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Abstract
In this paper, we present extraordinary algebraic and geometrical structures for
the Hunter—Saxton equation: infinitely many commuting and noncommuting
x, t-independent higher order symmetries and conserved densities. Using a
recursive relation, we explicitly generate infinitely many higher order conserved
densities dependent on arbitrary parameters. We find three Nijenhuis recursion
operators resulting from Hamiltonian pairs, of which two are new. They
generate three hierarchies of commuting local symmetries. Finally, we give
a local recursion operator depending on an arbitrary parameter.

As a by-product, we classify all anti-symmetric operators of a definite form
that are compatible with the Hamiltonian operator D!

Mathematics Subject Classification: 37K05, 37K10, 35Q53

1. Introduction

The Hunter—Saxton (HS) equation
Uy = 2UUy,, + ui @))

was proposed by Hunter and Saxton as an asymptotic model for the propagation of weakly
nonlinear unidirectional waves [7]. Its integrability was proved by Hunter and Zheng [8] by
studying the nonlocal evolution equation

u; = 2uu, — D;lui, 2)
where D !'is the inverse of the total derivative D,. Indeed, equation (2) can be written as
up = D7 8, (—uu) = (u,D7? = Duy) 8u(—u?), 3)

where §, is the variational derivative with respect to the dependent variable u. Operators D!
and u, D, 2 _ D;zux are Hamiltonian and form a Hamiltonian pair. This leads to a recursion
operator of the HS equation,

R = (u,D;* — D%u,)D,. 4)
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The x-derivative of HS equation (1), that is

Unxr = 2Ulcxx + 4y ()
is closely related to the Camassa—Holm equation

U — Upxr — Ul +2U Uy + UL, = 0.
We often write the Camassa—Holm equation in the form

m; = um, +2mu,, m=1uy, —U.

Equation (5) corresponds tom = u,, under the time scaling transformation t > 2¢. Aspointed
in [8], the bi-Hamiltonian structure (3) and the Lax pair of the HS equation can be obtained
from the corresponding known structures of the Camassa—Holm equation. Geometrically,
the HS equation (1) describes geodesic flow associated with the right-invariant metrics on
a homogeneous space [9]. It is a particular case of the Euler—Poincaré equation on the
diffeomorphisms in one spatial dimension [6].

Recently, equation (2) was proposed as a model to describe shortwave perturbation in a
relaxing one-dimensional medium. Its integrability was studied by introducing v = D 'u?.
This leads to the hydrodynamic system

u, = 2uu, — v, vy = 2uvy,

which is called an integrable regularization of equation (2). We refer to [5, 13] and references
there in for more details in this aspect.

In this paper, we look at the HS equation (1) in its own right instead of the traditional
approach of relating it to the Korteweg—de Vries equation and the Camassa—Holm equation [9].
Quite surprisingly, we find that it possesses extraordinarily rich algebraic structures: possessing
infinitely many commutative and noncommutative x, f-independent higher order symmetries
and conservation laws. Besides the bi-Hamiltonian structure in (3), we found another two
bi-Hamiltonian structures. Using these operators, we can obtain local recursion operators for
the HS equation (1).

We note that equation (5) can be linearized by the transformation [1]

Uy
v y=u,. ©6)

The linearized equation is

v = —y2vy —3yv. @)
However, we did not find a direct way to produce the results in this paper via the linearization.
We also note that the calculation in this paper is purely algebraic. We do not justify it in
analytical sense.

The arrangement of the paper is as follows: in section 2, we define the required
concepts such as Hamiltonian, symplectic and Nijenhuis operators, symmetries, cosymmetries,
conservation laws and recursion operators for evolution equations in the context of the
variational complex. We then devote the rest of the paper to the study of symmetries and
conservation laws of the HS equation (2). In section 3, we present a recursive relation to
generate infinitely many conserved densities (see theorem 2). We compute their Poisson
brackets with respect to the Hamiltonian operator D! and obtain only three commuting pairs
among conserved densities Tl(“) and Tz(ﬁ ) defined in theorem 2. In section 4, we find three
recursion operators corresponding to three commuting pairs obtained in the previous section
(see theorem 3). To prove that these operators are Nijenhuis, we classify all anti-symmetric
operators of the form

H = f(y, o) Dy + Dy f + gy, r, ) D7 (i, i, ) +h D] g, f#0,
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which are compatible to Hamiltonian operator D !. Here f is a smooth function of u, and
Uyy; g and h are smooth functions of u,, u,, and u,,,. We list all five cases that arise
(see theorem 4). From one of the Nijenhuis recursion operators, we construct a parameter-
dependent local recursion operator, which is no longer Nijenhuis (see corollary 2). Finally, we
complete the paper with some discussion in section 5.

2. Definitions

In this section, we sketch the basic definitions of Hamiltonian, symplectic and Nijenhuis
operators following [2,4, 17]. In the context of the variational complex we also define the
some concepts for evolution equations such as symmetries, cosymmetries, conservation laws
and recursion operators, which also serves to fix our notation.

2.1. Complex of variational calculus

Let x, t be the independent variables and u be a (vector-valued) dependent variable. All smooth
functions depending on u and x-derivatives of u up to some finite, but unspecified order form
a differential ring A with total x-derivation

> 3
D, = E Upp] —, where u;, = Bfu.
=0 auk

The highest order of x-derivative is called the order of a given function. For any element
g € A, we define an equivalence class (or a functional) [ g by saying that g and h are
equivalent denoted g = h if and only if g — /2 € Im D,. Without causing confusion we
sometimes write g instead of [ g . The space of functionals, denoted by .A’, does not inherit
the ring structure from .A.

The derivations on the ring .A commuting with D, are known as evolutionary vector fields.
They are of the form dp = Y -, DX P adi Let b denote the space of all such P. The natural
commutator of derivations leads to the Lie bracket on b, that is,

[P, Q1 = Do[P]— Dp[Q], P,Qen, ®)
where Do = 3% 22 Dl is the Fréchet derivative of Q.

The action of any element P € hon [ g € A’ can be defined as

= 9
p/ngap<g)=/zz)§pa—i =ng[P]. ©)
k=0

This action is a representation of the Lie algebra h. We build up a Lie algebra complex
associated with it. This complex is called the complex of variational calculus. Here we give
the first few steps.

We denote the space of functional n-forms by Q" starting with Q° = A’. We now consider
the space ©'. For any vertical 1-form on the ring A, i.e. @ = Y po h*duy, there is a natural
nondegenerate pairing with an element P € h:

(w, P) =/th DFP = / (Z(—Dx)kh") P. (10)
k=0 k=0

Thus any element of Q' is completely defined by £ = Z,fio(—Dx)khk.
The pairing (10) allows us to give the definition of (formal) adjoint operators to linear
(pseudo)-differential operators [12].
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Definition 1. Given a linear operator S : h — Q!, we call the operator S* : h — Q! the
adjoint operator of S if (SPy, P») = (S*P,, Pi), where P; € hfori =1, 2.

Similarly, we can define the adjoint operator for an operator mapping from ' to b, from b to
b or from Q! to Q.

The variational derivative of each functional g € A’ denoted by 8,g € Q! is defined
so that

_ _ (S pr 28
(6ug, P) = (dfg>(P) —<Z( D,) auk,P>, Y

k=0

where d : Q" — Q™! is a coboundary operator. Due to the nondegeneracy of the pairing
(10), we have

. v 08 1
bug = )_(~Do' g e .
k=0

In the literature one often uses E referring to the Euler operator instead of §,.

For any £ € Q!, by direct calculation we obtain dé = Dy — Df. We say that the 1-form
& is closed if d¢ = 0.

Finally, we give the formulae of Lie derivatives along any K € § using Fréchet derivatives,
cf [2] for the details.

Definition 2. Let Lk denote the Lie derivative along K € ). We have
L,(ngDg[K] for g € A

Lxh =[K,h] for h € b;

Lg& = D¢[K]+ D} (%) for & € Q';

Lg% = Dy[K] — Dxkh +RDg for W : h — b;
LxH = Dy[K]— Dx'H — HD} for H: Q' — b;
LxT = D7[K]+ DyZ+ZIDg forZ: h— Q.

In this complex we can identify most of the important concepts in the study of integrable
systems such as symmetries, cosymmetries, conservation laws and recursion operators. They
are all characterized by the vanishing of the Lie derivatives with respect to a given evolution
equation. This will be discussed further in section 2.3.

2.2. Symplectic, Hamiltonian and Nijenhuis operators

*

Definition 3. A linear operator S : ) — Q! (or Q' — Y) is anti-symmetric if S = —S*.

Given an anti-symmetric operator Z : h — Q!, there is an anti-symmetric 2-form
associated with it. Namely,

(P, Q) =(I(P), Q) = —(Z(Q), P) = —w(Q, P), P,Qeh. (12)
Here the functional 2-form w has the canonical form [12]
w:%/du/\Idu. (13)

Definition 4. An operator T : h — Q! is called symplectic if and only if the anti-symmetric
2-form (13) is closed, i.e. dw = 0.
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It is useful to know that for any & € Q!, if £ is not closed, the operator d§ = D; — Diis
a symplectic operator. This can be used to generate new symplectic operators or to determine
whether a given operator is symplectic or not.

For an anti-symmetric operator H : Q' — b, we define a bracket of two functionals f
and g as

{f, g = (8uf. HBug). (14)

Definition 5. The operator ‘H is Hamiltonian if the bracket defined by (14) is Poisson, that is,
anti-symmetric and satisfies the Jacobi identity

UFs ghs dw + g Pdaes fha+ U, flns 8100 = 0.

For the Jacobi identity, there are several equivalent formulae given in [2] (see theorem 5.1).
In [12] (see p 443), it is formulated as the vanishing of the functional tri-vector:

/GADH[HO]/\Ozo.

We are going to use it to classify all the Hamiltonian operators of a given family of operators
in section 4.

Let H be a Hamiltonian operator. The Hamiltonian vector fields and their Hamiltonians
possess the property [2, 12]:

H8 S, g¥n = [Héu f, Hougl. 15)

The Jacobi identity is a quadratic relation for the operator H. In general, the linear
combination of two Hamiltonian operators is no longer Hamiltonian. If it is, we say that these
two Hamiltonian operators form a Hamiltonian pair. Hamiltonian pairs play an important role
in the theory of integrability. They naturally generate Nijenhuis operators.

Definition 6. A linear operator i : §) — b is called a Nijenhuis operator if it satisfies
[RP, RQO] — RRP, Q] — R[P, RO1+NR*[P, Q] =0, P,Qeh. (16)

For a Hamiltonian pair H; and H,, if H; is invertible, then operator HzHl_l is a Nijenhuis
operator.
Using the definition of the Lie bracket (8), formula (16) is equivalent to

Loph = RLpR. (17)

The properties of Nijenhuis operators [2] provide us with the explanation how the infinitely
many commuting symmetries and conservation laws of integrable equations arise. In
application, there are nonlocal terms in Nijenhuis operators. A lot of work has been done
to find sufficient conditions for Nijenhuis operators to produce local objects [14, 15, 18].

2.3. Symmetries and conserved densities of evolution equations

To each element K € h, we associate an evolution equation of the form
=K. (18)

Strictly speaking, one associates with the evolution equation the derivation

As long as the objects concerned are explicitly time independent as in this paper, there is no
difference. We refer to [16, 17] for the case when objects explicitly depend on time ¢.
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Definition 7. Given an evolution equation (18), when the Lie derivatives of the following
vanish along K € b we call: g € A’ a conserved density; h € b a symmetry; £ € Q' a
cosymmetry; ® © b — b a recursion operator; a Hamiltonian operator H : Q' — ha
Hamiltonian operator for the equation; a symplectic operator T : h — Q' a symplectic
operator for the equation.

From the above definitions, we can show that if f € A’ is a conserved density of the
equation, then §, f is its cosymmetry. Moreover, if H is a Hamiltonian operator and Z is a
symplectic operator of a given equation, then HZ is a recursion operator. The operator H maps
cosymmetries to symmetries while Z maps symmetries to cosymmetries.

We say that the evolution equation (18) is a Hamiltonian system if for a (pseudo-
differential) Hamiltonian operator 7, there exists a functional f € A’, called the Hamiltonian,
such that H 6, f is a symmetry of the equation. Additionally, if for a (pseudo-differential)
symplectic operator Z, which is compatible with H, there exists a functional g € A’ such that

Tu, = IK = 8,3,

we say that the evolutionary equation is a (generalized) bi-Hamiltonian system.

3. Conserved densities of the HS equation

In this section, we give the recursive relation to generate infinitely many conserved densities for

.....

these conserved densities are not in involution with respect to the Hamiltonian operator D!

We show that there are only three commuting pairs among Tl(“) and T2(’3 ",

Proposition 1. Equation (1) possesses a conserved density of the form T = u%(ﬁ—i)“ satisfying
1
D,T = D,(2uT), where a is a constant.

Proof. According to definition 7, if T is a conserved density, then its Lie derivative along
equation (1) vanishes. This is equivalent to D,T € Im D,. We have

o a—1
1753 Uy Uyt Ul
DtT :Zuluxf = +O{u% 2 XI -4 SX
uy iy iy uy
o a—1 2 o
Us Uy 2uu Suu Uy
= 2u1Quuy + uz) —= ] + au% — - 2) = D, 2uu’ [ =
U4 ud ut 5 1\ 74
1 1 1 uy iy

and thus we proved the statement. O

Since the HS equation is free of any parameter, we get new conservation laws by
differentiating 7 with respect to parameter «. Thus we have

Corollary 1. Expression S = u%(fj—%)“ (In Z—i)", n € N, is a conserved density of equation (1)
1 1
satisfying D,S = D,(2uS).

In what follows we show how to build up more conserved densities using the above
proposition and corollary. First we prove the following general result.

Theorem 1. Assume that F is a conserved density of equation (1) satisfying F;, = D, QuF).
If for all solutions of equation (1) there exists a function r such that r, = 2ury, then both
Fr* and G = F(%‘zr “ are conserved densities satisfying D,(Fr®) = D,QuFr®) and

D;G = D,QuG) for 1any constant «o.
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Proof. We first check that D, (Fr®) is in the image of D,. Indeed
D,(Fr%) = Fr* + aFr* 'r, = D,QuF)r* + 2ua Fr* 'r, = D,QuFr®).

Next we show that

D.r\* D, \“"! /D, Uy Dyer
D 2 =« 2 T2/
uy uj uy uy
(Dﬂ)“l (Dx(2urx) , Quix +u§)Dxr)
= p—

2 2 3
1 uy uy

u

D a—1 D D a
=2au( xzr) (’)c_;_zuz 3xr) — 2uD, (_er) ]
uj uj uy uj

Using the first part of the proof, we obtain that G is a conserved density for any
constant . O

We now search for function r such that r, = 2ur, for equation (1). Note that r satisfies
r, = 2ur, if and only if In r satisfies the same relation, that is, (Inr), = 2u(Inr),.

Proposition 2. Assume that both T and Tr are conserved densities of equation (1) satisfying
T; = D.QuT) and D,(Tr) = D,QuTr). Then r; = 2ury.

Proof. From the assumption we have
0=D;,Tr)— D,QRuTr)=Tir +Tr; — D,QuT)r —2uTr, = T (r; — 2ur,).

This leads to the conclusion that r; = 2ur,. O

From proposition 1 and corollary 1, it follows that r = In Z—ﬁ satisfies r, = 2ur, and so
1

does r = Z—i Using theorem 1, we can now obtain the following result:
1

) generated by the recursive relation:

1

Theorem 2. The functionals T,{(O’1

To = uj, rg=——; (19)
uj
(1) __ aj — i .
I,™" =Tor", r o= 1 D, ro; (20)
1
. 1
L") = T, r=—Dun; @1
1
) 1
Tk(ozl ..... &) Tk(fll ..... C(k—l)r;:ls’ o= FDxrk—l (22)

1

are (k + 1)th order conserved densities of equation (1). Moreover, Tl(l) =0, Tz(a"l) = 0 and
when oy # —1 and k > 2, we have

k—1

..... ,1 o oy @i 0 — a1, o o+ 1467 -
Tk(fll D) _2 : 1Tk( 1 i—1Q i+l =10+ 148 & 1). (23)
oy +

i=1



2016 J P Wang

Proof. We only need to prove the second part of the statement. It is easy to see that
Tl(l) =D,ry =0, Tz(o”’l) =r{'Dyr; =0.

We now show formula (23) by direct calculation:

(ap,..., o, 1) _ p(ag,., o)
T =T

k+1
=,
_ i o oy ai—1 ikl -1 ap+l
=- o +1”1 cer s (Derrg 2y
i=1 K
k—1
_ o 2 o1 oi—1 Dxri (78] Q1o+l
=- uyry ol gyt 2 Tivl et Tk
— o+ 1 uj
1=
Thus we obtain the formula using the relation r;,; = Du—{ and the recursive relation
1
for Ty. O

yeeey

In a similar way, we can build up more conserved densities by adding more logarithms in front
of r;. For instance, both 77" (In r)# and 7" (In r)? (nlnr)" are conserved densities.

Here all 7; are local. By no means are the conserved densities we constructed above
complete. For example, we have not include the conserved density u—ll, that is,

1 2u
D)\ — ) =D, — —3x).
Uui Ui

In addition, there are also nonlocal conserved densities. In [8], the authors listed some of them
generated by the recursion operator (4). For example, the conserved density 2u®u? + (D, 'u?})?
depends on the same nonlocal term Dy 'u? as in equation (2).

We can define the Poisson bracket of any two conserved densities with respect to a
Hamiltonian operator D! according to formula (14):

(T, PPy = (), D, (1), (24)

= 1, D’ oy (D) = /szTfal ..... oW _ o, 25)

J

With the help of the computer algebra system Maple , we obtain that
(1, 1) po1 = SaBla = DB = Dl - p) T, (26)
(1, TP = Jay(@— Dy = D@ —y) T2
+iay(@ — Dy — DGa -3 — 10) 7,772
+a(@ — D)y — D6y +ya® + B —afy +2py — p* — Sya) T, F7Hr*D
+afle— D@ —2)(1 = B)(y — 1) T,*FP>7), 27)

This implies that nontrivial T](“) (i.e. a(@ — 1) # 0) and Tl(ﬁ ) do not commute unless o = B.
Now we look at when a nontrivial Tl(o’) commutes with a nontrivial Tz('s 7). From theorem 2, we
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know that T;"“ o) — ;z—uﬁ TZ(O‘1 ~Le*2) Hence, the right-hand side of formula (27) vanishes if
and only if
2-y=0;
Sa —38—-10=0;
a+p—4 2 2
—W(Gyﬂ/a +B —aBy +2By — 7 =Sya) + (@ =2)p(1 - ) =0.
Solving this algebraic system, we obtain the following three solutions
o= %, o =-—1, o =2,
13:_%» 182_5’ ﬂZO’
Yy = 2, Yy = 2, Yy = 2.

These lead to the following statement.

Proposition 3. Assume that «(e — 1)y (y — 1) # 0. There are only three commuting pairs

among Tl(a) and Tz(ﬂ )

W2 (urus — 4u3)? _ { u$ ub(uius — 4ul)? } _ {u% (uruz — 4u3)? } _o
I -y s— =\ = = T E— = U
;! Dy D;!

, namely,

5 52 5 6’ 12
Uy, Uz up u U
Note that the Poisson bracket of any pair of conserved densities is again a conserved
density since

LK{T~(a1 ~~~~~ Cli)7 Tj(ﬂl’m’ﬂj)}[);l

It is surprising to see the results are linear combinations of the conserved densities listed in
theorem 2 since they are by no means complete. It seems that these conserved densities are
closed under the defined Poisson bracket (24).

In next section, we show that the above three commuting pairs lie in three different
commuting hierarchies generated by three Nijenhuis recursion operators. The natural question
is whether there are more commuting pairs if we compute the Poisson bracket between higher
order conserved densities. In appendix A, we include the formula for {Tl(“), T;ﬂ ok )}D;l.
Based on it, we find three commuting pairs between conserved densities of second order and
those of fourth order, generated by the same three Nijenhuis operators. We conjecture that
there are only three commuting hierarchies starting with Tl(“). By computing the Poisson
bracket between TZ(O‘"‘YZ) and TS(’E 1F2B) e discover another commuting pair. It is listed in
appendix A. However, we have not found the corresponding Nijenhuis recursion operator.

4. Symmetries and recursion operators

We know from (3) that the operator D! is a Hamiltonian operator for equation (2), mapping
cosymmetries (the variational derivatives of conserved densities) to symmetries. Thus, we can
produce infinitely many symmetries from the conserved densities listed in theorem 2. Using
the property of Hamiltonian operators (15), we have

D;ISM{]}(D” »»»»» ai)’ TJ(,H] ----- ﬂ/)}D;l — [D;l8u('ri(oll-,---w0li))’ D;lau(Tj(ﬂl ..... ﬂ/))] (28)

From the results in the previous section, we know some symmetries are commuting and
some are not, cf formule (26) and (27). In this section, we will present some recursion operators
to generate infinitely many commuting and noncommuting symmetries of the HS equation (2).



2018 J P Wang

4.1. Nijenhuis recursion operators and commuting symmetries

The Nijenhuis recursion operators [11] are used to generate infinitely many local commuting
symmetries for integrable equations. In this section, we present three Nijenhuis recursion
operators for the HS equation (2), which correspond to three commuting pairs in proposition 3.
We then prove that they generate infinitely many local symmetries.

Theorem 3. The following three operators:

N = Quy' Dy +2Duy" — usuy > D usuy ) Dy, (29)
Ny = (wiuy, Dy + Doutuy? — 8uy D7 'uy) Dy, (30)
N3 = (@, Dy + Dyuy® — d(usu;® — 3udu; YD uy — 4uy D7 (uzu;® — 3udu; ")) D, (31)

are all recursion operators of equation (2).

Proof. According to definition 7, we check whether L ¢); vanishes foreachi = 1, 2, 3, where
K = 2uu; — D;'u?. Since the calculation is similar, we only work it out for i = 2. To simplify

the computation, we introduce some notation: s = ufu;~ and s; = Dis. So
DRy — RoDgx = 2uD, +uy — D7 'uy D) (s Dy + Dys — 8uy D, 'uy) D,
—2(sD,+ D,s — 8u1D;1u1)DX(uDX +u; — D;lule)
= 2D, + D 'uy)(s Dy + Dys — 8u; D uy) D,
—2(sDy + Dys — 8uy D 'uy)(uDy +uy +uy DY) D,
= (Qus; — 4su) Dy + D, Rusy — 4suy) — 8Quu, + u%)D;'ul
+ D (8us — 4suz — 251u7)
— 8u1 D Quuy +u?) + (8uj — dsuz — 2s1u2) D) D,
= (4(2uu?u;1 — uu?u;3u3 — u?u;z)Dx

3 5.-2
uz — ujuy ")

+4D, Quuiuy' — uutu;
— 8Quuy +u) D uy — 8uy D Quuy +ud)) Dy,
which equals Dy, [K]. Therefore, we have LM, = 0 and thus the statement is proved. O
The recursion operator (4) given in [8] is the inverse operator of 9i;. Indeed, we can prove
the following statement:

Proposition 4. %, = 8R! = 8D '(u; D> — D 2u;)~ L.

Proof. Note that u; D> — D;%u; = D;'(uaD; ' + D 'up) D! To prove the statement, we
only need to show that 8(us D! + D luy) ™! = ZMEIDX + 2D,51,t271 — u3u2_3/2D;1u3u2_3/2.
Indeed,
Quy' Dy +2Dsus" — uzuy D usuy, ) wa DT + DY uy)
=8+ 2u2_1u3D;1 — 2u2_2u3D;1u2 — 2u3u;3/2D;1(uéﬂ)xD;1
+2u3u;3/2D;1(u;1/2)xD;1u2
=8+ 2u; ' usD — 2uy*us D uy — 2uzuy ' DT+ 2u3u2_3/2D;1u;/2
+2u3u;2D;lu2 - 2u3u2_3/2Dx_1u;/2
=8,

and this leads to the statement. O
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In the paper [8], the authors proved that the recursion operator (4) is the ratio of
a Hamiltonian pair. Hence it is a Nijenhuis operator and so is its inverse operator
Ny [2]. We now prove that the other two recursion operators N, and NRj; are also
the ratio of Hamiltonian pairs. To do so, we classify all anti-symmetric operators of
the form

H = f(ur, u2) Dy + Dy f + g(uy, uz, u3) D h(uy, uz, u3) + hD; ' g, f#0, (32)

which are compatible with the Hamiltonian operator D, !. Here f is a smooth function of u;
and u,; g and h are smooth functions of u|, u, and u3. We give the result below and the proof
in appendix B.

Theorem 4. Ifan anti-symmetric operator (32) forms a Hamiltonian pair with the Hamiltonian
operator D', then the smooth functions f, g and h are one of the following five cases. Here

a, b, c,d are smooth functions of uy and c; € C, i = 1,2, ...,5 are constants.
1 W) #0
= T 5 au )
a(up)®u3 :
1. h=bu). (33)
g =c(uy),
_ 1
 (a(upua +cp)?’
II. (34)

h = cuy +c3,

8§ = C4uy t s,

4
= , a(uy) #0,
(a(uy)uz +b(uy))? :
h = ciuy +cp,
- 16u5 .8 B ( b +2au, >+ ) 35)
. g=- — c(uy),
(a(upuy +b(up))®  duy \a(u)?(a()uz +buy))? :
b(ul) = clu% + 26‘2”1 + C3,
b'cs+ (u b’ —b)es 16a’b + 8ab’
c(uy) = + ,
b(uy)? a(u)3b(u,)?
Fe 4
© bu)?’
h =ciuy +cy,
16 24b'u?
Iv. g= R +c(uy), (36)

Tbny b

b(uy) = clu% +2cou; + c3,

b/C4 + (M]b/ — b)Cs
b(uy)?

c(uy) =

’
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. 1
a(u)ul +bu)uy +c(uy)’
N 13
(@uud +buy)us + c(up))3?
1 9 bu, +2¢
duy ((a(uou% +bupus +c(ur))'/2
g = coh —2¢2d(uy),
d(uy) = c3uy +cy,
4ac — b? = 4cfc2,
)
Buf

+d(uy),
\Va 2C16‘2 8141 > : (37)

= 6c%c§C3d(u1).

Example 1. Two special cases from case Il (cf (34)) lead to Hamiltonian pairs
D, +2u;D;' +2D uy + 4D

and
D, +2u; D uy +AD] !

These are the bi-Hamiltonian structures for potential Korteweg—de Vries equation and potential
modified Korteweg—de Vries equation, respectively, since

uy = us+3uj = D;'6,(3u3 — u}) = (Dy +2u; D' + 2D u1)8, (—ud)
and
u, = uz +u; = D7 '8, (Ruj — tul) = (Dy +2u; DS 'uy)s, (—3ud).

The recursion operators (30) and (31) in theorem 3 are the ratios of Hamiltonian pairs listed
in theorem 4. It is obvious that the recursion operator (30) can be derived from case I (33).

For case IV, if we take b = 214%, c(uy) = 0 and h = 2uy, then we get g =
—2u; us + 6u; 'u?. This leads to a Hamiltonian pair

—4 —4 -6 2. =7\ -1 —1 -6 2.-7 —1
u; Dy + Deuy™ —4(uzu;” — 3usuy YD uy —4u D (uzuy” — 3uzuy ') +AD ",

from which we obtain the recursion operator i3 (31) in theorem 3. We can also directly
get the recursion operator (29) from case V by taking a(u;) = c(u;) = d(u;) = 0 and
b(uy) = % Since all three recursion operators can be obtained from Hamiltonian pairs, they
are all Nijenhuis operators.

Theorem 5. The recursion operators (29)—(31) are Nijenhuis operators.

We can also view the recursion operators (29)—(31) as the products of Hamiltonian and
symplectic operators. In a recent paper [18], we proved that for Nijenhuis operators that are
the products of weakly nonlocal Hamiltonian and symplectic operators [10], hierarchies of
commuting local symmetries and conserved densities in involution can be generated under
some easily verified conditions. To be self-contained, we restate the result in [18] valid for
the operators in this paper:

Consider a Hamiltonian operator  of the form (32) and a symplectic operator Z = D,
such that ‘HZ is a Nijenhuis operator. Assume that L,7 = L,/H = L;7 = L,’H = 0.
If there exists a closed 1-form & satisfying L,é = L5 = Ly = 0 such
that ZHE is closed, then all (ZH)/& are closed 1-forms and H(ZH)/& commute
forj =0,1,2,....
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We denote the recursion operators (29)—(31) in theorem 3 as R, = H;D,, i = 1,2,3.
Checking the conditions in this statement for all R;, we can prove the following theorem.

Theorem 6. Let & = 8,(uy/), & = 8,(s) and & = 8,(2%). Then all %% are closed
. 1
1-forms and for each fixed i € {1,2,3}, all H; R & commute for j =0,1,2, . ...

Proof. We write out the proof for the recursion operator )%,. The proof for operators 9 and

N3 is similar, and will not repeat it. Since &, is the variational derivative of i , it is clearly a
closed 1-form. In this case, we have g = h = u; and trivially L,, D, = Lule =L,%=0.
We only need to show that Ly,& = 0 and D, 'H,&; is closed. Note that

6 6,2 u’

Uiy uu us
R ST TR
Uz u Uz
10 10 9 10,,3 9 2 8 7
Uus U, Uy Uilg u u us
Hoky = 25028 00 B3 4 4ol | 302105 19025 420022 — 3204,
u; Uy u; U '42 U, us

and D, H&, = —SM('Wj—;M%)Z), which implies that D, H;&; is closed. Using the computer

algebra system Maple, we can check Lyg,& = Dg,[HE] + DH52 (&2) = 0. Thus we prove the
statement for N,. O

We have proved that the recursion operators (29)—(31) are Nijenhuis. Using them, we
generate three hierarchies of commuting symmetries. However, the elements in the different
hierarchies do not commute.

Note that the Lie derivative is a derivation. Thus the products and additions of recursion
operators are recursion operators. For instance, operators 9i; R, and [R;, N3] are also recursion
operators of the HS equation (2). In general, they are no longer Nijenhuis (cf (16)) and do not
generate hierarchies of local symmetries.

4.2. Recursion operators and noncommuting symmetries

In this section, we first prove that the adjoint operator of the recursion operator )i, (30) acting on

any cosymmetry §, (T(O(l """ o )) produces local cosymmetries. Since the resulting cosymmetries

are not closed, we can construct symplectic operators, which depend on parameters. Further,
this leads to parameter-dependent recursion operators.

Proposition 5. Starting from any symmetry Qo = D;'$, (T(O[1 ) where T( !
listed in theorem 2, all Q, = EY‘k Qy are local symmetrles k=0,1,2,.... Eqmvalently, all
‘*kS (T(Ol1 nep) ) are local cosymmetries, where )3 is the adjoint operator of N,.

Proof. Note that %) = (u%u, D, + Dyutu;? — 8u; D 'uy)D,. To prove that Qy are local,
we only need to show that u, Qy is in the image of D,. We prove the statement by induction.

We know that from (25) the Poisson bracket of T, and Tj(a' """ ) vanishes. This implies
that uo Q¢ € Im D,. Assume that upQ;_; € Im D,. We now show that u, Q; € Im D,.
Indeed,

ur Qr =trM2 Qi1 = ua(uuy > Dy + Dyutuy® — 8u1 D uy) Dy Qi
=2ufuy ' D? Qi1 —2utusus Dy Qx—1 +4ui Dy Qp—1 —8utur Q1 + 8uyua Dy 'ur Qi
=D, Quiuy"' D, Qi1 — 4u3 Q1 +4ui D uy Oy 1) € Im D, .
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Thus all Qy are local. Note that
NS, (T, ) = w1 DyHy -+ Db () = uy Dy O = D11 Q1) — 2 Q.

We have just proved that u; Q; € Im D,. Thus we have u15,,(Tj(a‘ """ i )) € Im D,. Hence all
NEEs, (T(O’l """ ) are local. O

In general, the symmetry Q defined in proposition 5 is not a symmetry of operator N,
that is, L, ;é 0. Therefore, [Qg, Q1] # O. Although N, is a Nijenhuis operator, the

Let us look at a simple case When j = 1. The correspondlng cosymmetry is
8T =8, *u$) = (& — 1) Dy (> *uSuz + 2 — dayul~*ug).
Note that
Su(uuy In(uy us) = Dy(uyuy 'uy — 2uiuy).
Without losing generality, we let )i act on the cosymmetry
W = D (et ud us + (2 — da)u} ug),
where o € C and £V is closed. We have
i}tzé(l) = 20{Dx(u6 4“ug s + Ba — 7)u6 4D‘ug‘ Susug + (8 — 1204)145 40‘14'5 3ug
+(a —4)(a — 2)ul " usu3 — 4(Ba — 2)(a — 2)u; **ul*u’
+2(4a — 1)(6a — S)uj™ ‘Wug 2u3 — 16(4a — 1) (o — 1)u3*4“u2)

which is a cosymmetry of equation (2), that s, L, (R%§ (M) = 0. As we mentioned in section 2,
d(Mzé (D) £ 0 is a symplectic operator. We have the following proposition.

4ui— 4u3— .
Proposition 6. Operator T = D, (D, + 2)( fj ;’;";D + D, fj,;;;f’i)(Dx — S)D, is a
2

uz

symplectic operator for the HS equation (2) for all a e C.

Proof. By direct calculation, we have

Uz

4u§—u1u3 4u%—u1u3 us3
X (—4a 550 Dt Dx—s—5—0 | | Dx— — | Dy, (38)
up Uy up “up

which is a symplectic operator when o # —1. Since the Lie derivative commutes with d,
that is

Ak * u3
d(glz%—(l)) = Dm;g(l) - Dﬂt;‘;‘(” = (Ol + 1)Dx (Dx + _>

Ly, dOt58") = dL,, (035") = 0
implying that it is a symplectic operator for the HS equation (2). When o = —1, we can write
7 =d(D,S).
ulous u10u3u4 25 u u M u4 u u M uw
Here S = ‘u —9‘T+ > =+ 16~ —43-15% + 66 96 1sasymmetry of the HS
equation (2), which can be verlﬁed accordmg to deﬁmtlon 7. By the same reason as above,
we prove that 7 is a symplectic operator for the HS equation. O

For formula (38) when & = —1, we have d(W3&") = 0, which is consistent with the
result in theorem 6. By the Leibniz rule for the Lie derivative, any product of Hamiltonian
and symplectic operators of the HS equation is a recursion operator. Using its Hamiltonian
operator D! and a symplectic operator Z as in proposition 6, we obtain the following result:
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. . dul— 42— .
Corollary 2. Differential operator (D, + %)(%Dx + Dx%)(DX — Z—z)D,C is a
1 1 >
recursion operator for the HS equation (2) for o« € C.

Here we can use different Hamiltonian operators in theorem 3 instead of D;l. However,
the other Hamiltonian operators will bring in nonlocal terms in the recursion operators. Further
study is required to determine whether the resulting operators produce local symmetries or not.

5. Discussion

It is well known that the integrable equations possess an infinite number of commuting
conserved densities and generalized symmetries. In this paper, we present a new feature
for the integrable HS equation: infinitely many noncommuting x, #-independent conserved
densities and symmetries. We found three Nijenhuis recursion operators and a local parameter-
dependent recursion operator. We believe that there are more Nijenhuis recursion operators
related to the conserved densities listed in theorem 2 since we have found a new commuting
pair (39) in appendix A. Note that we can define the Poisson bracket (24) with respect to H»
instead of D !. It will be interesting to extend the study in the paper and to see whether there
are new commuting pairs.

The conserved densities in theorem 2 give rise to infinitely many cosymmetries of the HS
equation (2), which are closed 1-forms. In section 4.2, we showed that the results of recursion
operator M, (30) acting on such closed cosymmetries are no longer closed. Hence, we can
generate a lot of local symplectic operators such as in proposition 6. This will lead to local
recursion operators as in corollary 2. The immediate questions are the following: what are
the relations among such recursion operators? Can we write down neat formulae for them?
Using the computer algebra system Maple, it is not hard to compute these operators although
the expressions are huge. The problem is to present them in a compact way, e.g. as the product
of 1st order differential operators as in proposition 6.

We know the set of symmetries is a Lie algebra under the Lie bracket (8). For
noncommuting symmetries of the HS equation, we can use them to generate higher order
symmetries. They are different from master symmetries [3], which generate commuting
symmetries.

The fundamental question is: where do such rich structures for the HS equation come
from? As mentioned in the beginning of the paper, the equation is linearizable and has a trivial
dispersion law. However, transformation (6) is highly nonlocal. We did not find a direct way
to produce the present results from the linearized equation (7). It would be very helpful for
getting a clear and complete picture if we could find the direct link.

Appendix A.

In this appendix, we give the Maple result of the commutator of conserved densities between
7 and """, We also list the new commuting pair between 7,*"** and T/"#/
Using the computer algebra system Maple, we obtain the following formula:

(1, ")y = Jale = Du(p = D@ — p) TP 7270073

—2,y—Lu—12
—3ale = Du(u — Dy 777277ty

—La(@ — Duu — DG — Ta +14) TP 37022

tale = Dy (y = D= D+ 1) 772770
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+a(e — DU BY — By u+ Wy e —dayu’+ 8u’y +3ayu — 2y — 6y p
+ 1B+ 6p+ay + up+2y* — 6p’+3ula— ay? — 2y — 3ua)
+ay(@— Dy — Dy —2)(u— 1) TEF2r730e)

(a+p=3,y,u,1)
I,

+ay(e — D)(=2y°n — oy + ay’u+2y> +3yBu — 6y +3ay — 2By +6ypu
—Bayu+2apu —20+28 — 4 +4) T3(“+ﬂ_3’y_l’“+2)
+a(ae — D(T2+2yBu+ 138 +24y — T2 — 60 + 40y + B2 +28%y 1
+a’y?u —4dtypu — a?y? +afyiu +4afu — afy’ — 8af — 12071
—2aByu+60am —9Bu + 387 + 120> — 6% — 24y +2By% + 5ay?
— 2By +20ay i — 200y +6y>u — Say?u) TP H7 LD
+a(o — 1)240pu—10pe® —8af —54a” — 144 + 24y + 9’y + 108 + ° + B>
+ 1560 — 2600 p +202B+60° — 202 +90ua’ — 26ay — ya?) TP 710
+a(a — 1)@ —2)(@ — 3)(@ — 4)(5 — a)yu TLHP0ruh,

Combining with formula (27), we can obtain the following result:

Proposition 7. Assume that a(a — 1)u(p — 1) # 0. There are only three commuting pairs
among Tl(a) and the third order conserved densities, namely,

(1/2) (=7/2,0,2) 35 (=11/2,4) (=1 (=7,0,2) (=9.4)
(", 1 - 57, bpo = {17V, T4 A e
2 (0,0,2
={(1?, %"}, =0.

Proof. We search for the linear combinations of T3(’3 T L Tz(ﬁ ") \which are in involution
of Tl(a) under the Poisson bracket (24). From theorem 2, we know that

w2 — TV i=1n42),
Ty =——T, ;
vy + 1
1,v2,v3,1) _ Vi (1—1,v2+1,v3+1) V2 L (n—1,0342)
T, =-——T, - —T .
vy + 1 v3+1

We substitute the above formula into {Tl(“>, T;ﬁ RAL ocsz(’3 By p;' and write it as the
combination of independent terms. Note that it vanishes if and only if all coefficients of
independent terms are equal to zero. We immediately get © = 2 and y = 0. The other
conditions are

TJa — 36 — 14 =0;

B=p+2;

v =4

(—84 +70a +38% — 4af + 58 — 140>) + 2, (y; — D2 — 1) = 0;

336 — 14a® — 8af + 108 + B + B2 — 364a + 2a*B — 2ap? + 1260
+ 601 (5a — 38 — 10) = 0;

Bar(e =211 — B1) — e+ i —H 2@ — 2) (@ —3)(a—4)(5 — )
+3a1(24 +40” + B — 4y + 881 — B —20)) = 0.
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Solving this algebraic system, we obtain the following three solutions:

o= % oa=—1, o =2,
o =—%, o) = —7, o =0,
B = —%, B1=-9, Bi =2,
=4 n =4 n =4,
p=-1, p=-1, B=0.
These correspond to the commuting pairs listed in the statement. O

Note that we get the same values of « as in proposition 3. In section 4.1, we show
that there are three Nijenhuis recursion operators corresponding to each value of «. These
three commuting pairs can be directly found from the corresponding recursion operators. For
example,

WS, Ty %) = =26,(17"0P — 71779,

Proposition 7 implies that there are no other commuting pairs between Tl(“) and conserved
densities generated in theorem 2 of third order. We conjecture that there are only three
commuting pairs between Tl(“) and conserved densities generated in theorem 2 of any higher
order.

We compute the commutator between T,*"* and T,*"**. Beside the three pairs
directly obtained from propositions 3 and 7, we also find the following new commuting pair:

1/3
(TP 01Dy <u1u3 — 4u%> (utug — 14u urus +28u3)? o
! uj u?/3(u1u3 —4u3)7/3 -1

(39)

We have not found the corresponding Nijenhuis recursion operator for this new case as we did
in section 4.1.

Appendix B. Proof of theorem 4

In this appendix, we give the proof of theorem 4. Let us first introduce some notation:

af

_7
auj

fi=D.f, 9= (f6)-1 = D7'(£6).

The same notation is also used for g and A.

Proof. To prove the statement, we check when the operator
M = f(ur,u2) Dy + Dy f +g(ur, uz, uz3) Dy h(ur, up, u3) + hD; ' g + 1D}

is Hamiltonian for arbitrary constant A € C. From chapter 7 in [12], We know H is Hamiltonian
if and only if

1
Pr Vi (®4) =0, where Oy = 5 f(e AHO) dx

is the associated bi-vector of H.
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First we have
H(O) =2f61+ f10 + g(hO)_1 + h(g0)_1 + A0_1;
Dy (H(6)) =210, +3 /101 + f20 +2gh0 + g1 (ht) 1 + h1(g0)—1 + A0;
DI(H(0)) =2f05+5f10, +4 f20 + f360 + 2gh6 +3(gh)10 + g2(h)_1 + ha(g0)—1 + A6y
D}(H(0)) = 2f04 +7f165 + 9 f262 + 5 f361 + fa6 +2gh, +5(gh) 161 +4(gh)20 — 28116
+g3(h0)_1 + h3(g0)_1 + 16,.

Substituting them into Pr Vi (©4), this leads to

Pry )OOy = /(9 A Df[H(G)] ANOL+0 A Dg[H(O)] A (hO)_1+60 A Dy[HO)] A (g0)_1)dx
— /9 A (FYD(H(O)) + FP D (H(0))) A 6;dx
+ / 0 A (VD (H©®)) + gP DEH(©)) + g D} (H(6))) A (hO)_1dx

+ / 0 A (K'Y D (H(B)) + RP D2(H(©H)) + h® D (H(9))) A (g6)_1dx.
It needs to vanish for all A. So the coefficient of A should be zero, that is
0= /9 A (@0, + g90) A (h0)_1dx + / 0 A (K20, +hP0,) A (g0)_1dx
- /(9 AP — g0 A hO) 1 +0 A (P — D)0, A (g6) 1) dx.

This leads to h® = A" and g@ = ¢*. The implies that

h(uy, uz, u3) = pp(uy, u)uz +qp(uy, uz), gur, uz, u3) = pguy, ux)us +qg(uy, uz)
(40)
and
g =p s, gl = pPus. (41)

The rest of the terms, i.e. the terms without A in Pr Vi (®4) should also vanish.

0= / FPOAQFO+g1(hO)_1 +hi(g0)_1) A6 dx
+ / FP0 N (203 +5f16, + g2(h)_y + ha(g0)_1) A Oydx
+ /g“)eA(2f92+3f191+h1(g9),1)/\(h9),1dx
+ | §P0 A QO3 +5F102 +4 1200 +28h0; + ha(g0)_1) A (hO)_1dx

gV0 A (2f04+7 f163+9 f265 + 5 f361 + 2gh6s + 5(gh)16) + ha(g6) 1) A (h6)_ dx

+

+

—_— — —

D0 A (2f6,+3 £101 + g1(h0)_1) A (g0)_1dx
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+ / BP0 A Qf03+5f10, +4 120, +2gh0) + g2(h6)_1) A (g0)_1dx
+ / hOON Q2 fOs+7 1605 +9 £20> + 5 f301 + 2gh6 + 5(gh) 101 + g3(h0)_1) A (g6)_ dx
= [@D @1 = 51iD =257+ 27hg + 276h D)0 A 01 A Gada

+ f (=D} 2fe")+ D} 2fg® +7f18)+ Du(=2fg" — 5f1g® - 9 24 — 2ghg)
+ 4187 +2¢hg® +5 £8P +5(gm) 18V +3 /18" — g1 [V =2 fP)0 NG A (hO) -1 dx
+ /(-Di(2fh<3))+ D> h P+ 7 ik + D (=2fh VY —5AhPD -9 fHLhD — 2ghh®)
+ 40P+ 2ghhP+5 P+ 5(gh) AP+ 3 1RV — by fO — hy )0 NG A (g0)_; dx

+ f (8Vhi +gPhy+gPhy —h Vg —h® gy — 1 g3)0 A (g0)_1 A (hO)_1dx
" / (D:(4f8™) = 718" = 2/g™)01 A 63 A (h0)-1dx

+ /(Dx Gfh®y — 7R —2Fh)0, A0, A (g0)_, dx.

This implies that every coefficient should be equal to zero, that is,

2D.(FO 1) = 5[ fD = 2f 1D +27hg® +2gh® = 0;

—D}2fe) + DI 2f8® +7£18%) + Do(=2f8V = 5f1g® — 9,8 — 2ghg®)
+4£,8 +2ghg® +5£,8® +5(gh)18P +3f1gV — g1 fV — g2 fP =0;

—D3Q2fh®) + DX2FRD +TFR®) + D (—2fhD — 57 — 9 0D — 26hh®))
+4 0 +2ghh® + 50D +5(gh) kD +3 A — hy fO — hy fO = 0;

¢Vh1 +gPhy+ gPhy — hVgy — h® gy — hV gy = 0;

418 —1f1g™ —2fg® =0;

AFR®) —Tfh® —2fh® = 0.

Substituting (40) into the above formulae and combining with (41), we obtain over-determined
partial differential equations for the functions f(uy, us), pn(u1, u2), qn(u1, u2), gn(u1, uy) and
gn(uy, uy). With the help of the package diffalg in Maple, we obtain the five cases listed in
theorem 4. O
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