
modes of vibration, 144
multiplicator, 201

norm, 107, 115

odd function, 77
ON set, 108
operator, 154
orthogonal, 108

projection, 110
orthonormal set 108

parabolic equation, 2
Parseval formula, 112, 113, 120
partial tone, 144
partition of unity, 203
phase angle, 76
Plancherel formula, 180
point charge, 27, 198
pointwise convergence, 86, 87,

117
Poisson

equation, 2
kernel, 152
summation, 152

principal value, 206
projection, 110
pulse response, 67, 69, 240
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pulse train, 96, 220
P.V., 206

residual, 111
resonance, 5
Riemann–Lebesgue lemma, 25
Rodrigues formula, 125, 127
roof function, 24

sampling theorem, 187
separation of variables, 10, 137
series

double, 230
Fourier, 75, 220
Laurent, 60
rearrangement of, 227
summability of, 21

Shannon’s sampling theorem,
187

spherical harmonics, 159
stability

of differential equation, 4
of black box, 68, 69

Sturm–Liouville

operator, 156
problem, 155

singular, 158
theorem 157

summability of series, 21
summation kernel, 22
support, 200, 207
symmetric operator, 154

tempered
distribution, 203
function, 201

test function, 200
transfer function, 68, 69
Tricomi equation, 3

uniform continuity, 24, 168
uniform convergence, 12, 24, 83,

117
uniqueness, 4, 48, 84, 176
unit step function, 29

vector space, 105
vibrating string, 143
vibration, modes of, 144

wave equation, 2, 5, 143, 211
Weierstrass approximation

theorem, 124
weight function, 115
well-posed problem, 3

zero set, 89, 116, 207, 233
Z transform, 60
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