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Preface

THE PURPOSE of this book is to give an elementary account
of the differential geometry of curves and surfaces in Euclidean
space of three dimensions. The development of the theory is
by vector methods throughout, and it is assumed that the
reader has already made some acquaintance with elementary
vector results; as a reminder a list of these is included at the
start.

The first chapter, on plane curves, is brief, its purpose
merely being to introduce in a familiar context some of the
ideas and techniques used later in the text.

In the second chapter an intuitive definition of the arc-
length of a space curve has been given, and for a rigorous
treatment the reader is asked to refer to books on analysis.
The main object of this chapter is to develop the ideas of
curvature and torsion, and this has been done by using the
concept of the spin-vector of a vector.

The third chapter on surfaces deals first with the principal
types of curves lying on them, and then goes on to discuss the
concept of curvature for a surface. Particular reference is
made to developable surfaces and ruled surfaces.

While the whole treatment is rigorous as far as is possible,
in introducing the various ideas reference is constantly being
made to the underlying geometrical intuition, and a large
number of examples is included, together with their solutions,

to help the reader to appreciate the ideas fully.
v
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I cannot conclude without acknowledging the valuable
suggestions and the interest shown by Dr. W. Ledermann
while the manuscript was in the course of preparation. Any
shortcomings must be attributed solely to myself. Finally 1
must thank the publishers, and in particular their printing
staff, for the way in which they have carried out the translation
of the manuscript into print.
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Vector Results in Constant Use
in the Text

1. The symbol r is used for a vector of length r. We write
r = |r|. For a unit vector in the direction of r we write # = r/r.

2. Ifa,bare vectors whose directions are inclined to orie another
at an angle 8 (6 lying between 0 and 7), we define the scalar product
of a,b by a.b = ab cos 8; and if & is a unit vector perpendicular to
both a and b in such a sense that a,b,& form a right-handed triad
of vectors, we define the vector product of a,b by aAb =
(ab sin 6)@. If b = a we have ab = a.a = ¢® (and a common
notation for a.a is a?); also aAb = aAa = 0.

3. ‘The triple scalar product a.(bAc), where the vectors a,b,c
form a right-handed triad, is equal to six times the volume of the
tetrahedron whose coterminous edges can be represented by the
three vectors. We write

[a,b,c] = [abc] = a.(bAc) = b.(cAa) = c.(aAb) =
— a(cAb) = — b.(aAc) = — c.(bAa).
4, The triple vector product aA(bAc) can be proved to have

the expansion
aA(bAc) = bla.c) — c(a.b).
5. It can be shown that [bAc,cAa,aAb] = [ab,c]’
Provided that [abc] 0, and consequently
_ [bAc, cAa,aAb] #0,
we can resolve any vector r in the two ways:
. a[rbc] + blrea] + clrab]
(1) r = [abc] ’
. (bACS)r.2) + (cAa)r.b) + (aAb)r.c)
G r= T abc]
ix




VECTOR RESULTS

6. (i) a.b =0 implies that either a is perpendicular to b, or
that at least one of a and b is a zero vector.

(ii) aAb= 0 implies that either a is parallel to b, or that at least
one of them is zero.

(iii) [abc] = O implies that a,b,c are all parallel to the same
plane, or that at least one of them is zero.

(iv) aA(bAc) = 0 implies that a is perpendicular to both
b and ¢, or that b is parallel to ¢, or that-one of the vectors is zero.

7. If eis a vector of constant length whose direction depends on
a parameter #, so that ¢ is a function of ¢, from the result that
¢2 = c.c, by differentiation with respect to ¢, we have 0 = ¢.¢. so
that ¢ is perpendicular to ¢.

CHAPTER ONE

Plane Curves

Introduction

In this first chapter we do not attempt to give anything in
the nature of a complete account of plane curves, but we shall
establish some of the ideas which reappear when we come to
deal with curves in space. These ideas will be concerned with
tangents, normals, curvature and envelopes. As the subsequent
work will be dealt almost entirely by vector methods, these
will be introduced in this chapter, though it must be remem-
bered that vector work will only show to full advantage when
applied to space of three dimensions.

Representation of a Plane Curve

In elementary work one first meets the equation of a curve
in the form y = f(x), an equation which, with the usual
convention about functions, determines a single value of y for
any given value of x. In dealing with conics one soon meets
equations such as that of the parabola, y? = 4ax, where yis no
longer a single-valued function, and a curve whose equation
is of the form f(x,y) = 0 presents even further difficulties. We
shall therefore consider curves whose equations are given in
the parametric form x = f{t), y = g(¢), where ¢ is a scalar para-
meter. Using r as the position vector from the origin to the
point P on the curve whose parameter is 7, we may then put
r =ix -+ jy, where i and j are unit vectors along the co-
ordinate axes, and so r = r(t), where r(¢) is a vector function
of ¢,

1



PLANE CURVES
Arc-length
In elementary calculus the arc-length s between points whose
parameters are ¢, and #, is given by
dy\ 212
— d.
(@) ]

T dx) 2
*= L[(dt) *
This result evolved from an intuitive conception of arc-
length in elementary work. But we find it convenient to regard
such a formula as the definition of the arc-length. Also, to
avoid confusion with notation to be used in a moment, we

shall take u as the parameter, instead of 7.
Now since we may write dr/du = idx/du + jdy/du we get

) o=@
de) " dwdn = \7) T dul ’

and so we give

Definition 1.1. The arc-length of a curve between points
Py, P, which correspond to the parameter values uy,uy is defined

by the relation
U
Tdr dr7i2
£ J‘UL[I‘ . El;] du’

which is equivalent to saying

ds [ dr afr]”2

du ~ |du du
Change of Parameter
The arc-length just defined does not depend on the choice
of parameter, for if we take u = ¢(v), where ¢'(¥) is non-zero

in the range considered,
2

CHANGE OF PARAMETER
“rdr drv2 g I (dr dv)_ (dr gg)]u@ o
§ = [d—ud—uil “ v[(c—i; du) \dv du dv

“rdr de)i2
== J' [:E;':i—v] dv,

and in fact any intrinsic property of the curve, that is a property
depending only on its shape and not upon its orientation nor
upon the frame of reference, is not affected by the choice of
the parameter in which it is expressed.

Tangent

We define the tangent to the curve at P to be the line in
which lies the vector dr/du, located at P.

Suppose r to be expressed in terms of the parameter s, the
arc-length measured along the curve from some fixed point on
it. In this case we may put 4 = s in definition 1.1, from which
we obtain at once

ds dr dr:l”z
2122 =1,
ds |:ds ds

so that

It is now evident that dr/ds is a unit vector parallel to the
tangent at P, and for this vector we shall always write t. For
this reason we shall normally use the arc-length s as the
parameter, as this will lead to simplicity of expressions.

Normal

Since t.t = 1 we have 2t.(dt/ds) = 0, so that dt/ds = d°r/ds®

is a vector perpendicular to t. For the unit vector in the
B 3



PLANE CURVES

direction of d*r/ds? we shall write p. The line through P, which
is parallel to p, we shall call the normal at P.

Fia. 1.1

Curvature

A natural way in which to measure the amount of bend in a
curve is to take it to be the rate of turn of the tangent with
respect to arc-length. So if the angle between ‘neighbouring’
tangents is 8y we shall call « = dy/ds the curvature of the
curve at any point. For some positive scalar A we have

Fr dt _didy

p=ds2—-$_d—¢¢7;_xd_¢.

it ’

Fic. 1.2

But as t is a unit vector its ‘neighbouring’ vector t + 8t is
also a unit vector, and we see at once, from figure 1.2, that, to a
first approximation |3t] = 1.8y, so that, taking limits, dt/dy
is a unit vector perpendicular to t,

CURVATURE
Hence A = 4 x, and p = o dt/dy, the positive or negative
signs being taken according as di/ds is positive or negative.
Since
d°r
ds?

de 2 d2y 2
2 . [Z© -y,
) (ds2) + (dsz)
and from this we can obtain the usual expression for the
curvature of a curve y = f(x) by taking x as the parameter
instead of s.

Using y, = dy/dx, and y, = d%/dx? from the relation
ds/{dx = (1 -+ y)'2 we obtain dx/ds = (1 + y})~12, so that

£ ded (o)
ds? dsdx \ds

dx  dPy

ol = ol = 155 +i 53

we have at once

A + yD 2 [— 3 + yD) 322y, y,]

= — yu(l +»D2,
2y _ e d (i b
ds? ds dx \dx ds
d
= (D 2 a1 + D7)

= (1 + yD 2l (1 + yD 12 — yiy(1 + D2

= yo(1 + D21 + »D) — »3].
Thus
7+ D+,

and so
_ (dyld)?
T L+ (dy/dx)P®



PLANE CURVES: THE ENVELOPE OF A

Since for a circle of radius p we may write 3s == pdy, we
have in that case
k = dyjds = 1]/p.

Circle of Curvature

Since a unique circle can be drawn through any three non-
collinear points, another way of measuring the rate of bend of
a plane curve would appear to be to take it as the rate of bend,
or curvature, of the limiting position of such a circle as the
three points move into coincidence, if such a limit can be found.
There are, however, difficulties here which we shall not discuss.
Instead we talk of two curves, whose position vectors are
ri(#) and ry(v), having three-point contact at some point if
there are values u,,v, of the parameters u,v for which

ry(ug) = r(vy), Bi(ug) = Ea(vg), B1(g) = Ta(vy),

where dots denote differentiation with respect to the
parameters.

The equation of a circle of radius p, whose centre C is at the
extremity of the vector ¢, may be written

[rs(4) — ¢} . [ry(u) — €] = p?

where u is some parameter on which r depends. For this circle
to have three-point contact at some point P with a curve the
points of which lie at the extremities of the position vector
ry(s), we must have, for values u,,s, of the parameters at P,

1i(So) = ratp), By(se) = ty(ug), Fi(sg) = Tolutg).

Now, from the equation of the circle, we obtain by
differentiation

|

Zfz(”) . [ra(u) — <] 0,
2f5(u) . [ry(w) -—6c] + 2i5(u) . By(u) = O,

FAMILY OF STRAIGHT LINES

and using the first of these equations with the relations above
we see that Fy(s,) is perpendicular to [ry(u,) — c], showing
that the centre of the circle lies on the normal to the curve at
P. From the second equation, since iy(1y) = I1(s) is t, the
unit tangent vector at P to the curve, the term ky(uy).Fo(1,) is
unity. Also ¥,(uy) = ¥,(s5) = - «p, where p is the unit normal
vector at P, and « is the curvature of the curve. But [ry(1,) — €]

—> .
is the vector CP, so we have |x|p = 1, or |«| = 1/p. So we give

Definition 1.2. The circle having three-point contact with a
curve at a given point P on the curve is called the circle of
curvature at P. Its centre is called the centre of curvature, and
the reciprocal of its radius gives the measure of the curvature
of the curve at P.

Fic. 1.3

The Envelope of a Family of Straight Lines

In drawing the curve represented by the equation y = f(x)
one plots a series of points corresponding to the pairs of values
of x and y, and then attempts to join these points by a smooth
curve. If the curve could be drawn mechanically by the motion
of a point, say by regarding time as the parameter when the
curve is expressed in parametric form, we should expect our
previous drawing to approximate more closely to this curve
as we increased the number of points on our drawing.



PLANE CURVES: THE ENVELOPE OF A

Now the tangents to a curve form a one-parameter family of

straight lines whose cartesian equations are of the form
a()x + b))y + c(w)z = 0,

u being the parameter.

Just as we attempt to draw a smooth curve passing through
a series of points, we may attempt to draw a smooth curve
touching the series of tangents given by taking a succession of
values of the parameter u.

Now the limit of the point of intersection of two ‘neigh-

bouring’ tangents will satisfy both the equation above and
also the equation

a(u) x + b@w) y + éw)z = 0.t

The locus of these limiting points is found by eliminating u
between the two equations above, if possible, and will be the
curve itself, and the curve is now regarded as being enveloped
by its tangents. '

As an illustration, consider the family of tangents to the
parabola y* = 4ax. The equation of the tangent at the point
(a,2au) on the curve is yu = x + au?, and, differentiating
with respect to u we get y = 2au. Eliminating v gives y?/2a
= X + y®/4a, which reduces to y? = 4ax, the equation of the
parabola itself.

Definition 1.3. The envelope of a one-parameter family of
straight lines is the set of points satisfying both the equations
f(x,y,u) = 0 and 8f(x,y,u)/0u = 0, where the first equation is that
of the lines of the family.

Generally, for any curve, we may write the equation of an
arbitrary tangent in the form r.n = p, where r is the position

t For if L(x,yu) =0, L(x,y,u+ Su) =0 are ‘neighbouring’ lines
belonging to the family then [L(x,y,u + 8u) — L(x,y,0)])/5u = O is the
equation of some line through their point of intersection; so
oL(x,yw){ou = 0 is the equation of a line through the limiting
position of this point.

8
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vector of a point on the tangent, p is the length of the per-
pendicular from the origin on to the tangent, and n is a unit
vector drawn from the origin along this perpendicular. Of
course n and p are functions of a parameter .

By definition the envelope of this tangent is the set of points
satisfying both r.n = p, and r.a = p.

Now if ¢ is the angle made by n with some fixed direction,
and if m is a unit vector perpendicular to n in the appropriate
sense, then, as dn/dy is a unit vector perpendicular to n, we
have dn/dy = (dn/du)(du/d}) = m, so that h = my, and so
from the second equation we get r.my = p. But since any
vector in the plane can be expressed as a linear combination
of two independent vectors we may write r in the form
An -+ pm, where A, u are scalars. Then we have

p=rn=Ann+ pmn = A
dpl/dy = rrm = Anm <+ pmm = p,

since n.m = 0, and so the equation of the envelope is
r = np -+ mdp/dy.

Notice that, by Fig. 1.4, p= (dp/dy) is the length of the
perpendicular from the origin to the normal to the curve at

the point of contact of the tangent.
If we repeat this process, starting with the normals to the

curve, then the equation of the envelope of the normals is
given by the values of r satisfying r.m = dp/dy, r.ih = dp/dip.
This last equation may be written — r.(ny) == (d?p/dy?) ¢, since
we can show that i = — ny/ in the same way that we showed
that n = my, and proceeding as before, from r = vn 4+ »m,
where v, are scalars, we get

dp/dy = rm = vom 4+ 7rmm = m,
— dpjdy® = rm = vnn + 7m0 = »,
9



PLANE CURVES

So the equation of the envelope of the normals to a curve, a
locus known as the evolute, is

r = m (dp/dy) — n (d®p]dy?),

and, from what has been said earlier about the circle of
curvature, it is now evident that the evolute is the locus of
the centres of curvature, and that the radius of curvature is
given by

e = p+ d?/d)*.

-vn

Fic. 1.4

EXAMPLES ON CHAPTER ONE

1.1. Prove that
d’y dx d'x dy

le| = [taG@t/d)| = |Z5 7 — =5 =I-

1.2, Deduce the parametric formula for curvature from
(] = [tA/9).
10

PLANE CURVES

1.3. If, for some curve I s is arc-length, r the length of the position
—_
vector OP of a point P on I, and ¢ the angle between OP and the tangent t
at P, show that cos ¢ = dr/ds.

1.4. If p is the length of the perpendicular from the origin on to the
tangent at P on a curve I, and if n is the unit normal at P, show that
p = |r.n|, and by differentiation with respect to s prove that

1dp

IKI = 771;’

where r is the length of r.
1.5. Prove that

n e ()

1.6. If the foot of the perpendicular p from the origin O on to a tangent
to a curve I' lies always on a fixed line at distance a from O, and if ¢ is
the angle between p and the perpendicular from O to the fixed line, use
the result of example 1.5 to show that

1+ cos 24 = 2ajr.
Deduce that the angle between p and the radius vector is also ¢.

aking cartesian axes along the fixed line and the perpendicular to
it through O, show that the equation of I"may be written y* = 4ax.

11



CHAPTER TWO

Curves in Space

Introduction

In dealing with a curve in space of two dimensions the
advantages of being able to express the equation of the curve
J(x,y) = 0 in a parametric form x = x(¢), y == y(t) are quickly
realized. When we come to curves lying in space of three
dimensions one method of description would be to regard
them as the intersections of two surfaces. This would require
two equations f{x,y,z) = 0, g(x,y,z) = 0 for their specification,
and the advantages of a parametric form x = x(z), y = (),
z = z(t) are even more apparent, especially as the idea extends
for curves in space of any number of dimensions.

Physically the parametric form is suggested at once by
considering the curve as being the path of a particle moving in
space whose position (x,y,z) is given in terms of the time ¢.

The problem of finding such a parametric form from a pair
of equations is by no means straightforward, and we shall
restrict our work to curves whose points can be specified by
position vectors r = ix + jy + kz, where x, y, z, and so r,
are functions of a parameter ¢, and where i, j, k are three
mutually orthogonal fixed unit vectors at the origin, independ-
ent, of course, of t. We give therefore

Definition 2.1. 4 curve I" in Fuclidean space of three dimen-
sions is the locus of the point P at the extremity of a position
vector r, where r is a function of the single parameter t.

We shall assume that r = r(¢) satisfies the conditions

(a) r(r) is single-valued, 1

DIFFERENCES AND DIFFERENTIALS

(b) dr/dt exists and is not zero,

(c) all the successive derivatives of r exist and are
continuous, except possibly at a finite number of
special points.

The parameter ¢z may take all values, or be limited to some
particular range of values.

Since r = ix + jy + kz, the cartesian co-ordinates x, y, z of
P on I" will all be functions of ¢, and we shall assume that, for
the curves with which we deal, we can write down a Taylor
expansion for r(z)

r(t) = x(tg) + (t — tp)i(ty) +
+ (t - to)zf(’o)/m + (t - to)af(to)/3! o

where the dots denote derivatives of r with respect to ¢, and the
suffixes indicate their values at some point where ¢ = ¢,.

FiG. 2.1

Differences and Differentials

Suppose P, Q are the points on I" whose parameters are
t and ¢ + 8¢, and whose position vectors are r and r + dr.

Then }-’_é is the vector
(t+ 8r) —r = 8r = r(t + 8¢t) — r(t).
13



CURVES IN SPACE

Now
r(t 4 8t) = r(t) + St i(r) + Se2E()2) + ...,

and so
r = £ &t +F o321 4. ...

Definition 2.2. dr is called the difference of r at t.

A first approximation to this difference when 8¢ is small is
I 8¢, and we recall that the differential of a scalar function
) is df = (df]dt) 8¢, so we give

Definition 2.3. i &8¢ is called the differential of r at t and is
denoted by dr.

As t is an independent variable its own differential is given
by dt = (dt/dr) 8t = 8¢, so it is immaterial whether we write
8t or dt. So dr = (drv/dt) dt =t dt.

It is important to point out that ér and dr depend on both
3t and ¢, and also that there is nothing in the definition to
imply that 8¢ is necessarily small, so the vector dr may have
any magnitude we like.

Tangent

From geometrical considerations the direction of PQ as Q
approaches P becomes closer to the direction of the tangent at
P. We therefore give

Definition 2.4. A non-zero vector located at P on I" and
having the direction of dr/dt is called a tangential vector to I’
at P.

Thus dr located at P is a tangential vector.

The condition (b) that ¥ 5= 0 implies that these tangential
vectors exist.

Length of Arc

Suppose AB is an arc of a curve I, By taking a succession of
points on the arc as vertices, a polygon can be inscribed to

the arc with A and B as extreme vertices. As the number of
14

ELEMENT OF ARC

vertices is increased it is intuitive that the perimeter of this
polygon will have a length approximating to the length of the
arc.

Now the length of a typical side PQ of such a polygon is |r|,
so the length of the whole perimeter will be X(ér.8r)*/2. From
the theory of integration, under suitable conditions to be
found in texts on Analysis, the lengths of the perimeters of all
inscribed polygons will have an upper bound, and, as the
lengths of the sides PQ approach zero, the sum Z(8r.8r)1/2 will
approach

J (£.8)1/2 dr.

We therefore give

Definition 2.5. The arc-length of a curve I" between the points
A and B is given by

t t
s = J @B dr = J G2 + 52 + 2 d,

to ty

where 1, ¢ are the parameter values of the points 4 and B.

Element of Arc
With this definition we have ds/dt = (i.i)'/2, and so we give

Definition 2.6. The differential ds = (+.¥)V2 dt is called the
element of arc.

Thus ds = (dr.dr)}/?; and so ds is the length of the tangential
vector dr. Hence dr/ds is a unit tangent vector, called simply
the tangent vector. We shall use dashes to denote differentiation
with respect to s, the arc-length, and so write v’ = dr/ds.

Theorem 2.1. As PQ decreases to zero length the ratio
(chord PQ/Jarc PQ) approaches1 zsmity. For



CURVES IN SPACE
chord PQ . (8r.or)1/2

PO"250 arc PO S0 by
- tim [Sr.Br 125¢
8t——0 | 5¢.51] 8s

dt
S—— . ¥ ]'/2 —_— = -
((8)) o 1

Theorem 2.2. The length of arc is independent of the parameter
chosen.

.Suppose t = ¢(u), where $(u) is a single-valued function
with a continuous positive derivative. Then

¢ pt
dr dr%du
s= | oy = | |24
J. *D § [du du:| ar

b v

du du
ru
dr drV2
B L) [‘—1; . E‘] du’

Spin-vector of a Vector

rH
dr dtdu
[ ] )

since ¢'(1) = dt/du.

Suppose the vector v to be a function of some parameter 7.
Then, as ¢ varies, v will alter both in direction and magnitude,
and so will possess a rate of turn; and if v is regarded as located
at some origin, for all values of ¢, it will also possess an
instantaneous axis of rotation for any particular value of +.
We shall therefore seek a vector whose magnitude measures
the rate of turn, and whose direction is that of the axis of

rotation just mentioned.
16

SPIN-VECTOR OF A VECTOR

Let v,v 4 8v be the vectors corresponding to the values
t,t -4- 8t of the parameter. Then v A (v + 8v) is a vector,
perpendicular to both, of magnitude |v||v 4 dv] sin 86, where

86 is the angle between the two vectors. So, as 8¢ approaches
zero, the vector

fim vA(v+4dv) 1
8t——0 |v||v + 8v] &t

is a vector parallel to the axis of turn, whose magnitude is

. [v|]]v + 8v| sin 36 80 dé
im h
8t——0 |v||v + 8v| 80 &8¢ dt

=9,

the rate of turn of v with respect to ¢, and this result is clearly
independent of the magnitude of v. Now the first limit is

, vady 1 VAY

im —_——— == e———

8t——0 |v||v + 8v| &¢ v’
(v = v.v = v? and v = dv/dt)

so we have
Definition 2.7. The spin-vector of v(¢) is defined as (v A V)[¥?,

where v = dv/dt.
17
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Curvature of a Curve in Space

Using the idea just developed, and taking s the arc-length
as parameter, the spin-vector of the unit tangent t at a point P
on a curve I' is the vector (t A t)/t? = (t A t'), where t' =
dt{ds. We therefore give

Definition 2-8. The rate of turn of the tangent with respect to
arc at a point P of a curve I' is called the curvature «. So

k= |tAt| = [rAr’|.
Note that « is essentially positive.

Since t is turning instantaneously about the vector t A t’
it is doing so in a plane perpendicular to this vector. The two
normals at P to I, one in this plane, one along the vector
t A t', are prominent in the further theory, and so we give

Definition 2.9. The unit normal vector p to I" at P in the plane
of turn of t and drawn from P in the direction of motion of the
extremity of the localized vector t is called the principal normal
at P, and also

Definition 2.10. The unit normal vector b drawn at P on T in
the direction of the vector (t A t') is called the binormal ar P.

The unit vectors t, p, b then form a right-handed triad of
perpendicular vectors, and from the definition of « we get
kb=tAt =1 Ar”, and
p=bAt=C Ar)Ar=rFP—rg'.r)=r"=t,
since |r'| =1, and sor”.x" = 0.

Torsion of a Curve in Space

From our definition, the spin-vector of b is b A b’, but as
yet we know nothing of the direction of this vector, for
although b, the derivative of the unit vector b, is known to
be perpendicular to b, its actual direction is not yet known.
We therefore calculate the igin-vector of b by using the

SPIN-VECTOR OF p

parallel vector r' A r”,r’ and r” being respectively parallel
to t and p. This gives
(r/ A r//) A (r/ A r/l ’ . (rl A rll) A (r/ A rll/)
¥’ A 7|2 K2
(sincer” Ar’ = 0)

r/ [rl’rll’rlll] — r’// [rl’rll’rI]
2

K
— t[l',,l'”,r”/]/Kz,

the second triple scalar product being zero since it contains
two vectors alike. So the binormal turns about an axis along

the tangent at P, and we give

Definition 2.11. The rate of turn of the binormal with respect
to arc at a point P of a curve I is called the torsion A.
The torsion A measures a second rate of bending for the

curve, and we get
A= [y’ = [t t"]

Now the sign of A depends on the sign of the triple scalar
product, so whereas «, the curvature, is essentially positive, A,

the torsion, may take either sign.
We have also found the direction of b A b’, for this vector

is At.

Spin-vector of p
Since p = b A t, its spin-vector p A P’ is
bAdDABALY =bAt)ABA LD AL
= b[b,t,xp] — t'{b,t,b] +

~+ b’[b,t,t] — t[b,t,b’].
C 19



CURVES IN SPACE

Now the second and third of the triple scalar products are
zero, having two vectors alike in each, and the fourth is
— t.(b A V), which is — t.At, that is — A. So, as [t,p,b] = 1,

PAP = A+ «b.

Now the spin-vector of b is along t, the spin-vector of t is
along b and the spin-vector of p is along At + «b, a vector
which is known as the Darboux vector. So the whole triad of
vectors, t, p, b has instantaneous components of spin (1,0,«)
about t, p, b respectively, and these measure the rates of turn
per arc about these vectors.

Twisted curves in space are therefore sometimes referred to
as curves with double curvature, there being instantaneous
spin of the t, p, b, triad about t and b, but not about p. These
results show up more clearly when we discuss the form of the
curve at any point in relation to the triad of vectors, t, p, b.

The Frenet-Serret Formulae

To investigate the properties of curves in space we shall need
the derivatives of the vectors t, p, b. We have already seen that

t' = «p.
From p A p’ = At 4 «b, taking vector products with p,
we get
®AP)Ap=p@p—p@p =P,
for p.p = 1, and so p.p’ = 0. This gives
PP=((At+ «b) Ap=2Ab— «t = — kt+ Ab.

Similarly, from b A b” = At, taking vector products with b,
we get

® AD)ADb = Db(bb)—bd.Db) =V,
for b.b = 1, and so b.b’ = 0. This gives

b= MAb=—p.
20

GEOMETRICAL PROPERTIES
So we have the Frenet-Serret

Theorem 2.3.
t = Kp,
p/ = — Kt + Ab,
b = —Ap.

Of course, for a plane curve, b is constant, and so b’ = 0,
that is A = 0.

Geometrical Properties

Definition 2.12. The three planes formed by the pairs of
vectors t,p; p,b; b,t; at a point P of a curve I are called respec-
tively the osculating plane, the normal plane, and the rectifying
plane.

It is at once evident that all lines through P in the normal
plane are perpendicular to t, and so are called normals to the
curve at P, and these lie in the normal plane.

It would appear that any plane through P cuts I' in at least
one point, P; that any plane through the tangent vector t
would seem to have at least two coincident intersections with
I’ at P; and that to get even closer contact at least three such
coincident intersections with I' at P would be required. We
shall prove rigorously

Theorem 2.4. The plane through P having three-point contact
with I at P is the osculating plane.

If R is the position vector of any point on the osculating
plane, and if r is the position vector of P, then (R — r) lies in
the plane of t and p. So the equation of the osculating plane is
[R — 1), t,p] = 0, and since t = r’, xp = r”’, this is equivalent
to

[(R—1),r,r] = 0.

We now show that for a plane to have three-point contact

with I at P its equation must be the one just given.
21
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If n is the perpendicular from the origin on to a plane, the
position vector of a general point on which is R, the equation
of the plane will be (R — n).n = 0. This plane cuts I' at
points whose parameters s are given by f(s) = [r(s) — n]l.n = O,
and the condition for it to have three-point contact at s — 5 18

that f(s) =f"(s0) = f"(s) = 0. So

[r(sp) —m].n =0, r(sg).m = 0, r"(sy) .n = 0,

Hence [R — r(sy)].n is also zero, by subtraction of two of the
equations above, and the three vectors

[R — r(sp)], T'(sp), ¥'(5¢)
are all perpendicular to n, and so parallel to the same plane.

Thus
[R — x(so), ¥'(s0), ¥ (s)] = O,

and this is the equation of the osculating plane at s,.

Definition 2.13. The circle drawn with three-point contact with
I’ at P is called the circle of curvature at P, and its centre and
radius are called respectively the centre and radius of curvature.

From the last theorem it is at once evident that this circle
lies in the osculating plane and touches I' at P. As in the case

of plane curves, its radius is the reciprocal of «, the curvature
of I' at P, so we have

Theorem 2.5. The centre of the circle of curvature at P on T'
lies on the principal normal at distance 1/« from P.

Definition 2.14. The sphere drawn with four-point contact
with I at P is called the sphere of curvature at P, and its centre
and radius are called respectively the centre and radius of
spherical curvature.

Some properties of this sphere appear in example 2.10 at
the end of this chapter.

22

EXPANSIONS
The Form of a Curve at any Point

Suppose s is the arc-length measured from some fixed point
P on I' to a neighbouring point Q. Expanding the position
vector R of Q in a Maclaurin series we get

R =r-+sr-+ szr"’/2! + s34,
where r is the position vector of P. Now
=1t ' = «p, V' = «p+ «(— xt 4 Ab),
where t, p, b is the fundamental triad of vectors at P. So
R —r = st+ s2xp/2 + s3(«'p — <%t + «Ab)/6 + . ..
== t(s—«2s%/6 + ...) + p(rs?¥2 + «'s3/6 +..) +
+ b(xAs3/6 4 .. ).

If x, y, z are the co-ordinates of Q referred to cartesian axes
taken along t, p, b then

X=8+...,y=xk2+ ...,z = kdP64 ...,

and so the projections of I' on the three co-ordinate planes
approximate to the shape of the curves

2y = wxx?, 2X%)3 = 9kz%, 6z = KAx3,
as shown in figure 2.3, on the next page.
Expansions for the Tangent, Principal Normal and
Binormal at a Neighbouring Point

As in the last section, if t, p, b and tgy, pg, by are the funda-
mental triads at P and @, then

tg=t+ st +s%"/2 4+ 3764 ...,
where
t = «xp,t’ = «'p+ x(— «t + Ab),
t” = «”’p 4+ 2«'(— kt + Ab) +
+ «(— &'t + X’b — «Fp — A3p).
23
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So

tg = [1 — 5232 — 3’2 4+ .. . Jt+
+ [s¢ + 82 [2 + s3(k"” — 3 — kAD[6 + . ..]p +
+ [s26A/2 + s3Q2x’A + «X)/6 +. . .]b.

z

¥

HV

S>0

FiG. 2.3

Similarly we can show that
Po = [— sk — 52’2 + s3(— w” -+ k3 + KA®)6 4+ ..t +
[ — s34+ 22 +
+ 53(— 3k’ — 3AX)/6 + .. .]p +
+[A + 22 4+ 53— A+ A7 =236+ ... ]b
and by may be obtained as t, 2/\ Pe-

NEIGHBOURING TANGENTS
The Shortest Distance Between Neighbouring Tangents

The shortest distance d between the tangents t and tg at P
and Q lies in a direction perpendicular to both, that is in the
direction of the vector t A tg. We can find d by projecting
the length PQ on a vector in this direction. So the shortest
distance is

|rg — 1) . (t A t)|/]t A tgl.
Now

£ Aty = [—s2kA2 — s%2A + kX)/6 + ... Jp +
4 [sre 4+ s2[2 + s3(k""— &3— xkA®)/6 + . ..]b,
and
rp—r = [s— %6 +...1t+

+ [s2x/2 + s3'[6 + . . .Ip + [s3:A/6 + . . .]b.
So

s lg—n.trtg] _ (= k2N4 + E\6)st + . . .|

[t A tg] les + .. .|
= |— ~As3|/124 ...,

where the remaining terms are of degree four at least in s.

In the same way it can be shown that the normals p, pg are
at a distance apart of the order of s.

These two results have a bearing on the fact, which will be
discussed later, that the tangents to a twisted curve form a
developable surface, whereas the normals, in general, do not.
One can say, loosely, that ‘consecutive’ tangents to a twisted
curve ‘intersect’, and that the ‘plane’ they determine is the
osculating plane, whereas ‘consecutive’ normals do not
intersect. Stated precisely, these facts may be put in the form of

Theorem 2.6.

. . 2 __ n.

@) 8s_ll_lrn_’o[Sr,t,t + 8t]/3s% = 0;

(i) 4 lim (orp.p + 8p}/8s® # 0.
25
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. e ) g .
(i) The first limit is 5s hm_>0[8r,t,8t]/8s , since t A t=0,
and this is

. or &t
PPRLLI [SE t 5?} = [ttp] = 0.
(i) The second limit is 5s _l£n_>0[8r,p,8p]/8s , since
P A p=0, and this is

or Sp}

SS_]].I_n_>0 [_8;’ p, g; = [t,P,(_ Kt -+ Ab)]

= [t,p,Ab] = A,

and it is to be remembered that the condition for three vectors
a, b, ¢ to be parallel to the same plane is [a,b,c] = 0.

Theorem 2.7. If A is a fixed point on a curve I and P a point
whose arc-distance from A is s, and if A, is a fixed point on a
second curve I'y and Py the point whose arc-distance from A, is
also s, and if the curvature and torsion at P are respectively equal
to the curvature and torsion at Py for all values of s, then I, I';
are identical in shape.

For consider I fixed and I oriented so that 4, coincides
with 4, and t,, p;, b, at 4; on I'; coincide with t, p,bat 4 on I
Then, for every pair of points P, P,,

d
a(t.tl + p'Pl + b.bl) = Kp’tl + t. Klpl + ("" xt “‘I" Ab)'pl +
+ p.(—xty + Aby) — Ap.by + b.(—)p)
= 0.

So (t.t, + p.p; + b.by) is a constant, and taking the value at
A = A,, where t.t; = p.p; = b.b; = 1, this constant has the
value 3. But for any two vectors a, b we have a.b = ab cos 6,
so a.b < ab. Now all six vectors above are of unit length, so
that the maximum value of any product such as t.t; is unity.

HELICES

Thus (t.t; + p.p; + b.b;) = 3 implies that each scalar product
is unity, and so, for all values of s we get t=1¢;, p =Py,
b =Db,.

With I, oriented as indicated the two curves therefore
coincide, and so I'j and I" are identical in shape.

FiG. 2.4

Helices

A simple class of twisted curves is the class of helices, and a
particular type of helix — the circular helix —is the curve
traced by moving a point along the groove of a uniform screw
thread. The same type of curve is formed by a uniformly
coiled longitudinal spring.



CURVES IN SPACE

Definition 2.15. A twisted curve with the property that the
tangents at all points are inclined at the same angle to a fixed
direction is called a helix.

If we draw straight lines parallel to the fixed direction
through all the points of the curve they will generate a cylinder,
not necessarily circular, on which the helix lies.

Let f be a unit vector in the fixed direction. Then, t being the
tangent at P, we are given that

f.t = cos o, (see figure 2.4.)

where « is constant. Differentiating with respect to arc we get

f.<p = 0, so that p is perpendicular to f, so f must be of the
form

f = pt+ ob,
Ll

cosa = fit = p,

Since f is a unit vector p® + o?=1, s0 o = 4-sin «. Also,
from f.p = 0, by differentiating again,

f.(— «t+ Ab) = 0,

and substituting for f
(tcos « = bsin a).(— «xt 4+ Ab) = 0,

80 (— xcos « £ Asin «) = 0, and hence «/A = L tan «, and
we have proved

Theorem 2.8. For a helix the ratio of curvature to torsion is
constant.

The converse is also true. For suppose that «/A = tan «,
where tan « is constant. Then, from t' = xp, and b’ = — p,
we get t' cos « + b’ sin « = 0, and integrating,

tcos @ + bsin « = a constant vector = wu, say,

where u is a unit vector, since the vector on the left of the
28

INVOLUTES AND EVOLUTES
equation is a unit vector. Taking the scalar product of t and u

tu = t.tcosa 4 thsin« = cos «,

since t.t = 1 and t.b = 0. This shows that ¢ makes a constant
angle with u, and so the curve is a helix.

There are other interesting properties to notice. First, the
principal normals to a helix are all perpendicular to the fixed
direction, and they are also normals to the cylinder on which
the helix is drawn. Second, if the cylinder is developed into a
plane by rolling it out flat, the helix develops into a straight
line. Now a straight line is the shortest distance between two
points in a plane, and so the helix is the shortest path on the
surface of the cylinder from one point to another. This
property of a curve gives it the name of a geodesic. (Another
example of a geodesic is a great circle on the surface of a
sphere.)

These two properties, that the helix is a geodesic on the
cylinder, and that its principal normals are normals to the
cylinder, are dependent on one another. For to obtain
geodesics on a surface we might draw tight a string over the
surface to get the shortest path between two given points.
Assuming smooth contact, the reactions on the string are
bound to be perpendicular both to the surface and to the
string, and this implies coincidence of the normals, since at
any point the osculating plane for the string will contain both
the principal normal to the string and the normal to the
surface.

Involutes and Evolutes

Definition 2.16. The orthogonal trajectories of the tangents
to a curve I' are called the involutes of I'. I itself is called an
evolute of any such orthogonal trajectory.

This definition means that an involute of I' is a curve in
space which cuts every tangeng‘ ;o I'in such a way that its own
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tangent at the point of intersection is perpendicular to the
tangent to I, A practical method of describing an involute of I"
is to imagine a piece of string wrapped along the length of I’
and fastened to some point of I' at one end. If the other end
is now pulled away from I, the string always remaining taut,
with the straight portion tangent to I', this free end will now
describe an involute of I, and the different involutes of I' are
obtained by altering the length of the string.

Relations between the Corresponding Elements of a
Curve I and One of its Involutes I',

Suppose P is a point on TI', and P, the point on the tangent t
to I'at P where it is cut by I';. Let PP, = u, where u is positive
or negative according as PP, is in the same direction as t, or in
the opposite direction. From our definition the tangent t, to
Ty at Py is perpendicular to t, and so first we obtain an expres-
sion for t;. Throughout we shall use the suffix 1 to indicate
elements of I'y at P, corresponding to those of I' at P. Then,
with obvious notation,

= r-+ ut,
80, as t, = dr/ds; = rj,
t, = @ + u't 4 ut’) ds/ds,,
= (t + 't + uxp) ds/ds,.

But t, is perpendicular to t, so t.t =0, and therefore
0 = t.(t + u't 4 uxp) ds/ds,, giving 0 = (1 + ) ds/ds,, since
t.t =1, t.p = 0. Assuming ds/ds, # 0 (equality would mean
s constant) (1 4 «) =0, and so (s + u) = ¢, where ¢ is a
constant.

This shows the property connected with unwinding a string
from I, for it proves that the distance along the curvel from a
fixed point on I" to P together with the distance PP, is of
constant length,

30

CORRESPONDING ELEMENTS

We now investigate the curvature and torsion of I';. From
above, since (1 + u) =0,

t, = uxp ds/ds;.

This shows that t, = 4-p, and ds/ds; = =+ 1/ux. We have
agreed earlier that « shall be essentially positive, and we now
choose the sense of measurement for s; so that ds/ds, is
positive when u is positive, and by taking ¢ sufficiently large,
we can ensure that u is positive for all relevant values of s

and s;. So
t; = p and ds)/ds = x(c — ).

So the tangent to I'; at P, is parallel to the principal normal to
I'at P.

FiG. 2.5

Continuing,
on & d ds

— () =p —,
ds; (t)=1p ds,
SO
kp; = (— «t 4+ 2Ab) ds/ds,.
and, as p, is a unit vector,

P, = (— xt + W)/ + AN,
31
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Hence
)i(dsyfds)? = x® + A,
and
iy = (2 + A2/ (c — ).
Now
by = t, Ap; = p A (— «t+ Ab)(1/xy) ds/ds;
= (b + M)/(xt + WP,
So
— Ap, dsy/ds

kKb —kAp+ Xt + Akp  (kx” -+ AX)(xb - At)

- («% + AB)1/2 - (x + X232

(4 ) (kD 4+ X't) — (xx” + AX) (kb 4- At)

- (2 + A2)3/2

_ (kX — K’X)(xt — Ab)

= (2 + 2232 )
Hence

A= (kX — ' N)[(k2 + A2)(ds,/ds)
= (kX — K’ )J(x® + B)x(c — 5).

Collecting these results we have ds;/ds = «(c — ), and

t =0p

P1 = (— «t + Ab)/(«* + A2)13,

by = (At + «b)/(x® + A%)2,

iy = (1% + B2 i(c — 5),

Ay = (&} — &’ A)/x(x? 4+ A)(c — ).
The Evolutes of a Curve I

If I'; is an evolute of a curve I', then, from our definition,
I’ is an orthogonal trajectory of the tangents to I3j. So the
32
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tangent at P to I' is perpendicular to the tangent at tht corre-
sponding point P, on I';, and P, must lie in the normal plane
of I'at P. So

r, = r-+up- b,
where u and v are to be determined. From this we get
t, = [t+wp + u(— «t + Ab) + v'b + W(— Ap))(ds/dsy),
and this is a vector proportional to the vector (up + vb). So

1 —ux = 0, ('— Wv)(ds/dsy) = pu,
and
(Au + v')(dslds)) = pv.

From these relations u == 1/«, and v(#'— Av) = u(Au + V).

v2 - v2 A[ﬁ + 1].
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So
d|: u:l = Mu? + V)2,

ds| v

d(ufv)
s -

giving tan~'(u/v) = [ Ads -+ constant = 4 4 ¢, say, where
A= [ Ads. So 1/x = v tan(4 + ¢), and the point P; is given
by

and

r, = r+ [p -+ cot(4 + c)b]/«.

We see from this that the curve I" has an infinity of evolutes
obtained by letting ¢ take all values.

If I'is a plane curve, then A = 0, and so the evolutes of I
are given by u/v = constant, and are

1
r, = r—l——;(p—}—wb),

where w is a constant whose different values determine the
different evolutes.

Now in the first chapter dealing with plane curves we talked
of the evolute of a curve, meaning a curve lying in the same
plane. We now see that a plane curve I" has an infinity of
evolutes, each of which lies on a cylinder drawn perpendicular
to the plane of I', and whose section by this plane is the
evolute r; = r + p/x, the locus of the centres of curvature of I.

Furthermore, the tangent to such an evolute is

tl = dl']_/dsl
1 ’
= [dr/ds -+ :(—— kt 4+ Ab — wAp) — %2(p + wb)] (ds/dsy),

which, since A = 0 and dr/ds = t, reduces to the vector
£ (@ + «b)/(1 + )2,
34
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since t, is a unit vector. And this vector makes a constant angle
with b, which itself is fixed in direction for a plane curve. So
we get

Theorem 2.9. The evolutes of a plane curve are helices.

Related Curves

The work above on involutes and evolutes is a special type
of the work on pairs of curves whose points, or elements
such as the tangent, principal normal, and binormal, are
related in some special way, and the methods used above may
be applied equally well in such cases. Some examples of such
relations will be found at the end of the chapter.

EXAMPLES ON CHAPTER TWO

2.1. Find the unit tangent vector t at the point 8 on the twisted cubic
curve whose position vector r is given by r = ia6® + jb6* + kc9, and
write down its cartesian equations.

2.2. For a curve I' the position vector r satisfies the relation ¥ = 0.
Show that I'is either a straight line or a single point.
2.3. Find the curves which can be represented by ¥ = 0.
2.4. Find t, p, b, « in terms of a general parameter 7.
2.5. If I'is r = r(¢) prove that x*A = [i,,F]/s%
2.6. Find «, A for the curves
@) r = ia(3t — ®) + ja(31®) + ka(3t + 1%);

(ii) r = ia cosh 7 + jasinh ¢ + ket;

(iii) r = ia(@ — sin 6) + ja(l — cos ) + kb6,
2.7. If u, v, w are three mutually perpendicular vectors, each of unit

length, and each a function of a single parameter 7, show that a, v, w are
all parallel to the same plane.

2.8. Prove that t'.p’ =0, p’.b’ =0, b’.t'= — «A, and show that
t’, p’, b’ are all perpendicular to the Darboux vector At + «b.

2.9. Find cartesian equations for the three principal planes at r = r()
on a curve I.

2.10. Show that the position vector of the centre of spherical curvature
is r + (p/x) — (bx’[x3A). 3

D 5
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If R is the radius of spherical curvature show that
R = |(t A t")/x2)].

If p and o are respectively the radius of curvature and torsion for a
curve, prove that
R* = p* + (ep)

Find conditions for
(i) The centre of spherical curvature to coincide with the centre
of curvature;
(ii) R to be constant.

Show that for a curve lying on the surface of a sphere
Ax = ‘% (<[xN).

2.11. Show that the normals p, p + 8p are approximately a distance
X 3s(x? 4+ A®)~1/2 apart, and that the angle between them is approximately
Ss(i? + AR/,

2.12. Show that necessary and sufficient conditions for a curve to be a
helix is that the principal normals should all be parallel to a fixed plane.

2.13. For the helix r = iacos 8 + jasin 0 + ka 6 tan « drawn on a
circular cylinder show that x and A are both constant.

For any curve prove that [t',t”,t"'] = x%(3/«)’, and show that a necessary
and sufficient condition for a curve to be a helix is that [r”,r”’r”"} = 0.

2.14. Prove that the locus of the centre of curvature of a helix lying
on a circular cylinder is also a helix, and find the condition for it to lie on
the same cylinder.

2.15. A curve is drawn on the surface of a right circular cone so as to
cut all the generators of the cone at the same angle. Show that its ortho-
gonal projection on the base of the cone is an equiangular spiral.

2.16. Two curves I', I'; are such that the binormals to I'; are principal
normals to I
(i) Find t;;
(ii) Show that the corresponding points of I", I'y are a constant
distance ¢ apart;
(iii) Prove that ¢(x® + A?) = «.

2.17. A point P, is taken on the tangent t at the point P on a curve I,
so that PP, = c, a constant. Prove that t, is parallel to the osculating plane
of I' at P, and find necessary and sufficient conditions for the locus of P,
to be a straight line.

2.18. Two curves I', I'; are so related that the principal normal to I’
at P lies along the principal normal to I'; at P, for all pairs of points P, P;.
Show that the tangents at P and P; are inclined at a constant angle.

CURVES IN SPACE

Show also that « and A at P on [I'satisfy the same linear relation for all
points P, and that «,, A; at P, on I are related to «, A by the equation

a*A\; + a(x; — &) — alkx; = 0,

where g is a constant whose geometrical significance is to be determined.
2.19. Show that if the involutes of a twisted curve are plane curves
then the curve is a helix.
2.20. The evolutes of acurve I'cut one of its normal planes in points P,.
Show that all such points P, lie on a straight line, parallel to the binormal
at P, which passes through C, the centre of curvature of I'at P.
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CHAPTER THREE

Surfaces

Introduction

Perhaps the most natural starting point for discussing
surfaces is to consider the equation z = f(x,y) in three-dimen-
sional Euclidean space. For if we take the plane z = 0 to be
horizontal then f(x,y) can be regarded as the height of a point
P on the surface lying vertically above the point Q, onz =0,
whose coordinates are (x,y), and, as Q moves over a region on
z =0, so P will move over a corresponding region on the
surface z = f(x,y). Thinking in geographical terms, the curve
given by sectioning the surface with a plane z = k is then a
contour line.

Difficulties arise, however, as surfaces are frequently given
in the form g(x,y,2) = 0; for example, the equation of a
sphere of radius ¢, whose centre is the origin 0, is x2 + % +
22 = ¢, In this case z = 4-(c? — x2 — y?)1/2, and we get two
single-valued functions z by taking the separate signs. Each of
these represents one-half of the surface of the sphere. The
contour lines would then be circles given by taking values of
k lying between + ¢ and — c in the pair of equations z = k,
x4+ yr=c®— k%

Also, while it appears intuitive that an equation glx,y,2)=0
is a two-dimensional locus, that is, a surface, since only two of
the variables x, y, z can be arbitrarily assigned, the problem of
expressing this surface by an equation of the form z = f(x,y)
presents difficulties.

Similarly, when two equations g(x,y,z) =0, h(x,y,2) =0
are given, representing two su;fi;aces, it would appear that for

INTRODUCTION

points common to both surfaces only one of the variables can
be regarded as arbitrary; so that such points would seem to
form a one-dimensional locus, that is, a curve. But again, the
problem of determining such curves of intersection of surfaces
is not in general by any means simple.

To avoid these difficulties we shall adopt a parametric form
of representation for the coordinates of a point on a surface,
which, using cartesian coordinates, will take the form

= x(u,v), ¥y = y(u,v), z = z(u,v), where u, v are our para-
meters, and where the functions of them are subject to certain
restrictions. If the parameters u, v are themselves functions of a
third parameter ¢, then x, y, z become functions of this single
parameter, and the locus of P(x,y,z) becomes a curve.

For points on a sphere we obtain parametric coordinates as
follows. Using geographical terms for a sphere whose centre is
0 and whose radius is ¢, take axes Ox, Oy in the plane of the
equator and take the axis Oz along the radius through the
north pole N,. Let P be any point on the surface of the sphere
and let the meridian through P make an angle ¢ with the
meridian which cuts the axis Ox. Let 8 be the angle between
OP and ON,, and let M and N be respectively the projections
of P on the axis of Oz and on the plane Oxy. Then we have

PM = c¢sin § = ON
x = ONcos ¢ = csin fcos ¢
y = ONsin ¢ = csin §sin ¢
z = ccos 8. (See figure 3.1.)

As P moves from N, to S along the meridian N,PS, 6 ranges
from O to =. As the meridian through P moves round the
equator from N,A4S back to N,4S, ¢ ranges from 0 to 2.

If we make 6 and ¢ depend on some further parameter #, so
that 0 = 8(¢), ¢ = ¢(t), then:éJ will describe a curve on the
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sphere. In particular, taking @ constant gives the parallels of
latitude, while taking ¢ constant gives the meridians. ﬁ

For a cylinder we have z=u, x = rcos 8, y = rsin 6; /"‘
for a cone x =utanacos¢, y=utanasing, z=u; \\
and for a surface of revolution x = rcos#f, y = rsin 6,
z = f(r); as can be seen from figure 3.2.

\Z

— \/

2z
Nz
" ) ,
csin P e Y
o/° x
0
¢ ¢ N J §z
A
s * -y
a z=f(r),68=const.
Fic. 3.1
These ideas of parametric representation we shall now
express in terms of the position vector r of the point P, and give
Definition 3.1. Suppose r, the position vector of a point P in 09,, %
three-dimensional Euclidean space, is a function of two real \
parameters u and v, then the locus of P as u and v vary will be r

called a surface S.

We shall assume that the function r = r(u,v) satisfies the
following conditions at almost all points (that is at all points
corresponding to points (u,v) i;lo the »-v plane, with the possible Fic. 3.2
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exception of points lying on a finite number of curves in this
plane):
(a) r(u,v) is single-valued;
(b) r(u,v) possesses continuous partial derivatives up to
any order required;
© —aA—+#0

With these conditions, and the usual cartesian coordinates,
S has a parametric representation

x = x(uy), ¥y = yuy), z = z(uv),

from which u and v may be eliminated to obtain the equation
of S in the form f(x,y,z) = 0.

Notation
We shall write

or or o%r &r
'é; Ty, a_v=rw 'é?z=ruu’ a_vz=rw,

or or

dudy Tou = Tw = Zoo0

the inversion of the order of partial differentiation being
allowable in view of the condition (b) above.

Parametric Curves

If one of the parameters v is given a fixed value v,, then
r(u,v,) is a function of a single parameter v, and so the locus
of P will become a curve on S. Thus ¥ = const., v = const.,
for different values of the constants, give two families of curves
on S with the property that each point P(u,v) on § lies at the
intersection of two curves, onc:4 grom each family.

CURVES ON A SURFACE

Definition 3.2. The curves obtained by making either u or v
constant are called parametric curves, and u and v themselves
are called the curvilinear coordinates, or simply the coordinates
of points on the surface.

Curves on a Surface

If u, v are themselves single-valued functions of a third
parameter ¢, possessed of derivatives as far as required, then
r becomes a function of the single parameter ¢, and as ¢ varies
the locus of P(u,v) will be a curve I" on S. The parameters
u, v will satisfy an equation ¢(u,v) =0, obtained by
eliminating ¢.

Definition 3.3. 4 tangent at any point P of a curve I lying on S
is called a tangent line of S.

Theorem 3.1. The tangent lines at a point P on S all lie on a
plane, called the tangent plane to S at P.

Let I" be a curve on S, and P(u,v) a point on I" at which
du/dt, dv/dt do not vanish simultaneously. Since r = r(y,v) =
ru(?),v()],

dr
;i; = ru%"l'rv% # 0.

This shows that dr/dt, a tangent vector to I" at P, lies in the
plane of r,, r,, which are tangent vectors to the parametric
curves at P. This plane is well defined since r, A r, # 0, by
condition (c) above. So all the tangent lines to S and P lie in
this plane.

Definition 3.4. The line through P perpendicular to the tangent
plane to S at P is called the normal t0 S at P.

Now r, A r,is a vector perpendicular to the tangent plane,
so we define a unit normal e by

I, AT,

e = 47
[ry A 1,
43
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It is to be noticed that the direction of e will be reversed if the
order of the two vectors on the right is interchanged, and so
there are two unit normals at each point of S.

u=const

FiG. 3.3

Arc-length of a Curve on a Surface

To define a curve I' on S, the parameters u, v must satisfy
an equation é(x,v) = 0, being each functions of a parameter .
From theorem 3.1 the tangent vector, dr/dt, to I is a linear
combination of the vectors r, and r,, and so its direction will
be determined by the ratio #/v, or, what is the same thing,
—(0¢/2v)/(64/ou), obtained by differentiating ¢(u,v) with
respect to ¢. It will, however, be remembered that in chapter 11
we showed that dr = t df was a vector tangential to a curve,
and in the same way r,u dt and r,v dt are vectors tangential
respectively to the parametric curves v = const., u = const.,
so that, using differentials, and writing & df = du, and v dt =
dv the vector dr, given by

dr = r,du+r,dv
44

ARC-LENGTH OF A CURVE ON A SURFACE

is a vector tangential to I"' whose length will depend on the
magnitude of dt. It is now evident, that, as # and v are taken
respectively as various functions of ¢, the ratio of the differen-
tials du, dv will determine the direction of I, (See figure 3.3.)

From the theory of curves in chapter II the arc-length of a
curve is given by fds, where ds? = (dr)? = dr.dr,so for I'on §
we may write

(dr)2 = dr.dvr = (r,du + v, dv).(r,du + r,dv)
= T,.I, du? + 2r,.x, dudv I r,x, dv?,

and the arc-length of I" will be the integral of the square root
of this expression. We now write

rytf, = E, r,r, = F, r,r, = G,
and give

Definition 3.5. For given values of the differentials du, dv,
defining some curve I" on S, the element of arc of I' is defined
as ds, where

ds? = Edu® <+ 2F dudv + G dv®.

This expression for ds? is called the first fundamental quadratic
form for the surface.

If u and v are defined in terms of a parameter 7, the arc-
length of the corresponding curve I' lying on .S will then be

J [Ei? + 2Fup + G2 dt.

If two curves have the same tangent line at P then the ratio
dujdv will be the same for both, and if, in addition, the values of
the differentials du, dv are the same for both curves, then the
element of arc-length will also be the same.
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Area

If r, du, r,dv, where du, dv are differentials of the para-
meters u and v, are drawn at P on S they will lie along the
tangent lines to the parametric curves at P, and a parallelo-
gram may be drawn with these vectors as two of its sides.
Its area, dA, will be |r,du A r,dv|, and if 6 is the angle
between the two vectors then

dA = |r,du||r,dv|sin 8
= [r,||r,||du dv (1 — cos? 6)/2]
== [l‘ﬁl'ﬁ - (ru.r,,)2]1/2|dudv|
= (EG — F?»'2|dudv|.
The concept of area, like arc-length, is a deep one, and we
shall regard it as intuitive that the area d4 of this parallelo-
gram is an approximation to the area 8.5 on the surface bounded

by the curves u = const., v == const., ¥ + du = const., v 4
dv = const. We therefore give

Definition 3.6. The element of area of S is defined as dS, where
dS = |(EG — F®Y? dudv|.

The area of a finite portion of S is defined to be

JJ](EG — FHL2 dudy|.

Oblique and Normal Sections

Definition 3.7. Let o be a plane drawn through a point P on S.
Then o will cut S in a curve I', called a section of S. If o is drawn
to contain the normal to S at P then I is called a normal section;
otherwise it is called an oblique section.

OBLIQUE AND NORMAL SECTIONS

Suppose t, p are the unit tangent and principal normal to I’
at P, and that « is the curvature of I at this point, then with
the usual notation,

’r d ’ __d ’ %
t =xp=r —‘—lg(r)—$(ruu + )

= ruu(u’)2 + 2ruvulv, + rm!(vl)2 +
+ r’ 4+ 1",

and if e is one of the unit normals to S at P
kp.e = €Ty, du? + 2ry, dudv + Ty, dv®)/ds?,
since e.r, = 0 and e.r, = 0.

So
«p.e = (Ldu® + 2Mdudv + Nav?)[ds?,

where L= [l'u,l',,,l',m]/ W5 M= [ru’rwruv]/ W’ N= [rmrmrvv]/ W,
for e = (ry A l',,)/ll'u A rvl = (ry A l',,)/(EG - Fz)ll2 =
(X, A 1)/ W, where W= (EG — F2l2,

Now if 8is the angle between e and p this gives

xp.e = rcos = (Ldu® + 2Mdudy + Ndv®)/ds?,

Now all sections for which the ratio du/dv has the same value
have the same tangent t at P, and the same value for the last
member of the equation, a value which is independent of 6.
So « cos 0 is constant, and in the particular case in which
§ = 0 or = we obtain the normal section, and so «cos § and
xy, the curvature of the normal section, have the same
numerical value. Thus we have proved the following theorem:

Theorem 3.2. (Meusnier’s theorem). The curvatures of a
normal and an oblique section which have the same tangent
Jine at P on a surface S have values which are numerically in the
ratio |cos 8|:1, where 0 is the angle between their principal

normals at P.
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If C, Cy are the centres of curvature of the two sections
then PCy = 1/xy and PC = 1/«, so that PCy cos § = PC,
which shows that C lies on a circle of diameter PCy, lying in
the plane through P normal to the tangent at P, which passes
through P and has its centre a distance 1/2«y from P along
the normal to the surface.

FIG. 3.4

Definition 3.8. The expression Ldu® +2Ma'udv + Ndv is
called the second fundamental quadratic form for the surface.

To determine its significance consider the points P, Q on S,
with position vectors r and r + 8r, whose coordinates are (u,v)
and (u + 3u,v + 8v). Then, if e is the normal at P, the distance
h of Q from the tangent plane is |PQ cos 8], where 8 is the
angle between PQ and e, that is to say 4 = |dr.e|. But, expand-
ing 8r in terms of du, 8v we get

or = (rydu + 1,6v) + (ruudu® + 2r,8udv + r,8v¥)/2! 4- ...
48

CURVATURE OF ANY CURVE

assuming that 8u, 8v are independent, so, as e is perpendicular
to both r, and r,, giving er, = e.r, = 0, we get

h = |ore| = |[(Lou? + 2M3udy + N&W¥)/2 4 .. .].

Hence, regarding du, dv as small variations in # and v in
passing from P to Q, we obtain the result that

|Ldu? + 2Mdudy + Ndv?|

is approximately twice the distance A.

FiG. 3.5

Curvature of Any Curve Lying on a Surface

We now turn our attention to curves lying on a surface
which no longer lie in plane sections. If I" is any such curve of
arc-length s whose curvature at P is «, where t’ = «p, t being
a tangent at P to both I'and S, and p the principal normal to
I, in general not normal to S, we give

Definition 3.9. The vector x = xp is called the curvature
vector of I

Now k may be resolved into component vectors Ky, XKg,
respectively normal and tangeztial to S. We now give
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Definition 3.10. xy is called the normal curvature vector and
Kg is called the geodesic curvature vector of I'.

If we choose our parameters for S so that e, the normal
vector to S at P on I'is not only parallel, but actually in the
same direction as Ky, then the angle 8 between the two vectors
x and kxy will be acute, and we shall get x.e = « cos 6. But
te=0, so ‘

et +te = ex-+ te = 0.

This gives «cos § = — t.e’ = —r’.¢’, which, in terms of
parameters, becomes
_ (r du 4 r,dv) . (e du + e, dv)
ds?
_ ry.edu? 4 (r,.e, + roe)dudv + r,.edv?
ds?

kCos 0 =

Now from r,.e =0 and r,.e = 0, by differentiation with
respect to « and v we get

e,r, +er, =0, e.r,+er, =0,

e,r, +er, =0, e,.r,+ er, = 0.
Using our previous values for L, M, N we now see that
L= —r,e,, M=—(,e+r.e)2 N= —r,e,

so that
Ldu? + 2Mdudy + Ndv?

Edu?® 4 2Fdudy - dez'

Kk Cos @ ==

It is therefore clear that all curves I"through P with the same
tangent t and principal normal p have the same curvature « at
P, and in particular, if kg = 0 for any curve I, its principal
normal will coincide with e, and so its curvature |ky| is the
same as the curvature xy of the normal section with the

same tangent t.
50
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Curvatures of the Normal Sections through a Point
of the Surface

In order to examine the nature of the neighbourhood of a
particular point P on S it is useful to consider the curvatures
of the normal sections through P. The different sections are
obtained by allowing the ratio du/dy to take all values. This
means that the quadratic form Ldu® 4+ 2Mdudv + Ndv? may
take positive, zero or negative values. Thus we could only
preserve the sign of «» by taking the direction of the normal to
S at P sometimes in one direction and sometimes in the reverse
direction. It is simpler to fix the direction of the normal to S,
and allow the sign of «xy to vary. This means that if «y takes
opposite signs for two different normal sections through the
same point, the sections lie on opposite sides of the tangent
plane at P in the neighbourhood of P; and if «y is zero, in the
simplest case the section will have an inflexional tangent at P.
Now

. (Ldw? + 2Mdudv 4+ Nav®?)

“¥ = (Edu® + 2Fdudv + Gav®)

is a rational quadratic function of the ratio du/dv, with a
denominator essentially positive, since (EG — F2)> 0 and
E > 0, and it can only take finite values. Writing this equation
as

du¥(xyE — L) + 2dudv(xyF — M) + dv¥(kxG — N) = 0,

we see that for a given value of «y there are two possible values
for the ratio du/dv, which may coincide, except in the case
where all the coefficients vanish. So there are two normal
sections, which may coincide, with the same curvature, apart
from the exception.

Alternatively we may regard this equation as giving «y as a
function of du/dv, in which case the extreme values of «y are

obtained by making the partial derivatives with regard to du
E 51
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and dv of the left-hand member of the equation both vanish.
This gives
(kyE — L)du + (xkyF — M)dv = 0,
(kyF — M)du + (kyG — N)dv = 0.
Eliminating du, dv, the extreme values of «y are given by

kyE — L kyF— M
= 0,
kyF— M kyG — N

or
k% (EG — F?) — xy(EN + 2FM + GL) + (LN — M?®) = 0.
If these extreme values of xy are Kj, K,, then
K, + K, = (EN + 2FM + GL)/(EG — F?),
KK, = (LN — M®)[(EG — F?.

Definition 3.11. K;, K, are called the principal curvatures of
S at P, (K, + Ky)/2 the mean curvature, and K = KK, the
total (or Gauss) curvature of the surface at this point.

The exception mentioned above, in which all the coefficients
of the equation vanish, gives xy = L/E = M|F = N/G, and
the curvature is the same for all normal sections. We give

Definition 3.12. 4 point U at which all the normal sections
have the same curvature is called an umbilic.

Lines of Curvature

If, instead of eliminating du, dv from the equations giving
the extreme values of xy, we eliminate «y, we get

Edu -+ Fdv Ldu + Mdy
Fdu + Gdy Mdu 4 Ndv
52

CONJUGATE DIRECTIONS
which reduces to

dv? — dvdu du?
-E F G = 0,
L M N

that is

du*(EM — FL) + dudv(EN — GL) + dv¥(FN — GM) = 0.

Regarded as a quadratic in du/dv this equation gives the
direction of the tangents to the normal sections with extreme
curvatures, the principal directions; regarding it as a differential
equation we may solve it, and so obtain two families of curves
on S of the form ¢,(u,v,A) = 0, $o(u,v,u) = 0, A and p being
parameters determining the members of the family.

One curve from each family passes through any point P of
S, and we have

Definition 3.13. A curve on S whose direction at any point P is a
principal direction is called a line of curvature.

Conjugate Directions

Definition 3.14. Two directions at P given by the ratios
duy/dv,, duy/dv, are called conjugate directions if

Ldu,du, + M(dudvy + duydvy) + Ndvidv, = 0.

Theorem 3.3. The two lines of curvature through any point on a
surface are (i) perpendicular, (ii) in conjugate directions.
From the equation for the lines of curvature we have

(duyJdvy)(du/dvy) = (FN — GM)(EM — FL),
(duy/dvy) + (dugdvy) -, gGL — EN)/(EM — FL).
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So, if dry, dr, are in the directions of the tangents

dry.drvy, = (v, duy + r,dv) . (x,duy + r,dvy
= Edudu, + F(du,dv, + duydvy) + Gdv,dv,
= [E(FN — GM) + F(GL — EN) +

. + G(EM — FL)}dv,dv,J(EM — FL)

and the lines are perpendicular. Also
Ldw,du, + M(du,dvy, + duydvy) + Ndv,dv,y
= [L(FN — GM) + M(GL — EN) +

+ N(EM — FL)]dvdvy/(EM — FL)
= 0,

and the lines are conjugate.

Asymptotic Lines

At any point there are two directions which are self-
conjugate given by the equation

Ldu?® 4 2Mdudv 4 Ndv? = 0.

Definition 3.15. Lines on the surface whose directions satisfy
this equation are called asymptotic lines, and the directions are
known as asymptotic directions.

In the case of the lines of curvature there were two, possibly
coincident, lines passing through each point, both of them
real. However the equation for the asymptotic lines has real
roots only if LN < M2, and the equations of the two families of
asymptotic lines are found by solving the differential equation.
Now the Gauss curvature, K, was (LN — M?%/(EG — F?), and
(EG — F%) > 0. So the asymg‘t‘otic lines only exist if K <0,

GEOMETRICAL SIGNIFICANCE

that is if K, K, are of opposite sign, or if one of them at least
is zero. When they are of opposite sign we have already seen
that the principal sections lie on opposite sides of the tangent
plane to the surface, as, for example, in the case of the
hyperboloid of one sheet. In the case when K = 0 at all points,
the surface is of a special type called a developable surface. We
shall deal with developable surfaces later.

Theorem 3.4. The osculating plane at any point on an
asymptotic line is the tangent plane to the surface at that point.

If e is a unit normal to the surface at P and x the curvature
vector of the asymptotic line at this point, we have already
shown that x.e + (dr.de)/ds? is zero; and since the line is
asymptotic

— dr.de = Ldu? + 2Mdudv + Ndwv = Q.

Thus k.e = 0, giving k perpendicular to e and so equal to xg.
The normal curvature vector ky is therefore zero, and the
principal normal p of the asymptotic line lies in the tangent
plane to the surface. So this plane is the osculating plane.

The Geometrical Significance of the Principal and
Self-conjugate Directions

Suppose at any point P on a surface S we take rectangular
cartesian axes Px, Py lying in the tangent plane at P, and Pz
perpendicular to this plane. Then the equation of the surface
may be written

z = ax® + 2hxy + by® +
-+ (terms involving higher powers of x and y).
If ¢ is a small constant, then the section of S by the plane

z == ¢ approximates to the conic ax® + 2hxy + by® =,
whose asymptotes are given by

ax® + 2hxy + by = 0,
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and whose axes are given by
2=y xy

a—b h

Now using x, y as parametric coordinates for S, the position
vector r, measured from P, of a neighbouring point Q on the
surface may be written approximately as

r = ix + jy + k(ax? + 2hxy + by?),
where x, y are taken to be small. So
r, = i+ 2k(ax 4+ hy), 1, = j+ 2k(hx + by),
r,, = 2ka, r,, = 2kh, 1, = 2Kkb.

This gives at the point P where x and y are zero
E=1, F=0, G=1, L=2a/W, M =2h/W, N=2b/W,

where W = (EG — F?1/2=1. So the directions of the
asymptotic lines and the lines of curvature at P are given by
the values of the ratio dx/dy satisfying respectively the
equations

adx?® 4 2hdxdy + bdy* = 0,

dy? — dydx dx?
1 0 1 = 0,
a h b

and these correspond to the directions of the asymptotes and
axes of the conic referred to above. We notice at once that a
plane section of S taken parallel and near to the tangent plane
at P is approximately elliptical, parabolic, or hyperbolic
according as the asymptotic lines are non-existent, coincident,
or real.

In addition, two diameters of the conic whose gradients are
my, my are conjugate when 52 + h(m; + my) + bmym, = 0,

THEOREMS ON LINES OF CURVATURE

and so are parallel to a pair of conjugate directions on S
given by the equation

Ldx;dx, + M(dx,dy, + dx,dy,) + Ndy,dy, = 0.

Geometrical Method of Obtaining Conjugate Directions

A somewhat intuitive approach to conjugate directions is to
consider the tangent planes = and o to the surface at two neigh-
bouring points P and Q lying on a curve I" on S whose direc-
tion at P is given by the ratio du,/dv;. Then if m + 8m is
a vector along the line of intersection of = and o, with
dm-—>0 as o— 7, then m 4 dm is perpendicular to the
normals to = and o. Calling these respectively e and e 4 de we
have (m + dm).(e + 8¢)=0 and (m 4+ dm)e=0. So
(m -+ 3m).8e = 0. Now if 3s is the length of the arc PQ, as Q
approaches P we get m.(de/ds) = 0, with m the tangent to S
at P in a direction given by du,/dv,. Then the direction of m
is conjugate to the direction of I' at P. For if we take drto be a
vector along m we get at once dr.(de/ds) = 0, giving

(ru du, + rydvy) . (e,duy + e dvy)) = 0,

m+bm

e m p e*&e
t

Q

FiG. 3.6
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and multiplying out this gives

which is the equation for a pair of conjugate directions.

Theorems on Lines of Curvature

An interesting result due to Dupin is

Theorem 3.5. If three families of surfaces are such as to cut
one another orthogonally at each of their common points of
intersection the curves in which they intersect must be lines of
curvature on the surfaces.

Suppose we consider the position vector r(u,v,w) which for
any triad of values of u, v, w represents some point in three-
dimensional space. We have already in our definition 3.1
defined a surface as the locus given by the extremities of the
position vector r where r is a function of two real parameters
u and v. So, if we make w a constant, w, say, the locus of the
extremities of r(u,v,w;) will be a surface, and by allowing w, to
take a whole set of values we shall obtain a family of surfaces.
It is then clear that by taking in turn u# = const., v = const.,
w = const., and allowing the constants to vary we shall arrive
at three families of surfaces.

Three constants u,, v, w, will determine three surfaces,
one from each family, and each pair of surfaces will intersect
in a curve, for points common to the surfaces given by v, w,
will lie at the extremities of the vectors r(u,vg,w,), which
being a system of one-parameter vectors define a curve, the
curve of intersection of the surfaces.

At a common point of the surfaces given by u,, vq, w, the
vectors r, (1, Vo, Wo)s To(llg, VsWo)s Ty(tg, Vg, W) are tangential to the
curves of intersection of the surfaces taken in pairs, and since
it is given that these curves are orthogonal in pairs, at such

common points we have
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r,r, =0, r,r, =0, r,r, = 0.
So differentiating we get
Youlw + Eploy = 0, TuuTy -+ Fplyy = 0,
YTy + Tyl = 0,
and therefore
2(FuTow + ToTuy + Fypyy) = 0,
which gives
T = O.
Therefore r,, r,, I'y, are all perpendicular to r,, so
[l',,,l'w,l'm] = 0,

and on the surface u = u, we get M = 0. Also, sincer,.r, = 0,
we have F = 0. So the lines of curvature on this surface are

dw? — dwdy dv?
E 0 G | =0,
L 0 N

that is dwdv = 0, or v = const., w = const., and similarly on
the other two surfaces.

An important theorem due to Olinde Rodrigues is

Theorem 3.6. At any point P on a line of curvature the
differentials of the position vector of P and the normal to the
surface satisfy the relation «dr + de =0, where « is the
curvature of the curve at P.

Along a line of curvature (see page 52) we have

Ldu 4 Mdv — «(Edu + Fdv) = 0,
Mdu 4 Ndv — g(ngu + Gdv) = 0,
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and inserting the values for the coefficients of du and dv we get

— ry.e,du — r,.e,dv — x(r,r,du + r,r,dv) = 0,
— Fyp.e,du — ry.e,dv — x(r,r,du + r,r,dv) = 0,
that is
ry.(de + xdr) = 0, r,.(de + «dr) = 0.

Now as e.e = 1, we have e.de = 0, and since e is perpen-
dicular to dr, we get also e.dr = 0. There is therefore a third

equati‘on e.(de 4 «xdr) = 0 which, taken together with the two
equations above, shows that

de + xdr = 0,
since ry, Iy, and e are linearly independent vectors.

The converse theorem also holds, for, given this relation,
the scalar products of the left member with r, and r, lead at

once.to the two equations above, and so to the equations for
the lines of curvature.

An immediate deduction from this relation is

Theorem 3.7. Along a line of curvature
8s_li_m_>0[8r,e,e + 8e]/ds2 = 0,
for this limit is
55 jx}'l_’o[&r/‘és,e,ae/éis] = [dr/ds,e,de/ds],
which is zero since de/ds = — «dr/ds.

qu this relation may be interpreted as stating that ‘con-
‘s‘ecutlve’ normals to a surface along a line of curvature
.lntersect’. So the surface formed by them may be developed
into a plane, a fact which gives (see pages 65, 66, 67)
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Theorem 3.8. Normals to a surface along a line of curvature
lie on a developable surface.
Another result, due to Joachimsthal, is

Theorem 3.9. If two of the following statements hold for a
pair of intersecting surfaces Sy, Sy, then so does the third.

1. The curve of intersection of Sy, Sy is a line of curvature
on Sy,

2. The curve of intersection of S;, Syisa line of curvature
on Sy,

3. S, and S, intersect at a constant angle.

If 9 is the angle between the surfaces at any point on their
curve of intersection then cos 8 = ej.e,, where e,, €, are the
normals to the surfaces at the point. So

d de, de,
el f) = —2*. — . e,
PR (cos 9) I e, -+ 7 €

where s is the arc-length of the curve.

If the curve is a line of curvature on S, then de,/ds = — «t,
t being the tangent to the curve and &, the normal curvature
for S,;. But e;.t = 0 and e,.t = 0, so

d de,
il 0) = ——=.
e (cos 9) Is e,

which will be zero if the curve is also a line of curvature on Sj,
so giving cos 8 to be a constant.

If, on the other hand, it is given that cos # is constant, and
that the curve is a line of curvature on Sy, then e;.(de,/ds) = 0,
and so de,/ds is perpendicular to both e, and e,, and is there-
fore parallel to t, which shows that the curve is also a line of
curvature on S,, and writing dey/ds = — kot makes kg the

normal curvature for S,.
61



SURFACES
The Gauss (or Total) Curvature of a Surface

The curvature of a space curve is the rate of turn of the
tangent per arc. It may be obtained by considering the curve
traced out by the extremity of a unit vector drawn from some
origin O to be parallel to the tangent to the curve as the
tangent moves along the curve. This new curve lies on a sphere
of radius unity, centre O, and the limiting value of the ratio of
the length of an arc of it to the length of the corresponding arc
on the original space curve, as the length of the arc approaches
zero, is evidently the curvature « = dy/ds of the space curve,
for the angle 8¢ between two neighbouring tangents to the
space curve is also the angle between the corresponding vectors
drawn from O, and, since the radius of the sphere is unity, 8¢
is also approximately the length of an element of arc of the
curve traced out on the sphere. So the ratio

. [ arc-length on sphere ] dy
limit , = — = k,
arc-length on space curve ds

Similarly, if we draw unit vectors from O to be parallel to
the normals to a surface S at the points of the boundary of an
area 8S on S, their extremities will trace out the boundary of
an area 822 on the surface of the unit sphere. A natural measure
of the amount of bending of S at a point P would be given by
taking the limit of the ratio 802/8S as 8S shrinks to zero at P,
assuming this to be independent of the area chosen on S and
the manner in which it is shrunk to zero. Using for our areas
the elements of area as previously defined on page 46, we prove

Theorem 3.10. The limit of the ratio 8Q/8S is the total
curvature of the surface at P.

Take the lines of curvature on S as parametric lines. The
element of area is

dS = |(rydu A rdv)e| = |[r,r,eldudy|.
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The corresponding element of area for the unit sphere is
dQ = |(e,du A edv).e] = |[e,e,eldudv],

for the two surfaces have their unit normals parallel a.t the
corresponding points. By the theorem of Olinde Rodrigues
for a line of curvature,

e, + xr, = 0, €, k1, = 0,
lim O(S.Q/SS) = dQ/dS = xx, = K,

8S——

the total curvature of S at P.

SO

Distortion of Surfaces

If it is possible to bend one surface into another without in
any way stretching it, then it is clear that the lengths of
corresponding curves on the two surfaces will be the same.
In fact if we have covered the one surface with a system of
parametric curves the corresponding curves on the other
surface will form a parametric system with the same two
parameters, and the line-element for the two surfaces, whose
square is called the metric of the surfaces, will remain the same.
We therefore give

Definition 3.16. Two surfaces are called applicable, or
isometric, if they have the same metric ds* = Edu® 4- 2Fdudv +
Gdv2, ' .

It may not always be possible to carry out the distortion
without making cuts in the surface. For example a frustum of
an open circular cone, such as a lampshade, may be distorted
into a portion of a cone which is no longer circular, but to
distort it into a plane it would be sufficient to make a cut
along one of the generators. Again, a circular cylinder can be
deformed into an elliptic cylinder, or a cylinder with any sort
of closed curve for its section, but it can only be made into a
plane if we cut it along one of the generators. If, however, we
consider the surface of a sphe6r§, although it can be distorted
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by making dents in it, leaving the metric unaltered, it is
impossible to distort it even if we make cuts in it, in such a
manner that it can be made into a plane.

We now prove a theorem, due to Gauss, which shows that
the total curvature at any point on a surface depends only on
the metric of the surface, and this shows that isometric sur-
faces have the same total curvature at corresponding points.
In particular, any surface which is isometric to a plane will
have zero total curvature, and this property, K =0, is
characteristic of the particular class of surfaces known as
developable surfaces, a fact which will be proved later on
pages 72, 73. ,

Theorem 3.11. (The ‘Theorema Egregium’ of Gauss.) The
total curvature K at any point P of a surface depends only on the
values at P of E, F, G and their derivatives.

It has already been shown that K = (LN — M?)/(EG — F?)
and so, with the values of E, F, G, L, M, N previously obtained
and with W = (EG — F?*2, we consider the expression

Kwt = [ruarvsruu][ruarmrvv] - [l‘u,l',,,l'uv]z.

By regarding the vectors ry, Iy, Iy, . . . as column vectors,
and applying the multiplication theorem for determinants in
the column by column form, we have

Ty, T,T, TI,Fy r,r, T,T, T,T,
KW4=| ror, TuI, Tply |— | Tyl Ty, Tply
ruu-ru ruu-rv ruu-rw rl“}'ru ruv-rv ruv~rmx
E F ) T E F FuTuy
=| F G r,r, |—| F G ) 0 S
F uu-ru ruu-rv ruu'rvv ruv-ru I uv-rv ruv-ruv
E F | 0 O E F r.ry,
=| F G ) 0 —| F G  r,Ty
2
ruu-ru I uu-ro (ruu-rv6v4_ ruv) ruv-ru ruv°rv O

DEVELOPABLE SURFACES

for by expanding the determinants using their last columns we
see that the term r,,.r,(EG — F?) has merely been transferred
from the second determinant to the first.

But from E =r,r,, F=r,r, G =TrI,I, Wwe get
E 2 = 1Ty, Fy =TT+ Tulyy Guf2 =TT,
E,2 = r ¥y, Fy=ruX, + T,0p  Gyf/2 = I,T,,
Epl2 = TypTup + Fulupes  Guul2 = TouTup + FoFuons
Fup = TyupXy + TuuTop + TupFup + TuTupms
¥ F,— E2 = 1, F,— G2 = 1,1,
and
Ep/2 + Guuf2 = 28ypXyp + Fulupp +

2
+ Tyl = 21'1241: + F, w — TyuToy — Tup

Therefore
FyuLop — rtzw = - EW/2 + Fyp— Guulz-
This gives KW* = 4
E F F,—G,J2 E F E2
F G G,/2 | F G G2
Eu/2 Fu_Ev/?' —Guu/2+ 2 Ev/2 Gu/2 0

up” Low

showing that K depends only on E, F, G and their derivatives.

Developable Surfaces

We begin with an informal geometrical discussion.

Suppose the equation of a plane is dependent on some
parameter, and that as the parameter varies continuously the
equation varies continuously. We then get a family of planes

which may be regarded as being generated by the continuous
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motion of a plane. Any two ‘consecutive’ planes will meet
in a line. By picking out a whole series of ‘consecutive’ planes,
and turning each about the line of intersection with its neigh-
bour, until it lies in the plane of its neighbour, we can flatten
the whole series of planes into one single plane. If this process
is made continuous, each line of intersection of a ‘consecutive’
pair of planes will have a limiting position, and the whole
set of such lines in their limiting positions will form a ruled
surface, in this case a surface which can be formed by the
continuous motion of a line which depends only on one
parameter, two ‘consecutive’ lines being such that they always
intersect. The ruled surface so generated can thus be flattened
into a single plane. In the same way, if we consider three
‘consecutive’ planes they will possess a pair of lines of inter-
section lying in the intermediate plane, and this pair of lines
will cut in a point. Again, making the process continuous, we
see that the ruled surface consists of a set of lines, and that each
line contains a special single point, the limit of the intersection
of the line with its neighbour. The entire set of these points
will lie on a curve, which itself lies on the ruled surface. By
analogy with the envelope of a one-parameter family of lines
in a plane, we see that the ruled surface is the envelope of the
family of planes, and that any portion of such a surface may be
folded, without stretching or tearing, into a portion of a single
plane. Notice that we have talked somewhat generally, assum-
ing that our planes do intersect in lines and that our lines do
intersect in points. Cases in which these properties do not hold
require special examination.

As the vector equation of a plane may be written
(r — n).n = 0, where r is the position vector to any point on
the plane, and n is the vector to the foot of the perpendicular
from the origin to the plane, if n is a function of some para-
meter ¢, we may obtain the envelope of the family of planes
obtained by varying ¢ by elim6i161ating t between the equations

DEVELOPABLE SURFACES

(r —n).n = 0 and (r — n).i = n.A, that is to say by getting
the locus of the limiting positions of the lines of intersection of
two neighbouring planes of the family. This locus is, of course,
a ruled surface, being a locus constructed from the motion of
a line. We give as a definition

Definition 3.17. The envelope of a one-parameter family of
planes is called a developable surface.

Fic. 3.7

Three consecutive planes =, p, o intersecting in
consecutive lines /, m which intersect at G. As
=, p, o approach coincidence, I, m approach
generators lying on the surface 2 enveloped by
the system of planes, and G approaches a point on
the edge of regression, a curve lying on the
surface Z.

It should at once be noted that not all ruled surfaces are
developable; an example which immediately occurs to mind
is the hyperboloid of one sheet whose equation is x%/a® —
32/b?® 4 z%/c® = 1. This surface contains two sets of lines, but

is certainly not developable.
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We also give as a definition

Definition 3.18. The set of lines on a developable surface is
called a set of generators, or characteristic lines, and the curve
formed by the special points obtained as the limits of the inter-
section of two neighbouring generators is known as the edge of
regression of the surface.

These special points are given as the intersections of the
three planes r.n = ¢, r.i = ¢, r.ii = ¢, where ¢ = n.n.

A DEVELOPABLE SURFACE
9s
%
9 g e s
9a . 23
9 93

3 : developable surface;
g : generator:
e : edge of regression.

9s

Fig. 3.8

The two simplest developable surfaces are the cylinder and
the cone. In the first, the generators are all parallel, and the
edge of regression reduces to the single ‘point at infinity’ where
the generators may be said to meet; in the second, all
generators meet at the vertex, and so the edge of regression
reduces to a single point, the vertex itself. To develop these
surfaces into planes we first need to make a cut along one of

the generators in each case. 6

DEVELOPABLE SURFACES

Analytically, we may prove that

Theorem 3.12. Any developable surface is the locus generated
by the tangent lines to a skew curve.

This is intuitively apparent from the geometrical point of
view; for a developable surface X is the locus of the
characteristic lines of a one-parameter family of planes, and
these lines are all tangents to the edge of regression.

We may prove the result rigorously in the following way:
let the one-parameter family of planes be

(r —n)n = 0O,

or r.n = n.n = c, say, where r is the position vector of a point
on one of the planes =, whose parameter is ¢, and where n, a
function of ¢, is the normal from the origin to .

Differentiating with respect to ¢ we get r.n = ¢, which is a
plane p through the characteristic line of =, the limit of the
intersection of 7 with a neighbouring plane.

A second differentiation gives r.ii = ¢, which is a plane o
through the limit of the common intersection of three neigh-
bouring planes.

So the first two equations together give the generators of
the ruled surface Z, while all three equations taken together
give the edge of regression of the original family of planes.

Now assuming that n, 1, ii are three linearly independent
vectors, soare i A i, fi A n, nA i, and we may write

r = A A i) + p@i A n) + v(n A D);
and then
r.n = Aii] = ¢, ri = plai] = ¢ ri = vohi] = é
The edge of regression is thus the curve I' given by

c(h A i) + i A M) 4 é@ A B)
[g,ﬂ,ﬁ]
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Now the tangent to I'at 7 is ¥, where r satisfies the equations

rn=¢ rhn=4¢ ri=F¢

and from the first of these #.n 4+ r.ai = ¢, which, with the
second, gives f.n = 0. Also i + r.i = ¢, which, with the
third, gives .i = 0.

Thus # is perpendicular to both n and i, the normals to =
and p, and so lies along the line of intersection of these planes.
Hence, the tangents to I are the generators of the developable
surface 2, and from f.n = 0 we get t.n = 0, where t is the
tangent to I', and, from the last equation, «ps.n + th = 0,
but t.h = 0, so that both t.n and p.n are zero. The normal to =
is therefore parallel to b, the binormal of I', and the one-
parameter family of planes is therefore the family of osculating
planes of I'. So we have

Theorem 3.13. The osculating planes of the edge of regression
of a developable surface form the one-parameter family of
planes whose envelope is the developable surface itself.

Standard Form of Equation for a Developable Surface

We may now write the position vector R of a general point
Q on a developable surface Z in the form

R = r(z) + ui(z),

the parameters for X being ¢ and u, r(¢) being the vector to a
point P on T, the edge of regression, and k(¢) the tangent to I
at this point.

The normal to 2 at Q(t,u) is parallel to R, A R,, that is to

(F+ uf) AT = uf AT

But the equation for the osculating plane of I' at P is
[(R — r),;,f] = 0, showing that the normal to 2 at Q is
parallel to the binormal to I' at P.

RULED SURFACE OF TANGENTS

Theorem 3.14. At all points on a generator of a developable
surface the tangent plane is the same.

For the normal to X at Q is parallel to ¥ A ¥, which is
independent of u.

Theorem 3.15. The normal plane at any point on the edge of
regression cuts the developable surface in a cusp.

Take the edge of regression I' as r(s), where s is the arc-
length of I'. Then X is R = x(s) + ur’(s) = r + ut, where t is
the unit tangent to I". We can choose s so that s = 0 at some
arbitrary point P, on I'. Then

R =1y + sty + s2xpy/2! + s3[«'Pg + w(—xty+ Abg)}/31+ ...
+ ulty + sxpy + sEH{x'py + x(—«ty + Abg)}/21+ .. ]

Now for R to lie in the normal plane to I' at P, R must be
independent of t,. So

s+ 83(—x®6+ ... +ull —s%24...]=0,

which gives

u= —|[s+ 533 +...],
making
R = 1y + Pols?x/2 + s3x7/6 — (s + .. Yrs + «'s32+...)]

+ bgls3xA/6 + ... — (s + .. .)s%kA/2]
= ry + Pol— 53x/2 + ... 1+ b[—s3cA/3 +...],

showing that, as the coefficients of py, b, are of the order of s?
and s® respectively, the section of the normal plane is a cusp,
since the equation of the section is approximately of the form
z? = cy?8, where ¢ is some function of « and A.
The Ruled Surface of Tangents to a Curve I"

We have now established the fact that any developable
surface may be regarded as being generated by the tangents to
71
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a skew curve, and so may be given by an equation of the form
R = r + ut. From this equation, using s, the arc-length, as
parameter,
E = R,R, = (t + uxp).(t + uxp) = 1 4 u?s?,
F = R,R, = (t + uxp).t = 1,
G =R,R, =ttt =1,
WL = [R,R.,R,] = [t 4 uxp,t,cp +
+ uk'p + ux(— «t + Ab)] = — u¥«A,
WM = [R,R.,R;] = [t + uxp,t,cp] = 0,
WN = [R,R,Ry,] = [t+ uxp,t,0] = O,
where W = (EG — F?)'/2 = |ux|. Now the total curvature X

for any surface is (LN — M?)/(EG — F?), and in this case
(LN — M?) is zero. So we have

Theorem 3.16. For any developable surface the total
curvature is zero.

It remains to show the converse theorem that, if the total
curvature is zero, then the surface is developable. In order to
do this we recollect that L = — r,.e,, 2M = — (r,.e, + I,.€,),
N =—r,.e,, and 1,.e, = I,.e,. Then, if (LN — M?)is zero,

0= (ru-eu)(rv-ev) - (ru-ev)(rvreu)
= ru-[eu(rv-ev - v(rv-eu)]
= l'u.[l',, A (eu A ev)]
= (ry A T,).(ey A &)
= Wle,e,.e,).

Now e is not zero, and so this implies
either (i) e, ore, = 0,
or (ii) e, is parallel to e,,
or (iii) e, e,, €, a7r; linearly dependent.

RULED SURFACE OF TANGENTS

In the first case e is a function of one of the parameters alone.
This means that the tangent planes to the surface form a one-
parameter family of planes, and so the surface itself is the
envelope of such a family, and therefore developable.

In the second case e, = k(u,v)e,, where k(u,v) is some scalar
function of # and v. Now make the change of variables
u, = u, v; = f(u,v), where f(x,y) = const., is a solution of the
differential equation dy/dx = — k(x,y). Then

du, = du, dv; = f,du -+ fdv,

50
du = du,, fAv = dvy — f.du.
This gives
ou oy
o 1, o, — (ful 1)
So
u oy

€y, = eua—ul'f'e,,'éiz = e, + ¢(— fulfy)-

But as f(x,y) = const., f, + f(dy/dx) = 0, that is f, +
fI— k(x,y)] = 0, and therefore

e, = e+ e,f— k(u,v)] = 0.

Thus with this change of variables the normal e depends
only on the parameter v, and again the tangent planes are a
one-parameter family, and the surface is developable.

In the third case we should have

e = Mu,v)e, + p(u,v)e,,

where A(u,v) and p(u,v) are scalars. But e is perpendicular to e,
and also perpendicular to e, so this is not possible.

Other conditions for ruled surfaces to be developable are
given by the next two theorem’/sj
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Theorem 3.17. For a ruled surface to be developable the
tangent planes at all points of any generator must be coincident.

Let R = ry(t) + ury(t), ry(t) # 0, be the position vector of
the point P(t,u) on the ruled surface S. The normal to S at P is
parallel to R, A R,, that s to (¥, 4 ufy) A r,. Alongany given
generator ¢ is constant and u varies. So if the tangent plane is
to remain the same for all values of u the vector product
above must be a vector whose direction is independent of w.
So,

either () #, AT, = 0, or (i) i ATy, = 0.

Now (i) gives i, = 0, or I, parallel to r,. In either case r, is
constant in direction, and so we have a cylinder, which is
developable.

And (ii) gives ¥, = 0, or I, parallel to r,. In the first case the
curve R = r,(¢#) reduces to a single point, as r, is constant,
and so we have a cone, which is developable. In the second case
r, lies along the tangent to the curve just mentioned, and so
R takes the form r,(¢) + vi,(¢), where v is a new parameter,
and the surface becomes the locus of tangents to a curve, and
so a developable.

Theorem 3.18. A necessary and sufficient condition for a ruled
surface R =1,(t) + ury(t) to be developable is that
[y,rats] = 0.

The condition is necessary, because for a developable
surface we must have(r, parallel to i, or r, = constant, giving
i, = 0. In either case the triple scalar product is zero.

The condition is sufficient, for it implies that (i) #, = 0, or
(ii) £, = 0, giving respectively a cone or a cylinder, or that (iif)
f;, Ty, I, are parallel to the same plane, and so we may put
r, = AWt + p(t,u)k,, where A(t,u), p(t,u) are scalar functions
of t and u. The normal at P(z,u) is then parallel to

(b, + uky) A Ty = (b + ui)) A (A + piy)
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a vector parallel to #; A I, a function of ¢ alone. Thus the
tangent planes to S form a one-parameter family, and so Sis a
developable surface.

Special Families of Curves on a Surface

We have already mentioned that on any surface there are
certain families of curves with special properties. We shall
now prove some theorems which stress the geometrical
character of these curves.

Lines of Curvature

Theorem 3.19. A curve C on a surface S is a line of curvature
if and only if the normals to S along C form a developable
surface Z.

We have already shown in theorem 3.8 that the normals
along a line of curvature form a developable surface. So it only
remains to show that if the normals to .S along C do form a
developable surface, then C is a line of curvature.

Now C may be defined by expressing the parameters u, v of S
in terms of a single new parameter ¢, writing ¥ = u(¢), v = w(#).
If e is a unit normal to S at the point P given by r(u,v) on
C, then a necessary and sufficient condition for the normals to
S along C to form a developable surface is [e,é,f] = 0, the
derivatives being with respect to ¢. For this implies that
‘consecutive’ normals ‘intersect’, and so the ruled surface
formed by them can be developed into a plane (see
theorem 3.7). This condition may be written in the form

0 = [eéi] = [e,et + e ru -+ 1r,v]
= (Adu?® + 2Bdudv + Cdv®/dt?,
where
A = [e:ewru]’ 2B == [e:eu’rv] + [e,e,,,r,,],
C = [ee,r,]
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We have now obtained a first-order differential equation of
the second degree in the ratio du/dv, showing that there are two
families of curves with the property given, one curve from each
family passing through each point P on S.

To show that the differential equation Adu® 4+ 2Bdudv +
Cdv? = 0 is that of the lines of curvature

dv? — dvdu du?
E F G | =0,
L M N

we must show that
Ao =EM — FI, 2Bo = EN — GL, Co = FN — GM,

where ¢ is some constant of proportionality. Now with
W = (EG — F?)'? we have

W[e:ewru] = [ry A Iyeyly,] = eu-{ru A (ru A l',,)}
= eu.{l'u(l‘,,.l',,) - l‘,,(l'u.l'u)}

= — LF+ ME;
similarly

W{[e’ewrv] + [eaemru]} = eu.{l'u(l',,.l',,) - l‘,,(l'u.l',,)} +
+ e,,.{r,,(r,,.r,,) - l',,(l'u.l'u)}

= — LG+ MF— MF + NE

= — LG + NE,
Wlee,r,] = e, {r,(r,r,) — r,(r.r,)}
= — MG + NF,
and so the theorem is proved with o = — W.

A shorter method of proving the result is as follows:
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Since [e,é,] = 0 the three vectors involved satisfy a linear

relation
Ae + pé -+ vk = 0,

Taking the scalar product with e we have at once A = 0, for
e.é = e.f = 0, as e is perpendicular to both é and ¢.

Hence pé -+ vi = 0, which may be written in the form
de 4+ xdr = 0, provided p # 0, and this is true, for otherwise
we should have ¥ = 0. C is then a line of curvature by the
converse of Olinde Rodrigues’ theorem, already proved as
theorem 3.6.

Theorem 3.20. The two lines of curvature through any point
are in perpendicular directions, except when the point is an
umbilic.

Choose parameters on S so that the lines of curvature are
u = const., v = const. Then their differential equation is
dudv=0. Hence EM — FL=0, FN—GM =0, from
which we get

EMN = FLN = FNL = GML.

So M(EN — GL) =0, giving either EN — GL = 0, or M =0,
The first of these, with the earlier two equations, gives
E/L = F/M == G/N, the case in which we have an umbilic
(definition 3.12) and all normal sections have the same curva-
ture, and M = 0 gives FL = FN = 0, so either F = 0, or both
L and N are zero. If F =0, that is r,.r, = 0, the lines of
curvature are perpendicular. If L, M, N are all zero, so is the
curvature for all normal sections, a degenerate case of an
umbilic, and in this case the surface would be a plane.

Theorem 3.21. A necessary and sufficient set of conditions
for the parametric lines to be lines of curvature is that
F=M=0.

If we take the parametric lines as lines of curvature their

differential equation must be dudv = 0. The determinant form
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of the differential equation for the lines of curvature shows
that this will occur when FN — GM = EM — FL =0 and
EN — GL # 0. And, assuming L, M, N not zero, this would
lead to

a contradiction, unless F/M is indeterminate, in which case
F=0, and M = 0. If both F and M are zero, it is at once
evident that the differential equation reduces to dudv = 0,
unless EN — GL = 0. The exceptions noted occur in the cases
of umbilics and planes, in which case the theorem becomes
meaningless.

Conjugate Directions

As we have already seen the direction conjugate to that of
the tangent at any point to a curve I'" on a surface S is the
direction of the limit of the line of intersection of two tangent
planes to S at neighbouring points of I'. Now if the position
vector to the point P on I' is r{u(),v(t)}, then the position
vector R of a point on the tangent plane to S at P satisfies the
equation (R — r).e = 0, where e is a unit normal to S at P.
Differentiating this equation with respect to ¢ gives the equation
of the plane through the limit of the line of intersection of the
plane (R — r).e = 0 with its neighbour. Thus the pair of
equations

R—nNe=0 R—rné—te =20

gives a line in direction conjugate to that of ¥, the tangent
direction of I' at P. But the second equation reduces to
(R — r).¢ = 0, since i.e = 0, and so for the conjugate direction
we get (R — r) perpendicular to both e and &, and hence
Theorem 3.22. The direction conjugate to that of t is that
of e A &,
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Notice also that the developable surface of the tangent
planes to S at points of I" may now be written as the ruled
surface

R = r+4 w(e A &),
where w is a second parameter.
Now the vector e A € has direction

Xy A 1) A (e + €,7)
= [r(ru.e.) — ru®,.e)li + [r(ru.e,) — ry(r.e,)]v
= [— Lr, + Mr,Ju + [— Mr, + Nr,Jv
= r(Mu + N%) — r,(Li + M¥)
= I,y -+ IV, say.
So for conjugate directions du/dv, du,/dv, we have
du,jdvy, = — (Mdu -+ Ndv)/(Ldu + Mdv),
that is
Ldudu;, + M(dudv, + du,dv) 4+ Ndvdv, = 0.

Asymptotic Lines

Theorem 3.23. An asymptotic line on a surface S is a curve
with the property that the osculating planes of I' are tangent
planes to the surface.

For the osculating planes to be tangent planes to S the
binormals to I’ must lie along the normals to S. So the vectors
eand r’ A r” are parallel. So

0 =enA(@Ar) =rr)—rr) =rer’),
since e.r’ = 0. Hence e.r” = 0, giving

0=(r, A Tp).(Tuu'?+ 2r, 0V + rv2+ru” +ry’),
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and as [ryr,ry] = [ryr,r,] = 0, we get
0 = Ldu® -+ 2Mdudv + Nadv?,

the equation of the asymptotic lines, which, from theorem 3.22
are seen at once to have self-conjugate directions.
It is easily verified that with any parameter ¢ the vector
t A Fis parallel to the vector ¥’ A r”, so we have
Theorem 3.24. A curve I lying on a surface is an asymptotic
line if
eA(t Al =0.

Using the self-conjugate property of asymptotic lines we
have i parallel to e A é and so
Theorem 3.25. 4 curve I on a surface is an asymptotic line if

iAn(ene) =0,

and expanding this expression we get 0 = e(i.€) — é(k.e), that
is k.6 = 0, since f.e = 0, which gives at once

— (ryu + x,9) . (e 2 + e,v) = Lu? + 2Muv + Nv: = 0,

that is
Ldu?® 4 2Mdudv + Ndv¢ = 0,
as before.

From the geometrical point of view we see that the tangent
planes to the surface along an asymptotic line I" form a
developable surface whose generators are themselves tangents
to I', and so this surface is the developable surface of the
osculating planes of I', these osculating planes being them-
selves tangent planes to the surface on which I lies.

Lines of Curvature

Using the idea of conjugate directions we may give
Theorem 3.26. Orthogonal conjugate directions through a
point on a surface give the directions of the lines of curvature
80

GEODESICS

through the point, and a curve I on the surface is a line of
curvature if at every one of its points

[E,e,é] = 0.

For conjugate directions to be perpendicular the vector &
must be perpendicular to the vector e A é, so we have, as in
theorem 3.22

0 =1t(ené) = Tu+ry).(—r,L+r,Mu-+

+ {—r,M 4+ r , NWW,
that is ¢ wN1)

#(— ryr,L + r,x,M) + u¥(— r,r,L + r,r,N) +
+ v¥(— rpr,M + r,r,N) = 0,
which gives the differential equation for the lines of curvature

du*(— FL 4 EM) + dudv(— GL + EN) +
+ dv¥{(— GM + FN) = 0.

Geodesics

Curves which give paths of least length joining pairs of points
on a surface are of special interest. They correspond to the
straight lines of a plane; they are also of interest in applied
mathematics in connection with the motion of particles.

A practical method of obtaining such a curve would be to
pass a string over the surface through the two points, and then
draw it taut. If we regard the surface as smooth, it is then clear
from the principles of statics that the principal normals to the
curve formed by the string must also be normal to the surface.

We give the following

Definition 3.19.  If two points A, B are taken on a surface S
and joined by curves I lying on S, then any such curve T,
possessing a stationary length for small variations over the

surface is called a geodesic.
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For example, if A, B lie on the surface of a sphere, but are
not the extremities of a diameter, then the great circle passing
through 4, Bis a geodesic. It will be divided into two portions,
one having the shortest, and the other the longest distance
between 4 and B; but both portions have stationary values
for their lengths when the curve is considered as one of a whole
set of curves which join 4 and B.

FiG. 3.9

We shall now find the condition for a curve joining two
points on the surface to have a stationary value for its length.

Suppose that I'y is a geodesic passing through two points 4
and B on a surface S, then we write the position vector to any
point P on Iy as ry(uy,v,), Where ug, vy are each specified
functions of a parameter ¢ determining the point P. Let us
vary the curve I'y to T, a curve still passing through 4 and B,
by giving each point P a small displacement dr, to a point Q
on S, where 8r, is an arbitrary function of ¢ taking zero values
at both 4 and B. If g, g, are the lengths from A to Bof I, I'g
then g, will have a stationary value if the difference 6gy =
g — g, is a magnitude of the second order of smallness. Now

B [ .
%0 = j {I(ry + 3ry). (rg + drp}'/2 — [ko.Eo]'/%} dt
4
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rB L = % 12
_ (ot || 1 + 2ky.0r; + Ory.01; / s
!, Fo-Fo)

rB —
Eq.0r e
= ((l"_::}o—)ll)Té dt + terms of order at least that of (r;)2.
Ja

Integrating by parts we get

N i e I
8gy = 0 __ 4l _To__
2o [‘b‘r1 . (i'o-i'o)ll2:| J:i or; . dtl: (i'o.":,)l/z:'dt ..

4
The first term on the right vanishes since dr, is zero at both

4 and B, and so for 8g, to be at least of the second order of
smallness we must have

B d .
| ar Yo -
4 oy - dt[(i'o.i‘o)llz]dt =0

for all variations 8r;. The only way in which this can happen is
for the integrand to be zero for all values of z.
So the condition for a geodesic is that for all ¢

d ¥
se. A fo 7 _
g dt[(fo.fo)lfﬂ] 0

To obtain the geometrical significance of this result let us
choose the arc-length s (= APy) of I'y as our parameter .
Then [iy| = |ry] = 1, and so #,.F, = 1 and our result becomes

/
Srl.rg =0

for all values of s.
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As 8r, is an arbitrary vector, the displacement from P to O
on S, if we divide by 8s,, the arc-length from P to Q, and take
the limit as &s; —» 0, leads to an arbitrary tangent vector,
dr,/ds,, to S at P, and the result ry.(dr,/ds;) = O shows that ry
is perpendicular to any tangent vector to S, unless ry = 0, in
which case ry = as + b, and Iy is a straight line. So we get

Theorem 3.27. The principal normal at any point Pon I', a
curved geodesic on S, is also normal to S at P.

It follows at once that the binormal to I is perpendicular to
e, and so be=0. But b=t Ap=1r Ar’/«, giving
[r',x,e] = 0.

Remembering that ¥’ A r”’ is a vector parallel to £ A ¥ we
may give

Theorem 3.28. For a geodesic on a surface
[e,i,i] = 0.
If we expand this condition we get
0 = L[ A (T, A 1))
= (k.r)Er,) — (Er)Er,)
= [(rut + 1) rulru?® + 2,09 +
+ 1 + i + ri)r)
~ [t + £9)r ] [Eutt® + 2ryottv +
4+ rv? + riii + ri)r)
This may be put in the form of

Theorem 3.29. A differential equation giving the geodesics
on a surface is

(Bt + FoJlr,(ruat® + 20,49 + 1,00%) + Fil + G)]
— [Fit + GV]lr,.(ryu® + 2r§,fi’ + r,,%%) + Eii + F¥)] = 0.

GEODESIC CURVATURE

By writing #/v = du/dv we see that this is a second order
differential equation, and the values of the constants will be
determined by the values of (u,v) and du/dy giving

Theorem 3.30. Through any point on a surface there is in
general just one geodesic in any given direction.

Geodesic Curvature
For any curve I to the first order of small quantities

B
3g = —J ory.x”’ ds,
4

where 8r, represents the displacement from a point P on the
curve to another point Q on the surface.

The integrand is 8ry.«p, whose modulus is |8ry|« cos ¢,
where ¢ is the angle between p and 6r;. If 8 is the angle between
p and e, and we take our 8r, so that the limiting position of a
vector along 8r, is perpendicular to I', then cos ¢ will approach
=4 sin 6. We then give

Definition 3.20. « sin 8 is called the geodesic curvature of I

The name is due to the fact that it becomes zero when I' is
actually a geodesic.

Theorem 3.31. Geodesic curvature is an intrinsic property
of a curve on a surface.

This follows at once since g, ér, and the lengths of pairs of
corresponding curves on two isometric surfaces remain the
same. So « sin 8 is constant for any isometric deformation of I'.

EXAMPLES ON CHAPTER THREE

3.1. A curve I' on a surface S cuts all the parametric curves ¥ = const.,
at a constant angle «. If the two sets of parametric curves u = const.,
v = const. are orthogonal, show that the differential equation of I is
EY% cos a.du = G''3sin a.dv.
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3.2. Find in terms of u, v the position vector r of the point (x,y,z) on the
hyperbolic paraboloid whose equations are

bx + ay = 2abu, bx — ay = 2abv, z = 2cuv.

What are the parametric curves on this surface, and what is the x,»,z
equation of the surface?

3.3. Find E, F, G for the sphere given by
x = acosfsing, y = asinfsing, z = acos ¢.
Find the lengths of the curves on the surface of the sphere given by
() 0=a froméd=0t0 ¢ = m;
(ii) ¢ = B, from 6 = 0 to 0 = 2n;
(iif) 6 = log(sec ¢ + tan ¢) from ¢ = O to ¢ = =/4,
Calculate the surface area A4 of the sphere from the expression
dA = (EG — F3)\'t dbd$.
3.4, Give a geometrical description of the right helicoid given by
x = ucosf, y = usin8, z = c#b,

and show that the curves given by du® = («* + ¢*)d6® form an orthogonal
net on the surface. ‘

3.5. Show that the curves u = a, u = b on the surface given by
r = iucos 6 + jusin 6 + k(8 + log cos u)

make intercepts of the same length on the curves § = A for all values of A..

3.6. Prove Euler’s theorem that the curvature xx of a curve I, lying in a
normal section of a surface S, at a point P, where the tangent to T makes
an angle « with one of the lines of curvature of S through P, is given in
terms of the principal curvatures K;, K, at P by the relation
Ky = Ky cos?a + K, sin®a.

3.7. Prove Dupin’s theorem that the sum of the normal curvatures in
two perpendicular directions is constant.

3.8. For the surface of revolution given by

x = ucos8, y = usiné, z = f(u),
give a geometrical interpretation of u, and find an integral giving the length
of a curve on the surface.

Determine also the geometrical nature of the lines of curvature.
3.9. Give a geometrical description of the catenoid given by

u = ccosh (z/c), w* = x4+ )%,

and find an expression in terms of #, 6, where x = u cos l?, y=u sin 6,
for r the position vector of a point on the surface. Determine the lines of
curvature and the asymptotic lines, and show that the latter form an
orthogonal net.

86

SURFACES

3.10. The Third Fundamental Quadratic Form for a surface is defined to
be de.de. Denoting the three quadratic forms by I, IT, ITI, show that

(K K)I — (Ky - KPIL + 11T = 0.

3.11. Show that the torsions of the asymptotic lines through a point P
are + (— K)'*, where K is the Gauss curvature of the surface at P.

3.12. Find an equation giving the principal curvatures K, K; for the
ruled surface formed by the normals to a curve I" given by

R = r(s) + up(s),

where u is a parameter.

3.13. Show that the asymptotic lines through a point on a surface have
directions bisected by the directions of the lines of curvature through the
point,

3.14. If a surface S cuts a plane = everywhere at the same angle, show
that the section of S by = is a line of curvature on S.

3.15. On a particular surface S the element of arc ds is given by
ds® = du? + A%dv?®, where A is a function of both u and v. Prove that X —=
— &%A/Adu?, and apply this result to the sphere of question 3.3.

3.16. For the helicoid of question 3.4 show that the asymptotic lines are
the parametric curves. Find the equations of the lines of curvature as
relations between # and 6, and show that the principal radii of curvature
are equal in magnitude, but opposite in sign, and independent of the
parameter v.

3.17. If the normals to the surface 2z == K;x* + K;)? at the points
(0,0,0) and («,8,7), a neighbouring point, intersect, show that («,8,7)
lies on a line of curvature through the origin.

3.18. Find equations for the asymptotic lines and the lines of curvature
for the surface of question 3.2.

3.19. For a surface S given in Monge’s form z = f(x,y) calculate
E,F,G,L, M, N, e, Kin terms of p, g, r, s, t where

D = 0z/ox, q = 9z[dy, r = P2]Ix?, 5= I°2/Ixdy, t = Pz|Iy".

Show that the condition for S to be developable is that rz = s?, (i) from
the evaluation of KX, (ii) by finding the equation of the tangent plane to §
and showing it to be a member of a one-parameter family.

3.20. Find the equations of the lines of curvature on Z, the developable
surface of tangents to a curve I' given by R = r(s) + ut(s), and show that
the asymptotic lines are the generators of Z.

3.21. For a certain surface S we are given that e, is parallel to e,. By
taking new coordinate curves u” = const., v’ = const., one set of which are
the asymptoticlines of S, show that either e, or ey, is zero, and hence that
S is developable.

3.22. Show that the edge of regression of the developable surface
enveloped by the normal planes of a curve I'is the locus of the centres of
spherical curvature of I,

87



SOLUTIONS
3.23. Show that the torsion A of a geodesic is given by
A = [e,e',r].
3.24. Show that the geodesic curvature «; of a curve I' is given by
ke = [er',r’].

3.25. If S is the ruled surface generated by the binormals of a curve I’
show that I'is a geodesic on S.

SOLUTIONS TO EXAMPLES

Chapter One
L1 |wpl = |dt/dsl, [xt A pl = [t A dtds], [e] =[G+ 1) A
ix” + ) = [k(x'y” — x"y)| = |y'x — x"¥|.
1.2, [« = [t A dtjds| = |/ A {/5)]
=[x + §p)/s] A [GX + §9)s — (% + i9)5Y8¥] = | — yR)/$°|
= |(&p — pRY(x* + .

13. If ¢ is the angle between radius vector and tangent, and r = rf,
where £ is a unit vector, then r cos ¢ = r.t = r.(dr/ds) = r.8(dr/ds) +
r.r (dt/ds) = @.D)r(dr/ds) = r(dr/ds). So cos ¢ = dr/ds

1.4, If ¢ is the angle between radius vector and tangent p=rsin¢ =

r.n). |dp/ds| = |n.dr/ds + r.dnjds| = |r.t dp/ds|. |«| = |(dp/ds)/@.O)] =
(dplds)|r cos ¢ = |dp|r dr|.

1.5. By Pythagoras from geometrical significance of (dp/dy), or at once
from r = np + m (dp/dy).

1.6. If ¢ is the angle made by the tangent with the perpendicular from
O to the fixed line a = pcos ¢ = psin ¢, dp/dy = — acos :ﬁ/sm’ ¥,

P* + (dp/di)* = (a¥/sin? ) + (a? cos® ¥/sin® ¢) = (a*/sin* ) = r3, ==
2rcos ¢ = r(1 + cos 2¢), x =g—rcos2¢ =a— Q2a—r), (x + a)’
=yt (@a—xpP =

Chapter Two

2.1. t = (Giaf® + 2§60 - kc)/(9a6* + 4b%6* + c)'V/A.(x — ab®)/3ad* =
(v — b8»/2b9 = (z — ch)/c.

22 #§=0,t=c, r=ct+ b, a straight line, or the point b if t = 0

"23. =0, F=c, i=ct+b, r=4c+bt+a c*0, b*0,a
parabola;c+ 0,b=0,a semi-infinite segment of a line; ¢ = 0 b= 0,a
straight line; b = 0, ¢ = 0, a point.

2.4, t=1ifs, p= (@ — £5)/xs3, b = ( A F)/xs?, « = |k A D}/$%
" 2.5. b is parallel to # A . Spin-vector of b= At = (t A ) A (i A F)/
@ A B)* = i[i,F,F]/«%° 50 «*A = [i'éi‘éi]/s".

SOLUTIONS
2.6. (i) t = {3(1 — t)a,6at 3a(l + 1)}3a(2 + 41 + 29Vt = (1 —
2,281 + 13)/v2(0 + ). ¥ = {3(1 — t))a,6at,3a(l + M)}, $=+/2(1 +

t')3a f = (— 6at,6a,6at), ¥ = (-—- 6a,0,6a). « = | A F[/$* = [(18a*? —
18a’)z + (— 36a21)* + (18a%1* + 18a2)z]‘/’/2\/2(1 + 12)327a® = 1/3a(1 +

A = [ — 6a(18a%* — 18a%) + 6a(18a%* + 18a9)19a%(1 + £)4/8(1 +
195300 — 1/3a(1 + 1o,

(i) C = cosht, S=sinh¢, C* = cosh2t. t= (aS,aC,c)/(a*C* +
c’)‘/’ i = (aS,aC c) $ = (a“C"' -+ )2 § = (aC,aS,0), ¥ = (aS,aC,0).
k= [(— acS)2 + (acC) + (— a’)’]‘/’/(a'-’C“ )3 = a(c*C* + a*)/?/
(a*C* + )2, X = (— a%S* + a*cC)aC* + c)*/(@*C* + cD’a*(c*C*
+ @%) = c/(*C* + a%).

(iii) t = {a(l — cos 0),asin 0,b}/{a*(2 — 2 cos 8) + b*}V2, t = {a(l —
cos f),asin 0,6}, §= (a*4sin® 10 + b?)'3, § = (asin facos §,0), ¥F=
{(acos 8, — asin 6,0), o= [(— ab cos 0)2 + (ab sin §)* + (a*cos 8 —

9 /3 ) [}
a’)’]‘/’/(a’4 sm’ + b’) = a(b’ -+ 4a* sin® 2) [(4a® sm’ + b3/
= af (4a’ sin? & 9 + b’) = (— a*b cos? 8 — a% sin? 0)/a*(4a* sm’ + b
= —pf (4a’ sm’ + b’)
27.vu=1, wia=0,etc., vw=0,etc., u=vAwI[{w=
VAWGFAW = FAWAVDW=[(VAWF+FVYAWA ﬂ.w=(w.w)

(F.9) — (WI)W.9) + (WW)(V.9) — (W95 = (— w.0)(wy) =

28. €0 =«pp =0, P =(—«t+)(—2p)=0, bt =
(— AD).(xp) = — Ax. t.(At + xb) = xp.(At + xb) = 0, p’.(At + «b) =
(b xt -+(-):\b) (At + kb)) = — kA + kA =0, Db . (At <+ xb) = — Ap.(At
Xl = .

2.9. The three principal planes are [R — rp,b] =0, [R — r,b t] =
[R—rtp]l=0. That is R—r)t =0, (R—r)p= 0 R-0b —-0
In garzt:t(zf‘l’an cc;?rdmates) thege be(z:"czme (X — x)x + (Y—- »y +(Z— z)t
= — x)(X§ — x5 or 2(X — x)[(x(Z*+ y) — x(22 + =
bl o S ) V) — (22 + yy)l

2.10. For the sphere (r — c) (r — ¢) = R? to have four point contact
with the curve we must have t.(r — ¢) =0, xp.(r — ¢)+ 1 = 0, and
(«p — «t + «b).(r — ) =0, 50 — x4+ kdb.(r — ¢) = 0. Now
(r — ¢) = ut 4 vp + wh, where u = [(r — c),p,b)/[t.p,b] = (* — C).t, etc.,
$0 (r — ¢) = — x~!p + x"«~2x-'b whence
«’b.

POy
Alsot At =t AP+ {— xt + Ab)] = «'b — xAp, so from above
=lr—¢| = |(t A t")/x’t\l, and RY = [(x)* + x2X3]/kb)? = (p")te? +
' For coincidence of the centre of curvature and the centre of spherical
curvature «’[k®A = 0, that is « == constant. For R to be constant

ds[ m]"o

c=r+2
K
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that is
_ZK' 2K'd(K') - 0

T A ds\ kA

- 4(5)
«  ds\eA
is the condition for a curve to lie on the surface of a sphere.
2.11. As in the case of tangents

_|pr@+iD
= R

e A [(— «t + Ab)8s + .. Jn{t8s 4 .. .}
- [P A [(— «t + Ab)ds + .. .]]

SO

L o P P

T b+ S+ .. 7 (kB4 AR
. _lpAr(@+ 3p)| . {«b + At| 8s = (x4 D)2 S
0T sind = St sl T pllpopl ~ O

2.12. If the curve is a helix t.f = cos «, so «p.f = 0, so p is perpendic-
ular to f and the principal normals are all parallel. Conversely, parallel
principal normals gives p.f = 0, leading to t.f = cos «.

2.13. r=1iacos @ + jasin 8 + kaftan «, t=(—isinf + jcos 6 +
k tan a)/sec a, «p = (— icos @ — jsin O)/asec? «, 50 x = a~'cos’ a. b =
t A p= «"1(isin 0 tan « — jcos 0 tan « -+ k)/a sec® «, — Ap = (i cos ftan
a + jsin 0 tan o)/asec® @, A = g~ tan ofsec’ « = a1 sin « cos «, so both
curvature and torsion are constant. [t’,t”,t”'] = [«xp,«'p + x(— «t + Ab),
xp + 2'(— xt + Ab) + x(— «'t — «*p + A'b — A%p)] = ,(kX)(— 3«'K)
.bt] + (— DA+  )[ptb] = £~ KA + kA u? = k(X/w)".
For a helix A/« = const.,so [t’,t”,t""] = [r”,r’” x”"]=0. e, r"’]=0,
«*(A/x)’ =0, so x = 0, giving a straight line, or A/x = const., giving a
helix.

2.14. Using the results in the first part of example 2.13 above, if ¢ is
the vector to the centre of curvature then ¢ = r + a@sec? e p = ia cos 0+
jasin 6 + kaf tan « — ia sec® « cos § — ja sec? asin @ = — jatan® « cos 9
— jatan® esin 0 + k af tan «, which gives a helix lying on a‘coaxugl
circular cylinder of radius @ tan® «, and so on the same cylinder if
« = 4 7/4.

2.15. If B be the semi-vertical angle of a cone of vertex V, VG and VH
two generators, with G and H on the base such that GOH is a right-angle,
O being the centre of the base, we take PK the tangent to the curve at P,
the point where the curve cuts VG at an angle «, and X its intersection
with the plane VOH. Then if Q, N are respectively the projections of
P, K on the base, QN is a tangent to the projection of the curve on the
cone. We get tan « = VK/VP, tan OQN = ON/OQ = VK/VPsin g =
tan « sin B. So the tangent QN to the projection of the curve on the cone
makes a constant angle with the radius vector OQ, showing that
the projection is an equiangular sp;rgl.

SOLUTIONS

216. ri=r+up, by =% p, t, = [t + u'p + u(— «t + Ab)Yds/ds,).
t,.p=0, sou’ =0, so u = constant, say ¥ = ¢. This gives: t, = [t(1 — cx)
+ cAb)/[(1 — cx)® 42X t] = iqpy = [«p(1 — cx) — cA®p)/[(A — cx)?
=+ ¢2A%] + terms in t and b. But p.p, = &+ by.p; = 0, s0 x(1 — cx) — cA?
= 0, giving o(«® + A%) = «.

217. r; =1+ ct, t;, = (t + «ep)/(ds/ds,), so t, is parallel to the plane
of t and p, the osculating plane of I'. For the locus of P, to be a straight
line we must have x; = 0. S0 0 = «,p, = t] = [(xp + c«'p + cx(— «t +
AV + 2] — [e2xx’(t + cxp))/[1 + c2«<?]2. For this to be so the
coefficients of t, p, b must all be zero; thus (1 + ¢2®)(— ¢x?) — c2«xx’ = 0,
(1 4 )k + cx’) — c®x®’ = 0, cxA = 0. The last condition shows
that A = 0, so the original curve must be plane (or if « = 0 a straight line),
and the other two conditions both reduce to ¢« + « = — ¢2«®, a Bernoulli
type equation with solution «—2 + ¢? = Ae?/°,

2.18. As in example 2.16 PP, = const. = g, say. Now (t.t,))’ = «p.t; +
t.«,py(ds,/ds) = 0, since both p.t, and t.p, are zero. So t.t; is constant, and
the tangents are inclined at a constant angle given by cos « = t.t; =
A — ax)/[1 — ax)?* + a?A*}/2 = (1 — ax)(ds/ds). We may also write
sin &« = 4 aMds/ds;), so that «, A are now seen to satisfy the linear
relation (1 — ax) tan « = + alX. As I" may be obtained from I in the
same way, the corresponding results are found by interchanging s and s,,
altering the signs of @ and of «, and by writing «,, A, for «, A, so that
cos a = (1 + aw))(ds,/ds), sin « = + al(ds,/ds), and using cos? « + sin® «
=1, we get (1 — ax)(1 + ax;) 4+ a®A}; = 1, the required result.

2.19. The vector r, to a point on the involute is r + t(c — s). If the
involute lies on the plane r.n = d, then r,.n = d, so, differentiating,
t.m =0, that is [t + «p(c — ) — tl.n = 0. Thus p.n = 0, xp.n = 0, and
integrating, t.n = const., so the original curve is a helix.

2.20. If P, lies on Iy, an evolute of T, since t, isnormalto I' r; = r 4
pp + vb, for some u,v. Hence t, = [t + pu(— «t -+ Ab) — vAb -+
u'p -+ v'bl(ds/ds,), and this is parallel to up + vb in the normal plane at
PtoI Sol — pux =0, p= 1/k,r, =1 4 x'p + vb. So P, lies on a line
parallel to b through C, the centre of curvature of I" at P.

Chapter Three

3.1. ds* = Edu® + Gdv®. E*du/G'%*v = tan «.
3.2, r = ia(u + v) + ib(u — v) + 2kcuv. bx + ay = const.,bx — ay =
const., c(b®x?— a®y?) = 2a%b%z.
_3.3. E=ain¢, F=0,G = a*. ds? = a¥d¢? +sin® ¢ d6?). (i) an;(ii) 2an
sin B; (iii) ds = a(l + sin? ¢ sec? $)/2d¢ = a sec ¢ d¢,

s = | alog(sec ¢ + tan ¢):|;"4 = alog(v2 + 1.

w 2 L4
A = J. J a’sin¢d0d¢=27ra’f sin ¢ d¢ = 4na®.
0J0

0



SOLUTIONS

3.4. A surface generated by a horizontal line passing through the axis of
z as the line moves along the axis, turning about it always in the same sense.

dr = (icos 8 + jsin O)du + (— iusin 6 + jucos 8 + ke)d, dry.dr, =
duyduy + (u* + ¢0)d6,db, = 0 since du,/df,, du,/df, are the roots of
(du/d6)*— (u*+ ¢?) = 0.

3.5. ds*= (1 + tan? u)du® — 2 tan u dudf + (u® + 1)df*. For curves
0 = A, ds = sec udu; s = [log(sec u + tan u)}?, independent of A.
3.6. Taking lines of curvature as parametric curves,
sy = (Ldu*+4 Ndv)/(Edu*+ Gdv®), EY*cos « du = GY/*sin « dy,
«y = (L/E)sin®« + (N/G) cos?*a = K, sin* « + K, cos?a.
3.7. For perpendicular directions, using 3.6, the sum of the curvatures
is (K, cos? « + K, sin? @) + (K, sin? « + K, cos? «) = K; + K. .
3.8. uis the distance of a point on the surface from the axis of symmetry.
E=14+[fWP, F=0,G=1 s = [[(1 + [f@])du® + wd6*]'/?
with du = g(u,0)d0, where g(u,0) is determined by I, given by a(u,0) = 0.
Ty = (0,0,7(w)),rug = (— sin 6, cos 6,0), rog = (— u cos 6, — u sin 8,0).

[¢
ruA rg = (— uf'(Wycos 0, — uf'(w)sin 6u), LW =uf"(u), MW =0,
NW = u¥'(1). Lines of curvature are

ae —d0du du?
1+ [f@) ] ut =0,
uf’"(u) 0 wf(u)

ie. dudd = 0, i.e. u = const., § = const. The first set gives circular
sections perpendicular to the axis of symmetry, and the second set gives
the meridians.

3.9. A surface formed by rotating a catenary about its directrix.
r = iu cos 6 -+ jusin @ + k ¢ cosh~*(u/c), E = u3/(u*— c%), F=0,
G =t LW = — wic/(u®*— c?)¥2, MW = 0, NW = u?c/(u* — c%)'/1. Lines
of curvature are dudf = 0. Asymptotic lines are du?— (u*— c*)d6* = 0.
Perpendicularity as in 3.4 since dr,.drs= dudu,+ (u*— c*)d0,db,.

3.10. Using the lines of curvature as parametric curves I = (dr)? =
@i+ (@i, I = — drde = — {(dt)y + (dr),}.{(de)y, + (de),} = {(dr)y
+ {dr)}{+ K(dr)y, + Ky(dr),} = Ky(dr);, + Ky(dr);, LI = (de)* = (de);, +
(de); = Ki(dr);; + Ki(dr);, so

I 1 1
IT K, K,
111 K, K,

= 0, i.e. KKyl — (K; + KJII + 1 =0.

3.11. For asymptotic lines II = 0, so KI + Il = 0; also b = e, so
b’= ~ Ap becomes — Ap = de/ds, so A3= (de)?/(ds)*= III/I = — K. Thus
A= +4/(— K. 92

SOLUTIONS

3.12. Ry = (1 —u)t + udb, R, = p, Ry = + xp + u( — «'t + A'b)
— up(x® + A, Rey = — «t + Ab, Ry = 0, RgA Ry = (1 — ux)b — ut,
LW = wAe’+ (1 — w)XNu, MW = A, NW = 0. Equation giving curva-
tures K,, K; is K,(EG — F* — Kx(EN + 2FM + GL) + (LN — M%)
=0, K3(1 — 2ux + 2[x? + AD — Kp(@*[Ax’ — xX']+ Xu)/ W— B[ W*=0,

3.13. Using lines of curvature, dudy = 0, as parametric curves, the
asymptotic lines are Ldu?+ Ndv*=0, or du/dv = 4 +/(— N/L), showing
that their directions are bisected by the lines of curvature.

3.14. S cuts 7 at a constant angle. Any curve on = is a line of curvature
since both de/ds and « are zero, so that de/ds 4+ «t = 0 holds. Thus the
curve is a line of curvature on .

315, E=1,F=0,G = A%

1 0 — A, 1 0 0
KX =10 e A -0 A,
0 0 — A2 —Ady, 0 AA, 0
= AN(— A2 — A\y,) + A3, So
102
K=—3%

which, for a sphere, gives
K= — 1 Pasin4) _ 1,
asin ¢ a4t at
3.16. r, = (cos 8, sin 8,0), rg = (— usin 6, ucos 6,¢), ruy = (0,0,0),
rug = (— sin 8, cos 6,0), rgp = (— ucos 6, — usin 6,0), r, A rg= (csin 8,

—~ ccos 8u); LW =0, MW = — ¢, NW =0, so the asymptotic lines
are dudf =0, the parametric curves. The lines of curvature are
des — dbdu du?
1 0 wdct =0,
0 — ¢ 0 i

that is du® — (u* + c?)d* =0, . .
and the principal curvatures, Ky, are given by Kj{u*+c?)*— c*= 0,
so they are equal in magnitude, opposite in sign, and independent of 6.

3.17. Direction ratios for the normal are f,, f;, fz, so at («,8,7) they are
K., K8, — 1. Any point on the normal is (e + oKz, B+ o KyB,
y — o), whichliesonx =0,y = 0if« = 0,1 + oK,= 0,0r1 + oK, =0,
B = 0, that is if («,8,y) lies on one or other of the lines of curvature
through O.

3.18. Ty = (ayb’zcv)’ Py = (ay - b’ 20[‘), Puy = (050’0), Pyy = (oa ,2C),
I = (0,0,0), Ty A 1, = {2bc(u + v), 2ca(v —uw), — 2ab}, LW =0,
MW = — 4abe, NW = 0. The asymptotic lines are dudv =0, the
parametric lines. The lines of curvature are dvi(a*+ b*+ 4c*u®) — du*(a® 4
b3+ 4chv?) = O, that is

2cu . 2¢v
tah~t S -1 __“V = 3
sinh @@L + s1nh93 V@@L constant



SOLUTIONS

3.19. ry =i+ kp, 1y =j + kg, ryy=kr, 1= ks, ryy=Kkt, r,A v, =
—ip—jg+ Kk, E=1+p* F=pq, G=14+¢g*, LW =r, MW = s,
NW=¢t W=+/(1+p+g),e=(—ip—jg+ /W K= (t—s%
(1 4+ p*+44¢»?% and rt =s* for a developable. The tangent plane is
X—xp+(Y—y)g—(Z—2)=0, and the direction cosines of
normals to it are (p,g, — 1)/4/(1 - p* + ¢%). For this to be a function of a
single parameter there must be a functional relation between p and g, say
F(p,q) = 0, in which case

eFdp | oFdq

pox T ogox 0.
and
oFep | oFoq _
pdy bqoy
that is Fpr + Fys = 0, Fps + F,t = 0, whence
r s

= 0, thatisrt = s

st

3.20. Ry=t(s) + uxp(s), Ry=1t(s), E=1+u?x® F=1, G=1,
Rye= «p + ur’p + ux(— «t -+ Ab), Rgy= «p(s), Ruyy=0, R;A Ry =

— ush, LW = — w?«?A, MW = 0, NW = 0, so the lines of curvature are
du? — duds ds?
1 4+ uts? 1 1| =0,
— w22 0 0

that is ds(ds + du) = 0, that is s = const., s +- u = const. The asymptotic
lines are ds?= 0, that is s = const., the generators.

3.21. LN — M?= (ry.e,)(r,.e) — (Ty.e))(ry.en) = (FyA r).(e A ) =
eW.(e,A e) = Wle,e,e,]. Now e, is parallel to e,, so LN — M? = 0.
Choose the asymptotic lines as one set of parametric curves, that is
(duy/L + dvy/N)? = 0, and choose a new set of parameters with du’=
dur/L + dvy/N. Then M'= N’= 0, SO ry..ep. = ty.€p, = 0,and e,, = 0,
and ey, depends on one parameter only, and the surface is developable.

3.22. The equation of the normal plane is R — r).t = 0, so — t.t +
R—0)xp=0, —txp+ R —r)e'p+ R —1).(— «t + Ab) = 0. So
we have R—0t=0, R—rp=1/«, R —1).b=R — r).(«2 —
kPf/xd = — '[2l. So R—D)=[0 A b)+ « (b At)— «(t Ap)
K3A]/[p A b,b At t A p]= «x'p— x'hi«2A, the vector from the point to
the centre of spherical curvature.

3.23. For a geodesic p= — e. Now b'== — Ap, s0 Xe = (t A p)’'=
—(tAe=eAtt+ent=eArt+enxp=eAr. Solee= A=
e.(e'A ) = [ee ']

3. xg=teAk=FeAnt=+eAr” But kg is parallel to
t, whichisr',so kg = £ r.xg= + r'.(e A ') = £+ [ex' ")

325. R=r+ ub, Rg=1t — ulp, R, =b, e is parallel to R;A R, =
— ult — p. So e.b = 0, and I'is a geodesic.

94
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e, 43
E, F, G, 45
Edge of regression, 68
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of a family of planes, 67
Equation for asymptotic

lines, 54
for a developable

surface, 70
for geodesics, 84

for lines of curvature, 52
for principal curvatures, 52
Euler’s theorem, 86
Evolute of a plane curve, 10
of a space curve, 29, 32

Examples on chapter 1, 10
on chapter 2, 35
on chapter 3, 85

Four-point contact of
sphere, 22, 89
Frenet-Serret formulae, 20

Gauss curvature of a surface, 62

theorem, 64
Generators on a surface, 67, 68
Geodesic on a surface, 81

" curvature, 85

conditions for, 84
Helicoid, right, 86
Helix, 27

Hyperboloid of one sheet, 67
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Involute of a space curve, 29

Joachimsthal’s theorem, 61
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L, M, N, 47, 50
A, 19
Meusnier’s theorem, 47
Monge’s surface equation
z = f(xy), 87
Normal to a plane curve, 3
to a space curve, 18
to a surface, 43
plane, 21
section, 46
Normals, intersecting, 60, 75
neighbouring, 24, 25
Osculating plane, 21
planes of asymptotic
lines, 55,79
planes of edge of
regression, 70
p, 4,151, 87
Paraboloid, hyperbolic, 86
Parameter, change of, 2,16
Parametric coordinates
for plane curve, 1
for space curve, 12
for a surface, 39, 43
curves, 42
Quadratic form
first, 45
second, 48

third, 87

(1), 1,12
Rectifying plane, 21
Related curves, 35, 36
Rodrigues’ theorem, 59
Ruled surface, 66, 67
developable, 7, 74
Solutions to examples, 88
Spin-vector of a vector, 16
oft,p, b, 18, 19
Surface, developable, 65
distortion of, 63
of revolution, 40, 86
ruled, 66, 67
of tangents, 71
tangent line of, 43
tangent plane of, 43
t,pb, 3,4,18
Tangent to a plane curve, 3
to a space curve, 18
line to a surface, 43
plane to a surface, 43
planes along a
generator, 71,74

Tangents, neighbouring, 23, 25
Three-point contact
of a circle, 6, 22
of an osculating plane, 21
Torsion of a space curve, 18

of asymptotic lines, 87
of a geodesic, 88
Umbilic, 52,77, 78
Vector results, ix, x
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