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Chapter 1Introdution and some history
1.1 Some historyThere has been a revolution in nonlinear physis over the past twentyyears. Two great disoveries, eah of whih, inidentally, was made withthe aid of omputer experiments, have radially hanged the thinkingof sientists about the nature of nonlinearity and introdued two newtheoretial onstruts into the �eld of dynamis. The �rst of these is thesoliton and the seond is the strange attrator [New85℄.Developments in the theory of these strange attrators, so-alled "haos theory",gave a gradual lari�ation of the errati and unpreditable properties in naturalphenomena. This thesis onsiders the equally puzzling and almost opposite hal-lenge: to explain the striking preditability and regularity of the "soliton solution",showing a remarkable survivability under onditions where one might normally ex-pet suh a feature to be destroyed.We �rst give a sketh of how the subjet began. The purpose is purely motiva-tional, not to give a historial survey of the �eld. There are several plaes in theliterature with eye-witness desriptions suh as [vdB78℄, [Kru78℄, [EvH81℄, [New85℄,[Kon87℄, [AC91℄ and [Pal97℄. The following narrative is based mainly on thesesoures.The disovery of the physial soliton is attributed to John Sott Russell's ob-servation in 1834: A boat was rapidly drawn along a narrow hannel by a pair ofhorses. When the boat suddenly stopped before a bridge, the bow wave detahedfrom the boat and rolled forward with great veloity assuming the form of large soli-tary elevation, a rounded, smooth and well-de�ned heap of water, whih ontinuedits ourse along the hannel without hange the original form or diminution of thespeed, as observed by Sott Russell who followed on horsebak.Although Sott Russell spent a major part of his professional life arrying outexperiments to determine the properties of the great wave, it is doubtful that heappreiated their true soliton properties, i.e., the ability of these waves to interatand ome out of these interations without hange of form, as if they were partiles.13



Nevertheless, the dash on the horsebak exerts a powerful appeal.The disovery of mathematial soliton started with an investigation of the so-lutions of nonlinear partial di�erential equations, suh as the work of Boussinesqand Rayleigh, independently, in the 1870's.It was in 1895 that Korteweg and de Vries derived the equation for water wavesin shallow hannels, whih on�rmed the existene of solitary waves. The equationwhih now bears their names1 is of the form 2ut = u3 + uu1 (KdV equation): (1.1.1)This was the �rst stage of disovery. The primary thrust was to establish thephysial and mathematial existene and robustness of the wave. The disovery ofits additional properties was to await the appearane of omputers.In 1955, Fermi, Pasta and Ulam (FPU) undertook a numerial study of theone-dimensional anharmoni lattie of equal masses oupled by nonlinear springs.The omputations were arried out on the Mania I omputer. They predited thatany smooth initial state would eventually reah equilibrium due to the nonlinearoupling, aording to the ergodi hypothesis. Muh to their surprise, the energyreolleted after some time in the degree of freedom where it was when the ex-periment was started. Thus the experiment failed to produe the expeted result.Instead it produed a diÆult hallenge.Fortunately, the urious results were not ignored altogether. In 1965, Kruskaland Zabusky approahed the FPU problem from the ontinuum viewpoint. Theyamazingly rederived the KdV equation and found its stable pulse-like waves bynumerial experimentation. A remarkable property of these solitary waves was thatthey preserved their shapes and speeds after two of them ollide, interat and thenspread apart again. They named suh waves solitons.The disovery by Kruskal and Zabusky attrated the attention and stimulatedthe uriosity of many physiists and mathematiians throughout the world. Theytook up the intriguing hallenge of the analytial understanding of the numerial re-sults. The stability and partile-like behavior of the solutions ould only be explainedby the existene of many onservation laws; this started the searh for the onserva-tion laws for the KdV equation. A onservation law has the form DtU+DxF = 0; Uis alled the onserved density and F is alled onserved ux. The expressionsfor the onservation of momentum and energy were lassially known:Dtu�Dx(u2 + u22 ) = 0; Dt(u22 )�Dx(uu2 � u212 + u33 ) = 0:Whitham found a third onserved density, whih orresponds to Boussinesq's famousmoment of instability. Zabusky and Kruskal ontinued searhing and found two1Aording to R. Pego, in a letter to the Noties of the AMS, 1998, volume 45, number 3, thisequation appears in a footnote of a paper by Boussinesq, Essai sur la th�eorie des eaux ourantes,presented in 1872 to the Frenh Aademy and published in 1877.2where ui = �iu�xi .



more densities of order 2 and 3 (the highest derivative in the expression). Sinethey had made an algebrai mistake, they did not �nd a onserved density of order4. This aused a delay of more than a year before they went bak on the right trak.Kruskal somewhat later asked Miura to searh for a onserved density of order5. Miura found one and then quikly �lled in the missing order 4. After the order 6and 7 were found, Kruskal and Miura were fairly ertain that there was an in�nitenumber. However, Miura was hallenged to �nd the order 8 onserved density sinethere were rumors that order 7 was the limit. He did this during a two-week vaationin the summer of 1966. Later, it was proved that there was indeed a onserveddensity of eah order [MGK68℄. Moreover, in [SW97b℄ it is proven that there are noother onservation laws besides the known onservation laws of the KdV equation.The existene of an in�nite number of onservation laws was an important link inthe hain of disovery. After the searh for onserved densities of the KdV equation(1.1.1), Miura found that the Modi�ed Korteweg{de Vries equationvt = v3 + v2v1 (mKdV) (1.1.2)also had an in�nite number of onserved densities. He showed thatut � (u3 + uu1) = (2v +p�6Dx)(vt � (v3 + v2v1));under the transformation u = v2+p�6v1, whih now bears his name. Therefore, ifv(x; t) is a solution of (1.1.2), u(x; t) is a solution of (1.1.1). From this observation,the famous inverse sattering method was developed and the Lax pair was found[Lax68℄. Gardner was the �rst to notie that the KdV equation ould be writtenin a Hamiltonian framework. Later, Zakharov and Faddeev showed how this ouldbe interpreted as a ompletely integrable Hamiltonian system in the same sense as�nite dimensional integrable Hamiltonian systems [ZF71℄ where one �nds for everydegree of freedom a onserved quantity, the ation.The onserved geometri features of solitons are intimately bound up with no-tions of symmetry. The symmetry groups of di�erential equations were �rst studiedby Sophus Lie. Roughly speaking, a symmetry group of a system onsists of thosetransformations of the variables whih leave the system invariant. In the lassialframework of Lie, these groups onsist of only geometri transformations on thespae of independent and dependent variables of the system, the so-alled geomet-ri symmetries. There are four suh linear independent symmetries for the KdVequation, namely arbitrary translations in x and t, Galilean boost and saling.In 1918, Emmy Noether proved the remarkable theorem giving a one-to-oneorrespondene between symmetry groups and onservation laws for the Euler{Lagrange equations [Noe18℄. The question was raised how to explain the in�nitelymany onserved densities for the KdV equation. One started to searh for the hiddensymmetries, generalized symmetries, whih are 'groups' whose in�nitesimal gen-erators depend not only on the independent and dependent variables of the system,but also the derivatives of the dependent variables.In fat, generalized symmetries �rst appeared in [Noe18℄. Somehow, they werenegleted for many years and have sine been redisovered several times. The great



advantage of searhing for symmetries is that they an be found by expliit om-putation. Moreover, the entire proedure is rather mehanial and, indeed, severalsymboli programs have been developed for this task [HZ95℄, [Her96℄.In 1977, Olver provided a method for the onstrution of in�nitely many sym-metries of evolution equations, originally due to Lenard [GGKM74℄. This is thereursion operator [Olv77℄, whih maps a symmetry to a new symmetry. For theKdV equation, a reursion operator isRKdV = D2x + 23u+ 13u1D�1x :Here D�1x stands for the left inverse of Dx, so the reursion operator is only de�nedon ImDx.Almost at the same time, Magri studied the onnetions between onservationlaws and symmetries from the geometri point of view [Mag78℄. He observed thatthe objet of the theory of onservation laws, the gradients of the onserved densi-ties (ovariants), was dual to that of the theory of the symmetries. This problemrequired the introdution of a "metri operator", alled sympleti operator if itmaps the symmetries to the osymmetries, or alled Hamiltonian (osymple-ti) operator in the reverse diretion. He found that some systems admittedtwo distint but ompatible Hamiltonian strutures (Hamiltonian pairs). He alledthem twofold Hamiltonian system, now alled bi-Hamiltonian systems. The KdVequation is a bi-Hamiltonian system. It an be writtenut = Dx(u2 + 12u2) = (D3x + 23uDx + 13u1)u;where these two operators are a Hamiltonian pair.Atually, the two operators had made their appearane before. Lenard used themto rederive the KdV hierarhy, in�nitely many equations sharing all t-independentonservation laws. Lax also used them to produe in�nitely many onservation lawsfor the KdV equation [Lax76℄. This sheme is now alled the Lenard sheme.There appeared naturally a speial kind of operator, alled the Nijenhuis orhereditary operator. The de�ning relation for this operator was originally foundas a neessary ondition for an almost omplex struture to be omplex, i.e., as anintegrability ondition. Its important property is to onstrut an abelian Lie algebra.. Preisely speaking, for any given vetor�eld Q0 leaving the Nijenhuis operator Rinvariant, the Qj = Rj(Q0); j = 0; 1; � � � ; leave R invariant again and ommute inpairs. This property was independently given by Magri [Mag80℄ and Fuhssteiner[Fu79℄, where it was alled hereditary symmetry. In the paper [GD79℄, the authorsalso introdued Nijenhuis operators, alled regular strutures.Interrelations between Hamiltonian pairs and Nijenhuis operators were disov-ered by Gel'fand & Dorfman [GD79℄ and Fuhssteiner & Fokas [FF80℄, [FF81℄.For example, the reursion operator of the KdV equationRKdV = (D3x + 23uDx + 13u1)D�1x



is a Nijenhuis operator and it produed the higher KdV equations,ut = Rj(u1); j = 0; 1; � � � :This is the KdV hierarhy, whih shares in�nitely many ommuting symmetriesprodued by the same reursion operator.From this point in time on, there has been an explosion of researh ativity inalgebrai and geometri aspets of nonlinear partial di�erential systems, both theappliations to onrete physial systems and the development of the theory itself.See [Oev84℄, [Zak91℄, [Olv93℄, [Dor93℄ and [FG96℄.There were other important developments in the �eld, suh as inverse satteringtransformation ("S-integrability"), the Hirota method, the Painlev�e method andthe theory of "C-integrability", linearization of the systems by hange of variables.Sine this thesis does not ontribute to these aspets, we shall not mention themany further.We list the properties of the KdV equation, on whih we shall fous:� It possesses in�nitely many onservation laws,� It possesses in�nitely many ommuting symmetries,� It is a bi-Hamiltonian system.These aspets pertain not only to the KdV equation, but are found for the wholeKdV hierarhy. Suh systems are given a speial designation, "integrable", or, moreaurately, "exatly solvable".The above properties are not equivalent. It is known that Burgers' equationut = u2 + uu1;possesses in�nitely many symmetries produed by a reursion operator, but it is not aHamiltonian system and it has only one nontrivial onservation law. However, it anbe transformed to the exatly solvable heat equation vt = v2 by the transformationu = 2v1v .What are the relations among these properties, f. [Fok87℄? What kind ofsystems are integrable? These questions lead to heated disussions on "What isIntegrability", the title of the book [Zak91℄.1.2 MotivationDespite the rapid development, whih was stimulated by the appliation of solitontheory, one still �nds unanswered questions at a remarkably elementary level.Basially two kinds of question motivated the present work.� Why is it that after the initial gold rush it was so diÆult to �nd any newintegrable systems, i.e., systems not already in the hierarhy of some knownintegrable system.



� Conservation laws and symmetries ome in hierarhies with periodi gaps, likefor the KdV equation one �nds only odd order symmetries. Where do thesegaps ome from?As it turned out, these questions are strongly related.1.3 SummaryUnderlying muh of the theory of generalized symmetries, onservation laws andHamiltonian strutures, there is an important onstrut known as the "omplexof formal variational alulus", whih presents all di�erent objets for nonlinearevolution systems as a uni�ed whole. In hapter 2 and 3 of the thesis, we build upsuh a omplex from a given ring based on Dorfman's work [Dor93℄. However, ouromplex is more general sine the ring we used an ontain t-dependent funtions.To this end we have set up the whole framework using Leibniz algebras in steadof Lie algebras. In this omplex one �nds all the important objets in the studyof symmetries and onservation laws, suh as osymmetries, reursion operators,sympleti forms.We prove in setion 2.9 that the folklore onjeture, "if a system has one non-trivial symmetry, it has in�nitely many", is true under ertain tehnial onditions.The statement and the proof is purely Lie (or Leibniz) algebrai theory, but theonditions an be heked by symboli methods, as formulated in hapters 7 and 8and diophantine approximation theory. The results in this setion are essential forthe lassi�ation of integrable equations.In hapter 4 we motivate the de�nition of the Nijenhuis operator and deriveits main properties and we formulate the notions of sympleti and Hamiltonianoperators in the abstrat ontext whih we used to set up the omplex. We derivesome of the lassial properties and relations of these notions.In hapter 5 we apply the abstrat mahinery to the omplex of formal variationalalulus and we give expressions for all kinds of invariants of the evolution equationin terms of Fr�ehet derivatives. This links the abstrat approah to the more usualde�nitions.In hapter 6 we formulate and prove several theorems regarding the form ofreursion and Nijenhuis operators. These results are very useful in omputations,sine they allow one to split messy expressions in terms of known symmetries andosymmetries. They also allow one to onlude that under rather weak onditionsthese operators are well de�ned, that is: they will, starting from a given root,produe an in�nite hierarhy of symmetries. We give a list of examples where theseresults are applied.In hapter 7 we introdue the symboli method, whih enables us to translatequestions about the integrability of nonlinear di�erential equations into divisibilityquestions of polynomials.In hapter 8 we use the symboli method to lassify salar �-homogeneous equa-tions. For � > 0 we give the omplete list of 10 integrable equations. This proof



of the lassi�ation theorem gives the answer to the questions in setion 1.2. For� = 0 we give the omplete analysis. The result is that the integrable equations turnout to be Hamiltonian, with the exeption of one family deriving from the PotentialBurgers equation.In hapter 9 we give a list of 39 integrable systems, together with their reursion-,sympleti- and osympleti operators, and the roots of symmetries and salings.Either these were known in the literature or they an be found by our new methods.This information allows one to produe the symmetries and osymmetries of eahgiven equation.In the appendies we ollet some material, proofs and examples, whih did notquite �t in the main text, but seemed to be interesting enough to inlude here.1.4 Suggestions to the readerThe text goes from the abstrat to the onrete. The theoretially inlined readeran just start at the beginning and read sequentially.For readers familiar with the standard theory as presented in [Olv93℄, [Dor93℄,whose main interest is in appliations, hapter 5 might be a good point to startreading, sine it onnets the abstrat approah with the standard theory. From hereone an go forward reading either the results on reursion and Nijenhuis operatorsin hapter 6 or the lassi�ation results in hapters 7 and 8, using the results insetion 2.9. Or one an go bakward and read hapter 4, followed by hapters 2 and3. For those who onsider even this as too theoretial, the examples in 6.3 areomputed in great detail and may be a good starting point. Chapter 9 might beread as a handbook on integrable evolution equations. If needed, one an thenbaktrak.





Chapter 2Connetion and urvatureIn this hapter and the next we set up the foundations of the theory of onnetions,urvature and ohomology. Although the intention was not to do anything new,the �nal result is not quite standard. For that reason all the proofs are expliitlygiven, even if they are of a rather mehanial nature. This has the disadvantage ofpages �lled with formulae, but the advantage that it an be read easily, sine theomputations usually only take one step at a time. There are only a few exeptionsto this rule.If one wants to restrit to Lie algebras, one substitutes A = C = C , �V = V andg = h, for the onnetion �10 one reads the adjoint representation and for r00 anyrepresentation. In this ase �nm and rnm are zero for m > 0. General soures onLie algebra ohomology and related issues are: [Fuk86℄, [Kos50℄, [HS53℄, [God64℄,[Kna88℄, [Lod91℄, [Pal61℄, [Ma87℄, and on the appliation of Lie symmetries todi�erential equations [Dor93℄, [Olv93℄, [Oev84℄.The goal is to built a omplex, in whih one �nds all the important objetsin the study of symmetries and onservation laws, suh as osymmetries, reursionoperators, sympleti forms. In this omplex one an de�ne ohomology, whih isused here as a language to separate the trivial from the nontrivial and to motivatethe de�nition of the Nijenhuis tensor and funtionals. We do not use any resultsfrom general ohomology theory, sine in the appliation one is interested in theindividual elements, and their properties are not the subjet of the theory. Thisimplies that all the real problems remain hidden in the ohomology spaes until ineah onrete problem these (or at least some of them) are omputed. It is at thatpoint that one usually has to require more properties from the underlying rings. Weompute some small examples in appendix C.2.1 IntrodutionThis hapter gives the abstrat material on whih we will build the theoretial frame-work. In setion 2.2 the basi de�nitions are given of rings, modules and derivations.In setion 2.3 we give the basi de�nitions of Lie and Poisson algebras, whih willserve as a motivation for the later developments. In setion 2.4 we onstrut a Lie21



algebra from a given ring. This is done by �rst formally de�ning the spae of K�ahlerdi�erentials and then onsidering the dual spae, just as one normally de�nes thetangent spae using the otangent spae. Then we de�ne onnetions on modules,generalizing the onept of Lie and Poisson algebra and their representations. Thisde�nition is then naturally lifted to hains and ohains in setion 2.6. In se-tion 2.7 we de�ne the urvature of a onnetion, inspired on the de�nition of theRiemannian urvature of the Levi{Civita onnetion. We show that the urvatureis again a onnetion. Zero urvature is equivalent to the Jaobi identity for Liealgebras. In setion 2.8 we give some elementary examples, based on lassial me-hanis, to illustrate the onepts of onnetion and urvature. Finally, in setion2.9 we give an impliit funtion theorem to be used later in our lassi�ation of�-homogeneous equations, f. hapter 8.2.2 Rings, modules and derivationsAbstrat 2-1. In this setion we give the basi de�nitions for modules over notneessarily ommutative rings and their derivations.Notation 2-2. We denote by C a ommutative ring with unity 1C (6= 0C, the zeroelement), whih will be the basi ring in all that follows. The �eld of invertibleelements in C will be denoted by C?. The reader may think of C as R; C or Q , butatually not muh is needed of C.De�nition 2-3. Let R be a ring with multipliation �R : R�R ! R. We say thatV is a left R-module if it is an abelian group with group operation (v1; v2) 7! v1+v2and R ats on V , i.e., there is a map �R : R� V ! V suh that for l1; l2 2 R andv; v1; v2 2 V ,1. �R(l1 + l2; v) = �R(l1; v) + �R(l2; v).2. �R(0R; v) = 0.3. �R(1R; v) = v.4. �R(l1; v1 + v2) = �R(l1; v1) + �R(l1; v2).5. �R(�R(l1; l2); v) = �R(l1; �R(l2; v)).We de�ne a right R-module in the same way, with �R : R � V ! V suh that�R(�R(l1; l2); v) = �R(l2; �R(l1; v)). We write �R(l; v) = l Æ v, �R(l; v) = v Æ land �R(l1; l2) = (l1l2). When V is both a left and a right R-module, we all it anR-module. .When R is ommutative, R itself is an R-module.



Notation 2-4. We denote by A a (not neessarily ommutative) ring with unitywhih is also a C-module. Let in the sequel R be the enter of A, i.e.,R = fr 2 Ajrs = sr; 8s 2 Ag:We imbed C in A by �C(l1; 1A) and we assume �C(C) � R.Example 2-5. A typial example would be: Let C be the ring of real valued C1-funtions in t and x and let A be generated by u = u(t; x) and its x-derivatives withoeÆients from C. So we would have sin(t + x)u21 2 A, where u1 stands for �u�x .De�nition 2-6. We say that a C-module V is a �ltered module if there existC-submodules V (i); i = 0; � � � ;1 suh that� V = V (0) � V (1) � � � � � V (i) � � � � ;� T1i=0 V (i) = 0:De�nition 2-7. Let V and W be �ltered modules. We say that � : V �W ! Wde�nes a �ltered ation of V on W if �(V (i);W (j)) � W (i+j).De�nition 2-8. We all two C-modules �V and V a diret pair, if V is a diretsummand of �V . We denote the retrat by �V : �V ! V . When V is an A-module,we denote this by ( �V ; V )A.Remark 2-9. If in the diret pair ( �V ; V )A, the module V is zero, some are shouldbe taken with the de�nitions in the sequel, but we will not mention this again.Notation 2-10. Let V;W be C-modules and HomC(V;W ) be the spae of C-lineartransformations of V to W . We write EndC(V ) for HomC(V; V ). If ( �V ; V )A isa diret pair, we denote by EndVC ( �V ) those C-linear homomorphisms that leave Vinvariant.If V is an A-module, then EndC(V ) is automatially also a left A-module, with(rB)v = r(Bv) for r 2 A; v 2 V; B 2 EndC(V ).De�nition 2-11. Let V be a A-module. The map d : A! V is a derivation if itsatis�es the Leibniz ruled�A(f; g) = �A(f; d(g)) + �A(g; d(f)); f; g 2 A:We say that d is C-linear if it is a map of C-modules. The spae DerC(A; V ) ofall C-linear derivations A ! V is naturally a left R-module, with the left ationde�ned by fd : g 7! f(d(g)) 2 V; f 2 R; g 2 A:We write DerC(A) for DerC(A;A).Remark 2-12. We write 1 = 1A = 1C. Sined(1) = d(�A(1; 1)) = �C(1; d(1)) + �C(1; d(1)) = 2d(1);we have d(1) = 0. It follows that d(a) = d(�C(1; a)) = �C(a; d(1)) = �C(a; 0) = 0 fora 2 C due to the C-linearity of d.



2.3 Representations of Lie algebrasAbstrat 2-13. In this setion we introdue Lie algebras, Poisson algebras andtheir representations. This motivates the de�nition of onnetion in setion 2.5.De�nition 2-14. We say that a C-module g is a Lie algebra if there exists aC-bilinear operation [ ; ℄ : g� g! g, alled Lie braket, satisfying[X; Y ℄ = �[Y;X℄ (antisymmetry);[X; [Y; Z℄℄ + [Y; [Z;X℄℄ + [Z; [X; Y ℄℄ = 0 (Jaobi identity);where X; Y; Z 2 g.De�nition 2-15. If g = A, then g is alled a Poisson algebra, if it is a Liealgebra and [p; rq℄ = r[p; q℄ + [p; r℄q; 8p; q; r 2 A; (Leibniz rule);Example 2-16. EndC(V ) is a Lie algebra with Lie braket [A;B℄ = AB � BA.This onstrution works for any assoiative algebra.De�nition 2-17. A representation of a Lie algebra is a C-linear homomor-phism of Lie algebras r00 : g ! EndC(V ), i.e., r00([X; Y ℄) = [r00(X);r00(Y )℄ =r00(X)r00(Y )�r00(Y )r00(X).De�nition 2-18. If, moreover, V is a left A-module and there exists a representa-tion 00 of g in DerC(A), suh thatr00(X)(r Æ v) = r Æ r00(X)v + 00(X)(r) Æ v; r 2 A; v 2 V;X 2 g;then r00 is alled an A-representation (f. de�nition 2-28).For any X1; X2 2 g, we denote the map X2 7! [X1; X2℄ by ad(X1). Thenad : g ! EndC(g) is a homomorphism of Lie algebras due to the Jaobi identity,alled the adjoint representation of g.De�nition 2-19. Let (g; h)A be a diret pair and h be an ideal of Lie algebra g, i.e.,[g; h℄ � h. We say that g is an A-Lie algebra if the adjoint representation ad isan A-representation on h.De�nition 2-20. When there exists a representation r00 : g ! EndC(V ), we allV a (left) g-module.De�nition 2-21. We say that Lie algebra g is a graded Lie algebra if there existC-submodules g(i); i 2 Z suh that� g =Li2Zg(i);� [g(k); g(l)℄ � g(k+l):De�nition 2-22. We say that a �ltered module f is a �ltered Lie algebra if ad isa �ltered ation, i.e., [f(k); f(l)℄ � f(k+l); where the f(k); k = 0; � � � ;1 are submodules.If we have a graded Lie algebra g = Li2N g(i), we an view it as a �ltered Liealgebra by putting f(i) =Li�j g(j).



2.4 Lie algebra of a ringAbstrat 2-23. In this setion we show that we an onstrut a Lie algebra given aring. If one thinks of the ring as the ring of funtions on a manifold, the onstrutionis analogous to the onstrution of the tangent spae as the dual of the otangentspae. The onstrution is standard and losely follows [Eis95℄, exept for the fatthat we do not require A to be ommutative.The reader who identi�es C and A an skip this setion altogether. We denotethe produt xy as (xy) if this improves the readability.De�nition 2-24. The spae of K�ahler di�erentials of A over C, written 
1A=C ,is the A-module generated by the set fd(f)jf 2 Ag subjet to the relationsd(xy) = x Æ d(y) + d(x) Æ y; x; y 2 A; (Leibniz rule) (2.4.1)d(1x + 2y) = 1d(x) + 2d(y); 1; 2 2 C: (2.4.2)Often one writes dx for d(x).The map d : A ! 
1A=C , de�ned by d : x 7! dx is a C-linear derivation. Themap d has, by its de�nition, the following universal property: given any A-moduleV and C-linear derivation d : A ! V , there is an unique A-linear homomorphismX : 
1A=C ! V suh that d = Xd.A d - 
1A=C
Vd?� XIndeed, X is de�ned by the formula X(dy) = dy. One sees that X is an A-linearhomomorphism (by onstrution) sine the relations among the dy are also satis�edby the dy:X(x Æ dy Æ z) = X(x Æ dy) Æ z = x ÆX(dy) Æ z = x Æ dy Æ z(Xd)(xy) = d(xy) = x Æ d(y) + d(x) Æ yX(d(xy)) = X(x Æ dy) +X(dx Æ y) = x ÆX(dy) +X(dx) Æ y= x Æ d(y) + d(x) Æ y:We may onsider the onstrution of 
1A=C as a linearization of the onstrution ofderivations. It is therefore the simpler objet to work with.If A is generated (as a ring) by elements x�, then 
1A=C is generated as an A-module by the elements dx�. For example, if g = p(x1; � � � ; xr) is a polynomial in thex� with oeÆients in C, then using the Leibniz rule we show that dg =Pr�=1 �p�x� dx�.



We now onsider the ase V = A. Let d1; d2 2 DerC(A). Then the Lie braket[d1; d2℄ = d1d2 � d2d1is again an element of DerC(A):[d1; d2℄(xy) = d1d2(xy)� d2d1(xy)= d1(x Æ d2(y) + d2(x) Æ y)� d2(x Æ d1(y) + d1(x) Æ y)= d1(x Æ d2(y)) + d1(d2(x) Æ y)� d2(x Æ d1(y))� d2(d1(x)y)= x Æ d1(d2(y)) + d1(x) Æ d2(y) + d1(d2(x)) Æ y + d2(x) Æ d1(y)�d2(x) Æ d1(y)� x Æ d2(d1(y))� d2(d1(x)) Æ y � d1(x) Æ d2(y)= x Æ [d1; d2℄(y) + [d1; d2℄(x) Æ y:By the universal property of d : A ! 
1A=C , the maps d1; d2; [d1; d2℄ must be of theform Xd; Y d; Zd, respetively, for A-module homomorphisms X; Y; Z : 
1A=C ! A.Clearly [d1; d2℄ = d1d2 � d2d1 = XdY d� Y dXd = (XdY � Y dX)d;so one might guess that Z = XdY � Y dX. But this does not work, sine the righthand side is not a homomorphism of A-modules. Indeed,Z(x Æ dy) = XdY (x Æ dy)� Y dX(x Æ dy) == Xd(x Æ Y (dy))� Y d(x ÆX(dy))= X(x Æ dY (dy)) +X(dx Æ Y (dy))� Y (dx ÆX(dy))� Y (x Æ dX(dy))= x ÆX(dY (dy)) + (X(dx)Y (dy))� (Y (dx)X(dy))� x Æ Y (dX(dy))= x Æ Z(dy) + (X(dx)Y (dy))� (Y (dx)X(dy)):So we have an obstrution of the form (X(dx)Y (dy))� (Y (dx)X(dy)). To ompen-sate for this obstrution, let!(X; Y )(x; y) = (X(dx)Y (dy))� (Y (dx)X(dy)):We de�ne [X; Y ℄(x Æ dy Æ z) = XdY (x Æ dy Æ z)� Y dX(x Æ dy Æ z)+x Æ !(X; Y )(y; z)� !(X; Y )(x; y) Æ z:Then it follows that[X; Y ℄(x Æ dy Æ z)= XdY (x Æ dy Æ z)� Y dX(x Æ dy Æ z) + x Æ !(X; Y )(y; z)� !(X; Y )(x; y) Æ z= Xd(x(Y (dy)z))� Y d(x(X(dy)z)) + x Æ !(X; Y )(y; z)� !(X; Y )(x; y) Æ z= (X(dx)Y (dy)) Æ z + x ÆXd(Y (dy)) Æ z + x Æ (Y (dy)X(dz))� (Y (dx)X(dy)) Æ z � x Æ Y dX(dy) Æ z � x Æ (X(dy)Y (dz))+ x Æ !(X; Y )(y; z)� !(X; Y )(x; y) Æ z= x Æ [X; Y ℄(dy) Æ z:



We show that [; ℄ de�nes a Lie braket on g = HomA(
1A=C ;A). Let X; Y; Z 2HomA(
1A=C ;A). Antisymmetry being obvious, we prove the Jaobi identity. ItsuÆes to prove the identity on the generators dy.([X; [Y; Z℄℄ + [Z; [X; Y ℄℄ + [Y; [Z;X℄℄) (dy)= (Xd[Y; Z℄� [Y; Z℄dX + Zd[X; Y ℄�[X; Y ℄dZ + Y d[Z;X℄� [Z;X℄dY ) (dy)= (Xd(Y dZ � ZdY )� (Y dZ � ZdY )dX + Zd(XdY � Y dX)�(XdY � Y dX)dZ + Y d(ZdX �XdZ)� (ZdX �XdZ)dY ) (dy)= 0:If A is ommutative, DerC(A) is an A-module, and this indues an ation of A ong. Indeed, r Æ X is de�ned by the formula r Æ X(dy) = r Æ dy. The Lie braketis not A-linear, but de�nes an A-Lie algebra (f. de�nition 2-19). We have, with00(X) = Xd and X; Y 2 g[X; r Æ Y ℄(dy) = Xd(r Æ Y (dy))� r Æ Y dX(dy)= (X(dr)Y (dy)) + r ÆXdY (dy)� r Æ Y dX(dy)= Xd(r) Æ Y (dy) + r Æ [X; Y ℄(dy)= r[X; Y ℄(dy) + 00(X)(r)Y (dy):Proposition 2-25. Assume that ' : A! A0 is a ring homomorphism. Then thereexists an unique Lie algebra homomorphism'? : HomA(
1A=C ;A)! HomA0(
1A0=C0;A0):Proof. First we onstrut the map '? with the help of the following diagram:
1A=C '?- 
1A0=C0
Ad6 X? ' -'0 - A0d60 '?X?Given ' : A ! A0, we de�ne '0 : A ! 
1A0=C0 by '0 = d0'. The map d has, by thede�nition, the following universal property: There exists a unique map '? : 
1A=C !
1A0=C0 suh that '?d = '0. This means that '?(x Æ dy Æ z) = '(x) Æ d0'(y) Æ '(z).Therefore '?X an be de�ned on Im'? by ('?X)'? = 'X. We have '?X'?d ='?X'0 = '?Xd0' = 'Xd.First we hek that '?X is an A0-linear homomorphism.'?X'?(x Æ dy Æ z) == '?X('(x) Æ d0'(y) Æ '(z))



= 'X(x Æ dy Æ z)= '(x ÆXdy Æ z)= '(x) Æ 'Xdy Æ '(z)= '(x) Æ '?Xd0'(y) Æ '(z):We hek suh '? is a Lie algebra homomorphism. For any r 2 A and X; Y 2HomA(
1A=C ;A), we have('?[X; Y ℄)d0'(r) = '([X; Y ℄dr) == '(XdY (dr))� '(Y dX(dr))= ('?X)d0'(Y (dr))� ('?Y )d0'(X(dr))= ('?X)d0('?Y )d0'(r)� ('?Y )d0('?X)d0'(r)= ['?X;'?Y ℄d0'(r);and this proves the statement.In hapter 3, we will be assuming the existene of g and the maps X; Y will bewritten there as �10(X); �10(Y ), where X; Y 2 g, f. de�nition 3-8.The reader should realize that although the onstrutions given here seem to beof a very general nature, this does not imply that they always lead to useful results.This depends on the existene of derivations on the ring (f. [Lod91℄, E.1.3.5). Butin hapter 5 we will see that they apply in a natural way to the omplex of formalvariational alulus.2.5 ConnetionsAbstrat 2-26. In this setion we introdue onnetions and their elementary prop-erties.We assume ( �V ; V )A, ( �W;W )A and (g; h)A to be a diret pairs.De�nition 2-27. We de�ne h0R = h and, for m � 0, hm+1R = hmR
R hmR and g0C = g,gm+1C = gmC 
C gmC . We onsider hmR as an A-module by the ation of A on the lastomponent. Of ourse, when R = A, this is ompatible with the usual ation of Aon the tensor produt over A.De�nition 2-28. Suppose there exists a 0m : gmC ! EndC(A). We say that r�m :gmC ! EndVC ( �V ) is a onnetion of gmC on V with anhor 0m ifr�m(X)(l Æ v) = l Æ r�m(X)v + 0m(X)(l) Æ v; l 2 A; v 2 V;and we write r�m 2 ��m(g; V;A). A onnetion r�m is said to be A-linear ifr�m(rY ) = rr�m(Y ) for Y 2 hmR and r 2 A.Remark 2-29. � The terminology anhor is introdued in [Ma87℄.



� Compare this with the de�nition of an A-representation.� If here r�m(X) is only de�ned on V , it an easily be extended by using theprojetion of �V on V to a onnetion on �V .� The de�ning property of a onnetion only reets its behavior on V .� ��m(g; V;A) is a left A-module sine (l Æ r�m)(X)v = l Æ r�m(X)v.? Remark 2-30. Similar de�nitions in the literature usually assume gmC to be a Liealgebra and 0m a representation. This makes it possible to de�ne a onnetion interms of extensions of Lie algebras and learly state the obstrutions to the existeneof onnetions. In the present approah one ould do similar things if one alreadyhas a onnetion on hmC and wishes to de�ne a 'ompatible' onnetion on V , f.[Hue90℄, [KT71℄.We will not always mention the anhor, but assume that for all onnetionsin ��m there is one and the same 0m. If one sees ��m(g; V; C), then the anhor isautomatially zero, sine DerC(C) = 0 (f. proposition 2-31).Proposition 2-31. If r�m 2 ��m(g; V;A) then 0m(X) 2 DerC(A).Proof. An immediate onsequene of de�nition 2-28 is thatr�m(X)((l1l2) Æ v) = (l1l2) Æ r�m(X)v + 0m(X)(l1l2) Æ vand r�m(X)((l1l2) Æ v) = r�m(X)(l1 Æ l2 Æ v)= l1 Æ r�m(X)(l2 Æ v) + 0m(X)(l1) Æ l2 Æ v= l1 Æ l2 Æ r�m(X)v + l1 Æ 0m(X)(l2) Æ v + 0m(X)(l1) Æ l2 Æ v= (l1l2) Æ r�m(X)v + (l10m(X)(l2)) Æ v + (0m(X)(l1)l2) Æ v:It follows that 0m(X)(l1l2) = (l10m(X)(l2)) + (0m(X)(l1)l2);i.e., 0m(X) 2 DerC(A). But we an also write this as0m(X)(l1 Æ l2) = l1 Æ 0m(X)(l2) + 0m(X)(l1) Æ l2;and onlude that 0m 2 ��m(g;A;A), where �A is the left ation of A into itself.Notie that if ~r�m 2 ~��m(g; V;A) and �r�m 2 ���m(g; V;A) then r�m = ~r�m + �r�m 2��m(g; V;A), with anhor 0m = ~0m + �0m.Proof. ( ~r�m + �r�m)(X)(l Æ v) = ~r�m(X)(l Æ v) + �r�m(X)(l Æ v)= l Æ ~r�m(X)v + ~0m(X)(l) Æ v + l Æ �r�m(X)v + �0m(X)(l) Æ v= l Æ ( ~r�m + �r�m)(X)v + (~0m + �0m)(X)(l) Æ v:This proves the statement.



Besides adding two onnetions, one an also multiply them.De�nition 2-32. Consider W 
R V as a left A-module by de�ningr Æ (w 
R v) = w 
R r Æ v; r 2 A:Assume that �r�m 2 ��m(g; V;A) and ~r�m 2 ��m(g;W;A). We de�ne the produt�r�m� ~r�m by �r�m� ~r�m(X)(w 
R v) = �r�m(X)w 
R v + w 
R ~r�m(X)v:Proposition 2-33. One has �r�m� ~r�m 2 ��m(g;W 
R V;A).Proof. Indeed,�r�m� ~r�m(X)r Æ (w 
R v) == �r�m� ~r�m(X)(w 
R r Æ v)= �r�m(X)w 
R r Æ v + w 
R ~r�m(X)r Æ v= �r�m(X)w 
R r Æ v + w 
R r Æ ~r�m(X)v + w 
R 0m(X)(r) Æ v= r Æ ( �r�m(X)w 
R v + w 
R ~r�m(X)v) + 0m(X)(r) Æ w 
R v= r Æ ( �r�m� ~r�m)(X)(w 
R v) + 0m(X)(r) Æ w 
R v:This show that we have indeed a onnetion.Remark 2-34. The de�nition of onnetion is a speial ase of this produt underthe identi�ation V w A
RV . One has r�m Æ�A = �AÆ0m�r�m, where �A(r
v) =r Æ v, as usual.Proposition 2-35. Any onnetion r�m 2 ��m(g; V;A) indues an adjoint on-netion r̂�m 2 ��m(g; EndC(V );A) byr̂�m(X)B = r�m(X)B �Br�m(X); B 2 EndC(V ):Proof. Indeed, for v 2 V ,r̂�m(X)rBv = r�m(X)rBv � rBr�m(X)v= rr�m(X)Bv + 0m(X)(r)Bv � rBr�m(X)v= rr̂�m(X)Bv + 0m(X)(r)Bv;and we have shown that it is well de�ned.Remark 2-36. r�m itself is also a onnetion on EndC(V ) sine we have (r�mB)v =r�m(Bv) for v 2 V and B 2 EndC(V ).



2.6 Connetions on hains and ohainsAbstrat 2-37. In this setion we introdue hains and ohains and show how toindue onnetions to them.De�nition 2-38. R-linear n-tensors of hmR are alled n-hains and their spae isdenoted by NnR hmR.Remark 2-39. Notie that NnR hmR =N2mnR h. This makes sense as long as 2mn isan integer.De�nition 2-40. If a diret pair ( �V ; V )A = (gmC ; hmR)A in de�nition 2-28, we writethe onnetion as �1m 2 �1m(g; hmR;A). Then we indutively de�ne the onnetion �nmon n-hains by �n+1m = �1m��nm, with �nm 2 �nm(g;NnR hmR;A).Proposition 2-41. �nm 2 �nm(g;NnR hmR;A).Proof. This follows immediately from proposition 2-33.Remark 2-42. Whenever we have an expression like �nm (or rnm, see de�nition 2-51) the lower index m will indiate the basi gmC . We all 2m the word size in theexpression, where we think of individual elements in g as bits. The upper index thenindiates the total number of words that the expression ats on. This total numberwill be of the form p2q 2 N [12 ℄. For instane if � has an argument of the form X1
X2,X1; X2 2 g and ats on Z 2 h, we write � 121 (X1 
X2)Z. This means that the wordsize is 21. In any expression the number m should be the same everywhere; in anequality it may be di�erent in the left and right hand side. Clearly, if the group sizeis halved (m+ 1 7! m), the number of groups doubles (n 7! 2n).De�nition 2-43. We all �1m 2 �1m(g; hmR;A) an antisymmetri onnetion if�1m(X1)X2 + �1m(X2)X1 = 0 for all X1; X2 2 gmC .Remark 2-44. Notie that an A-linear antisymmetri onnetion neessarily has00 = 0, so the two properties are rather inompatible. This explains why Lie braketsand onnetions (the last are always supposed to be A-linear in the literature) arenever treated within one framework.De�nition 2-45. Suppose �1m 2 �1m(g; hmR;A). We say that a an m-ideal in gmC isif �1m(X)Y 2 a for all X 2 gmC ; Y 2 a � gmC .De�nition 2-46. Let a be an m-ideal. We say that a is an abelian ideal if� �1m(Z1)Z2 = 0; 8Z1; Z2 2 a,� �1m(Z)X + �1m(X)Z = 0; 8Z 2 a; X 2 gmC .This de�nition is motivated by the kind of expressions one obtains when one triesto imitate the onstrution of a entral extension for modules with onnetion.



De�nition 2-47. Let z = fX1 2 gmC : �1m(X1)X2 = 0; 8X2 2 gmC g. We say that zis the enter of gmC . For a given subset k � gmC we de�ne the entralizer gmk asfX 2 gmC : �1m(Z)X = 0; 8Z 2 kg.Example 2-48. Assume A to be ommutative. Suppose we have00 2 �00(b;A;A):Using 00 we onstrut �10 2 �10(b� h; h;A), where h is the Lie algebra of A.Sine 00(X) 2 DerC(A) for any X 2 b, this indues (f. setion 2.4) an elementin the Lie algebra h of A, whih we denote by ~X, suh that 00(X) = ~Xd. Thiselement indues an ation of b on Y 2 h as follows: ~�10(X)Y = [ ~X; Y ℄. One has~�10(X)rY = [ ~X; rY ℄ = r[ ~X; Y ℄ + 00(X)(r)Y:We an now de�ne a onnetion �10 2 �1m(b� h; h;A) by�10(X + Y )(W + Z) = [ ~X + Y; ~W + Z℄;with X;W 2 b; Y; Z 2 h. In fat,�10(X + Y )rZ = [ ~X + Y; rZ℄ == r[ ~X + Y; Z℄ + ( ~X + Y )d(r)Z= r�10(X + Y )Z + ̂00(X + Y )(r)Z;where ̂00(X + Y ) = ( ~X + Y )d = 00(X) + Y d. This will be used in hapter 5.De�nition 2-49. Let C0m(h; V;�) = V , the spae of 0-ohains. For n > 0 wede�ne Cnm(h; V; CAk) as the spae of C-linear maps of NnR hmR to V whih are A-linear in their last k variables, similarly alled n-ohains (or n-forms) of hmR.The extremal ases are CA0 = C and CAn = A. We use the notation S = CAkif we do not want to speify k. Observe that if ( �V ; V )A is a diret pair, so is(Cnm(h; �V ; CAk); Cnm(h; V; CAk))A.Remark 2-50. If a ohain is not A-linear we may as well allow its arguments tobe in gmC . In order not to make the notation any heavier, we will not do this here.De�nition 2-51. If V = C0m(h; V;�) in de�nition 2-28, we write the onnetionr0m 2 �0m(g; V;A). Given a r0m and �1m 2 �1m(g; hmR;A), we de�ne rnm by(rnm(X)!n)(Y ) = r0m(X)(!n(Y ))� !n(�nm(X)Y ); n > 0; (2.6.1)with X 2 gmC , Y 2NnR hmR and !n 2 Cnm(h; V;S).Remark 2-52. � Notie r0m = 0m if V = A.� When the spae of 0-ohains is hmR, we use r0m 2 �0m(g; hmR;A) and �1m 2�1m(g; hmR;A) to distinguish the ations on the ohains and hains.



? Remark 2-53. When !n de�nes a geometri struture, e.g., with n = 2 one mightthink of a Lie braket, a sympleti form or a Riemannian metri, then one says thatr0m is a Lie-, sympleti- or Riemannian onnetion, respetively, if rnm(X)!n = 0for all X 2 gmC .Proposition 2-54. rnm 2 �nm(g; Cnm(h; V;S);A), whih stands for the spae of on-netions: gmC ! EndCnm(h;V;S)C (Cnm(h; �V ;S)) with anhor 0m.Proof. Let r 2 A, X 2 gmC , Y 2NnR hmR, !n 2 Cnm(h; V;S). Thenrnm(X)(r!n)(Y ) = r0m(X)r!n(Y )� r!n(�nm(X)Y )= rr0m(X)!n(Y ) + 0m(X)(r)!n(Y )� r!n(�nm(X)(Y ))= rrnm(X)(!n)(Y ) + 0m(X)(r)!n(Y ):This proves the proposition.Proposition 2-55. If !n 2 Cnm(h; V; CA), then rnm(X)!n 2 Cnm(h; V; CA) for allX 2 gmC and n 2 N.Proof. For any Y 2NnR hmR and r 2 A, we have(rnm(X)!n)(rY )= r0m(X)!n(rY )� !n(�nm(X)rY )= r0m(X)(r!n(Y ))� !n(�nm(X)rY )= rr0m(X)(!n(Y )) + 0m(X)(r)!n(Y )� !n(r�nm(X)Y + 0m(X)(r)Y )= rr0m(X)(!n(Y ))� r!n(�nm(X)Y )= r(rnm(X)!n)(Y ):This proves the proposition.2.7 CurvatureAbstrat 2-56. In this setion we de�ne the notion of urvature of a onnetionand use it to de�ne representations.De�nition 2-57. Given r�m 2 ��m(g; V;A) and �1m 2 �1m(g; hmR;A), de�ne forX1; X2 2 gmC , C(r�m), the urvature of r�m, by,C(r�m)(X1; X2) = r̂�m(X1)r�m(X2)�r�m(�1m(X1)X2); (2.7.1)with r̂�m the adjoint onnetion of r�m as in proposition 2-35. When the urvatureis zero, we say that we have a at onnetion. When C(r�m)(X; Y ) = 0 for allX 2 gmC ; Y 2 hmR, we say that r�m is an almost at onnetion.When C(r�m) = 0, one has r�m(�1m(X1)X2) = [r�m(X1);r�m(X2)℄. This gives theordinary Lie braket of endomorphisms (f. example 2-16), that is, one represents�1m in EndVC ( �V ).



Example 2-58. If the urvature of �1m equals zero, �1m(X1)X2 + �1m(X2)X1 is anelement of z; the enter of gmC , for any X1; X2 2 gmC , sine we have�1m(�1m(X1)X2 + �1m(X2)X1) = C(�1m)(X1; X2) + C(�1m)(X2; X1) = 0:Example 2-59. We ompute the urvature of the adjoint onnetion (as de�ned in2-35) and show that it is the adjoint of the urvature. Let B 2 EndC(V ). ThenC(r̂�m)(X; Y )B = r̂�m(X)r̂�m(Y )B � r̂�m(Y )r̂�m(X)B � r̂�m(�1m(X)Y )B= r̂�m(X)(r�m(Y )B � Br�m(Y ))� r̂�m(Y )(r�m(X)B � Br�m(X))� r̂�m(�1m(X)Y )B= r�m(X)r�m(Y )B �r�m(Y )Br�m(X)�r�m(X)Br�m(Y ) +Br�m(Y )r�m(X)� r�m(Y )(r�m(X)B � Br�m(X)) + (r�m(X)B � Br�m(X))r�m(Y )� r�m(�1m(X)Y )B +Br�m(�1m(X)Y )= C(r�m)(X; Y )B � BC(r�m)(X; Y )= \C(r�m)(X; Y )B:De�nition 2-60. We say that r�m 2 ��m(g; V;A) is an m-representation of gmC ifits urvature is almost at, and �V is alled a left gmC -module.De�nition 2-61. If �1m 2 �1m(g; hmR;A) is at, we say that gmC is a Leibniz alge-bra.Proposition 2-62. Let �10 be a at antisymmetri onnetion g! EndhC(g). Thenwe an de�ne a Lie braket on g by[X1; X2℄ = �10(X1)X2:If moreover g = h = A, then this de�nes a Poisson algebra on A, with �10 = 00 .Proof. Antisymmetry being lear from the de�nition, we hek the Jaobi identity�rst. [X1; [X2; X3℄℄ + [X2; [X3; X1℄℄ + [X3; [X1; X2℄℄ == �10(X1)�10(X2)X3 + �10(X2)�10(X3)X1 + �10(X3)�10(X1)X2= ��10(�10(X2)X3)X1 + �10(X2)�10(X3)X1 � �10(X3)�10(X2)X1= C(�10)(X2; X3)X1= 0:In the ase g = h = A, the Leibniz rule follows from 00(q)r = [q; r℄ and[p; rq℄ = 00(p)rq = r00(p)q + 00(p)(r)q = r[p; q℄ + [p; r℄q;and this proves the statement.



Corollary 2-63. If gmC is a Leibniz algebra and �1m is antisymmetri, then gmC is anA-Lie algebra.Proposition 2-64. For �r�m 2 ��m(g; V;A) and ~r�m 2 ��m(g;W;A) one hasC( �r�m� ~r�m) = C( �r�m)�C( ~r�m):Proof. Let X1; X2 2 gmC ; v 2 �V ; w 2 �W . ThenC( �r�m� ~r�m)(X1; X2)(v 
 w) == �r�m� ~r�m(X1) �r�m� ~r�m(X2)(v 
 w)� �r�m� ~r�m(X2) �r�m� ~r�m(X1)(v 
 w)� �r�m� ~r�m(�1m(X1)X2)(v 
 w)= �r�m� ~r�m(X1)( �r�m(X2)v 
 w) + �r�m� ~r�m(X1)(v 
 ~r�m(X2)w)� �r�m� ~r�m(X2)( �r�m(X1)v 
 w)� �r�m� ~r�m(X2)(v 
 ~r�m(X1)w)� �r�m(�1m(X1)X2)v 
 w � v 
 ~r�m(�1m(X1)X2)w= �r�m(X1) �r�m(X2)v 
 w + �r�m(X1)v 
 ~r�m(X2)w � �r�m(X2) �r�m(X1)v 
 w� �r�m(X2)v 
 ~r�m(X1)w + �r�m(X2)v 
 ~r�m(X1)w + v 
 ~r�m(X1) ~r�m(X2)w� �r�m(X1)v 
 ~r�m(X2)w � v 
 ~r�m(X2) ~r�m(X1)w � �r�m(�1m(X1)X2)v 
 w� v 
 ~r�m(�1m(X1)X2)w= �r�m(X1) �r�m(X2)v 
 w � �r�m(X2) �r�m(X1)v 
 w � �r�m(�1m(X1)X2)v 
 w+ v 
 ~r�m(X1) ~r�m(X2)w � v 
 ~r�m(X2) ~r�m(X1)w � v 
 ~r�m(�1m(X1)X2)w= C( �r�m)(X1; X2)v 
 w + v 
 C( ~r�m)(X1; X2)w= C( �r�m)(X1; X2)�C( ~r�m)(X1; X2)(v 
 w):This shows that the urvature behaves naturally with respet to produts of on-netions.Corollary 2-65. The urvature of a onnetion with anhor 0m is a onnetionwith anhor C(0m).Remark 2-66. Compare this with theorem 2.15 in [Hue90℄, relating this onstru-tion to the Piard group Pi(A).Remark 2-67. In the literature one usually takes �1m to be the adjoint representa-tion. Its urvature is zero by the Jaobi identity, and therefore its anhor 0m is alsoat, i.e., C(0m) = 0. This implies that the urvature is a tensor. This was theoriginal motivation for the de�nition of the urvature in Riemannian geometry.Proof. 1 This follows immediately from proposition 2-64 withC(r�m) = C(r�m�0m) = C(r�m)�C(0m):This tells us that C(0m) is the anhor of C(r�m) if 0m is the anhor of r�m.1Of orollary 2-65.



We show that urvature is ompatible with the de�nitions using the followingdiagram. �1m Definition - z }| {�nm;r0m Definition- rnm
C(�1m)C? Definition- C(�nm); C(r0m)| {z }C ? C? Definition- C(rnm)C ?Due to proposition 2-64, it is obvious for hains. For ohains, we prove thefollowing lemma.Lemma 2-68. The rnm is well de�ned and does not depend on the way in whih itis obtained from the diagram.Proof. Let X1; X2 2 gmC ; Y 2NnR hmR and !n 2 Cnm(h; V;S). Then(C(rnm)(X1; X2)!n)(Y ) = r̂nm(X1)rnm(X2)!n(Y )�rnm(�1m(X1)X2)!n(Y ) == r0m(X1)rnm(X2)!n(Y )�rnm(X2)!n(�nm(X1)Y )�r0m(X2)rnm(X1)!n(Y )+ rnm(X1)!n(�nm(X2)Y )�r0m(�1m(X1)X2)!n(Y ) + !n(�nm(�1m(X1)X2)Y )= r0m(X1)r0m(X2)!n(Y )�r0m(X1)!n(�nm(X2)Y )�r0m(X2)!n(�nm(X1)Y )+ !n(�nm(X2)�nm(X1)Y )�r0m(X2)r0m(X1)!n(Y ) +r0m(X2)!n(�nm(X1)Y )+ r0m(X1)!n(�nm(X2)Y )� !n(�nm(X1)�nm(X2)Y )�r0m(�1m(X1)X2)!n(Y )+ !n(�nm(�1m(X1)X2)Y )= r0m(X1)r0m(X2)!n(Y )�r0m(X2)r0m(X1)!n(Y )�r0m(�1m(X1)X2)!n(Y )+ !n(�nm(X2)�nm(X1)Y )� !n(�nm(X1)�nm(X2)Y ) + !n(�nm(�1m(X1)X2)Y )= C(r0m)(X1; X2)!n(Y )� !n(C(�nm)(X1; X2)Y ):This proves the lemma.Corollary 2-69. If �1m is a representation, then �nm are representations for all n.If, moreover, r0m is a representation, so are the rnm.2.8 Some examplesAbstrat 2-70. In this setion we give two examples, inspired on the lassial me-hanis of �nite dimensional systems.Example 2-71. Let C = R and let A be the ring of C1-funtions from R intoitself. Then (l1l2)(x) = l1(x)l2(x). Let V = A and let g = h be the operators of typef(x) ��x , with f 2 A, and l1 Æ f(:) ��x = l1(:)f(:) ��x . Put, with �; � 2 C,�10(f1 ��x )f2 ��x = �f1�f2�x ��x � ��f1�x f2 ��x



and 00(f ��x )h = �f �h�x :Then 00 2 �00(h;A;A) and �10 2 �10(h; h;A).Proof. We hek00(f ��x )(rs) = �f(�r�xs+ r �s�x )= (00(f ��x )(r)s) + (r00(f ��x )(s))and �10(f ��x )r Æ h ��x = �f(�r�xh + r�h�x ) ��x � ��f�x r Æ h ��x= �rf �h�x ��x + �f �r�xh ��x � r� Æ �f�x h ��x= r Æ �10(f ��x )h ��x + 00(f ��x )(r) Æ h ��x :Clearly �10 is A-linear if � = 0.We now ompute the urvature of �10.C(�10)(f1 ��x ; f2 ��x )f3 ��x == �10(f1 ��x )�10(f2 ��x )f3 ��x � �10(f2 ��x )�10(f1 ��x )f3 ��x� �10(�10(f1 ��x )f2 ��x )f3 ��x= (� � �) ��f1�x f2�f3�x � �� �f1�x f2�x f3! ��x= (� � �)�10(�f1�x f2 ��x )f3 ��x :It follows that �10 is a 0-representation, i� � = �. In this ase it is also antisym-metri, so it de�nes a Lie braket, whih of ourse is the familiar Lie braket ofvetor�elds on the real line.The urvature of 00 is given byC(00)(f1 ��x ; f2 ��x ) == 00(f1 ��x )00(f2 ��x )� 00(f2 ��x )00(f1 ��x )� 00(�10(f1 ��x )f2 ��x )= �00(f1 ��x )f2 ��x � �00(f2 ��x )f1 ��x � �00(f1�f2�x ��x ) + �00(�f1�x f2 ��x )= �(� � �)�f1�x f2 ��x :



Example 2-72. Let C = R and let A be the ring of C1-funtions from R2 intoR and B be the ring of C1-funtions from R into itself. Let V = A and let gbe the operators of type �(t) ��t + f(t; x) ��x , with � 2 B; f 2 A and h those of typef(t; x) ��x . We see that g is an B-module and h is an A-module. Put 00(� ��t+f ��x )h =��h�t + f �h�x . We hek00(� ��t + f ��x )rs = �(�r�t s+ r�s�t ) + f(�r�x s+ r �s�x )= 00(� ��t + f ��x )(r)s+ r00(� ��t + f ��x )(s):We now de�ne �10 2 �10(g; h;A) by�10(� ��t + f ��x )(� ��t + h ��x ) = (��h�t + f �h�x � h�f�x ) ��x :Notie that if we de�ne ddt = �10( ��t + f ��x ), this gives us exatly the notation as it isused in lassial mehanis.We hek �10(� ��t + f ��x )rh ��x = (��rh�t + f �rh�x � rh�f�x ) ��x= (��r�t h + �r�h�t + f �r�xh+ fr�h�x � rh�f�x ) ��x= r�10(� ��t + f ��x )h ��x + 00(� ��t + f ��x )(r)h ��x :If we now ompute its urvature, we see thatC(�10)(� ��t + f ��x ; g ��x ) = 0:Therefore, �10 is almost at. But it is not at and not antisymmetri on g. Itindues a Lie algebra struture on h.2.9 An impliit funtion theoremAbstrat 2-73. We prove an impliit funtion theorem, stating that one only hasto solve a problem up to a ertain order to know that the solution exists and theomputation will onverge (in the �ltration topology) to this solution. We use thistheorem in our lassi�ation of salar �-homogeneous equations (f. hapter 8),but it ould also be used for the lassi�ation of other objets like osymmetries orreursion operators.Let a Leibniz algebra gmC and a left gmC -module �V be �ltered. We assume that�1m and r�m are �ltered ations. For simpli�ation, we write gmC (i) as g(i)m .



De�nition 2-74. We all r�m(S0), S0 2 g(0)m relatively l-prime with respet tor�m(K0), K0 2 g(0)m if r�m(S0)vj 2 Imr�m(K0) (mod �V (j+1)), then it implies thatvj 2 Imr�m(K0)j �V (j) (mod �V (j+1)) for all j � l and vj 2 �V (j).De�nition 2-75. We all r�m(K0), K0 2 g(0)m , nonlinear injetive if for all vl 2�V (l); l > 0, r�m(K0)vl 2 �V (l+1) ) vl 2 �V (l+1).The following theorem states that under ertain tehnial onditions the exis-tene of a symmetry of an equation, i.e., an S suh that �1m(K)S = 0 for givenK 2 g(0)m , is enough to show �nite determinay, i.e., from a �nite order omputa-tion one an onlude the existene of a solution of the equation r�m(K)Q = 0. Thetehnial onditions look strange, but are perfetly natural in at least one importantlass of equations, f. remark 2-78.Theorem 2-76. Let Ki; Si 2 g(i)m , i = 0; 1. Put K = K0 +K1 and S = S0 + S1.Suppose that� �1m(K)S = 0,� r�m(K0) is nonlinear injetive,� r�m(S0) is relatively l+1-prime with respet to r�m(K0) (this implies S 6= K),and there exists some Q̂ 2 �V (0) suh that� r�m(K)Q̂ 2 �V (l+1) and r�m(S)Q̂ 2 �V (1).Then there exists a unique Q = Q̂ + Ql+1; Ql+1 2 �V (l+1) suh that r�m(K)Q =r�m(S)Q = 0.Remark 2-77. In the envisioned appliations Q will be expliitly omputable, re-eting the fat that e.g., the symmetries of the Korteweg-de Vries equation are allpolynomial. If this is not the ase, the onvergene is in the �ltration topology.? Remark 2-78. If one thinks of the appliation of this theorem to the omputationof symmetries of evolution equations, with m = 0, �V = g, and �10 = ad, the adjointation given by the Lie braket, then this proves (at least up till the existene ofQ̂) the long held belief that one nontrivial symmetry S of the equation K is enoughfor integrability. With suh a strong result one has to inspet the onditions. Thestrangest of these seems to be the relative prime ondition. In hapter 7, however,we show that for salar equations with linear part ut = uk any symmetry S startingwith us; s 6= 1; k, satis�es the onditions of the theorem with l = 1.? Remark 2-79. Although the r�m(K)-invariant Q and the �1m(K)-invariant S areompletely unrelated in theorem 2-76, we later on use the result in a ontext whereQ̂ is diretly derived from S, and one an think of this as a way to generate thehierarhy in whih S is ontained, with Q as an arbitrary element of this hierarhy.



Proposition 2-80. r�m(S)Q̂ 2 �V (k+1) if r�m(S)Q̂ 2 �V (k) and r�m(K)Q̂ 2 �V (k+1)under the onditions of theorem 2-76,Proof. We use the fat that r�m is a at onnetion.r�m(K0)r�m(S)Q̂ == r�m(�1m(K0)S)Q̂ +r�m(S)r�m(K0)Q̂� �r�m(�1m(K1)S)Q̂�r�m(S)r�m(K1)Q̂ (mod �V (k+1))� �r�m(K1)r�m(S)Q̂ (mod �V (k+1))� 0 (mod �V (k+1)):By the nonlinear injetiveness of r�m(K0) we have that r�m(S)Q̂ 2 �V (k+1).Proof. 2 We prove by indution on p that r�m(S)Q̂ 2 �V (p) for p � l + 1. For p = 1this is true by assumption. Suppose it is true for all p � q < l + 1. Then theonditions of proposition 2-80 are satis�ed. This implies that r�m(S)Q̂ 2 �V (q+1). Itfollows that r�m(S)Q̂ 2 �V (l+1).Next we suppose that ~Q satis�es the onditions r�m(K) ~Q 2 �V (p) and r�m(S) ~Q 2�V (p), p > l. We know that for p = l + 1 we an take ~Q = Q̂. We �ndr�m(K0)r�m(S) ~Q�r�m(S0)r�m(K) ~Q == (r�m(K)�r�m(K1))r�m(S) ~Q� (r�m(S)�r�m(S1))r�m(K) ~Q= r�m(�1m(K)S) ~Q�r�m(K1)r�m(S) ~Q+r�m(S1)r�m(K) ~Q= �r�m(K1)r�m(S) ~Q+r�m(S1)r�m(K) ~Q 2 �V (p+1):Sine r�m(S0) is relatively l + 1-prime with respet to r�m(K0), we see thatr�m(K) ~Q 2 Imr�m(K0). So we an (uniquely up to �V (p+1) terms beause r�m(K0)is nonlinear injetive) de�ne Qp 2 �V (p) byr�m(K0)Qp = �r�m(K) ~Q:We then automatially have r�m(K)( ~Q + Qp) 2 �V (p+1). That r�m(S)( ~Q + Qp) 2�V (p+1) then follows from proposition 2-80. Therefore there exists a onvergent (inthe �ltration topology) sequene with limit Q = Q̂+P1p=l+1Qp suh that r�m(K)Qand r�m(S)Q vanish. Uniqueness follows from the assumption that T1p=0 �V (p) = 0.This proves the statement.
2Of theorem 2-76



Chapter 3Constrution of a omplexWe �rst give the abstrat de�nitions of preomplex, omplex and ohomology. Wethen show that the ohain spaes form a preomplex and, when the urvatureis almost at, an m-omplex. One this is done, we start working towards theappliations by introduing the redution proedure, Fr�ehet and Lie derivativesFr�ehet derivative and onjugate and adjoint operators.Apparently the �rst to notie (in January 1989) that the onstrution of a om-plex an be lifted from the antisymmetri ase to the general ase was Loday (.f.[Lod91℄, Chapter 10), who speaks of a simple, but striking result. In the presentonstrution, whih is based on an exerise in Bourbaki [Bou68℄, one does not evenhave to hange the de�nition of the oboundary operator.3.1 IntrodutionIn setion 3.2 we de�ne a preomplex and a omplex, and then we introdue o-homology spaes. Our next goal is to show in setion 3.3 that the ohains forma preomplex, and, when the onnetion is almost at, a omplex. In setion 3.4we derive expliit formulae for the oboundary operator, whih are useful to an-swer symmetry and A-linearity questions. The A-linearity is treated in setion 3.5,where it is shown that under ertain tehnial onditions A-linearity in the lasttwo variables is preserved under the oboundary operator. The antisymmetri aseis treated in setion 3.6. We show that antisymmetri ohains are mapped ontothemselves by the oboundary operator if the onnetion is A-linear. In setion 3.7we ollet all the previous results and show that we now have a number of di�erentomplexes. We now turn more into the applied diretion, but we try to formulateeverything in the abstrat ontext. In setion 3.8 we desribe the redution pro-edure whih allows us to de�ne funtionals and Dx-ommuting vetor�elds lateron in hapter 5 on the omplex of formal variational alulus. Next we de�ne insetion 3.9 the Fr�ehet derivative and derive some of its properties. This onnetsthe abstrat oboundary operator approah with the usual variational alulus interms of Fr�ehet derivatives. We are then in a position to de�ne the Lie derivativein setion 3.10. Finally we de�ne onjugate and adjoint operators in setion 3.11.41



3.2 Complex and ohomologyAbstrat 3-1. We give the de�nitions of preomplex, m-omplex and its ohomol-ogy.De�nition 3-2. Suppose one has� 0m 2 �0m(g;A;A),� �1m 2 �1m(g; hmR;A),and a olletion of� A-modules 
nm,� maps �nm : hmR ! HomC(
nm;
n�1m ); n � 1,� maps dnm 2 HomC(
nm;
n+1m ),� onnetions rnm 2 �nm(g;
nm;A),suh that1. �nm(Y )rnm(X)�rn�1m (X)�nm(Y ) = ��nm(�1m(X)Y ); X 2 gmC ; Y 2 hmR,2. rnm(Y ) = �n+1m (Y )dnm + dn�1m �nm(Y ); Y 2 hmR.Then we say that the 
nm form a preomplex over a diret pair (gmC ; hmR)A with ringA.De�nition 3-3. A preomplex is alled an m-omplex if, moreover, for some m,1. the rnm are m-representations,2. rn+1m (X)dnm = dnmrnm(X), X 2 gmC ,3. dnmdn�1m = 0.One the maps dnm 2 HomC(
nm;
n+1m ) are given for all n, we de�ne the followingspaes:De�nition 3-4. let the spae of n-oyles (or losed n-forms) Znm(
�) be de-�ned as Ker dnm and the spae of n-oboundaries (or exat n-forms) Bnm(
�) asIm dn�1m .If dnmdn�1m = 0, the ohomologies an be de�ned as usual:De�nition 3-5. The nth-ohomology module is Hnm(
�) = Znm(
�)=Bnm(
�):Proposition 3-6. Assume that H1m(
�) = H0m(
�) = f0g. Then, d1m!1 = 0 andr1m(X)!1 = 0 for X 2 gmC and !1 2 
1 if and only if there exists a unique !0 2 
0suh that d0m!0 = !1 and r0m(X)!0 = 0.



Proof. Take !1 2 
1 with d1m!1 = 0 and r1m(X)!1 = 0 for some X 2 gmC . SineH1m(
�) = 0, there exists a unique !0 2 
0 suh that d0m!0 = !1. From the de�nitionof m-omplex, we have0 = r1m(X)!1 = r1m(X)d0m!0 = d0mr0m(X)!0: (3.2.1)So r0m(X)!0 = 0 due to H0m(
�) = 0. Uniqueness follows from the fat thatH0m(
�) = 0.In the other diretion we de�ne !1 = d0m!0. Then d1m!1 = d1md0m!0 = 0 andr1m(X)!1 = r1m(X)d0m!0 = d0mr0m(X)!0 = 0.3.3 The oboundary operatorAbstrat 3-7. This setion gives the de�nition of the oboundary operator dnm forthe n-ohains Cnm(h; V;S), and shows that dnmdn�1m = 0 when the onnetions arerepresentations.De�nition 3-8. Let �n+1m : hmR ! HomC(Cn+1m (h; V;S); Cnm(h; V;S)) be de�ned by(�n+1m (Y )!n+1)(Z) = !n+1(Y 
R Z); (3.3.1)where n � 0, Y 2 hmR, Z 2NnR hmR and !n+1 2 Cn+1m (h; V;S).Remark 3-9. TY 2hmR ker(�nm(Y )) = 0:Remark 3-10. By pulling out the �rst argument we preserve A-linearity of the lastk arguments, with S = CAk.? Remark 3-11. In the literature one sometimes �nds di�erent de�nitions. Thereason for this is that one views the ohains as a representation spae of (a sub-group of) the permutation group of n elements ating onNnR hmR. The most ommonexample is the alternating representation in the ase of Lie algebra ohomology the-ory. Another lass is the alternating representation of Z=n giving rise to yliohomology. With the present de�nition we inlude the �rst example, but exludethe seond.Lemma 3-12. One has, with X 2 gmC ; Y 2 hmR,�nm(Y )rnm(X)�rn�1m (X)�nm(Y ) = ��nm(�1m(X)Y ): (3.3.2)Notie that the right hand side makes sense, sine �1m is a onnetion and there-fore �1m(X) leaves hmR invariant.Proof. 1 For any !n 2 Cnm(h; V;S), X 2 gmC ; Y 2 hmR, and Z 2Nn�1 hmR, we have(�nm(Y )rnm(X)!n �rn�1m (X)�nm(Y )!n)(Z)1Of lemma 3-12.



= (rnm(X)!n)(Y 
 Z)�r0m(X)�nm(Y )!n(Z) + �nm(Y )!n(�n�1m (X)Z)= r0m(X)(!n(Y 
 Z))� !n(�nm(X)(Y 
 Z))� r0m(X)(�nm(Y )!n(Z)) + !n(Y 
 �n�1m (X)Z)= �!n(�1m(X)Y 
 Z)� !n(Y 
 �n�1m (X)Z) + !n(Y 
 �n�1m (X)Z)= ��nm(�1m(X)Y )!n(Z); (3.3.3)and this proves the statement.Lemma 3-13. There exist a unique oboundary operator dnm satisfying�n+1m (Y )dnm + dn�1m �nm(Y ) = rnm(Y ); Y 2 hmR; (3.3.4)where m;n 2 N, and dnm 2 HomC(Cnm(h; V; CAk); Cn+1m (h; V; CAk)), with k � n.Proof. We prove it by indution on n. For n = 0, Y 2 hmR, the formula readsd0m!0(Y ) = �1m(Y )d0m!0 = r0m(Y )!0.If we have dpm uniquely de�ned for all p � n, then dn+1m follows from (3.3.4).Its uniqueness follows from the fat that for any Æn+1m satisfying (3.3.4), we have(dn+1m � Æn+1m )!n+1 2 Ker �nm(Y ) for all Y 2 hmR (sine dnm = Ænm). This impliesdn+1m � Æn+1m = 0.Example 3-14. We ontinue example 2-71. Take V = h in de�nition 2-49 and letr00 = �10. We see that�10(f ��x )d00g ��x = d00g ��x (f ��x ) = �10(f ��x )g ��x = �f �g�x ��x � ��f�x g ��x :And we have �10(g ��x )�20(f ��x )d10d00h ��x == �10(g ��x )(r10(f ��x )� d00�10(f ��x ))d00h ��x= r00(f ��x )�10(g ��x )d00h ��x � �10(�10(f ��x )g ��x )d00h ��x� �10(g ��x )d00�10(f ��x )d00h ��x= �10(f ��x )�10(g ��x )(h ��x )� �10(�10(f ��x )g ��x )(h ��x )� �10(g ��x )�10(f ��x )(h ��x )= C(�10)(f ��x ; g ��x )h ��x :Proposition 3-15. Let �nm(X) = rn+1m (X)dnm � dnmrnm(X). Then�n+1m (Y )�nm(X) + �n�1m (X)�nm(Y ) = C(rnm)(X; Y )for X 2 gmC ; Y 2 hmR.



Proof. Using lemma 3-12 and lemma 3-13, we have�n+1m (Y )�nm(X) + �n�1m (X)�nm(Y ) == �n+1m (Y )(rn+1m (X)dnm � dnmrnm(X))+ (rnm(X)dn�1m � dn�1m rn�1m (X))�nm(Y )= rnm(X)�n+1m (Y )dnm � �n+1m (�1m(X)Y )dnm � �n+1m (Y )dnmrnm(X)+ rnm(X)dn�1m �nm(Y )� dn�1m �nm(Y )rnm(X)� dn�1m �nm(�1m(X)Y )= rnm(X)(�n+1m (Y )dnm + dn�1m �nm(Y ))� (�n+1m (Y )dnm + dn�1m �nm(Y ))rnm(X)� dn�1m �nm(�1m(X)Y )� �n+1m (�1m(X)Y )dnm= rnm(X)rnm(Y )�rnm(Y )rnm(X)�rnm(�1m(X)Y )= C(rnm)(X; Y );and this proves the statement.Corollary 3-16. If r0m and �1m are representations, thenrn+1m (X)dnm = dnmrnm(X); X 2 gmC :Proof. For X 2 gmC ; Y 2 hmR, we have �1m(Y )�0m(X) = C(r0m)(X; Y ) = 0. Therefore,�0m(X) 2 Ker �1m(Y ). This implies �0m(X) = 0. Sine C(rnm)(X; Y ) = 0 for all n, weobtain that �nm(X) = 0 by indution and prove the statement.Notie that, for Y 2 hmR,�nm(Y ) = rn+1m (Y )dnm � dnmrnm(Y ) == (�n+2m (Y )dn+1m + dnm�n+1m (Y ))dnm � dnm(�n+1m (Y )dnm + dn�1m �nm(Y ))= �n+2m (Y )dn+1m dnm � dnmdn�1m �nm(Y )and �0m(Y ) = �2m(Y )d1md0m. We know that if r0m and �1m are representations, the rnmare representations for all n by orollary 2-69. This leads toCorollary 3-17. If r0m and �1m are representations, then dn+1m dnm = 0 andrn+1m (X)dnm = dnmrnm(X); X 2 gmC :3.4 Expliit formulae of dnmAbstrat 3-18. In this setion we give expliit formulae for the oboundary oper-ator. In the literature this is often the way the operator is de�ned. These formulaeare handy to have in studying its (lak of) A-linearity.We �rst give some notational onventions that we need later.



Notation 3-19. � For Yj 2 hmR; j = 1; � � � ; n 2 N, 1 � l < k � n, let�n = Y1 
 � � � 
 Yn;�nl = Y1 
 � � � 
 Yl�1 
 Yl+1 
 � � � 
 Yn;�nlk = Y1 
 � � � 
 Yl�1 
 Yl+1 
 � � � 
 Yk�1 
 Yk+1 
 � � � 
 Yn;�n[lk℄ = Y1 
 � � �Yl�1 
 Yl+1 � � �Yk�1 
 �1m(Yl)Yk 
 Yk+1 � � � 
 Yn;�m(�n+1) = �1m(Yn+1) � � � �n+1m (Y1):where 
 stands for 
R.� The span of all Y1^ : : :^Yn, the antisymmetri n-hains, is denoted VnR hmR,and the span of all symmetri n-hains by WnRhmR.Proposition 3-20. We an express rnm in terms of r0m as follows:�m(�n+11 )rnm(Y1) = r0m(Y1)�m(�n+11 )� n+1Xl=2 �m(�n+1[1;l℄ ): (3.4.1)Proof. We prove this by indution on n. For n = 1, it is implied by the reursionrelation (3.3.2). Assuming its truth for n� 1, we ompute�m(�n+11 )rnm(Y1) == �1m(Yn+1) � � � �nm(Y2)rnm(Y1)= �1m(Yn+1) � � � �n�1m (Y3)(rn�1m (Y1)�nm(Y2)� �nm(�1m(Y1)Y2))= �m(�n+112 )rn�1m (Y1)�nm(Y2)� �m(�n+1[12℄ )= r0m(Y1)�m(�n+11 )� n+1Xl=3 �m(�n+1[1;l℄ )� �m(�n+1[12℄ )= r0m(Y1)�m(�n+11 )� n+1Xl=2 �m(�n+1[1;l℄ );and this proves the statement.Proposition 3-21. We an express dnm in terms of r0m as follows:�m(�n+1)dnm = n+1Xl=1 (�1)l+1 r0m(Yl)�m(�n+1l )� n+1Xk=l+1 �m(�n+1[lk℄ )! :Proof. For n = 0 the expression redues to �m(�1)d0m = �1m(Y1)d0m = r0m(Y1) whihis the formula (3.3.4) when n = 0. Assuming the formula to be true for n, we proveit for n+ 1. �m(�n+2)dn+1m == �m(�n+21 )�n+2m (Y1)dn+1m



= �m(�n+21 )(rn+1m (Y1)� dnm�n+1m (Y1))= r0m(Y1)�m(�n+21 )� n+2Xl=2 �m(�n+2[1;l℄ )+ n+2Xl=2 (�1)l+1 r0m(Yl)�m(�n+2l )� n+2Xk=l+1 �m(�n+2[lk℄ )!= n+2Xl=1 (�1)l+1 r0m(Yl)�m(�n+2l )� n+2Xk=l+1 �m(�n+2[lk℄ )! :The statement follows by indution.We write out expliitly d0m; d1m and d2m, whih are used later.�m(�1)d0m = r0m(Y1);�m(�2)d1m = 2Xl=1 (�1)l+1r0m(Yl)�m(�2l )� �m(�2[1;2℄)= r0m(Y1)�1m(Y2)�r0m(Y2)�1m(Y1)� �1m(�1m(Y1)Y2); (3.4.2)�m(�3)d2m = 3Xl=1 (�1)l+1 r0m(Yl)�m(�3l )� 3Xm=l+1 �m(�3[lm℄)!= r0m(Y1)�m(�31)� �m(�3[1;2℄)� �m(�3[1;3℄)� r0m(Y2)�m(�32)� �m(�3[2;3℄) +r0m(Y3)�m(�33)= r0m(Y1)�1m(Y3)�2m(Y2)�r0m(Y2)�1m(Y3)�2m(Y1)+ r0m(Y3)�1m(Y2)�2m(Y1)� �1m(Y3)�2m(�1m(Y1)Y2)� �1m(�1m(Y1)Y3)�2m(Y2) + �1m(�1m(Y2)Y3)�2m(Y1): (3.4.3)Let d1m at on !1 2 C1m(h; V;S). (3.4.2) beomes(d1m!1)(Y1; Y2) = r0m(Y1)!1(Y2)�r0m(Y2)!1(Y1)� !1(�1m(Y1)Y2): (3.4.4)If �1m is antisymmetri, we see by interhanging Y1 and Y2 that d1m maps C1m(h; V;S)into C2m;^(h; V;S), where we indiate by the ^ that we onsider antisymmetriohains here. Similarly we use Æ to denote yli ohains and _ for symmet-ri ohains. E.g., when !n(Y1; � � � ; Yn) = (�1)n+1!n(Yn; Y1; � � � ; Yn�1), with Yi 2 h,then !n 2 Cn0;Æ(h; V;S).Example 3-22. We an onsider r�m as an element in C1m(h; EndC(V );S). Fromremark 2-36, we know r�m 2 ��m(g; EndC(V );A). Take it as the onnetion on0-ohains EndC(V ). Then(d1mr�m)(Y1; Y2)= r�m(Y1)r�m(Y2)�r�m(Y2)r�m(Y1)�r�m(�1m(Y1)Y2)) = C(r�m)(Y1; Y2):In other words, C(r�m) 2 B1m(h; EndC(V );S). We see that r�m is losed if r�m is anm-representation. Moreover, r�m is exat, sine d0midV = r�m.



Example 3-23. Take r̂�m 2 ��m(g; EndC(V );A) as de�ned in proposition 2-35 asthe onnetion on 0-ohains EndC(V ). One has, with d̂nm the oboundary induedby r̂nm and �1m, C(r�m) = d̂1mr�m � [r�m;r�m℄;where, as usual, [r�m;r�m℄(Y1; Y2) = r�m(Y1)r�m(Y2)�r�m(Y2)r�m(Y1). This formulaappears in physial literature (f. [GSW88℄) as expressing the gauge �eld strengthC(r�m) in terms of the gauge �eld r�m.Proof. Let Y1; Y2 2 hmR. Thend̂1mr�m(Y1; Y2) == r̂�m(Y1)r�m(Y2)� r̂�m(Y2)r�m(Y1)�r�m(�1m(Y1)Y2)= 2(r�m(Y1)r�m(Y2)�r�m(Y2)r�m(Y1))�r�m(�1m(Y1)Y2)= C(r�m)(Y1; Y2) + [r�m;r�m℄(Y1; Y2):The formula is now proved.Example 3-24. We ontinue example 3-14. Assume that � = � = 1. Let the spaeof 0-ohains be V = C1(R;R). If r00(f ��x )h = f �h�x , h 2 V , and !1(f ��x ) = �2f�x2 ,!1 2 C10 (h; V; C ), thend10!1(f ��x ; g ��x )= r00(f ��x )!1(g ��x )�r00(g ��x )!1(f ��x )� !1(�10(f ��x )g ��x )= f �3g�x3 � g�3f�x3 � �2(f �g�x � g �f�x )�x2= �g�x �2f�x2 � �f�x �2g�x2 :Similarly, let d2m at on !2 2 C2m(h; V;S). (3.4.3) beomes(d2m!2)(Y1; Y2; Y3)= r0m(Y1)!2(Y2; Y3)�r0m(Y2)!2(Y1; Y3) +r0m(Y3)!2(Y1; Y2)� !2(�1m(Y1)Y2; Y3)� !2(Y2; �1m(Y1)Y3) + !2(Y1; �1m(Y2)Y3): (3.4.5)Example 3-25. Take r̂�m 2 ��m(g; EndC(V );A) as de�ned in proposition 2-35 asthe onnetion on 0-ohains EndC(V ). One hasd̂2mC(r�m)(Y1; Y2; Y3) = �r�m(C(�1m)(Y1; Y2)Y3):This is the Bianhi identity. In partiular, C(r�m) is losed when gmC is a Leibnizalgebra. We prove it as follows.d̂2mC(r�m)(Y1; Y2; Y3) =



= r̂�m(Y1)C(r�m)(Y2; Y3)� r̂�m(Y2)C(r�m)(Y1; Y2) + r̂�m(Y3)C(r�m)(Y1; Y2)� C(r�m)(�1m(Y1)Y2; Y3)� C(r�m)(Y2; �1m(Y1)Y3) + C(r�m)(Y1; �1m(Y2)Y3)= r�m(Y1)r�m(Y2)r�m(Y3)�r�m(Y1)r�m(Y3)r�m(Y2)�r�m(Y1)r�m(�1m(Y2)Y3)� r�m(Y2)r�m(Y3)r�m(Y1) +r�m(Y3)r�m(Y2)r�m(Y1) +r�m(�1m(Y2)Y3)r�m(Y1)� r�m(Y2)r�m(Y1)r�m(Y3) +r�m(Y2)r�m(Y3)r�m(Y1)) +r�m(Y2)r�m(�1m(Y1)Y3)+ r�m(Y1)r�m(Y3)r�m(Y2)�r�m(Y3)r�m(Y1))r�m(Y2)�r�m(�1m(Y1)Y3)r�m(Y2)+ r�m(Y3)r�m(Y1)r�m(Y2)�r�m(Y3)r�m(Y2)r�m(Y1))�r�m(Y3)r�m(�1m(Y1)Y2)� r�m(Y1)r�m(Y2)r�m(Y3) +r�m(Y2)r�m(Y1)r�m(Y3) +r�m(�1m(Y1)Y2)r�m(Y3)� r�m(�1m(Y1)Y2)r�m(Y3) +r�m(Y3)r�m(�1m(Y1)Y2) +r�m(�1m(�1m(Y1)Y2)Y3)� r�m(Y2)r�m(�1m(Y1)Y3) +r�m(�1m(Y1)Y3)r�m(Y2) +r�m(�1m(Y2)�1m(Y1)Y3)+ r�m(Y1)r�m(�1m(Y2)Y3)�r�m(�1m(Y2)Y3)r�m(Y1)�r�m(�1m(Y1)�1m(Y2)Y3)= �r�m(C(�1m)(Y1; Y2)Y3):Proposition 3-26. Let �1m be antisymmetri. Then d2mC2m;Æ(h; V; C) � C3m;Æ(h; V; C).Proof. We show that (d2m!2)(Y1; Y2; Y3) is invariant under a generator of the groupof yli transformations.(d2m!2)(Y1; Y2; Y3)� (d2m!2)(Y3; Y1; Y2) == r0m(Y1)!2(Y2; Y3)�r0m(Y2)!2(Y1; Y3) +r0m(Y3)!2(Y1; Y2)+ r0m(Y1)!2(Y3; Y2)�r0m(Y2)!2(Y3; Y1)�r0m(Y3)!2(Y1; Y2)+ !2(Y1; �1m(Y2)Y3)� !2(Y2; �1m(Y1)Y3)� !2(�1m(Y1)Y2; Y3)+ !2(Y1; �1m(Y3)Y2) + !2(�1m(Y3)Y1; Y2)� !2(Y3; �1m(Y1)Y2)= r0m(Y1)(!2(Y2; Y3) + !2(Y3; Y2))�r0m(Y2)(!2(Y1; Y3) + !2(Y3; Y1))+ !2(Y1; �1m(Y2)Y3) + �1m(Y3)Y2) + !2(�1m(Y3)Y1 + �1m(Y1)Y3; Y2)= 0;sine the 2-forms are antisymmetri.Proposition 3-27. Let �1m be antisymmetri. Then d2mC2m;^(h; V; C) � C3m;^(h; V; C).Proof. First we show that (d2m!2)(Y1; Y2; Y3) is invariant under the exhange of Y1and Y2.(d2m!2)(Y1; Y2; Y3) + (d2m!2)(Y2; Y1; Y3) == r0m(Y1)!2(Y2; Y3)�r0m(Y2)!2(Y1; Y3) +r0m(Y3)!2(Y1; Y2)� r0m(Y1)!2(Y2; Y3) +r0m(Y2)!2(Y1; Y3) +r0m(Y3)!2(Y2; Y1)� !2(�1m(Y1)Y2; Y3)� !2(Y2; �1m(Y1)Y3) + !2(Y1; �1m(Y2)Y3)� !2(�1m(Y2)Y1; Y3) + !2(Y2; �1m(Y1)Y3)� !2(Y1; �1m(Y2)Y3)= r0m(Y3)(!2(Y1; Y2) + !2(Y2; Y1))� !2(�1m(Y1)Y2 + �1m(Y2)Y1; Y3)= 0;using the antisymmetry of both �1m and !2. Together with proposition 3-26 thisproves the proposition for the generators of the symmetri group.



We generalize this proposition from d2m to dnm in proposition 3-38.? Remark 3-28. In the formula for d2m!2 one reognizes the Christo�el symbolsof the �rst kind� i jk � = r0m(Yi)!2(Yk; Yj)�r0m(Yk)!2(Yi; Yj) +r0m(Yj)!2(Yi; Yk):If !2 2 C2m;_(h; V;S), one �nds that� i jk � = � j ik � :Here we ompute some simple ohomologies for the onrete ohain spaes 
nm =Cnm(h; V;S) and write the ohomology Hnm(
�) as Hnm(h; V;S).? Remark 3-29. Let h be a Lie algebra, �10 the adjoint representation, !2 its Killingform and r00 the trivial representation. Then !2 is invariant under r20 due to itsassoiativity, i.e., !2([Y1; Y2℄; Y3) = !2(Y1; [Y2; Y3℄). We see that d20!2(Y1; Y2; Y3) =!2(Y1; [Y2; Y3℄): If h is semisimple, this gives us a nontrivial element in H30;^(h; C; C),the usual (f. [Car36℄) ounterexample to what otherwise might have been alledWhitehead's third lemma. One has to hek that it is in the kernel of d30, but in ourase this is trivial sine d30d20 = 0.Example 3-30. H0m(h; V;S) = Z0m(h; V;S) for any V , sine B0m(h; V;S) = 0 byonvention. Sine C0m(h; V;�) = V , one has (d0mv)(Y ) = r0m(Y )v. Therefore,H0m(h; V;S) = V h, the subspae of invariants in V under r0m.3.5 A-linearityAbstrat 3-31. In this setion we show that under ertain onditions dnm preservesA-linearity in the last omponent(s).Proposition 3-32. Assume that !n 2 Cnm(h; V; CA) and r0mjhmR is A-linear. Thendnm!n 2 Cn+1m (h; V; CA).Proof. Using proposition 3-21, for r 2 A we have(dnm!n)(Y1; � � � ; rYn+1) == nXl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; rYn+1)+ (�1)nr0m(rYn+1)!n(Y1; � � � ; Yn)� nXl=1 (�1)l+1 nXk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; rYn+1)



� nXl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)rYn+1)= r n+1Xl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; Yn+1)+ nXl=1 (�1)l+10m(Yl)(r)!n(Y1; � � � ; Ŷl; � � � ; Yn+1)� r nXl=1 (�1)l+1 nXk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yn+1)� r nXl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yn+1)� nXl=1 (�1)l+10m(Yl)(r)!n(Y1; � � � ; Ŷl; � � � ; Yn+1)= r(dnm!n)(Y1; � � � ; Yn+1):This proves the statement.Corollary 3-33. If dnm!n is antisymmetri or symmetri, this implies that dnm!n 2Cn+1m;^ (h; V;A) or Cn+1m;_ (h; V;A), respetively.Notie that d1m maps C1m(h; V;A) into C2m;^(h; V; CA). So, we have d1mC1m(h; V;A) �C2m;^(h; V;A).Proposition 3-34. If !n 2 Cnm(h; V; CA2), r0mjhmR is A-linear, and �1m is antisym-metri, then dnm!n 2 Cn+1m (h; V; CA2).Proof. From proposition 3-21, for r 2 A we have(dnm!n)(Y1; � � � ; rYn; Yn+1) == n�1Xl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; rYn; Yn+1)+ (�1)nr0m(Yn+1)!n(Y1; � � � ; Yn�1; rYn)+ (�1)n+1r0m(rYn)!n(Y1; � � � ; Yn�1; Yn+1)� n�1Xl=1 (�1)l+1 n�1Xk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; rYn; Yn+1)� n�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; rYn; �1m(Yl)Yn+1)� n�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; Yn�1; �1m(Yl)rYn; Yn+1)



� (�1)n+1!n(Y1; � � � ; Yn�1; �1m(rYn)Yn+1)= r n+1Xl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; Yn; Yn+1)� r nXl=1 (�1)l+1 n+1Xk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yn; Yn+1)= r(dnm!n)(Y1; � � � ; Yn; Yn+1):This together with proposition 3-32 proves the statement.For later referene we onsider here the following speial ase.Proposition 3-35. If !2 2 C2m(h; V;A), r0mjhmR is A-linear, and �1m is antisym-metri, thend2m!2(rY1; Y2; Y3) = rd2m!2(Y1; Y2; Y3) + 0m(Y3)(r)(!2(Y2; Y1) + !2(Y1; Y2)):Proof. For r 2 A, we omputed2m!2(rY1; Y2; Y3) == r0m(rY1)!2(Y2; Y3)�r0m(Y2)!2(rY1; Y3) +r0m(Y3)!2(rY1; Y2)� !2(�1m(rY1)Y2; Y3)� !2(Y2; �1m(rY1)Y3) + !2(rY1; �1m(Y2)Y3)= rr0m(Y1)!2(Y2; Y3)�r0m(Y2)r!2(Y1; Y3) +r0m(Y3)r!2(Y1; Y2)+ !2(�1m(Y2)rY1; Y3) + !2(Y2; �1m(Y3)rY1) + r!2(Y1; �1m(Y2)Y3)= rr0m(Y1)!2(Y2; Y3)� rr0m(Y2)!2(Y1; Y3) + rr0m(Y3)!2(Y1; Y2)+ r!2(�1m(Y2)Y1; Y3) + r!2(Y2; �1m(Y3)Y1) + r!2(Y1; �1m(Y2)Y3)+ 0m(Y3)(r)!2(Y2; Y1) + 0m(Y3)(r)!2(Y1; Y2)= rd2m!2(Y1; Y2; Y3) + 0m(Y3)(r)(!2(Y2; Y1) + !2(Y1; Y2)):This learly shows the obstrution to A-linearity.Remark 3-36. Assume that r0mjhmR is A-linear, and �1m is antisymmetri. We startto lose A-linearity when we apply d2m. This explains why the Levi{Civita onnetionis not a tensor (f. appendix B), nor is the Christo�el symbol (take �1m = 0 in thelast ase).3.6 The antisymmetri aseAbstrat 3-37. We show that dnmCnm;^(h; V;A) � Cn+1m;^ (h; V;A).Proposition 3-38. If �1m is antisymmetri and r0mjhmR is A-linear, thendnmCnm;^(h; V;A) � Cn+1m;^ (h; V;A):



Proof. We have to show that, for !n 2 Cnm;^(h; V;A) and any 1 � q � n + 1,(dnm!n)(Y1; � � � ; Yq; Yq+1; � � � ; Yn+1) = �(dnm!n)(Y1; � � � ; Yq+1; Yq; � � � ; Yn+1):We hek it diretly by using proposition 3-21.(dnm)!n(Y1; � � � ; Yq; Yq+1; � � � ; Yn+1) == q�1Xl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; Yq; Yq+1; � � � ; Yn+1)+ (�1)q+1r0m(Yq)!n(Y1; � � � ; Ŷq; Yq+1; � � � ; Yn+1)+ (�1)qr0m(Yq+1)!n(Y1; � � � ; Yq; Ŷq+1; � � � ; Yn+1)+ n+1Xl=q+2(�1)l+1r0m(Yl)!n(Y1; � � � ; Yq; Yq+1; � � � ; Ŷl; � � � ; Yn+1)� q�1Xl=1 (�1)l+1 q�1Xk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yq; Yq+1; � � � ; Yn+1)� q�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yq; Yq+1; � � � ; Yn+1)� q�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; Yq; �1m(Yl)Yq+1; � � � ; Yn+1)� q�1Xl=1 (�1)l+1 n+1Xk=q+2!n(Y1; � � � ; Ŷl; � � � ; Yq; Yq+1; � � � ; �1m(Yl)Yk; � � � ; Yn+1)� (�1)q+1!n(Y1; � � � ; �1m(Yq)Yq+1; � � � ; Yn+1)� (�1)q+1 n+1Xk=q+2!n(Y1; � � � ; Ŷq; � � � ; �1m(Yq)Yk; � � � ; Yn+1)� (�1)q n+1Xk=q+2!n(Y1; � � � ; Yq; Ŷq+1; � � � ; �1m(Yq+1)Yk; � � � ; Yn+1)� nXl=q+2(�1)l+1 n+1Xk=l+1!n(Y1; � � � ; Yq; Yq+1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yn+1)= � q�1Xl=1 (�1)l+1r0m(Yl)!n(Y1; � � � ; Ŷl; � � � ; Yq+1; Yq; � � � ; Yn+1)� (�1)qr0m(Yq)!n(Y1; � � � ; Yq+1; Ŷq; � � � ; Yn+1)� (�1)q+1r0m(Yq+1)!n(Y1; � � � ; Ŷq+1; Yq; � � � ; Yn+1)� n+1Xl=q+2(�1)l+1r0m(Yl)!n(Y1; � � � ; Yq+1; Yq; � � � ; Ŷl; � � � ; Yn+1)



+ q�1Xl=1 (�1)l+1 q�1Xk=l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yq+1; Yq; � � � ; Yn+1)+ q�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; Yq+1; �1m(Yl)Yq; � � � ; Yn+1)+ q�1Xl=1 (�1)l+1!n(Y1; � � � ; Ŷl; � � � ; �1m(Yl)Yq+1; Yq; � � � ; Yn+1)+ q�1Xl=1 (�1)l+1 n+1Xk=q+2!n(Y1; � � � ; Ŷl; � � � ; Yq+1; Yq; � � � ; �1m(Yl)Yk; � � � ; Yn+1)+ (�1)q+2 n+1Xk=q+2!n(Y1; � � � ; Yq+1; Ŷq; � � � ; �1m(Yq)Yk; � � � ; Yn+1)+ (�1)q+1!n(Y1; � � � ; �1m(Yq+1)Yq; � � � ; Yn+1)+ (�1)q+1 n+1Xk=q+2!n(Y1; � � � ; Ŷq+1; Yq; � � � ; �1m(Yq+1)Yk; � � � ; Yn+1)+ nXl=q+2(�1)l+1 n+1Xk=l+1!n(Y1; � � � ; Yq+1; Yq; � � � ; Ŷl; � � � ; �1m(Yl)Yk; � � � ; Yn+1)= �(dnm!n)(Y1; � � � ; Yq+1; Yq; � � � ; Yn+1):The A-linearity follows from orollary 3-33, using the A-linearity of r0mjhmR.One should notie that there are three di�erent operations involved here:� Using the antisymmetry of !n itself.� Using the fator (�1)l+1.� Using the antisymmetry of �1m.This prevents repeating the proof for the symmetri ase, sine the fator (�1)l+1does not ooperate.3.7 The omplexesAbstrat 3-39. In this setion we show that we have now onstruted a number of(pre)omplexes.Theorem 3-40. 1. C��(h; V; C) is a preomplex.2. If r0�jh�R is A-linear, C��(h; V; CA) is a preomplex.3. If �1m is antisymmetri and r0�jh�R is A-linear, C�� (h; V; CA2) is a preomplex.



4. If �1m is antisymmetri and r0�jh�R is A-linear, C��;^(h; V;A) is a preomplex.Proof. We reollet the de�nition of a preomplex to be a olletion of� A-modules 
nm (the n-ohains), n 2 N , whih we take to be Cnm(h; V;S), and� Maps �nm : hmR ! HomC(
nm;
n�1m ), following de�nition 3-8,� Maps dnm 2 HomC(
nm;
n+1m ), as de�ned in lemma 3-13, (where the A-linearityis proved in proposition 3-32 and 3-34; the antisymmetri ase follows fromproposition 3-38) and� The onnetions rnm : gmC ! HomC(
nm;
nm) as in de�nition 2-51suh that (with the onvention that d�1m = 0 and �0m = 0)1. �nm(Y )rnm(X) � rn�1m (X)�nm(Y ) = ��nm(�1m(X)Y ); X 2 gmC ; Y 2 hmR, followingfrom lemma 3-12,2. rnm(Y ) = �n+1m (Y )dnm + dn�1m �nm(Y ); Y 2 hmR, as in lemma 3-13.This shows that C��(h; V;S) is indeed a preomplex.Theorem 3-41. If r0m and �1m are representations,1. C�� (h; V; C) is a omplex.2. If r0�jh�R is A-linear, C��(h; V; CA) is a omplex.3. If �1m is antisymmetri and r0�jh�R is A-linear, C��(h; V; CA2) is a omplex.4. If �1m is antisymmetri and r0�jh�R is A-linear, C��;^(h; V;A) is a omplex.Proof. 1. rnm are m-representations proved in orollary 2-69,2. rn+1m (X)dnm = dnmrnm(X); X 2 gmC follows from orollary 3-16,3. dnmdn�1m = 0 follows from orollary 3-17.This, together with theorem 3-40, proves the theorem.Remark 3-42. The onept of Lie algebra omplex as de�ned in [Dor93℄ is a speialase of a omplex when h = g is a Lie algebra.



3.8 Redution proedure of a omplexAbstrat 3-43. We show how a given m-omplex C�m(h; V;S) over a diret pair(gmC ; hmR)A redues to a new m-omplex 
nm[k℄ over a diret pair (gmk ; hmk )Ak withrespet to a �nitely generated linear subspae k � gmC .Consider an m-omplex C�m(h; V;S). Assume that �1m and r0m are both at.Given a �nitely generated linear subspae k � gmC , let hmk (or gmk ) be the entralizerof k in hmR(or gmC ) and Ak the k-invariant elements of A:hmk = fY 2 hmR : �1m(Z)Y = 0; 8Z 2 kg;gmk = fX 2 gmC : �1m(Z)X = 0; 8Z 2 kg;Ak = fr 2 A : 0m(Z)r = 0; 8Z 2 kg;Rk = Ak\R:Notie that hmk is an Ak-module sine for Y 2 hmk ; r 2 Ak,�1m(Z)rY = r�1m(Z)Y + 0m(Z)(r)Y = 0:We onstrut 
nm[k℄, the ohain spaes, in the following way:
nm[k℄ = 
nm=fXk rnm(Zk)!k; Zk 2 k; !k 2 
nmg;where 
nm is the spae of maps ofNnRk hmk to V .Proposition 3-44. �1m : gmk ! EndhmkC (gmk ).Proof. Take X1; X2 2 gmk , then�1m(Z)�1m(X1)X2 = �1m(X1)�1m(Z)X2 + �1m(�1m(Z)X1)X2 = 0:Therefore �1m(X1)X2 2 gmk . By the same argument we show that hmk is an invariantsubspae for all �1m(X1).We have to hek that the maps �nm(Y ), rnm(X) and dnm are well de�ned in this newontext. Let X 2 gmk and Y 2 hmk .� De�ne rnm(X)[!℄ = [rnm(X)!℄. This is well de�ned sinernm(X)Xk rnm(Zk)!k =Xk rnm(Zk)rnm(X)!k:� De�ne �nm(Y )[!℄ = [�nm(Y )!℄. This is well de�ned sine�nm(Y )Xk rnm(Zk)!k =Xk rn�1m (Zk)�nm(Y )!k(sine �1m(Zk)Y = 0 for Zk 2 k).



� De�ne dnm[!℄ = [dnm!℄. This is well de�ned sinednmXk rnm(Zk)!k =Xk rn+1m (Zk)dnm!k:� The relations follow automatially sine all the operands fator through theequivalene lasses, i.e., if E is a relation, then we haveE [!℄ = [E!℄ = [0℄:3.9 The Fr�ehet derivative and its propertiesAbstrat 3-45. We give an abstrat de�nition of Fr�ehet derivative on the ring Aand, using a �niteness assumption, extend it to hains and ohains.De�nition 3-46. The Fr�ehet derivative of � 2 A in the diretion h 2 hmk isde�ned as D�[h℄ = 0m(h)�:This de�nition diretly leads to the following property:D�1�2 [�℄ = D�1 [�℄�2 + �1D�2 [�℄; �1; �2 2 A:We ould have de�ned the Fr�ehet derivative for h 2 gmC . But this would not bein aordane with the usage in the literature. This explains the ourrene of ��tterms in the formulae for the Lie derivatives, f. theorem 5-10.We restrit the spae using the following assumption: hmk is a �nitely generatedfree A-module, whih an be realized by the redution proedure as desribed insetion 3.8. This may seem to be in ontradition with the fat that hmk is a leftAk-module, not a left A-module. We assume that there is a new ation of the ring,whih makes hmk into a left A-module. These allows us to write h = P� h�e� forany h 2 hmk , where h� 2 A and e� 2 hmk , and the set of � is �nite. Therefore, wean de�ne the Fr�ehet derivatives of hains and ohains as follows.De�nition 3-47. The Fr�ehet derivative of h0 = P� h�0 e� 2 hmk in the diretionh 2 hmk is Dh0[h℄ =X� Dh�0 [h℄e�:De�nition 3-48. Let !n 2 Cn0 (hk;
0m[k℄;S) and 
0m[k℄ � A. Then we de�ne theFr�ehet derivative of !n in the diretion h 2 hmk byD!n [h℄(h1; � � � ; hn) = D!n(h1;���;hn)[h℄� nXk=1 !n(h1; � � � ; Dhk [h℄; � � � ; hn);where hi 2 hmk and i = 1; � � � ; n.



De�nition 3-49. If now � is a map from hmk into itself, we an de�ne the Fr�ehetderivative of of �, D� in the diretion h 2 hmk byD�[h℄(g) = D�g[h℄� �(Dg[h℄); 8g 2 hmk :In this way we again have the Leibniz rule by onstrution.3.10 The Lie derivativeAbstrat 3-50. We de�ne the Lie derivative, ombining �nm and rnm in one nota-tion.We now de�ne the Lie derivative LX ; X 2 gmC on an m-omplex as follows. For�n 2 Nn hmR (Notation 3-19) we let LX�n = �nm(X)(�n) and for !n 2 
nm we letLX!n = rnm(X)!n. Clearly we have� LLXY = LXLY � LY LX , Y 2 hmR,� LX(r�) = rLX �+0m(X)(r)� ; r 2 A:and the hain rule LX(!n(�n)) = (LX!n)(�n) + !n(LX�n):De�nition 3-51. For Y 2 gmC and � (either �n or !n), if there exists a onstant�� 2 C suh that LY � = ���;we say, when �� 6= 0, that Y 2 gmC is a ��-saling symmetry of � and that � ishomogeneous with respet to Y and that �� is the grading of �.If �� = 0, we all � an invariant of Y . If, moreover, Y 2 hmR, we say Y is asymmetry of �.Proposition 3-52. If there exists Y 2 hmR suh that LYZ = �ZY and LY � = ���,then LY (LZ�) = (�Z + ��)LZ� for Z 2 hmR.Proof. The statement follows diretly from LY (LZ�) = LZ(LY �) + LLY Z(�):Proposition 3-53. Assume that !n 2 Znm(h; V; C) is homogeneous with respet Y 2hmR with invertible grading �!n 2 C. Then !n 2 Bnm(h; V; C).Proof. One has,!n = L��1!nY !n = (�n+1m (��1!nY )dnm + dn�1m �nm(��1!nY ))!n= dn�1m �nm(��1!nY )!nand this shows that indeed !n 2 Bnm(h; V; C).Corollary 3-54. If for ertain Y 2 hmR one has that
�m = 
�m;0 � M�!n2C?
�m;�!n ;where !n 2 
nm;�!n if LY !n = �!n!n, then the ohomology is ontained in the spaeof invariants of Y .



3.11 Conjugate and adjoint operatorsAbstrat 3-55. We de�ne the notions of onjugate and adjoint, arefully avoidingany (unnatural) identi�ation of hmR with 
1m.De�nition 3-56. For arbitrary Y 2 hmR and any 1-form !1 2 
1m de�ne the pairingof Y and !1 by the formula:(!1; Y ) = �1m(Y )!1 2 
0m:One the pairing is given, the onjugate operator an be de�ned as follows:De�nition 3-57. Given an operator S : hmR ! hmR (or S : 
1m ! 
1m), we allthe operator S? : 
1m ! 
1m (or S? : hmR ! hmR) the onjugate operator to S if(!1; S(Y )) = (S?!1; Y ) (or (S(!1); Y ) = (!1; S?(Y ))) for all Y 2 hmR; !1 2 
1m.Here we also give the de�nition of the adjoint operator.De�nition 3-58. Given an operator S : hmR ! 
1m (or S : 
1m ! hmR), weall the operator Sy : hmR ! 
1m (or Sy : 
1m ! hmR) the adjoint operatorto S if (S(Y1); Y2) = (Sy(Y2); Y1) (or (!1; S(!2)) = (!2; Sy(!1))) for all Y1; Y2 2hmR; !1; !2 2 
1m.De�nition 3-59. S : hmR ! 
1m (or S : 
1m ! hmR) is alled a symmetri opera-tor if Sy = S, and a antisymmetri operator if Sy = �S.





Chapter 4Geometri struturesWe show how the deformation of a representation leads to the de�nition of a Nijen-huis operator and derive very useful properties of suh an operator, whih will beused to generate the symmetries and osymmetries of evolution equations. Further-more, we give the Hamiltonian formalism, whih is well known in the lassial Liealgebra ontext and an be found in any modern text on the foundations of lassialmehanis, e.g., [AM78℄.4.1 IntrodutionIn setion 4.2 we generalize Dorfman's approah in [Dor93℄ to de�ne the Nijenhuisoperator on an arbitrary Leibniz algebra ohain omplex. Although somewhatmore ompliated than for Lie algebras, we see that the main ideas survive withouta srath. In setion 4.3 we prove the usual properties of Nijenhuis operators ina formal way, i.e., assuming that RkX always exists. We return to the existenequestion in hapter 6. In setion 4.4 we prove the orresponding properties for theonjugate Nijenhuis operator. Finally, we show in setion 4.5 how one obtains thelassial sympleti and osympleti strutures for an arbitrary omplex. Onlythe most elementary results are given here. Most of the theory in the literature isinvolved in hoosing a ring A of (germs of) funtions on a manifold and derive theonsequenes, depending on the topology of the underlying manifold.4.2 Deformations of Leibniz algebra and Nijen-huis operatorsAbstrat 4-1. We set up the deformation equations and derive the de�nition ofthe Nijenhuis tensor from them.Consider the m-omplex Cnm(h; hmR;S) with r0m = �1m and gmC = hmR. We see that�1m indues a 2-form !2 by !2(Y1; Y2) = �1m(Y1)Y2.61



It will be shown that the assumption of an additional representation leads to thede�nition of a Nijenhuis operator. The setions 4.2-4.4 are based on [Dor93℄.For the onnetion ~�1m 2 ~�1m(h; hmR;A), onsider a �-parametrized family opera-tions �1m;� = �1m + �~�1m; � 2 C: (4.2.1)If the onnetion �1m;� endows hmR with Leibniz algebra struture, we say that ~�1mgenerates a deformation of the Leibniz algebra hmR.Evidently, this requirement, C(�1m;�) = 0; is equivalent to the following onditions0 = �1m(X)~�1m(Y )� �1m(Y )~�1m(X)� �1m(~�1m(X)Y )+ ~�1m(X)�1m(Y )� ~�1m(Y )�1m(X)� ~�1m(�1m(X)Y ); (4.2.2)0 = ~�1m(X)~�1m(Y )� ~�1m(Y )~�1m(X)� ~�1m(~�1m(X)Y ): (4.2.3)Thus, ~�1m must itself be a representation, satisfying ondition (4.2.3). We an present(4.2.2) in the short form aording to (3.4.5), viewing, as before, ~�1m as an element!2 2 C2m(h; hmR; C),d2m!2(X; Y; Z) = �1m(Z)~�1m(X)Y + �1m(~�1m(X)Y )Z: (4.2.4)We all a deformation is a trivial deformation if there exists R 2 C1m(h; hmR; C)suh that for T� = id+ �R there holdsT��1m;�(X)Y = �1m(T�X)T�Y:Sine we haveT��1m;�(X)Y = �1m(X)Y + �(~�1m(X)Y +R�1m(X)Y ) + �2R~�1m(X)Yand�1m(T�X)T�Y = �1m(X)Y + �(�1m(RX)Y + �1m(X)RY ) + �2�1m(RX)RY;the triviality of the deformation is equivalent to the onditions~�1m(X)Y = �1m(RX)Y + �1m(X)RY �R�1m(X)Y; (4.2.5)R~�1m(X)Y = �1m(RX)RY: (4.2.6)Similarly, (4.2.5) an be represented as~�1m(X)Y = (d10R)(X; Y ) + �1m(RX)Y + �1m(Y )RX;and this is the solution of (4.2.4).De�nition 4-2. We de�ne the Nijenhuis tensor [Nij51℄ to be given byNR(X; Y ) = �1m(RX)RY �R�1m(RX)Y �R�1m(X)RY +R2�1m(X)Y: (4.2.7)Alternatively, and more in the spirit of the setup using onnetions, we may put�R(X) = �1m(RX)R�R�1m(RX)�R�1m(X)R+R2�1m(X).



Proposition 4-3. If R is A-linear, then NR 2 C2m(h; hmR; CA) or, in other words,the anhor of �R is 0.Proof. We hek diretly the A-linearity in the seond argument. For r 2 A,NR(X; rY ) == �1m(RX)rRY �R�1m(RX)rY �R�1m(X)rRY +R2�1m(X)rY= r�1m(RX)RY + 00(RX)(r)RY � rR�1m(RX)Y �R00(RX)(r)Y� Rr�1m(X)RY �R00(X)(r)RY +R2r�1m(X)Y +R200(X)(r)Y= rNR(X; Y );and this proves the statement.De�nition 4-4. An Ak-linear operator R : hmR ! hmR is alled a Nijenhuis oper-ator if for all X; Y 2 hmRT dom(R),NR(X; Y ) = 0: (4.2.8)Combining (4.2.5) and (4.2.6), we have NR(X; Y ) = 0. This implies that any trivialdeformation produes a Nijenhuis operator. Notably, the onverse is also valid, asthe following theorem shows.Theorem 4-5. Let R : hmR ! hmR be a Nijenhuis operator. Then a deformation of�1m an be obtained by putting~�1m(X) = �1m(RX) + �1m(X)R�R�1m(X):One has C(~�1m) = 0, so one an all hmR a Leibniz bialgebra. The indued 2-form~!2 (indued by ~!2(X; Y ) = ~�1m(X)Y ) is trivial when �1m is antisymmetri.Proof. This an be proved by diretly heking (4.2.2), (4.2.3), (4.2.5) and (4.2.6).The urvature omputation is straightforward.Remark 4-6. Notie that m does not play an essential role. We will drop it whenwe study the properties of Nijenhuis operators by saying R : h! h.De�nition 4-7. Given C-linear maps R;R0 and � between two Leibniz algebras hand h0 aording to the following diagram:h R - h
h0� ? R0 - h0�?When then diagram ommutes R and R0 are alled �-intertwined.



Proposition 4-8. Assume that R and R0 are �-intertwined and � is a Lie algebrahomomorphism. If R is a Nijenhuis operator, then R0 is a Nijenhuis operator onIm(�) � h0.Proof. This an be proved by using � ating both sides of (4.2.8).We onstruted a Lie algebra from a ertain ring in setion 2.4, where we also provedthat any ring homomorphism ' leads to Lie algebra homomorphism '?. We willshow the relation between R;R0 and ' from the following example.? Example 4-9. Consider the Modi�ed Korteweg{de Vries equationut = u3 + u2u1:Its Miura transformation w = u2 + p�6u1 transforms it into the Korteweg{deVries equation wt = w3 + ww1:As we know R = D2x + 23w + w13 D�1x is a Nijenhuis reursion operator for KdV.We will ompute the orresponding Nijenhuis operator for mKdV. Notie that'Xd = ('?X)d0' (Proposition 2-25). Therefore, for any f [w℄�w there is a vetor-�eld h[u℄�u = '?(f [w℄�w) satisfying with f [u2+p�6u1℄ = 2uh[u℄+p�6Dx(h[u℄) =(2u+p�6Dx)h[u℄. This leads to(2u+p�6Dx)R0(h) = (R(f))[u2 +p�6u1℄= (D2x + 23w + w13 D�1x )(2u+p�6Dx)h[u℄:So R0 = D2x + 23u2 + 2u13 D�1x � u.Remark 4-10. In general, R0 = D�1' 'R'�1D' = D�1' ('R)D'; where ' : A ! A0,h = HomA(
1A=C ;A), h0 = HomA0(
1A0=C0 ;A0) and R : h! h (f. proposition 2.1 in[Fok87℄).4.3 Properties of Nijenhuis operatorsAbstrat 4-11. We derive the reursion formulae for a Nijenhuis operator. Thesewill be used to ompute hierarhies of symmetries.In the following, we enounter expressions like RkX. We taitly assume thatRkX exists. In Chapter 6, we address the existene question.Proposition 4-12. Let R : h! h be a Nijenhuis operator. For arbitrary elementsX; Y 2 h and arbitrary j; k 2 N,�1(RjX)RkY �Rk�1(RjX)Y �Rj�1(X)RkY +Rj+k�1(X)Y = 0: (4.3.1)



Proof. Fix j = 1 and prove (4.3.1) for arbitrary k > 0. For k = 1 the formula isevidently valid. With the help of (4.2.8) we get�1(RX)Rk+1Y �Rk+1�1(RX)Y �R�1(X)Rk+1Y +Rk+2�1(X)Y == R�1(RX)RkY �Rk+1�1(RX)Y �R2�1(X)RkY +Rk+2�1(X)Y= R(�1(RX)RkY �Rk�1(RX)Y �R�1(X)RkY +Rk+1�1(X)Y ):By indution it follows that, for any k 2 N ,�1(RX)RkY �Rk�1(RX)Y �R�1(X)RkY +Rk+1�1(X)Y = 0: (4.3.2)Now applying this formula to the element RjX instead of the element X, we obtain�1(Rj+1X)RkY �Rk�1(Rj+1X)Y �Rj+1�1(X)RkY +Rk+j+1�1(X)Y == R�1(RjX)RkY �Rk+1�1(RjX)Y �Rj+1�1(X)RkY +Rk+j+1�1(X)Y= R(�1(RjX)RkY �Rk�1(RjX)Y �Rj�1(X)RkY +Rk+j�1(X)Y ):So, the indution an be made with respet to j starting from the formula (4.3.2).Thus we prove the validity of (4.3.1) for j; k 2 N :Now we note that the formula (4.3.1) gets a natural interpretation in terms of theLie derivative. Namely, if we onsider its left-hand side as the result of the ationof some operator on the element Y 2 h, then we get for a Nijenhuis operator RLRjX(Rk) = RjLX(Rk); 8 X 2 h: (4.3.3)This leads to the following statement, whih turns out to be fundamental for theonstrution of evolution equations with in�nitely many ommuting symmetries.Theorem 4-13. Suppose R : h ! h is a Nijenhuis operator. Let X 2 h is asymmetry of R and Y 2 h be a saling symmetry for both the operator R and Xwith the grading �R and �X respetively, i.e., LYX = �XX; LYR = �RR. De�ningXk = RkX and Yj = RjY , then LXkRj = 0 for all j; k � 0. Furthermore,LXXk = RkLXX; LXjXk = RkLXjX; LYjXk = RkLYjX + k�RXk+j:Proof. As X is a symmetry, we have LXR = 0 and by the hain rule for the Liederivative LXRk = 0. By (4.3.3), all the elements of RjX are symmetries of Rk,i.e., LXjRk = 0. This implies thatLXXk = (LXRk)X +RkLXX = RkLXX:By by putting X = Y in the formula (4.3.1), we get LXjXk = RkLXjX.Similarly, to prove the seond identity,LYjXk = RkLYjX +RjLYXk �Rk+jLYX = RkLYjX + k�RXk+j:This onludes the proof.



Corollary 4-14. If, moreover, �1 is antisymmetri, then1. LXjXk = 0; LYjXk = (k�R + �X)Xk+j; LYjYk = (k � j)�RYk+j:2. If Z 2 h is another symmetry of R and LXZ = 0, then LRkX(RjZ) = 0 forj; k 2 N.Proof. The �rst two identities of the �rst part follow from the antisymmetry of �1.For the third identity,LYj (Yk) = RkLYjY +RjLY (RkY ) = (k � j)�RYk+j:The seond part follows from (4.3.1).4.4 Conjugate of Nijenhuis operatorsAbstrat 4-15. We derive reursion formulae for the onjugate Nijenhuis operator.These are to be used to ompute hierarhies of osymmetries.Consider an arbitrary m-omplex Cnm(h; V;S) with the representations �1m andr0m and de�ne the onjugate operator R? as in setion 3.11.Proposition 4-16. For R : hmR ! hmR, and X; Y 2 hmR, !1 2 C1m(h; V;S) thefollowing is valid: d1m!1(RX;RY )� d1m(R?!1)(X;RY )� d1m(R?!1)(RX; Y ) + d1m(R?2!1)(X; Y )= �(!1; NR(X; Y )): (4.4.1)Proof. Using the formula (3.4.4), we ompute d1m!1; d1m(R?!1) and d1m(R?2!1).We obtaind1m!1(RX;RY ) = r0m(RX)!1(RY )�r0m(RY )!1(RX)�!1(�1m(RX)RY );d1m(R?!1)(RX; Y ) = r0m(RX)R?!1(Y )�r0m(Y )R?!1(RX)�R?!1(�1m(RX)Y );d1m(R2?!1)(X; Y ) = r0m(X)R2?!1(Y )�r0m(Y )R2?!1(X)�R2?!1(�1m(X)Y ):Substituting the expressions obtained into the left-hand side of (4.4.1) and using thede�nition of R?, we get its right-hand side.Suppose that R is a Nijenhuis operator. In this ase the right side of (4.4.1) vanishesand we getd1m(R2?!1)(X; Y ) == d1m(R?!1)(X;RY ) + d1m(R?!1)(RX; Y )� d1m!1(RX;RY ):



It an easily be dedued that if for arbitrary !1;0 2 C1m(h; V;S) we onstrut thesequene of 1-forms !1;k = Rk?!1;0 2 C1m(h; V;S), thend1m!1;k+2(X; Y ) == d1m!1;k+1(X;RY ) + d1m!1;k+1(RX; Y )� d1m!1;k(RX;RY ): (4.4.2)The following theorem is a diret onsequene of the formula (4.4.2). It explainshow the in�nite series of onservation laws of an evolution equation arises, f. hapter6.Theorem 4-17. Let R : hmR ! hmR, be a Nijenhuis operator, !1;0 2 Z1m(h; V;S) bea 1-form suh that d1mR?!1;0 = 0. Then all !1;k = Rk?!1;0 2 Z1m(h; V;S), k � 0.4.5 Sympleti, osympleti and Poisson stru-turesAbstrat 4-18. In this setion we derive the sympleti formalism starting froman exat 2-form.Let 
�m be a omplex. We �x !2 2 Z2m(
�m), i.e., d2m!2 = 0. Remark that!2 is not required to be antisymmetri. We all !2 a sympleti form if it isnondegenerate.De�nition 4-19. If for given �1 2 
1m, we have Y 2 hmR suh that �2m(Y )!2 =�1, we write Y = H(�1). So H maps 
1m ! hmR and is alled the osympletioperator. In the other diretion, we let I(Y ) = �2m(Y )!2 de�ne a map I : hmR ! 
1m,the sympleti operator.In pratie, things are sometimes done the other way around: one starts with anoperator I and de�nes a form by!2(Y1; Y2) = I(Y1)(Y2):The veri�ation that !2 2 Z2m(
�m) determines the properties that I needs to havein order to be alled a sympleti operator.Notation 4-20. We de�ne the following spaes:WI = f�1 2 W � 
1m j 9Y 2 hmR : I(Y ) = �1g;~
0m = fH0 2 
0m j 9Y 2 hmR : �2m(Y )!2 = d0mH0g:De�nition 4-21. Assuming �2m is A-linear, we an de�ne a at onnetion �1m on
1m;I as follows: �1m(�1)�1 = I(�1m(H(�1))H(�1)); �1; �1 2 
1m;I:



Proof. �1m(�1)r�1 == I(�1m(H(�1))H(r�1))= I(�1m(H(�1))rH(�1))= I(r�1m(H(�1))H(�1) + 0m(H(�1))(r)H(�1))= rI(�1m(H(�1))H(�1) + 0m(H(�1))(r)I(H(�1))This shows that we have indeed a onnetion, with anhor 0m Æ H. We now showthat it is at.C(�1m)(�1; �2)�1 == �1m(�1)�1m(�2)�1 � �1m(�2)�1m(�1)�1 � �1m(�1m(�1)�2)�1= �1m(�1)I(�1m(H(�2))H(�1))� �1m(�2)I(�1m(H(�2))H(�1))� �1m(I(�1m(H(�1))H(�2))�1= I(�1m(H(�1))H(I(�1m(H(�2))H(�1))))� I(�1m(H(�2))H(I(�1m(H(�1))H(�1))))� I(�1m(H(I(�1m(H(�1))H(�2)))H(�1))= I(�1m(H(�1))�1m(H(�2))H(�1))� I(�1m(H(�2))�1m(H(�1))H(�1))� I(�1m(�1m(H(�1))H(�2)H(�1))= I(C(�1m(H(�1);H(�2))H(�1))= 0:This onludes the proof.Proposition 4-22. If �1; �1 2 Z1m;I(
�m), then �1m(�1)�1 2 B1m;I(
�m).Proof. First of all, we �nd that0 = d1m�1= d1m�2m(H(�1))!2= r2m(H(�1))!2 � �3m(H(�1))d2m!2= r2m(H(�1))!2:It follows that�1m(�1)�1 = �2m(�1m(H(�1))H(�1))!2= r1m(H(�1))�2m(H(�1))!2 � �2m(H(�1))r2m(H(�1))!2= r1m(H(�1))�1= �2m(H(�1))d1m�1 + d0m�1m(H(�1))�1= d0m�1m(H(�1))�1 2 B1m(
�m):It belongs to 
1m;I by onstrution, and therefore sits in B1m;I(
�m).



Let Ham!2(hmR) = �Y 2 hmRj�2m(Y )!2 2 B1m(
�m)	 ;Sym!2(hmR) = �Y 2 hmRj�2m(Y )!2 2 Z1m(
�m)	 :We write Y = XH0 if �2m(Y )!2 = d0mH0 and we all XH0 a Hamiltonian vetor-�eld, in analogy with the situation in lassial mehanis. An element inSym!2(hmR)is alled a sympleti vetor�eld.Remark 4-23. Notie that Ham!2(hmR) � Sym!2(hmR) and that sympleti vetor-�elds are Hamiltonian vetor�elds if H1m(
�m) = 0.Proposition 4-24. �1m(Sym!2(hmR))Sym!2(hmR) � Ham!2(hmR):Proof. Let Y1 2 Sym!2(gmC ); Y2 2 Sym!2(gmC ). Then�2m(�1m(Y1)Y2)!2 == r1m(Y1)�2m(Y2)!2 � �2m(Y2)r2m(Y1)!2= �2m(Y1)d1m�2m(Y2)!2 + d0m�1m(Y1)�2m(Y2)!2= d0m�1m(Y1)�2m(Y2)!2 2 B1m(
�m):This proves the statement in the proposition.Corollary 4-25. Ham!2(hmR) is an ideal of Sym!2(hmR).





Chapter 5Complex of formal variationalalulusIn this hapter, we onstrut and investigate a speial omplex, the omplex offormal variational alulus based on the ring A. The oboundary operator d00 in theomplex leads naturally to the de�nition of the Euler operator. Furthermore, wede�ne the pairing between 
10[k℄ and h0k . Its nondegeneray allows us to write theLie derivatives in an expliit form.5.1 IntrodutionWe will now restrit our ring to be a ring of di�erentiable funtions in two indepen-dent variables, time t and spae x, and symbols u�i;j, with � in some �nite indexset, representing the dependent variables and their t; x derivatives. At this point wehave to make a hoie: do we want to work with polynomials, formal power series,analyti funtions, smooth funtions? And do we want the underlying spae to be,e.g., R2 , or maybe R �S1? This hoie is not very important for our analysis, sineeverything is set up for abstrat rings anyway, but it determines the ohomologyspaes. Let us give a fairly trivial example here. Suppose H00 is the spae of solutionsof the equation �f�x = 0:We an solve this and the solutions are of the form f = f(t). But, as we will see lateron, we are interested in these solutions modulo the image of the total di�erentialoperator Dx. So if we an write f(t) = Dxxf(t), the ohomology is trivial. But thisdepends on our hoie of spae (and possibly on other hoies too): if we hooseR � S1 to be the underlying spae, x is not a funtion, sine it is not periodi andtherefore the ohomology is nontrivial. If the underlying spae is trivial, the loalohomology an also be nontrivial depending on the hoie of ring. In the notationto be introdued later, R 1u 2 Ker d10, but not in Im d00 if we restrit ourselves torational funtions in the dependent variables, f. [Dor93℄, pp. 62{73.71



We make the blanket assumption that the zeroth and �rst ohomology in thespae of funtionals is zero. This assumption is impliit in some of the proofs,but made expliit by some remarks. Besides the ohomology, also the existene ofonnetions may depend on the hoie of ring, f. [KT71℄.5.2 De�nition of the omplexAbstrat 5-1. We onstrut a speial omplex that is most important in buildinghierarhies of for instane symmetries and onservation laws of nonlinear evolutionequations. The onstrution is universal and the omplexes onsidered di�er only bythe hoie of the basi ring.Consider the ring B of smooth funtions depending on t and x only. Then let Sbe the B-algebra generated by the symbols w�i;j subjet to the relations w�i;jw�k;l =w�k;lw�i;j, with i; j; k; l 2 N and �; � 2 =, with j=j < 1. The index � taken fromsome set of indies = enumerates dependent variables or unknown funtions of partialdi�erential equations and the index i; j indiates the number of x; t-derivatives. Thepreise nature of S is not spei�ed at this point, but is subjet to the onsiderationsskethed above.Let �Dxw�i;j = w�i+1;j and �Dtw�i;j = w�i;j+1 be derivations on S. We assume thatone is given relations in S of the form w�i;1 = DixK�(t; x;w0;0; � � � ; wn;0), where Dx =��x +Pi;�w�i+1;0 ��w�i;0 . This overs the theory of evolution equations of the formu�t = K�(t; x; u; � � � ; un); (5.2.1)with u�i = w�i;0. Using these relations we an eliminate w�i;j with j > 0. This is whatmakes evolution equations relatively simple to handle. Other types of equations mayhave mixed derivatives in their normal form after elimination.Whenever one has �u�i�t , this is to be replaed by �Dtw�i;0 and then eliminated usingthe relations. The quotient of S over these relations is denoted by A. The dynamisof the evolution equation are now built into the ring A.We onstrut an A-Lie algebra h = HomA(
1A=B;A) over A aording to setion2.4, denoting the d by dv, and a B-Lie algebra b = HomB(
1B=C ;B), denoting thed by dh. Observe that the onstrution of K�ahler di�erentials behaves well undertaking the quotient in the ring S by simply eliminating dvw�i;1 = dvDixK�.For any F 2 A, dvF = Pi;� �F�u�i dvu�i . By de�nition Y dv = � and with onven-tions like �u�i dvu�j = Æij, any vetor�eld Y 2 h an be written asY dv = (Xi;� hi;��u�i )dv =Xi;� hi;� ��u�i ; (5.2.2)where hi;� 2 A. Likewise any vetor�eld in Z 2 b an be written as�00(Z) = Zdh = (p�t + q�x)dh = p ��t + q ��x ; (5.2.3)



where p; q 2 B and �00 2 ��00(b;B;B). We trivially extend the ation of �00 to A.Let g = b� h. Any vetor�eld X 2 g is written asX = b + h = p�t + q�x +Xi;� hi;��u�i ; (5.2.4)where b 2 b and h 2 h, i.e., p; q 2 B and hi;� 2 A.From the Lie algebras h and b we onstrut the onnetion �10 of g on h using �00as is done in example 2-48, i.e.,�10(X1)X2 = [p1�t + q1�x +Xi;� hi;�1 ; p2�t + q2�x +Xi;� hi;�2 ℄:Moreover, the anhor 00 of �10 is de�ned by00(Z + Y ) = �00(Z) + Y dv; Z 2 b; Y 2 h:Notie that h is a diret summand of g and an A-module. So (g; h)A is a diretpair and g is an A-Lie algebra. Using formula (2.6.1), taking V = A, we obtain a0-omplex Cn0 (h;A;S) from theorem 3-41 with r00 = 00 .Consider the one-dimensional spae k � g spanned by X0, where00(X0) = X0d == �xdh +Xi;� u�i+1�u�i dv = ��x +Xi;� u�i+1 ��u�i = Dx: (5.2.5)We perform the redution proedure with respet to k as given in setion 3.8. Inthis way there arises a omplex over (g0k ; h0k )Ak . It is alled the omplex of formalvariational alulus based on the ring A.We now desribe the objets involved in detail. Any element X 2 g given by(5.2.4) ommutes with X0 given by (5.2.5) i� Dxp = Dxq = 0 and hi;� = Dx(hi�1;�).It is evident that any X 2 g ommuting with X0 an be reovered from its ationon the variables dx, dt and du�, X(du�) = h�, and we havehi;� = X(du�i ) = XdX0du�i�1 = X0dXdu�i�1 = Dx(hi�1;�) = Dix(h�):The equation (5.2.1), simply written as ut = K, orresponds to X = �t +Pi;�Dix(K�)�u�i 2 g0k .The vetor�elds in the form h�u =Pi;�Dix(h�)�u�i , onventionally written as h,onsist of h0k with Lie braket[h; g℄� =Xi;� ��g��u�i Dix(h�)� �h��u�i Dix(g�)� : (5.2.6)
00[k℄ onsists of elements in the quotient spae A=Dx(A) sineLX0f = 00(X0)f = Dx(f); 8f 2 A = 
00:



Suh an element will be alled a funtional and denoted by R f . The integralsymbol is both standard and appropriate, sine one has R Dxf = 0. Remark that weirumvent the usual problems, foring one to make assumptions on the underlyingspae and the test funtion spae in order to make this formula true in the ase onedoes real integration.One has 
n0 [k℄ = 
n0=LX0
n0 . By the de�nition of the Lie derivative, for !n 2 
n0 ,(LX0!n)(h1; � � � ; hn)= 00(X0)!n(h1; � � � ; hn)� nXi=1 !n(h1; � � � ; �10(X0)hi; � � � ; hn)= Dx!n(h1; � � � ; hn):Therefore, 
n0 [k℄ = Cn0 (h0k ;A=Dx(A);Ak). When dealing with !n 2 
n0 [k℄, n > 0, wean freely throw away the ImDx part of !n(h1; � � � ; hn) as is done for n = 0. Theanalysis later relies on this fat.Now onsider the spae 
10[k℄. Sine any �!1 2 
10 an be written as �!1 =Pi;� �!i;�1 du�i ; �!i;�1 2 A, one hasZ �!1(h) = Z Xi;� �!i;�1 Dix(h�) = Z X� (Xi (�Dx)i�!i;�1 )h� = Z !1(h);where !1 =Pi;�(�Dx)i�!i;�1 du� =P� !�1 du�, with !�1 =Pi(�Dx)i�!i;�1 . This leadsto the understanding that any element !1 2 
10[k℄ is ompletely de�ned by theolletion f!�1 2 Ag.Remark 5-2. Notie that A=Dx(A) does not inherit the ring struture from A,sine Dx(A) is not a multipliative ideal in A. Therefore we annot onstrut theLie algebra from A=Dx(A) as in setion 2.4. This is the reason that we perform theredution proedure after onstruting the omplex. One way out of this diÆultymight be to take a diret summand to ImDx whih is multipliatively losed. Thisis, e.g., the ase when the diret summand is the kernel of a derivation. This isdesribed in [SR94℄, [SW97a℄, where Dx is imbedded in a Heisenberg algebra. Thisleads to rules like:Z u2 Z u21 = Z u2 Z 12(u21 � uu2) = 12 Z u2(u21 � uu2) = 2 Z u2u21:5.3 The pairing and Euler operatorAbstrat 5-3. In this setion, we de�ne the pairing between 
10[k℄ and h0k . Its non-degeneray allows us to write operators, suh as LX , in an expliit form. We alsode�ne the Euler operator whih follows naturally from d00 in the omplex of formalvariational alulus.



First we de�ne the pairing between !1 2 
10[k℄ and h 2 h0k . Aording to de�nition3-56, it is given by (!1; h) = Z !1 � h 2 A=Dx(A); (5.3.1)where !1 � h =P� !�1 h� 2 A:Proposition 5-4. The pairing between 
10[k℄ and h0k given by (5.3.1) is nondegen-erate.Proof. This is equivalent to the statement: If there is a given f 2 A suh thatR fg = 0, i.e., fg 2 ImDx for arbitrary g 2 A, then f = 0.Suppose that g = 1, then f 2 ImDx, whih means that f depends linearly on thehighest-order derivative u�N� of the variables u� involved in f . Now take g = u�N�,then fg 62 ImDx. This ontradition shows that f must be equal to zero.For any f 2 A, we alulate d00 of a funtional as follows�10(h)d00 Z f = Z Xi;� �f�u�i Dix(h�) =X� Z h�Xi (�Dx)i( �f�u�i ):Introdue the operator E : A=Dx(A)! 
10[k℄ alled the Euler operator byE =X� E�du�; E�(Z f) =Xi (�Dx)i �f�u�i : (5.3.2)Now we an express d00 in terms of the Euler operator, that is,�10(h)d00 Z f = (d00 Z f; h) =X� Z h�E�(f) = (E(Z f); h):Notie that E(R f) = d00 R f due to the nondegeneray of the pairing. So we haveE(0) = 0 whih an, of ourse, also be heked by diret alulation. This impliesthat the Euler operator does not depend on the hoie of a representative f in theequivalene lass R f . Therefore, the operator is well de�ned.Remark 5-5. If we assume that H00 (h;A=Dx(A);Ak) = 0, then E(R f) = 0 impliesR f = 0, i.e., f 2 ImDx (f. [Olv93℄ p. 248). This is useful to know when onestudies onservation laws (f. proposition 5-12 and theorem 6-8).Sine the index set for � is �nite, this implies dimAh0k < 1, we an de�ne theFr�ehet derivatives on both hains and ohains. For h; g 2 h0k , we haveDh[g℄� =Xi;� �h��u�i Dix(g�):



Therefore, the Lie braket (5.2.6) an simply be written as[h; g℄ = Dg[h℄�Dh[g℄:Notie that Dh : h0k ! h0k (h 2 h0k ) and D!1 : h0k ! 
10[k℄ (!1 2 
10[k℄). We havethe onjugate operator D?h : 
10[k℄! 
10[k℄ and the adjoint operator Dy!1 : h0k ! 
10[k℄satisfying, for all g 2 h0k , (!1; Dh[g℄) = (D?h[!1℄; g);(D!1[g℄; h) = (Dy!1[h℄; g):De�nition 5-6. For !1 2 
10[k℄, if D!1 is a symmetri operator, i.e., D!1 = Dy!1 ,we all !1 self-adjoint.It is easy to obtain the following two important formula for the pairing from theLeibniz rule: D!1�h[g℄ = D!1[g℄ � h+ !1 �Dh[g℄; (5.3.3)E((!1; h)) = Dy!1[h℄ +D?h[!1℄: (5.3.4)Proposition 5-7. For any !1 2 
10[k℄, d10!1 = 0 is equivalent to D!1 = Dy!1.Proof. We ompute d10!1 for !1 2 
10[k℄ by formula (3.4.4). We haved10!1(h1; h2) == Z (D!1�h2[h1℄�D!1�h1[h2℄� !1 � (Dh2 [h1℄�Dh1 [h2℄))= Z (D!1 [h1℄ � h2 �D!1 [h2℄ � h1) = Z (D!1 �Dy!1)[h1℄ � h2:The result now follows from the nondegeneray of (5.3.1).Remark 5-8. There arises a question: if D!1 = Dy!1 , an we �nd R f 2 A=DxAsatisfying E(R f) = !1. Generally, the answer depends on the hoie of ring. It isyes when A are smooth funtions or polynomials. This is due to the vanishing ofthe �rst ohomology spae: H10 (h;A=Dx(A);Ak) = Ker d10= Im d00 = 0. Suh an R fis alled the density of !1. For details and the proedure of �nding the solution see[Dor93℄, pp. 62{73.5.4 Lie derivatives expressed in Fr�ehet deriva-tivesAbstrat 5-9. This setion is devoted to expliit forms for Lie derivatives LX ofsome basi objets, where X = �t +Pi;�Dix(K�)�u�i with K� 2 A. They are veryuseful for studying evolution equations sine, as we know, they an be treated asvetor�elds in suh a form. Moreover, symmetries an be onsidered as the elementsin the Lie algebra h0k .



Theorem 5-10. The Lie derivatives LX are given by the following formulae:R f 2 A=Dx(A) LX R f = R (�f�t +Df [K℄);h 2 h0k LXh = �h�t +Dh[K℄�DK[h℄;!1 2 
10[k℄ LX!1 = �!1�t +D!1[K℄ +D?K[!1℄;H : 
10[k℄! h0k LXH = �H�t +DH[K℄�DKH� HD?K;I : h0k ! 
10[k℄ LXI = �I�t +DI[K℄ + IDK +D?KI;R : h0k ! h0k LXR = �R�t +DR[K℄�DKR +RDK ;T : 
10[k℄! 
10[k℄ LXT = �T�t +DT[K℄ +D?KT� TD?K;!n 2 
n0 [k℄ LX!n = �!n�t +D!n[K℄ +D?K[!n℄;where ? means onjugation, and by de�nitionD?K [!n℄(h1; � � � ; hn) = nXi=1 !n(h1; � � � ; DK[hi℄; � � � ; hn):Moreover, for the operators, the formulae are only valid on the domain of the lefthand sides of the identities.Proof. The �rst two formulae follow diretly from the de�nition of Lie derivative.We now prove the third one. For !1 2 
10[k℄ and any g 2 h0k , we have(LX!1)(g) = LX!1(g)� !1(LXg) == 00(X)!1(g)� !1(�10(X)g)= Z ��!1�t � g + !1 � �g�t + !1 �Dg[K℄ +D!1 [K℄ � g�� Z !1 � (�g�t +Dg[K℄�DK[g℄)= ��!1�t +D!1 [K℄ +D?K [!1℄; g� :By the nondegeneray of the pairing, we obtain the formula. From the hain rule ofthe Lie derivative and the �rst three formulae, it follows, for any !1 2 
10[k℄,(LXH)(!1) = LXH(!1)� H(LX!1) == �H(!1)�t +DH(!1)[K℄�DK[H(!1)℄� H(�!1�t +D!1[K℄ +D?K[!1℄)= (�H�t +DH[K℄�DKH� HD?K)(!1):Therefore, we prove the formula for LXH. Similarly, we ompute(LXI)(g) = LXI(g)� I(LXg) == �I(g)�t +DI(g)[K℄ +D?K [I(g)℄� I(�g�t +Dg[K℄�DK[g℄)= (�I�t +DI[K℄ + IDK +D?KI)(g):



And (LXR)(g) = LXR(g)�R(LXg) == �R(g)�t +DR(g)[K℄�DK[R(g)℄�R(�g�t +Dg[K℄�DK[g℄)= (�R�t +DR[K℄�DKR +RDK)(g);(LXT)(!1) = LXT(!1)� T(LX!1) == �T(!1)�t +DT(!1)[K℄ +D?K[T(!1)℄� T(�!1�t +D!1[K℄ +D?K[!1℄)= (�T�t +DT[K℄ +D?KT� TD?K)(!1):Finally, for hi 2 h0k (i = 1; � � � ; n) and !n 2 
n0 [k℄, it leads to(LX!n)(h1; � � � ; hn) == LX!n(h1; � � � ; hn)� nXi=1 !n(h1; � � � ; LXhi; � � � ; hn)= �!n(h1; � � � ; hn)�t +D!n(h1;���;hn)[K℄� nXi=1 !n(h1; � � � ; �hi�t +Dhi[K℄�DK [hi℄; � � � ; hn)= (�!n�t +D!n [K℄ +D?K [!n℄)(h1; � � � ; hn):This onludes the proof for all ases.Notation 5-11. Let X = �t +Pi;�Dix(K�)�u�i . When the following objets areinvariant under X, i.e., in the kernel of LX , then we allR f 2 A=Dx(A) a onserved densityh 2 h0k a symmetry!1 2 
10[k℄ a osymmetryH : 
10[k℄! h0k a osympleti operatorI : h0k ! 
10[k℄ a sympleti operatorR : h0k ! h0k a reursion operatorT : 
10[k℄! 
10[k℄ a onjugate reursion operatorof the equation u�t = K� (ut = K), where H is a osympleti operator and I is asympleti operator as de�ned in hapter 4.Proposition 5-12. Consider the equation ut = K. If R f 2 A=Dx(A) is a on-served density of the equation, then E(R f) is its osymmetry. Moreover, if !1 2
10[k℄ is a osymmetry of the equation and self-adjoint, then the density of !1 is itsonserved density.



Proof. We know from remark 5-5 and remark 5-8 that the ohomology spaesH00 (h;A=Dx(A);Ak) and H10 (h;A=Dx(A);Ak) vanish.One sees that R f 2 A=Dx(A) is a onserved density of the equation, i.e.,Z (�f�t +Df [K℄) = Z (�f�t + (E(Z f); K)) = 0:So E(R �f�t + (E(R f); K)) = 0: Using formula (5.3.4), we an rewrite this as�E(R f)�t +DyE(R f)[K℄ +D?K[E(Z f)℄ = 0:It is easy to hek DE(R f) = DyE(R f). Therefore E(R f) is a osymmetry.Sine D!1 = Dy!1, there exists unique R f 2 A=Dx(A) suh that !1 = E(R f).The seond statement an be proved by reversing the proof for �rst statement.Remark 5-13. This proposition is a onrete version of proposition 3-6.De�nition 5-14. If !1 2 
10[k℄ is a osymmetry of an evolution equation and self-adjoint, we all !1 a ovariantDe�nition 5-15. An objet � will be alled time-independent if L�t� = 0.





Chapter 6On Nijenhuis reursion operatorsIntegrable evolution equations in one spae variable, like the KdV equation, areoften haraterized by the possession of a reursion operator, whih is an operatorinvariant under the ow of the equation, arrying symmetries of the equation intoits (new) symmetries.Example 6-1. The operator R = D2x + 23u + 13u1D�1x is a Nijenhuis reursion op-erator (f. setion 4.2) for the Korteweg {de Vries equation ut = u3 + uu1. It isremarkable that any Rlu1 is a loal funtion ([Olv93℄, p. 312), i.e., Rlu1 2 ImDxfor l � 0.The fat that the image under repeated appliation of the reursion operator isagain a loal funtion is often not proved, with the KdV equation as an exeptionto this rule; some proofs an be found in [Dor93℄, relying on the bi-Hamiltonianharater of the equations. But usually one �nds in the literature a few expliitalulations, followed by the remark that this goes on. It is the goal of this hapterto prove that this is indeed the ase for at least a large lass of examples (no exeptionbeing known to us, f. however [Li91℄). We give a general theorem to that e�et,valid for systems of evolution equations in one evolution system spatial variable andapply this theorem to a number of harateristi examples.We do not use the property that the operator is a reursion operator of anygiven equation, only that it is a Nijenhuis operator. Of ourse, the fat that theseoperators are reursion operators makes them interesting in the study of integrablesystems. We show that Nijenhuis operators of the form that one �nds in the studyof evolution equations are well de�ned, i.e., they map into their own domain undersome weak onditions and an therefore produe hierarhies of symmetries whihare all loal. Moreover, the nonloal part of the operator ontains the andidates ofroots, starting points for a hierarhy of symmetries.Apart from the theoretial interest, this splitting (whih reminds one of thefatorization of the operator in sympleti and osympleti operators, if they exist)is useful in the atual omputation of a reursion operator for a given system. Forthis an be done iteratively treating Dx as a symbol, whih is �ne as long as itspower is nonnegative, but fails for D�1x . It is here that one an proeed to split o�81



a symmetry, and move the remaining part after the D�1x . This turns out to be ane�etive algorithm to ompute reursion operators.6.1 Constrution of reursion operatorsAbstrat 6-2. We show that if the reursion operator is of a spei� form, its non-loal part, namely ontaining the D�1x term(s), an be written as the outer produtsof symmetries and osymmetries.In this hapter we make the blanket assumptions that� The operators and vetor�elds are t-independent (f. de�nition 5-15).� There exists an universal saling symmetry (f. de�nition 3-51). E.g. in theKdV equation we have a saling symmetry xu1+2u 2 h0k , suh that �ut�u = 3and �R[u℄ = 2.For any operator R =Pni=0R(i)Dix +Pj2� h(j) 
D�1x �(j), where R(i) 2 h0k 
 
10[k℄,h(j) 2 h0k , �(j) 2 
10[k℄ and � is the set of gradings, i.e., �h(j) = j. Remark thatthis does not hold for the �(j), but we have j + ��(j) = 1 + �R. We denote R �Pj2� h(j) 
D�1x �(j). In order to be able to give some estimates later, we introduethe gap length (R) = maxj2�j �minj2�j:We denote by G?R the spae of all g 2 h0k suh that (�(j); g) = 0, where the �(j) aregiven in the reursion operator.Remark 6-3. In fat, we have in R a tensor produt 
Ak, but sine R is t-independent, we might as well onsider it to be 
C. This is important sine thefuntions of t an inuene the gradings. We ome bak to this issue in remark 6-5and example 6-15.Lemma 6-4. Let R = Pni=0R(i)Dix +Pj2� h(j) 
 D�1x �(j) be a reursion operatorof the equation ut = K, with K�u 2 h0k and j�K�uj > (R). Then the h(j) aresymmetries of the equation and the �(j) are osymmetries for any j 2 �.Proof. Sine R is a reursion operator of ut = K, it satis�es LXR = 0, whereX = �t +Pi;�DixK��u�i (notation 5-11). Notie thatLXR �Xj2� �h(j) 
D�1x LX�(j) + LXh(j) 
D�1x �(j)� :We have either �K�u > (R), in whih ase �LXh(j) = �K�u+j > (R)+j � maxj2�j,or �K�u < �(R) and then �LXh(j) = �K�u + j < �(R) + j � minj2�j. ThereforeLXh(j) = 0 and LX�(j) = 0. The proof is �nished aording to notation 5-11.



Remark 6-5. In the t-dependent ase, one an have ompliations of the followingform. Assume LXh(j) = �jh(j), with �j 2 Ak. And assume LX�(j) = ��j�(j). Underthese assumptions one an also solve the equation. To analyze this ompletely, onehas to ompute the matries of LX on the h(j) and the �(j) with oeÆients in Ak, anddo the linear algebra. One then expets a result of the type: There exist �j 2 Ak and�j 2 Ak, with LX�j = �j�j, suh that ��1j h(j) are symmetries of the equation andthe �j�(j) are osymmetries for any j 2 �. The ase �j = 0 and �j = 1 orrespondswith the t-independent ase.? Remark 6-6. A similar result holds for sympleti and osympleti operatorsone we assume they are in the same form as the operator R, i.e., their D�1x part (ifit exists) an be written as the produt of osymmetries and symmetries, respetively.This observation is of great help in omputing the splitting of a reursion operator,see setion 6.3.7, The new Nijenhuis operator (3D), for an example.We mention that this result also appeared in the paper [Bil93℄. The author gave theondition that h(j) and �(j) are independent di�erential funtions, whih seems notenough for the proof.6.2 Hierarhies of symmetriesAbstrat 6-7. It is shown that under ertain onditions (whih hold for all ex-amples known to us) Nijenhuis operators are well de�ned, i.e., they give rise tohierarhies of in�nitely many ommuting symmetries of the operator. Moreover, thenonloal part of a Nijenhuis operator ontains the andidates of roots and oroots.We make a distintion between R being an invariant of X = �t + K��u�i 2 g0kand of Y = K��u�i 2 h0k . In the �rst ase, we say R is a reursion operator of ut = K(f. notation 5-11), but in the seond that Y is a symmetry of R (f. de�nition3-51). When R is t-independent, the ��t in X does not play a role. These two at inthe same way.The operator R is Ak-linear. If Y is a symmetry of R, then fY , with f 2 Ak, isalso a symmetry of R. However, when Y is a symmetry of ut = K, in general fYwill not be a symmetry unless f 2 C.We �nally remark that u1�u is a trivial symmetry for any operator and that anyt-independent operator is a reursion operator of the equation ut = u1.Theorem 6-8. Let R =Pni=0R(i)Dix+Pj2� h(j)
D�1x �(j) be a Nijenhuis operatorand �(r) be self-adjoint for r 2 �. Then Ql = RlQ0 2 G?R for any l � 0, where Q0 2h0k is any symmetry of the Nijenhuis operator with j�Q0j > (R) and �R�Q0 � 0.Moreover, the Ql ommute.Proof. Sine R is a Nijenhuis operator, for any l � 0 and any symmetry Q0 2 h0k(i.e., LQ0R = 0 by de�nition 3-51), it follows from (4.3.3) that Ql 2 h0k satis�es



LQlR = 0. We haveLQlR �Xj2� �h(j) 
D�1x LQl�(j) + LQlh(j) 
D�1x �(j)� :Due to the assumption that �R�Q0 � 0, j�Qlj = jl�R + �Q0j � j�Q0j > (R).Therefore LQlh(j) = 0 and LQl�(j) = 0 by the same reason as in the proof of lemma6-4. We have, d00 Z �(j) �Ql = d00�10(Ql)�j = LQl�(j) � �20(Ql)d10�j = 0:This implies �(j) �Ql 2 ImDx (remark 5-5) and we prove Ql 2 G?R by indution. Theommuting of Ql follows from orollary 4-14.Remark 6-9. The operator R an often be written asnXi=0 R(i)Dix +Xj2� h(j) 
D�1x d00T (j);where the T (j) are the densities of �(j) (remark 5-8), i.e., E(T (j)) = �(j).Our assumptions for lemma 6-4 and theorem 6-8 are not sharp. For a givenoperator whih may be t-dependent, the proof may still go through (f. example 6-15and remark 6-5).Reursion operators of nonevolution equations appear to have a similar form.Compare with [vBGKS97℄, where the same splitting of the D�1x and D�1y terms isfound. It would be interesting to see whether one an indeed obtain similar results.De�nition 6-10. Let R be a Nijenhuis operator. If the RlQ0 6= 0 exist for all l � 0and are ommuting symmetries of R, we all Q0 2 h0k but =2 ImR a root of R.Corollary 6-11. If, moreover, R is a reursion operator of an equation and Q0 isa symmetry of the equation, all Ql for l � 0 onsist of a hierarhy of ommutingsymmetries of the equation.De�nition 6-12. Let R be a reursion operator of a given equation. If the RlQ0 6=0 exist for all l � 0 and are ommuting symmetries of the equation, we all Q0 2 h0kbut =2 ImR a root of symmetries for the equation.Similarly, we de�ne Q0 2 
10[k℄ to be the oroot of a Nijenhuis operator R,from whih we produe a hierarhy onsisting of all the self-adjoint elements R?lQ0for all l � 0 and oroot of ovariants for the equation, when the operator R is itsreursion operator, from whih we produe a hierarhy of ovariants (furthermore,onserved densities) for the equation (f. setion 4.4).Theorem 6-13. Let R =Pni=0R(i)Dix +Pj2� h(j) 
D�1x �(j) be a Nijenhuis oper-ator. And assume that Rh(j) exist and that �(j) are self-adjoint for j 2 �. ThenLh(j)R j�= 0 and �20(H)d10R?�(j) = 0; H 2 �; where� = fH 2 domR j j�RH j > (R)g:



Proof. We know that R is a Nijenhuis operator, that is LRHR = RLHR for H 2dom(R). We haveRLHR � Xr2� RLHh(r) 
D�1x �(r) +Rh(r) 
D�1x LH�(r)+Xj2� h(j) 
D�1x (LHR)?�(j);LRHR � Xj2� LRHh(j) 
D�1x �(j) +Xj2� h(j) 
D�1x LRH�(j):Sine H 2 dom(R), d00 R �(j) �H = 0. We know thatd00 Z �(j) �H = d00�10(H)�(j) = LH�(j) � �20(H)d10�(j):Therefore, LH�(j) = 0.Due to the same analysis as in the proof of lemma 6-4, for any H 2 �, we drawthe following onlusions: RLHh(j) = LRHh(j); (6.2.1)(LHR)?�(j) = LRH�(j): (6.2.2)Formula (6.2.1) implies that�RLh(j)H = �RLh(j)H�(Lh(j)R)H. Hene Lh(j)R j�=0. Notie that (LHR)? = LHR?. Therefore, formula (6.2.2) implies thatLH(R?�(j))�R?LH�(j) = LRH�(j);i.e., LH(R?�(j)) = LRH�(j) sine LH�(j) = 0. This leads to�20(H)d10R?�(j) = LH(R?�(j))� d00 Z R?�(j) �H == LRH�(j) � d00 Z �(j) �RH = �20(RH)d10�(j)= 0:The statement is proved now.Remark 6-14. This theorem theoretially gives us the andidates of roots and o-roots. One noties that the restrition on the spae � is due to the tehnial problemin the proof. In pratie, they are indeed roots and oroots. If this were not the ase,one would have a formula, e.g., derived by omputer algebra, suh that it wouldvanish for all H 2 �, but not for all H 2 dom(R). This is hard to imagine.Example 6-15. Consider the Cylindrial Korteweg{de Vries equation (f.setion 9.9) ut = u3 + uu1 � u2t



and let a Nijenhuis reursion operator be given byR = t(D2x + 23u+ 13u1D�1x ) + 13x + 16D�1x � ( t3u1 + 16)D�1x :There exists a saling symmetry �3t�t + (xu1 + 2u)�u suh that�ut�u = 3; �R = �1; � t3u1+ 16 = �2:However, h(�2) = t3u1 + 16 is not a symmetry and �(�2) = 1 is not a osymmetryof the equation. The lemma 6-4 fails sine LX�(�2) = � 12t�(�2) and � 12t 2 Ak whihommutes with D�1x . We now ompute LX��2 = � 12t��2, to �nd ���2�t = � 12t��2, asin remark 6-5. This implies ��2 = 1pt .We rewrite the nonloal part of R as R � pt( t3u1 + 16)D�1x 1pt ; and we have that�pt(u13 + 16t ) = �72 and � 1pt = 52 . By remark 6-5 or by diret omputation, we knowthat h(� 72 ) is a symmetry of the equation and �(� 72 ) is a osymmetry.Notie that Lh(� 72 )R = 0 and the proof of theorem 6-8 an be applied. Therefore,it produes a hierarhy of symmetries of the operator R. So we onlude that pt(u13 +16t) is a root of symmetries for the equation and 1pt is a oroot.The trivial symmetry u1 of R annot produe a hierarhy of symmetries, on-sistent with the fat �u1�R = �1 and it does not satisfy the onditions of theorem6-8.6.3 ExamplesAbstrat 6-16. A number of examples is given, exhibiting the struture of the Nij-enhuis operator and proving the existene of the hierarhies.In the following examples we do not hek whether the reursion operator isin fat a Nijenhuis reursion operator exept for Burgers' equation. Proofs in theliterature are usually in the forms 'after a long and boring alulation it followsthat...'. We show they satisfy the other onditions of the theorem.6.3.1 Burgers' equationConsider Burgers' equation (f. setion 9.1)ut = f = u2 + uu1:We expliitly hek all the onditions we need in order to prove that a hierarhy ofthe symmetries for the equation and the operator exists.First we hek that R = Dx + 12u + 12u1D�1x is a reursion operators of theequation, i.e., that LXR is equal to zero, where X = �t +PiDixf�ui. Aording



the theorem 5-10, we haveLXR = �R�t +DR[f ℄�DfR+RDf= 12f + 12Dx(f)D�1x � (D2x + uDx + u1)(Dx + 12u+ 12u1D�1x )+(Dx + 12u+ 12u1D�1x )(D2x + uDx + u1)= u2 + uu12 + u3 + uu2 + u212 D�1x�(D3x + 3u2 D2x + 5u1 + u22 Dx + 3u2 + 3uu12 + u3 + uu2 + u212 D�1x )+(D3x + 3u2 D2x + 5u1 + u22 Dx + u2 + uu1)= 0:Furthermore, there exists a vetor�eld (xu1 + u)�u as a saling symmetry suh that�u2+uu1 = 2; �R = 1; �u1 = 1: It is easy to see that for R, the onditions of lemma6-4 are satis�ed sine (R) = 0. So, u1 is a symmetry of the equation.Now we hek R is a Nijenhuis operator. For all H 2 domR, i.e., H = DxP , weomputeLRHR = DR[Dx(H) + 12Dx(uP )℄� (DxDH + 12Dx � (uDP + P ))R+R(DxDH + 12Dx � (uDP + P ))= 12(Dx(H) + 12Dx(uP )) + 12(D2x(H) + 12D2x(uP ))D�1x�(RDH + 12(PDx +H))R+R(RDH + 12(PDx +H))= R2DH �RDHR + 12Dx(H) + 14uH + 14u1P+12(D2x(H) + 12(uDx(H) + 2u1H + u2P ))D�1x�14u1P � 14(u2P + u1H)D�1x + 12HDx + 12Dx(H)= R2DH �RDHR + 12HDx +Dx(H) + 14uH+12(D2x(H) + 12(uDx(H) + u1H))D�1x ;RLHR = R(12H + 12Dx(H)D�1x �DHR +RDH)= R2DH �RDHR + 12HDx +Dx(H) + 14uH+12(D2x(H) + 12(uDx(H) + u1H))D�1x :



Therefore, LRHR = RLHR; for all H 2 domR.Notie that �R�u1 > 0 and Lu1R = 0. From theorem 6-8 and its orollary,a hierarhy of symmetries of the equation are Rlu1 for l � 0. This on�rms ourremark 6-14 that u1 is the root of R. There is no oroot for it sine R?(1) = 0. Thisreets the fat there is only one onservation laws for Burgers' equation.6.3.2 Krihever { Novikov equationThe Krihever{Novikov equation (f. setion 9.12) is given byut = u3 � 32u�11 u22and it has a Nijenhuis reursion operator of the formR = D2x � 2u�11 u2Dx + (u�11 u3 � u�21 u22) + u1D�1x �(1);where �(1) = 3u�41 u32� 4u�31 u2u3 + u�21 u4 = E(12u�21 u22). First we have (R) = 0 and�R = 2; �u1 = 1; �ut�u = 3 with respet to a saling symmetry xu1 2 h0k . Therefore,u1 is a symmetry and �(1) is a osymmetry of the equation by lemma 6-4. Moreover,we ompute Lu1R = 0 and R?�(1) = E(�12u�21 u23 + 38u�41 u42). We onlude that u1 isa root of a hierarhy and �(1) is a oroot generating a hierarhy of ovariants for theequation.6.3.3 Di�usion systemWe onsider the Di�usion system (f. setion 9.23)� ut = u2 + v2vt = v2;with Nijenhuis reursion operator given byR[u; v℄ = � Dx vD�1x0 Dx � � � v0 �
D�1x � 0; 1 � :We have � = f1g, �R = 1 with respet to the saling symmetry � xu1xv1 + v � andLh(1)R = 0, �(1) is obviously self-adjoint. Thereby, h(1) ful�lls the onditions oflemma 6-4 and theorem 6-8. It is a root of R and also produes a hierarhy ofsymmetries of the equation.Another andidate is the trivial symmetry � u1v1 � and it satis�es the onditionsof theorem 6-8, so it is a root of a hierarhy of symmetries, whih inludes theequation itself, for both the equation and R.



6.3.4 Boussinesq systemWe onsider the Boussinesq system (f. setion 9.29)� ut = v1vt = 13u3 + 83uu1;with Nijenhuis reursion operator given byR(u; v) =� 3v + 2v1D�1x D2x + 2u+ u1D�1x13D4x + 103 uD2x + 5u1Dx + 3u2 + 163 u2 + 2vtD�1x 3v + v1D�1x �� � 2v123u3 + 163 uu1 �
D�1x � 1; 0 �+ � u1v1 �
D�1x � 0; 1 � :There exists a saling symmetry � xu1 + 2uxv1 + 3v � suh that � = f1; 2g and �R = 3.Sine the equation is t-independent, it is also a symmetry ofR. Notie that (R) = 1and both �(1) and �(2) are self-adjoint. So h(2) obeys the estimates in theorem 6-8and is therefore a root sine �R > 2.For h(1) we expliitly omputeRh(1) = � v3 + 4u1v + 4uv113u5 + 4uu3 + 8u1u2 + 323 u2u1 + 4vv1 �and �Rh(1) = 4. So Rh(1) satis�es the onditions of theorem 6-8. Therefore theh(j); j = 1; 2 are roots of hierarhies of symmetries for the equation (of R).6.3.5 Derivative Shr�odinger systemConsider the Derivative Shr�odinger system (f. setion 9.27)� ut = �v2 � (u2 + v2)u1vt = u2 � (u2 + v2)v1;with Nijenhuis reursion operator given byR(u; v) =� vD�1x � v1 � u1D�1x � u� u2+v22 �Dx � u1D�1x � v � vD�1x � u1Dx � v1D�1x � u� uD�1x � v1 uD�1x � u1 � v1D�1x � v � u2+v22 �� � vD�1x � v1 � u1D�1x � u �u1D�1x � v � vD�1x � u1�v1D�1x � u� uD�1x � v1 uD�1x � u1 � v1D�1x � v �= � v�u �
D�1x � v1; �u1 �+ � �u1�v1 �
D�1x � u; v � :



We �nd that �R = 1 and � = f0; 1gwith respet to the saling symmetry � xu1 + u2xv1 + v2 �,implying (R) = 1. And we have that both �(0) and �(1) are self-adjoint. However,the ondition for h(0) and h(1) in theorem 6-8 is not satis�ed. First we notie thath(1) = �Rh(0). So all we have to hek expliitly are the onditions for h(1). Firstall, Lh(1)R = 0 trivially. Seondly, Rh(1) = � �ut�vt � 6= 0 and �Rh(1) = 2. We nowsee that Rh(1) satis�es the onditions. So h(0) = � v�u � is a root of a hierarhy.6.3.6 Sine{Gordon equation in the laboratory oordinatesConsider the Sine{Gordon equation (f. setion 9.24) in the form of� ut = vvt = u2 � � sin(u); � 2 R:with Nijenhuis reursion operator given byR(u; v) = � R11 R12R21 R22 �� � u1 + vu2 + v1 � � sin(u) �
D�1x � �(u2 + v1 � � sin(u)); u1 + v � ;whereR11 = 4D2x � 2� os(u) + (u1 + v)2 � (u1 + v)D�1x (u2 + v1 � � sin(u));R12 = 4Dx + (u1 + v)D�1x (u1 + v);R21 = 4D3x + (u1 + v)2Dx � 4� os(u)Dx + 2u1� sin(u) + (u2 + v1)(u1 + v)� (u2 + v1 � � sin(u))D�1x (u2 + v1 � � sin(u));R22 = 4D2x + (u1 + v)2 � 2� os(u) + (u2 + v1 � � sin(u))D�1x (u1 + v):This is one of the 'new' operators whih appeared in [FOW87℄, p. 53, when� = 1. The system is not homogeneous in 2-dimensional spae, namely u and v.Let us onsider the extended system8<: ut = vvt = u2 � � sin(u)�t = 0:Then ~R(u; v; �) = 0� R11 R12 0R21 R22 00 0 0 1A � ~h(1) 
D�1x ~�(1)



and �R = 2 with respet to the saling symmetry 0� xu1xv1 + vx�x + 2� 1A. We see that(R) = 0, ~�(1) is self-adjoint and L ~h(1) ~R = 0. So ~h(1) is a root of a hierarhy ofsymmetries of the Nijenhuis operator ~R. This leads to the same result if we take �as a onstant, i.e., h = � u1 + vu2 + v1 � � sin(u) � is a root of R.In fat R(h) = 2R(Q0), where Q0 = � u1; v1 � whih is onsidered as a startpoint in [FOW87℄ (so this is not in ontradition, sine the same hierarhy will begenerated by h and Q0).6.3.7 The new Nijenhuis operator (3D)Consider the following Nijenhuis operator ([FOW87℄ p. 54):R(u; �;  ) = 0� 4u2 0 1Dx �2u2 04u Dx � 4u� �2u2 1A+ 40� � u1 � 6u2� 1A
D�1x �  + 6u3; ��; u � :We see that �R = 23 and R � 4h( 13 ) 
D�1x �( 13 ) under the saling symmetry0� xu1 + u3x�1 + 2�3x 1 +  1A :Furthermore, we have Lh( 13 )R = 0 and �( 13 ) is self-adjoint. So the onditions oftheorem 6-8 are satis�ed for h( 13 ). Therefore from h( 13 ) a hierarhy of symmetries ofR is generated.In fat R(h( 13 )) = � 4u1; 4�1; 4 1 �, whih is onsidered as a starting pointin [FOW87℄. h( 13 ) must be a root, sine the only (using a saling argument andthe fat that it should be in the domain of R) vetor�eld that ould generate h( 13 )is � 0; u; � �, and this gives not h( 13 ), but h( 13 ) � � 0;  + 2u3; 0 � and theirdi�erene is not in KerR.Assume H2 = RH1 where H1 and H2 are both osympleti operators. We knowthat H2 must have the following term as its nonloal part0� � u1 � 6u2� 1A
D�1x 0� � u1 � 6u2� 1A :



This means �  + 6u3; ��; u �H1 � � �;  ; u1 � 6u2� �. ThereforeH1 = 0� 0 1 0�1 0 6u20 �6u2 �Dx 1A :One an easily hek that H1 and H2 form an osympleti pair (f. [Olv93℄ pp.444{454)6.3.8 Landau { Lifshitz systemConsider the Landau{Lifshitz system (f. setion 9.31)� ut = � sin(u)v2 � 2 os(u)u1v1 + (J1 � J2) sin(u) os(v) sin(v)vt = u2sin(u) � os(u)v21 + os(u)(J1 os2(v) + J2 sin2(v)� J3);with Nijenhuis reursion operator given byR(u; v) == � R11 R12R21 R22 �� � utvt �
D�1x � sin(u)v1; � sin(u)u1 �� � u1v1 �
D�1x � S1; S2; � ;whereR11 = �D2x � 2 sin2(u)v21 � u21 + v21 � (J1 � J2) sin2(u) sin2(v)+(J1 � J3) sin2(u) + J3 � J2 + utD�1x � (sin(u)v1)� u1D�1x � S1;R12 = 2 os(u) sin(u)v1Dx + os(u) sin(u)v2 � 3 sin2(u)u1v1 + 2u1v1+utD�1x � (� sin(u)u1)� u1D�1x � S2;R21 = �2 os(u)v1Dx � os(u)v2 + u1v1+vtD�1x � (sin(u)v1)� v1D�1x � S1;R22 = �D2x � 2 os(u)u1Dx � os(u)u2 � (J1 � J2) sin(u) sin2(v)�2 sin2(u)v21 + v21 + (J1 � J3) sin2(u) + J3 � J2+vtD�1x � (� sin(u)u1)� v1D�1x � S2;S1 = (J1 � J2) os(u) sin(u) sin2(v)� (J1 � J3) os(u) sin(u)+ os(u) sin(u)v21 � u2;S2 = (J1 � J2) os(v) sin2(u) sin(v)� 2 os(u) sin(u)u1v1 � sin2(u)v2:As we did in setion 6.3.6, for the extended system, we have that �Ji = 2 fori = 1; 2; 3, �R = 2 and � = f1; 2g withh(1) = � u1v1 � ; h(2) = � utvt � :



So (R) = 1. Notie that �(1) and �(2) are both self-adjoint. It follows that h(2) is aroot of a hierarhy. For h(1), we have�(1) � h(1) = � S1; S2 � � � u1 v1 �= (J1 � J2) os(u) sin(u) sin2(v)u1 + (J1 � J2) os(v) sin2(u) sin(v)v1�(J1 � J3) os(u) sin(u)u1 � u1u2 � os(u) sin(u)u1v21 � sin2(u)v1v2= 12Dx((J1 � J2) sin2(u) sin2(v)� (J1 � J3)sin2(u)� u21 � sin2(u)v21)and �(2) � h(1) = � sin(u)v1 � sin(u)u1 � � � u1; v1 � = 0:So h(1) � �(j) 2 ImDx for j = 1; 2. This implies that Rh(1) 6= 0 exists. Notie that�Rh(1) = 3. By theorem 6-8, we onlude that h(1) is a root of a hierarhy.





Chapter 7The symboli methodIn this hapter, we introdue the symboli notation and derive expressions for the(o)symmetries. The Lie derivatives of uk�u ating on polynomials of degree m+ 1are given, from whih we de�ne the funtions G(m)k . The mutual divisibility ofthese funtions play a role in proving the (non-)existene of (o)symmetries. Itis interesting to note that the result that any nontrivial symmetry satis�es theonditions of our abstrat theorem 2-76, relies (at the moment) on results usingdiophantine approximation theory.The symboli method was introdued by Gel'fand{Dikii [GD75℄ and used in[TQ81℄ to show (as an example) that the symmetries of the Sawada{Kotera equationhave to be of order 1 or 5 (mod 6). The basi idea of the symboli method is veryold, probably dating from the time when the position of index and power werenot as �xed as they are today. In fat, the symboli alulus of lassial invarianttheory relies on it. The idea is simply to replae ui, where i is an index, in our aseounting the number of derivatives, by u�i, where � is now a symbol. We see thatthe basi operation of di�erentiation, i.e., replaing ui by ui+1, is now replaed bymultipliation with �, as is the ase in Fourier transformation theory. If one hasmultiple u's, as in uiuj, one replaes this by 12 ��i1�j2 + �j1�i2� u2. We have averagedover the permutation group �2 to retain omplete equality among the symbols,reeting the fat that uiuj = ujui. Di�erentiation now beomes multipliationwith �1 + �2.7.1 Symboli NotationAbstrat 7-1. We introdue the Gel'fand{Dikii transformation and give the ex-pressions for the (o)symmetries using the symboli method. We also de�ne thefuntions G(m)k from the Lie derivatives of uk�u ating on polynomials of degreem + 1. As appliations, we ompute the (o)symmetries for the linear evolutionequation.Notation 7-2. 1. Let Akn be the set of polynomials f of degree k in n+1 variables95



and ~Akn be the set of its symmetrized elements ~f def= < f >. Here< f > (x1; � � � ; xn) = 1n! X�2�n f(�(x1); � � � ; �(xn));where �n is the permutation group on n elements.2. For brevity, [u℄ is used to denote the set of arguments u; u1; u2; � � �. We denoteby Ukn(n � 0; k � 0) the set of polynomials of [u℄ of degree k + 1 and index n,that is Ukn = ff jf = Xk�k=n;j�j=k+1C�0����mu�0u�11 � � �u�mm g;where j�j def= Pmi=0 �i and k�k def= Pmi=0 i�i. The ring of all polynomials of [u℄is denoted by U and U =Ln�0;k�0 Ukn .3. ~An, ~Ak, Un and Uk make sense, e.g., Uk is the set of polynomials of [u℄ ofdegree k + 1.Remark 7-3. � Notie that we onsider k � 0 whih exludes the onstant ase,i.e., 1 =2 U . This ase need to be treated separately.� We onstrut the omplex of formal variational alulus based on the ring Uaording to Chapter 5, denoted by (g; h)C for simpli�ation. 
n0 [k℄ are writtenas 
n for the same reason.With eah polynomial in Ukn we assoiate a form in Ank by the following rule:u�0u�11 � � �u�mm 7�! uk+1�01 � � � �0�0�1�0+1 � � � �1�0+�1 � � � �mk��m+2 � � � �mk+1:De�nition 7-4. The Gel'fand{Dikii transformation [GD75℄ maps f 2 Ukn tof̂ = uk+1 ~f , where ~f 2 ~Ank. For a monomial it is de�ned asu�0u�11 � � �u�mm 7�! uk+1 < �01 � � � �0�0�1�0+1 � � � �1�0+�1 � � � �mk��m+2 � � � �mk+1 > :For any f 2 Uk, two important properties of Gel'fand{Dikii transformation aredDxf(�1; � � � ; �k+1) = uk+1 ~f(�1; � � � ; �k+1)Pk+1i=1 �i;�f�ui (�1; � � � ; �k+1) = 1i! �i+1f̂�u��ik+1 (�1; � � � ; �k; 0): (7.1.1)Consider that hkn = fDix(h)�ui ; h 2 Ukng (simply written as h) and h =Ln;k2N hkn.We shall show that this is a graded Lie algebra with respet to both n and k.Proposition 7-5. If f 2 Umr and h 2 hns , then Df [h℄ 2 Um+nr+s and\Df [h℄= (m+ 1)um+n+1 < ~f(�1; � � � ; �m; n+1Xi=1 �m+i)~h(�m+1; � � � ; �m+n+1) > :



Proof. Using (7.1.1), we ompute, with ĥ = un+1~h(�1; � � � ; �n+1),\Df [h℄ =<Xj d�f�uj dDjxh >= Xj um+n+1 < m+ 1j! �j ~f��jm+1 (�1; � � � ; �m; 0)(�1 + � � �+ �n+1)j~h(�1; � � � ; �n+1) >= (m+ 1)um+n+1 < ~f(�1; � � � ; �m; �1 + � � �+ �n+1)~h(�1; � � � ; �n+1) >and the onlusion follows.Therefore, the Lie braket [h; g℄ = Dg[h℄�Dh[g℄ 2 hm+nr+s if h 2 hmr and g 2 hns sinewe de�ne Fr�ehet derivative through the ring. This implies that h is indeed a gradedLie algebra.In the same way, we have 
1 =Ln;k2N(
1)kn, where (
1)kn is de�ned by ! 2 Ukn .Notie that 
1 is a h-module under the Lie derivative ation. We now hek whetherit is a graded h-module.Proposition 7-6. Let �0 de�ne by Pn+m+1j=0 �j = 0. If h 2 hmr and ! 2 (
1)ns , thenD?h[!℄ 2 (
1)m+nr+s and\D?h[!℄ = (m+ 1)um+n+1 < ~h(�1; � � � ; �m; �0)~!(�m+1; � � � ; �m+n+1) > :Proof. Using (7.1.1), we ompute<\D?h[!℄ >=<Xj (�1)j \Djx( �h�uj!) >= Xj um+n+1(� mXi=1 �i � n+1Xs=1 �s)j < m+ 1j! �j~h��jm+1 (�1; � � � ; �m; 0)~!(�1; � � � ; �n+1) >= (m+ 1)um+n+1 < ~h(�1; � � � ; �m;�( mXi=1 �i + n+1Xs=1 �s))~!(�1; � � � ; �n+1) >= (m+ 1)um+n+1 < ~h(�1; � � � ; �m; �0)~!(�m+1; � � � ; �m+n+1) >and this proves the proposition.So Lh! = D![h℄ +D?h[!℄ 2 (
1)m+nr+s when h 2 hmr and ! 2 (
1)ns . It follows that 
1is a graded h-module. Surely, we an say h is a graded h-module under the adjointrepresentation ad. If we do not speify h or 
1, we use the notation V.Proposition 7-7. Let Q 2 V, K 2 h and Q = PQir, K = PKjs , where Qir 2 V irand Kir 2 hir. Then Q is a (o)symmetry of the equation ut = K i�Xi+j=pr+s=q \LKjsQir = 0; p; q � 0:



Proof. We know that Q is a (o)symmetry of the equation ut = K i� LKQ =DQ[K℄ � DK[Q℄ = 0 (LKQ = DQ[K℄ + D?K[Q℄ = 0) sine Q is t-independent. Byproposition 7-5 and 7-6, this an be proved diretly.De�nition 7-8. Let �0 be de�ned by Pm+1j=0 �j = 0. We now have that< LukQm >= G(m)k Q̂m;where we de�ne G(m)k by G(m)k = m+1Xi=1 �ki + �k+1�k0 ;with � = �1 if Qm is a symmetry and � = 1 if Qm is a osymmetry.We give the following results as appliations of proposition 7-7.Notation 7-9. (C)Sf = f(o)symmetries of ut = f in h (
1) g.Proposition 7-10. Consider the linear evolution equationut = f = pXj=1 �juj;where the �j are onstants and �p 6= 0. Then� Sf = h i� p = 1,� Sf = h0 i� p > 1.We see that for p > 1, Lf is nonlinear injetive (for symmetries).Proof. Notie Ppj=1 �juj 2 h0 and Ppj=1 �jûj = uPpj=1 �j�j1. Let Q 2 h and Q =PQi, where Qi 2 hi. By proposition 7-7, Q is a symmetry of this equation i�[LfQi = 0, for any i � 0. So(i+ 1) < ~Qi(�1; � � � ; �i+1) pXj=1 �j�ji+1 >= pXj=1 �j(�1 + � � �+ �i+1)j ~Qi(�1; � � � ; �i+1):This implies pXj=1 �j(�j1 + � � �+ �ji+1) = pXj=1 �j(�1 + � � �+ �i+1)j:Under the assumption, this holds i� either p = 1 or p 6= 1 and i = 0.Proposition 7-11. Consider the linear evolution equation ut = f = Ppj=1 �juj,where �j are onstants and �p 6= 0. Then� CSf = 
1 i� p = 1,



� CSf = (
1)0 i� p > 1 and all j are odd,� CSf = 0 i� p > 1 and at least one of j is even.Remark 7-12. We see that for p > 1 and all j odd (meaning that �j = 0 for jeven), Lf is nonlinear injetive (for osymmetries). If one of the j is even, thereare no solutions for Lf! = 0 in 
1.Proof. Notie that Ppj=1 �juj 2 h0. Let ! 2 
1 and ! = P!i, where !i 2 (
1)i.By proposition 7-7, ! is a osymmetry of this equation i� \D!i [f ℄ +\D?f [!i℄ = 0, forany i � 0. So(i+ 1) < ~!i(�1; � � � ; �i+1) pXj=1 �j�ji+1 > + pXj=1 �j�j0 ~!i(�1; � � � ; �i+1) = 0;where Pi+1j=0 �j = 0. This implies pXj=1 �j i+1Xk=0 �jk = 0:Under the assumption, it holds i� either p = 1 or p 6= 1 and i = 0 when all j areodd.7.2 Divisibility of the G(m)kAbstrat 7-13. In this setion, we give the results about the mutual divisibility ofthe polynomials G(m)k proved by F. Beukers.We notie that for osymmetries or if k is odd for symmetries, G(l)k is invari-ant under the natural ation of the permutation group �l+2 on the oordinates�0; � � � ; �l+1.Proposition 7-14. G(m)k j�=�1 = t(m)k g(m)k , where (g(m)k ; g(m)l ) = 1 for k < l, and t(m)kis one of the following ases.� m = 1:{ k = 0 (mod 2): �1�2{ k = 3 (mod 6): �1�2(�1 + �2){ k = 5 (mod 6): �1�2(�1 + �2)(�21 + �1�2 + �22){ k = 1 (mod 6): �1�2(�1 + �2)(�21 + �1�2 + �22)2.� m = 2:{ k = 0 (mod 2): 1



{ k = 1 (mod 2): (�1 + �2)(�1 + �3)(�2 + �3).� m > 2: 1..Proof. This proposition is proved by F. Beukers using diophantine approximationtheory ([Beu97℄ for m = 1 and Appendix A for m > 1). Despite the innoent lookof the polynomials involved, we have not been able to �nd a simpler way of provingthis ase. It is onjetured that the gmk are Q [�℄-irreduible.



Chapter 8Classi�ation of the salarpolynomial evolution equationsWe determine the existene of (in�nitely many) symmetries for equations of theform ut = uk + f(u; � � � ; uk�1);when their right hand sides are homogeneous with respet to the saling symmetryxu1 + �u 2 h0k (so-alled �-homogeneous equations) with � � 0.Algorithms are given to determine whether a system has a symmetry in h. Ifit has one nontrivial symmetry, we prove it has in�nitely many and these an befound using reursion operators or master symmetries. The method of proof usesthe symboli method and results from diophantine approximation theory. We listthe 10 integrable hierarhies for � > 0. The methods an be applied to the � � 0ase, as demonstrated in setion 8.5.In priniple they an also be used for systems of evolution equations, evolutionsystem but so far this has only been demonstrated for one lass of examples, f.[BSW98℄.8.1 IntrodutionThe existene of symmetries and onservation laws of salar evolution equations iswell understood, in the sense that today it would be diÆult to �nd anything new.That this understanding is omplete remains to be proven. The main questions inthis respet are the following.� Can we deide, given an equation, whether there exists a nontrivial symmetry(i.e., not u1 or the equation itself) (the reognition problem)?� And if so, an we answer the question whether this leads to in�nitely manysymmetries (the symmetry{integrability problem)?101



� Given a lass of equations with arbitrary parameters, possibly funtions ofgiven type, an we ompletely lassify this lass with respet to the existeneof symmetries (the lassi�ation problem)?In the literature there exist lists of integrable systems, i.e., systems whih amethrough ertain integrability tests (f. [MSS91℄). The main problem with theselists is that there is no reipe to hek whether a given system is equivalent to asystem in the list, and there is no proof that the lists are omplete. This leadsto interesting disussions. In this hapter we will not solve this problem, but weanswer the questions with yes for a lass of �-homogeneous equations and mentionthat our methods an be extended to over muh in the lists. We should stress atthe beginning that this lassi�ation only allows linear transformations (in the salarase that means multipliation of u with a onstant only), and so there might berelations among the hierarhies (by graded Lie{B�aklund transformations), as thereexist between KdV and Potential KdV.This hapter was motivated by the observation that after quikly �nding a num-ber of hierarhies (mKdV, Sawada{Kotera, Kaup{Kupershmidt) soon after KdV,nothing more was found for polynomial salar evolution equations whih are linearin the highest order derivative.We show that integrability of an equation of the formut = uk + f(u; � � � ; uk�1)(with f a formal power series starting with at least quadrati terms) is determinedby � the existene of one nontrivial symmetry,� the existene of approximate (o)symmetries.Remark 8-1. We have derived the formalism not only for symmetries but also forosymmetries. We apply the formalism in this hapter only to the lassi�ation ofthe symmetries (symmetry{integrability). The lassi�ation of the osymmetries ismore ompliated, sine one also enounters equations (usually without a nontrivialsymmetry) with only a �nite number of osymmetries. Some results for KdV{likeequations (� = 2) are given in [SW98℄.To this end we have formulated theorem 2-76 in the ontext of a �ltered omplex.We proved in an abstrat setting the remark made in [Fok80℄Another interesting fat regarding the symmetry struture of evolutionequations is that in all known ases the existene of one generalizedsymmetry implies the existene of in�nitely many. (However, this hasnot been proved in general.)under fairly relaxed onditions. The result also on�rms the remark made in [GKZ91℄



It turns out from pratie that if the �rst integrability onditions [...℄are ful�lled, then often all the others are ful�lled as well.We should also remark however that the onjeturethe existene of one symmetry implies the existene of (in�nitely many)othershas been disproved. Using an example given in [Bak91℄, we show this in [BSW98℄using the same tehniques as in the present hapter. This example, however, doesnot ontradit the spirit of our theorem, sine it depends on the nonexistene ofertain quadrati terms, the existene of whih is one of the onditions in theorem2-76.Some of the strange onditions in theorem 2-76 have been inspired by the sym-boli method (f. hapter 7). With this method one an readily translate solvabilityquestions into divisibility questions and we an use generating funtions to handlein�nitely many orders at one. While this does not mean that the questions are muheasier to answer, we do now have the whole mahinery whih has been developed innumber theory available (f. setion 7.2), and this makes a ruial di�erene.In this hapter, we show that a nontrivial symmetry of a �-homogeneous equationis part of a hierarhy starting at order 3; 5 or 7 in the odd ase, and at order 2 inthe even ase. When � > 0, we an further redue 7th-order equations to 5th-order. This result explains why despite systemati searhes using omputer algebranothing new was ever found beyond 5th-order (f. [GKZ91℄). Moreover, it enablesus to ompletely analyze �-homogeneous equations for positive �. For � = 1, thisdesribes the family of Burgers{like equations, for � = 2 the family of KdV{likeequations.Finally we apply the method to the � � 0 ase.8.2 Symmetries of �-homogeneous equationsAbstrat 8-2. In this setion we show that it suÆes to ompute the linear andquadrati or ubi terms of a symmetry to guarantee its existene, if one has a �-homogeneous equation with a nontrivial symmetry. Moreover, if the order of thesymmetry is > 7, we show that there exists a nontrivial symmetry of order � 7. Wean then replae the equation by its symmetry. This makes it possible to solve theomplete lassi�ation problem.We onsider nth-order equations of the formut =Xi�0 Kin��i; (Kin��i 2 U in��i); (8.2.1)where n � 2, K0n = un and � 2 Q stritly positive.In the notation of setion 2.9 one hasK0 = K0n; (K0n 2 h0n);



and K1 =Xi>0 Kin��i; (Kin��i 2 hin��i):If S 2 h is an order m symmetry of (8.2.1), by proposition 7-7 the followingformula holds for all r 2 N : Xi+j=r \[Sjm��j; Kin��i℄ = 0: (8.2.2)The lowest upper index of S has to be zero, otherwise this equation annot be solved,i.e., S0m 6= 0. Clearly we have [S0m; K0n℄ = 0. The next equation to be solved is\[S0m; K1n��℄ + \[S1m��; K0n℄ = 0: (8.2.3)Remark 8-3. If Ki = 0 for i = 1; � � � ; j � 1, from (8.2.3) we have~Sjm�j� = ~Kjn�j�G(j)mG(j)n : (8.2.4)This equation an not be solved when j � 3, or when j = 2 and n is even sine G(j)mand G(j)n have no ommon fators, and the degree of Kjn�j� is n � j� < n, whihis the degree of G(j)n . This implies that there are no symmetries for suh equations.When j = 2 and n is odd, it an only have odd order symmetries. In this ase onean remark that if the equation an be solved for any m, it an also be solved form = 3.Note that if � is not an integer, this leads automatially to ~Kin�i� = 0 if i� =2 N.This restrits the number of relevant � to a �nite set.We rewrite (8.2.4) as ~K1n�� = ~S1m��G(1)m G(1)n : (8.2.5)It follows from the results of setion 7.2 that this an be written in the form~K1n�� = f(�1; �2)�1�2(�1 + �2)G(1)n ; (8.2.6)where f is �2-symmetri and lim�1+�2!0 f(�1; �2) exists. By the same reason,~S1m�� = f(�1; �2)�1�2(�1 + �2)G(1)m : (8.2.7)We now go to the next orderXi+j=2 \[Sjm��j; Kin��i℄ = 0; (8.2.8)or ~S2m�2� = ~K2n�2�G(2)m + ^[S1m��; K1n��℄G(2)n : (8.2.9)



De�nition 8-4. We say that f 2 I1 i� �1+�2jf(�1; �2) and that f 2I2 i� �1jf(�1; �2).Proposition 8-5. Suppose m and n are odd. Then (�1+�2)(�2+�3)(�1+�3) divides^[S1m��; K1n��℄ i� f 2 I1S I2.Proof. We ompute^[S1m��; K1n��℄ == 2 < f(�1; �2 + �3)f(�2; �3)�1(�2 + �3)2(�1 + �2 + �3)G(1)m (�1; �2 + �3)G(1)n (�2; �3) >� 2 < f(�1; �2 + �3)f(�2; �3)�1(�2 + �3)2(�1 + �2 + �3)G(1)n (�1; �2 + �3)G(1)m (�2; �3) >= 23 1�1 + �2 + �3 �f(�1; �2 + �3)f(�2; �3)�1(�2 + �3)2(G(1)m (�1; �2 + �3)G(1)n (�2; �3)�G(1)n (�1; �2 + �3)G(1)m (�2; �3))+ f(�2; �1 + �3)f(�1; �3)�2(�1 + �3)2(G(1)m (�2; �1 + �3)G(1)n (�1; �3)�G(1)n (�2; �1 + �3)G(1)m (�1; �3))+ f(�3; �1 + �2)f(�1; �2)�3(�1 + �2)2(G(1)m (�3; �1 + �2)G(1)n (�1; �2)�G(1)n (�3; �1 + �2)G(1)m (�1; �2))� :We now prove that lim�1+�2!0 of this expression is zero. First we havelim�1+�2!0 �G(1)m (�1; �2 + �3)G(1)n (�2; �3)�G(1)n (�1; �2 + �3)G(1)m (�2; �3)�= G(1)m (��2; �2 + �3)G(1)n (�2; �3)�G(1)n (��2; �2 + �3)G(1)m (�2; �3)= �G(1)m (�2; �3)G(1)n (�2; �3) +G(1)n (�2; �3)G(1)m (�2; �3) = 0:So the only interesting situation is the one with 1(�1+�2)2 . If we letF�2;�3(x) = G(1)m (�3; x)G(1)n (x� �2; �2)�G(1)n (�3; x)G(1)m (x� �2; �2);then we see that F�2;�3(0) = 0 andddxF�2;�3(0)= G(1)m (�3; 0) ddxG(1)n (x� �2; �2)jx=0 +G(1)n (��2; �2) ddxG(1)m (�3; x)jx=0� G(1)n (�3; 0) ddxG(1)m (x� �2; �2)jx=0 �G(1)m (��2; �2) ddxG(1)n (�3; x)jx=0 = 0:Moreover d2dx2F�2;�3(0)



= 2 ddxG(1)m (�3; x)jx=0 ddxG(1)n (x� �2; �2)jx=0� 2 ddxG(1)m (x� �2; �2)jx=0 ddxG(1)n (�3; x)jx=0= 2nm �(�1)n�m�13 �n�12 � (�1)m�n�13 �m�12 � 6= 0:This implies thatlim�1+�2!0 1(�1 + �2)2 (G(1)m (�3; �1 + �2)G(1)n (�1; �2)�G(1)n (�3; �1 + �2)G(1)m (�1; �2)) 6= 0and therefore (�1+ �2) 6 j ^[S1m��; K1n��℄ unless �1+ �2jf(�3; �1 + �2)f(�1; �2), or, equiv-alently, �1 + �2jf(�1; �2) or �1jf(�1; �2).By the symmetri property this statement follows.Corollary 8-6. Assume m and n are odd. Then (�1 + �2)(�2 + �3)(�1 + �3) divides~K2n�2�G(2)m + ^[S1m��; K1n��℄ (8.2.10)i� �1 + �2j ~K1n��(�1; �2) or �1j ~K1n��(�1; �2).Theorem 8-7. If S =Pi�0 Sim��i is an order m symmetry of equation (8.2.1) andQ1q�� exists, with q 6= m;n, q � � and q is odd if n is odd, suh that [K0n; Q1q��℄ +[K1n��; Q0q℄ = 0, then there exists a unique Q =Pi�0Qiq��i suh that Q is a symme-try ommuting with S.Proof. For even n orm, this follows from theorem 2-76, sine S0m is relatively 2-primew.r.t. K0n.We onlude from the existene of S that (�1 + �2)(�2 + �3)(�1 + �3) divides~K2n�2�G(2)m + ^[S1m��; K1n��℄for odd n and m. In other words, (�1 + �2)j ~K1n��(�1; �2) or �1j ~K1n��(�1; �2).We know from the proof of theorem 2-76 thatg(2)n (^[S1; Q1℄ + ^[S2; Q0℄) = g(2)m ( ^[K1; Q1℄ + ^[K2; Q0℄):Sine (g(2)m ; g(2)n ) = 1, and (by exatly the same argument as for S)(�1 + �2)(�2 + �3)(�1 + �3)j( ^[K1; Q1℄ + ^[K2; Q0℄);we may onlude that G(2)n divides ^[K1; Q1℄ + ^[K2; Q0℄; or~Q2q�2� = ^[Q1; K1℄ + ^[Q0; K2℄G(2)nis well de�ned. Sine the G(k)n are relative prime for k > 2, this means that K0m isrelatively 2-prime and we an apply theorem 2-76 to draw the onlusion that thereindeed exists a symmetry Q ommuting with S.



Notation 8-8. Let 2 = �21 + �1�2 + �22 .Now we an make a very interesting observation. Consider a given �-homogeneousequation with odd n ut =Xi�0 Kin��i; (Kin��i 2 U in��i):Then we pose the problem of �nding all its symmetries. Suppose we have found anontrivial symmetry with quadrati terms given by equation (8.2.5):~Q1q�� = ~K1n��s�s02 g1qg1n ;where s0 = n+32 (mod 3) and s = q+32 (mod 3). This formula implies � � 3 +2min(s; s0). Then ~Q12s+3��, de�ned by~Q12s+3�� = ~K1n��s�s02 g12s+3g1n ;gives rise to a symmetry Q = Q02s+3 +Q12s+3�� + � � � of the original equation, usingtheorem 8-7 (Of ourse, this argument generates a whole hierarhy). This impliesthat Q and K have the same symmetries, so instead of onsidering K we mayonsider the equation given by Q, whih is of order 2ŝ+ 3 for ŝ = 0; 1; 2. It followsthat we only need to �nd the symmetries of �-homogeneous equations (with � � 7) oforder � 7 in order to get the omplete lassi�ation of symmetries of �-homogeneoussalar polynomial equations starting with linear terms.A similar observation an be made for even n > 2: Suppose we have found anontrivial symmetry with quadrati terms given by equation (8.2.5):~Q1q�� = ~K1n��g1n G(1)q�1�2 :This immediately implies � � 2. Then ~Q12��, de�ned by~Q12�� = 2 ~K1n��g1n ;gives rise to a symmetry Q = Q02+Q12��+ � � � of the original equation, using theorem8-7 (this argument generates a whole hierarhy with symmetries of every order). SoQ and K have the same symmetries. Instead of onsidering K, if its order is > 2, wemay onsider the equation given by Q, whih is of order 2. It follows that we onlyneed to �nd the symmetries of equations of order 2, in order to get the ompletelassi�ation of symmetries of �-homogeneous salar polynomial equations (with� � 2) starting with an even linear term. We have proved the followingTheorem 8-9. A nontrivial symmetry of a �-homogeneous equation is part of ahierarhy starting at order 3; 5 or 7 in the odd ase, and at order 2 in the even ase.



8.3 Redution of 7th-order �-homogeneous equa-tionsAbstrat 8-10. We onlude from a rather extensive omputer algebra omputationthat 7th-order equations must have 5th-order symmetries if they possess symmetriesof order 1 (mod 6).Suppose one an show that for a given 7th-order equation to have a symmetryimplies that the quadrati terms of the equation in symboli form divides through�21+�1�2+�22 , then ~K1�21+�1�2+�22 is the quadrati part of a 5th-order symmetry. Thereforewe an in that ase replae the 7th-order equation by a 5th-order symmetry.To this end we have analyzed all order 6m+ 1 symmetries ( m = 2; 3; � � �) of all7th-order �-homogeneous equations for � = 1; � � � ; 7.We have done this using generating funtions of the formG(1)1 (�) = 1Xm=0S1m��� 6m+1:Using the relation (8.2.4) we obtainG(1)1 (�) = 1Xm=0 ~K1n��G(1)mG(1)7 � 6m+1 = ~K1n��G(1)7 1Xm=0G(1)m � 6m+1= ~K1n��7 � 6 ��16 + 3�15�2 + �14�22 � 3�13�23 + �12�24 + 3�1�25 + �26�� 7((�1 + �2)6� 6 � 1) ��16� 6 � 1� ��26� 6 � 1� :As predited by the theory in the preeding setion, this does not diretly leadto any onditions. So we have to go to the next term as in (8.2.9).Using Maple ([CGG+91℄) and Form ([Ver91℄) we ompute for eah � the Liebraket of G(1)1 with the quadrati part of the equation ~K17�� plus the produt ofG(2)1 and the ubi terms of the equation ~K27�2�. We hek under what onditionsG(2)7 divides the result. We then �nd for eah � that the quadrati terms an alwaysbe divided by �21 + �1�2 + �22 under these onditions.This redues the problem of 7th-order equations to 5th-order equations.8.4 The list of integrable systems for � > 0Abstrat 8-11. We give the omplete list of symmetry{integrable systems for �-homogeneous equations with � > 0. From the list we have removed the equationsbelonging to a hierarhy starting at a lower order. The in�nitely many symmetriesfor these equations are generated by the reursion operators or master symmetries.Referenes are given to the pertinent setions in hapter 9, where these equationsare treated in more detail.



8.4.1 SymmetriesWe only have to look for 7th-order symmetries, sine any symmetry of order 3 or 5(mod 6) automatially gives rise to a symmetry of order 1 (mod 6).We assume that the equations have nonzero quadrati terms, sine otherwise theanalysis redues to 3rd-order equations.As we have seen, the �rst order alulation does not lead to any obstrutions, soone has to go to seond order at least. Sine a symmetry needs to be found, one annot stop at a ertain order, even if the equation is totally determined. The problemhas to be ompletely and expliitly solved. Although straightforward in priniple,the alulation is quite large. Again using Maple and Form we have produed aomplete list of �-homogeneous (� > 0) 5th-order equations (with quadrati termsnot equal to zero) with 7th-order symmetry. From this list we have removed theequations belonging to a hierarhy starting at a lower order. A similar list appearedin [Bil93℄, but that list is not omplete, e.g., the � = 12 ase is missing.8.4.1.1 � = 1Kupershmidt equation (f. setion 9.17)f1 = u5 + 5u1u3 + 5u22 � 5u2u3 � 20 uu1u2 � 5u31 + 5u4u1:Potential Sawada{Kotera equation (f. setion 9.19)f2 = u5 + u1u3 + 115u31:Potential Kaup{Kupershmidt equation (f. setion 9.21)f3 = u5 + 10u1u3 + 152 u22 + 203 u31:8.4.1.2 � = 2Kaup{Kupershmidt equation (f. setion 9.20)f4 = u5 + 10uu3 + 25u1u2 + 20u2u1:Sawada{Kotera equation (f. setion 9.18)f5 = u5 + 5uu3 + 5u1u2 + 5u2u1:8.4.2 SymmetriesUsing the same methods as before we �nd the following list of systems with asymmetry.



8.4.2.1 � = 12Ibragimov{Shabat equation [IS81℄ (f. setion 9.10)f6 = u3 + 3u2u2 + 9uu21 + 3u4u1:8.4.2.2 � = 1Potential Korteweg{de Vries equation (f. setion 9.6)f7 = u3 + u21:Modi�ed Korteweg{de Vries equation (f. setion 9.7)f8 = u3 + u2u1:8.4.2.3 � = 2KdV equation (f. setion 9.5) f9 = u3 + uu1:8.4.3 SymmetriesThe only 2nd-order equation with a symmetry and � > 0 is8.4.3.1 � = 1Burgers' equation (f. setion 9.1)f10 = u2 + uu1:8.5 The integrable systems for � � 0Abstrat 8-12. We use the same method to solve the lassi�ation problem when� � 0. We give the results for � = 0 and from whih we derive the orrespondentresults for � = �1. The results given here desribe researh in progress. We remarkthat due to the in�nite dimensional harater of the searh spaes, the omputationaldetails are muh more involved than was the ase for � > 0. For � = 0 we obtainordinary di�erential equations as our obstrution equations, for � < 0 we obtainpartial di�erential equations.For � � 0 the spae of monomials of a �xed degree and �-grading is no longer�nite dimensional. But if we restrit the number of derivatives, as is natural fromthe de�nition of a system of given order, then the spae is �nitely generated. Thisan be seen as follows. We onsider, for given n, monomials of the typeuk0uk11 � � �ukn�1n�1 :



Sine the grading of un is �+ n, the monomial will have the same grading as un i��+ n = n�1Xj=0(�+ j)kj:Sine � 2 12Z, this is a diophantine equation of the type onsidered by Gordan.This implies there is a Hilbert basis onsisting of monomials of �-grading 0, <r1; � � � ; rd0 >, and of �-grading � + n, < m1; � � � ; md�+n >. This Hilbert basis anbe omputed for given � 2 12Z using the software desribed in [Pas95℄. We write anarbitrary �-homogeneous equation asut = un + d�+nXj=1 fj(r1; � � � ; rd0)mj:Observe that there may be relations of the type:gi(r1; � � � ; rd0)mi = gj(r1; � � � ; rd0)mj:Following the algorithm desribed in setion 2.9, the fj are formal power series. Wean onsider them as C1-funtions with the same arguments r1; � � � ; rd0 aordingto [Po�e76℄. One an now ompute the Lie braket of two arbitrary equations andderive the PDEs (or ODEs when � = 0) whih have to be satis�ed to let theLie braket vanish. The system of PDEs an be analyzed using the algorithm in[BLOP95℄ and [BLOP97℄ as implemented in the Maple pakage Di�alg. This leadsto a system of PDEs whih has to be solved expliitly in order to obtain integrableequations with their symmetries. Some solutions may fall outside the ategory offormal power series, but sine they solve the relation de�ning the symmetry, thisdoes not seem to matter. That is to say, it does not matter for the existene of thesymmetry. What may go wrong is the use of the symmetry in theorem 2-76. Thisneeds areful onsideration of the topologies involved. But anyway the proeduregives us good andidates for symmetry{integrable systems and these an be analyzedusing ompletely di�erent methods if neessary.8.5.1 The ase of � = 08.5.1.1 Symmetries of 2nd- and 3th-order equationsWe onsider the family ut = u3 + 3f(u)u1u2 + g(u)u31; (8.5.1)where f and g are arbitrary formal power series, and look for 5th-order symmetries.To �nd a symmetry to a given order or a given lass of equations is not toodiÆult in priniple. One writes down the Lie braket equation, looks for somegrading or �ltering to organize the omputation with, and then proeeds to alulate,



solve the equations and �nd the obstrutions to the solution of the equations. Theresult, given in [Maw98℄, is a list of obstrution equations that in this partiularase is very short, namely �g�u = �2f�u2 + 2fg � 2f 3:We an manually simplify this by puttingg = �f�u + f 2 + hand we obtain the obstrution equation�h�u = 2fh:Notie that the evolution equation an only be polynomial if h = 0. The equation(8.5.1) has a reursion operatorR = (Dx + fu1 + 2u1D�1x hu1)(Dx + fu1): (8.5.2)Thanks to the existene of a reursion operator, onvergene of the formal powerseries is inherited by the symmetries.The reursion operator an be split (if h 6= 0) as R = HI, whereH = (hDx + hfu1)�1and I = h(Dx + fu1)(Dx + fu1 + 2u1D�1x hu1)(Dx + fu1)are the osympleti and the sympleti operator, respetively. The Hamiltonianfuntion is given by 12h�u22 � (23 �f�u + 13f 2 + 12h)u41� :We see that we have an example of a family of Hamiltonian systems whih is notHamiltonian in one exeptional point h = 0. This exeptional ase derives from the2nd-order equation (f. setion 9.2)ut = u2 + f(u)u21;whih is known to be integrable [Fok80℄ with a reursion operator Dx + f(u)u1.8.5.1.2 Symmetries of 5th-order equationsWe onsider the following familyut = u5 + A21u1u4 + A20u2u3 + A31u21u3 + A30u1u22+A40u31u2 + A50u51; (8.5.3)where the parameters are arbitrary funtions with respet to u. We look for theondition that the equation possesses a 7th-order symmetry by the same way thatwe did for 3rd-order equation before. The results are the following:



Case I �A30�u = 32 �2A20�u2 + 15A30A20 � 3100A320;A21 = 12A20;A31 = �12 �A20�u + A30 � 120A220;A40 = � 920A20�A20�u + 12A30A20 � 13200A320 + �2A20�u2 ;A50 = 110 �3A20�u3 + 125A20�2A20�u2 + 3200(�A20�u )2 � 225A30�A20�u� 3250A220�A20�u + 350A230 + 1500A30A220 � 3120000A420:Notie that the quadrati terms are equal to A20(12u1u4+u2u3). Its orrespon-dent symboli expression isA204 (�1�42 + 2�21�32 + 2�31�22 + �41�2) = A204 �1�2(�1 + �2)(�21 + �1�2 + �22):Therefore, this equation has a 3rd-order symmetry sine �21+�1�2+�22 divides thequadrati terms. As it turns out, it is the image under the reursion operator(8.5.2) of the 3rd-order family (8.5.1) we just found with the identi�ationsA20 = 10f(u), A30 = 15g(u).Case II �A21�u = 15A221 � 110A21A20 + 12 �A20�u ;A31 = �15A220 + 45A20A21 � 25A221 + �A20�u ;A30 = �15A220 + 1110A20A21 � 45A221 + 32 �A20�u ;A40 = 45A20A221 � 1825A321 + 35A21�A20�u + �2A20�u2 � 15A21A220;A50 = 110 �3A20�u3 + 110A21�2A20�u2 � 1100A20�2A20�u2 + 3100(�A20�u )2� 125A221�A20�u + 7100A20A21�A20�u � 191000A220�A20�u+ 1625A420 � 8125A421 + 7125A321A20 � 91000A21A320:Let us �rst onsider the speial ase A21 = 12A20. This turns out to be theonly ase the equation an be polynomial. This leads toA31 = 110A220 + �A20�u ;



A30 = 320A220 + 32 �A20�u ;A40 = 1100A320 + 310A20�A20�u + �2A20�u2 ;A50 = 110 �3A20�u3 + A2025 �2A20�u2 + 3100(�A20�u )2 + 3A220500 �A20�u + A42010000 :Notie that suh a solution also satis�es the onditions of ase I. Indeed, thissubase A21 = 12A20 an be identi�ed with Case I, h(u) = 0, i.e., it derivesfrom the 2nd-order equation ut = u2 + 110A20u21.Otherwise, let Z = A21 � 12A20. Then 1�Z�u = 15A21Z;A31 = �45Z2 � 25A21Z + 25A221 + 2�A21�u ;A30 = 35A221 � 65A21Z � 45Z2 + 3�A21�u ;A40 = 225A321 � 825A221Z � 45A21Z2 + 65A21�A21�u+2�2A21�u2 � 25Z�A21�u ;A50 = 1625A421 � 2125A321Z � 8125A221Z2 + 16625Z4� 225A21Z�A21�u � 425 �A21�u Z2 + 325(�A21�u )2+ 6125A221�A21�u + 425A21�2A21�u2 + 15 �3A21�u3 :The evolution equation (8.5.3) in this ase has a reursion operatorR = (Dx + 25Zu1 + 15A21u1 � 825u1D�1x Z2u1) �(Dx + 25Zu1 + 15A21u1) �(Dx + 15A21u1) �(Dx � 25Zu1 + 15A21u1) �(Dx � 25Zu1 + 15A21u1 � 825u1D�1x Z2u1) �(Dx + 15A21u1): (8.5.4)The reursion operator an be split (if Z 6= 0) as R = HI, whereH = ( 825Z2Dx + 8125Z2A21u1)�11The ase A21 = 0 orresponds with the Potential Kupershmidt equation.



and I = H�1R are the osympleti and the sympleti operator, respetively.The Hamiltonian funtion is given by� 4234375Z2 � �9375u23 + f6250Z � 5625A21gu32+f3750A21Z + 7500Z2 � 1125A221 � 16875�A21�u gu21u22+f80Z4 + 525(�A21�u )2 � 40ZA321 + 750�3A21�u3 + 3A421 � 600Z2�A21�u�180Z2A221 � 300ZA21�A21�u + 120A221�A21�u + 450A21�2A21�u2 gu61�Example 8-13. If Z is a formal power series, then all oeÆients an bedetermined as formal power series. Let us take A21 = 5. Then Z = �eu,where � is onstant. This leads to, if � = 1,ut = u5 + 5u1u4 + 2(5� eu)u2u3 + (10� 2eu � 45e2u)u21u3+ (15� 6eu � 45e2u)u1u22 + (10� 8eu � 4e2u)u31u2+ (1� 2eu � 85e2u + 16625e4u)u51:8.5.2 Some onsequenes for � = �1In this subsetion, we derive the symmetry{integrable equations for � = �1 fromthe results we found for � = 0. The method is to put u = v1 and derive the equationfor v, f. propositions 2-25 and 4-8.8.5.2.1 Symmetries of 3th-order equationsPutting u = v1 and derive the equation for v from the equation (8.5.1). This leadstovt = D�1x (v4 + 3f(v1)v2v3 + g(v1)v32) = v3 + 32f(v1)v22 +D�1x ((g(v1)� 32 �f�v1 )v32):We an make this equation loal by requiring g = 32 �f�v1 . In that ase we reover theondition �2f�v12 = 6f �f�v1 � 4f 3for the family vt = v3 + 32f(v1)v22;whih gives us an integrable 3rd-order family for � = �1, that is, the existene of a5th-order symmetry for the lass of equationsut = u3 + f(u1)u22;



i� 9 �2f�u12 � 36f �f�u1 + 16f 3 = 0:Speial ases are (numbers in [℄ refer to [MSS91℄) f0 = � 32u1 , ([4.1.16℄) the Krihever{Novikov equation (f. setion 9.12), f1 = � 34u1 ([4.1.19℄) (f. setion 9.10) andfi = � 3u12(1+u21) ([4.1.14℄).This equation an easily be redued to a �rst order equation (f. [Kam43℄, 6.43,or [Ibr96a℄, p. 204 for a Lie symmetry approah)(� 1f�0 + 43)2 + 916(� 1f�0 + 23)21 = 0:The general solution (1 6= 0) is given byf1(u1) = 312 (1u1 + 2)1� (1u1 + 2)2and we see that it redues to ([4.1.14℄) upon saling if we allow for imaginary salingfators. If not, then we should also allowf1(u1) = 32 u11� u21 :One noties that the number of solutions f of the ondition is very low, beause theequation has internal symmetry and that this is not the general family.It will be interesting to see whether the fat that the di�erential obstrutionsan be solved by Lie symmetry methods holds in general.8.5.2.2 Symmetries of 5th-order equationsSimilarly, we put u = v1 and derive the 5th-order equation for v. This leads tovt = v5 + ~A21v2v4 + ~A20v23 + ~A30v22v3 + ~A40v42;where the parameters are formal power series funtions with respet to v1 with thefollowing relations ~A21 = A21;~A20 = 12(A20 � A21);~A30 = A31 � �A21�v1 ;~A40 = 14(A40 � �A31�v1 + �2A21�v12 );A30 = 12(�A20�u � 5�A21�u + 4A31);A50 = 14(�A40�u � �2A31�u2 + �3A21�u3 ):



Using the Maple pakage Di�alg, we get the three ases orresponding to those when� = 0 as follows:Case I ~A21 = 2 ~A20;�2 ~A20�v12 = �1625 ~A320 + 125 ~A20� ~A20�v1 ;~A30 = 3� ~A20�v1 + 45 ~A220;~A40 = 1910 ~A20� ~A20�v1 � 25 ~A320:Case IIa ~A20 = 0; � ~A21�v1 = 15 ~A221; ~A30 = 15 ~A221; ~A40 = 0:Case IIb ~A21 ~A20 = 54 � ~A20�v1 + ~A220;�2 ~A20�v12 ~A20 = � 1100(16 ~A420 � 80 ~A220� ~A20�v1 � 125(� ~A20�v1 )2);~A30 ~A220 = � 180(�16 ~A420 � 280 ~A220� ~A20�v1 � 25(� ~A20�v1 )2);~A40 ~A20 = � 1200(16 ~A420 � 120 ~A220� ~A20�v1 � 225(� ~A20�v1 )2):Comparing with the list in [MSS91℄, [4.2.10℄ satis�es Case I, [4.2.11℄ satis�es CaseIIa, [4.2.12℄ and [4.2.13℄ satisfy Case IIb if we take all the parameters in the equationszero.8.6 Conluding remarks, open problemsIt seems, based on this hapter and [BSW98℄, that the symboli method used to-gether with diophantine approximation theory and/or p-adi analysis gives a pow-erful method to do automated (o)symmetry lassi�ation of evolution equations.The goal would be to produe the �nal list of all integrable salar evolution equa-tions with a reognition algorithm. One the lassi�ation is done for all gradings,one an systematially try to �nd all suh relations, sine they might exist wheneverthe hierarhies are alike. This one an measure by writing down the Hilbert funtionHf (�) = P1k=0 dimSymk(f)�k, where Symk(f) is spanned by the f -symmetries of



grading k. E.g. for KdV this will be, if we restrit ourselves to polynomial symme-tries with onstant oeÆients, HKdV(�) = � 31� � 2 :The main diÆulty in applying the symboli method in atual omputationsis the rather quik expression swell. In the programs developed for the presenthapter we have ountered this by using Form, whenever Maple gave us objet toolarge errors. However, one an improve on this by doing the Lie braket alulationsin the lassial domain and the division using the symboli method. This methodeven allows one to ompute reursion operators by a long division proedure.Another interesting possibility is to use the method in the nonommutative ase,f. [OS98℄.



Chapter 9Examples of integrable equationsA general referene for the present hapter is [Ibr96b℄, [Ibr96a℄, where lists of in-tegrable equations with their properties are given and the basi theoretial resultsregarding the objets listed in the tables are presented (but not proved).The following is not a lassi�ation list and does not laim to be omplete inany sense.For every equation we give a table ontaining (if it exists)� The equation itself,� its Hamiltonian funtion orresponding to the osympleti operator,� its osympleti operator,� its sympleti operator,� its reursion operator (possibly resulting from the osympleti and sympletioperators) , or its master symmetry,� roots of its symmetries and� its saling symmetry.The soure of these results is indiated where possible. Some of the material isnew, as far as ould be veri�ed, suh as in setions 9.10, 9.13, 9.32, 9.37 and otherisolated results (espeially the deomposition of the reursion operator in sympletiand osympleti operators). The new results mainly rely on the theory in hapter6. We hope that this material an serve as a soure of motivation for future researh.In the sequel we assume C = R or C .9.1 Burgers' equationReferene: [Olv93℄ p. 315, [Oev84℄ p. 38, setion 6.3.1 ;119



Equation ut = u2 + uu1Hamiltonian None [Fu79℄Cosympleti None [FF81℄Sympleti None [FF81℄Reursion R1 = Dx + 12u+ 12u1D�1x [Olv77℄R2 = tDx + 12(tu+ x) + 12(tu1 + 1)D�1x [Olv93℄Root u1; tu1 + 1 ?Saling �2t�t + (xu1 + u)�u? Sine R1 and R2 are both reursion operators of the equation, we obtain a doublein�nity of the symmetries, by applying R1 or R2 suessively to u1 and tu1+1. Notethat sine R1R2 = R2R1+ 12 and R1(tu1+1) = R2(u1), if we are only interested inindependent symmetries, it does not matter in whih order R1 and R2 are applied.Notie that there is a di�erene between the root of an operator and the rootof symmetries for an equation (f. de�nition 6-10 and 6-12). For R1, we an taketu1+1 as a root of symmetries for Burgers' equation sine R1 = Dx+ 12Dx(uD�1x �),but it is not a root of R1 sine it is not its symmetry.9.2 Potential Burgers' equationReferene: [Olv93℄ pp. 311, 317;Equation ut = u2 + u21Hamiltonian None [Fu79℄Cosympleti None [FF81℄Sympleti None [FF81℄Reursion R1 = Dx + u1R2 = tDx + tu1 + 12x [Olv93℄Root 1Saling xu1 [Olv93℄The same arguments hold here as Burgers' equation sine R1R2 = R2R1 + 12 .In the paper [Fok80℄, the author found the 2nd-order equations of the formut = u2 + f(u; u1), whih possess a 3rd-order symmetry and obtained the follow-ing equations: ut = u2 + f 00(u)f 0(u) u21 + �f(u)u1; (9.2.1)where � is onstant and f(u) is an arbitrary funtion, with the Nijenhuis reursionoperator Dx + f 00(u)f 0(u) u1 + 12�f(u) + 12�u1D�1x f 0(u).ut = u2 +  � f 0(u)f(u) u21 + �f(u); (9.2.2)where f(u) is an arbitrary funtion and �;  are onstant, with the Nijenhuis reur-sion operator Dx + �f 0(u)f(u) u1.



Notie that the (potential) Burgers' equation is a partiular ase of (9.2.1). Ifwe take � = 1 and �f 0(u)f(u) = 1, i.e., f(u) = � exp(�u) + , it leads to the nontrivialequation: ut = u2 + u21 + � exp(�u) + :9.3 Di�usion equationReferene: [Oev84℄ p. 39;Equation ut = u2u2Hamiltonian NoneCosympleti NoneSympleti NoneReursion uDx + u2u2D�1x 1u2Root u2u2Saling �xu1 + �u; �; � 2 C:9.4 Nonlinear di�usion equationReferene: [Olv93℄ Ex. 5.10;Equation ut = Dx(u1u2 )Hamiltonian NoneCosympleti NoneSympleti NoneReursion D2x 1uD�1x = 1uDx � 2u1u2 � utD�1xRoot utSaling �xu1 + �u; �; � 2 C:9.5 Korteweg{de Vries equationReferene: [Olv93℄ p. 312, [Oev84℄ pp. 18, 67, 78, 84, 97, [Dor93℄ pp. 85, 151,158, 162, [Oev90℄ pp. 27, 60;Equation ut = u3 + uu1 [KdV95℄Hamiltonian u22Cosympleti D3x + 13 (uDx +Dxu)Sympleti D�1xReursion D2x + 23u+ 13u1D�1x [Olv77℄Root u1Saling xu1 + 2u9.6 Potential Korteweg{de Vries equationReferene: [Dor93℄ p. 125;



Equation ut = u3 + 3u21Hamiltonian 12uu4 + 2uu1u2Cosympleti D�1xSympleti D3x + 2(u1Dx +Dxu1)Reursion D2x + 4u1 � 2D�1x u2Root 1Saling xu1 + u9.7 Modi�ed Korteweg{de Vries equationReferene: [Olv93℄ Ex. 5.11, [Oev84℄ p. 97, [Oev90℄ pp. 29, 60;Equation ut = u3 + u2u1Hamiltonian u22Cosympleti D3x + 23DxuD�1x uDxSympleti D�1xReursion D2x + 23u2 + 23u1D�1x u [Olv77℄Root u1Saling xu1 + u9.8 Potential modi�ed Korteweg{de Vries equa-tionReferene: [Olv93℄ Ex.5.11;Equation ut = u3 + 13u31Hamiltonian 12uu4 + 14uu21u2Cosympleti D�1xSympleti D3x + 23Dxu1D�1x u1DxReursion D2x + 23u21 � 23u1D�1x u2Root u1Saling �xu1 + �u; �; � 2 C:In the paper [Fok80℄, the author found the 3rd-order equations, not involving 2nd-order derivatives, i.e., of the form ut = u3 + f(u; u1), whih possess a 5th-ordersymmetry and obtained the following equations:ut = u3 + �u31 + �u21 + u1; (9.8.1)where �; �;  are onstant, with the Nijenhuis reursion operator D2x+2�u21+ 43�u1�23(3�u1 + �)D�1x u2 + . ut = u3 + �u31 + f(u)u1; (9.8.2)where f(u) satis�es f 000 + 8�f 0 = 0; with the Nijenhuis reursion operator D2x +2�u21 + 23f(u)� 13u1D�1x (6�u2 � f 0).



pKdV (� = 0) and pmKdV (� = 0) are partiular ases of (9.8.1). pmKdV(f(u) = 0), KdV (� = 0 and f(u) = u) and mKdV (� = 0 and f(u) = u2) arepartiular ases of (9.8.2) inluding Calogero{Degasperis{Fokas equation [CD81℄:ut = u3 � 18u31 + (a exp(u) + b exp(�u) + )u1:9.9 Cylindrial Korteweg{de Vries equationReferene: [OF84℄, [ZC86℄, [Cho87a℄, example 6-15 in this thesis;Equation ut = u3 + uu1 � u2tHamiltonian NoneCosympleti D3x + 13(uDx +Dxu) + 16t(xDx +Dxx)Sympleti tD�1xReursion t(D2x + 23u+ 13u1D�1x ) + 13x + 16D�1xRoot pt(u13 + 16t)Saling �3t�t + (2u+ xu1)�uFor the generalized Korteweg{de Vries equation [Cho87a℄ (the author also studiedgeneralized mKdV in the same way [Cho87b℄):ut + u3 + 6uu1 + 6f(t)u� x(f 0t + 12f 2) = 0;where f is an arbitrary funtion of t. It possesses the following Nijenhuis reursionoperator: R = 1g(t)(D2x + 4(u� xf(t)) + 2(u1 � f(t))D�1x )with the root 1pg (u1 � f), where g(t) = exp(� R 12fdt).If we take f(t) = 112t and then do transformation ~u = 16u and ~t = �t, we get theCylindrial Korteweg{de Vries equation.9.10 Ibragimov{Shabat equationReferene: [IS81℄, [Cal87℄;Equation ut = u3 + 3u2u2 + 9uu21 + 3u4u1Hamiltonian NoneCosympleti NoneSympleti NoneRoot u1Saling xu1 + 12uMaster Symmetries xut + 32u2 + 5u1u2 + 12u5No reursion operator seems to be known for this equation.We should mention that this equation possesses in�nitely many symmetries[IS81℄, but only one loal onservation law u2 [Kap82℄. The transformation u =pw12w [Cal87℄ transforms it into wt = w3 � 34 w22w1 and the master symmetry beomes



xwt + 12w2, whih is the master symmetry for this new equation. Notie that thenew equation has a reursion operatorR = D2x � w2w1Dx + w32w1 � w224w21 �D�1x ( w42w1 � w2w3w21 + w322w31 );where w42w1 � w2w3w21 + w322w31 = E( w224w1 ).9.11 Harry Dym equationReferene: [Olv93℄ Ex.5.15, [Oev84℄ p. 107, [Dor93℄ p. 85;Equation ut = u3u3Hamiltonian � 1uCosympleti u3D3xu3Sympleti 1u2D�1x 1u2Reursion u3D3xuD�1x 1u2 [LLS+83℄= u2D2x � uu1Dx + uu2 + u3u3D�1x 1u2Root u3u3Saling �xu1 + �u; �; � 2 C:Sometimes the equation is transformed into ut = D3x( 1pu) like in [Dor93℄.9.12 Krihever{Novikov equationReferene: [Dor93℄ p. 121;Equation ut = u3 � 32 u22u1Hamiltonian u222u21Cosympleti 2( 1u21Dx +Dx 1u21 )�1Sympleti 12( 1u21D3x +D3x 1u21 ) + (u3u31 � 3u22u41 )Dx +Dx(u3u31 � 3u22u41 )Reursion ( D2x � 2u2u1 Dx + (u3u1 � u22u21 )� u1D�1x �;� = 3u32u41 � 4u2u3u31 + u4u21 = E( u222u21 )Root u1Saling �xu1 + �u; �; � 2 C:9.13 Cavalante{Tenenblat equationReferene: [CT88℄;



Equation ut = D2x(u� 121 ) + u 321Hamiltonian �2pu1Cosympleti Dx � u1D�1x u1Sympleti u� 121 Dxu� 121 � 14u� 321 u2D�1x u� 321 u2Reursion 1u1D2x � 3u22u21Dx � u32u21 + 3u224u31 � u1 + ut2 D�1x u� 321 u2Root utSaling xu19.14 Sine{Gordon equationReferene: [Olv93℄ Ex.5.12, [Dor93℄ pp. 133, 163;Equation uxt = sin u Oevel[16℄Hamiltonian � os u ?Cosympleti D�1xSympleti D3x +Dxu1D�1x u1DxReursion D2x + u21 � u1D�1x u2 [Olv77℄Root u1Saling �xu1 + �u; �; � 2 C:? Atually, the equation is treated as an evolution equation ut = D�1x sin u.9.15 Liouville equationReferene: [Dor93℄ pp. 134, 164;Equation uxt = exp(u) see Pogrebkov, 1987Hamiltonian exp(u) ?Cosympleti D�1xSympleti D3x �Dxu1D�1x u1DxReursion D2x � u21 + u1D�1x u2Root u1Saling �xu1 + �u; �; � 2 C:? As we mentioned for the Sine{Gordon equation, this equation is also treated asan evolution equation ut = D�1x exp(u).The Sinh{Gordon equation uxt = sinh u has exatly the same geometri stru-ture. [AC91℄.9.16 Klein{Gordon equationsReferene: [AC91℄ p. 366, [Kon87℄ p. 41, [FG80℄;



Equation uxt = � exp(�2u) + � exp(u)Hamiltonian ��2 exp(�2u) + � exp(u)Cosympleti D�1xSympleti IReursion RRoot u1; u5 + 5u2u3 � 5u21u3 � 5u1u22 + u51Saling xu1I = D7x + 3(u2D5x +D5xu2)� 3(u21D5x +D5xu21)� 8(u4D3x +D3xu4)+10(u1u3D3x +D3xu1u3) + 292 (u22D3x +D3xu22)� 3(u21u2D3x +D3xu21u2)+92(u41D3x +D3xu41) + 5(u6Dx +Dxu6)� 6(u1u5Dx +Dxu1u5)�25(u2u4Dx +Dxu2u4) + 3(u21u4Dx +Dxu21u4)� 21(u23Dx +Dxu23)+8(u1u2u3Dx +Dxu1u2u3)� 8(u31u3Dx +Dxu31u3)+6(u32Dx +Dxu32)� 44(u21u22Dx +Dxu21u22)� 2(u61Dx +Dxu61)+2u2D�1x (u6 + 5u2u4 + 5u23 � 5u21u4 � 20u1u2u3 � 5u32 + 5u41u2)+2(u6 + 5u2u4 + 5u23 � 5u21u4 � 20u1u2u3 � 5u32 + 5u41u2)D�1x u2R = D6x + 6(u2 � u21)D4x + 9(u3 � 2u1u2)D3x+(5u4 � 22u1u3 � 13u22 � 6u21u2 + 9u41)D2x+(u5 � 8u1u4 � 15u2u3 � 3u21u3 � 6u1u22 + 18u31u2)Dx�4u1u5 + 20u31u3 � 20u1u2u3 + 20u21u22 � 4u61+2u1D�1x (u6 + 5u2u4 + 5u23 � 5u21u4 � 20u1u2u3 � 5u32 + 5u41u2)+2(u5 + 5u2u3 � 5u21u3 � 5u1u22 + u51)D�1x u2It shares its reursion operator [Bil93℄ with the Potential Kupershmidt equation,i.e., ut = u5 + 5u2u3 � 5u21u3 � 5u1u22 + u51 (equation (4.2.7) in [MSS91℄).Klein{Gordon equations uxt = f(u) possess a nontrivial symmetry if and only iff(u) = � exp(��u) + � exp(�u) or f(u) = � exp(�2�u) + � exp(�u) [ZS79℄.9.17 Kupershmidt equationReferene: [MSS91℄ Equation (4.2.6), [FG80℄, [Bil93℄;Equation ut = u5 + 5u1u3 + 5u22 � 5u2u3 � 20uu1u2 � 5u31 + 5u4u1Hamiltonian u222 � 5u316 + 5u2u212 + u66Cosympleti DxSympleti IReursion RRoot u1; utSaling xu1 + uI = D5x + 3(u1D3x +D3xu1)� 3(u2D3x +D3xu2)� 3(u1u2Dx +Dxu1u2)



+52(u21Dx +Dxu21)� 2(u3Dx +Dxu3) + 92(u4Dx +Dxu4)�2(uu2Dx +Dxuu2)� 2(u4 � 5u2u2 � 5uu21 + 5u1u2 + u5)D�1x u�2uD�1x (u4 � 5u2u2 � 5uu21 + 5u1u2 + u5)R = D6x + 6u1D4x � 6u2D4x � 30uu1D3x + 15u2D3x + 9u4D2x � 6u2u1D2x�40uu2D2x � 31u21D2x + 14u3D2x � 9u2u2Dx + 54u3u1Dx � 18uu21Dx�30uu3Dx � 63u1u2Dx + 6u4Dx � 4u6 + 38u3u2 + 74u2u21�3u2u3 � 12uu4 � 38uu1u2 + u5 � 6u31 � 23u1u3 � 15u22�2utD�1x u� 2u1D�1x �u4 � 5u2u2 � 5uu21 + 5u1u2 + u5�9.18 Sawada{Kotera equationReferene: [SK74℄, [CDG76℄, [FO82℄, [Oev84℄ p. 105, [FOW87℄, [Oev90℄ p. 30,[MSS91℄ Equation (4.2.2), [Bil93℄;Equation ut = u5 + 5uu3 + 5u1u2 + 5u2u1Hamiltonian u36 � u212Cosympleti Dx (Dx + 2(D�1x u+ uD�1x ))DxSympleti (Dx +D�1x u)Dx (Dx + uD�1x )Reursion RRoot u1; utSaling xu1 + 2uR = D6x + 6uD4x + 9u1D3x + 9u2D2x + 11u2D2x + 10u3Dx + 21uu1Dx+4u3 + 16uu2 + 6u21 + 5u4 + u1D�1x (2u2 + u2) + utD�1x9.19 Potential Sawada{Kotera equationReferene: [MSS91℄ Equation (4.2.4), [Bil93℄;Equation ut = u5 + 5u1u3 + 53u31Hamiltonian u222 � u316Cosympleti Dx + 2(u1D�1x +D�1x u1)Sympleti (Dx + u1D�1x )D3x (Dx +D�1x u1)Reursion RRoot u1; 1Saling xu1 + uR = D6x + 6u1D4x + 3u2D3x + 8u3D2x + 9u21D2x + 2u4Dx + 3u2u1Dx+3u5 + 13u3u1 + 3u22 + 4u31 � 2u1D�1x (u4 + u2u1)�2D�1x �u6 + 3u4u1 + 6u3u2 + 2u2u21�



9.20 Kaup{Kupershmidt equationReferene: [Kau80℄, [FO82℄, [FOW87℄, [MSS91℄ Equation (4.2.3), [Bil93℄;Equation ut = u5 + 5uu3 + 252 u1u2 + 5u2u1Hamiltonian 2u33 � u212Cosympleti Dx �Dx + 12(uD�1x +D�1x u)�DxSympleti D3x + 32(uDx +Dxu) +D2xuD�1x +D�1x uD2x+2(u2D�1x +D�1x u2)Reursion RRoot u1; utSaling xu1 + 2uR = D6x + 6uD4x + 18u1D3x + 9u2D2x + 492 u2D2x + 30uu1Dx + 352 u3Dx+4u3 + 412 uu2 + 694 u21 + 132 u4 + 12u1D�1x (u2 + 2u2) + utD�1x
9.21 Potential Kaup{Kupershmidt equationReferene: [MSS91℄ Equation (4.2.5), [Bil93℄;Equation ut = u5 + 10u1u3 + 152 u22 + 203 u31Hamiltonian u222 � 4u313Cosympleti Dx + u1D�1x +D�1x u1Sympleti D5x + 5(u1D3x +D3xu1)� 3(u3Dx +Dxu3)+8(u21Dx +Dxu21)Reursion RRoot u1; 1Saling xu1 + uR = D6x + 12u1D4x + 24u2D3x + 25u3D2x + 36u21D2x + 10u4Dx + 48u1u2Dx+3u5 + 21u22 + 34u1u3 + 32u31 � 2u1D�1x (u4 + 8u1u2)�D�1x �u6 + 12u1u4 + 24u2u3 + 32u21u2�
9.22 Dispersiveless Long Wave systemReferene: [AC91℄, [G�ok96℄;



Equation � ut = u1v + uv1vt = u1 + vv1Hamiltonian u2+uv22Cosympleti � 0 DxDx 0 �Sympleti � 2D�1x vD�1xD�1x v uD�1x +D�1x u �Reursion � v 2u+ u1D�1x2 v + v1D�1x �Root � u1v1 �Saling � xu1xv1 � + �� 2uv � ; � 2 C
9.23 Di�usion systemReferene: [Oev84℄ p. 41, setion 6.3.3 ;Equation � ut = u2 + v2vt = v2Hamiltonian NoneCosympleti NoneSympleti NoneReursion � Dx vD�1x0 Dx �Root � v0 �, � u1v1 �Saling � xu1 + 2uxv1 + 2v �+ �� 2uv � ; � 2 C
9.24 Sine{Gordon equation in the laboratory o-ordinatesReferene: [CLL87℄ , setion 6.3.6 ;



Equation � ut = vvt = u2 � sin(u)Hamiltonian 12(u21 + v2)� os(u)Cosympleti � 0 1�1 0 �Sympleti � �R21 �R22R11 R12 �Reursion R = � R11 R12R21 R22 �Root � u1v1 �Saling NoneR11 = 4D2x � 2 os(u) + (u1 + v)2 � (u1 + v)D�1x (u2 + v1 � sin(u));R12 = 4Dx + (u1 + v)D�1x (u1 + v);R21 = 4D3x + (u1 + v)2Dx � 4 os(u)Dx + 2u1 sin(u) + (u2 + v1)(u1 + v)� (u2 + v1 � sin(u))D�1x (u2 + v1 � sin(u));R22 = 4D2x + (u1 + v)2 � 2 os(u) + (u2 + v1 � sin(u))D�1x (u1 + v):9.25 AKNS equationReferene: [Oev84℄ p. 100;Equation � ut = �u2 + 2u2vvt = v2 � 2v2uHamiltonian 12(uv1 � vu1)Cosympleti � 2uD�1x u Dx � 2uD�1x vDx � 2vD�1x u 2vD�1x v �Sympleti � 0 1�1 0 �Reursion � �Dx + 2uD�1x v 2uD�1x u�2vD�1x v Dx � 2vD�1x u �Root � �uv �Saling � xu1 + uxv1 + v �9.26 Nonlinear Shr�odinger equationReferene: [Oev84℄ p. 102, [Dor93℄ p. 135, [Oev90℄ pp. 31, 61;



Equation � ut = v2 � v(u2 + v2)vt = �u2 � u(u2 + v2)Hamiltonian 12(uv1 � vu1)Cosympleti � Dx � 2vD�1x v �2vD�1x u�2uD�1x v Dx � 2uD�1x u �Sympleti � 0 1�1 0 �Reursion � �2vD�1x u Dx � 2vD�1x v�Dx � 2uD�1x u �2uD�1x v �Root � �vu �Saling � xu1 + uxv1 + v �The system an be written as iqt = q2 � q2q?, where i2 = �1 [AC91℄.9.27 Derivative Shr�odinger systemReferene: [Oev84℄ p. 103, setion 6.3.5 ;Equation � ut = �v2 � (u2 + v2)u1vt = u2 � (u2 + v2)v1Hamiltonian 12(uv1 � vu1)Cosympleti � �Dx u2+v22�u2+v22 �Dx �� � v�u �D�1x � u1v1 ��� u1v1 �D�1x � v�u �Sympleti � 0 1�1 0 �Reursion � �u2+v22 �DxDx �u2+v22 � + � v�u �D�1x � v1�u1 �y�� u1v1 �D�1x � uv �yRoot � v�u �Saling � xu1 + u2xv1 + v2 �9.28 Modi�ed derivative Shr�odinger systemReferene: [WHV95℄, [G�ok96℄;



Equation � ut = Dx(u3 + uv2 + �u� v1)vt = Dx(vu2 + v3 + u1)Hamiltonian 12(u2 + v2)Cosympleti � �Dx + 2uDxu �D2x + 2vDxuD2x + 2uDxv 2vDxv ��2� u1v1 �D�1x � u1v1 �Sympleti � D�1x 00 D�1x �Reursion � � + 2u2 �Dx + 2uvDx + 2uv 2v2 �+2� u1v1 �D�1x � uv �yRoot � u1v1 �Saling 0� xu1 + u2xv1 + v2x�x + � 1A (f. setion 6.3.6).9.29 Boussinesq systemReferene: [Olv93℄ p. 459, setion 6.3.4 ;Equation � ut = v1vt = 13u3 + 83uu1Hamiltonian 12vCosympleti � D3x + 2uDx + u1 3vDx + 2v13vDx + v1 H22 �Sympleti � 0 D�1xD�1x 0 �Reursion � 3v + 2v1D�1x D2x + 2u+ u1D�1xR21 3v + v1D�1x �Root � u1v1 �, � utvt �Saling � xu1 + 2uxv1 + 3v �H22 = 13D5x + 53(uD3x +D3xu)� (u2Dx +Dxu2) + 163 uDxuR21 = 13D4x + 103 uD2x + 5u1Dx + 3u2 + 163 u2 + 2vtD�1x9.30 Modi�ed Boussinesq systemReferene: [FG81℄;



Equation � ut = 3v2 + 6uv1 + 6u1vvt = �u2 � 6vv1 + 2uu1Hamiltonian 12(uv1 � u1v � 2v3 + 2vu2)Cosympleti � 3Dx 00 Dx �Sympleti � 13D�1x R11 13D�1x R12D�1x R21 D�1x R22 �Reursion � R11 R12R21 R22 �Root � u1v1 �, � utvt �Saling � xu1 + uxv1 + v �R11 = 6vD2x + 9v1Dx + 3v2 � 12u1v1 � 2utD�1x u� 6u1D�1x (2uv + v1);R12 = 3D3x + 6uD2x + 9u1Dx � 3u2Dx � 9v2Dx + 3u2 � 6u3 � 36vv1� 18uv2 � 6utD�1x v + 6u1D�1x (u1 � u2 + 3v2);R21 = �D3x + 2uD2x + u2Dx + 3u1Dx + 3v2Dx + u2 � 6uv2 � 2u3 + 4uu1� 2vtD�1x u� 6v1D�1x (v1 + 2uv);R22 = �6vD2x � 9v1Dx � 12uv2 + 12u1v � 3v2 + 36v3� 6vtD�1x v + 6v1D�1x (u1 � u2 + 3v2):9.31 Landau{Lifshitz systemReferene: [vBK91℄ , setion 6.3.8 ;Equation � ut = � sin(u)v2 � 2 os(u)u1v1 + (J1 � J2) sin(u) os(v) sin(v)vt = u2sin(u) � os(u)v21 + os(u)(J1 os2(v) + J2 sin2(v)� J3)Hamiltonian 12(sin2(u)(J1 os2(v) + J2 sin2(v)� J3) + J3 � u21 � sin2(u)v21)Cosympleti 1sin(u) � 0 �11 0 �Sympleti sin(u)� R21 R22�R11 �R12 �Reursion � R11 R12R21 R22 �Root � u1v1 �, � utvt �Saling 0� xu1xv1xJx + 2J 1A, where J = (J1; J2; J3).whereR11 = �D2x � 2 sin2(u)v21 � u21 + v21 � (J1 � J2) sin2(u) sin2(v)



+(J1 � J3) sin2(u) + J3 � J2 + utD�1x � (sin(u)v1)� u1D�1x � S1R12 = 2 os(u) sin(u)v1Dx + os(u) sin(u)v2 � 3 sin2(u)u1v1 + 2u1v1+utD�1x � (� sin(u)u1)� u1D�1x � S2R21 = �2 os(u)v1Dx � os(u)v2 + u1v1+vtD�1x � (sin(u)v1)� v1D�1x � S1R22 = �D2x � 2 os(u)u1Dx � os(u)u2 � (J1 � J2) sin(u) sin2(v)�2 sin2(u)v21 + v21 + (J1 � J3) sin2(u) + J3 � J2+vtD�1x � (� sin(u)u1)� v1D�1x � S2S1 = (J1 � J2) os(u) sin(u) sin2(v)� (J1 � J3) os(u) sin(u)+ os(u) sin(u)v21 � u2;S2 = (J1 � J2) os(v) sin2(u) sin(v)� 2 os(u) sin(u)u1v1 � sin2(u)v2:9.32 Wadati{Konno{Ihikawa systemReferene: [WKI79℄, [BPT83℄, [Kon87℄ p. 88;System ( ut = D2x( up1+uv )vt = �D2x( vp1+uv )Hamiltonian 2p1 + uvCosympleti � 0 D2x�D2x 0 �Sympleti � 0 21+uv� 21+uv 0 �� vp1+uvup1+uv !yD�1x  v1(1+uv) 32� u1(1+uv) 32 !y
� v1(1+uv) 32� u1(1+uv) 32 !yD�1x  vp1+uvup1+uv !yRoot � utvt � ; D2x( u1(1+uv) 32 )D2x( v1(1+uv) 32 ) !Saling � xu1xv1 �9.33 Hirota{Satsuma systemReferene: [HS81℄, [Fu82℄, [Kon87℄ p. 207, [Oev90℄ pp. 32, 61, [Oev84℄ pp. 31,84;



Equation � ut = 12u3 + 3uu1 � 6vv1vt = �v3 � 3uv1Hamiltonian 12u2 � v2Cosympleti � 12D3x + uDx +Dxu vDx +DxvvDx +Dxv 12D3x + uDx +Dxu �Sympleti � 12Dx + uD�1x +D�1x u �2D�1x v�2vD�1x �2Dx �Reursion RRoot � u1v1 � ;� utvt �Saling � xu1 + 2uxv1 + 2v �R(u; v) = � 12D3x +Dx � u+ uDx Dx � v + vDxDx � v + vDx 12D3x +Dx � u+ uDx � �� 12Dx +D�1x � u+ uD�1x �2D�1x � v�2vD�1x �2Dx �� � 12u3 + 3uu1 � 6vv1�v3 � 3uv1 �
D�1x � 1; 0 �+� u1v1 �
D�1x � u; �2v �
9.34 The Symmetrially{oupled Korteweg{de VriessystemReferene: [Fu82℄;Equation � ut = u3 + v3 + 6uu1 + 4uv1 + 2u1vvt = u3 + v3 + 6vv1 + 4vu1 + 2v1uHamiltonian 12(u+ v)2Cosympleti � D3x + 2(uDx +Dxu) 00 D3x + 2(vDx +Dxv) �Sympleti � D�1x D�1xD�1x D�1x �Reursion � D2x + 4u+ 2u1D�1x D2x + 4u+ 2u1D�1xD2x + 4v + 2v1D�1x D2x + 4v + 2v1D�1x �Root � u1v1 �Saling � xu1 + 2uxv1 + 2v �



9.35 The Complexly{oupled Korteweg{de VriessystemReferene: [Fu82℄;Equation � ut = u3 + 6uu1 + 6vv1vt = v3 + 6uv1 + 6vu1Hamiltonian 12(u2 + v2)Cosympleti � D3x + 2(uDx +Dxu) 2Dxv + 2vDx2Dxv + 2vDx D3x + 2(uDx +Dxu) �Sympleti � D�1x 00 D�1x �Reursion � D2x + 4u+ 2u1D�1x 4v + 2v1D�1x4v + 2v1D�1x D2x + 4u+ 2u1D�1x �Root � u1v1 �, � v1u1 �Saling � xu1 + 2uxv1 + 2v �9.36 Coupled nonlinear wave system (Ito system)Referene: [Ito82℄, [AF87℄, [Dor93℄ p. 94;System � ut = u3 + 6uu1 + 2vv1vt = 2uv1 + 2u1vHamiltonian u2+v22Cosympleti � D3x + 4uDx + 2u1 2vDx2vDx + 2v1 0 �Sympleti � D�1x 00 D�1x �Reursion � D2x + 4u+ 2u1D�1x 2v2v + 2v1D�1x 0 �Root � u1v1 �Saling � xu1 + 2uxv1 + 2v �9.37 Drinfel'd{Sokolov systemReferene: [G�ok96℄, [G�ok98℄;



System � ut = 3vv1vt = 2v3 + u1v + 2uv1Hamiltonian v22Cosympleti � 2D3x + 2uDx + u1 2vDx + v12vDx + v1 2D3x + 2uDx + u1 �Sympleti � D3x + 52(uDx +Dxu) �15vDx + 152 v1�15vDx � 452 v1 �27D3x � 272 (uDx +Dxu) ��(� 10 �yD�1x � �1�2 �y + � �1�2 �yD�1x � 10 �y)�18� 0v �yD�1x � 0v �y ;Root � u1v1 � ;� utvt � ;� h1h2 �Saling � xu1 + 2uxv1 + 2v ��1 = �u2 � 2u2 + 3v2;�2 = 9v2 + 6uv;h1 = �2u5 � 10uu3 � 25u1u2 + 30vv3 + 45v1v2 � 10u2u1 + 15v2u1 + 30uvv1;h2 = 18v5 + 10vu3 + 35u2v1 + 45u1v2 + 30uv3 + 10uu1v + 10u2v1 + 15v2v1:9.38 Benney systemReferene: [Ben73℄; [AF87℄;System 8<: ut = vv1 + 2Dx(uw)vt = 2u1 +Dx(vw)wt = 2v1 + 2ww1Hamiltonian uw + v22Cosympleti 0� uDx +Dxu vDx wDxDxv 0 2DxDxw 2Dx 0 1ASympleti 0� 0 0 D�1x0 D�1x 0D�1x 0 0 1AReursion 0� w v 2u+ u1D�1x2 0 v + v1D�1x0 2 w + w1D�1x 1ARoot 0� u1v1w1 1ASaling 0� xu1xv1xw1 1A + �0� 3u2vw 1A ;� 2 C



9.39 Dispersive water wave systemReferene: [AF87℄;System 8<: ut = Dx(uw)vt = �v2 + 2Dx(vw) + uu1wt = w2 � 2v1 + 2ww1Hamiltonian vw + u22Cosympleti 0� 0 Dxu 0uDx vDx +Dxv �D2x + wDx0 D2x +Dxw �2Dx 1ASympleti 0� D�1x 0 00 0 D�1x0 D�1x 0 1AReursion 0� 0 0 u+ u1D�1xu �Dx + w 2v + v1D�1x0 �2 Dx + w + w1D�1x 1ARoot 0� u1v1w1 1ASaling 0� xu1 + 32uxv1 + 2vxw1 + w 1AIf u = 0, this system redues to the Broer{Kaup system studied in [G�ok96℄.



Appendix ASome irreduibility results, by F.BeukersThe results in this appendix are obtained by F. Beukers, Mathematial Department,University of Utreht and are published here with his kind permission. They areused in the proof of proposition 7-14.Theorem A-1. Consider the polynomial gk = xk+yk+zk+(�x�y�z)k. Then gkis absolutely irreduible if k is even. When k is odd it fators as (x+y)(x+z)(y+z)hkwhere hk is absolutely irreduible.Proof. Consider the projetive urve C de�ned by gk = 0. Suppose gk = A:B whereA;B are two polynomials of positive degree. Geometrially the urve C now onsistsof two omponents C1; C2 given by A = 0; B = 0 respetively. The urves C1 andC2 interset in at least one point, whih implies that the urve C has a singularity.Let us now determine the singularities of C, i.e., the projetive points (x; y; z)where all partial derivatives of gk vanish. Henekxk�1 � k(�x� y � z)k�1 = 0kyk�1 � k(�x� y � z)k�1 = 0kzk�1 � k(�x� y � z)k�1 = 0:We see that xk�1 = yk�1 = zk�1 = wk�1 where w = �x�y�z. By taking z = 1,say, we an assume that x; y; w are k�1-st roots of unity suh that x+y+w+1 = 0.Note that four omplex numbers of the same absolute value an only add up to zeroif they form the sides of a parallellogram with equal sides. Hene one of the x; y; wis �1 and the others are opposite. Suppose without loss of generality that w = �1and x = �y. If k is even we see that 1 = zk�1 = �(�1) = �wk�1, ontraditingzk�1 = wk�1. Hene C is non-singular if k is even. In partiular C is irreduible inthis ase.Now suppose that k is odd. Then we have 3k � 6 singular points, namely(�;��; 1); (�;�1; 1); (�1; �; 1) where �k�1 = 1. Note that we have a priori 3k � 3singular points, but some of them oinide. Consider suh a singular point, say139



(�;��; 1) We study the singular point loally by introduing the oordinates x =� + u; y = �� + v. Up to 3rd-order terms we �nd the loal equation (�(u+ v)� (u�v))(u+v)+ � � �. Sine the quadrati part fators in two distint fators the singular-ity is simple, i.e., there are two distint tangent lines through the point. Considernow the urves (x + y)(x + z)(y + z) = 0 and hk = 0. These urves interset in3(k � 3) points. Moreover, the �rst urve has 3 singularities. This aounts for the3k� 6 singular points we found. Hene hk = 0 annot have any singular points andin partiular it is irreduible.Theorem A-2. For any positive integer k the polynomial Gk = xk+ yk+ zk+uk+(�x� y � z � u)k is irreduible over C .Proof. Suppose Gk = A:B with A;B polynomials of positive degree. Then theprojetive hypersurfae S given by Gk = 0 onsists of two omponents S1; S2 givenby A = 0; B = 0 respetively. These omponents interset in an in�nite numberof points, whih should all be singularities of S. Thus it suÆes to show that Shas �nitely many singular points. We ompute these singular points by setting thepartial derivatives of Gk equal to zero,kxk�1 � k(�x� y � z � u)k�1 = 0kyk�1 � k(�x� y � z � u)k�1 = 0kzk�1 � k(�x� y � z � u)k�1 = 0kuk�1 � k(�x� y � z � u)k�1 = 0:From these equations follows in partiular that xk�1 = yk�1 = zk�1 = uk�1. Henethe oordinates di�er by a k� 1-st root of unity. In partiular we get �nitely manysingular points.



Appendix BLevi{Civita onnetionsAbstrat B-1. We de�ne the notions of torsion and Levi{Civita onnetion, as-suming the existene of a metri tensor g2 and derive the lassial Bianhi identi-ties. This is to illustrate the use of a omplex that is not formed by antisymmetriohains in Riemannian geometry.We assume X; Y:Z 2 hmR in this appendix.B.1 TorsionDe�nition B-2. Let idhmR 2 C1m(h; hmR;A) be de�ned by idhmR(Y ) = Y: The torsionof a onnetion r0m 2 �0m(h; hmR;A) is d1midhmR , i.e., T : hm+1R ! hmR given byT (X; Y ) = r0m(X)Y �r0m(Y )X � �1m(X)Y:A onnetion r0m is alled �1m-symmetri if its torsion is zero.Proposition B-3. The statements� �1m is antisymmetri.� �1m is 2�1m-symmetri.are equivalent.Proof. Take r0m = �1m and �1m = 2�1m in de�nition B-2. Then0 = �1m(X)Y � �1m(Y )X � 2�1m(X)Y = ��1m(X)Y � �1m(Y )Xand we are done.Proposition B-4. Suppose r0m 2 �0m(h; hmR;A) is �1m-symmetri. ThenC(r0m)(X; Y )Z + C(r0m)(Z;X)Y + C(r0m)(Y; Z)X = C(�1m)(X; Y )Z:141



Proof. We omputeC(r0m)(X; Y )Z + C(r0m)(Z;X)Y + C(r0m)(Y; Z)X == r0m(X)r0m(Y )Z �r0m(Y )r0m(X)Z �r0m(�1m(X)Y )Z+ r0m(Z)r0m(X)Y �r0m(X)r0m(Z)Y �r0m(�1m(Z)X)Y+ r0m(Y )r0m(Z)X �r0m(Z)r0m(Y )X �r0m(�1m(Y )Z)X= r0m(X)�1m(Y )Z �r0m(�1m(Y )Z)X +r0m(Y )�1m(Z)X� r0m(�1m(Z)X)Y +r0m(Z)�1m(X)Y �r0m(�1m(X)Y )Z= �1m(X)�1m(Y )Z � �1m(Y )�1m(X)Z � �1m(�1m(X)Y )Z= C(�1m)(X; Y )Z:This proves the proposition.B.2 The Levi{Civita onnetionAssume that g2 2 C2m(h; V;A) suh that, for r0m 2 �0m(h; V;A),r0m(Z)g2(X; Y ) = g2(��1m(Z)X; Y ) + g2(X; ��1m(Z)Y );where ��1m 2 C1m(h; EndC(hmR);S).Proposition B-5. Then ��1m 2 �1m(h; hmR;A), assuming g2 to be nondegenerate, i.e.,g2(Y;X) = 0 for all Y 2 hmR implies X = 0.Proof. We ompute, for r 2 A,r0m(Z)(r Æ g2(X; Y )) = r Æ r0m(Z)g2(X; Y ) + 0m(Z)(r) Æ g2(X; Y ) == r Æ g2(��1m(Z)X; Y ) + r Æ g2(X; ��1m(Z)Y ) + g2(0m(Z)(r) ÆX; Y )and r0m(Z)g2(r ÆX; Y ) = g2(��1m(Z)(r ÆX); Y ) + g2(r ÆX; ��1m(Z)Y ) == g2(��1m(Z)(r ÆX); Y ) + r Æ g2(X; ��1m(Z)Y ):Sine g2 2 C2m(h; V;A), we have r0m(Z)rg2(X; Y ) = r0m(Z)g2(rX; Y ). It leads to��1m(Z)(r ÆX) = r Æ ��1m(Z)X + 0m(Z)(r) ÆX from the nondegeneray of g2.Proposition B-6. Let ��1m be �1m-symmetri (f. def. B-2). If �1m 2 �1m(h; hmR;A)is an antisymmetri onnetion, then ��1m is an A-linear onnetion. Moreover,d2mg2(X; Y; Z) = 2g2;_(Y; ��1m(Z)X);where g2;_(X; Y ) = 12(g2(X; Y ) + g2(Y;X)) is the symmetri part of g2.



Proof. We know that ��1m is �1m-symmetri. This implies that��1m(X)Y � ��1m(Y )X = �1m(X)Y:The A-linearity of ��1m follows from, for r 2 A,��1m(r ÆX)Y = �1m(r ÆX)Y + ��1m(Y )(r ÆX) == ��1m(Y )(r ÆX) + r Æ ��1m(Y )X + 0m(Y )(r) ÆX= �r Æ �1m(Y )X + r Æ ��1m(Y )X= r Æ ��1m(X)Y :Using formula 3.4.5 we obtaind2mg2(X; Y; Z) == r0m(X)g2(Y; Z)�r0m(Y )g2(X;Z) +r0m(Z)g2(X; Y )� g2(�1m(X)Y; Z)� g2(Y; �1m(X)Z) + g2(X; �1m(Y )Z)= g2(��1m(X)Y; Z) + g2(Y; ��1m(X)Z)� g2(��1m(Y )X;Z)� g2(X; ��1m(Y )Z) + g2(��1m(Z)X; Y ) + g2(X; ��1m(Z)Y )� g2(��1m(X)Y; Z) + g2(��1m(Y )X;Z) + g2(Y; ��1m(Z)X)� g2(Y; ��1m(X)Z) + g2(X; ��1m(Y )Z)� g2(X; ��1m(Z)Y )= g2(Y; ��1m(Z)X) + g2(��1m(Z)X; Y )= 2g2;_(Y; ��1m(Z)X):Thus we prove the proposition.One an turn the above onstrution around:Proposition B-7. Let g2 2 C2m;_(h; V;A) (i.e., g2 = g2;_) be nondegenerate. De�nethe ��1m by 2g2;_(Y; ��1m(Z)X) = d2mg2(X; Y; Z). Then we have��1m(X)Y � ��1m(Y )X = �1m(X)Y;r0m(Z)g2(X; Y ) = g2(��1m(Z)X; Y ) + g2(X; ��1m(Z)Y );where �1m 2 �1m(h; hmR;A) is an antisymmetri onnetion.Proof. We have2g2;_(Y; ��1m(X)Z � ��1m(Z)X)� �1m(X)Z == r0m(Z)g2(Y;X)�r0m(Y )g2(Z;X) +r0m(X)g2(Z; Y )� g2(�1m(Z)Y;X)� g2(Y; �1m(Z)X) + g2(Z; �1m(Y )X)� r0m(X)g2(Y; Z) +r0m(Y )g2(X;Z)�r0m(Z)g2(X; Y )+ g2(�1m(X)Y; Z) + g2(Y; �1m(X)Z)� g2(X; �1m(Y )Z)� 2g2(Y; �1m(X)Z)= 0:



Therefore, ��1m(X)Z � ��1m(Z)X = �1m(X)Z due to the nondegeneray of g2.Notie that 2r0m(Z)g2(X; Y ) = d2mg2(X; Y; Z) + d2mg2(Y;X; Z) when g2 is sym-metri. The seond property follows immediately.By proposition B-5, ��1m is a onnetion. This leads to the following de�nition.De�nition B-8. Let g2 2 C2m;_(h; V;A) be nondegenerate and �1m be an antisym-metri onnetion. Then 2g2(Y; ��1m(Z)X) = d2mg2(X; Y; Z)de�nes a Levi{Civita onnetion ([Ni96℄ p. 120) with the following properties:� ��1m(X)Y � ��1m(Y )X = �1m(X)Y ,� r0m(Z)g2(X; Y ) = g2(��1m(Z)X; Y ) + g2(X; ��1m(Z)Y ).Theorem B-9. The Riemann urvature tensor C(��1m) satis�es the followingidentities1. g2(C(��1m)(X; Y )U; V ) + g2(C(��1m)(Y;X)U; V ) = 0,2. g2(C(��1m)(X; Y )U; V ) + g2(C(��1m)(X; Y )V; U) = C(r0m)(X; Y )g2(U; V ),3. If C(r0m) = C(�1m) = 0, g2(C(��1m)(X; Y )U; V ) = g2(C(��1m)(U; V )X; Y ).Proof. Ad 1: Clearly, C(��1m)(X; Y ) + C(��1m)(Y;X) = 0.Ad 2: It is suÆient to show that g2(C(��1m)(X; Y )U; U) = 0. Sine we haver0m(Z)g2(X;X) = 2g2(��1m(Z)X;X), it follows that2g2(C(��1m)(X; Y )U; U) == 2g2([��1m(X); ��1m(Y )℄U � ��1m(�1m(X)Y )U; U)= 2g2(U; ��1m(X)��1m(Y )U � ��1m(Y )��1m(X)U)�r0m(�1m(X)Y )g2(U; U)= 2r0m(X)g2(U; ��1m(Y )U)� 2g2(��1m(X)U; ��1m(Y )U)� 2r0m(Y )g2(U; ��1m(X)U) + 2g2(��1m(Y )U; ��1m(X)U)�r0m(�1m(X)Y )g2(U; U)= r0m(X)r00(Y )g2(U; U)�r0m(Y )r0m(X)g2(U; U)�r0m(�1m(X)Y )g2(U; U)= C(r0m)(X; Y )g2(U; U):Ad 3: We start by listing the 24 permutations ofR1234 = g2(C(��1m)(X1; X2)X3; X4)and we group these as orbits of yli permutations of the �rst three arguments. Byadding these we obtain 8 relations using proposition B-4. Due to the antisymmetryin the �rst two and the last two arguments this redues to 4 equations. We eliminate



the antisymmetries and write Rij for Rijkl with i < j and k < l. There are 6 ofthese Rij and the obey the following 4 equations.R12 �R13 +R23 = 0R14 +R12 � R24 = 0R34 �R13 +R14 = 0R23 �R24 +R34 = 0:We now introdue �1 = R12 � R34;�2 = R13 � R24;�3 = R14 � R23 and �0 =R24 � R23 � R34. The equations then redue to�1 ��2 = �0�1 +�3 = �0��2 +�3 = �0�0 = 0;and it follows immediately that �i = 0, i = 0; � � � ; 3. This proves the statement. Itfollows that the Rijkl are generated by the two expressions R� = R1234 �R1324.Remark B-10. In the two dimensional situation where one has at every point onlytwo independent elements X1 and X2 in h, this redues to R+ = 2R1221 and R� = 0.In this ase R+ is alled the urvature of g2.





Appendix CExamples of ohomologyomputationsAbstrat C-1. In this appendix we ompute the ohomologies for some onreteexamples, whih are not very important by themselves. They illustrate how om-pliated things an be even in the simplest ases. We also determine the lass ofHamiltonian and sympleti vetor�elds in some ases.In the following setions some examples are given illustrating the abstrat theorydeveloped in hapters 2, 3 and 4.C.1 Hopf �brationThe following example is based on an example in [Ma87℄, appendix A, desribingthe Hopf bundle.We let C = A = R, g = h = C , V = C 2 , 00 = �10 = 0 andr00(x) = � 0 x�x 0 � :Then C(r00)(x; y) = � 0 x�x 0 �� 0 y�y 0 �� � 0 y�y 0 �� 0 x�x 0 �= (x�y � �xy)� 1 00 �1 � :Clearly, the urvature of r01, with r01(x^y) = C(r00)(x; y), is zero. We now omputesome ohomology. First we start with � = � �1�2 � 2 C00 (C ; C 2 ;R). Thend00�(x) = r00(X)� �1�2 � = � 0 x�x 0 �� �1�2 � = � �2x�1�x �= � �2 00 �1 �� x�x � :147



Next, let � 2 C10 (C ; C 2 ;R) be de�ned by�(x) = � �11 �12�21 �22 � :� x�x � = � 0 �12�21 0 �� x�x � + d00� �22�11 � (x):Then d10�(x; y) = r00(x)�(y)�r00(y)�(x)= (x�y � �xy)� �22��11 � :We see that we annot de�ne ohomology here, sine the urvature was not zero.We now repeat this with arguments in C 
R C . Then, with � 2 C01(C ; C 2 ;R) we�nd d01�(x
 y) = r01(x
 y)� = (x�y � �xy)� 1 00 �1 �� �1�2 �= � x �x �� 0 1�1 0 �� y�y �� �1�2 � :We draw the onlusion that H01 (C ; C 2 ;R) = 0. Next, let � 2 C11 (C ; C 2 ;R) bede�ned by � = � �1�2 �,�i(x) = � x �x �� �i11 �i12�i21 �i22 �� y�y � ; i = 1; 2:Thend11�(x
 y; u
 v) = r01(x
 y)�(u
 v)�r01(u
 v)�(x
 y)= (x�y � �xy)� �1��2 � (u
 v)� (u�v � �uv)� �1��2 � (x
 y)= (x�y � �xy)� �111uv + �112u�v + �121�uv + �122�u�v��211uv � �212u�v � �221�uv � �222�u�v �� (u�v � �uv)� �111xy + �112x�y + �121�xy + �122�x�y��211xy � �212x�y � �221�xy � �222�x�y �= (x�y�uv � �xyu�v)� (�121 + �112)�(�212 + �221) �+ ((x�y � �xy)uv � xy(u�v � �uv))� �111��211 �� ((x�y � �xy)�u�v � �x�y(u�v � �uv))� �122��222 � :We draw the onlusion that H11 (C ; C 2 ;R) = 0.



C.2 A very small exampleWe onsider the Lie algebra b+ spanned by the elements h andm, with ommutationrelation �10(h)m = 2m. Let V = R2 and A = R, then a representation is de�ned byr00(h) = � 1 00 �1 � ; r00(m) = � 0 10 0 � :We denote an element X 2 b+ by X = x1h+ x2m.Remark C-2. In general, one an onsider the xi as elements in g?, that is linear C-valued funtionals. This notation enables us to write for instane linear funtionals,i.e., elements in C10 (h; V; C) as endomorphisms of h?.We now ompute the d00y(X) = r00(X)y of an element y = � y1y2 � 2 V :d00� y1y2 � (X) = � x1 x20 �x1 �� y1y2 � = � y1 y2�y2 0 �� x1x2 � :Let �1 2 C10 (b+; V; C) be de�ned by�1(h) = � �111�121 � ; �1(m) = � �211�221 � :Then, for Y = y1h+ y2m,d10�1(X; Y ) = r00(X)�1(Y )�r00(Y )�1(X)� �1(�10(X)Y )= � x1 x20 �x1 �� �111 �211�121 �221 �� y1y2 �� � y1 y20 �y1 �� �111 �211�121 �221 �� x1x2 �� 2� �211�221 � (x1y2 � x2y1)= �� �121 + �2113�221 � (x1y2 � x2y1):We see that Z10 (b+; V; C) = B10(b+; V; C), i.e., H10 (b+; V; C) = 0.? Remark C-3. This does not follow from Whitehead's �rst lemma, sine b+ on-tains the nontrivial ommutative ideal spanned bym, and therefore is not semisimple.Sine an arbitrary element of C20;^(b+; V; C) an be written as(X; Y ) = (x1y2 � x2y1)� 12 � ;and d20 = 0 (sine V3 b+ = 0), we see that B20;^(b+; V; C) = Z20;^(b+; V; C), orH20;^(b+; V; C) = 0. Sine (by a fairly long, but straightforward omputation) we



obtain Z20(b+; V; C) = Z20;^(b+; V; C), the result follows for all !2 2 Z20(b+; V; C) andwe have H20 (b+; V; C) = 0.It follows from an elementary alulation that the Hamiltonian vetor�elds on-sist of the ideal generated by m. The sympleti struture is !2;<m>(X; Y ) =(x1y2 � x2y1)� 10 �. The Hamiltonian of x2m is � �x20 �.We now ompute the sympleti vetor�eld. For X 2 b+, we have(r20(X)!2)(Y; Z) = (y1z2 � y2z1)� �!12x1 + !22x2�3!22x1 � ;where !2(Y; Z) = (y1z2 � y2z1)� !12!22 �. The ondition of sympleti vetor�eldr20(X)!2 = 0 redues to x1 = 0 and !22 = 0. It follows that Sym!2(b+) is alsospanned by m, so that we have Ham!2(b+) = Sym!2(b+). The general theory leadsto exatly the same onlusion, but we have inluded the omputations here as anexample. sympleti formC.3 Same Lie algebra, another representationWe now let V = b+^b+. The representation is the ad2 representation, i.e., r00(X)h^m = �1m(X)h^m+ h ^ �1m(X)m. Take �0 = �10h ^m. Then, with X = x1h+ x2m,d00�0(X) = �10x2�1m(m)h ^m + �10x1h ^ �1m(h)m = 2�10x1h ^m:Next we let �1(X) = (�11x1 + �21x2)h ^m. Thend10�1(X; Y ) = r00(X)�1(Y )�r00(Y )�1(X)� �1(�1m(X)Y ) == (1y1 + 2y2)2x1h ^m� (1x1 + 2x2)2y1h ^m�22(x1y2 � x2y1)h ^m= 0:It follows that H10 (b+; b+ ^ b+; C) is spanned by �1 suh that �1(X) = x2h ^m.An arbitrary element of C2m;^(b+; b+ ^ b+; C) is of the form (X; Y ) = 0(x1y2�x2y1)h^m. Again d20 = 0 sine V3 b+ = 0. Therefore H20;^ is spanned by (X; Y ) =(x1y2 � x2y1)h ^m. The higher ohomology spaes are all zero.C.4 Another small exampleIn this setion we let g = gl(R2) and V = R. As the representation we taker00(X) = tr(X). Sine r00(�10(X)Y ) = 0, this is indeed a representation.Let �0 2 V = C00 (h; V; C). Then d00�0(X) = r00(X)�0 = �0tr(X). Next, let� 2 C10(h; V; C), i.e.,�1(X) = �111 x11 + �121 x12 + �211 x21 + �221 x22;



where X = � x11 x12x21 x22 �. Thend10�1(X; Y ) = r00(X)�1(Y )�r00(Y )�1(X)� �1(�10(X)Y ) == (x11 + x22)(�111 y11 + �121 y12 + �211 y21 + �221 y22)� (�111 x11 + �121 x12 + �211 x21 + �221 x22)(y11 + y22)� �111 (x12y21 � x21y12)� �121 (x11y12 + x12y22 � x12y11 � x22y12)� �211 (x21y11 + x22y21 � x11y21 � x21y22)� �221 (x21y12 � x12y21)= (�111 � �221 )(x22y11 � x11y22 � x12y21 + x21y12)+ 2�121 (x22y12 � x12y22) + 2�211 (x11y21 � x21y11):We see that d10�1 = 0 is equivalent to �1 = d00�111 . In other words, Z10(g; V; C) =B10(g; V; C), i.e., H10 (h; V; C) = 0.? Remark C-4. This is again not following from Whitehead's �rst lemma, sinegl(2;R) is not semisimple, as it is ontaining the ommutative ideal generated by theidentity. But this ideal is equal to the enter z, and has zero intersetion with [g; g℄.Thus one an write g = z� sl(2;R). Therefore one has H10 (h; V; C) = H10 (z; V; C).An again rather extensive omputation shows that one also has H20 (h; V; C) = 0,so that we an write an arbitrary element !2 2 Z20 (g; V; C) as d10�1. We an now askfor whih X 2 g we an write �20(X)d10�1 = d00�0:Sine the representation spae is one dimensional, there is basially only one Hamil-tonian possible, namely 1 (or multiples of 1). Thus one an only hope to �nd for agiven X a sympleti struture d10�1 whih produes X by�20(X)d10�1 = d00�0:We write �20(X)d10�1 = d00�0 in matrix form�20(X)d10�1 = 0BB� �2�211 x21 + (�111 � �221 )x22(�111 � �221 )x21 + 2�121 x222�211 x11 + (�221 � �111 )x12(�221 � �111 )x11 � 2�121 x12 1CCA> = �00BB� 1001 1CCA> :If we let �0 = �4�121 �211 � (�111 � �221 )2, and assume �0 6= 0, then we �ndX = � �(�111 � �221 ) �2�211�2�121 �111 � �221 � :This implies that if tr(X) = 0 and det(X) 6= 0, then X is Hamiltonian. Theourrene of the det is not so strange as it may seem, sine det(X) = tr(^2X).
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Duth Summary { NederlandseSamenvattingHet onderwerp van dit proefshrift is: symmetrie�en en behoudswetten van evolu-tievergelijkingen. Het beantwoord elementaire vragen als:� Waarom is het zo moeilijk om nieuwe integreerbare systemen te vinden d.w.z.systemen die niet al in de hierarhie van een bekend integreerbaar systeemaanwezig zijn.� Behoudenswetten en symmetrie�en komen in hierarhie�en met periodieke gaten.bijvoorbeeld voor de KdV vergelijkingen vindt men alleen symmetrie�en vanoneven orde. Waar komen deze gaten vandaan?Een belanglijke onstrutie, namelijk het "omplex van de formele variationelealulus", waarin alle vershillende objeten voor niet-lineaire evolution systemenworden samengebraht, ligt ten grondslag aan de theorie van gegeneraliseerde sym-metrie�en, behoudswetten en Hamiltoniaanse struturen. In hoofdstuk 2 and 3,bouwen we zo'n omplex, geinspireerd door het werk van Dorfman [Dor93℄. Onsomplex is ehter algemener aangezien de ring die we gebruiken tijdsafhankelijkefunties kan bevatten, en het omplex bestaat uit vormen die niet noodzakelijkantisymmetrish zijn. Verder gebruiken we Leibniz algebra's in plaats van Lie al-gebra's. In dit omplex vindt men al datgeen wat van belang is voor de studievan symmetrie�en en behoudswetten van niet-lineaire evolutievergelijkingen, zoalsosymmetrie�en, reursie operatoren, sympletishe vormen.We bewijzen in paragraaf 2.9 dat het vermoeden, "als een systeem �e�en niet-triviale symmetrie heeft, dan heeft het er oneindig vele", waar is onder zekere teh-nishe ondities. De stelling en het bewijs is pure Lie (of Leibniz) algebra, maarde ondities kunnen geveri�eerd worden door symbolishe methoden, zoals gefor-muleerd in de hoofdstukken 7 en 8 en gebruikmakend van diophantishe benader-ingstheorie.In prinipe kan de methode ook gebruikt worden voor systemen van evolutievergelijkingen, maar tot dusver zijn de ondities van de stelling alleen geveri�eerdvoor �e�en klasse van voorbeelden met behulp van p-adishe analyse [BSW98℄.In hoofdstuk 4 motiveren we de de�nitie van de Nijenhuis operator en leidenwe de voornaamste eigenshappen hiervan af en we formuleren de begrippen vansympletishe en Hamiltoniaanse operatoren in de abstrate ontext waarin we het177



omplex opgezet hebben. We leiden enige van de klassiek bekende eigenshappenen relaties van deze begrippen af.In hoofdstuk 5 passen we de abstrate onepten toe op het omplex van varia-tionele alulus en we geven uitdrukkingen voor diverse soorten van invarianten vande evolutie vergelijking in termen van Fr�ehet afgeleiden. Dit verbindt de abstratebenadering met de meer gebruikelijke de�nities.In hoofdstuk 6 formuleren en bewijzen we vershillende stellingen over de vormvan reursie en Nijenhuis operatoren. Deze resultaten zijn zeer nuttig in berekenin-gen, aangezien zij aangeven hoe men geomplieerde uitdrukkingen in termen vanbekende symmetrie�en en osymmetrie�en kan weergeven. Zij maken ook mogelijkom te onluderen dat onder tamelijk zwakke ondities deze operatoren goed gede-�eerd zijn, dat wil zeggen: ze produeren, beginnend met een gegeven wortel, eenoneindige hierarhie van symmetrie�en. We geven een lijst van voorbeelden waar dezeresultaten worden toegepast.In hoofdstuk 7 introdueren we de symbolishe methode, die ons in staat steltvragen over de oplosbaarheid van niet-lineaire di�erentiaal vergelijkingen te vertalenin vragen over de deelbaarheid van polynomen.In hoofdstuk 8 gebruiken we de symbolishe methode om �-homogenene salairevergelijkingen te klassi�eren. For � > 0 geven we de volledige lijst van 10 inte-greerbare vergelijkingen. Dit bewijs van de klassi�katie stelling geeft het antwoordop de vragen die in het begin gesteld werden.De volledige analyse voor � = 0 wordt gegeven in paragraaf 8.5.1. Het is in-teressant om te zien dat het enige niet-Hamiltoniaanse systeem afgeleid is van dePotential Burgers vergelijking.In hoofdstuk 9 geven we een lijst of 39 integreerbare vergelijkingen, met hunreursie-, sympleti- en osympleti operators, voorzover bekend, en de wortelsvan de symmetrie�en en shalingen. Deze zijn of reeds bekend in de literatuur of zekunnen gevonden worden met onze nieuwe methoden. Met deze informatie kan mende symmetrie�en en osymmetrie�en van iedere gegeven vergelijking berekenen.In de appendies is materiaal verzameld, bestaande uit bewijzen en voorbeelden,dat niet zo goed paste in de tekst, maar toh interessant genoeg leek om hier toe tevoegen.


