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Chapter 1

Introduction and some history

1.1 Some history

There has been a revolution in nonlinear physics over the past twenty
years. Two great discoveries, each of which, incidentally, was made with
the aid of computer experiments, have radically changed the thinking
of scientists about the nature of nonlinearity and introduced two new
theoretical constructs into the field of dynamics. The first of these is the
soliton and the second is the strange attractor [New85].

Developments in the theory of these strange attractors, so-called ”chaos theory”,
gave a gradual clarification of the erratic and unpredictable properties in natural
phenomena. This thesis considers the equally puzzling and almost opposite chal-
lenge: to explain the striking predictability and regularity of the ”soliton solution”,
showing a remarkable survivability under conditions where one might normally ex-
pect such a feature to be destroyed.

We first give a sketch of how the subject began. The purpose is purely motiva-
tional, not to give a historical survey of the field. There are several places in the
literature with eye-witness descriptions such as [vdB78], [Kru78], [EvH81], [New85],
[Kon87], [AC91] and [Pal97]. The following narrative is based mainly on these
sources.

The discovery of the physical soliton is attributed to John Scott Russell’s ob-
servation in 1834: A boat was rapidly drawn along a narrow channel by a pair of
horses. When the boat suddenly stopped before a bridge, the bow wave detached
from the boat and rolled forward with great velocity assuming the form of large soli-
tary elevation, a rounded, smooth and well-defined heap of water, which continued
its course along the channel without change the original form or diminution of the
speed, as observed by Scott Russell who followed on horseback.

Although Scott Russell spent a major part of his professional life carrying out
experiments to determine the properties of the great wave, it is doubtful that he
appreciated their true soliton properties, i.e., the ability of these waves to interact
and come out of these interactions without change of form, as if they were particles.
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Nevertheless, the dash on the horseback exerts a powerful appeal.

The discovery of mathematical soliton started with an investigation of the so-
lutions of nonlinear partial differential equations, such as the work of Boussinesq
and Rayleigh, independently, in the 1870’s.

It was in 1895 that Korteweg and de Vries derived the equation for water waves
in shallow channels, which confirmed the existence of solitary waves. The equation
which now bears their names® is of the form 2

u = ug +uu; (KdV equation). (1.1.1)

This was the first stage of discovery. The primary thrust was to establish the
physical and mathematical existence and robustness of the wave. The discovery of
its additional properties was to await the appearance of computers.

In 1955, Fermi, Pasta and Ulam (FPU) undertook a numerical study of the
one-dimensional anharmonic lattice of equal masses coupled by nonlinear springs.
The computations were carried out on the Maniac I computer. They predicted that
any smooth initial state would eventually reach equilibrium due to the nonlinear
coupling, according to the ergodic hypothesis. Much to their surprise, the energy
recollected after some time in the degree of freedom where it was when the ex-
periment was started. Thus the experiment failed to produce the expected result.
Instead it produced a difficult challenge.

Fortunately, the curious results were not ignored altogether. In 1965, Kruskal
and Zabusky approached the FPU problem from the continuum viewpoint. They
amazingly rederived the KdV equation and found its stable pulse-like waves by
numerical experimentation. A remarkable property of these solitary waves was that
they preserved their shapes and speeds after two of them collide, interact and then
spread apart again. They named such waves solitons.

The discovery by Kruskal and Zabusky attracted the attention and stimulated
the curiosity of many physicists and mathematicians throughout the world. They
took up the intriguing challenge of the analytical understanding of the numerical re-
sults. The stability and particle-like behavior of the solutions could only be explained
by the existence of many conservation laws; this started the search for the conserva-
tion laws for the KdV equation. A conservation law has the form D,U+ D, F = 0; U
is called the conserved density and F' is called conserved flux. The expressions
for the conservation of momentum and energy were classically known:

U2 U2 U2 U3
Dyu — DI(UQ + ?) =0, Dt(?) — Dm(uug — 51 + 3) =0.

Whitham found a third conserved density, which corresponds to Boussinesq’s famous
moment of instability. Zabusky and Kruskal continued searching and found two

! According to R. Pego, in a letter to the Notices of the AMS, 1998, volume 45, number 3, this
equation appears in a footnote of a paper by Boussinesq, Essai sur la théorie des eauzx courantes,
presented in 1872 to the French Academy and published in 1877.

2where u; = %.



more densities of order 2 and 3 (the highest derivative in the expression). Since
they had made an algebraic mistake, they did not find a conserved density of order
4. This caused a delay of more than a year before they went back on the right track.

Kruskal somewhat later asked Miura to search for a conserved density of order
5. Miura found one and then quickly filled in the missing order 4. After the order 6
and 7 were found, Kruskal and Miura were fairly certain that there was an infinite
number. However, Miura was challenged to find the order 8 conserved density since
there were rumors that order 7 was the limit. He did this during a two-week vacation
in the summer of 1966. Later, it was proved that there was indeed a conserved
density of each order [MGKG68]. Moreover, in [SW97b] it is proven that there are no
other conservation laws besides the known conservation laws of the KdV equation.

The existence of an infinite number of conservation laws was an important link in
the chain of discovery. After the search for conserved densities of the KdV equation
(1.1.1), Miura found that the Modified Korteweg—de Vries equation

v, = vg +v?v;  (mKdV) (1.1.2)
also had an infinite number of conserved densities. He showed that
uy — (uz +uuy) = (2v +vV—6D,)(vy — (v3 + v?vy)),

under the transformation v = v? 4 \/—6v;, which now bears his name. Therefore, if
v(x,t) is a solution of (1.1.2), u(z,t) is a solution of (1.1.1). From this observation,
the famous inverse scattering method was developed and the Lax pair was found
[Lax68]. Gardner was the first to notice that the KdV equation could be written
in a Hamiltonian framework. Later, Zakharov and Faddeev showed how this could
be interpreted as a completely integrable Hamiltonian system in the same sense as
finite dimensional integrable Hamiltonian systems [ZF71] where one finds for every
degree of freedom a conserved quantity, the action.

The conserved geometric features of solitons are intimately bound up with no-
tions of symmetry. The symmetry groups of differential equations were first studied
by Sophus Lie. Roughly speaking, a symmetry group of a system consists of those
transformations of the variables which leave the system invariant. In the classical
framework of Lie, these groups consist of only geometric transformations on the
space of independent and dependent variables of the system, the so-called geomet-
ric symmetries. There are four such linear independent symmetries for the KdV
equation, namely arbitrary translations in  and ¢, Galilean boost and scaling.

In 1918, Emmy Noether proved the remarkable theorem giving a one-to-one
correspondence between symmetry groups and conservation laws for the Euler—
Lagrange equations [Noel8]. The question was raised how to explain the infinitely
many conserved densities for the KdV equation. One started to search for the hidden
symmetries, generalized symmetries, which are 'groups’ whose infinitesimal gen-
erators depend not only on the independent and dependent variables of the system,
but also the derivatives of the dependent variables.

In fact, generalized symmetries first appeared in [Noel8|. Somehow, they were
neglected for many years and have since been rediscovered several times. The great



advantage of searching for symmetries is that they can be found by explicit com-
putation. Moreover, the entire procedure is rather mechanical and, indeed, several
symbolic programs have been developed for this task [HZ95], [Her96].

In 1977, Olver provided a method for the construction of infinitely many sym-
metries of evolution equations, originally due to Lenard [GGKMT74]. This is the
recursion operator [Olv77], which maps a symmetry to a new symmetry. For the
KdV equation, a recursion operator is

Rygy = D?E + gu + %ungl.
Here D_ ! stands for the left inverse of D,, so the recursion operator is only defined
on ImD,.

Almost at the same time, Magri studied the connections between conservation
laws and symmetries from the geometric point of view [Mag78]. He observed that
the object of the theory of conservation laws, the gradients of the conserved densi-
ties (covariants), was dual to that of the theory of the symmetries. This problem
required the introduction of a "metric operator”, called symplectic operator if it
maps the symmetries to the cosymmetries, or called Hamiltonian (cosymplec-
tic) operator in the reverse direction. He found that some systems admitted
two distinct but compatible Hamiltonian structures (Hamiltonian pairs). He called
them twofold Hamiltonian system, now called bi-Hamiltonian systems. The KdV
equation is a bi-Hamiltonian system. It can be written

up = Dy (us + %UQ) = (D} + §UD’C + %ul)u,
where these two operators are a Hamiltonian pair.

Actually, the two operators had made their appearance before. Lenard used them
to rederive the KAV hierarchy, infinitely many equations sharing all ¢-independent
conservation laws. Lax also used them to produce infinitely many conservation laws
for the KdV equation [Lax76]. This scheme is now called the Lenard scheme.

There appeared naturally a special kind of operator, called the Nijenhuis or
hereditary operator. The defining relation for this operator was originally found
as a necessary condition for an almost complex structure to be complex, i.e., as an
integrability condition. Its important property is to construct an abelian Lie algebra.
. Precisely speaking, for any given vectorfield @)y leaving the Nijenhuis operator R
invariant, the Q; = R (Qp), 7 = 0,1, -, leave R invariant again and commute in
pairs. This property was independently given by Magri [Mag80] and Fuchssteiner
[Fuc79], where it was called hereditary symmetry. In the paper [GD79], the authors
also introduced Nijenhuis operators, called regular structures.

Interrelations between Hamiltonian pairs and Nijenhuis operators were discov-
ered by Gel'fand & Dorfman [GD79] and Fuchssteiner & Fokas [FF80]|, [FF81].

For example, the recursion operator of the KdV equation

2 1
%Kd\/ = (Di + gqu + gul)D;1



is a Nijenhuis operator and it produced the higher KdV equations,
up =R (uy),j=0,1,---.

This is the KAV hierarchy, which shares infinitely many commuting symmetries
produced by the same recursion operator.

From this point in time on, there has been an explosion of research activity in
algebraic and geometric aspects of nonlinear partial differential systems, both the
applications to concrete physical systems and the development of the theory itself.
See [Oev84], [Zak91], [Olv93], [Dor93] and [FGIE].

There were other important developments in the field, such as inverse scattering
transformation (”S-integrability”), the Hirota method, the Painlevé method and
the theory of ”C-integrability”, linearization of the systems by change of variables.
Since this thesis does not contribute to these aspects, we shall not mention them
any further.

We list the properties of the KdV equation, on which we shall focus:

e It possesses infinitely many conservation laws,
e It possesses infinitely many commuting symmetries,
e It is a bi-Hamiltonian system.

These aspects pertain not only to the KdV equation, but are found for the whole
KdV hierarchy. Such systems are given a special designation, "integrable”, or, more
accurately, ”exactly solvable”.

The above properties are not equivalent. It is known that Burgers’ equation

U = Ug + UUT,

possesses infinitely many symmetries produced by a recursion operator, but it is not a
Hamiltonian system and it has only one nontrivial conservation law. However, it can
be transformed to the exactly solvable heat equation v; = vy by the transformation
u =2

What are the relations among these properties, cf. [Fok87]?7 What kind of
systems are integrable? These questions lead to heated discussions on ”"What is
Integrability”, the title of the book [Zak91].

1.2 Motivation

Despite the rapid development, which was stimulated by the application of soliton
theory, one still finds unanswered questions at a remarkably elementary level.
Basically two kinds of question motivated the present work.

e Why is it that after the initial gold rush it was so difficult to find any new
integrable systems, i.e., systems not already in the hierarchy of some known
integrable system.



e Conservation laws and symmetries come in hierarchies with periodic gaps, like
for the KdV equation one finds only odd order symmetries. Where do these
gaps come from?

As it turned out, these questions are strongly related.

1.3 Summary

Underlying much of the theory of generalized symmetries, conservation laws and
Hamiltonian structures, there is an important construct known as the ”complex
of formal variational calculus”, which presents all different objects for nonlinear
evolution systems as a unified whole. In chapter 2 and 3 of the thesis, we build up
such a complex from a given ring based on Dorfman’s work [Dor93|. However, our
complex is more general since the ring we used can contain t-dependent functions.
To this end we have set up the whole framework using Leibniz algebras in stead
of Lie algebras. In this complex one finds all the important objects in the study
of symmetries and conservation laws, such as cosymmetries, recursion operators,
symplectic forms.

We prove in section 2.9 that the folklore conjecture, ”if a system has one non-
trivial symmetry, it has infinitely many”, is true under certain technical conditions.
The statement and the proof is purely Lie (or Leibniz) algebraic theory, but the
conditions can be checked by symbolic methods, as formulated in chapters 7 and 8
and diophantine approximation theory. The results in this section are essential for
the classification of integrable equations.

In chapter 4 we motivate the definition of the Nijenhuis operator and derive
its main properties and we formulate the notions of symplectic and Hamiltonian
operators in the abstract context which we used to set up the complex. We derive
some of the classical properties and relations of these notions.

In chapter 5 we apply the abstract machinery to the complex of formal variational
calculus and we give expressions for all kinds of invariants of the evolution equation
in terms of Fréchet derivatives. This links the abstract approach to the more usual
definitions.

In chapter 6 we formulate and prove several theorems regarding the form of
recursion and Nijenhuis operators. These results are very useful in computations,
since they allow one to split messy expressions in terms of known symmetries and
cosymmetries. They also allow one to conclude that under rather weak conditions
these operators are well defined, that is: they will, starting from a given root,
produce an infinite hierarchy of symmetries. We give a list of examples where these
results are applied.

In chapter 7 we introduce the symbolic method, which enables us to translate
questions about the integrability of nonlinear differential equations into divisibility
questions of polynomials.

In chapter 8 we use the symbolic method to classify scalar A-homogeneous equa-
tions. For A > 0 we give the complete list of 10 integrable equations. This proof



of the classification theorem gives the answer to the questions in section 1.2. For
A = 0 we give the complete analysis. The result is that the integrable equations turn
out to be Hamiltonian, with the exception of one family deriving from the Potential
Burgers equation.

In chapter 9 we give a list of 39 integrable systems, together with their recursion-,
symplectic- and cosymplectic operators, and the roots of symmetries and scalings.
Either these were known in the literature or they can be found by our new methods.
This information allows one to produce the symmetries and cosymmetries of each
given equation.

In the appendices we collect some material, proofs and examples, which did not
quite fit in the main text, but seemed to be interesting enough to include here.

1.4 Suggestions to the reader

The text goes from the abstract to the concrete. The theoretically inclined reader
can just start at the beginning and read sequentially.

For readers familiar with the standard theory as presented in [Olv93], [Dor93],
whose main interest is in applications, chapter 5 might be a good point to start
reading, since it connects the abstract approach with the standard theory. From here
one can go forward reading either the results on recursion and Nijenhuis operators
in chapter 6 or the classification results in chapters 7 and 8, using the results in
section 2.9. Or one can go backward and read chapter 4, followed by chapters 2 and
3.

For those who consider even this as too theoretical, the examples in 6.3 are
computed in great detail and may be a good starting point. Chapter 9 might be
read as a handbook on integrable evolution equations. If needed, one can then
backtrack.






Chapter 2

Connection and curvature

In this chapter and the next we set up the foundations of the theory of connections,
curvature and cohomology. Although the intention was not to do anything new,
the final result is not quite standard. For that reason all the proofs are explicitly
given, even if they are of a rather mechanical nature. This has the disadvantage of
pages filled with formulae, but the advantage that it can be read easily, since the
computations usually only take one step at a time. There are only a few exceptions
to this rule.

If one wants to restrict to Lie algebras, one substitutes A =C = C, V =V and
g = b, for the connection 7} one reads the adjoint representation and for V3 any
representation. In this case 7, and V7, are zero for m > 0. General sources on
Lie algebra cohomology and related issues are: [Fuk86], [Kos50], [HS53], [God64],
[Kna88], [Lod91], [Pal61], [Mac87], and on the application of Lie symmetries to
differential equations [Dor93], [O1v93], [Oev8&4].

The goal is to built a complex, in which one finds all the important objects
in the study of symmetries and conservation laws, such as cosymmetries, recursion
operators, symplectic forms. In this complex one can define cohomology, which is
used here as a language to separate the trivial from the nontrivial and to motivate
the definition of the Nijenhuis tensor and functionals. We do not use any results
from general cohomology theory, since in the application one is interested in the
individual elements, and their properties are not the subject of the theory. This
implies that all the real problems remain hidden in the cohomology spaces until in
each concrete problem these (or at least some of them) are computed. It is at that
point that one usually has to require more properties from the underlying rings. We
compute some small examples in appendix C.

2.1 Introduction

This chapter gives the abstract material on which we will build the theoretical frame-
work. In section 2.2 the basic definitions are given of rings, modules and derivations.
In section 2.3 we give the basic definitions of Lie and Poisson algebras, which will
serve as a motivation for the later developments. In section 2.4 we construct a Lie
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algebra from a given ring. This is done by first formally defining the space of Kahler
differentials and then considering the dual space, just as one normally defines the
tangent space using the cotangent space. Then we define connections on modules,
generalizing the concept of Lie and Poisson algebra and their representations. This
definition is then naturally lifted to chains and cochains in section 2.6. In sec-
tion 2.7 we define the curvature of a connection, inspired on the definition of the
Riemannian curvature of the Levi-Civita connection. We show that the curvature
is again a connection. Zero curvature is equivalent to the Jacobi identity for Lie
algebras. In section 2.8 we give some elementary examples, based on classical me-
chanics, to illustrate the concepts of connection and curvature. Finally, in section
2.9 we give an implicit function theorem to be used later in our classification of
A-homogeneous equations, cf. chapter 8.

2.2 Rings, modules and derivations

Abstract 2-1. In this section we give the basic definitions for modules over not
necessarily commutative rings and their derivations.

Notation 2-2. We denote by C a commutative ring with unity 1¢ (# Oc, the zero
element), which will be the basic ring in all that follows. The field of invertible
elements in C will be denoted by C*. The reader may think of C as R,C or Q, but
actually not much is needed of C.

Definition 2-3. Let R be a ring with multiplication ur : R X R — R. We say that
V is a left R-module if it is an abelian group with group operation (vy,ve) > v1+uy
and R acts on'V, i.e., there is a map Ar : R x V. — V such that for l1,l; € R and
v, V1,03 €V,

1. )\R(ll+lg,?}) :)\R(ll,’v>+)\7g(lg,’l)).

2. )\R(OR, U) = 0.

3. )\R<1R;U) = 7.

4. )\R(ll,’U1+’U2> :)\R(ll,’l)l)—F)\R(ll,’Ug).

5. )\R(/J,R(ll,l2>,?}) = )\R(ll,)\R(lQ,’U)).
We define a right R-module in the same way, with pr : R x V. — V such that
pr(pr(l1,l2),v) = pr(l2, pr(l,v)). We write Ag(l,v) = lowv, pr(l,v) = vol
and pur(li,la) = (I1ly). When V is both a left and a right R-module, we call it an
R-module. .

When R is commutative, R itself is an R-module.



Notation 2-4. We denote by A a (not necessarily commutative) ring with unity
which is also a C-module. Let in the sequel R be the center of A, i.e.,

R ={re€ Alrs=sr,Vs € A}.
We imbed C in A by Ac(l1,14) and we assume \e(C) C R.

Example 2-5. A typical example would be: Let C be the ring of real valued C*-
functions in t and x and let A be generated by u = u(t, x) and its x-derivatives with
coefficients from C. So we would have sin(t + z)u} € A, where u, stands for g—:.

Definition 2-6. We say that a C-module V is a filtered module if there exist
C-submodules V¥ i =0, 00 such that

e V=vO0 >yl 5...5 V0 o e

e N, VO =o.
Definition 2-7. Let V and W be filtered modules. We say that ¢ : V x W — W
defines a filtered action of V on W if (V@O W) c Wi+,

Definition 2-8. We call two C-modules V and V' a direct pair, if V' is a direct
summand of V. We denote the retract by my : V — V. When V is an A-module,
we denote this by (V, V) 4.

Remark 2-9. If in the direct pair (V,V) 4, the module V is zero, some care should
be taken with the definitions in the sequel, but we will not mention this again.

Notation 2-10. Let VW be C-modules and Home(V, W) be the space of C-linear
transformations of V to W. We write Ende(V) for Home(V, V). If (V, V)4 is
a direct pair, we denote by Endy (V) those C-linear homomorphisms that leave V
mnvariant.

If V is an A-module, then End:(V) is automatically also a left A-module, with
(rB)v =r(Bv) forr € A, veV, B € Endc(V).

Definition 2-11. Let V be a A-module. The map 0 : A — V is a derivation if it
satisfies the Leibniz rule

oua(f,9) = Aalf,0(g)) + palg,0(f)), f.g€A

We say that 0 is C-linear if it is a map of C-modules. The space Der¢(A,V) of
all C-linear derivations A — V is naturally a left R-module, with the left action
defined by

foigm fld(g) eV, feRgeA

We write Derc(A) for Dere(A, A).
Remark 2-12. We write 1 =14 = 1. Since
0(1) = a(MA(la 1)) = )‘C(laa<1)) + /OC(LD<1)) = 20<1):

we have 9(1) = 0. It follows that 9(a) = 0(Ac(1,a)) = pe(a,0(1)) = pe(a,0) =0 for
a € C due to the C-linearity of 0.



2.3 Representations of Lie algebras

Abstract 2-13. In this section we introduce Lie algebras, Poisson algebras and
their representations. This motivates the definition of connection in section 2.5.

Definition 2-14. We say that a C-module g is a Lie algebra if there exists a
C-bilinear operation [, |: g X g — g, called Lie bracket, satisfying

[X,Y] ==Y, X] (antisymmetry),
(X, [Y, Z]| + [V, [Z, X]||+ [Z,[X,Y]] =0 (Jacobi identity),
where X,Y, Z € g.

Definition 2-15. If g = A, then g is called o Poisson algebra, if it is a Lie
algebra and

[p,rq) =rlp,q] + [p,7]q,Yp,q, 7 € A, (Leibniz rule),

Example 2-16. Endc(V) is a Lie algebra with Lie bracket [A,B] = AB — BA.
This construction works for any associative algebra.

Definition 2-17. A representation of a Lie algebra is a C-linear homomor-
phism of Lie algebras V) : g — Ende(V), i.e., VJ([X,Y]) = [VJ(X), V(Y] =
Vo(X)VE(Y) = V3 (Y) V(X))

Definition 2-18. If, moreover, V is a left A-module and there exists a representa-
tion vy of g in Derc(A), such that

VYX)(row) = 1o V(X)u+ X)) ov, reAveV,X €g,
then V§ is called an A-representation (cf. definition 2-28).

For any X;, X, € g, we denote the map Xy — [X;, X5] by ad(X;). Then
ad : g — Endc(g) is a homomorphism of Lie algebras due to the Jacobi identity,
called the adjoint representation of g.

Definition 2-19. Let (g, h) 4 be a direct pair and b be an ideal of Lie algebra g, i.e.,
[g,h] C h. We say that g is an A-Lie algebra if the adjoint representation ad is
an A-representation on b.

Definition 2-20. When there erists a representation V) : g — Endc(V), we call
V a (left) g-module.

Definition 2-21. We say that Lie algebra g is a graded Lie algebra if there exist
C-submodules gV, i € 7 such that

e 9=Dicz g,
o g%, g C gt

Definition 2-22. We say that a filtered module | is a filtered Lie algebra if ad is
a filtered action, i.e., [*), 0] C §5+0 where the §{*) k =0,---, 00 are submodules.

If we have a graded Lie algebra g = @,y g, we can view it as a filtered Lie
algebra by putting j) = @,_; gV,



2.4 Lie algebra of a ring

Abstract 2-23. In this section we show that we can construct a Lie algebra given a
ring. If one thinks of the ring as the ring of functions on a manifold, the construction
18 analogous to the construction of the tangent space as the dual of the cotangent
space. The construction is standard and closely follows [Eis95], except for the fact
that we do not require A to be commutative.

The reader who identifies C and A can skip this section altogether. We denote
the product xy as (zy) if this improves the readability.

Definition 2-24. The space of Kahler differentials of A over C, written Qit/c’
is the A-module generated by the set {d(f)|f € A} subject to the relations

dzy) = zod(y)+d(z)oy, z,y€ A, (Leibniz rule) (2.4.1)
dleiz + cy) = cd(z) +cd(y), ci,00 €C. (2.4.2)

Often one writes dz for d(z).

The map d : A — Qit/c’ defined by d : x — dx is a C-linear derivation. The
map d has, by its definition, the following universal property: given any A-module
V and C-linear derivation o : A — V, there is an unique A-linear homomorphism
X: 9}4/0 — V such that 0 = Xd.

d
A

ase

o T

v

Indeed, X is defined by the formula X (dy) = dy. One sees that X is an A-linear
homomorphism (by construction) since the relations among the dy are also satisfied
by the dy:

X(zxodyoz) = X(zxody)oz=z0X(dy)oz=x00yoz
(Xd)(zy) = day) =z 0d(y) +0(z) oy
X(d(zy)) = X(zody)+ X(dxoy)=z0X(dy)+ X(dzx)oy
= zod(y)+0(z)oy.

We may consider the construction of Qit/c as a linearization of the construction of
derivations. It is therefore the simpler object to work with.

If A is generated (as a ring) by elements z,, then Q}at/c is generated as an A-
module by the elements dzx,. For example, if ¢ = p(xq,- -, z,) is a polynomial in the
z, with coefficients in C, then using the Leibniz rule we show that dg = >"_, g—id:m.



We now consider the case V = A. Let 91,05 € Derc(A). Then the Lie bracket
[01,02] = 0102 — 0204
is again an element of Derc¢(A):

[01,0:](2zy) = 0102(zy) — 0204 (2y)
= 01(z009(y) + 02(z) 0y) — 2(z 001 (y) + 01(z) 0 y)
= 01(z002(y)) +0:1(02(x) 0 y) — Va2 001 (y)) — 22(01(2)y)
= z001(02(y)) + 01(x) 0 02(y) + 01 (02(x)) 0 y + 22(z) 0 01 (y)
—03(z) 0 01(y) — 0 02(01(y)) — 02(01(x)) 0y — 01(x) 0 0a(y)
= z0[01,0)(y) + [01,0:](z) 0y
By the universal property of d : A — Qit/c’ the maps 04, 0, [01, 0] must be of the
form Xd,Yd, Zd, respectively, for A-module homomorphisms X,Y, Z : QY ajc = A.

Clearly
[01,02] = 0109 — 0201 = XdYd — YdXd = (XdY —YdX)d,

so one might guess that Z = XdY — YdX. But this does not work, since the right
hand side is not a homomorphism of A-modules. Indeed,

Z(xody) = XdY(xody) —YdX(xody) =
= Xd(zoY(dy)) —Yd(x o X(dy))
= X(zodY(dy)) + X(dzoY(dy)) —Y(dxo X(dy)) — Y (xodX(dy))
— o X(dYV(dy)) + (X(d)Y (dy)) — (¥ (de) X (dy)) — 7 0 Y (dX (dy))
= woZ(dy) + (X(dz)Y(dy)) — (Y (dz) X (dy)).

So we have an obstruction of the form (X (dz)Y (dy)) — (Y (dz)X (dy)). To compen-
sate for this obstruction, let

w(X,Y)(z,y) = (X(dz)Y (dy)) — (Y(dz)X (dy)).
We define

(X, Y|(xodyoz)=XdY(xodyoz)—YdX(xzodyoz)
+zow(X,Y)(y,2) —w(X,Y)(z,y) o 2.

Then it follows that

[X,Y](z odyoz)
= XdY( odyoz)— YdX(xodyoz)—I—xow(X,Y)(y,z)—w(X,Y)(x,y)oz
= Xd(a(Y (dy)2)) — Yi(a(X(dy)2)) + 7 0 w(X, V), ) — (X, V)(z,) 0 2
= (X(dz)Y(dy))oz+x 0o Xd(Y(dy))oz+zo (Y(dy)X(dz))
(Y(dz)X(dy)) oz —xoYdX(dy) oz —xo (X(dy)Y(dz))
w(X,Y)(y,2) —w(X,Y)(z,y) 0z
X, Y](dy) o 2.

X O
X O



We show that [,] defines a Lie bracket on g = HomA(Qil/c,A). Let X,Y, 7 €
HomA(Qh/C,A). Antisymmetry being obvious, we prove the Jacobi identity. It
suffices to prove the identity on the generators dy.

(XY, 21 + 12, [X Y] + [V, [Z, XT]) (dy)
= (Xd[Y, Z] - [V, Z)dX + Zd|X,Y]
—[X,Y]dZ +Yd|Z, X]| - [Z, X]dY) (dy)
= (Xd(YdZ — 2dY) — (YdZ — ZdY)dX + Zd(XdY — YdX)
—(XdY — YdX)dZ + Yd(ZdX — XdZ) — (ZdX — XdZ)dY') (dy)
= 0.
If A is commutative, Der¢(A) is an A-module, and this induces an action of A on
g. Indeed, r o X is defined by the formula r o X(dy) = r o dy. The Lie bracket
is not A-linear, but defines an A-Lie algebra (cf. definition 2-19). We have, with
W(X)=Xdand X,Y € ¢
[X,roY]|(dy) = Xd(roY(dy))—roYdX(dy)
= (X(dr)Y(dy)) +roXdY (dy) —r o YdX (dy)
= Xd(r)oY(dy)+ro[X,Y](dy)
= r[X,Y](dy) + 7% (X)(r)Y (dy).

Proposition 2-25. Assume that ¢ : A — A’ is a ring homomorphism. Then there
exists an unique Lie algebra homomorphism

0" HomA(Qh/C,A) — HomA/(QiV/C,, A).
Proof. First we construct the map ¢* with the help of the following diagram:

Px

Q}‘l/c Q}4’/C’

dl | X % dl |p*X
AP Ly
Given ¢ : A — A, we define ¢’ : A — Q}ct'/c' by ¢' = d'¢. The map d has, by the
definition, the following universal property: There exists a unique map ¢, : Qh/c —

9}4'/0' such that ¢,d = ¢'. This means that p,(z odyoz) = ¢(x) o d'¢(y) o p(z).
Therefore ¢*X can be defined on Im ¢, by (p*X)p, = ¢X. We have p*Xp,d =
o X =*Xdp = pXd.

First we check that ¢*X is an A’-linear homomorphism.

¢ Xpu(zodyoz) =
= " X(p(x)odp(y)oe(z))



= ¢X(zxodyoz)

= ¢(zroXdyo2)

= ¢(x) o pXdyoy(2)

= ¢(@) 0" Xd'p(y) o p(2).

We check such ¢* is a Lie algebra homomorphism. For any r € A and X,Y €
HomA(Qh/c, A), we have

(" [X, Y)d'o(r) = o([X, Y]dr) =
= p(XdY(dr)) — p(YdX(dr)
(" X)d (Y (dr)) — (¢*Y)d (X (dr))
= (¢ X)d'(¢*Y)d'o(r) — (¢*Y)d (¢*X)d'p(r)
= [ X, @"Y]d'o(r),

and this proves the statement. O

In chapter 3, we will be assuming the existence of g and the maps X,Y will be
written there as (f(X),:4(Y), where X,Y € g, cf. definition 3-8.

The reader should realize that although the constructions given here seem to be
of a very general nature, this does not imply that they always lead to useful results.
This depends on the existence of derivations on the ring (cf. [Lod91], E.1.3.5). But
in chapter 5 we will see that they apply in a natural way to the complex of formal
variational calculus.

2.5 Connections

Abstract 2-26. In this section we introduce connections and their elementary prop-
erties.

We assume (V, V)4, (W, W)4 and (g,h)4 to be a direct pairs.

Definition 2-27. We define b% = b and, for m > 0, hm+1 = hrRr bR and g = g,

gl = g @c g, We consider b3 as an A-module by the action of A on the last

component. Of course, when R = A, this is compatible with the usual action of A
on the tensor product over A.

Definition 2-28. Suppose there exists a v, : g¢' — Endc(A). We say that V;, :
g7t — Endy (V) is a connection of g on V with anchor 72, if

Vn(X)(lov) =10 Vi (X)v+ (X)) ov, lEAVEY,

and we write V5, € 't (g, V, A). A connection V!, is said to be A-linear if
Ve (rY)=rVe (Y) forY € b and r € A.

Remark 2-29. e The terminology anchor is introduced in [Mac87].



e Compare this with the definition of an A-representation.

o [f here V! (X) is only defined on V', it can easily be extended by using the
projection of V on V to a connection on V.

e The defining property of a connection only reflects its behavior on V.
e I'? (g,V, A) is a left A-module since (1o V? ) (X)v=10V? (X)v.

* Remark 2-30. Similar definitions in the literature usually assume gg' to be a Lie
algebra and 7 a representation. This makes it possible to define a connection in
terms of extensions of Lie algebras and clearly state the obstructions to the existence
of connections. In the present approach one could do similar things if one already
has a connection on hz' and wishes to define a ’compatible’ connection on V, cf.
[Hue90], [KT71].

We will not always mention the anchor, but assume that for all connections
in T'* there is one and the same 2. If one sees I'? (g,V,C), then the anchor is
automatically zero, since Derc(C) = 0 (cf. proposition 2-31).

Proposition 2-31. IfV: €T (g,V,A) then 72 (X) € Derc(A).
Proof. An immediate consequence of definition 2-28 is that

Ve (X)((hla) ov) = (lils) o Vi, (X)v +%(X)(lils) o v
and

Vi (X)((hlz) ov) = V3 (X)(li o l2 0 0)
= LoVn(X)(aov) + (X)) olyov
ll Ol2 oV (X)’U+ ll O’ym<X)(l2) ov +"}/21(X)<ll) Ol2 oV
= (lil2) o V3, (X)v + (hym(X)(12)) 0 v+ (7, (X) (1)12) 0 0.
It follows that
V(X)) () = (L (X) (12)) + (3 (X) (1)12),
i.e., 72 (X) € Der¢(A). But we can also write this as
Tm(X) (L0 1) = 1 0 7, (X)(la) + 1 (X) (1) 0 by,
and conclude that 72 € T'® (g, A, A), where 4 is the left action of A into itself. O
Notice that if V¢, e T'*(g,V,.A) and V* e T (g,V, A) then V¢, = V* +V* €
Tr.(g,V, A), with anchor 7)), = 3, + 75,
Proof.
(Ve, + Ve ) (X)(lov) = Ve (X)(lov)+ Ve (X)(low)
= LoV, (X)o+40, (X)) ov+1o Vi (X)v+7),(X) (1) ov
= Lo (V, + Vi) (X)v+ (Gp + 30 (X) (1) o v,

This proves the statement. O



Besides adding two connections, one can also multiply them.
Definition 2-32. Consider W @z V as a left A-module by defining
ro(w®grv)=w®grouv, r €A

Assume that V5, € T (g,V,A) and Ve € Tt (g, W, A). We define the product
Ve RV by

VRV (X)(w@rv) = Ve (X)w g v+w g Ve, (X)v.
Proposition 2-33. One has V&, RVS € T* (g, W @ V, A).
Proof. Indeed,

VRV (X)ro (w®gv) =
= ?' XV (X * (X)) (w®grow)
)
)

wRrTov+wRr Ve (X)rouv

(X
(X)w@rrov+w®rroVe (X)v+wdg % (X)(r)owv
(Vi (X)w @z v+ w @r Vi, (X)) + 70 (X)(r) o w @r v
o (Vo,RV:)(X)(w @z v) +12(X)(r) o w @r v.

.
m
o
m
ro

This show that we have indeed a connection. O

Remark 2-34. The definition of connection is a special case of this product under
the identification V = AR V. One has Ve, 0l g = A407° XV  where M g(r@v) =
rouv, as usual.

m?’

Proposition 2-35. Any connection V3, € T7}.(g,V, A) induces an adjoint con-
nection V? € I'? (g, Endc(V),.A) by

V! (X)B=V*(X)B—- BV (X), BeEnde(V).
Proof. Indeed, for v € V,

Ve (X)rBv =V (X)rBv — rBV?, (X)v
rV* (X)Bv +~° (X)(r)Bv — rBV® (X )v
= 1V}, (X)Buv+ 15, (X)(r)Bo,

and we have shown that it is well defined. O

Remark 2-36. V! itself is also a connection on Endc (V') since we have (V3, B)v =
Ve .(Bv) forv eV and B € Endc(V).



2.6 Connections on chains and cochains

Abstract 2-37. In this section we introduce chains and cochains and show how to
mnduce connections to them.

Definition 2-38. R-linear n-tensors of h%; are called n-chains and their space is
denoted by Q7 bg.

Remark 2-39. Notice that Qp b% = ?zmn h. This makes sense as long as 2™n s
an integer.

Definition 2-40. If a direct pair (V, V)4 = (g%, bi).4 in definition 2-28, we write
the connection as mr}, € T} (g, b%, A). Then we inductively define the connection w7,
on n-chains by ittt =l Ral  with « € T7 (g9, Q% b, A).

Proposition 2-41. 77, € I'? (g, Q% bR, A).

Proof. This follows immediately from proposition 2-33. O

n

Remark 2-42. Whenever we have an expression like m, (or Vi, see definition 2-
51) the lower index m will indicate the basic gg'. We call 2™ the word size in the
expression, where we think of individual elements in g as bits. The upper index then
indicates the total number of words that the expression acts on. This total number
will be of the form &, € N[%] For instance if m has an argument of the form X;® X,

X1, X, € g and acts on Z € b, we write 7T1%(X1 ® Xo)Z. This means that the word
size is 2'. In any expression the number m should be the same everywhere; in an
equality it may be different in the left and right hand side. Clearly, if the group size
is halved (m + 1+ m), the number of groups doubles (n — 2n).

Definition 2-43. We call 7}, € T} (g,h%, A) an antisymmetric connection if
7T},1<X1>X2 + 7T7£,L(X2>X1 =0 fO’/' all Xl,XQ S g?

Remark 2-44. Notice that an A-linear antisymmetric connection necessarily has
78 = 0, so the two properties are rather incompatible. This explains why Lie brackets
and connections (the last are always supposed to be A-linear in the literature) are
never treated within one framework.

Definition 2-45. Suppose 7}, € T} (g, b%, A). We say that a an m-ideal in g is
if Tl (X)Y €aforall X € gi',Y € aC g

Definition 2-46. Let a be an m-ideal. We say that a is an abelian ideal if
o ﬂ}n(Zl)ZQ = O,VZl,Zg € a,
o T ()X + 7L (X)Z=0,VZ €a,X € gl

This definition is motivated by the kind of expressions one obtains when one tries
to imitate the construction of a central extension for modules with connection.



Definition 2-47. Let 3 = {X, € " : 7} (X1) X2 =0, VX, € gl'}. We say that 3
is the center of gi'. For a given subset € C g3 we define the centralizer gi" as

{Xegl:ml(Z)X =0, VZet}.
Example 2-48. Assume A to be commutative. Suppose we have
% € To(b, A, A).

Using ) we construct ny € TL(b @ b, b, A), where b is the Lie algebra of A.
Since v3(X) € Derc(A) for any X € b, this induces (cf. section 2.4) an element
in the Lie algebra b of A, which we denote by X, such that v3(X) = Xd. This

element induces an action of b on'Y € b as follows: 7y(X)Y = [X,Y]. One has
7 (X)rY = [X,rY] = r[X, Y]+ 13(X)(r)Y.
We can now define a connection nj € TL (b b, h,A) by
T X +YYW+2Z)=[X+Y, W+ Z],
with X, W € b,Y,Z €b. In fact,

Wé(X +Y)rZ = [X' +Y,rZ) =
= r[X4Y, 2]+ (X +Y)d(r)Z
= el (X +Y)Z+AAX +Y)(r)Z,

where 39(X +Y) = (X +Y)d = 23(X) + Yd. This will be used in chapter 5.

Definition 2-49. Let C°(h,V,—) = V, the space of 0-cochains. For n > 0 we
define C7,(h,V,CA*) as the space of C-linear maps of @ b5 to V which are A-
linear in their last k variables, similarly called n-cochains (or n-forms) of hl.
The extremal cases are CA® = C and CA™ = A. We use the notation S = CAF
if we do not want to specify k. Observe that if (V,V)4 is a direct pair, so is

Remark 2-50. If a cochain is not A-linear we may as well allow its arguments to
be in gg'. In order not to make the notation any heavier, we will not do this here.

Definition 2-51. If V = C°(h,V,—) in definition 2-28, we write the connection
V0 eT? (g,V, A). Given a V?, and ], € T} (g, b, A), we define V", by

(Vi (X)wn) (V) = Vi (X) (wa(Y)) = wa(m, (X)), 0 > 0, (2.6.1)
with X € g7, Y € Q% bR and w, € CIL(h,V,S).
Remark 2-52. e Notice V2 =12 if V= A.

e When the space of 0-cochains is b, we use VO € TP (g,b%,A) and 7}, €
T} (g, b5, A) to distinguish the actions on the cochains and chains.



* Remark 2-53. When w, defines a geometric structure, e.q., withn = 2 one might
think of a Lie bracket, a symplectic form or a Riemannian metric, then one says that
VO is a Lie-, symplectic- or Riemannian connection, respectively, if V" (X)w, = 0
for all X € gp.

Proposition 2-54. V! € I'" (g,C"(h,V,S), A), which stands for the space of con-
nections: gg — Endg’r’l"(h’v’s)(cg(h, V,8)) with anchor ~2,.

Proof. Let r € A, X € g0". Y € Q% bp, w, € C(h,V,S). Then
V(X)) (rwn) (V) = Vo (X)rwa(Y) = rwn(m, (X)Y)
= 1V (X)wa(Y) + 9 (X) (r)wn (V) = rwn (1, (X) (V)
= V(X)) (W) (Y) + 7 (X) (M)wa(Y).
This proves the proposition. O

Proposition 2-55. If w, € C/(h,V,CA), then Vi (X)w, € Cp(h,V,CA) for all
X egp andn €N,

Proof. For any Y € @7 b7 and r € A, we have

(V"( Jwn) (1Y)
= Vi (X)wa(rY) = wa(m, (X)rY)

= V(X)) (rwa(Y)) = wa(mp, (X)rY)
= 1V (X) (@ (Y)) + 1 (X) (N)wn (V) = wi (r, (X)Y + 75 (X) (1)Y)
= 1V (X)(wa(Y)) = rwn (7, (X)Y)
= (V5 (X)wn)(Y).
This proves the proposition. O

2.7 Curvature

Abstract 2-56. In this section we define the notion of curvature of a connection
and use it to define representations.

Definition 2-57. Given V:, € I(g,V,A) and 7}, € T! (g,b%, A), define for
Xy, Xy € gf, C(V:,), the curvature of V3, by,

C(V) (X1, Xo) = Vi, (X1) Vi (Xo) — Vi (10, (X1) Xa), (2.7.1)

with @;n the adjoint connection of V? as in proposition 2-35. When the curvature
is zero, we say that we have a flat connection. When C(V},)(X,Y) = 0 for all
X e gp,Y € b, we say that V;, is an almost flat connection.

When C(V?,) = 0, one has V¢, (7} (X1)Xs) = [Ve,(X1), Ve, (X2)]. This gives the
ordinary Lie bracket of endomorphisms (cf. example 2-16), that is, one represents
! in End} (V).

m



Example 2-58. If the curvature of w), equals zero, 7} (X1) Xy + 7} (Xo) X, is an
element of 3, the center of gg', for any X1, Xy € g¢', since we have

( (Xl)XQ + 7T (XQ)Xl) = C( )(Xl,XQ) + C( )(XQ,Xl) =0.

Example 2-59. We compute the curvature of the adjoint connection (as defined in
2-85) and show that it is the adjoint of the curvature. Let B € Ende (V). Then

(v )( Y)B = V5, (X)V;,(Y)B ~ V' m(V)Vi(X)B =V, (m,,(X)Y) B

= VL(X)(VLY)B = BVL(Y)) = VLY )(V,(X)B - BV, (X))

~ Vh(m,(X)Y)B

= V' m(X)VL()B = V5, (Y)BVL(X) = VL (X)BVL,(Y) + BV, (Y) V5, (X)
= Vo()(V5L(X)B = BV, (X)) + (V,,(X)B = BV, (X))V,,(Y)

— Vi(mn(X)Y)B + BV}, (7, (X)Y)

= V)X
(

= C(V5,

)

Y)B - BC(V},)(X,Y)
Y)B.

)

Definition 2-60. We say that V;, € T} (g,V, A) is an m-representation of g¢' if
its curvature is almost flat, and V s called o left gi'-module.

Definition 2-61. If 7! € T (g, b7, A) is flat, we say that g is a Leibniz alge-
bra.

Proposition 2-62. Let 7} be a flat antisymmetric connection g — Endg(g). Then
we can define a Lie bracket on g by

[Xl,XQ} = Wé(Xl)XQ.
If moreover g = b = A, then this defines a Poisson algebra on A, with ©j = ~7).

Proof. Antisymmetry being clear from the definition, we check the Jacobi identity
first.

(X1, [Xo, X]] + [Xo, [X3, Xu]] + [ X5, [ X3, Xo]] =
7o (X 1) (X2) Xa 4 70 (Xo) w5 (Xa) X1 4 70 (Xg) 5 (X1) X
— 70 (g (X2) X3) X1 + 70 (Xo)mp(X3) X1 — g (X3) 75 (X2) Xy
= C(my) (X, X3) X,
= 0.
In the case g = h = A, the Leibniz rule follows from ~{(q)r = [¢, ] and

b, 7q] = 5 (p)rg = v (P)a + o (p)(r)g = r[p, q] + [p, 7]g,

and this proves the statement. O



Corollary 2-63. If g7 is a Leibniz algebra and 7\ is antisymmetric, then g&' is an
A-Lie algebra. O

Proposition 2-64. For V*, €' (g,V, A) and Ve, € T'* (g, W, A) one has
C(V:RV:) =C(Ve,)RC(V?,).
Proof. Let X, Xo € g@',v € V,w € W. Then

C(V RV ) (X1, Xs) (v @ w) =
= VIRV (X)VeRVS (Xo)(v @ w) — VRV (X,) Ve RV (X)) (v @ w)
— VLRV (nh (X)) Xy) (v @ w)
= VRV (X)(Ve(X2)v @ w)+ VRV (X)) (v Ve (Xy)w)
Ve RV (X5)(Ve (X)) @ w) — VSRV (Xy) (v e Ve, (X))w)
Vi (10 (X1) Xa)v @ w — v @ Vi, (w3, (X1) Xo)w
Ve (X1)Ve (Xo)v @ w4+ Ve (X))o @ VE (Xo)w — Ve (X)) Ve (X))o @ w
Ve (X))o @ Ve (X w + Ve, (Xo)v @ Vm(Xl)w + 0@ Ve (X)Ve (Xo)w
Ve (X1)v @ Vi, (Xo)w — v @ V3, (X)) Vi, (X1)w — V3, (1, (X1) Xa)v @ w
v @ Vi, (1), (X1) Xo)w
Ve (X)Ve (Xp)v@w — Ve (Xo) Ve (X))v@w— Ve (1l (X)) Xe)v @ w
+ v VLX)V (Xo)w — v @ Ve (X)) Ve (X)w —v @ Ve, (7 (X)) Xo)w
= C(V5) (X1, Xo)o @ w+v @ C(V5,) (X1, Xo)w
= C(V:)(X1, Xo)RC(Ve) (X1, Xs) (v w).

This shows that the curvature behaves naturally with respect to products of con-
nections. O

Corollary 2-65. The curvature of a connection with anchor 7% is a connection
with anchor C(72)).

Remark 2-66. Compare this with theorem 2.15 in [Hue90], relating this construc-
tion to the Picard group Pic(A).

Remark 2-67. In the literature one usually takes wk, to be the adjoint representa-
tion. Its curvature is zero by the Jacobi identity, and therefore its anchor 72, is also
flat, i.e., C(72) = 0. This implies that the curvature is a tensor. This was the
original motivation for the definition of the curvature in Riemannian geometry.

Proof. ' This follows immediately from proposition 2-64 with
C(V5.) = C(V5R,) = C(V},)KC (7).

This tells us that C(72,) is the anchor of C(V¢,) if 72, is the anchor of V?,. O
LOf corollary 2-65.




We show that curvature is compatible with the definitions using the following
diagram.

. Definition ~~"=  Definition "
ﬂ-m 7Tm) vm m
C c| |C C
crl) Definition C(xmY, C(V0) De finition (v )
N—— ——

Due to proposition 2-64, it is obvious for chains. For cochains, we prove the
following lemma.

Lemma 2-68. The V7, is well defined and does not depend on the way in which it
s obtained from the diagram.

Proof. Let X1, X5 € g2, Y € Q% b% and w, € C(h,V,S). Then

(C(V3) (X1, X2)wn) (V) = Vi (X0) Vi (X2)wa (V) = Vi (3, (X1) Xa)wn (V) =
= V(X)) Vi (X2)wa (V) = Vi (Xa)wa (17,(X1)Y) = V3, (X2) V7 (X1 )wn (V)

+ Vi(X)wa(m (X2)Y) = Vi, (70 (X0) Xa)wn (V) + wa (1, (7, (X1) X2)Y)
= V(X)) V0, (X2)wa (Y) = Vo, (X1 )wn (17, (X2)Y) = Vo (Xo)wn (17, (X1)Y)
+ wa(m, (Xa) 17 (X0)Y) = Vi, (X) Vi (X1 )wa (V) + Vi (Ko )wn (17, (X1)Y)
+ Vv, (Xl)wn( m(X2)Y) = wn(m, (X0) 77, (X2)Y) = Vi (7, (X1) Ko )wn (V)
+ wa(my, (1, (X1)X2)Y)
= V(X)) Vi (X2)wn (Y) = Vi (X2) Vi (X1)wa (V) = Vi, (75, (X1) Xo)wn (V)
+ wa(m, (X2) T (X1)Y) = wn (1, (X0, (X2)Y) + wa (7, (7, (K1) X2)Y)
= C(VD,) (X1, X5)wn (Y) — wa(C(m,) (X1, X2)Y).
This proves the lemma. O

Corollary 2-69. If 7 is a representation, then 7" are representations for all n.
If, moreover, V. is a representation, so are the V™ .

2.8 Some examples

Abstract 2-70. In this section we give two examples, inspired on the classical me-
chanics of finite dimensional systems.

Example 2-71. Let C = R and let A be the ring of C*®-functions from R into
z'tself Then (lhlo)(z) = l1(x)ly(x). Let V = A and let g = b be the operators of type
f(z ) —, with f € A, and [, o f(. )3i = ll(.)f(.)i. Put, with o, B € C,

df2 0 o

(fl )ana fla—a—ﬁ—fQ



and

0 oh
(S — i

Then 3 € T3(h, A, A) and 7y € Ti(h, b, A).
Proof. We check

and
M aroha = af(srhtro g on
Mt At e
= rom (o b+ R ) (r) o
Clearly 7} is A-linear if 8 = 0. O

We now compute the curvature of m,.

CR) o fo) oo

ox
0 0 0 0 0 0
= l(fa )7 l(fa >f8_ Wé(f?%)”é(fl%)]%%
6 6 0
6f3 0% f, o
< — B ox f) oz

1, 0f1 0
(8~ (L fo ) o
It follows that ) is a O-representation, iff a = 3. In this case it is also antisym-
metric, so it defines a Lie bracket, which of course is the familiar Lie bracket of
vectorfields on the real line.
The curvature of Y8 is given by

COR) (e oo >—
= 'Yo(fl )70(f2 ) ’Yo(fQ )70(f1 ) ’Yo(”o(f )f2 )
= BV~ (o) mflaaf?a)w (%fz )

= a(f - )%fQ



Example 2-72. Let C = R and let A be the ring of C®-functions from R? into
R and B be the ring of C*®-functions from R into itself. Let V = A and let g
be the operators of type a(t)e + f(t,x)L, with o € B, f € A and b those of type
f(t,x) L. We seethat g is an B-module and b is an A-module. Put~§(a2+f2)h =

oz
a%—l— %. We check
0 0 or 0s 87“ 0s
70(ag+f )Sza(at +T§)+f( T@)
0 0
= %(ag+fax)(7")5+7“%(a§+f£)(5)-

We now define my € [y(g, b, A) b

., 0 0 0 8h oh Bf 0

7r0(0454']” )(ﬁa"‘h%)_( f—x— %)5-

Notice that if we define % = Wé(% + fa%), this gives us exactly the notation as it is
used in classical mechanics.

We check
0 0 0 8rh orh 6f 0
1.9 9 _ orh

molagr + fgprhay =g + g — e )5

or oh 6h of. 0

= (aah+0zra+f—h fr— —rha)a

0 6 8 0
_ 10 = . . _ _

If we now compute its curvature, we see that

0 0 0
C — —) =0.
() aa+ [ go)
Therefore, 7y is almost flat. But it is not flat and not antisymmetric on g. It
induces a Lie algebra structure on .

2.9 An implicit function theorem

Abstract 2-73. We prove an implicit function theorem, stating that one only has
to solve a problem up to a certain order to know that the solution exists and the
computation will converge (in the filtration topology) to this solution. We use this
theorem in our classification of scalar A\-homogeneous equations (cf. chapter 8),
but it could also be used for the classification of other objects like cosymmetries or
recursion operators.

Let a Leibniz algebra gZ* and a left g*-module V' be filtered. We assume that

m and V?, are filtered actions. For simplification, we write g*(¥ as ggﬁ?.



Definition 2-74. We call V2, (S%), S° € 952) relatively [-prime with respect to
Ve (K%, K° e o if Ve (S99 € Im Ve (K°)  (mod VUTV), then it implies that
v € Im Ve, (K)|pw (mod VUY) for all j > 1 and v/ € VU,

Definition 2-75. We call V¢, (K°), K° € 952), nonlinear injective if for all v' €
70,150, V* (KO0l € T = of ¢ P+,

The following theorem states that under certain technical conditions the exis-
tence of a symmetry of an equation, i.e., an S such that 7! (K)S = 0 for given
K € gS,‘P, is enough to show finite determinacy, i.e., from a finite order computa-
tion one can conclude the existence of a solution of the equation V3, (K)Q = 0. The
technical conditions look strange, but are perfectly natural in at least one important
class of equations, cf. remark 2-78.

Theorem 2-76. Let Ki,Si € g, i = 0,1. Put K = K*+ K! and S = S° + S.
Suppose that

o 7L (K)S =0,

o V (K) is nonlinear injective,

o V° (SY) is relatively | + 1-prime with respect to Ve, (K°) (this implies S # K ),
and there exists some Q e VO sych that

o V2 (K)Q e VY and V2 (S)Q € VI,

Then there exists a unique Q = Q + Q' Q" € VWD such that Ve (K)Q =
Vi (8)Q = 0.

Remark 2-77. In the envisioned applications QQ will be explicitly computable, re-
flecting the fact that e.q., the symmetries of the Korteweg-de Vries equation are all
polynomial. If this is not the case, the convergence is in the filtration topology.

* Remark 2-78. If one thinks of the application of this theorem to the computation
of symmetries of evolution equations, with m =0, V =g, and 7} = ad, the adjoint
action given by the Lie bracket, then this proves (at least up till the existence of
Q) the long held belief that one nontrivial symmetry S of the equation K is enough
for integrability. With such a strong result one has to inspect the conditions. The
strangest of these seems to be the relative prime condition. In chapter 7, however,
we show that for scalar equations with linear part u; = u, any symmetry S starting
with ug, s # 1, k, satisfies the conditions of the theorem with | = 1.

*x Remark 2-79. Although the V2, (K)-invariant Q and the ) (K)-invariant S are
completely unrelated in theorem 2-76, we later on use the result in a context where
Q 18 directly derived from S, and one can think of this as a way to generate the
hierarchy in which S is contained, with QQ as an arbitrary element of this hierarchy.
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Proposition 2-80. V;n(S)Q c VD) 4 v (9)Q € V¥ and Ve, (K)Q € V+

under the conditions of theorem 2-76,

Proof. We use the fact that V;, is a flat connection.

~

Vi (K°)V5.(5)Q =
= Vi (mh(K°)S)Q + Ve, (S)Vi,(K")Q
= —V5(m(K")8)Q = Vi, (S)Vi(K')Q  (mod V1)
= —V(KHYV2(S)Q (mod VD)
= 0 (mod V*+),

By the nonlinear injectiveness of V* (K°) we have that V* (S)Q e V*+1), O

Proof. 2 We prove by induction on p that V;n(S)Q ceV® forp<i+1. Forp=1
this is true by assumption. Suppose it is true for all p < ¢ < [ + 1. Then the
conditions of proposition 2-80 are satisfied. This implies that V*,(S)Q € V@D, Tt
follows that V? (S)Q € V{+D),

Next we suppose that @ satisfies the conditions V ' (K
V@), p>1. We know that for p =1+ 1 we cantake@

)Q € VI and V;,(5)Q €
Q. We find

V(KO V3(8)Q — Va(S") V3, (K)Q = ~
= (VoK) = Va(K)V(8)Q — (V3(S) — Vi (8) Ve (K)Q

= V(b (K)S)Q ~ Vi(K)Va($)Q + Vi(SHVi(K)Q
= VL(EYVL(S)Q + Vi (S)Va(K)Q € VO,

Since V»,(S°) is relatively | + 1-prime with respect to V; (K"), we see that
Ve, (K)Q € Im Ve, (K°). So we can (uniquely up to VP terms because V* (K°)
is nonlinear injective) define Q? € V() by

Vi (K")QF = =V, (K)Q.

We then automatically have V¢ (K)(Q + QP) € VPt That V* (S)(Q + Q) €
V®+1) then follows from proposition 2-80. Therefore there exists a convergent (in
the filtration topology) sequence with limit @ = Q+ Zp 141 QP such that Y;n(K)Q
and V3, (S)Q vanish. Uniqueness follows from the assumption that (2, V) = 0.
This proves the statement. O

20f theorem 2-76



Chapter 3

Construction of a complex

We first give the abstract definitions of precomplex, complex and cohomology. We
then show that the cochain spaces form a precomplex and, when the curvature
is almost flat, an m-complex. Once this is done, we start working towards the
applications by introducing the reduction procedure, Fréchet and Lie derivatives
Fréchet derivative and conjugate and adjoint operators.

Apparently the first to notice (in January 1989) that the construction of a com-
plex can be lifted from the antisymmetric case to the general case was Loday (c.f.
[Lod91], Chapter 10), who speaks of a simple, but striking result. In the present
construction, which is based on an exercise in Bourbaki [Bou68], one does not even
have to change the definition of the coboundary operator.

3.1 Introduction

In section 3.2 we define a precomplex and a complex, and then we introduce co-
homology spaces. Our next goal is to show in section 3.3 that the cochains form
a precomplex, and, when the connection is almost flat, a complex. In section 3.4
we derive explicit formulae for the coboundary operator, which are useful to an-
swer symmetry and A-linearity questions. The A-linearity is treated in section 3.5,
where it is shown that under certain technical conditions A-linearity in the last
two variables is preserved under the coboundary operator. The antisymmetric case
is treated in section 3.6. We show that antisymmetric cochains are mapped onto
themselves by the coboundary operator if the connection is A-linear. In section 3.7
we collect all the previous results and show that we now have a number of different
complexes. We now turn more into the applied direction, but we try to formulate
everything in the abstract context. In section 3.8 we describe the reduction pro-
cedure which allows us to define functionals and D,-commuting vectorfields later
on in chapter 5 on the complex of formal variational calculus. Next we define in
section 3.9 the Fréchet derivative and derive some of its properties. This connects
the abstract coboundary operator approach with the usual variational calculus in
terms of Fréchet derivatives. We are then in a position to define the Lie derivative
in section 3.10. Finally we define conjugate and adjoint operators in section 3.11.
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3.2 Complex and cohomology

Abstract 3-1. We give the definitions of precomplex, m-complex and its cohomol-
0gy.

Definition 3-2. Suppose one has
o 1 €T0.(8. A A),
o 7, €I,.(a.b%,A),
and a collection of
o A-modules Q..
e maps i : b — Home(Q0, Q27N n>1,
e maps d", € Home(QR,, QnrL),
e connections V2, € T (g, Q" A),
such that
1o (Y)VL(X) = VEH(X)in (V) = =i (1, (X)Y), X € g2, Y € bR,
2. VL (V) = mH (YV)dn + dnhn (V), Y € b,

Then we say that the QF, form a precomplex over a direct pair (g2, h'5).4 with ring

A.

Definition 3-3. A precomplez is called an m-complex if, moreover, for some m,
1. the V7 are m-representations,
2. Vi (X)dp, = di, Vi (X), X € g2,
3. drdit=0.

Once the maps d”, € Home(Q",, Q") are given for all n, we define the following
spaces:

Definition 3-4. let the space of n-cocycles (or closed n-forms) Z7 (Q°) be de-
fined as Kerd}, and the space of n-coboundaries (or exact n-forms) B}, (Q*) as
Imdrt.

If d" d™~' = 0, the cohomologies can be defined as usual:
Definition 3-5. The n'®-cohomology module is H"(Q*) = Z"(Q*)/B2(Q°).

Proposition 3-6. Assume that H. (Q*) = H’(Q*) = {0}. Then, d.,w; = 0 and
VI (X)w =0 for X € g7 and wy € Q' if and only if there exists a unique wy € Q°
such that d° wo = wi and V° (X)wy = 0.



Proof. Take w; € Q' with d} w; = 0 and V) (X)w; = 0 for some X € gZ'. Since
H} () = 0, there exists a unique wy € Q° such that d® wy = wy. From the definition
of m-complex, we have

0= VL (X)wr = VL (X)d% wo = d°. V0 (X ). (3.2.1)
So VY (X)we = 0 due to HY(2*) = 0. Uniqueness follows from the fact that
H? (Q*) = 0.

In the other direction we define w; = d°wy. Then dtw; = dbd’w, = 0 and
VL (X)w, = VL (X)d%wy = d% V0 (X)we = 0. O

3.3 The coboundary operator

Abstract 3-7. This section gives the definition of the coboundary operator dy, for
the n-cochains C™ (h,V,S), and shows that d",d" ' = 0 when the connections are
representations.

Definition 3-8. Let (™': b — Home(Cnt'(h,V,S),CL(h,V,S)) be defined by
(tm (V)wn1)(Z2) = wain (Y @ Z), (3.3.1)

wheren > 0,Y € b, Z € @ b and w1 € CT(H, V,S).

Remark 3-9. mYehg ker(:™(Y)) = 0.

Remark 3-10. By pulling out the first argument we preserve A-linearity of the last
k arguments, with S = CA*.

* Remark 3-11. In the literature one sometimes finds different definitions. The
reason for this is that one views the cochains as a representation space of (a sub-
group of ) the permutation group of n elements acting on Q7 hx. The most common
example s the alternating representation in the case of Lie algebra cohomology the-
ory. Another class is the alternating representation of Z/n giving rise to cyclic
cohomology. With the present definition we include the first example, but exclude

the second.

Lemma 3-12. One has, with X € gZ',Y € b,

i (V)VE(X) = V(X (V) = =i, (m, (X)Y). (3.3.2)

m m

Notice that the right hand side makes sense, since 7! is a connection and there-
fore 7! (X) leaves hlr invariant.

Proof. ! For any w, € C™(h,V,S), X € g2,V € b7, and Z € @™ ' b7, we have

(e V)V (X wn = Vi (X i, (V)wn) (Z)

m

1Of lemma 3-12.



=( m(X)wn) (Y @ Z) = Vo (X) 5, (V)wn(Z) + i, (Y)wn (7, 1 (X) Z)

Jwn) )
= Va(X)(wn(Y ® Z)) — wn(m,(X)(Y @ Z))
= V(X)) (V)wa(2)) + wn (Y @ 171 (X) Z)
= —wn(w}n(X)Y R7Z) —wa(Y @7 Y X)Z) + wp (Y @ 7% HX)2Z)
= i (T (X)Y )wn(2), (3.3.3)
and this proves the statement. O

Lemma 3-13. There exist a unique coboundary operator d, satisfying
b (V)dy, + dnm i (V) = VIL(Y), Y € b, (3.3.4)
where m,n € N, and d* € Home(C" (h,V,CA*), C™F1(h,V,CA¥)), with k < n.

Proof. We prove it by induction on n. For n = 0, Y € b3, the formula reads
o (V) = 15, (V) dpwo = V3, (Y)wy

If we have dP, uniquely deﬁned for all p < n, then d% follows from (3.3.4).
Its uniqueness follows from the fact that for any é™*! satisfying (3.3.4), we have
(dntl — 6 w1 € Ker 2 (Y) for all Y € b7 (since d?, = 7). This implies
dil = ontt =0, 0

Example 3-14. We continue example 2-71. Take V = b in definition 2-49 and let
VY =my. We see that

And we have
ot <f§>d1d“h§; -
= Ao (T o) — bl )k
_ vg(f%) OB T R PR e
— dlogo )5

o 0d.,0
= (505 )

Proposition 3-15. Let 0" (X) = VY X)d" — d* V" (X). Then
(V)0 (X) + 07, (X, (V) = C(V)(X,Y)
for X € git, Y € b%.



Proof. Using lemma 3-12 and lemma 3-13, we have

)0 (X) + 057 ()i (1) =
= V)V (X0, — d V()

+
a3
33
s
S8
3:

- (X)),

m

)
(Y)
i (T (X)Y)dy, — 1 (V) V7 (X))

= V(X)) (Y)dy, — ™~ tm
+ VLX) dy e, (V) = di e, (V)VE (X)) = diy oy (7, (X)Y)
= V() (e (YV)dy, +di e, (V)
(i (Y )dy, + dy e (V) Vi (X)
— dy N (T (X) )— (T (X)Y)d,
= V5,()V5(Y) = VL)V (X) = Vi (7, (X)Y)
= C(Vo)(X,Y),
and this proves the statement. O

Corollary 3-16. If V° and 7}, are representations, then

Vi (X)dy, = dp, Vi (X), X € gf.
Proof. For X € g, Y € b, we have 1] (V)02 (X) =C(V?)(X,Y) = 0. Therefore,
6° (X) € Ker ¢} (Y). This implies 6% (X) = 0. Since C(V%)(X,Y) = 0 for all n, we
obtain that 0" (X) = 0 by induction and prove the statement. O
Notice that, for Y € b7,

(V) = Vi (V) — Vi (V) =
(2 ) o i (V) — i i (V) + i, (V)
= ), - (V)

and 0% (V) = 2,(Y)d! d°. We know that if V® and 7! are representations, the V?,
are representations for all n by corollary 2-69. This leads to

Corollary 3-17. If V® and 7| are representations, then d™'d" =0 and

Vi (X)dy, = d, V3L (X), X € gg"

3.4 Explicit formulae of d,

Abstract 3-18. In this section we give explicit formulae for the coboundary oper-
ator. In the literature this is often the way the operator is defined. These formulae
are handy to have in studying its (lack of ) A-linearity.

We first give some notational conventions that we need later.



Notation 3-19. o forY;ebR,g=1,---.neN, 1< <k<n,let

a" = Vi@ @Y,

P = Y0 0Ya0Yime--aY,,

I V@Y, 107, ®--- Y, 10,11 ®---RY,,
oy = Vi@ Y @Y Yo @7, (V)Y @ Vi - @ Y,
= (Yan) e (1),

2
I

2
o
I

where ® stands for Qx.

e The span of all Y1 A...\Y,, the antisymmetric n-chains, is denoted A}, b'g,
and the span of all symmetric n-chains by \/7%h7%.

Proposition 3-20. We can express V" in terms of V?, as follows:

n+1

I ( n+1>vn< ) v (le Lm n+1 me n+1 (3.4.1)

Proof. We prove this by induction on n. For n = 1, it is implied by the recursion
relation (3.3.2). Assuming its truth for n — 1, we compute

i (@Y (V1) =

= 1 (Ys1) - 1 (YV2) Vi (V1)

= 1 (Vo) i (Y3) (Vi (Y1) e, (Ya) — o (m,, (Y1) Y2))
= (@) Ve (V)i (Ya) = e (afi3))

= Vo (V)m(apt) =Y b (O ) = tm (i)

= V2 (YD) im(afth) — Z Lm(aﬁﬁ}l),

1=2
and this proves the statement. O

Proposition 3-21. We can express d”, in terms of V° as follows:

n+1 n+1
(@, = S (1 (vﬂ Vo (™) — zbmwm).
=1 k=Il+1

Proof. For n = 0 the expression reduces to t,,(a!)dd, = 1L (Y1)d2, = V2.(Y1) which
is the formula (3.3.4) when n = 0. Assuming the formula to be true for n, we prove
it for n + 1.

Lm(Oén+2)dn+1 _
= (a7 (V)"

m



= i ( n+2)(vn+1( ) dn n+1(YI))

n—+2

= V2 (VD) im(aft?) ZLm ﬁJ’lQ

n+2 n+2
+ S (T - 3 i)
1=2 k=l+1
n+2 n+2
N (vﬂ i)omaf) - zbmmgm).
=1 k=Il+1
The statement follows by induction. O

We write out explicitly d°,,d. and d?,, which are used later.

m’'m

tm(a)dy, = Vo, (Y1),

tm(@®)d,, = Y (1) (W)im(af) — tm(afi 2)

= Vo.(Y1)iy,(Ya) = V), (Ya)e,, (Y1) = 1y, (7, (Y1)Y2),  (3.4.2)
(@), = Y (~1) <V?n(Yz)Lm(af’)— > Lm(aﬁm}))

= V?n(ﬁ)am(a‘rf)—Lm(afLﬂ) Lm(a[31,3})

= Vi (Y2)tm(03) = tm(afy.z) + Vi (Y3)tm (03)

= V(Y1) (Y3)i7, (Ya) = V3, (Ya) 13, (V) 17, (Y1)

+ Vi (¥a) 1 (Y2) i, (V1) = 43 (Ya) 13, (7, (Y1) Y2)

= (T (V1) Y3)1, (V2) + 1, (73, (Y2) Y3) 17, (Y1), (3.4.3)

Let d}, act on w; € CL(h,V,S). (3.4.2) becomes

(dmen) (Y1, V2) = Vo (V)wi (Va) = Vi (Ya)wr (V1) — wi(m, (V1)Y2). (3.4.4)

If 7}, is antisymmetric, we see by interchanging Y; and Y; that d}, maps C} (h,V,S)
into C2 ,(h,V,S), where we indicate by the A that we consider antisymmetric
cochains here. Similarly we use o to denote cyclic cochains and V for symmet-
ric cochains. E.g., when w, (Y, -, V) = (=1)""w,(V,,Y1,---, Y, 1), with Y; € b,
then w, € Cg,(h,V,S).

Example 3-22. We can consider V3, as an element in C). (h, Endc(V),S). From
remark 2-36, we know V3, € T2 (g, Endc(V),A). Take it as the connection on
0-cochains Endc(V'). Then

(), V5,) (Y1, 12)

V(Y1) V5 (V) = V3, (Y2) V3, (V1) = V3, (7 (V1)Y2)) = C(V},) (13, Y2),
In other words, C(V?,) € Bl (b, Ende(V),S). We see that V2, is closed if V2, is an
m-representation. Moreover, V?, is exact, since d°jidy = V..



Example 3-23. Take V. € T* (g, Ende(V), A) as defined in proposition 2-85 as
the connection on 0-cochains Endc(V'). One has, with ci;’l the coboundary induced
by @”m and T}

C(Vi) = d¥V3 = [V5, V.
where, as usual, [V?,, Ve (Y1,Ys) =V (Y1)Ve (Ya) =V, (Y2) Ve, (Y1). This formula
appears in physical literature (cf. [GSW88]) as expressing the gauge field strength
C(V:,) in terms of the gauge field V3, .

Proof. Let Y7,Y5 € h%3. Then

dl Ve (Y1, Vy) =
= Vo (Y)Vo(Ya) — Vi (Ya) Ve (Y1) — Vo, (1), (Y1) Ya)
= 2(V:,(Y1)V:,(Y2) = Vo, (Y2) Ve, (Y1) = Vo, (7, (Y1) Y5)
= C(V;,)(Y1,Y3) + [V, Vo 1(Y1,Y2).

The formula is now proved. O

Example 3-24. We continue example 3-14. Assume that o = 3 = 1. Let the space
of 0-cochains be V = C®(R,R). If VY(f2)h = f22 h eV, and wi(f2) = 24,
wy € C§(h,V,C), then

0 0
d(l)m(fa,ga)
0 0 0 0 0 0
= Vg(f@)m(g%) - vg(Q%)“ﬂ(f@) - Wl(ﬁ%(f@)g%)

_ P9 OF P —a5)
ox3 ox3 ox?
090°f _ 01

dx dx2 Oz 0x?
Similarly, let d?, act on wy € C2(h,V,S). (3.4.3) becomes

(dznw2)<}/la }/25 1/3)
= Vo (YD)ws(Ya, Y3) = V5, (Ya)wa (Y1, Ya) + V7, (Ya)ws (Y1, Y2)
wa (T (Y1)Ya, Y3) — wa (Yo, 7y, (Y1) Y3) + wa (Y1, 7, (Y2)Y3).  (3.4.5)

Example 3-25. Take V*, € T'* (g, Ende(V), A) as defined in proposition 2-35 as
the connection on 0-cochains Endc(V'). One has

d2,C(V3,) (Y1, V2, Y3) = = V3, (C(m},) (Y1, V2)V3).

This is the Bianchi identity. In particular, C(V},) is closed when g3 is a Leibniz
algebra. We prove it as follows.

d2.C(V2) (Y1, Yy, V) =



= VL)C(V5) (Y, Ys) = V3 (V2)C(V) (Y1, Y2) + V3, (V3)C (V) (1, V2)

- C(VL)(WL(K)YQ,YQ—C(V;)(Yz,WL(K)Yz)+C(V:n)(Y1,7T3n(Y2)Y3)

= VL(M)V5L(Y2) V7, (Ys) — V5, (Y1) V7, (Y3) V7, (Y2) — V?n(YQV' (M (Y2)Y3)
Vi (Y2) V5, (Y3) V5, (Y1) + V3, (Y3) V5, (Y2) V3, (V1) + V3 (m, (Y2)Y3)V' (Y1)

— Vo(Y2)Vi, (V) V5 (Ys) + V3 (Y2) V3, (Y3) V7, (Y1) +V' (YQ)V‘ (7 (Y1)Y3)

+ VL)V (V) V5, (Y2) = V5 (Y3) V3, (V1) V3 (Y2) — Vi (7, (Y1)Y3)V° (¥2)

+ VL (V) VL (M) V5, (12) = V5 (V) V5, (V2) V5, (V) = V5 (Yg)V°( m(Y1)Y2)

- VnL.(V)VL(Y2) V), (Ys) + V5, (V2) V3, (V1) V5L (Ys) + V3, (7, (Y1) Y2) V3, (V3)

= V(1 (Y1)Y2)V3,(Y3) + V3, (Y3) V5, (71, (Y1) Y2) + V3, (7, (7 1(Y1)Y2)Y3)

- V() (7, (Y1)Y3) + V5, (Wil(Yl)Ya)V;q(E)JrV' (T (Y2) T, (V1) Y3)

+ V()Y (m (V2)Y3) = V3 (7, (Y2) V) V3, (V1) = V3, (7, (Y1), (V2)Y3)

= =V (C(ry) (Y1, Y2)Y3)

Proposition 3-26. Let 7, be antisymmetric. Then d.,C?, (h,V,C) C C}, ,(h,V,C).

Proof. We show that (d?,w)(Y7, Y, Y3) is invariant under a generator of the group
of cyclic transformations.

(d2ws) (Y1, Yo, Y3) — (d2,wo) (Y3, Y1, o) =

= Vi (V)wa (Y2, ¥3) = Vi, (Va)wa (V1 V3) + V,, (Va)wn (Y1, Y2)

+ Vo (V)ws (Y3, V) = Vi, (Ya)wa(¥3, Y1) — Vy, (V3)wn (Y3, 12)

+ wa (Y1, my, (Y2)Y3) — wo(Yo, 7, (Y1)Y3) — wo(my, (11)Y2, Y3)

+ wa (Y, my, (V3)Y2) + wa(my, (Ya) V1, V) — wa (Y3, m,, (V1)Y2)

= V(Y1) (w2(Y2, Y3) +w2(Y3,Y2)) V. (YQ)(UJQ(Yl,Y:s) +wa (Y3, 11))

+ wa(V1, 70, (Y2) Y3) + 70, (V3)Y2) + wa(y, (Y3) Y7 + 7y, (Y1) Y3, Y2)

= 0,
since the 2-forms are antisymmetric. O
Proposition 3-27. Let 7., be antisymmetric. Then d;,C?, \(h,V,C) C C}, ,(h,V,C).

Proof. First we show that (d? ws)(Y1, Y, Y3) is invariant under the exchange of V)
and Y5.
(d2,w2) (Y1, Y2, Y3) + (dhws) (Ya, Y1, Y3) =

= Vo (V)ws (Y2, V3) = Vi (Ya)wa (Y1, ¥3) + V5, (Va)wn (V1. 12)

— Vo (Y)wa (Y2, Y3) + V7, (Ya)wa (Y1, ¥3) + V5, (Ya)wa(Y2, 1)

— w7 (Y1)Y2, ¥3) — wa(Ya, 7y, (Y1)Y3) + wa(Y1, 7, (¥2) Y3)

— almn 035 Y9) (Y, 7, (7)75) —walYi, 7, 05)7)

= Vo (¥3)(wa(Y1,Y2) 4 wa (Y2, Y1) — wa(m, (Y1)Ya + m,, (Y2) Y1, Y3)

= 0,
using the antisymmetry of both 7} and ws. Together with proposition 3-26 this
proves the proposition for the generators of the symmetric group. O



We generalize this proposition from d2, to d”, in proposition 3-38.

*x Remark 3-28. In the formula for d? ws one recognizes the Christoffel symbols
of the first kind

{ ikj ]ZVWM(YMJ—V&<Yk>wz<m,1@>+V&<n>w2<m,m.

If wy € CF (0, V,S), one finds that

U I I
k - k :
Here we compute some simple cohomologies for the concrete cochain spaces Q2 =
Cr (h,V,S) and write the cohomology H (2*) as H(h,V,S).

x Remark 3-29. Let § be a Lie algebra, w} the adjoint representation, wy its Killing
form and V{ the trivial representation. Then wy is invariant under Vi due to its
associativity, i.e., wa([Y1,Ya],Y3) = wo (Y7, [V2,Y3]). We see that d3ws(Y1,Ys, Y3) =
wo (Y7, [Ya, Y3)). If b is semisimple, this gives us a nontrivial element in H&A(h, C,C),
the usual (cf. [Car36]) counterexample to what otherwise might have been called
Whitehead’s third lemma. One has to check that it is in the kernel of d3, but in our
case this is trivial since d3d3 = 0.

Example 3-30. H (h,V,.S) = Z°(h,V,S) for any V, since B’ (h,V,S) = 0 by
convention. Since C° (h,V,—) = V, one has (dd,v)(Y) = V2 (Y)v. Therefore,
HO (h,V,8) = VY, the subspace of invariants in V under V?,.

3.5 A-linearity

Abstract 3-31. In this section we show that under certain conditions d,, preserves
A-linearity in the last component(s).

Proposition 3-32. Assume that w, € C(h,V,CA) and V2 | is A-linear. Then
A € CL' (B, V,CA).

Proof. Using proposition 3-21, for r € A we have

(dwn) (Y1, -+, mYop) =

~

= (_]‘>l+1v2n(y2)wn(}/17”'7}/27"'aTYn—I—1)
=1

!
+ (=1)"V2 (rYo )wn (Y1, -+, Yy)

— (_1)z+1 Z W (Y, Yy, o (Y)Y, 1Y)

=1 k=Il+1



=1

- TZ( 1)l+1 Z wn(}/la ayia ,’ﬂ'm(YE)Yk, aYn—l—l)
=1 k=Il+1

- TZ l+1 ';Y/Ea" 57T7171<Y2)Yn+1)

- Z( 1>l+179n(Y)<T>wn<lea T YE: T Yn+1)
=1
= r(dnmwn)(}/i’ T Yn-l-l)'
This proves the statement. O

Corollary 3-33. If d} w, is antisymmetric or symmetric, this implies that d}w, €
C&T/\l(hava A) or C”H(h V, A), respectively.

Notice that d}, maps C},(h,V, A) into C7, ,(h,V,CA). So, we have d,,C, (h,V, A) C
0731,/\([% ‘/a "4)

Proposition 3-34. Ifw, € C(h,V,CA?), VO |b% is A-linear, and w}, is antisym-
metric, then d%w, € Cmt(h, V,CA?).

Proof. From proposition 3-21, for r € A we have

(dn Wn (lea Tt aTYna Yn+1> -

,_.

= <_1)l+1v2n<m)wn<}/la"'a%;"';ryn;YnJrl)

=1

~

+ ( 1) VO ( n+l)wn<}/la" YnflaTYn)
+ (_1)n+lvg1(ryn>wn(y'h Ty Ynfla Yn+1)
n—1 n—1
_ (—1)H+! Z wa(Yi, -, Yy, - ol (Y)Y, 7Y, Yiyd)
=1 k=l+1
n—1
o Z(—l)”lwn(Yh.-.,YE, TYn:ﬂ-m(Y>Yn+1>
=1
n—1

- Z<_1)l+lwn(}/la"'a%;"' Yn 1,7 m<Y>TYn;Yn+1)

=1



- (_1)n+1wn(y'1, T Ynfla 7r’r1n<TYn>Yn+1)
n+1

- TZ l+1v0 wn(lei'“aYEa"';YnaYan)

n+1
- T Z(_1>l+l Z wn<lea T YE: T W;(YDYM s Yna Yn+1)
= k=l+1
- T(d;lqwn)<}/1; T Yn; Yn+1)-
This together with proposition 3-32 proves the statement. O

For later reference we consider here the following special case.

Proposition 3-35. If w, € C2(h,V, A), VO |b% is A-linear, and 7} is antisym-
metric, then

danQ(T}/la }/2; }/23) = rdiWQ(}/la }/27 }/3) + 'Y?n(Y?))(T)(WQ(YQ, }/1) + w?(}/la 5/2))
Proof. For r € A, we compute

d2,wa (1Y, Ya, Y3) =

= Vo (rY1)wa (Y2, Ya) — V) (Ya)wa(r¥1, Va) 4 V) (Ya)ws(rY1, V)
wa(y, (rY1)Ya, Ys) — wa(Ya, mp, (rY1)Y3) + wa (1Y, m,, (Y2)Y3)
PV (Y1)wa(Ya, Y3) — V1 (Va)rwa (Y1, Ya) + V) (YVa)rwa (Y1, Ya)

T+ wn(rl (YVa)rYi, Ya) + wa(Ya, mh (Va)rYh) + run(¥a, il (V3)Ya)
= 1V (Y1)wa(Ya, ¥3) — V5, (Ya)wa (Y1, Y3) + 1V, (Y3)ws(11, Va)
T+ rwn(rl (Vo) Vi, Ya) + run(Va, mh, (Vo) V1) + run(¥a, il (V3)Ya)
+ A (¥3) (r)wa(Ya, Y1) + 9 (V3) (r)wa (V1, Y2)
= rdy,ws(V1, Y2, Y3) + 75, (V3) () (wa(Y2, V) + wa(Y7, Y2)).
This clearly shows the obstruction to A-linearity. O

Remark 3-36. Assume that V0 b is A-linear, and 7}, is antisymmetric. We start
to lose A-linearity when we apply d2,. This explains why the Levi—-Civita connection
is not a tensor (cf. appendiz B), nor is the Christoffel symbol (take .l = 0 in the
last case).

3.6 The antisymmetric case

Abstract 3-37. We show that dy.,Cr. (b, V, A) C Cptl(h,V, A).
Proposition 3-38. If 7! is antisymmetric and VO |6% is A-linear, then

m=—m,N\

dpCrn (b, V. A) € CL (5, V) A).



Proof. We have to show that, for w, € C}, ,(h,V,A) and any 1 < ¢ <n +1,

(dfnwW«)(Yi’ o 'aY;p}/;]-I-la v ';Yn—l—l) = _(dfnwn)(}/la v '7}/;1-1-1’}/;1’ e

We check it directly by using proposition 3-21.

(dnm>wn<}/1) te ':Y:]:Y:rHa te 'aYnJrl) —
q—1
= (_ )HIVO(Yz)wn(Yh'",Yz,"',Yq,Yqula"'aYnJrl)
1

1=
+ ( 1>q+1v0( )n(ﬁ;"'a%a%#»la"'ayn#»l)
(-

+ 1) ( q-l-l) n(Yla"'anan+1a"',Yn+1)
n+1

+ Z (_1)l+1vgn(}/2)wn(yl, . ",YII,Y;;-H, Y "aYn-i—l)
l=q+2
q—1 qg—1

- Z( 1>l+1 Z wn<lea' aYEa :ﬂ-m(Y;)Yka Y, Y+1,
=1 k=I+1
q—1

- Z(_I)H—lwn(}/la'"7}/27"'771-71;1(}/2)}/ Y-I—la 7Yn—|—1)

- Z(_I)H—lwn(}/la"'ay Y;p’n—m(}/i)y;]—l—la'“ayn—l—l)

=1
q—1 n+1
- Z( ]‘>l+1 Z wn(}/la 7}/27 Y Y-I-la T (}/i)Yka
=1 k=q+2
- (_1)q+1wn(}/1a 77r71n(Y;1)Y+1a aYn-I-l)
n+1
- ( 1)11-1-1 Z wn(lea' Y;p s (Y)Yka aYn—l—l)
k=q+2
n+1
- (_1>q Z wnOfla aYZJaY;]JrI; y T (Y:]Jrl)Yk; Yn+1>
k=q+2
n n+1
o Z( 1)l+1 Z wn(}/la Y, Y-I-la , Y, aﬂ—m(YE)Yka
I=q+2 k=141
g—1
- _Z(_UHIV%(YE)WH(YI:'"aYEa"':Y:JJrIJY:JJ"'aYnJrﬁ
=1

- (_l)qvgl(y;l)wn(}/la T Y;H—la }A/;]a ttty Yn—i—l)

- (_]‘>q+1v9n(y;1+1)wn(}/1""7}2]—1—17}/;1’""}/11—1—1)
n+1

_ Z (—1)l+1vgn(}/2)wn(}/la"'aY;]—l—laY;]a"'a}A/Ea"'aYn-l—l)

=q+2

aYn-I—l)-

) Yn+1)

Ty Yn—i—l)



+ Z(_1>l+l Z wn<lea"'ay/za"';7r’r171(Y2>Yka"';Y:]+1:Y:]a"'aYn+1)

+ Z(_I)H—lwn(}/la ) }/27 T Y;1+1,7T7£1(}/2)Y;1, T Yn—l—l)

+ Z(_]-)H—lwn(}/la'"7}%7"'77T71n(}/2)}/;1+1a}/;17"'7yn+1)
=1
q—1 n+1
4 Z(_1>z+1 Z wn(Y1,-'-,Yz,-'-,Yq+1,Yq,"',W}n(K)Yk,"',YnH)
=1 k=q+2
n+1
+ (_1>q+2 Z wn(Y1,---,%H,}C],---,W}n(Y(ﬂYk,'",Yn+1)
k=q+2
+ (=) (Ve (Vo) Yoo, Yagn)
n+1
+ (_1>q+1 Z WN<Y15"'aY;JJrIJY:JJ'"’Win(Y:Hl)Yk:"'aYnJrl)
k=q+2
n n+1
4 Z (_1)z+1 Z wn(}/lg'",}/;1{—17}/;17"'7}/2"";W;(E)Yk;“';Yn—l—l)
l=q+2 k=1+1

= —(dpwn)(Yi, -, Your, Yo, oo Yog).
The A-linearity follows from corollary 3-33, using the A-linearity of V2 |h7. O
One should notice that there are three different operations involved here:
e Using the antisymmetry of w, itself.
e Using the factor (—1)"*1
e Using the antisymmetry of ) .

This prevents repeating the proof for the symmetric case, since the factor (—1)"*1
does not cooperate.

3.7 The complexes

Abstract 3-39. In this section we show that we have now constructed a number of
(pre)complezes.

Theorem 3-40. 1. C?(h,V,C) is a precomplet.
2. If VO|b% is A-linear, C2(h,V,CA) is a precomplez.

3. If n} is antisymmetric and VU|b% is A-linear, C2(h,V,CA?) is a precomplex.



4. If mlis antisymmetric and V0|3 is A-linear, Cen(h,V, A) is a precomplez.
Proof. We recollect the definition of a precomplex to be a collection of

e A-modules Q7 (the n-cochains), n € N, which we take to be C7 (h, V., S), and

e Maps (7 : % — Home(Qr, Qn~1), following definition 3-8,

e Maps d?, € Home(Q2, Q™) as defined in lemma 3-13, (where the A-linearity
is proved in proposition 3-32 and 3-34; the antisymmetric case follows from
proposition 3-38) and

e The connections V7 : g@* — Home (S0, Q%) as in definition 2-51

such that (with the convention that d_! = 0 and .2, = 0)

L n, (V)V3,(X) = Vi (X)in (V) = =0, (x,(X)Y), X € g7,V € b, following
from lemma 3-12,

2. VI(Y) =Y (Y)dr 4+ dih (V)Y € bR, as in lemma 3-13.
This shows that C¢(h, V., S) is indeed a precomplex. O
Theorem 3-41. If V° and 7! are representations,

1. C2(h,V,C) is a complex.

2. If VY% is A-linear, C2(h,V,CA) is a compler.

3. If )} is antisymmetric and VO|b% is A-linear, C2(h,V,CA?) is a compler.

4. If m), is antisymmetric and V3|b%, is A-linear, C? ,(h,V, A) is a complez.
Proof. 1. VI are m-representations proved in corollary 2-69,

2. Vi (X)dr, = dnVr (X), X € g2 follows from corollary 3-16,

3. d™d"=" = 0 follows from corollary 3-17.
This, together with theorem 3-40, proves the theorem. O

Remark 3-42. The concept of Lie algebra complez as defined in [Dor93] is a special
case of a complex when b = g is a Lie algebra.



3.8 Reduction procedure of a complex

Abstract 3-43. We show how a given m-complex C? (h,V,S) over a direct pair
(92", b%) 4 reduces to a new m-complex QU [€] over a direct pair (gy*,by*).a, with
respect to a finitely generated linear subspace & C gp'.

Consider an m-complex C* (h,V,S). Assume that w! and V? are both flat.
Given a finitely generated linear subspace ¢ C g¢, let hy*(or gf*) be the centralizer
of € in hf(or g¢') and A the €-invariant elements of A:

by = {Yepp:n(2)Y =0, VZEect}
g = {Xegl:7m (Z)X =0, VZct},
A = {re A:%(Z)r =0, VZct},
Re = AR
Notice that h* is an Ag-module since for YV € hy",r € A,
T ()Y = r7i (Z)Y +72(Z2)(r)Y = 0.

We construct Q7 [€], the cochain spaces, in the following way:

Qe = D Vi (Ze)wr, Zi € b wy € Q1)
k

where €27 is the space of maps of ®”RE by to V.
Proposition 3-44. 7} : g — Endgzn (g¢").
Proof. Take X, Xy € g¢", then
T (Z)mh (X)) Xy = 7wl (X)) 7k (Z2) Xg + ) (7)h (Z) X1) Xy = 0.

Therefore ) (XI)XQ € g¢'. By the same argument we show that hi* is an invariant
subspace for all 7} (X1). O

We have to check that the maps ¢, (Y), VI (X) and d, are well defined in this new
context. Let X € gi" and Y € by".

e Define VI (X)[w] = [V (X)w]. This is well defined since
e Define ) (V)[w] = [t (Y)w]. This is well defined since
ZV” Zk W = ZV” IZk )

(since m} (Z,)Y = 0 for Z, € ).



e Define d},[w] = [dp,w]. This is well defined since

dp, YV (Zwe =Y Vit (Ze)dpwre
k k

e The relations follow automatically since all the operands factor through the
equivalence classes, i.e., if £ is a relation, then we have

£lw] = [Ew] = [0].

3.9 The Fréchet derivative and its properties

Abstract 3-45. We give an abstract definition of Fréchet derivative on the ring A
and, using a finiteness assumption, extend it to chains and cochains.

Definition 3-46. The Fréchet derivative of o € A in the direction h € by is
defined as
D,[h] = v (h)o.

This definition directly leads to the following property:
D0102H = DUlHUQ + UlDazHa 01,02 € A.

We could have defined the Fréchet derivative for h € gg'. But this would not be
in accordance with the usage in the literature. This explains the occurrence of %
terms in the formulae for the Lie derivatives, cf. theorem 5-10.

We restrict the space using the following assumption: hy* is a finitely generated
free A-module, which can be realized by the reduction procedure as described in
section 3.8. This may seem to be in contradiction with the fact that bhy* is a left
Ag-module, not a left A-module. We assume that there is a new action of the ring,
which makes by into a left A-module. These allows us to write h = )__ h%, for
any h € by*, where h* € A and e, € hy", and the set of « is finite. Therefore, we
can define the Fréchet derivatives of chains and cochains as follows.

Definition 3-47. The Fréchet derivative of hg = ), h§eo € by in the direction
h € by s
Dho[h] = Z Dhg [h]ea.

Definition 3-48. Let w, € Ci(he, Q2 [€],S) and Q% [¢] C A. Then we define the
Fréchet derivative of wy, in the direction h € bi* by

Dwn[hKhla T hn) = Dwn(hl,-“,hn)[h] - an(hla Tt th[h]: B hn):
k=1

where h; € by andi=1,---,n.



Definition 3-49. If now ¢ s a map from by* into itself, we can define the Fréchet
derivative of of ¢, Dy in the direction h € bi* by
Dy[h](g) = Dyg[h] — &(Dy[h]), Vg € by".

In this way we again have the Leibniz rule by construction.

3.10 The Lie derivative

Abstract 3-50. We define the Lie derivative, combining m,, and V7, in one nota-
tion.

We now define the Lie derivative Lx, X € g7’ on an m-complex as follows. For
a” € Q" s (Notation 3-19) we let Lxa™ = 7/ (X)(a™) and for w, € QF we let
Lxw, = V! (X)w,. Clearly we have

e ;v =LxLy —LyLx, Y € b3,
o Lx(r)=rLx-+7%(X)(r)-, r € A.
and the chain rule
Lx (wn (™) = (Lxwy)(@™) + w,(Lxa™).

Definition 3-51. ForY € g and « (either o™ or w,), if there exists a constant
Ao € C such that
Lya = A\,

we say, when A\, # 0, that Y € g&* is a A\,-scaling symmetry of a and that o is
homogeneous with respect to Y and that )\, is the grading of a.

If \o = 0, we call a an invariant of Y. If, moreover, Y € b, we say Y is a
symmetry of a.

Proposition 3-52. If there exists Y € b such that LyZ = \;Y and Lya = A\,
then Ly (Lza) = (Az + A\o)Lza for Z € Hi.

Proof. The statement follows directly from Ly (Lza) = Lz(Lya) + Ly, z(a). O

Proposition 3-53. Assume that w, € Z"(h,V,C) is homogeneous with respectY €
b5 with invertible grading A,, € C. Then w, € B (h,V,C).

Proof. One has,
i = Lysiyen = (OGN ) + i 0OV )
= dn o (ALY Jwn
and this shows that indeed w, € B (h,V,C). O
Corollary 3-54. If for certain 'Y € b3 one has that
Q:n = Q:n,(] D @ Q:n,)\wna
Aury, €C*

where wy, € if Lyw, = Ay, wn, then the cohomology is contained in the space
of invariants of Y.



3.11 Conjugate and adjoint operators

Abstract 3-55. We define the notions of conjugate and adjoint, carefully avoiding
any (unnatural) identification of b with Q! .

Definition 3-56. For arbitraryY € b% and any 1-form w, € Q) define the pairing
of Y and wy by the formula:

(wi,Y) =1h (V)w, € Q0.
Once the pairing is given, the conjugate operator can be defined as follows:

Definition 3-57. Given an operator S : hix — b% (or S : QL — QL ), we call
the operator S* : QL — QL (or S* : B — b7 ) the conjugate operator to S if
(w1, S(Y)) = (S*w1,Y) (or (S(w1),Y) = (w1,S8*(Y))) for all Y € b5, w; € Q.

Here we also give the definition of the adjoint operator.

Definition 3-58. Given an operator S : b — Q) (or S : QL — b%), we
call the operator ST . bB — QL (or ST : QL — b7%) the adjoint operator
o S if (S(V),Y2) = (ST(¥a). Y1) (or (wr, S(ws)) = (wn,S'(wr))) for all ¥i.¥; €
h%, Wi, Wy € Q}n

Definition 3-59. S : % — QL (or S: Q! — §%) is called a symmetric opera-
tor if ST = S, and a antisymmetric operator if ST = —S.






Chapter 4

Geometric structures

We show how the deformation of a representation leads to the definition of a Nijen-
huis operator and derive very useful properties of such an operator, which will be
used to generate the symmetries and cosymmetries of evolution equations. Further-
more, we give the Hamiltonian formalism, which is well known in the classical Lie
algebra context and can be found in any modern text on the foundations of classical
mechanics, e.g., [AMT78].

4.1 Introduction

In section 4.2 we generalize Dorfman’s approach in [Dor93] to define the Nijenhuis
operator on an arbitrary Leibniz algebra cochain complex. Although somewhat
more complicated than for Lie algebras, we see that the main ideas survive without
a scratch. In section 4.3 we prove the usual properties of Nijenhuis operators in
a formal way, i.e., assuming that JR¥*X always exists. We return to the existence
question in chapter 6. In section 4.4 we prove the corresponding properties for the
conjugate Nijenhuis operator. Finally, we show in section 4.5 how one obtains the
classical symplectic and cosymplectic structures for an arbitrary complex. Only
the most elementary results are given here. Most of the theory in the literature is
involved in choosing a ring A of (germs of) functions on a manifold and derive the
consequences, depending on the topology of the underlying manifold.

4.2 Deformations of Leibniz algebra and Nijen-
huis operators

Abstract 4-1. We set up the deformation equations and derive the definition of
the Nijenhuis tensor from them.

Consider the m-complex C” (h, bz, S) with V9 = 7! and go* = h%2. We see that

7l induces a 2-form wy by wy(Y1,Ys) = 7k (V1) Y5,

m

61



It will be shown that the assumption of an additional representation leads to the
definition of a Nijenhuis operator. The sections 4.2-4.4 are based on [Dor93].

For the connection 7} € Tl (b, b=, A), consider a A\-parametrized family opera-
tions

Ton = T + ATy A €C. (4.2.1)

If the connection 7, y endows h% with Leibniz algebra structure, we say that 7,

generates a deformation of the Leibniz algebra b%.
Evidently, this requirement, C(7r,1n,/\) = 0, is equivalent to the following conditions

0 = Tp(X)Tp(Y) = T (V)T (X) = T (7, (X)Y)
+ o (X) T (V) = o (V)7 (X) — o (7, (X)Y), (4.2.2)
0 = 7p(X)Tp (V) = T (V)T (X) = T (7, (X)Y). (4.2.3)

Thus, 7} must itself be a representation, satisfying condition (4.2.3). We can present
(4.2.2) in the short form according to (3.4.5), viewing, as before, 7, as an element
Wy € C'r?n(ha h%a C)a

2wy (XY, 2) =nl (Z)7) (X)Y + 7] (7L (X)Y)Z. (4.2.4)

1
m

We call a deformation is a trivial deformation if there exists R € C, (h, bz, C)
such that for 7, = id + AR there holds

T (X)Y = 7, (LX) TIY.
Since we have
T A(X)Y =70 (X)Y + A7, (X)Y + R, (X)Y) + NR7,, (X)Y
and
L (HX)TY =78 (X)Y 4+ Ak (RX)Y + 7L (X)RY) + X2xl (RX)RY,

the triviality of the deformation is equivalent to the conditions

7L (X)Y =7l (RX)Y + 71 (X)RY — Rr! (X)Y, (4.2.5)
R (X)Y =7} (RX)RY. (4.2.6)

Similarly, (4.2.5) can be represented as

T (X)Y = (dgR)(X,Y) + 7L (RX)Y + 1) (V)RX,

and this is the solution of (4.2.4).

Definition 4-2. We define the Nijenhuis tensor [Nij51] to be given by
Ny(X,Y) = 7L (RX)RY — Rl (RX)Y — Rl (X)RY + R:xh (X)Y. (4.2.7)

Alternatively, and more in the spirit of the setup using connections, we may put

Mk (X) = 7}, (RX)R — Rr), (RX) — Rl (X)R + Rixl (X).



Proposition 4-3. If R is A-linear, then Ny € C? (b, b%,CA) or, in other words,
the anchor of Ty s 0.

Proof. We check directly the A-linearity in the second argument. For r € A,

Not(X, 1Y) =
= 7L (RX)rRY — Rrl (RX)rY — Rrl (X)rRY + K7L (X)rY

= ral (RX)RY + 1) (RX)(r)RY — rRxl (RX)Y — R (RX)(r)Y
— Rrr) (X)RY — Ry (X) (r)RY + R} (X)Y + R0 (X)(r)Y
= rNgx(X,Y),
and this proves the statement. O

Definition 4-4. An Ag-linear operator R : h% — b is called a Nijenhuis oper-
ator if for all X,Y € b () dom(2R),

Noy(X,Y) = 0. (4.2.8)

Combining (4.2.5) and (4.2.6), we have Nx(X,Y’) = 0. This implies that any trivial
deformation produces a Nijenhuis operator. Notably, the converse is also valid, as
the following theorem shows.

Theorem 4-5. Let R : b7 — b be a Nijenhuis operator. Then a deformation of

7l can be obtained by putting

T (X) =m0 (RX) + 70 (X)R — Ry, (X).

One has C(7})) = 0, so one can call h a Leibniz bialgebra. The induced 2-form

Wy (induced by @y(X,Y) = 7! (X)Y') is trivial when ©} is antisymmetric.

Proof. This can be proved by directly checking (4.2.2), (4.2.3), (4.2.5) and (4.2.6).
The curvature computation is straightforward. O

Remark 4-6. Notice that m does not play an essential role. We will drop it when
we study the properties of Nijenhuis operators by saying R : h — b.

Definition 4-7. Given C-linear maps R, R and ® between two Leibniz algebras b
and §' according to the following diagram:

R
b

b

@ @
/ ml /
b b

When then diagram commutes R and R’ are called P-intertwined.




Proposition 4-8. Assume that R and R' are P-intertwined and ® is a Lie algebra
homomorphism. If R is a Nijenhuis operator, then R’ is a Nijenhuis operator on
Im(®) Ch.

Proof. This can be proved by using ® acting both sides of (4.2.8). O

We constructed a Lie algebra from a certain ring in section 2.4, where we also proved
that any ring homomorphism ¢ leads to Lie algebra homomorphism ¢*. We will
show the relation between R, R’ and ¢ from the following example.

* Example 4-9. Consider the Modified Korteweg—de Vries equation
Uy = uz + ugul.

Its Miura transformation w = u® 4+ \/—6u; transforms it into the Korteweg—de
Vries equation
Wy = W3 + WWs.

As we know R = D2 + %w + %LD;" is a Nijenhuis recursion operator for KdV.
We will compute the corresponding Nijenhuis operator for mKdV. Notice that
eXd = (¢*X)d'¢ (Proposition 2-25). Therefore, for any flw]d,, there is a vector-

field h[u)d, = ¢*(fw]0y) satisfying with f[u®++/—6u,] = 2uh[u] ++/—6D,(h[u]) =
(2u ++/—6D,)h[u]. This leads to

(2u + vV=6D,)R'(h) = (R(f))[u? + vV—6u)]

2
= (D24 Zw+ %D;l)(zu +v/=6D,)h[u].

SoR' =D+ 2u*+22D - u.

Remark 4-10. In general, R = D_'oRe~'D, = D' (¢R)D,,, where ¢ : A — A,
h = HomA(Q}‘t/C,A), h' = HomA:(Qh,/C,,A') and R : h — b (cf. proposition 2.1 in
[Fok87]).

4.3 Properties of Nijenhuis operators

Abstract 4-11. We derive the recursion formulae for a Nijenhuis operator. These
will be used to compute hierarchies of symmetries.

In the following, we encounter expressions like JR¥*X. We tacitly assume that
MEX exists. In Chapter 6, we address the existence question.

Proposition 4-12. Let R : §h — b be a Nigenhuis operator. For arbitrary elements
X, Y € b and arbitrary j, k € N,

T (R X)RY — RV X)Y — W (XO)RFY + 0 (X)Y =0, (4.3.1)



Proof. Fix j = 1 and prove (4.3.1) for arbitrary £ > 0. For £ = 1 the formula is
evidently valid. With the help of (4.2.8) we get

' (RX)RY — RN (RX)Y - R (XO)RFTTY + /PN (XY =
= Ar'(RX)RY — R (RX)Y — R0 (XO)RY + R0 (XY
= R RX)RY — R (RX)Y — Rrt(X)RYY + R (X)Y).

By induction it follows that, for any k£ € N,
T (RX)RY — Rl (RX)Y — Al (XO)RFY + R (XY =0, (4.3.2)
Now applying this formula to the element 937 X instead of the element X, we obtain
( RHLX)RFY — REr! (RHTLX)Y — WAL (X)RFY + REFH7L(X)Y =

i)‘iﬂl(i)‘{”X)iR’“ — RN R X)Y — R (X)RFY + jFIH I (XY
= R(r'(WX)RY - R (W X)Y - Wl (X)RY + R (X)Y).

So, the induction can be made with respect to j starting from the formula (4.3.2).
Thus we prove the validity of (4.3.1) for j,k € N. O

Now we note that the formula (4.3.1) gets a natural interpretation in terms of the
Lie derivative. Namely, if we consider its left-hand side as the result of the action
of some operator on the element YV € f, then we get for a Nijenhuis operator R

Lyix (R*) = W Lx (R, V X €b. (4.3.3)

This leads to the following statement, which turns out to be fundamental for the
construction of evolution equations with infinitely many commuting symmetries.

Theorem 4-13. Suppose R : h — b is a Nigenhuis operator. Let X € b§ is a
symmetry of R and Y € b be a scaling symmetry for both the operator R and X
with the grading Ay and Ax respectively, i.e., Ly X = Ax X, LyR = AxR. Defining
X, =R*X and Y; = WY, then Lx, R =0 for all j,k > 0. Furthermore,

Lx Xy =RLxX, Ly, X =RLy, X, Ly, X = R Ly, X + kA X

Proof. As X is a symmetry, we have LxR = 0 and by the chain rule for the Lie
derivative Lx9R* = 0. By (4.3.3), all the elements of 53X are symmetries of R*,
i.e., Lx,* = 0. This implies that

LxXp = (Lx®"X + R Ly X = RFLx X,

By by putting X =Y in the formula (4.3.1), we get Lx, X} = i)fi’“LXjX
Similarly, to prove the second identity,

Ly, X, = R"Ly, X + WLy X), — R Ly X = R Ly, X + kA Xis .

This concludes the proof. O



U is antisymmetric, then

Corollary 4-14. If, moreover, ™
1. LXij == 0, Ly']Xk == (k)\m + )\X>Xk+j, Ly]Yv]c = (k - j))\%Yk—l—j-

2. If Z € b is another symmetry of R and LxZ = 0, then Loxx (R Z) = 0 for
i keN

Proof. The first two identities of the first part follow from the antisymmetry of 7.
For the third identity,

Ly,(Yy) = R Ly, Y + R Ly (R*Y) = (k — j) A Yty

The second part follows from (4.3.1). O

4.4 Conjugate of Nijenhuis operators

Abstract 4-15. We derive recursion formulae for the conjugate Nijenhuis operator.
These are to be used to compute hierarchies of cosymmetries.

Consider an arbitrary m-complex CZ (h,V,S) with the representations 7.} and
V0 and define the conjugate operator RR* as in section 3.11.

Proposition 4-16. For R : b% — b%, and X,Y € b%, w; € C!(h,V.8) the
following 1s valid:
dvlnwl (ERX’ E)QY) - din (m*wl) (Xa E)QY)
— dy (Rw) (RX,Y) + d, (R0) (X, Y)
= —(w, Np(X,Y)). (4.4.1)

Proof. Using the formula (3.4.4), we compute d} w;, dl (R*w;) and d} (R*2w,).
We obtain

dLw (RX,RY) =V (RX)w, (RY) — V2 (RY)w, (RX)

—w (7} (RX)RY),
AL (Rw))(RX,Y) =V (RX)Rw (V) — VO (V)Rw, (RX)
—Rrwi (), (RX)Y),
d) (R*w)(X,Y) = V2 (X)R™ 0 (Y) - V2 (V)R*w (X)
—R*w (r) (X)Y).

Substituting the expressions obtained into the left-hand side of (4.4.1) and using the
definition of SR*, we get its right-hand side. O

Suppose that PR is a Nijenhuis operator. In this case the right side of (4.4.1) vanishes
and we get
Ay (R*w1) (X, Y) =
= d} (Rw) (X, RY) +d. (R*w)(RX,Y) — d} w (RX,RY).



It can easily be deduced that if for arbitrary w; o € CL (h,V,S) we construct the
sequence of 1-forms wy x = R™w; o € CL(Hh,V,S), then

1 k42(X,Y) =
= dl wir (X, RY) +d)w k1 (RX,Y) — dLwn n(RX,RY). (4.4.2)

The following theorem is a direct consequence of the formula (4.4.2). It explains
how the infinite series of conservation laws of an evolution equation arises, cf. chapter
6.

Theorem 4-17. Let R : by — b, be a Nijenhuis operator, wio € Z1(h,V,S) be
a 1-form such that d},R*wi o = 0. Then all wyx = R¥*w, o € Z} (H,V,S), k > 0.

4.5 Symplectic, cosymplectic and Poisson struc-
tures

Abstract 4-18. In this section we derive the symplectic formalism starting from
an exact 2-form.

Let Q¢ be a complex. We fix wy, € Z%(Q2,), i.e., d2w; = 0. Remark that
wy is not required to be antisymmetric. We call wy a symplectic form if it is
nondegenerate.

Definition 4-19. If for given oy € Q), we have Y € b such that i2,(Y)ws =

m’

a1, we write Y = $H(ay). So H maps QL, — b and is called the cosymplectic
operator. In the other direction, we let I(Y) = 12, (Y)wq define a map T : b1 — QL |
the symplectic operator.

In practice, things are sometimes done the other way around: one starts with an
operator J and defines a form by

wa(V1,¥2) = J(Y1)(V2).

The verification that wy € Z2(28,) determines the properties that J needs to have
in order to be called a symplectic operator.

Notation 4-20. We define the following spaces:
Wy={a, e WcCQ. |3Yeby :3(Y)=um},
Q= {Hyc Q° |3Y € b2 (Y)ws =d° Hp}.

Definition 4-21. Assuming 2, is A-linear, we can define a flat connection p!. on
Q}nJ as follows:

P (01) 81 = I(m,, (9(01))H(61)), a1, Br € Q5.



Proof.

—~
L
—
~—

i)
3=

+Ym (9(01)) (1) $(51))
+ 9 (9(a1)) (1) 3(H(61))

This shows that we have indeed a connection, with anchor 7% o . We now show

that it is flat.

Clpm) (a1, a2)pr =
= (1) pp, (02) B = Py (02) pp, (1) B = Py (o (1) 22) B
= ()31, (9(02))H(B1)) = P (@2) I (70, (H(2))H (1))
— (3 (H(n))H(a2)) B
= I(m(9(1))H(3(m,, (H(2))H(51))))
I (9(2))H (3 (7, (H(1))H(51))))
I (H(3(m, (H(01))H(02))) H(1))
= I(mp, (H(00)) 70, (9(2))H(61)) — I(m,, (H(02) )7, (H(00))H (1))
I (1 (9(01)) H(2) H (1))
= J(C(mp(H(), H(a2)H(51))
= 0.

This concludes the proof.
Proposition 4-22. If oy, 1 € Z}), 5(Q5,), then pl,(a1)p1 € B, 5(2,).

Proof. First of all, we find that

0 = d,lnal
= dp 2, (H(0n))ws
= Vi.(9(an))wa — 13, (H(an))d2,ws
= Vo (9(a1))ws
It follows that
P (01) Br = 12, (7, (53(1))H(B1) ) w2
= V., (9(0))i2,(9(Br))wz — 1, (H(61)) Vi (H() Jws
= V,.(9(a))b
= 12, (9(an))dy, B+ iy, (H(0r)) o
= i (9(1))Br € B, (D,).

It belongs to €2, 5 by construction, and therefore sits in By, 5(5,).

m



Let
Ham,, (b)) = {Y € b2, (Y)ws € B (25,)},

Sym,, (%) = {Y € bR[2,(Y)ws € Z),(Q5,)}.

We write Y = Xp, if 12,(Y)wy = d°, Hy and we call Xy, a Hamiltonian vector-
field, in analogy with the situation in classical mechanics. An element in Gym,, (h’;)
is called a symplectic vectorfield.

Remark 4-23. Notice that $Ham,,(h%) C &Sym,, (h;) and that symplectic vector-
fields are Hamiltonian vectorfields if H} (Q2) = 0.

Proposition 4-24. 7} (Gym,, (h7))Sym,, (h%) C Ham,, (h%).

Proof. Let Y7 € Gym,, (g7"),Y> € Gym,, (g¢*). Then

Vi (Y1)t (Yo)wz — 13, (Y2) V3, (V1w
= 1 (Y1) dpyt7, (Y2)ws + b, (Y1) 17, (V) w2
=yt (V)i (Ya)wz € By (2,).
This proves the statement in the proposition. O

Corollary 4-25. $am,, (h’z) is an ideal of Sym,, (hg).






Chapter 5

Complex of formal variational
calculus

In this chapter, we construct and investigate a special complex, the complex of
formal variational calculus based on the ring A. The coboundary operator dj in the
complex leads naturally to the definition of the Euler operator. Furthermore, we
define the pairing between Qj[€] and b?. Its nondegeneracy allows us to write the
Lie derivatives in an explicit form.

5.1 Introduction

We will now restrict our ring to be a ring of differentiable functions in two indepen-
dent variables, time ¢ and space x, and symbols u';, with a in some finite index
set, representing the dependent variables and their ¢, x derivatives. At this point we
have to make a choice: do we want to work with polynomials, formal power series,
analytic functions, smooth functions? And do we want the underlying space to be,
e.g., R2, or maybe R x S'? This choice is not very important for our analysis, since
everything is set up for abstract rings anyway, but it determines the cohomology
spaces. Let us give a fairly trivial example here. Suppose H{ is the space of solutions
of the equation

of

or

We can solve this and the solutions are of the form f = f(¢). But, as we will see later
on, we are interested in these solutions modulo the image of the total differential
operator D,. So if we can write f(t) = D,z f(t), the cohomology is trivial. But this
depends on our choice of space (and possibly on other choices too): if we choose
R x S! to be the underlying space, z is not a function, since it is not periodic and
therefore the cohomology is nontrivial. If the underlying space is trivial, the local
cohomology can also be nontrivial depending on the choice of ring. In the notation
to be introduced later, [ € Kerdj, but not in Imdj if we restrict ourselves to
rational functions in the dependent variables, cf. [Dor93], pp. 62-73.

0.
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We make the blanket assumption that the zeroth and first cohomology in the
space of functionals is zero. This assumption is implicit in some of the proofs,
but made explicit by some remarks. Besides the cohomology, also the existence of
connections may depend on the choice of ring, cf. [KT71].

5.2 Definition of the complex

Abstract 5-1. We construct a special complex that s most important in building
hierarchies of for instance symmetries and conservation laws of nonlinear evolution
equations. The construction is universal and the complexes considered differ only by
the choice of the basic ring.

Consider the ring B of smooth functions depending on ¢ and x only. Then let S

be the B-algebra generated by the symbols wg; subject to the relations wffjwfyl =

wslwﬁj, with 4,j,k,0 € N and o, € 3, with |3| < oco. The index a taken from
some set of indices 3 enumerates dependent variables or unknown functions of partial
differential equations and the index 7, j indicates the number of x, t-derivatives. The
precise nature of S is not specified at this point, but is subject to the considerations
sketched above.

Let meﬁj = wyy, ; and thffj = wy;,, be derivations on §. We assume that
one is given relations in § of the form wi, = D:K®(t, z;wog, -, Wno), where D, =

6% +D i w?+1,oaf—%- This covers the theory of evolution equations of the form
up = K*(t,z5u, -+, up), (5.2.1)

with uf = wfy. Using these relations we can eliminate w;’; with j > 0. This is what
makes evolution equations relatively simple to handle. Other types of equations may
have mixed derivatives in their normal form after elimination.

Whenever one has %?, this is to be replaced by thfjo and then eliminated using
the relations. The quotient of S over these relations is denoted by A. The dynamics
of the evolution equation are now built into the ring A.

We construct an A-Lie algebra h = HomA(Q}‘t/B, A) over A according to section
2.4, denoting the d by d,, and a B-Lie algebra b = HomB(Qé/C, B), denoting the
d by dp. Observe that the construction of Kéhler differentials behaves well under
taking the quotient in the ring § by simply eliminating d,w§; = d,D.K®.

For any F € A, d,F = OF d,u®. By definition Yd, = 0 and with conven-

i,0 oug

tions like Oye dyuf = 6;., any vectorfield Y € h can be written as

Vd, = () _ h0u)dy = hi’aaia’ (5.2.2)

[NeY i,

where h'® € A. Likewise any vectorfield in Z € b can be written as

o 0
_0 _ _ _. 9 o
0(2) = Zdy = (p0: + a0, )dn = po + a7, (5.2.3)



where p,q € B and ¥) € T9(b, B, B). We trivially extend the action of 43 to A.
Let g = b® h. Any vectorfield X € g is written as

X=b+h=pd+qds+ Y h"*de, (5.2.4)

i,

where b € b and h € b, i.e., p,q € B and A" € A.
From the Lie algebras h and b we construct the connection 7} of g on b using 70
as is done in example 2-48, i.e.,

ﬂ-é(X1>X2 — [plat + q1ax + Z hil’a,pZat + Qan + Z hga]-

Moreover, the anchor 70 of 7} is defined by
V(Z+Y)=0Z)+Ydy, ZED, Y €.

Notice that b is a direct summand of g and an A-module. So (g, h)4 is a direct
pair and g is an A-Lie algebra. Using formula (2.6.1), taking V' = A, we obtain a
0-complex Cf(h, A, S) from theorem 3-41 with V) = ~9.

Consider the one-dimensional space £ C g spanned by X°, where

(X7 = X'd =

0 0
= amdh + Zu?+1au?dv — a + Zuio;lw = Dz (525)

2,0

We perform the reduction procedure with respect to ¢ as given in section 3.8. In
this way there arises a complex over (gf, h?) 4,. It is called the complex of formal
variational calculus based on the ring A.

We now describe the objects involved in detail. Any element X € g given by
(5.2.4) commutes with X° given by (5.2.5) iff D,p = D,q = 0 and h"® = D,(ht"b?).
It is evident that any X € g commuting with X° can be recovered from its action
on the variables dz, dt and du®, X (du®) = h®, and we have

h = X (duf) = XdX duf , = X°dXdu? | = D,(h"~"*) = D% (h%).

The equation (5.2.1), simply written as u; = K, corresponds to X = 9; +
> ia Di(K*)0us € 8.

The vectorfields in the form hd, = Y~ , D%(h*)d,e, conventionally written as h,
consist of h with Lie bracket

gl =) (a—gﬁDi(ha) o Di(a“)) : (5.2.6)

ous oug

Q0 [€] consists of elements in the quotient space A/D,(A) since

Lxof = (X°)f = D,(f), Vf € A= Qy.



Such an element will be called a functional and denoted by [ f. The integral
symbol is both standard and appropriate, since one has f D, f = 0. Remark that we
circumvent the usual problems, forcing one to make assumptions on the underlying
space and the test function space in order to make this formula true in the case one
does real integration.

One has Qf[¢] = QF /Lx0Qf. By the definition of the Lie derivative, for w, € Qf,

(LXown)<h1; Tt hn)
= WX )walhr, o ha) = > wnlby, - w1 (X, -, h)
= men(hla Ty hn)

Therefore, Qf[€] = C(6?, A/ D,(A), Ar). When dealing with w, € Qf[€], n > 0, we

can freely throw away the ImD, part of w,(hy,---,h,) as is done for n = 0. The
analysis later relies on this fact.

Now consider the space Qj[¢]. Since any w; € Q) can be written as w; =
wiadul , Wy € A, one has

/wl(h) / S D (h) /Z iz Z’“)h“z/wl(h),

where w; = Zi’a(—Dm)ia}j’“dua =3 widu®, with wf = 3. (=D,)'@y®. This leads
to the understanding that any element w; € Q[€] is completely deﬁned by the
collection {w¢ € A}.

Remark 5-2. Notice that A/D,(A) does not inherit the ring structure from A,
since D(A) is not a multiplicative ideal in A. Therefore we cannot construct the
Lie algebra from A/D,(A) as in section 2.4. This is the reason that we perform the
reduction procedure after constructing the complex. One way out of this difficulty
maght be to take a direct summand to Im D, which is multiplicatively closed. This
18, e.qg., the case when the direct summand is the kernel of a derivation. This is
described in [SR94], [SWI7a], where D, is imbedded in a Heisenberg algebra. This
leads to rules like:

[ i [ [ St = [t =2 [

5.3 The pairing and Euler operator

Abstract 5-3. In this section, we define the pairing between Q\[€] and bY. Its non-
degeneracy allows us to write operators, such as Ly, in an explicit form. We also
define the Euler operator which follows naturally from dj in the complex of formal
variational calculus.



First we define the pairing between w; € Qj[€] and h € . According to definition
3-56, it is given by

(wr, h) = /wl “h € A/D,(A). (5.3.1)

where wy - h =) wih® € A.

Proposition 5-4. The pairing between Q4[€] and by given by (5.3.1) is nondegen-
erate.

Proof. This is equivalent to the statement: If there is a given f € A such that
[ fg=0,1ie., fg € ImD, for arbitrary g € A, then f = 0.

Suppose that ¢ = 1, then f € ImD,, which means that f depends linearly on the
highest-order derivative uf_of the variables u® involved in f. Now take g = uf, ,
then fg € ImD,. This contradiction shows that f must be equal to zero. O

For any f € A, we calculate dJ of a functional as follows
af i a @ 7 af
st [ 1= [ Eoim) =3 [n Y-y,
i, 6u1 a i auz
Introduce the operator E : A/D,(A) — Q}[€] called the Euler operator by
E=> E.du" Ea(/ £ =Y _(=Dy) of (5.3.2)
o , i 8’&?

Now we can express dJ in terms of the Euler operator, that is,

S [ 1= [ 1.0 = ;/haan‘) — ([ 1).h)

Notice that E([ f) = dj [ f due to the nondegeneracy of the pairing. So we have
E(0) = 0 which can, of course, also be checked by direct calculation. This implies
that the Euler operator does not depend on the choice of a representative f in the
equivalence class f f. Therefore, the operator is well defined.

Remark 5-5. If we assume that H)(h, A/D,(A), A¢) = 0, then E([ f) = 0 implies
[f=0,ie, feImD, (cf [OwI3] p. 248). This is useful to know when one
studies conservation laws (cf. proposition 5-12 and theorem 6-8).

Since the index set for « is finite, this implies dim by < oo, we can define the
Fréchet derivatives on both chains and cochains. For h, g € b, we have

one
D;(g%).

ou® *
1,0 ¢

Dylg)’ =



Therefore, the Lie bracket (5.2.6) can simply be written as
[, 9] = Dg[h] — Dalg].

Notice that Dy : b — bY (h € ) and D,, : b — Qi[€] (w1 € Q5[€]). We have
the conjugate operator Dj : Q[€] — Qf[€] and the adjoint operator D], : b — Qf[¢]
satisfying, for all g € b?,

(w1, Dalg]) = (Djlwil, 9);
(D.,lg], h) = (DL, ], 9).

Definition 5-6. For w; € Qi[t], of D, is a symmetric operator, i.e., D,, = D] ,
we call wy self-adjoint.

It is easy to obtain the following two important formula for the pairing from the
Leibniz rule:

Deyy.n[g] = Duy[g] - b+ w1 - Di[g], (5.3.3)
E((w1,h)) = DL, [A] + Dj[wi].

Proposition 5-7. For any wy € Q{[€], djw; = 0 is equivalent to D,,, = D], .
Proof. We compute djw; for w; € Q}[€] by formula (3.4.4). We have
déwl(hl, hg) =

- /U%MWM—DmmWﬂ—M'@%Wﬂ—DM%m

= [ (D) ha = Duslh] ) = [ (D= DL (b s

The result now follows from the nondegeneracy of (5.3.1). O

Remark 5-8. There arises a question: if D,, = D}, , can we find [ f € A/D,A
satisfying E([ f) = wi. Generally, the answer depends on the choice of ring. It is
yes when A are smooth functions or polynomials. This is due to the vanishing of
the first cohomology space: Hy(h, A/D,(A), Ae) = Kerdy/Imd) = 0. Such an [ f
18 called the density of wy. For details and the procedure of finding the solution see

[Dor93], pp. 62-73.

5.4 Lie derivatives expressed in Fréchet deriva-
tives

Abstract 5-9. This section is devoted to explicit forms for Lie derivatives Lx of
some basic objects, where X = 9, + ",  Di(K®)0ue with K* € A. They are very
useful for studying evolution equations since, as we know, they can be treated as
vectorfields in such a form. Moreover, symmetries can be considered as the elements
in the Lie algebra bY.



Theorem 5-10. The Lie derivatives Lx are given by the following formulae:

JfeA/DSA) Lx [ f —f + Dy[K]),

h € by Lxh —|— Dy [K] — Dklh],

wy € QL[ Lyw gwl + D, [K] + Dicfwi],
9O = H  LyfH g 9 | Dg[K] - Dxc$ — HD%,
00— Q] LxJ 2+ D5[K] + 3Dk + D%3,
R : hY — pY LxR :? + Dy|K] — DxR + RDx,
T U — QUE] LyT = 9% 4 Dy[K]+ D4S — TD%,
wy € Q018 Lxw, = g‘”" + D, [K]| + D [wn],

where x means conjugation, and by definition
DK[wn] hl; a an hl; ) [hz]; ahn>

Moreover, for the operators, the formulae are only valid on the domain of the left
hand sides of the identities.

Proof. The first two formulae follow directly from the definition of Lie derivative.
We now prove the third one. For w; € Q}[€] and any g € h?, we have

(Lxwi)(g) = Lxwi(g) —wi(Lxg) =
= 1(X)wi(g) — wi(m(X)g)

8(,01 8
= /(ﬁ g+ E+W1 D[K]-FDMI[K]-g)

= [ (2 + DylK] - Dilg)

_ <%+D [K]+D§<[w1],g)-

By the nondegeneracy of the pairing, we obtain the formula. From the chain rule of
the Lie derivative and the first three formulae, it follows, for any w; € Q[€],

(Lx$)(wi) = LxH(wi) — H(Lxwr) =

%;:’1) + Dty [K] = D[ ()] — (k4 D, [K] + Dl
— (%? + Dg[K]| — Dg$ — HD% ) (w1).

Therefore, we prove the formula for Lx$. Similarly, we compute

(LxJ)(g9) = Lx3(9) — I(Lxg) =

= P94 pyx + Dilale)) - A
= (24 D[]+ 3Dk + D) o).

dg

0+ D,[K] - Dxlg)




And
(LxM)(g) = LxR(g) — R(Lxg) =

OR9) 4 Dy [1] — Dil2A(0)] ~ (22 + D,[K] - Dgla)
_ (56_? + Do|K] — DR + RDi)(g),

(in{)(wl) = in{(wl) - S(wal) =

a‘f(wl) 8Wl

=~ Dan[K] + D[T(wn)] = T - + Duy[K] + Diclen])
_ (%—f + DelK] + DT — D% (wn).

Finally, for h; € b9 (i =1,---,n) and w, € QF[E, it leads to
(LXwn)(hla o 'ah ) -

= Lxw, hla ) an hla ; hla" ’hn)
Own(hy, -+, hy)
= 1at + Dwn(hl,---,hn)[K]
" Oh;
=1
Own,
- <5; + Dy, [ K] + Diclwa]) (- ).

This concludes the proof for all cases. O

Notation 5-11. Let X = 8, + ), , Di(K*)d,e. When the following objects are
invariant under X, i.e., in the kernel of Lx, then we call

[f€eA/D,(A) a conserved density

h € by a symmetry

wy € Q4[] a cosymmetry

9: Q€] — b a cosymplectic operator
J: 5 — Q¢ a symplectic operator
R: by — by a recursion operator

T:Ql[e] — Q€] a conjugate recursion operator

of the equation uf = K* (u; = K ), where $ is a cosymplectic operator and J is a
symplectic operator as defined in chapter j.

Proposition 5-12. Consider the equation v, = K. If [ f € A/D,(A) is a con-
served density of the equation, then E([ f) is its cosymmetry. Moreover, if wy €
QL[€] is a cosymmetry of the equation and self-adjoint, then the density of wy 1s its
conserved density.



Proof. We know from remark 5-5 and remark 5-8 that the cohomology spaces
H{(h, A/D,(A), A¢) and H(h, A/D,(A), Ae) vanish.
One sees that [ f € A/D,(A) is a conserved density of the equation, i.e.,

G+ prn =[G+ @[ o =o

So E([ %L + (E(J f), K)) = 0. Using formula (5.3.4), we can rewrite this as

%{f) + Db (K] + D}[E(/ £]=o0.

It is easy to check Dy p) = Dl:(f /) Therefore E([ f) is a cosymmetry.

Since D, = D, , there exists unique [ f € A/D,(A) such that w; = E([ f).
The second statement can be proved by reversing the proof for first statement. [

Remark 5-13. This proposition is a concrete version of proposition 3-6.

Definition 5-14. If w; € Q[€] is a cosymmetry of an evolution equation and self-
adjoint, we call wi a covariant

Definition 5-15. An object o will be called time-independent if Ly a = 0.






Chapter 6

On Nijenhuis recursion operators

Integrable evolution equations in one space variable, like the KdV equation, are
often characterized by the possession of a recursion operator, which is an operator
invariant under the flow of the equation, carrying symmetries of the equation into
its (new) symmetries.

Example 6-1. The operator R = D? + %u + %ungl 18 a Nijenhuis recursion op-
erator (cf. section 4.2) for the Korteweg —de Vries equation uy = ug + uuy. It is
remarkable that any Ry is a local function ([Ol93], p. 312), i.e., Ruy € ImD,
for 1 > 0.

The fact that the image under repeated application of the recursion operator is
again a local function is often not proved, with the KdV equation as an exception
to this rule; some proofs can be found in [Dor93], relying on the bi-Hamiltonian
character of the equations. But usually one finds in the literature a few explicit
calculations, followed by the remark that this goes on. It is the goal of this chapter
to prove that this is indeed the case for at least a large class of examples (no exception
being known to us, cf. however [Li91]). We give a general theorem to that effect,
valid for systems of evolution equations in one evolution system spatial variable and
apply this theorem to a number of characteristic examples.

We do not use the property that the operator is a recursion operator of any
given equation, only that it is a Nijenhuis operator. Of course, the fact that these
operators are recursion operators makes them interesting in the study of integrable
systems. We show that Nijenhuis operators of the form that one finds in the study
of evolution equations are well defined, i.e., they map into their own domain under
some weak conditions and can therefore produce hierarchies of symmetries which
are all local. Moreover, the nonlocal part of the operator contains the candidates of
roots, starting points for a hierarchy of symmetries.

Apart from the theoretical interest, this splitting (which reminds one of the
factorization of the operator in symplectic and cosymplectic operators, if they exist)
is useful in the actual computation of a recursion operator for a given system. For
this can be done iteratively treating D, as a symbol, which is fine as long as its
power is nonnegative, but fails for D_!. Tt is here that one can proceed to split off
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a symmetry, and move the remaining part after the D_'. This turns out to be an
effective algorithm to compute recursion operators.

6.1 Construction of recursion operators

Abstract 6-2. We show that if the recursion operator is of a specific form, its non-
local part, namely containing the D' term(s), can be written as the outer products
of symmetries and cosymmetries.

In this chapter we make the blanket assumptions that
e The operators and vectorfields are t-independent (cf. definition 5-15).

e There exists an universal scaling symmetry (cf. definition 3-51). E.g. in the
KdV equation we have a scaling symmetry zu; +2u € b, such that \,,5, = 3
and )\m[u} = 2.

For any operator ® = Y7 (RO D! + 3. AU @ D160, where R € by @ Qgl¢],
R € bY, €U € Qi) and T is the set of gradings, i.e., \,gy = j. Remark that
this does not hold for the £¢9), but we have j + Aeiy = 1+ . We denote R ~
> jer hU) @ D;1¢U). In order to be able to give some estimates later, we introduce
the gap length
¥(R) = mazxjcrj — minjerj.

We denote by Gg; the space of all g € Y such that (€9, g) = 0, where the £U) are
given in the recursion operator.

Remark 6-3. In fact, we have in R a tensor product @ 4,, but since R is t-
independent, we might as well consider it to be ®@c. This is important since the
functions of t can influence the gradings. We come back to this issue in remark 6-5
and example 6-15.

Lemma 6-4. Let R = Y (RODL + 3. hW) @ D€ be a recursion operator
of the equation v, = K, with K9, € bY and |\ka,| > v(R). Then the hY) are
symmetries of the equation and the £9) are cosymmetries for any j € I.

Proof. Since ‘R is a recursion operator of u; = K, it satisfies LxR = 0, where
X =08, + ), DK, (notation 5-11). Notice that

LxR ~ Z (h9 @ D;'Lx€9 + Lyh® @ D;'¢W)) .

We have either Agg, > v(R), in which case A;_,6) = Aka, +J > 7(R)+Jj > mazjery,
or Aga, < —7(M) and then A\ i) = Aga, +J < —7(R) +j < minjerj. Therefore
LxhY) =0 and Lx£Y = 0. The proof is finished according to notation 5-11. O



Remark 6-5. In the t-dependent case, one can have complications of the following
form. Assume LxhV) = ujh(j), with p; € Ae. And assume Lx&U) = —,ujf(j). Under
these assumptions one can also solve the equation. To analyze this completely, one
has to compute the matrices of Lx on the hY) and the £9) with coefficients in Ag, and
do the linear algebra. One then expects a result of the type: There exist pi; € Ag and
kj € Ap, with Lxk; = p;kj, such that m;lh(j) are symmetries of the equation and
the mjf(j) are cosymmetries for any j € I'. The case pj = 0 and k; = 1 corresponds
with the t-independent case.

* Remark 6-6. A similar result holds for symplectic and cosymplectic operators
once we assume they are in the same form as the operator R, i.e., their D' part (if
it exists) can be written as the product of cosymmetries and symmetries, respectively.
This observation is of great help in computing the splitting of a recursion operator,
see section 6.3.7, The new Nijenhuis operator (3D), for an example.

We mention that this result also appeared in the paper [Bil93]. The author gave the
condition that A and € are independent differential functions, which seems not
enough for the proof.

6.2 Hierarchies of symmetries

Abstract 6-7. It is shown that under certain conditions (which hold for all ex-
amples known to us) Nijenhuis operators are well defined, i.e., they give rise to
hierarchies of infinitely many commuting symmetries of the operator. Moreover, the
nonlocal part of a Nijenhuis operator contains the candidates of roots and coroots.

We make a distinction between 2R being an invariant of X = 0, + K“9,e € gl
and of Y = K?0,0 € he. In the first case, we say 2R is a recursion operator of u;, = K
(cf. notation 5-11), but in the second that Y is a symmetry of 2R (cf. definition
3-51). When fR is t-independent, the % in X does not play a role. These two act in
the same way.

The operator R is Ag-linear. If YV is a symmetry of R, then fY, with f € A, is
also a symmetry of R. However, when Y is a symmetry of u; = K, in general fY
will not be a symmetry unless f € C.

We finally remark that w9, is a trivial symmetry for any operator and that any
t-independent operator is a recursion operator of the equation u; = u;.

Theorem 6-8. Let R =51  RODI +Zjer h9) @ D¢ be a Nijenhuis operator
and &) be self-adjoint for r € T. Then Q) = R'Qq € Gy for any | > 0, where Qq €
by is any symmetry of the Nijenhuis operator with |Ag,| > v(R) and AmAg, > 0.
Moreover, the QQ; commute.

Proof. Since R is a Nijenhuis operator, for any [ > 0 and any symmetry Qo € b
(i.e., Lg,® = 0 by definition 3-51), it follows from (4.3.3) that @, € b} satisfies



Lo,R =0. We have

Lg,R ~ Z (hY) @ D;'Lo,eY) + Lg,hY @ D;'eW).
jer
Due to the assumption that AmAg, > 0, [Ag,| = [Idw + Agol > [Agol > 7(R).

Therefore Lg,h") =0 and Lg,£Y) = 0 by the same reason as in the proof of lemma
6-4. We have,

dg /5(3) Q) = dgLflj(Ql)gﬂ — Lng(j) _ Lg(Qz)défj —0.

This implies £9)-Q; € ImD, (remark 5-5) and we prove Q; € G by induction. The
commuting of @); follows from corollary 4-14. O

Remark 6-9. The operator R can often be written as

> RODL+> w0 @ D ldTY,
=0

j€er

where the TY) are the densities of €9) (remark 5-8), i.e., E(TW) = ¢U),

Our assumptions for lemma 6-4 and theorem 6-8 are not sharp. For a given
operator which may be t-dependent, the proof may still go through (cf. example 6-15
and remark 6-5).

Recursion operators of nonevolution equations appear to have a similar form.
Compare with [vBGKS97], where the same splitting of the D' and Dy_1 terms s
found. It would be interesting to see whether one can indeed obtain similar results.

Definition 6-10. Let R be a Nijenhuis operator. If the R'Qy # 0 exist for alll > 0
and are commuting symmetries of R, we call Qg € by but ¢ ImR a root of R.

Corollary 6-11. If, moreover, R is a recursion operator of an equation and Qg 1S
a symmetry of the equation, all @, for | > 0 consist of a hierarchy of commuting
symmetries of the equation.

Definition 6-12. Let R be a recursion operator of a given equation. If the R'Qq #
0 exist for all 1 > 0 and are commuting symmetries of the equation, we call Qg € b
but ¢ ImR a root of symmetries for the equation.

Similarly, we define Q° € Q}[€] to be the coroot of a Nijenhuis operator R,
from which we produce a hierarchy consisting of all the self-adjoint elements 2*Q°
for all [ > 0 and coroot of covariants for the equation, when the operator R is its
recursion operator, from which we produce a hierarchy of covariants (furthermore,
conserved densities) for the equation (cf. section 4.4).

Theorem 6-13. Let R =>1  ROD! + > jer h9) @ D;1EW be a Nijenhuis oper-
ator. And assume that RhU) exist and that €9 are self-adjoint for j € T'. Then
Ly»R [a= 0 and 2(H)d)R*€YW =0, H € A, where

A ={H € domR | |\mu| > v(R)}.



Proof. We know that R is a Nijenhuis operator, that is LygR = RLgR for H €
dom(R). We have

RLyR ~ > RLph™ @ D;'¢W + R @ D' Ly

rel
+> W0 @ DN (L)Y
Jer
LowgR ~ ZLmHh(j) Q D;lf(j) + Zh(j) ® Dz_leHf(j)
jer jer

Since H € dom(R), dJ [ €9 - H = 0. We know that

d“/g CH = duy(H)ED = LW — 2(H)dyeW)

Therefore, Ly£0) =
Due to the same analysis as in the proof of lemma 6-4, for any H € A, we draw
the following conclusions:

RLyhY) = Lugh), (6.2.1)
(LaR)*€D = L. (6.2.2)
Formula (6.2.1) implies that —R L, H = —R L) H—(Ly;R)H. Hence Ly ;R |a=
' Notice that (LgPR)* = LyR*. Therefore, formula (6.2.2) implies that
Ly(REV) = R L€ = L€V,
ie., Ly(R*€V) = Ly since Ly&W) = 0. This leads to
2(H)direeW) = Ly (rreW)) — df / Rl =

= LguéV) —dd / €U RH = 2(RH)d) W
- 0.

The statement is proved now. O

Remark 6-14. This theorem theoretically gives us the candidates of roots and co-
roots. One notices that the restriction on the space A is due to the technical problem
in the proof. In practice, they are indeed roots and coroots. If this were not the case,
one would have a formula, e.q., derived by computer algebra, such that it would
vanish for all H € A, but not for all H € dom(R). This is hard to imagine.

Example 6-15. Consider the Cylindrical Korteweg—de Vries equation (cf.

section 9.9)
u
Uy = U3 + UU — %



and let a Nijenhuis recursion operator be given by

2 1 1 1 t 1
R=tD2+-u+-uD;')+ -z +=D;' ~ (zu; + =)D ".

There exists a scaling symmetry —3td; + (xuy + 2u)0, such that

Mg =3, A= =1, Aeyyy1 = —2.

However, h{=? = %ul + % is not a symmetry and €2 =1 is not a cosymmetry
of the equation. The lemma 6-4 fails since Lx&"? = —L& and —L € Ap which
commutes with D;'. We now compute Lxk o = —%mq, to find 3';;2 = —%mq, as

in remark 6-5. This implies k_o = %

We rewrite the nonlocal part of R as R ~ \/f(éul + %)D;l%, and we have that
)\\/;(uTlJré) = —% and )\% = g By remark 6-5 or by direct computation, we know
that h3) is a symmetry of the equation and f(’%) 1S a cosymmetry.

Notice that Lh(,%)ﬂ‘i = 0 and the proof of theorem 6-8 can be applied. Therefore,
it produces a hierarchy of symmetries of the operator R. So we conclude that \/f(“3—1+
é) 18 a root of symmetries for the equation and it 1S a coroot.

The trivial symmetry u; of R cannot produce a hierarchy of symmetries, con-
sistent with the fact Ay, A = —1 and it does not satisfy the conditions of theorem

6-8.

6.3 Examples

Abstract 6-16. A number of examples is given, exhibiting the structure of the Nij-
enhuis operator and proving the existence of the hierarchies.

In the following examples we do not check whether the recursion operator is
in fact a Nijenhuis recursion operator except for Burgers’ equation. Proofs in the
literature are usually in the forms ’after a long and boring calculation it follows
that...”. We show they satisfy the other conditions of the theorem.

6.3.1 Burgers’ equation

Consider Burgers’ equation (cf. section 9.1)
uy = f = ug + uuy.

We explicitly check all the conditions we need in order to prove that a hierarchy of
the symmetries for the equation and the operator exists.

First we check that R = D, + %u + %ungl is a recursion operators of the
equation, i.e., that Lx®R is equal to zero, where X = 9, + >, D: f8,,. According



the theorem 5-10, we have

OR

Lx® = 2= + Dy[f] — D;R + KD,

ot

1 1 1 1
— 5f + §Dz(f)D;1 — (D? +uD, +uy)(Dy + =u+ —uy D ")

2 2

1 1
+(Dg + U + 5unggl)(Dfc +uDy + uy)

—(D} + 7D;i + D, +

+(D} + 7D}Z +

= 0.

Uy + uuy Uz + uug +ui
D:I:

2

3u S5uq + u? 3up + 3uuy  us + uug + u’ D1

2 2 2 )
3u S5uq + u?

5 D, + us + uuy)

Furthermore, there exists a vectorfield (zu; 4+ u)d, as a scaling symmetry such that
Aiptwn; = 2, A =1, Ay, = 1. It is easy to see that for R, the conditions of lemma
6-4 are satisfied since y(9R) = 0. So, u; is a symmetry of the equation.

Now we check R is a Nijenhuis operator. For all H € dom®R, i.e., H = D,P, we

compute

LmHm

RLyNR

D[ Da(H) + %Dx(uP)] —(D,Dy + %Dw (uDp + P))R

+R(D, Dy + %Dw - (uDp + P))
S(Du(H) + 5 Du(uP)) + 3 (D(H) + 5 DA(uP)) Dy
—(RDy + %(PDm + H))®R + RADy + %(PDx + H))

1 1 1
KDy — RDpR + EDI(H) + quH + Ju P

1 1
1 1 1 1
—quP - Z(UQP +u H)D;' + SHD: + §DI(H)

1 1
R’Dy — RDyR + SHD: + D,(H) + JuH

(D(H) + 5 (uDa(H) + s H)D, ",

1 1
R(;H + 5DI(H)D;1 — DgR + RDpg)

1 1
KDy — RDpR + SHD:+ D,(H) + JuH

45 (DXH) + 3 (uD,(H) + w H)D;.



Therefore, LggR = RLGAR, for all H € domA.

Notice that AwA,, > 0 and L,R = 0. From theorem 6-8 and its corollary,
a hierarchy of symmetries of the equation are R‘u; for I > 0. This confirms our
remark 6-14 that u; is the root of 8. There is no coroot for it since 8*(1) = 0. This
reflects the fact there is only one conservation laws for Burgers’ equation.

6.3.2 Krichever — Novikov equation

The Krichever—-Novikov equation (cf. section 9.12) is given by

3
—1,.2

and it has a Nijenhuis recursion operator of the form
R = D2 — 2u, 'uy Dy + (u; tug — uy 2ul) + uy D, LeW,

where £ = 3u;*ud — 4u; Pusus + uy *us = E(3u; *ud). First we have y(R) = 0 and
A =2, Ay, =1, M\y0, = 3 with respect to a scaling symmetry zu; € bhy. Therefore,
uy is a symmetry and € is a cosymmetry of the equation by lemma 6-4. Moreover,
we compute L,, R = 0 and R*EW = E(—1u;*u3 + 2ui*uj). We conclude that uy is
a root of a hierarchy and £ is a coroot generating a hierarchy of covariants for the
equation.

6.3.3 Diffusion system

We consider the Diffusion system (cf. section 9.23)

U = Uy + v?
Uy = Vg,

with Nijenhuis recursion operator given by

Rlu,v] = (% %€II>~<S>®D;(0, 1).

We have T' = {1}, Ax = 1 with respect to the scaling symmetry < :wxu_il_ ’ ) and
1

LyovR = 0, €1 is obviously self-adjoint. Thereby, ") fulfills the conditions of
lemma 6-4 and theorem 6-8. It is a root of Y& and also produces a hierarchy of
symmetries of the equation.
Another candidate is the trivial symmetry Zl
1
of theorem 6-8, so it is a root of a hierarchy of symmetries, which includes the
equation itself, for both the equation and fR.

) and it satisfies the conditions



6.3.4 Boussinesq system

We consider the Boussinesq system (cf. section 9.29)

Uy = U1
vy = tus + Suu
t — 343 3 1,
with Nijenhuis recursion operator given by

R(u,v) =
3v+2v, D! D% +2u+uyD,*
5D+ 2uD? 4+ 5u1 D, + 3uy + 2u? + 20D 3v+ v D!

2vy 1 Uy -1
N(%u:s—l—?uul)@l)’” (L 0)+<v1)®Dx (0. 1).

Tu + 2u
xv, + 3v
Since the equation is ¢-independent, it is also a symmetry of R. Notice that v(R) =1
and both £€1) and £ are self-adjoint. So h(® obeys the estimates in theorem 6-8
and is therefore a root since Ay > 2.

For M) we explicitly compute

Ry — vs + 4duqv + 4duv;
T\ gus + duug + Suguy + Zuluy + 4oy

There exists a scaling symmetry < > such that T' = {1,2} and Ay = 3.

and Aypy = 4. So MRhD satisfies the conditions of theorem 6-8. Therefore the
hU), j =1,2 are roots of hierarchies of symmetries for the equation (of 9R).

6.3.5 Derivative Schrodinger system

Consider the Derivative Schrodinger system (cf. section 9.27)

uy = —vy — (u? + v?)uy
v = uy — (u? + v?)vy,

with Nijenhuis recursion operator given by

R(u,v) =
-1 -1 u’4v? -1 -1
<va vy —uDy u— == =Dy —u D -v—vDy 2u12>
-1 -1 -1 -1 u?+v
D, —uvD, -u—uD," vy uD/ " -uy—v D, " v— 2=
oDV vy —uy Db ou —u DSt v —uDJt
Y
—uy Dt v u—uDt vy uDtuy — oD

—Uu

:( v >®Dx1(v1, —u1)+<:Z;>®Dx1(u, v).



We find that A,y = 1 and T = {0, 1} with respect to the scaling symmetry < izl i 2 > ,
L}

implying v(9) = 1. And we have that both £ and ¢V are self-adjoint. However,
the condition for A(® and A(Y) in theorem 6-8 is not satisfied. First we notice that

) = —RAO) . So all we have to check explicitly are the conditions for A("). First
all, L, y® = 0 trivially. Secondly, /A1) = ( _zt > # 0 and \y,) = 2. We now
— Ut

see that Sh(") satisfies the conditions. So A0 = < ) is a root of a hierarchy.

6.3.6 Sine—Gordon equation in the laboratory coordinates

Consider the Sine-Gordon equation (cf. section 9.24) in the form of

Uy =0V
vy = up — asin(u), @ € R.

with Nijenhuis recursion operator given by
R R
R(u,v) =
() ( Ra1 R

up +v L o
(U2+'U1—Oé8in(u)>®Dm ( —(up + vy —asin(u)), w+v),

Ry = 4D2? —2acos(u) + (ug +v)* — (uy +v)D; " (ug + vy — asin(u)),
Rip = 4D, + (uy +v)D,  (ug +v),
Roy = 4D + (uy +v)’D, — 4acos(u) D, + 2ujasin(u) + (ug + v1) (uy + v)
— (ug +v; — asin(u))D, (ug + v; — asin(u)),
Rog = 4D+ (u; +v)* — 2accos(u) + (ug +v1 — asin(u)) D, (uy + v).
This is one of the 'new’ operators which appeared in [FOW87], p. 53, when

a = 1. The system is not homogeneous in 2-dimensional space, namely v and v.
Let us consider the extended system

U =0V
vy = uy — asin(u)
O = 0.
Then
~ Rt Rip 0 . .
R(u,v,0) = | Ry R 0 | ~hD @D, 'MW

0 0 0



TUy

and Az = 2 with respect to the scaling symmetry v + v . We see that
To, + 2a

v(R) = 0, ¢ is self-adjoint and Lh@)i)?i — 0. So () is a root of a hierarchy of

symmetries of the Nijenhuis operator SR. This leads to the same result if we take a

U+ v .
s + 11 — arsin(u) > is a root of fA.

In fact R(h) = 2R(Q°), where Q° = (' uy, vy ) which is considered as a start
point in [FOWS87] (so this is not in contradiction, since the same hierarchy will be

generated by h and Q°).

as a constant, i.e., h = <

6.3.7 The new Nijenhuis operator (3D)

Consider the following Nijenhuis operator ([FOWS87] p. 54):

4u? 0 1
R(u, p, ) = D, —2u? 0
dup Dy — dug —2u?
¢
+ 4 ) @ D,' (¢ +6ut, —p, u).
uy — 6u’p

We see that \py = % and R ~ 40 @ D;lf(%) under the scaling symmetry

Furthermore, we have Lh(%)iﬁ = 0 and 5(%) is self-adjoint. So the conditions of

theorem 6-8 are satisfied for h(3). Therefore from h(3) a hierarchy of symmetries of
R is generated.

In fact m(h(%)) = ( duy, 4oy, 4 ), which is considered as a starting point
in [FOW8T7]. h(3) must be a root, since the only (using a scaling argument and
the fact that it should be in the domain of ) vectorfield that could generate h(3)
is (0, u, ¢ ), and this gives not hs), but h(3) — (0, ¢+2u®, 0) and their
difference is not in KerfR.

Assume $, = RH; where H; and H, are both cosymplectic operators. We know
that $, must have the following term as its nonlocal part

¢ ¢
Y ® D, Y
uy — 6u’p uy — 6u’p



This means ( ¢ +6u®, —¢, u )

(¢, ¥, uy—6u’¢p ). Therefore

0 1 0
H 5= -1 0 6u?
0 —6u®> —D,

One can easily check that $; and £, form an cosymplectic pair (cf. [Olv93] pp.
444-454)

6.3.8 Landau — Lifshitz system
Consider the Landau-Lifshitz system (cf. section 9.31)

up = —sin(u)ve — 2 cos(u)uivy + (Jy — Jo) sin(u) cos(v) sin(v)
Ve = gty — cos(u)v? + cos(u)(J; cos?(v) + Josin?(v) — J3),

with Nijenhuis recursion operator given by

R(u,v) =
_ Rt Rig
Ro1 NRao
Uy -1 . o [ w -1
< o > ® D, ( sin(u)vy, —sin(u)u; ) < " > ®@D;'( S1, Sa, ),
where
MR, = —D?—2sin’(u)v? —ul +v? — (J, — Jo)sin®(u) sin?(v)
+(Jy = J3)sin(u) + Js — Jy + u, D"+ (sin(u)vy) —u D' - Sy,
Ry = 2cos(u)sin(u)v; D, + cos(u) sin(u)vy — 3sin®(w)u vy + 2uyv;
+u D' (= sin(u)ug) — ug D'+ S,
Ror = —2cos(u)vy D, — cos(u)ve + uyvy
+u, D, - (sin(u)vy) — v D, ' - Sy,
Moy = —D? —2cos(u)u; D, — cos(u)uy — (J; — Jy) sin(u) sin?(v)

—2sin*(u)v? +vf + (J; — J3)sin®(u) + J5 — Jy
+vu, D, - (—sin(u)uy) —viD, - Sy,
S; = (Jy — Jy)cos(u)sin(u)sin®(v) — (J; — J3) cos(u) sin(u)
+ cos(u) sin(u)v? — ug,
Sy = (Jy — J3)cos(v)sin?(u) sin(v) — 2 cos(u) sin(u)u,v; — sin?(u)vy.

As we did in section 6.3.6, for the extended system, we have that \; = 2 for
i=1,2,3, \sp =2 and T’ = {1, 2} with

o= () own = (),
U1 (0



So v(MR) = 1. Notice that £ and £?) are both self-adjoint. It follows that h(® is a
root of a hierarchy. For A", we have
5(1)‘h(1): ( S, 52 )(Ul U1 )
= (Jy — Jy) cos(u) sin(u) sin?(v)u; + (J; — Jo) cos(v) sin?(u) sin(v)v;
—(Jy — J3) cos(u) sin(u)u; — ujuy — cos(u) sin(u)uv? — sin®(u) vy vy

= %Dz((Jl — Jy) sin?(u) sin®(v) — (J; — J3)sin®(u) — u? — sin®(u)v?)

and
€@ p = ( sin(u)v;  —sin(u)uy ) . ( uy, Up ) = 0.

So KM . £U) ¢ ImD, for j = 1,2. This implies that 9th(!) # 0 exists. Notice that
Ay = 3. By theorem 6-8, we conclude that h(Y) is a root of a hierarchy.






Chapter 7

The symbolic method

In this chapter, we introduce the symbolic notation and derive expressions for the
(co)symmetries. The Lie derivatives of ud, acting on polynomials of degree m + 1
are given, from which we define the functions G,(cm). The mutual divisibility of
these functions play a role in proving the (non-)existence of (co)symmetries. It
is interesting to note that the result that any nontrivial symmetry satisfies the
conditions of our abstract theorem 2-76, relies (at the moment) on results using
diophantine approximation theory.

The symbolic method was introduced by Gel’fand-Dikii [GD75] and used in
[TQ81] to show (as an example) that the symmetries of the Sawada—Kotera equation
have to be of order 1 or 5 (mod 6). The basic idea of the symbolic method is very
old, probably dating from the time when the position of index and power were
not as fixed as they are today. In fact, the symbolic calculus of classical invariant
theory relies on it. The idea is simply to replace u;, where 7 is an index, in our case
counting the number of derivatives, by u&?, where £ is now a symbol. We see that
the basic operation of differentiation, i.e., replacing u; by u;,1, is now replaced by
multiplication with &, as is the case in Fourier transformation theory. If one has
multiple u’s, as in w;u;, one replaces this by 3 (&) + &£]€3) u>. We have averaged
over the permutation group ¥, to retain complete equality among the symbols,
reflecting the fact that w;u; = w;u;. Differentiation now becomes multiplication

7.1 Symbolic Notation

Abstract 7-1. We introduce the Gel’fand-Dik<+ transformation and give the ex-
pressions for the (co)symmetries using the symbolic method. We also define the
functions Gggm) from the Lie derivatives of ui0, acting on polynomials of degree
m + 1. As applications, we compute the (co)symmetries for the linear evolution

equation.
Notation 7-2. 1. Let AF be the set of polynomials f of degree k in n+1 variables

95



and A,’i be the set of its symmetrized elements f d:ef< f >. Here

<P () = 3 flolm), o)

' O'EEn

where X, 1s the permutation group on n elements.

2. For brevity, [u] is used to denote the set of arguments u, uy, us, --. We denote
by UF(n > 0,k > 0) the set of polynomials of [u] of degree k + 1 and index n,
that s

Ut ={flf = Z Cog.ap U0UT - udm}

llall=n,|al=k+1
where |a| def Sy aq and ||of def S ot The ring of all polynomials of [u]
is denoted by U and U = D,,>¢ >0 ur.

3. A, fi’c, U, and U* make sense, e.g., U* is the set of polynomials of [u] of
degree k + 1.

Remark 7-3. e Notice that we consider k > 0 which excludes the constant case,
e., 1 ¢ U. This case need to be treated separately.

e We construct the complex of formal variational calculus based on the ring U
according to Chapter 5, denoted by (g, 0)c for simplification. QU[€] are written
as 2" for the same reason.

With each polynomial in U* we associate a form in A7 by the following rule:

0 ¢1 1

ag,, o1 o k+1¢0 m m
Uy “'umm —u 51 aoSag+1 "7 ao—l—oq“'é-k—ozm—l—Q'“fk—l—l'

U

Definition 7-4. The Gel’fand-Dikii transformation [GD75] maps f € Uk to
f=ur*f, where f € AR, For a monomial it is defined as

m k41 0 0 (1 1
uaou?l e ugn u < 51 e aggao—l—l e gao—l—oq e glrcn—ozm—I—Q e 617;1_1_1 >
For any f € U*, two important properties of Gel'fand-Dikii transformation are

5\.](‘(61) T £k+1> = uk+1f(51: te a£k+l> Zi:—ll 13
8ul (gla 'af/ﬂ»l) = 533:;;]0 (gla ’ 'agk; 0)

Consider that h% = {D}(h)dy,, h € U}} (simply written as h) and b = @B, .y by-
We shall show that this is a graded Lie algebra with respect to both n and k.

Proposition 7-5. If f € U™ and h € h7, then Ds[h] € U™ and

(7.1.1)

Dy[h]
n+1
= (m+ 1) mntl < f 51: ' ':5mazgm+l §m+la ' a£m+n+1> >



Proof. Using (7.1.1), we compute, with i = u" ' A(Cy, - - -, Cayr),

—
L —

of ——
Dy[h] =< ZﬁDih >
J

= St < MEL O (e 0) (Gt GG Gunt) >
; J: 85m+1

= (m4+Du™" T < f&, e G GG Ggt) >

and the conclusion follows. O

Therefore, the Lie bracket [h, g] = Dy[h] — Dy[g] € b7%5" if h € b and g € b7 since
we define Fréchet derivative through the ring. This implies that h is indeed a graded
Lie algebra.

In the same way, we have Q' = @, | (Q")%, where (Q")} is defined by w € U}.
Notice that Q' is a h-module under the Lie derivative action. We now check whether
it is a graded h-module.

Proposition 7-6. Let &, define by Z”+m+1 =0. Ifh € b™ and w € (Q")7, then
Djw] € ()75 and

—

DZ[("J] = (m + 1)um+n+l < E(fla e agma 50>@(5m+15 Ty 5m+n+1) > .

Proof. Using (7.1.1), we compute

e
< Di[w] >= <z]: (au])>
m n+1
_ Zum+n+1( Z ZCS m—l'—l o'h (€1, Emy 0)D(Ch, -+ oy Cagl) >
j im S
n+1
= (m+ Du™ < he Zf+2§ J (G, e, Cogr) >

= (m + 1>Um+n+1 < h(fla T 5ma 50)w(5m+1a T 5m+n+1) >
and this proves the proposition. O

So Lyw = D,[h]+ Djw] € (2')7%" when h € b and w € (Q')7. Tt follows that Q'
is a graded h-module. Surely, we can say b is a graded h-module under the adjoint
representation ad. If we do not specify b or Q!, we use the notation V.

Proposition 7-7. Let Q € V, K € hand Q =Y. Q', K = >  KJ, where Q' € V!
and K! € b.. Then Q is a (co)symmetry of the equation uy = K iff

Z LKgQ; :Oa p,q = 0.

i+j=p
r4+s=q



Proof. We know that @ is a (co)symmetry of the equation u, = K iff Lg@Q =
DglK] — Dk[Q] = 0 (LkQ = Dg[K] + D%[Q] = 0) since @ is t-independent. By
proposition 7-5 and 7-6, this can be proved directly. O

Definition 7-8. Let & be defined by ZmH & = 0. We now have that
< L, Q™ >=G"Q™,

where we define G,(Cm) by

m-+1
=Y e rag,
i=1
with a = —1 of Q™ s a symmetry and o = 1 if Q™ 1is a cosymmetry.

We give the following results as applications of proposition 7-7.
Notation 7-9. (C)S; = {(co)symmetries of u, = f in b (') }.

Proposition 7-10. Consider the linear evolution equation

p
==Y Au,
j=1
where the A\; are constants and A\, # 0. Then
g Sf = h Zﬁp = 1;
] szho iff p > 1.
We see that for p > 1, Ly is nonlinear injective (for symmetries).
Proof. Notice Y7_, Aju; € b° and 320_, Ay = u Y27, A;é]. Let Q € b and Q =
> @', where Q' € h'. By proposition 7-7, @ is a symmetry of this equation iff
L;Q" =0, for any i > 0. So
p .
(i+1) < Q& & Z)\ g >= Z)\j(fl + o &) QN (& i)
j=1

This implies

P P
Z)‘j(g""" &li1) Z)\J §i4 -+ &)
7=1
Under the assumption, this holds iff elther p=1lorp#1andi=0. O
Proposition 7-11. Consider the linear evolution equation u, = f = _q Ajuyg,

where \; are constants and A\, # 0. Then

¢ CS; =0 iffp=1,



¢ CS; = (0N iff p>1 and all j are odd,
o CS; =0 1ff p>1 and at least one of j is even.

Remark 7-12. We see that for p > 1 and all j odd (meaning that \; = 0 for j
even), Ly is nonlinear injective (for cosymmetries). If one of the j is even, there
are no solutions for Lyw =0 in Q.

Proof. Notice that " \ju; € §°. Let w € Q' and w = Y W', where w’ € (Q')".

By proposition 7-7, w is a cosymmetry of this equation iff Dy:[f] + D}[w’] = 0, for
any 7 > 0. So

P
(Z + 1) < wl 51: ' ';5z+1 Z Aj gz-i—l >+ Z)‘jé-(])wi(é-la e a§i+l) = 0:
j=1
where ZZH ¢; = 0. This implies
i+1

ZA 2 =0

Under the assumption, it holds iff either p = 1 or p # 1 and ¢ = 0 when all j are
odd. O

7.2 Divisibility of the G\"

Abstract 7-13. In this section, we give the results about the mutual divisibility of
the polynomials chm) proved by F. Beukers.

We notice that for cosymmetries or if k£ is odd for symmetries, Gg) is invari-
ant under the natural action of the permutation group ¥;;5 on the coordinates

é-(]a te ':5l+1-

Proposition 7-14. Gim)\a:,l = Egm)g,(cm), where (g,im),gfm)) =1fork<l, and tim)
s one of the following cases.

e m—1:
— k=0 (mod 2): &&
— k=3 (mod6): £&&(& + &)
— k=5 (mod 6): &&(& + &) (& + & + &)
— k=1 (mod6): &&(& + &) (& +&& +&)°.
e m=2

— k=0 (mod2):1



— k=1 (mod2): (& +&)(& + &) (& + &)

e m>2:1.

Proof. This proposition is proved by F. Beukers using diophantine approximation
theory ([Beu97] for m = 1 and Appendix A for m > 1). Despite the innocent look
of the polynomials involved, we have not been able to find a simpler way of proving
this case. It is conjectured that the g;* are Q[¢]-irreducible. O



Chapter 8

Classification of the scalar
polynomial evolution equations

We determine the existence of (infinitely many) symmetries for equations of the
form

ut:uk+f(ua“'auk—l)a

when their right hand sides are homogeneous with respect to the scaling symmetry
zu; + Au € bY (so-called \-homogeneous equations) with A > 0.

Algorithms are given to determine whether a system has a symmetry in . If
it has one nontrivial symmetry, we prove it has infinitely many and these can be
found using recursion operators or master symmetries. The method of proof uses
the symbolic method and results from diophantine approximation theory. We list
the 10 integrable hierarchies for A > 0. The methods can be applied to the A < 0
case, as demonstrated in section 8.5.

In principle they can also be used for systems of evolution equations, evolution
system but so far this has only been demonstrated for one class of examples, cf.
[BSWOS].

8.1 Introduction

The existence of symmetries and conservation laws of scalar evolution equations is
well understood, in the sense that today it would be difficult to find anything new.
That this understanding is complete remains to be proven. The main questions in
this respect are the following.

e Can we decide, given an equation, whether there exists a nontrivial symmetry
(i.e., not u; or the equation itself) (the recognition problem)?

e And if so, can we answer the question whether this leads to infinitely many
symmetries (the symmetry-integrability problem)?
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e Given a class of equations with arbitrary parameters, possibly functions of
given type, can we completely classify this class with respect to the existence
of symmetries (the classification problem)?

In the literature there exist lists of integrable systems, i.e., systems which came
through certain integrability tests (cf. [MSS91]). The main problem with these
lists is that there is no recipe to check whether a given system is equivalent to a
system in the list, and there is no proof that the lists are complete. This leads
to interesting discussions. In this chapter we will not solve this problem, but we
answer the questions with yes for a class of \-homogeneous equations and mention
that our methods can be extended to cover much in the lists. We should stress at
the beginning that this classification only allows linear transformations (in the scalar
case that means multiplication of u with a constant only), and so there might be
relations among the hierarchies (by graded Lie-Bécklund transformations), as there
exist between KdV and Potential KdV.

This chapter was motivated by the observation that after quickly finding a num-
ber of hierarchies (mKdV, Sawada—Kotera, Kaup—Kupershmidt) soon after Kdv,
nothing more was found for polynomial scalar evolution equations which are linear
in the highest order derivative.

We show that integrability of an equation of the form

wp = up + fu, -, up_1)

(with f a formal power series starting with at least quadratic terms) is determined
by

e the existence of one nontrivial symmetry,
e the existence of approximate (co)symmetries.

Remark 8-1. We have derived the formalism not only for symmetries but also for
cosymmetries. We apply the formalism in this chapter only to the classification of
the symmetries (symmetry—integrability). The classification of the cosymmetries is
more complicated, since one also encounters equations (usually without a nontrivial
symmetry) with only a finite number of cosymmetries. Some results for KdV-like
equations (A = 2) are given in [SW98].

To this end we have formulated theorem 2-76 in the context of a filtered complex.
We proved in an abstract setting the remark made in [Fok80]

Another interesting fact regarding the symmetry structure of evolution
equations is that in all known cases the existence of one generalized
symmetry implies the existence of infinitely many. (However, this has
not been proved in general.)

under fairly relaxed conditions. The result also confirms the remark made in [GKZ91]



It turns out from practice that if the first integrability conditions [...]
are fulfilled, then often all the others are fulfilled as well.

We should also remark however that the conjecture

the existence of one symmetry implies the existence of (infinitely many)
others

has been disproved. Using an example given in [Bak91], we show this in [BSW9S]
using the same techniques as in the present chapter. This example, however, does
not contradict the spirit of our theorem, since it depends on the nonexistence of
certain quadratic terms, the existence of which is one of the conditions in theorem
2-76.

Some of the strange conditions in theorem 2-76 have been inspired by the sym-
bolic method (cf. chapter 7). With this method one can readily translate solvability
questions into divisibility questions and we can use generating functions to handle
infinitely many orders at once. While this does not mean that the questions are much
easier to answer, we do now have the whole machinery which has been developed in
number theory available (cf. section 7.2), and this makes a crucial difference.

In this chapter, we show that a nontrivial symmetry of a A-homogeneous equation
is part of a hierarchy starting at order 3,5 or 7 in the odd case, and at order 2 in
the even case. When )\ > 0, we can further reduce 7"-order equations to 5''-
order. This result explains why despite systematic searches using computer algebra
nothing new was ever found beyond 5"-order (cf. [GKZ91]). Moreover, it enables
us to completely analyze A-homogeneous equations for positive A. For A = 1, this
describes the family of Burgers—like equations, for A = 2 the family of KdV-like
equations.

Finally we apply the method to the A < 0 case.

8.2 Symmetries of \-homogeneous equations

Abstract 8-2. In this section we show that it suffices to compute the linear and
quadratic or cubic terms of a symmetry to quarantee its existence, if one has a \-
homogeneous equation with a nontrivial symmetry. Moreover, if the order of the
symmetry is > 7, we show that there exists a nontrivial symmetry of order < 7. We
can then replace the equation by its symmetry. This makes it possible to solve the
complete classification problem.

We consider n''-order equations of the form

U= ZK:L—Aia (Kp_xi € Up_xi), (8.2.1)

i>0

where n > 2, K? = u,, and A\ € Q strictly positive.
In the notation of section 2.9 one has

K’ =K, (K, ¢€hb,),



and
Z i (B € 0500)
>0
If S € bis an order m symmetry of (8.2.1), by proposition 7-7 the following
formula holds for all » € N:

> IS5 Kl =0 (8.2.2)
i+j=r
The lowest upper index of S has to be zero, otherwise this equation cannot be solved,
i.e., SO # 0. Clearly we have [S2, K°] = 0. The next equation to be solved is

S0 Kio] + [s:n WK =0, (8.23)
Remark 8-3. If K' =0 fori=1,---,7— 1, from (8.2.8) we have
S) = M (8.2.4)
m—j\ Gg) L

This equation can not be solved when j > 3, or when j = 2 and n is even since GY
and G¥ have no common factors, and the degree of K] i s —JA < n, which

18 the degree of GY). This implies that there are no symmetries for such equations.
When j = 2 and n is odd, it can only have odd order symmetries. In this case one
can remark that if the equation can be solved for any m, it can also be solved for
m = 3.

Note that if X is not an integer, this leads automatically to f(fl_i,\ =0 ifi\ ¢ N.
This restricts the number of relevant X to a finite set.

We rewrite (8.2.4) as

St Y
Yoy SEYelt (8.2.5)

It follows from the results of section 7.2 that this can be written in the form

1
Kn)\_

: f(61,6)
Kl | =205 a0y 8.2.6
Y L6E+ &) ( )
where f is Yo-symmetric and limg, ¢, 50 f (&1, &2) exists. By the same reason,
S\ = &) G (8.2.7)
§162(61 + &)
We now go to the next order
> oIS A]’Kfl xil =0, (8.2.8)
i+j=2
or
N K? G2 st ,K1
572,1_2)\ — —2X [ m—A n— A] (829)



Definition 8-4. We say that f € T iff &1+ f (&1, &) and that f €T, iff &1 f(&1,&2).

Proposition 8-5. Suppose m and n are odd. Then (&, +&)(&a+&3)(E1+&3) divides
[Spn Kol iff f € LU T,

Proof. We compute

[51171 b K’rlz ,\] =
f(€1, 6+ 63) f(&2, &3)
§1(& + &) (& + & + &)
_ 9c f(&6,6 + &) f(6.6)
§1(& + &) (& + & + &)
2 1 f(1,& + &) (&, &)
3& +&+ & §1(& + &3)?
(GO (61,6 + )GV (6,6) — GV (61,6 + 6)GL) (6, 6))
f(&2, 61 +&3) f(61, &)
§2(& + &3)?
(G (&0, &1+ E)GV (61,6) — G (60,61 + E)GL (61, 6))
f(€3,610+62) f(&1, &)
&3(& + &2)?
(GO (85,6 + &GP (61,8) - GV (&, & + &GN (&, &))] -

We now prove that limg, ¢, of this expression is zero. First we have

lim (GU)(&, &+ &)GV (&, &) — GV (&1, & + &)GN (6.6))

£1+£2—0

= GP(-&, 6+ 86)GV (&, &) — GV (=&, &+ &)GL) (&, &)
= —GU(&,&)GV (&, &) + GV (&, &)GN (&,&) = 0.

So the only interesting situation is the one with

Gg)(fb S+ 53)G511)(52a €3) >

GO(&), & + &)G D (&, &) >

(GEDE +€ . If we let

Fey () = GO (&3, 2) G (2 — &, &) — G (&, 2) G0 (w2 — &, &),
then we see that F, ¢,(0) = 0 and

%Fﬁz,&(o)

= G (6 0) G — &2, &l + O (6o, o) e G (63, 7)o

 GD(E.0) O (@ 0. ) e — G (62, E0) -GV ()0 = O
Moreover

dQ
@F&,sg(o)



(§3a ) |a= oiG1 (1‘_52,52)|m 0

2d G (1 — &, &)= 0 d G (&3, 1) |a=0

(g (e £o

e
* 0
4q

This implies that

o im m@&?(&s, &+ E)GD (&1, 6) — GV (&, & + E)GD (&1, 6)) #0

and therefore (& + &) )([S;:\—:E#,\] unless & + & f(&3, & + &) f(&1, &), or, equiv-

alently, & + & f(&1,&2) or &1l f(&1,62).
By the symmetric property this statement follows. O

Corollary 8-6. Assume m and n are odd. Then (& + &) (& + &) (&1 + &3) divides
K2 ,,G? 4 [sk

m—X\?
iff & +52| P\ (&1,&) or 51|K A1, 8).

Theorem 8-7. IfS =3, 5;,_\ is an order m symmetry of equation (8.2.1) and
Ql \ exists, with ¢ # m,n, ¢ > X and q is odd if n is odd, such that [K), Q;_,] +
K} |, QO] = 0, then there exists a unique QQ = Zz>0 Q! . such that Q is a symme—
try commuting with S.

LKL (8.2.10)

q—Ai

Proof. For even n or m, this follows from theorem 2-76, since S?, is relatively 2-prime
w.r.t. K9
We conclude from the existence of S that (& + &) (& + &) (&1 + &) divides

K2 QAG [Sl an)\]

m—A?

for odd n and m. In other words, (£, + &)|K! ,(£1,&) or &KL \(&1,&).
We know from the proof of theorem 2-76 that

g2(181, Q1+ 5% Q) = g@ (K", Q] + [K2 Q).

Since (gﬁ,f), g,(f)) =1, and (by exactly the same argument as for S)

(61 + &) (& + &) (€ + &) (KL, QY + [K2, QV),

P e g

we may conclude that G? divides [K', Q']+ [K2,Q°], or

32 _ [QlaK1]+[QOaK2]
q—2x — GSZQ)

is well defined. Since the G%k) are relative prime for k > 2, this means that K is
relatively 2-prime and we can apply theorem 2-76 to draw the conclusion that there
indeed exists a symmetry () commuting with S. O



Notation 8-8. Let ¢y = &7 + &6 + &£2.

Now we can make a very interesting observation. Consider a given A-homogeneous
equation with odd n

Up = Z K, s (K oy €Uy yy).
i>0
Then we pose the problem of finding all its symmetries. Suppose we have found a

nontrivial symmetry with quadratic terms given by equation (8.2.5):

31
q—X

f(}lﬂ\cg—s gql
g

where s’ = 22 (mod 3) and s = 22 (mod 3). This formula implies A < 3 +

2min(s, s'). Then QJ,.5_,, defined by

Ky 265 " Gaers

~1 B
Q25+37A - 1 )
In

gives rise to a symmetry Q = Q5,5 + Q%s—l—3—)\ + --- of the original equation, using
theorem 8-7 (Of course, this argument generates a whole hierarchy). This implies
that @ and K have the same symmetries, so instead of considering K we may
consider the equation given by @, which is of order 25 + 3 for § = 0,1, 2. It follows
that we only need to find the symmetries of A-homogeneous equations (with A < 7) of
order < 7 in order to get the complete classification of symmetries of A-homogeneous
scalar polynomial equations starting with linear terms.

A similar observation can be made for even n > 2: Suppose we have found a
nontrivial symmetry with quadratic terms given by equation (8.2.5):

o K
- gr &
This immediately implies A < 2. Then Q) _,, defined by
N K!_
Qéf)\ - 2 1 AJ

n

gives rise to a symmetry Q@ = Q9+ Q) , +- - of the original equation, using theorem
8-7 (this argument generates a whole hierarchy with symmetries of every order). So
@ and K have the same symmetries. Instead of considering K, if its order is > 2, we
may consider the equation given by ), which is of order 2. It follows that we only
need to find the symmetries of equations of order 2, in order to get the complete
classification of symmetries of A-homogeneous scalar polynomial equations (with
A < 2) starting with an even linear term. We have proved the following

Theorem 8-9. A nontrivial symmetry of a A-homogeneous equation is part of a
hierarchy starting at order 3,5 or 7 in the odd case, and at order 2 in the even case.



8.3 Reduction of 7"-order \-homogeneous equa-
tions

Abstract 8-10. We conclude from a rather extensive computer algebra computation
that T -order equations must have 5" -order symmetries if they possess symmetries
of order 1 (mod 6).

Suppose one can show that for a given 7"-order equation to have a symmetry
implies that the quadratic terms of the equation in symbolic form divides through
o1 . .
E2+4+£,6+E2, then mgw is the quadratic part of a 5'"-order symmetry. Therefore
1 2

we can in that case replace the 7*"-order equation by a 5'"-order symmetry.

To this end we have analyzed all order 6m + 1 symmetries (m = 2,3,---) of all
7*h_order A\-homogeneous equations for A =1,---,7.

We have done this using generating functions of the form

GO() =3 Shr™!
m=0

Using the relation (8.2.4) we obtain

© Kl G(l) Kl )
(1) _ n=A~""M _6m+4+1 _ Tn-=2A (1), _6m+1
G (1) = Z 0 T D) Z G’ T
m=0 7 7 m=0
LR85 +36°6 + 6067 - 3676 + 676" + 3667+ &°) — 7
7 (6o D@ 1) &1

As predicted by the theory in the preceding section, this does not directly lead
to any conditions. So we have to go to the next term as in (8.2.9).
Using Maple ([CGG'91]) and Form ([Ver91]) we compute for each A the Lie

bracket of G with the quadratic part of the equation f(%ﬂ\ plus the product of
G2 and the cubic terms of the equation K2 ,,. We check under what conditions
GgQ) divides the result. We then find for each A that the quadratic terms can always

be divided by & + £,& + &2 under these conditions.
This reduces the problem of 7*"-order equations to 5"-order equations.

8.4 The list of integrable systems for \ > 0

Abstract 8-11. We give the complete list of symmetry—integrable systems for A-
homogeneous equations with A > 0. From the list we have removed the equations
belonging to a hierarchy starting at a lower order. The infinitely many symmetries
for these equations are generated by the recursion operators or master symmetries.
References are given to the pertinent sections in chapter 9, where these equations
are treated in more detail.



8.4.1 Symmetries

We only have to look for 7*"-order symmetries, since any symmetry of order 3 or 5
(mod 6) automatically gives rise to a symmetry of order 1 (mod 6).

We assume that the equations have nonzero quadratic terms, since otherwise the
analysis reduces to 3"-order equations.

As we have seen, the first order calculation does not lead to any obstructions, so
one has to go to second order at least. Since a symmetry needs to be found, one can
not stop at a certain order, even if the equation is totally determined. The problem
has to be completely and explicitly solved. Although straightforward in principle,
the calculation is quite large. Again using Maple and Form we have produced a
complete list of A\-homogeneous (A > 0) 5%-order equations (with quadratic terms
not equal to zero) with 7"'-order symmetry. From this list we have removed the
equations belonging to a hierarchy starting at a lower order. A similar list appeared
in [Bil93], but that list is not complete, e.g., the A = % case is missing.

8.4.1.1 A=1
Kupershmidt equation (cf. section 9.17)

f1 = us + dujusg + 5u§ — 5ulug — 20 uugugy — 5u‘;’ + 5utuy.
Potential Sawada—Kotera equation (cf. section 9.19)

1 3
fo = us + uqus + Bul.

Potential Kaup—Kupershmidt equation (cf. section 9.21)

15 9 20 3
f3 = us + 10uuz + EUQ + ?ul.

8.4.1.2 A=2

Kaup—Kupershmidt equation (cf. section 9.20)
f1 = us + 10uus + 25uqus + 20u%u,.
Sawada-Kotera equation (cf. section 9.18)

= uy + Suus + bujug + 5uu,.
[ 5 3

8.4.2 Symmetries

Using the same methods as before we find the following list of systems with a
symmetry.



8421 A=
Ibragimov—Shabat equation [IS81] (cf. section 9.10)

fo = us + 3uus + 9uu% + 3utuy.

8.4.22 A\=1

Potential Korteweg—de Vries equation (cf. section 9.6)
f7 = us + U%
Modified Korteweg—de Vries equation (cf. section 9.7)

fg = Usg + u2u1.

8.4.2.3 AN=2
KdV equation (cf. section 9.5)

fo = uz 4+ uuy.

8.4.3 Symmetries

The only 2"4-order equation with a symmetry and A > 0 is

84.3.1 =1

Burgers’ equation (cf. section 9.1)

fi0 = ug + uuy.

8.5 The integrable systems for A < 0

Abstract 8-12. We use the same method to solve the classification problem when
A < 0. We give the results for A = 0 and from which we derive the correspondent
results for A = —1. The results given here describe research in progress. We remark
that due to the infinite dimensional character of the search spaces, the computational
details are much more involved than was the case for A > 0. For A = 0 we obtain
ordinary differential equations as our obstruction equations, for A < 0 we obtain
partial differential equations.

For A < 0 the space of monomials of a fixed degree and A-grading is no longer
finite dimensional. But if we restrict the number of derivatives, as is natural from
the definition of a system of given order, then the space is finitely generated. This
can be seen as follows. We consider, for given n, monomials of the type

ko

u

k kn—
ull.. 1

* Un_l .



Since the grading of u, is A + n, the monomial will have the same grading as u,, iff

n—1

Atn =Y (A+j)k;

J=0

Since \ € %Z, this is a diophantine equation of the type considered by Gordan.
This implies there is a Hilbert basis consisting of monomials of A-grading 0, <
T, +, T4y >, and of A-grading A +n, < my,---,mg,,, >. This Hilbert basis can
be computed for given A € 37Z using the software described in [Pas95]. We write an
arbitrary A\-homogeneous equation as

d)\+n

Ut = Up + Z fj(?”l, i ',Tdo)mj.

=1
Observe that there may be relations of the type:

Gi(ri, Tag)mi = gi (1, <+, Tay )M

Following the algorithm described in section 2.9, the f; are formal power series. We
can consider them as C*°-functions with the same arguments 7, - -, rg, according
to [Poe76]. One can now compute the Lie bracket of two arbitrary equations and
derive the PDEs (or ODEs when A = 0) which have to be satisfied to let the
Lie bracket vanish. The system of PDEs can be analyzed using the algorithm in
[BLOP95] and [BLOP97| as implemented in the Maple package Diffalg. This leads
to a system of PDEs which has to be solved explicitly in order to obtain integrable
equations with their symmetries. Some solutions may fall outside the category of
formal power series, but since they solve the relation defining the symmetry, this
does not seem to matter. That is to say, it does not matter for the existence of the
symmetry. What may go wrong is the use of the symmetry in theorem 2-76. This
needs careful consideration of the topologies involved. But anyway the procedure
gives us good candidates for symmetry-integrable systems and these can be analyzed
using completely different methods if necessary.

8.5.1 The case of A =0

8.5.1.1 Symmetries of 2"- and 3'"-order equations

We consider the family
wy = ug + 3f (w)uyus + g(u)ut, (8.5.1)

where f and g are arbitrary formal power series, and look for 5"-order symmetries.

To find a symmetry to a given order or a given class of equations is not too
difficult in principle. One writes down the Lie bracket equation, looks for some
grading or filtering to organize the computation with, and then proceeds to calculate,



solve the equations and find the obstructions to the solution of the equations. The
result, given in [Maw98], is a list of obstruction equations that in this particular
case is very short, namely

dg  0? 3
— =—=4+2fg—2f".
ou  Ou? +2f9-2]
We can manually simplify this by putting
0
9= or fP+h
ou
and we obtain the obstruction equation
oh
— = 2fh.
ou /

Notice that the evolution equation can only be polynomial if h = 0. The equation
(8.5.1) has a recursion operator

Thanks to the existence of a recursion operator, convergence of the formal power
series is inherited by the symmetries.
The recursion operator can be split (if A # 0) as R = HT, where

9 = (hDy + hfuy)™"

and
3= WD, + fur)(Du + fun + 204 D; ") (D, + fu)

are the cosymplectic and the symplectic operator, respectively. The Hamiltonian
function is given by

1 20f 1 1

—h{u— (=== +=f*4+=h)ui|.

2 <2 (38u+3f R
We see that we have an example of a family of Hamiltonian systems which is not

Hamiltonian in one exceptional point h = 0. This exceptional case derives from the
2"d_order equation (cf. section 9.2)

up = uy + f(u)u?,

which is known to be integrable [Fok80] with a recursion operator D, + f(u)u;.

8.5.1.2 Symmetries of 5'""-order equations
We consider the following family

w, = s+ Agyuguy + Asguous + Asjudug + Asguqul
+A40U?U2 + A50U?, (853)
where the parameters are arbitrary functions with respect to u. We look for the

condition that the equation possesses a 7*"-order symmetry by the same way that
we did for 3"-order equation before. The results are the following:



Case I

du T 2w Tpmdws 100‘4%0’

An = gAn,

Az = —%%4'1430 2101430,

Ay = —2301420%4-%14301420 20014%0 821;1220’

= T
5 8A20 1

Ago —— A3y A2, — A;‘O

T250° % 50 T 50 500 20790000

Notice that the quadratic terms are equal to A20<%U1U4 +ugug). Its correspon-
dent symbolic expression is

A
(68 + 2618 + 261G + €16) = TEH(E + &) (E + a6 + &),

Therefore, this equation has a 3'9-order symmetry since £2+&,£,+€2 divides the
quadratic terms. As it turns out, it is the image under the recursion operator
(8.5.2) of the 3"-order family (8.5.1) we just found with the identifications
Asg = 10f(u), Aso = 15g(u).

Case 11
0A 1 10A
au21 = 3dn — pdadn 5 B -
1 4 0A
A31 - —gAgO + gAQOAQl - gAgl + WQO,
1 11 4 30A
Agg - —514%0 + —A20A21 - _A§1 + 5%20,
4 3  0A 0%A
A4g == gAQUAgl Agl + AQl 8U20 + au;O A21A20,

1 83A20 1 82A20 1 aQAQO 3 aA?U 2

Ay = — A g 20 2
50 10 9 T 10°% 50z 10090 g2 100( ou )
A 7 A 19 A
2 20 20 9 20
220, ALA _
2175, T 100720 g, 1000 20 5y,
7
A4 A4 A3 Ay — —— Ay A3,
oo 0 T g n T g tatn T gt

Let us first consider the special case Ay = %AQO. This turns out to be the
only case the equation can be polynomial. This leads to

0Ay

A31 - Ago au 3

10



3, 30Ay

Ay = — 2

30 20 2079 gy

3 0A 92 A
_ 3 20 20
A = 100’420 A2° o0 T w2
1 9% Ay Agoa Ay 3 0Ay 342,04, Al

A = = . 2 20 20 .

50 0 9 25 o +100( 8u) 500 9w 10000

Notice that such a solution also satisfies the conditions of case I. Indeed, this
subcase Ay = Ago can be identified with Case I, h(u) = 0, i.e., it derives
from the 2"d- order equation u; = ug + A20u1

Otherwise, let Z = Ay — §A20. Then !

7 _ laz,

Az = _§Z2 - —A21Z+ A21 + 2654;1

Ay = gAgl—gAmZ—%Z? 554;1,

Ay = %Agl — 28—5A§12_ §A21ZQ i 5A218(;4u21

Ay 2 _0A

+2 8u221 -7 8;1,

Asp = %A;ﬂ 1;5A§12 125A§122 %24
_%AQIZagx;l _%854;122+%(854;1>2

o, 049y 4 0%Ag  10%Ay
R
ou 25 ou 5 Ou
The evolution equation (8.5.3) in this case has a recursion operator

2 1 8
R = (Dm + gZul + gAQlul - %unglZQUQ .
2 1
(Dx + —Zu1 + —A21U1) .
) )
1
(Dm + gAQlul) .

2 1
(Dx — gZUl + 5A21U1) .

(D, — %Zul + %Amu1 - %ulD;122u1) -
(D + %AQﬂLl). (8.5.4)
The recursion operator can be split (if Z # 0) as R = HJ, where
§= (272D, 4 > Aﬂul)_1
25 125

IThe case As; = 0 corresponds with the Potential Kupershmidt equation.



and J = $H7'R are the cosymplectic and the symplectic operator, respectively.
The Hamiltonian function is given by

4
— 72 . (9375u2 + {62507 — 5625 A9 Yul
234375 (9375u; + { 21}l
0Ag

+{3750A45, Z 4+ 75002% — 1125A3, — 16875 »

Yuius

83 Ay 0A
12 —40Z A3, + T50———= o5+ 3A4% — 60022 —2L 5 21
Uu

02 Ay
+450A21 9 9 }U?)

0 Agy
807* + 525
+ + ( ou u3

0 Ay
—180Z2%A3, — 3007 Ay o L 412042, =2 o

Example 8-13. If Z is a formal power series, then all coefficients can be
determined as formal power series. Let us take Aoy = 5. Then Z = ae®,
where o 18 constant. This leads to, if a =1,

4
uy = us+ duguy + 2(5 — e*)ugus + (10 — 2e* — ge2u)u?u3

4
+ (15— 6e" — =€ e*)uquy + (10 — 8e* — 4e*)uiusy

8 16
1 — 2¢% — 7 J4uyn, 5
+ e — e v+ £5¢ “uy.
8.5.2 Some consequences for A = —1
In this subsection, we derive the symmetry-integrable equations for A = —1 from

the results we found for A = 0. The method is to put u = v; and derive the equation
for v, cf. propositions 2-25 and 4-8.

8.5.2.1 Symmetries of 3'"-order equations

Putting u = vy and derive the equation for v from the equation (8.5.1). This leads
to

1 3 3 2 -1 39f . 4

vy = D, (vg + 3f(v1)vous + g(v1)vy) = v3 + Ef(vl)% + D, ((g(v1) — 55)1)2)

1

We can make this equation local by requiring g = %837{. In that case we recover the

condition
32f f

9
o~ u

—4f?
for the family
3
v = VU3 + if(’Ul)’Ug,

which gives us an integrable 3"-order family for A = —1, that is, the existence of a
5%h_order symmetry for the class of equations

up = uz + f(uy)us,



iff

i of
9 —36f——+16f° =0.
8’&12 f@ul + f
Special cases are (numbers in [| refer to [MSS91]) fo = —%, ([4.1.16]) the Krichever—
Novikov equation (cf. section 9.12), foo = —ﬁ ([4.1.19]) (cf. section 9.10) and

fi=—gatiyy ([4.1.14)).
This equation can easily be reduced to a first order equation (cf. [Kam43], 6.43,
or [Ibr96al, p. 204 for a Lie symmetry approach)

(<%>/+ 3)2 + %((%)Jr g)(ﬁ =0.

The general solution (c; # 0) is given by

301 (01u1 + 02)
fer (1) = — 2
21— (clul + CQ)

and we see that it reduces to ([4.1.14]) upon scaling if we allow for imaginary scaling
factors. If not, then we should also allow

3 (5]
21 —u?

fi(uy) =

One notices that the number of solutions f of the condition is very low, because the
equation has internal symmetry and that this is not the general family.

It will be interesting to see whether the fact that the differential obstructions
can be solved by Lie symmetry methods holds in general.
8.5.2.2 Symmetries of 5""-order equations
Similarly, we put u = v; and derive the 5'"-order equation for v. This leads to

1 A 2 A 2 1 4
VUt = Us + A21U2U4 + A20U3 + A3UU2U3 + A40’U2,

where the parameters are formal power series functions with respect to v; with the
following relations

Ay = Ao,
~ 1
Ay = 5(1420 — Ag),
~ 0A
A = Ay — 2
U1
~ 1 0As;  0%Ay
A = =(Ay —
40 4< 40 81}1 82}12 >’
1 0Ay 0 Ay
Ay = — -5 4A
30 2( ou ou +4451),
1,0Ay 0%A3 034y
Ay = — — )
50 4( ou ou? + ous )



Using the Maple package Diffalg, we get the three cases corresponding to those when
A =0 as follows:

Case I
1?21 = 2;120, )
832;?20 = _gggo + %AQO%LUTO’
Ay = 368?50 + %Ago,
Ap = %flzo%}?o — %Ago.
Case Ila
Ay =0, aai;?l = %Agb Az = éfigp Ay =0.
Case IIb
Ay = 22 g,
%1?2012120 = —ﬁ(mﬁ;‘o — 80430% — 125(661?50)2),
A A3 = —%(—161430 — 280430% _ 25(88‘21;?0)2),
AwAy = —ﬁ(lf)’flé‘o - 120?130%30 —~ 225(88140?0)2).

Comparing with the list in [MSS91], [4.2.10] satisfies Case I, [4.2.11] satisfies Case
ITa, [4.2.12] and [4.2.13] satisfy Case IIb if we take all the parameters in the equations
7€ro.

8.6 Concluding remarks, open problems

It seems, based on this chapter and [BSW98], that the symbolic method used to-
gether with diophantine approximation theory and/or p-adic analysis gives a pow-
erful method to do automated (co)symmetry classification of evolution equations.
The goal would be to produce the final list of all integrable scalar evolution equa-
tions with a recognition algorithm. Once the classification is done for all gradings,
one can systematically try to find all such relations, since they might exist whenever
the hierarchies are alike. This one can measure by writing down the Hilbert function
H(r) = Y77, dim Symy(f)7*, where Symy(f) is spanned by the f-symmetries of



grading k. E.g. for KAV this will be, if we restrict ourselves to polynomial symme-
tries with constant coefficients,

7_3

Hyqy(7) = ——-
The main difficulty in applying the symbolic method in actual computations
is the rather quick expression swell. In the programs developed for the present
chapter we have countered this by using Form, whenever Maple gave us object too
large errors. However, one can improve on this by doing the Lie bracket calculations
in the classical domain and the division using the symbolic method. This method
even allows one to compute recursion operators by a long division procedure.
Another interesting possibility is to use the method in the noncommutative case,
cf. [OS98].



Chapter 9

Examples of integrable equations

A general reference for the present chapter is [Ibr96b], [Ibr96a], where lists of in-
tegrable equations with their properties are given and the basic theoretical results
regarding the objects listed in the tables are presented (but not proved).

The following is not a classification list and does not claim to be complete in
any sense.

For every equation we give a table containing (if it exists)

e The equation itself,

e its Hamiltonian function corresponding to the cosymplectic operator,
e its cosymplectic operator,

e its symplectic operator,

e its recursion operator (possibly resulting from the cosymplectic and symplectic
operators) , or its master symmetry,

e roots of its symmetries and

its scaling symmetry.

The source of these results is indicated where possible. Some of the material is
new, as far as could be verified, such as in sections 9.10, 9.13, 9.32, 9.37 and other
isolated results (especially the decomposition of the recursion operator in symplectic
and cosymplectic operators). The new results mainly rely on the theory in chapter
6.
We hope that this material can serve as a source of motivation for future research.
In the sequel we assume C = R or C.

9.1 Burgers’ equation

Reference: [O1v93] p. 315, [Oev84| p. 38, section 6.3.1 ;
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Equation U = U + UUq

Hamiltonian ~ None [Fuc79]
Cosymplectic None [FF81]
Symplectic None [FF81]
Recursion Ri =D, + su+ u, D! [Olv7T]

Ry = tD, + 5(tu + z) + L (tuy + 1)D,; ' [Olv93]
Root U1, tug + 1 *
Scaling —2t0; + (zuy + u)0,

* Since Ry and R, are both recursion operators of the equation, we obtain a double
infinity of the symmetries, by applying SRy or R, successively to u; and tu; +1. Note
that since Ry = RoR; + % and R (tu; + 1) = Ra(uy), if we are only interested in
independent symmetries, it does not matter in which order fR; and R, are applied.

Notice that there is a difference between the root of an operator and the root
of symmetries for an equation (cf. definition 6-10 and 6-12). For QR;, we can take
tu; + 1 as a root of symmetries for Burgers’ equation since R; = D, + %Dz(uDgl-),
but it is not a root of MRy since it is not its symmetry.

9.2 Potential Burgers’ equation

Reference: [Olv93] pp. 311, 317;

Equation Uy = up + u?
Hamiltonian ~ None [Fuc79]
Cosymplectic None [FF81]
Symplectic None [FF81]
Recursion Ri=D,+u

Ry = tD, + tug + sz [Olv93]
Root 1
Scaling Uy [O1v93]

The same arguments hold here as Burgers’ equation since R;Ry = RR; + %

In the paper [Fok80], the author found the 2"d-order equations of the form
u; = us + f(u,uy), which possess a 3™-order symmetry and obtained the follow-
ing equations:

P02+ oy 921)

where « is constant and f(u) is an arbitrary function, with the Nijenhuis recursion
operator D, + L7y, + saf(u) + zau; Dt f ().

[ (w)
7= fw)
Uy = Uy + ————uj + af(u), (9.2.2)
flu)
where f(u) is an arbitrary function and «, 7y are constant, with the Nijenhuis recur-
sion operator D, + =L Py

fw)



Notice that the (potential) Burgers’ equation is a particular case of (9.2.1). If
we take o = 1 and 7}{7};‘) =1, i.e., f(u) = Bexp(—u) + 7, it leads to the nontrivial

equation:

up = uy + uj + Bexp(—u) + 7.

9.3 Diffusion equation

Reference: [Oev84] p. 39;
Equation Uy = u’uy
Hamiltonian ~ None
Cosymplectic None
Symplectic None

Recursion uD, + v?us D' 2
Root uPuy
Scaling azu; + fu,a,f € C.

9.4 Nonlinear diffusion equation

Reference: [O1v93] Ex. 5.10;
Equation uy = Dy(2%)
Hamiltonian ~ None
Cosymplectic None
Symplectic None

Recursion DIpit=1p, — 20 — D!
Root Ut
Scaling azxuy + Bu,a, B € C.

9.5 Korteweg—de Vries equation

Reference: [Olv93] p. 312, [Oev84] pp. 18, 67, 78, 84, 97, [Dor93| pp. 85, 151,
158, 162, [0ev90] pp. 27, 60;

Equation Uy = Ug + Uy [KdV95]

Hamiltonian 72

Cosymplectic D3 + 5 (uD, + D,u)

Symplectic D!

Recursion D2+ 2u+zu; D' [OV77]
Root Uy
Scaling Tuy + 2u

9.6 Potential Korteweg—de Vries equation

Reference: [Dor93] p. 125;



Equation uy = ug + 3u?
Hamiltonian %uu4 + 2uyug

Cosymplectic D!
Symplectic D3 +2(uy D, + Dyuy)

Recursion D2 + 4uy — 2D uy
Root 1
Scaling TU + U

9.7 Modified Korteweg—de Vries equation

Reference: [Olv93] Ex. 5.11, [Oev84] p. 97, [Oev90] pp. 29, 60;

Equation up = us + uluy

u?

Hamiltonian  %-
Cosymplectic D3 + 2D,uD;'uD,
Symplectic D!

Recursion D%+ 2u* + 2uyD'u [Olv77]
Root Uy
Scaling TUy + U

9.8 Potential modified Korteweg—de Vries equa-
tion

Reference: [Olv93] Ex.5.11;

Equation up = ug + gul
Hamiltonian %uu4 + iuu%m

Cosymplectic D!
Symplectic D3+ 2D,uD;'uy D,

Recursion D2+ 2ui — 2uy D} 'uy
Root Uy
Scaling azxuy + Bu,a, B € C.

In the paper [Fok80], the author found the 3"d-order equations, not involving 2m-
order derivatives, i.e., of the form u; = us + f(u,u;), which possess a 5'"-order
symmetry and obtained the following equations:

uy = ug + aud + Bu? + yuy, (9.8.1)

where o, 3, v are constant, with the Nijenhuis recursion operator D?+2au?+ %5“1 —
3(3aus + B) Dy Mus + 7.

uy = ug + aud + f(u)uy, (9.8.2)

where f(u) satisfies f” + 8af’ = 0, with the Nijenhuis recursion operator D? +
20uf + 2 f(u) — 3u D (6aus — f).



pKdV (a = 0) and pmKdV (f = 0) are particular cases of (9.8.1). pmKdV
(f(u) = 0), KAV (@« = 0 and f(u) = u) and mKdV (a = 0 and f(u) = u?) are
particular cases of (9.8.2) including Calogero-Degasperis—Fokas equation [CD81]:

1
U = uz — gu? + (aexp(u) + bexp(—u) + c)us.

9.9 Cylindrical Korteweg—de Vries equation

Reference: [OF84], [ZC86], [Cho87a], example 6-15 in this thesis;
Equation Uy = Uz + uuy —
Hamiltonian ~ None
Cosymplectic D2 + §(uD, + Dyu) + 5 (zDy + Dyx)

Symplectic tD;!

Recursion t(D2+ 2u+ su DY) + sz + : D7
Root VS + o)

Scaling —3t0; + (2u + xuq)0,

For the generalized Korteweg—de Vries equation [Cho87a] (the author also studied

generalized mKdV in the same way [Cho87b]):

u
2t

uy + us + 6uuy + 6f(H)u — x(f] +12f%) =0,

where f is an arbitrary function of ¢. It possesses the following Nijenhuis recursion
operator:

1
R= E(Di +d(u—af(t) +2(wm — f(1))D;")
with the root %(ul — f), where g(t) = exp(— [ 12fdt).
If we take f(t) =t and then do transformation & = tu and ¢ = —t, we get the

Cylindrical Korteweg—de Vries equation.

9.10 Ibragimov—Shabat equation

Reference: [IS81], [Cal87];

Equation up = us + 3ulug + 9uu% + 3utuy
Hamiltonian None

Cosymplectic None

Symplectic None

Root Uy

Scaling TU + %u

Master Symmetries zu, + Sus + Suqu?® + u®
No recursion operator seems to be known for this equation.
We should mention that this equation possesses infinitely many symmetries
[IS81], but only one local conservation law u? [Kap82]. The transformation u =
3 wh

\/ 5+ [Cal87] transforms it into wy = w3 — §-2 and the master symmetry becomes
w wi



Tw + %wg, which is the master symmetry for this new equation. Notice that the
new equation has a recursion operator

2 3
m=p2_"2p +ﬂ_ﬂ_pfl(w4 _ W2, w2>
- T z 2 T 2 3/
w 2wy 4wy 2w, wi 2wy

3 2
wq _ wowg . Wi _ M3
where 52t o oy = E(2).

9.11 Harry Dym equation

Reference: [O1v93] Ex.5.15, [Oev84] p. 107, [Dor93] p. 85;

Equation u = udus
Hamiltonian —%
Cosymplectic  u?D3u3

Symplectic LD

Recursion uw*D3uD; ' [LLS*83]
= u?D? — uuy D, + uuy + vPus D' 5

Root uiusg

Scaling aruy + fu,a, B € C.

Sometimes the equation is transformed into u; = Di(ﬁ) like in [Dor93].

9.12 Krichever—Novikov equation

Reference: [Dor93] p. 121;

Equation U = Uz — %%
Hamiltonian %
Cosymplectic 2(7%%D3c + Dgcul—%)_1
Symplectic %(u—l%ch + Dgul—%) + (Z—% — %)Dw + Dx(z—% - uif)
Recursion { P _3 %Dw - (Z_? - Z_%> } %lD;lg’
00t U
Scaling oi*vul + Bu,a, f € C.

9.13 Cavalcante—Tenenblat equation

Reference: [CTS8S];



_1 3
Equation Uy = D:IQS (ul 2) + u12
Hamiltonian — —24/u,
Cosymplectic D, —uy D uy

~1 _i
Symplectic uy > Dyuy ? —
Recursion ul_l‘DQQL‘ — %Dz _ ;T%
Root Uy
Scaling Uy

3 3
1,73 -1, 732
uy 2ue Dy uy Pug

2
3us

3
_ u -1, "2
Tof Ut LD, uy P ug

9.14 Sine—Gordon equation

Reference: [O1v93] Ex.5.12, [Dor93| pp. 133, 163;

Equation Uy — SIN U
Hamiltonian —cosu
Cosymplectic D!

Symplectic D3 + Dyuy D uy D,
Recursion D% +u? —uy; D3 uy
Root Uy

Scaling azu, + fu,a, B €C.

x Actually, the equation is treated as an evolution equation u; = D' sin u.

Oevel[16]
*

[Olv77]

9.15 Liouville equation

Reference: [Dor93] pp. 134, 164;

Equation Uz = exp(u)
Hamiltonian  exp(u)
Cosymplectic D!

Symplectic D3 — DyuyD;'uy D,
Recursion D2 — uf + u1 D 'uy
Root Uy

Scaling azu, + fu,a, B €C.

* As we mentioned for the Sine—Gordon equation, this equation is also treated as

an evolution equation u; = D' exp(u).

The Sinh—Gordon equation u,; = sinh u has exactly the same geometric struc-

ture. [AC91].

see Pogrebkov, 1987
*

9.16 Klein—Gordon equations

Reference: [AC91] p. 366, [Kon87] p.

41, [FG80J;



Equation Uz = aexp(—2u) + Sexp(u)
Hamiltonian = —§ exp(—2u) + S exp(u)
Cosymplectic D!

Symplectic J

Recursion R
Root Uy, us + Sugus — duius — dSujui + uf
Scaling TUq

J = D! +3(uyD3 + D3uy) — 3(u?D2 + D2u?) — 8(uyD? 4 D3uy)

29
+10(uyus D2 + D3ujus) + ?(UEDSZ + D3u3) — 3(ulus D2 + D3utuy)

9

—25(uptuy Dy + Dyugug) + 3(uuy Dy + Dyuiuy) — 21(uiDy + Dyul)
+8(uruous Dy + Dyuyugus) — 8(udus D, + Dyudus)
+6(uy Dy + Dyud) — 44(uius D, + Dyuiuy) — 2(u D, + Dyub)
+2uy D (ug + Suguy + 5uj — Sutug — 20uiugus — 5ul + Suiusg)
+2(ug + Buguy + 5ui — 5ulug — 20U ugus — 5ud + Sufuy) Dy My

R = DE+6(us—ud)Dy+ 9(us — 2uquy) D2
+(5uy — 22uqu3 — 13u3 — 6uluy + 9uj) D>
+(us — Sujug — 15ugus — 3uius — 6uyus + 18usus) D,
—4uqus + 20ui’u3 — 20U ugug + QOU?UE — 4u§3
+2uy D, ug + Suguy + 5uj — Sutug — 20ujugus — 5ul + Suiusg)

+2(us + Sugus — dudus — Sujui + ud) D] My
It shares its recursion operator [Bil93] with the Potential Kupershmidt equation,
i.e., uy = us + Suguz — duluz — Suyui + ub (equation (4.2.7) in [MSS91]).
Klein-Gordon equations u,; = f(u) possess a nontrivial symmetry if and only if
f(u) = aexp(—Au) + fexp(Au) or f(u) = aexp(—2 u) + Sexp(Au) [ZS79)].
9.17 Kupershmidt equation

Reference: [MSS91]| Equation (4.2.6), [FG80], [Bil93];

Equation Uy = us + Suqug + 5us — Sutuz — 20uu Uy — Sul + Sutuy
Hamiltonian u2—§ — % + 5“;* + “6—6

Cosymplectic D,

Symplectic J

Recursion R

Root U1, Us

Scaling TU + U

J = D5 +3(u D+ D3uy) — 3(u’D: + D3u?) — 3(uju’ Dy + Dyuqu?)



) 9
—|—§(ufDx + Dyu?) — 2(us Dy + Dyus) + 5(u4D3c + D,ut)

—2(uug Dy + Dyuug) — 2(uy — 5u*uy — 5uu? + 5uyug +u’) D, tu
—2uD " (uy — 5utuy — Suu? + 5uyug + u’)

R = DS+ 6uD:—6u*D2: — 30uu, D2 + 15uy D2 + 9u* D? — 6u?u, D?
—40uu2D§ - 31U%D3 + 14u3D§ — 9u?uy Dy + 54uuy D, — 18uu%Dm
—30uusD, — 63uius D, + 6usDy — 4u® + 38u3uy + 74u2u%

—3u?uz — 12uuy — 38uuquy + us — GU? — 23uqjus — 15u§

—2utD;1u — 2u1D;1 (u4 — 5uluy — 5uu% + Bujus + us)

9.18 Sawada—Kotera equation

Reference: [SK74], [CDGT76], [FO82], [Oev84] p. 105, [FOWS8T], [Oev0] p. 30,
[MSS91] Equation (4.2.2), [Bil93];

Equation

Hamiltonian
Cosymplectic
Symplectic
Recursion
Root

Scaling

R =

U

-

= us + Suus + Suius + dSuu,

NIES

+ (Dy +2(D;'u+uD, 1)) D,
.+ D ') D, (D, +uD,")

S=[5

s Rg

Ut
U + 2u

DS+ 6uD} + 9u D2 + 9u>D?2 + 11uy D2 + 10u3 D, + 21uu, D,
+4u® + 16uuy + 6u? + 5uy + uy D, ' (2ug + u®) + u,D}'

9.19 Potential Sawada—Kotera equation

Reference: [MSS91] Equation (4.2.4), [Bil93];

Equation
Hamiltonian
Cosymplectic
Symplectic
Recursion
Root

Scaling

R =

w, = us + Suyuz + Su

ui _ wf

2 6

D, +2(u1 D' + Dy uy)

(Dy +wiD;") D (Dy + Dy 'us)
R

Ul,l

TU + U

Dg + GUID;1 + 3u2D§ + 8u3D92c + 9u?D32c + 2uy D, + 3uouq D,
+3us + 13ugu; + 3us + 4u? — 2u1 D" (uyg + uguy)
—2D9;1 (us + 3uguy + 6uzug + 2u2u%)



9.20 Kaup—Kupershmidt equation

Reference: [Kau80], [FO82], [FOWS8T7], [MSS91]| Equation (4.2.3), [Bil93];

Equation Uy = Us + duus + 22—5u1u2 + 5uluy

2
2w _ ug

Hamiltonian 5 5

Cosymplectic D, (D, + (uD;"' + D;'u)) D,

Symplectic D3 + 3(uDy + Dyu) + D2uD;' + D 'uD?
+2(u?*D, ' + D, 'u?)

Recursion R
Root U1, Us
Scaling Tuy + 2u
6 4 3 a2, 49 2 35
R = D,+6uD,+ 18u; D, +9u"D; + EUQDI + 30uu; D, + EU3D””
41 69 13 1
+4u + ——uug + —u? + —ug + —u D] (ug + 2u?) 4w DS

2 4 2 2

9.21 Potential Kaup—Kupershmidt equation

Reference: [MSS91] Equation (4.2.5), [Bil93];

Equation u; = us + 10uqus + 12—5u§ + ?uf{
. . u2 4u3
Hamiltonian % — =t
Cosymplectic D, +u; D' + D 'uy
Symplectic D5+ 5(uyD? 4+ D3uy) — 3(ugD, + Dyus)
+8(U%Dz + Dzu%)

Recursion R
Root uq, 1
Scaling TUy +u

R = D+ 12u; D} + 24us D2 + 25u3 D2 + 36u? D2 + 10uy D, + 48uyus D,
+3us + 21uj + 34ujus + 3203 — 2u; D] (uy + Suyuy)
—D;l (u6 + 12uquy + 24usug + 32u%u2)

9.22 Dispersiveless Long Wave system

Reference: [AC91], [G6kI6];



U = ULV + UV

Equation v, = Uy + o0y
Hamiltonian “22“”2
. 0 D,
Cosymplectic ( D. 0 >
-1 -1
Symplectic 2 1 sz_l 1
D;'v uD; +D;'u
) 2 D!
Recursion vosut _7
2 v+u Dy
Root ( W )
O
2
Scaling (xu1)+a< u),aEC
Uy v

9.23 Diffusion system

Reference: [Oev84] p. 41, section 6.3.3 ;

_ 2
Equation { up =ty U

VUt = U2
Hamiltonian =~ None
Cosymplectic None
Symplectic None

Recursion D. vD,’
ecursio 0 D,
v Uy
Root <U>’<U1>
. TUl + 2u 2u
Scaling (xv1—|—2v>+a(v >,a€C

9.24 Sine—Gordon equation in the laboratory co-
ordinates

Reference: [CLL87| , section 6.3.6 ;



Equation { e j Y

Hamiltonian  3(u? + v?) — cos(u)

. 0 1
Cosymplectic (_1 0>

. —Ro1  —NRo
S lect
ymplectic . Ry >
. R mu)

Recursio R =

ursion < Roi P
Root ( th )

U1

Scaling None

Ry = 4D2 —2cos(u) + (uy +v)* — (uy +v)D; " (ug + vy — sin(u)),

R = 4D, + (uy +v)D, ug +v),

Roi = 4D3 4 (uy +v)?D, — 4cos(u) Dy + 2uy sin(u) + (ug + v1) (ug + v)
—  (ug 4+ v, —sin(u))D, ' (ug + vy — sin(u)),

Rog = 4D + (uy +v)* — 2cos(u) + (ug +v; — sin(u)) D, (u; + v).

9.25 AKNS equation

Reference: [Oev84] p. 100;

. Uy = —uy + 2uv
Equation { vy = Uy — 2%
Hamiltonian  $(uv; — vuy)
Cosvmplecti 2uD D, —2uD_ v
OSYHIPIECHC D, —2vD tu 2vD; '
: 0 1
Symplectic ( 10 )
Recursion =D+ 2uDy o 2uD;
—2vD; D, —2vD 1u
Root ( - >
v
Scaling ( TUp + U )
TV + U

9.26 Nonlinear Schrodinger equation

Reference: [Oev84] p. 102, [Dor93] p. 135, [Oev90] pp. 31, 61;



: uy = vg F v(u? + v?)
Equation { v = —us £ u(u? + 0v?)
Hamiltonian 3 (uvi — vuy)

C lecti D, ¥2vD;'v +2vD7'u
osymplectic iQuD;lU D, F 2uD;1U
Symplectic ( 0 1 (1)

_ F2vD, 'u D, F2vD,'v
Recursion ( ~D, +2uD;'u +2uD;'
Root ( - >

U
Scaling ( e )
TV + U

The system can be written as iq; = go F ¢?q*, where i = —1 [AC91].

9.27 Derivative Schrodinger system

Reference: [Oev84| p. 103, section 6.3.5 ;
uy = —vy — (u? + vHuy
Uy = Uy — (u + vy,
Hamiltonian (uvy — vuy)

L
2
-D 2+” v u
C lecti 2, — Dt ™
osymplectic ( u ;rv ) < —u) - < v )

Equation

Symplectic

Recursion

Scaling

(%)
<

9.28 Modified derivative Schrodinger system

Reference: [WHV95], [G6kI6];



Equation
Hamiltonian

Cosymplectic

Symplectic

Recursion

Root

Scaling

= D, (u® + uv? + Bu — vy)

D, (vu? + v* + uy)
Y2 + 02
BD, +2uDyu —D2+2vD,u
D2 +2uD,v 20D, >
(5 )2 ()
(%] r (%]
1

Uy
TUuy + %
U + %

0y + [

(cf. section 6.3.6).

9.29 Boussinesq system

Reference: [Olv93] p. 459, section 6.3.4 ;

Equation
Hamiltonian

Cosymplectic
Symplectic
Recursion
Root

Scaling

2o

le

Uy = 'Ul
vy = —U3 + uu1

/—/‘\

D3 +2uD, + u;

3vD, —|— vl

3vD, + 2v; )
$22

0
D 1

Iy
2(
( 3v+2ulD;1 D%+ 2u+uyD,* )

=2

21 3v + UlDr_l

o) ()

TUl + 2u
Tv1 + 3v

e

1 5
= gDi + g(uDz + D3u) —

1 10 16
+ —uD?+ 5u; D, + 3uy + gqﬂ + 2u, D!

6
(usDy 4+ Dyus) + EuDzu

= -t
3 3

9.30 Modified Boussinesq system

Reference: [FG81];



Equation
Hamiltonian
Cosymplectic 0 D,
%D;liﬁn %D;lfﬁlg
Dilfﬁgl D;lg{QQ

x

iRll i){12)
i){21 i){22

Symplectic

Root

Scaling

(
(
Recursion (
(
(

Ry = GUDQQC + 91D, + 3v9 — 12uqv; — 2utD;1u - 6u1D;1(2uv + v1),
Ris = 3D+ 6uD? + 9u; D, — 3u’D, — >D, + 3uy — 6u® — 360,
— 18uv® — 6u, D v + 6uy D, (uy — u? + 302),

Ryt = —Dz + QUD?C +u?D, + 3u;D, + 3v°D, + us — 6uv?® — 2u® + duu,
— 2u,.D;'u — 6v,D; " (v1 + 2uw),
Ryy = —6vD2 — 90, D, — 12uv* + 12uyv — 3vy + 360°

6v, D, v + 601 DS (ug — u?® + 3v?).

9.31 Landau—Lifshitz system

Reference: [vBK91] | section 6.3.8 ;

Eauati u; = —sin(u)vy — 2 cos(u)uivy + (J; — Jo) sin(u) cos(v) sin(v)
quation U= gty — cos(u)v? + cos(u)(J; cos?(v) + Josin®(v) — Js)
Hamiltonian £ (sin®(u)(J; cos?(v) + Josin®(v) — J3) + J5 — uf — sin®(u)v})
. 0 -1
Cosymplectic sinl(u) < 10
. : Ro1 Ry
Symplectic sin(u
ymp o (%, T )
: R R
Recursio
ursion ( Ry Py >
Root w e
v )7\ v
TUq
Scaling U , where J = (Jy, Jo, J3).
xzJ, +2J

where

R = —D2 = 2sin®(wd — u} + o7 — (Jy — Jy) sin®(u) sin’ (v)



+(J1 — J3) sin2(u) + J3 — J2 + UtD;I . (sin(u)vl) — UlD;I . Sl

MRy = 2cos(u)sin(u)vy D, + cos(u) sin(u)vy — 3sin’ (u)uyv; + 2uyv;
+u D' (= sin(u)uy) —u D'+ Sy

Ry = —2cos(u)vy D, — cos(u)ve + uyv;
+u, D' (sin(u)vy) — v D' - S,

Roy = —D?2 —2cos(u)u; D, — cos(u)uy — (Jy — Jo) sin(u) sin®(v)

—2sin®(u)v} + v} + (Jy — J3)sin®(u) + J3 — Jy
+u, D7 (= sin(u)u) — v D, - S,

S = (J1 — J3)cos(u) sin(u) sin®(v) — (J; — J3) cos(u) sin(u)
+ cos(u) sin(u)v? — uy,

Sy = (J1 — J3) cos(v)sin®(u) sin(v) — 2 cos(u) sin(u)uyv; — sin®(u)vs.

9.32 Wadati—-Konno—Ichikawa system

Reference: [WKI79], [BPT83], [Kon87] p. 88;
w = D3 (=)
Ut:—DQ( —)
Hamiltonian  2/1 4+ uv

. 0 D?
Cosymplectic ( D2 0 >

0 2
Symplectic ( C (1]+“” >

System

3
DQ( U1 -
Ut z 1+uv) 2
Root ( > ( ( )
) D2 V1
vt x((1+uv)%)
. Tuy
Scaling ( 0y >

9.33 Hirota—Satsuma system

Reference: [HS81], [Fuc82], [Kon87] p. 207, [Oev90] pp. 32, 61, [Oev84| pp. 31,
84;



1
Equation { uy = jug + 3uuy — 6vvy

vy = —vU3 — 3uvy
Hamiltonian %uQ —v

Cos lectic %Dg +uD,+ Dyu vD,+ Dyv
ymplecti vD, + Dyv %Dg 4 uD, + Dyu
Symplectic ( %DI + UD? + D;lu _2D;1’U >
—2vD ! oD,
Recursion R
Root (u1>,<Ut>
U1 Ut
Scalin TU + 2u
s TV + 20
R(u,v) 1Ds+Dx u+ uD, Dx v+ oD,
%Dm+D;1 u_i_qul _2Dx )
—2’UD;1 _2Dm
1
~ §U3 + BUUI - 6UU1 1
( _US_SU’Ul ®Dz (1, 0)
U1 1
+< >®D1(U, —2?})
n

9.34 The Symmetrically—coupled Korteweg—de Vries
system

Reference: [Fuc82];

Bauation u;y = us + vs + 6uuy + 4duvy + 2uqv
dua vy = U3 + w3 + 6vvy + 4vuy + 2viu
Hamiltonian % u+v)
3
Cosymplectic Dy +2(uDq + Dyu) 0 3
0 D? +2(vD, + D,v)
. D!
Symplectic ( D! )
Recursion D? + 4u +2u1 D' D2+ 4u+2u; Dt
D? +4v+2v,D;' D? +4v+ 20, D!
Root ( v )
Scaling ( Ty + 2u )
TU + 20



9.35 The Complexly—coupled Korteweg—de Vries
system

Reference: [Fuc82];

Equation { u; = usg + 6uuy + 6vyy
vy = v3 + 6uv; + 6vuy
Hamiltonian  $(u® + v?)
Cosymplectic ( D3 +2(uD, + Dyu) 2D,v+ 2vD, >
2D,v + 2vD, D3 +2(uD, + D,u)
Symplectic ( D, 0 >
0 D!
Recursion ( DI +4u+2u D7 4v + 20, D7 )
4v + 2v, D! D2 + 4u + 2u; D;*
Root (u1>,(vl>
U1 Uy
Scaling ( Ty + 2u >
v + 2v

9.36 Coupled nonlinear wave system (Ito system)

Reference: [Ito82], [AF87], [Dor93] p. 94;

u; = usg + 6uuy + 20,

vy = 2uvy + 2uqv
u +'u2

System

Hamiltonian

3
Cosymplectic z +duDs +2uy 20D, >

2
D

2’UDI + 2’01 0
D' 0

" )

D? + 4u +2u; DY 2v )

(

(
Recursion ( N

(

(

Symplectic

20 + 2v, D! 0
Root

Scaling

9.37 Drinfel’d—Sokolov system

Reference: [Gok96], [G6kIS];



System { g = 300,
vy = 2v3 + u v + 2uv;

Hamiltonian %

Cosymplectic ( 2D33c +2uD, +uy 2vD, + vy >
20D, + vy 2D3 + 2uD, + uy

Symplectic ( D+ g(UDwa_F Do) —150D, + S >
—15vD, — 2 —27D3 — 2 (uD, + D,u)

(o) o () () o (5))
() (1)

o () () ()

TU + 2u

Scaling 201 + 2

M = —Uy — 2u’ + 307,

N9 = vy + 6uv,

hy = —2us — 10uus — 25ujug + 30vvs + 450109 — 10uu; + 15v%u; + 30uvvy,
hy = 18vs + 10vus + 35uvy + 45u1v9 + 30uvs + 10uuv + 10u’v, + 150%0;.

9.38 Benney system

Reference: [Ben73]; [AF87];
u; = vuy + 2D, (uw)
System v = 2uy + D, (vw)
wy; = 201 + 2ww,
. . 2
Hamiltonian — ww + %
uDy + D,u vD, wD,

Cosymplectic D,v 0 2D,

D, w 2D, 0

0 0 D!
Symplectic 0 D' 0

D' 0 0

w v 2u+uD;!
Recursion 2 0 v+uD;!

0 2 w+wD,!

Uy
Root U1

wy

U 3u
Scaling Uy +al| 2v |;a€elC




9.39 Dispersive water wave system

Reference: [AF87];
u; = Dy (uw)
System vy = —vy + 2D, (vw) + uuy
w; = Wy — 2v; + 2ww;
Hamiltonian vw + ”72
0 D, u 0

Cosymplectic uD, vD,+ D,y —D?>+wD,
0 D?+ D,w —2D,
D;' 0 0
Symplectic 0 0 D;!
0 D! 0
0 0 u+u Dt
Recursion u —Dy+w 2v+v,D,?
0 -2 D, +w+w, D;"
31
Root U1
w1
xuy + %u
Scaling TV + 20
Tw; +w

If u = 0, this system reduces to the Broer—Kaup system studied in [G5k96].



Appendix A

Some irreducibility results, by F.
Beukers

The results in this appendix are obtained by F. Beukers, Mathematical Department,
University of Utrecht and are published here with his kind permission. They are
used in the proof of proposition 7-14.

Theorem A-1. Consider the polynomial g, = ¥ +yF+ 2%+ (—x —y—2)k. Then g
is absolutely irreducible if k is even. When k is odd it factors as (v+y)(z+2)(y+2)hs,
where hy 1s absolutely irreducible.

Proof. Consider the projective curve C' defined by g = 0. Suppose g, = A.B where
A, B are two polynomials of positive degree. Geometrically the curve C' now consists
of two components C7,Cy given by A = 0, B = 0 respectively. The curves C; and
C5 intersect in at least one point, which implies that the curve C' has a singularity.

Let us now determine the singularities of C, i.e., the projective points (x,y, 2)
where all partial derivatives of g vanish. Hence

katT! —k(—x —y — 2)F =

kytt — k(- —y—2)F =
kP —k(—x—y— ) =

We see that z#~1 = y#~1 = 2#=1 = k! where w = —x —y — 2. By taking z = 1,
say, we can assume that z,y, w are k — 1-st roots of unity such that xt+y+w-+1 = 0.
Note that four complex numbers of the same absolute value can only add up to zero
if they form the sides of a parallellogram with equal sides. Hence one of the x,y, w
is —1 and the others are opposite. Suppose without loss of generality that w = —1
and * = —y. If k is even we see that 1 = 2! = —(—1) = —w*"!, contradicting
21 = w* 1. Hence C is non-singular if k is even. In particular C is irreducible in
this case.

Now suppose that k£ is odd. Then we have 3k — 6 singular points, namely
(¢,—¢, 1), (¢,—1,1), (=1,¢,1) where ¢* ' = 1. Note that we have a priori 3k — 3

singular points, but some of them coincide. Consider such a singular point, say
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(¢, —(,1) We study the singular point locally by introducing the coordinates x =
¢(+u,y=—C+wv. Up to 3™-order terms we find the local equation ({(u+v) — (u —
v))(u+wv)+---. Since the quadratic part factors in two distinct factors the singular-
ity is simple, i.e., there are two distinct tangent lines through the point. Consider
now the curves (x + y)(x + 2)(y + 2) = 0 and hy = 0. These curves intersect in
3(k — 3) points. Moreover, the first curve has 3 singularities. This accounts for the
3k — 6 singular points we found. Hence h, = 0 cannot have any singular points and
in particular it is irreducible. O

Theorem A-2. For any positive integer k the polynomial Gy = z* +y* + 2F +u* +
(=2 —y — 2z — u)* is irreducible over C.

Proof. Suppose Gy, = A.B with A, B polynomials of positive degree. Then the
projective hypersurface S given by G = 0 consists of two components S;, Sy given
by A = 0, B = 0 respectively. These components intersect in an infinite number
of points, which should all be singularities of S. Thus it suffices to show that S
has finitely many singular points. We compute these singular points by setting the
partial derivatives of G equal to zero,

k"' —k(—z—y—z—w)' = 0
kyt ' —k(—z—y—2z—u)*"" = 0
k2t —k(—x—y—2z—u)" = 0
kvt —k(—z—y—z—w)t = 0
k-1 1_ k=1

From these equations follows in particular that z*~! = y*=! = 2*=! = 4*~!. Hence
the coordinates differ by a k — 1-st root of unity. In particular we get finitely many
singular points. O



Appendix B

Levi—Civita connections

Abstract B-1. We define the notions of torsion and Levi—Civita connection, as-
suming the existence of a metric tensor g and derive the classical Bianchi identi-
ties. This is to illustrate the use of a complex that is not formed by antisymmetric
cochains in Riemannian geometry.

We assume X, Y.Z € b} in this appendix.

B.1 Torsion

Definition B-2. Let idyn € C), (b, b%, A) be defined by idyn(Y) =Y. The torsion
of a connection V5, € T (b, bz, A) is d)idyn, i.e., T : hp*' — b given by

T(X,Y)=V2(X)Y -V (V)X — 15 (X)Y.
A connection VO is called 7} -symmetric if its torsion is zero.
Proposition B-3. The statements

1

e T, 1S antisymmetric.

o ml is 27! -symmetric.

are equivalent.
Proof. Take VO =r! and n], = 27} in definition B-2. Then
0=7(X)Y -7l VX - 27 (X)Y = —7. (X)Y — 7} (V)X
and we are done. 0

Proposition B-4. Suppose V2 € T (h, 6%, A) is 7} -symmetric. Then

C(VOX,VZ+C(VO)NZ, X)Y +C(V2)(Y,Z2)X =C(x} ) (X,Y)Z.
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Proof. We compute

C(VINX,Y)Z+C(Vo)(Z, X)Y +C(Vo)(Y,Z2)X =

= V(X)) Ve (Y)Z = Vo, (V)V5(X)Z = V3, (1, (X)Y) Z
+ Vi (2)V,(X)Y (X)Vn(2)Y = Vo (1,(2)X)Y
+ Vo (Y)Vi(2)X = Vo (2)Va (V)X = Vi (r,(Y) 2)X
= V(X)) (V)Z = Vi (1, (Y) Z)X + V,, (V)7 (2)X
- V&(WL(Z)X)Y+V°( )T (X)Y = V(7 (X)Y) Z
= To(X) T (Y)Z = 710 (V)7 (X) Z = 70 (7, (X)Y) Z

= C(m),)(X,Y)Z

This proves the proposition. O

B.2 The Levi—Civita connection

Assume that go € C2 (b, V, A) such that, for V? e T (b, V, A),
Vin(2)92(X.Y) = g2(70, (2)X,Y) + g2(X, 7, (2)Y),

where 7! € C! (h, Endc(hR), S).

Proposition B-5. Then ! € Tl (b, b7, A), assuming g» to be nondegenerate, i.e.,
g2(Y, X) =0 for all Y € b implies X = 0.

Proof. We compute, for r € A,

Vin(Z)(r0 g2(X,Y)) =10 V3 (2)g2(X,Y) + 9 (Z)(r) 0 2(X, V) =
= Togg(ﬁfn(Z)X,Y)+T092(X,7?#(Z)Y)+gz(%91(2)( )o X, Y)

and

Vo (Z)g2(r o X,Y) = ga(7,,(Z) (10 X), V) + go(r 0 X, 7, (2)Y) =
= g7l (Z)(roX),Y)+rog(X,xl (2)Y).

Since g» € C2(h,V, A), we have V° (Z)rgy(X,Y) = V% (Z)g,(rX,Y). Tt leads to
7L (Z)roX)=rox! (Z)X ++%(Z)(r) o X from the nondegeneracy of gs. O

Proposition B-6. Let 7} be nt} -symmetric (cf. def. B-2). If n} € Tl (b, h&, A)

1S an antisymmetric connection, then 7l is an A-linear connection. Moreover,

dpng2(X, Y, Z) = 295, (Y. 7, (Z) X)),

where go v(X,Y) = 5(92(X,Y) + 92(Y, X)) is the symmetric part of gs.

1
2



Proof. We know that 7! is 7! -symmetric. This implies that
L (X)Y -zl (V)X =7 (X)Y.
The A-linearity of 7! follows from, for r € A,

ﬁ,ln(roX)Y T (roX)Y + 7L (Y)(roX) =
= - <Y><roX>+ro7r (V)X +95,(Y)(r) o X
= —rorm (V)X +rozl (V)X
= roxal (X)Y.

Using formula 3.4.5 we obtain

dz gg(X Y,Z) =
= Vo(X)g(Y, Z2) = V), (Y)g2(X, Z) + V), (Z2)g2(X,Y)
— (1 (X)Y, Z) —gz(Y,WL(X)Z)Jr@(X Tm(Y)Z)
= G(Tn(X)Y. Z) + go(V. 70, (X) Z) — g2(7,, (V) X, Z)
92(X. 73, (Y)Z) + g2(7, (2)X,Y) + go(X, 7, (2)Y)
— 92T (X)Y, Z) + o7, (V) X, Z) + g2(V. 7, (Z) X))
— (Y, 1, (X)Z) + g2(X, 7, (Y)Z) = g2(X, 7, (2)Y)
= (V. 7(2)X) + 0o(71(2)X,Y)
= 2gov (Y, 7L (Z)X).
Thus we prove the proposition. O

One can turn the above construction around:

Proposition B-7. Let g, € C;,,(h,V, A) (i.e., go = ga,v) be nondegenerate. Define
the @k, by 2gov (Y, 7L (Z2)X) = d2 2 92(X,Y, 7). Then we have

FL(X)Y = 7L (V)X = b (XY,

m

Vol 2)92(X,Y) = go(7,,(2) X, Y) + go(X, 7, (2)Y),
where w} € T} (h, b7, A) is an antisymmetric connection.

Proof. We have

292y (Y, T (X)Z — 7} (Z)X) — 71 (X)Z =

= v, (Z)QQ(YX) Vo,(Y)g2(Z. X) 4+ V), (X)g2(Z,Y)

— (1 (2)Y, X) = go(V, 70 (Z)X) + 92(Z, 7, (V) X)

— Vo (X)0:(Y, Z) + V7,(Y)92(X, Z) = V3. (Z)g2(X,Y)

+ 9a(m(X)Y, Z) + go(Y, 7, (X) Z) = go(X, m,,(Y) Z)
2go(Y, 7} (X)Z)

= 0.



Therefore, 7} (X)Z — 7l (Z)X = 7! (X)Z due to the nondegeneracy of gs.
Notice that 2V0 (2)ga(X,Y) = d2,92(X,Y, Z) + d2,92(Y, X, Z) when gy is sym-
metric. The second property follows immediately. O

By proposition B-5, 7l is a connection. This leads to the following definition.

Definition B-8. Let go € C’fmv(h,V, A) be nondegenerate and )} be an antisym-
metric connection. Then

202(Y, 7 (2)X) = d?,92(X, Y, Z)

defines a Levi—Civita connection ([Nic96] p. 120) with the following properties:

o Vi(2)ga(X.Y) = g7, (Z) X, Y) + g2 (X, 7, (2)Y).

Theorem B-9. The Riemann curvature tensor C(7)) satisfies the following
identities

1. gQ(C(ﬁrln)(X’ Y)Ua V) + gQ(C(ﬁ'}n)(Y,X)U, V) =0,
2. 92<C<7T(1171)<X: YIU, V) + 92<C<7T(1171)<X: YIV,U) = C(V?n)(X, Y)ga(U, V),
3. If C(Vy,) = C(my,) = 0, g2(C(7,,) (X, Y)U, V) = g2(C(7,) (U, V)X, Y).

Proof. Ad 1: Clearly, C(7.)(X,Y) +C(7})(Y,X) = 0.
Ad 2: It is sufﬁcient to show that g¢(C(7})(X,Y)U,U) = 0. Since we have
V2 (Z)g2(X, X) = 2g5(72. (Z) X, X), it follows that

2g2(C(x, )(X YU, U)

= 2g5([7,,(X), 7 (Y)]U T (T (X
(U, o (X) 7, (Y)U = 7 (V) 7, (X)U) —
m( )92(U; (Y)U)—Zgg(ﬁil(X)Uﬁiq(Y U)
(Y)g2 m )
= (X)VS( ) (U,U) Vi (Y)V
= C(Vo)(X,Y)g(U.U).

2go(|T
= 292

— 0
0

’I’TL

Ad 3: We start by listing the 24 permutations of
Rigzq = g2(C(7p) (X1, X2) X3, Xy)

and we group these as orbits of cyclic permutations of the first three arguments. By
adding these we obtain 8 relations using proposition B-4. Due to the antisymmetry
in the first two and the last two arguments this reduces to 4 equations. We eliminate



the antisymmetries and write R;; for R;j with ¢ < 7 and & < [. There are 6 of
these R;; and the obey the following 4 equations.

Ris — Ri3+ Ryz =
Riy + Ris — Ry
R3y — Riz+ Ry =
Roz — Ray + R3y

I
o o o o

We now introduce Al = R12 — R34,A2 = R13 — R24,A3 = R14 — Rgg and Ag =
Ry, — Ry3 — R34. The equations then reduce to

A=Ay = A
A+ A; = A
Ay A = A,

Ay = O,

and it follows immediately that A; =0, =0,---,3. This proves the statement. It
follows that the R;ji; are generated by the two expressions Ry = Rig3q £ Rizoq. O

Remark B-10. In the two dimensional situation where one has at every point only
two independent elements X1 and X5 in b, this reduces to Ry = 2R991 and R_ = 0.
In this case R, s called the curvature of gs.






Appendix C

Examples of cohomology
computations

Abstract C-1. In this appendiz we compute the cohomologies for some concrete
examples, which are not very important by themselves. They illustrate how com-
plicated things can be even in the simplest cases. We also determine the class of
Hamiltonian and symplectic vectorfields in some cases.

In the following sections some examples are given illustrating the abstract theory
developed in chapters 2, 3 and 4.

C.1 Hopf fibration

The following example is based on an example in [Mac87], appendix A, describing
the Hopf bundle.
Welet C=A=R, g=h=C, V==C? ~) =r}=0and

Vg(x):(g g)

ewhen = (50) (5 0)- (5
= (:cy—:cy)(é _01>

Clearly, the curvature of V9, with V9 (zAy) = C(VY)(z,y), is zero. We now compute

Then

o
ow
S~
TN
8O
o8
~—

some cohomology. First we start with o = ( “ ) € CJ(C,C?,R). Then
o

o = s ()= (20 ()= ()
(5 a)(3)
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Next, let 8 € Cj(C,C?, R) be defined by

so= (0 ) (D)=(0 W) () s )@
Then

dBry) = Vi()By) - Viy)A()
— - (2.

We see that we cannot define cohomology here, since the curvature was not zero.
We now repeat this with arguments in C @z C. Then, with a € C?(C,C?, R) we
find

dla(z®y) = V?(¢”®y)a:<w—w)<é _01><a1>

(S 0)()

We draw the conclusion that H)(C,C?*,R) = 0. Next, let 8 € C}(C,C?,R) be
1
defined by 8 = < b >,
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Bi(a) = (= m(ﬁz gz>< ),i:1,2.
Then
diBz@yuev) = Vi(zey)Buev)—Vi(uev)szey)

— xy—;py( 62>u®v (U—ﬂv)<_6612>(x®y)

= (27— Ty) 511“” + 512“” + 521“” + 522“”
511“” 512“” 521“” 522““

—  (ub — @) ( BLizy + Biaxy + By Ty + BTy >
511553/ 612353/ 6213@ BQQ«T?J

= (zgav — Tyud) ( _((%112216611223) >
+ (27 — 2y)uv — 2y (ud — ) ( —%1121 >
= (27 - zy)av — 2g(ud — w)) ( —%1222 > |

We draw the conclusion that H{(C,C?,R) = 0.



C.2 A very small example

We consider the Lie algebra b, spanned by the elements h and m, with commutation
relation m§(h)m = 2m. Let V = R? and A = R, then a representation is defined by

i = (g ) wim= (g 5 )

We denote an element X € b, by X = z1h + zom.

Remark C-2. In general, one can consider the x; as elements in g*, that is linear C-
valued functionals. This notation enables us to write for instance linear functionals,
i.e., elements in C}(h,V,C) as endomorphisms of h*.

We now compute the djy(X) = VJ(X)y of an element y = ( zl > ev:
2

() w=(5 2 () =05 5 ()

Let ay € Cy(by,V,C) be defined by

Then, for Y = y,h + yam,
déal(Xa Y) = Vg(X)ozl(Y) — vg(Y>a1<X> _ al(ﬂé(X)Y)
_ T1 X2 04}1 a%l Y
11 21 21
3 ()2 o
e v

T1Ya — T2Y1).
30&%2 >(12 21)

We see that Z;(b,,V,C) = Bj(by,V,C), i.e., Hy(b,,V,C) = 0.

* Remark C-3. This does not follow from Whitehead’s first lemma, since b, con-
tains the nontrivial commutative ideal spanned by m, and therefore is not semisimple.

Since an arbitrary element of Cf , (b, V,C) can be written as

YXY) = (2192 — 2231) < ,Z; ) ;

and d2y = 0 (since A’by = 0), we see that B ,(by,V,C) = Z2,.(b4,V,C), or
H; A(b1,V,C) = 0. Since (by a fairly long, but straightforward computation) we



obtain Z§(b,,V,C) = Z§ (b4, V,C), the result follows for all w, € Zg (b5, V,C) and
we have HZ(b,,V,C) = 0.
It follows from an elementary calculation that the Hamiltonian vectorfields con-
sist of the ideal generated by m. The symplectic structure is wy <ms(X,Y) =
— 2y
0
We now compute the symplectic vectorfield. For X € b, we have

(T1y2 — 2211) ( (1) > The Hamiltonian of zom is

oyl 2
(VE(X)wa)(Y, Z) = (1122 — y221) < WQ_xl _ngxQ ) 5

3ws T

1

where wo(Y,7Z) = (y120 — y221) ( Z% > The condition of symplectic vectorfield
2

Vi(X)ws = 0 reduces to z; = 0 and wj = 0. It follows that Sym,, (by) is also
spanned by m, so that we have $am,, (b;) = Gym,, (by). The general theory leads
to exactly the same conclusion, but we have included the computations here as an
example. symplectic form

C.3 Same Lie algebra, another representation

We now let V' = b, Ab,. The representation is the ad, representation, i.e., V3(X)hA
m=m) (X)hAm+hAr. (X)m. Take By = Byh Am. Then, with X = z1h + zom,

doBo(X) = Byaamy, (m)h Am + Byzih A wl (h)m = 2B521h A m.
Next we let a;(X) = (ajz; + a?x9)h A m. Then
dpar (X, Y) = Vo(X)au (V) = Vo(V)au (X) = au (7, (X)) =
= (my1 +72y2)201h Am — (mz1 + 7272)2y1h Am
—2%a(z1y2 — T2y1)h A'ML
= 0.

It follows that H](by, by Aby,C) is spanned by «; such that a;(X) = zoh A m.
An arbitrary element of C7, (b+, b, Aby,C) is of the form y(X,Y) = yo(z1y2 —

zoy1 )hAm. Again d2y = 0 since A\® b = 0. Therefore H? o is spanned by 7(X,Y) =
(x1y2 — 22y1)h A m. The higher cohomology spaces are all zero.

C.4 Another small example

In this section we let g = gl(R?) and V = R. As the representation we take
V3(X) = tr(X). Since V)(md(X)Y) = 0, this is indeed a representation.

Let 8y € V = CJ(h,V,C). Then djBy(X) = VI(X)Bo = Botr(X). Next, let
a € ClB,V,C), ie.,

11 12 21 22
041(X> = 0y T11 + O T2 + Qo To1 + O T2,



To1 T22

where X = < i T > Then

dlal(X Y) = Vo(X)ai(Y) = Va(Y)ar (X) — ar(my(X)Y) =
= (20 +@0) (a1 yn + Yo + af'yar + oY)
(ai'zi1 + a’zia + oF Ta1 + &7 T22) (Y11 + Yo2)
- 04%1@12921 — TnY12) — a%2($11y12 + T12Y22 — T12Y11 — T22Y12)
- 04%1(«’15213/11 + TooYo1 — T11Yo1 — TaYo2) — 04%2(«’1521%2 — T12921)
= (04%1 - 04%2)(5522%1 — T11Y22 — T12Y21 + 315213/12)

+ 20&%2(3522%2 — T12Y22) + 2a%1($11y21 — To1Y11)-

We see that djoy = 0 is equivalent to a; = djai!. In other words, Z}(g,V,C) =
Bl(g’ -V-’C)’ l'e" Hl(h’ -V-’C) = 0'

* Remark C-4. This is again not following from Whitehead’s first lemma, since
gl(2,R) is not semisimple, as it is containing the commutative ideal generated by the
identity. But this ideal is equal to the center 3, and has zero intersection with [g, g].
Thus one can write g = 3 ® sl(2,R). Therefore one has Hj(h,V,C) = H}(3,V.C).

An again rather extensive computation shows that one also has HZ(h,V,C) = 0,
so that we can write an arbitrary element wy € Z2(g,V,C) as dja;. We can now ask
for which X € g we can write

1 (X)dyo, = df)B.

Since the representation space is one dimensional, there is basically only one Hamil-
tonian possible, namely 1 (or multiples of 1). Thus one can only hope to find for a
given X a symplectic structure dja; which produces X by

Lg (X)d(lloq = dgﬁo

We write 12(X)dyay = djfy in matrix form

—2a2'zy; —|— (af! — a%Q)xQQ T 1\ "
9 L (af' —a? )x21 + 2a1 Z99 . 0
1o(X)doorr = 204%%11 +( —al )Im = o 0
( — 041 )LEU — 20&1 T19 1
If we let B = —4a!2a?' — (a!' — a22)?, and assume S, # 0, then we find
T
—2a}? al' —a?? )

This implies that if ¢tr(X) = 0 and det(X) # 0, then X is Hamiltonian. The
occurrence of the det is not so strange as it may seem, since det(X) = tr(A?X).
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Dutch Summary — Nederlandse
Samenvatting

Het onderwerp van dit proefschrift is: symmetrieén en behoudswetten van evolu-
tievergelijkingen. Het beantwoord elementaire vragen als:

e Waarom is het zo moeilijk om nieuwe integreerbare systemen te vinden d.w.z.
systemen die niet al in de hierarchie van een bekend integreerbaar systeem
aanwezig zijn.

e Behoudenswetten en symmetrieén komen in hierarchieén met periodieke gaten.
bijvoorbeeld voor de KdV vergelijkingen vindt men alleen symmetrieén van
oneven orde. Waar komen deze gaten vandaan?

Een belanglijke constructie, namelijk het ”complex van de formele variationele
calculus”, waarin alle verschillende objecten voor niet-lineaire evolution systemen
worden samengebracht, ligt ten grondslag aan de theorie van gegeneraliseerde sym-
metrieén, behoudswetten en Hamiltoniaanse structuren. In hoofdstuk 2 and 3,
bouwen we zo'n complex, geinspireerd door het werk van Dorfman [Dor93]. Ons
complex is echter algemener aangezien de ring die we gebruiken tijdsafhankelijke
functies kan bevatten, en het complex bestaat uit vormen die niet noodzakelijk
antisymmetrisch zijn. Verder gebruiken we Leibniz algebra’s in plaats van Lie al-
gebra’s. In dit complex vindt men al datgeen wat van belang is voor de studie
van symmetrieén en behoudswetten van niet-lineaire evolutievergelijkingen, zoals
cosymmetrieén, recursie operatoren, symplectische vormen.

We bewijzen in paragraaf 2.9 dat het vermoeden, ”als een systeem één niet-
triviale symmetrie heeft, dan heeft het er oneindig vele”, waar is onder zekere tech-
nische condities. De stelling en het bewijs is pure Lie (of Leibniz) algebra, maar
de condities kunnen geverifieerd worden door symbolische methoden, zoals gefor-
muleerd in de hoofdstukken 7 en 8 en gebruikmakend van diophantische benader-
ingstheorie.

In principe kan de methode ook gebruikt worden voor systemen van evolutie
vergelijkingen, maar tot dusver zijn de condities van de stelling alleen geverifieerd
voor één klasse van voorbeelden met behulp van p-adische analyse [BSW98].

In hoofdstuk 4 motiveren we de definitie van de Nijenhuis operator en leiden
we de voornaamste eigenschappen hiervan af en we formuleren de begrippen van
symplectische en Hamiltoniaanse operatoren in de abstracte context waarin we het
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complex opgezet hebben. We leiden enige van de klassiek bekende eigenschappen
en relaties van deze begrippen af.

In hoofdstuk 5 passen we de abstracte concepten toe op het complex van varia-
tionele calculus en we geven uitdrukkingen voor diverse soorten van invarianten van
de evolutie vergelijking in termen van Fréchet afgeleiden. Dit verbindt de abstracte
benadering met de meer gebruikelijke definities.

In hoofdstuk 6 formuleren en bewijzen we verschillende stellingen over de vorm
van recursie en Nijenhuis operatoren. Deze resultaten zijn zeer nuttig in berekenin-
gen, aangezien zij aangeven hoe men gecompliceerde uitdrukkingen in termen van
bekende symmetrieén en cosymmetrieén kan weergeven. Zij maken ook mogelijk
om te concluderen dat onder tamelijk zwakke condities deze operatoren goed gede-
fieerd zijn, dat wil zeggen: ze produceren, beginnend met een gegeven wortel, een
oneindige hierarchie van symmetrieén. We geven een lijst van voorbeelden waar deze
resultaten worden toegepast.

In hoofdstuk 7 introduceren we de symbolische methode, die ons in staat stelt
vragen over de oplosbaarheid van niet-lineaire differentiaal vergelijkingen te vertalen
in vragen over de deelbaarheid van polynomen.

In hoofdstuk 8 gebruiken we de symbolische methode om A-homogenene scalaire
vergelijkingen te klassificeren. For A > 0 geven we de volledige lijst van 10 inte-
greerbare vergelijkingen. Dit bewijs van de klassifikatie stelling geeft het antwoord
op de vragen die in het begin gesteld werden.

De volledige analyse voor A = 0 wordt gegeven in paragraaf 8.5.1. Het is in-
teressant om te zien dat het enige niet-Hamiltoniaanse systeem afgeleid is van de
Potential Burgers vergelijking.

In hoofdstuk 9 geven we een lijst of 39 integreerbare vergelijkingen, met hun
recursie-, symplectic- en cosymplectic operators, voorzover bekend, en de wortels
van de symmetrieén en schalingen. Deze zijn of reeds bekend in de literatuur of ze
kunnen gevonden worden met onze nieuwe methoden. Met deze informatie kan men
de symmetrieén en cosymmetrieén van iedere gegeven vergelijking berekenen.

In de appendices is materiaal verzameld, bestaande uit bewijzen en voorbeelden,
dat niet zo goed paste in de tekst, maar toch interessant genoeg leek om hier toe te
voegen.



