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Preface

Partial Differential Equations and Solitary Waves Theory is designed to serve as a
text and a reference. The book is designed to be accessible to advanced undergrad-
uate and beginning graduate students as well as research monograph to researchers
in applied mathematics, science and engineering. This text is different from other
texts in that it explains classical methods in a non abstract way and it introduces
and explains how the newly developed methods provide more concise methods to
provide efficient results.

Partial Differential Equations and Solitary Waves Theory is designed to focus
readers’ attentions on these recently developed valuable techniques that have proven
their effectiveness and reliability over existing classical methods. Moreover, this text
also explains the necessary classical methods because the aim is that new methods
would complement the traditional methods in order to improve the understanding of
the material.

The book avoids approaching the subject through the compact and classical
methods that make the material impossible to be grasped, especially by students
who do not have the background in these abstract concepts. Compact theorems and
abstract handling of the material are not presented in this text.

The book was developed as a result of many years of experience in teaching
partial differential equations and conducting research work in this field. The author
has taken account on his teaching experience, research work as well as valuable
suggestions received from students and scholars from a wide variety of audience.
Numerous examples and exercises, ranging in level from easy to difficult, but con-
sistent with the material, are given in each section to give the reader the knowledge,
practice and skill in partial differential equations and solitary waves theory. There is
plenty of material in this text to be covered in two semesters for senior undergradu-
ates and beginning graduates of Mathematics, Science, and Engineering.

The content of the book is divided into two distinct parts, each is a self-contained
and practical part. Part I contains eleven chapters that handle the partial differential
equations by using the newly developed methods, namely, Adomian decomposi-
tion method and Variational Iteration Method. Some of the traditional methods are
used in this part. With a diverse readership and interdisciplinary audience of applied



viii Preface

mathematics, science, and engineering, attempts are made so that part I presents
both analytical and numerical approaches in a clear and systematic fashion to make
this book accessible to many who work in this field.

Part II contains seven chapters devoted to thoroughly examine solitary waves the-
ory. Since the discovery of solitons in 1965, mathematicians, engineers, and physi-
cists have been intrigued by the rich mathematical structure of solitons. Solitons
play a prevalent role in propagation of light in fibers, surface waves in nonlinear di-
electrics, optical bistability, optical switching in slab wave guides, and many other
phenomena in plasma and fluid dynamics.

Chapter 1 provides the basic definitions and introductory concepts. Initial value
problems and boundary value problems are discussed. In Chapter 2, the first order
partial differential equations are handled by the newly developed methods, namely,
the Adomian decomposition method (ADM) and the variational iteration method
(VIM). The method of characteristics is introduced and explained in detail. Chapter
3 deals with the one-dimensional heat flow where homogeneous and inhomoge-
neous initial-boundary value problems are approached by using the decomposition
method, the variational iteration method and the method of separation of variables.
Chapter 4 is entirely devoted to the two-dimensional and three-dimensional heat
flow. Chapter 5 provides the reader with a comprehensive discussion of the literature
related to the one-dimensional wave equation. The decomposition method and the
variational iteration method are used in handling the wave equations in a bounded
and an unbounded domain. Moreover, the method of separation of variables and
the D’Alembert method are also used. Chapter 6 presents a comprehensive study
on wave equations in two-dimensional and three-dimensional spaces. Chapter 7 is
devoted to the Laplace’s equation in two- and three-dimensional rectangular coordi-
nates and in polar coordinates. Moreover, the Laplace’s equation in annulus form is
also investigated by using the decomposition method and the separation of variables
method. Chapter 8 introduces a comprehensive study on nonlinear partial differen-
tial equations. Even though the subject is considered difficult and mostly addressed
in distinct books independent of linear PDEs, but it will be handled successfully and
elegantly by using the newly developed decomposition method and the variational
iteration method. Chapter 9 provides the reader with a variety of linear and non-
linear applications selected from mathematical physics, population growth models
and evolution concepts. The useful concept of solitons and the recently developed
concept of Compactons are thoroughly examined by using both traditional and new
methods. Chapter 10 is concerned with the numerical techniques. Emphasis in this
chapter will be on combining the decomposition series solution, the variational it-
eration method, and the Padé approximants to provide a promising tool that can be
applied for further applications. Chapter 11 is concerned with the concepts of soli-
tons and compactons. In this chapter, the solitons and compactons are determined
by using prescribed conditions, a necessary condition for the applicability of the
decomposition method.

Part II of this book gives a self-contained, practical and realistic approach to soli-
tary wave theory. The dissipation and the dispersion effects are thoroughly investi-
gated. Solitons play a prevalent role in many scientific and engineering phenomena.
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The newly discovered compactons: solitons with a compact support are also studied.
Part II of this book is devoted to use mainly the Hirota’s bilinear method, combined
with simplified version developed by Hereman and the tanh-coth method. Chapter
12 presents discussions about the dissipation and dispersion effects, analytic and
nonanalytic solutions, conservation laws and multiple-soliton solutions, tanh-coth
method, and Hirota’s bilinear method combined with the Hereman’s simplified form
of the Hirota’s method. In Chapter 13, the family of the KdV equations is studied.
Multi-soliton solutions are obtained for only completely integrable equations of this
family. Compactons solutions are also examined. Chapter 14 is concerned with KdV
and mKdV equations of higher orders. The single solitons and the multiple-soliton
solutions for completely integrable equations are addressed by using the Hirota’s bi-
linear method. In addition, the Hirota-Satsuma equations and the generalized short
wave equations were investigated for multiple-soliton solutions.

Chapter 15 investigates many KdV-type of equations where soliton solutions and
multi-soliton solutions are obtained by using tanh-coth method and Hirota’s method
respectively. Chapter 16 is entirely devoted to study a family of well-known physi-
cal models for solitons and multi-soliton solutions as well. Some of these equations
are Boussinesq equation, Klein-Gordon equation, Liouville equation, sine-Gordon
equation, DBM equation, and others. Chapter 17 provides the reader with a com-
prehensive discussion of the literature related to Burgers, Fisher, Huxley, FitzHugh-
Nagumo equations and related equations. Most of these equations are characterized
by the dissipation phenomena that give kinks solutions. Chapter 18 presents a com-
prehensive study on two distinct types of equations that appear in solitary wave
theory. The family of Camassa-Holm equations is examined to obtain the nonana-
lytic solution of peakons. On the other hand, the Schrodinger and Ginzburg-Landau
equations of different orders are studied in this chapter.

The book concludes with six useful appendices. Moreover, the book introduces
the traditional methods in the same amount of concern to provide the reader with
the knowledge needed to make a comparison.

I deeply acknowledge Professor Louis Pennisi who made very valuable sugges-
tions that helped a great deal in directing this book towards its main goal. I also
deeply acknowledge Professor Masaaki Ito and Professor Willy Hereman for many
helpful discussions and useful remarks. I owe them my deepest thanks.

I am deeply indebted to my wife, my son and my daughters who provided me
with their continued encouragement, patience and support during the long days of
preparing this book.

The author would highly appreciate any note concerning any constructive sug-
gestion.

Saint Xavier University Abdul-Majid Wazwaz
Chicago, IL 60655 E-mail: wazwaz@sxu.edu
2009
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16.6.2 Using the Bäcklund Transformation . . . . . . . . . . . . . . . . . . 654
16.6.3 Multiple-soliton Solutions for Sine-Gordon Equation . . . . 655

16.7 The Sinh-Gordon Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
16.8 The Dodd-Bullough-Mikhailov Equation . . . . . . . . . . . . . . . . . . . . . 658
16.9 The Tzitzeica-Dodd-Bullough Equation . . . . . . . . . . . . . . . . . . . . . . 659
16.10 The Zhiber-Shabat Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

17 Burgers, Fisher and Related Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665
17.2 The Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

17.2.1 Using the Tanh-coth Method . . . . . . . . . . . . . . . . . . . . . . . . 667
17.2.2 Using the Cole-Hopf Transformation . . . . . . . . . . . . . . . . . 668

17.3 The Fisher Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670
17.4 The Huxley Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671
17.5 The Burgers-Fisher Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
17.6 The Burgers-Huxley Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
17.7 The FitzHugh-Nagumo Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675
17.8 Parabolic Equation with Exponential Nonlinearity . . . . . . . . . . . . . 676
17.9 The Coupled Burgers Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 678
17.10 The Kuramoto-Sivashinsky (KS) Equation . . . . . . . . . . . . . . . . . . . 680
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681



Contents xvii

18 Families of Camassa-Holm and Schrodinger Equations . . . . . . . . . . . . 683
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683
18.2 The Family of Camassa-Holm Equations . . . . . . . . . . . . . . . . . . . . . 686

18.2.1 Using the Tanh-coth Method . . . . . . . . . . . . . . . . . . . . . . . . 686
18.2.2 Using an Exponential Algorithm . . . . . . . . . . . . . . . . . . . . . 688

18.3 Schrodinger Equation of Cubic Nonlinearity . . . . . . . . . . . . . . . . . . 689
18.4 Schrodinger Equation with Power Law Nonlinearity . . . . . . . . . . . . 690
18.5 The Ginzburg-Landau Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

18.5.1 The Cubic Ginzburg-Landau Equation . . . . . . . . . . . . . . . . 693
18.5.2 The Generalized Cubic Ginzburg-Landau Equation . . . . . 694
18.5.3 The Generalized Quintic Ginzburg-Landau Equation . . . . 695

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699

A Indefinite Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
A.1 Fundamental Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699
A.2 Trigonometric Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
A.3 Inverse Trigonometric Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700
A.4 Exponential and Logarithmic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 701
A.5 Hyperbolic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
A.6 Other Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

B Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
B.1 Exponential Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
B.2 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703
B.3 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
B.4 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704
B.5 Inverse Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

C Exact Solutions of Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
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Part I
Partial Differential Equations





Chapter 1

Basic Concepts

1.1 Introduction

It is well known that most of the phenomena that arise in mathematical physics
and engineering fields can be described by partial differential equations (PDEs). In
physics for example, the heat flow and the wave propagation phenomena are well
described by partial differential equations [1–4]. In ecology, most population mod-
els are governed by partial differential equations [5–6]. The dispersion of a chem-
ically reactive material is characterized by partial differential equations. In addi-
tion, most physical phenomena of fluid dynamics, quantum mechanics, electricity,
plasma physics, propagation of shallow water waves, and many other models are
controlled within its domain of validity by partial differential equations.

Partial differential equations have become a useful tool for describing these nat-
ural phenomena of science and engineering models. Therefore, it becomes increas-
ingly important to be familiar with all traditional and recently developed methods
for solving partial differential equations, and the implementation of these methods.

However, in this text, we will restrict our analysis to solve partial differential
equations along with the given conditions that characterize the initial conditions
and the boundary conditions of the dependent variable [7]. We fill focus our concern
on deriving solutions to PDEs and not on the derivation of these equations. In this
text, our presentation will be based on applying the recent developments in this
field and on applying some of the traditional methods as well. The formulation of
partial differential equations and the scientific interpretation of the models will not
be discussed.

It is to be noted that several methods are usually used in solving PDEs. The
newly developed Adomian decomposition method and the related improvements of
the modified technique and the noise terms phenomena will be effectively used.
Moreover, the variational iteration method that was recently developed will be used
as well. The recently developed techniques have been proved to be reliable, accu-
rate and effective in both the analytic and the numerical purposes. The Adomian
decomposition method and the variational iteration method were formally proved
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to provide the solution in terms of a rapid convergent infinite series that may yield
the exact solution in many cases. As will be seen in part I of this text, both methods
require the use of conditions such as initial conditions. The other related modifica-
tions were shown to be powerful in that it accelerate the rapid convergence of the
solution. However, some of the traditional methods, such as the separation of vari-
ables method and the method of characteristics will be applied as well. Moreover,
the other techniques, such as integral transforms, perturbation methods, numerical
methods and other traditional methods, that are usually used in other texts, will not
be used in this text.

In Part II of this text, we will focus our work on nonlinear evolution equations
that describe a variety of physical phenomena. The Hirota’s bilinear formalism and
the tanh-coth method will be employed in the second part. These methods will be
used to determine soliton solutions and multiple-soliton solutions, for completely in-
tegrable equations, as well. Several well-known nonlinear evolution equations such
as the KdV equation, Burgers equation, Boussinesq equation, Camassa-Holm equa-
tion, sine-Gordon equation, and many others will be investigated.

1.2 Definitions

1.2.1 Definition of a PDE

A partial differential equation (PDE) is an equation that contains the dependent
variable (the unknown function), and its partial derivatives. It is known that in the
ordinary differential equations (ODEs), the dependent variable u = u(x) depends
only on one independent variable x. Unlike the ODEs, the dependent variable in the
PDEs, such as u = u(x,t) or u = u(x,y,t), must depend on more than one indepen-
dent variable. If u = u(x,t), then the function u depends on the independent variable
x, and on the time variable t. However, if u = u(x,y,t), then the function u depends
on the space variables x,y, and on the time variable t.

Examples of the PDEs are given by

ut = kuxx, (1.1)

ut = k(uxx + uyy), (1.2)

ut = k(uxx + uyy + uzz), (1.3)

that describe the heat flow in one dimensional space, two dimensional space, and
three dimensional space respectively. In (1.1), the dependent variable u = u(x,t) de-
pends on the position x and on the time variable t. However, in (1.2), u = u(x,y,t)
depends on three independent variables, the space variables x,y and the time vari-
able t. In (1.3), the dependent variable u = u(x,y,z,t) depends on four independent
variables, the space variables x,y, and z, and the time variable t.

Other examples of PDEs are given by



1.2 Definitions 5

utt = c2uxx, (1.4)

utt = c2 (uxx + uyy) , (1.5)

utt = c2 (uxx + uyy + uzz) , (1.6)

that describe the wave propagation in one dimensional space, two dimensional
space, and three dimensional space respectively. Moreover, the unknown functions
in (1.4), (1.5), and (1.6) are defined by u = u(x,t), u = u(x,y,t), and u = u(x,y,z,t)
respectively.

The well known Laplace equation is given by

uxx + uyy = 0, (1.7)

uxx + uyy + uzz = 0, (1.8)

where the function u does not depend on the time variable t. As will be seen later,
the Laplace’s equation in polar coordinates is given by

urr +
1
r

ur +
1
r2 uθθ = 0, (1.9)

where u = u(r,θ).
Moreover, the Burgers equation and the KdV equation are given by

ut + uux−νuxx = 0, (1.10)

ut + 6uux + uxxx = 0, (1.11)

respectively, where the function u depends on x and t.

1.2.2 Order of a PDE

The order of a PDE is the order of the highest partial derivative that appears in the
equation. For example, the following equations

ux−uy = 0,
uxx−ut = 0,
uy−uuxxx = 0,

(1.12)

are PDEs of first order, second order, and third order respectively.

Example 1. Find the order of the following PDEs:

(a) ut = uxx + uyy

(b) ux + uy = 0

(c) u4uxx + uxxy = 2
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(d) uxx + uyyyy = 1

Solution.

(a) The highest partial derivative contained in this equation is uxx or uyy. The PDE
is therefore of order two.

(b) The highest partial derivative contained in this equation is ux or uy. The PDE
is therefore of order one.

(c) The highest partial derivative contained in this equation is uxxy. The PDE is
therefore of order three.

(d) The highest partial derivative contained in this equation is uyyyy. The PDE is
therefore of order four.

1.2.3 Linear and Nonlinear PDEs

Partial differential equations are classified as linear or nonlinear. A partial differ-
ential equation is called linear if:
(1) the power of the dependent variable and each partial derivative contained in the
equation is one, and
(2) the coefficients of the dependent variable and the coefficients of each partial
derivative are constants or independent variables. However, if any of these condi-
tions is not satisfied, the equation is called nonlinear.

Example 2. Classify the following PDEs as linear or nonlinear:

(a) xuxx + yuyy = 0

(b) uut + xux = 2

(c) ux +
√

u = x

(d) urr +
1
r

ur +
1
r2 uθθ = 0

Solution.

(a) The power of each partial derivative uxx and uyy is one. In addition, the coef-
ficients of the partial derivatives are the independent variables x and y respectively.
Hence, the PDE is linear.

(b) Although the power of each partial derivative is one, but ut has the dependent
variable u as its coefficient. Therefore, the PDE is nonlinear.

(c) The equation is nonlinear because of the term
√

u.

(d) The equation is linear because it satisfies the two necessary conditions.
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1.2.4 Some Linear Partial Differential Equations

As stated before, linear partial differential equations arise in many areas of scientific
applications, such as the diffusion equation and the wave equation. In what follows,
we list some of the well-known models that are of important concern:
1. The heat equation in one dimensional space is given by

ut = kuxx, (1.13)

where k is a constant.
2. The wave equation in one dimensional space is given by

utt = c2uxx, (1.14)

where c is a constant.
3. The Laplace equation is given by

uxx + uyy = 0. (1.15)

4. The Klein-Gordon equation is given by

∇2u− 1
c2 utt = μ2u, (1.16)

where c and μ are constants.
5. The Linear Schrodinger’s equation is given by

iut + uxx = 0, i =
√−1. (1.17)

6. The Telegraph equation is given by

uxx = autt + but + cu, (1.18)

where a,b and c are constants. It is to be noted that these linear models and others
will be studied in details in the forthcoming chapters.

1.2.5 Some Nonlinear Partial Differential Equations

It was mentioned earlier that partial differential equations arise in different areas of
mathematical physics and engineering, including fluid dynamics, plasma physics,
quantum field theory, nonlinear wave propagation and nonlinear fiber optics [8]. In
what follows we list some of the well-known nonlinear models that are of great
interest:
1. The Advection equation is given by
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ut + uux = f (x,t). (1.19)

2. The Burgers equation is given by

ut + uux = αuxx. (1.20)

3. The Korteweg de-Vries (KdV) equation is given by

ut + auux + buxxx = 0. (1.21)

4. The modified KdV equation (mKdV) is given by

ut −6u2ux + uxxx = 0. (1.22)

5. The Boussinesq equation is given by

utt −uxx + 3(u2)xx−uxxxx = 0. (1.23)

6. The sine-Gordon equation is given by

utt −uxx = α sinu. (1.24)

7. The sinh-Gordon equation is given by

utt −uxx = α sinhu. (1.25)

8. The Liouville equation is given by

utt −uxx = e±u. (1.26)

9. The Fisher equation is
ut = Duxx + u(1−u). (1.27)

10. The Kadomtsev-Petviashvili (KP)equation is given by

(ut + auux + buxxx)x + uyy = 0. (1.28)

11. The K(n,n)equation is given by

ut + a(un)x + b(un)xx = 0, n > 1. (1.29)

12. The Nonlinear Schrodinger (NLS) equation is

iut + uxx + γ|u|2u = 0. (1.30)

13. The Camassa-Holm(CH)equation is given by

ut −uxxt + aux + 3uux = 2uxuxx + uuxxx. (1.31)
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14. The Degasperis-Procesi (DP) equation is given by

ut −uxxt + aux + 4uux = 3uxuxx + uuxxx. (1.32)

The above-mentioned nonlinear partial differential equations and many others
will be examined in the forthcoming chapters. These equations are important and
many give rise to solitary wave solutions.

1.2.6 Homogeneous and Inhomogeneous PDEs

Partial differential equations are also classified as homogeneous or inhomoge-
neous. A partial differential equation of any order is called homogeneous if every
term of the PDE contains the dependent variable u or one of its derivatives, other-
wise, it is called an inhomogeneous PDE [7]. This can be illustrated by the following
example.

Example 3. Classify the following partial differential equations as homogeneous or
inhomogeneous:

(a) ut = 4uxx

(b) ut = uxx + x

(c) uxx + uyy = 0

(d) ux + uy = u + 4

Solution.

(a) The terms of the equation contain partial derivatives of u only, therefore it is
a homogeneous PDE.

(b) The equation is an inhomogeneous PDE, because one term contains the in-
dependent variable x.

(c) The equation is a homogeneous PDE.

(d) The equation is an inhomogeneous PDE.

1.2.7 Solution of a PDE

A solution of a PDE is a function u such that it satisfies the equation under discus-
sion and satisfies the given conditions as well. In other words, for u to satisfy the
equation, the left hand side of the PDE and the right hand side should be the same
upon substituting the resulting solution. This concept will be illustrated by exam-
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ining the following examples. Examples of partial differential equations subject to
specific conditions will be examined in the coming chapters.

Example 4. Show that u(x,t) = sinxe−4t is a solution of the following PDE

ut = 4uxx. (1.33)

Solution.

Left Hand Side (LHS)= ut =−4sinxe−4t

Right Hand Side (RHS)=4uxx =−4sinxe−4t =LHS

Example 5. Show that u(x,y) = sinxsiny + x2 is a solution of the following PDE

uxx = uyy + 2. (1.34)

Solution.

Left Hand Side (LHS)= uxx =−sinxsin y + 2
Right Hand Side (RHS)=uyy + 2 =−sinxsin y + 2=LHS

Example 6. Show that u(x,t) = cosxcost is a solution of the following PDE

utt = uxx. (1.35)

Solution.

Left Hand Side (LHS)= utt =−cosxcost
Right Hand Side (RHS)=uxx =−cosxcost=LHS

Example 7. Show that

(a) u(x,y) = xy

(b) u(x,y) = x2y2

(c) u(x,y) = sin(xy)

are solutions of the equation
xux− yuy = 0. (1.36)

Solution.

(a) u = xy, ux = y, uy = x,
LHS = xy− yx=0

(b) u = x2y2, ux = 2xy2, uy = 2x2y,
LHS = 2x2y2−2x2y2=0

(c) u = sin(xy), ux = ycos(xy), uy = xcos(xy),
LHS = xycos(xy)− xycos(xy)=0
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Consequently, we conclude that a general solution is of the form

u = f (xy). (1.37)

Remarks:

The following remarks can be drawn here in discussing the concept of a solution of
a PDE.

1. For a linear homogeneous ordinary differential equation, it is well-known that
if u1,u2,u3, · · · ,un are solutions of the equation, then a linear combination of
u1,u2,u3, · · · given by

u = c1u1 + c2u2 + c3u3 + · · ·+ cnun, (1.38)

is also a solution. The concept of combining two or more of these solutions is called
the superposition principle.

It is interesting to note that the superposition principle works effectively for linear
homogeneous PDEs in a given domain. The concept will be explained in Chapter 3
when using the method of separation of variables.

2. For a linear ordinary differential equation, the general solution depends mainly
on arbitrary constants. Unlike ODEs, in linear partial differential equations, the
general solution depends on arbitrary functions. This can be easily examined by
noting that the PDE

ux + uy = 0 (1.39)

has its solution given by
u = f (x− y), (1.40)

where f (x− y) is an arbitrary differentiable function. This means that the solution
of (1.39) can be any of the following functions:

u = x− y,
u = ex−y,
u = sinh(x− y),
u = ln(x− y),

(1.41)

and any function of the form f (x− y). However, the general solution of a PDE is of
little use. In fact a particular solution is always required that will satisfy prescribed
conditions.

1.2.8 Boundary Conditions

As stated above, the general solution of a PDE is of little use. A particular solution
is frequently required that will satisfy prescribed conditions. Given a PDE that con-
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trols the mathematical behavior of physical phenomenon in a bounded domain D,
the dependent variable u is usually prescribed at the boundary of the domain D. The
boundary data is called boundary conditions. The boundary conditions are given in
three types [2,7] defined as follows:

1. Dirichlet Boundary Conditions: In this case, the function u is usually prescribed
on the boundary of the bounded domain. For a rod of length L, where 0 < x < L,
the boundary conditions are defined by u(0) = α, u(L) = β , where α and β are
constants. For a rectangular plate, 0 < x < L1, 0 < y < L2, the boundary conditions
u(0,y),u(L1,y),u(x,0), and u(x,L2) are usually prescribed. The boundary condi-
tions are called homogeneous if the dependent variable u at any point on the bound-
ary is zero, otherwise the boundary conditions are called inhomogeneous.

2. Neumann Boundary Conditions: In this case, the normal derivative
du
dn

of u

along the outward normal to the boundary is prescribed. For a rod of length L, Neu-
mann boundary conditions are of the form ux(0,t) = α,ux(L,t) = β .

3. Mixed Boundary Conditions: In this case, a linear combination of the depen-

dent variable u and the normal form
du
dn

is prescribed on the boundary.

It is important to note that it is not always necessary for the domain to be
bounded, however one or more parts of the boundary may be at infinity. This type
of problems will be discussed in the coming chapters.

1.2.9 Initial Conditions

It was indicated before that the PDEs mostly arise to govern physical phenomenon
such as heat distribution, wave propagation phenomena and phenomena of quantum
mechanics. Most of the PDEs, such as the diffusion equation and the wave equation,
depend on the time t. Accordingly, the initial values of the dependent variable u at
the starting time t = 0 should be prescribed. It will be discussed later that for the
heat case, the initial value u(t = 0), that defines the temperature at the starting time,
should be prescribed. For the wave equation, the initial conditions u(t = 0) and
ut(t = 0) should also be prescribed.

1.2.10 Well-posed PDEs

A partial differential equation is said to be well-posed if a unique solution that
satisfies the equation and the prescribed conditions exists, and provided that the
unique solution obtained is stable. The solution to a PDE is said to be stable if
a small change in the conditions or the coefficients of the PDE results in a small
change in the solution.
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Exercises 1.2

1. Find the order of the following PDEs:

(a) uxx = uxxx + u + 1
(b) utt = uxx + uyy + uzz

(c) ux + uy = 0
(d) ut + uxxyy = u

2. Classify the following PDEs as linear or nonlinear:

(a) ut = uxx−u
(b) utt = uxx + u2

(c) ux + uy = u
(d) ut + uuxxyy = 0

3. Classify the following PDEs as homogeneous or inhomogeneous:

(a) ut = uxx + x
(b) utt = uxx + uyy + uzz

(c) ux + uy = 1
(d) ut + uxxy = u

4. Verify that the given function is a particular solution of the corresponding PDE:

(a) ux + uy = x + y, u(x,y) = xy
(b) ux−uy = 0, u(x,y) = x + y
(c) ux + uy = u, u(x,y) = ex + ey

(d) xux + uy = u, u(x,y) = x + ey

5. Verify that the given function is a particular solution of the corresponding PDE:

(a) ut = uxx, u(x,t) = x + e−t sinx
(b) ut = uxx−2u, u(x,t) = e−t sinhx
(c) utt = uxx, u(x,t) = sinxsin t
(d) utt = 2(uxx + uyy), u(x,y,t) = cosxcosycos(2t)

6. Show that the functions

(a) u(x,y) =
x
y

(b) u(x,y) = sin

(
x
y

)

(c) u(x,y) = cosh

(
x
y

)
are solutions of the equation xux +yuy = 0. Show that u = f ( x

y ) is a general solution
of the equation where f is an arbitrary differentiable function.

7. Show that the functions

(a) u(x,y) = x + y2
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(b) u(x,y) = sin(x + y2)

(c) u(x,y) = ex+y2

are solutions of the equation

2yux−uy = 0.

Show that u = f (x+y2) is a general solution of the equation where f is an arbitrary
differentiable function.

8. Verify that the given function is a general solution of the corresponding PDE:

(a) utt = uxx, u(x,t) = f (x + t)+ g(x− t)

(b) ux−uy = 0, u(x,y) = f (x + y)

(c) 4y2uxx +
1
y

uy−uyy = 0,u(x,y) = f (x + y2)+ g(x− y2) given that f and g are

twice differentiable functions.

(d) uxx− 1
x

ux−4x2uyy = 0,u(x,y) = f (x2 + y)+ g(x2− y) given that f and g are

twice differentiable functions.

1.3 Classifications of a Second-order PDE

A second order linear partial differential equation in two independent variables x
and y in its general form is given by

Auxx + Buxy +Cuyy + Dux + Euy + Fu = G, (1.42)

where A,B,C,D,E,F , and G are constants or functions of the variables x and y. A
second order partial differential equation (1.42) is usually classified into three basic
classes of equations, namely:
1. Parabolic. Parabolic equation is an equation that satisfies the property

B2−4AC = 0. (1.43)

Examples of parabolic equations are heat flow and diffusion processes equations.
The heat transfer equation

ut = kuxx (1.44)

will be discussed in details in Chapters 3 and 4.
2. Hyperbolic. Hyperbolic equation is an equation that satisfies the property

B2−4AC > 0. (1.45)
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Examples of hyperbolic equations are wave propagation equations. The wave equa-
tion

utt = c2uxx (1.46)

will be discussed in details in Chapters 5 and 6.
3. Elliptic. Elliptic equation is an equation that satisfies the property

B2−4AC < 0. (1.47)

Examples of elliptic equations are Laplace’s equation and Schrodinger equation.
The Laplace equation in a two dimensional space

uxx + uyy = 0 (1.48)

will be discussed in details in Chapter 7. The Laplace’s equation is often called the
potential equation because u(x,y) defines the potential function.

Example 1. Classify the following second order partial differential equations as
parabolic, hyperbolic or elliptic:

(a) ut = 4uxx

(b) utt = 4uxx

(c) uxx + uyy = 0

Solution.

(a) A = 4,B = C = 0
This means that

B2−4AC = 0. (1.49)

Hence, the equation in (a) is parabolic.

(b) A = 4, B = 0, C =−1
This means that

B2−4AC = 16 > 0. (1.50)

Hence, the equation in (b) is hyperbolic.

(c) A = 1,B = 0, C = 1
This means that

B2−4AC =−4 < 0. (1.51)

Hence, the equation in (c) is elliptic.

Example 2. Classify the following second order partial differential equations as
parabolic, hyperbolic or elliptic:

(a) utt = uxx−ut

(b) ut = uxx−ux

(c) uxx + xuyy = 0
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Solution.

(a) A = 1, B = 0, C =−1
This means that

B2−4AC = 4 > 0. (1.52)

Hence, the equation in (a) is hyperbolic.

(b) A = 1, B = C = 0
This means that

B2−4AC = 0. (1.53)

Hence, the equation in (b) is parabolic.

(c) A = 1,B = 0, C = x
This means that

B2−4AC =−4x. (1.54)

The equation in (c) is parabolic if x = 0, hyperbolic if x < 0, and elliptic if x > 0.

Exercises 1.3

Classify the following second order partial differential equations as parabolic, hy-
perbolic or elliptic:

1. utt = c2uxx

2. uxx + uyy + u = 0

3. ut = 4uxx + xt

4. utt = uxx + xt

5. ut = uxx + 2ux + u

6. uxy = 0

7. uxx + uyy = 4

8. uxx + u = 0

9. utt = uxx−ut

10. yuxx + uyy = 0
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Chapter 2

First-order Partial Differential Equations

2.1 Introduction

In this chapter we will discuss the first order linear partial differential equations,
homogeneous and inhomogeneous. Partial differential equations of first order are
used to model traffic flow on a crowded road, blood flow through an elastic-walled
tube, shock waves and as special cases of the general theories of gas dynamics and
hydraulics.

It is the concern of this text to introduce the recently developed methods to han-
dle partial differential equations in an accessible manner. Some of the traditional
techniques will be used as well. In this text we will apply the Adomian decomposi-
tion method [1–4] and the related phenomenon of the noise terms [7–10] that will
accelerate the rapid convergence of the solution. The decomposition method and the
improvements made by the noise terms phenomenon and the modified decomposi-
tion method [8] are reliable and effective techniques of promising results. Moreover,
the variational iteration method [5] will be applied as well. These two methods pro-
vide the solution in an infinite series form. The obtained series may converge to a
closed form solution if exact solution exists. For concrete problems where exact
solution does not exist, the truncated series may be used for numerical purposes.

In addition to Adomian decomposition method and the variational iteration
method, the classic method of characteristics will be used in this chapter. A com-
parative study between the method of characteristics and the other two methods will
be carried out through illustrative examples.

2.2 Adomian Decomposition Method

In this section we will discuss the Adomian decomposition method. The Adomian
decomposition method has been receiving much attention in recent years in applied
mathematics in general, and in the area of series solutions in particular. The method
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proved to be powerful, effective, and can easily handle a wide class of linear or non-
linear, ordinary or partial differential equations, and linear and nonlinear integral
equations. The decomposition method demonstrates fast convergence of the solu-
tion and therefore provides several significant advantages. In this text, the method
will be successfully used to handle most types of partial differential equations that
appear in several physical models and scientific applications. The method attacks
the problem in a direct way and in a straightforward fashion without using lineariza-
tion, perturbation or any other restrictive assumption that may change the physical
behavior of the model under discussion.

The Adomian decomposition method was introduced and developed by George
Adomian in [1–2] and is well addressed in the literature. A considerable amount of
research work has been invested recently in applying this method to a wide class
of linear and nonlinear ordinary differential equations, partial differential equations
and integral equations as well. For more details, the reader is advised to see the
references [1–4, 7–10] and the references therein.

The Adomian decomposition method consists of decomposing the unknown
function u(x,y) of any equation into a sum of an infinite number of components
defined by the decomposition series

u(x,y) =
∞

∑
n=0

un(x,y), (2.1)

where the components un(x,y),n � 0 are to be determined in a recursive manner.
The decomposition method concerns itself with finding the components u0,u1,u2, · · ·
individually. As will be seen through the text, the determination of these components
can be achieved in an easy way through a recursive relation that usually involve sim-
ple integrals.

To give a clear overview of Adomian decomposition method, we first consider
the linear differential equation written in an operator form by

Lu + Ru = g, (2.2)

where L is, mostly, the lower order derivative which is assumed to be invertible, R
is other linear differential operator, and g is a source term. It is to be noted that the
nonlinear differential equations will be presented in Chapter 8. We next apply the
inverse operator L−1 to both sides of equation (2.2) and using the given condition to
obtain

u = f −L−1(Ru), (2.3)

where the function f represents the terms arising from integrating the source term g
and from using the given conditions that are assumed to be prescribed. As indicated
before, Adomian method defines the solution u by an infinite series of components
given by

u =
∞

∑
n=0

un, (2.4)
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where the components u0,u1,u2, · · · are usually recurrently determined. Substituting
(2.4) into both sides of (2.3) leads to

∞

∑
n=0

un = f −L−1

(
R

(
∞

∑
n=0

un

))
. (2.5)

For simplicity, Equation (2.5) can be rewritten as

u0 + u1 + u2 + u3 + · · ·= f −L−1 (R(u0 + u1 + u2 + · · ·)) . (2.6)

To construct the recursive relation needed for the determination of the components
u0,u1,u2, · · ·, it is important to note that Adomian method suggests that the zeroth
component u0 is usually defined by the function f described above, i.e. by all terms,
that are not included under the inverse operator L−1, which arise from the initial data
and from integrating the inhomogeneous term. Accordingly, the formal recursive
relation is defined by

u0 = f ,
uk+1 = −L−1 (R(uk)) , k � 0,

(2.7)

or equivalently
u0 = f ,
u1 = −L−1 (R(u0)) ,
u2 = −L−1 (R(u1)) ,
u3 = −L−1 (R(u2)) ,

...

(2.8)

It is clearly seen that the relation (2.8) reduced the differential equation under con-
sideration into an elegant determination of computable components. Having deter-
mined these components, we then substitute it into (2.4) to obtain the solution in a
series form.

It was formally shown by many researchers that if an exact solution exists for
the problem, then the obtained series converges very rapidly to that solution. The
convergence concept of the decomposition series was thoroughly investigated by
many researchers to confirm the rapid convergence of the resulting series. Cherru-
ault examined the convergence of Adomian’s method in [3]. In addition, Cherruault
and Adomian presented a new proof of convergence of the method in [4]. For more
details about the proofs presented to discuss the rapid convergence, the reader is
advised to see the references mentioned above and the references therein.

However, for concrete problems, where a closed form solution is not obtainable, a
truncated number of terms is usually used for numerical purposes. It was also shown
by many that the series obtained by evaluating few terms gives an approximation of
high degree of accuracy if compared with other numerical techniques.

It seems reasonable to give a brief outline about the works conducted by Ado-
mian and other researchers in applying Adomian’s method. Adomian in [1–2] and
in many other works introduced his method and applied it to many deterministic
and stochastic problems. He implemented his method to solve frontier problems of
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physics. The Adomian’s achievements in this regard are remarkable and of promis-
ing results.

Adomian’s method has attracted a considerable amount of research work. A com-
parison between the decomposition method and the perturbation technique showed
the efficiency of the decomposition method compared to the tedious work required
by the perturbation method. The advantage of the decomposition method over Pi-
card’s method has been emphasized in many works. Also, a comparative study be-
tween Adomian’s method and Taylor series method has been examined to show
that the decomposition method requires less computational work if compared with
Taylor series. Other comparisons with traditional methods such as finite difference
method have been conducted in the literature.

It is to be noted that many studies have shown that few terms of the decom-
position series provide a numerical result of a high degree of accuracy. Rach et.
al. [6] employed Adomian’s method to solve differential equations with singular
coefficients such as Legendre’s equation, Bessel’s equation, and Hermite’s equa-
tion. Moreover, in [10], a suitable definition of the operator was used to overcome
the difficulty of singular points of Lane-Emden equation. In [10], a new definition
of the operator was introduced to overcome the singularity behavior for the Lane-
Emden type of equations. Many other studies implement the decomposition method
for differential equations, ordinary and partial, and for integral equations, linear and
nonlinear.

It is normal in differential equations that we seek a closed form solution or a
series solution with a proper number of terms. Although this book is devoted to
handle partial differential equations, but it seems reasonable to use the decomposi-
tion method to discuss two ordinary differential equations where an exact solution
is obtained for the first equation and a series approximation is determined for the
second equation. For the first problem we consider the equation

u′(x) = u(x), u(0) = A. (2.9)

In an operator form, Equation (2.9) becomes

Lu = u, (2.10)

where the differential operator L is given by

L =
d
dx

, (2.11)

and therefore the inverse operator L−1 is defined by

L−1(·) =
∫ x

0
(·)dx. (2.12)

Applying L−1 to both sides of (2.10) and using the initial condition we obtain

L−1(Lu) = L−1(u), (2.13)
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so that
u(x)−u(0) = L−1(u), (2.14)

or equivalently
u(x) = A + L−1(u). (2.15)

Substituting the series assumption (2.5) into both sides of (2.15) gives

∞

∑
n=0

un(x) = A + L−1

(
∞

∑
n=0

un(x)

)
. (2.16)

In view of (2.16), the following recursive relation

u0(x) = A,
uk+1(x) = L−1(uk(x)), k � 0,

(2.17)

follows immediately. Consequently, we obtain

u0(x) = A,
u1(x) = L−1(u0(x)) = Ax,

u2(x) = L−1(u1(x)) = A
x2

2!
,

u3(x) = L−1(u2(x)) = A
x3

3!
,

...

(2.18)

Substituting (2.18) into (2.5) gives the solution in a series form by

u(x) = A(1 + x +
x2

2!
+

x3

3!
+ · · ·), (2.19)

and in a closed form by
u(x) = Aex. (2.20)

We next consider the well-known Airy’s equation

u′′(x) = xu(x), u(0) = A,u′(0) = B. (2.21)

In an operator form, Equation (2.21) becomes

Lu = xu, (2.22)

where the differential operator L is given by

L =
d2

dx2 , (2.23)

and therefore the inverse operator L−1 is defined by
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L−1(·) =
∫ x

0

∫ x

0
(·)dxdx. (2.24)

Operating with L−1 on both sides of (2.21) and using the initial conditions we obtain

L−1(Lu) = L−1(xu), (2.25)

so that
u(x)− xu′(0)−u(0) = L−1(xu), (2.26)

or equivalently
u(x) = A + Bx + L−1(xu). (2.27)

Substituting the series assumption (2.5) into both sides of (2.27) yields

∞

∑
n=0

un(x) = A + Bx + L−1(x
∞

∑
n=0

(un(x)). (2.28)

Following the decomposition method we obtain the following recursive relation

u0(x) = A + Bx,
uk+1(x) = L−1(xuk(x)), k � 0.

(2.29)

Consequently, we obtain

u0(x) = A + Bx,

u1(x) = L−1(xu0(x)) = A
x3

6
+ B

x4

12
,

u2(x) = L−1(xu1(x)) = A
x6

180
+ B

x7

504
,

...

(2.30)

Substituting (2.30) into (2.5) gives the solution in a series form by

u(x) = A(1 +
x3

6
+

x6

180
+ · · ·)+ B(x +

x4

12
+

x7

504
+ · · ·). (2.31)

Other components can be easily computed to enhance the accuracy of the approxi-
mation.

It seems now reasonable to apply Adomian decomposition method to first-order
partial differential equations. For the convenience of the reader, and without loss of
generality, we consider the inhomogeneous partial differential equation:

ux + uy = f (x,y), u(0,y) = g(y), u(x,0) = h(x). (2.32)

In an operator form, Eq. (2.32) can be written as

Lxu + Lyu = f (x,y), (2.33)
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where

Lx =
∂
∂x

, Ly =
∂
∂y

, (2.34)

where each operator is assumed easily invertible, and thus the inverse operators L−1
x

and L−1
y exist and given by

L−1
x (·) =

∫ x

0
(·)dx,

L−1
y (·) =

∫ y

0
(·)dy.

(2.35)

This means that
L−1

x Lx u(x,y) = u(x,y)−u(0,y). (2.36)

Applying L−1
x to both sides of (2.33) gives

L−1
x Lxu = L−1

x ( f (x,y))−L−1
x (Lyu), (2.37)

or equivalently
u(x,y) = g(y)+ L−1

x ( f (x,y))−L−1
x (Lyu), (2.38)

obtained by using (2.36) and by using the condition u(0,y) = g(y). As stated above,
the decomposition method sets

u(x,y) =
∞

∑
n=0

un(x,y). (2.39)

Substituting (2.39) into both sides of (2.38) we find

∞

∑
n=0

un(x,y) = g(y)+ L−1
x ( f (x,y))−L−1

x

(
Ly

(
∞

∑
n=0

un(x,y)

))
. (2.40)

This can be rewritten as

u0 + u1 + u2 + · · ·= g(y)+ L−1
x ( f (x,y))−L−1

x Ly(u0 + u1 + u2 + · · ·). (2.41)

The zeroth component u0, as suggested by Adomian method is always identified by
the given initial condition and the terms arising from L−1

x ( f (x,y)), both of which
are assumed to be known. Accordingly, we set

u0(x,y) = g(y)+ L−1
x ( f (x,y)). (2.42)

Consequently, the other components uk+1,k � 0 are defined by using the relation

uk+1(x,y) =−L−1
x Ly(uk), k � 0. (2.43)

Combining Eqs. (2.42) and (2.43), we obtain the recursive scheme
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u0(x,y) = g(y)+ L−1
x ( f (x,y)),

uk+1(x,y) = −L−1
x Ly(uk), k � 0,

(2.44)

that forms the basis for a complete determination of the components u0,u1,u2, · · ·.
Therefore, the components can be easily obtained by

u0(x,y) = g(y)+ L−1
x ( f (x,y)),

u1(x,y) = −L−1
x (Lyu0(x,y)) ,

u2(x,y) = −L−1
x (Lyu1(x,y)),

u3(x,y) = −L−1
x (Lyu2(x,y)),

(2.45)

and so on. Thus the components un can be determined recursively as far as we
like. It is clear that the accuracy of the approximation can be significantly improved
by simply determining more components. Having established the components of
u(x,y), the solution in a series form follows immediately. However, the expression

φn =
n−1

∑
r=0

ur(x,y) (2.46)

is considered the n-term approximation to u. For concrete problems, where exact
solution is not easily obtainable, we usually use the truncated series (2.46) for nu-
merical purposes. As indicated earlier, the convergence of Adomian decomposition
method has been established by many researchers, but will not be discussed in this
text.

It is important to note that the solution can also be obtained by finding the y-
solution by applying the inverse operator L−1

y to both sides of the equation

Ly = f (x,y)−Lxu. (2.47)

The equality of the x-solution and the y-solution is formally justified and will be
examined through the coming examples.

It should be noted here that the series solution (2.39) has been proved by many
researchers to converge rapidly, and a closed form solution is obtainable in many
cases if a closed form solution exists.

It was found, as will be seen later, that very few terms of the series obtained in
(2.39) provide a high degree of accuracy level which makes the method powerful
when compared with other existing numerical techniques. In many cases the series
representation of u(x,y) can be summed to yield the closed form solution. Several
works in this direction have demonstrated the power of the method for analytical
and numerical applications.

The essential features of the decomposition method for linear and nonlinear equa-
tions, homogeneous and inhomogeneous, can be outlined as follows:
1. Express the partial differential equation, linear or nonlinear, in an operator form.
2. Apply the inverse operator to both sides of the equation written in an operator
form.
3. Set the unknown function u(x,y) into a decomposition series



2.2 Adomian Decomposition Method 27

u(x,y) =
∞

∑
n=0

un(x,y), (2.48)

whose components are elegantly determined. We next substitute the series (2.48)
into both sides of the resulting equation.
4. Identify the zeroth component u0(x,y) as the terms arising from the given condi-
tions and from integrating the source term f (x,y), both are assumed to be known.
5. Determine the successive components of the series solution uk,k � 1 by applying
the recursive scheme (2.44), where each component uk can be completely deter-
mined by using the previous component uk−1.
6. Substitute the determined components into (2.48) to obtain the solution in a series
form. An exact solution can be easily obtained in many equations if such a closed
form solution exists.

It is to be noted that Adomian decomposition method approaches any equation,
homogeneous or inhomogeneous, and linear or nonlinear in a straightforward man-
ner without any need to restrictive assumptions such as linearization, discretization
or perturbation. There is no need in using this method to convert inhomogeneous
conditions to homogeneous conditions as required by other techniques.

The essential steps of the Adomian decomposition method will be illustrated by
discussing the following examples.

Example 1. Use Adomian decomposition method to solve the following inhomo-
geneous PDE

ux + uy = x + y, u(0,y) = 0, u(x,0) = 0. (2.49)

Solution.

In an operator form, Eq. (2.49) can be written as

Lxu = x + y−Lyu, (2.50)

where

Lx =
∂
∂x

, Ly =
∂
∂y

. (2.51)

It is clear that Lx is invertible, hence L−1
x exists and given by

L−1
x (·) =

∫ x

0
(·)dx. (2.52)

The x-solution:
This solution can be obtained by applying L−1

x to both sides of (2.50), hence we
find

L−1
x Lxu = L−1

x (x + y)−L−1
x (Lyu), (2.53)

or equivalently

u(x,y) = u(0,y)+
1
2

x2 + xy−L−1
x (Lyu) =

1
2

x2 + xy−L−1
x (Lyu), (2.54)
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obtained upon using the given condition u(0,y) = 0, Eq. (2.36) and by integrating
f (x,y) = x+ y with respect to x. As stated above, the decomposition method identi-
fies the unknown function u(x,y) as an infinite number of components un(x,y),n � 0
given by

u(x,y) =
∞

∑
n=0

un(x,y). (2.55)

Substituting (2.55) into both sides of (2.54) we find

∞

∑
n=0

un(x,y) =
1
2

x2 + xy−L−1
x

(
Ly

(
∞

∑
n=0

un(x,y)

))
. (2.56)

Using few terms of the decomposition (2.55) we obtain

u0 + u1 + u2 + · · ·= 1
2

x2 + xy−L−1
x (Ly(u0 + u1 + u2 + · · ·)) . (2.57)

As presented before, the decomposition method identifies the zeroth component u0

by all terms arising from the given condition and from integrating f (x,y) = x + y,
therefore we set

u0(x,y) =
1
2

x2 + xy. (2.58)

Consequently, the recursive scheme that will enable us to completely determine the
successive components is thus constructed by

u0(x,y) =
1
2

x2 + xy,

uk+1(x,y) = −L−1
x (Ly(uk)), k � 0.

(2.59)

This in turn gives

u1(x,y) = −L−1
x (Lyu0) =−L−1

x

(
Ly

(
1
2

x2 + xy

))
=−1

2
x2,

u2(x,y) = −L−1
x (Lyu1) =−L−1

x

(
Ly

(
−1

2
x2

))
= 0.

(2.60)

Accordingly, uk = 0,k � 2. Having determined the components of u(x,y), we find

u = u0 + u1 + u2 + · · ·= 1
2

x2 + xy− 1
2

x2 = xy, (2.61)

the exact solution of the equation under discussion.
The y-solution:

It is important to note that the exact solution can also be obtained by finding the
y-solution. In an operator form we can write the equation by

Ly = x + y−Lxu. (2.62)
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Assume that L−1
y exists and defined by

L−1
y (·) =

∫ y

0
(·)dy. (2.63)

Applying L−1
y to both sides of the Eq. (2.62) gives

u(x,y) = xy +
1
2

y2−L−1
y (Lxu) . (2.64)

As mentioned above, the decomposition method sets the solution u(x,y) in a series
form by

u(x,y) =
∞

∑
n=0

un(x,y). (2.65)

Inserting (2.65) into both sides of (2.64) we obtain

∞

∑
n=0

un(x,y) = xy +
1
2

y2−L−1
y

(
Lx

(
∞

∑
n=0

un(x,y)

))
. (2.66)

Using few terms only for simplicity reasons, we obtain

u0 + u1 + u2 + · · ·= xy +
1
2

y2−L−1
y (Lx(u0 + u1 + u2 + · · ·)) . (2.67)

The decomposition method identifies the zeroth component u0 by all terms arising
from the given condition and from integrating f (x,y) = x + y, therefore we set

u0(x,y) = xy +
1
2

y2. (2.68)

To completely determine the successive components of u(x,y), the recursive scheme
is thus defined by

u0(x,y) = xy +
1
2

y2,

uk+1(x,y) = −L−1
y (Lx(uk)), k � 0.

(2.69)

This gives

u1(x,y) = −L−1
y (Lxu0) =−L−1

y

(
Lx

(
xy +

1
2

y2
))

=−1
2

y2,

u2(x,y) = −L−1
y (Lxu1) =−L−1

y

(
Lx

(
−1

2
y2

))
= 0.

(2.70)

Consequently, uk = 0,k � 2. Having determined the components of u(x,y), we find

u(x,y) = u0 + u1 + u2 + · · ·= xy +
1
2

y2− 1
2

y2 = xy, (2.71)
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the exact solution of the equation under discussion.

Example 2. Solve the following homogeneous partial differential equation

ux−uy = 0,
u(0,y) = y, u(x,0) = x.

(2.72)

Solution.

In an operator form, Eq. (2.72) becomes

Lxu(x,y) = Lyu(x,y), (2.73)

where the operators Lx and Ly are defined by

Lx =
∂
∂x

, Ly =
∂
∂y

. (2.74)

Applying the inverse operator L−1
x to both sides of (2.73) and using the given con-

dition u(0,y) = y yields
u(x,y) = y + L−1

x (Ly u). (2.75)

We next define the unknown function u(x,y) by the decomposition series

u(x,y) =
∞

∑
n=0

un(x,y). (2.76)

Inserting (2.76) into both sides of (2.75) gives

∞

∑
n=0

un(x,y) = y + L−1
x

(
Ly

(
∞

∑
n=0

un(x,y)

))
. (2.77)

By considering few terms of the decomposition of u(x,y), Eq. (2.77) becomes

u0 + u1 + u2 + · · ·= y + L−1
x (Ly(u0 + u1 + u2 + · · ·)) . (2.78)

Proceeding as before, we identify the zeroth component u0 by

u0(x,y) = y. (2.79)

Having identified the zeroth component u0(x,y), we obtain the recursive scheme

u0(x,y) = y,
uk+1(x,y) = L−1

x Ly(uk), k � 0.
(2.80)

The components u0,u1,u2, · · · are thus determined as follows:
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u0(x,y) = y,
u1(x,y) = L−1

x Ly u0 = L−1
x Ly(y) = x,

u2(x,y) = L−1
x Ly u1 = L−1

x Ly(x) = 0.
(2.81)

It is obvious that all components uk(x,y) = 0,k � 2. Consequently, the solution is
given by

u(x,y) = u0(x,y)+ u1(x,y)+ · · ·= u0(x,y)+ u1(x,y) = y + x, (2.82)

the exact solution obtained by using the decomposition series (2.76).
It is important to note here that the exact solution given by (2.82) can also be

obtained by determining the y-solution as discussed above. This is left as an exercise
to the reader.
Example 3. Solve the following homogeneous partial differential equation

xux + uy = 3u, u(x,0) = x2, u(0,y) = 0. (2.83)

Solution.

In an operator form, Eq. (2.83) becomes

Lyu(x,y) = 3u(x,y)− xLxu(x,y). (2.84)

Applying the inverse operator L−1
y to both sides of (2.84) and using the given con-

dition u(x,0) = x2 yields

u(x,y) = x2 + L−1
y (3u− xLx u). (2.85)

Substituting u(x,y) = ∑∞
n=0 un(x,y) into both sides of (2.85) gives

∞

∑
n=0

un(x,y) = x2 + L−1
y

(
3

(
∞

∑
n=0

un(x,y)

)
− xLx

(
∞

∑
n=0

un(x,y)

))
. (2.86)

By considering few terms of the decomposition of u(x,y), Eq. (2.86) becomes

u0 + u1 + u2 + · · ·= x2 + L−1
y (3(u0 + u1 + · · ·)− xLx(u0 + u1 + u2 + · · ·)) . (2.87)

Proceeding as before, we identify the recursive scheme

u0(x,y) = x2,
uk+1(x,y) = L−1

y (3uk− xLxuk), k � 0.
(2.88)

The components u0,u1,u2, · · · are thus determined as follows:

u0(x,y) = x2,

u1(x,y) = L−1
y (3u0− xLx u0) = x2y,
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u2(x,y) = L−1
y (3u1− xLx u1) =

x2y2

2!
,

u3(x,y) = L−1
y (3u2− xLx u2) =

x2y3

3!
,

...

(2.89)

Consequently, the solution is given by

u(x,y) = u0 + u1 + u2 + · · ·= x2(1 + y +
y2

2!
+ · · ·) = x2ey. (2.90)

Example 4. Solve the following homogeneous partial differential equation

ux− yu = 0, u(0,y) = 1. (2.91)

Solution.

In an operator form, Eq. (2.91) becomes

Lx u(x,y) = yu(x,y), (2.92)

where the operator Lx is defined as

Lx =
∂
∂ x

. (2.93)

Applying the integral operator L−1
x to both sides of (2.92) and using the given con-

dition that u(0,y) = 1 gives

u(x,y) = 1 + L−1
x (yu(x,y)). (2.94)

Following the discussion presented above, we define the unknown function u(x,y)
by the decomposition series

u(x,y) =
∞

∑
n=0

un(x,y). (2.95)

Inserting (2.95) into both sides of (2.94) gives

∞

∑
n=0

un(x,y) = 1 + L−1
x

(
y

∞

∑
n=0

un(x,y)

)
, (2.96)

or equivalently

u0 + u1 + u2 + · · ·= 1 + L−1
x (y(u0 + u1 + u2 + · · ·)) , (2.97)

by considering few terms of the decomposition of u(x,y). The components u0,u1,
u2, · · · are thus determined by using the recursive relationship as follows:
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u0(x,y) = 1,
u1(x,y) = L−1

x (yu0) = xy,

u2(x,y) = L−1
x (yu1) =

1
2!

x2y2,

u3(x,y) = L−1
x (yu2) =

1
3!

x3y3,

(2.98)

and so on for other components. Consequently, the solution in a series form is given
by

u(x,y) = u0(x,y)+ u1(x,y)+ u2(x,y)+ · · · ,
= 1 + xy +

1
2!

x2y2 +
1
3!

x3y3 + · · · , (2.99)

and in a closed form
u(x,y) = exy. (2.100)

Example 5. Solve the following homogeneous PDE

ut + cux = 0, u(x,0) = x, (2.101)

where c is a constant.

Solution.

In an operator form, Eq. (2.101) can be rewritten as

Lt u(x,t) =−cLxu, (2.102)

where the operator Lt is defined as

Lt =
∂
∂ t

. (2.103)

It is clear that the operator Lt is invertible, and the inverse operator L−1
t is an indefi-

nite integral from 0 to t. Applying the integral operator L−1
t to both sides of (2.102)

and using the given condition that u(x,0) = x yields

u(x,t) = x− cL−1
t (Lx u(x,t)). (2.104)

Proceeding as before, we substitute the decomposition series for u(x,t) into both
sides of (2.104) to obtain

∞

∑
n=0

un(x,t) = x− cL−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (2.105)

Using few terms of the decomposition of u(x,y), Eq. (2.105) becomes
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u0 + u1 + u2 + · · ·= x− cL−1
t (Lx(u0 + u1 + u2 + · · ·)) . (2.106)

The components u0,u1,u2, · · · can be determined by using the recursive relationship
as follows:

u0(x,t) = x,
u1(x,t) = −cL−1

t (Lx u0) =−ct,
u2(x,t) = −cL−1

t (Lx u1) = 0.

(2.107)

We can easily observe that uk = 0, k � 2. It follows that the solution in a closed form
is given by

u(x,t) = x− ct. (2.108)

Example 6. Solve the following partial differential equation

ux + uy + uz = u, u(0,y,z) = 1 + ey + ez,

u(x,0,z) = 1 + ex + ez, u(x,y,0) = 1 + ex + ey, (2.109)

where u = u(x,y,z).

Solution.

In an operator form, Eq. (2.109) can be rewritten as

Lx u(x,y,z) = u−Ly u−Lz u, (2.110)

where the operators Lx,Ly and Lz are defined by

Lx =
∂
∂x

, Ly =
∂
∂y

, Lz =
∂
∂ z

. (2.111)

Assume that the operator Lx is invertible, and the inverse operator L−1
x is an indefi-

nite integral from 0 to x. Applying the integral operator L−1
x to both sides of (2.110)

and using the given condition that u(0,y,z) = 1 + ey + ez yields

u(x,y,z) = 1 + ey + ez + L−1
x (u−Ly u−Lz u) . (2.112)

Proceeding as before, we substitute the decomposition

u(x,y,z) =
∞

∑
n=0

un(x,y,z) (2.113)

into both sides of (2.112) to find

∞

∑
n=0

un(x,y,z) = 1 + ey + ez + L−1
x

(
∞

∑
n=0

un−Ly(
∞

∑
n=0

un)−Lz(
∞

∑
n=0

un)

)
. (2.114)

Using few terms of the decomposition of u(x,y,z), Eq. (2.114) becomes
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u0 + u1 + u2 + · · · = 1 + ey + ez + L−1
x (u0 + u1 + u2 + · · ·)

−L−1
x (Ly(u0 + u1 + u2 + · · ·))

−L−1
x (Lz(u0 + u1 + u2 + · · ·)) . (2.115)

The components u0,u1,u2, · · · can be determined recurrently as follows

u0(x,y,z) = 1 + ey + ez,
u1(x,y,z) = L−1

x (u0−Ly u0−Lz u0) = x,

u2(x,y,z) = L−1
x (u1−Ly u1−Lz u1) =

1
2!

x2,

u3(x,y,z) = L−1
x (u2−Ly u2−Lz u2) =

1
3!

x3,

(2.116)

and so on. Consequently, the solution in a series form is given by

u(x,y,z) = (1 + x +
1
2!

x2 +
1
3!

x3 + · · ·)+ ey + ez, (2.117)

and in a closed form
u(x,y,z) = ex + ey + ez. (2.118)

It is interesting to note that we can easily show that the y-solution and the z-solution
will also give the same solution as in (2.118).

In closing this section, we point out that Adomian decomposition method works
effectively for nonlinear differential equations. However, an algorithm is needed to
express the nonlinear terms contained in the nonlinear equation. The implementa-
tion of the decomposition method to handle the nonlinear differential equations will
be explained in details in Chapter 8.

Exercises 2.2

In exercises 1–4, use the decomposition method to show that the exact solution can
be obtained by determining the x-solution or the y-solution:

1. ux + uy = 2xy2 + 2x2y, u(x,0) = 0, u(0,y) = 0

2. ux + uy = 2x + 2y, u(x,0) = x2,u(0,y) = y2

3. ux + yu = 0, u(x,0) = 1, u(0,y) = 1

4. ux + uy = u, u(x,0) = 1 + ex, u(0,y) = 1 + ey

In exercises 5–12, use the decomposition method to solve the following partial dif-
ferential equations:

5. ux + uy = 2u, u(x,0) = ex, u(0,y) = ey
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6. ux−uy = 2, u(x,0) = x, u(0,y) =−y

7. ux + uy = x2 + y2, u(x,0) =
1
3

x3, u(0,y) =
1
3

y3

8. xux + uy = u, u(x,0) = 1 + x, u(0,y) = ey

9. ux + yuy = u, u(x,0) = ex, u(0,y) = 1 + y

10. xux + uy = 2u, u(x,0) = x, u(0,y) = 0

11. ux + yuy = 2u, u(x,0) = 0, u(0,y) = y

12. ux + uy = 0, u(x,0) = ex, u(0,y) = e−y

In exercises 13–16, use the decomposition method to solve the following partial
differential equations:

13. ux + uy + uz = 3, u(0,y,z) = y + z, u(x,0,z) = x + z, u(x,y,0) = x + y

14. ux + uy + uz = 3u, u(0,y,z) = ey+z, u(x,0,z) = ex+z, u(x,y,0) = ex+y

15. ux + yuy + zuz = 3u, u(0,y,z) = yz, u(x,0,z) = 0, u(x,y,0) = 0

16. ux + yuy + zuz = u, u(0,y,z) = 1 + y + z, u(x,0,z) = z+ ex, u(x,y,0) = y + ex

In exercises 17–20, use the decomposition method to solve the following partial
differential equations:

17. ux−uy = 1 + 2x + 2y, u(0,y) = y + y2, u(x,0) = 2x + 3x2

18. ux−uy = 0, u(0,y) = y + y2, u(x,0) = x + x2

19. ux−uy = 0, u(0,y) = sin y, u(x,0) = sinx

20. ux−uy = 0, u(0,y) = coshy, u(x,0) = coshx

2.3 The Noise Terms Phenomenon

In this section, we will present a useful tool that will accelerate the convergence
of the Adomian decomposition method. The noise terms phenomenon provides a
major advantage in that it demonstrates a fast convergence of the solution. It is im-
portant to note here that the noise terms phenomenon, that will be introduced in this
section, may appear only for inhomogeneous PDEs. In addition, this phenomenon is
applicable to all inhomogeneous PDEs of any order and will be used where appro-
priate in the coming chapters. The noise terms, if existed in the components u0 and
u1, will provide, in general, the solution in a closed form with only two successive
iterations.
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In view of these remarks, we now outline the ideas of the noise terms :
1. The noise terms are defined as the identical terms with opposite signs that arise
in the components u0 and u1. As stated above, these identical terms with opposite
signs may exist only for inhomogeneous differential equations.
2. By canceling the noise terms between u0 and u1, even though u1 contains further
terms, the remaining non-canceled terms of u0 may give the exact solution of the
PDE. Therefore, it is necessary to verify that the non-canceled terms of u0 satisfy
the PDE under discussion.

On the other hand, if the non-canceled terms of u0 did not satisfy the given PDE,
or the noise terms did not appear between u0 and u1, then it is necessary to deter-
mine more components of u to determine the solution in a series form.
3. It was formally shown that the noise terms appear for specific cases of inhomo-
geneous equations, whereas homogeneous equations do not show noise terms. The
conclusion about the self-canceling noise terms was based on observations drawn
from solving specific models where no proof was presented. For further readings
about the noise terms phenomenon, see [8,10].
4. It was formally proved by researchers that a necessary condition for the appear-
ance of the noise terms is required. The conclusion made in [8,10] is that the zeroth
component u0 must contain the exact solution u among other terms. Moreover, it was
shown that the nonhomogenity condition does not always guarantee the appearance
of the noise terms as examined in [8,10].

A useful summary about the noise terms phenomenon can be drawn as follows:
1. The noise terms are defined as the identical terms with opposite signs that may
appear in the components u0 and u1.
2. The noise terms appear only for specific types of inhomogeneous equations
whereas noise terms do not appear for homogeneous equations.
3. Noise terms may appear if the exact solution is part of the zeroth component u0.
4. Verification that the remaining non-canceled terms satisfy the equation is neces-
sary and essential.

The phenomenon of the useful noise terms will be explained by the following
illustrative examples.

Example 1. Use the decomposition method and the noise terms phenomenon to
solve the following inhomogeneous PDE

ux + uy = (1 + x)ey, u(0,y) = 0, u(x,0) = x. (2.119)

Solution.

The inhomogeneous PDE can be rewritten in an operator form by

Lxu = (1 + x)ey−Ly u. (2.120)

Clearly Lx is invertible and therefore the inverse operator L−1
x exists. Applying L−1

x
to both sides of (2.120) and using the given condition leads to
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u(x,y) = (x +
x2

2!
)ey−L−1

x (Lyu). (2.121)

Using the decomposition series u(x,y) = ∑∞
n=0 un(x,y) into (2.121) gives

∞

∑
n=0

un(x,y) = (x +
x2

2!
)ey−L−1

x

(
Ly

(
∞

∑
n=0

un(x,y)

))
, (2.122)

or equivalently

u0 + u1 + u2 + · · ·= (x +
x2

2!
)ey−L−1

x (Ly(u0 + u1 + u2 + · · ·)) . (2.123)

Proceeding as before, the components u0,u1,u2, · · · are determined in a recursive
manner by

u0(x,y) =

(
x +

x2

2!

)
ey,

u1(x,y) = −L−1
x (Ly u0) =−

(
x2

2!
+

x3

3!

)
ey,

u2(x,y) = −L−1
x (Ly u1) =

(
x3

3!
+

x4

4!

)
ey.

(2.124)

Considering the first two components u0 and u1 in (2.124), it is easily observed that

the noise terms
x2

2!
ey and −x2

2!
ey appear in u0 and u1 respectively. By canceling the

noise term
x2

2!
ey in u0, and by verifying that the remaining non-canceled terms of u0

satisfy Eq. (2.119), we find that the exact solution is given by

u(x,y) = xey. (2.125)

Notice that the exact solution is verified through substitution in the equation (2.119)
and not only upon the appearance of the noise terms. In addition, the other noise
terms that appear between other components will vanish in the limit.

Example 2. Use the decomposition method and the noise terms phenomenon to
solve the following inhomogeneous PDE

ux + yuy = y(coshx + sinhx), u(0,y) = y, u(x,0) = 0. (2.126)

Solution.

The inhomogeneous PDE can be rewritten in an operator form by

Lx u(x,y) = y(coshx + sinhx)− yLy u. (2.127)

Applying L−1
x to both sides of (2.127) and using the given condition gives
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u(x,y) = 1 + ysinhx + ycoshx− y−L−1
x (yLyu). (2.128)

Substituting the decomposition series of u(x,y) into (2.128) gives

∞

∑
n=0

un(x,y) = 1 + ysinhx + ycoshx− y−L−1
x

(
yLy

(
∞

∑
n=0

un(x,y)

))
, (2.129)

or equivalently

u0 + u1 + u2 + · · · = 1 + ysinhx + ycoshx− y

−L−1
x (yLy(u0 + u1 + u2 + · · ·)) . (2.130)

Identifying the zeroth component u0 as discussed before, the components u0,u1,u2, · · ·
can be determined in a recursive manner by

u0(x,y) = 1 + ysinhx + ycoshx− y,
u1(x,y) = −L−1

x (yLy u0) =−y(coshx + sinhx)+ y(x + 1).
(2.131)

It is easily observed that three noise terms ±ycoshx,∓y and ±ysinhx appear in u0

and u1. By canceling the noise terms in u0, the remaining non-canceled term of u0

satisfies the given conditions, but does not satisfy the PDE. However, canceling the
first two noise terms gives the exact solution

u(x,y) = 1 + ysinhx. (2.132)

This can be verified through substitution in equation (2.126).

Example 3. Use the decomposition method and the noise terms phenomenon to
solve the following PDE:

ux + uy = x2 + 4xy + y2, u(0,y) = 0, u(x,0) = 0. (2.133)

Solution.

We first rewrite the inhomogeneous PDE (2.133) in an operator form

Lx u = x2 + 4xy + y2−Ly u. (2.134)

Proceeding as before and applying the inverse operator L−1
x to both sides of (2.134)

and using the given condition we obtain

u(x,y) =
1
3

x3 + 2x2y + xy2−L−1
x (Ly u(x,y)) . (2.135)

Proceeding as before, the first two components u0 and u1 are given by
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u0(x,y) =
1
3

x3 + 2x2y + xy2,

u1(x,y) = −L−1
x (Ly u0) =−x2y− 2

3
x3.

(2.136)

We can easily observe that the two components u0 and u1 do not contain noise terms.
This confirms our belief that although the PDE is an inhomogeneous equation, but
the noise terms between the first two components did not exist in this problem.
Unlike the previous examples, we should determine more components to obtain an
insight through the solution. Therefore, other components should be determined.
Hence we find

u2(x,y) = −L−1
x (−x2) =

1
3

x3,

uk(x,y) = 0, k � 3.
(2.137)

Based on the result we obtained for u2, other components of u(x,y) will vanish.
Consequently, we find that

u(x,y) = u0 + u1 + u2 + · · · ,

=
1
3

x3 + 2x2y + xy2− x2y− 2
3

x3 +
1
3

x3 = xy2 + x2y,
(2.138)

the exact solution of the equation even though we do not have noise terms.

Exercises 2.3

In Exercises 1–12, use the decomposition method and the noise terms phenomenon
to solve the following partial differential equations:

1. ux + uy = 3x2 + 3y2, u(x,0) = x3, u(0,y) = y3

2. ux + uy = sinhx + sinhy, u(x,0) = 1 + coshx,u(0,y) = 1 + coshy

3. ux + uy = x + y, u(x,0) = u(0,y) = 0

4. ux−uy = cosx + siny, u(x,0) = 1 + sinx, u(0,y) = cosy

5. ux + uy = sinx + siny + xcosy + ycosx, u(x,0) = u(0,y) = 0

6. ux−uy = cosx + cosy + xsiny + ysinx, u(x,0) = x, u(0,y) =−y

7. ux + uy = (1 + y)ex +(1 + x)ey, u(x,0) = x, u(0,y) = y

8. ux−uy = (1 + y)e−x +(1 + x)e−y, u(x,0) = x, u(0,y) =−y

9. ux + yuy−u = 2xy2 + x2y2, u(x,0) = u(0,y) = 0

10. ux + yuy−u = xy2 + y2 + 2xy, u(x,0) = u(0,y) = 0
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11. ux + uy = cosx + sinhy, u(x,0) = 1 + sinx, u(0,y) = coshy

12. ux + uy = u + ey, u(x,0) = x, u(0,y) = 0

In Exercises 13–18, show that the noise terms do not appear in the first two compo-
nents of the solution of the inhomogeneous partial differential equations. Find the
exact solution.

13. ux + uy = 2xy3 + 6x2y2 + 2x3y, u(x,0) = u(0,y) = 0

14. ux−uy = 3x2y4−3x4y2, u(x,0) = u(0,y) = 0

15. ux−uy = 0, u(x,0) = x2,u(0,y) = y2

16. ux + uy = 4x + 4y, u(x,0) = x2,u(0,y) = y2

17. ux + uy = x + y, u(x,0) = x2,u(0,y) = y2

18. ux + uy = 1 + u− x, u(x,0) = 1 + x + ex,u(0,y) = 1 + ey

2.4 The Modified Decomposition Method

In this section we will introduce a reliable modification of the Adomian decompo-
sition method developed by Wazwaz and presented in [7]. The modified decompo-
sition method will further accelerate the convergence of the series solution. It is to
be noted that the modified decomposition method will be applied, wherever it is ap-
propriate, to all partial differential equations of any order. The modification will be
outlined in this section and will be employed in this section and in other chapters as
well.

To give a clear description of the technique, we consider the partial differential
equation in an operator form

Lu + Ru = g, (2.139)

where L is the highest order derivative, R is a linear differential operator of less order
or equal order to L, and g is the source term. Operating with the inverse operator L−1

on (2.139) we obtain
u = f −L−1(Ru), (2.140)

where f represents the terms arising from the given initial condition and from inte-
grating the source term g. We then proceed as discussed in Section 2.2 and define
the solution u as an infinite sum of components defined by

u =
∞

∑
n=0

un. (2.141)

The aim of the decomposition method is to determine the components un, n � 0
recurrently and elegantly. To achieve this goal, the decomposition method admits
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the use of the recursive relation

u0 = f ,
uk+1 = −L−1(Ruk), k � 0.

(2.142)

In view of (2.142), the components un, n � 0 are readily obtained.
The modified decomposition method introduces a slight variation to the recursive

relation (2.142) that will lead to the determination of the components of u in a faster
and easier way. For specific cases, the function f can be set as the sum of two partial
functions, namely f1 and f2. In other words, we can set

f = f1 + f2. (2.143)

Using (2.143), we introduce a qualitative change in the formation of the recursive
relation (2.142). To reduce the size of calculations, we identify the zeroth compo-
nent u0 by one part of f , namely f1 or f2. The other part of f can be added to the
component u1 among other terms. In other words, the modified recursive relation
can be identified by

u0 = f1,
u1 = f2−L−1(Ru0),

uk+1 = −L−1(Ruk), k � 1.
(2.144)

An important point can be made here in that we suggest a change in the formation
of the first two components u0 and u1 only. Although this variation in the formation
of u0 and u1 is slight, however it plays a major role in accelerating the convergence
of the solution and in minimizing the size of calculations.

Two important remarks related to the modified method [7] can be made here.
First, by proper selection of the functions f1 and f2, the exact solution u may be
obtained by using very few iterations, and sometimes by evaluating only two com-
ponents. The success of this modification depends only on the choice of f1 and f2,
and this can be made through trials. Second, if f consists of one term only, the
standard decomposition method should be employed in this case.

It is worth mentioning that the modified decomposition method will be used for
linear and nonlinear equations of any order. In the coming chapters, it will be used
wherever it is appropriate.

The modified decomposition method will be illustrated by discussing the follow-
ing examples.

Example 1. Use the modified decomposition method to solve the first order partial
differential equation:

ux + uy = 3x2y3 + 3x3y2, u(0,y) = 0. (2.145)

Solution.

In an operator form, Eq. (2.145) becomes

Lxu = 3x2y3 + 3x3y2−uy, (2.146)
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where Lx is a first order partial derivative with respect to x. Applying the inverse
operator L−1

x to both sides of (2.146) gives

u(x,y) = x3y3 +
3
4

x4y2−L−1
x (uy). (2.147)

The function f (x,y) consists of two terms, hence we set

f1(x,y) = x3y3,

f2(x,y) =
3
4

x4y2.
(2.148)

In view of (2.148) we introduce the modified recursive relation

u0(x,y) = x3y3,

u1(x,y) =
3
4

x4y2−L−1
x (u0)y,

uk+1(x,y) = −L−1
x (uk)y, k � 1.

(2.149)

This gives
u0(x,y) = x3y3,

u1(x,y) =
3
4

x4y2−L−1
x (3x3y2) = 0,

uk+1(x,y) = 0, k � 1.

(2.150)

It then follows that the solution is

u(x,y) = x3y3. (2.151)

This example clearly shows that the solution can be obtained by using two iterations,
and hence the volume of calculations is reduced.

Example 2. Use the modified decomposition method to solve the first order partial
differential equation:

ux−uy = x3− y3, u(0,y) =
1
4

y4. (2.152)

Solution.

In an operator form, Eq. (2.152) becomes

Lxu = x3− y3 + uy, (2.153)

where Lx is a first order partial derivative with respect to x. Proceeding as before we
obtain

u(x,y) =
1
4

y4 +
1
4

x4− xy3 + L−1
x (uy). (2.154)
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We next split the function f (x,y) as follows

f1(x,y) =
1
4

y4 +
1
4

x4,

f2(x,y) = −xy3.
(2.155)

Consequently, we set the modified recursive relation

u0(x,y) =
1
4

y4 +
1
4

x4,

u1(x,y) = −xy3 + L−1
x (u0y),

uk+1(x,y) = L−1
x (uky), k � 1.

(2.156)

This gives

u0(x,y) =
1
4

y4 +
1
4

x4,

u1(x,y) = −xy3 + L−1
x (y3) = 0,

uk+1(x,y) = 0, k � 1.

(2.157)

The exact solution

u(x,y) =
1
4

x4 +
1
4

y4, (2.158)

follows immediately.

Example 3. Use the modified decomposition method to solve the first order partial
differential equation:

ux + uy = u, u(0,y) = 1 + ey. (2.159)

Solution.

Operating with the inverse operator L−1
x on (2.159) and using the given condition

gives
u(x,y) = 1 + ey + L−1

x (u−uy). (2.160)

We next split function f (x,y) as follows

f1(x,y) = ey,
f2(x,y) = 1.

(2.161)

To determine the components of u(x,y), we set the modified recursive relation

u0(x,y) = ey,
u1(x,y) = 1 + L−1

x (u0− (u0)y) ,
uk+1(x,y) = L−1

x (uk− (uk)y) , k � 1.
(2.162)

This gives
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u0(x,y) = ey,
u1(x,y) = 1,
u2(x,y) = x,

u3(x,y) =
x2

2!
,

(2.163)

and so on. The solution in a series form is given by

u(x,y) = ey +(1 + x +
x2

2!
+

x3

3!
+ · · ·), (2.164)

and in a closed form by
u(x,y) = ex + ey. (2.165)

Example 4. Use the modified decomposition method to solve the first order partial
differential equation:

ux + uy = coshx + coshy, u(x,0) = sinhx. (2.166)

Solution.

To effectively use the given condition, we rewrite (2.166) in an operator form by

Lyu = coshx + coshy−ux. (2.167)

Applying the inverse operator L−1
y on (2.167) and using the given condition gives

u(x,y) = sinhx + sinhy + ycoshx−L−1
y (ux). (2.168)

The function f (x,y) can be written as f1 + f2 where

f1(x,y) = sinhx + sinhy,
f2(x,y) = ycoshx.

(2.169)

To determine the components of u(x,y), we set the modified recursive relation

u0(x,y) = sinhx + sinhy,
u1(x,y) = ycoshx−L−1

y ((u0)x) = 0,

uk+1(x,y) = −L−1
y ((uk)x) = 0, k � 1.

(2.170)

The exact solution
u(x,y) = sinhx + sinhy, (2.171)

follows immediately.
It is interesting to point out that two iterations only were used to determine the

exact solution. However, using the following formation
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f1(x,y) = sinhx,
f2(x,y) = sinhy + ycoshx,

(2.172)

for f (x,y) will give the following recursive relation

u0(x,y) = sinhx,
u1(x,y) = sinhy + ycoshx−L−1

y (coshx) = sinhy,
uk+1(x,y) = 0, k � 1.

(2.173)

It is obvious from (2.173) that all components u j = 0, j � 2.
Consequently, the exact solution is

u(x,y) = sinhx + sinhy, (2.174)

obtained by using the first two components only.

Exercises 2.4

Use the modified decomposition method to solve the following first order partial
differential equations:

1. ux + uy = 3x2 + 3y2, u(0,y) = y3

2. ux−uy = 2x + 2y, u(0,y) =−y2

3. ux + uy = 4x + 4y, u(0,y) = y2

4. ux + uy = sinhx + sinhy, u(0,y) = 1 + coshy

5. ux−uy = cosx + siny, u(0,y) = cosy

6. ux + yuy−u = 2xy2 + x2y2, u(0,y) = 0

7. ux−uy = cosx− cosy, u(0,y) = siny

8. ux + uy = u, u(0,y) = 1− ey

9. xux + uy = 2x2 + 3y2, u(0,y) = y3

10. ux + uy = 2x + cosy, u(0,y) = 1 + siny

11. ux + xuy = 1 + xcoshy, u(0,y) = 1 + sinhy

12. ux− xuy = cosx− xcoshy, u(0,y) = sinhy
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2.5 The Variational Iteration Method

It was stated before that Adomian decomposition method, with its modified form
and the noise terms phenomenon, and some of the traditional methods will be used
in this text. The other well-known methods, such as the inverse scattering method,
the pseudo spectral method, Backlund transformation method and other traditional
methods will not be used here because it can be found in many other texts.

In addition to Adomian decomposition method, the newly developed variational
iteration method will be applied. The variational iteration method (VIM) established
by Ji-Huan He [5] is thoroughly used by mathematicians to handle a wide variety of
scientific and engineering applications: linear and nonlinear, and homogeneous and
inhomogeneous as well. It was shown that this method is effective and reliable for
analytic and numerical purposes. The method gives rapidly convergent successive
approximations of the exact solution if such a solution exists. The VIM does not
require specific treatments for nonlinear problems as in Adomian method, perturba-
tion techniques, etc. In what follows, we present the main steps of the method.

Consider the differential equation

Lu + Nu = g(t), (2.175)

where L and N are linear and nonlinear operators respectively, and g(t) is the source
inhomogeneous term.

The variational iteration method presents a correction functional for Eq. (2.175)
in the form

un+1(t) = un(t)+
∫ t

0
λ (ξ )(Lun(ξ )+ N ũn(ξ )−g(ξ )) dξ , (2.176)

where λ is a general Lagrange multiplier, which can be identified optimally via the
variational theory, and ũn is a restricted variation which means δ ũn = 0.

It is obvious now that the main steps of the He’s variational iteration method
require first the determination of the Lagrange multiplier λ (ξ ) that will be identified
optimally. Integration by parts is usually used for the determination of the Lagrange
multiplier λ (ξ ). In other words we can use∫

λ (ξ )u′n(ξ )dξ = λ (ξ )un(ξ )− ∫
λ ′(ξ )un(ξ )dξ ,∫

λ (ξ )u′′n(ξ )dξ = λ (ξ )u′n(ξ )−λ ′(ξ )un(ξ )+
∫

λ ′′(ξ )un(ξ )dξ ,
(2.177)

and so on. The last two identities can be obtained by integrating by parts.
Having determined the Lagrange multiplier λ (ξ ), the successive approximations

un+1,n � 0, of the solution u will be readily obtained upon using any selective func-
tion u0. Consequently, the solution

u = lim
n→∞

un. (2.178)
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In other words, the correction functional (2.176) will give several approximations,
and therefore the exact solution is obtained as the limit of the resulting successive
approximations.

The variational iteration method will be used now to study the same examples
used before in section 2.2 to help for comparison reasons.

Example 1. Use variational iteration method to solve the following inhomogeneous
PDE

ux + uy = x + y, u(0,y) = 0, u(x,0) = 0. (2.179)

Solution.

The correction functional for equation (2.179) is

un+1(x,y) = un(x,y)+
∫ x

0
λ (ξ )

(
∂un(ξ ,y)

∂ξ
+

∂ ũn(ξ ,y)
∂y

− ξ − y

)
dξ . (2.180)

Using (2.177), the stationary conditions

1 + λ |ξ=x = 0,
λ ′|ξ=x = 0,

(2.181)

follow immediately. This in turn gives

λ =−1. (2.182)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (2.180)
gives the iteration formula

un+1(x,y) = un(x,y)−
∫ x

0

(
∂un(ξ ,y)

∂ξ
+

∂un(ξ ,y)
∂ y

−ξ − y

)
dξ , n � 0. (2.183)

As stated before, we can select u0(x,y) = u(0,y) = 0 from the given conditions.
Using this selection into (2.183) we obtain the following successive approximations

u0(x,y) = 0,

u1(x,y) = 0−
∫ x

0

(
∂u0(ξ ,y)

∂ξ
+

∂u0(ξ ,y)
∂ y

−ξ − y

)
dξ =

1
2

x2 + xy,

u2(x,y) =
1
2

x2 + xy−
∫ x

0

(
∂u1(ξ ,y)

∂ξ
+

∂u1(ξ ,y)
∂y

− ξ − y

)
dξ = xy,

u3(x,y) = xy−
∫ x

0

(
∂ u2(ξ ,y)

∂ξ
+

∂ u2(ξ ,y)
∂y

− ξ − y

)
dξ = xy,

...
un(x,y) = xy.

(2.184)

The VIM admits the use of
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u(x,y) = lim
n→∞

un(x,y), (2.185)

that gives the exact solution by

u(x,y) = xy. (2.186)

Example 2. Solve the following homogeneous partial differential equation by the
variational iteration method

ux−uy = 0, u(0,y) = y, u(x,0) = x. (2.187)

Solution.

The correction functional for Eq. (2.187) is

un+1(x,y) = un(x,y)+

∫ x

0
λ (ξ )

(
∂un(ξ ,y)

∂ξ
− ∂ ũn(ξ ,y)

∂ y

)
dξ . (2.188)

This gives the stationary conditions

1 + λ |ξ=x = 0,
λ ′|ξ=x = 0.

(2.189)

This gives
λ =−1. (2.190)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (2.188)
gives the iteration formula

un+1(x,y) = un(x,y)−
∫ x

0

(
∂un(ξ ,y)

∂ξ
− ∂un(ξ ,y)

∂ y

)
dξ , n � 0. (2.191)

We now select u0(x,y) = u(0,y) = y from the given conditions. Using this selection
into (2.191) we obtain the following successive approximations

u0(x,y) = y,

u1(x,y) = y−
∫ x

0

(
∂u0(ξ ,y)

∂ξ
− ∂u0(ξ ,y)

∂ y

)
dξ = x + y,

u2(x,y) = x + y−
∫ x

0

(
∂u1(ξ ,y)

∂ξ
− ∂u1(ξ ,y)

∂ y

)
dξ = x + y,

...
un(x,y) = x + y.

(2.192)

The VIM gives the exact solution by

u(x,y) = x + y. (2.193)
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Example 3. Use the variational iteration method to solve the following homoge-
neous partial differential equation

uy + xux = 3u, u(x,0) = x2, u(0,y) = 0. (2.194)

Solution.

un+1(x,y) = un(x,y)+
∫ y

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+ x

∂ ũn(x,ξ )

∂x
−3ũn(x,ξ )

)
dξ .

(2.195)
As presented before, the stationary conditions are

1 + λ |ξ=x = 0,
λ ′|ξ=x = 0,

(2.196)

and this gives
λ =−1. (2.197)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (2.195)
gives the iteration formula

un+1(x,y) = un(x,y)−
∫ y

0

(
∂ un(ξ ,y)

∂ξ
+ x

∂un(ξ ,y)
∂ x

−3un

)
dξ , n � 0. (2.198)

We can select u0(x,y) = x2 from the given conditions. Using this selection into
(2.198) we obtain the following successive approximations

u0(x,y) = x2,

u1(x,y) = x2−
∫ y

0

(
∂u0(x,ξ )

∂ξ
+ x

∂ u0(x,ξ )

∂x
−3u0(x,ξ )

)
dξ = x2 + x2y,

u2(x,y) = x2 + x2y−
∫ y

0

(
∂u1(x,ξ )

∂ξ
+ x

∂u1(x,ξ )

∂x
−3u1(x,ξ )

)
dξ

= x2 + x2y +
1
2!

x2y2,

u3(x,t) = x2 + x2y +
1
2!

x2y2−
∫ y

0

(
∂u2(x,ξ )

∂ξ
+ x

∂u2(x,ξ )

∂x
−3u2(x,ξ )

)
dξ

= x2 + x2y +
1
2!

x2y2 +
1
3!

x2y3,

...

un(x,y) = x2(1 + y +
1
2!

y2 +
1
3!

y3 +
1
4!

y4 + · · ·).
(2.199)

The VIM admits the use of

u(x,y) = lim
n→∞

un(x,y), (2.200)
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that gives the exact solution by

u(x,y) = x2ey. (2.201)

The last result is consistent with the result obtained before by Adomian method.

Example 4. Solve the following homogeneous partial differential equation

ux− yu = 0, u(0,y) = 1. (2.202)

Solution.

The correction functional for Eq. (2.202) is

un+1(x,y) = un(x,y)+

∫ x

0
λ (ξ )

(
∂ un(ξ ,y)

∂ξ
− yũn(ξ ,y)

)
dξ . (2.203)

As concluded before we find
λ =−1. (2.204)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (2.203)
gives the iteration formula

un+1(x,y) = un(x,y)−
∫ x

0

(
∂un(ξ ,y)

∂ξ
− yun(ξ ,y)

)
dξ , n � 0. (2.205)

As stated before, we can select u0(x,y) = 1 from the given conditions. Using this
selection into (2.205) we obtain the following successive approximations

u0(x,y) = 1,

u1(x,y) = 1−
∫ x

0

(
∂u0(ξ ,y)

∂ξ
− yu0(ξ ,y)

)
dξ = 1 + xy,

u2(x,y) = 1 + xy−
∫ x

0

(
∂u1(ξ ,y)

∂ξ
− yu1(ξ ,y)

)
dξ = 1 + xy +

1
2!

x2y2,

u3(x,t) = 1 + xy +
1
2!

x2y2−
∫ x

0

(
∂u2(ξ ,y)

∂ξ
− yu2(ξ ,y)

)
dξ ,

= 1 + xy +
1
2!

x2y2 +
1
3!

x3y3,

...

un(x,y) = 1 + xy +
1
2!

x2y2 +
1
3!

x3y3 + · · · .

(2.206)

Using the identity
u(x,y) = lim

n→∞
un(x,y), (2.207)

we obtain the exact solution by
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u(x,y) = exy. (2.208)

The last result is consistent with the result obtained before by Adomian method for
Example 4.

Example 5. Solve the following homogeneous PDE

ut + cux = 0, u(x,0) = x, (2.209)

where c is a constant.

Solution.

The correction functional for Eq. (2.209) is

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂ un(x,ξ )

∂ξ
+ c

∂ ũn(x,ξ )

∂x

)
dξ . (2.210)

This also gives
λ =−1. (2.211)

Consequently, we obtain the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ c

∂un(x,ξ )

∂x

)
dξ , n � 0. (2.212)

As stated before, we can select u0(x,t) = x from the given conditions. Using this
selection into (2.212) we obtain the following successive approximations

u0(x,t) = x,

u1(x,t) = x−
∫ t

0

(
∂u0(x,ξ )

∂ξ
+ c

∂ u0(x,ξ )

∂x

)
dξ = x− ct,

u2(x,t) = x− ct−
∫ t

0

(
∂u1(x,ξ )

∂ξ
+ c

∂u1(x,ξ )

∂x

)
dξ = x− ct,

u3(x,t) = x− ct−
∫ t

0

(
∂u2(x,ξ )

∂ξ
+ c

∂u2(x,ξ )

∂x

)
dξ = x− ct,

...
un(x,y) = x− ct.

(2.213)

This gives the exact solution by

u(x,t) = x− ct. (2.214)

Example 6. Solve the following partial differential equation

ux + uy + uz = u,

u(0,y,z) = 1 + ey + ez,
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u(x,0,z) = 1 + ex + ez,

u(x,y,0) = 1 + ex + ey, (2.215)

where u = u(x,y,z).

Solution.

The correction functional for equation (2.215) is

un+1(x,y,z) = un(x,y,z)

+

∫ x

0
λ (ξ )

(
∂un(ξ ,y,z)

∂ξ
+

∂ ũn(ξ ,y,z)
∂y

+
∂ ũn(ξ ,y,z)

∂ z
− ũn(ξ ,y,z)

)
dξ .

(2.216)
Proceeding as before, we find

λ =−1. (2.217)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (2.216)
gives the iteration formula

un+1(x,y,z) = un(x,y,z)

−
∫ x

0

(
∂un(ξ ,y,z)

∂ξ
+

∂un(ξ ,y,z)
∂y

+
∂un(ξ ,y,z)

∂ z
−un(ξ ,y,z)

)
dξ , n � 0.

(2.218)
We can select u0(x,y,z) = 1+ey +ez from the given conditions. Using this selection
into (2.218) we obtain the following successive approximations

u0(x,y,z) = 1 + ey + ez,

u1(x,y,z) = 1 + ey + ez

−
∫ x

0

(
∂u0(ξ ,y,z)

∂ξ
+

∂u0(ξ ,y,z)
∂y

+
∂u0(ξ ,y,z)

∂ z
−u0(ξ ,y,z)

)
dξ

= 1 + x + ey + ez,

u2(x,y,z) = 1 + x + ey + ez

−
∫ x

0

(
∂u1(ξ ,y,z)

∂ξ
+

∂u1(ξ ,y,z)
∂y

+
∂u1(ξ ,y,z)

∂ z
−u1(ξ ,y,z)

)
dξ

= 1 + x +
1
2!

x2 + ey + ez,

u3(x,y,z) = 1 + x +
1
2!

x2 + ey + ez

−
∫ x

0

(
∂u2(ξ ,y,z)

∂ξ
+

∂u2(ξ ,y,z)
∂y

+
∂u2(ξ ,y,z)

∂ z
−u2(ξ ,y,z)

)
dξ
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= 1 + x +
1
2!

x2 +
1
3!

x3 + ey + ez,

...

un(x,y,z) = (1 + x +
1
2!

x2 +
1
3!

x3 + · · ·)+ ey + ez. (2.219)

As a result, the exact solution is given by

u(x,y,z) = ex + ey + ez. (2.220)

This result was obtained before by Adomian method for Example 6.

Exercises 2.5

Use the variational iteration method to solve 1–20 from Exercises 2.2.

2.6 Method of Characteristics

In this section, the first order partial differential equation

aux + buy = f (x,y)+ ku, u(0,y) = h(y) (2.221)

will be investigated by using the traditional method of characteristics. It is important
to note that a,b and f depend on x,y and u but not on the derivatives of u. In addition,
we also assume that a,b and f are continuously differentiable of their arguments.

Assuming that u(x,y) is a solution of (2.221), then by using the chain rule we
obtain

du = ux dx + uy dy. (2.222)

A close examination of (2.221) and (2.222) leads to the system of equations

dx
a

=
dy
b

=
du

f (x,y)+ ku
. (2.223)

The pair
dx
a

=
dy
b

, (2.224)

gives the solution
bx−ay = c, (2.225)

where c is a constant. We next consider the pair
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dx
a

=
du

f (x,y)+ ku
, (2.226)

or equivalently
dx
a

=
du

f (x,
bx− c

a
)+ ku

. (2.227)

Equation (2.227) can be rewritten as

du
dx
− k

a
u =

1
a

f (x,
bx− c

a
), (2.228)

a first order linear ordinary differential equation. The integrating factor of (2.228) is
given by

μ = e−
k
a x. (2.229)

Accordingly, the solution of (2.228) can be expressed in the form

u = G(x,c)+ c1, (2.230)

where
c1 = g(c), (2.231)

where g is an arbitrary function. Eq. (2.230) can be rewritten as

u = G(x,c)+ g(c). (2.232)

Using the given condition leads to the determination of g(c). Based on this and using
(2.225), the solution u(x,y) is readily obtained.

It is to be noted that first order partial differential equations in higher dimensions
will not be discussed in this section. The decomposition method can handle such
problems elegantly and easily if compared with the method of characteristics.

To give a clear overview of the method of characteristics, we will discuss some
of the examples presented before in Section 2.2 and Section 2.3. The illustration
can be used as a comparative study between the method of characteristics and the
decomposition method.

Example 1. Use the method of characteristics to solve the first order partial differ-
ential equation

ux + uy = x + y, u(x,0) = 0. (2.233)

Solution.

Following the discussion presented above we set the system of equations

dx
1

=
dy
1

=
du

x + y
. (2.234)

The left pair of (2.234) gives the solution
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x− y = c, (2.235)

where c is a constant. Using (2.235) into the right pair of (2.234) gives

dy
1

=
du

2y + c
, (2.236)

a separable differential equation that gives the solution

u(x,y) = y2 + cy + c1. (2.237)

Recall that
c1 = g(c), (2.238)

then (2.237) becomes

u(x,y) = y2 + y(x− y)+ g(x− y), (2.239)

where g(x−y) is an arbitrary function. To determine g(x−y) we substitute the given
condition into (2.239) to obtain

g(x) = 0, (2.240)

and therefore
g(x− y) = 0. (2.241)

Consequently, the solution is given by

u(x,y) = xy. (2.242)

Example 2. Use the method of characteristics to solve the first order partial differ-
ential equation

ux−uy = 0, u(x,0) = x. (2.243)

Solution.

Following Example 1, we set the system of equations

dx
1

=
dy
−1

, du = 0. (2.244)

The first equation of (2.244) gives the solution

x + y = c, (2.245)

where c is a constant. The second equation of (2.244) gives the solution

u(x,y) = c1. (2.246)

This means that
u(x,y) = c1 = g(c) = g(x + y), (2.247)
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where g(x+y) is an arbitrary function. Substituting the given condition into (2.247)
gives

g(x) = x, (2.248)

and therefore
g(x + y) = x + y. (2.249)

The solution is therefore given by

u(x,y) = x + y, (2.250)

obtained upon substituting (2.249) into (2.247).

Example 3. Use the method of characteristics to solve the first order partial differ-
ential equation

xux + uy = xsinhy + u, u(0,y) = 0. (2.251)

Solution.

Following the examples discussed above we set the system of equations

dx
x

=
dy
1

=
du

xsinhy + u
. (2.252)

The left pair of (2.252) gives the solution

x = cey. (2.253)

Substituting x = cey into the right pair of (2.252) gives

dy
1

=
du

cey sinhy + u
, (2.254)

that can be reduced to the first order linear ordinary differential equation

du
dy
−u = cey sinhy, (2.255)

that gives the solution
u(x,y) = ey (ccoshy + c1) . (2.256)

Using the given condition and noting that c = xe−y gives the solution

u(x,y) = xcoshy. (2.257)

Example 4. Use the method of characteristics to solve the first order partial differ-
ential equation

ux− yu = 0, u(0,y) = 1. (2.258)

Solution.
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First we set the system of equations

dx
1

=
du
yu

, dy = 0. (2.259)

The second equation gives the solution

y = c. (2.260)

Substituting y = c into the first equation of (2.259) gives

du
cu

=
dx
1

, (2.261)

which gives the solution
lnu = cx + g(c), (2.262)

or equivalently
lnu = cx + g(y). (2.263)

To determine g(y) we substitute the given condition into (2.263) to obtain

g(y) = 0, (2.264)

and therefore the solution is given by

u(x,y) = exy. (2.265)

Exercises 2.6

Use the method of characteristics to solve the following first order partial differential
equations:

1. ux + uy = 2x + 2y, u(x,0) = x2

2. ux + uy = u, u(x,0) = 1 + ex

3. ux + yu = 0, u(0,y) = 1

4. 3ux−2uy = 3sinx, u(0,y) = 3y−1

5. ux + uy = 2u, u(x,0) = ex

6. xux + uy = 2u, u(x,0) = x

7. ux + yuy = 2u, u(0,y) = y

8. ux + uy = sinhx + sinhy, u(0,y) = 1 + coshy

9. ux + uy = 2x + 2y, u(x,0) = 0
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10. ux + yuy = 2xy2 + 2x2y2, u(0,y) = 0

11. ux + kuy = 0, u(0,y) = y

12. ux−uy = 2, u(0,y) =−y

13. ux + uy = 1 + cosy, u(0,y) = siny

14. xux + uy = 2u, u(0,y) = 0

15. xux + yuy = 2u, u(0,y) = 0

16. 2ux + 3uy = 2u + ey, u(0,y) = 1 + ey

17. xux + yuy = 2xyu, u(0,y) = 1

18. ux + 4uy = 5u, u(0,y) = ey

19. xux + uy = xcoshy + u, u(0,y) = 0

20. ux + yuy = ysinhx + u, u(0,y) = y

2.7 Systems of Linear PDEs by Adomian Method

Systems of partial differential equations, linear or nonlinear, have attracted much
concern in studying evolution equations that describe wave propagation, in inves-
tigating shallow water waves, and in examining the chemical reaction-diffusion
model of Brusselator. The general ideas and the essential features of these systems
are of wide applicability. The commonly used methods are the method of charac-
teristics and the Riemann invariants among other methods. The existing techniques
encountered some difficulties in terms of the size of computational work needed,
especially when the system involves several partial differential equations.

To avoid the difficulties that usually arise from traditional strategies, the Ado-
mian decomposition method will form a reasonable basis for studying systems of
partial differential equations. The method, as we have seen before, has a useful at-
traction in that it provides the solution in a rapidly convergent power series with
elegantly computable terms. The Adomian decomposition method transforms the
system of partial differential equations into a set of recursive relations that can be
easily examined. Due to simplicity reasons, we will use in this section Adomian
decomposition method.

We first consider the system of partial differential equations written in an operator
form

Ltu + Lxv = g1,
Ltv + Lxu = g2,

(2.266)

with initial data
u(x,0) = f1(x),
v(x,0) = f2(x),

(2.267)
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where Lt and Lx are considered, without loss of generality, first order partial dif-
ferential operators, and g1 and g2 are inhomogeneous terms. Applying the inverse
operator L−1

t to the system (2.266) and using the initial data (2.267) yields

u(x,t) = f1(x)+ L−1
t g1−L−1

t Lxv,
v(x,t) = f2(x)+ L−1

t g2−L−1
t Lxu.

(2.268)

The Adomian decomposition method suggests that the linear terms u(x,t) and v(x,t)
be decomposed by an infinite series of components

u(x,t) = ∑∞
n=0 un(x,t),

v(x,t) = ∑∞
n=0 vn(x,t),

(2.269)

where un(x,t) and vn(x,t),n � 0 are the components of u(x,t) and v(x,t) that will
be elegantly determined in a recursive manner.

Substituting (2.269) into (2.268) gives

∞

∑
n=0

un(x,t) = f1(x)+ L−1
t g1−L−1

t

(
Lx(

∞

∑
n=0

vn)

)
,

∞

∑
n=0

vn(x,t) = f2(x)+ L−1
t g2−L−1

t

(
Lx(

∞

∑
n=0

un)

)
.

(2.270)

Following Adomian analysis, the system (2.266) is transformed into a set of recur-
sive relations given by

u0(x,t) = f1(x)+ L−1
t g1,

uk+1(x,t) = −L−1
t (Lx vk) , k � 0,

(2.271)

and
v0(x,t) = f2(x)+ L−1

t g2,

vk+1(x,t) = −L−1
t (Lx uk) , k � 0.

(2.272)

The zeroth components u0(x,t) and v0(x,t) are defined by all terms that arise from
initial data and from integrating the inhomogeneous terms. Having defined the ze-
roth pair (u0,v0), the pair (u1,v1) can be determined recurrently by using (2.271)
and (2.272). The remaining pairs (uk,vk), k � 2 can be easily determined in a par-
allel manner. Additional pairs for the decomposition series normally account for
higher accuracy. Having determined the components of u(x,t) and v(x,t), the solu-
tion (u,v) of the system follows immediately in the form of a power series expansion
upon using (2.269). The series obtained can be summed up in many cases to give a
closed form solution. For concrete problems, the n-term approximants can be used
for numerical purposes.

To give a clear overview of the content of this work, several illustrative examples
have been selected to demonstrate the efficiency of the method.

Example 1. We first consider the linear system:
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ut + vx = 0,
vt + ux = 0,

(2.273)

with the initial data
u(x,0) = ex,
v(x,0) = e−x,

(2.274)

Solution.

To derive the solution by using the decomposition method, we follow the recur-
sive relations (2.271) and (2.272) to obtain

u0(x,t) = ex,

uk+1(x,t) = −L−1
t Lx(vk), k � 0,

(2.275)

and
v0(x,t) = e−x,

vk+1(x,t) = −L−1
t Lx(uk), k � 0.

(2.276)

The remaining components are thus determined by

u1(x,t) = te−x, v1(x,t) = −tex,

u2(x,t) =
t2

2!
ex, v2(x,t) =

t2

2!
e−x,

u3(x,t) =
t3

3!
e−x, v3(x,t) = − t3

3!
ex,

(2.277)

and so on. Using (2.277) we obtain

u(x,t) = ex(1 +
t2

2!
+

t4

4!
+ · · ·)+ e−x(t +

t3

3!
+

t5

5!
+ · · ·),

v(x,t) = e−x(1 +
t2

2!
+

t4

4!
+ · · ·)− ex(t +

t3

3!
+

t5

5!
+ · · ·),

(2.278)

which has an exact analytical solution of the form

(u,v) = (ex cosh t + e−x sinh t,e−x cosh t− ex sinht). (2.279)

Example 2. Consider the linear system of partial differential equations

ut + ux + 2v = 0,
vt + vx−2u = 0,

(2.280)

with the initial data
u(x,0) = cosx,
v(x,0) = sin x.

(2.281)

Solution.
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Operating with L−1
t on (2.280) and using (2.281) we obtain

u(x,t) = cosx−L−1
t (2v + Lxu),

v(x,t) = sinx + L−1
t (2u−Lxv).

(2.282)

Using the series representation (2.269) into (2.282) admits the use of the system of
recursive relations

u0(x,t) = cosx,
uk+1(x,t) = −L−1

t (2vk + Lx(uk)) , k � 0,
(2.283)

and
v0(x,t) = sinx,

vk+1(x,t) = L−1
t (2uk−Lx(vk)) , k � 0.

(2.284)

Consequently, the pair of zeroth components is defined by

(u0,v0) = (cosx,sin x). (2.285)

Using (2.285) into (2.283) and (2.284) gives

u1(x,t) = −t sinx,
v1(x,t) = t cosx.

(2.286)

In a like manner we obtain the pairs

(u2,v2) = (− t2

2!
cosx,− t2

2!
sinx),

(u3,v3) = (
t3

3!
sinx,− t3

3!
cosx).

(2.287)

Combining the results obtained above we obtain

u(x,t) = cosx(1− t2

2!
+

t4

4!
−·· ·)− sinx(t− t3

3!
+

t5

5!
−·· ·),

v(x,t) = sinx(1− t2

2!
+

t4

4!
−·· ·)+ cosx(t− t3

3!
+

t5

5!
−·· ·),

(2.288)

so that the pair (u,v) is known in a closed form by

(u,v) = (cos(x + t),sin(x + t)) , (2.289)

obtained upon using Taylor series and trigonometric identities.
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Exercises 2.7

Use Adomian decomposition method to solve the following systems of first order
partial differential equations:

1. ut + vx− (u + v) = 0, vt + ux− (u + v) = 0,
u(x,0) = sinhx, v(x,0) = coshx

2. ut + ux−2v = 0, vt + vx + 2u = 0,
u(x,0) = sinx, v(x,0) = cosx

3. ut + ux−2vx = 0, vt + vx−2ux = 0,
u(x,0) = cosx, v(x,0) = cosx

4. ux− vt = 2, vx + ut = 2,
u(x,0) = x, v(x,0) = x

5. ux + vx = 2cosx, ut − vt = 2cost,
u(x,0) = sinx, v(x,0) = sinx

6. ut− vx +(u + v) = 0, vt −ux +(u + v) = 0,
u(x,0) = sinhx, v(x,0) = coshx

7. ut + vx−wy = w, vt + wx + uy = u, wt + vx− vy = v,
u(x,y,0) =−w(x,y,0) = sin(x + y), v(x,y,0) = cos(x + y)

8. ut + ux + 2w = 0, vt + vx + 2u = 0, wt + wx−2u = 0,
u(x,y,0) = sin(x + y), v(x,y,0) =−w(x,y,0) = cos(x + y)

9. ux + vy−wt = 1, vx + wy + ut = 1, wx + uy + vt = 1,
u(x,y,0) = x + y, v(x,y,0) = x + y, w(x,y,0) = x− y

10. ux + vt + wy = ex, vy + wx + ut = ey, wt + uy + vx = et ,
u(x,y,0) = ex, v(x,y,0) = ey, w(x,y,0) = 1

2.8 Systems of Linear PDEs by Variational Iteration Method

In this section we will apply the variational iteration method for solving systems of
linear partial differential equations. We write a system in an operator form by

Ltu + R1(u,v) = g1,
Ltv + R2(u,v) = g2,

(2.290)

where u = u(x,t), with initial data

u(x,0) = f1(x),
v(x,0) = f2(x),

(2.291)
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where Lt is considered a first order partial differential operator, and R j,1 � j � 3 are
linear operators, and g1, and g2 are source terms. Following the discussion presented
above for variational iteration method, the following correction functionals for the
system (2.290) can be set in the form

un+1(x,t) = un(x,t)+

∫ t

0
λ1 (Lun(ξ )+ R1( ũn, ṽn)−g1(ξ )) dξ ,

vn+1(x,t) = vn(x,t)+

∫ t

0
λ2 (Lvn(ξ )+ R2( ũn, ṽn)−g2(ξ )) dξ ,

(2.292)

where λ j, j = 1,2 are general Lagrange multipliers, which can be identified opti-
mally via the variational theory, and ũn, and ṽn as restricted variations which means
δ ũn = 0, and δ ṽn = 0. The Lagrange multipliers λ j, j = 1,2 will be identified op-
timally via integration by parts as introduced before. The successive approxima-
tions un+1(x,t) and vn+1(x,t),n � 0, of the solutions u(x,t) and v(x,t) will follow
immediately upon using the obtained Lagrange multipliers and by using selective
functions u0 and v0. The initial values may be used for the selective zeroth ap-
proximations. With the Lagrange multipliers λ j determined, several approximations
u j(x,t),v j(x,t), j � 0 can be computed. Consequently, the solutions are given by

u(x,t) = limn→∞ un(x,t),
v(x,t) = limn→∞ vn(x,t).

(2.293)

To give a clear overview of the analysis introduced above, the two examples
that were studied before will be used to explain the technique that we summarized
before, therefore we will keep the same numbers.

Example 1. We first consider the linear system:

ut + vx = 0,
vt + ux = 0,

(2.294)

with the initial data
u(x,0) = ex,
v(x,0) = e−x,

(2.295)

where u = u(x,t) and v = v(x,t).

Solution.

The correction functionals for (2.294) read

un+1(x,t) = un(x,t)+
∫ t

0
λ1(ξ )

(
∂un(x,ξ )

∂ξ
+

∂ ṽn(x,ξ )

∂ x

)
dξ ,

vn+1(x,t) = vn(x,t)+
∫ t

0
λ2(ξ )

(
∂ vn(x,ξ )

∂ξ
+

∂ ũn(x,ξ )

∂x

)
dξ .

(2.296)

This gives the stationary conditions
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1 + λ1|ξ=t = 0,
λ ′1(ξ = t) = 0,

(2.297)

and
1 + λ2|ξ=t = 0,
λ ′2(ξ = t) = 0.

(2.298)

As a result we find
λ1 = λ2 =−1. (2.299)

Substituting these values of the Lagrange multipliers into the functionals (2.296)
gives the iteration formulas

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+

∂vn(x,ξ )

∂x

)
dξ ,

vn+1(x,t) = vn(x,t)−
∫ t

0

(
∂vn(x,ξ )

∂ξ
+

∂ un(x,ξ )

∂x

)
dξ , n � 0.

(2.300)

We can select u0(x,t) = ex,v0(x,t) = e−x by using the given initial values. Accord-
ingly, we obtain the following successive approximations

u0(x,t) = ex,
v0(x,t) = e−x,
u1(x,t) = ex + te−x,
v1(x,t) = e−x− tex,

u2(x,t) = ex + te−x +
1
2!

t2ex,

v2(x,t) = e−x− tex +
1
2!

t2e−x,

u3(x,t) = ex + te−x +
1
2!

t2ex +
1
3!

t3e−x,

v3(x,t) = e−x− tex +
1
2!

t2e−x− 1
3!

t3ex,

...

un(x,t) = ex

(
1 +

t2

2!
+

t4

4!
+ · · ·

)
+ e−x

(
t +

t3

3!
+

t5

5!
+ · · ·

)
,

vn(x,t) = e−x

(
1 +

t2

2!
+

t4

4!
+ · · ·

)
− ex

(
t +

t3

3!
+

t5

5!
+ · · ·

)
.

(2.301)

Recall that
u(x,t) = limn→∞ un(x,t),
v(x,t) = limn→∞ vn(x,t).

(2.302)

Consequently, the exact analytical solutions are of the form

(u,v) = (ex cosh t + e−x sinh t,e−x cosh t− ex sinht), (2.303)
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obtained by using Taylor series for sinh t and cosht.

Example 2. Consider the linear system of partial differential equations

ut + ux + 2v = 0,
vt + vx−2u = 0,

(2.304)

with the initial data
u(x,0) = cosx,
v(x,0) = sin x.

(2.305)

Solution.

The correction functionals for (2.304) read

un+1(x,t) = un(x,t)+
∫ t

0
λ1(ξ )

(
∂ un(x,ξ )

∂ξ
+

∂ ũn(x,ξ )

∂x
+ 2ṽn(x,ξ )

)
dξ ,

vn+1(x,t) = vn(x,t)+

∫ t

0
λ2(ξ )

(
∂ vn(x,ξ )

∂ξ
+

∂ ṽn(x,ξ )

∂x
−2ũn(x,ξ )

)
dξ .

(2.306)
As a result, the stationary conditions are given by

1 + λ1|ξ=t = 0, λ ′1(ξ = t) = 0,
1 + λ2|ξ=t = 0, λ ′2(ξ = t) = 0.

(2.307)

As a result we find
λ1 = λ2 =−1. (2.308)

Substituting these values of the Lagrange multipliers into the functionals (2.306)
gives the iteration formulas

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+

∂un(x,ξ )

∂ x
+ 2vn(x,ξ )

)
dξ ,

vn+1(x,t) = vn(x,t)−
∫ t

0

(
∂vn(x,ξ )

∂ξ
+

∂vn(x,ξ )

∂x
−2un(x,ξ )

)
dξ , n � 0.

(2.309)
We can select u0(x,t) = cosx,v0(x,t) = sinx by using the given initial values. Ac-
cordingly, we obtain the following successive approximations

u0(x,t) = cosx,

v0(x,t) = sinx,

u1(x,t) = cosx− t sinx,

v1(x,t) = sinx + t cosx,

u2(x,t) = cosx− t sinx− t2

2!
cosx,
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v2(x,t) = sinx + t cosx− t2

2!
cosx,

u3(x,t) = cosx− t sinx− t2

2!
cosx +

t3

3!
sinx,

v3(x,t) = sinx + t cosx− t2

2!
cosx− t3

3!
cosx,

...

un(x,t) = cosx

(
1− t2

2!
+

t4

4!
−·· ·

)
− sinx

(
t− t3

3!
+

t5

5!
+ · · ·

)
,

vn(x,t) = sinx

(
1− t2

2!
+

t4

4!
+ · · ·

)
+ cosx

(
t− t3

3!
+

t5

5!
−·· ·

)
.

(2.310)

Recall that
u(x,t) = limn→∞ un(x,t),
v(x,t) = limn→∞ vn(x,t).

(2.311)

This gives the pair of solutions (u,v) in a closed form by

(u,v) = (cos(x + t),sin(x + t)) . (2.312)

Example 3. Consider the linear system of partial differential equations

ux + vy−wt = 1,
vx + wy + ut = 1,
wx + uy + vt = 1,

(2.313)

with the given data
u(0,y,t) = y + t,
v(0,y,t) = y− t,
w(0,y,t) = −y + t.

(2.314)

Solution.

The correction functionals for this system read

un+1(x,y,t) = un(x,y,t)+
∫ x

0
λ1(ξ )

(
∂un

∂ξ
+

∂ ṽn

∂y
− ∂ w̃n

∂ t
−1

)
dξ ,

vn+1(x,y,t) = vn(x,y,t)+
∫ x

0
λ2(ξ )

(
∂vn

∂ξ
+

∂ w̃n

∂y
+

∂ ũn

∂ t
−1

)
dξ ,

wn+1(x,y,t) = wn(x,y,t)+

∫ x

0
λ3(ξ )

(
∂wn

∂ξ
+

∂ ũn

∂y
+

∂ ṽn

∂ t
−1

)
dξ .

(2.315)

As a result, the stationary conditions are given by
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1 + λ1|ξ=x = 0, λ ′1(ξ = x) = 0,
1 + λ2|ξ=x = 0, λ ′2(ξ = x) = 0,
1 + λ3|ξ=x = 0, λ ′3(ξ = x) = 0,

(2.316)

As a result we find
λ1 = λ2 = λ3 =−1. (2.317)

We can select u0(x,y,t) = y + t,v0(x,y,t) = y− t,w0(x,y,t) = −y + t by using the
given initial values. Accordingly, we obtain the following successive approxima-
tions

u0(x,y,t) = y + t, v0(x,y,t) = y− t, w0(x,y,t) =−y + t,
u1(x,y,t) = x + y + t, v1(x,y,t) = x + y− t, w1(x,y,t) = x− y + t,

...
un(x,y,t) = x + y + t, vn(x,y,t) = x + y− t, wn(x,y,t) = x− y + t,

(2.318)

where n � 2. This gives the following solutions

u(x,y,t) = x + y + t, v(x,y,t) = x + y− t, w(x,y,t) = x− y + t. (2.319)

Exercises 2.8

Use the variational iteration method to solve the systems of first order partial differ-
ential equations of Exercises 2.7.
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Chapter 3

One Dimensional Heat Flow

3.1 Introduction

In Chapter 1, it was indicated that many phenomena of physics and engineering are
expressed by partial differential equations PDEs. The PDE is termed a Boundary
Value Problem (BVP) if the boundary conditions of the dependent variable u and
some of its partial derivatives are often prescribed. However, the PDE is called an
Initial Value Problem (IVP) if the initial conditions of the dependent variable u are
prescribed at the starting time t = 0. Moreover, the PDE is termed Initial-Boundary
Value Problem (IBVP) if both initial conditions and boundary conditions are pre-
scribed.

In this chapter, we will study the one dimensional heat flow. Our concern will be
focused on solving the PDE in conjunction with the prescribed initial and boundary
conditions. The Adomian decomposition method [1–2] and the variational iteration
method [4–5] will be used to handle the heat flow PDEs. Moreover, the well-known
traditional method of the separation of variables will be used as well.

In this section we will study the physical problem of heat conduction in a rod of
length L. The temperature distribution of a rod is governed by an initial-boundary
value problem [3,6,8] that is often defined by:
1. Partial Differential Equation (PDE) that governs the heat flow in a rod. The
PDE can be formally shown to satisfy

ut = kuxx, 0 < x < L, t > 0, (3.1)

where u ≡ u(x,t) represents the temperature of the rod at the position x at time t,
and k is the thermal diffusivity of the material that measures the rod ability to heat
conduction.
2. Boundary Conditions (BC) that describe the temperature u at both ends of the
rod. One form of the BC is given by the Dirichlet boundary conditions

u(0,t) = 0, t � 0,
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u(L,t) = 0, t � 0. (3.2)

The given boundary conditions in (3.2) indicate that the ends of the rod are kept at 0
temperature. As indicated in Chapter 1, boundary conditions are given in three types,
namely: Dirichlet boundary conditions, Neumann boundary conditions, and mixed
boundary conditions. In addition, the boundary conditions come in a homogeneous
or inhomogeneous type.
3. Initial Condition (IC) that describes the initial temperature u at time t = 0. The
IC is usually defined by

u(x,0) = f (x), 0 � x � L. (3.3)

Based on these definitions, the initial-boundary value problem that controls the heat
conduction in a rod is given by

PDE ut = kuxx, 0 < x < L, t > 0,
BC u(0,t) = 0, t � 0,

u(L,t) = 0, t � 0,
IC u(x,0) = f (x), 0 � x � L.

(3.4)

As stated before we will focus our discussions on determining a particular solu-
tion of the heat equation (3.4), recalling that the general solution is of little use.

It is of interest to note that the PDE in (3.4) arises in two different types, namely:
1. Homogeneous Heat Equation: This type of equations is often given by

ut = kuxx, 0 < x < L, t > 0. (3.5)

Further, heat equation with a lateral heat loss is formally derived as a homogeneous
PDE of the form

ut = kuxx−u, 0 < x < L, t > 0. (3.6)

2. Inhomogeneous Heat Equation: This type of equations is often given by

ut = kuxx + g(x), 0 < x < L, t > 0, (3.7)

where g(x) is called the heat source which is independent of time.

3.2 The Adomian Decomposition Method

In this chapter the Adomian decomposition method will be used in a similar way
to that used in the previous chapter. As shown before, the method introduces the
solution of any equation in a series form, where the components of the solution
are elegantly computed by a recursive manner. Further, the resulting series may
converge to a closed form solution if exact solution exists [7–8]. In the case where a
closed form solution is not obtainable, a truncated n-term approximation is usually
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used for approximations and numerical purposes. It was formally proved by many
researchers that the method provides the solution in a rapidly convergent power
series.

An important point can be made here in that the method attacks the problem,
homogeneous or inhomogeneous, in a straightforward manner without any need for
transformation formulas. Further, there is no need to change the inhomogeneous
boundary conditions to homogeneous conditions as required by the method of sep-
aration of variables that will be discussed later. The formal steps of the decomposi-
tion method have been outlined before in Chapter 2. In what follows, we introduce
a framework for implementing this method to solve the one dimensional heat equa-
tion.

Without loss of generality, we study the initial-boundary value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(L,t) = 0, t � 0,
IC u(x,0) = f (x), 0 � x � π ,

(3.8)

to achieve our goal.
To begin our analysis, we first rewrite (3.8) in an operator form by

Lt u(x,t) = Lx u(x,t), (3.9)

where the differential operators Lt and Lx are defined by

Lt =
∂
∂ t

, Lx =
∂ 2

∂ x2 . (3.10)

It is obvious that the integral operators L−1
t and L−1

x exist and may be regarded as
one and two-fold definite integrals respectively defined by

L−1
t (·) =

∫ t

0
(·)dt, L−1

x (·) =

∫ x

0

∫ x

0
(·)dxdx. (3.11)

This means that
L−1

t Lt u(x,t) = u(x,t)−u(x,0). (3.12)

Applying L−1
t to both sides of (3.9) and using the initial condition we find

u(x,t) = f (x)+ L−1
t (Lx u(x,t)). (3.13)

The decomposition method defines the unknown function u(x,t) into a sum of com-
ponents defined by the series

u(x,t) =
∞

∑
n=0

un(x,t), (3.14)
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where the components u0(x,t),u1(x,t),u2(x,t), · · · are to be determined. Substitut-
ing (3.14) into both sides of (3.13) yields

∞

∑
n=0

un(x,t) = f (x)+ L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
, (3.15)

or equivalently

u0 + u1 + u2 + · · ·= f (x)+ L−1
t (Lx(u0 + u1 + u2 + · · ·)) . (3.16)

The decomposition method suggests that the zeroth component u0(x,t) is identified
by the terms arising from the initial/boundary conditions and from source terms.
The remaining components of u(x,t) are determined in a recursive manner such that
each component is determined by using the previous component. Accordingly, we
set the recurrence scheme

u0(x,t) = f (x),
uk+1(x,t) = L−1

t (Lx (uk(x,t))) , k � 0,
(3.17)

for the complete determination of the components un(x,t),n � 0. In view of (3.17),
the components u0(x,t),u1(x,t),u2(x,t), · · · are determined individually by

u0(x,t) = f (x),
u1(x,t) = L−1

t Lx(u0) = f ′′(x)t,

u2(x,t) = L−1
t Lx(u1) = f (4)(x)

t2

2!
,

u3(x,t) = L−1
t Lx(u2) = f (6)(x)

t3

3!
,

...

(3.18)

Other components can be determined in a like manner as far as we like. The ac-
curacy level can be effectively improved by increasing the number of components
determined. Having determined the components u0,u1, · · ·, the solution u(x,t) of the
PDE is thus obtained in a series form given by

u(x,t) =
∞

∑
n=0

f (2n)(x)
tn

n!
, (3.19)

obtained by substituting (3.18) into (3.14).
An important conclusion can be made here; the solution (3.19) is obtained by

using the initial condition only without using the boundary conditions. This solution
is obtained by using the inverse operator L−1

t . The obtained solution can be used to
show that it satisfies the given boundary conditions.

However, the solution (3.19) can also be obtained by using the inverse operator
L−1

x . In fact, the solution obtained in this way requires the use of boundary condi-
tions and initial condition as well. This leads to an important conclusion that solving
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the PDE in the t direction reduces the size of computational work. This important
observation will be confirmed through examples that will be discussed later.

To give a clear overview of the content of the decomposition method, we have
chosen several examples, homogeneous and inhomogeneous, to illustrate the dis-
cussion given above.

3.2.1 Homogeneous Heat Equations

The Adomian decomposition method will be used to solve the following homoge-
neous heat equations [6] where the boundary conditions are also homogeneous.

Example 1. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(π ,t) = 0, t � 0,
IC u(x,0) = sinx.

(3.20)

Solution.
In an operator form, Equation (3.20) can be written as

Ltu(x,t) = Lxu(x,t). (3.21)

Applying L−1
t to both sides of (21) and using the initial condition we find

u(x,t) = sinx + L−1
t (Lxu(x,t)) . (3.22)

We next define the unknown function u(x,t) by a sum of components defined by the
series

u(x,t) =
∞

∑
n=0

un(x,t). (3.23)

Substituting the decomposition (3.23) into both sides of (3.22) yields

∞

∑
n=0

un(x,t) = sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
, (3.24)

or equivalently

u0 + u1 + u2 + · · ·= sinx + L−1
t (Lx (u0 + u1 + u2 + · · ·)) . (3.25)

Identifying the zeroth component u0(x,t) as assumed before and following the re-
cursive algorithm (3.17) we obtain
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u0(x,t) = sinx,
u1(x,t) = L−1

t (Lx (u0)) =−t sinx,

u2(x,t) = L−1
t (Lx (u1)) =

1
2!

t2 sinx,
...

(3.26)

Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·

= sinx

(
1− t +

1
2!

t2−·· ·
)

, (3.27)

and in a closed form by
u(x,t) = e−t sinx, (3.28)

obtained upon using the Taylor expansion of e−t . The solution (3.28) satisfies the
PDE, the boundary conditions and the initial condition.

Example 2. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = e−t , t � 0,

u(π ,t) = π− e−t, t � 0,
IC u(x,0) = x + cosx.

(3.29)

Solution.
It is important to note that the boundary conditions in this example are inhomo-

geneous. The decomposition method does not require any restrictive assumption on
boundary conditions when approaching the problem in the t direction or in the x
direction.

Applying L−1
t to both sides of the operator form

Ltu(x,t) = Lxu(x,t), (3.30)

and using the initial condition we find

u(x,t) = x + cosx + L−1
t (Lx(u(x,t))) . (3.31)

Substituting the decomposition series

u(x,t) =
∞

∑
n=0

un(x,t), (3.32)

into both sides of (3.31) yields
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∞

∑
n=0

un(x,t) = x + cosx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (3.33)

Identifying the component u0(x,t) and following the recursive algorithm (3.17) we
obtain

u0(x,t) = x + cosx,
u1(x,t) = L−1

t (Lx (u0)) =−t cosx,

u2(x,t) = L−1
t (Lx (u1)) =

1
2!

t2 cosx,

u3(x,t) = L−1
t (Lx (u2)) =− 1

3!
t3 cosx,

...

(3.34)

Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= x + cosx

(
1− t +

1
2!

t2− 1
3!

t3 + · · ·
)

, (3.35)

and in a closed form by
u(x,t) = x + e−t cosx, (3.36)

obtained upon using the Taylor expansion for e−t .
It is important to point out that the decomposition method has been used in the

last two examples in the t-dimension by using the differential operator Lt and by
operating with the inverse operator L−1

t . However, the method can also be used
in the x-dimension. Although the x-solution can be obtained in a similar fashion,
however it requires more computational work if compared with the solution in the
t-dimension. This can be attributed to the fact that we use the initial condition IC
only in using the t-dimension, whereas a boundary condition and an initial condition
are used to obtain the solution in the x-direction. This can be clearly illustrated by
discussing the following examples.

Example 3. Use the decomposition method in the x-direction to solve the initial-
boundary value problem of Example 1 given by

PDE ut = uxx, 0 < x < π, t > 0,
BC u(0,t) = 0, t � 0,

u(π,t) = 0, t � 0,
IC u(x,0) = sinx.

(3.37)

Solution.

In an operator form, Eq. (3.37) can be written by

Lx u(x,t) = Lt u(x,t), 0 < x < π, t > 0 (3.38)
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where

Lx =
∂ 2

∂x2 , (3.39)

so that L−1
x is a two-fold integral operator defined by

L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx. (3.40)

This means that

L−1
x Lxu = u(x,t)−u(0,t)− xux(0,t) = u(x,t)− xux(0,t). (3.41)

Applying L−1
x to both sides of (3.38) and using the proper boundary condition we

obtain

u(x,t) = xux(0,t)+ L−1
x (Lt u(x,t)) ,

= xh(t)+ L−1
x (Lt u(x,t)) , (3.42)

where
h(t) = ux(0,t). (3.43)

Substituting the decomposition (3.23) into both sides of (3.42) gives

∞

∑
n=0

un(x,t) = xh(t)+ L−1
x

(
Lt

(
∞

∑
n=0

un(x,t)

))
. (3.44)

Proceeding as before, the components of u(x,t) are determined by

u0(x,t) = xh(t),

u1(x,t) = L−1
x (Lt u0) =

1
3!

x3h′(t)

u2(x,t) = L−1
x (Lt u1) =

1
5!

x5h′′(t)
...

(3.45)

Accordingly, the solution in a series form is given by

u(x,t) = xh(t)+
1
3!

x3h′(t)+
1
5!

x5h′′(t)+ · · · . (3.46)

The unknown function h(t) should be derived so that the solution u(x,t) is com-
pletely determined. This can be achieved by using the initial condition

u(x,0) = sinx. (3.47)

Substituting t = 0 into (3.46), using the initial condition (3.47), and using the Taylor
expansion of sinx we find
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xh(0)+
1
3!

x3h′(0)+
1
5!

x5h′′(0)+ · · ·= sinx = x− 1
3!

x3 +
1
5!

x5−·· · (3.48)

Equating the coefficients of like powers of x in both sides gives

h(0) = 1, h′(0) =−1, h′′(0) = 1, · · · (3.49)

Using the Taylor expansion of h(t) and the result (3.49) we obtain

h(t) = h(0)+ h′(0)t +
1
2!

h′′(0)t2− 1
3!

h′′′(0)t3 + · · ·

= 1− t +
1
2!

t2− 1
3!

t3 + · · ·
= e−t . (3.50)

Combining (3.46) and (3.50), the solution u(x,t) in a series form is

u(x,t) = e−t
(

x− 1
3!

x3 +
1
5!

x5 + · · ·
)

, (3.51)

and in a closed form is given by

u(x,t) = e−t sinx. (3.52)

Example 4. Use the decomposition method in the x-direction to solve the initial-
boundary value problem of Example 2.

Solution.

In an operator form we set

Lx u(x,t) = Lt u(x,t), 0 < x < π , t > 0 (3.53)

where

Lx =
∂ 2

∂x2 , (3.54)

so that L−1
x is a two-fold integral operator defined by

L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx. (3.55)

Applying L−1
x to both sides of (3.53) and using the first boundary condition

u(x,t) = u(0,t)+ xux(0,t)+ L−1
x (Ltu(x,t)) ,

= e−t + xh(t)+ L−1
x (Lt u(x,t)) , (3.56)

where
h(t) = ux(0,t). (3.57)
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Substituting the decomposition (3.23) into both sides of (3.56) gives

∞

∑
n=0

un(x,t) = e−t + xh(t)+ L−1
x

(
Lt

(
∞

∑
n=0

un(x,t)

))
. (3.58)

Proceeding as before, the components of u(x,t) are determined by

u0(x,t) = e−t + xh(t),

u1(x,t) = L−1
x (Lt u0) =− 1

2!
x2e−t +

1
3!

x3h′(t)

u2(x,t) = L−1
x (Lt u1) =

1
4!

x4e−t +
1
5!

x5h′′(t)
...

(3.59)

Accordingly, the solution in a series form is given by

u(x,t) = e−t
(

1− 1
2!

x2 +
1
4!

x4−·· ·
)

+ xh(t)+
1
3!

x3h′(t)+
1
5!

x5h′′(t)+ · · · ,

= e−t cosx + xh(t)+
1
3!

x3h′(t)+
1
5!

x5h′′(t)+ · · · . (3.60)

It remains to determine the function h(t) in order to completely determine u(x,t).
This can be done by using the initial condition

u(x,0) = x + cosx. (3.61)

Using initial condition (3.61) into (3.60) we find

x + cosx = cosx + xh(0)+
1
3!

x3h′(0)+
1
5!

x5h′′(0)+ · · · . (3.62)

Equating the coefficients of like powers of x in both sides gives

h(0) = 1,

h(n)(0) = 0, n � 1.
(3.63)

Using the Taylor expansion of h(t) and the result (3.63) we obtain

h(t) = 1. (3.64)

Combining (3.60) and (3.64), the solution u(x,t) in a closed form is given by

u(x,t) = x + e−t cosx. (3.65)
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For simplicity reasons, we will apply the inverse operator L−1
t to obtain the solution

in the following homogeneous PDEs.

Example 5. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx−u, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(π ,t) = 0, t � 0,
IC u(x,0) = sinx.

(3.66)

Solution.

We point out here that the homogeneous PDE in (3.66) defines a heat equation
with a lateral heat loss. This can be attributed to the additional term −u(x,t) at the
right hand side of the standard heat equation.

In an operator form, Equation (3.66) can be written as

Ltu(x,t) = Lxu(x,t)−u(x,t). (3.67)

Applying L−1
t to both sides of (3.67) gives

u(x,t) = sinx + L−1
t (Lxu(x,t)−u(x,t)) . (3.68)

Substituting the decomposition (3.23) into both sides of (3.68) yields

∞

∑
n=0

un(x,t) = sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

)
−

∞

∑
n=0

un(x,t)

)
. (3.69)

Proceeding as before we obtain

u0(x,t) = sinx,
u1(x,t) = L−1

t (Lx (u0)−u0) =−2t sinx,

u2(x,t) = L−1
t (Lx (u1)−u1) =

1
2!

(2t)2 sinx,
...

(3.70)

Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= sinx

(
1−2t +

1
2!

(2t)2−·· ·
)

, (3.71)

and in a closed form by
u(x,t) = e−2t sinx, (3.72)

obtained upon using the Taylor expansion of e−2t .
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3.2.2 Inhomogeneous Heat Equations

A great advantage of the decomposition method is that it can provide solutions to
PDE, homogeneous or inhomogeneous, without any need to use any transformation
formula as required by the method of separation of variables. The advantage lies
in the fact that the method is computationally convenient and provides the solution
in a rapid convergent series. The method attacks the inhomogeneous problem in a
similar way to that used in the homogeneous type of problems [1,8].

Example 6. Use the Adomian decomposition method to solve the inhomogeneous
PDE

PDE ut = uxx + sinx, 0 < x < π , t > 0,
BC u(0,t) = e−t , t � 0,

u(π ,t) = −e−t , t � 0,
IC u(x,0) = cosx.

(3.73)

Solution.

In an operator form, Equation (3.73) becomes

Ltu(x,t) = Lxu(x,t)+ sinx. (3.74)

Operating with L−1
t on both sides of (3.74) gives

u(x,t) = t sinx + cosx + L−1
t (Lxu(x,t)) . (3.75)

Using the decomposition (3.23) we obtain

∞

∑
n=0

un(x,t) = t sinx + cosx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (3.76)

It should be noted here that the zeroth component u0 will be defined as the sum of
all terms that are not included in the operator L−1

t . In fact the zeroth component is
assigned the terms that arise from integrating the source term sinx and from using
the initial condition.

To determine the components of u(x,t), we proceed as before, hence we set

u0(x,t) = t sinx + cosx,
u1(x,t) = L−1

t (Lx (u0)) ,

= L−1
t (−cosx− t sinx) =−t cosx− 1

2!
t2 sinx,

u2(x,t) = L−1
t (Lx (u1)) ,

= L−1
t

(
t cosx +

1
2!

t2 sinx

)
=

1
2!

t2 cosx +
1
3!

t3 sinx,

(3.77)

and so on. Consequently, the solution u(x,t) in a series form is given by
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u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= sinx

(
t− 1

2!
t2 +

1
3!

t3 · · ·
)

+ cosx

(
1− t +

1
2!

t2 · · ·
)

, (3.78)

and in a closed form by

u(x,t) =
(
1− e−t)sinx + e−t cosx. (3.79)

Example 7. Use the Adomian decomposition method to solve the inhomogeneous
PDE

PDE ut = uxx + cosx, 0 < x < π , t > 0,
BC u(0,t) = 1− e−t, t � 0,

u(π,t) = e−t −1, t � 0,
IC u(x,0) = 0, 0 � x � π.

(3.80)

Solution.

Proceeding as before we find

u(x,t) = t cosx + L−1
t (Lxu(x,t)) . (3.81)

This gives

∞

∑
n=0

un(x,t) = t cosx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (3.82)

We next use the recurrence relation

u0(x,t) = t cosx,

u1(x,t) = L−1
t (Lx (u0)) =− 1

2!
t2 cosx,

u2(x,t) = L−1
t (Lx (u1)) =

1
3!

t3 cosx,

(3.83)

and so on. In view of (3.83), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= cosx

(
t− 1

2!
t2 +

1
3!

t3−·· ·
)

, (3.84)

and in a closed form by
u(x,t) =

(
1− e−t)cosx. (3.85)
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Exercises 3.2

In Exercises 1–6, use the decomposition method to solve the following homoge-
neous partial differential equations:
1. ut = uxx, 0 < x < π , t > 0

u(0,t) = 0, u(π ,t) = π, t � 0
u(x,0) = x + sinx

2. ut = uxx, 0 < x < π , t > 0
u(0,t) = 4 + e−t, u(π ,t) = 4− e−t, t � 0
u(x,0) = 4 + cosx

3. ut = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = sinx

4. ut = uxx−4u, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = sinx

5. ut = uxx−2u, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = e−t sinhπ, t � 0
u(x,0) = sinhx

6. ut = uxx−2u, 0 < x < π, t > 0
u(0,t) = e−t , u(π ,t) = e−t coshπ , t � 0
u(x,0) = coshx

In Exercises 7–12, solve the inhomogeneous initial-boundary value problems:

7. ut = uxx + sin(2x), 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0

u(x,0) = sinx +
1
4

sin(2x)

8. ut = uxx−2, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = π2, t � 0
u(x,0) = x2 + sinx

9. ut = uxx−6x, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = π3, t � 0
u(x,0) = x3 + sinx

10. ut = uxx−6, 0 < x < π, t > 0
u(0,t) = e−t , u(π,t) = 3π2− e−t, t � 0
u(x,0) = 3x2 + cosx

11. ut = uxx−2, 0 < x < π, t > 0
u(0,t) = e−t , u(π,t) = π2− e−t , t � 0
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u(x,0) = x2 + cosx

12. ut = uxx−6x, 0 < x < π , t > 0
u(0,t) = e−t , u(π,t) = π3− e−t ,
u(x,0) = x3 + cosx

In Exercises 13–18, solve the initial-boundary value problems:

13. ut = uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 1, t � 0
u(x,0) = 1 + sin(πx)

14. ut = 4uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 1, t � 0
u(x,0) = 1 + sin(πx)

15. ut = 4uxx, 0 < x <
π
2

, t > 0

u(0,t) = e−4t , u(
π
2

,t) = 0, t � 0

u(x,0) = cosx

16. ut = 2uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = π , t � 0
u(x,0) = x + sinx

17. ut = uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π,t) = 0, t � 0
u(x,0) = cosx

18. ut = uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π,t) = 0, t � 0
u(x,0) = 2 + cosx

3.3 The Variational Iteration Method

The variational iteration method (VIM), established by Ji-Huan He [4–5] was pre-
sented before in Chapter 2. It is thoroughly used by many researchers to handle
linear and nonlinear models. The method gives rapidly convergent successive ap-
proximations of the exact solution if such a solution exists. In what follows, we
summarize the main steps of this method. For the differential equation

Lu + Nu = g(x,t), (3.86)

where L and N are linear and nonlinear operators respectively, and g(x,t) is the
source inhomogeneous term, the variational iteration method admits the use of the
correction functional for equation (3.86) which can be written as
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un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )(Lun(ξ )+ Nũn(ξ )−g(ξ )) dξ , n � 0. (3.87)

It is obvious that the successive approximations u j, j � 0 can be established by de-
termining λ (ξ ), a general Lagrange multiplier, which can be identified optimally
via the variational theory. The function ũn is a restricted variation which means
δ ũn = 0. Using the obtained λ (ξ ) and selecting u0(x,t), the successive approxima-
tions un+1(x,t),n � 0, of the solution u(x,t) will follow immediately.

3.3.1 Homogeneous Heat Equations

In what follows, we will apply the VIM to the some examples that were examined
before.

Example 1. Use the variational iteration method to solve the initial-boundary value
problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π ,t) = 0, t � 0,
IC u(x,0) = sinx.

(3.88)

Solution.

The correction functional for (3.88) reads

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
− ∂ 2ũn(x,ξ )

∂x2

)
dξ . (3.89)

The stationary conditions
1 +λ |ξ=t = 0,

λ ′|ξ=t = 0,
(3.90)

gives
λ =−1. (3.91)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (3.89)
gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
− ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (3.92)

As stated before, we can select u0(x,0) = sinx from the given initial condition.
Using this selection into (3.92) we obtain the following successive approximations

u0(x,t) = sinx,

u1(x,t) = sinx− t sin x,

u2(x,t) = sinx− t sin x +
1
2!

t2 sinx,
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u3(x,t) = sin x− t sinx +
1
2!

t2 sinx− 1
3!

t3 sinx,
...

un(x,t) = sin x

(
1− t +

1
2!

t2− 1
3!

t3 +
1
4!

t4 + · · ·
)

.

(3.93)

The VIM introduces the use of

u(x,t) = lim
n→∞

un(x,t), (3.94)

that gives the exact solution by

u(x,t) = e−t sinx, (3.95)

obtained upon using the Taylor expansion of e−t .

Example 2. Use the variational iteration method to solve the initial-boundary value
problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = e−t , t � 0,

u(π ,t) = π− e−t, t � 0,
IC u(x,0) = x + cosx.

(3.96)

Solution.
The correction functional for (3.96) reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
− ∂ 2ũn(x,ξ )

∂x2

)
dξ . (3.97)

As discussed before in Example 1 we find

λ =−1. (3.98)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (3.97)
gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
− ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (3.99)

As stated before, we can select u0(x,0) = x + cosx from the given initial condition.
Using this selection into (3.99) we obtain the following successive approximations

u0(x,t) = x + cosx,

u1(x,t) = x + cosx− t cosx,

u2(x,t) = x + cosx− t cosx +
1
2!

t2 cosx,
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u3(x,t) = x + cosx− t cosx +
1
2!

t2 cosx− 1
3!

t3 cosx,
...

un(x,t) = x + cosx

(
1− t +

1
2!

t2− 1
3!

t3 +
1
4!

t4 + · · ·
)

.

(3.100)

Consequently, the exact solution is

u(x,t) = x + e−t cosx, (3.101)

obtained upon using the Taylor expansion of e−t .

Example 3. Use the variational iteration method to solve the initial-boundary value
problem

PDE ut = uxx−u, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(π ,t) = 0, t � 0,
IC u(x,0) = sinx.

(3.102)

Solution.

The correction functional for (3.102) is

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
− ∂ 2ũn(x,ξ )

∂x2 + ũn(x,ξ )

)
dξ . (3.103)

Following the discussion presented before we find

λ =−1. (3.104)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (3.103)
gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
− ∂ 2un(x,ξ )

∂ x2 + un(x,ξ )

)
dξ , n � 0.

(3.105)
As stated before, we can select u0(x,0) = sinx from the given initial condition.
Using this selection into (3.105) we obtain the successive approximations

u0(x,t) = sinx,
u1(x,t) = sinx−2t sinx,

u2(x,t) = sinx−2t sinx +
1
2!

(2t)2 sin x,

u3(x,t) = sinx−2t sinx +
1
2!

(2t)2 sin x− 1
3!

(2t)3 sinx,
...

un(x,t) = sinx

(
1−2t +

1
2!

(2t)2− 1
3!

(2t)3 + · · ·
)

.

(3.106)
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Hence, the exact solution is given by

u(x,t) = e−2t sinx. (3.107)

3.3.2 Inhomogeneous Heat Equations

The variational iteration method handles the inhomogeneous heat problem in a simi-
lar way to that used in the homogeneous type of equations. This will be illustrated by
solving the same examples studied before in the previous section by using Adomian
method.

Example 4. Use the variational iteration method to solve the inhomogeneous PDE

PDE ut = uxx + sinx, 0 < x < π, t > 0,
BC u(0,t) = e−t , t � 0,

u(π,t) = −e−t , t � 0,
IC u(x,0) = cosx.

(3.108)

Solution.

The correction functional for (3.108) reads

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂ un(x,ξ )

∂ξ
− ∂ 2ũn(x,ξ )

∂x2 − sinx

)
dξ . (3.109)

Solving the stationary conditions gives λ = −1. Substituting this value of the La-
grange multiplier λ =−1 into the functional (3.109) gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂ un(x,ξ )

∂ξ
− ∂ 2un(x,ξ )

∂x2 − sinx

)
dξ , n � 0. (3.110)

We next select u0(x,0) = cosx. Consequently, we obtain the following successive
approximations

u0(x,t) = cosx,
u1(x,t) = cosx− t cosx + t sin x,

u2(x,t) = cosx− t cosx + t sin x− 1
2!

t2 sinx +
1
2!

t2 cosx,

u3(x,t) = cosx

(
1− t +

1
2!

t2− 1
3!

t3
)

+ sinx

(
t− 1

2!
t2 +

1
3!

t3
)

,

...

un(x,t) = cosx

(
1− t +

1
2!

t2− 1
3!

t3 + · · ·
)

+ sinx

(
t− 1

2!
t2 +

1
3!

t3 + · · ·
)

.

(3.111)
Accordingly, the exact solution
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u(x,t) = e−t cosx +(1− e−t)sinx, (3.112)

is readily obtained.

Example 5. Use the variational iteration method to solve the inhomogeneous PDE

PDE ut = uxx + cosx, 0 < x < π, t > 0,
BC u(0,t) = 1− e−t, t � 0.

u(π,t) = e−t −1, t � 0.
IC u(x,0) = 0, 0 � x � π.

(3.113)

Solution.

The correction functional for this equation is

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
− ∂ 2ũn(x,ξ )

∂x2 − cosx

)
dξ . (3.114)

Substituting the value of the Lagrange multiplier λ =−1 into the functional (3.114)
gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
− ∂ 2un(x,ξ )

∂x2 − cosx

)
dξ , n � 0. (3.115)

We next select u0(x,0) = 0. Consequently, we obtain the following successive ap-
proximations

u0(x,t) = 0,
u1(x,t) = t cosx,

u2(x,t) = t cosx− 1
2!

t2 cosx,

u3(x,t) = t cosx− 1
2!

t2 cosx +
1
3!

t3 cosx,

...

un(x,t) = cosx

(
t− 1

2!
t2 +

1
3!

t3 +
1
4!

t4 + · · ·
)

.

(3.116)

Hence, the exact solution

u(x,t) =
(
1− e−t)cosx, (3.117)

follows immediately.
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Exercises 3.3

Use the variational iteration method to solve the problems 1–18 in Exercises 3.2.

3.4 Method of Separation of Variables

In this section the homogeneous partial differential equation that describes the heat
flow in a rod will be discussed by using a well-known method called the method
of separation of variables. The method is commonly used to solve heat conduction
problems and other types of problems such as the wave equation and the Laplace
equation [3,6,8].

The most important feature of the method of separation of variables is that it
successively replaces the partial differential equation by a system of ordinary differ-
ential equations that are usually easy to handle. Unlike the decomposition method,
the method of separation of variables employs specific assumptions and transforma-
tion formulas in handling partial differential equations. In particular, the method of
separation of variables requires that the boundary conditions be homogeneous. For
inhomogeneous boundary conditions, a transformation formula should be employed
to transform inhomogeneous boundary conditions to homogeneous boundary con-
ditions.

3.4.1 Analysis of the Method

We begin our analysis by writing the homogeneous partial differential equation,
with homogeneous boundary conditions, that describes the heat flow by the partial
differential equation

PDE ut = kuxx, 0 < x < L, t > 0,
BC u(0,t) = 0, u(L,t) = 0,
IC u(x,0) = f (x).

(3.118)

The method of separation of variables consists of assuming that the temperature
u(x,t) is identified as the product of two distinct functions F(x) and T (t), where
F(x) depends on the space variable x and T (t) depends on the time variable t. In
other words, this assumption allows us to set

u(x,t) = F(x)T (t). (3.119)

Differentiating both sides of (3.119) with respect to t and twice with respect to x we
obtain

ut(x,t) = F(x)T ′(t),
uxx(x,t) = F ′′(x)T (t).

(3.120)



90 3 One Dimensional Heat Flow

Substituting (3.120) into (3.118) yields

F(x)T ′(t) = kF ′′(x)T (t). (3.121)

Dividing both sides of (3.121) by kF(x)T (t) gives

T ′(t)
kT (t)

=
F ′′(x)
F(x)

. (3.122)

It is clear from (3.122) that the left hand side depends only on t and the right hand
side depends only on x. This means that the equality holds only if both sides are
equal to the same constant. Therefore, we set

T ′(t)
kT (t)

=
F ′′(x)
F(x)

=−λ 2. (3.123)

The selection of −λ 2, and not λ 2, in (3.123) is the only selection for which non-
trivial solutions exist. However, we can easily show that selecting the constant to be
zero or a positive value will lead to the trivial solution u(x,t) = 0.

It is clear that (3.123) gives two distinct ordinary differential equations given by

T ′(t)+ kλ 2T (t) = 0,
F ′′(x)+ λ 2F(x) = 0.

(3.124)

This means that the partial differential equation (3.118) is reduced to the more fa-
miliar ordinary differential equations (3.124) where each equation relies only on one
variable.

To determine T (t), we solve the first order linear ODE

T ′(t)+ kλ 2T (t) = 0, (3.125)

to find that
T (t) = Ce−kλ 2t , (3.126)

where C is a constant.
On the other hand, the function F(x) can be easily determined by solving the

second order linear ODE
F ′′(x)+ λ 2F(x) = 0, (3.127)

to find that
F(x) = Acos(λx)+ Bsin(λx), (3.128)

where A and B are constants.
To determine A, B, and λ we use the homogeneous boundary conditions

u(0,t) = 0,
u(L,t) = 0,

(3.129)
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as given above by (3.118). Substituting (3.129) into the assumption (3.119) gives

F(0)T (t) = 0,
F(L)T (t) = 0,

(3.130)

which gives
F(0) = 0,
F(L) = 0.

(3.131)

Using F(0) = 0 into (3.128) leads to

A = 0, (3.132)

hence Eq. (3.128) becomes
F(x) = Bsin(λx). (3.133)

Substituting the condition F(L) = 0 of (3.131) into (3.133) yields

Bsin(λ L) = 0. (3.134)

This means that
B = 0, (3.135)

or
sin(λ L) = 0. (3.136)

We ignore B = 0 since it gives the trivial solution u(x,t) = 0. It remains that

sin(λ L) = 0. (3.137)

This gives an infinite number of values for λn given by

λnL = nπ , n = 1,2,3, · · · , (3.138)

or equivalently

λn =
nπ
L

, n = 1,2,3, · · · . (3.139)

We exclude n = 0 since it gives the trivial solution u(x,t) = 0.
In view of the infinite number of values for λn, we therefore write

Fn(x) = sin(
nπ
L

x),

Tn(t) = e−k( nπ
L )2t , n = 1,2,3, · · · .

(3.140)

Ignoring the constants B and C, we conclude that the functions, called the funda-
mental solutions

un(x,t) = Fn(x)Tn(t),
= sin( nπ

L x)e−k( nπ
L )2t , n = 1,2, · · · , (3.141)
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that satisfy Eq. (3.118) and the given boundary conditions.
Recall that the superposition principle admits that a linear combination of the

functions un(x,t) also satisfy the given equation and the boundary conditions. There-
fore, using this principle gives the general solution by

u(x,t) =
∞

∑
n=1

Bne−k( nπ
L )2t sin(

nπ
L

x), (3.142)

where the arbitrary constants Bn,n � 1, are as yet undetermined.
To determine Bn,n � 1, we substitute t = 0 in (3.142) and by using the initial

condition we find
∞

∑
n=1

Bn sin(
nπ
L

x) = f (x). (3.143)

The constants Bn can be determined in this case by using Fourier coefficients given
by the formula

Bn =
2
L

∫ L

0
f (x) sin(

nπ
L

x)dx. (3.144)

Having determined the constants Bn, the particular solution u(x,t) follows immedi-
ately.

On the other hand, if the initial condition f (x) is given in terms of sin( nπ
L x), n �

1, the constants Bn can be completely determined by expanding (3.142), using the
initial condition, and by equating the coefficients of like terms on both sides. The
initial condition in the first two examples will be trigonometric functions.

To give a clear overview of the method of separation of variables, we have se-
lected several examples to illustrate the analysis presented above.

Example 1. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(π ,t) = 0, t � 0,
IC u(x,0) = sinx + 3sin(2x).

(3.145)

Solution.

We first set
u(x,t) = F(x)T (t). (3.146)

Differentiating (3.146) once with respect to t and twice with respect to x and pro-
ceeding as before we obtain the two distinct ODEs given by

T ′(t)+ λ 2T (t) = 0, (3.147)

and
F ′′(x)+ λ 2F(x) = 0, (3.148)



3.4 Method of Separation of Variables 93

so that
T (t) = Ce−λ 2t , (3.149)

and
F(x) = Acos(λx)+ Bsin(λx). (3.150)

To determine the constants A, B and λ , we first use the boundary conditions to
obtain

u(0,t) = F(0)T (t) = 0, =⇒ F(0) = 0,
u(π ,t) = F(π)T (t) = 0, =⇒ F(π) = 0.

(3.151)

Using (3.151) into (3.150) we find

A = 0, (3.152)

and
sin(πλ ) = 0, (3.153)

which gives λn by
λn = n, n = 1,2,3, · · · . (3.154)

Recall that n = 0 gives the trivial solution u(x,t) = 0, and therefore it is excluded
from the values of λn. In accordance with the infinite number of values of λn, we
therefore write

Fn(x) = sin(nx),
Tn(t) = e−n2t , n = 1,2, · · · . (3.155)

This gives the fundamental set of solutions

un(x,t) = Fn(x)Tn(t) = sin(nx)e−n2t , n = 1,2,3, · · · , (3.156)

where these solutions satisfy Eq. (3.145) and the given boundary conditions. Using
the superposition principle we obtain

u(x,t) =
∞

∑
n=1

Bne−n2t sin(nx), (3.157)

or in a series form by

u(x,t) = B1e−t sin(x)+ B2e−4t sin(2x)+ B3e−9t sin(3x)+ · · · , (3.158)

where the arbitrary constants Bn,n � 1 are as yet undetermined. To determine the
constants Bn we use the initial condition and substitute t = 0 in (3.158) to find

B1 sin(x)+ B2 sin(2x)+ B3 sin(3x)+ · · ·= sin(x)+ 3sin(2x). (3.159)

Equating the coefficients of like terms of both sides we obtain

B1 = 1, B2 = 3, Bk = 0, k � 3. (3.160)
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In view of (3.160), it is clear that the particular solution consists of two terms only
and can be obtained by substituting n = 1,2 into (3.157) to find

u(x,t) = e−t sin(x)+ 3e−4t sin(2x). (3.161)

Example 2. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC ux(0,t) = 0, t � 0,

ux(π ,t) = 0, t � 0,
IC u(x,0) = 2 + 3cosx.

(3.162)

Solution.

It is interesting to note that the problem uses the Neumann boundary conditions,
i.e the rates of flow ux(0,t) = 0 and ux(π,t) = 0 at the boundaries instead of the
temperatures at both ends of the rod. This case arises when both ends of the rod are
insulated. This means that no heat flows in or out at the ends of the rod.

We first set
u(x,t) = F(x)T (t). (3.163)

Proceeding as before we find

T ′(t)+ λ 2T (t) = 0, (3.164)

and
F ′′(x)+ λ 2F(x) = 0, (3.165)

so that
T (t) = Ce−λ 2t , (3.166)

and
F(x) = Acos(λx)+ Bsin(λx). (3.167)

To determine the constants A, B and λ , we apply the boundary conditions in (3.162)
that can be expressed as

ux(0,t) = F ′(0)T (t) = 0, =⇒ F ′(0) = 0,
ux(π ,t) = F ′(π)T (t) = 0, =⇒ F ′(π) = 0.

(3.168)

Using (3.168) into (3.167) we find

B = 0, (3.169)

and
λ sin(πλ ) = 0, (3.170)

which gives λn by
λ = 0, or λn = n, n = 1,2,3, · · · , (3.171)
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and therefore
λn = n, n = 0,1,2,3, · · · , (3.172)

where unlike the case of Example 1, λ = 0 is included because it will not give the
trivial solution u(x,t) = 0.

In accordance with the infinite number of values of λn, we therefore write

Fn(x) = cos(nx),
Tn(t) = e−n2t , n = 0,1,2, · · · . (3.173)

Using the superposition principle, the general solution is given by

u(x,t) =
∞

∑
n=0

Ane−n2t cos(nx), (3.174)

or in a series form by

u(x,t) = A0 + A1e−t cos(x)+ A2e−4t cos(2x)+ A3e−9t cos(3x)+ · · · . (3.175)

To determine the constants An we use the initial condition and replace t by zero in
(3.175) to find

A0 + A1 cos(x)+ A2 cos(2x)+ · · ·= 2 + 3cos(x). (3.176)

Equating the coefficients of like terms on both sides we obtain

A0 = 2, A1 = 3, Ak = 0, k � 2. (3.177)

In view of (3.177), the particular solution is given by

u(x,t) = 2 + 3e−t cos(x). (3.178)

Example 3. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE ut = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, t � 0,

u(π ,t) = 0, t,� 0
IC u(x,0) = 1.

(3.179)

Solution.

We first set
u(x,t) = F(x)T (t). (3.180)

Proceeding as before, we find

T (t) = Ce−λ 2t , (3.181)
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and
F(x) = Acos(λx)+ Bsin(λx). (3.182)

Using the boundary conditions gives

A = 0, (3.183)

and
λn = n, n = 1,2,3, · · · . (3.184)

Using the superposition principle, the general solution is given by

u(x,t) =
∞

∑
n=1

Bne−n2t sin(nx). (3.185)

To determine the constants Bn we use the initial condition to find

∞

∑
n=1

Bn sin(nx) = 1. (3.186)

The arbitrary constants are determined by using the Fourier method, therefore we
find

Bn =
2
π

∫ π

0
sin(nx)dx,

=
2

nπ
(1− cos(nπ)),

(3.187)

so that

Bn =

⎧⎨
⎩

0 if n is even,

4
nπ

if n is odd.
(3.188)

This means that we can express Bn by

B2m = 0,

B2m+1 =
4

(2m+ 1)π
, m = 0,1,2, · · · .

(3.189)

Combining (3.185) and (3.189), the particular solution is given by

u(x,t) =
4
π

∞

∑
m=0

1
2m+ 1

e−(2m+1)2t sin(2m+ 1)x. (3.190)

The initial condition u(x,0) = 1 can be justified by using Appendix F.

Example 4. Use the method of separation of variables to solve the following initial-
boundary value problem
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PDE ut = uxx, 0 < x < π , t > 0,
BC ux(0,t) = 0, t � 0,

ux(π ,t) = 0, t � 0,
IC u(x,0) = x.

(3.191)

Solution.

We first set
u(x,t) = F(x)T (t). (3.192)

Following the previous discussions we find

T (t) = Ce−λ 2t , (3.193)

and
F(x) = Acos(λx)+ Bsin(λx). (3.194)

The Neumann boundary conditions give

B = 0, (3.195)

and
λn = n, n = 0,1,2,3, · · · . (3.196)

Using the results we obtained for λn, we write

Fn(x) = cos(nx),
Tn(t) = e−n2t , n = 0,1,2, · · · . (3.197)

Using the superposition principle, the general solution is given by

u(x,t) =
∞

∑
n=0

Ane−n2t cos(nx). (3.198)

To determine the constants An we use the initial condition to find

∞

∑
n=0

An cos(nx) = x. (3.199)

The arbitrary constants An are determined by using the Fourier method, therefore
we find

A0 =
1
π

∫ π

0
xdx =

π
2

An =
2
π

∫ π

0
xcos(nx)dx =

2
π

(
1
n2 cos(nπ)− 1

n2

)
, n = 1,2, · · · ,

(3.200)

so that
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An =

⎧⎨
⎩

0 if n is even, n �= 0,

− 4
πn2 if n is odd.

(3.201)

Based on these results for the constants An, the particular solution is given by

u(x,t) =
π
2
− 4

π

∞

∑
m=0

1
(2m+ 1)2 e−(2m+1)2t cos(2m+ 1)x. (3.202)

Exercises 3.4.1

Solve the following initial-boundary value problems by the method of separation of
variables:

1. ut = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sinx + 2sin(3x)

2. ut = uxx, 0 < x < 1, t > 0
u(0,t) = 0, u(1,t) = 0
u(x,0) = sin(πx)+ sin(2πx)

3. ut = 4uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sin(2x)

4. ut = 2uxx, 0 < x < 1, t > 0
u(0,t) = 0, u(1,t) = 0
u(x,0) = sin(πx)

5. ut = uxx, 0 < x < π , t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 1 + cosx

6. ut = 2uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 3 + 4cosx

7. ut = 3uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 1 + cosx + cos(2x)

8. ut = 4uxx, 0 < x < 1, t > 0
ux(0,t) = 0, ux(1,t) = 0
u(x,0) = 2 + 2cos(2πx)

9. ut = 4uxx, 0 < x < π, t > 0
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u(0,t) = 0, u(π ,t) = 0
u(x,0) = 2

10. ut = 2uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 3

11. ut = 3uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 2x

12. ut = uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 1 + x

3.4.2 Inhomogeneous Boundary Conditions

In this section we will consider the case where the ends of a rod are kept at constant
temperatures different from zero. It is well known that the method of separation of
variables is applicable if the equation and the boundary conditions are linear and
homogeneous. Consequently, a transformation formula is needed that will enable
us to convert the inhomogeneous boundary conditions to homogeneous boundary
conditions. This is necessary in order to apply the method of separation of variables
in a parallel way to that used above.

We begin our analysis by considering the initial-boundary value problem

PDE ut = uxx, 0 < x < L, t > 0,
BC u(0,t) = α, t � 0,

u(L,t) = β , t � 0,
IC u(x,0) = f (x).

(3.203)

To convert the boundary conditions from inhomogeneous to homogeneous we sim-
ply use the following transformation formula

u(x,t) =
(

α +
x
L

(β −α)
)

+ v(x,t). (3.204)

This means that u(x,t) consists of a steady-state solution [3], that does not depend
on time, defined by

w(x) = α +
x
L

(β −α), (3.205)

that satisfies the boundary conditions, and a transient solution given by v(x,t). We
can easily show that v(x,t) will be governed by the initial-boundary value problem
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PDE vt = vxx, 0 < x < L, t > 0,
BC v(0,t) = 0, t � 0,

v(L,t) = 0, t � 0,

IC v(x,0) = f (x)−
(

α +
x
L

(β −α)
)

.

(3.206)

Consequently, the method of separation of variables can be used in a similar way
to that used in the previous section. Recall that Adomian decomposition method
can be implemented directly. To get a better understanding of converting inhomo-
geneous boundary conditions to homogeneous boundary conditions, the following
illustrative example will be discussed.

Example 5. Solve the following initial-boundary value problem

PDE ut = uxx, 0 < x < 1, t > 0,
BC u(0,t) = 1, t � 0,

u(1,t) = 2, t � 0,
IC u(x,0) = 1 + x + 2sin(πx).

(3.207)

Solution.

Using the transformation (3.204) we obtain

u(x,t) = (1 + x)+ v(x,t). (3.208)

In view of (3.208), Equation (3.207) is transformed into

PDE vt = vxx, 0 < x < 1, t > 0,
BC v(0,t) = 0, t � 0,

v(1,t) = 0, t � 0,
IC v(x,0) = 2sin(πx).

(3.209)

Assuming that
v(x,t) = F(x)T (t), (3.210)

and proceeding as before we obtain

T (t) = Ce−λ 2t , (3.211)

and
F(x) = Acos(λx)+ Bsin(λx), (3.212)

where A, B, and C are constants. Using the boundary conditions gives

v(x,t) =
∞

∑
n=1

Bne−n2π2t sin(nπx). (3.213)

Using the initial condition in (3.209) and expanding (3.213) we obtain
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B1 = 2, Bk = 0, k � 2. (3.214)

This gives the solution for v(x,t) by

v(x,t) = 2e−π2t sin(πx), (3.215)

so that the particular solution

u(x,t) = 1 + x + 2e−π2t sin(πx), (3.216)

follows immediately.
At this point, it seems reasonable to use the Adomian decomposition method

to solve the initial-boundary value problem of Example 5. The newly developed
approach can be used to examine the performance of the decomposition method if
compared with the classical method of separation of variables.

Applying the inverse operator L−1
t to the operator form of (3.207) and using the

initial condition, we obtain

u(x,t) = 1 + x + 2sin(πx)+ L−1
t (Lxu(x,t)) . (3.217)

Using the decomposition series (3.23) of u(x,t) yields

∞

∑
n=0

un(x,t) = 1 + x + 2sin(πx)+ L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (3.218)

Using the recursive algorithm we obtain

u0(x,t) = 1 + x + 2sin(πx),
u1(x,t) = L−1

t (Lxu0) =−2π2t sin(πx),

u2(x,t) = L−1
t (Lxu1) = 2π4 t2

2!
t sin(πx),

(3.219)

and so on. Consequently, the solution in a series form is given by

u(x,t) = 1 + x + 2sin(πx)

(
1−π2t +π4 t2

2!
−·· ·

)
, (3.220)

and in a closed form
u(x,t) = 1 + x + 2sin(πx)e−π2t . (3.221)

Exercises 3.4.2

In Exercises 1–4, use the method of separation of variables to solve the initial-
boundary value problems:
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1. ut = uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 3
u(x,0) = 1 + 2x + 3sin(πx)

2. ut = uxx, 0 < x < π , t > 0
u(0,t) = 1, u(π ,t) = 1
u(x,0) = 1 + 4sinx

3. ut = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = π
u(x,0) = x + sin(2x)

4. ut = uxx, 0 < x < π , t > 0
u(0,t) = 4, u(π ,t) = 4−4π
u(x,0) = 4−4x + sin(3x)

5. Solve the following initial-boundary value problem by the decomposition method
and by the separation of variables method:

ut = uxx, 0 < x < π , t > 0
u(0,t) = 2, u(π ,t) = 2 + 3π
u(x,0) = 2 + 3x + sinx

6. Solve the following initial-boundary value problem by the decomposition method
and by the separation of variables method:

ut = uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 3
u(x,0) = 1 + 2x + 3sin(2πx)

3.4.3 Equations with Lateral Heat Loss

For a rod with a lateral heat loss, it can be proved that the heat flow is controlled by
the homogeneous PDE

PDE ut = kuxx− cu, 0 < x < L,t > 0,
BC u(0,t) = 0,

u(L,t) = 0,
IC u(x,0) = f (x).

(3.222)

It is easily observed that this equation is not the standard heat equation we discussed
so far. Instead, it includes the term −cu(x,t) due to the lateral heat loss.

We will focus our attention on converting Eq. (3.222) to a standard heat equation.
Thereafter, we can implement the separation of variables method in a straightfor-
ward way. This goal can be achieved by using the transformation formula



3.4 Method of Separation of Variables 103

u(x,t) = e−ct w(x,t). (3.223)

Accordingly, w(x,t) will be governed by the IBVP

PDE wt = kwxx, 0 < x < L, t > 0,
BC w(0,t) = 0,

w(L,t) = 0,
IC w(x,0) = f (x).

(3.224)

where w(x,t) can be easily obtained in a similar manner to the discussion stated
above. The following example illustrates the use of the transformation formula
(3.223).

Example 6. Solve the following initial boundary value problem

PDE ut = uxx−u, 0 < x < 1, t > 0,
BC u(0,t) = 0,

u(1,t) = 0,
IC u(x,0) = sin(πx)+ 2sin(3πx).

(3.225)

Solution.

Using the transformation formula

u(x,t) = e−tw(x,t), (3.226)

carries (3.225) into

PDE wt = wxx, 0 < x < 1, t > 0,
BC w(0,t) = 0,

w(1,t) = 0,
IC w(x,0) = sin(πx)+ 2sin(3πx).

(3.227)

Setting
w(x,t) = F(x)T (t), (3.228)

and proceeding as before we obtain

w(x,t) =
∞

∑
n=1

Bne−n2π2t sin(nπx), (3.229)

obtained upon using the boundary conditions. To determine the arbitrary constants
Bn, n � 1, we substitute t = 0 in (3.229) and use the initial condition to find

B1 sin(πx)+ B2 sin(2πx)+ B3 sin(3πx)+ · · ·= sin(πx)+ 2sin(3πx), (3.230)

which gives
B1 = 1, B3 = 2, Bk = 0, k �= 1,3. (3.231)
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In view of (3.231), Eq. (3.229) becomes

w(x,t) = e−π2t sin(πx)+ 2e−9π2t sin(3πx). (3.232)

Substituting (3.232) into (3.226) gives

u(x,t) = e−t
(

e−π2t sin(πx)+ 2e−9π2t sin(3πx)
)

. (3.233)

For comparisons reasons, the Adomian decomposition method will be used to
solve Example 6. Applying the operator L−1

t to both sides of (3.225) and using the
initial condition we obtain

u(x,t) = sin(πx)+ 2sin(3πx)+ L−1
t (Lxu−u). (3.234)

Using the decomposition series for u(x,t) gives

∞

∑
n=0

un(x,t) = sin(πx)+ 2sin(3πx)

+ L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

)
−

∞

∑
n=0

un(x,t)

)
. (3.235)

Using the recursive algorithm as discussed before we obtain

u0 = sin(πx)+ 2sin(3πx),
u1 = −(π2 + 1)t sin(πx)−2(9π2 + 1)t sin(3πx),

u2 = (π2 + 1)2 t2

2!
sin(πx)+ 2(9π2 + 1)2 t2

2!
sin(3πx),

(3.236)

and so on. Based on this, the solution in a series for is given by

u(x,t) = sin(πx)

(
1− (π2 + 1)t +(π2 + 1)2 t2

2!
−·· ·

)

+ 2sin(3πx)

(
1− (9π2 + 1)t +(9π2 + 1)2 t2

2!
+ · · ·

)
, (3.237)

and in a closed form by

u(x,t) = sin(πx)e−(π2+1)t + 2sin(3πx)e−(9π2+1)t . (3.238)

Example 7. Solve the following initial-boundary value problem

PDE ut = uxx−3u + 3, 0 < x < π, t > 0,
BC u(0,t) = 1,

u(π ,t) = 1,
IC u(x,0) = 1 + sinx.

(3.239)
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Notice here that the lateral heat source has the coefficient−3. This means that if the
coefficient of u is −a, we use a transformation formula in the form

u(x,t) = e−atw(x,t). (3.240)

Moreover, because of the inhomogeneous part 3, we add 1 to the transformation
formula as will be seen.

Solution.

In this case we use the transformation formula

u(x,t) = 1 + e−3tw(x,t), (3.241)

that carries (3.239) into

PDE wt = wxx, 0 < x < π, t > 0,
BC w(0,t) = 0,

w(π,t) = 0,
IC w(x,0) = sinx.

(3.242)

Setting
w(x,t) = F(x)T (t), (3.243)

and proceeding as before we obtain

w(x,t) =
∞

∑
n=1

Bne−n2t sin(nx), (3.244)

obtained upon using the boundary conditions. To determine the arbitrary constants
Bn, n � 1, we substitute t = 0 in (3.244) and use the initial condition to find

B1 sinx + B2 sin(2x)+ · · ·= sinx, (3.245)

which gives
B1 = 1, Bk = 0, k � 2. (3.246)

In view of (3.246), Eq. (3.229) becomes

w(x,t) = e−t sinx. (3.247)

Substituting (3.247) into (3.241) gives

u(x,t) = 1 + sinxe−4t . (3.248)
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Exercises 3.4.3

Use the method of separation of variables to solve the following heat equations with
lateral heat loss:

1. ut = uxx−u, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sinx

2. ut = uxx−u, 0 < x < 1, t > 0
u(0,t) = 0, u(1,t) = 0
u(x,0) = sin(2πx)

3. ut = uxx−3u, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sin(x)

4. ut = uxx−2π2u, 0 < x < 1, t > 0
u(0,t) = 0, u(1,t) = 0
u(x,0) = sin(πx)

5. ut = uxx−u + 1, 0 < x < π , t > 0
u(0,t) = 1, u(π ,t) = 1
u(x,0) = 1 + sinx

6. ut = uxx−2π2u + 6π2, 0 < x < 1, t > 0
u(0,t) = 3, u(1,t) = 3
u(x,0) = 3 + 3sin(πx)
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Chapter 4

Higher Dimensional Heat Flow

4.1 Introduction

This chapter is devoted to the study of the PDEs that control the heat flow in two and
three dimensional spaces. The higher dimensional heat flow has been the subject of
intensive analytical and numerical investigations. The work in this chapter will run
in a parallel manner to the work used in Chapter 3. The study of higher dimensional
heat equation will be carried out ONLY by using Adomian decomposition method
[1–2] and the method of separation of variables [3,4,6–9]. The two methods have
been outlined in Chapters 2 and 3 and were implemented for the heat equation in
one dimension.

The decomposition method has been used to obtain analytic and approximate so-
lutions to a wide class of linear and nonlinear, differential and integral equations. It
was found by many researchers, that unlike other series solution methods, the de-
composition method is easy to program in engineering problems, and provides im-
mediate and visible solution terms without linearization or discretization. As stated
in Chapter 2, the concept of rapid convergence of the method was addressed exten-
sively. The main advantage of the decomposition method is that it can be applied
directly to all types of differential equations with homogeneous or inhomogeneous
boundary conditions [5]. Another important advantage is that the method is capable
of reducing the size of computational work, especially for nonlinear models [10–
12].

To examine the performance of Adomian’s method compared to existing tech-
niques, the method of separation of variables will be implemented. The method
of separation of variables provides the solution of a partial differential equation
through reducing the equation to a system of ordinary differential equations. In ad-
dition, the method requires that the problem and the boundary conditions be lin-
ear and homogeneous, hence transformation formulae are usually used to meet this
need.
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4.2 Adomian Decomposition Method

The Adomian decomposition method has been receiving much attention in recent
years in the area of series solutions. A considerable research work has been invested
recently in applying this method to a wide class of differential and integral equa-
tions. A useful attraction of this method is that it has proved to be a competitive
alternative to the Taylor series method [5, 10–12] and other series techniques.

The Adomian method consists of decomposing the unknown function u(x,t) into
an infinite sum of components [1–2]. The zeroth component u0(x,t) is identified by
the terms arising from integrating the inhomogeneous term and the initial/boundary
conditions. The successive terms are determined in a recursive manner. The method
attacks inhomogeneous problems and homogeneous problems in a like manner, thus
providing an easily computable technique.

4.2.1 Two Dimensional Heat Flow

The distribution of heat flow in a two dimensional space is governed by the follow-
ing initial boundary value problem [3,7]

PDE ut = k(uxx + uyy),0 < x < a, 0 < y < b,t > 0,
BC u(0,y,t) = u(a,y,t) = 0,

u(x,0,t) = u(x,b,t) = 0,
IC u(x,y,0) = f (x,y),

(4.1)

where u≡ u(x,y,t) is the temperature of any point located at the position (x,y) of a
rectangular plate at any time t, and k is the thermal diffusivity.

As discussed before, the solution in the t space, the x space, or the y space will
produce the same series solution. However, the solution in the t space reduces the
size of calculations compared with the other space solutions. For this reason the
solution in the t direction will be followed in this chapter.

We first rewrite (4.1) in an operator form by

Ltu(x,y,t) = k (Lxu + Lyu) , (4.2)

where the differential operators Lt ,Lx, and Ly are defined by

Lt =
∂
∂ t

, Lx =
∂ 2

∂x2 , Ly =
∂ 2

∂y2 , (4.3)

so that the integral operator L−1
t exists and given by

L−1
t (·) =

∫ t

0
(·)dt. (4.4)
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Applying L−1
t to both sides of (4.2) and using the initial condition leads to

u(x,y,t) = f (x,y)+ kL−1
t (Lxu + Lyu) . (4.5)

The decomposition method defines the solution u(x,y,t) as a series given by

u(x,y,t) =
∞

∑
n=0

un(x,y,t), (4.6)

where the components un(x,y,t),n � 0 will be easily computed by using a recursive
algorithm. Substituting (4.6) into both sides of (4.5) yields

∞

∑
n=0

un = f (x,y)+ kL−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (4.7)

The decomposition method suggests that the zeroth component u0(x,y,t) is identi-
fied as the terms arising from the initial/boundary conditions and from source terms.
The remaining components of u(x,y,t) can be determined in a recursive manner such
that each component is determined by using the previous component. Accordingly,
the components un(x,y,t), n � 0 can be completely determined by following the
recurrence relation

u0(x,y,t) = f (x,y),
uk+1(x,y,t) = kL−1

t (Lxuk + Lyuk) , k � 0.
(4.8)

As a result, the successive components are completely determined, and hence the
solution in a series form is thus obtained. Recall that the components can be deter-
mined recursively as far as we like. For numerical purposes, the accuracy level can
be improved significantly by increasing the number of components determined. As
discussed earlier, the closed form solution may also be obtained.

To give a clear overview of the implementation of the decomposition method, we
have chosen several examples, homogeneous and inhomogeneous, to illustrate the
discussion given above.

Homogeneous Heat Equations

The Adomian decomposition method will be used to solve the following homo-
geneous heat equation in two dimensions with homogeneous or inhomogeneous
boundary conditions [4,6,9].

Example 1. Use the Adomian decomposition method to solve the initial-boundary
value problem
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PDE ut = uxx + uyy, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π,t) = 0,
IC u(x,y,0) = sinxsiny.

(4.9)

Solution.

We first write (4.9) in an operator form by

Ltu = Lxu + Lyu. (4.10)

Applying the inverse operator L−1
t to (4.10) and using the initial condition we obtain

u(x,y,t) = sinxsiny + L−1
t (Lxu + Lyu) . (4.11)

The decomposition method defines the solution u(x,y,t) as a series given by

u(x,y,t) =
∞

∑
n=0

un(x,y,t), (4.12)

where the components un(x,y,t),n � 0 are to be determined by using a recursive
algorithm. Substituting (4.12) into both sides of (4.11) yields

∞

∑
n=0

un = sinxsiny + L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (4.13)

The zeroth component u0(x,y,t) is identified by all terms that are not included under
L−1

t . The components un(x,y,t), n � 0 can be completely determined by following
the recursive algorithm

u0(x,y,t) = sinxsiny,
uk+1(x,y,t) = L−1

t (Lxuk + Ly uk) , k � 0.
(4.14)

With u0 defined as shown above, the first few terms of the decomposition (4.12) are
given by

u0(x,y,t) = sinxsin y,
u1(x,y,t) = L−1

t (Lxu0 + Lyu0) =−2t sinxsin y,

u2(x,y,t) = L−1
t (Lxu1 + Lyu1) =

(2t)2

2!
sinxsiny,

u3(x,y,t) = L−1
t (Lxu2 + Lyu2) =− (2t)3

3!
sinxsin y,

(4.15)

and so on. Combining (4.12) and (4.15), the solution in a series form is given by

u(x,y,t) = sinxsin y

(
1−2t +

(2t)2

2!
− (2t)3

3!
+ · · ·

)
, (4.16)

and in a closed form by
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u(x,y,t) = e−2t sinxsin y. (4.17)

Example 2. Use the Adomian decomposition method to solve the initial-boundary
value problem with lateral heat loss

PDE ut = uxx + uyy−u, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = −u(x,π ,t) = e−3t sinx,
IC u(x,y,0) = sinxcosy.

(4.18)

Solution.

Applying the inverse operator L−1
t to (4.18) gives

u(x,y,t) = sinxcosy + L−1
t (Lxu + Lyu−u). (4.19)

The decomposition method defines the solution u(x,y,t) as a series given by

u(x,y,t) =
∞

∑
n=0

un(x,y,t). (4.20)

Substituting (4.20) into both sides of (4.19) yields

∞

∑
n=0

un = sinxcosy + L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
−

∞

∑
n=0

un

)
. (4.21)

Proceeding as before we find

u0(x,y,t) = sinxcosy,
uk+1(x,y,t) = L−1

t (Lxuk + Lyuk−uk) , k � 0.
(4.22)

It follows that

u0(x,y,t) = sinxcosy,
u1(x,y,t) = L−1

t (Lxu0 + Lyu0−u0) =−3t sinxcosy,

u2(x,y,t) = L−1
t (Lxu1 + Lyu1−u1) =

(3t)2

2!
sinxcosy,

u3(x,y,t) = L−1
t (Lxu2 + Lyu2−u2) =− (3t)3

3!
sinxcosy,

(4.23)

and so on. Combining (4.20) and (4.23), the solution in a series form is given by

u(x,y,t) = sinxcosy

(
1−3t +

(3t)2

2!
− (3t)3

3!
+ · · ·

)
, (4.24)

and in a closed form by
u(x,y,t) = e−3t sinxcosy. (4.25)
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Example 3. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx + uyy, 0 < x,y < π , t > 0,
BC u(0,y,t) = −u(π,y,t) = e−2t siny,

u(x,0,t) = −u(x,π ,t) = e−2t sinx,
IC u(x,y,0) = sin(x + y).

(4.26)

Solution.

It is obvious that the boundary conditions are inhomogeneous. One major ad-
vantage of the decomposition method is that it handles any problem in a direct way
without any need to transform the inhomogeneous conditions to homogeneous con-
ditions.

Applying the operator L−1
t to the operator form of (4.26) yields

u(x,y,t) = sin(x + y)+ L−1
t (Lxu + Lyu) . (4.27)

Substituting the decomposition series for u(x,y,t) into (4.27) gives

∞

∑
n=0

un = sin(x + y)+ L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (4.28)

Proceeding as before, we set the recurrence relation

u0(x,y,t) = sin(x + y),
uk+1(x,y,t) = L−1

t (Lxuk + Lyuk) , k � 0.
(4.29)

Using few terms of the decomposition gives

u0(x,y,t) = sin(x + y),
u1(x,y,t) = L−1

t (Lxu0 + Lyu0) =−2t sin(x + y),

u2(x,y,t) = L−1
t (Lxu1 + Lyu1) =

(2t)2

2!
sin(x + y),

u3(x,y,t) = L−1
t (Lxu2 + Lyu2) =− (2t)3

3!
sin(x + y),

(4.30)

and so on. The solution in a series form is given by

u(x,y,t) = sin(x + y)

(
1−2t +

(2t)2

2!
− (2t)3

3!
+ · · ·

)
, (4.31)

and in a closed form by
u(x,y,t) = e−2t sin(x + y). (4.32)
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Inhomogeneous Heat Equations

It was defined before that inhomogeneous heat equation contains one or more terms
that do not contain the dependent variable u(x,y,t). A useful advantage of Ado-
mian’s method is that it handles homogeneous and inhomogeneous problems in a
like manner [10]. The decomposition method, that has been outlined before, will be
applied to solve inhomogeneous heat flow equations given by the following illustra-
tive examples.

Example 4. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx + uyy + siny, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π,y,t) = siny,

u(x,0,t) = u(x,π ,t) = 0,
IC u(x,y,0) = sinxsin y + siny.

(4.33)

Solution.

It is obvious that the given equation is an inhomogeneous equation. Unlike the
method of separation of variables, the decomposition method handles any problem
in a direct way without any need to transform the inhomogeneous equation to a
related homogeneous equation.

Operating with L−1
t to the operator form of (4.33) gives

u(x,y,t) = sin xsiny + siny + t siny + L−1
t (Lxu + Lyu) . (4.34)

Using the decomposition series for u(x,y,t) into (4.34) leads to

∞

∑
n=0

un = sin xsiny + siny + t siny + L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (4.35)

It follows that the recursive relationship is given by

u0(x,y,t) = sinxsiny + siny + t siny,
uk+1(x,y,t) = L−1

t (Lxuk + Lyuk) , k � 0.
(4.36)

This gives

u0(x,y,t) = sinxsiny + siny + t siny,

u1(x,y,t) = L−1
t (Lxu0 + Lyu0) =−2t sinxsin y− t siny− t2

2!
siny,

u2(x,y,t) = L−1
t (Lxu1 + Lyu1) =

(2t)2

2!
sinxsiny +

t2

2!
siny +

t3

3!
siny,

(4.37)

and so on. The solution in a series form is given by
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u(x,y,t) = siny + sinxsiny

(
1−2t +

(2t)2

2!
− (2t)3

3!
+ · · ·

)
+

(
t siny− t siny− t2

2!
siny +

t2

2!
siny−·· ·

)
,

(4.38)

and in a closed form by

u(x,y,t) = sin y + e−2t sin xsiny, (4.39)

where other terms vanish in the limit.

Example 5. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE ut = uxx + uyy + 2cosxcosy, 0 < x,y < π, t > 0,
BC u(0,y,t) = −u(π ,y,t) = (1− e−2t)cosy,

u(x,0,t) = −u(x,π ,t) = (1− e−2t)cosx,
IC u(x,y,0) = 0.

(4.40)

Solution.

The given partial differential equation and the boundary conditions are inhomo-
geneous. Our approach will be analogous to that employed in the previous examples.

Applying the inverse operator L−1
t we obtain

u(x,y,t) = 2t cosxcosy + L−1
t (Lxu + Lyu) . (4.41)

Using the decomposition series for u(x,y,t) gives

∞

∑
n=0

un = 2t cosxcosy + L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (4.42)

Proceeding as before, we set

u0(x,y,t) = 2t cosxcosy,
uk+1(x,y,t) = L−1

t (Lxuk + Lyuk) , k � 0.
(4.43)

Using few terms of the decomposition gives

u0(x,y,t) = 2t cosxcosy,

u1(x,y,t) = L−1
t (Lxu0 + Lyu0) =− (2t)2

2!
cosxcosy,

u2(x,y,t) = L−1
t (Lxu1 + Lyu1) =

(2t)3

3!
cosxcosy,

(4.44)

and so on. The solution in a series form is given by
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u(x,y,t) = cosxcosy

(
2t− (2t)2

2!
+

(2t)3

3!
+ · · ·

)
, (4.45)

and in a closed form by

u(x,y,t) = (1− e−2t)cosxcosy. (4.46)

Exercises 4.2.1

In Exercises 1–6, use the decomposition method to solve the homogeneous initial-
boundary value problems:

1. ut = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin y

2. ut = uxx + uyy, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 2sinxsin y

3. ut = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) =−u(π ,y,t) = e−4t cosy
u(x,0,t) =−u(x,π ,t) = e−4t cosx
u(x,y,0) = cos(x + y)

4. ut = 3(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) =−u(π ,y,t) =−e−6t siny
u(x,0,t) =−u(x,π ,t) = e−6t sin x
u(x,y,0) = sin(x− y)

5. ut = 2(uxx + uyy)−u, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin y

6. ut = 3(uxx + uyy)−2u, 0 < x,y < π , t > 0
u(0,y,t) =−u(π ,y,t) = e−8t siny
u(x,0,t) =−u(x,π ,t) = e−8t sin x
u(x,y,0) = sin(x + y)

In Exercises 7–12, use the decomposition method to solve the inhomogeneous
initial-boundary value problems:

7. ut = 2(uxx + uyy)+ 2sinx, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
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u(x,0,t) = u(x,π ,t) = sinx
u(x,y,0) = sinxsin y + sinx

8. ut = 3(uxx + uyy)+ 3cosx, 0 < x,y < π , t > 0
u(0,y,t) =−u(π ,y,t) = 1
u(x,0,t) = u(x,π ,t) = cosx
u(x,y,0) = sinxsin y + cosx

9. ut = uxx + uyy + 2cos(x + y), 0 < x,y < π , t > 0
u(0,y,t) = (e−2t siny + cosy)
u(π ,y,t) =−(e−2t siny + cosy)
u(x,0,t) = (e−2t sinx + cosx)
u(x,π ,t) =−(e−2t sinx + cosx)
u(x,y,0) = sin(x + y)+ cos(x + y)

10. ut = uxx + uyy = sinx + siny, 0 < x,y < π , t > 0
u(0,y,t) = u(π,y,t) = sin y
u(x,0,t) = u(x,π ,t) = sinx
u(x,y,0) = sinx(1 + siny)+ siny

11. ut = uxx + uyy−2, 0 < x,y < π , t > 0
u(0,y,t) = 0, u(π ,y,t) = π2

u(x,0,t) = u(x,π ,t) = x2

u(x,y,0) = x2 + sinxsiny

12. ut = uxx + uyy−2, 0 < x,y < π , t > 0
u(0,y,t) = u(π,y,t) = y2

u(x,0,t) = 0, u(x,π ,t) = π2

u(x,y,0) = sinxsiny + y2

4.2.2 Three Dimensional Heat Flow

The distribution of heat flow in a three dimensional space [8, 10] is governed by the
following initial boundary value problem

PDE ut = k(uxx + uyy + uzz), t > 0,
0 < x < a,0 < y < b,0 < z < c,

BC u(0,y,z,t) = u(a,y,z,t) = 0,
u(x,0,z,t) = u(x,b,z,t) = 0,
u(x,y,0,t) = u(x,y,c,t) = 0,

IC u(x,y,z,0) = f (x,y,z),

(4.47)

where u ≡ u(x,y,z,t) is the temperature of any point located at the position (x,y,z)
of a rectangular volume at any time t, and k is the thermal diffusivity.

We first rewrite (4.47) in an operator form by
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Ltu = k(Lxu + Lyu + Lzu), (4.48)

where the differential operators Lx,Ly, and Lz are defined by

Lt =
∂
∂ t

, Lx =
∂ 2

∂x2 , Ly =
∂ 2

∂y2 , Lz =
∂ 2

∂ z2 , (4.49)

so that the integral operator L−1
t exists and given by

L−1
t (·) =

∫ t

0
(·)dt. (4.50)

Applying L−1
t to both sides of (4.48) and using the initial condition leads to

u(x,y,t) = f (x,y,z)+ k L−1
t (Lxu + Lyu + Lzu) . (4.51)

The decomposition method defines the solution u(x,y,z,t) as a series given by

u(x,y,z,t) =
∞

∑
n=0

un(x,y,z,t). (4.52)

Substituting (4.52) into both sides of (4.51) yields

∞

∑
n=0

un = f (x,y,z)

+kL−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (4.53)

The components un(x,y,z,t), n � 0 can be completely determined by using the re-
cursive relationship

u0(x,y,z,t) = f (x,y,z),
uk+1(x,y,z,t) = k L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(4.54)

The components can be determined recursively as far as we like. Consequently, the
components un,n � 0, are completely determined and the solution in a series form
follows immediately.

Homogeneous Heat Equations

The decomposition method will be used to discuss the following homogeneous heat
equations.

Example 6. Solve the following initial-boundary value problem
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PDE ut = uxx + uyy + uzz, 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π ,y,z,t) = 0,

u(x,0,z,t) = u(x,π,z,t) = 0,
u(x,y,0,t) = u(x,y,π,t) = 0,

IC u(x,y,z,0) = 2sinxsinysin z.

(4.55)

Solution.

Applying the inverse operator L−1
t to the operator form of (4.55) gives

u(x,y,z,t) = 2sinxsin ysinz+ L−1
t (Lxu + Lyu + Lzu) . (4.56)

Using the decomposition series

u(x,y,z,t) =
∞

∑
n=0

un(x,y,z,t) (4.57)

into (4.56) yields

∞

∑
n=0

un = 2sinxsin ysinz

+ L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (4.58)

The components un(x,y,z,t), n � 0 can be determined by using the recurrence rela-
tion

u0(x,y,z,t) = 2sinxsinysinz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(4.59)

It follows that the first few terms of the decomposition series of u(x,y,z,t) are given
by

u0(x,y,z,t) = 2sinxsin ysinz,
u1(x,y,z,t) = L−1

t (Lxu0 + Lyu0 + Lzu0) =−2(3t)sinxsin ysinz,

u2(x,y,z,t) = L−1
t (Lxu1 + Lyu1 + Lzu1) =

2(3t)2

2!
sin xsinysinz,

u3(x,y,z,t) = L−1
t (Lxu2 + Lyu2 + Lzu2) =−2(3t)3

3!
sinxsin ysinz,

(4.60)

and so on. As indicated before, further components can be easily computed to in-
crease the level of accuracy.

Combining (4.57) and (4.60), the solution in a series form is given by

u(x,y,z,t) = 2sinxsinysin z

(
1−3t +

(3t)2

2!
− (3t)3

3!
+ · · ·

)
, (4.61)
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and in a closed form by

u(x,y,z,t) = 2e−3t sinxsin ysinz. (4.62)

Example 7. Solve the following initial-boundary value problem with lateral heat
loss

PDE ut = uxx + uyy + uzz−2u, 0 < x,y,z < π, t > 0,
BC u(0,y,z,t) = u(π,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π ,t) = 0,

IC u(x,y,z,0) = sinxsinysinz.

(4.63)

Solution.

Operating with L−1
t on (4.63) we obtain

u(x,y,z,t) = sin xsinysinz+ L−1
t (Lxu + Lyu + Lzu−2u). (4.64)

Proceeding as before we find

∞

∑
n=0

un = sinxsinysinz

+L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

)
−2

(
∞

∑
n=0

un

))
.

(4.65)

Using the assumptions of the decomposition method yields

u0(x,y,z,t) = sin xsinysinz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk−2uk) , k � 0.
(4.66)

Consequently, we obtain

u0 = sinxsinysinz,
u1 = L−1

t (Lxu0 + Lyu0 + Lzu0−2u0) =−5t sinxsin ysinz,

u2 = L−1
t (Lxu1 + Lyu1 + Lzu1−2u1) =

(5t)2

2!
sinxcosycosz,

u3 = L−1
t (Lxu2 + Lyu2 + Lzu2−2u2) =− (5t)3

3!
sinxsin ysinz.

(4.67)

The solution in a series form is given by

u(x,y,z,t) = sinxsinysinz

(
1−5t +

(5t)2

2!
− (5t)3

3!
+ · · ·

)
, (4.68)

and in a closed form by
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u(x,y,z,t) = e−5t sinxsin ysinz, (4.69)

obtained upon using the Taylor series of e−5t .

Example 8. Solve the following initial-boundary value problem

PDE ut = 2(uxx + uyy + uzz), 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π ,y,z,t) = 0,

u(x,0,z,t) = −u(x,π,z,t) = e−6t sinxcosz,
u(x,y,0,t) = −u(x,y,π,t) = e−6t sinxcosy,

IC u(x,y,z,0) = sinxcosycosz.

(4.70)

Solution.

We first note that the boundary conditions are inhomogeneous. Following the
previous discussion we obtain

u(x,y,z,t) = sinxcosycosz+ 2L−1
t (Lxu + Lyu + Lzu) , (4.71)

and hence we find

∞

∑
n=0

un = sinxcosycosz

+ 2L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (4.72)

With u0 defined as shown above, we set the relation

u0(x,y,z,t) = sinxcosycosz,
uk+1(x,y,z,t) = 2L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(4.73)

Consequently, the first few components

u0(x,y,z,t) = sinxcosycosz,
u1(x,y,z,t) = 2L−1

t (Lxu0 + Lyu0 + Lzu0) =−6t sinxcosycosz,

u2(x,y,z,t) = 2L−1
t (Lxu1 + Lyu1 + Lzu1) =

(6t)2

2!
sinxcosycosz,

u3(x,y,z,t) = 2L−1
t (Lxu2 + Lyu2 + Lzu2) =− (6t)3

3!
sinxcosycosz,

(4.74)

are obtained. The solution in a series form

u(x,y,z,t) = sinxcosycosz

(
1−6t +

(6t)2

2!
− (6t)3

3!
+ · · ·

)
, (4.75)

is readily obtained, and hence the exact solution
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u(x,y,z,t) = e−6t sinxcosycosz, (4.76)

follows immediately.

Inhomogeneous Heat Equations

In the following, the Adomian decomposition method will be applied to inhomoge-
neous heat equations. The method will be implemented in a like manner to that used
in homogeneous cases.

Example 9. Solve the following initial-boundary value problem

PDE ut = (uxx + uyy + uzz)−2, 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π ,y,z,t) = z2,

u(x,0,z,t) = u(x,π ,z,t) = z2,
u(x,y,0,t) = 0, u(x,y,π ,t) = π2,

IC u(x,y,z,0) = z2 + sinxsinysin z.

(4.77)

Solution.

We first note that the PDE and the boundary conditions are inhomogeneous. Ap-
plying the inverse operator L−1

t to (4.77) and using the initial condition we obtain

u(x,y,z,t) =−2t + z2 + sinxsinysin z+ L−1
t (Lxu + Lyu + Lzu) , (4.78)

and proceeding as before we find

∞

∑
n=0

un =−2t + z2 + sinxsin ysinz

+ L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (4.79)

We next set the recurrence relation

u0(x,y,z,t) = −2t + z2 + sinxsin ysinz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(4.80)

The first few terms of the decomposition series are

u0(x,y,z,t) = −2t + z2 + sinxsinysinz,
u1(x,y,z,t) = −3t sinxsin ysinz+ 2t,

u2(x,y,z,t) =
(3t)2

2!
sinxsin ysinz,

u3(x,y,z,t) = − (3t)3

3!
sinxsinysinz.

(4.81)
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The solution in a series form is given by

u(x,y,z,t) = z2 + sinxsinysin z

(
1−3t +

(3t)2

2!
− (3t)3

3!
+ · · ·

)
, (4.82)

and in a closed form by

u(x,y,z,t) = z2 + e−3t sinxsinysinz. (4.83)

Example 10. Solve the following initial-boundary value problem

PDE ut = (uxx + uyy + uzz)+ sinz, 0 < x,y,z < π, t > 0,
BC u(0,y,z,t) = sinz+ e−2t siny,

u(π ,y,z,t) = sinz− e−2t siny,
u(x,0,z,t) = sinz+ e−2t sinx,
u(x,π ,z,t) = sinz− e−2t sinx,
u(x,y,0,t) = u(x,y,π ,t) = e−2t sin(x + y),

IC u(x,y,z,0) = sin(x + y)+ sinz.

(4.84)

Solution.

It is clear that the PDE and the boundary conditions are inhomogeneous. Apply-
ing the inverse operator L−1

t to (4.84) gives

u(x,y,z,t) = sin(x + y)+ sinz+ t sinz+ L−1
t (Lxu + Lyu + Lzu) , (4.85)

and this in turn gives

∞

∑
n=0

un = sin(x + y)+ sinz+ t sinz

+ L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (4.86)

Accordingly, we set the recursive relationship

u0(x,y,z,t) = sin(x + y)+ sinz+ t sinz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(4.87)

The first few terms of the decomposition are

u0(x,y,z,t) = sin(x + y)+ sinz+ t sinz,

u1(x,y,z,t) = −2t sin(x + y)− t sinz− t2

2!
sinz,

u2(x,y,z,t) =
(2t)2

2!
sin(x + y)+

t2

2!
sinz+

t3

3!
sinz.

(4.88)
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The solution in a series form is given by

u(x,y,z,t) = sinz+ sin(x + y)

(
1−2t +

(2t)2

2!
− (2t)3

3!
+ · · ·

)

+

(
t sinz− t sinz− t2

2!
sinz+

t2

2!
sinz+ · · ·

)
,

(4.89)

and in a closed form by

u(x,y,z,t) = sinz+ e−2t sin(x + y). (4.90)

Exercises 4.2.2

In Exercises 1–4, use the decomposition method to solve the homogeneous initial-
boundary value problems:

1. ut = 2(uxx + uyy + uzz), 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = sinxsinysin z

2. ut = uxx + uyy + uzz, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = 2sinxsinysinz

3. ut = uxx + uyy + uzz, 0 < x,y,z < π , t > 0
u(0,y,z,t) =−u(π ,y,z,t) = e−3t sin(y + z)
u(x,0,z,t) =−u(x,π ,z,t) = e−3t sin(x + z)
u(x,y,0,t) =−u(x,y,π,t) = e−3t sin(x + y)
u(x,y,z,0) = sin(x + y + z)

4. ut = uxx + uyy + uzz−u, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = sinxsinysin z

In Exercises 5–8, solve the inhomogeneous initial-boundary value problems:

5. ut = uxx + uyy + uzz−4, 0 < x,y,z < π , t > 0
u(0,y,z,t) = 0, u(π,y,z,t) = 2π2

u(x,0,z,t) = u(x,π ,z,t) = 2x2
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u(x,y,0,t) = u(x,y,π,t) = 2x2

u(x,y,z,0) = 2x2 + sinxsinysin z

6. ut = uxx + uyy + uzz−2, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = y2

u(x,0,z,t) = 0, u(x,π,z,t) = π2

u(x,y,0,t) = u(x,y,π,t) = y2

u(x,y,z,0) = y2 + sinxsin ysinz

7. ut = uxx + uyy + uzz + sinx, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = e−2t sin(y + z)
u(x,0,z,t) = sinx + e−2t sin z, u(x,π,z,t) = sinx− e−2t sinz
u(x,y,0,t) = sinx + e−2t sin y, u(x,y,π,t) = sinx− e−2t siny
u(x,y,z,0) = sinx + sin(y + z)

8. ut = uxx + uyy + uzz−2, 0 < x,y,z < π , t > 0
u(0,y,z,t) = e−3t(siny + sinz)
u(π ,y,z,t) = π2 + e−3t(siny + sinz)
u(x,0,z,t) = u(x,π ,z,t) = x2 + e−3t(sin x + sinz)
u(x,y,0,t) = u(x,y,π,t) = x2 + e−3t(sin x + siny)
u(x,y,z,0) = x2 +(sinx + siny + sinz)

4.3 Method of Separation of Variables

In this section, the heat flow in a two dimensional space and a three dimensional
space will be discussed by using the classical method of the separation of variables.
As discussed in Chapter 3, this method converts the partial differential equation by a
system of ordinary differential equations that are usually easy to handle. The result-
ing ODEs are then solved independently. We then proceed as discussed in Chapter
3 and apply the boundary and the initial equations to determine the constants of
integration. Unlike the Adomian decomposition method, it is well known that the
method of separation of variables [7, 10] is commonly used for the case where the
PDE and the boundary conditions are linear and homogeneous. For inhomogeneous
equations, transformation formulas are used to convert the inhomogeneous equa-
tions to homogeneous equations.

4.3.1 Two Dimensional Heat Flow

The distribution of heat flow in a two dimensional space is governed by the follow-
ing initial boundary value problem
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PDE ut = k(uxx + uyy), 0 < x < a, 0 < y < b,t > 0,
BC u(0,y,t) = u(a,y,t) = 0,

u(x,0,t) = u(x,b,t) = 0,
IC u(x,y,0) = f (x,y).

(4.91)

where u ≡ u(x,y,t) defines the temperature of any point at the position (x,y) of a
rectangular plate at any time t, and k is the thermal diffusivity.

The method of separation of variables is based on an assumption that the solution
u(x,y,t) can be expressed as the product of distinct functions F(x),G(y), and T (t),
such that each function depends on one variable only. Based on this assumption, we
first set

u(x,y,t) = F(x)G(y)T (t). (4.92)

Differentiating both sides of (4.92) with respect to t and twice with respect to x and
y respectively, we obtain

ut = F(x)G(y)T ′(t),
uxx = F ′′(x)G(y)T (t),
uyy = F(x)G′′(y)T (t).

(4.93)

Substituting (4.93) into (4.91) leads to

F(x)G(y)T ′(t) = k
(
F ′′(x)G(y)T (t)+ F(x)G′′(y)T (t)

)
. (4.94)

Dividing both sides of (4.94) by kF(x)G(y)T (t) yields

T ′(t)
kT (t)

=
F ′′(x)
F(x)

+
G′′(y)
G(y)

. (4.95)

It is obvious that the left hand side depends only on t and the right hand side depends
only on x and y. This means that the equality holds only if both sides are equal to the
same constant. Assuming that the right hand side is a constant, it is valid to assume
that it is the sum of two constants. Therefore, we set

F ′′(x)
F(x)

=−λ 2, (4.96)

and
G′′(y)
G(y)

=−μ2. (4.97)

Consequently, we find
F ′′(x)+ λ 2F(x) = 0, (4.98)

and
G′′(y)+ μ2G(y) = 0. (4.99)

This means that the left hand side of (4.95) is equal to−(λ 2 + μ2). Accordingly, we
obtain
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T ′(t)
kT (t)

=−(λ 2 + μ2), (4.100)

or equivalently
T ′(t)+ k(λ 2 + μ2)T (t) = 0. (4.101)

The selection of −(λ 2 + μ2) is the only selection that will provide nontrivial so-
lutions. Besides, this selection is made in accordance with the natural fact that the
factor T (t), and hence the temperature u(x,y,t), must vanish as t→∞. From physics,
we know that the temperature component T (t) follows the exponential decay phe-
nomena.

It is interesting to note that the partial differential equation (4.91) has been trans-
formed to three ordinary differential equations, two second order ODEs given by
(4.98) and (4.99), and a first order ODE given by (4.101).

The solution of (4.101) is given by

T (t) = Ce−k(λ 2+μ2)t , (4.102)

where C is a constant. The result (4.102) explains the fact that T (t) must follow
the exponential decay of heat flow. If accidently we selected the constant to equal
(λ 2 + μ2), this will result in an exponential growth of the Temperature factor T (t).
In this case, T (t)→ ∞ and consequently u(x,y,t)→ ∞ as t → ∞. This contradicts
the natural behavior of the heat flow [3, 10].

The second order differential equations (4.98) and (4.99) give the solutions

F(x) = Acos(λx)+ Bsin(λx), (4.103)

and
G(y) = α cos(μy)+β sin(μy), (4.104)

where A,B,α , and β are constants that will be determined.
To determine the constants A and B, we use the boundary conditions at x = 0 and

at x = a to find that
F(0)G(y)T (t) = 0,
F(a)G(y)T (t) = 0,

(4.105)

which gives
F(0) = 0,
F(a) = 0.

(4.106)

Substituting (4.106) into (4.103) gives

A = 0, (4.107)

and
λn =

nπ
a

, n = 1,2,3, · · · . (4.108)

It is important to note here that we exclude n = 0 and B = 0 because each will lead
to the trivial solution u(x,y,t) = 0. Using the results obtained for the constants A
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and λn, we therefore write the functions

Fn(x) = Bn sin(
nπ
a

x), n = 1,2,3, · · · . (4.109)

In a parallel manner, we use the second boundary condition at y = 0 and at y = b
into (4.104) to find that

α = 0, (4.110)

and
λm =

mπ
b

, m = 1,2,3, · · · . (4.111)

We exclude m = 0 and β = 0, because each will lead to the trivial solution as indi-
cated before. Consequently, G(y) can be the functions

Gm(y) = βm sin(
mπ
b

y), m = 1,2,3, · · · . (4.112)

Based on the infinite number of values for λn and μm, then T (t) of (4.102) takes the
functions

Tnm = Cnme
−k( n2

a2 + m2

b2 )π2t
(4.113)

Ignoring the constants Bn,βm, and Cnm, we conclude that the functions, that form
the set of fundamental solutions,

unm = Fn(x)Gm(y)Tnm(t)

= sin(
nπ
a

x)sin(
mπ
b

y)e−k( n2

a2 + m2

b2 )π2t
, n,m = 1,2, · · · , (4.114)

satisfy (4.91) and the boundary conditions.
Using the superposition principle, we obtain

u(x,y,t) =
∞

∑
n=1

∞

∑
m=1

Cnme−k( n2

a2 + m2

b2 )π2t sin(
nπ
a

x) sin(
mπ
b

y), (4.115)

where the arbitrary constants Cnm are as yet undetermined.
To determine the constants Cnm, we use the given initial condition to find

∞

∑
n=1

∞

∑
m=1

Cnm sin(
nπ
a

x) sin(
mπ
b

y) = f (x,y). (4.116)

The constants Cnm are completely determined by using a double Fourier coefficients
where we find

Cnm =
4

ab

∫ b

0

∫ a

0
f (x,y)sin(

nπ
a

x) sin(
mπ
b

y)dxdy. (4.117)

Having determined the constants Cnm, the solution given by (4.115) is completely
determined.
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It is interesting to point out that the constants Cnm can also be determined by
equating the coefficients of both sides if the initial condition is defined explicitly in
terms of sin(γx)sin(δy), where γ and δ are constants. This will reduce the massive
size of calculations required by the computational work of the double Fourier series.

The method will be illustrated by discussing the following examples.

Example 1. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE ut = uxx + uyy, 0 < x,y < π, t > 0,
BC u(0,y,t) = u(π,y,t) = 0,

u(x,0,t) = u(x,π,t) = 0,
IC u(x,y,0) = 2sinxsiny.

(4.118)

Solution.

As discussed before, we first set

u(x,y,t) = F(x)G(y)T (t). (4.119)

Proceeding as before, we obtain

F ′′(x)+ λ 2F(x) = 0, (4.120)

G′′(y)+ μ2G(y) = 0, (4.121)

and
T ′(t)+ (λ 2 + μ2)T (t) = 0, (4.122)

where λ and μ are constants.
The second order ordinary differential equations (4.120) and (4.121) give the

solutions
F(x) = Acos(λx)+ Bsin(λx), (4.123)

and
G(y) = α cos(μy)+β sin(μy), (4.124)

respectively, where A,B,α and β are constants. Using the boundary conditions of
(4.118) into (4.123) gives

A = 0, (4.125)

and
λn = n, n = 1,2,3, · · · , (4.126)

so that
Fn(x) = Bn sin(nx), n = 1,2,3, · · · . (4.127)

Similarly, using the boundary conditions of (4.118) into (4.124) gives

α = 0, (4.128)
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and
μm = m, m = 1,2,3, · · · , (4.129)

so that
Gm(y) = βm sin(my), m = 1,2,3, · · · . (4.130)

The solution of the first order differential equation (4.122) is given by

Tnm(t) = Cnme−(λ 2+μ2)t , (4.131)

and by substituting λ and μ we obtain

Tnm(t) = Cnme−(n2+m2)t . (4.132)

Combining (4.127), (4.130) and (4.132) and using the superposition principle, the
general solution of the problem is given by the double series

u(x,y,t) =
∞

∑
n=1

∞

∑
m=1

Cnme−(n2+m2)t sin(nx) sin(my). (4.133)

To determine the constants Cnm, we use the given initial condition and expand the
double series to find

C11 sinxsiny +C12 sinxsin(2y)+ · · ·= 2sinxsin y. (4.134)

Equating the coefficients on both sides yields

C11 = 2, Ci j = 0, i �= 1, j �= 1. (4.135)

Accordingly, the particular solution is given by

u(x,y,t) = 2e−2t sinxsiny. (4.136)

Example 2. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE ut = uxx + uyy, 0 < x,y < π, t > 0,
BC u(0,y,t) = u(π,y,t) = 0,

u(x,0,t) = u(x,π,t) = 0,
IC u(x,y,0) = sinxsiny + 2sinxsin(2y).

(4.137)

Solution.

As discussed before, we set

u(x,y,t) = F(x)G(y)T (t). (4.138)

Proceeding as before, we obtain
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T ′(t)
T (t)

=
F ′′(x)
F(x)

+
G′′(y)
G(y)

. (4.139)

Proceeding as before, we obtain

F ′′(x)+ λ 2F(x) = 0, (4.140)

G′′(y)+ μ2G(y) = 0, (4.141)

and
T ′(t)+ (λ 2 + μ2)T (t) = 0. (4.142)

Solving (4.140) and (4.141) and using the boundary conditions leads to

Fn(x) = Bn sin(nx), λn = n, n = 1,2,3, · · · , (4.143)

and
Gm(y) = βm sin(my), μm = m, m = 1,2,3, · · · , (4.144)

respectively. The solution of the first order differential equation (4.142) is given by

T (t) = Ce−(λ 2+μ2)t , (4.145)

and by substituting λ and μ we obtain

Tnm(t) = Cnme−(n2+m2)t . (4.146)

Combining (4.143), (4.144), and (4.146) and using the superposition principle, the
general solution of the problem is given by the double series

u(x,y,t) =
∞

∑
n=1

∞

∑
m=1

Cnme−(n2+m2)t sin(nx) sin(my). (4.147)

To determine the constants Cnm, we use the given initial condition and expand the
double series to obtain

C11 sinxsiny +C21 sinxsin(2y)+ · · ·= sinxsin y + 2sinxsin(2y). (4.148)

Equating the coefficients on both sides yields

C11 = 1, (4.149)

and
C12 = 2, (4.150)

and other coefficients are zeros. Accordingly, the particular solution is given by

u(x,y,t) = e−2t sinxsin y + 2e−5t sinxsin(2y), (4.151)

obtained by substituting (4.149) and (4.150) into (4.147).
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Example 3. Use the method of separation of variables to solve the initial-boundary
value problem with mixed boundary conditions

PDE ut = 3(uxx + uyy), 0 < x,y < π, t > 0,
BC ux(0,y,t) = ux(π,y,t) = 0,

u(x,0,t) = u(x,π ,t) = 0,
IC u(x,y,0) = sin y + cosxsiny.

(4.152)

Solution.

Proceeding as before we obtain

F ′′(x)+ λ 2F(x) = 0, (4.153)

G′′(y)+ μ2G(y) = 0, (4.154)

and
T ′(t)+ 3(λ 2 + μ2)T (t) = 0. (4.155)

Solving (4.153) we find

F(x) = Acos(λx)+ Bsin(λx). (4.156)

It is important to note that the boundary conditions

ux(0,y,t) = ux(π ,y,t) = 0, (4.157)

implies that
F ′(0) = 0,F ′(π) = 0. (4.158)

Using (4.158) into (4.156) gives

B = 0, λ = n, n = 0,1,2, · · · , (4.159)

so that λ = 0 is included because it does not provide the trivial solution. Conse-
quently, we find

Fn(x) = An cos(nx), n = 0,1,2, · · · . (4.160)

Solving (4.154) and using the proper boundary conditions we obtain

Gm(y) = βm sin(my), m = 1,2,3, · · · . (4.161)

The solution of the first order differential equation (4.155) is given by

T (t) = Ce−3(λ 2+μ2)t , (4.162)

and by substituting λ and μ we obtain

Tnm(t) = Cnme−3(n2+m2)t . (4.163)
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Combining (4.160), (4.161), and (4.163) and using the superposition principle, the
general solution of the problem is given by the double series

u(x,y,t) =
∞

∑
n=0

∞

∑
m=1

Cnme−3(n2+m2)t cos(nx) sin(my). (4.164)

We then expand the double series (4.164) and use the given initial condition to find

C01 siny +C11 cosxsin y + · · ·= siny + cosxsin y. (4.165)

Equating the coefficients on both sides yields

C01 = 1, (4.166)

and
C11 = 1. (4.167)

In addition, other coefficients are zeros. Accordingly, the particular solution is given
by

u(x,y,t) = e−3t siny + e−6t cosxsiny. (4.168)

Example 4. Use the method of separation of variables to solve the initial-boundary
value problem with Neumann boundary conditions

PDE ut = 2(uxx + uyy), 0 < x,y < π , t > 0,
BC ux(0,y,t) = ux(π ,y,t) = 0,

uy(x,0,t) = uy(x,π,t) = 0,
IC u(x,y,0) = 1 + cosxcosy.

(4.169)

Solution.

We first set
u(x,y,t) = F(x)G(y)T (t), (4.170)

to obtain
F ′′(x)+ λ 2F(x) = 0, (4.171)

G′′(y)+ μ2G(y) = 0, (4.172)

and
T ′(t)+ 2(λ 2 + μ2)T (t) = 0. (4.173)

Solving (4.171) and (4.172) and using the boundary conditions we obtain

Fn(x) = An cos(nx), λn = n, n = 0,1,2, · · · , (4.174)

and
Gm(y) = βm cos(my), μm = m, m = 0,1,2, · · · , (4.175)

respectively. The solution of the equation (4.173) is therefore given by
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Tnm(t) = Cnme−2(n2+m2)t . (4.176)

Combining the results obtained above and using the superposition principle lead to
the general solution of the problem given by

u(x,y,t) =
∞

∑
n=0

∞

∑
m=0

Cnme−2(n2+m2)t cos(nx) cos(my). (4.177)

To determine the constants Cnm, we expand the double series (4.177) and we use the
given initial condition to obtain

C00 +C11 cosxcosy + · · ·= 1 + cosxcosy. (4.178)

Equating the coefficients of like terms on both sides yields

C00 = 1, (4.179)

and
C11 = 1, (4.180)

and other coefficients are zeros. Accordingly, the particular solution is given by

u(x,y,t) = 1 + e−4t cosxcosy. (4.181)

Exercises 4.3.1

Use the method of separation of variables in the following initial-boundary value
problems:

1. ut = uxx + uyy, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sin(2x)sin(3y)

2. ut = 3(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin y + sin(2x)sin(2y)

3. ut = 4(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin y + sinxsin(2y)+ sin(2x)siny

4. ut = uxx + uyy, 0 < x,y < π , t > 0
ux(0,y,t) = ux(π ,y,t) = 0
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u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = cosxsin y

5. ut = uxx + uyy, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = sinxcosy

6. ut = uxx + uyy, 0 < x,y < π , t > 0
ux(0,y,t) = ux(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = cosxsin y + cos(2x)sin(2y)

7. ut = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = sinxcosy + sin(2x)cos(2y)

8. ut = uxx + uyy, 0 < x,y < π , t > 0
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = cos(2x)cos(3y)

9. ut = uxx + uyy, 0 < x,y < π , t > 0
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 1 + cosxcos(2y)

10. ut = 4(uxx + uyy), 0 < x,y < π , t > 0
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 4 + cos(2x)cos(2y)

4.3.2 Three Dimensional Heat Flow

The distribution of heat flow in a three dimensional space is governed by the initial
boundary value problem:

PDE ut = k(uxx + uyy + uzz),
0 < x < a, 0 < y < b,0 < z < c,

BC u(0,y,z,t) = u(a,y,z,t) = 0,

u(x,0,z,t) = u(x,b,z,t) = 0,
u(x,y,0,t) = u(x,y,c,t) = 0,

IC u(x,y,z,0) = f (x,y,z),
(4.182)
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where u≡ u(x,y,z,t) defines the temperature of any point at the position (x,y,z) of a
rectangular volume at any time t, k is the thermal diffusivity. In a parallel manner to
the previous discussion, the separation of variables method assumes that the solution
u(x,y,z,t) consists of the product of four distinct functions each depends on one
variable only. Accordingly, we set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (4.183)

As discussed before, differentiating (4.183) once with respect to t, and twice with
respect to x,y, and z, substituting into (4.182), and by dividing both sides by
kF(x)G(y)H(z)T (t) we obtain

T ′(t)
kT (t)

=
F ′′(x)
F(x)

+
G′′(y)
G(y)

+
H ′′(z)
H(z)

. (4.184)

It is obvious that the equality in (4.184) holds only if both sides are equal to the
same constant. This allows us to set

F ′′(x)+ λ 2F(x) = 0, (4.185)

G′′(y)+ μ2G(y) = 0, (4.186)

H ′′(z)+ ν2H(z) = 0, (4.187)

T ′(t)+ k(λ 2 + μ2 + ν2)T (t) = 0, (4.188)

where λ ,μ , and ν are constants. By solving the second order normal forms (4.185)—
(4.187), we obtain the following solutions

F(x) = Acos(λx)+ Bsin(λ x), (4.189)

G(y) = α cos(μy)+ β sin(μy), (4.190)

H(z) = γ cos(νz)+ δ sin(νz), (4.191)

respectively, where A,B,α,β ,γ , and δ are constants. Using the boundary conditions
in a similar way as discussed before we find

A = 0, λ =
nπ
a

, n = 1,2,3, · · · , (4.192)

α = 0 μ =
mπ
b

, m = 1,2,3, · · · , (4.193)

γ = 0, ν =
rπ
c

, r = 1,2,3, · · · , (4.194)

so that

Fn(x) = Bn sin(
nπ
a

x), n = 1,2,3, · · · , (4.195)

Gm(y) = βm sin(
mπ
b

y), m = 1,2,3, · · · , (4.196)
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Hr(z) = δr sin(
rπ
c

z), r = 1,2,3, · · · . (4.197)

The solution of (4.188) is therefore given by

Tnmr(t) = Cnmre−k( n2

a2 + m2

b2 + r2

c2 )π2t
. (4.198)

Consequently, we can formulate the general solution of (4.182) by using the super-
position principle, therefore we find

u =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

Cnmr e−k( n2

a2 + m2

b2 + r2

c2 )π2t sin(
nπ
a

x) sin(
mπ
b

y) sin(
rπ
c

z). (4.199)

It remains now to determine the constants Cnmr. Using the initial condition given in
(4.182), the coefficients Cnmr are given by

Cnmr =
8

abc

∫ c

0

∫ b

0

∫ a

0
f (x,y,z)sin(

nπ
a

x) sin(
mπ
b

y) sin(
rπ
c

z)dxdydz. (4.200)

The constants Cnmr can also be determined by equating the coefficients on both
sides if the initial condition is given in terms of trigonometric functions identical to
those included in u(x,y,z,t). This technique reduces the massive size of calculations
usually required by using the triple Fourier coefficients.

The following examples will illustrate the method presented above.

Example 5. Solve the initial-boundary value problem

PDE ut = uxx + uyy + uzz, 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π ,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π,t) = 0,

IC u(x,y,z,0) = 3sinxsin ysinz.

(4.201)

Solution.

Proceeding as before, we set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (4.202)

Substituting (4.202) into (4.201) and following the discussions above we find

Fn(x) = Bn sin(nx), λn = n, n = 1,2,3, · · · , (4.203)

Gm(y) = βm sin(my), μm = m, m = 1,2,3, · · · , (4.204)

Hr(z) = δr sin(rz), υr = r, r = 1,2,3, · · · , (4.205)

T (t) = Ce−(λ 2+μ2+υ2)t . (4.206)

Consequently, we can formulate the general solution is given by
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u =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

Cnmr e−(n2+m2+r2)t sin(nx) sin(my) sin(rz). (4.207)

To determine the constants Cnmr, we use the initial condition and expand (4.207) to
find

C111 sinx siny sinz+ · · ·= 3 sinx siny sinz (4.208)

Equating the coefficients of like terms in both sides we obtain

C111 = 3,
Ci jk = 0, for i �= 1, j �= 1, k �= 1.

(4.209)

Consequently, the particular solution is given by

u(x,y,z,t) = 3e−3t sinx sin y sinz, (4.210)

obtained by inserting (4.209) into (4.207).

Example 6. Solve the initial-boundary value problem

PDE ut = uxx + uyy + uzz, 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π ,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π,t) = 0,

IC u(x,y,z,0) = sinxsin2ysin3z.

(4.211)

Solution.

Proceeding as before, we set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (4.212)

Substituting (4.212) into (4.211) and following the discussions above we find

Fn(x) = Bn sin(nx), λn = n, n = 1,2,3, · · · , (4.213)

Gm(y) = βm sin(my), μm = m, m = 1,2,3, · · · , (4.214)

Hr(z) = δr sin(rz), νr = r, r = 1,2,3, · · · , (4.215)

T (t) = Ce−(λ 2+μ2+ν2)t . (4.216)

Consequently, we can formulate the general solution is given by

u =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

Cnmr e−(n2+m2+r2)t sin(nx) sin(my) sin(rz). (4.217)

To determine the constants Cnmr, we use the initial condition and expand (4.217) to
find

C123 sinx sin2y sin3z+ · · ·= sinx sin2y sin3z (4.218)
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Equating the coefficients of like terms in both sides we obtain

C123 = 1,
Ci jk = 0, for i �= 1, j �= 2, k �= 3.

(4.219)

Consequently, the particular solution is given by

u(x,y,z,t) = e−14t sinx sin2y sin3z. (4.220)

In the next example, the Neumann boundary conditions in the spatial domain are
used.

Example 7. Solve the initial-boundary value problem with Neumann boundary con-
ditions

PDE ut = uxx + uyy + uzz, 0 < x,y,z < π, t > 0,
BC ux(0,y,z,t) = ux(π,y,z,t) = 0,

uy(x,0,z,t) = uy(x,π ,z,t) = 0,
uz(x,y,0,t) = uz(x,y,π,t) = 0,

IC u(x,y,z,0) = 4 + cosxcos(2y)cos(3z).

(4.221)

Solution.

Proceeding as before, we set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (4.222)

Substituting in (4.221), using the boundary conditions, and following the discus-
sions above we find

Fn(x) = An cos(nx), λn = n, n = 0,1,2,3, · · · , (4.223)

Gm(y) = αm cos(my), μm = m, m = 0,1,2,3, · · · , (4.224)

Hr(z) = γr cos(rz), νr = r, r = 0,1,2,3, · · · , (4.225)

Tnmr(t) = Cnmre−k(n2+m2+r2)t . (4.226)

Consequently, we can formulate the general solution expressed by

u =
∞

∑
r=0

∞

∑
m=0

∞

∑
n=0

Cnmr e−(n2+m2+r2)t cos(nx) cos(my) cos(rz). (4.227)

To determine the constants Cnmr, we using the initial condition and expand (4.227)
to find

C000 +C123 cosx cos(2y) cos(3z)+ · · ·= 4 + cosx cos(2y) cos(3z). (4.228)

Equating the coefficients of like terms in both sides we obtain
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C000 = 4,
C123 = 1, for n = 1,m = 2,r = 3,

(4.229)

where other coefficients vanish. Consequently, the particular solution is given by

u(x,y,z,t) = 4 + e−14t cos(x) cos(2y) cos(3z), (4.230)

obtained upon combining (4.229) and (4.227).

Exercises 4.3.2

Use the method of separation of variables in the following initial-boundary value
problems:

1. ut = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = sin(2x)sin(3y)sin(4z)

2. ut = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = sinxsinysin z+ sin(2x)sin(2y)sin(2z)

3. ut = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = sinxsinysin(2z)+ sinxsin(2y)sin(3z)

4. ut = uxx + uyy + uzz, 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = cosxsinysinz

5. ut = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = sinxcosycosz

6. ut = uxx + uyy + uzz, 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
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u(x,0,z,t) = u(x,π ,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = cosxsinycosz

7. ut = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = sinxcosysinz

8. ut = uxx + uyy + uzz, 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 2 + 3cosxcos(2y)cosz

9. ut = uxx + uyy + uzz, 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 1 + cosxcosycosz+ cos(2x)cos(2y)cos(2z)

10. ut = uxx + uyy + uzz, 0 < x,y,z < π
ux(0,y,z,t) = ux(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 1 + 2cosxcosycosz+ 3cos(2x)cos(3y)cos(4z)
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Chapter 5

One Dimensional Wave Equation

5.1 Introduction

In this chapter we will study the physical problem of the wave propagation. The
wave equation usually describes water waves, the vibrations of a string or a mem-
brane, the propagation of electromagnetic and sound waves, or the transmission of
electric signals in a cable. The function u(x,t) defines a small displacement of any
point of a vibrating string at position x at time t. Unlike the heat equation, the wave
equation contains the term utt that represents the vertical acceleration of a vibrating
string at point x, which is due to the tension in the string [2–5].

The wave equation plays a significant role in various physical problems [7]. The
study of wave equation is needed in diverse areas of science and engineering.

The typical model that describes the wave equation, as will be discussed later,
is an initial-boundary value problem valid in a bounded domain or an initial value
problem valid in an unbounded domain. It is interesting to note here that two initial
conditions should be prescribed, namely the initial displacement u(x,0) = f (x) and
the initial velocity ut(x,0)= g(x) that describe the initial displacement and the initial
velocity at the starting time t = 0 respectively [8–10].

In a parallel manner to our approach applied to the heat equation in Chapters
3 and 4, our concern will be focused on solving the PDE in conjunction with the
given conditions. The approach will be identical to that applied before, therefore the
mathematical derivation of the wave equation will not be examined in this text.

In this chapter, we will apply the newly developed Adomian decomposition
method [1] and the variational iteration method [6] to handle the wave equa-
tion. Moreover, the traditional methods of separation of variables and D’Alembert
method [2–5] will be used as well. Further, a particular solution of the wave equation
will be established recalling that a general solution is of little use.
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5.2 Adomian Decomposition Method

The Adomian decomposition method has been widely used with promising results
in linear and nonlinear partial differential equations that describe wave propagations
[7, 8]. The method has been presented in details in Chapters 2, 3, and 4 and the for-
mal steps have been outlined and supported by several illustrative examples. The
method introduces the solution of any equation in a series form with elegantly com-
puted components. The method identifies the zeroth component u0 by the terms that
arise from the initial/boundary conditions and from integrating the source term if
exists. The remaining components un,n � 1, are determined recursively as far as we
like. The method will be illustrated by discussing the following typical wave model.

Without loss of generality, as a simple wave equation, we consider the following
initial-boundary value problem:

PDE utt = c2uxx, 0 < x < L, t > 0,
BC u(0,t) = 0, u(L,t) = 0, t � 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.1)

where u = u(x,t) is the displacement of any point of the string at the position x and
at time t, and c is a constant related to the elasticity of the material of the string. The
given boundary conditions indicate that the end points of the vibrating string are
fixed. It is obvious the IBVP (5.1), that governs the wave displacement, contains the
term utt . Consequently, two initial conditions should be given. The initial conditions
describe the initial displacement and the initial velocity of any point at the starting
time t = 0.

We begin our analysis by rewriting (5.1) in an operator form by

Ltu(x,t) = c2Lxu(x,t), (5.2)

where the differential operators Lt and Lx are defined by

Lt =
∂ 2

∂ t2 , Lx =
∂ 2

∂x2 . (5.3)

We assume that the integral operators L−1
t and L−1

x exist and may be regarded as
two-fold indefinite integrals defined by

L−1
t (·) =

∫ t

0

∫ t

0
(·)dt dt, (5.4)

and

L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx. (5.5)

This means that

L−1
t Ltu(x,t) = u(x,t)− tut(x,0)−u(x,0), (5.6)
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and
L−1

x Lxu(x,t) = u(x,t)− xux(0,t)−u(0,t). (5.7)

Recall that the solution can be obtained by using the inverse operator L−1
t or the

inverse operator L−1
x . However, using the inverse operator L−1

t requires the use of
the initial conditions only, whereas operating wit L−1

x imposes the use of initial and
boundary conditions. For this reason, and to reduce the size of calculations, we will
apply the decomposition method in the t direction. Applying L−1

t to both sides of
(5.2) and using the initial conditions we obtain

u(x,t) = f (x)+ tg(x)+ c2L−1
t (Lxu(x,t)). (5.8)

The Adomian’s method decomposes the displacement function u(x,t) into a sum of
an infinite components defined by the infinite series

u(x,t) =
∞

∑
n=0

un(x,t), (5.9)

where the components un(x,t),n � 0 will be easily calculated. Substituting (5.9)
into both sides of (5.8) gives

∞

∑
n=0

un(x,t) = f (x)+ tg(x)+ c2L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
, (5.10)

or by using few components

u0 + u1 + u2 + · · ·= f (x)+ tg(x)+ c2L−1
t (Lx (u0 + u1 + u2 + · · ·)) . (5.11)

The method suggests that the zeroth component u0(x,t) is identified by the terms
that are not included under L−1

t in (5.10). The other components are determined by
using the recursive relation

u0(x,t) = f (x)+ tg(x),
uk+1(x,t) = c2L−1

t (Lx (uk(x,t))) , k � 0.
(5.12)

In view of (5.12), the components u0(x,t),u1(x,t),u2(x,t), · · · can be determined
individually by

u0(x,t) = f (x)+ tg(x),

u1(x,t) = c2L−1
t Lx(u0) = c2

(
t2

2!
f ′′(x)+

t3

3!
g′′(x)

)
,

u2(x,t) = c2L−1
t Lx(u1) = c4

(
t4

4!
f (4)(x)+

t5

5!
g(4)(x)

)
,

u3(x,t) = c2L−1
t Lx(u2) = c6

(
t6

6!
f (6)(x)+

t7

7!
g(6)(x)

)
,

(5.13)
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and so on. It is obvious that the PDE (5.1) is reduced to solving simple integrals
given in (5.13), where components can be determined easily as far as we like. The
accuracy level can be enhanced significantly by determining more terms if a closed
form solution is not obtained, where a truncated number of components is usually
used for numerical purposes.

Having determined the components in (5.13), the solution of the partial differen-
tial equation (5.1) is obtained in a series form given by

u(x,t) =
∞

∑
n=0

c2n
(

t2n

(2n)!
f (2n)(x)+

t2n+1

(2n + 1)!
g(2n)(x)

)
, (5.14)

obtained by substituting (5.13) into (5.9). It is important to note that the solution
(5.14) can also be obtained by using the inverse operator L−1

x . However, the solution
in this way requires more work because the boundary condition ux(0,t) is not always
available.

To give a clear overview of the decomposition method, we have selected homo-
geneous and inhomogeneous equations to illustrate the procedure discussed above.

5.2.1 Homogeneous Wave Equations

The Adomian decomposition method will be used to solve the following homoge-
neous equations.

Example 1. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE utt = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π ,t) = 0, t � 0,
IC u(x,0) = sinx, ut(x,0) = 0.

(5.15)

Solution.

In an operator form, Equation (5.15) can be written as

Ltu(x,t) = Lxu(x,t), (5.16)

where the differential operators Lt and Lx are defined by

Lt =
∂ 2

∂ t2 , Lx =
∂ 2

∂x2 . (5.17)

Accordingly, the inverse operator L−1
t is a two-fold integral operator defined by

L−1
t (·) =

∫ t

0

∫ t

0
(·)dt dt, (5.18)
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so that
L−1

t Lt u(x,t) = u(x,t)− tut(x,0)−u(x,0). (5.19)

Applying L−1
t to both sides of (5.16), noting (5.19), and using the initial conditions

we find
u(x,t) = sinx + L−1

t (Lxu(x,t)) . (5.20)

The decomposition method defines the unknown function u(x,t) by the series

u(x,t) =
∞

∑
n=0

un(x,t), (5.21)

that carries (5.20) into

∞

∑
n=0

un(x,t) = sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
, (5.22)

or equivalently

u0 + u1 + u2 + · · ·= sinx + L−1
t (Lx (u0 + u1 + u2 + · · ·)) . (5.23)

Following the discussions presented above we set the recursive relation

u0(x,t) = sinx,
uk+1(x,t) = L−1

t (Lx (uk)) , k � 0,
(5.24)

and this in turn gives

u0(x,t) = sin x,

u1(x,t) = L−1
t (Lx (u0)) = L−1

t (−sinx) =− 1
2!

t2 sinx,

u2(x,t) = L−1
t (Lx (u1)) = L−1

t

(
t2

2!
sinx

)
=

1
4!

t4 sinx,

u3(x,t) = L−1
t (Lx (u2)) = L−1

t

(
− t4

4!
sin x

)
=− 1

6!
t6 sinx,

(5.25)

and so on. Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= sinx

(
1− 1

2!
t2 +

1
4!

t4− 1
6!

t6 + · · ·
)

, (5.26)

and in a closed form by
u(x,t) = sinxcost, (5.27)

obtained upon using the Taylor expansion of cos t. It is clear that the particular so-
lution (5.27) satisfies the PDE, the boundary conditions and the initial conditions.
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Example 2. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE utt = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π ,t) = 0,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.28)

Solution.

Applying L−1
t to both sides of the operator form (5.28) gives

u(x,t) = t sinx + L−1
t (Lx(u(x,t))) . (5.29)

Substituting the decomposition series

u(x,t) =
∞

∑
n=0

un(x,t), (5.30)

into both sides of (5.29) yields

∞

∑
n=0

un(x,t) = t sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.31)

Proceeding as before we set

u0(x,0) = t sin x,
uk+1(x,t) = L−1

t (Lx(uk(x,t))) , k � 0,
(5.32)

hence we find
u0(x,t) = t sinx,

u1(x,t) = L−1
t (Lx (u0)) =− 1

3!
t3 sin x,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 sinx,

(5.33)

and so on. Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.34)

and in a closed form by
u(x,t) = sin xsin t. (5.35)

Example 3. Use the Adomian decomposition method to solve the wave equation
problem
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PDE utt = uxx, 0 < x < π , t > 0,
BC u(0,t) = 1 + sint, u(π ,t) = 1− sint,
IC u(x,0) = 1, ut(x,0) = cosx.

(5.36)

Solution.

It is important to note that the boundary conditions are inhomogeneous. The
method will be applied in a straightforward manner for all types of differential equa-
tions.

Applying L−1
t to the operator form of (5.36) and using the initial conditions we

find
u(x,t) = 1 + t cosx + L−1

t (Lxu(x,t)) . (5.37)

Substituting the decomposition series for u(x,t) into both sides of (5.37) yields

∞

∑
n=0

un(x,t) = 1 + t cosx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.38)

Proceeding as before we find

u0(x,t) = 1 + t cosx,

u1(x,t) = L−1
t (Lx (u0)) =− 1

3!
t3 cosx,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 cosx,

(5.39)

and so on. It is clear that we can easily determine other components as far as we
like.

In view of (5.39), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= 1 + cosx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.40)

and in a closed form by
u(x,t) = 1 + cosxsin t. (5.41)

Example 4. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE utt = uxx−3u, 0 < x < π, t > 0,
BC u(0,t) = sin(2t), u(π,t) =−sin(2t),
IC u(x,0) = 0, ut(x,0) = 2cosx.

(5.42)

Solution.

In this example, an additional term −3u is involved. This term arises when each
element of the string is subject to an additional force which is proportional to its
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displacement. Applying L−1
t to the operator form of (5.42) and using the initial

conditions we find

u(x,t) = 2t cosx + L−1
t (Lxu(x,t)−3u(x,t)). (5.43)

Substituting the decomposition series for u(x,t) into both sides of (5.43) yields

∞

∑
n=0

un = 2t cosx + L−1
t

(
Lx

(
∞

∑
n=0

un

)
−3

∞

∑
n=0

un

)
. (5.44)

The components un(x,t),n � 0 can be recursively determined as follows

u0(x,t) = 2t cosx,

u1(x,t) = − 1
3!

(2t)3 cosx,

u2(x,t) =
1
5!

(2t)5 cosx,

u3(x,t) = − 1
7!

(2t)7 cosx,

(5.45)

and so on. Other components can be determined to improve the accuracy level if
numerical approximations are required.

In view of (5.45), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= cosx

(
2t− 1

3!
(2t)3 +

1
5!

(2t)5−·· ·
)

, (5.46)

and in a closed form by
u(x,t) = cosxsin(2t), (5.47)

obtained upon using the Taylor series of sin(2t).

Example 5. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE utt = uxx, 0 < x < π , t > 0,
BC ux(0,t) = 1, ux(π ,t) = 1,
IC u(x,0) = x, ut(x,0) = cosx.

(5.48)

Solution.

The given Neumann boundary conditions ux(0,t) and ux(π,t) are inhomoge-
neous. Operating with L−1

t gives

u(x,t) = x + t cosx + L−1
t (Lxu(x,t)) , (5.49)

and proceeding as before we obtain
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∞

∑
n=0

un(x,t) = x + t cosx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.50)

The components un(x,t),n � 0 can be recursively determined as follows

u0(x,t) = x + t cosx,

u1(x,t) = L−1
t (Lx (u0)) =− 1

3!
t3 cosx,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 cosx.

(5.51)

In view of (5.51), the series form for u(x,t) is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= x + cosx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.52)

and in a closed form by
u(x,t) = x + cosxsin t. (5.53)

In the following example, we will discuss equations where the coefficient of uxx

is a function rather than a constant.

Example 6. Use the Adomian decomposition method to solve the initial-boundary
value problem

PDE utt =
x2

2
uxx, 0 < x < 1, t > 0,

BC u(0,t) = 0, u(1,t) = sinh t,
IC u(x,0) = 0, ut(x,0) = x2.

(5.54)

Solution.

Applying L−1
t to both sides of (5.54) gives

u(x,t) = tx2 + L−1
t

(
x2

2
Lxu(x,t)

)
, (5.55)

so that
∞

∑
n=0

un(x,t) = tx2 + L−1
t

(
x2

2
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.56)

The components un(x,t),n � 0 can be recursively determined as follows
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u0(x,t) = tx2,

u1(x,t) = L−1
t

(
x2

2
Lx (u0)

)
=

x2t3

3!
,

u2(x,t) = L−1
t

(
x2

2
Lx (u1)

)
=

x2t5

5!
,

(5.57)

and so on. Other components can be determined to improve the accuracy level for
numerical purposes.

In view of (5.57), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= x2

(
t +

1
3!

t3 +
1
5!

t5 + · · ·
)

, (5.58)

and in a closed form by
u(x,t) = x2 sinht. (5.59)

5.2.2 Inhomogeneous Wave Equations

Adomian’s method will be used to handle the following inhomogeneous examples.

Example 7. Use the Adomian decomposition method to solve the inhomogeneous
PDE

PDE utt = uxx−2, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π ,t) = π2, t � 0,
IC u(x,0) = x2, ut(x,0) = sinx.

(5.60)

Solution.

In an operator form, Eq.(5.60) becomes

Ltu(x,t) = Lxu(x,t)−2. (5.61)

Operating with L−1
t on both sides of (5.61) leads to

u(x,t) = x2 + t sinx− t2 + L−1
t (Lxu(x,t)) , (5.62)

and consequently we obtain

∞

∑
n=0

un(x,t) = x2 + t sinx− t2 + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.63)

It should be noted here that the zeroth component u0 is assigned the terms that arise
from integrating −2 and from using the initial conditions. The following recursive
relation
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u0(x,t) = x2 + t sinx− t2,

uk+1(x,t) = L−1
t (Lx (uk(x,t))) , k � 0,

(5.64)

should be used to determine the components of u(x,t). Proceeding as before, we set

u0(x,t) = x2 + t sin x− t2,

u1(x,t) = L−1
t (Lx (u0)) = t2− 1

3!
t3 sinx,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 sinx,

(5.65)

and so on. Consequently, the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= x2 + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.66)

and in a closed form by
u(x,t) = x2 + sinxsin t. (5.67)

Example 8. Use the Adomian decomposition method to solve the inhomogeneous
PDE

PDE utt = uxx + sinx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π,t) = 0, t � 0,
IC u(x,0) = sinx, ut(x,0) = sinx.

(5.68)

Solution.

Following the discussion presented above we obtain

u(x,t) = sinx + t sinx +
1
2!

t2 sinx + L−1
t (Lxu(x,t)) . (5.69)

Using the decomposition series for u(x,t) we obtain

∞

∑
n=0

un(x,t) = sinx + t sinx +
1
2!

t2 sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.70)

Proceeding as before, we use the recursive algorithm

u0(x,t) = sinx + t sinx +
1
2!

t2 sinx,

u1(x,t) = L−1
t (Lx (u0)) =− 1

2!
t2 sinx− 1

3!
t3 sinx− 1

4!
t4 sinx,

u2(x,t) = L−1
t (Lx (u1)) =

1
4!

t4 sinx +
1
5!

t5 sinx +
1
6!

t6 sinx,

(5.71)

and so on. In view of (5.71), the solution u(x,t) in a series form is given by
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u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= sinx + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.72)

and in a closed form by
u(x,t) = sinx + sinxsin t. (5.73)

Example 9. Use the decomposition method to solve the initial-boundary value
problem

PDE utt = uxx + 6t + 2x, 0 < x < π , t > 0,
BC ux(0,t) = t2 + sint, ux(π,t) = t2− sint,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.74)

Solution.

Operating with L−1
t on both sides of (5.74) yields

u(x,t) = t3 + t2x + t sin x + L−1
t (Lxu(x,t)) , (5.75)

so that
∞

∑
n=0

un(x,t) = t3 + t2x + t sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.76)

Following our discussion above we find

u0(x,t) = t3 + t2x + t sin x,

u1(x,t) = L−1
t (Lx (u0)) =− 1

3!
t3 sin x,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 sinx,

(5.77)

and so on. In view of (5.77), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= t3 + t2x + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.78)

and in a closed form by

u(x,t) = t3 + t2x + sinxsin t. (5.79)
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Exercises 5.2.2

In Exercises 1–8, use the decomposition method to solve the following homoge-
neous partial differential equations:

1. utt = 4uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = sin(2x), ut(x,0) = 0

2. utt = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = sinx, ut(x,0) = sinx

3. utt = uxx, 0 < x < π , t > 0
u(0,t) = 2 + cost, u(π,t) = 2− cost, t � 0
u(x,0) = 2 + cosx, ut(x,0) = 0

4. utt = uxx, 0 < x < π , t > 0
u(0,t) = 1, u(π ,t) = 1 + π , t � 0
u(x,0) = 1 + x, ut(x,0) = sinx

5. utt = uxx−8u, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = sinx, ut(x,0) = 0

6. utt = uxx−3u, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = 0, ut(x,0) = 2sinx

7. utt = uxx, 0 < x < π , t > 0
ux(0,t) = 0, ux(π ,t) = 0, t � 0
u(x,0) = cosx, ut(x,0) = 0

8. utt = uxx, 0 < x < π , t > 0
ux(0,t) = 1, ux(π ,t) = 1, t � 0
u(x,0) = x + cosx, ut(x,0) = 0

In Exercises 9–14, solve the inhomogeneous initial-boundary value problems:

9. utt = uxx + cosx, 0 < x < π , t > 0
u(0,t) = 1, u(π ,t) =−1, t � 0
u(x,0) = cosx, ut(x,0) = sinx

10. utt = uxx + sinx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0, t � 0
u(x,0) = 2sinx, ut(x,0) = 0

11. utt = uxx−3u + 3, 0 < x < π, t > 0
u(0,t) = 1, u(π ,t) = 1, t � 0
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u(x,0) = 1, ut(x,0) = 2sinx

12. utt = uxx−12x2, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = π4, t � 0
u(x,0) = x4 + sinx, ut(x,0) = 0

13. utt = uxx−6x, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = π3, t � 0
u(x,0) = x3, ut(x,0) = sinx

14. utt = uxx + cosx, 0 < x < π, t > 0
u(0,t) = 2, u(π ,t) = 0, t � 0
u(x,0) = 1 + cosx, ut(x,0) = sinx

In Exercises 15–20, solve the initial-boundary value problems:

15. utt = uxx−4, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 2π2, t � 0
u(x,0) = 2x2 + sinx, ut(x,0) = 0

16. utt = uxx−2, 0 < x < π, t > 0
u(0,t) = sin t, u(π ,t) = π2− sint, t � 0
u(x,0) = x2, ut(x,0) = cosx

17. utt = uxx + sinx, 0 < x < π, t > 0
ux(0,t) = 1, ux(π,t) =−1, t � 0
u(x,0) = sinx, ut(x,0) = cosx

18. utt = uxx−2, 0 < x < π, t > 0
ux(0,t) = 0, ux(π,t) = 2π , t � 0
u(x,0) = x2 + cosx, ut(x,0) = 0

19. utt = uxx + 12t2 + 6xt, 0 < x < π, t > 0
ux(0,t) = t3, ux(π,t) = t3, t � 0
u(x,0) = 0, ut(x,0) = cosx

20. utt = uxx−6x + 2, 0 < x < π, t > 0
u(0,t) = t2, u(π ,t) = t2 +π3, t � 0
u(x,0) = x3, ut(x,0) = sinx

In Exercise 21–24, solve the following equations where coefficient of uxx is a func-
tion:

21. utt =
x2

2
uxx, 0 < x < 1, t > 0

u(0,t) = 0, u(1,t) = cosht, t � 0
u(x,0) = x2, ut(x,0) = 0

22. utt =
x2

2
uxx, 0 < x < 1, t > 0

u(0,t) = 0, ux(1,t) = 2et , t � 0
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u(x,0) = x2, ut(x,0) = x2

23. utt =
x2

12
uxx, 0 < x < 1, t > 0

u(0,t) = 0, ux(1,t) = 4sinh t, t � 0
u(x,0) = 0, ut(x,0) = x4

24. utt =
x2

6
uxx, 0 < x < 1, t > 0

u(0,t) = 0, ux(1,t) = 3cosh t, t � 0
u(x,0) = x3, ut(x,0) = 0

5.2.3 Wave Equation in an Infinite Domain

The initial value problem of the one dimensional wave equation, where the do-
main of the space variable x is unbounded [10], will be discussed by using Adomian
decomposition method. This type of equations describes the motion of a very long
string that is considered not to have boundaries. Based on this, the wave motion is
described by a PDE and initial conditions only, therefore, it is called initial value
problem. It was discovered before that solutions of the wave equation behave quite
differently than solutions of the heat equation. The solution u(x,t) of the wave equa-
tion represents the displacement of the point x at time t � 0.

It is interesting to note that the classical method of separation of variables is not
applicable for this type of problems because of the lack of boundary conditions.
However, a classical method called D’Alembert solution is usually used [2, 5]. The
D’Alembert solution will be discussed later.

In this section, the Adomian decomposition method will be used to handle the
wave equation where the space of the variable x is unbounded. Recall that Ado-
mian’s method can easily handle problems with initial conditions only.

To achieve our goal, we consider the initial value problem:

PDE utt = c2uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.80)

The attention will be focused upon the disturbance occurred at the center of the very
long string. The initial displacement u(x,0) and the initial displacement ut(x,0) are
prescribed by f (x) and g(x) respectively.

Applying the inverse operator L−1
t to both sides of the operator form of (5.80)

and using the initial conditions we find

u(x,t) = f (x)+ tg(x)+ c2L−1
t (Lxu(x,t)). (5.81)

Identifying the zeroth component u0(x,t) and proceeding as before we find
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u0(x,t) = f (x)+ tg(x),
u1(x,t) = c2L−1

t (Lxu0),

= f ′′(x)
(ct)2

2!
+ c2g′′(x)

t3

3!
,

u2(x,t) = c2L−1
t (Lxu1),

= f (4)(x)
(ct)4

4!
+ c4g(4)(x)

t5

5!
,

(5.82)

and so on. In view of (5.82), the solution u(x,t) of (5.80) in a series form is given
by

u(x,t) =

(
f (x)+ f ′′(x)

(ct)2

2!
+ f (4)(x)

(ct)4

4!
+ · · ·

)

+

(
g(x)t + c2g′′(x)

t3

3!
+ c4g(4)(x)

t5

5!
+ · · ·

)
,

(5.83)

or equivalently

u(x,t) =
∞

∑
n=0

(
(ct)2n

(2n)!
f (2n)(x)+ c2n t2n+1

(2n + 1)!
g(2n)(x)

)
, (5.84)

The series solution (5.84) is easily obtained because it relies completely on dif-
ferentiating the initial conditions f (x) and g(x) which is mostly an easy task. The
approach we followed will be illustrated by discussing the following examples.

Example 10. Use the Adomian decomposition method to solve the initial value
problem

PDE utt = 16uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sin x, ut(x,0) = 2.

(5.85)

Solution.

Note that c = 4, f (x) = sinx and g(x) = 2. We can easily apply the inverse op-
erator as used in other examples. However, for simplicity reasons, we will use the
result (5.84) hence we set

f (2n)(x) = (−1)n sinx, n = 0,1,2, · · · , (5.86)

and

g(2n)(x) =

{
2, for n = 0
0, for n = 1,2, · · · (5.87)

The solution in a series form is readily obtained by substituting (5.86) and (5.87)
into (5.83) and given by

u(x,t) = sinx

(
1− (4t)2

2!
+

(4t)4

4!
+ · · ·

)
+ 2t, (5.88)
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and
u(x,t) = sinxcos(4t)+ 2t. (5.89)

Example 11. Use the Adomian decomposition method to solve the initial value
problem

PDE utt = 4uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sinx, ut(x,0) = 2cosx.

(5.90)

Solution.

Note that c = 2, f (x) = sinx and g(x) = 2cosx. Proceeding as before, we set

f (2n)(x) = (−1)n sinx, n = 0,1,2, · · · , (5.91)

and
g(2n)(x) = 2(−1)n cosx, n = 0,1,2, · · · . (5.92)

The solution in a series form is readily obtained by substituting (5.92) and (5.91)
into (5.83) and given by

u(x,t) = sinx

(
1− (2t)2

2!
+

(2t)4

4!
+ · · ·

)

+ cosx

(
(2t)− (2t)3

3!
+

(2t)5

5!
−·· ·

)
,

(5.93)

and in a closed form by

u(x,t) = sinxcos(2t)+ cosxsin(2t),
= sin(x + 2t).

(5.94)

Example 12. Use the decomposition method to solve the initial value problem

PDE utt = uxx + 2x + 6t, −∞ < x < ∞, t > 0,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.95)

Solution.

Note that the initial value problem is inhomogeneous. Operating with L−1
t on

both sides of (5.95) and using the initial conditions we obtain

u(x,t) = xt2 + t3 + t sin x + L−1
t (Lxu(x,t)) . (5.96)

Using the decomposition series for u(x,t) we obtain

∞

∑
n=0

un(x,t) = xt2 + t3 + t sinx + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.97)
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Proceeding as before, we use the recursive algorithm

u0(x,t) = xt2 + t3 + t sin x,

u1(x,t) = L−1
t (Lx (u0)) =− 1

3!
t3 sin x,

u2(x,t) = L−1
t (Lx (u1)) =

1
5!

t5 sinx,

(5.98)

and so on. In view of (5.98), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
= xt2 + t3 + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.99)

and in a closed form by

u(x,t) = xt2 + t3 + sinxsin t. (5.100)

Example 13. Use the decomposition method to solve the initial value problem

PDE utt = uxx + e−t, −∞ < x < ∞, t > 0,
IC u(x,0) = 1, ut(x,0) =−1 + sinx.

(5.101)

Solution.

Note that the initial value problem is inhomogeneous. Operating with L−1
t on

both sides of (5.101) gives

u(x,t) = t sinx + e−t + L−1
t (Lxu(x,t)) , (5.102)

so that

∞

∑
n=0

un(x,t) = t sinx + e−t + L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.103)

Proceeding as before we find

u0(x,t) = t sinx + e−t ,

u1(x,t) = − 1
3!

t3 sinx,

u2(x,t) =
1
5!

t5 sinx,

(5.104)

and so on. In view of (5.104), the solution u(x,t) in a series form is given by

u(x,t) = u0(x,t)+ u1(x,t)+ u2(x,t)+ · · ·
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= e−t + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (5.105)

and in a closed form by
u(x,t) = e−t + sinxsin t. (5.106)

Exercises 5.2.3

In Exercises 1–8, use the decomposition method to solve the following initial value
problems:

1. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = 4 + sinx

2. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = cosx

3. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = cosx, ut(x,0) =−sinx

4. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) =−cosx

5. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = 6

6. utt = uxx + 4x, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = 6

7. utt = uxx + 4t, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = x2 + ex

8. utt = uxx + xet , −∞ < x < ∞, t > 0
u(x,0) = x, ut(x,0) = x + cosx

9. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = x2, ut(x,0) = sinx

10. utt = uxx− cosx, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = 1 + 2x

11. utt = uxx− sinx, −∞ < x < ∞, t > 0
u(x,0) = x2− sinx, ut(x,0) = sinx

12. utt = uxx + cosx, −∞ < x < ∞, t > 0
u(x,0) = 2cosx, ut(x,0) = 0
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5.3 The Variational Iteration Method

As stated in Chapters 2 and 3, the variational iteration method (VIM) gives rapidly
convergent successive approximations [6] of the exact solution if an exact solution
exists. Otherwise, the method provides an approximation of high accuracy level by
using only few iterations. In what follows, we only summarize the main steps of this
method. For the differential equation

Lu + Nu = g(x,t), (5.107)

where L and N are linear and nonlinear operators respectively, and g(x,t) is the
source inhomogeneous term, the variational iteration method admits the use of the
correction functional for equation (5.107) which can be written as

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )(Lun(ξ )+ N ũn(ξ )−g(ξ )) dξ , n � 0. (5.108)

The Lagrange multiplier λ (ξ ) should be determined first. The successive approxi-
mations un+1(x,t),n � 0 of the solution u(x,t) will be obtained readily upon using
the obtained Lagrange multiplier and by using any selective function u0. The initial
values u(x,0) and ut(x,0) should be used for selecting the zeroth approximation u0.
The exact solution may be obtained by using

u = lim
n→∞

un. (5.109)

It is worth noting that∫
λ (ξ )u′′n(ξ )dξ = λ (ξ )u′n(ξ )−λ ′(ξ )un(ξ )+

∫
λ ′′(ξ )un(ξ )dξ . (5.110)

5.3.1 Homogeneous Wave Equations

The variational iteration method will be used in the following wave equations. We
will examine the same examples presented in the previous section.

Example 1. Use the variational iteration method to solve the initial-boundary value
problem

PDE utt = uxx, 0 < x < π, t > 0,
BC u(0,t) = 0, u(π ,t) = 0, t � 0,
IC u(x,0) = sinx, ut(x,0) = 0.

(5.111)

Solution.

The correction functional for this equation reads
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un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2

)
dξ . (5.112)

This yields the stationary conditions

1−λ ′|ξ=t = 0,
λ |ξ=t = 0,

λ ′′|ξ=t = 0.
(5.113)

This in turn gives
λ = ξ − t. (5.114)

Substituting this value of the Lagrange multiplier into the functional (5.112) gives
the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (5.115)

Considering the given initial values, we can select u0(x,t) = sinx. Using this selec-
tion into (5.115) we obtain the following successive approximations

u0(x,t) = sin x,

u1(x,t) = sin x− 1
2!

t2 sinx,

u2(x,t) = sin x− 1
2!

t2 sinx +
1
4!

t4 sinx,

u3(x,t) = sin x− 1
2!

t2 sinx +
1
4!

t4 sinx− 1
6!

t6 sinx,
...

un(x,t) = sin x

(
1− 1

2!
t2 +

1
4!

t4− 1
6!

t6 + · · ·
)

.

(5.116)

This gives the exact solution by

u(x,t) = sinxcost, (5.117)

by noting that u(x,t) = lim
n→∞

un.

Example 2. Use the variational iteration method to solve the initial-boundary value
problem

PDE utt = uxx, 0 < x < π, t > 0,
BC u(0,t) = 0, u(π ,t) = 0,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.118)

Solution.

The correction functional for this equation reads
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un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2

)
dξ . (5.119)

This yields the stationary conditions

1−λ ′|ξ=t = 0, λ |ξ=t = 0, λ ′′|ξ=t = 0. (5.120)

This in turn gives
λ = ξ − t. (5.121)

Using Lagrange multiplier λ = ξ − t into the functional (5.119) gives the iteration
formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (5.122)

Considering the given initial values, we can select u0(x,t) = t sinx. Using this selec-
tion into (5.122) we obtain the following successive approximations

u0(x,t) = t sin x,

u1(x,t) = t sin x− 1
3!

t3 sinx,

u2(x,t) = t sin x− 1
3!

t3 sinx +
1
5!

t5 sinx,

u3(x,t) = t sin x− 1
3!

t3 sinx +
1
5!

t5 sinx− 1
7!

t7 sinx,
...

un(x,t) = sinx

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·
)

.

(5.123)

The exact solution is thus given by

u(x,t) = sin xsin t, (5.124)

by using Taylor series for sin t and by noting that u(x,t) = lim
n→∞

un.

Example 3. Use the variational iteration method to solve the wave equation problem

PDE utt = uxx, 0 < x < π, t > 0,
BC u(0,t) = 1 + sint, u(π ,t) = 1− sint,
IC u(x,0) = 1, ut(x,0) = cosx.

(5.125)

Solution.

Although the boundary conditions are inhomogeneous, the VIM will be applied
directly for all types of differential equations.

Proceeding as before, and noting that
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λ = ξ − t. (5.126)

we obtain the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (5.127)

Considering the given initial values, we can select u0(x,t) = 1 + t cosx. Using this
selection into (5.127) we obtain the successive approximations

u0(x,t) = 1 + t cosx,

u1(x,t) = 1 + t cosx− 1
3!

t3 cosx,

u2(x,t) = 1 + t cosx− 1
3!

t3 cosx +
1
5!

t5 cosx,

u3(x,t) = 1 + t cosx− 1
3!

t3 cosx +
1
5!

t5 cosx− 1
7!

t7 cosx,

...

un(x,t) = 1 + cosx

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·
)

.

(5.128)

The exact solution is given by

u(x,t) = 1 + cosxsin t, (5.129)

by using Taylor series for sin t and by noting that u(x,t) = lim
n→∞

un.

Example 4. Use the VIM to solve the initial-boundary value problem

PDE utt = uxx−3u, 0 < x < π , t > 0,
BC u(0,t) = sin(2t), u(π,t) =−sin(2t),
IC u(x,0) = 0, ut(x,0) = 2cosx.

(5.130)

Solution.

The term −3u arises when each element of the string is subject to an additional
force which is proportional to its displacement.

The correction functional for this equation reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 + 3ũn(x,ξ )

)
dξ .

(5.131)
This yields the stationary conditions

1−λ ′|ξ=t = 0,
λ |ξ=t = 0,

λ ′′|ξ=t = 0.
(5.132)
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This in turn gives
λ = ξ − t. (5.133)

Substituting this value of the Lagrangian multiplier into the functional (5.131) gives
the iteration formula

un+1(x,t)= un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 + 3un(x,ξ )

)
dξ , n � 0.

(5.134)
Considering the given initial values, we can select u0(x,t) = 2t cosx. Using this
selection into (5.134) we obtain the following successive approximations

u0(x,t) = 2t cosx,

u1(x,t) = 2t cosx− (2t)3

3!
cosx,

u2(x,t) = 2t cosx− (2t)3

3!
cosx +

(2t)5

5!
cosx,

u3(x,t) = 2t cosx− (2t)3

3!
cosx +

(2t)5

5!
cosx− (2t)7

7!
cosx,

...

un(x,t) = cosx

(
(2t)− (2t)3

3!
+

(2t)5

5!
− (2t)7

7!
+ · · ·

)
.

(5.135)

This gives the exact solution by

u(x,t) = cosxsin2t. (5.136)

Example 5. Use the VIM to solve the initial-boundary value problem

PDE utt = uxx, 0 < x < π, t > 0,
BC ux(0,t) = 1, ux(π,t) = 1,
IC u(x,0) = x, ut(x,0) = cosx.

(5.137)

Solution.

Proceeding as before, we obtain the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2

)
dξ , n � 0. (5.138)

Considering the given initial values, we can select u0(x,t) = x + t cosx. Using this
selection into (5.138) we obtain the following successive approximations
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u0(x,t) = x + t cosx,

u1(x,t) = x + t cosx− 1
3!

t3 cosx,

u2(x,t) = x + t cosx− 1
3!

t3 cosx +
1
5!

t5 cosx,

u3(x,t) = x + t cosx− 1
3!

t3 cosx +
1
5!

t5 cosx− 1
7!

t7 cosx,

...

un(x,t) = x + cosx

(
1− 1

3!
t3 +

1
5!

t5− 1
7!

76 + · · ·
)

.

(5.139)

This gives the exact solution by

u(x,t) = x + cosxsin t. (5.140)

Example 6. Use the VIM to solve the wave-like equation

PDE utt =
x2

2
uxx, 0 < x < 1,t > 0,

BC u(0,t) = 0, u(1,t) = sinh t,
IC u(x,0) = 0, ut(x,0) = x2.

(5.141)

Solution.

Proceeding as before, and using λ = ξ − t we obtain the iteration formula

un+1(x,t) = un(x,t)+

∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − x2

2
∂ 2un(x,ξ )

∂x2

)
dξ , n � 0.

(5.142)
Using the zeroth selection u0(x,t) = tx2 into (5.142) yields the following successive
approximations

u0(x,t) = x2t,

u1(x,t) = x2t + x2 t3

3!
,

u2(x,t) = x2t + x2 t3

3!
+ x2 t5

5!
,

u3(x,t) = x2t + x2 t3

3!
+ x2 t5

5!
+ x2 t7

7!
,

...

un(x,t) = x2

(
t +

t3

3!
+

t5

5!
+

t7

7!
+ · · ·

)
.

(5.143)

This in turn gives the exact solution

u(x,t) = x2 sinht. (5.144)
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5.3.2 Inhomogeneous Wave Equations

The variational iteration method can be effectively used to handle the inhomoge-
neous wave equations. This can be illustrated by studying the following examples.

Example 7. Use the VIM to solve the inhomogeneous PDE

PDE utt = uxx−2, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π ,t) = π2, t � 0,
IC u(x,0) = x2, ut(x,0) = sinx.

(5.145)

Solution.

The correction functional for this equation reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 + 2

)
dξ . (5.146)

Substituting the Lagrange multiplier λ = ξ − t into the functional (5.146) leads to
the iteration formula

un+1(x,t) = un(x,t)+

∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 + 2

)
dξ , n � 0.

(5.147)
Considering the given initial values, we can select u0(x,t) = x2 + t sinx. Using this
selection into (5.147) we obtain the following successive approximations

u0(x,t) = x2 + t sinx,

u1(x,t) = x2 + t sinx− 1
3!

t3 sinx,

u2(x,t) = x2 + t sinx− 1
3!

t3 sinx +
1
5!

t5 sinx,

u3(x,t) = x2 + t sinx− 1
3!

t3 sinx +
1
5!

t5 sinx− 1
7!

t7 sinx,
...

un(x,t) = x2 + sinx

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·
)

,

(5.148)

so that the exact solution is given by

u(x,t) = x2 + sinxsin t, (5.149)

by using Taylor series for sin t and by noting that u(x,t) = lim
n→∞

un.

Example 8. Use the variational iteration method to solve the inhomogeneous PDE
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PDE utt = uxx + sinx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π,t) = 0, t � 0,
IC u(x,0) = sinx, ut(x,0) = sinx.

(5.150)

Solution.

Proceeding as before we obtain the Lagrange multiplier by

λ = ξ − t. (5.151)

Consequently, we find the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 − sinx

)
dξ , n � 0.

(5.152)
We can select u0(x,t) = sin x + t sinx. Using this selection into (5.152), the succes-
sive approximations

u0(x,t) = sinx + t sinx,

u1(x,t) = sinx + t sinx− 1
3!

t3 sinx,

u2(x,t) = sinx + t sinx− 1
3!

t3 sinx +
1
5!

t5 sinx,

u3(x,t) = sinx + t sinx− 1
3!

t3 sinx +
1
5!

t5 sinx− 1
7!

t7 sinx,
...

un(x,t) = sinx + sinx

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7−·· ·
)

,

(5.153)

follow immediately. The exact solution is given by

u(x,t) = sinx + sinxsin t. (5.154)

Example 9. Use the decomposition method to solve the initial-boundary value
problem

PDE utt = uxx + 6t + 2x, 0 < x < π , t > 0,
BC ux(0,t) = t2 + sint, ux(π,t) = t2− sin t,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.155)

Solution.

The correction functional for this equation is

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 −6ξ −2x

)
dξ .

(5.156)
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The stationary conditions give
λ = ξ − t. (5.157)

Substituting this value of the Lagrangian multiplier into the functional (5.156) gives
the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 −6ξ −2x

)
dξ .

(5.158)
Considering the given initial values, we can select u0(x,t) = t sinx. Using this selec-
tion into (5.158) we obtain the following successive approximations

u0(x,t) = t sinx,

u1(x,t) = t3 + t2x + t sinx− 1
3!

t3 sinx,

u2(x,t) = t3 + t2x + t sinx− 1
3!

t3 sinx− 1
5!

t5 sinx,

u3(x,t) = t3 + t2x + t sinx− 1
3!

t3 sinx− 1
5!

t5 sinx +
1
7!

t7 sinx,

...

un(x,t) = t3 + t2x + sinx(t− 1
3!

t3 +
1
5!

t5− 1
7!

t7 + · · ·).

(5.159)

Consequently, the exact solution is given by

u(x,t) = t3 + t2x + sinxsin t. (5.160)

Exercises 5.3.2

Use the variational iteration method to solve the problems in Exercises 5.2.2.

5.3.3 Wave Equation in an Infinite Domain

In what follows we will examine the wave equation in an infinite domain. As stated
before, this equation is usually solved by D’Alembert method [5, 8]. Because of
the unbounded domain, boundary conditions are not given. The same examples pre-
sented before will be examined here.

Example 10. Use the variational iteration method to solve the initial value problem

PDE utt = 16uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sin x, ut(x,0) = 2.

(5.161)
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Solution.

The correction functional for this PDE is

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 −16
∂ 2ũn(x,ξ )

∂x2

)
dξ . (5.162)

The stationary conditions give
λ = ξ − t. (5.163)

Substituting this value of the Lagrange multiplier into the functional (5.162) gives
the iteration formula

un+1(x,t) = un(x,t)+

∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 −16
∂ 2un(x,ξ )

∂x2

)
dξ , n � 0.

(5.164)
Considering the given initial values, we can select u0(x,t) = 2t + sinx. Using this
selection into (5.164) we obtain the following successive approximations

u0(x,t) = 2t + sinx,

u1(x,t) = 2t + sinx− (4t)2

2!
sin x,

u2(x,t) = 2t + sinx− (4t)2

2!
sin x +

(4t)4

4!
sinx,

u3(x,t) = 2t + sinx− (4t)2

2!
sin x +

(4t)4

4!
sinx− (4t)6

6!
sinx,

...

un(x,t) = 2t + sinx

(
1− (4t)2

2!
+

(4t)4

4!
− (4t)6

6!
+ · · ·

)
,

(5.165)

and this leads to the exact solution

u(x,t) = 2t + sinxcos(4t). (5.166)

Example 11. Use the variational iteration method to solve the initial value problem

PDE utt = 4uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sinx, ut(x,0) = 2cosx.

(5.167)

Solution.

Proceeding as before, we find

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 −4
∂ 2ũn(x,ξ )

∂x2

)
dξ . (5.168)
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Substituting the Lagrange multiplier λ = ξ − t into the functional (5.168) gives the
iteration formula

un+1(x,t) = un(x,t)+

∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 −4
∂ 2un(x,ξ )

∂x2

)
dξ , n � 0.

(5.169)
Substituting u0(x,t) = sinx + 2t cosx into (5.169) gives the successive approxima-
tions

u0(x,t) = sinx + 2t cosx,

u1(x,t) = sinx + 2t cosx− (2t)2

2!
sinx− (2t)3

3!
cosx,

u2(x,t) = sinx + 2t cosx− (2t)2

2!
sinx− (2t)3

3!
cosx +

(2t)4

4!
sinx +

(2t)5

5!
cosx,

...

un(x,t) = sinx

(
1− (2t)2

2!
+

(2t)4

4!
−·· ·

)
+ cosx

(
2t− (2t)3

3!
+

(2t)5

5!
−·· ·

)
,

(5.170)
that leads to the exact solution

u(x,t) = sinxcos(2t)+ cosxsin(2t) = sin(x + 2t). (5.171)

Example 12. Use the variational iteration method to solve the initial value problem

PDE utt = uxx + 2x + 6t, −∞ < x < ∞, t > 0,
IC u(x,0) = 0, ut(x,0) = sinx.

(5.172)

Solution.

Proceeding as before, we find

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 −2x−6ξ
)

dξ .

(5.173)
Substituting the Lagrange multiplier λ = ξ − t into the functional (5.173) gives the
iteration formula

un+1(x,t)= un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 −2x−6ξ
)

dξ , n � 0.

(5.174)
Substituting u0(x,t) = t sinx into (5.174) gives the successive approximations

u0(x,t) = t sinx,

u1(x,t) = xt2 + t3 + t sin x− t3

3!
sin x,
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u2(x,t) = xt2 + t3 + t sinx− t3

3!
sinx +

t5

5!
sinx,

...

un(x,t) = xt2 + t3 + sinx

(
t− t3

3!
+

t5

5!
−·· ·

)
,

(5.175)

that leads to the exact solution

u(x,t) = xt2 + t3 + sinxsin t. (5.176)

Example 13. Use the variational iteration method to solve the initial value problem

PDE utt = uxx + e−t , −∞ < x < ∞, t > 0,
IC u(x,0) = 1, ut(x,0) =−1 + sinx.

(5.177)

Solution.

Note that the initial value problem is inhomogeneous. Proceeding as before, we
find

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 − e−ξ
)

dξ . (5.178)

Substituting the Lagrange multiplier λ = ξ − t into the functional (5.178) gives the
iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 − e−ξ
)

dξ , n � 0.

(5.179)
Substituting u0(x,t) = 1−t +t sinx into (5.179) gives the successive approximations

u0(x,t) = 1− t + t sinx,

u1(x,t) = e−t + t sinx− 1
3!

t3 sinx,

u2(x,t) = e−t + t sinx− 1
3!

t3 sinx +
1
5!

t5 sinx,

un(x,t) = e−t + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

,

(5.180)

that gives the exact solution

u(x,t) = e−t + sinxsin t. (5.181)
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Exercises 5.3.3

Use the variational iteration method to solve the problems in Exercises 5.2.3.

5.4 Method of Separation of Variables

In this section the homogeneous partial differential equation that describes the vi-
brations of a vibrating string will be discussed by using a well-known method called
the method of separation of variables. The most important feature of the method of
separation of variables [4] is that it reduces the partial differential equation into a
system of ordinary differential equations that can be easily handled.

5.4.1 Analysis of the Method

As discussed before in the heat equation, the method of separation of variables re-
quires that the PDE and the boundary conditions be linear and homogeneous. For
this reason, we begin our analysis by discussing the vibrations of a freely vibrat-
ing string with fixed ends at x = 0 and x = L, initial position u(x,0) = f (x) and
initial velocity ut(x,0) = g(x). The initial-boundary value problem that controls the
vibrations of a string is given by

PDE utt = c2uxx, 0 < x < L, t > 0,
BC u(0,t) = 0, u(L,t) = 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.182)

The wave function u(x,t) is the displacement of any point of a vibrating string at
position x at time t. The method of separation of variables consists of assuming that
the displacement u(x,t) is identified as the product of two distinct functions F(x)
and T (t), where F(x) depends on the space variable x and T (t) depends on the time
variable t. This assumption allows us to set

u(x,t) = F(x)T (t), (5.183)

assuming that F(x) and T (t) are twice continuously differentiable. Differentiating
both sides of (5.183) twice with respect to t and twice with respect to x we obtain

utt(x,t) = F(x)T ′′(t),
uxx(x,t) = F ′′(x)T (t).

(5.184)

Substituting (5.184) into (5.182) yields

F(x)T ′′(t) = c2F ′′(x)T (t). (5.185)
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Dividing both sides of (5.185) by c2F(x)T (t) gives

T ′′(t)
c2T (t)

=
F ′′(x)
F(x)

. (5.186)

The left hand side of (5.186) depends only on t and the right hand side depends only
on x. This means that the equality holds only if both sides are equal to the same
constant. Therefore, we set

T ′′(t)
c2T (t)

=
F ′′(x)
F(x)

=−λ 2. (5.187)

The selection of−λ 2 in (5.187) is essential to obtain nontrivial solutions. However,
we can easily show that selecting the constant to be zero or λ 2 will produce the
trivial solution u(x,t) = 0.

The result (5.187) gives two distinct ordinary differential equations given by

F ′′(x)+ λ 2F(x) = 0,
T ′′(t)+ c2λ 2T (t) = 0.

(5.188)

This means that the partial differential equation of (5.182) is reduced to the more fa-
miliar second order ordinary differential equations ODEs (5.188) where each equa-
tion relies only on one distinct variable.

To determine the function F(x), we solve the second order linear ODE

F ′′(x)+ λ 2F(x) = 0, (5.189)

to find that
F(x) = Acos(λx)+ Bsin(λx), (5.190)

where A and B are constants. To determine the constants A, B, and λ , we use the
homogeneous boundary conditions

u(0,t) = 0, u(L,t) = 0, (5.191)

as given above by (5.182). Substituting (5.191) into the assumption (5.183) gives

F(0) = 0, F(L) = 0. (5.192)

Using (5.192) into (5.190) leads to

A = 0, (5.193)

and
sin(λ L) = 0. (5.194)

We exclude B = 0 since it gives the trivial solution u(x,t) = 0. Accordingly, we find
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λn =
nπ
L

, n = 1,2,3, · · · . (5.195)

It is important to note that n = 0 is excluded since it gives the trivial solution u(x,t)=
0. The function Fn(x) associated with λn is

Fn(x) = sin
(nπ

L
x
)

, n = 1,2,3, · · · . (5.196)

Consequently, the solution Tn(t) associated with λn must satisfy

T ′′n (t)+ c2λ 2
n Tn(t) = 0. (5.197)

The general solution of (5.197) is given by

Tn(t) = Cn cos(λnct)+ Dn sin(λnct),

= Cn cos
(nπc

L
t
)

+ Dn sin
(nπc

L
t
)

, n = 1,2,3, · · · ,
(5.198)

where Cn and Dn are constants.
Combining the results (5.196) and (5.198) we obtain the infinite sequence of

product functions

un(x,t) = Fn(x)Tn(t),

= sin
(nπ

L
x
)(

Cn cos
(nπc

L
t
)

+ Dn sin
(nπc

L
t
))

, n = 1,2, · · · .
(5.199)

Recall that the superposition principle admits that a linear combination of the
functions un(x,t) also satisfies the given equation and the boundary conditions.
Therefore, using this principle gives the general solution by

u(x,t) =
∞

∑
n=1

sin
(nπ

L
x
)(

Cn cos
(nπc

L
t
)

+ Dn sin
(nπc

L
t
))

, (5.200)

where the arbitrary constants Cn,Dn,n � 1, are as yet undetermined. The derivative
of (5.200) with respect to t is

ut(x,t) =
∞

∑
n=1

sin
(nπ

L
x
)(
−nπc

L
Cn sin

(nπc
L

t
)

+
nπc

L
Dn cos

(nπc
L

t
))

. (5.201)

To determine Cn,n � 1, we substitute t = 0 in (5.200) and by using the initial con-
dition u(x,0) = f (x), we obtain

∞

∑
n=1

Cn sin
(nπ

L
x
)

= f (x), (5.202)

so that the constants Cn can be determined in this case by using Fourier coefficients
given by the formula
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Cn =
2
L

∫ L

0
f (x) sin

(nπ
L

x
)

dx. (5.203)

To determine Dn,n � 1, we substitute t = 0 in (5.201) and by using the initial con-
dition ut(x,0) = g(x) we obtain

∞

∑
n=1

nπc
L

Dn sin
(nπ

L
x
)

= g(x), (5.204)

so that

Dn =
2

nπc

∫ L

0
g(x) sin

(nπ
L

x
)

dx. (5.205)

Having determined the constants Cn and Dn, the particular solution u(x,t) follows
immediately upon substituting (5.203) and (5.205) into (5.200).

It is to be noted that the use of the Fourier coefficients requires a considerable size
of calculations. However, if the initial conditions f (x) and g(x) are given in terms
of sin(nx) and cos(mx), it seems reasonable to expand the solution (5.200) and then
equate the coefficients of like terms in both sides to determine the constants Cn and
Dn.

To give a clear overview of the method of separation of variables, we have se-
lected several examples of homogeneous PDEs with homogeneous boundary con-
ditions to illustrate the discussion presented above.

Example 1. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE utt = uxx, 0 < x < π, t > 0,
BC u(0,t) = 0, u(π ,t) = 0,
IC u(x,0) = sin(2x), ut(x,0) = 0.

(5.206)

Solution.

We first set
u(x,t) = F(x)T (t). (5.207)

Using (5.207) into (5.206) and proceeding as discussed before we find

F(x) = Acos(λx)+ Bsin(λx). (5.208)

T (t) = C cos(λ t)+ Bsin(λ t). (5.209)

Using the boundary conditions of (5.206) into (5.208) gives

A = 0,
λn = n, n = 1,2,3, · · · . (5.210)

Based on this, equations (5.208) and (5.209) become
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Fn(x) = Bn sin(nx), n = 1,2, · · · ,
Tn(t) = Cn cos(nt)+ Dn sin(nt).

(5.211)

This gives the infinite sequence of product functions

un(x,t) = sin(nx)(Cn cos(nt)+ Dn sin(nt)) . (5.212)

Using the superposition principle we obtain

u(x,t) =
∞

∑
n=1

sin(nx)(Cn cos(nt)+ Dn sin(nt)) , (5.213)

and its derivative with respect to t is

ut(x,t) =
∞

∑
n=1

sin(nx)(−nCn sin(nt)+ nDn cos(nt)) . (5.214)

To determine Cn, we use the initial condition u(x,0) = sin(2x) and substitute t = 0
in (5.213) to find

C1 sinx +C2 sin(2x)+C3 sin(3x)+ · · ·= sin(2x). (5.215)

Equating the coefficients of like terms of both sides gives

C2 = 1, Cj = 0, j �= 2. (5.216)

To determine Dn, substitute t = 0 in (5.214), and use the initial condition ut(x,0) = 0
to find

D1 sinx + 2D2 sin(2x)+ 3D3 sin(3x)+ · · ·= 0, (5.217)

so that
D j = 0, j � 1. (5.218)

Combining (5.213), (5.216), and (5.218), the particular solution is given by

u(x,t) = sin(2x)cos(2t). (5.219)

Example 2. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE utt = uxx, 0 < x < π , t > 0,
BC u(0,t) = 0, u(π,t) = 0,
IC u(x,0) = sinx, ut(x,0) = 2sinx.

(5.220)

Solution.

We first set
u(x,t) = F(x)T (t). (5.221)
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Proceeding as before and substituting (5.221) into (5.220), the general solution is
given by

u(x,t) =
∞

∑
n=1

sin(nx)(Cn cos(nt)+ Dn sin(nt)) . (5.222)

To determine Cn, we use the initial condition u(x,0) = sinx and replace t by zero in
(5.222) to find

C1 sinx +C2 sin(2x)+ · · ·= sinx. (5.223)

Equating coefficients of like terms of both sides of (5.223) gives

C1 = 1, Cj = 0, j �= 1. (5.224)

To determine Dn, we use the initial condition ut(x,0) = 2sinx and replace t by zero
in the derivative of (5.222) to find

D1 sinx + 2D2 sin(2x)+ · · ·= 2sinx. (5.225)

Equating coefficients of like terms of both sides of (5.225) gives

D1 = 2, D j = 0, j �= 1. (5.226)

Combining the results (5.222), (5.224) and (5.226), the particular solution is given
by

u(x,t) = sinxcost + 2sinxsin t. (5.227)

Example 3. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE utt = uxx, 0 < x < π, t > 0,
BC ux(0,t) = 0, ux(π,t) = 0,
IC u(x,0) = 0, ut(x,0) = cosx.

(5.228)

Solution.

It is interesting to note that the boundary conditions are of the second kind de-
fined by the derivatives ux(0,t) = 0 and ux(π ,t) = 0. This means that the ends of the
string are free and not fixed. We first set

u(x,t) = F(x)T (t). (5.229)

Proceeding as before and substituting (5.229) into (5.228) and solving the resulting
equations we obtain

F(x) = Acos(λx)+ Bsin(λx), (5.230)

so that by using the boundary conditions we find

B = 0, A �= 0,
λn = n, n = 0,1,2,3, · · · . (5.231)
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Note that λn = 0 is considered because it did not give the trivial solution. Accord-
ingly, we find an infinite number of solutions for Fn(x) defined by

Fn(x) = An cos(nx), n = 0,1,2,3, · · · . (5.232)

Using the values obtained for λn, we obtain

Tn(t) = Cn cos(nt)+ Dn sin(nt), (5.233)

where Cn and Dn are as yet undetermined constants.
Using the superposition principle, the general solution is given by

u(x,t) =
∞

∑
n=0

cos(nx)(Cn cos(nt)+ Dn sin(nt)) . (5.234)

To determine Cn, we use the initial condition u(x,0) = 0 and replace t by zero in
(5.234) to find

C0 +C1 cosx +C2 cos(2x)+ · · ·= 0, (5.235)

and this gives
Cj = 0, j � 0. (5.236)

To determine Dn, we use the initial condition ut(x,0) = cosx and replace t by zero
in the derivative of (5.234) with respect to t to find

D1 cosx + 2D2 cos(2x)+ · · ·= cosx, (5.237)

so that
D1 = 1, Dj = 0, j �= 1. (5.238)

Combining the results (5.234), (5.236) and (5.238), the particular solution is given
by

u(x,t) = cosxsin t, (5.239)

obtained by substituting (5.236) and (5.238) into (5.234).

Example 4. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE utt = uxx, 0 < x < π , t > 0,
BC ux(0,t) = 0, ux(π ,t) = 0,
IC u(x,0) = 1 + cosx, ut(x,0) = 0.

(5.240)

Solution.

Proceeding as before we obtain

F(x) = Acos(λx)+ Bsin(λx), (5.241)

so that by using the boundary conditions we find
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B = 0, A �= 0,
λn = n, n = 0,1,2,3, · · · . (5.242)

Consequently we find

Fn(x) = An cos(nx), n = 0,1,2,3, · · · . (5.243)

Using the values obtained for λn, we obtain

Tn(t) = Cn cos(nt)+ Dn sin(nt). (5.244)

Using the superposition principle gives the general solution by

u(x,t) =
∞

∑
n=0

cos(nx)(Cn cos(nt)+ Dn sin(nt)) , (5.245)

so that

ut(x,t) =
∞

∑
n=0

cos(nx)(−nCn sin(nt)+ nDn cos(nt)) . (5.246)

To determine Cn, we replace t by zero in (5.245) to find

C0 +C1 cosx +C2 cos(2x)+ · · ·= 1 + cosx, (5.247)

and this gives
C0 = 1, C1 = 1, Cj = 0, j � 2. (5.248)

We next use the initial condition ut(x,0) = 0 and replace t by zero in (5.246) to find

D1 cosx + 2D2 cos(2x)+ · · ·= 0, (5.249)

so that
Dj = 0, j � 1. (5.250)

Combining the results obtained above gives

u(x,t) = 1 + cosxcost. (5.251)

Example 5. Use the method of separation of variables to solve the following initial-
boundary value problem

PDE utt = uxx, 0 < x < π, t > 0,
BC u(0,t) = 0, u(π ,t) = 0,
IC u(x,0) = 1, ut(x,0) = 0.

(5.252)

Solution.

Following the analysis introduced before leads to

Fn(x) = An sin(nx), n = 1,2,3, · · · . (5.253)
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and
Tn(t) = Cn cos(nt)+ Dn sin(nt), (5.254)

which in turn gives

u(x,t) =
∞

∑
n=1

sin(nx)(Cn cos(nt)+ Dn sin(nt)) . (5.255)

To determine Cn, we substitute t = 0 into (5.255), and use the initial condition
u(x,0) = 1 to find

∞

∑
n=1

Cn sin(nx) = 1. (5.256)

The arbitrary constants Cn are determined by using the Fourier coefficients method,
therefore we find

Cn =
2
π

∫ π

0
sin(nx)dx,

=
2

nπ
(1− cos(nπ)),

(5.257)

so that

Cn =

⎧⎨
⎩

0, if n is even,

4
nπ

, if n is odd.
(5.258)

This means that we can express Cn by

C2m = 0,

C2m+1 =
4

(2m+ 1)π
, m = 0,1,2, · · · . (5.259)

To determine Dn, we substitute t = 0 into the derivative of (5.255) to find

Dn = 0, n = 1,2,3, · · · . (5.260)

Combining the results obtained above, the particular solution is given by

u(x,t) =
4
π

∞

∑
m=0

1
2m+ 1

sin(2m+ 1)x cos(2m+ 1)t. (5.261)

The initial condition u(x,0) = 1 can be justified by using Appendix F.

Exercises 5.4.1

In Exercises 1–6, where the ends of the string are fixed, solve the initial-boundary
value problems by the method of separation of variables:

1. utt = uxx, 0 < x < π , t > 0
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u(0,t) = 0, u(π ,t) = 0
u(x,0) = 0,ut(x,0) = 3sin(3x)

2. utt = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sinx,ut(x,0) = 0

3. utt = uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 0,ut(x,0) = 4sin(2x)

4. utt = 4uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sinx,ut(x,0) = 0

5. utt = 4uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = sin(2x),ut(x,0) = 0

6. utt = 9uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 0,ut(x,0) = 3sinx

In Exercises 7–10, where the ends of the string are free, solve the initial-boundary
value problems by the method of separation of variables:

7. utt = 9uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 1,ut(x,0) = 3cosx

8. utt = 4uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 2 + cosx,ut(x,0) = 0

9. utt = 9uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π ,t) = 0
u(x,0) = 0,ut(x,0) = 3cosx

10. utt = uxx, 0 < x < π, t > 0
ux(0,t) = 0, ux(π,t) = 0
u(x,0) = cosx,ut(x,0) = cosx

In Exercises 11–12, use the Fourier coefficients to solve the following initial-
boundary value problems:

11. utt = uxx, 0 < x < π, t > 0
u(0,t) = 0, u(π ,t) = 0
u(x,0) = 0,ut(x,0) = x

12. utt = 4uxx, 0 < x < π , t > 0
u(0,t) = 0, u(π ,t) = 0
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u(x,0) = 0,ut(x,0) = x(1− x)

5.4.2 Inhomogeneous Boundary Conditions

In this section we will consider the case where the boundary conditions of the vi-
brating string are inhomogeneous. It is well known that the method of separation
of variables requires that the equation and the boundary conditions are linear and
homogeneous. Therefore, transformation formulas should be used to convert the
inhomogeneous boundary conditions to homogeneous boundary conditions.

In this section we will discuss wave equations where Dirichlet boundary con-
ditions and Neumann boundary conditions are not homogeneous. It is normal to
seek transformation formulas to convert these inhomogeneous conditions to homo-
geneous conditions.

Dirichlet Boundary Conditions

In this first type of boundary conditions, the displacements u(0,t) = α and u(L,t) =
β of a vibrating string of length L are given. We begin our analysis by considering
the initial-boundary value problem

PDE utt = c2uxx, 0 < x < L, t > 0,
BC u(0,t) = α, u(L,t) = β , t � 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.262)

To convert the inhomogeneous boundary conditions of (5.262) to homogeneous
boundary conditions, we simply use the conversion formula that we used before
in Section 3.4.2. In other words, the following transformation formula

u(x,t) =
(

α +
x
L

(β −α)
)

+ v(x,t), (5.263)

should be used to achieve this goal.
Substituting (5.263) into (5.262) shows that v(x,t) is governed by the initial-

boundary value problem

PDE vtt = c2vxx, 0 < x < L, t > 0,
BC v(0,t) = 0, v(L,t) = 0,

IC v(x,0) = f (x)−
(

α +
x
L

(β −α)
)

, vt(L,t) = g(x).
(5.264)

In view of (5.264), the method of separation of variables can be easily used in
(5.264) as discussed before. Having determined v(x,t) of (5.264), the wave func-
tion u(x,t) of (5.262) follows immediately upon substituting v(x,t) into (5.263).
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To get a better understanding of the implementation of the transformation for-
mula (5.263), we will discuss the following illustrative examples.

Example 6. Solve the following initial-boundary value problem

PDE utt = uxx, 0 < x < 1, t > 0,
BC u(0,t) = 1, u(1,t) = 2, t � 0,
IC u(x,0) = 1 + x, ut(x,0) = π sin(πx).

(5.265)

Solution.

Using the transformation formula (5.263) we obtain

u(x,t) = (1 + x)+ v(x,t), (5.266)

that carries (5.265) into

PDE vtt = vxx, 0 < x < 1, t > 0,
BC v(0,t) = 0, v(1,t) = 0,
IC v(x,0) = 0, vt(x,0) = π sin(πx).

(5.267)

Assuming that
v(x,t) = F(x)T (t), (5.268)

and proceeding as before we obtain

Fn(x) = Bn sin(nπx), n = 1,2, · · · (5.269)

and
Tn(t) = Cn cos(nπt)+ Dn sin(nπt), (5.270)

so that

v(x,t) =
∞

∑
n=1

sin(nπx)(Cn cos(nπt)+ Dn sin(nπt)) , (5.271)

where Cn and Dn are as yet undetermined constants. Using the initial condition
v(x,0) = 0 in (5.271) gives

Cn = 0, n � 1. (5.272)

Using the initial condition vt(x,0) = π sin(πx) into the derivative of (5.271) we
obtain

D1 = 1, Dk = 0, k �= 1. (5.273)

This gives the solution for v(x,t) by

v(x,t) = sin(πx)sin(πt), (5.274)

so that the particular solution u(x,t) of (5.265) is given by

u(x,t) = 1 + x + sin(πx)sin(πt). (5.275)
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At this point, it seems reasonable to use the Adomian decomposition method
to solve the initial-boundary value problem of this example. This will enable us to
compare the performance of the decomposition method and the classical method of
separation of variables.

Applying the inverse operator L−1
t to the operator form of (5.265) and using the

initial conditions we obtain

u(x,t) = 1 + x +(πt)sin(πx)+ L−1
t (Lxu(x,t)) . (5.276)

Using the decomposition series of u(x,t) into both sides of equation (5.276) yields

∞

∑
n=0

un(x,t) = 1 + x +(πt)sin(πx)+ L−1
t

(
Lx

(
∞

∑
n=0

un(x,t)

))
. (5.277)

Using the recursive algorithm we obtain

u0 = 1 + x +(πt)sin(πx),

u1 = L−1
t (Lxu0) =− (πt)3

3!
sin(πx),

u2 = L−1
t (Lxu1) =

(πt)5

5!
sin(πx),

(5.278)

and so on. Consequently, the solution in a series form is given by

u(x,t) = 1 + x + sin(πx)

(
πt− (πt)3

3!
+

(πt)5

5!
−·· ·

)
, (5.279)

and in a closed form

u(x,t) = 1 + x + sin(πx)sin(πt). (5.280)

It is obvious that we obtained the solution (5.280) by employing less computational
work if compared with the method of separation of variables. The power of the
decomposition method for solving differential equations is thus emphasized.

Example 7. Solve the following initial-boundary value problem

PDE utt = uxx, 0 < x < 1, t > 0,
BC u(0,t) = 2, u(1,t) = 3, t � 0,
IC u(x,0) = 2 + x + sin(πx), ut(x,0) = 0.

(5.281)

Solution.

Using the transformation formula (5.263) where α = 2 and β = 3, we obtain

u(x,t) = (2 + x)+ v(x,t). (5.282)

In view of (5.282), we find that
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PDE vtt = vxx, 0 < x < 1, t > 0
BC v(0,t) = 0, v(1,t) = 0
IC v(x,0) = sin(πx), vt(x,0) = 0

(5.283)

Following the analysis presented before gives

Fn(x) = Bn sin(nπx), n = 1,2, · · · (5.284)

and
Tn(t) = Cn cos(nπt)+ Dn sin(nπt), (5.285)

so that

v(x,t) =
∞

∑
n=1

sin(nπx)(Cn cos(nπt)+ Dn sin(nπt)) , (5.286)

where Cn and Dn are as yet undetermined constants Using the initial condition
v(x,0) = sin(πx) in (5.286) gives

C1 = 1, Ck = 0,k �= 1. (5.287)

Differentiating (5.286) and using the initial condition vt(x,0) = 0 we obtain

Dn = 0, n � 1. (5.288)

This gives the solution for v(x,t) by

v(x,t) = sin(πx)cos(πt), (5.289)

so that the particular solution u(x,t) of (5.281) is given by

u(x,t) = 2 + x + sin(πx)cos(πt). (5.290)

Neumann Boundary Conditions

We next consider the second kind of boundary conditions, where ux(0,t) = α and
ux(L,t) = β are given. We point out that the transformation formula (5.263) works
effectively for the first kind of boundary conditions, but cannot be used for the sec-
ond kind of boundary conditions. To study the proper formula in this case, we con-
sider the initial-boundary value problem

PDE utt = c2uxx, 0 < x < L, t > 0,
BC ux(0,t) = α, ux(L,t) = β , t � 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.291)

It is interesting to note that an alternative formula should be used to convert the inho-
mogeneous boundary conditions of (5.291) to homogeneous boundary conditions.
We can easily prove that the transformation formula
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u(x,t) = αx +

(
β −α

2L

)
x2 + c2

(
β −α

2L

)
t2 + v(x,t) (5.292)

is an appropriate formula that can be used to achieve our goal of conversion. Differ-
entiating (5.292) twice with respect to t and to x we obtain

utt = c2

(
β −α

L

)
+ vtt ,

uxx =
β −α

L
+ vxx.

(5.293)

Using (5.292) and (5.293), it can be easily shown that v(x,t) is governed by the
initial-boundary value problem

PDE vtt = c2vxx, 0 < x < L, t > 0,
BC vx(0,t) = 0, vx(L,t) = 0,

IC v(x,0) = f (x)−
(

αx +
β −α

2L
x2

)
, vt(x,0) = g(x).

(5.294)

It is clear that an initial-boundary value problem (5.294) with homogeneous bound-
ary conditions is obtained. The use of the transformation formula (5.292) will be
explained by the following illustrative examples.

Example 8. Solve the following initial-boundary value problem

PDE utt = uxx, 0 < x < 1, t > 0,
BC ux(0,t) = 1, ux(1,t) = 3, t � 0,
IC u(x,0) = x2 + x, ut(x,0) = π cos(πx).

(5.295)

Solution.

Using the transformation formula (5.292), where α = 1,β = 3, and c = 1, we
find

u(x,t) = x + x2 + t2 + v(x,t) (5.296)

In view of (5.296), the initial-boundary value problem for v(x,t) is given by

PDE vtt = vxx, 0 < x < L, t > 0,
BC vx(0,t) = 0, vx(1,t) = 0, t � 0,
IC v(x,0) = 0, vt(x,0) = π cos(πx).

(5.297)

Proceeding as discussed before we find

v(x,t) =
∞

∑
n=0

cos(nπx)(Cn cos(nπt)+ Dn sin(nπt)) . (5.298)

Using the initial conditions gives

Cn = 0, n � 0. (5.299)
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and
D1 = 1, Dk = 0, k �= 1. (5.300)

This leads to
v(x,t) = cos(πx)sin(πt), (5.301)

which gives
u(x,t) = x + x2 + t2 + cos(πx)sin(πt). (5.302)

Exercises 5.4.2

Use the method of separation of variables to solve Exercises 1–6, where the first
kind of boundary conditions are given:

1. utt = uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 1
u(x,0) = 1, ut(x,0) = π sin(πx)

2. utt = uxx, 0 < x < 1, t > 0
u(0,t) = 2, u(1,t) = 3
u(x,0) = 2 + x + 2sin(πx), ut(x,0) = 0

3. utt = uxx, 0 < x < 1, t > 0
u(0,t) = 0, u(1,t) = 3
u(x,0) = 3x, ut(x,0) = 4π sin(πx)

4. utt = uxx, 0 < x < 1, t > 0
u(0,t) = 4, u(1,t) = 1
u(x,0) = 4−3x, ut(x,0) = π sin(πx)

5. utt = 4uxx, 0 < x < 1, t > 0
u(0,t) = 3, u(1,t) = 7
u(x,0) = 3 + 4x, ut(x,0) = 2π sin(πx)

6. utt = 4uxx, 0 < x < 1, t > 0
u(0,t) = 1, u(1,t) = 2
u(x,0) = 1 + x, ut(x,0) = 4π sin(2πx)

In Exercises 7–12, where the boundary conditions ux(0,t) and ux(1,t) are given, use
the method of separation of variables to solve the initial-boundary value problems:

7. utt = uxx, 0 < x < 1, t > 0
ux(0,t) = 3, ux(1,t) = 5
u(x,0) = 3x + x2 + cos(πx), ut(x,0) = 0

8. utt = uxx, 0 < x < 1, t > 0
ux(0,t) = 4, ux(1,t) = 4
u(x,0) = 4x, ut(x,0) = π cos(πx)
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9. utt = uxx, 0 < x < 1, t > 0
ux(0,t) = 2, ux(1,t) = 6
u(x,0) = 2x + 2x2 + cos(πx), ut(x,0) = 0

10. utt = 4uxx, 0 < x < 1, t > 0
ux(0,t) = 1, ux(1,t) = 1
u(x,0) = x, ut(x,0) = 2π cos(πx)

11. utt = 4uxx, 0 < x < 1, t > 0
ux(0,t) = 2, ux(1,t) = 2
u(x,0) = 2x + cos(πx), ut(x,0) = 0

12. utt = 9uxx, 0 < x < 1, t > 0
ux(0,t) = 1, ux(1,t) = 3
u(x,0) = x + x2, ut(x,0) = 3π cos(πx)

5.5 Wave Equation in an Infinite Domain: D’Alembert Solution

In Section 5.2.3, the motion of a very long string, that is considered not to have
boundaries, has been handled by using the decomposition method. The physical
model that controls the wave motion of a very long string is governed by a PDE and
initial conditions only. As mentioned before, the method of separation of variables
is not applicable in this case.

However, a standard method, known as D’Alembert solution, allows us to solve
the initial value problem on an infinite domain.

To derive D’Alembert formula, we consider a typical wave equation in an infinite
domain given by

PDE utt = c2uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = f (x), ut(x,0) = g(x).

(5.303)

As stated in a previous section, the attention will be focused upon the disturbance
occurred at the center of the very long string. The initial displacement u(x,0) and
the initial velocity ut(x,0) are prescribed by f (x) and g(x) respectively.

To derive D’Alembert solution, we consider two new variables ξ and η defined
by

ξ = x + ct,
η = x− ct.

(5.304)

Using the chain rule we obtain

uxx = uξ ξ + 2uξ η + uηη ,

utt = c2
(
uξ ξ −2uξ η + uηη

)
.

(5.305)

Substituting (5.305) into (5.303) gives
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uξ η = 0. (5.306)

Integrating (5.306) first with respect ξ then with respect η we obtain the general
solution given by

u(ξ ,η) = F(ξ )+ G(η), (5.307)

where F and G are arbitrary functions. Using (5.304), equation (5.307) can be
rewritten as

u(x,t) = F(x + ct)+ G(x− ct), (5.308)

Using the initial condition u(x,0) = f (x) into (5.308) yields

F(x)+ G(x) = f (x). (5.309)

Substituting the initial condition ut(x,0) = g(x) into (5.308) gives

cF ′(x)− cG′(x) = g(x). (5.310)

Integrating both sides of (5.310) from 0 to x gives

F(x)−G(x) =
1
c

∫ x

0
g(r)dr + K, (5.311)

where K is the constant of integration. Solving (5.309) and (5.311) we find

F(x) =
1
2

f (x)+
1
2c

∫ x

0
g(r)dr +

1
2

K,

G(x) =
1
2

f (x)− 1
2c

∫ x

0
g(r)dr− 1

2
K.

(5.312)

This means that

F(x + ct) =
1
2

f (x + ct)+
1
2c

∫ x+ct

0
g(r)dr +

1
2

K,

G(x− ct) =
1
2

f (x− ct)− 1
2c

∫ x−ct

0
g(r)dr− 1

2
K,

(5.313)

so that by using (5.308) we obtain the D’Alembert formula given by

u(x,t) =
f (x + ct)+ f (x− ct)

2
+

1
2c

∫ x+ct

x−ct
g(r)dr. (5.314)

This completes the formal derivation of D’Alembert solution. To explain D’Alembert’s
formula, we consider the following examples.

Example 1. Use the D’Alembert formula to solve the initial value problem

PDE utt = uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sin x, ut(x,0) = 0.

(5.315)
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Solution.

Substituting c = 1, f (x) = sinx and g(x) = 0 into (5.314) gives the particular
solution by

u(x,t) =
sin(x + t)+ sin(x− t)

2
, (5.316)

which gives
u(x,t) = sinxcost. (5.317)

Example 2. Use the D’Alembert formula to solve the initial value problem

PDE utt = 4uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sinx, ut(x,0) = 4.

(5.318)

Solution.

Substituting c = 2, f (x) = sinx and g(x) = 4 into (5.314) gives the particular
solution

u(x,t) =
sin(x + 2t)+ sin(x−2t)

2
+

1
4

∫ x+2t

x−2t
4dr, (5.319)

which gives
u(x,t) = sinxcos(2t)+ 4t. (5.320)

Example 3. Use the D’Alembert formula to solve the initial value problem

PDE utt = 9uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = sinx, ut(x,0) = 3cosx.

(5.321)

Solution.

Note that c = 3, f (x) = sinx and g(x) = 3cosx. Substituting into (5.314) gives

u(x,t) =
sin(x + 3t)+ sin(x−3t)

2
+

1
6

∫ x+3t

x−3t
3cosr dr,

=
sin(x + 3t)+ sin(x−3t)

2
+

sin(x + 3t)− sin(x−3t)
2

(5.322)

which gives
u(x,t) = sin(x + 3t). (5.323)

Example 4. Use the D’Alembert formula to solve the initial value problem

PDE utt = uxx, −∞ < x < ∞, t > 0,

IC u(x,0) = e−x, ut(x,0) =
2

1 + x2 .
(5.324)

Solution.
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Substituting c = 1, f (x) = e−x and g(x) =
2

1 + x2 into (5.314) gives

u(x,t) =
e−(x+t) + e−(x−t)

2
+

1
2

∫ x+t

x−t

2
1 + r2 dr,

=
e−(x+t) + e−(x−t)

2
+[arctanr]x+t

x−t

=
e−x(et + e−t)

2
+ arctan(x + t)− arctan(x− t),

(5.325)

which gives the particular solution

u(x,t) = e−x cosht + arctan(x + t)− arctan(x− t). (5.326)

Example 5. If u(x,t) = sinxcost + 2xt is a solution of the initial value problem

PDE utt = uxx, −∞ < x < ∞, t > 0,
IC u(x,0) = f (x), ut(x,0) = 2x.

(5.327)

Use the D’Alembert formula to find f (x).

Solution.

Substituting c = 1 and g(x) = 2x into (5.314) gives

sinxcos t + 2xt =
f (x + t)+ f (x− t)

2
+

1
2

∫ x+t

x−t
2r dr,

=
f (x + t)+ f (x− t)

2
+ 2xt.

(5.328)

This in turn gives

f (x + t)+ f (x− t) = 2sinxcost = sin(x + t)+ sin(x− t). (5.329)

Based on this result we obtain
f (x) = sinx. (5.330)

Exercises 5.5

Use the D’Alembert formula to solve the following initial value problems:

1. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = 2 + sinx

2. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = cosx

3. utt = uxx, −∞ < x < ∞, t > 0
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u(x,0) = cosx, ut(x,0) =−sinx

4. utt = 16uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = 4cosx

5. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = 2

6. utt = 4uxx, −∞ < x < ∞, t > 0
u(x,0) = cosx, ut(x,0) =−2sinx

7. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinhx, ut(x,0) = coshx

8. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = x, ut(x,0) = e−x

9. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = coshx, ut(x,0) = 0

10. utt = 4uxx, −∞ < x < ∞, t > 0
u(x,0) = 0, ut(x,0) = 2sinhx

11. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = cosx, ut(x,0) = 1 + 2x

12. utt = uxx, −∞ < x < ∞, t > 0
u(x,0) = sinx, ut(x,0) = 4 + 4x
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Chapter 6

Higher Dimensional Wave Equation

6.1 Introduction

In this chapter we will discuss the initial-boundary value problems that control the
wave propagation in two and three dimensional spaces. The methods that will be
applied are the Adomian decomposition method [1] and the method of separation
of variables [2–5]. The two methods have been outlined before and were applied to
the one dimensional wave equation in Chapter 5.

The decomposition method decomposes the solution u of any equation into an
infinite series of components u0,u1,u2, · · · where these components are elegantly
computed. The determination of these components can be achieved in an easy way
through a recursive relation that involves simple integrals [6].

The method of separation of variables provides the solution of a partial differen-
tial equation through converting the partial differential equation into several easily
solvable ordinary differential equations. In addition, the method requires that the
problem and the boundary conditions be linear and homogeneous, hence transfor-
mation formulas are usually used to justify this need. The method of separation of
variables cannot handle initial value problems because boundary conditions are not
prescribed. However, the decomposition method can easily handle these problems.

6.2 Adomian Decomposition Method

In previous chapters we have discussed Adomian decomposition method and have
applied it to partial differential equations of any order, homogeneous and inhomoge-
neous. The decomposition method consists of decomposing the unknown function u
into an infinite sum of components u0,u1,u2, · · ·, and concerns itself with determin-
ing these components recurrently. The zeroth component u0 is usually identified by
the terms arising from integrating inhomogeneous terms and from initial/boundary
conditions. The successive components u1,u2, · · · are determined in a recursive man-
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ner. It was found that few components can give an insight into the character and
behavior of the solution. For numerical purposes, accuracy can be easily enhanced
by determining as many components as we like [1,6].

Throughout this section, the decomposition method will be applied to two di-
mensional and three dimensional wave equations.

6.2.1 Two Dimensional Wave Equation

The propagation of waves in a two dimensional vibrating membrane of length a and
width b is governed by the following initial-boundary value problem

PDE utt = c2(uxx + uyy), 0 < x < a, 0 < y < b,t > 0,
BC u(0,y,t) = u(a,y,t) = 0,

u(x,0,t) = u(x,b,t) = 0,
IC u(x,y,0) = f (x,y), ut(x,y,0) = g(x,y).

(6.1)

where u = u(x,y,t) is the displacement function of any point located at the position
(x,y) of a vibrating membrane at any time t, and c is related to the elasticity of the
material of the rectangular plate.

As discussed before, the solution in the t direction, in the x space, or in the y
space will lead to identical results. However, the solution in the t direction reduces
the size of calculations compared with the other space solutions because it uses the
initial conditions only. For this reason the solution in the t direction will be followed
in this chapter.

We first rewrite (6.1) in an operator form by

Ltu(x,y,t) = c2 (Lxu(x,y,t)+ Lyu(x,y,t)) , (6.2)

where the differential operators Lt ,Lx, and Ly are defined by

Lt =
∂ 2

∂ t2 , Lx =
∂ 2

∂x2 , Ly =
∂ 2

∂y2 , (6.3)

so that the integral operator L−1
t exists and given by

L−1
t (·) =

∫ t

0

∫ t

0
(·)dt dt. (6.4)

This means that

L−1
t Lt u(x,y,t) = u(x,y,t)−u(x,y,0)− tut(x,y,0). (6.5)

Applying L−1
t to both sides of (6.2) and using the initial conditions leads to

u(x,y,t) = f (x,y)+ tg(x,y)+ c2 L−1
t (Lxu + Lyu) . (6.6)
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The decomposition method defines the solution u(x,y,t) as an infinite series given
by

u(x,y,t) =
∞

∑
n=0

un(x,y,t), (6.7)

where the components un(x,y,t),n � 0 will be easily computed by using a recursive
relation. Substituting (6.7) into both sides of (6.6) yields

∞

∑
n=0

un = f (x,y)+ tg(x,y)+ c2 L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.8)

To construct the recursive scheme, the decomposition method suggests that the ze-
roth component u0(x,y,t) is identified as the terms arising from the initial/boundary
conditions and from integrating inhomogeneous terms if exist. The components
un(x,y,t), n � 0 can be completely determined by using the recursive relation

u0(x,y,t) = f (x,y)+ tg(x,y),
uk+1(x,y,t) = c2 L−1

t (Lxuk + Lyuk) , k � 0.
(6.9)

Consequently, the successive components can be completely computed, hence the
solution in a series form follows immediately.

To give a clear overview of the implementation of the decomposition method, we
have chosen several examples, homogeneous and inhomogeneous, to illustrate the
discussion given above.

Homogeneous Wave Equations

The Adomian decomposition method will be used to solve the following homoge-
neous wave equations in two dimensional vibrating membrane with homogeneous
boundary conditions.

Example 1. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = 2(uxx + uyy), 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π,t) = 0,
IC u(x,y,0) = sinxsiny, ut(x,y,0) = 0.

(6.10)

Solution.

In an operator form, Equation (6.10) becomes

Ltu(x,y,t) = 2(Lxu(x,y,t)+ Lyu(x,y,t)). (6.11)

Applying the inverse operator L−1
t to (6.11)gives
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u(x,y,t) = sinxsin y + 2L−1
t (Lxu + Lyu) . (6.12)

The decomposition method decomposes the solution u(x,y,t) by the decomposition
series

u(x,y,t) =
∞

∑
n=0

un(x,y,t). (6.13)

Substituting (6.13) into both sides of (6.12) yields

∞

∑
n=0

un = sinxsiny + 2L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.14)

The zeroth component u0(x,y,t) is usually identified by all terms that are not in-
cluded under the inverse operator L−1

t in (6.14). Consequently, we set the recursive
relation

u0(x,y,t) = sinxsiny,
uk+1(x,y,t) = 2L−1

t (Lxuk + Ly uk) , k � 0.
(6.15)

This in turn gives

u0(x,y,t) = sinxsiny,

u1(x,y,t) = 2L−1
t (Lxu0 + Lyu0) =− (2t)2

2!
sinxsin y,

u2(x,y,t) = 2L−1
t (Lxu1 + Lyu1) =

(2t)4

4!
sin xsiny,

(6.16)

and so on. The solution in a series form is given by

u(x,y,t) = sinxsin y

(
1− (2t)2

2!
+

(2t)4

4!
−·· ·

)
, (6.17)

and in a closed form by

u(x,y,t) = sin xsinycos(2t), (6.18)

obtained upon using the Taylor expansion of cos(2t).

Example 2. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = 8(uxx + uyy), 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π,t) = 0,
IC u(x,y,0) = 0, ut(x,y,0) = 4sinxsiny.

(6.19)

Solution.

Proceeding as in Example 1 we find
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u(x,y,t) = 4t sinxsiny + 8L−1
t (Lxu + Lyu) . (6.20)

We next define u(x,y,t) by an infinite series

u(x,y,t) =
∞

∑
n=0

un(x,y,t), (6.21)

that carries (6.20) into

∞

∑
n=0

un = 4t sinxsiny + 8L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.22)

Following Adomian’s assumptions we find

u0(x,y,t) = 4t sinxsin y,
uk+1(x,y,t) = 8L−1

t (Lxuk + Lyuk) , k � 0.
(6.23)

It follows that

u0(x,y,t) = 4t sinxsin y,

u1(x,y,t) = 8L−1
t (Lxu0 + Lyu0) =− (4t)3

3!
sinxsin y,

u2(x,y,t) = 8L−1
t (Lxu1 + Lyu1) =

(4t)5

5!
sin xsiny,

(6.24)

and so on. Combining (6.24) and (6.21), the solution in a series form is given by

u(x,y,t) = sinxsiny

(
4t− (4t)3

3!
+

(4t)5

5!
−·· ·

)
, (6.25)

and the exact solution
u(x,y,t) = sinxsin ysin(4t), (6.26)

follows immediately.

Example 3. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt =
1
2
(uxx + uyy), 0 < x,y < π, t > 0,

BC u(0,y,t) = u(π,y,t) = 1,
u(x,0,t) = 1 + sinxsin t, u(x,π ,t) = 1− sinxsin t,

IC u(x,y,0) = 1, ut(x,y,0) = sinxcosy.

(6.27)

Solution.
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We note that the wave equation is homogeneous and the boundary conditions are
inhomogeneous. The decomposition method will be applied in a direct way as used
before.

Applying the inverse operator L−1
t to the operator form of (6.27) leads to

u(x,y,t) = 1 + t sinxcosy +
1
2

L−1
t (Lxu + Lyu) , (6.28)

where by using the decomposition series for u(x,y,t) we obtain

∞

∑
n=0

un = 1 + t sinxcosy +
1
2

L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.29)

The components of u(x,y,t) can be easily determined in a recursive manner by

u0(x,y,t) = 1 + t sinxcosy,

uk+1(x,y,t) =
1
2

L−1
t (Lxuk + Lyuk) , k � 0.

(6.30)

The first few components of the solution u(x,y,t) are given by

u0(x,y,t) = 1 + t sinxcosy,

u1(x,y,t) =
1
2

L−1
t (Lxu0 + Lyu0) =− 1

3!
t3 sinxcosy,

u2(x,y,t) =
1
2

L−1
t (Lxu1 + Lyu1) =

1
5!

t5 sinxcosy,

(6.31)

and so on. The solution in a series form is given by

u(x,y,t) = 1 + sinxcosy

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (6.32)

and in a closed form by

u(x,y,t) = 1 + sinxcosysin t. (6.33)

Example 4. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = uxx + uyy−2u, 0 < x,y < π, t > 0,
BC u(0,y,t) = −u(π ,y,t) = cosysin(2t),

u(x,0,t) = −u(x,π ,t) = cosxsin(2t),
IC u(x,y,0) = 0, ut(x,y,0) = 2cosxcosy.

(6.34)



6.2 Adomian Decomposition Method 201

Solution.

We note that an additional term −2u is included in the standard wave equation.
This arises when each element of the membrane is subjected to an additional force
which is proportional [5,6] to its displacement u(x,y,t).

Applying the inverse operator L−1
t to the operator form of (6.34) and using the

initial conditions we obtain

u(x,y,t) = 2t cosxcosy + L−1
t (Lxu + Lyu−2u). (6.35)

Using the decomposition series of u(x,y,t) into both sides of (6.35) gives

∞

∑
n=0

un = 2t cosxcosy

+L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
−2

(
∞

∑
n=0

un

))
. (6.36)

The components of u(x,y,t) can be recursively determined by

u0(x,y,t) = 2t cosxcosy,
uk+1(x,y,t) = L−1

t (Lxuk + Lyuk−2uk) , k � 0,
(6.37)

so that
u0(x,y,t) = 2t cosxcosy,

u1(x,y,t) = − 1
3!

(2t)3 cosxcosy,

u2(x,y,t) =
1
5!

(2t)5 cosxcosy.

(6.38)

In view of (6.38), the solution in a series form is given by

u(x,y,t) = cosxcosy

(
2t− 1

3!
(2t)3 +

1
5!

(2t)5−·· ·
)

, (6.39)

and in a closed form by

u(x,y,t) = cosxcosysin(2t). (6.40)

Example 5. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = 2(uxx + uyy), 0 < x,y < π , t > 0,
BC u(0,y,t) = y, u(π ,y,t) = π + y,

u(x,0,t) = x, u(x,π ,t) = π + x,
IC u(x,y,0) = x + y + sinxsiny, ut(x,y,0) = 0.

(6.41)
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Solution.

Note that the boundary conditions are inhomogeneous and given by functions and
not constants. The decomposition method will attack the problem directly without
any need to convert the inhomogeneous conditions to homogeneous conditions.

Operating with L−1
t on (6.41) gives

u(x,y,t) = x + y + sinxsiny + 2L−1
t (Lxu + Lyu) . (6.42)

It then follows

∞

∑
n=0

un = x + y + sinxsiny + 2L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.43)

Consequently, we set the relation

u0(x,y,t) = x + y + sinxsin y,
uk+1(x,y,t) = 2L−1

t (Lxuk + Lyuk) , k � 0.
(6.44)

This gives the first few components of the solution u(x,y,t) by

u0(x,y,t) = x + y + sinxsin y,

u1(x,y,t) = 2L−1
t (Lxu0 + Lyu0) =− 1

2!
(2t)2 sinxsiny,

u2(x,y,t) = 2L−1
t (Lxu1 + Lyu1) =

1
4!

(2t)4 sinxsin y.

(6.45)

The series solution is given by

u(x,y,t) = x + y + sinxsin y

(
1− 1

2!
(2t)2 +

1
4!

(2t)4−·· ·
)

, (6.46)

and in a closed form by

u(x,y,t) = x + y + sinxsin ycos(2t). (6.47)

Example 6. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt =
x2

4
uxx +

y2

4
uyy, 0 < x,y < 1, t > 0,

BC u(0,y,t) = 0, u(1,y,t) = y2 cosh t,
u(x,0,t) = 0, u(x,1,t) = x2 cosh t,

IC u(x,y,0) = x2y2, ut(x,y,0) = 0.

(6.48)
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Solution.

It is important to note that the coefficients of uxx and uyy are functions and not
constants. Applying the inverse operator L−1

t to the operator form of the PDE of
(6.48) yields

u(x,y,t) = x2y2 + L−1
t

(
x2

4
Lxu +

y2

4
Lyu

)
. (6.49)

Using the decomposition series of u(x,y,t) into both sides of (6.49) gives

∞

∑
n=0

un = x2y2 + L−1
t

(
x2

4
Lx

(
∞

∑
n=0

un

)
+

y2

4
Ly

(
∞

∑
n=0

un

))
. (6.50)

The recursive relation

u0(x,y,t) = x2y2,

uk+1(x,y,t) = L−1
t

(
x2

4
Lxuk +

y2

4
Lyuk

)
, k � 0,

(6.51)

follows immediately. It then follows that

u0(x,y,t) = x2y2,

u1(x,y,t) = L−1
t

(
x2

4
Lxu0 +

y2

4
Lyu0

)
=

1
2!

t2x2y2,

u2(x,y,t) = L−1
t

(
x2

4
Lxu1 +

y2

4
Lyu1

)
=

1
4!

t4x2y2,

(6.52)

Consequently, the series solution

u(x,y,t) = x2y2
(

1 +
1
2!

t2 +
1
4!

t4 + · · ·
)

, (6.53)

and the exact solution
u(x,y,t) = x2y2 cosh t (6.54)

are readily obtained.

Inhomogeneous Wave Equations

We now consider the inhomogeneous wave equation of the form

utt = c2(uxx + uyy)+ h(x,y,t), (6.55)

where h(x,y,t) is the inhomogeneous term. One significant advantage [1,6] of Ado-
mian decomposition method is that it handles the inhomogeneous partial differential
equations in an identical manner to that used before in handling homogeneous dif-
ferential equations. The zeroth component u0 is identified by all terms that arise
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from using initial conditions and from integrating inhomogeneous terms as well.
In the following, the decomposition method will be illustrated by discussing the
inhomogeneous equations.

Example 7. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt =
1
2
(uxx + uyy)−2, 0 < x,y < π , t > 0,

BC u(0,y,t) = y2, u(π ,y,t) = π2 + y2,
u(x,0,t) = x2, u(x,π ,t) = π2 + x2,

IC u(x,y,0) = x2 + y2, ut(x,y,0) = sinxsin y.

(6.56)

Solution.

Note that the PDE (6.56) contains the term−2; hence it is inhomogeneous equa-
tion. In addition, the boundary conditions are inhomogeneous.

Applying the inverse operator L−1
t to the operator form of (6.56) gives

u(x,y,t) = x2 + y2 + t sinxsin y− t2 +
1
2

L−1
t (Lxu + Lyu) , (6.57)

obtained by using the initial conditions and by integrating the constant term. Using
the series representation of u(x,y,t) in both sides of (6.57) we obtain

∞

∑
n=0

un = x2 + y2 + t sinxsin y− t2 +
1
2

L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.58)

To determine the components of u, we use the recursive relation

u0(x,y,t) = x2 + y2 + t sinxsiny− t2,

uk+1(x,y,t) =
1
2

L−1
t (Lxuk + Lyuk) , k � 0,

(6.59)

that gives

u0(x,y,t) = x2 + y2 + t sin xsiny− t2,

u1(x,y,t) =
1
2

L−1
t (Lxu0 + Lyu0) = t2− 1

3!
t3 sinxsiny,

u2(x,y,t) =
1
2

L−1
t (Lxu1 + Lyu1) =

1
5!

t5 sinxsiny.

(6.60)

It follows that the solution in a series form is

u(x,y,t) = x2 + y2 + sinxsin y

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

, (6.61)

and in a closed form is
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u(x,y,t) = x2 + y2 + sinxsin ysin t. (6.62)

Unlike Example 7 where the inhomogeneous term is a constant, the inhomoge-
neous in the following example is a function of y.

Example 8. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = (uxx + uyy)+ cosy, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = cosy,

u(x,0,t) = 1 + sinxsin t, u(x,π ,t) =−1 + sinxsin t,
IC u(x,y,0) = cosy, ut(x,y,0) = sinx.

(6.63)

Solution.

Proceeding as before we obtain

u(x,y,t) = cosy + t sinx +
1
2!

t2 cosy + L−1
t (Lxu + Lyu) . (6.64)

It then follows that

∞

∑
n=0

un = cosy + t sinx +
1
2!

t2 cosy + L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
. (6.65)

Identifying the zeroth component u0(x,y,t) by all terms that arise from initial con-
ditions and from applying L−1

t to the inhomogeneous term cosy, the recursive rela-
tionship is therefore defined by

u0(x,y,t) = cosy + t sinx +
1
2!

t2 cosy,

uk+1(x,y,t) = L−1
t (Lxuk + Lyuk) , k � 0,

(6.66)

hence we find

u0(x,y,t) = cosy + t sinx +
1
2!

t2 cosy,

u1(x,y,t) = L−1
t (Lxu0 + Lyu0) =− 1

2!
t2 cosy− 1

3!
t3 sinx− 1

4!
t4 cosy,

u2(x,y,t) = L−1
t (Lxu1 + Lyu1) =

1
4!

t4 cosy +
1
5!

t5 sinx +
1
6!

t6 cosy.

(6.67)

This gives the solution in a series form by

u(x,y,t) = cosy + sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

(6.68)

and in a closed form by
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u(x,y,t) = cosy + sinxsin t. (6.69)

Example 9. Use the Adomian decomposition method to solve the initial-boundary
value problem.

PDE utt = 2(uxx + uyy)+ 6t + 2x + 4y, 0 < x,y < π , t > 0,
BC u(0,y,t) = t3 + 2t2y, u(π ,y,t) = t3 +πt2 + 2t2y,

u(x,0,t) = t3 + t2x, u(x,π,t) = t3 + t2x + 2πt2,
IC u(x,y,0) = 0, ut(x,y,0) = 2sinxsiny.

(6.70)

Solution.

We follow the discussion introduced before to obtain

u(x,y,t) = 2t sinxsin y + t3 + t2x + 2t2y + 2L−1
t (Lxu + Lyu) , (6.71)

where we find

∞

∑
n=0

un = 2t sinxsiny + t3 + t2x + 2t2y + 2L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

))
.

(6.72)
We next set the recursive relation

u0(x,y,t) = 2t sinxsin y + t3 + t2x + 2t2y,
uk+1(x,y,t) = 2L−1

t (Lxuk + Lyuk)) , k � 0,
(6.73)

that gives the first few components

u0(x,y,t) = 2t sinxsin y + t3 + t2x + 2t2y,

u1(x,y,t) = − (2t)3

3!
sinxsiny,

u2(x,y,t) =
(2t)5

5!
sinxsin y,

u3(x,y,t) = − (2t)7

7!
sinxsiny,

(6.74)

In view of (6.74), the solution in a series form is

u(x,y,t) = t3 + t2x + 2t2y + sinxsiny

(
2t− (2t)3

3!
+

(2t)5

5!
− (2t)7

7!
+ · · ·

)
, (6.75)

and in a closed form is

u(x,y,t) = t3 + t2x + 2t2y + sinxsinysin(2t). (6.76)
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Exercises 6.2.1

In Exercises 1–8, use the decomposition method to solve the homogeneous initial-
boundary value problems:

1. utt = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0, ut(x,y,0) = 2sinxsiny

2. utt = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 4sin(2x)sin(2y)

3. utt = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sin(2x)sin(2y),ut(x,y,0) = 0

4. utt =
1
2
(uxx + uyy), 0 < x,y < π , t > 0

u(0,y,t) = u(π ,y,t) = 2
u(x,0,t) = u(x,π ,t) = 2
u(x,y,0) = 2,ut(x,y,0) = sinxsiny

5. utt = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 1 + y
u(x,0,t) = 1,u(x,π ,t) = 1 + π
u(x,y,0) = 1 + y,ut(x,y,0) = 2sinxsin y

6. utt = uxx + uyy, 0 < x,y < π , t > 0
u(0,y,t) = 1 + sinysin t,u(π,y,t) = 1 + π + sinysin t
u(x,0,t) = u(x,π ,t) = 1 + x
u(x,y,0) = 1 + x,ut(x,y,0) = siny

7. utt = uxx + uyy−2u, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 2sinxsiny

8. utt = uxx + uyy−7u, 0 < x,y < π , t > 0
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin y,ut(x,y,0) = 0

In Exercises 9–14, use the decomposition method to solve the inhomogeneous
initial-boundary value problems:
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9. utt =
1
2
(uxx + uyy)+

1
2

sinx, 0 < x,y < π , t > 0

u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = sinx
u(x,y,0) = sinx,ut(x,y,0) = sinxsin y

10. utt = uxx + uyy + cosx, 0 < x,y < π , t > 0
u(0,y,t) = 1 + sinysin t,u(π ,y,t) =−1 + sinysin t
u(x,0,t) = u(x,π ,t) = cosx
u(x,y,0) = cosx,ut(x,y,0) = siny

11. utt = uxx + uyy−4, 0 < x,y < π , t > 0
u(0,y,t) = y2,u(π ,y,t) = π2 + y2

u(x,0,t) = x2 + sinxsin t,u(x,π,t) = π2 + x2 + sinxsin t
u(x,y,0) = x2 + y2,ut(x,y,0) = sinx

12. utt = uxx + uyy−8, 0 < x,y < π , t > 0
u(0,y,t) = 2y2,u(π,y,t) = 2π2 + 2y2

u(x,0,t) = 2x2,u(x,π,t) = 2π2 + 2x2

u(x,y,0) = 2x2 + 2y2 + 2sinxsiny,ut(x,y,0) = 0

13. utt =
1
2
(uxx + uyy)+ 2, 0 < x,y < π , t > 0

u(0,y,t) = t2 + ty,u(π,y,t) = t2 + πt + ty
u(x,0,t) = t2 + tx,u(x,π,t) = t2 +πt + tx
u(x,y,0) = 0,ut(x,y,0) = x + y + sinxsin y

14. utt = 2(uxx + uyy)+ 6t + 2x, 0 < x,y < π, t > 0
u(0,y,t) = t3 + ty,u(π,y,t) = t3 + πt2 + ty
u(x,0,t) = t3 + t2x,u(x,π ,t) = t3 + t2x + πt
u(x,y,0) = sinxsiny,ut(x,y,0) = y

In Exercises 15–20, use the decomposition method to solve the initial-boundary
value problems:

15. utt = uxx + uyy−2, 0 < x,y < π , t > 0
u(0,y,t) = u(π,y,t) = y2

u(x,0,t) = sinxcos t,u(x,π,t) = π2 + sinxcost
u(x,y,0) = y2 + sinx,ut(x,y,0) = 0

16. utt = uxx + uyy−2, 0 < x,y < π , t > 0
u(0,y,t) = sin ysin t,u(π ,y,t) = π2 + sinysin t
u(x,0,t) = u(x,π ,t) = x2

u(x,y,0) = x2,ut(x,y,0) = siny

17. utt = uxx + uyy + sinx, 0 < x,y < π , t > 0
u(0,y,t) = u(π,y,t) = sin ysin t
u(x,0,t) = u(x,π ,t) = sinx
u(x,y,0) = sinx,ut(x,y,0) = siny
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18. utt = 2(uxx + uyy), 0 < x,y < π , t > 0
u(0,y,t) =−u(π,y,t) = cosysin(2t)
u(x,0,t) =−u(x,π ,t) = cosxsin(2t)
u(x,y,0) = 0,ut(x,y,0) = 2cosxcosy

19. utt =
1
2
(uxx + uyy)+ 12t2 + 2y, 0 < x,y < π , t > 0

u(0,y,t) = u(π,y,t) = t4 + t2y
u(x,0,t) = t4,u(x,π ,t) = t4 +πt2

u(x,y,0) = 0,ut(x,y,0) = sinxsin y

20. utt =
1
2
(uxx + uyy), 0 < x,y < π , t > 0

u(0,y,t) = t2 + y2,u(π ,y,t) = π2 + t2 + y2

u(x,0,t) = t2 + x2,u(x,π ,t) = π2 + t2 + x2

u(x,y,0) = x2 + y2,ut(x,y,0) = sinxsiny

In Exercises 21–24, solve the partial differential equations where coefficients of uxx

and uyy are functions and constants:

21. utt =
x2

4
uxx +

y2

4
uyy, 0 < x,y < 1, t > 0

u(0,y,t) = 0,u(1,y,t) = y2 sinh t
u(x,0,t) = 0,u(x,1,t) = x2 sinh t
u(x,y,0) = 0,ut(x,y,0) = x2y2

22. utt =
x2

4
uxx +

y2

4
uyy,0 < x,y < 1, t > 0

u(0,y,t) = 0,u(1,y,t) = y2et

u(x,0,t) = 0,u(x,1,t) = x2et

u(x,y,0) = x2y2,ut(x,y,0) = x2y2

23. utt =
x2

2
uxx +

y2

2
uyy,0 < x,y < 1, t > 0

u(0,y,t) = y2 cosh t,u(1,y,t) = sinht + y2 cosht
u(x,0,t) = x2 sinh t,u(x,1,t) = x2 sinh t + cosht
u(x,y,0) = y2,ut(x,y,0) = x2

24. utt =
x2

2
uxx +

y2

2
uyy,0 < x,y < 1, t > 0

u(0,y,t) = y2et ,u(1,y,t) = e−t + y2et

u(x,0,t) = x2e−t ,u(x,1,t) = et + x2e−t

u(x,y,0) = x2 + y2,ut(x,y,0) = y2− x2
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6.2.2 Three Dimensional Wave Equation

The propagation of waves in a three dimensional volume of length a, width b, and
height d is governed by the following initial boundary value problem

PDE utt = c2(uxx + uyy + uzz), t > 0,
BC u(0,y,z,t) = u(a,y,z,t) = 0,

u(x,0,z,t) = u(x,b,z,t) = 0,
u(x,y,0,t) = u(x,y,d,t) = 0,

IC u(x,y,z,0) = f (x,y,z), ut(x,y,z,0) = g(x,y,z).

(6.77)

where 0 < x < a,0 < y < b,0 < z < d, and u = u(x,y,z,t) is the displacement of any
point located at the position (x,y,z) of a rectangular volume at any time t, and c is
the velocity of a propagation wave.

As discussed before, the solution in the t space minimizes the volume of calcu-
lations. Accordingly, the operator L−1

t will be applied here. We first rewrite (6.77)
in an operator form by

Ltu = c2(Lxu + Lyu + Lzu), (6.78)

where the differential operators Lx,Ly, and Lz are defined by

Lt =
∂ 2

∂ t2 , Lx =
∂ 2

∂x2 , Ly =
∂ 2

∂y2 , Lz =
∂ 2

∂ z2 , (6.79)

so that the integral operator L−1
t represents a two-fold integration from 0 to t given

by

L−1
t (·) =

∫ t

0

∫ t

0
(·)dt. (6.80)

This means that

L−1
t Ltu(x,y,z,t) = u(x,y,z,t)−u(x,y,z,0)− tut(x,y,z,0). (6.81)

Applying L−1
t to both sides of (6.78), noting (6.81) and using the initial conditions

we find

u(x,y,z,t) = f (x,y,z)+ tg(x,y,z)+ c2 L−1
t (Lxu + Lyu + Lzu) . (6.82)

The decomposition method defines the solution u(x,y,z,t) as a series given by

u(x,y,z,t) =
∞

∑
n=0

un(x,y,z,t). (6.83)

Substituting (6.83) into both sides of (6.82) yields

∞

∑
n=0

un = f (x,y,z)+ tg(x,y,z)
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+c2 L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (6.84)

The components un(x,y,z,t), n � 0 can be completely determined by using the re-
cursive relation

u0(x,y,z,t) = f (x,y,z)+ tg(x,y,z),
uk+1(x,y,z,t) = c2 L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(6.85)

Having determined the components un,n � 0 by applying the scheme (6.85), the
solution in a series form follows immediately.

Homogeneous Wave Equations

The decomposition method will be used to discuss the following homogeneous wave
equations in three dimensional space with homogeneous or inhomogeneous bound-
ary conditions.

Example 10. Use the Adomian decomposition method to solve the initial boundary
value problem

PDE utt = 3(uxx + uyy + uzz), 0 < x,y,z < π, t > 0
BC u(0,y,z,t) = u(π ,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π,t) = 0,

IC u(x,y,z,0) = 0, ut(x,y,z,0) = 3sinxsin ysinz.

(6.86)

Solution.

The PDE of (6.86) can be rewritten by

Lt u = 3(Lxu + Lyu + Lzu) . (6.87)

Applying the inverse operator L−1
t to (6.87), using (6.81) and substituting the initial

conditions we obtain

u(x,y,z,t) = 3t sinxsinysinz+ 3L−1
t (Lxu + Lyu + Lzu) . (6.88)

Using the decomposition series

u(x,y,z,t) =
∞

∑
n=0

un(x,y,z,t), (6.89)

into both sides of (6.88) yields
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∞

∑
n=0

un = 3t sinxsinysin z

+ 3L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (6.90)

Identifying the zeroth component as discussed before we then set the relation

u0(x,y,z,t) = 3t sinxsinysinz,
uk+1(x,y,z,t) = 3L−1

t (Lxuk + Lyuk + Lzuk) , k � 0.
(6.91)

The first few components of the decomposition of u are given by

u0(x,y,z,t) = 3t sinxsinysin z,

u1(x,y,z,t) = 3L−1
t (Lxu0 + Lyu0 + Lzu0) =− (3t)3

3!
sinxsin ysinz,

u2(x,y,z,t) = 3L−1
t (Lxu1 + Lyu1 + Lzu1) =

(3t)5

5!
sin xsinysinz.

(6.92)

For numerical purposes, further components can be computed to improve the accu-
racy level of the approximation.

Combining (6.89) and (6.92), the solution in a series form is given by

u(x,y,z,t) = sinxsin ysinz

(
3t− (3t)3

3!
+

(3t)5

5!
−·· ·

)
, (6.93)

and in a closed form by

u(x,y,z,t) = sinxsinysinzsin(3t). (6.94)

Example 11. Use the Adomian decomposition method to solve the initial boundary
value problem

PDE utt = uxx + uyy + uzz−u, 0 < x,y,z < π, t > 0,
BC u(0,y,z,t) = u(π,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π ,t) = 0,

IC u(x,y,z,0) = 0, ut(x,y,z,0) = 2sinxsinysin z.

(6.95)

Solution.

We note that an additional term −u is contained in the standard wave equation.
This term usually arises when each element of the rectangular volume is subjected
to an additional force.

Applying L−1
t to the operator form of the PDE of (6.95), using (6.81) and substi-

tuting the initial conditions we obtain
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u = 2t sinxsin ysinz+ L−1
t (Lxu + Lyu + Lzu−u). (6.96)

Following the analysis made above we find

∞

∑
n=0

un = 2t sinxsinysinz

+L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

)
−

(
∞

∑
n=0

un

))
. (6.97)

Therefore we set the relation

u0(x,y,z,t) = 2t sinxsinysinz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk−uk) , k � 0,
(6.98)

that gives

u0(x,y,z,t) = 2t sinxsinysinz,

u1(x,y,z,t) = L−1
t (Lxu0 + Lyu0 + Lzu0−u0) =− (2t)3

3!
sinxsin ysinz,

u2(x,y,z,t) = L−1
t (Lxu1 + Lyu1 + Lzu1−u1) =

(2t)5

5!
sinxsinysinz.

(6.99)

The series solution is given by

u(x,y,z,t) = sinxsin ysinz

(
2t− (2t)3

3!
+

(2t)5

5!
−·· ·

)
, (6.100)

and the exact solution is

u(x,y,z,t) = sinxsinysinzsin(2t). (6.101)

Example 12. Use the Adomian decomposition method to solve the initial boundary
value problem

PDE utt = uxx + uyy + uzz−u, 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = −u(π ,y,z,t) = sinysin(z+ 2t),

u(x,0,z,t) = −u(x,π ,z,t) = sinxsin(z+ 2t),
u(x,y,0,t) = −u(x,y,π,t) = sin(x + y)sin(2t),

IC u(x,y,z,0) = sin(x + y)sinz, ut(x,y,z,0) = 2sin(x + y)cosz.

(6.102)

Solution.

It is interesting to note that the boundary conditions are inhomogeneous and
given by functions and not constants.

Applying L−1
t to (6.102), using (6.81) gives
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u(x,y,z,t) = sin(x + y)sinz+ 2t sin(x + y)cosz
+ L−1

t (Lxu + Lyu + Lzu−u),
(6.103)

therefore we find
∞

∑
n=0

un = sin(x + y)sinz+ 2t sin(x + y)cosz

+L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

)
−

(
∞

∑
n=0

un

))
. (6.104)

This means that

u0(x,y,z,t) = sin(x + y)sinz+ 2t sin(x + y)cosz,
uk+1(x,y,z,t) = L−1

t (Lxuk + Lyuk + Lzuk−uk) , k � 0,
(6.105)

and therefore we obtain

u0(x,y,z,t) = sin(x + y)sinz+ 2t sin(x + y)cosz,
u1(x,y,z,t) = L−1

t (Lxu0 + Lyu0 + Lzu0−u0)

= − (2t)2

2!
sin(x + y)sinz− (2t)3

3!
sin(x + y)cosz,

u2(x,y,z,t) = L−1
t (Lxu1 + Lyu1 + Lzu1−u1) ,

=
(2t)4

4!
sin(x + y)sinz+

(2t)5

5!
sin(x + y)cosz.

(6.106)

In view of (6.106), the solution in a series form is given by

u(x,y,z,t) = sin(x + y)sinz

(
1− (2t)2

2!
+

(2t)4

4!
−·· ·

)
+ sin(x + y)cosz

(
2t− (2t)3

3!
+

(2t)5

5!
−·· ·

)
,

(6.107)

and consequently the exact solution is

u(x,y,z,t) = sin(x + y)(sinzcos(2t)+ coszsin(2t)) , (6.108)

obtained upon using the Taylor series of cos(2t) and sin(2t) respectively. Using the
trigonometric identities, the exact solution in (6.108) can be simplified to

u(x,y,z,t) = sin(x + y)sin(z+ 2t). (6.109)

Example 13. Use the Adomian decomposition method to solve the initial boundary
value problem
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PDE utt =
x2

18
uxx +

y2

18
uyy +

z2

18
uzz−u, 0 < x,y,z < 1, t > 0,

BC u(0,y,z,t) = 0, u(1,y,z,t) = y4z4 sinht,
u(x,0,z,t) = 0, u(x,1,z,t) = x4z4 sinht,
u(x,y,0,t) = 0, u(x,y,1,t) = x4y4 sinh t,

IC u(x,y,z,0) = 0, ut(x,y,z,0) = x4y4z4.
(6.110)

Solution.

The coefficients of the derivatives of u are functions and not constants. Following
the discussions presented above we find

u(x,y,z,t) = tx4y4z4 + L−1
t

(
x2

18
Lxu +

y2

18
Lyu +

z2

18
Lzu−u

)
, (6.111)

that leads to gives

∞

∑
n=0

un = x4y4z4

+L−1
t

(
x2

18
Lx

(
∞

∑
n=0

un

)
+

y2

18
Ly

(
∞

∑
n=0

un

)
+

z2

18
Lz

(
∞

∑
n=0

un

)
−

(
∞

∑
n=0

un

))
.

(6.112)
The recursive relation

u0(x,y,z,t) = tx4y4z4,

uk+1(x,y,z,t) = L−1
t

(
x2

18
Lxuk +

y2

18
Lyuk +

z2

18
Lzuk−uk

)
, k � 0.

(6.113)

gives the first few components by

u0(x,y,z,t) = tx4y4z4,

u1(x,y,z,t) = L−1
t

(
x2

18
Lxu0 +

y2

18
Lyu0 +

z2

18
Lzu0−u0

)
=

t3

3!
x4y4z4,

u2(x,y,z,t) = L−1
t

(
x2

18
Lxu1 +

y2

18
Lyu1 +

z2

18
Lzu1−u1

)
=

t5

5!
x4y4z4.

(6.114)

In view of (6.114), the solution in a series form is given by

u(x,y,z,t) = x4y4z4
(

t +
t3

3!
+

t5

5!
+ · · ·

)
, (6.115)

and in a closed form by
u(x,y,z,t) = x4y4z4 sinht. (6.116)



216 6 Higher Dimensional Wave Equation

Inhomogeneous Wave Equations

We now consider the inhomogeneous wave equation in a three dimensional space
of the form

utt = c2(uxx + uyy + uzz)+ h(x,y,z), (6.117)

where h(x,y,z) is an inhomogeneous term. The decomposition method can be ap-
plied without any need to transform this equation to a homogeneous equation. The
following example will be used to explain the implementation of the method.

Example 14. Use the Adomian decomposition method to solve the initial boundary
value problem

PDE utt = uxx + uyy + uzz + sinx + siny, 0 < x,y,z < π,
BC u(0,y,z,t) = u(π ,y,z,t) = siny + sinzsin t,

u(x,0,z,t) = u(x,π,z,t) = sinx + sinzsin t,
u(x,y,0,t) = u(x,y,π,t) = sinx + siny,

IC u(x,y,z,0) = sinx + siny, ut(x,y,z,0) = sinz.

(6.118)

Solution.

Operating with L−1
t on (6.118) gives

u = sinx + siny + t sinz+
t2

2!
sinx +

t2

2!
siny + L−1

t (Lxu + Lyu + Lzu) . (6.119)

Following the analysis made above, we substitute the decomposition series

u(x,y,z,t) =
∞

∑
n=0

un(x,y,z,t), (6.120)

into both sides of (6.119) to obtain

∞

∑
n=0

un = sinx + siny + t sinz+
t2

2!
sinx +

t2

2!
siny

+L−1
t

(
Lx

(
∞

∑
n=0

un

)
+ Ly

(
∞

∑
n=0

un

)
+ Lz

(
∞

∑
n=0

un

))
. (6.121)

This leads to

u0(x,y,z,t) = sinx + siny + t sinz+
t2

2!
sinx +

t2

2!
siny,

u1(x,y,z,t) = L−1
t (Lxu0 + Lyu0 + Lzu0)

= − t2

2!
sin x− t2

2!
siny− t3

3!
sinz− t4

4!
sinx− t4

4!
siny,

u2(x,y,z,t) = L−1
t (Lxu1 + Lyu1 + Lzu1) , (6.122)
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=
t4

4!
sinx +

t4

4!
siny +

t5

5!
sinz+

t6

6!
sinx +

t6

6!
siny,

u3(x,y,z,t) = L−1
t (Lxu2 + Lyu2 + Lzu2) ,

= − t6

6!
sin x− t6

6!
siny− t7

7!
sinz− t8

8!
sinx− t8

8!
siny.

The series solution and the exact solution are given by

u(x,y,z,t) = sinx + siny + sinz

(
t− t3

3!
+

t5

5!
−·· ·

)
, (6.123)

and
u(x,y,z,t) = sinx + siny + sinzsin t, (6.124)

respectively.

Exercises 6.2.2

Use the decomposition method to solve the homogeneous problems in Exercises
1–8, and the inhomogeneous problems in Exercises 9–15:

1. utt = 3(uxx + uyy + uzz), 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 6sin(2x)sin(2y)sin(2z)

2. utt =
1
3
(uxx + uyy + uzz), 0 < x,y,z < π , t > 0

u(0,y,z,t) = u(π ,y,z,t) = 1
u(x,0,z,t) = u(x,π ,z,t) = 1
u(x,y,0,t) = u(x,y,π,t) = 1
u(x,y,z,0) = 1,ut(x,y,z,0) = sinxsinysinz

3. utt = 3(uxx + uyy + uzz), 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 3
u(x,0,z,t) = u(x,π ,z,t) = 3
u(x,y,0,t) = u(x,y,π,t) = 3
u(x,y,z,0) = 3 + sinxsin ysinz,ut(x,y,z,0) = 0

4. utt = uxx + uyy + uzz−6u, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 3sinxsinysinz
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5. utt =
1
2
(uxx + uyy + uzz)−u, 0 < x,y,z < π , t > 0

u(0,y,z,t) =−u(π ,y,z,t) = sin(2y)sin(z+ 2t)
u(x,0,z,t) = u(x,π ,z,t) = sinxsin(z+ 2t)
u(x,y,0,t) =−u(x,y,π,t) = sin(x + 2y)sin(2t)
u(x,y,z,0) = sin(x + 2y)sinz,ut(x,y,z,0) = 2sin(x + 2y)cosz

6. utt = uxx + uyy + uzz−2u, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,t) = 0
u(x,y,z,0) = sinxsin(2y)sin(3z),ut(x,y,z,0) = 0

7. utt =
1
3
(uxx + uyy + uzz), 0 < x,y,z < π , t > 0

u(0,y,z,t) =−u(π ,y,z,t) = cosysin(z+ t)
u(x,0,z,t) =−u(x,π ,z,t) = cosxsin(z+ t)
u(x,y,0,t) =−u(x,y,π,t) = cos(x + y)sint
u(x,y,z,0) = cos(x + y)sinz,ut(x,y,z,0) = cos(x + y)cosz

8. utt =
1
3
(uxx + uyy + uzz), 0 < x,y,z < π , t > 0

u(0,y,z,t) = u(π ,y,z,t) = 1 + z
u(x,0,z,t) = u(x,π ,z,t) = 1 + z
u(x,y,0,t) = 1,u(x,y,π,t) = 1 + π
u(x,y,z,0) = 1 + z,ut(x,y,z,0) = sinxsinysinz

9. utt = uxx + uyy + uzz + sinx + siny, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π ,y,z,t) = siny + sinzsin t
u(x,0,z,t) = u(x,π ,z,t) = sinx + sinzsin t
u(x,y,0,t) = u(x,y,π,t) = sinx + siny
u(x,y,z,0) = sinx + siny,ut(x,y,z,0) = sinz

10. utt = uxx + uyy + uzz + cosx + cosy, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = ux(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) =−uz(x,y,π ,t) = sin t
u(x,y,z,0) = cosx + cosy,ut(x,y,z,0) = sin z

11. utt = uxx + uyy + uzz−6− sint, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = 0,ux(π,y,z,t) = 2π
uy(x,0,z,t) = 0,uy(x,π,z,t) = 2π
uz(x,y,0,t) = 0,uz(x,y,π ,t) = 2π
u(x,y,z,0) = x2 + y2 + z2,ut(x,y,z,0) = 1

12. utt = uxx + uyy + uzz + 2− sint, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = ux(π ,y,z,t) = t
uy(x,0,z,t) = uy(x,π,z,t) = t
uz(x,y,0,t) = uz(x,y,π ,t) = t
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u(x,y,z,0) = 0,ut(x,y,z,0) = 1 + x + y + z

13. utt = uxx + uyy + uzz + 2(x + y + z), 0 < x,y,z < π , t > 0
ux(0,y,z,t) = ux(π ,y,z,t) = t2

uy(x,0,z,t) = t2 + sint, uy(x,π ,z,t) = t2− sint
uz(x,y,0,t) = uz(x,y,π ,t) = t2

u(x,y,z,0) = 0,ut(x,y,z,0) = siny

14. utt = uxx + uyy + uzz−6, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = 0,ux(π,y,z,t) = 2π
uy(x,0,z,t) = 0,uy(x,π,z,t) = 2π
uz(x,y,0,t) = 0,uz(x,y,π ,t) = 2π
u(x,y,z,0) = x2 + y2 + z2 + cosy,ut(x,y,z,0) = 0

15. utt =
1
2
(uxx + uyy + uzz)−1, 0 < x,y,z < π , t > 0

ux(0,y,z,t) = 0,ux(π,y,z,t) = 2π
uy(x,0,z,t) =−uy(x,π,z,t) = sin zcost
uz(x,y,0,t) =−uz(x,y,π ,t) = sinycost
u(x,y,z,0) = x2 + sinxsinz,ut(x,y,z,0) = 0

In Exercises 16–20, use the decomposition method to solve the initial-boundary
value problems:

16. utt = uxx + uyy + uzz−u, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = ux(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,t) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 2cosxcosycosz

17. utt = uxx + uyy + uzz−u + 1, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π,y,z,t) = 1
u(x,0,z,t) = u(x,π ,z,t) = 1
u(x,y,0,t) = u(x,y,π ,t) = 1
u(x,y,z,0) = 1 + sinxsinysinz,ut(x,y,z,0) = 0

18. utt = uxx + uyy + uzz + 2sinxsiny, 0 < x,y,z < π , t > 0
u(0,y,z,t) = u(π,y,z,t) = 1 + sinzsin t
u(x,0,z,t) = u(x,π ,z,t) = 1 + sinzsin t
u(x,y,0,t) = u(x,y,π ,t) = 1 + sinxsin y
u(x,y,z,0) = 1 + sinxsiny,ut(x,y,z,0) = sinz

19. utt =
1
3
(uxx + uyy + uzz), 0 < x,y,z < π, t > 0

ux(0,y,z,t) = 0,ux(π,y,z,t) = 2π
uy(x,0,z,t) = 0,uy(x,π,z,t) = 2π
uz(x,y,0,t) = 0,uz(x,y,π ,t) = 2π
u(x,y,z,0) = x2 + y2 + z2 + cosxcosycosz,ut(x,y,z,0) = 0
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20. utt = uxx + uyy + uzz−12x2−12y2, 0 < x,y,z < π , t > 0
ux(0,y,z,t) = 0,ux(π,y,z,t) = 4π3

uy(x,0,z,t) = 0,uy(x,π,z,t) = 4π3

uz(x,y,0,t) = uz(x,y,π ,t) = 0
u(x,y,z,0) = x4 + y4 + cosz,ut(x,y,z,0) = 0

In Exercises 21–24, solve the inhomogeneous initial-boundary value problems
where the coefficients of the derivatives are functions and not constants:

21. utt =
x2

6
uxx +

y2

6
uyy +

z2

6
uzz, 0 < x,y,z < 1, t > 0

u(0,y,z,t) = 0,u(1,y,z,t) = y2z2 cosht
u(x,0,z,t) = 0,u(x,1,z,t) = x2z2 cosh t
u(x,y,0,t) = 0,u(x,y,1,t) = x2y2 cosht
u(x,y,z,0) = x2y2z2,ut(x,y,z,0) = 0

22. utt =
x2

6
uxx +

y2

6
uyy +

z2

6
uzz, 0 < x,y,z < 1, t > 0

ux(0,y,z,t) = 0,ux(1,y,z,t) = 3sinht
uy(x,0,z,t) = 0,uy(x,1,z,t) = 3cosht
uz(x,y,0,t) = 0,uz(x,y,1,t) = 3cosht
u(x,y,z,0) = (y3 + z3)cosh t,ut(x,y,z,0) = x3

23. utt =
x2

2
uxx +

y2

2
uyy +

z2

2
uzz, 0 < x,y,z < 1, t > 0

ux(0,y,z,t) = 0,ux(1,y,z,t) = 2et

uy(x,0,z,t) = 0,uy(x,1,z,t) = 2e−t

uz(x,y,0,t) = 0,uz(x,y,1,t) = 2et

u(x,y,z,0) = x2 + y2 + z2,ut(x,y,z,0) = x2− y2 + z2

24. utt =
x2

6
uxx +

y2

6
uyy +

z2

6
uzz, 0 < x,y,z < 1, t > 0

ux(0,y,z,t) = 0,ux(1,y,z,t) = 3sinht
uy(x,0,z,t) = 0,uy(x,1,z,t) = 3sinht
uz(x,y,0,t) = 0,uz(x,y,1,t) = 3sinht
u(x,y,z,0) = 0,ut(x,y,z,0) = x3 + y3 + z3

6.3 Method of Separation of Variables

In this section, the homogeneous partial differential equations that describe the wave
propagation in a two dimensional space and in a three dimensional space will be
discussed by using the classical method of separation of variables. The most signif-
icant feature of this method is that it reduces the partial differential equation into a
system of ordinary differential equations, where each ODE depends on one variable
only, and can be solved independently [4]. The boundary conditions and the initial
conditions are then used to determine the constants of integration.
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The complete details of the method can be found in the preceding chapters, hence
emphasis will be focused on applying the method.

6.3.1 Two Dimensional Wave Equation

The propagation of waves in a two dimensional vibrating membrane of length a and
width b is governed by the following initial boundary value problem

PDE utt = c2(uxx + uyy), 0 < x < a, 0 < y < b,t > 0,
BC u(0,y,t) = u(a,y,t) = 0,

u(x,0,t) = u(x,b,t) = 0,
IC u(x,y,0) = f (x,y), ut(x,y,0) = g(x,y).

(6.125)

where u = u(x,y,t) defines the displacement function of any point at the position
(x,y) of a vibrating membrane at any time t, and c is related to the elasticity of the
material of the membrane.

The method of separation of variables is based on an assumption that the solution
u(x,y,t) can be expressed as the product of distinct functions F(x),G(y), and T (t),
such that each function depends on one variable only. Based on this assumption, we
first set

u(x,y,t) = F(x)G(y)T (t). (6.126)

Differentiating both sides of (6.126) twice with respect to t, x and y respectively, we
obtain

utt = F(x)G(y)T ′′(t),
uxx = F ′′(x)G(y)T (t),
uyy = F(x)G′′(y)T (t).

(6.127)

Substituting (6.127) into the PDE of (6.125) gives

F(x)G(y)T ′′(t) = c2 (F ′′(x)G(y)T (t)+ F(x)G′′(y)T (t)
)
. (6.128)

Dividing both sides of (6.128) by c2F(x)G(y)T (t) yields

T ′′(t)
c2T (t)

=
F ′′(x)
F(x)

+
G′′(y)
G(y)

. (6.129)

It is easily observed from (6.129) that the left hand side depends only on t and the
right hand side depends only on x and y. This means that the equality holds only
if both sides are equal to the same constant. Assuming that the right hand side is a
constant, it is valid to assume that it is the sum of two constants. This admits the use
of

F ′′(x)
F(x)

=−ν2, (6.130)

and
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G′′(y)
G(y)

=−μ2. (6.131)

Consequently, we find
F ′′(x)+ ν2F(x) = 0, (6.132)

and
G′′(y)+ μ2G(y) = 0. (6.133)

The left hand side of (6.129) is thus equal to the constant−(ν2 + μ2), hence we set

T ′′(t)
c2T (t)

=−(ν2 + μ2), (6.134)

or equivalently
T ′′(t)+ c2(ν2 + μ2)T (t) = 0. (6.135)

The selection of −(ν2 + μ2) is the only selection that will provide nontrivial solu-
tions.

It is interesting to note that the partial differential equation of (6.125) has been
transformed to three second-order ordinary differential equations given by (6.132),
(6.133), and (6.135).

The second-order differential equations (6.132) and (6.133) give the solutions

F(x) = Acos(νx)+ Bsin(νx), (6.136)

and
G(y) = α cos(μy)+β sin(μy), (6.137)

where A,B,α , and β are constants.
To determine the constants A and B, we use the boundary conditions at x = 0 and

at x = a to find that
F(0) = 0, F(a) = 0. (6.138)

Substituting (6.138) into (6.136) gives

A = 0, (6.139)

and
νn =

nπ
a

, n = 1,2,3, · · · . (6.140)

It is important to note here that we exclude n = 0 and B = 0 because each will lead
to the trivial solution u(x,y,t) = 0. Using the results obtained for the constants A
and νn, we therefore find

Fn(x) = Bn sin(
nπ
a

x), n = 1,2,3, · · · . (6.141)

In a parallel manner, we use the second boundary condition at y = 0 and at y = b
into (6.137) to find that
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α = 0, (6.142)

and
μm =

mπ
b

, m = 1,2,3, · · · . (6.143)

We exclude m = 0 and β = 0, because each will lead to the trivial solution as indi-
cated before. Consequently, we obtain

Gm(y) = βm sin
mπ
b

, m = 1,2,3, · · · . (6.144)

The solution of (6.135) is therefore given by

Tnm(t) = C̃nm cos(cλnmt)+ D̃nm sin(cλnmt), (6.145)

where
λ 2

mn = (
nπ
a

)2 +(
mπ
b

)2, (6.146)

and C̃nm and D̃nm are constants.
Combining the results obtained for Fn(x), Gm(y), and Tnm(t) we obtain the infi-

nite sequence of product functions

unm = Fn(x)Gm(y)Tnm(t)

= sin(
nπ
a

x)sin(
mπ
b

y)
(
C̃nm cos(cλnmt)+ D̃nm sin(cλnmt)

)
,

(6.147)

that satisfies the PDE of (6.125) and the boundary conditions. Using the superposi-
tion principle gives the general solution
u(x,y,t) =

∞

∑
n=1

∞

∑
m=1

sin(
nπ
a

x) sin(
mπ
b

y)(Cnm cos(cλnmt)+ Dnm sin(cλnmt)), (6.148)

where the arbitrary constants Cnm and Dnm are as yet undetermined.
To determine the constants Cnm and Dnm, we use the given initial conditions to

find
∞

∑
n=1

∞

∑
m=1

Cnm sin(
nπ
a

x) sin(
mπ
b

y) = f (x,y), (6.149)

and
∞

∑
n=1

∞

∑
m=1

cλnmDnm sin(
nπ
a

x) sin(
mπ
b

y) = g(x,y). (6.150)

Consequently, the arbitrary constants Cnm and Dnm are completely determined by
using double Fourier coefficients where we find

Cnm =
4

ab

∫ b

0

∫ a

0
f (x,y)sin(

nπ
a

x) sin(
mπ
b

y)dx dy, (6.151)

and
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Dnm =
4

λnmabc

∫ b

0

∫ a

0
g(x,y)sin(

nπ
a

x) sin(
mπ
b

y)dx dy. (6.152)

Having determined the constants Cnm and Dnm, the particular solution u(x,y,t) that
satisfies the initial boundary value problem (6.125) is readily obtained.

It is interesting to point out that the constants Cnm and Dnm can also be determined
by expanding the double Fourier series of (6.148), applying the initial conditions,
and then by equating the coefficients of like terms on both sides. Clearly this works
if the initial conditions are defined explicitly in terms of trigonometric functions of
sines and cosines.

For illustration, several examples will be discussed to emphasize the use of the
method.

Example 1. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE utt = 2(uxx + uyy), 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π ,t) = 0,
IC u(x,y,0) = sinxsiny, ut(x,y,0) = 0.

(6.153)

Solution.

The method of separation of variables assumes that

u(x,y,t) = F(x)G(y)T (t). (6.154)

Proceeding as before, we obtain

F ′′(x)+ ν2F(x) = 0, (6.155)

G′′(y)+ μ2G(y) = 0, (6.156)

and
T ′′(t)+ 2λ 2T (t) = 0, (6.157)

where
λ 2 = ν2 + μ2, (6.158)

and ν , μ and λ are constants.
From (6.155) and (6.156), we find

F(x) = Acos(νx)+ Bsin(νx), (6.159)

and
G(y) = α cos(μy)+β sin(μy), (6.160)

respectively, where A,B,α and β are constants. Inserting the boundary conditions
at x = 0 and at x = π into (6.159) gives
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A = 0, (6.161)

and
νn = n, n = 1,2,3, · · · , (6.162)

so that
Fn(x) = Bn sin(nx), n = 1,2,3, · · · . (6.163)

Likewise, using the boundary conditions at y = 0 and at y = π into (6.160) gives

α = 0, (6.164)

and
μm = m, m = 1,2,3, · · · , (6.165)

so that
Gm(y) = βm sin(my), m = 1,2,3, · · · . (6.166)

The solution of (6.157) is therefore given by

Tnm(t) = C̃nm cos(
√

2λnmt)+ D̃nm sin(
√

2λnmt), (6.167)

where
λnm =

√
n2 + m2. (6.168)

Combining the results obtained above, we obtain

unm(x,y,t) = sin(nx)sin(my)(C̃nm cos(
√

2λnmt)+ D̃nm sin(
√

2λnmt)). (6.169)

Using the superposition principle, the general solution of the problem is given by
the double series

u =
∞

∑
n=1

∞

∑
m=1

sin(nx) sin(my)(Cnm cos(
√

2λnmt)+ Dnm sin(
√

2λnmt)). (6.170)

To determine the constants Cnm, we use u(x,y,0) = sinxsin y and expand the
double series (6.170) to find

C11 sinxsiny +C12 sinxsin2y + · · ·= sinxsin y. (6.171)

Equating the coefficients of like terms on both sides yields

C11 = 1, Ci j = 0, i �= 1, j �= 1. (6.172)

Likewise, inserting the second initial condition ut(x,y,0) = 0 into the derivative of
(6.170) gives

Dnm = 0, n � 1, m � 1. (6.173)

The particular solution is therefore given by
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u(x,y,t) = sin xsinycos(2t). (6.174)

Example 2. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE utt = 2(uxx + uyy), 0 < x,y < π, t > 0,
BC ux(0,y,t) = ux(π,y,t) = 0,

uy(x,0,t) = uy(x,π ,t) = 0,
IC u(x,y,0) = 1 + cosxcosy, ut(x,y,0) = 0.

(6.175)

Solution.

Note first that the boundary conditions are of the second kind where the deriva-
tives of u(x,y,t) are given instead of the initial displacements. As discussed before,
we set

u(x,y,t) = F(x)G(y)T (t). (6.176)

Substituting (6.176) into (6.175) and proceeding as before we obtain

F ′′(x)+ ν2F(x) = 0, (6.177)

G′′(y)+ μ2G(y) = 0, (6.178)

and
T ′′(t)+ 2(ν2 + μ2)T (t) = 0. (6.179)

Solving (6.177) we find

F(x) = Acos(νx)+ Bsin(νx). (6.180)

It is important to note that the boundary conditions

ux(0,y,t) = ux(π ,y,t) = 0, (6.181)

imply that
F ′(0) = 0, F ′(π) = 0. (6.182)

Substituting (6.182) into (6.180) gives

B = 0, ν = n, n = 0,1,2, · · · , (6.183)

so that ν = 0 is included because it does not provide the trivial solution. Conse-
quently, we find

Fn(x) = An cos(nx), n = 0,1,2, · · · . (6.184)

Solving (6.178) and using the proper boundary conditions we obtain

Gm(y) = αm cos(my), m = 0,1,2,3, · · · . (6.185)

The solution of the second order differential equation (6.179) is therefore given by
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Tnm(t) = C̃nm cos(
√

2λnmt)+ D̃nm sin(
√

2λnmt),n � 0,m � 0, (6.186)

where
λnm =

√
n2 + m2. (6.187)

The general solution is given by

u =
∞

∑
n=0

∞

∑
m=0

cos(nx) cos(my)(Cnm cos(
√

2λnmt)+ Dnm sin(
√

2λnmt)). (6.188)

To determine the constants Cnm, we first expand the series (6.188) and use the first
initial condition to find

C00 +C11 cosxcosy + · · ·= 1 + cosxcosy. (6.189)

Equating the coefficients of like terms on both sides gives

C00 = 1,
C11 = 1,

(6.190)

where other coefficients are zeros.
To determine the constants Dnm, we use the second boundary condition in the

derivative of (6.188) to find that

Dnm = 0, n � 0,m � 0. (6.191)

Accordingly, the particular solution is given by

u(x,y,t) = 1 + cosxcosycos(2t). (6.192)

Example 3. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE utt = uxx + uyy, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π ,t) = 0,
IC u(x,y,0) = 1, ut(x,y,0) = 0.

(6.193)

Solution.

We first set
u(x,y,t) = F(x)G(y)T (t), (6.194)

Proceeding as before we obtain

Fn(x) = Bn sin(nx), λn = n, n = 1,2, · · · , (6.195)

Gm(y) = βm sin(my), μm = m, m = 1,2, · · · , (6.196)

Tnm(t) = C̃nm cos(λnmt)+ D̃nm sin(λnmt), (6.197)
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where
λnm =

√
n2 + m2. (6.198)

Combining (6.195), (6.196), and (6.197) and using the superposition principle, the
general solution of the problem is given by

u =
∞

∑
n=1

∞

∑
m=1

sin(nx) sin(my)(Cnm cos(λnmt)+ Dnm sin(λnmt)). (6.199)

To determine the constants Cnm, we use the double series coefficients method to
obtain

Cnm =
4

π2

∫ π

0

∫ π

0
sin(nx) sin(my)dx dy, (6.200)

which gives

Cnm =

⎧⎨
⎩

0, for n or m is even,

16
π2nm

, for n and m are odd.
(6.201)

To determine Dnm, we use the second boundary condition to find

Dnm = 0, n � 1, m � 1. (6.202)

Accordingly, the particular solution in a series form is given by

u =
16
π2

∞

∑
n=0

∞

∑
m=0

1
(2n + 1)(2m+ 1)

sin(2n + 1)x sin(2m+ 1)ycos(λnmt), (6.203)

where

λnm =
√

(2n + 1)2 +(2m+ 1)2, n � 0, m � 0. (6.204)

Example 4. Use the method of separation of variables to solve the initial-boundary
value problem:

PDE utt = uxx + uyy, 0 < x,y < π , t > 0,
BC u(0,y,t) = u(π ,y,t) = 0,

u(x,0,t) = u(x,π ,t) = 0,
IC u(x,y,0) = 0, ut(x,y,0) = 1.

(6.205)

Solution.

We first set
u(x,y,t) = F(x)G(y)T (t), (6.206)

Following Example 3, we obtain

Fn(x) = Bn sin(nx), νn = n, n = 1,2, · · · , (6.207)

Gm(y) = βm sin(my), μm = m, m = 1,2, · · · , (6.208)
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and
Tnm(t) = C̃nm cos(λnmt)+ D̃nm sin(λnmt), (6.209)

where
λnm =

√
n2 + m2. (6.210)

Combining (6.207), (6.208), and (6.209) and using the superposition principle, the
general solution of the problem is given by

u =
∞

∑
n=1

∞

∑
m=1

sin(nx) sin(my)(Cnm cos(λnmt)+ Dnm sin(λnmt)) . (6.211)

To determine the constants Cnm, we use the double Fourier coefficients method to
obtain

Cnm = 0, n � 1, m � 1. (6.212)

Using the second boundary condition we find

λnmDnm =
4

π2

∫ π

0

∫ π

0
sin(nx) sin(my)dx dy, (6.213)

which gives

Dnm =

⎧⎨
⎩

0, when n or m is even,

16
λnmπ2nm

, when n and m are odd.
(6.214)

Accordingly, the particular solution of the initial-boundary value problem (6.205) is
given by the double series form

u(x,y,t) =
16
π2

∞

∑
n=0

∞

∑
m=0

1
λnm(2n + 1)(2m+ 1)

× sin(2n + 1)x sin(2m+ 1)ysin(λnmt),
(6.215)

where

λnm =
√

(2n + 1)2 +(2m+ 1)2. (6.216)

Exercises 6.3.1

Use the method of separation of variables in the following initial-boundary value
problems:

1. utt = 2(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sin(2x)sin(2y),ut(x,y,0) = 0



230 6 Higher Dimensional Wave Equation

2. utt = 5(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = sinxsin(2y),ut(x,y,0) = 0

3. utt = 2(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 2sinxsiny

4. utt = 5(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 5sinxsin(2y)

5. utt = 2(uxx + uyy), 0 < x,y < π
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 2,ut(x,y,0) = 2cosxcosy

6. utt = 8(uxx + uyy), 0 < x,y < π
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 1 + cosxcosy,ut(x,y,0) = 0

7. utt = 2(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 2sinxcosy

8. utt = 2(uxx + uyy), 0 < x,y < π
ux(0,y,t) = ux(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = cosxsin y,ut(x,y,0) = 0

9. utt = 2(uxx + uyy), 0 < x,y < π
ux(0,y,t) = ux(π ,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 2cosxsin y

10. utt = 5(uxx + uyy), 0 < x,y < π
ux(0,y,t) = ux(π ,y,t) = 0
uy(x,0,t) = uy(x,π,t) = 0
u(x,y,0) = 3,ut(x,y,0) = 5cosxcos(2y)

11. utt = 2(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 2,ut(x,y,0) = 0
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12. utt = 2(uxx + uyy), 0 < x,y < π
u(0,y,t) = u(π,y,t) = 0
u(x,0,t) = u(x,π ,t) = 0
u(x,y,0) = 0,ut(x,y,0) = 3

6.3.2 Three Dimensional Wave Equation

The propagation of waves in a three dimensional space of length a, width b and of
height d is governed by the initial boundary value problem

PDE utt = c2(uxx + uyy + uzz), 0 < x < a,0 < y < b,0 < z < d,
BC u(0,y,z,t) = u(a,y,z,t) = 0,

u(x,0,z,t) = u(x,b,z,t) = 0,
u(x,y,0,t) = u(x,y,d,t) = 0,

IC u(x,y,z,0) = f (x,y,z), ut(x,y,z,0) = g(x,y,z).

(6.217)

where the unknown function u = u(x,y,z,t) defines the displacement of any point
at the position (x,y,z) of a rectangular volume at any time t, c is the velocity of a
propagation wave.

The method of separation of variables assumes that u(x,y,z,t) consists of the
product of four distinct functions each depends on one variable only. This means
that we can set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (6.218)

Substituting (6.218) into (6.217), and dividing both sides of the resulting equation
by c2F(x)G(y)H(z)T (t) we obtain

T ′′(t)
c2T (t)

=
F ′′(x)
F(x)

+
G′′(y)
G(y)

+
H ′′(z)
H(z)

. (6.219)

The equality in (6.219) holds only if both sides are equal to the same constant. This
allows us to set

F ′′(x)+ ν2F(x) = 0, (6.220)

G′′(y)+ μ2G(y) = 0, (6.221)

H ′′(z)+ η2H(z) = 0, (6.222)

T ′′(t)+ c2λ 2T (t) = 0, (6.223)

where ν,μ ,η , and λ are constants, and

λ 2 = (ν2 + μ2 + η2). (6.224)

Solving the second order normal forms (6.220) – (6.222), we obtain the following
solutions
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F(x) = Acos(νx)+ Bsin(νx), (6.225)

G(y) = α cos(μy)+ β sin(μy), (6.226)

H(z) = γ cos(ηz)+δ sin(ηz), (6.227)

respectively, where A,B,α,β ,γ , and δ are constants. Using the proper boundary
conditions into (6.225) – (6.227) as applied before we find

A = 0, νn =
nπ
a

, n = 1,2,3, · · · , (6.228)

α = 0 μm =
mπ
b

, m = 1,2,3, · · · , (6.229)

γ = 0, ηr =
rπ
d

, r = 1,2,3, · · · , (6.230)

so that

Fn(x) = Bn sin(
nπ
a

x), n = 1,2,3, · · · , (6.231)

Gm(y) = βm sin(
mπ
b

y), m = 1,2,3, · · · , (6.232)

Hr(z) = δr sin(
rπ
d

z), r = 1,2,3, · · · . (6.233)

The solution of (6.223) is therefore given by

Tnmr(t) = C̃nmr cos(cλnmrt)+ D̃nmr sin(cλnmrt), (6.234)

where
λnmr = (

nπ
a

)2 +(
mπ
b

)2 +(
rπ
d

)2. (6.235)

Combining the results obtained above for Fn(x),Gm(y),Hr(z), and Tnmr(t) and using
the superposition principle we can formulate the general solution of (6.218) in the
form

u(x,y,z,t) =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

sin(
nπ
a

x) sin(
mπ
b

y) sin(
rπ
d

z)

× (Cnmr cos(cλnmrt)+ Dnmr sin(cλnmrt)) .

(6.236)

It remains now to determine the constants Cnmr and Dnmr. Using the initial condition
u(x,y,z,0) = f (x,y,z) into (6.236), the coefficients Cnmr are given by

Cnmr =

8
abd

∫ d

0

∫ b

0

∫ a

0
f (x,y,z)sin(

nπ
a

x) sin(
mπ
b

y) sin(
rπ
d

z)dxdydz. (6.237)

Using the initial condition ut(x,y,z,0) = g(x,y,z) into the derivative of (6.236),
the coefficients Dnmr can be determined in the following form
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Dnmr =

8
λnmrcabd

∫ d

0

∫ b

0

∫ a

0
g(x,y,z)sin(

nπ
a

x)sin(
mπ
b

y)sin(
rπ
d

z)dxdydz. (6.238)

Having determined the coefficients Cnmr and Dnmr, the particular solution of the
initial-boundary value problem follows immediately upon substituting (6.237) and
(6.238) into (6.236).

To explain the use of the method of separation of variables, several illustrative
examples will now be given.

Example 5. Solve the initial-boundary value problem

PDE utt = 3(uxx + uyy + uzz), 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π ,t) = 0,

IC u(x,y,z,0) = sinxsinysinz, ut(x,y,z,0) = 0.

(6.239)

Solution.

Proceeding as before, we set

u(x,y,z,t) = F(x)G(y)H(z)T (t). (6.240)

Following the discussions presented above we find

Fn(x) = Bn sin(nx), νn = n, n = 1,2,3, · · · , (6.241)

Gm(y) = βm sin(my), μm = m, m = 1,2,3, · · · , (6.242)

Hr(z) = δr sin(rz), ηr = r, r = 1,2,3, · · · , (6.243)

Tnmr(t) = C̃nmr cos(
√

3λnmrt)+ D̃nmr sin(
√

3λnmrt), (6.244)

where
λnmr =

√
n2 + m2 + r2. (6.245)

Recall that we exclude n = 0,m = 0, and r = 0.
Proceeding as before and using the superposition principle, we can formulate the

general solution in the form

u(x,y,z,t) =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

sin(nx)sin(my)sin(rz)

×(
Cnmr cos(

√
3λnmrt)+ Dnmr sin(

√
3λnmrt)

)
.

(6.246)

To determine the constants Cnmr, we use the first initial condition and expand (6.246)
to find

C111 sinx siny sinz+ · · ·= sinx siny sinz. (6.247)

Equation the coefficients of like terms in both sides we obtain
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C111 = 1, n = 1,m = 1,r = 1,
Ci jk = 0, i �= 1, j �= 1, k �= 1.

(6.248)

To determine the constants Dnmr, we use the second initial condition into the deriva-
tive of (6.246) to find

Dnmr = 0, n � 1,m � 1,r � 1. (6.249)

Substituting the results (6.248) and (6.249) into (6.246) gives the particular solution

u(x,y,z,t) = sinx siny sinzcos(3t). (6.250)

Example 6. Solve the initial-boundary value problem

PDE utt = 3(uxx + uyy + uzz), 0 < x,y,z < π , t > 0,
BC u(0,y,z,t) = u(π,y,z,t) = 0,

u(x,0,z,t) = u(x,π ,z,t) = 0,
u(x,y,0,t) = u(x,y,π ,t) = 0,

IC u(x,y,z,0) = 1, ut(x,y,z,0) = 0.

(6.251)

Solution.

Proceeding as before, the general solution is expressed in the form

u(x,y,z,t) =
∞

∑
r=1

∞

∑
m=1

∞

∑
n=1

sin(nx)sin(my)sin(rz)

× (Cnmr cos(λnmrt)+ Dnmr sin(λnmrt)) .

(6.252)

We next use the initial condition u(x,y,z,0) = 1 into (6.252) to find

Cnmr =
8

π3

∫ π

0

∫ π

0

∫ π

0
sin(nx) sin(my) sin(rz)dxdydz, (6.253)

which gives

Cnmr =

{
0, when n,m or r is even,

64
π3nmr

, when n,m and r are odd.
(6.254)

It is clear that the coefficients Dnmr are given by

Dnmr = 0, n � 1,m � 1,r � 1. (6.255)

Consequently, the particular solution is given by

u(x,y,z,t) =
64
π3

∞

∑
r=0

∞

∑
m=0

∞

∑
n=0

1
(2n + 1)(2m+ 1)(2r + 1)

sin(2n + 1)x

× sin(2m+ 1)ysin(2r + 1)zcos(λnmrt),
(6.256)
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where

λnmr =
√

(2n + 1)2 +(2m+ 1)2 +(2r + 1)2. (6.257)

Exercises 6.3.2

Use the method of separation of variables in the following initial-boundary value
problems:

1. utt = 12(uxx + uyy + uzz), 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 12sin(2x)sin(2y)sin(2z)

2. utt = 14(uxx + uyy + uzz), 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = sinxsin(2y)sin(3z),ut(x,y,z,0) = 0

3. utt = 6(uxx + uyy + uzz), 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 6sinxsinysin(2z)

4. utt = 4(uxx + uyy + uzz), 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 6cosxcos(2y)cos(2z)

5. utt = 12(uxx + uyy + uzz), 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 3,ut(x,y,z,0) = 6cosxcosycosz

6. utt = 12(uxx + uyy + uzz), 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 4 + cosxcosycosz,ut(x,y,z,0) = 0

7. utt = 3(uxx + uyy + uzz), 0 < x,y,z < π
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u(0,y,z,t) = u(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 3sinxcosycosz

8. utt = 3(uxx + uyy + uzz), 0 < x,y,z < π
u(0,y,z,t) = u(π ,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 3sinxsinycosz

9. utt = 12(uxx + uyy + uzz), 0 < x,y,z < π
ux(0,y,z,t) = ux(π,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
u(x,y,0,t) = u(x,y,π,0) = 0
u(x,y,z,0) = cosxsinysinz,ut(x,y,z,0) = 0

10. utt = 6(uxx + uyy + uzz), 0 < x,y,z < π
u(0,y,z,t) = u(π,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = sinxsin ycos(2z),ut(x,y,z,0) = 0

11. utt = uxx + uyy + uzz, 0 < x,y,z < π
u(0,y,z,t) = u(π,y,z,t) = 0
u(x,0,z,t) = u(x,π ,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) =

√
3sinxsin ycosz

12. utt = 6(uxx + uyy + uzz), 0 < x,y,z < π
ux(0,y,z,t) = ux(π ,y,z,t) = 0
uy(x,0,z,t) = uy(x,π,z,t) = 0
uz(x,y,0,t) = uz(x,y,π ,0) = 0
u(x,y,z,0) = 0,ut(x,y,z,0) = 6cosxcosycos2z
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Chapter 7

Laplace’s Equation

7.1 Introduction

In Chapter 4 we have discussed the PDEs that control the heat flow in two and three
dimensional spaces given by

ut = k(uxx + uyy),

ut = k(uxx + uyy + uzz),
(7.1)

respectively, where k is the thermal diffusivity. If the temperature u reaches a steady
state, that is, when u does not depend on time t and depends only on the space
variables, then the time derivative ut vanishes as t → ∞. In view of this, we sub-
stitute ut = 0 into (7.1), hence we obtain the Laplace’s equations in two and three
dimensions given by

uxx + uyy = 0,
uxx + uyy + uzz = 0.

(7.2)

The Laplace’s equation [2,3,5] is used to describe gravitational potential in absence
of mass, to define electrostatic potential in absence of charges [4,7], and to describe
temperature in a steady-state heat flow. The Laplace’s equation is often called the
potential equation [10] because u defines the potential function.

Recall that the heat and the wave equations investigate the evolution of tempera-
ture and displacement respectively. However, it is worth noting that Laplace’s equa-
tion describes physical phenomena at equilibrium. Moreover, since the solution of
the Laplace’s equation does not depend on time t, initial conditions are not specified
and boundary conditions at the edges of a rectangle or at the faces of a rectangular
volume are specified [8]. For this reason, Laplace’s equation is best described as a
Boundary Value Problem (BVP).

In this chapter we will discuss the Laplace’s equation in two or three dimensional
spaces and in polar coordinates. The methods that will be used are the Adomian
decomposition method [1], the variational iteration method [6,9], and the method of
separation of variables. The three methods have been outlined in previous chapters
and have been applied in heat flow and wave equations.
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7.2 Adomian Decomposition Method

The Adomian decomposition method is now well known and it has been used in
details in the previous five chapters. The Adomian method, as discussed before,
provides the solution in terms of a rapidly convergent series. In a manner parallel
to that used in the preceding chapters, we will apply the Adomian decomposition
method to Laplace’s equation with specified boundary conditions.

7.2.1 Two Dimensional Laplace’s Equation

The two dimensional Laplace’s equation will be discussed using all types of bound-
ary conditions. As stated above, initial conditions are irrelevant. The boundary con-
ditions associated with Laplace’s equation can be identified into three types of
boundary conditions, namely:
1. Dirichlet boundary conditions:
In this type, the solution u(x,y) of Laplace’s equation is specified on the boundary.
The Laplace’s equation in this case is known as Dirichlet problem for a rectangle.
2. Neumann boundary conditions:
In this type, the normal derivative un is specified on the boundary. The Laplace’s
equation in this case is known as Neumann problem [7,8].
3. Robin boundary conditions:
In this type, the function u is specified on parts of the boundary and the directional
derivative un is specified on other parts of the boundary.

Without loss of generality, we consider the two dimensional Laplace’s equation
is given by the boundary value problem

PDE uxx + uyy = 0, 0 < x < a,0 < y < b,
BC u(0,y) = 0, u(a,y) = f (y),

u(x,0) = 0, u(x,b) = 0,
(7.3)

where u = u(x,y) is the solution of the Laplace’s equation at any point located at the
position (x,y) of a rectangular plate.

We first write (7.3) in an operator form by

Lyu(x,y) =−Lxu(x,y), (7.4)

where the differential operators Lx and Ly are defined by

Lx =
∂ 2

∂x2 , Ly =
∂ 2

∂y2 , (7.5)

so that the inverse operators L−1
x and L−1

y are two-fold integral operators defined by
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L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx,

L−1
y (·) =

∫ y

0

∫ y

0
(·)dydy.

(7.6)

Applying the inverse operator L−1
y to both sides of (7.4) and using the boundary

conditions we obtain
u(x,y) = yg(x)−L−1

y Lxu(x,y), (7.7)

where
g(x) = uy(x,0), (7.8)

a boundary condition that is not given but will be determined.
Using the decomposition series

u(x,y) =
∞

∑
n=0

un(x,y), (7.9)

into both sides of (7.7) gives

∞

∑
n=0

un(x,y) = yg(x)−L−1
y Lx

(
∞

∑
n=0

un(x,y)

)
. (7.10)

Adomian’s analysis admits the use of the recursive relation

u0(x,y) = yg(x),
uk+1(x,y) = −L−1

y Lx(uk), k � 0.
(7.11)

This leads to
u0(x,y) = yg(x),

u1(x,y) = −L−1
y Lx(u0) =− 1

3!
y3g′′(x)

u2(x,y) = −L−1
y Lx(u1) =

1
5!

y5g(4)(x),

(7.12)

and so on. We can determine as many components as we like to enhance the accu-
racy level.

In view of (7.12), we can write

u(x,y) = yg(x)− 1
3!

y3g′′(x)+
1
5!

y5g(4)(x)−·· · . (7.13)

To complete the determination of the series solution of u(x,y), we should deter-
mine g(x). This can be easily done by using the inhomogeneous boundary condition
u(a,y) = f (y). Substituting x = a into (7.13), using the Taylor expansion for f (y),
and equating the coefficients of like terms in both sides leads to the complete deter-
mination of g(x).
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Having determined the function g(x), the series solution (7.9) of u(x,y) is thus
established.

To give a clear overview of the use of the decomposition method in Laplace’s
equation, we discuss below the following illustrative boundary value problems.

Example 1. Use the Adomian decomposition method to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π,
BC u(0,y) = 0, u(π ,y) = sinhπ siny,

u(x,0) = 0, u(x,π) = 0.
(7.14)

Solution.

Applying the inverse operator L−1
y to the operator form of (7.14), and using the

proper boundary conditions we find

u(x,y) = yg(x)−L−1
y Lxu(x,y), (7.15)

where
g(x) = uy(x,0). (7.16)

The decomposition method defines the solution u(x,y) by an infinite series given by

u(x,y) =
∞

∑
n=0

un(x,y). (7.17)

Substituting (7.17) into both sides of (7.15) gives

∞

∑
n=0

un(x,y) = yg(x)−L−1
y

(
Lx

(
∞

∑
n=0

un(x,y)

))
. (7.18)

This gives the recursive relation

u0(x,y) = yg(x),
uk+1(x,y) = −L−1

y Lx(uk(x,y)), k � 0,
(7.19)

that gives the first few components

u0(x,y) = yg(x),

u1(x,y) = −L−1
y Lx(u0(x,y)) =− 1

3!
y3g′′(x),

u2(x,y) = −L−1
y Lx(u1(x,y)) =

1
5!

y5g(4)(x),

u3(x,y) = −L−1
y Lx(u2(x,y)) =− 1

7!
y7g(6)(x).

(7.20)

Combining the above results obtained for the components yields
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u(x,y) = yg(x)− 1
3!

y3g′′(x)+
1
5!

y5g(4)(x)− 1
7!

y7g(6)(x)+ · · · . (7.21)

To determine the function g(x), we use the inhomogeneous boundary condition
u(π ,y) = sinhπ siny, and by using the Taylor expansion of siny we obtain

yg(π)− 1
3!

y3g′′(π)+
1
5!

y5g(4)(π)− 1
7!

y7g(6)(π)+ · · ·

= sinhπ(y− 1
3!

y3 +
1
5!

y5− 1
7!

y7 + · · ·). (7.22)

Equating the coefficients of like terms on both sides gives

g(π) = g′′(π) = g(4)(π) = · · ·= sinhπ. (7.23)

This means that
g(x) = sinhx, (7.24)

the only function that when substituted in (7.21) will also satisfy the remaining
boundary conditions. Consequently, the solution in a series form is given by

u(x,y) = sinhx

(
y− 1

3!
y3 +

1
5!

y5− 1
7!

y7 + · · ·
)

, (7.25)

and in a closed form by
u(x,y) = sinhxsiny, (7.26)

obtained by using the Taylor expansion for siny.

Example 2. Use the Adomian decomposition method to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC u(0,y) = 0, u(π ,y) = 0,

u(x,0) = 0, u(x,π) = sinxsinhπ .
(7.27)

Solution.

We first rewrite (7.27) in an operator form by

Lxu(x,y) =−Lyu(x,y). (7.28)

Applying the inverse operator L−1
x to both sides of (7.28), and using the proper

boundary conditions we find

u(x,y) = xh(y)−L−1
x Lyu(x,y), (7.29)

where
h(y) = ux(0,y). (7.30)

Using the series representation of u(x,y) gives
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∞

∑
n=0

un(x,y) = xh(y)−L−1
x

(
Ly

(
∞

∑
n=0

un(x,y)

))
, (7.31)

that admits the use of the recursive relation

u0(x,y) = xh(y),
uk+1(x,y) = −L−1

x Ly(uk(x,y)), k � 0,
(7.32)

that in turn gives

u0(x,y) = xh(y),

u1(x,y) = −L−1
x Ly(u0(x,y)) =− 1

3!
x3h′′(y),

u2(x,y) = −L−1
x Ly(u1(x,y)) =

1
5!

x5h(4)(y).

(7.33)

Using the above results obtained for the components gives

u(x,y) = xh(y)− 1
3!

x3h′′(y)+
1
5!

x5h(4)(y)− 1
7!

x7h(6)(y)+ · · · . (7.34)

The function h(y) should be determined to complete the determination of the series
solution. Using the boundary condition u(x,π) = sinhπ sinx, and using the Taylor
expansion of sinx we obtain

xh(π)− 1
3!

x3h′′(π)+
1
5!

x5h(4)(π)− 1
7!

x7h(6)(π)+ · · ·

= sinhπ(x− 1
3!

x3 +
1
5!

x5− 1
7!

x7 + · · ·). (7.35)

Equating the coefficients of like terms on both sides gives

h(π) = h′′(π) = h(4)(π) = · · ·= sinhπ. (7.36)

This means, considering the remaining boundary condition, that

h(y) = sinhy. (7.37)

Combining the results obtained above in (7.34) and (7.36), the solution in a series
form is given by

u(x,y) = sinhy

(
x− 1

3!
x3 +

1
5!

x5− 1
7!

x7 + · · ·
)

, (7.38)

and in a closed form by
u(x,y) = sinxsinhy. (7.39)

Example 3. Use the Adomian decomposition method to solve the boundary value
problem
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PDE uxx + uyy = 0, 0 < x,y < π,
BC ux(0,y) = 0, ux(π,y) = 0,

uy(x,0) = cosx, uy(x,π) = coshπ cosx.
(7.40)

Solution.

We point out that the boundary conditions are the Neumann boundary condi-
tions where the directional derivatives are specified. The decomposition method can
be applied in a direct way. Applying the inverse operator L−1

y to both sides of the
operator form of (7.40) we find

u(x,y) = g(x)+ ycosx−L−1
y Lxu(x,y), (7.41)

where
g(x) = u(x,0). (7.42)

This in turn gives

∞

∑
n=0

un(x,y) = g(x)+ ycosx−L−1
y

(
Lx

(
∞

∑
n=0

un(x,y)

))
, (7.43)

so that the recursive relation is given by

u0(x,y) = g(x)+ ycosx,
uk+1(x,y) = −L−1

y Lx(uk(x,y)), k � 0.
(7.44)

It then follows that

u0(x,y) = g(x)+ ycosx,

u1(x,y) = −L−1
y Lx(u0(x,y)) =− 1

2!
y2g′′(x)+

1
3!

y3 cosx,

u2(x,y) = −L−1
y Lx(u1(x,y)) =

1
4!

y4g(4)(x)+
1
5!

y5 cosx,

(7.45)

and so on. This gives

u(x,y) = cosx

(
y +

1
3!

y3 +
1
5!

y5 + · · ·
)

+ g(x)− 1
2!

y2g′′(x)+
1
4!

y4g(4)(x)+ · · · , (7.46)

or equivalently

u(x,y) = cosxsinhy + g(x)− 1
2!

y2g′′(x)+
1
4!

y4g(4)(x)−·· · . (7.47)

To determine g(x), we use the boundary condition uy(x,π) = coshπ cosx to obtain
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coshπ cosx +

(
−πg′′(x)+

1
3!

π3g(4)(x)+ · · ·
)

= coshπ cosx. (7.48)

Equating the coefficients of like terms on both sides and following the discussion
presented in Ex. 2, we find

g(x) = 0. (7.49)

Consequently, we obtain
u(x,y) = cosxsinhy. (7.50)

It is important to note that Neumann problem has a property that the solution
is determined up to an additive constant. An arbitrary constant C0 cannot be de-
termined by the decomposition method and by the classic method of separation of
variables as will be seen later. Based on this, the solution should be given by

u(x,y) = C0 + cosxsinhy, (7.51)

that satisfies the equation and the boundary conditions.

Example 4. Use the Adomian decomposition method to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC ux(0,y) = 0, ux(π,y) = 0,

u(x,0) = cosx, u(x,π) = coshπ cosx.
(7.52)

Solution.

We point out that the boundary conditions are the mixed boundary conditions
where the solution u(x,y) is specified at two edges and the derivatives ux(x,y) are
specified at the remaining two edges.

Applying the inverse operator L−1
y to both sides of the operator form of (7.52),

and using the proper boundary conditions we find

u(x,y) = cosx + yg(x)−L−1
y Lxu(x,y), (7.53)

where
g(x) = uy(x,0). (7.54)

Using the series representation of u(x,y) gives

∞

∑
n=0

un(x,y) = cosx + yg(x)−L−1
y

(
Lx

(
∞

∑
n=0

un(x,y)

))
. (7.55)

Following the analysis presented above we find

u0(x,y) = cosx + yg(x),
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u1(x,y) = −L−1
y Lx(u0(x,y)) =

1
2!

y2 cosx− 1
3!

y3g′′(x),

u2(x,y) = −L−1
y Lx(u1(x,y)) =

1
4!

y4 cosx +
1
5!

y5g(4)(x).
(7.56)

This gives

u(x,y) = cosx

(
1 +

1
2!

y2 +
1
4!

y4 + · · ·
)

+ yg(x)− 1
3!

y3g′′(x)+
1
5!

y5g(4)(x)−·· · , (7.57)

or equivalently

u(x,y) = cosxcoshy + yg(x)− 1
3!

y3g′′(x)+
1
5!

y5g(4)(x)−·· · . (7.58)

To determine g(x), we use the boundary condition u(x,π) = coshπ cosx to find

g(x) = 0. (7.59)

The solution in a closed form is given by

u(x,y) = cosxcoshy, (7.60)

obtained by substituting g(x) = 0 into (7.58).

Exercises 7.2.1

Use the decomposition method to solve the following Laplace’s equations:

1. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 0,u(π ,y) = sinhπ cosy
u(x,0) = sinhx,u(x,π) =−sinhx

2. uxx + uyy = 0, 0 < x,y < π
u(0,y) = siny,u(π,y) = coshπ siny
u(x,0) = 0,u(x,π) = 0

3. uxx + uyy = 0, 0 < x,y < π
u(0,y) = cosy,u(π ,y) = coshπ cosy
u(x,0) = coshx,u(x,π) =−coshx

4. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 0,u(π ,y) = 0
u(x,0) = 0,u(x,π) = sinh(2π)sin(2x)
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5. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 0,u(π ,y) = 0
u(x,0) = sin(2x),u(x,π) = cosh(2π)sin(2x)

6. uxx + uyy = 0, 0 < x,y < π
u(0,y) = cosh(3y),u(π ,y) =−cosh(3y)
u(x,0) = cos(3x),u(x,π) = cosh(3π)cos(3x)

7. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 0,u(π ,y) = sinh(2π)cos(2y)
u(x,0) = sinh(2x),u(x,π) = sinh(2x)

8. uxx + uyy = 0, 0 < x,y < π
u(0,y) = cos(2y),u(π,y) = cosh(2π)cos(2y)
u(x,0) = cosh(2x),u(x,π) = cosh(2x)

9. uxx + uyy = 0, 0 < x,y < π
ux(0,y) = 0,ux(π,y) = 0
uy(x,0) = 0,uy(x,π) = sinhπ cosx

10. uxx + uyy = 0, 0 < x,y < π
ux(0,y) = coshy,ux(π,y) =−coshy
uy(x,0) = 0,uy(x,π) = sinhπ sinx

11. uxx + uyy = 0, 0 < x,y < π
ux(0,y) = cosy,ux(π ,y) = coshπ cosy
u(x,0) = sinhx,u(x,π) =−sinhx

12. uxx + uyy = 0, 0 < x,y < π
ux(0,y) = coshy,ux(π,y) =−coshy
u(x,0) = sinx,u(x,π) = coshπ sinx

13. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 0,u(π,y) = π
u(x,0) = x,u(x,π) = x + sinhπ sin x

14. uxx + uyy = 0, 0 < x,y < π
u(0,y) = y,u(π,y) = y
u(x,0) = sinx,u(x,π) = π + coshπ sinx

15. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 1,u(π,y) = 1
u(x,0) = 1,u(x,π) = 1 + sinhπ sinx

16. uxx + uyy = 0, 0 < x,y < π
u(0,y) = 1 + sinhy,u(π ,y) = 1− sinhy
u(x,0) = 1,u(x,π) = 1 + sinhπ cosx
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7.3 The Variational Iteration Method

As stated before, the variational iteration method (VIM) gives rapidly convergent
successive approximations of the exact solution if an exact solution exists. More-
over, the method provides an approximation of high accuracy level by using only
few iterations [6]. The variational iteration method uses the correction functional

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )(Lun(ξ )+ N ũn(ξ )−g(ξ )) dξ , n � 0. (7.61)

for the differential equation
Lu + Nu = g(x,t). (7.62)

The Lagrange multiplier λ (ξ ) should be determined first, and therefore, the succes-
sive approximations un+1(x,t),n � 0, of the solution u(x,t) follow immediately by
using any selective function u0(x,t). The exact solution may be obtained by using

u = lim
n→∞

un. (7.63)

Recall that∫
λ (ξ )u′′n(ξ )dξ = λ (ξ )u′n(ξ )−λ ′(ξ )un(ξ )+

∫
λ ′′(ξ )un(ξ )dξ . (7.64)

To give a clear overview of the use of the variational iteration method in Laplace’s
equation, we discuss the same examples investigated before by using Adomian
method.

Example 1. Use the variational iteration method to solve the boundary value prob-
lem

PDE uxx + uyy = 0, 0 < x,y < π,
BC u(0,y) = 0, u(π ,y) = sinhπ siny,

u(x,0) = 0, u(x,π) = 0.
(7.65)

Solution.

The correction functional for this equation reads

un+1(x,y) = un(x,y)+

∫ x

0
λ (ξ )

(
∂ 2un(ξ ,y)

∂ξ 2 +
∂ 2ũn(ξ ,y)

∂y2

)
dξ . (7.66)

This yields the stationary conditions

1−λ ′|ξ=x = 0,
λ |ξ=x = 0,

λ ′′|ξ=x = 0.
(7.67)

This in turn gives
λ = ξ − x. (7.68)
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Substituting this value of the Lagrange multiplier into the functional (7.66) gives the
iteration formula

un+1(x,y) = un(x,y)+

∫ x

0
(ξ − x)

(
∂ 2un(ξ ,y)

∂ξ 2 +
∂ 2un(ξ ,y)

∂y2

)
dξ . (7.69)

Considering the given boundary conditions, it is clear that the solution contains
siny in addition to other functions that depend on x. Therefore, we can select
u0(x,t) = xsiny. Using this selection into (7.69) we obtain the following succes-
sive approximations

u0(x,y) = xsin y,

u1(x,y) = xsin y +
1
3!

x3 siny,

u2(x,y) = xsin y +
1
3!

x3 siny +
1
5!

x5 sin y,

u3(x,y) = xsin y +
1
3!

x3 siny +
1
5!

x5 sin y +
1
7!

x7 siny,
...

un(x,y) = sin y

(
x +

1
3!

x3 +
1
5!

x5 +
1
7!

x7 + · · ·
)

.

(7.70)

Recall that
u = lim

n→∞
un, (7.71)

that gives the exact solution by

u(x,y) = sinhxsiny, (7.72)

obtained upon using the Taylor expansion for sinhx.

Example 2. Use the variational iteration method to solve the boundary value prob-
lem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC u(0,y) = 0, u(π ,y) = 0,

u(x,0) = 0, u(x,π) = sinxsinhπ .
(7.73)

Solution.

Because the boundary conditions at y = 0,π include sin x and 0, it is normal to
consider u0(x,t) = ysinx. Based on this, the correction functional for this equation
will be

un+1(x,y) = un(x,y)+
∫ y

0
λ (ξ )

(
∂ 2ũn(x,ξ )

∂ x2 +
∂ 2un(x,ξ )

∂ξ 2

)
dξ . (7.74)

This again gives
λ = ξ − y. (7.75)
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Substituting this value of the Lagrange multiplier into the functional (7.74) gives the
iteration formula

un+1(x,y) = un(x,y)+

∫ y

0
(ξ − y)

(
∂ 2un(x,ξ )

∂ x2 +
∂ 2un(x,ξ )

∂ξ 2

)
dξ . (7.76)

Selecting u0(x,t) = ysinx gives the following successive approximations

u0(x,y) = ysinx,

u1(x,y) = ysinx +
1
3!

y3 sinx,

u2(x,y) = ysinx +
1
3!

y3 sinx +
1
5!

y5 sinx,

u3(x,y) = ysinx +
1
3!

y3 sinx +
1
5!

y5 sinx +
1
7!

y7 sinx,

...

un(x,y) = sinx

(
y +

1
3!

y3 +
1
5!

y5 +
1
7!

y7 + · · ·
)

,

(7.77)

that gives the exact solution by

u(x,y) = sinxsinhy, (7.78)

obtained upon using the Taylor expansion for sinhy.

Example 3. Use the variational iteration method to solve the boundary value prob-
lem

PDE uxx + uyy = 0, 0 < x,y < π,
BC ux(0,y) = 0, ux(π,y) = 0,

uy(x,0) = cosx, uy(x,π) = coshπ cosx.
(7.79)

Solution.

As stated before, the boundary conditions are the Neumann boundary conditions
where the directional derivatives are specified. Because the boundary conditions
include cosx, it is normal to consider u0(x,t) = ycosx. Proceeding as in Example 2
we find

λ = ξ − y. (7.80)

Using this value of λ gives the iteration formula

un+1(x,y) = un(x,y)+
∫ y

0
(ξ − y)

(
∂ 2un(x,ξ )

∂ x2 +
∂ 2un(x,ξ )

∂ξ 2

)
dξ . (7.81)

Selecting u0(x,t) = ycosx gives the following successive approximations

u0(x,y) = ycosx,

u1(x,y) = ycosx +
1
3!

y3 cosx,
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u2(x,y) = ycosx +
1
3!

y3 cosx +
1
5!

y5 cosx,

u3(x,y) = ycosx +
1
3!

y3 cosx +
1
5!

y5 cosx +
1
7!

y7 cosx,
...

un(x,y) = cosx

(
y +

1
3!

y3 +
1
5!

y5 +
1
7!

y7 + · · ·
)

,

(7.82)

that gives the exact solution by

u(x,y) = cosxsinhy, (7.83)

obtained upon using the Taylor expansion for sinhy.
It is important to note that Neumann problem has a property that the solution

is determined up to an additive constant. An arbitrary constant C0 cannot be deter-
mined by using this method and even by the classic method of the separation of
variables as will be seen later. Based on this, the solution should be given by

u(x,y) = C0 + cosxsinhy, (7.84)

that satisfies the equation and the boundary conditions.

Example 4. Use the variational iteration method to solve the boundary value prob-
lem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC ux(0,y) = 0, ux(π,y) = 0,

u(x,0) = cosx, u(x,π) = coshπ cosx.
(7.85)

Solution.

The Robin boundary conditions are mixed boundary conditions where the so-
lution u(x,y) is specified at two edges and the derivatives ux(x,y) are specified at
the remaining two edges. Moreover, because the boundary conditions include cosx

at u(x,0) and at u(x,π), it is normal to consider u0(x,t) = cosx +
1
2

y2 cosx. Using

λ = ξ − y, obtain the iteration formula

un+1(x,y) = un(x,y)+
∫ y

0
(ξ − y)

(
∂ 2un(x,ξ )

∂ x2 +
∂ 2un(x,ξ )

∂ξ 2

)
dξ . (7.86)

Selecting u0(x,t) = cosx(1 +
1
2!

y2) gives the following successive approximations

u0(x,y) = cosx(1 +
1
2!

y2),

u1(x,y) = cosx(1 +
1
2!

y2)+ cosx(
1
4!

y4 +
1
6!

y6),
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u2(x,y) = cosx(1 +
1
2!

y2)+ cosx(
1
4!

y4 +
1
6!

y6)+ cosx(
1
8!

y8 +
1

10!
y10),

...

un(x,y) = cosx(1 +
1
2!

y2 +
1
4!

y4 +
1
6!

y6 +
1
8!

y8 +
1

10!
y10 + · · ·),

(7.87)

The exact solution is given by

u(x,y) = cosxcoshy. (7.88)

Exercises 7.3

Use the variational iteration method to solve the following Laplace’s equations in
Exercises 7.2.1.

7.4 Method of Separation of Variables

In this section, the method of separation of variables will be used to solve the
Laplace’s equation in two and three dimensional spaces and in a circular disc. Re-
call that the method reduces the partial differential equation into a system of ordi-
nary differential equations, where each ordinary differential equation depends on
one variable only. We then solve each ordinary differential equation independently.
The homogeneous boundary conditions are used to evaluate the constants of inte-
gration. The superposition principle will be used to establish a general solution. The
remaining inhomogeneous boundary condition will be employed to determine the
particular solution that will satisfy the equation and the boundary conditions.

Because the solution of the Laplace’s equation does not depend on time, initial
conditions are irrelevant and only boundary conditions are specified at the edges of
a rectangle or faces of a rectangular volume [8].

The complete details of the method of separation of variables have been outlined
before, therefore we will focus our discussion on the implementation of the method.

7.4.1 Laplace’s Equation in Two Dimensions

The two dimensional Laplace’s equation is governed by the following boundary
value problem

PDE uxx + uyy = 0, 0 < x < a,0 < y < b,
BC u(0,y) = 0, u(a,y) = 0,

u(x,0) = 0, u(x,b) = g(x),
(7.89)
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where u = u(x,y) is the solution of the Laplace’s equation at any point located at the
position (x,y) of a rectangle.

As indicated before, the method of separation of variables suggests that the solu-
tion u(x,y) can be assumed as the product of distinct functions F(x) and G(y) such
that each function depends on one variable only. This means that we can set

u(x,y) = F(x)G(y). (7.90)

Differentiating both sides of (7.90) twice with respect to x and y respectively and
substituting in the PDE of (7.89) we find

F ′′(x)G(y)+ F(x)G′′(y) = 0. (7.91)

Dividing both sides by F(x)G(y) gives

F ′′(x)
F(x)

=−G′′(y)
G(y)

. (7.92)

It is obvious that the left hand side depends only on the variable x and the right hand
side depends only on the variable y. The equality holds only if both sides are equal
to the same constant. Accordingly, we set

F ′′(x)
F(x)

=−G′′(y)
G(y)

=−λ 2. (7.93)

In view of (7.93) we obtain the two second order ordinary differential equations

F ′′(x)+ λ 2F(x) = 0, (7.94)

and
G′′(y)−λ 2G(y) = 0. (7.95)

The second order differential equations (7.94) and (7.95) give the solutions

F(x) = Acos(λx)+ Bsin(λx), (7.96)

and
G(y) = α cosh(λy)+β sinh(λy), (7.97)

where A,B,α and β are constants. To achieve this goal, we use (7.90) and the bound-
ary conditions 0 = u(0,y) = F(0) and 0 = u(a,y) = F(a) into (7.96) gives

A = 0, (7.98)

and
λn =

nπ
a

, n = 1,2,3, · · · . (7.99)

It is obvious that n = 0 and B = 0 are excluded because each will give the trivial
solution. We therefore conclude that
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Fn(x) = sin(
nπ
a

x), n = 1,2,3, · · · . (7.100)

Using (7.90) and the boundary condition 0 = u(x,0) = G(0) in (7.97) yields

α = 0, (7.101)

and hence
Gn(y) = sinh(

nπ
a

y), n = 1,2,3, · · · . (7.102)

Combining (7.100) and (7.102) we obtain the fundamental solutions

un(x,y) = sin(
nπ
a

x)sinh(
nπ
a

y), n = 1,2,3, · · · , (7.103)

that satisfy the partial differential equation in (7.89) and the three homogeneous
boundary conditions for each value of n.

Using the superposition principle we obtain

u(x,y) =
∞

∑
n=1

Cn sin(
nπ
a

x)sinh(
nπ
a

y), (7.104)

where the constants Cn are as yet undetermined. To determine Cn, we use the inho-
mogeneous boundary condition to find

∞

∑
n=1

Cn sin(
nπ
a

x)sinh(
nπ
a

b) = g(x). (7.105)

The constants Cn are then determined by using Fourier series to find

Cn sinh(
nπ
a

b) =
2
a

∫ a

0
sin(

nπ
a

x)g(x)dx. (7.106)

Consequently, the solution of the Laplace’s equation is given by (7.104) with Cn

defined by (7.106).
The method of separation of variables will be illustrated by discussing the fol-

lowing examples.

Example 1. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC u(0,y) = 0, u(π ,y) = 0,

u(x,0) = 0, u(x,π) = sinhπ sinx.
(7.107)

Solution.

The method of separation of variables suggests
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u(x,y) = F(x)G(y), (7.108)

that gives the second order ordinary differential equations

F ′′(x)+ λ 2F(x) = 0, (7.109)

and
G′′(y)−λ 2G(y) = 0. (7.110)

The second order differential equations (7.109) and (7.110) give the solutions

F(x) = Acos(λx)+ Bsin(λx), (7.111)

and
G(y) = α cosh(λy)+β sinh(λy), (7.112)

where A,B,α and β are constants. To determine these constants, we use (7.108) and
the boundary conditions 0 = u(0,y) = F(0), and 0 = u(π ,y) = F(π) into (7.111)
gives

A = 0, (7.113)

and
λn = n, n = 1,2,3, · · · . (7.114)

This gives
Fn(x) = sin(nx), n = 1,2,3, · · · . (7.115)

Using (7.108) and the boundary condition 0 = u(x,0) = G(0) into (7.112) yields

α = 0, (7.116)

and hence
Gn(y) = sinh(ny), n = 1,2,3, · · · . (7.117)

Combining (7.115) and (7.117) we obtain the fundamental solutions

un(x,y) = sin(nx)sinh(ny), n = 1,2,3, · · · , (7.118)

that satisfy the partial differential equation and the three homogeneous boundary
conditions for each value of n.

Using the superposition principle, the solution u(x,y) can be written in the form

u(x,y) =
∞

∑
n=1

Cn sin(nx)sinh(ny), (7.119)

where the constants Cn are as yet undetermined. To determine Cn, we use the inho-
mogeneous boundary condition u(x,π) = sinhπ siny to find

∞

∑
n=1

Cn sinh(nπ)sin(nx) = sinhπ sinx. (7.120)
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The constants Cn are then determined by using Fourier series or by expanding the
series and equating coefficients of like terms, hence we obtain

C1 = 1, Ck = 0, k �= 1. (7.121)

Consequently, the solution of the Laplace’s equation is given by

u(x,y) = sinxsinhy. (7.122)

Example 2. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC u(0,y) = 0, u(π,y) = 0,

u(x,0) = 0, u(x,π) = 1.
(7.123)

Solution.

We first set
u(x,y) = F(x)G(y). (7.124)

Substituting (7.124) into (7.123) and proceeding as before we find

Fn(x) = sin(nx), n = 1,2,3, · · · , (7.125)

and
Gn(y) = sinh(ny), n = 1,2,3, · · · . (7.126)

Accordingly, we obtain the the fundamental solutions

un(x,y) = sin(nx)sinh(ny), n = 1,2,3, · · · . (7.127)

Using the superposition principle we obtain

u(x,y) =
∞

∑
n=1

Cn sin(nx)sinh(ny), (7.128)

where Cn,n � 1 are constants. To determine Cn, we use the inhomogeneous bound-
ary condition u(x,π) = 1 in (7.128) to find

∞

∑
n=1

Cn sin(nx)sinh(nπ) = 1. (7.129)

The constants Cn can be determined by using the Fourier series, hence we find

Cn sinh(nπ) =
2
π

∫ π

0
sin(nx)dx, (7.130)

so that
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Cn sinh(nπ) =

⎧⎨
⎩

4
nπ

, if n is odd,

0, if n is even.
(7.131)

Consequently, the solution is given by

u(x,y) =
4
π

∞

∑
m=0

sin((2m+ 1)x)sinh((2m+ 1)y)
(2m+ 1)sinh((2m+ 1)π)

. (7.132)

The boundary condition u(x,π) = 1 is justified by using Appendix F.

Example 3. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC u(0,y) = 0, u(π ,y) = 0,

u(x,0) = sinhπ sinx, u(x,π) = 0.
(7.133)

Solution.

We first set
u(x,y) = F(x)G(y). (7.134)

Proceeding as before we find

F ′′(x)+ λ 2F(x) = 0, (7.135)

and
G′′(y)−λ 2G(y) = 0. (7.136)

Solving these equations and using the boundary conditions we find

Fn(x) = sin(nx), n = 1,2,3, · · · . (7.137)

Solving (7.136) we obtain

Gn(y) = αn cosh(ny)+ βn sinh(ny). (7.138)

To properly use the boundary condition u(x,π) = 0, we first rewrite (7.138) in the
form

Gn(y) = Cn sinhn(K− y). (7.139)

Using the boundary condition u(x,π) = 0 in (7.139) yields

K = π , Cn �= 0. (7.140)

This gives
Gn(y) = Cn sinhn(π− y), n = 1,2,3, · · · . (7.141)

Using the superposition principle we obtain
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u(x,y) =
∞

∑
n=1

Cn sin(nx)sinhn(π− y), (7.142)

where the constants Cn are as yet undermined. Using the inhomogeneous boundary
condition u(x,0) = sinxsinhπ in (7.142) to find

∞

∑
n=1

Cn sin(nx)sinh(nπ) = sinxsinhπ . (7.143)

The constants Cn can be determined by expanding the series and equating the coef-
ficients of like terms on both sides where we obtain

C1 = 1, Ck = 0, k �= 1. (7.144)

Consequently, the solution is given by

u(x,y) = sinxsinh(π− y). (7.145)

Example 4. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy = 0, 0 < x,y < π ,
BC ux(0,y) = 0, ux(π ,y) = 0,

uy(x,0) = 0, uy(x,π) = sinhπ cosx.
(7.146)

Solution.

It is important to note that this type of problems is well known as the Neumann
problem where the directional derivatives of u(x,y) are prescribed on the boundary.
A necessary condition for this problem to be solvable is that the integral of the
inhomogeneous boundary condition vanishes. This can be easily satisfied by noting
that ∫ π

0
sinhπ cosxdx = 0. (7.147)

In addition, we will show that the solution of the Neumann problem will be deter-
mined up to an additive constant.

We first set
u(x,y) = F(x)G(y). (7.148)

Proceeding as before we find

F ′′(x)+ λ 2F(x) = 0, (7.149)

and
G′′(y)−λ 2G(y) = 0. (7.150)

Solving these equations and using the boundary conditions we find

Fn(x) = cos(nx), n = 0,1,2,3, · · · , (7.151)
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and
Gn(y) = Cn cosh(ny), n = 0,1,2,3, · · · . (7.152)

Using the superposition principle we obtain

u(x,y) =
∞

∑
n=0

Cn cos(nx)cosh(ny), (7.153)

or equivalently

u(x,y) = C0 +
∞

∑
n=1

Cn cos(nx)cosh(ny), (7.154)

where the constants Cn are as yet undetermined. Using the inhomogeneous boundary
condition uy(x,π) = sinhπ cosx in the derivative of (7.154) and expand the series to
find

C1 sinhπ cosx +C2 sinh(2π)cos(2x)+ · · ·= sinhπ cosx. (7.155)

Equating the coefficients of like terms on both sides gives

C1 = 1, Ck = 0, k �= 1. (7.156)

It is important to note that the constant C0 is eliminated when the boundary con-
dition uy(x,π) is used, and there is no prescribed condition that will determine C0.
Accordingly, the constant C0 remains arbitrary and the solution is therefore given
by

u(x,y) = C0 + cosxcoshy. (7.157)

This confirms the well-known property that Neumann problem is solved up to an
additive arbitrary constant.

Exercises 7.4.1

Use the method of separation of variables to solve the following Laplace’s equa-
tions:

1. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = 0
u(x,0) = 0,u(x,π) = sinh(2π)sin(2x)

2. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = sinh(3π)sin(3y)
u(x,0) = 0,u(x,π) = 0

3. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = 4sinh2π sin 2y
u(x,0) = 0,u(x,π) = 0
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4. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = coshy,u(π,y) =−coshy
u(x,0) = cosx,u(x,π) = coshπ cosx

5. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = 0
u(x,0) = sinx,u(x,π) = coshπ sinx

6. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = cosh2y,u(π ,y) = cosh2y
u(x,0) = cos2x,u(x,π) = cosh2π cos2x

7. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = sinhπ sin(π− y)
u(x,0) = 0,u(x,π) = 0

8. uxx + uyy = 0, 0 < x < π , 0 < y < π
u(0,y) = 0,u(π ,y) = 0
u(x,0) = sinh(2π)sin(2x),u(x,π) = 0

9. uxx + uyy = 0, 0 < x < π , 0 < y < π
ux(0,y) = 0,ux(π,y) = 0
uy(x,0) = 0,uy(x,π) = 2sinh(2π)cos(2x)

10. uxx + uyy = 0, 0 < x < π, 0 < y < π
ux(0,y) = 0,ux(π ,y) = 2sinh(2π)cos(2y)
uy(x,0) = 0,uy(x,π) = 0

7.4.2 Laplace’s Equation in Three Dimensions

The Laplace’s equation in three dimensional space is governed by the boundary
value problem

PDE uxx + uyy + uzz = 0,
0 < x < a,0 < y < b,0 < z < c,

BC u(0,y,z) = 0, u(a,y,z) = 0,
u(x,0,z) = 0, u(x,b,z) = 0,
u(x,y,0) = 0, u(x,y,c) = f (x,y),

(7.158)

where u = u(x,y,z) is the solution of Laplace’s equation at any point located at the
position (x,y,z) of a rectangular volume.

Following the steps used in the previous section, we first establish a set of fun-
damental solutions that will satisfy the partial differential equation and the homo-
geneous boundary conditions. Next we use the superposition principle to establish
a general solution. The remaining constant of integration is determined by using the
remaining inhomogeneous boundary condition.
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The method of separation of variables assumes that u(x,y,z) consists of the prod-
uct of three distinct functions F(x), G(y), and H(z) such that each function depends
on one variable only. This means that we can set

u(x,y,z) = F(x)G(y)H(z). (7.159)

Differentiating both sides of (7.159) twice with respect to x, y, and z and substituting
into the PDE of (7.158) we find

F ′′(x)G(y)H(z)+ F(x)G′′(y)H(z)+ F(x)G(y)H ′′(z) = 0. (7.160)

Dividing both sides by F(x)G(y)H(z) gives

F ′′(x)
F(x)

=−
(

G′′(y)
G(y)

+
H ′′(z)
H(z)

)
. (7.161)

It is obvious that the left hand side depends only on the variable x and the right hand
side depends only on the variables y and z. The equality holds only if both sides are
equal to the same constant. Accordingly, we set

F ′′(x)
F(x)

=−
(

G′′(y)
G(y)

+
H ′′(z)
H(z)

)
=−λ 2. (7.162)

Equation (7.162) yields the second order ordinary differential equations

F ′′(x)+ λ 2F(x) = 0, (7.163)

G′′(y)+ μ2G(y) = 0, (7.164)

H ′′(z)− (λ 2 + μ2)H(z) = 0, (7.165)

where λ , and μ are constants.
Solving the second order differential equations (7.163) – (7.165) gives

F(x) = Acos(λx)+ Bsin(λx), (7.166)

G(y) = α cos(μy)+ β sin(μy), (7.167)

H(z) = γ cosh(νz)+δ sinh(νz), (7.168)

where
ν =

√
λ 2 + μ2, (7.169)

and A,B,α , β , γ , and δ are constants.
Using the homogeneous boundary conditions gives

A = 0, λn =
nπ
a

, n = 1,2,3 · · · , (7.170)

α = 0, μm =
mπ
b

, m = 1,2,3, · · · , (7.171)
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γ = 0, νnm =

√
(

nπ
a

)2 +(
mπ
b

)2, (7.172)

so that

Fn(x) = sin(
nπ
a

x), n = 1,2,3 · · · , (7.173)

Gm(y) = sin(
mπ
b

y), m = 1,2,3 · · · , (7.174)

Hnm(z) = sinh

(√
(

nπ
a

)2 +(
mπ
b

)2 z

)
. (7.175)

Combining (7.173) – (7.175) we obtain the fundamental set of solutions

un = sin(
nπ
a

x)sin(
mπ
b

y)sinh

(√
(

nπ
a

)2 +(
mπ
b

)2 z

)
, n,m = 1,2, · · · . (7.176)

Using the superposition principle we obtain

u =
∞

∑
m=1

∞

∑
n=1

Cnm sin(
nπ
a

x)sin(
mπ
b

y)sinh

(√
(

nπ
a

)2 +(
mπ
b

)2 z

)
, (7.177)

where the constants Cnm are as yet undetermined. To determine the constants Cnm,
we use the inhomogeneous boundary condition u(x,y,c) = f (x,y) to find

∞

∑
m=1

∞

∑
n=1

Cnm sin(
nπ
a

x)sin(
mπ
b

y)sinh

(√
(

nπ
a

)2 +(
mπ
b

)2 c

)
= f (x,y). (7.178)

The Fourier coefficients are then given by

Cnm sinh

(√
(

nπ
a

)2 +(
mπ
b

)2 c

)

=
4
ab

∫ a

0

∫ b

0
sin(

nπ
a

x)sin(
mπ
a

y) f (x,y)dxdy. (7.179)

Consequently, the solution of the Laplace’s equation is given by (7.177) with Cnm

defined by (7.179).
The method of separation of variables will be illustrated by discussing the fol-

lowing examples.

Example 5. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy + uzz = 0, 0 < x,y,z < π ,
BC u(0,y,z) = 0, u(π ,y,z) = 0,

u(x,0,z) = 0, u(x,π,z) = 0,

u(x,y,0) = 0, u(x,y,π) = sinh(
√

2π)sinxsiny.

(7.180)
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Solution.

Proceeding as discussed above, we obtain (7.163)–(7.165), and

F(x) = Acos(λx)+ Bsin(λx), (7.181)

G(y) = α cos(μy)+ β sin(μy), (7.182)

H(z) = γ cosh(νz)+δ sinh(νz), (7.183)

where
ν =

√
λ 2 + μ2, (7.184)

and A,B,α , β , γ , and δ are constants.
Using the homogeneous boundary conditions gives

A = 0, λn = n,n = 1,2,3 · · · , (7.185)

α = 0, μm = m,m = 1,2,3, · · · , (7.186)

γ = 0, νnm =
√

n2 + m2, (7.187)

so that

Fn(x) = sin(nx), n = 1,2,3 · · · , (7.188)

Gm(y) = sin(my), m = 1,2,3 · · · , (7.189)

Hnm(z) = sinh
(√

n2 + m2 z
)

. (7.190)

Consequently, we obtain the fundamental solutions

un(x,y,z) = sin(nx)sin(my)sinh
(√

n2 + m2 z
)

, n,m = 1,2, · · · , (7.191)

so that the general solution is

u(x,y,z) =
∞

∑
m=1

∞

∑
n=1

Cnm sin(nx)sin(my)sinh
(√

n2 + m2 z
)

. (7.192)

To determine the constants Cnm, we use the inhomogeneous boundary condition
u(x,y,π) = sinxsinysinh(

√
2π) to find

∞

∑
m=1

∞

∑
n=1

Cnm sin(nx)sin(my)sinh
(√

n2 + m2 π
)

= sinxsin ysinh(
√

2π). (7.193)

Expanding the double series and equating the coefficients of like terms on both sides
we find

C11 = 1, for n = 1,m = 1, Cnm = 0, for n �= 1,m �= 1. (7.194)

This gives the exact solution



7.4 Method of Separation of Variables 263

u(x,y,z) = sinxsinysinh
√

2z, (7.195)

obtained upon substituting (7.194) into (7.192).

Example 6. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy + uzz = 0, 0 < x,y,z < π ,
BC u(0,y,z) = 0, u(π ,y,z) = 0,

u(x,0,z) = 0, u(x,π ,z) = 0,

u(x,y,0) = sinh
√

2π sin xsiny, u(x,y,π) = 0.

(7.196)

Solution.

Proceeding as before, we obtain

F(x) = Acos(λx)+ Bsin(λx), (7.197)

G(y) = α cos(μy)+ β sin(μy), (7.198)

H(z) = γ cosh(νz)+δ sinh(νz), (7.199)

where
ν =

√
λ 2 + μ2, (7.200)

and A,B,α , β , γ , and δ are constants.
Because H(π) = 0, it is useful to rewrite (7.199) into the equivalent form

H(z) = C sinhν(K− z), (7.201)

where K and C are constants. Using the homogeneous boundary conditions lead to

A = 0, λn = n, n = 1,2,3 · · · , (7.202)

α = 0, μm = m, m = 1,2,3, · · · (7.203)

K = π , νnm =
√

n2 + m2, C �= 0, (7.204)

so that

Fn(x) = sin(nx),n = 1,2,3 · · · , (7.205)

Gm(y) = sin(my),m = 1,2,3 · · · , (7.206)

Hnm(z) = sinh
(√

n2 + m2(π− z)
)

. (7.207)

This gives

un = sin(nx)sin(my)sinh
(√

n2 + m2(π− z)
)

, n,m = 1,2, · · · . (7.208)

Using the superposition principle gives
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u(x,y,z) =
∞

∑
m=1

∞

∑
n=1

Cnm sin(nx)sin(my)sinh
(√

n2 + m2(π− z)
)

. (7.209)

To determine the constants Cnm, we substitute the inhomogeneous boundary condi-
tion u(x,y,0) = sinh(

√
2π)sinxsin y into (7.209), and equate the coefficients of like

terms on both sides, we find

C11 = 1, Cnm = 0, n �= 1,m �= 1. (7.210)

This gives the exact solution

u(x,y,z) = sin xsinysinh
√

2(π− z), (7.211)

obtained by combining (7.210) and (7.209).

Example 7. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy + uzz = 0, 0 < x,y,z < π ,
BC u(0,y,z) = 0, u(π ,y,z) = 0,

u(x,0,z) = 0, u(x,π,z) = 0,
u(x,y,0) = 1, u(x,y,π) = 0.

(7.212)

Solution.

Proceeding as in Ex. 6, using the boundary conditions and following the last
example we obtain

A = 0, λn = n, n = 1,2,3 · · · , (7.213)

α = 0, μm = m, m = 1,2,3, · · · (7.214)

K = π , νnm =
√

n2 + m2, C �= 0, (7.215)

so that

Fn(x) = sin(nx), n = 1,2,3 · · · , (7.216)

Gm(y) = sin(my), m = 1,2,3 · · · , (7.217)

Hnm(z) = sinh
(√

n2 + m2(π− z)
)

. (7.218)

Using the superposition principle gives

u(x,y,z) =
∞

∑
m=1

∞

∑
n=1

Cnm sin(nx)sin(my)sinh
(√

n2 + m2(π− z)
)

. (7.219)

To determine the constants Cnm, we use the inhomogeneous boundary condition
u(x,y,0) = 1 in (7.219) to find

∞

∑
m=1

∞

∑
n=1

Cnm sin(nx)sin(my)sinh
(√

n2 + m2 π
)

= 1. (7.220)
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This gives

Cnm sinh(
√

n2 + m2 π) =
4

π2

∫ π

0

∫ π

0
sin(nx)sin(my)dxdy,

=

{ 16
π2nm

for n,m odd

0 for n or m even

(7.221)

The solution is given by

u(x,y,z) =
8

π2

∞

∑
n=0

∞

∑
m=0

1
(2n + 1)(2m+ 1)

sin((2n + 1)x)sin((2m+ 1)y)

×sinh(
√

(2n + 1)2 +(2m+ 1)2(π− z)). (7.222)

Example 8. Use the method of separation of variables to solve the boundary value
problem

PDE uxx + uyy + uzz = 0, 0 < x,y,z < π ,
BC ux(0,y,z) = 0, ux(π,y,z) = 0,

uy(x,0,z) = 0, uy(x,π,z) = 0,

uz(x,y,0) = 0, uz(x,y,π) =
√

2sinh(
√

2π)cosxcosy.

(7.223)

Solution.

This equation is a Neumann problem in three dimensions. Following the tech-
niques used before gives

Fn(x) = cos(nx), n = 0,1,2,3 · · · , (7.224)

Gm(y) = cos(my), m = 0,1,2,3 · · · , (7.225)

Hnm(z) = cosh
(√

n2 + m2 z
)

. (7.226)

Using the superposition principle gives

u(x,y,z) = C0 +
∞

∑
m=1

∞

∑
n=1

Cnm cos(nx)cos(my)cosh
(√

n2 + m2 z
)

. (7.227)

Using the inhomogeneous boundary condition u(x,y,π) =
√

2sinh(
√

2π)cosxcosy
gives

C11 = 1, Cnm = 0, n �= 1,m �= 1. (7.228)

Accordingly, the solution is given in the form

u(x,y,z) = C0 + cosxcosycosh(
√

2z). (7.229)
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Exercises 7.4.2

Use the method of separation of variables to solve the following three dimensional
Laplace’s equations:

1. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = 0, u(x,y,π) = sinh(

√
5π)sinxsin(2y)

2. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = 0, u(x,y,π) = sinh(10π)sin(6x)sin(8y)

3. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = 0, u(x,y,π) = sinh(

√
8π)sin(2x)sin(2y)

4. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = sinh(

√
5π)sinxsin(2y), u(x,y,π) = 0

5. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = sinh(5π)sin(3x)sin(4y), u(x,y,π) = 0

6. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π ,z) = 0
u(x,y,0) = sinh(13π)sin(5x)sin(12y), u(x,y,π) = 0

7. uxx + uyy + uzz = 0, 0 < x,y,z < π
ux(0,y,z) = ux(π ,y,z) = 0
uy(x,0,z) = uy(x,π,z) = 0
uz(x,y,0) = 0, uz(x,y,π) =

√
5sinh(

√
5π)cosxcos(2y)

8. uxx + uyy + uzz = 0, 0 < x,y,z < π
ux(0,y,z) = ux(π ,y,z) = 0
uy(x,0,z) = uy(x,π,z) = 0
uz(x,y,0) = 0, uz(x,y,π) = 13sinh(13π)cos(5x)cos(12y)

9. uxx + uyy + uzz = 0, 0 < x,y,z < π
ux(0,y,z) = ux(π ,y,z) = 0
uy(x,0,z) = uy(x,π,z) = 0
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uz(x,y,0) =−5sinh(5π)cos(3x)cos(4y), uz(x,y,π) = 0

10. uxx + uyy + uzz = 0, 0 < x,y,z < π
ux(0,y,z) = ux(π ,y,z) = 0
uy(x,0,z) = uy(x,π ,z) = 0
uz(x,y,0) =−√8sinh(

√
8π)cos(2x)cos(2y), uz(x,y,π) = 0

11. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π,z) = 0
u(x,y,0) = sin8xsin15y, u(x,y,π) = cosh17π sin8xsin15y

12. uxx + uyy + uzz = 0, 0 < x,y,z < π
u(0,y,z) = u(π,y,z) = 0
u(x,0,z) = u(x,π,z) = sin3xsinh5z
u(x,y,0) = 0, u(x,y,π) = sinh5π sin3xcos4y

7.5 Laplace’s Equation in Polar Coordinates

In the last two sections we have studied the two dimensional Dirichlet problem for
a rectangle governed by the equation

uxx + uyy = 0. (7.230)

The boundary conditions are specified on the boundary of a rectangle. However, if
the domain of the solution u(x,y) is a disc or a circular annulus, it is useful to study
the two dimensional Laplace’s equation in polar coordinates. It is well known that
the polar coordinates (r,θ ) of any point are related to its Cartesian coordinates (x,y)
by the familiar formulas

x = r cosθ , y = r sin θ . (7.231)

Using these formulas along with the chain rule, the Laplace’s equation for a circular
domain becomes

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < a, 0 � θ � 2π . (7.232)

Recall that Laplace’s equation is a boundary value problem. Accordingly, the bound-
ary condition that describes the solution u(r,θ) at the circumference of a circular
domain should be specified. Therefore, we set the boundary condition for a disc by

u(a,θ ) = f (θ), 0 < r < a. (7.233)
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7.5.1 Laplace’s Equation for a Disc

In this part, we will study Laplace’s equation for a circular disc of radius a where
the top and the bottom faces of the disc are insulated. The boundary condition at the
circular edge is specified. The phenomenon that the temperature reaches a steady
state inside the disc is governed by the Laplace’s equation in polar coordinates [8],
and expressed by the boundary value problem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < a, 0 � θ � 2π,

BC u(a,θ ) = f (θ ).
(7.234)

Two important facts should be taken into consideration, namely:
1. the solution u(r,θ) should be bounded at r = 0.
2. the solution u(r,θ ) should be periodic with period 2π . This means that u(r,θ +
2π) = u(r,θ).

It is interesting to point out that these facts are not really boundary conditions.
The solution u(r,θ ) being bounded at r = 0 and the periodicity of the solution u(r,θ )
play a major role in determining the solution. In addition, the boundary condition
f (θ ) must be periodic with period 2π . Also note that the coefficients 1

r and 1
r2

become infinite at r = 0, hence r = 0 is excluded from the domain of the solution.
To solve (7.234), we use the method of separation of variables, hence we set

u(r,θ ) in the form
u(r,θ ) = F(r)G(θ ). (7.235)

This gives
ur(r,θ ) = F ′(r)G(θ ),

urr(r,θ ) = F ′′(r)G(θ),
uθθ (r,θ ) = F(r)G′′(θ).

(7.236)

Substituting (7.236) into the PDE of (7.234) gives

F ′′(r)G(θ)+
1
r

F ′(r)G(θ)+
1
r2 F(r)G′′(θ ) = 0. (7.237)

Dividing both sides of (7.237) by F(r)G(θ) yields

G′′(θ)

G(θ )
=−

(
r2 F ′′(r)

F(r)
+ r

F ′(r)
F(r)

)
. (7.238)

It is well known now that the equality holds only if each side is equal to the same
constant. Therefore, we set

G′′(θ )

G(θ )
=−λ 2, (7.239)

so that

−
(

r2 F ′′(r)
F(r)

+ r
F ′(r)
F(r)

)
=−λ 2. (7.240)



7.5 Laplace’s Equation in Polar Coordinates 269

This gives the second order differential equations

G′′(θ )+ λ 2G(θ ) = 0, (7.241)

and
r2F ′′(r)+ rF ′(r)−λ 2F(r) = 0. (7.242)

Equation (7.241) gives the solution

G(θ) = Acos(λ θ)+ Bsin(λ θ ). (7.243)

As mentioned earlier, u(r,θ) is periodic, and hence, so is G(θ ). Accordingly, the
periodicity implies that

λn = n, n = 0,1,2, · · · . (7.244)

Notice that n = 0 is included in our values for n since it results in a constant, which
is also periodic. In view of (7.244), equation (7.243) becomes

Gn(θ ) = An cos(nθ)+ Bn sin(nθ ), n = 0,1,2, · · · . (7.245)

Substituting λn = n into (7.242) gives

r2F ′′(r)+ rF ′(r)−n2F(r) = 0. (7.246)

Equation (7.246) is the well-known second order Euler ordinary differential equa-
tion with general solution given by

F0(r) = C0 + D0 lnr, (7.247)

and
Fn(r) = Cnrn + Dnr−n, n = 1,2,3, · · · . (7.248)

It is important to recall that u(r,θ ), and hence F(r) should be bounded at r = 0.
However, each of the components lnr in (7.247) and r−n in (7.248) approaches
infinity at r = 0. This means that we must set

D0 = Dn = 0, (7.249)

so that u(r,θ ) becomes bounded at r = 0. Combining (7.247) – (7.249) gives the
general solutions of Euler equation (7.246) by

Fn(r) = Cnrn, n = 0,1,2, · · · . (7.250)

Using the superposition principle, and combining the results obtained above, we
find

u(r,θ ) = C0 +
∞

∑
n=1

rn (An cos(nθ)+ Bn sin(nθ )) , (7.251)

which is usually written in a more convenient equivalent form by
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u(r,θ) =
a0

2
+

∞

∑
n=1

(
r
a
)n (an cos(nθ )+ bn sin(nθ)) , (7.252)

simply by modifying the constants.
To determine the constants an,n � 0 and bn,n � 1, we use the boundary condition

u(a,θ ) = f (θ). Setting r = a in (7.252) gives

a0

2
+

∞

∑
n=1

(an cos(nθ )+ bn sin(nθ )) = f (θ). (7.253)

It is obvious that an and bn are Fourier coefficients, and therefore can be determined
by

an =
1
π

∫ π

−π
f (θ )cos(nθ )dθ , n = 0,1,2, · · · , (7.254)

and

bn =
1
π

∫ π

−π
f (θ )sin(nθ )dθ , n = 1,2, · · · . (7.255)

To determine the constants an and bn, Appendix A can be used to evaluate the inte-
grals in (7.254) and in (7.255).

However, the constants an and bn can also be determined by equating the coeffi-
cients of like terms if the boundary condition is given in terms of sines and cosines
as discussed in previous chapters.

The technique discussed above will be illustrated by discussing the following
examples.

Example 1. Use the method of separation of variables to solve the Dirichlet problem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π,

BC u(1,θ ) = cos2θ .
(7.256)

Solution.

Using the method of separation of variables gives

G′′(θ )+ λ 2G(θ ) = 0, (7.257)

and
r2F ′′(r)+ rF ′(r)−λ 2F(r) = 0. (7.258)

The solution of (7.257) is given by

G(θ) = Acos(λ θ)+ Bsin(λ θ ). (7.259)

The periodicity of u(r,θ ) implies that

λn = n, n = 0,1,2, · · · . (7.260)
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Equation (7.259) becomes

Gn(θ ) = An cos(nθ)+ Bn sin(nθ ), n = 0,1,2, · · · . (7.261)

Substituting λn = n into (7.258) gives

r2F ′′(r)+ rF ′(r)−n2F(r) = 0, (7.262)

a second order Euler differential equation with the general solution given by

F0(r) = C0 + D0 lnr, (7.263)

and
Fn(r) = Cnrn + Dnr−n, n = 1,2,3, · · · . (7.264)

The essential fact that u(r,θ), and hence F(r) should be bounded at r = 0 means
that we must set

D0 = Dn = 0, n = 1,2,3 (7.265)

This gives the general solutions of (7.262) by

Fn(r) = Cnrn, n = 0,1,2, · · · . (7.266)

Using the superposition principle and proceeding as before, we find

u(r,θ ) =
a0

2
+

∞

∑
n=1

rn (an cos(nθ)+ bn sin(nθ)) . (7.267)

To determine the constants an,n � 0 and bn,n � 1, set r = 1 in (7.267) and using the
boundary condition, we obtain

a0

2
+

∞

∑
n=1

(an cos(nθ )+ bn sin(nθ)) =
1
2

+
1
2

cos(2θ ), (7.268)

where the identity

cos2θ =
1
2

+
1
2

cos(2θ) (7.269)

was used. Expanding the series in (7.268) and equating the coefficients of like terms
in both sides we find

a0 = 1, (7.270)

a2 =
1
2

(7.271)

and
an = 0, n �= 0,2,
bn = 0, n = 1,2,3, · · · . (7.272)

This gives the particular solution by
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u(r,θ ) =
1
2

+
1
2

r2 cos(2θ). (7.273)

Example 2. Use the method of separation of variables to solve the Dirichlet problem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π,

BC u(1,θ ) = 2sin2θ + sinθ .

(7.274)

Solution.

We first set u(r,θ) in the form

u(r,θ ) = F(r)G(θ ). (7.275)

Substituting (7.275) into the PDE of (7.274) and proceeding as before we obtain

u(r,θ ) =
a0

2
+

∞

∑
n=1

rn (an cos(nθ)+ bn sin(nθ)) . (7.276)

To determine the constants an,n � 0 and bn,n � 1, we substitute r = 1 in (7.276)
and we use the boundary condition, we obtain

a0

2
+

∞

∑
n=1

(an cos(nθ )+ bn sin(nθ )) = 1− cos(2θ )+ sinθ , (7.277)

where the identity

sin2θ =
1
2
− 1

2
cos(2θ), (7.278)

was used. Expanding the series in (7.277) and equating the coefficients of like terms
in both sides we find

a0 = 2, a2 =−1, b1 = 1, (7.279)

where each of the remaining coefficients is zero. Hence, the particular solution is
given by

u(r,θ ) = 1− r2 cos(2θ)+ r sinθ . (7.280)

Example 3. Use the method of separation of variables to solve the Dirichlet problem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π,

BC u(1,θ ) =| 2θ | .
(7.281)

Solution.

We first set u(r,θ) in the form

u(r,θ ) = F(r)G(θ ). (7.282)
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Substituting (7.282) into the PDE of (7.281) and proceeding as before we obtain

u(r,θ ) =
a0

2
+

∞

∑
n=1

rn (an cos(nθ)+ bn sin(nθ)) . (7.283)

To determine the constants an,n � 0 and bn,n � 1, we substitute r = 1 in (7.283)
and by using the boundary condition, we obtain

a0

2
+

∞

∑
n=1

(an cos(nθ )+ bn sin(nθ )) =| 2θ | . (7.284)

The Fourier coefficients can be determined by using the formulas (7.254) and
(7.255). For a0, we find

a0 =
1
π

∫ π

−π
| 2θ | dθ ,

=
1
π

(∫ 0

−π
−2θdθ +

∫ π

0
2θdθ

)
= 2π ,

(7.285)

an =
1
π

∫ π

−π
| 2θ | cos(nθ )dθ ,

= − 8
πn2 , for n odd, 0 otherwise,

(7.286)

and

bn =
1
π

∫ π

−π
| 2θ ) | sin(nθ )dθ ,

= 0.
(7.287)

Therefore, the solution is given by

u(r,θ ) = π− 8
π

∞

∑
k=0

1
(2k + 1)2 r2k+1 cos(2k + 1)θ . (7.288)

The boundary condition u(1,θ) = |2θ | can be justified by using Appendix F.

Example 4. Use the method of separation of variables to solve the Neumann prob-
lem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π,

BC ur(1,θ ) = 2cos(2θ).

(7.289)

Solution.

Note that a Neumann boundary condition is given. Recall that the solution will
be determined up to an arbitrary constant, hence the solution is not unique. We first
set u(r,θ ) in the form
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u(r,θ ) = F(r)G(θ ). (7.290)

Substituting (7.290) into the PDE of (7.289) and proceeding as before we obtain

u(r,θ ) =
a0

2
+

∞

∑
n=1

rn (an cos(nθ)+ bn sin(nθ)) . (7.291)

To determine the constants an,n � 0 and bn,n � 1, we set r = 1 in the derivative of
(7.291) and by using the boundary condition, we obtain

∞

∑
n=1

n(an cos(nθ)+ bn sin(nθ )) = 2cos(2θ ). (7.292)

Expanding the series in (7.292) and equating the coefficients of like terms in both
sides we find

a2 = 1 (7.293)

where each of the remaining coefficients is zero. Hence, the particular solution is
given by

u(r,θ) = C0 + r2 cos(2θ ), (7.294)

where C0 is an arbitrary constant.

Exercises 7.5.1

Use the method of separation of variables to solve the following Laplace’s equa-
tions:

1.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

u(1,θ ) = 2 + 3sinθ + 4cosθ

2.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

u(1,θ ) = 2cos2(2θ )

3.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

u(1,θ ) = 2sin2(3θ )

4.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

u(1,θ ) = sin(2θ )+ cos(2θ )
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5.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = 8sin4θ

6.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = sinθ − cosθ

7.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = 2sin(2θ )

8.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = 3cos(3θ)

9.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = 2sin(2θ )+ 3cos(3θ)

10.
∂ 2u
∂ r2 +

1
r

∂ u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < r < 1, 0 � θ � 2π

ur(1,θ ) = 2cos(2θ )

7.5.2 Laplace’s Equation for an Annulus

In this part, we will study the Laplace’s equation in the domain lying between the
concentric circles K1 and K2 of radii a and b where 0 < a < b. In other words,
the domain of the solution includes two circular edges, an interior boundary with
radius r1 = a and an exterior boundary with radius r2 = b. As a result, two boundary
conditions should be specified in this case.

The Laplace’s equation for an annulus is therefore defined by the boundary value
problem

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 0 < a < r < b, 0 � θ � 2π,

BC u(a,θ ) = f (θ ), u(b,θ) = g(θ).
(7.295)

It is essential to note that u(r,θ ) must be periodic with period 2π . This means that
u(r,θ +2π) = u(r,θ ). Accordingly, the boundary conditions f (θ) and g(θ) must be
periodic with period 2π . Moreover, we do not claim that u(r,θ ) is bounded at r = 0.
This is due to the fact that a < r < b, and r will never be 0.
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We begin our analysis by seeking a solution expressed as a product of two dis-
tinct functions, where each function depends on one variable only. The method of
separation of variables suggests that

u(r,θ ) = F(r)G(θ ). (7.296)

Substituting in (7.295) gives

G′′(θ )

G(θ )
=−

(
r2 F ′′(r)

F(r)
+ r

F ′(r)
F(r)

)
=−λ 2. (7.297)

This gives the differential equations

G′′(θ )+ λ 2G(θ ) = 0, (7.298)

and
r2F ′′(r)+ rF ′(r)−λ 2F(r) = 0. (7.299)

Equation (7.298) gives the solution

G(θ) = Acos(λ θ)+ Bsin(λ θ ). (7.300)

As mentioned earlier, u(r,θ) is periodic, and hence, so is G(θ ). Accordingly, the
periodicity implies that

λn = n, n = 0,1,2, · · · . (7.301)

Notice that n = 0 is included in our values for n since it results in a constant, which
is also periodic. In view of (7.301), Eq. (7.300) becomes

Gn(θ ) = An cos(nθ)+ Bn sin(nθ ), n = 0,1,2, · · · . (7.302)

Substituting λn = n into (7.299) gives

r2F ′′(r)+ rF ′(r)−n2F(r) = 0. (7.303)

Equation (7.303) is the well-known second order Euler ordinary differential equa-
tion with general solution given by

F0(r) =
1
2
(C0 + D0 lnr), (7.304)

and
Fn(r) = Cnrn + Dnr−n, n = 1,2,3, · · · . (7.305)

Using the superposition principle, the general solution is given by

u(r,θ ) =
1
2
(a0 + b0 lnr)



7.5 Laplace’s Equation in Polar Coordinates 277

+
∞

∑
n=1

(
(anrn + bnr−n)cos(nθ)+ (cnrn + dnr−n)sin(nθ )

)
, (7.306)

where an,bn,cn and dn are constants.
Using the boundary conditions, we first set r = b into (7.306) to obtain

1
2
(a0 + b0 lnb)

+
∞

∑
n=1

(
(anbn + bnb−n)cos(nθ )+ (cnbn + dnb−n)sin(nθ )

)
= g(θ). (7.307)

The Fourier coefficients are thus given by

a0 + b0 lnb =
1
π

∫ π

−π
g(θ )dθ , (7.308)

anbn + bnb−n =
1
π

∫ π

−π
g(θ )cos(nθ )dθ , (7.309)

cnbn + dnb−n =
1
π

∫ π

−π
g(θ )sin(nθ )dθ . (7.310)

Substituting r = a into (7.306) gives

1
2
(a0 + b0 lna)

+
∞

∑
n=1

(
(anan + bna−n)cos(nθ)+ (cnan + dna−n)sin(nθ )

)
= f (θ ), (7.311)

so that the Fourier coefficients are given by

a0 + b0 lna =
1
π

∫ π

−π
f (θ)dθ , (7.312)

anan + bna−n =
1
π

∫ π

−π
f (θ)cos(nθ)dθ , (7.313)

cnan + dna−n =
1
π

∫ π

−π
f (θ)sin(nθ )dθ . (7.314)

Solving (7.308) and (7.312) for a0 and b0, (7.309) and (7.313) for an and bn, and
(7.310) and (7.314) for cn and dn completes the determination of the constants
a0,b0,an,bn,cn, and dn. This gives the formal solution of Laplace’s equation for
a circular annulus.

For simplicity reasons, the following illustrative examples will include the bound-
ary conditions in terms of sines and cosines so as to equate the coefficients of both
sides as applied before.

Example 5. Use the method of separation of variables to solve the following Dirich-
let problem for an annulus:
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PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π,

BC u(1,θ ) =
1
2

+ sinθ , u(2,θ) =
1
2

+
1
2

ln2 + cosθ .

(7.315)

Solution.

Following the procedure outlined above, we set

u(r,θ ) = F(r)G(θ ). (7.316)

Substituting in the PDE of (7.315) and using the periodicity condition give

u(r,θ ) =
1
2
(a0 + b0 lnr)

+
∞

∑
n=1

(
(anrn + bnr−n)cos(nθ)+ (cnrn + dnr−n)sin(nθ )

)
. (7.317)

We first set r = 1 into (7.317) and use the related boundary condition give

1
2

a0 +
∞

∑
n=1

((an + bn)cos(nθ)+ (cn + dn)sin(nθ )) =
1
2

+ sinθ . (7.318)

Expanding the series at the left side, and equating the coefficients of like terms on
both sides give

a0 = 1, (7.319)

an + bn = 0, n � 1, (7.320)

c1 + d1 = 1, cn + dn = 0, n > 1. (7.321)

We next set r = 2 into (7.317), using the related boundary condition give

1
2

a0 +
1
2

b0 ln2 +
∞

∑
n=1

(
(an2n + bn2−n)cos(nθ)+ (cn2n + dn2−n)sin(nθ )

)
(7.322)

=
1
2

+
1
2

ln2 + cosθ

Expanding the series at the left side, and equating the coefficients of like terms
on both sides we obtain

b0 = 1, (7.323)

2a1 +
1
2

b1 = 1, 2nan + 2−nbn = 0, n > 1, (7.324)

2ncn + 2−ndn = 0, n � 1. (7.325)

Equations (7.319) and (7.324) give
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a0 = 1, b0 = 1. (7.326)

Equations (7.320) and (7.324) give

a1 =
2
3
, b1 =−2

3
. (7.327)

Equations (7.321) and (7.325) give

c1 =−1
3
, d1 =

4
3
, (7.328)

where all other coefficients vanish. Accordingly, the solution is given by

u(r,θ) =
1
2

+
1
2

lnr +(
2
3

r− 2
3

r−1)cosθ +(−1
3

r +
4
3

r−1)sinθ , (7.329)

obtained upon substituting (7.326) – (7.328) into (7.317).

Example 6. Use the method of separation of variables to solve the following Dirich-
let problem for an annulus:

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < e, 0 � θ � 2π ,

BC u(1,θ ) =
1
2

+ 4cosθ ,

u(e,θ) = 1 + 4cosh1cosθ + 4sinh1sinθ .

(7.330)

Solution.

Following the procedure outlined above, we find

u(r,θ ) =
1
2
(a0 + b0 lnr)

+
∞

∑
n=1

(
(anrn + bnr−n)cos(nθ)+ (cnrn + dnr−n)sin(nθ )

)
. (7.331)

Substituting r = 1 into (7.331) and using the related boundary condition give

1
2

a0 +
∞

∑
n=1

((an + bn)cos(nθ )+ (cn + dn)sin(nθ)) =
1
2

+ 4cosθ . (7.332)

Expanding the series at the left side, and equating the coefficients of like terms on
both sides we obtain

a0 = 1, (7.333)

a1 + b1 = 4, an + bn = 0, n > 1, (7.334)

cn + dn = 0, n � 1, (7.335)
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Substituting r = e into (7.331) and using the related boundary condition give

1
2

a0 +
1
2

b0 +
∞

∑
n=1

(
(anen + bne−n)cos(nθ)+ (cnen + dne−n)sin(nθ )

)
= 1 + 4cosh1cosθ + 4sinh1sinθ . (7.336)

Expanding the series at the left side, and equating the coefficients of like terms on
both sides we obtain

1
2

a0 +
1
2

b0 = 1, (7.337)

ea1 + e−1b1 = 2(e + e−1), anen + bne−n = 0, n > 1, (7.338)

ec1 + e−1d1 = 2(e− e−1), cnen + dne−n = 0, n > 1. (7.339)

Equations (7.333) and (7.337) give

a0 = 1, b0 = 1. (7.340)

Equations (7.334) and (7.338) give

a1 = 2, b1 = 2. (7.341)

Equations (7.335) and (7.339) give

c1 = 2, d1 =−2, (7.342)

and all other coefficients vanish. Accordingly, the solution is given by

u(r,θ ) =
1
2

+
1
2

lnr + 2(r + r−1)cosθ + 2(r− r−1)sinθ . (7.343)

Example 7. Use the method of separation of variables to solve the following Neu-
mann problem for an annulus:

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π,

BC ur(1,θ ) = 1, ur(2,θ ) =
1
2

+
3
4

cosθ .
(7.344)

Solution.

Note that this is a Neumann problem for an annulus. Following the procedure
outlined above, we find

u(r,θ ) =
1
2
(a0 + b0 lnr)

+
∞

∑
n=1

(
(anrn + bnr−n)cos(nθ)+ (cnrn + dnr−n)sin(nθ )

)
. (7.345)
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We first set r = 1 into the derivative of (7.345) and use the related boundary condi-
tion to obtain

1
2

b0 +
∞

∑
n=1

((nan−nbn)cos(nθ )+ (ncn−ndn)sin(nθ )) = 1. (7.346)

Expanding the series at the left side, and equating the coefficients of like terms on
both sides we obtain

b0 = 2, (7.347)

an−bn = 0, n � 1, (7.348)

cn−dn = 0, n � 1. (7.349)

We next set r = 2 into the derivative of (7.345), using the related boundary condition,
and equating the coefficients of like terms on both sides we obtain

b0 = 2, (7.350)

a1− 1
4

b1 =
3
4
, n > 1, (7.351)

n(2n−1cn−2−n−1dn) = 0, n � 1, (7.352)

Proceeding as before we find

b0 = 2,
a1 = 1, b1 = 1.

(7.353)

Note that other coefficients vanish. Accordingly, the solution is given by

u(r,θ) = C0 + lnr +(r + r−1)cosθ . (7.354)

Example 8. Use the method of separation of variables to solve the following Neu-
mann problem for an annulus:

PDE
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π,

BC ur(1,θ ) = 0, ur(2,θ ) =
3
4

cosθ +
3
4

sinθ .
(7.355)

Solution.

Following the procedure outlined above, we find

u(r,θ ) =
1
2
(a0 + b0 lnr)

+
∞

∑
n=1

(
(anrn + bnr−n)cos(nθ)+ (cnrn + dnr−n)sin(nθ )

)
, (7.356)
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Using the boundary condition at r = 1 gives condition give

1
2

b0 +
∞

∑
n=1

(n(an−bn)cos(nθ )+ n(cn−dn)sin(nθ )) = 0, (7.357)

that gives
b0 = 0, an−bn = 0, cn−dn = 0, n � 1, (7.358)

Using the boundary condition at r = 2 and proceeding as before we obtain

b0 = 0, a1− 1
4

b1 =
3
4
, c1− 1

4
d1 =

3
4
. (7.359)

Solving the last equations gives

b0 = 0, a1 = 1, b1 = 1, c1 = 1, d1 = 1, (7.360)

and all other coefficients vanish. Accordingly, the solution is given by

u(r,θ ) = C0 +(r + r−1)cosθ +(r + r−1)sin θ . (7.361)

Exercises 7.5.2

Use the method of separation of variables to solve the following Laplace’s equa-
tions:

1.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < e, 0 � θ � 2π

u(1,θ ) = 1, u(e,θ) = 2 + 2sinh1(cosθ + sinθ)

2.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < e, 0 � θ � 2π

u(1,θ ) = 1 + cosθ + sinθ , u(e,θ ) = 2 + e(cosθ + sinθ )

3.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

u(1,θ ) = 1, u(2,θ ) = 1 + 1.5sinθ

4.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

u(1,θ ) = 1− cosθ − sinθ , u(2,θ ) = 1 + cosθ + sinθ

5.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < e2, 0 � θ � 2π
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u(1,θ ) = 1, u(e2,θ ) = 3 + 2sinh2cosθ

6.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < e2, 0 � θ � 2π

u(1,θ ) = 1, u(e2,θ ) = 3 + 2sinh2sinθ

7.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0,

1
2

< r < 1, 0 � θ � 2π

ur(
1
2
,θ ) = 2−3sinθ , ur(1,θ ) = 1

8.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0,

1
2

< r < 1, 0 � θ � 2π

ur(
1
2
,θ ) = 5cosθ , ur(1,θ ) = 2cosθ

9.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

ur(1,θ ) = sinθ , ur(2,θ ) = 2.5sinθ

10.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

ur(1,θ ) = 1, ur(2,θ ) =
1
2

+
3
4

cosθ +
3
4

sinθ

11.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

ur(1,θ ) = 4cosθ , ur(2,θ ) = 2.5cosθ

12.
∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
1
r2

∂ 2u
∂θ 2 = 0, 1 < r < 2, 0 � θ � 2π

ur(1,θ ) = sinθ , ur(2,θ) = 2.5sinθ
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Chapter 8

Nonlinear Partial Differential Equations

8.1 Introduction

So far in this text we have been mainly concerned in applying classic methods, the
Adomian decomposition method [3–5], and the variational iteration method [8–10]
in studying first order and second order linear partial differential equations. In this
chapter, we will focus our study on the nonlinear partial differential equations. The
nonlinear partial differential equations arise in a wide variety of physical problems
such as fluid dynamics, plasma physics, solid mechanics and quantum field theory.
Systems of nonlinear partial differential equations have been also noticed to arise in
chemical and biological applications. The nonlinear wave equations and the solitons
concept have introduced remarkable achievements in the field of applied sciences.
The solutions obtained from nonlinear wave equations are different from the solu-
tions of the linear wave equations [1–2].

Recently, a special type of KdV equation has been under a thorough investi-
gation and new phenomenon was observed. It was discovered that when the wave
dispersion is purely nonlinear, some features may be observed which is the existence
of the so-called compactons: solitons with finite wave length [12]. As will be dis-
cussed in Chapter 9, solitons appear as a result of balance between weak nonlinearity
and dispersion. The characteristics of the solitons and the compactons concepts will
be addressed in Chapter 11.

It is important to note that several traditional methods, such as the method of
characteristics and the variational principle, are among the methods that are used to
handle the nonlinear partial differential equations. Moreover, nonlinear partial dif-
ferential equations are not easy to handle especially if the questions of uniqueness
and stability of solutions are to be discussed. It is interesting to point out that the
superposition principle, that we used for the linear partial differential equations, can-
not be applied to nonlinear partial differential equations. For this reason numerical
solutions are usually established for nonlinear partial differential equations.

It is well known that a general method for determining analytical solutions
for partial differential equations has not been found among traditional methods.
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However, we believe that the Adomian decomposition method, the noise terms
phenomenon [13], and the related modification [14] presented in previous chap-
ters provide an effective, reliable, and powerful tool for handling nonlinear partial
differential equations. Moreover, the variational iteration method gives an effective
tool to handle nonlinear partial differential equations without any need to the so-
called Adomian polynomials.

In Chapter 2, a detailed outline about the works conducted on Adomian’s method,
the implementation of this method to many scientific models and frontier physics
problems, and the comparisons of this method with existing techniques were in-
troduced. The convergence concept of the decomposition series was thoroughly in-
vestigated by many researchers to confirm the rapid convergence of the resulting
series. Cherruault examined the convergence of Adomian’s method in [6]. In addi-
tion, Cherruault and Adomian presented a new proof of convergence of the method
in [7].

However, Adomian decomposition method does not assure on its own existence
and uniqueness of the solution. In fact, it can be safely applied when a fixed point
theorem holds. A theorem developed by Re’paci [11] indicates that the decompo-
sition method can be used as an algorithm for the approximation of the dynami-
cal response in a sequence of time intervals [0,t1), [t1,t2), · · · , [tn−1,T ) such that the
condition at tp is taken as initial condition in the interval [tp,tp+1) which follows.

Unlike the preceding chapters, we will apply only the Adomian decomposition
method, all related phenomena, and the variational iteration method in discussing
the topic of nonlinear partial differential equations. This is due to the fact that the
methods are efficient in that these two methods provide the solution in a rapidly
convergent series and reduce the volume of computational work.

The nonlinear partial differential equation was defined in Chapter 1. The first
order nonlinear partial differential equation in two independent variables x and y
can be generally expressed in the form

F(x,y,u,ux,uy) = f , (8.1)

where f is a function of one or two of the independent variables x and y. Similarly,
the second order nonlinear partial differential equation in two independent variables
x and y can be expressed by

F(x,y,u,ux,uy,uxx,uxy,uyy) = f . (8.2)

The nonlinear partial differential equation is called homogeneous if f = 0, and inho-
mogeneous if f �= 0. Examples of the first order nonlinear partial differential equa-
tions are given by

ut + 2uux = 0, (8.3)

ux−u2uy = 0, (8.4)

ux + uuy = 6x, (8.5)

ut + uux = sinx, (8.6)
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Note that Eqs. (8.3) and (8.4) are homogeneous equations. On the other hand,
equations (8.5) and (8.6) are inhomogeneous equations. Examples of second order
nonlinear partial differential equations are given by

ut + uux−νuxx = 0, (8.7)

utt − c2uxx + sinu = 0. (8.8)

On the other hand, the modified Korteweg-de Vries equation

ut −6u2ux + uxxx = 0, (8.9)

is an example of a third order nonlinear homogeneous partial differential equation.
In the following section, the Adomian decomposition method will be presented

for finding analytical solutions of nonlinear partial differential equations, homoge-
neous or inhomogeneous.

8.2 Adomian Decomposition Method

The Adomian decomposition method has been outlined before in previous chapters
and has been applied to a wide class of linear partial differential equations. The
method has been applied directly and in a straightforward manner to homogeneous
and inhomogeneous problems without any restrictive assumptions or linearization.
The method usually decomposes the unknown function u into an infinite sum of
components that will be determined recursively through iterations as discussed be-
fore.

The Adomian decomposition method will be applied in this chapter and in the
coming chapters to handle nonlinear partial differential equations. An important
remark should be made here concerning the representation of the nonlinear terms
that appear in the equation. Although the linear term u is expressed as an infinite
series of components, the Adomian decomposition method requires a special repre-
sentation for the nonlinear terms such as u2,u3,u4,sinu,eu,uux,u2

x , etc. that appear
in the equation. The method introduces a formal algorithm to establish a proper
representation for all forms of nonlinear terms. The representation of the nonlinear
terms is necessary to handle the nonlinear equations in an effective and successful
way.

In the following, the Adomian scheme for calculating representation of nonlinear
terms will be introduced in details. The discussion will be supported by several
illustrative examples that will cover a wide variety of forms of nonlinearity. In a
like manner, an alternative algorithm for calculating Adomian polynomials will be
outlined in details supported by illustrative examples.



288 8 Nonlinear Partial Differential Equations

8.2.1 Calculation of Adomian Polynomials

It is well known now that Adomian decomposition method suggests that the un-
known linear function u may be represented by the decomposition series

u =
∞

∑
n=0

un, (8.10)

where the components un,n � 0 can be elegantly computed in a recursive way.
However, the nonlinear term F(u), such as u2,u3,u4, sinu,eu,uux,u2

x , etc. can be
expressed by an infinite series of the so-called Adomian polynomials An given in
the form

F(u) =
∞

∑
n=0

An(u0,u1,u2, · · · ,un), (8.11)

where the so-called Adomian polynomials An can be evaluated for all forms of
nonlinearity. Several schemes have been introduced in the literature by researchers
to calculate Adomian polynomials. Adomian introduced a scheme for the calcu-
lation of Adomian polynomials that was formally justified. An alternative reliable
method that is based on algebraic and trigonometric identities and on Taylor series
has been developed and will be examined later. The alternative method employs
only elementary operations and does not require specific formulas.

The Adomian polynomials An for the nonlinear term F(u) can be evaluated by
using the following expression

An =
1
n!

dn

dλ n

[
F

(
n

∑
i=0

λ i ui

)]
λ=0

, n = 0,1,2, · · · . (8.12)

The general formula (8.12) can be simplified as follows. Assuming that the nonlinear
function is F(u), therefore by using (8.12), Adomian polynomials [3] are given by

A0 = F(u0),
A1 = u1F ′(u0),

A2 = u2F ′(u0)+
1
2!

u2
1 F ′′(u0),

A3 = u3F ′(u0)+ u1u2F ′′(u0)+
1
3!

u3
1F ′′′(u0),

A4 = u4F ′(u0)+ (
1
2!

u2
2 + u1u3)F

′′(u0)+
1
2!

u2
1u2F ′′′(u0)+

1
4!

u4
1F(4)(u0).

(8.13)

Other polynomials can be generated in a similar manner.
Two important observations can be made here. First, A0 depends only on u0, A1

depends only on u0 and u1, A2 depends only on u0,u1 and u2, and so on. Second,
substituting (8.13) into (8.11) gives

F(u) = A0 + A1 + A2 + A3 + · · ·
= F(u0)+ (u1 + u2 + u3 + · · ·)F ′(u0)
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+
1
2!

(u2
1 + 2u1u2 + 2u1u3 + u2

2 + · · ·)F ′′(u0)+ · · ·

+
1
3!

(u3
1 + 3u2

1u2 + 3u2
1u3 + 6u1u2u3 + · · ·)F ′′′(u0)+ · · ·

= F(u0)+ (u−u0)F
′(u0)+

1
2!

(u−u0)
2F ′′(u0)+ · · · .

The last expansion confirms a fact that the series in An polynomials is a Taylor series
about a function u0 and not about a point as is usually used. The few Adomian
polynomials given above in (8.13) clearly show that the sum of the subscripts of the
components of u of each term of An is equal to n. As stated before, it is clear that A0

depends only on u0, A1 depends only u0 and u1, A2 depends only on u0,u1 and u2.
The same conclusion holds for other polynomials.

In the following, we will calculate Adomian polynomials for several forms of
nonlinearity that may arise in nonlinear ordinary or partial differential equations.

Calculation of Adomian Polynomials An

I. Nonlinear Polynomials

Case 1. F(u) = u2

The polynomials can be obtained as follows:

A0 = F(u0) = u2
0,

A1 = u1F ′(u0) = 2u0u1,

A2 = u2F ′(u0)+
1
2!

u2
1F ′′(u0) = 2u0u2 + u2

1,

A3 = u3F ′(u0)+ u1u2F ′′(u0)+
1
3!

u3
1F ′′′(u0) = 2u0u3 + 2u1u2.

Case 2. F(u) = u3

The polynomials are given by

A0 = F(u0) = u3
0,

A1 = u1F ′(u0) = 3u2
0u1,

A2 = u2F ′(u0)+
1
2!

u2
1F ′′(u0) = 3u2

0u2 + 3u0u2
1,

A3 = u3F ′(u0)+ u1u2F ′′(u0)+
1
3!

u3
1F ′′′(u0) = 3u2

0u3 + 6u0u1u2 + u3
1.

Case 3. F(u) = u4

Proceeding as before we find

A0 = u4
0,



290 8 Nonlinear Partial Differential Equations

A1 = 4u3
0u1,

A2 = 4u3
0u2 + 6u2

0u2
1,

A3 = 4u3
0u3 + 4u3

1u0 + 12u2
0u1u2.

In a parallel manner, Adomian polynomials can be calculated for nonlinear polyno-
mials of higher degrees.

II. Nonlinear Derivatives

Case 1. F(u) = (ux)
2

A0 = u2
0x

,

A1 = 2u0xu1x ,

A2 = 2u0xu2x + u2
1x

,

A3 = 2u0xu3x + 2u1xu2x .

Case 2. F(u) = u3
x

The Adomian polynomials are given by

A0 = u3
0x

,

A1 = 3u2
0x

u1x ,

A2 = 3u2
0x

u2x + 3u0xu
2
1x

,

A3 = 3u2
0x

u3x + 6u0xu1xu2x + u3
1x

.

Case 3. F(u) = uux =
1
2

Lx(u2)

The Adomian polynomials for this nonlinearity are given by

A0 = F(u0) = u0u0x ,

A1 =
1
2

Lx(2u0u1) = u0xu1 + u0u1x ,

A2 =
1
2

Lx(2u0u2 + u2
1) = u0xu2 + u1xu1 + u2xu0,

A3 =
1
2

Lx(2u0u3 + 2u1u2) = u0xu3 + u1xu2 + u2xu1 + u3xu0.

III. Trigonometric Nonlinearity

Case 1. F(u) = sinu

The Adomian polynomials for this form of nonlinearity are given by

A0 = sinu0,

A1 = u1 cosu0,
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A2 = u2 cosu0− 1
2!

u2
1 sinu0,

A3 = u3 cosu0−u1u2 sin u0− 1
3!

u3
1 cosu0.

Case 2. F(u) = cosu

Proceeding as before gives

A0 = cosu0,

A1 =−u1 sinu0,

A2 =−u2 sinu0− 1
2!

u2
1 cosu0,

A3 =−u3 sinu0−u1u2 cosu0 +
1
3!

u3
1 sinu0.

IV. Hyperbolic Nonlinearity

Case 1. F(u) = sinhu

The An polynomials for this form of nonlinearity are given by

A0 = sinhu0,

A1 = u1 coshu0,

A2 = u2 coshu0 +
1
2!

u2
1 sinhu0,

A3 = u3 coshu0 + u1u2 sinhu0 +
1
3!

u3
1 coshu0.

Case 2. F(u) = coshu

The Adomian polynomials are given by

A0 = coshu0,

A1 = u1 sinhu0,

A2 = u2 sinhu0 +
1
2!

u2
1 coshu0,

A3 = u3 sinhu0 + u1u2 coshu0 +
1
3!

u3
1 sinhu0.

V. Exponential Nonlinearity

Case 1. F(u) = eu

The Adomian polynomials for this form of nonlinearity are given by

A0 = eu0 ,

A1 = u1eu0 ,
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A2 = (u2 +
1
2!

u2
1)e

u0 ,

A3 = (u3 + u1u2 +
1
3!

u3
1)e

u0 .

Case 2. F(u) = e−u

Proceeding as before gives

A0 = e−u0 ,

A1 =−u1e−u0,

A2 = (−u2 +
1
2!

u2
1)e

−u0 ,

A3 = (−u3 + u1u2− 1
3!

u3
1)e

−u0 .

VI. Logarithmic Nonlinearity

Case 1. F(u) = lnu, u > 0

The An polynomials for logarithmic nonlinearity are give by

A0 = lnu0,

A1 =
u1

u0
,

A2 =
u2

u0
− 1

2
u2

1

u2
0
,

A3 =
u3

u0
− u1u2

u2
0

+
1
3

u3
1

u3
0

.

Case 2. F(u) = ln(1 + u),−1 < u � 1

The An polynomials are give by

A0 = ln(1 + u0),

A1 =
u1

1 + u0
,

A2 =
u2

1 + u0
− 1

2
u2

1

(1 + u0)2 ,

A3 =
u3

1 + u0
− u1u2

(1 + u0)2 +
1
3

u3
1

(1 + u0)3 .

8.2.2 Alternative Algorithm for Calculating Adomian Polynomials

It is worth noting that a considerable amount of research work has been invested
to develop an alternative method to Adomian algorithm for calculating Adomian
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polynomials An. The aim was to develop a practical technique that will calculate
Adomian polynomials in a practical way without any need to the formulae intro-
duced before. However, the methods developed so far in this regard are identical to
that used by Adomian.

We believe that a simple and reliable technique can be established to make the
calculations less dependable on the formulae presented before.

In the following, we will introduce an alternative algorithm that can be used to
calculate Adomian polynomials for nonlinear terms in an easy way. The newly de-
veloped method in [15–16] depends mainly on algebraic and trigonometric identities,
and on Taylor expansions as well. Moreover, we should use the fact that the sum of
subscripts of the components of u in each term of the polynomial An is equal to n.

The alternative algorithm suggests that we substitute u as a sum of components
un,n � 0 as defined by the decomposition method. It is clear that A0 is always de-
termined independent of the other polynomials An,n � 1, where A0 is defined by

A0 = F(u0). (8.14)

The alternative method assumes that we first separate A0 = F(u0) for every nonlinear
term F(u). With this separation done, the remaining components of F(u) can be ex-
panded by using algebraic operations, trigonometric identities, and Taylor series
as well. We next collect all terms of the expansion obtained such that the sum of
the subscripts of the components of u in each term is the same. Having collected
these terms, the calculation of the Adomian polynomials is thus completed. Several
examples have been tested, and the obtained results have shown that Adomian poly-
nomials can be elegantly computed without any need to the formulas established by
Adomian. The technique will be explained by discussing the following illustrative
examples.

Adomian Polynomials by Using the Alternative Method

I. Nonlinear Polynomials

Case 1. F(u) = u2

We first set

u =
∞

∑
n=0

un. (8.15)

Substituting (8.15) into F(u) = u2 gives

F(u) = (u0 + u1 + u2 + u3 + u4 + u5 + · · ·)2. (8.16)

Expanding the expression at the right hand side gives

F(u) = u2
0 + 2u0u1 + 2u0u2 + u2

1 + 2u0u3 + 2u1u2 + · · · . (8.17)
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The expansion in (8.17) can be rearranged by grouping all terms with the sum of the
subscripts is the same. This means that we can rewrite (8.17) as

F(u) = u2
0︸︷︷︸

A0

+2u0u1︸ ︷︷ ︸
A1

+2u0u2 + u2
1︸ ︷︷ ︸

A2

+2u0u3 + 2u1u2︸ ︷︷ ︸
A3

+ 2u0u4 + 2u1u3 + u2
2︸ ︷︷ ︸

A4

+2u0u5 + 2u1u4 + 2u2u3︸ ︷︷ ︸
A5

+ · · · . (8.18)

This completes the determination of Adomian polynomials given by

A0 = u2
0,

A1 = 2u0u1,

A2 = 2u0u2 + u2
1,

A3 = 2u0u3 + 2u1u2,

A4 = 2u0u4 + 2u1u3 + u2
2,

A5 = 2u0u5 + 2u1u4 + 2u2u3.

Case 2. F(u) = u3

Proceeding as before, we set

u =
∞

∑
n=0

un. (8.19)

Substituting (8.19) into F(u) = u3 gives

F(u) = (u0 + u1 + u2 + u3 + u4 + u5 + · · ·)3. (8.20)

Expanding the right hand side yields

F(u) = u3
0 + 3u2

0u1 + 3u2
0u2 + 3u0u2

1 + 3u2
0u3 + 6u0u1u2 + u3

1
+ 3u2

0u4 + 3u2
1u2 + 3u2

2u0 + 6u0u1u3 · · · . (8.21)

The expansion in (8.21) can be rearranged by grouping all terms with the sum of the
subscripts is the same. This means that we can rewrite (8.21) as

F(u) = u3
0︸︷︷︸

A0

+3u2
0u1︸ ︷︷ ︸

A1

+3u2
0u2 + 3u0u2

1︸ ︷︷ ︸
A2

+3u2
0u3 + 6u0u1u2 + u3

1︸ ︷︷ ︸
A3

+ 3u2
0u4 + 3u2

1u2 + 3u2
2u0 + 6u0u1u3︸ ︷︷ ︸

A4

+ · · · . (8.22)

Consequently, Adomian polynomials can be written by

A0 = u3
0,

A1 = 3u2
0u1,

A2 = 3u2
0u2 + 3u0u2

1,
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A3 = 3u2
0u3 + 6u0u1u2 + u3

1,

A4 = 3u2
0u4 + 3u2

1u2 + 3u2
2u0 + 6u0u1u3.

II. Nonlinear Derivatives

Case 1. F(u) = u2
x

We first set

ux =
∞

∑
n=0

unx . (8.23)

Substituting (8.23) into F(u) = u2
x gives

F(u) = (u0x + u1x + u2x + u3x + u4x + · · ·)2. (8.24)

Squaring the right side gives

F(u) = u2
0x

+ 2u0xu1x + 2u0xu2x + u2
1x

+ 2u0xu3x + 2u1xu2x + · · · . (8.25)

Grouping the terms as discussed above we find

F(u) = u2
0x︸︷︷︸

A0

+2u0xu1x︸ ︷︷ ︸
A1

+2u0xu2x + u2
1x︸ ︷︷ ︸

A2

+ 2u0xu3x + 2u1xu2x︸ ︷︷ ︸
A3

+u2
2x

+ 2u0xu4x + 2u1xu3x︸ ︷︷ ︸
A4

+ · · · . (8.26)

Adomian polynomials are given by

A0 = u2
0x

,

A1 = 2u0xu1x,

A2 = 2u0xu2x + u2
1x

,

A3 = 2u0xu3x + 2u1xu2x ,

A4 = 2u0xu4x + 2u1xu3x + u2
2x

.

Case 2. F(u) = uux

We first set

u =
∞

∑
n=0

un,

ux =
∞

∑
n=0

unx .
(8.27)

Substituting (8.27) into F(u) = uux yields

F(u) = (u0 + u1 + u2 + u3 + u4 + · · ·)×
(u0x + u1x + u2x + u3x + u4x + · · ·). (8.28)
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Multiplying the two factors gives

F(u) = u0u0x + u0xu1 + u0u1x + u0xu2 + u1xu1 + u2xu0 + u0xu3

+ u1xu2 + u2xu1 + u3xu0 + u0xu4 + u0u4x + u1xu3

+ u1u3x + u2u2x + · · · .
(8.29)

Proceeding with grouping the terms we obtain

F(u) = u0xu0︸ ︷︷ ︸
A0

+u0xu1 + u1xu0︸ ︷︷ ︸
A1

+u0xu2 + u1xu1 + u2xu0︸ ︷︷ ︸
A2

+ u0xu3 + u1xu2 + u2xu1 + u3xu0︸ ︷︷ ︸
A3

+ u0xu4 + u1xu3 + u2xu2 + u3xu1 + u4xu0︸ ︷︷ ︸
A4

+ · · · .
(8.30)

It then follows that Adomian polynomials are given by

A0 = u0xu0,

A1 = u0xu1 + u1xu0,

A2 = u0xu2 + u1xu1 + u2xu0,

A3 = u0xu3 + u1xu2 + u2xu1 + u3xu0,

A4 = u0xu4 + u1xu3 + u2xu2 + u3xu1 + u4xu0.

III. Trigonometric Nonlinearity

Case 1. F(u) = sinu

Note that algebraic operations cannot be applied here. Therefore, our main aim is to
separate A0 = F(u0) from other terms. To achieve this goal, we first substitute

u =
∞

∑
n=0

un, (8.31)

into F(u) = sinu to obtain

F(u) = sin[u0 +(u1 + u2 + u3 + u4 + · · ·)]. (8.32)

To calculate A0, recall the trigonometric identity

sin(θ +φ) = sinθ cosφ + cosθ sinφ . (8.33)

Accordingly, Equation (8.32) becomes

F(u) = sinu0 cos(u1 + u2 + u3 + u4 + · · ·)
+ cosu0 sin(u1 + u2 + u3 + u4 + · · ·). (8.34)
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Separating F(u0) = sinu0 from other factors and using Taylor expansions for
cos(u1 + u2 · · ·) and sin(u1 + u2 + · · ·) give

F(u) = sinu0

(
1− 1

2!
(u1 + u2 + · · ·)2 +

1
4!

(u1 + u2 + · · ·)4−·· ·
)

+ cosu0

(
(u1 + u2 + · · ·)− 1

3!
(u1 + u2 + · · ·)3 + · · ·

)
,

(8.35)

so that

F(u) = sinu0

(
1− 1

2!
(u2

1 + 2u1u2 + · · ·)
)

+ cosu0

(
(u1 + u2 + · · ·)− 1

3!
u3

1 + · · ·
)

.

(8.36)

Note that we expanded the algebraic terms; then few terms of each expansion are
listed. The last expansion can be rearranged by grouping all terms with the same
sum of subscripts. This means that Eq. (8.36) can be rewritten in the form

F(u) = sinu0︸ ︷︷ ︸
A0

+u1 cosu0︸ ︷︷ ︸
A1

+u2 cosu0− 1
2!

u2
1 sinu0︸ ︷︷ ︸

A2

+ u3 cosu0−u1u2 sinu0− 1
3!

u3
1 cosu0︸ ︷︷ ︸

A3

+ · · ·
(8.37)

Case 2. F(u) = cosu

Proceeding as before we obtain

F(u) = cosu0︸ ︷︷ ︸
A0

−u1 sinu0︸ ︷︷ ︸
A1

+(−u2 sinu0− 1
2!

u2
1 cosu0)︸ ︷︷ ︸

A2

+(−u3 sinu0−u1u2 cosu0 +
1
3!

u3
1 sinu0)︸ ︷︷ ︸

A3

+ · · ·
(8.38)

IV. Hyperbolic Nonlinearity

Case 1. F(u) = sinhu

To calculate the An polynomials for F(u) = sinhu, we first substitute

u =
∞

∑
n=0

un, (8.39)

into F(u) = sinhu to obtain
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F(u) = sinh(u0 +(u1 + u2 + u3 + u4 + · · ·)). (8.40)

To calculate A0, recall the hyperbolic identity

sinh(θ +φ) = sinhθ coshφ + coshθ sinhφ . (8.41)

Accordingly, Eq. (8.40) becomes

F(u) = sinhu0 cosh(u1 + u2 + u3 + u4 + · · ·)
+ coshu0 sinh(u1 + u2 + u3 + u4 + · · ·). (8.42)

Separating F(u0) = sinhu0 from other factors and using Taylor expansions for
cosh(u1 + u2 + · · ·) and sinh(u1 + u2 + · · ·) give

F(u) = sinhu0

×
(

1 +
1
2!

(u1 + u2 + · · ·)2 +
1
4!

(u1 + u2 + · · ·)4 + · · ·
)

+coshu0

(
(u1 + u2 + · · ·)+

1
3!

(u1 + u2 + · · ·)3 + · · ·
)

= sinhu0

(
1 +

1
2!

(u2
1 + 2u1u2 + · · ·)

)
+coshu0

(
(u1 + u2 + · · ·)+

1
3!

u3
1 + · · ·

)
.

By grouping all terms with the same sum of subscripts we find

F(u) = sinhu0︸ ︷︷ ︸
A0

+u1 coshu0︸ ︷︷ ︸
A1

+u2 coshu0 +
1
2!

u2
1 sinhu0︸ ︷︷ ︸

A2

+ u3 coshu0 + u1u2 sinhu0 +
1
3!

u3
1 coshu0︸ ︷︷ ︸

A3

+ · · · .
(8.43)

Case 2. F(u) = coshu
Proceeding as in sinhx we find

F(u) = coshu0︸ ︷︷ ︸
A0

+u1 sinhu0︸ ︷︷ ︸
A1

+u2 sinhu0 +
1
2!

u2
1 coshu0︸ ︷︷ ︸

A2

+ u3 sinhu0 + u1u2 coshu0 +
1
3!

u3
1 sinhu0︸ ︷︷ ︸

A3

+ · · · .
(8.44)

V. Exponential Nonlinearity

Case 1. F(u) = eu
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Substituting

u =
∞

∑
n=0

un, (8.45)

into F(u) = eu gives
F(u) = e(u0+u1+u2+u3+···), (8.46)

or equivalently
F(u) = eu0 e(u1+u2+u3+···). (8.47)

Keeping the term eu0 and using the Taylor expansion for the other factor we obtain

F(u) = eu0 ×
(

1 +(u1 + u2 + u3 + · · ·)+
1
2!

(u1 + u2 + u3 + · · ·)2 + · · ·
)

. (8.48)

By grouping all terms with identical sum of subscripts we find

F(u) = eu0︸︷︷︸
A0

+u1eu0︸ ︷︷ ︸
A1

+(u2 +
1
2!

u2
1)e

u0︸ ︷︷ ︸
A2

+(u3 + u1u2 +
1
3!

u3
1)e

u0︸ ︷︷ ︸
A3

+(u4 + u1u3 +
1
2!

u2
2 +

1
2!

u2
1u2 +

1
4!

u4
1)e

u0︸ ︷︷ ︸
A4

+ · · · .
(8.49)

Case 2. F(u) = e−u

Proceeding as before we find

F(u) = e−u0︸︷︷︸
A0

+(−u1)e
−u0︸ ︷︷ ︸

A1

+(−u2 +
1
2!

u2
1)e

−u0︸ ︷︷ ︸
A2

+(−u3 + u1u2− 1
3!

u3
1)e

−u0︸ ︷︷ ︸
A3

+(−u4 + u1u3 +
1
2!

u2
2−

1
2!

u2
1u2 +

1
4!

u4
1)e

−u0︸ ︷︷ ︸
A4

+ · · · .

(8.50)

VI. Logarithmic Nonlinearity

Case 1. F(u) = lnu, u > 0

Substituting

u =
∞

∑
n=0

un, (8.51)

into F(u) = lnu gives
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F(u) = ln(u0 + u1 + u2 + u3 + · · ·). (8.52)

Equation (8.52) can be written as

F(u) = ln

(
u0

(
1 +

u1

u0
+

u2

u0
+

u3

u0
+ · · ·

))
. (8.53)

Using the fact that ln(αβ ) = lnα + lnβ , Equation (8.53) becomes

F(u) = lnu0 + ln

(
1 +

u1

u0
+

u2

u0
+

u3

u0
+ · · ·

)
. (8.54)

Separating F(u0) = lnu0 and using the Taylor expansion for the remaining term we
obtain

F(u) = lnu0 +

{(
u1

u0
+

u2

u0
+

u3

u0
+ · · ·

)
− 1

2

(
u1

u0
+

u2

u0
+

u3

u0
+ · · ·

)2

+
1
3

(
u1

u0
+

u2

u0
+

u3

u0
+ · · ·

)3

− 1
4

(
u1

u0
+

u2

u0
+

u3

u0
+ · · ·

)4

+ · · ·
}

.

(8.55)

Proceeding as before, Equation (8.55) can be written as

F(u) = lnu0︸︷︷︸
A0

+
u1

u0︸︷︷︸
A1

+
u2

u0
− 1

2
u2

1

u2
0︸ ︷︷ ︸

A2

+
u3

u0
− u1u2

u2
0

+
1
3

u3
1

u3
0︸ ︷︷ ︸

A3

+ · · · .
(8.56)

Case 2. F(u) = ln(1 + u),−1 < u � 1

In a like manner we obtain

F(u) = ln(1 + u0)︸ ︷︷ ︸
A0

+
u1

1 + u0︸ ︷︷ ︸
A1

+
u2

1 + u0
− 1

2
u2

1

(1 + u0)2︸ ︷︷ ︸
A2

+
u3

1 + u0
− u1u2

(1 + u0)2 +
1
3

u3
1

(1 + u0)3︸ ︷︷ ︸
A3

+ · · · .
(8.57)

As stated before, there are other methods that can be used to evaluate Adomian
polynomials. However, these methods suffer from the huge size of calculations. For
this reason, the most commonly used methods are presented in this text.
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Exercises 8.2

Use Adomian algorithm or the alternative method to calculate the first four Adomian
polynomials of the following nonlinear terms:

1. F(u) = u4

2. F(u) = u2 + u3

3. F(u) = cos2u

4. F(u) = sinh2u

5. F(u) = e2u

6. F(u) = u2ux

7. F(u) = uu2
x

8. F(u) = ueu

9. F(u) = usinu

10. F(u) = ucoshu

11. F(u) = u2 + sinu

12. F(u) = u + cosu

13. F(u) = u + lnu,u > 0

14. F(u) = u lnu,u > 0

15. F(u) = u
1
2 ,u > 0

16. F(u) = u−1,u > 0

8.3 Nonlinear ODEs by Adomian Method

Although this book is devoted to investigate partial differential equations, it seems
useful to employ the Adomian decomposition method first to nonlinear ordinary
differential equations. It is well known that nonlinear ordinary differential equa-
tions are, in general, difficult to handle. The Adomian decomposition method will
be applied in a direct manner as discussed in previous chapters except that non-
linear terms should be represented by the so called Adomian polynomials. It is in-
teresting to point out that the modified decomposition method and the noise terms
phenomenon that were introduced in Chapter 2 will be used here at proper places.
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Recall that in solving differential or integral equations, solutions are usually
obtained as exact solutions defined in closed form expressions, or as series solu-
tions normally obtained from concrete problems.

To apply the Adomian decomposition method for solving nonlinear ordinary
differential equations, we consider the equation

Ly + R(y)+ F(y) = g(x), (8.58)

where the differential operator L may be considered as the highest order derivative
in the equation, R is the remainder of the differential operator, F(y) expresses the
nonlinear terms, and g(x) is an inhomogeneous term. If L is a first order operator
defined by

L =
d
dx

, (8.59)

then, we assume that L is invertible and the inverse operator L−1 is given by

L−1(·) =

∫ x

0
(·)dx, (8.60)

so that
L−1Ly = y(x)− y(0). (8.61)

However, if L is a second order differential operator given by

L =
d2

dx2 , (8.62)

so that the inverse operator L−1 is regarded a two-fold integration operator defined
by

L−1(·) =
∫ x

0

∫ x

0
(·)dxdx, (8.63)

which means that
L−1Ly = y(x)− y(0)− xy′(0). (8.64)

In a parallel manner, if L is a third order differential operator, we can easily show
that

L−1Ly = y(x)− y(0)− xy′(0)− 1
2!

x2y′′(0). (8.65)

For higher order operators we can easily define the related inverse operators in a
similar way.

Applying L−1 to both sides of (8.58) gives

y(x) = ψ0−L−1g(x)−L−1Ry−L−1F(y), (8.66)

where
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ψ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(0), for L =
d
dx

,

y(0)+ xy′(0), for L =
d2

dx2 ,

y(0)+ xy′(0)+
1
2!

x2y′′(0), for L =
d3

dx3 ,

y(0)+ xy′(0)+
1
2!

x2y′′(0)+
1
3!

x3y′′′(0), for L =
d4

dx4 ,

y(0)+ xy′(0)+
1
2!

x2y′′(0)+
1
3!

x3y′′′(0)+
1
4!

x4y(4)(0), for L =
d5

dx5 ,

(8.67)
and so on. The Adomian decomposition method admits the decomposition of y into
an infinite series of components

y(x) =
∞

∑
n=0

yn, (8.68)

and the nonlinear term F(y) be equated to an infinite series of polynomials

F(y) =
∞

∑
n=0

An, (8.69)

where An are the Adomian polynomials. Substituting (8.68) and (8.69) into (8.66)
gives

∞

∑
n=0

yn = ψ0−L−1g(x)−L−1R

(
∞

∑
n=0

yn

)
−L−1

(
∞

∑
n=0

An

)
. (8.70)

The various components yn of the solution y can be easily determined by using the
recursive relation

y0 = ψ0−L−1(g(x)),
yk+1 = −L−1(Ryk)−L−1(Ak),k � 0.

(8.71)

Consequently, the first few components can be written as

y0 = ψ0−L−1g(x),
y1 = −L−1(Ry0)−L−1(A0),
y2 = −L−1(Ry1)−L−1(A1),
y3 = −L−1(Ry2)−L−1(A2),
y4 = −L−1(Ry3)−L−1(A3).

(8.72)

Having determined the components yn, n � 0, the solution y in a series form follows
immediately. As stated before, the series may be summed to provide the solution in
a closed form. However, for concrete problems, the n−term partial sum

φn =
n−1

∑
k=0

yk, (8.73)
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may be used to give the approximate solution.
In the following, several examples will be discussed for illustration.

Example 1. Solve the first order nonlinear ordinary differential equation

y′ − y2 = 1, y(0) = 0. (8.74)

Solution.

In an operator form, Eq. (8.74) can be written as

Ly = 1 + y2, y(0) = 0, (8.75)

where L is a first order differential operator. It is clear that L−1 is invertible and
given by

L−1(·) =
∫ x

0
(·)dx. (8.76)

Applying L−1 to both sides of (8.75) and using the initial condition give

y = x + L−1(y2). (8.77)

The decomposition method suggests that the solution y(x) be expressed by the de-
composition series

y(x) =
∞

∑
n=0

yn(x), (8.78)

and the nonlinear terms y2 be equated to

y2 =
∞

∑
n=0

An, (8.79)

where yn(x),n � 0 are the components of y(x) that will be determined recursively,
and An, n � 0 are the Adomian polynomials that represent the nonlinear term y2.

Inserting (8.78) and (8.79) into (8.77) yields

∞

∑
n=0

yn(x) = x + L−1

(
∞

∑
n=0

An

)
. (8.80)

The zeroth component y0 is usually defined by all terms that are not included under
the operator L−1. The remaining components can be determined recurrently such
that each term is determined by using the previous component. Consequently, the
components of y(x) can be elegantly determined by using the recursive relation

y0(x) = x,
yk+1(x) = L−1(Ak), k � 0.

(8.81)
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Note that the Adomian polynomials An for the nonlinear term y2 were determined
before by using Adomian algorithm and by using the alternative method where we
found

A0 = y2
0,

A1 = 2y0y1,

A2 = 2y0y2 + y2
1,

A3 = 2y0y3 + 2y1y2,

A4 = 2y0y4 + 2y1y3 + y2
2.

and so on. Using these polynomials into (8.81), the first few components can be
determined recursively by

y0(x) = x,

y1(x) = L−1A0 = L−1(y2
0) =

1
3

x3,

y2(x) = L−1A1 = L−1(2y0y1) =
2
15

x5,

y3(x) = L−1A2 = L−1(2y0y2 + y2
1) =

17
315

x7,

(8.82)

Consequently, the solution in a series form is given by

y(x) = x +
1
3

x3 +
2
15

x5 +
17

315
x7 + · · · , (8.83)

and in a closed form by
y(x) = tanx. (8.84)

We point out that the ordinary differential equation (8.74) can be solved as a sepa-
rable differential equation.

Example 2. Solve the first order nonlinear ordinary differential equation

y′+ y2 = 1, y(0) = 0. (8.85)

Solution.

Operating with L−1 we obtain

y = x−L−1(y2). (8.86)

Using the decomposition series for the solution y(x) and the polynomial representa-
tion for y2 give
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∞

∑
n=0

yn(x) = x−L−1

(
∞

∑
n=0

An

)
. (8.87)

This leads to the recursive relation

y0 = x,
yk+1 = −L−1(Ak), k � 0.

(8.88)

The Adomian polynomials An for the nonlinear term y2 were used in the previous
example, hence, the first few components can be determined recursively as

y0 = x,

y1 = −L−1A0 =−L−1(y2
0) =−1

3
x3,

y2 = −L−1A1 =−L−1(2y0y1) =
2
15

x5,

y3 = −L−1A2 =−L−1(2y0y2 + y2
1) =− 17

315
x7,

(8.89)

and so on. Consequently, the solution in a series form is given by

y(x) = x− 1
3

x3 +
2
15

x5− 17
315

x7 + · · · , (8.90)

and in a closed form by
y(x) = tanhx. (8.91)

We point out that the ordinary differential equation (8.85) can be solved as a sepa-
rable differential equation where partial fractions should be used.

Example 3. Use the modified decomposition method to solve the Riccati differential
equation

y′ = 1− x2 + y2, y(0) = 0. (8.92)

Solution.

Applying the inverse operator L−1 we obtain

y = x− 1
3

x3 + L−1(y2). (8.93)

Using the decomposition series y(x) and the polynomial representation for y2 give

∞

∑
n=0

yn(x) = x− 1
3

x3 + L−1

(
∞

∑
n=0

An

)
. (8.94)

It is important to point out that the modified decomposition method is recommended

here. In this approach we split the polynomial x− 1
3

x3 into two parts, namely, x will
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be assigned to the zeroth component y0, and −1
3

x3 that will be assigned to the

component y1 among other terms. In this case, we use a modified recursive relation
to accelerate the convergence of the solution. The modified recursive relation is
defined by

y0 = x,

y1 = −1
3

x3 + L−1(A0),

yk+2 = L−1(Ak+1), k � 0.

(8.95)

Consequently, the first few components are given by

y0 = x,

y1 = −1
3

x3 + L−1A0 =−1
3

x3 + L−1(y2
0) = 0,

yk+2 = 0, k � 0.

(8.96)

The exact solution is given by
y(x) = x. (8.97)

We next consider a first order nonlinear differential equation where a closed form
solution is not easily observed.

Example 4. Solve the first order nonlinear differential equation

y′ =−y + y2, y(0) = 2. (8.98)

Solution.

Applying the inverse operator L−1 and using the initial condition give

y(x) = 2−L−1(y)+ L−1(y2). (8.99)

We next represent the linear term y(x) by the decomposition series of components
yn, n � 0, and equate the nonlinear term y2 by the series of Adomian polynomials
An, n � 0, to find

∞

∑
n=0

yn(x) = 2−L−1

(
∞

∑
n=0

yn(x)

)
+ L−1

(
∞

∑
n=0

An

)
. (8.100)

The Adomian polynomials An for y2 have been derived and used before. Following
the decomposition method we set the recursive relation

y0 = 2,
yk+1 = −L−1(yk)+ L−1(Ak), k � 0.

(8.101)

Consequently, the first few components of the solution are given by
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y0 = 2,
y1 = −L−1(y0)+ L−1A0 =−L−1(2)+ L−1(4) = 2x,

y2 = −L−1(y1)+ L−1A1 =−L−1(2x)+ L−1(8x) = 3x2,

y3 = −L−1(y2)+ L−1A2 =−L−1(3x2)+ L−1(16x2) =
13
3

x3,

(8.102)

and so on. Based on these calculations, the solution in a series form is given by

y(x) = 2 + 2x + 3x2 +
13
3

x3 + · · · , x < ln2. (8.103)

It is clear that a closed form solution is not easily observed. However, the closed
form solution is given by

y(x) =
2

2− ex . (8.104)

For numerical purposes, additional terms can be easily evaluated to enhance the
accuracy of the approximate solution in (8.103). As will be discussed in Chapter 10,
it will be shown that few terms only can lead to a high accuracy level with minimum
error.

Example 5. Solve the first order nonlinear differential equation

y′ =
y2

1− xy
, y(0) = 1. (8.105)

Solution.

We first rewrite the equation by

y′ = xyy′+ y2, y(0) = 1. (8.106)

It is useful to note that the differential equation (8.106) contains two nonlinear terms
yy′ and y2. The Adomian polynomials for both terms have been derived before;
hence will be implemented directly. Applying the inverse operator L−1 and using
the initial condition give

y(x) = 1 + L−1(xyy′)+ L−1(y2). (8.107)

We next represent the linear term y(x) by the decomposition series of components
yn, n � 0, equate the nonlinear term yy′ by the Adomian polynomials An, n � 0, and
equate the nonlinear term y2 by the series of Adomian polynomials Bn, n � 0, to
find

∞

∑
n=0

yn(x) = 1 + L−1

(
∞

∑
n=0

xAn

)
+ L−1

(
∞

∑
n=0

Bn

)
. (8.108)

Identifying the zeroth component y0, and following the decomposition method we
set the recursive relation
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y0(x) = 1,
yk+1(x) = L−1(xAk)+ L−1(Bk), k � 0.

(8.109)

This relation leads to the component-by-component identification

y0 = 1,
y1 = L−1(xA0)+ L−1(B0) = L−1(0)+ L−1(1) = x,

y2 = L−1(xA1)+ L−1(B1) = L−1(x)+ L−1(2x) =
3
2

x2,

y3 = L−1(xA2)+ L−1(B2) = L−1(4x2)+ L−1(4x2) =
8
3

x3,

(8.110)

and so on. Based on these calculations, the solution in a series form is given by

y(x) = 1 + x +
3
2

x2 +
8
3

x3 +
125
24

x4 + · · · . (8.111)

It is clear that a closed form solution where y is expressed explicitly in terms of
x cannot be found. However, the exact solution can be expressed in the implicit
expression

y = exy. (8.112)

In the following example, the ordinary differential equation contains an exponential
nonlinearity. The Adomian polynomials for this form of nonlinearity have been cal-
culated before.

Example 6. Solve the first order nonlinear differential equation

y′ − ey = 0, y(0) = 1. (8.113)

Solution.

Applying the inverse operator L−1 and using the initial condition give

y(x) = 1 + L−1(ey). (8.114)

Equating the linear term y(x) by an infinite series of components yn, n � 0, and
representing the nonlinear term ey by an infinite series of Adomian polynomials
An, n � 0, we obtain

∞

∑
n=0

yn(x) = 1 + L−1

(
∞

∑
n=0

An

)
. (8.115)

The Adomian polynomials An for ey have been calculated before and given by

A0 = ey0 ,

A1 = y1ey0 ,

A2 =

(
y2 +

1
2!

y2
1

)
ey0 ,
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A3 =

(
1
3!

y3
1 + y1y2 + y3

)
ey0 ,

A4 =

(
y4 + y1y3 +

1
2!

y2
2 +

1
2!

y2
1y2 +

1
4!

y4
1

)
ey0 .

(8.116)

Identifying y0 = 1 and applying the decomposition method give the recursive rela-
tion

y0 = 1,
yk+1 = L−1(Ak), k � 0.

(8.117)

This gives
y0 = 1,
y1 = L−1A0 = L−1(e) = ex,

y2 = L−1A1 = L−1(e2x) =
e2

2
x2,

y3 = L−1A2 = L−1(e3x2) =
e3

3
x3,

(8.118)

and so on. The solution in a series form is given by

y(x) = 1 + ex +
1
2
(ex)2 +

1
3
(ex)3 + · · · , −1 � ex < 1, (8.119)

and in a closed form by

y(x) = 1− ln(1− ex), −1 � ex < 1. (8.120)

Example 7. Use the noise terms phenomenon to solve the second order nonlinear
differential equation

y′′+(y′)2 + y2 = 1− sinx, y(0) = 0,y′(0) = 1. (8.121)

Solution.

Applying the two-fold integral operator L−1 to both sides of Eq. (8.121) gives

y(x) = sin x +
1
2

x2−L−1 ((y′)2 + y2) . (8.122)

Using the assumptions of the decomposition method yields

∞

∑
n=0

yn(x) = sinx +
1
2

x2−L−1

(
∞

∑
n=0

An

)
. (8.123)

This leads to the recursive relation

y0 = sinx +
1
2

x2,

yk+1 = −L−1(Ak), k � 0.
(8.124)



8.3 Nonlinear ODEs by Adomian Method 311

This relation leads to the identification

y0 = sinx +
1
2

x2,

y1 = −L−1((y′0)
2 + y2

0) =− 1
2!

x2 + · · · .
(8.125)

The zeroth component contains the trigonometric function sin x, therefore it is
recommended that the noise terms phenomenon be used here. By canceling the

noise terms
1
2

x2 and −1
2

x2 between y0 and y1, and justifying that the remaining

non-canceled term of y0 satisfies the differential equation leads to the exact solution
given by

y(x) = sinx. (8.126)

This example shows that the noise terms phenomenon, if exists, works effectively
for inhomogeneous ordinary differential equations and for inhomogeneous partial
differential equations as well.

Exercises 8.3

In Exercises 1–4, use the Adomian scheme to find the exact solution of each of the
following nonlinear ordinary differential equations:

1. y′ −3y2 = 3, y(0) = 0

2. y′+ 4y2 = 4, y(0) = 0

3. y′ − y2 =−2x− x2, y(0) = 1

4. y′+ ey = 0, y(0) = 1

In Exercises 5–8, use the Adomian decomposition method to find the exact solution
of the following Riccati differential equations:

5. y′ = (2x−3)− xy + y2, y(0) =−2

6. y′ = 1−2y + y2, y(0) = 2

7. y′ = 1− x2 + y2, y(0) = 0

8. y′ =−1 + xy + y2, y(0) = 0

In Exercises 9–12, use the Adomian decomposition method to find the first four
terms of the series solution of the following first order nonlinear ordinary differential
equations:

9. y′+ y = siny, y(0) =
π
2
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10. y′ = x2 + y2, y(0) = 1

11. y′+ y = y2, y(0) = 2

12. y′ =− y2

1 + xy
, y(0) = 1

In Exercises 13–16, use the Adomian decomposition method to find the exact solu-
tion of the following second order nonlinear ordinary differential equations:

13. y′′+(y′)2 + y2 = 1− cosx, y(0) = 1, y′(0) = 0

14. y′′ −2yy′ = 0, y(0) = 0, y′(0) = 1

15. y′′+ 2yy′ = 0, y(0) = 0, y′(0) = 1

16. y′′+ yy′+(y′)2 = 0, y(0) = 0, y′(0) = 1

In Exercises 17–20, use the Adomian decomposition method to find the first four
terms of the series solution of the following second order nonlinear ordinary
differential equations:

17. y′′+ y2 = 0, y(0) = 1, y′(0) = 0

18. y′′ − y3 = 0, y(0) = 1, y′(0) = 0

19. y′′ − siny = 0, y(0) =
π
2

, y′(0) = 0

20. y′′ − yey = 0, y(0) = 1, y′(0) = 0

In Exercises 21–24, use the Adomian decomposition method to find the exact solu-
tion of the following third order nonlinear ordinary differential equations:

21. y′′′+(y′)2−12y′ = 6, y(0) = y′(0) = y′′(0) = 0

22. y′′′+(y′′)2 +(y′)2 = 2 + cosx, y(0) = 0, y′(0) = 2, y′′(0) = 0

23. y′′′+(y′′)2 +(y′)2 = 1− sinx, y(0) = 0, y′(0) = 0, y′′(0) = 1

24. y′′′ − (y′′)2 +(y′)2 = 1 + coshx, y(0) = 0, y′(0) = 1, y′′(0) = 0

8.4 Nonlinear ODEs by VIM

The variational iteration method (VIM) was presented before. The method gives
rapidly convergent successive approximations of the exact solution if an exact so-
lution exists. The obtained approximations by this method are of high accuracy
level even if few iterations are used. As introduced before, the method employs
the correction functional



8.4 Nonlinear ODEs by VIM 313

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )(Lun(x,ξ )+ N ũn(x,ξ )−g(x,ξ )) dξ , n � 0.

(8.127)
for the differential equation

Lu + Nu = g(x,t). (8.128)

The Lagrange multiplier λ (ξ ) should be determined first. This value of λ allows us
to determine the successive approximations un+1(x,t),n � 0, of the solution u(x,t)
by using any zeroth approximation u0(x,t). The exact solution may be obtained by
using

u(x,t) = lim
n→∞

un(x,t). (8.129)

To find λ we sometimes use∫
λ (ξ )u′n(ξ )dξ = λ (ξ )un(ξ )−

∫
λ ′(ξ )un(ξ )dξ ,∫

λ (ξ )u′′n(ξ )dξ = λ (ξ )u′n(ξ )−λ ′(ξ )un(ξ )+

∫
λ ′′(ξ )un(ξ )dξ ,

(8.130)

and so on for derivatives of un of higher orders. The method has been used so far for
handling linear problems only.

The variational iteration method will be used to handle nonlinear problems in a
manner similar to that used before for linear problem [17–18]. The method facili-
tates the computational work for nonlinear problems compared to Adomian method.
Unlike Adomian decomposition method, the variational iteration method does not
require specific treatment for nonlinear operators. There is no need for Adomian
polynomials that require a huge size of computational work. Moreover, the varia-
tional iteration method does not require specific assumptions or restrictive condi-
tions as required by other methods such as perturbation techniques. The effective-
ness and the efficiency of the method can be confirmed by discussing the following
nonlinear ordinary differential equations. The same examples that were studied in
the previous section will be examined here.

Example 1. Solve the first order nonlinear ordinary differential equation

y′ − y2 = 1, y(0) = 0. (8.131)

Solution.

The correction functional for equation (8.131) is

yn+1(x) = yn(x)+
∫ x

0
λ (ξ )

(
y′n(ξ )− ỹ2

n(ξ )−1
)

dξ . (8.132)

The stationary conditions
1 + λ |ξ=x = 0,

λ ′|ξ=x = 0,
(8.133)

follow immediately. This in turn gives
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λ =−1. (8.134)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (8.132)
gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )− y2

n(ξ )−1
)

dξ , n � 0. (8.135)

We can select y0(x) = y(0) = 0 from the given condition. Using this selection into
(8.135) we obtain the following successive approximations

y0(x) = 0,

y1(x) = 0−
∫ x

0

(
y′0(ξ )− y2

0(ξ )−1
)

dξ = x,

y2(x) = x−
∫ x

0

(
y′1(ξ )− y2

1(ξ )−1
)

dξ = x +
1
3

x3,

y3(x) = x +
1
3

x3−
∫ x

0

(
y′2(ξ )− y2

2(ξ )−1
)

dξ = x +
1
3

x3 +
2

15
x5 +

1
63

x7,

y4(x) = x +
1
3

x3 +
2
15

x5 +
1

63
x7−

∫ x

0

(
y′3(ξ )− y2

3(ξ )−1
)

dξ

= x +
1
3

x3 +
2
15

x5 +
17

315
x7 + · · · ,

...

yn(x) = x +
1
3

x3 +
2
15

x5 +
17

315
x7 +

62
2835

x9 + · · · .
(8.136)

The VIM admits the use of
y(x) = lim

n→∞
yn(x), (8.137)

that gives the exact solution by

y(x) = tanx. (8.138)

The last result is consistent with the result obtained before by Adomian method. We
point out here that the separable nonlinear ODE (8.131) is solved without any need
for the so-called Adomian polynomials.

Example 2. Solve the first order nonlinear ordinary differential equation

y′+ y2 = 1, y(0) = 0. (8.139)

Solution.

The correction functional for equation (8.139) is

yn+1(x) = yn(x)+

∫ x

0
λ (ξ )

(
y′n(ξ )+ ỹ2

n(ξ )−1
)

dξ . (8.140)

Following the discussion in Example 1, the stationary conditions give
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λ =−1. (8.141)

Substituting λ =−1 into the functional (8.140) gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )+ y2

n(ξ )−1
)

dξ ,n � 0. (8.142)

We can select y0(x) = y(0) = 0 from the given condition. Using this selection into
(8.142) we obtain the following successive approximations

y0(x) = 0,

y1(x) = 0−
∫ x

0

(
y′0(ξ )+ y2

0(ξ )−1
)

dξ = x,

y2(x) = x−
∫ x

0

(
y′1(ξ )+ y2

1(ξ )−1
)

dξ = x− 1
3

x3,

y3(x) = x− 1
3

x3−
∫ x

0

(
y′2(ξ )+ y2

2(ξ )−1
)

dξ = x− 1
3

x3 +
2

15
x5− 1

63
x7,

y4(x) = x− 1
3

x3 +
2
15

x5− 1
63

x7−
∫ x

0

(
y′3(ξ )+ y2

3(ξ )−1
)

dξ

= x− 1
3

x3 +
2
15

x5− 17
315

x7 + · · · ,
...

yn(x) = x− 1
3

x3 +
2
15

x5− 17
315

x7 +
62

2835
x9 + · · · .

(8.143)
Consequently, the exact solution is

y(x) = tanhx. (8.144)

Example 3. Use the modified decomposition method to solve the Riccati differential
equation

y′ = 1− x2 + y2, y(0) = 0. (8.145)

Solution.

The correction functional for equation (8.145) is

yn+1(x) = yn(x)+

∫ x

0
λ (ξ )

(
y′n(ξ )− ỹ2

n(ξ )+ ξ 2−1
)

dξ . (8.146)

The stationary conditions give
λ =−1. (8.147)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (8.146)
gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )− y2

n(ξ )+ ξ 2−1
)

dξ , n � 0. (8.148)
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We can select y0(x) = y(0) = 0 from the given condition. Proceeding as before we
obtain the successive approximations

y0(x) = 0,

y1(x) = 0−
∫ x

0

(
y′0(ξ )− y2

0(ξ )+ ξ 2−1
)

dξ = x− 1
3

x3,

y2(x) = x− 1
3

x3−
∫ x

0

(
y′1(ξ )− y2

1(ξ )+ ξ 2−1
)

dξ

= x− 1
3

x3 +
1
3

x3− 2
15

x5 +
1

63
x7,

y3(x) = x− 1
3

x3 +
1
3

x3− 2
15

x5 +
1

63
x7−

∫ x

0

(
y′2(ξ )− y2

2(ξ )+ ξ 2−1
)

dξ

= x− 1
3

x3 +
1
3

x3− 2
15

x5 +
2

15
x5 +

1
63

x7 + · · · ,
...

yn(x) = x− 1
3

x3 +
1
3

x3− 2
15

x5 +
2

15
x5 +

1
63

x7− 1
63

x7 + · · · .
(8.149)

It is clear that the noise terms vanish in the limit, and the exact solution is

y(x) = x. (8.150)

Example 4. Solve the first order nonlinear differential equation

y′ =−y + y2, y(0) = 2. (8.151)

Solution.

The correction functional for this equation is

yn+1(x) = yn(x)+

∫ x

0
λ (ξ )

(
y′n(ξ )− ỹ2

n(ξ )+ ỹn(ξ )
)

dξ . (8.152)

It is clear that
λ =−1. (8.153)

Substituting this value of the Lagrange multiplier λ = −1 into the correction func-
tional gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )− y2

n(ξ )+ yn(ξ )
)

dξ , n � 0. (8.154)

We can select y0(x) = y(0) = 2 from the given condition. Using this selection into
(8.154) we obtain the following successive approximations
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y0(x) = 2,

y1(x) = 2−
∫ x

0

(
y′0(ξ )− y2

0(ξ )+ y0
)

dξ = 2 + 2x,

y2(x) = 2 + 2x−
∫ x

0

(
y′1(ξ )− y2

1(ξ )+ y1
)

dξ = 2 + 2x + 3x2 +
4
3

x3,

y3(x) = 2 + 2x + 3x2 +
4
3

x3−
∫ x

0

(
y′2(ξ )− y2

2(ξ )+ y2
)

dξ

= 2 + 2x + 3x2 +
13
3

x3 + 4x4 + · · · ,
...

yn(x) = 2 + 2x + 3x2 +
13
3

x3 +
25
4

x4 +
541
60

x5 + · · · .

(8.155)

As stated before, it is clear that a closed form solution is not easily observed. How-
ever, the closed form solution is given by

y(x) =
2

2− ex . (8.156)

Example 5. Solve the first order nonlinear differential equation by the VIM

y′ =
y2

1− xy
, y(0) = 1. (8.157)

Solution.

We first rewrite the equation by

y′ = xyy′+ y2, y(0) = 1. (8.158)

Proceeding as before, we use λ =−1. This gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )−ξ yny′n− y2

n(ξ )
)

dξ , n � 0. (8.159)

Selecting y0(x) = y(0) = 1 gives the successive approximations

y0(x) = 1,

y1(x) = 1−
∫ x

0

(
y′0(ξ )−ξ y0y′0− y2

0(ξ )
)

dξ = 1 + x,

y2(x) = 1 + x−
∫ x

0

(
y′1(ξ )−ξ y1y′1− y2

1(ξ )
)

dξ = 1 + x +
3
2

x2 +
2
3

x3,

...

yn(x) = 1 + x +
3
2

x2 +
8
3

x3 +
125
24

x4 + · · · .

(8.160)

The solution is given implicitly by
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y(x) = exy. (8.161)

In the following example, the ordinary differential equation contains an exponen-
tial nonlinearity. The Adomian polynomials for this form of nonlinearity have been
calculated before.

Example 6. Solve the first order nonlinear differential equation by the VIM

y′ − ey = 0, y(0) = 1. (8.162)

Solution.

Using the Lagrange multiplier λ =−1 gives the iteration formula

yn+1(x) = yn(x)−
∫ x

0

(
y′n(ξ )− eyn(ξ )

)
dξ , n � 0. (8.163)

We can select y0(x) = y(0) = 1 to obtain the following successive approximations

y0(x) = 1,

y1(x) = 1−
∫ x

0

(
y′0(ξ )− ey0

)
dξ = 1 + ex,

y2(x) = 1 + ex−
∫ x

0

(
y′1(ξ )− ey1(ξ )

)
dξ = 1 + ex +

1
2

e2x2 +
1
6

e3x3 + · · · ,

y3(x) = 1 + ex +
1
2

e2x2 +
1
6

e3x3−
∫ x

0

(
y′2(ξ )− ey2(ξ )

)
dξ , (8.164)

= 1 + ex +
1
2

e2x2 +
1
3

e3x3 +
1
4

e4x4 + · · · ,
...

yn(x) = 1 + ex +
1
2

e2x2 +
1
3

e3x3 +
1
4

e4x4 +
1
5

e5x5 + · · · ,−1 � ex < 1,

where the Taylor series for eyi(ξ ) is used for integration. The exact solution is given
by

y(x) = 1− ln(1− ex), −1 � ex < 1. (8.165)

Example 7. Use the VIM to solve the second order nonlinear differential equation

y′′+(y′)2 + y2 = 1− sinx, y(0) = 0, y′(0) = 1. (8.166)

Solution.

The correction functional for this equation is

yn+1(x) = yn(x)+

∫ x

0
λ (ξ )

(
y′′n(ξ )+ (ỹ′n)

2(ξ )+ ỹ2
n(ξ )+ sinξ −1

)
dξ . (8.167)
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Notice that this is a second order differential equation. It was discussed in Chapters
5 and 7 that

λ = ξ − x. (8.168)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

yn+1(x) = yn(x)+

∫ x

0
(ξ − x)

(
y′′n(ξ )+ (y′n)

2(ξ )+ y2
n(ξ )+ sinξ −1

)
dξ , n � 0.

(8.169)
We select y0(x) = x is any selective function. As a result, we obtain the following
successive approximations

y0(x) = x,

y1(x) = − 1
12

x4 + sinx,

y2(x) = x− 1
3!

x3 +
1
4!

x5− 1
240

x7 + · · · ,

y3(x) = x− 1
3!

x3 +
1
5!

x5− 1
7!

x7 + · · · ,
...

yn(x) = x− 1
3!

x3 +
1
5!

x5− 1
7!

x7 +
1
9!

x9 + · · · .

(8.170)

The exact solution is given by
y(x) = sinx. (8.171)

Notice that in evaluating the approximations, we used the Taylor series for sinx.

Exercises 8.4

Use the variational iteration method to solve the problems in Exercises 8.3.

8.5 Nonlinear PDEs by Adomian Method

As stated before, nonlinear partial differential equations arise in different areas of
physics, engineering, and applied mathematics such as fluid mechanics, condensed
matter physics, soliton physics and quantum field theory. A considerable amount
of research work has been invested in the study of numerous problems modeled by
nonlinear partial differential equations. In this section, a straightforward implemen-
tation of the decomposition method to nonlinear partial differential equations will
be carried out in general. However, a wide variety of physically significant problems
modeled by nonlinear partial differential equations, such as the advection problem,
the KdV equation, the modified KdV equation, the KP equation, Boussinesq equa-



320 8 Nonlinear Partial Differential Equations

tion, will be investigated in details in Chapter 9. Moreover, a comparative study will
be conducted in Chapter 11 to show the physical behavior of the solitons concept
and the recently discovered compactons: solitons with the absence of infinite wings.

An important note worth mentioning is that there is no general method that can be
employed for obtaining analytical solutions for nonlinear partial differential equa-
tions. Several methods are usually used and numerical solutions are often obtained.
Further, transformation methods are sometimes used to convert a nonlinear equation
to an ordinary equation or to a system of ordinary differential equations. Further-
more, perturbation techniques and discretization methods, that require a massive
size of computational work, are also used for some types of equations.

However, we have stated before that Adomian decomposition method can be
used generally for all types of differential and integral equations. The method can
be applied in a straightforward manner and it provides a rapidly convergent series
solution.

The description of the decomposition method has been presented in details in the
preceding chapters. However, in the following we will discuss a general description
of the method that will be used for nonlinear partial differential equations. We first
consider the nonlinear partial differential equation given in an operator form

Lxu(x,y)+ Lyu(x,y)+ R(u(x,y))+ F(u(x,y)) = g(x,y), (8.172)

where Lx is the highest order differential in x, Ly is the highest order differential in y,
R contains the remaining linear terms of lower derivatives, F(u(x,y)) is an analytic
nonlinear term, and g(x,y) is an inhomogeneous or forcing term.

The solutions for u(x,y) obtained from the operator equations Lxu and Lyu are
called partial solutions. It has been shown before that these partial solutions are
equivalent and each converges to the exact solution. However, the decision as to
which operator Lx or Ly should be used to solve the problem depends mainly on two
bases:
(i) The operator of lowest order should be selected to minimize the size of compu-
tational work.
(ii) The selected operator of lowest order should be of best known conditions to
accelerate the evaluation of the components of the solution.

Assuming that the operator Lx meets the two bases of selection, therefore we set

Lxu(x,y) = g(x,y)−Lyu(x,y)−R(u(x,y))−F(u(x,y)). (8.173)

Applying L−1
x to both sides of (8.173) gives

u(x,y) = Φ0−L−1
x g(x,y)−L−1

x Lyu(x,y)−L−1
x R(u(x,y))

−L−1
x F(u(x,y)),

(8.174)

where
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Φ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(0,y) for L =
∂
∂x

,

u(0,y)+ xux(0,y) for L =
∂ 2

∂x2 ,

u(0,y)+ xux(0,y)+
1
2!

x2uxx(0,y) for L =
∂ 3

∂x3 ,

u(0,y)+ xux(0,y)+
1
2!

x2uxx(0,y)+
1
3!

x3uxxx(0,y) for L =
∂ 4

∂x4 ,

We proceed in exactly the same manner by calculating the solution u(x,y) in a series
form

u(x,y) =
∞

∑
n=0

un(x,y), (8.175)

and the nonlinear term F(u(x,y)) by

F(u(x,y)) =
∞

∑
n=0

An, (8.176)

where An are Adomian polynomials that can be generated for all forms of nonlin-
earity. Based on these assumptions, Eq. (8.174) becomes

∞

∑
n=0

un(x,y) = Φ0−L−1
x g(x,y)−L−1

x Ly

(
∞

∑
n=0

un(x,y)

)

−L−1
x R

(
∞

∑
n=0

un(x,y)

)
−L−1

x

(
∞

∑
n=0

An

)
.

(8.177)

The components un(x,y),n � 0 of the solution u(x,y) can be recursively determined
by using the relation

u0(x,y) = Φ0−L−1
x g(x,y),

uk+1(x,y) = −L−1
x Ly uk−L−1

x R(uk)−L−1
x (Ak), k � 0.

(8.178)

Using the algorithms described before for calculating An for the nonlinear term
F(u), the first few components can be identified by

u0(x,y) = Φ0−L−1
x g(x,y),

u1(x,y) =−L−1
x Ly u0(x,y)−L−1

x R(u0(x,y))−L−1
x A0,

u2(x,y) =−L−1
x Ly u1(x,y)−L−1

x R(u1(x,y))−L−1
x A1,

u3(x,y) =−L−1
x Ly u2(x,y)−L−1

x R(u2(x,y))−L−1
x A2,

u4(x,y) =−L−1
x Ly u3(x,y)−L−1

x R(u3(x,y))−L−1
x A3,

where each component can be determined by using the preceding component. Hav-
ing calculated the components un(x,y),n � 0, the solution in a series form is readily
obtained.
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In the following, several distinct nonlinear partial differential equations will be
discussed to illustrate the procedure outlined above.

Example 1. Solve the nonlinear partial differential equation

ut + uux = 0, u(x,0) = x, t > 0, (8.179)

where u = u(x,t).

Solution.

In an operator form, Eq. (8.179) becomes

Ltu(x,t) =−uux, (8.180)

where Lt is defined by

Lt =
∂
∂ t

. (8.181)

The inverse operator L−1
t is identified by

L−1
t (·) =

∫ t

0
(·)dt. (8.182)

Applying L−1
t to both sides of (8.180) and using the initial condition we obtain

u(x,t) = x−L−1
t uux. (8.183)

Substituting

u(x,t) =
∞

∑
n=0

un(x,t), (8.184)

and the nonlinear term by

uux =
∞

∑
n=0

An, (8.185)

into (8.183) gives
∞

∑
n=0

un(x,t) = x−L−1
t

(
∞

∑
n=0

An

)
. (8.186)

This gives the recursive relation

u0(x,t) = x,
uk+1(x,t) = −L−1

t (Ak), k � 0.
(8.187)

The first few components are given by
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u0(x,t) = x,
u1(x,t) = −L−1

t A0 =−L−1
t (x) =−xt,

u2(x,t) = −L−1
t A1 =−L−1

t (−2xt) = xt2,

u3(x,t) = −L−1
t A2 =−L−1

t (3xt2) =−xt3,

(8.188)

where additional terms can be easily computed. Combining the results obtained
above, the solution in a series form is given by

u(x,t) = x(1− t + t2− t3 + · · ·), (8.189)

and in a closed form by

u(x,t) =
x

1 + t
, |t|< 1. (8.190)

In the next example we will use the modified decomposition method presented
in Chapter 2 to minimize the size of calculations.

Example 2. Use the modified decomposition method to solve the nonlinear partial
differential equation

ut + uux = x + xt2, u(x,0) = 0, t > 0, (8.191)

where u = u(x,t).

Solution.

Note that the equation is an inhomogeneous equation. Proceeding as in Example
1, Equation (8.191) becomes

Ltu(x,t) = x + xt2−uux. (8.192)

Applying the inverse operator L−1
t to both sides of (8.192) and using the initial

condition we find

u(x,t) = xt +
1
3

xt3−L−1
t uux. (8.193)

Using the decomposition assumptions for the linear term u(x,t) and for the nonlinear
term uux defined by

u(x,t) =
∞

∑
n=0

un(x,t), (8.194)

and

uux =
∞

∑
n=0

An, (8.195)

into (8.193) gives

∞

∑
n=0

un(x,t) = xt +
1
3

xt3−L−1
t

(
∞

∑
n=0

An

)
. (8.196)
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The modified decomposition method admits the use of a modified recursive relation
given by

u0(x,t) = xt,

u1(x,t) =
1
3

xt3−L−1
t (A0),

uk+2(x,t) = −L−1
t Ak+1, k � 0.

(8.197)

Consequently, we obtain

u0(x,t) = xt,

u1(x,t) =
1
3

xt3−L−1
t (xt2) = 0,

uk+2(x,t) = 0, k � 0.

(8.198)

In view of (8.198), the exact solution is given by

u(x,t) = xt. (8.199)

Example 3. Solve the nonlinear partial differential equation

ut = x2 +
1
4

u2
x, u(x,0) = 0, (8.200)

where u = u(x,t).

Solution.

Operating with L−1
t we find

u(x,t) = x2t +
1
4

L−1
t u2

x . (8.201)

The decomposition method suggests that u(x,t) can be defined by

u(x,t) =
∞

∑
n=0

un(x,t), (8.202)

and the nonlinear term u2
x by

u2
x =

∞

∑
n=0

An, (8.203)

where An,n � 0, are Adomian polynomials. Using these assumptions gives

∞

∑
n=0

un(x,t) = x2t +
1
4

L−1
t

(
∞

∑
n=0

An

)
. (8.204)

This gives the recursive relation
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u0(x,t) = x2t,

uk+1(x,t) =
1
4

L−1
t Ak, k � 0.

(8.205)

The Adomian polynomials An for this form of nonlinearity are given by

A0 = u2
0x

,

A1 = 2u0xu1x ,

A2 = 2u0xu2x + u2
1x

,

A3 = 2u0xu3x + 2u1xu2x ,

and so on. The first few components are determined as follows:

u0(x,t) = x2t,

u1(x,t) =
1
4

L−1
t A0 =

1
4

L−1
t (4x2t2) =

1
3

x2t3,

u2(x,t) =
1
4

L−1
t A1 =

1
4

L−1
t (

8
3

x2t4) =
2
15

x2t5,

u3(x,t) =
1
4

L−1
t A2 =

1
4

L−1
t (

68
45

x2t6) =
17

315
x2t7,

(8.206)

and so on. Combining the results obtained for the components, the solution in a
series form is given by

u(x,t) = x2
(

t +
1
3

t3 +
2

15
t5 +

17
315

t7 + · · ·
)

, (8.207)

and in a closed form by
u(x,t) = x2 tan t. (8.208)

Example 4. Solve the nonlinear partial differential equation by the modified de-
composition method

uxx−uxuyy =−x + u, u(0,y) = sin y, ux(0,y) = 1, (8.209)

where u = u(x,y).

Solution.

Note that the equation is an inhomogeneous equation. We first write Eq. (8.209)
in an operator form

Lxu =−x + u + uxuyy, (8.210)

where Lx is a second order partial differential operator given by

Lx =
∂ 2

∂x2 . (8.211)
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Assuming that L−1
x is invertible, and the inverse operator L−1

x is a two-fold integral
operator defined by

L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx, (8.212)

so that

L−1
x Lxu =

∫ x

0

∫ x

0
uxxdxdx,

= u(x,y)−u(0,y)− xux(0,y).
(8.213)

Proceeding as before we find

u(x,y) = siny + x− 1
3!

x3 + L−1
x (u + uxuyy). (8.214)

Following Adomian method we obtain

∞

∑
n=0

un(x,y) = siny + x− 1
3!

x3 + L−1
x

(
∞

∑
n=0

un(x,y)+
∞

∑
n=0

An

)
, (8.215)

where An are the Adomian polynomials that represent the nonlinear term uxuyy.
To use the modified decomposition method, we identify the component u0 by

u0(x,y) = siny+x, and the remaining term− 1
3!

x3 will be assigned to u1(x,y) among

other terms. Consequently, we obtain the recursive relation

u0(x,y) = siny + x,

u1(x,y) = − 1
3!

x3 + L−1
x (u0 + A0),

uk+1(x,y) = L−1
x (uk + Ak), k � 1.

(8.216)

Consequently, we obtain

u0(x,y) = siny + x,

u1(x,y) = − 1
3!

x3 + L−1
x (u0 + A0) =− 1

3!
x3 + L−1

x (x) = 0,
(8.217)

The exact solution is therefore given by

u(x,y) = x + siny. (8.218)

Example 5. Solve the nonlinear partial differential equation

uxx +
1
4

u2
y = u, u(0,y) = 1 + y2, ux(0,y) = 1, (8.219)

where u = u(x,y).

Solution.
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Operating with L−1
x on (8.219) and using the given conditions we find

u(x,y) = y2 + 1 + x + L−1
x

(
u(x,y)− 1

4
u2

y

)
. (8.220)

Proceeding as before we obtain

∞

∑
n=0

un(x,y) = y2 + 1 + x + L−1
x

(
∞

∑
n=0

un(x,y)− 1
4

∞

∑
n=0

An

)
, (8.221)

where An are the Adomian polynomials that represent the nonlinear term u2
y. The

decomposition method admits the use of the recursive relation

u0(x,y) = y2 + 1 + x

uk+1(x,y) = L−1
x (uk−

1
4

Ak), k � 0.
(8.222)

The Adomian polynomials are given by

A0 = u2
0y

,

A1 = 2u0yu1y ,

A2 = 2u0yu2y + u2
1y

,

A3 = 2u0yu3y + 2u1yu2y ,

and so on. The first few components of the solution u(x,y) are given by

u0(x,y) = y2 + 1 + x,

u1(x,y) = L−1
x (u0− 1

4
A0) = L−1

x (1 + x) =
1
2!

x2 +
1
3!

x3,

u2(x,y) = L−1
x (u1− 1

4
A1) = L−1

x (
1
2!

x2 +
1
3!

x3) =
1
4!

x4 +
1
5!

x5,

(8.223)

and so on for other components. Consequently, the solution in a series form is given
by

u(x,y) = y2 +(1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 + · · ·), (8.224)

which gives the solution in a closed form by

u(x,y) = y2 + ex. (8.225)

Example 6. Solve the nonlinear partial differential equation

uxx + u2−u2
y = 0, u(0,y) = 0, ux(0,y) = ey, (8.226)

where u = u(x,y).
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Solution.

We first write Eq. (8.226) in an operator form by

Lxu = u2
y−u2, (8.227)

where Lx is a second order partial differential operator. Operating with L−1
x gives

u(x,y) = xey + L−1
x

(
u2

y−u2) , (8.228)

so that
∞

∑
n=0

un(x,y) = xey + L−1
x

(
∞

∑
n=0

An−
∞

∑
n=0

Bn

)
, (8.229)

where An and Bn are the Adomian polynomials that represent the nonlinear terms u2
y

and u2 respectively. We next set the recursive relation

u0(x,y) = xey

uk+1(x,y) = L−1
x (Ak−Bk), k � 0.

(8.230)

The first few components of the solution u(x,y) are given by

u0(x,y) = xey,
u1(x,y) = L−1

x (A0−B0) = 0,
(8.231)

and therefore other components vanish. Consequently, the exact solution is given by

u(x,y) = xey. (8.232)

Example 7. Solve the nonlinear partial differential equation

uxx + u2−u2
yy = 0, u(0,y) = 0, ux(0,y) = cosy, (8.233)

where u = u(x,y).

Solution.

Operating with the two-fold integral operator L−1
x on (8.233) leads to

u(x,y) = xcosy + L−1
x

(
u2

yy−u2) . (8.234)

Following Adomian decomposition method we obtain

∞

∑
n=0

un(x,y) = xcosy + L−1
x

(
∞

∑
n=0

An−
∞

∑
n=0

Bn

)
, (8.235)

where An and Bn are the Adomian polynomials that represent the nonlinear terms
(uyy)

2 and u2 respectively. This gives the recursive relation



8.5 Nonlinear PDEs by Adomian Method 329

u0(x,y) = xcosy
uk+1(x,y) = L−1

x (Ak−Bk), k � 0.
(8.236)

The first few components of the solution u(x,y) are given by

u0(x,y) = xcosy,
u1(x,y) = L−1

x (A0−B0) = 0,
(8.237)

and other components vanish as well. Consequently, the exact solution is given by

u(x,y) = xcosy. (8.238)

Example 8. Solve the nonlinear partial differential equation

ut +
1
36

xu2
xx = x3, u(x,0) = 0, (8.239)

where u = u(x,t).

Solution.

Using the integral operator L−1
t on (8.239) and using the given condition we

obtain

u(x,t) = x3t− 1
36

L−1
t (xu2

xx). (8.240)

Following the analysis presented before we obtain

∞

∑
n=0

un(x,t) = x3t− 1
36

L−1
t

(
x

∞

∑
n=0

An

)
, (8.241)

where An are the Adomian polynomials that represent the nonlinear terms u2
xx. This

gives the recursive relation

u0(x,t) = x3t

uk+1(x,t) = − 1
36

L−1
t (xAk), k � 0.

(8.242)

The Adomian polynomials are given by

A0 = u2
0xx

,

A1 = 2u0xxu1xx ,

A2 = 2u0xxu2xx + u2
1xx

,

and so on. The first few components of the solution u(x,y) are given by

u0(x,t) = x3t,
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u1(x,t) = − 1
36

L−1
t (36x3t2) =−1

3
x3t3,

u2(x,t) = − 1
36

L−1
t (−24x3t4) =

2
15

x3t5,

u3(x,t) = − 1
36

L−1
t (

68
5

x3t6) =− 17
315

x3t7,

(8.243)

and so on. Consequently, the solution in a series form is given by

u(x,t) = x3(t− 1
3

t3 +
2

15
t5− 17

315
t7 + · · ·), (8.244)

and in a closed form by
u(x,t) = x3 tanht. (8.245)

Example 9. Solve the nonlinear partial differential equation

ut + u2ux = 0, u(x,0) = 2x, t > 0 (8.246)

where u = u(x,t).

Solution.

Applying L−1
t on (8.246) and using the given condition we obtain

u(x,t) = 2x−L−1
t (u2ux). (8.247)

It follows that
∞

∑
n=0

un(x,t) = 2x−L−1
t

(
∞

∑
n=0

An

)
, (8.248)

where An are the Adomian polynomials that represent the nonlinear terms u2ux. This
gives the recursive relation

u0(x,t) = 2x
uk+1(x,t) = −L−1

t (Ak), k � 0.
(8.249)

This gives the first few components of u(x,y) by

u0(x,t) = 2x,
u1(x,t) = −L−1

t (A0) =−L−1
t (8x2) =−8x2t,

u2(x,t) = −L−1
t (A1) =−L−1

t (−128x3t) = 64x3t2

u3(x,t) = −L−1
t (A2) =−L−1

t (1920x4t2) =−640x4t3,

(8.250)

and so on. It follows that the solution in a series form is given by

u(x,t) = 2x−8x2t + 64x3t2−640x4t3 + · · · . (8.251)

Two observations can be made here. First, we can easily observe that



8.5 Nonlinear PDEs by Adomian Method 331

u(x,t) = 2x, t = 0, (8.252)

that satisfies the initial condition. We next observe that for t > 0, the series solution
in (8.251) can be formally expressed in a closed form by

u(x,t) =
1
4t

(√
1 + 16xt−1

)
. (8.253)

Combining (8.252) and (8.253) gives the solution in the form

u(x,t) =

⎧⎨
⎩

2x, t = 0,

1
4t

(√
1 + 16xt−1

)
, t > 0.

(8.254)

Example 10. Solve the nonlinear partial differential equation

ut + uux = 0, u(x,0) = sinx, t > 0 (8.255)

where u = u(x,t).

Solution.

Equation (8.255) can be written in the form

Ltu =−uux. (8.256)

Operating with L−1
t on (8.256) gives

u(x,t) = sinx−L−1
t (uux). (8.257)

Using the decomposition assumptions for the linear and the nonlinear terms we find

∞

∑
n=0

un(x,t) = sinx−L−1
t

(
∞

∑
n=0

An

)
, (8.258)

where An are the Adomian polynomials that represent the nonlinear terms uux. The
following recursive relation

u0(x,t) = sinx
uk+1(x,t) = −L−1

t (Ak), k � 0.
(8.259)

follows immediately. This gives the first few components of u(x,y) by

u0(x,t) = sinx,
u1(x,t) = −L−1

t (A0) =−t sinxcosx,

u2(x,t) = −L−1
t (A1) = (sinxcos2x− 1

2
sin3x)t2,

(8.260)
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and so on. It is clear that the solution obtained will be in terms of a series of functions
rather than a power series. It then follows that

u(x,t) = sinx− t sinxcosx +(sinxcos2x− 1
2

sin3x)t2 + · · · . (8.261)

However, by using the traditional method of characteristics, we can show that the
solution can be expressed in the parametric form

u(x,t) = sin ξ ,
ξ = x− t sinξ .

(8.262)

For numerical approximations, the series solution obtained above is more effective
and practical compared to the parametric form solution given in (8.262).

In closing this section, it is important to note that the well-known nonlinear mod-
els that characterize physical models will be examined in details in Chapter 9. The
aim of Chapter 8 is to introduce the algorithm in a general way so that it can be
applied in scientific applications as will be seen in the coming chapters. For numeri-
cal purposes, the decomposition series solution will be combined with the powerful
Padé approximants to handle the boundary condition at infinity in particular.

Exercises 8.5

In Exercises 1–12, use the Adomian decomposition method to find the exact solution
of the following nonlinear partial differential equations:

1. uxx + uyuyy = 2, u(0,y) = 0, ux(0,y) = y

2. uyy + uxuxx = 2, u(x,0) = 0, uy(x,0) = x

3. ut + uux = 1 + x + t, u(x,0) = x

4. ut + uux = x + t + xt2, u(x,0) = 1

5. ut −uux = 0, u(x,0) = x

6. ut + uux = 1 + t cosx + sinxcosx, u(x,0) = sin x

7. ut = 2x2− 1
8

u2
x , u(x,0) = 0

8. ut +
1

36
xu2

xx = x3, u(x,0) = 0

9. ut + u2ux = 0, u(x,0) = 3x

10. ux + uyuyy =
1

1 + x2 , u(0,y) = 2y
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11. uxx + 2ux(u− t) = 0, u(0,t) = t, ux(0,t) = 1

12. uxx−2ux(u− t) = 0, u(0,t) = t, ux(0,t) = 1

In Exercises 13–24, use the modified decomposition method to find the exact solu-
tion of the following nonlinear partial differential equations:

13. uxx + uuy = 2y2 + 2x4y3, u(0,y) = 0, ux(0,y) = 0

14. uxx + uuy = 2u− y, u(0,y) = 1 + y, ux(0,y) = 1

15. uxx + uux = x + lny, u(0,y) = lny, ux(0,y) = 1, y > 0

16. uyy + uuy = y + lnx, u(x,0) = lnx, uy(x,0) = 1, x > 0

17. uyy + u2
x−u2 = 0, u(x,0) = 0, uy(x,0) = e−x

18. uyy−u2
xx + u2 = 0, u(x,0) = 0, uy(x,0) = cosx

19. uxx + uux = x + ln(1 + y), u(0,y) = ln(1 + y),
ux(0,y) = 1, y >−1

20. uxx + yuux = 1 + xy, u(0,y) =
1
y
, ux(0,y) = 1,y > 0

21. uyy + uxuy =
1

1 + x2 , u(x,0) = arctanx, uy(x,0) = 1

22. uxx−uut =−t, u(0,t) = t, ux(0,t) = 1

23. uxx + uut = t, u(0,t) = t, ux(0,t) = 1

24. uxx + uut = t, u(0,t) = 1 + t, ux(0,t) = 0

In Exercises 25–30, use the Adomian decomposition method to find the series solu-
tion of the following nonlinear partial differential equations:

25. ut + uux = 0, u(x,0) = sinhx

26. ut + uux = 0, u(x,0) = cosx

27. ut + uuxx = x2, u(x,0) = 0

28. ut + u2
x = 0, u(x,0) = x

29. ut + u2ux = 0, u(x,0) = x

30. ut + uu2
x = 0, u(x,0) = x
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8.6 Nonlinear PDEs by VIM

As stated before, the variational iteration method handles nonlinear problems in a
parallel manner to that used for linear problems. There is no need for Adomian
polynomials [8,17]. The main step is to determine the Lagrange multiplier λ (ξ ),
then the successive approximations can be obtained in a recursive manner. In the
following, we will examine the same examples discussed before to illustrate the
power of the VIM.

Example 1. Solve the nonlinear partial differential equation by the VIM

ut + uux = 0, u(x,0) = x, t > 0, (8.263)

where u = u(x,t).

Solution.

The correction functional for this equation reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+ ũn(x,ξ )

∂ ũn(x,ξ )

∂x

)
dξ . (8.264)

The stationary conditions
1 + λ |ξ=t = 0,

λ ′|ξ=t = 0,
(8.265)

give
λ =−1. (8.266)

Substituting this value of the Lagrange multiplier λ =−1 into the functional (8.264)
gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ un(x,ξ )

∂un(x,ξ )

∂x

)
dξ , n � 0. (8.267)

Selecting u0(x,t) = x from the given initial condition yields the successive approxi-
mations

u0(x,t) = x,
u1(x,t) = x− xt,

u2(x,t) = x− xt + xt2− 1
3

xt3,

u3(x,t) = x− xt + xt2− xt3 +
2
3

xt4 + · · · ,
...

un(x,t) = x
(
1− t + t2− t3 + t4 + · · ·) .

(8.268)

The solution in a closed form is given by

u(x,t) =
x

1 + t
, |t|< 1. (8.269)
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Example 2. Use the VIM to solve the nonlinear partial differential equation

ut + uux = x + xt2, u(x,0) = 0, t > 0, (8.270)

where u = u(x,t).

Solution.

Note that the equation is inhomogeneous. Proceeding as in Example 1, the cor-
rection functional for this equation reads

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+ ũn(x,ξ )

∂ ũn(x,ξ )

∂ x
− x− xξ 2

)
dξ .

(8.271)
The stationary conditions give λ = −1. Based on this, we obtain the iteration for-
mula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ un(x,ξ )

∂un(x,ξ )

∂x
− x− xξ 2

)
dξ , n � 0.

(8.272)
Selecting u0(x,t) = 0 from the given initial condition yields the successive approx-
imations

u0(x,t) = 0,

u1(x,t) = xt +
1
3

xt3,

u2(x,t) = xt +(
1
3

xt3− 1
3

xt3)− 2
15

xt5 + · · · ,

u3(x,t) = xt +(
1
3

xt3− 1
3

xt3)+ (
2
15

xt5− 2
15

xt5)+ · · · ,
...

un(x,t) = xt,

(8.273)

which is the exact solution obtained upon canceling the noise terms.

Example 3. Solve the nonlinear partial differential equation by the VIM

ut = x2 +
1
4

u2
x, u(x,0) = 0, (8.274)

where u = u(x,t).

Solution.

Proceeding as before we obtain the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂ un(x,ξ )

∂ξ
− 1

4
u2

nx
(x,ξ )− x2

)
dξ , n � 0. (8.275)
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Selecting u0(x,t) = 0 from the given initial condition yields the successive approx-
imations

u0(x,t) = 0,
u1(x,t) = x2t,

u2(x,t) = x2t +
1
3

x2t3,

u3(x,t) = x2t +
1
3

x2t3 +
2

15
x2t5 +

1
63

x2t7,

...

un(x,t) = x2

(
t +

1
3

t3 +
2

15
t5 +

17
315

t7 + · · ·
)

,

(8.276)

so that the solution in a closed form is

u(x,t) = x2 tan t. (8.277)

Example 4. Solve the nonlinear partial differential equation by the VIM

uxx−uxuyy =−x + u, u(0,y) = sin y, ux(0,y) = 1, (8.278)

where u = u(x,y).

Solution.

The correction functional for this equation reads

un+1(x,y) = un(x,y)

+

∫ x

0
λ (ξ )

(
∂ 2un(ξ ,y)

∂ξ 2 − ũnξ (ξ ,y)
∂ 2ũn(ξ ,y)

∂y2 − ũn(ξ ,y)+ ξ
)

dξ .

(8.279)
This yields the stationary conditions

1−λ ′|ξ=x = 0,
λ |ξ=x = 0,

λ ′′|ξ=x = 0.
(8.280)

This in turn gives
λ = ξ − x. (8.281)

Substituting this value of the Lagrangian multiplier into the functional (8.279) gives
the iteration formula

un+1(x,y) = un(x,y)

+

∫ x

0
(ξ − x)

(
∂ 2un(ξ ,y)

∂ξ 2 −unξ (ξ ,y)
∂ 2un(ξ ,y)

∂ y2 −un(ξ ,y)+ ξ
)

dξ .

(8.282)
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Considering the given initial values, we can select u0(x,y) = x + siny. Using this
selection into (8.282) we obtain the following successive approximations

u0(x,y) = x + siny,
u1(x,y) = x + siny,
u2(x,y) = x + siny,

...
un(x,y) = x + siny.

(8.283)

This gives the exact solution by

u(x,y) = x + siny. (8.284)

Example 5. Solve the nonlinear partial differential equation

uxx +
1
4

u2
y = u, u(0,y) = 1 + y2, ux(0,y) = 1, (8.285)

where u = u(x,y).

Solution.

Proceeding as before gives the iteration formula

un+1(x,y) = un(x,y)+

∫ x

0
(ξ − x)

(
∂ 2un(ξ ,y)

∂ξ 2 +
1
4
(
∂ un(ξ ,y)

∂y
)2−un(ξ ,y)

)
dξ .

(8.286)
Selecting u0(x,y) = y2 + 1 + x gives the following successive approximations

u0(x,y) = y2 + 1 + x,

u1(x,y) = y2 + 1 + x +
1
2!

x2 +
1
3!

x3,

u2(x,y) = y2 + 1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5,

...

un(x,y) = y2 +(1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + · · ·).

(8.287)

This gives the exact solution by

u(x,y) = y2 + ex. (8.288)

Example 6. Solve the nonlinear partial differential equation by the VIM

uxx + u2−u2
y = 0, u(0,y) = 0, ux(0,y) = ey, (8.289)

where u = u(x,y).
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Solution.

Proceeding as before gives
λ = ξ − x. (8.290)

This in turn gives the iteration formula

un+1(x,y) = un(x,y)+

∫ x

0
(ξ − x)

(
∂ 2un(ξ ,y)

∂ξ 2 − (
∂ un(ξ ,y)

∂y
)2 + u2

n(ξ ,y)

)
dξ .

(8.291)
Selecting u0(x,y) = xey gives the following successive approximations

u0(x,y) = xey,
u1(x,y) = xey,
u2(x,y) = xey,

...
un(x,y) = xey.

(8.292)

This gives the exact solution by

u(x,y) = xey. (8.293)

Example 7. Solve the nonlinear partial differential equation

uxx + u2−u2
yy = 0, u(0,y) = 0, ux(0,y) = cosy, (8.294)

where u = u(x,y).

Solution.

The Lagrange multiplier is
λ = ξ − x. (8.295)

This in turn gives the iteration formula

un+1(x,y) = un(x,y)+
∫ x

0
(ξ − x)

(
∂ 2un(ξ ,y)

∂ξ 2 − (
∂ 2un(ξ ,y)

∂y2 )2 + u2
n(ξ ,y)

)
dξ .

(8.296)
Selecting u0(x,y) = xcosy gives the following successive approximations

u0(x,y) = xcosy,
u1(x,y) = xcosy,
u2(x,y) = xcosy,

...
un(x,y) = xcosy.

(8.297)

This gives the exact solution by
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u(x,y) = xcosy. (8.298)

Example 8. Solve the nonlinear partial differential equation

ut +
1
36

xu2
xx = x3, u(x,0) = 0. (8.299)

Solution.

As discussed in Example 1, λ =−1. This gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+

1
36

x

(
∂ 2un(x,ξ )

∂x2

)2

− x3

)
dξ , n � 0.

(8.300)
Selecting u0(x,t) = 0 from the given initial condition yields the successive approx-
imations

u0(x,t) = 0,
u1(x,t) = x3t,

u2(x,t) = x3t− 1
3

x3t3,

u3(x,t) = x3t− 1
3

x3t3 +
2

15
x3t5− 1

63
x3t7,

...

un(x,t) = x3

(
t− 1

3
t3 +

2
15

t5− 17
315

t7 + · · ·
)

.

(8.301)

The solution in a closed form is given by

u(x,t) = x3 tanht. (8.302)

Example 9. Solve the nonlinear partial differential equation

ut + u2ux = 0, u(x,0) = 2x, t > 0 (8.303)

where u = u(x,t).

Solution.

Proceeding as in the previous example we find

λ =−1. (8.304)

This gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ u2

n(x,ξ )
∂un(x,ξ )

∂x

)
dξ , n � 0. (8.305)
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Selecting u0(x,t) = 2x from the given initial condition yields the successive approx-
imations

u0(x,t) = 2x,
u1(x,t) = 2x−8x2t,

u2(x,t) = 2x−8x2t + 64x3t2− 640
3

x4t3 + · · · ,
u3(x,t) = 2x−8x2t + 64x3t2−640x4t3 + · · · ,

...
un(x,t) = 2x−8x2t + 64x3t2−640x4t3 + 7168x5t4 + · · · .

(8.306)

As concluded before, we can easily observe that

u(x,t) = 2x, t = 0, (8.307)

and for t > 0, the series solution in (8.307) can be formally expressed in a closed
form by

u(x,t) =
1
4t

(√
1 + 16xt−1

)
. (8.308)

Combining (8.307) and (8.308) gives the solution in the form

u(x,t) =

⎧⎨
⎩

2x, t = 0,

1
4t

(√
1 + 16xt−1

)
, t > 0.

(8.309)

Example 10. Solve the nonlinear partial differential equation

ut + uux = 0, u(x,0) = sinx, t > 0 (8.310)

where u = u(x,t).

Solution.

As presented above, the stationary conditions gives

λ =−1, (8.311)

and a s a result we find the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ un(x,ξ )

∂un(x,ξ )

∂x

)
dξ , n � 0. (8.312)

Selecting u0(x,t) = sinx from the given initial condition yields the successive ap-
proximations
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u0(x,t) = sinx,
u1(x,t) = sinx− t sin xcosx,

u2(x,t) = sinx− t sin xcosx + sinx(cos2 x− 1
2

sin2 x)t2− 1
6

t3 sin2x cos2x,

...

un(x,t) = sinx− t sin xcosx + t2 sinx(cos2 x− 1
2

sin2 x)

−1
6

t3 sin 2x cos2x + · · ·.
(8.313)

As stated in the previous section, using the traditional method of characteristics, we
can show that the solution can be expressed in the parametric form

u(x,t) = sin ξ ,
ξ = x− t sinξ .

(8.314)

For numerical approximations, the series solution obtained above is more effective
and practical compared to the parametric form solution given in (8.314).

In closing this section, it is easily observed that the variational iteration method
can be effectively used in handling nonlinear problems. There is no need for Ado-
mian polynomials, perturbation techniques, or any restrictive assumptions that may
change the physical behavior of the problem.

Exercises 8.6

Use the variational iteration method to solve the problems in Exercises 8.5.

8.7 Nonlinear PDEs Systems by Adomian Method

In this section, systems of nonlinear partial differential equations will be examined
by using Adomian decomposition method. Systems of nonlinear partial differential
equations arise in many scientific models such as the propagation of shallow water
waves and the Brusselator model of chemical reaction-diffusion model. To achieve
our goal in handling systems of nonlinear partial differential equations, we write a
system in an operator form by

Ltu + Lxv + N1(u,v) = g1,
Ltv + Lxu + N2(u,v) = g2,

(8.315)

with initial data
u(x,0) = f1(x),
v(x,0) = f2(x),

(8.316)
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where Lt and Lx are considered, without loss of generality, first order partial differ-
ential operators, N1 and N2 are nonlinear operators, and g1 and g2 are source terms.
Operating with the integral operator L−1

t to the system (8.315) and using the initial
data (8.316) yields

u(x,t) = f1(x)+ L−1
t g1−L−1

t Lxv−L−1
t N1(u,v),

v(x,t) = f2(x)+ L−1
t g2−L−1

t Lxu−L−1
t N2(u,v).

(8.317)

The linear unknown functions u(x,t) and v(x,t) can be decomposed by infinite series
of components

u(x,t) =
∞

∑
n=0

un(x,t),

v(x,t) =
∞

∑
n=0

vn(x,t).
(8.318)

However, the nonlinear operators N1(u,v) and N2(u,v) should be represented by
using the infinite series of the so-called Adomian polynomials An and Bn as follows:

N1(u,v) =
∞

∑
n=0

An,

N2(u,v) =
∞

∑
n=0

Bn,
(8.319)

where un(x,t) and vn(x,t),n � 0 are the components of u(x,t) and v(x,t) respectively
that will be recurrently determined, and An and Bn,n � 0 are Adomian polynomials
that can be generated for all forms of nonlinearity. The algorithms for calculating
Adomian polynomials were introduced in Sections 8.2 and 8.3. Substituting (8.318)
and (8.319) into (8.317) gives

∞

∑
n=0

un(x,t) = f1(x)+ L−1
t g1−L−1

t Lx(
∞

∑
n=0

vn)−L−1
t

(
∞

∑
n=0

An

)
,

∞

∑
n=0

vn(x,t) = f2(x)+ L−1
t g2−L−1

t Lx(
∞

∑
n=0

un)−L−1
t

(
∞

∑
n=0

Bn

)
.

(8.320)

Two recursive relations can be constructed from (8.320) given by

u0(x,t) = f1(x)+ L−1
t g1,

uk+1(x,t) = −L−1
t (Lx vk)−L−1

t (Ak) , k � 0,
(8.321)

and
v0(x,t) = f2(x)+ L−1

t g2,

vk+1(x,t) = −L−1
t (Lx uk)−L−1

t (Bk) , k � 0.
(8.322)

It is an essential feature of the decomposition method that the zeroth components
u0(x,t) and v0(x,t) are defined always by all terms that arise from initial data and
from integrating the source terms. Having defined the zeroth pair (u0,v0), the re-
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maining pair (uk,vk),k � 1 can be obtained in a recurrent manner by using (8.321)
and (8.322). Additional pairs for the decomposition series solutions normally ac-
count for higher accuracy. Having determined the components of u(x,t) and v(x,t),
the solution (u,v) of the system follows immediately in the form of a power series
expansion upon using (8.318).

To give a clear overview of the analysis introduced above, two illustrative sys-
tems of nonlinear partial differential equations have been selected to demonstrate
the efficiency of the method.

Example 1. Consider the nonlinear system:

ut + vux + u = 1,
vt −uvx− v = 1,

(8.323)

with the conditions
u(x,0) = ex, v(x,0) = e−x. (8.324)

Solution.
Operating with L−1

t on (8.323) we obtain

u(x,t) = ex + t−L−1
t (vux + u),

v(x,t) = e−x + t + L−1
t (uvx + v).

(8.325)

The linear terms u(x,t) and v(x,t) can be represented by the decomposition series

u(x,t) =
∞

∑
n=0

un(x,t),

v(x,t) =
∞

∑
n=0

vn(x,t),
(8.326)

and the nonlinear terms vux and uvx by an infinite series of polynomials

vux =
∞

∑
n=0

An,

uvx =
∞

∑
n=0

Bn,
(8.327)

where An and Bn are the Adomian polynomials that can be generated for any form
of nonlinearity. Substituting (8.326) and (8.327) into (8.325) gives

∞

∑
n=0

un(x,t) = ex + t−L−1
t

(
∞

∑
n=0

An +
∞

∑
n=0

un

)
,

∞

∑
n=0

vn(x,t) = e−x + t + L−1
t

(
∞

∑
n=0

Bn +
∞

∑
n=0

vn

)
.

(8.328)



344 8 Nonlinear Partial Differential Equations

To accelerate the convergence of the solution, the modified decomposition method
will be applied here. The modified decomposition method defines the recursive re-
lations in the form

u0(x,t) = ex,

u1(x,t) = t−L−1
t (A0 + u0) ,

uk+1(x,t) = −L−1
t (Ak + uk) , k � 1,

(8.329)

and
v0(x,t) = e−x,

v1(x,t) = t + L−1
t (B0 + v0) ,

vk+1(x,t) = L−1
t (Bk + vk) , k � 1.

(8.330)

The Adomian polynomials for the nonlinear term vux are given by

A0 = v0u0x ,

A1 = v1u0x + v0u1x ,

A2 = v2u0x + v1u1x + v0u2x ,

A3 = v3u0x + v2u1x + v1u2x + v0u3x ,

and for the nonlinear term uvx by

B0 = u0v0x ,

B1 = u1v0x + u0v1x ,

B2 = u2v0x + u1v1x + u0v2x ,

B3 = u3v0x + u2v1x + u1v2x + u0v3x .

Using the derived Adomian polynomials into (8.329) and (8.330), we obtain the
following pairs of components

(u0,v0) = (ex,e−x),
(u1,v1) = (−tex,te−x),

(u2,v2) = (
t2

2!
ex,

t2

2!
e−x),

(u3,v3) = (− t3

3!
ex,

t3

3!
e−x).

(8.331)

Accordingly, the solution of the system in a series form is given by

(u,v) =

(
ex(1− t +

t2

2!
− t3

3!
+ · · ·),e−x(1 + t +

t2

2!
+

t3

3!
+ · · ·)

)
, (8.332)

and in a closed form by
(u,v) =

(
ex−t ,e−x+t) . (8.333)
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In what follows, a system of three nonlinear partial differential equations in three
unknown functions u(x,y,t),v(x,y,t) and w(x,y,t) will be studied. It is worth noting
that handling this system by traditional methods is quiet complicated.

Example 2. Consider the following nonlinear system:

ut − vxwy = 1,
vt −wxuy = 5,
wt −uxvy = 5,

(8.334)

with the initial conditions

u(x,y,0) = x + 2y, v(x,y,0) = x−2y, w(x,y,0) =−x + 2y. (8.335)

Solution.
Following the analysis presented above we obtain

u(x,y,t) = (x + 2y + t)+ L−1
t (vxwy),

v(x,y,t) = (x−2y + 5t)+ L−1
t (wxuy),

w(x,y,t) = (−x + 2y + 5t)+ L−1
t (uxvy).

(8.336)

Substituting the decomposition representations for linear and nonlinear terms into
(8.336) yields

∞

∑
n=0

un(x,y,t) = (x + 2y + t)+ L−1
t

(
∞

∑
n=0

An

)
,

∞

∑
n=0

vn(x,y,t) = (x−2y + 5t)+ L−1
t

(
∞

∑
n=0

Bn

)
,

∞

∑
n=0

wn(x,y,t) = (−x + 2y + 5t)+ L−1
t

(
∞

∑
n=0

Cn

)
,

(8.337)

where An,Bn, and Cn, are Adomian polynomials for the nonlinear terms vxwy,wxuy,
and uxvy respectively. For brevity, we list the first three Adomian polynomials for
An,Bn, and Cn as follows:

For vxwy, we find

A0 = v0xw0y ,

A1 = v1xw0y + v0xw1y ,

A2 = v2xw0y + v1xw1y + v0xw2y ,

and for wxuy we find

B0 = w0x u0y ,

B1 = w1x u0y + w0xu1y ,
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B2 = w2x u0y + w1xu1y + w0xu2y ,

and for uxvy we find

C0 = u0xv0y ,

C1 = u1xv0y + u0xv1y ,

C2 = u2xv0y + u1xv1y + u0xv2y .

Substituting these polynomials into the appropriate recursive relations we find

(u0,v0,w0) = (x + 2y + t, x−2y + 5t,−x + 2y + 5t),
(u1,v1,w1) = (2t,−2t,−2t),
(uk,vk,wk) = (0,0,0), k � 2.

(8.338)

Consequently, the exact solution of the system of nonlinear partial differential equa-
tions is given by

(u,v,w) = (x + 2y + 3t,x−2y +3t,−x+2y+3t). (8.339)

Exercises 8.7

Use Adomian decomposition method to solve the following systems of nonlinear
partial differential equations:

1. ut + uxvx = 2, vt + uxvx = 0
u(x,0) = x, v(x,0) = x

2. ut− vux−u = 1, vt + uvx + v = 1
u(x,0) = e−x, v(x,0) = ex

3. ut + 2vux−u = 2, vt −3uvx + v = 3
u(x,0) = ex, v(x,0) = e−x

4. ut + vux−3u = 2, vt −uvx + 3v = 2
u(x,0) = e2x, v(x,0) = e−2x

5. ut + uxvx−wy = 1, vt + vxwx + uy = 1, wt + wxux− vy = 1
u(x,y,0) = x + y, v(x,y,0) = x− y, w(x,y,0) =−x + y

6. ut + vxwy− vywx = −u, vt + wxuy + wyux = v
wt + uxvy + uyvx = w
u(x,y,0) = ex+y, v(x,y,0) = ex−y, w(x,y,0) = e−x+y

7. ut + uxvx−uyvy + u = 0, vt + vxwx− vywy− v = 0
wt + wxux + wyuy−w = 0
u(x,y,0) = ex+y, v(x,y,0) = ex−y, w(x,y,0) = e−x+y
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8. ut + uyvx = 1 + et , vt + vywx = 1− e−t

wt + wyuy = 1− e−t

u(x,y,0) = 1 + x + y, v(x,y,0) = 1 + x− y, w(x,y,0) = 1− x + y

8.8 Systems of Nonlinear PDEs by VIM

Systems of nonlinear partial differential equations arise in many scientific models
such as the propagation of shallow water waves and the Brusselator model of chem-
ical reaction-diffusion model. To use the VIM, we write a system in an operator
form by

Ltu + R1(u,v,w)+ N1(u,v,w) = g1,
Ltv + R2(u,v,w)+ N2(u,v,w) = g2,
Ltw+ R3(u,v,w)+ N3(u,v,w) = g3,

(8.340)

with initial data
u(x,0) = f1(x),
v(x,0) = f2(x),
w(x,0) = f3(x),

(8.341)

where Lt is considered a first order partial differential operator, R j,1 � j � 3 and
Nj,1 � j � 3 are linear and nonlinear operators respectively, and g1, g2 and g3 are
source terms. The correction functionals for equations of the system (8.340) can be
written as

un+1(x,t) = un(x,t)

+
∫ t

0
λ1 (Lun(x,ξ )+ R1(ũn, ṽn, w̃n)+ N1(ũn, ṽn, w̃n)−g1(ξ )) dξ ,

vn+1(x,t) = vn(x,t)

+

∫ t

0
λ2 (Lvn(x,ξ )+ R2(ũn, ṽn, w̃n)+ N2(ũn, ṽn, w̃n)−g2(ξ )) dξ ,

wn+1(x,t) = wn(x,t)

+

∫ t

0
λ3 (Lwn(x,ξ )+ R3(ũn, ṽn, w̃n)+ N3(ũn, ṽn, w̃n)−g3(ξ )) dξ ,

(8.342)
where λ j,1 � j � 3 are general Lagrange’s multipliers, which can be identified op-
timally via the variational theory, and ũn, ṽn, and w̃n as restricted variations which
means δ ũn = 0,δ ṽn = 0 and δ w̃n = 0. It is required first to determine the La-
grange multipliers λ j that will be identified optimally via integration by parts. The
successive approximations un+1(x,t),vn+1(x,t),wn+1(x,t),n � 0 of the solutions
u(x,t),v(x,t) and w(x,t) will follow immediately upon using the obtained Lagrange
multipliers and by using selective functions u0,v0, and w0. The initial values are
usually used for the selective zeroth approximations. With the Lagrange multipliers
λ j determined, then several approximations u j(x,t),v j(x,t),wj(x,t), j � 0 can be
determined [18]. Consequently, the solutions are given by
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u(x,t) = lim
n→∞

un(x,t),

v(x,t) = lim
n→∞

vn(x,t),

w(x,t) = lim
n→∞

wn(x,t).
(8.343)

To give a clear overview of the analysis introduced above, we will apply the VIM
to the same two illustrative systems of partial differential equations that were studied
in the previous section.

Example 1. Consider the inhomogeneous nonlinear system

PDE ut + vux + u = 1,
vt −uvx− v = 1,

IC u(x,0) = ex, v(x,0) = e−x.
(8.344)

Solution.

The correction functionals for (8.344) read

un+1(x,t) = un(x,t)+
∫ t

0
λ1(ξ )

(
∂un(x,ξ )

∂ξ
+ ṽn(x,ξ )

∂un(x,ξ )

∂x
+ ũn(x,ξ )−1

)
dξ ,

vn+1(x,t) = vn(x,t)+

∫ t

0
λ2(ξ )

(
∂vn(x,ξ )

∂ξ
− ũn(x,ξ )

∂vn(x,ξ )

∂x
− ṽn(x,ξ )−1

)
dξ .

(8.345)
The stationary conditions are given by

1 + λ1 = 0, λ ′1(ξ = t) = 0,
1 + λ2 = 0, λ ′2(ξ = t) = 0,

(8.346)

so that
λ1 = λ2 =−1. (8.347)

Substituting these values of the Lagrange multipliers into the functionals (8.345)
gives the iteration formulas

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+ vn(x,ξ )

∂ un(x,ξ )

∂x
+ un(x,ξ )−1

)
dξ ,

vn+1(x,t) = vn(x,t)−
∫ t

0

(
∂vn(x,ξ )

∂ξ
−un(x,ξ )

∂ vn(x,ξ )

∂ x
− vn(x,ξ )−1

)
dξ .

(8.348)
The zeroth approximations u0(x,t) = ex, and v0(x,t) = e−x are selected by using the
given initial conditions. Therefore, we obtain the following successive approxima-
tions
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u0(x,t) = ex, v0(x,t) = e−x,
u1(x,t) = ex− tex, v1(x,t) = e−x + te−x,

u2(x,t) = ex− tex +
t2

2!
ex + noise terms,

v2(x,t) = e−x + te−x +
t2

2!
e−x + noise terms,

...

(8.349)

By canceling the noise terms between u2,u3, · · · and between v2,v3, · · ·, we find

un(x,t) = ex

(
1− t +

t2

2!
− t3

3!
+ · · ·

)
, vn(x,t) = e−x

(
1 + t +

t2

2!
+

t3

3!
+ · · ·

)
,

(8.350)
and as a result, the exact solutions are given by

u(x,t) = ex−t ,
v(x,t) = e−x+t ,

(8.351)

obtained upon using the Taylor expansion for e−t and et . It is obvious that we did
not use any transformation formulas or linearization assumptions for handling the
nonlinear terms.

In what follows, a system of three nonlinear partial differential equations in three
unknown functions u(x,y,t),v(x,y,t) and w(x,y,t) will be studied. It is worth noting
that handling this system by traditional methods is quiet complicated.

Example 2. Consider the following nonlinear system:

ut − vxwy = 1,
vt −wxuy = 5,
wt −uxvy = 5,

(8.352)

with the initial conditions

u(x,y,0) = x + 2y, v(x,y,0) = x−2y, w(x,y,0) =−x + 2y. (8.353)

Solution.

Proceeding as before we find

λ1 = λ2 = λ3 =−1. (8.354)

Substituting these values of the Lagrange multipliers gives the iteration formulas
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un+1(x,y,t) = un(x,y,t)−
∫ t

0

(
∂un(x,y,ξ )

∂ξ
− ∂vn(x,y,ξ )

∂x
× ∂wn(x,y,ξ )

∂y
−1

)
dξ ,

vn+1(x,y,t) = vn(x,y,t)−
∫ t

0

(
∂vn(x,y,ξ )

∂ξ
− ∂wn(x,y,ξ )

∂x
× ∂un(x,y,ξ )

∂ y
−5

)
dξ ,

wn+1(x,y,t) = wn(x,y,t)−
∫ t

0

(
∂ wn(x,y,ξ )

∂ξ
− ∂un(x,y,ξ )

∂x
× ∂vn(x,y,ξ )

∂y
−5

)
dξ .

(8.355)
The zeroth approximations

u0(x,y,t) = x + 2y,
v0(x,y,t) = x−2y,
w0(x,y,t) = −x + 2y,

(8.356)

are selected by using the given initial conditions. Consequently, the following suc-
cessive approximations ⎧⎨

⎩
u0(x,y,t) = x + 2y,
v0(x,y,t) = x−2y,
w0(x,y,t) = −x + 2y.⎧⎨

⎩
u1(x,y,t) = x + 2y + 3t,
v1(x,y,t) = x−2y + 3t,
w1(x,y,t) = −x + 2y + 3t,{
...⎧⎨

⎩
un(x,y,t) = x + 2y + 3t,
vn(x,y,t) = x−2y + 3t,
wn(x,y,t) = −x + 2y + 3t,

(8.357)

are readily obtained. Notice that the successive approximations became the same
for u after obtaining the first approximation. The same conclusion can be made for
v and w. Based on this, the exact solutions are given by

u(x,y,t) = x + 2y + 3t,
v(x,y,t) = x−2y + 3t,
w(x,y,t) = −x + 2y + 3t.

(8.358)

Exercises 8.8

Use the variational iteration method to solve the problems in Exercises 8.7.
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Chapter 9

Linear and Nonlinear Physical Models

9.1 Introduction

This chapter is devoted to treatments of linear and nonlinear particular applications
that appear in applied sciences. A wide variety of physically significant problems
modeled by linear and nonlinear partial differential equations has been the focus of
extensive studies for the last decades. A huge size of research and investigation has
been invested in these scientific applications. Several approaches have been used
such as the characteristics method, spectral methods and perturbation techniques to
examine these problems.

Nonlinear PDEs have undergone remarkable developments. Nonlinear problems
arise in different areas including gravitation, chemical reaction, fluid dynamics,
dispersion, nonlinear optics, plasma physics, acoustics, inviscid fluids and others.
Nonlinear wave propagation problems have provided solutions of different physical
structures than solutions of linear wave equations.

It is well known that many physical, chemical and biological problems are char-
acterized by the interaction of convection and diffusion and by the interaction of dif-
fusion and reaction processes. Burgers equation is considered as a model equation
that describes the interaction of convection and diffusion, whereas Fisher equation
is an appropriate model that describes the process of interaction between diffusion
and reaction.

In this chapter, Adomian decomposition method, the modified decomposition
method, and the self-canceling noise-terms phenomenon will be employed in the
treatments of these models. Moreover, the variational iteration method will be used
as well. Some of the examples will be solved by Adomian method and by the varia-
tional iteration method. The linear and nonlinear models will be approached directly
and in a like manner. The series representation of the linear term u, and the repre-
sentation of the nonlinear term F(u) by a series of Adomian polynomials will be
used in a like manner to that used in Chapter 8; hence details will be skipped.
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9.2 The Nonlinear Advection Problem

The nonlinear partial differential equation of the advection problem is of the form

ut + uux = f (x,t), u(x,0) = g(x). (9.1)

The problem has been handled by using the characteristic method, and recently by
applying numerical methods such as Fourier series and Runge-Kutta method.

In this section, we approach the advection problem [13] by utilizing the decom-
position method to find a rapidly convergent power series solution. The phenomenon
of self-canceling noise terms will be used where appropriate.

In an operator form, Eq. (9.1) can be rewritten as

Ltu +
1
2

Lx(u2) = f (x,t), u(x,0) = g(x). (9.2)

Operating with L−1
t yields

u(x,t) = g(x)+ L−1
t ( f (x,t))− 1

2
L−1

t Lx(u2). (9.3)

Substituting the linear term u(x,t) by the series

u(x,t) =
∞

∑
n=0

un(x,t), (9.4)

and the nonlinear term u2 by a series of Adomian polynomials

u2(x,t) =
∞

∑
n=0

An, (9.5)

where An are derived in Section 8.2.1, into (9.3) gives

∞

∑
n=0

un(x,t) = g(x)+ L−1
t ( f (x,t))− 1

2
L−1

t Lx

(
∞

∑
n=0

An

)
. (9.6)

Following Adomian approach, we obtain the recursive relation

u0(x,t) = g(x)+ L−1
t ( f (x,t)),

uk+1(x,t) = −1
2

L−1
t Lx(Ak), k � 0.

(9.7)

In view of (9.7), the components un, n � 0 can be easily computed, and the series
solution can be formally constructed.

As stated in Chapter 2, the phenomenon of the self-canceling noise terms may
appear for inhomogeneous problems, whereas homogeneous problems do not pro-
duce the noise terms in u0(x,t) and u1(x,t). The self-canceling noise terms [14] will
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play a major role in accelerating the convergence. Moreover, the variational iteration
method will be used for some of the examples for comparison reasons.

To give a clear overview of this analysis, the following illustrative examples will
be discussed by using Adomian method [3]. Some of these examples will be also be
handled by the variational iteration method

Example 1. Solve the inhomogeneous advection problem

ut +
1
2
(u2)x = ex + t2e2x, u(x,0) = 0. (9.8)

Solution.

The Decomposition Method

Operating with L−1
t , Eq. (9.8) becomes

u(x,t) = tex +
1
3

t3e2x− 1
2

L−1
t Lx(u2). (9.9)

Substituting the decomposition representation for the linear term u(x,t) and for the
nonlinear term u2(x,t) gives

∞

∑
n=0

un(x,t) = tex +
1
3

t3e2x− 1
2

L−1
t Lx

(
∞

∑
n=0

An

)
, (9.10)

where An are the Adomian polynomials for the nonlinear term u2. This gives the
recursive relation

u0(x,t) = tex +
1
3

t3e2x,

uk+1(x,t) = −1
2

L−1
t Lx (Ak) , k � 0,

(9.11)

so that the first two components are given by

u0(x,t) = tex +
1
3

t3e2x,

u1(x,t) = −1
2

L−1
t Lx (A0) ,

= −1
3

t3e2x− 1
5

t5e3x− 2
63

t7e4x.

(9.12)

The noise terms phenomenon suggests that if terms in u0 are canceled by terms in
u1, even though u1 contains further terms, then the remaining non-canceled terms of
u0 may provide the exact solution of the problem. This should be verified through

substitution. Thus by canceling the term −1
3

t3e2x in u0, and by justifying that the

remaining non-canceled term of u0 satisfies the equation, it then follows that the
exact solution is given by

u(x,t) = tex. (9.13)
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The Variational Iteration Method

We now apply the variational iteration method [6] and set the correction func-
tional for this equation by

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+

1
2

∂ ũ2
n(x,ξ )

∂x
− ex−ξ 2e2x

)
dξ .

(9.14)
The stationary conditions are given by

1 + λ |ξ=t = 0,
λ ′|ξ=t = 0.

(9.15)

Solving this system gives
λ =−1. (9.16)

Substituting this value of the Lagrange multiplier λ = −1 into the correction func-
tional gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+

1
2

∂u2
n(x,ξ )

∂x
− ex−ξ 2e2x

)
dξ , n � 0.

(9.17)
Selecting u0(x,t) = 0 from the given initial condition yields the successive approx-
imations

u0(x,t) = 0,

u1(x,t) = tex +
t3

3
e2x,

u2(x,t) = tex +(
t3

3
e2x− t3

3
e2x)− t5

5
e3x + · · · ,

u3(x,t) = tex +(
t3

3
e2x− t3

3
e2x)− (

t5

5
e3x− t5

5
e3x)+ · · · ,

...
un(x,t) = tex.

(9.18)

The exact solution is therefore u(x,t) = tex obtained by canceling the noise terms.

Example 2. Solve the inhomogeneous advection problem

ut +
1
2
(u2)x =−sin(x + t)− 1

2
sin2(x + t), u(x,0) = cosx. (9.19)

Solution.

Applying L−1
t to both sides of (9.19) gives

u(x,t) = cos(x + t)+
1
4

cos2(x + t)− 1
4

cos2x− 1
2

L−1
t Lx(u2). (9.20)
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Using the decomposition representation for the linear and nonlinear terms yields

∞

∑
n=0

un(x,t) = cos(x + t)+
1
4

cos2(x + t)− 1
4

cos2x− 1
2

L−1
t Lx

(
∞

∑
n=0

An

)
, (9.21)

where An are the Adomian polynomials for the nonlinear term u2. Following Ado-
mian analysis, the recursive relation

u0(x,t) = cos(x + t)+
1
4

cos2(x + t)− 1
4

cos2x,

uk+1(x,t) = −1
2

L−1
t Lx (Ak) , k � 0,

(9.22)

follows immediately. The first two components are given by

u0(x,t) = cos(x + t)+
1
4

cos2(x + t)− 1
4

cos2x,

u1(x,t) = −1
2

L−1
t Lx (A0) =−1

4
cos2(x + t)+

1
4

cos2x−·· · .
(9.23)

It is easily observed that two noise terms appear in the components u0(x,t) and
u1(x,t). By canceling these terms from u0, the remaining non-canceled term of u0

may provide the exact solution. It follows that the exact solution is given by

u(x,t) = cos(x + t), (9.24)

that can be justified by substitution.

Example 3. Solve the inhomogeneous advection problem

ut +
1
2
(u2)x = x, u(x,0) = 2. (9.25)

Solution.

The Decomposition Method

Operating with L−1
t gives

u(x,t) = 2 + xt− 1
2

L−1
t Lx(u2). (9.26)

The decomposition method admits the use of

u(x,t) =
∞

∑
n=0

un(x,t), (9.27)

and

u2(x,t) =
∞

∑
n=0

An, (9.28)
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into (9.26) to obtain

∞

∑
n=0

un(x,t) = 2 + xt− 1
2

L−1
t Lx

(
∞

∑
n=0

An

)
. (9.29)

This gives the recursive relation

u0(x,t) = 2 + xt,

uk+1(x,t) = −1
2

L−1
t Lx (Ak) , k � 0,

(9.30)

that gives
u0(x,t) = 2 + xt,

u1(x,t) = −1
2

L−1
t Lx (A0) =−t2− 1

3
xt3,

u2(x,t) = −1
2

L−1
t Lx (A1) =

5
12

t4 +
2
15

xt5,

u3(x,t) = −1
2

L−1
t Lx (A2) =− 61

360
t6− 17

315
xt7.

(9.31)

Although the advection problem (9.25) is inhomogeneous, it is clear that the noise
terms do not appear in u0 and u1. Consequently, the series solution is given by

u(x,t) = 2

(
1− 1

2!
t2 +

5
4!

t4− 61
6!

t6 + · · ·
)

+x

(
t− 1

3
t3 +

2
15

t5− 17
315

t7 + · · ·
)

,
(9.32)

and as a result, the exact solution is given by

u(x,t) = 2secht + x tanht. (9.33)

The Variational Iteration Method

The variational iteration method gives the correction functional for this equation
by

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+

1
2

∂ ũ2
n(x,ξ )

∂ x
− x

)
dξ . (9.34)

Proceeding as in Example 1 we find

λ =−1. (9.35)

Consequently, we obtain the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
+

1
2

u2
n(x,ξ )

∂ x
− x

)
dξ , n � 0. (9.36)
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Selecting u0(x,t) = 2 from the given initial condition yields the successive approx-
imations

u0(x,t) = 2,
u1(x,t) = 2 + xt,

u2(x,t) = 2 + xt− 1
3

xt3− t2,

u3(x,t) = 2 + xt− 1
3

xt3− t2 +
5

12
t4 +

2
15

xt5− 1
18

t6− 1
63

xt7,

...

un(x,t) = 2(1− 1
2!

t2 +
5
4!

t4− 61
6!

t6 + · · ·)+ x(t− 1
3

t3 +
2
15

t5− 17
315

t7 + · · ·).
(9.37)

Consequently, the exact solution is given by

u(x,t) = 2secht + x tanht. (9.38)

Example 4. Solve the homogeneous nonlinear problem

ut + u2ux = 0, u(x,0) = 3x. (9.39)

Solution.

Proceeding as before we find

u(x,t) = 3x−L−1
t (u2ux), (9.40)

so that
∞

∑
n=0

un(x,t) = 3x−L−1
t

(
∞

∑
n=0

An

)
. (9.41)

Adomian’s method introduces the recursive relation

u0(x,t) = 3x,
uk+1(x,t) = −L−1

t (Ak) , k � 0,
(9.42)

which gives
u0(x,t) = 3x,
u1(x,t) = −L−1

t (A0) =−27x2t,
u2(x,t) = −L−1

t (A1) = 486x3t2,

u3(x,t) = −L−1
t (A2) =−10935x4t3,

(9.43)

and so on. Consequently, the series solution

u(x,t) = 3x−27x2t + 486x3t2−10935x4t3 + · · · . (9.44)

Based on this, the solution can be expressed in the form
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u(x,t) =

{
3x, t = 0,
1
6t

(
√

1 + 36xt−1), t > 0.
(9.45)

Exercises 9.2

Use the variational iteration method or the decomposition method, and the noise
terms phenomena where appropriate, to solve the following nonlinear advection
problems:

1. ut + uux = 1− e−x(t + e−x), u(x,0) = e−x

2. ut + uux = 2t + x + t3 + xt2, u(x,0) = 0

3. ut + uux = 2x2t + 2xt2 + 2x3t4, u(x,0) = 1

4. ut + uux = 1 + t cosx +
1
2

sin2x, u(x,0) = sin x

5. ut + uux = 0, u(x,0) =−x

6. ut + uux = x, u(x,0) =−1

7. ut + uux = 1 + x, u(x,0) = 0

8. ut + uux−u = et , u(x,0) = 1 + x

9. ut + uux = 0, u(x,0) = 4x

10. ut + uux = 0, u(x,0) = x2

9.3 The Goursat Problem

In this section we will study the Goursat problem [5,12] that arise in linear and non-
linear partial differential equations with mixed derivatives. Several numerical meth-
ods such as Runge-Kutta method, finite difference method, finite elements method,
and geometric mean averaging of the functional values of f (x,y,u,ux,uy) have been
used to approach the problem. However, the linear and nonlinear Goursat models
will be approached more effectively and rapidly by using the Adomian decomposi-
tion method. The linear examples will be handled by the variational iteration method
as well.

The Goursat problem in its standard form is given by

uxy = f (x,y,u,ux,uy), 0 � x � a, 0 � y � b, (9.46)

u(x,0) = g(x), u(0,y) = h(y), g(0) = h(0) = u(0,0). (9.47)
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In an operator form, Eq. (9.46) can be rewritten as

LxLy u = f (x,y,u,ux,uy), (9.48)

where

Lx =
∂
∂x

, Ly =
∂
∂y

. (9.49)

The inverse operators L−1
x and L−1

y can be defined as

L−1
x (·) =

∫ x

0
(·)dx, L−1

y (·) =
∫ y

0
(·)dy. (9.50)

Because the Goursat problem (9.46) involves two distinct differential operators Lx

and Ly, two inverse integral operator L−1
x and L−1

y will be used. Applying L−1
y to

both sides of (9.48) gives

Lx[L
−1
y Ly u(x,y)] = L−1

y f (x,y,u,ux,uy). (9.51)

It then follows that

Lx[u(x,y)−u(x,0)] = L−1
y f (x,y,u,ux,uy), (9.52)

or equivalently
Lxu(x,y) = Lxu(x,0)+ L−1

y f (x,y,u,ux,uy). (9.53)

Operating with L−1
x on (9.53) yields

L−1
x Lxu(x,y) = L−1

x Lxu(x,0)+ L−1
x L−1

y f (x,y,u,ux,uy). (9.54)

This gives

u(x,y) = u(x,0)+ u(0,y)−u(0,0)+ L−1
x L−1

y f (x,y,u,ux,uy), (9.55)

or equivalently

u(x,y) = g(x)+ h(y)−g(0)+ L−1
x L−1

y f (x,y,u,ux,uy), (9.56)

obtained upon using the conditions given in (9.47). Substituting

u(x,y) =
∞

∑
n=0

un(x,y), (9.57)

into (9.56) leads to

∞

∑
n=0

un(x,y) = g(x)+ h(y)−g(0)+ L−1
x L−1

y f (x,y,u,ux,uy). (9.58)

Adomian’s method admits the use of the recursive relation
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u0(x,y) = η(x,y),
uk+1(x,y) = L−1

x L−1
y σ(uk,ukx ,uky), k � 0,

(9.59)

where
η(x,y) =

{
g(x)+ h(y)−g(0), f = σ(u,ux,uy),
g(x)+ h(y)−g(0)+ L−1

x L−1
y τ(x,y), f = τ(x,y)+ σ(u,ux,uy).

(9.60)

In view of (9.59), the solution in a series form follows immediately. The resulting
series solution may provide the exact solution. Otherwise, the n-term approximation
φn can be used for numerical purposes. It can be shown that the difference between
the exact solution and the n-term approximation decreases monotonically for all
values of x and y as additional components are evaluated.

In the following, four linear and nonlinear Goursat models will be discussed for
illustrative purposes.

Example 1. Solve the following linear Goursat problem

uxy =−x + u, (9.61)

subject to the conditions

u(x,0) = x + ex, u(0,y) = ey, u(0,0) = 1. (9.62)

Solution.

The Decomposition Method

Following the previous discussion and using (9.55) we find

u(x,y) = x + ex + ey−1− 1
2

x2y + L−1
x L−1

y u(x,y), (9.63)

and by using the series representation for u(x,t) into (9.63) gives

∞

∑
n=0

un(x,y) = x + ex + ey−1− 1
2

x2y + L−1
x L−1

y

(
∞

∑
n=0

un(x,y)

)
. (9.64)

The recursive relation

u0(x,y) = x + ex + ey−1− 1
2

x2y,

uk+1(x,y) = L−1
x L−1

y uk(x,y), k � 0,

(9.65)

follows immediately. Consequently, the first three components of the solution u(x,y)
are given by
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u0(x,y) = x + ex + ey−1− 1
2

x2y,

u1(x,y) = L−1
x L−1

y u0(x,y)

=
1
2

x2y + y(ex−1)+ x(ey−1)− xy− 1
12

x3y2,

u2(x,y) = L−1
x L−1

y u1(x,y)

=
1
12

x3y2 +
1
2

y2(ex−1− x)+
1
2

x2(ey−1− y)

−1
4

x2y2− 1
144

y4x3,

(9.66)

This gives

u(x,y) = x + ex

(
1 + y +

1
2!

y2 +
1
3!

y3 + · · ·
)

+ey

(
1 + x +

1
2!

x2 +
1
3!

x3 + · · ·
)

−
(

1 + x + y + xy +
1
2!

x2 +
1
2!

y2 +
1
3!

x3 +
1
3!

y3 +
1
2!

x2y + · · ·
)

,

(9.67)
or equivalently

u(x,y) = x + ex

(
1 + y +

1
2!

y2 +
1
3!

y3 + · · ·
)

+ey

(
1 + x +

1
2!

x2 +
1
3!

x3 + · · ·
)

−(1 + x +
1
2!

x2 + · · ·)(1 + y +
1
2!

y2 + · · ·).

(9.68)

Accordingly, the solution in a closed form is given by

u(x,y) = x + ex+y, (9.69)

obtained upon using the Taylor expansions for ex and ey.

The Variational Iteration Method

The correction functional for this equation reads

un+1(x,y) = un(x,y)+

∫ y

0
λ (ξ )

(
∂ 2un(x,ξ )

∂x∂ξ
− ũn(x,ξ )+ x

)
dξ . (9.70)

The stationary conditions
1 + λ = 0,

λ ′ = 0,
(9.71)

give
λ =−1. (9.72)
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Substituting the Lagrange multiplier λ =−1 into the correction functional gives the
iteration formula

un+1(x,y) = un(x,y)−
∫ y

0

(
∂ 2un(x,ξ )

∂x∂ξ
−un(x,ξ )+ x

)
dξ , n � 0. (9.73)

Selecting u0(x,y) = x + Aex + Bey gives the following successive approximations

u0(x,y) = x + Aex + Bey,
u1(x,y) = x + Aex(1 + y)+ 2Bey−B,

u2(x,y) = x + Aex(1 + y +
1
2!

y2)+ 4Bey−3B−By,

u3(x,y) = x + Aex(1 + y +
1
2!

y2 +
1
3!

y3)+ 8Bey−7B−4By− 1
2

By2,

...

un(x,y) = x + Aex(1 + y +
1
2!

y2 +
1
3!

y3 + · · ·)
+8Bey−7B−4By− 1

2
By2 + · · · .

(9.74)

Using the boundary conditions u(0,0) = 1 and u(x,0) = x + ex gives the system

A + B = 1,
x + Aex + B = x + ex.

(9.75)

Solving this system gives A = 1,B = 0. Substituting these values into un(x,t) gives
the exact solution

u(x,y) = x + ex+y, (9.76)

obtained upon using the Taylor expansions for ey.

Example 2. Solve the following linear Goursat problem

uxy = 4xy− x2y2 + u, (9.77)

subject to the conditions

u(x,0) = ex, u(0,y) = ey, u(0,0) = 1. (9.78)

Solution.

The Decomposition Method

Proceeding as before we find

u(x,y) = x2y2− 1
9

x3y3−1 + ex + ey + L−1
x L−1

y u(x,y). (9.79)

This also gives
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∞

∑
n=0

un(x,y) = x2y2− 1
9

x3y3−1 + ex + ey + L−1
x L−1

y

(
∞

∑
n=0

un(x,y)

)
. (9.80)

The decomposition method introduces the recursive relation

u0(x,y) = x2y2− 1
9

x3y3−1 + ex + ey,

uk+1(x,y) = L−1
x L−1

y uk(x,y), k � 0,
(9.81)

that leads to

u0(x,y) = x2y2− 1
9

x3y3−1 + ex + ey,

u1(x,y) = L−1
x L−1

y u0(x,y)

=
1
9

x3y3− 1
144

x4y4− xy + y(ex−1)+ x(ey−1),

u2(x,y) = L−1
x L−1

y u1(x,y)

=
1

144
x4y4− 1

3600
x5y5− 1

4
x2y2 +

1
2

y2(ex−1− x)

+
1
2

x2(ey−1− y).

(9.82)

In view of (9.82), the solution in a series form is given by

u(x,y) = x2y2 + ex

(
1 + y +

1
2!

y2 + · · ·
)

+ ey

(
1 + x +

1
2!

x2 + · · ·
)

−
(

1 + x + y + xy +
1
2!

x2 +
1
2!

y2 +
1
3!

x3 +
1
3!

y3 + · · ·
)

,

(9.83)

and in a closed form by
u(x,y) = x2y2 + ex+y. (9.84)

The Variational Iteration Method

Proceeding as in Example 1 and using the Lagrange multiplier λ =−1 we obtain
the iteration formula

un+1(x,y) = un(x,y)−
∫ y

0

(
∂ 2un(x,ξ )

∂x∂ξ
−un(x,ξ )−4xξ + x2ξ 2

)
dξ , n � 0.

(9.85)
As stated before, we can select u0(x,y) = y2x2 +Aex +Bey. Using this selection into
the iteration formula we obtain the following successive approximations

u0(x,y) = x2y2 + Aex + Bey,

u1(x,y) = x2y2 + Aex(1 + y)+ 2Bey−B,
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u2(x,y) = x2y2 + Aex(1 + y +
1
2!

y2)+ 4Bey−3B−By,
...

un(x,t) = x2y2 + Aex(1 + y +
1
2!

y2 +
1
3!

y3 + · · ·)
+8Bey−7B−4By− 1

2
By2 + · · · .

(9.86)

Using the boundary conditions u(0,0) = 1 and u(x,0) = ex gives the system

A + B = 1,
Aex + B = ex,

(9.87)

so that A = 1,B = 0. This gives the exact solution

u(x,y) = x2y2 + ex+y. (9.88)

Example 3. Solve the following nonlinear Goursat problem

uxy = ex+yeu, (9.89)

subject to the conditions

u(x,0) = ln2−2ln(1 + ex), u(0,y) = ln2−2ln(1 + ey), u(0,0) =− ln2.
(9.90)

Solution.

Following the discussions presented above yields

u(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey)+ L−1
x L−1

y ex+yeu. (9.91)

Proceeding as before we obtain

∞

∑
n=0

un(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey)+ L−1
x L−1

y

(
∞

∑
n=0

ex+yAn

)
, (9.92)

where An are the Adomian polynomials for the nonlinear term eu. The Adomian
polynomials for the exponential nonlinearity eu were calculated before and given by

A0 = eu0 ,

A1 = u1eu0 ,

A2 = (
1
2!

u2
1 + u2)e

u0 ,

A3 = (
1
3!

u3
1 + u1u2 + u3)e

u0 .
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The decomposition method introduces the recursive relation

u0(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey),

uk+1(x,y) = L−1
x L−1

y (ex+yAk), k � 0.
(9.93)

The first three components of the solution u(x,y) are given by

u0(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey),

u1(x,y) = L−1
x L−1

y ex+yeu0

= 8L−1
x L−1

y

[
ex

(ex + 1)2 ×
ey

(ey + 1)2

]

= 2

[
(ex−1)(ey−1)

(ex + 1)(ey + 1)

]
,

u2(x,y) = L−1
x L−1

y ex+yu1eu0

= 16L−1
x L−1

y

[
ex(ex−1)

(ex + 1)3 ×
ey(ey−1)

(ey + 1)3

]
,

=

[
(ex−1)(ey−1)

(ex + 1)(ey + 1)

]2

,

u3(x,y) = L−1
x L−1

y (
1
2!

u2
1 + u2)e

x+yeu0

=
2
3

[
(ex−1)(ey−1)

(ex + 1)(ey + 1)

]3

,

(9.94)

and so on. Note that the integrals involved above can be obtained by substituting
z = 1 + et,dz = et dt. In view of (9.94), the solution in a series form is given by

u(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey)

+2

(
∞

∑
n=1

Kn(x,y)
n

)
,

(9.95)

where

K(x,y) =
(ex−1)(ey−1)

(ex + 1)(ey + 1)
. (9.96)

Recall that the Taylor expansion for ln(1− t) is given by

ln(1− t) = −(t +
1
2

t2 +
1
3

t3 + · · ·),

= −
∞

∑
n=1

tn

n
, −1 � t < 1.

(9.97)

This means that Eq. (9.95) becomes
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u(x,y) = 3ln2−2ln(1 + ex)−2ln(1 + ey)−2ln[1−K(x,y)]
= 3ln2−2ln(1 + ex)−2ln(1 + ey)

−2ln[1− (ex−1)(ey−1)

(ex + 1)(ey + 1)
],

= 3ln2−2ln(1 + ex)−2ln(1 + ey)

−2ln2

(
(ex + ey)

(ex + 1)(ey + 1)

)
,

= ln2−2ln(ex + ey).

(9.98)

Example 4. Solve the following nonlinear Goursat problem

uxy =
2
3

e3u, (9.99)

subject to the conditions

u(x,0) =
1
3

x− 2
3

ln(1+ex), u(0,y) =
1
3

y− 2
3

ln(1+ey),u(0,0) =−2
3

ln2. (9.100)

Solution.

Proceeding as before we find

u(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2 +
2
3

L−1
x L−1

y e3u. (9.101)

Substituting the series representation for the linear and the nonlinear terms into
(9.101) we obtain

∞

∑
n=0

un(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2

+
2
3

L−1
x L−1

y

(
∞

∑
n=0

An

)
,

(9.102)

where An are Adomian polynomials for the nonlinear term e3u given by

A0 = e3u0 ,

A1 = 3u1e3u0 ,

A2 = (
9
2!

u2
1 + 3u2)e

3u0 ,

A3 = (
27
3!

u3
1 + 9u1u2 + 3u3)e

3u0 .

Following Adomian analysis, we set the recursive relation
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u0(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2,

uk+1(x,y) =
2
3

L−1
x L−1

y (Ak), k � 0,
(9.103)

so that

u0(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2,

u1(x,y) =
2
3

L−1
x L−1

y e3u0

=
8
3

L−1
x L−1

y

[
ex

(ex + 1)2 ×
ey

(1 + ey)2

]
,

=
2
3

[
(ex−1)(ey−1)

(ex + 1)(ey + 1)

]
,

u2(x,y) =
2
3

L−1
x L−1

y 3u1e3u0

=
16
3

L−1
x L−1

y

[
ex(ex−1)

(ex + 1)3 ×
ey(ey−1)

(ey + 1)3

]
,

=
1
3

[
(ex−1)(ey−1)

(ex + 1)(ey + 1)

]2

,

(9.104)

and so on. Proceeding as before we obtain

u(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2

+
2
3

(
∞

∑
n=1

Kn(x,y)
n

)
,

(9.105)

where

K(x,y) =
(ex−1)(ey−1)

(ex + 1)(ey + 1)
. (9.106)

Using the Taylor expansion for ln(1− t) gives

u(x,y) =
x + y

3
− 2

3
ln(1 + ex)− 2

3
ln(1 + ey)+

2
3

ln2

− 2
3

ln[1−K(x,y)],

=
x + y

3
− 2

3
ln(ex + ey).

(9.107)

Exercises 9.3

In Exercises 1–6, use the variational iteration method or Adomian decomposition
method to solve the following linear Goursat problems:
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1. uxy =−y + u, u(x,0) = ex, u(0,y) = y + ey

2. uxy = 1− xy + u, u(x,0) = ex, u(0,y) = ey

3. uxy = x + y + u, u(x,0) =−x + ex, u(0,y) =−y + ey

4. uxy =−x2 + u, u(x,0) = x2 + ex, u(0,y) = ey

5. uxy = u + 2ex+y, u(x,0) = xex, u(0,y) = yey

6. uxy = u, u(x,0) = ex, u(0,y) = ey

In Exercises 7–12, use Adomian decomposition method to solve the following non-
linear Goursat problems:

7. uxy = e2u, u(x,0) =
1
2

x− ln(1 + ex), u(0,y) =
1
2

y− ln(1 + ey)

8. uxy =−e2u, u(x,0) =
1
2

x− ln(1 + ex), u(0,y) =−1
2

y− ln(1 + e−y)

9. uxy = eye2u, u(x,0) =
1
2

x− ln(1 + ex), u(0,y) =− ln(1 + ey)

10. uxy = exe2u, u(x,0) =− ln(1 + ex), u(0,y) =
1
2

y− ln(1 + ey)

11. uxy =
2
5

eye5u, u(x,0) =
1
5

x− 2
5

ln(1 + ex), u(0,y) =−2
5

ln(1 + ey)

12. uxy = ex+ye2y, u(x,0) =− ln(1 + ex), u(0,y) =− ln(1 + ey)

9.4 The Klein-Gordon Equation

The Klein-Gordon equation [15,16] is considered one of the most important mathe-
matical models in quantum field theory. The equation appears in relativistic physics
and is used to describe dispersive wave phenomena in general. In addition, it also
appears in nonlinear optics and plasma physics. The Klein-Gordon equation arise in
physics in linear and nonlinear forms.

The Klein-Gordon equation has been extensively studied by using traditional
methods such as finite difference method, finite element method, or collocation
method. Bäcklund transformations and the inverse scattering method were also ap-
plied to handle Klein-Gordon equation. The methods investigated the concepts of
existence, uniqueness of the solution and the weak solution as well. The objectives
of these studies were mostly focused on the determination of numerical solutions
where a considerable volume of calculations is usually needed.

In this section, the Adomian decomposition method will be applied to obtain ex-
act solutions if exist, and approximate to solutions for concrete problems. Moreover,
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the variational iteration method will be used for some of the examples for compari-
son reasons.

9.4.1 Linear Klein-Gordon Equation

The linear Klein-Gordon equation in its standard form is given by

utt(x,t)−uxx(x,t)+ au(x,t) = h(x,t), (9.108)

subject to the initial conditions

u(x,0) = f (x), ut(x,0) = g(x), (9.109)

where a is a constant and h(x,t) is the source term. It is interesting to point here that
if a = 0, Eq. (9.108) becomes the inhomogeneous wave equation that was introduced
before. The linear Klein-Gordon equation is important in quantum mechanics. It is
derived from the relativistic energy formula.

In an operator form, Eq. (9.108) can be rewritten as

Ltu(x,t) = uxx(x,t)−au(x,t)+ h(x,t), (9.110)

where Lt is a second order differential operator and the inverse operator L−1
t is a

two-fold integral operator defined by

L−1
t (·) =

∫ t

0

∫ t

0
(·)dt dt. (9.111)

Applying L−1
t to both sides of (9.110) and using the initial conditions we find

u(x,t) = f (x)+ tg(x)+ L−1
t (h(x,t))+ L−1

t (uxx(x,t)−au(x,t)). (9.112)

Using the decomposition representation for u(x,t) into both sides of (9.112) gives

∞

∑
n=0

un(x,t) = f (x)+ tg(x)+ L−1
t (h(x,t))

+ L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

−a
∞

∑
n=0

un(x,t)

)
.

(9.113)

We can formally set the recursive relation

u0(x,t) = f (x)+ tg(x)+ L−1
t (h(x,t)),

uk+1(x,t) = L−1
t (ukxx(x,t)−auk(x,t)) , k � 0.

(9.114)

This completes the determination of the components of u(x,t). The solution in a
series form follows immediately. In many cases we can obtain inductively the exact
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solution. The algorithm discussed above will be explained through the following
illustrative examples.

Example 1. Solve the following linear homogeneous Klein-Gordon equation

utt −uxx + u = 0, u(x,0) = 0, ut(x,0) = x. (9.115)

Solution.

The Decomposition Method

Applying L−1
t to both sides of (9.115) and using the decomposition series for

u(x,t) give

∞

∑
n=0

un(x,t) = xt + L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

−
∞

∑
n=0

un(x,t)

)
. (9.116)

Close examination of (9.116) suggests that the recursive relation is

u0(x,t) = xt,
uk+1(x,t) = L−1

t (ukxx(x,t)−uk(x,t)) , k � 0,
(9.117)

that in turn gives

u0(x,t) = xt,

u1(x,t) = L−1
t (u0xx(x,t)−u0(x,t)) =− 1

3!
xt3,

u2(x,t) = L−1
t (u1xx(x,t)−u1(x,t)) =

1
5!

xt5.

(9.118)

In view of (9.118) the series solution is given by

u(x,t) = x(t− 1
3!

t3 +
1
5!

t5−·· ·), (9.119)

and the exact solution is given by

u(x,t) = xsin t. (9.120)

The Variational Iteration Method

The correction functional for this equation reads

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 + ũn(x,ξ )

)
dξ .

(9.121)
This yields the stationary conditions
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1−λ ′|ξ=t = 0,
λ |ξ=t = 0,

λ ′′|ξ=t = 0.
(9.122)

This in turn gives
λ = ξ − t. (9.123)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 + un(x,ξ )

)
dξ .

(9.124)
Considering the given initial values, we can select u0(x,t) = xt. Using this selection
into (9.124) we obtain the following successive approximations

u0(x,t) = xt,

u1(x,t) = xt− 1
3!

xt3,

u2(x,t) = xt− 1
3!

xt3 +
1
5!

xt5,

u3(x,t) = xt− 1
3!

xt3 +
1
5!

xt5− 1
7!

xt7,

...

un(x,t) = x

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·
)

.

(9.125)

This gives the exact solution by

u(x,t) = xsin t. (9.126)

Example 2. Solve the following linear inhomogeneous Klein-Gordon equation

utt −uxx + u = 2sinx, u(x,0) = sinx, ut(x,0) = 1. (9.127)

Solution.

The Decomposition Method

Proceeding as in Example 1 we find

∞

∑
n=0

un(x,t) = sin x + t + t2 sinx + L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

−
∞

∑
n=0

un(x,t)

)
. (9.128)

Consequently, we set the relation
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u0(x,t) = sinx + t + t2 sinx
uk+1(x,t) = L−1

t (ukxx(x,t)−uk(x,t)), k � 0,
(9.129)

that gives

u0(x,t) = sinx + t + t2 sinx,

u1(x,t) = L−1
t (u0xx(x,t)−u0(x,t)) =−t2 sin x− 1

6
t4 sin x− 1

3!
t3,

u2(x,t) = L−1
t (u1xx(x,t)−u1(x,t)) =

1
6

t4 sin x +
1

90
t6 sinx +

1
5!

t5.

(9.130)

In view of (9.130), the series solution is given by

u(x,t) = sin x +(t− 1
3!

t3 +
1
5!

t5− 1
7!

t7 + · · ·), (9.131)

where noise terms vanish in the limit. The solution in a closed form

u(x,t) = sinx + sint, (9.132)

follows immediately.

The Variational Iteration Method

The correction functional for this equation reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 + ũn(x,ξ )−2sinx

)
dξ .

(9.133)
Proceeding as before we find

λ = ξ − t. (9.134)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

un+1(x,t)= un(x,t)+
∫ t

0
(ξ−t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 + un(x,ξ )−2sinx

)
dξ .

(9.135)
Considering the given initial values, we can select u0(x,t) = t + sinx. Using this se-
lection into the iteration formula we obtain the following successive approximations

u0(x,t) = t + sinx,

u1(x,t) = t + sinx− 1
3!

t3,

u2(x,t) = t + sinx− 1
3!

t3 +
1
5!

t5,
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u3(x,t) = t + sinx− 1
3!

t3 +
1
5!

t5− 1
7!

t7,

...

un(x,t) = sinx +

(
t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·
)

.

(9.136)

The solution in a closed form

u(x,t) = sinx + sint, (9.137)

follows immediately.

9.4.2 Nonlinear Klein-Gordon Equation

The nonlinear Klein-Gordon equation [15] comes from quantum field theory and
describes nonlinear wave interaction. The nonlinear Klein-Gordon equation in its
standard form is given by

utt (x,t)−uxx(x,t)+ au(x,t)+ F(u(x,t)) = h(x,t), (9.138)

subject to the initial conditions

u(x,0) = f (x), ut(x,0) = g(x), (9.139)

where a is a constant, h(x,t) is a source term and F(u(x,t)) is a nonlinear function
of u(x,t). The equation has been investigated using numerical methods such as finite
difference method and the averaging techniques.

In a manner parallel to that used before, the decomposition method will be em-
ployed. The nonlinear term F(u(x,t)) will be equated to the infinite series of Ado-
mian polynomials. Applying L−1

t to both sides of (9.138) and using the initial con-
ditions give

u(x,t) = f (x)+ tg(x)+ L−1
t (h(x,t))

+ L−1
t (uxx(x,t)−au(x,t))−L−1

t (F(u(x,t))).
(9.140)

Using the decomposition series for the linear term u(x,t), the infinite series of Ado-
mian polynomials for the nonlinear term F(u(x,t)), and proceeding as before we
obtain the recursive relation

u0(x,t) = f (x)+ tg(x)+ L−1
t (h(x,t)),

uk+1(x,t) = L−1
t (ukxx(x,t)−uk(x,t))−L−1

t (Ak), k � 0,
(9.141)

that leads to
u0(x,t) = f (x)+ tg(x)+ L−1

t (h(x,t)),
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u1(x,t) = L−1
t (u0xx(x,t)−u0(x,t))−L−1

t (A0),

u2(x,t) = L−1
t (u1xx(x,t)−u1(x,t))−L−1

t (A1).
(9.142)

This completes the determination of the first few components of the solution.
Based on this determination, the solution in a series form is readily obtained. In

many cases, a closed form solution can be obtained inductively.
The following examples will be used to illustrate the algorithm discussed above.

The noise terms phenomenon and the modified decomposition method will be im-
plemented in this illustration to accelerate the convergence.

Example 3. Solve the following nonlinear Klein-Gordon equation

utt −uxx + u2 = x2t2, u(x,0) = 0, ut(x,0) = x. (9.143)

Solution.

Following the discussion presented above we find

∞

∑
n=0

un(x,t) = xt +
1
12

x2t4 + L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−L−1

t

(
∞

∑
n=0

An

)
. (9.144)

We will approach the problem by using the noise terms phenomenon. Equation
(9.144) gives the recursive relation

u0(x,t) = xt + 1
12 x2t4,

uk+1(x,t) = L−1
t ukxx(x,t)−L−1

t Ak, k � 0,
(9.145)

that yields

u0(x,t) = xt +
1

12
x2t4,

u1(x,t) = L−1
t u0xx(x,t)−L−1

t A0

=
1

180
t6− 1

12
x2t4− 1

252
x3t7 +

1
12960

x4t10.

(9.146)

Canceling the noise term
1
12

x2t4 from the component u0, and verifying that the

remaining non-canceled term satisfies the equation, the exact solution

u(x,t) = xt, (9.147)

is readily obtained.
In the following we will solve this example by using the modified decomposition

method. As introduced before we split the terms assigned to the zeroth component
u0(x,t) to the first two components u0(x,t) and u1(x,t). Thus the modified recursive
relation can be rewritten in the scheme
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u0(x,t) = xt,

u1(x,t) =
1

12
x2t4 + L−1

t (u0xx(x,t))−L−1
t (A0),

uk+1(x,t) = L−1
t (ukxx(x,t))−L−1

t (Ak), k � 1.

(9.148)

This leads to

u0(x,t) = xt,

u1(x,t) =
1

12
x2t4 + L−1

t (u0xx(x,t))−L−1
t (A0) = 0,

uk+1(x,t) = 0, k � 1.

(9.149)

Therefore, the exact solution is given by

u(x,t) = xt. (9.150)

Example 4. Solve the following nonlinear Klein-Gordon equation

utt −uxx + u2 = 2x2−2t2 + x4t4, u(x,0) = ut(x,0) = 0. (9.151)

Solution.

The noise terms phenomenon will be used in this example. Proceeding as before
gives

u0(x,t) = x2t2− 1
6

t4 +
1
30

x4t6,

uk+1(x,t) = L−1
t (ukxx(x,t))−L−1

t (Ak), k � 0.
(9.152)

Based on this relation the first two components are given by

u0(x,t) = x2t2− 1
6

t4 +
1
30

x4t6,

u1(x,t) = L−1
t (u0xx(x,t))−L−1

t A0 =
1
6

t4− 1
30

x4t6 + · · · .
(9.153)

Canceling the noise terms in u0(x,t) that appear in u1(x,t) and verifying that the
remaining term satisfies the equation leads to the exact solution

u(x,t) = x2t2. (9.154)

Next we formally show that the modified decomposition method accelerates the
convergence of the solution and minimizes the size of calculations. The modified
method introduces the relation

u0(x,t) = x2t2,

u1(x,t) = −1
6

t4 +
1

30
x4t6 + L−1

t (u0xx(x,t)−A0) = 0,

uk+1(x,t) = 0, k � 1.

(9.155)

This formally gives the exact solution
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u(x,t) = x2t2. (9.156)

9.4.3 The Sine-Gordon Equation

The sine-Gordon equation [8,9,10] appeared first in differential geometry. This
equation became the focus of a lot of research work because it appears in many
physical phenomena such as the propagation of magnetic flux and the stability of
fluid motions. The equation is considered an important nonlinear evolution equa-
tion that plays a major role in nonlinear physics.

The standard form of the sine-Gordon equation is given by

utt − c2uxx +α sinu = 0, u(x,0) = f (x), ut(x,0) = g(x), (9.157)

where c and α are constants. It is clear that this equation adds the nonlinear term
sinu to the standard wave equation.

Several classical methods have been employed to handle the sine-Gordon equa-
tion. The Bäcklund transformations, the similarity method, and the inverse scatter-
ing method are mostly used to investigate this equation.

However, the sine-Gordon equation will be handled by using the Adomian de-
composition method. Applying L−1

t to (9.157) and using the initial conditions leads
to

u(x,t) = f (x)+ tg(x)+ c2L−1
t (uxx(x,t))−αL−1

t (sinu(x,t)). (9.158)

Noting that sinu is a nonlinear term where the relevant Adomian polynomials have
been derived before. Substituting the series decomposition for u(x,t) and the infinite
series of Adomian polynomials for sinu gives

∞

∑
n=0

un(x,t) = f (x)+ tg(x)+ L−1
t

(
c2

(
∞

∑
n=0

un(x,t)

)
xx

−α

(
∞

∑
n=0

An

))
. (9.159)

This gives the recursive relation

u0(x,t) = f (x)+ tg(x),
uk+1(x,t) = c2L−1

t (ukxx(x,t))−αL−1
t (Ak), k � 0.

(9.160)

This will lead to the determination of the solution in a series form. This can be
illustrated as follows.

Example 5. Solve the following sine-Gordon equation

utt −uxx = sinu, u(x,0) =
π
2

, ut(x,0) = 0. (9.161)

Solution.

Using the recursive scheme (9.160) yields
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u0(x,t) =
π
2

,

uk+1(x,t) = L−1
t (ukxx(x,t))+ L−1

t (Ak), k � 0.
(9.162)

The first few Adomian polynomials for sinu are given by

A0 = sinu0,
A1 = u1 cosu0,

A2 = u2 cosu0− 1
2!

u2
1 sinu0,

A3 = u3 cosu0−u2u1 sinu0− 1
3!

u3
1 cosu0.

(9.163)

Combining (9.162) and (9.163) leads to

u0(x,t) =
π
2

, u1(x,t) =
1
2

t2, u2(x,t) = 0,

u3(x,t) = − 1
240

t6, u4(x,t) = 0, u5(x,t) =
1

34560
t10,

(9.164)

The series solution

u(x,t) =
π
2

+
1
2

t2− 1
240

t6 +
1

34560
t10 + · · · (9.165)

is readily obtained.

Example 6. Solve the following sine-Gordon equation

utt −uxx = sinu, u(x,0) =
π
2

, ut(x,0) = 1. (9.166)

Solution.

Using the relation (9.160) gives

u0(x,t) =
π
2

+ t,

uk+1(x,t) = L−1
t (ukxx(x,t))+ L−1

t (Ak), k � 0.
(9.167)

Using Adomian polynomials for sinu as shown above leads to the results

u0(x,t) =
π
2

+ t,

u1(x,t) = 1− cost,

u2(x,t) = sin t− 3
4

t− 1
8

sin2t.

(9.168)

Summing these iterates yields

u(x,t) =
π
2

+ t + 1− cost + sint− 3
4

t− 1
8

sin2t + · · · , (9.169)
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so that the series solution

u(x,t) =
π
2

+ t +
1
2!

t2− 1
4!

t4 + · · · , (9.170)

obtained upon using Taylor expansion for the trigonometric functions involved.
It is important to note that another form of the sine-Gordon equation is sometimes

used and given in the form
uxt = sinu. (9.171)

Recall that the initial value problem of (9.171) has been discussed before as a Gour-
sat problem.

Exercises 9.4

In Exercises 1–5, use the variational iteration method or Adomian decomposition
method to solve the linear equations:

1. utt −uxx−u =−cosxcost, u(x,0) = cosx, ut(x,0) = 0

2. utt −uxx−u =−cosxsin t, u(x,0) = 0, ut(x,0) = cosx

3. utt −uxx−u =−sinxsin t, u(x,0) = 0, ut(x,0) = sinx

4. utt −uxx−u = 0, u(x,0) = 0, ut(x,0) = sinx

5. utt −uxx + u = 0, u(x,0) = 0, ut(x,0) = coshx

In Exercises 6–10, use the variational iteration method or the modified decomposi-
tion method to solve the nonlinear equations:

6. utt −uxx−u + u2 = xt + x2t2, u(x,0) = 1, ut(x,0) = x

7. utt −uxx + u2 = 1 + 2xt + x2t2, u(x,0) = 1, ut(x,0) = x

8. utt −uxx + u2 = 6xt(x2− t2)+ x6t6, u(x,0) = 0, ut(x,0) = 0

9. utt −uxx + u2 = (t2 + x2)2, u(x,0) = x2, ut(x,0) = 0

10. utt −uxx + u + u2 = x2cos2t, u(x,0) = x, ut(x,0) = 0

In Exercises 11–15, find the φ3 approximant of the solution of the following sine-
Gordon equations:

11. utt −uxx = sinu, u(x,0) =
π
6

, ut(x,0) = 0

12. utt −uxx = sinu, u(x,0) =
π
4

, ut(x,0) = 0

13. utt −uxx = sinu, u(x,0) = 0, ut(x,0) = 1
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14. utt −uxx = sinu, u(x,0) = π , ut(x,0) = 1

15. utt −uxx = sinu, u(x,0) =
3π
2

, ut(x,0) = 1

9.5 The Burgers Equation

The Burgers equation [4] is considered one of the fundamental model equations
in fluid mechanics. The equation demonstrates the coupling between diffusion and
convection processes.

The standard form of Burgers’ equation is given by

ut + uux = νuxx, t > 0, (9.172)

where ν is a constant that defines the kinematic viscosity. If the viscosity ν = 0, the
equation is called inviscid Burgers equation. The inviscid Burgers equation governs
gas dynamics. The inviscid Burgers equation has been discussed before as a ho-
mogeneous case of the advection problem. The inviscid equation can be elegantly
handled as discussed before in Section 9.2.

Nonlinear Burgers equation is considered by most as a simple nonlinear partial
differential equation incorporating both convection and diffusion in fluid dynamics.
Burgers introduced this equation in [4] to capture some of the features of turbulent
fluid in a channel caused by the interaction of the opposite effects of convection and
diffusion. It is also used to describe the structure of shock waves, traffic flow, and
acoustic transmission.

A great potential of research work has been invested on Burgers equation. Sev-
eral exact solutions have been derived by using distinct approaches. Appendix C
contains many of these exact solutions. The Cole-Hopf transformation is the com-
monly used approach. The solution u(x,t) was replaced by ψx in (9.172) to obtain

ψxt +ψxψxx = νψxxx, (9.173)

where by integrating this equation with respect to x we find

ψt +
1
2

ψ2
x = νψxx. (9.174)

Using the Cole-Hopf transformation

ψ =−2ν lnφ , (9.175)

so that

u(x,t) = ψx =−2ν
φx

φ
, (9.176)

transforms the nonlinear equation into the heat flow equation
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φt = νφxx. (9.177)

It is obvious that the difficult nonlinear Burgers equation (9.172) has been converted
to an easily solvable linear equation. This will lead to exact solutions, each solution
depends on the given conditions.

Another technique for deriving solutions to Burgers equation is the method of
symmetry reduction in which solutions of the nonlinear Burgers equation are found
in terms of parabolic cylinder functions or Airy functions. The symmetry reduction
method was applied in a modified way where the Burgers equation was transformed
to an ordinary differential equation.

However, it is the intention of this text to effectively apply the reliable Adomian
decomposition method. We consider the Burgers equation

ut + uux = uxx, u(x,0) = f (x). (9.178)

Applying the inverse operator L−1
t to (9.178) leads to

u(x,t) = f (x)+ L−1
t (uxx)−L−1

t (uux). (9.179)

Using the decomposition series for the linear term u(x,t) and the series of Adomian
polynomials for the nonlinear term uux give

∞

∑
n=0

un(x,t) = f (x)+ L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−L−1

t

(
∞

∑
n=0

An

)
. (9.180)

Identifying the zeroth component u0(x,t) by the term that arise from the initial con-
dition and following the decomposition method, we obtain the recursive relation

u0(x,t) = f (x),
uk+1(x,t) = L−1

t (ukxx)−L−1
t (Ak), k � 0.

(9.181)

The Adomian polynomials for the nonlinear term uux have been derived in the form

A0 = u0xu0,
A1 = u0xu1 + u1xu0,
A2 = u0xu2 + u1xu1 + u2xu0,
A3 = u0xu3 + u1xu2 + u2xu1 + u3xu0,
A4 = u0xu4 + u1xu3 + u2xu2 + u3xu1 + u4xu0.

(9.182)

In view of (9.181) and (9.182), the first few components can be identified by

u0(x,t) = f (x),
u1(x,t) = L−1

t (u0xx)−L−1
t A0,

u2(x,t) = L−1
t (u1xx)−L−1

t A1,

u3(x,t) = L−1
t (u2xx)−L−1

t A2.

(9.183)
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Additional components can be elegantly computed to enhance the accuracy level.
The solution in a series form follows immediately. However, the n-term approximant
φn can be determined by

φn =
n−1

∑
k=0

uk(x,t). (9.184)

Moreover, the variational iteration method will also be applied to investigate some
of the Burgers equations. In the following we list some of the derived exact solutions
of Burgers equation derived by many researchers:

u(x,t) = 2tanx, −2cotx, −2tanhx,

u(x,t) =
x
t
,

x
t

+
2

x + t
+

x + t
2t2− t

,

u(x,t) =
−2e−t cosx
1 + e−t sinx

,
2e−t sinx

1 + e−t cosx
,

(9.185)

A table of solutions of Burgers equation can be found in Appendix C. The following
examples will be used to illustrate the discussion carried out above by using Ado-
mian decomposition method. Some of the proposed examples will be examined by
using the variational iteration method.

Example 1. Solve the following Burgers equation

ut + uux = uxx, u(x,0) = x. (9.186)

Solution.

The Decomposition Method

Operating with L−1
t and using (9.180) we find

∞

∑
n=0

un(x,t) = x + L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−L−1

t

(
∞

∑
n=0

An

)
. (9.187)

This gives the recursive relation

u0(x,t) = x,
uk+1(x,t) = L−1

t (ukxx(x,t))−L−1
t (Ak) , k � 0.

(9.188)

Using Adomian polynomials we obtain

u0(x,t) = x,
u1(x,t) = L−1

t (u0xx(x,t))−L−1
t (A0) =−xt,

u2(x,t) = L−1
t (u1xx(x,t))−L−1

t (A1) = xt2,

u3(x,t) = L−1
t (u2xx(x,t))−L−1

t (A2) =−xt3.

(9.189)

Summing these iterates gives the series solution
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u(x,t) = x(1− t + t2− t3 + · · ·). (9.190)

Consequently, the exact solution is given by

u(x,t) =
x

1 + t
, |t|< 1. (9.191)

The Variational Iteration Method

The variational iteration method gives the correction functional for this equation
by

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
+ ũn(x,ξ )

∂ ũn(x,ξ )

∂x
− ∂ 2ũn(x,ξ )

∂x2

)
dξ .

(9.192)
The stationary conditions give

λ =−1. (9.193)

Substituting λ =−1 into the correction functional gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂ un(x,ξ )

∂ξ
+ un(x,ξ )

∂un(x,ξ )

∂ x
− ∂ 2un(x,ξ )

∂ x2

)
dξ .

(9.194)
Selecting u0(x,t) = x to obtain the successive approximations

u0(x,t) = x,
u1(x,t) = x− xt,

u2(x,t) = x− xt + xt2− 1
3

xt3,

...
un(x,t) = x(1− t + t2− t3 + · · ·).

(9.195)

so that the exact solution is given by

u(x,t) =
x

1 + t
, |t|< 1. (9.196)

Example 2. Solve the following Burgers equation

ut + uux = uxx, u(x,0) = 1− 2
x
, x > 0. (9.197)

Solution.

The Decomposition Method

Proceeding as before gives
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∞

∑
n=0

un(x,t) = 1− 2
x

+ L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−L−1

t

(
∞

∑
n=0

An

)
. (9.198)

Consequently, we set the recursive relation

u0(x,t) = 1− 2
x
,

uk+1(x,t) = L−1
t (ukxx(x,t))−L−1

t (Ak) , k � 0,
(9.199)

that gives

u0(x,t) = 1− 2
x
,

u1(x,t) = L−1
t (u0xx(x,t))−L−1

t (A0) = L−1
t (− 2

x2 ) =− 2
x2 t,

u2(x,t) = L−1
t (u1xx(x,t))−L−1

t (A1) = L−1
t (− 4

x3 t) =− 2
x3 t2,

u3(x,t) = L−1
t (u2xx(x,t))−L−1

t (A2) = L−1
t (− 6

x4 t2) =− 2
x4 t3.

(9.200)

The series solution

u(x,t) = 1− 2
x
− 2

x2 t− 2
x3 t2− 2

x4 t3 + · · · , (9.201)

is readily obtained. To determine the exact solution, Eq. (9.201) can be rewritten as

u(x,t) = 1− 2
x

(
1 +

t
x

+
t2

x2 +
t3

x3 + · · ·
)

= 1− 2
x

(
1

1− t
x

)
= 1− 2

x− t
. (9.202)

The Variational Iteration Method

Proceeding as in Example 1 and using the Lagrange multiplier λ = −1 into the
correction functional gives the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂ un(x,ξ )

∂ξ
+ un(x,ξ )

∂un(x,ξ )

∂ x
− ∂ 2un(x,ξ )

∂ x2

)
dξ .

(9.203)

Selecting u0(x,t) = 1− 2
x

to obtain the successive approximations

u0(x,t) = 1− 2
x
,

u1(x,t) = 1− 2
x
− 2

x2 t,
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u2(x,t) = 1− 2
x
− 2

x2 t− 2
x3 t2

...

un(x,t) = 1− 2
x
− 2

x2 t− 2
x3 t2− 2

x4 t3 + · · · .
(9.204)

The series solution can be written as

un(x,t) = 1− 2
x

(
1 +

t
x

+
t2

x2 +
t3

x3 + · · ·
)

. (9.205)

This gives the exact solution by

u(x,t) = 1− 2
x

(
1

1− t
x

)
= 1− 2

x− t
. (9.206)

Example 3. Solve the following Burgers equation

ut + uux = uxx, u(x,0) = 2tanx. (9.207)

Solution.

Following the analysis presented above gives

∞

∑
n=0

un(x,t) = 2tanx + L−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−L−1

t

(
∞

∑
n=0

An

)
. (9.208)

The recursive relation

u0(x,t) = 2tanx,

uk+1(x,t) = L−1
t (ukxx(x,t))−L−1

t (Ak) , k � 0,
(9.209)

leads to the determination of the first few components:

u0(x,t) = 2tanx,

u1(x,t) = L−1
t (u0xx(x,t))−L−1

t (A0) = 0,

uk+2(x,t) = 0, k � 0.

(9.210)

Thus, the exact solution is given by

u(x,t) = 2tanx. (9.211)

Example 4. Solve the following Burgers equation

ut + uux = uxx, u(0,t) =−2
t
, ux(0,t) =

1
t

+
2
t2 . (9.212)
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Solution.

It is important to note that, unlike the initial value problems discussed in the
previous examples, the boundary conditions are given in this example. Hence, it is
appropriate in this case to solve in the x direction. For this reason we first rewrite
(9.212) in an operator form by

Lxu(x,t) = ut + uux, (9.213)

where Lx is a second order differential operator and the inverse operator L−1
x is a

two-fold integral operator defined by

L−1
x (·) =

∫ x

0

∫ x

0
(·)dxdx. (9.214)

Operating with L−1
x on both sides of (9.213) gives

u(x,t) =−2
t

+

(
1
t

+
2
t2

)
x + L−1

x (ut)+ L−1
x (uux). (9.215)

Substituting the linear term u(x,t) by a series of components, and the nonlinear term
uux by a series of Adomian polynomials, we obtain

∞

∑
n=0

un(x,t) =−2
t

+

(
1
t

+
2
t2

)
x + L−1

x

((
∞

∑
n=0

un(x,t)

)
t

)
+ L−1

x

(
∞

∑
n=0

An

)
.

(9.216)
The recursive relation

u0(x,t) = −2
t

+

(
1
t

+
2
t2

)
x,

uk+1(x,t) = L−1
x (ukt (x,t))+ L−1

x (Ak) , k � 0,
(9.217)

gives

u0(x,t) = −2
t

+

(
1
t

+
2
t2

)
x,

u1(x,t) = L−1
x (u0t (x,t))+ L−1

x (A0) =−2
x2

t3 +
2
3

x3

t4 ,

u2(x,t) = L−1
x (u1t (x,t))+ L−1

x (A1) =
4
3

x3

t4 + · · · .

(9.218)

Summing the resulting components, the series solution

u(x,t) =
x
t
− 2

t

(
1− x

t
+

x2

t2 −
x3

t3 + · · ·
)

, (9.219)

is readily obtained. The exact solution

u(x,t) =
x
t
− 2

x + t
, (9.220)



388 9 Linear and Nonlinear Physical Models

follows immediately.

Exercises 9.5

In Exercises 1–5, use the variational iteration method or Adomian decomposition
method to solve the inviscid Burgers equations:

1. ut + uux = 0, u(x,0) = x

2. ut + uux = 0, u(x,0) =−x

3. ut + uux = 0, u(x,0) = 2x

4. ut + uux = 0, u(x,0) =−2x

5. ut + uux = 0, u(x,0) =
1

1 + x

In Exercises 6–10, use the variational iteration method or Adomian decomposition
method to solve the following Burgers equations:

6. ut + uux = uxx, u(x,0) =−x

7. ut + uux = uxx, u(x,0) = 2x

8. ut + uux = uxx, u(x,0) = 4tan2x

9. ut + uux = uxx, u(0,t) =
1

2t−1
, ux(0,t) =

2
2t−1

10. ut + uux = uxx, u(0,t) =− 2
3t

, ux(0,t) =
1
t

+
2

9t2

9.6 The Telegraph Equation

The standard form of the telegraph equation [15] is given by

uxx = autt + but + cu, (9.221)

where u = u(x,t) is the resistance, and a,b and c are constants related to the induc-
tance, capacitance and conductance of the cable respectively. Note that the telegraph
equation is a linear partial differential equation. The telegraph equation arises in the
propagation of electrical signals along a telegraph line. If we set a = 0 and c = 0,
because of electrical properties of the cable, we then obtain

uxx = but , (9.222)
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which is the standard linear heat equation discussed in Chapter 3. On the other hand,
the electrical properties may lead to b = 0 and c = 0; hence we obtain

uxx = autt , (9.223)

which is the standard linear wave equation presented in Chapter 5.
We now proceed formally to apply the decomposition method and the variational

iteration method in a parallel manner to the approach used for handling other physi-
cal models. Without loss of generality, consider the initial boundary value telegraph
equation

uxx = utt + ut + u, 0 < x < L, (9.224)

with boundary and initial conditions

BC u(0,t) = f (t), ux(0,t) = g(t),
IC u(x,0) = h(x), ut(x,0) = v(x).

(9.225)

In an operator form, Eq. (9.224) becomes

Lxu(x,t) = utt + ut + u, (9.226)

where Lx is a second order differential operator with respect to x. Consequently, the
inverse operator L−1

x is considered a two-fold integral operator so that

L−1
x Lxu(x,t) = u(x,t)−u(0,t)− xux(0,t). (9.227)

Operating with L−1
x on both sides of (9.226), using the boundary conditions, and

noting (9.227) we obtain

u(x,t) = f (t)+ xg(t)+ L−1
x (utt + ut + u). (9.228)

It is normal to define the recursive relation by

u0(x,t) = f (t)+ xg(t),
uk+1(x,t) = L−1

x (uktt + ukt + uk) , k � 0,
(9.229)

that in turn gives
u0(x,t) = f (t)+ xg(t),
u1(x,t) = L−1

x (u0tt + u0t + u0) ,
u2(x,t) = L−1

x (u1tt + u1t + u1) ,
u3(x,t) = L−1

x (u2tt + u2t + u2) .

(9.230)

Having determined the components of u(x,t), the solution in a series form can thus
be established upon summing these iterates. As indicated before, the resulting series
may give the exact solution in a closed form.

The analysis presented above will be illustrated by discussing the following ex-
amples.
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Example 1. Solve the following homogeneous telegraph equation:

uxx = utt + ut −u, (9.231)

subject to the conditions

BC u(0,t) = e−2t , ux(0,t) = e−2t ,
IC u(x,0) = ex, ut(x,0) =−2ex.

(9.232)

Solution.

The Decomposition Method

Operating with L−1
x on (9.231) and using the boundary conditions yields

u(x,t) = e−2t + xe−2t + L−1
x (utt + ut−u). (9.233)

Following the discussions presented before gives

∞

∑
n=0

un(x,t) = e−2t + xe−2t + L−1
x

((
∞

∑
n=0

un

)
tt

+

(
∞

∑
n=0

un

)
t

−
∞

∑
n=0

un

)
. (9.234)

The decomposition method suggests the relation

u0(x,t) = e−2t + xe−2t

uk+1(x,t) = L−1
x (uktt + ukt −uk) , k � 0,

(9.235)

where the components of the solution u(x,t) given by

u0(x,t) = e−2t + xe−2t

u1(x,t) = L−1
x (u0tt + u0t −u0) =

1
2!

x2e−2t +
1
3!

x3e−2t ,

u2(x,t) = L−1
x (u1tt + u1t −u1) =

1
4!

x4e−2t +
1
5!

x5e−2t ,

u3(x,t) = L−1
x (u2tt + u2t −u2) =

1
6!

x6e−2t +
1
7!

x7e−2t ,

(9.236)

follow immediately. In view of (9.236), the solution in a series form is given by

u(x,t) = e−2t

(
1 + x +

1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + · · ·
)

, (9.237)

which gives the exact solution in the form

u(x,t) = ex−2t . (9.238)

The Variational Iteration Method

The correction functional for this equation reads
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un+1(x,t) = un(x,t)

+
∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2ũn(x,ξ )

∂x2 +
∂ ũn(x,ξ )

∂ξ
− ũn(x,ξ )

)
dξ .

(9.239)
The stationary conditions give

λ = ξ − t. (9.240)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

un+1(x,t) = un(x,t)

+

∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂x2 +
∂un(x,ξ )

∂ξ
−un(x,ξ )

)
dξ .

(9.241)
Using the selection u0(x,t) = (1−2t)ex gives the successive approximations

u0(x,t) = (1−2t)ex,

u1(x,t) = (1−2t + 2t2− 2
3

t3)ex,

u2(x,t) = (1−2t + 2t2− 4
3

t3 +
2
3

t4 + · · ·)ex,

...

un(x,t) = (1−2t + 2t2− 4
3

t3 +
2
3

t4− 4
15

t5 + · · ·)ex.

(9.242)

This gives the exact solution by

u(x,t) = ex−2t , (9.243)

obtained upon using the Taylor series for e−2t .

Example 2. Solve the following homogeneous telegraph equation:

uxx = utt + 4ut + 4u, (9.244)

subject to the conditions

BC u(0,t) = 1 + e−2t, ux(0,t) = 2,
IC u(x,0) = 1 + e2x, ut(x,0) =−2.

(9.245)

Solution.

The Decomposition Method

Applying the two-fold integral operator L−1
x on (9.244) gives

u(x,t) = 1 + e−2t + 2x + L−1
x (utt + 4ut + 4u), (9.246)

where using the decomposition series for u(x,t) we obtain
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∞

∑
n=0

un(x,t) = 1 + e−2t + 2x + L−1
x

((
∞

∑
n=0

un

)
tt

+ 4

(
∞

∑
n=0

un

)
t

+ 4
∞

∑
n=0

un

)
.

(9.247)
A close observation of (9.247) suggests the recursive relation

u0(x,t) = 1 + e−2t + 2x
uk+1(x,t) = L−1

x (uktt + 4ukt + 4uk) , k � 0.
(9.248)

In view of (9.248) we obtain

u0(x,t) = 1 + e−2t + 2x

u1(x,t) = L−1
x (u0tt + 4u0t + 4u0) = 2x2 +

4
3

x3,

u2(x,t) = L−1
x (u1tt + 4u1t + 4u1) =

2
3

x4 +
4

15
x5.

(9.249)

Other components can be computed in a similar manner. Consequently, the solution
in a series form is given by

u(x,t) = e−2t +

(
1 + 2x +

1
2!

(2x)2 +
1
3!

(2x)3 + · · ·
)

, (9.250)

so that the exact solution
u(x,t) = e2x + e−2t (9.251)

is readily obtained.

The Variational Iteration Method

Proceeding as in Example 1 we obtain the iteration formula

un+1(x,t) = un(x,t)

+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 − ∂ 2un(x,ξ )

∂ x2 + 4
∂un(x,ξ )

∂ξ
+ 4un(x,ξ )

)
dξ .

(9.252)
Using the selection u0(x,t) = e2x + 1−2t gives the successive approximations

u0(x,t) = e2x + 1−2t,

u1(x,t) = e2x +(1−2t + 2t2 +
4
3

t3),

u2(x,t) = e2x +(1−2t + 2t2 +
4
3

t3−2t4),

...

un(x,t) = e2x +(1−2t + 2t2− 4
3

t3 +
2
3

t4 + · · ·),

= e2x +

(
1− (2t)+

(2t)2

2!
− (2t)3

3!
+

(2t)4

4!
−·· ·

)
.

(9.253)

This gives the exact solution by
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u(x,t) = e2x + e−2t. (9.254)

Exercises 9.6

Use the variational iteration method or decomposition method to solve the telegraph
equations:

1. uxx = utt + ut + u
u(0,t) = e−t , ux(0,t) = e−t

u(x,0) = ex, ut(x,0) =−ex

2. uxx =
1
3
(utt + ut + u)

u(0,t) = et , ux(0,t) = et

u(x,0) = ex, ut(x,0) = ex

3. uxx = utt + 2ut + u
u(0,t) = 1 + e−t, ux(0,t) = 1
u(x,0) = 1 + ex, ut(x,0) =−1

4. uxx = utt + ut + 4u
u(0,t) = e−t , ux(0,t) = 2e−t

u(x,0) = e2x, ut(x,0) =−e2x

5. uxx = 2utt + 3ut + u
u(0,t) = 1− e−t, ux(0,t) = 1
u(x,0) = ex−1, ut(x,0) = 1

6. uxx = utt + 2ut + u
u(0,t) = e−t , ux(0,t) = 1
u(x,0) = 1 + sinhx, ut(x,0) =−1

7. uxx = utt + 2ut + u
u(0,t) = 1− e−t, ux(0,t) = 0
u(x,0) = coshx−1, ut(x,0) = 1

8. uxx =
1
3

utt +
4
3

ut + u

u(0,t) = 1 + e−3t, ux(0,t) = 1
u(x,0) = 1 + ex, ut(x,0) =−3

9. uxx = utt + 4ut + 4u
u(0,t) = 1 + e−2t, ux(0,t) = 2
u(x,0) = 1 + e2x, ut(x,0) =−2

10. uxx = utt + 4ut + 4u
u(0,t) = e−2t , ux(0,t) = 2
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u(x,0) = 1 + sinh2x, ut(x,0) =−2

9.7 Schrodinger Equation

In this section, the linear and nonlinear Schrodinger equations [1,2] will be investi-
gated. It is well-known that this equation arises in the study of the time evolution of
the wave function.

9.7.1 The Linear Schrodinger Equation

The initial value problem for the linear Schrodinger equation for a free particle with
mass m is given by the following standard form

ut = iuxx, u(x,0) = f (x), i2 =−1, t > 0, (9.255)

where f (x) is continuous and square integrable. It is to be noted that Schrodinger
equation (9.255) discusses the time evolution of a free particle. Moreover, the func-
tion u(x,t) is complex, and Eq. (9.255) is a first order differential equation in t.
The linear Schrodinger equation (9.255) is usually handled by using the spectral
transform technique among other methods.

The Adomian decomposition method and the variational iteration method will
be applied here to handle the linear and the nonlinear Schrodinger equations. To
achieve this goal, we apply L−1

t to both sides of (9.255) to obtain

u(x,t) = f (x)+ iL−1
t (uxx), (9.256)

and using the series representation for u(x,t) yields

∞

∑
n=0

un(x,t) = f (x)+ iL−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
. (9.257)

Applying the decomposition method leads to the recursive scheme

u0(x,t) = f (x),
uk+1(x,t) = iL−1

t (ukxx) , k � 0.
(9.258)

Using few iterations of (9.258) gives

u0(x,t) = f (x),
u1(x,t) = iL−1

t (u0xx) ,

u2(x,t) = iL−1
t (u1xx) ,

u3(x,t) = iL−1
t (u2xx) .

(9.259)
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Other components can be evaluated in a parallel manner. Having determined the first
few components of u(x,t), the solution in a series form is readily obtained.

The following examples will be used to illustrate the analysis discussed above.

Example 1. Solve the linear Schrodinger equation

ut = iuxx, u(x,0) = eix (9.260)

Solution.

The Decomposition Method

Following the discussions presented above we obtain

u0(x,t) = eix,

u1(x,t) = iL−1
t

(−eix
)

=−iteix,

u2(x,t) = L−1
t

(−teix
)

=− 1
2!

t2eix,

u3(x,t) = iL−1
t

(
1
2!t

2eix
)

=
1
3!

it3eix.

(9.261)

Summing these iterations yields the series solution

u(x,t) = eix
(

1− it +
1
2!

(it)2− 1
3!

(it)3 + · · ·
)

, (9.262)

that leads to the exact solution

u(x,t) = ei(x−t), (9.263)

obtained upon using the Taylor expansion for e−it .

The Variational Iteration Method

The correction functional for this equation reads

un+1(x,t) = un(x,t)+

∫ t

0
λ (ξ )

(
∂un(x,ξ )

∂ξ
− i

∂ 2(ũn)(x,ξ )

∂ x2

)
dξ . (9.264)

The stationary conditions
1 + λ = 0,

λ ′ = 0,
(9.265)

follow immediately. This in turn gives

λ =−1. (9.266)

Substituting λ =−1 into the correction functional gives the iteration formula
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un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
− i

∂ 2un(x,ξ )

∂ x2

)
dξ , n � 0. (9.267)

Selecting u0(x,t) = eix leads to the successive approximations

u0(x,t) = eix,

u1(x,t) = eix(1− it),

u2(x,t) = eix(1− it +
1
2!

(it)2),

u3(x,t) = eix(1− it +
1
2!

(it)2− 1
3!

(it)3),

...

un(x,t) = eix(1− it +
1
2!

(it)2− 1
3!

(it)3 + · · ·).

(9.268)

This gives the exact solution by

u(x,t) = ei(x−t). (9.269)

Example 2. Solve the linear Schrodinger equation

ut = iuxx,
u(x,0) = sinhx.

(9.270)

Solution.

Proceeding as in Example 1, we obtain

u0(x,t) = sinhx,
u1(x,t) = iL−1

t (sinhx) = it sinhx,

u2(x,t) = −L−1
t (t sinhx) =− 1

2!
t2 sinhx,

u3(x,t) = −iL−1
t

(
1
2!

t2 sinhx

)
=− 1

3!
it3 sinhx.

(9.271)

Summing these components gives the series solution

u(x,t) = sinhx

(
1 +(it)+

1
2!

(it)2 +
1
3!

(it)3 + · · ·
)

, (9.272)

and hence the exact solution is

u(x,t) = eit sinhx. (9.273)
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9.7.2 The Nonlinear Schrodinger Equation

We now turn to study the nonlinear Schrodinger equation (NLS) defined by its stan-
dard form

iut + uxx + γ|u|2u = 0, (9.274)

where γ is a constant and u(x,t) is complex. The Schrodinger equation (9.274) gen-
erally exhibits solitary type solutions. A soliton, or solitary wave, is a wave where
the speed of propagation is independent of the amplitude of the wave. Solitons usu-
ally occur in fluid mechanics.

The nonlinear Schrodinger equations that are commonly used are given by

iut + uxx + 2|u|2u = 0, (9.275)

and
iut + uxx−2|u|2u = 0. (9.276)

Moreover, other forms of nonlinear Schrodinger equations are used as well depend-
ing on the constant γ . The inverse scattering method is usually used to handle the
nonlinear Schrodinger equation where solitary type solutions were derived.

The nonlinear Schrodinger equation will be handled differently in this section by
using the Adomian decomposition method and the variational iteration method. We
start our analysis by considering the initial value problem

iut + uxx + γ|u|2u = 0, u(x,0) = f (x). (9.277)

Multiplying Eq. (9.277) by i, we may express this equation in an operator form as
follows

Ltu(x,t) = iuxx + iγ|u|2u. (9.278)

Applying L−1
t to both sides of (9.278) gives

u(x,t) = f (x)+ iL−1
t uxx + iγL−1

t F(u(x,t)), (9.279)

where the nonlinear term F(u(x,t)) is given by

F(u(x,t)) = |u|2u. (9.280)

Substituting the decomposition series for u(x,t) and the series of Adomian polyno-
mials for F(u(x,t)) into (9.279) to obtain

∞

∑
n=0

un(x,t) = f (x)+ iL−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
+ iγL−1

t

(
∞

∑
n=0

An

)
. (9.281)

Adomian’s analysis introduces the recursive relation

u0(x,t) = f (x),
uk+1(x,t) = iL−1

t (ukxx)+ iγL−1
t (Ak) , k � 0.

(9.282)
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Recall from complex analysis that

|u|2 = uu, (9.283)

where u is the conjugate of u. This means that (9.280) can be rewritten as

F(u) = u2u. (9.284)

In view of (9.284), and following the formal techniques used before to derive the
Adomian polynomials, we can easily derive that F(u) has the following polynomials
representation

A0 = u2
0u0,

A1 = 2u0u1u0 + u2
0u1,

A2 = 2u0u2u0 + u2
1u0 + 2u0u1u1 + u2

0u2,
A3 = 2u0u3u0 + 2u1u2u0 + 2u0u2u1 + u2

1u1 + 2u0u1u2 + u2
0u3.

(9.285)

In conjunction with (9.282) and (9.285), we can easily determine the first few com-
ponents by

u0(x,t) = f (x),
u1(x,t) = iL−1

t (u0xx)+ iγL−1
t (A0) ,

u2(x,t) = iL−1
t (u1xx)+ iγL−1

t (A1) ,

u3(x,t) = iL−1
t (u2xx)+ iγL−1

t (A2) .

(9.286)

Other components can be determined as well. This completes the determination of
the series solution.

The analysis introduced above will be illustrated by discussing the following
examples.

Example 3. Use the decomposition method to solve the following nonlinear Schrod-
inger equation.

iut + uxx + 2|u|2u = 0, u(x,0) = eix. (9.287)

Solution.

The Decomposition Method

Following the analysis presented above gives

∞

∑
n=0

un(x,t) = eix + iL−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
+ 2iL−1

t

(
∞

∑
n=0

An

)
. (9.288)

The decomposition method suggests the use of the recursive relation

u0(x,t) = f (x),
uk+1(x,t) = iL−1

t (ukxx)+ 2iL−1
t (Ak) , k � 0,

(9.289)

that in turn gives the first few components by
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u0(x,t) = eix,

u1(x,t) = iL−1
t (u0xx)+ 2iL−1

t (A0) = iteix,

u2(x,t) = iL−1
t (u1xx)+ 2iL−1

t (A1) =− 1
2!

t2eix,

u3(x,t) = iL−1
t (u2xx)+ 2iL−1

t (A2) =− 1
3!

it3eix.

(9.290)

Accordingly, the series solution is given by

u(x,t) = eix
(

1 + it +
1
2!

(it)2 +
1
3!

(it)3 + · · ·
)

, (9.291)

that gives the exact solution by

u(x,t) = ei(x+t). (9.292)

The Variational Iteration Method

Following the analysis presented above we obtain the correction functional

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
i
∂un(x,ξ )

∂ξ
+

∂ 2(ũn)(x,ξ )

∂x2 + 2u2
nun

)
dξ , (9.293)

where |u|2 = uu, and u is the conjugate of u. The stationary conditions

1 + iλ = 0,
λ ′ = 0,

(9.294)

give
λ = i. (9.295)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

un+1(x,t) = un(x,t)+ i
∫ t

0

(
i
∂un(x,ξ )

∂ξ
+

∂ 2un(x,ξ )

∂x2 + 2u2
nun

)
dξ , n � 0.

(9.296)
Using u0(x,t) = eix gives the successive approximations

u0(x,t) = eix,
u1(x,t) = eix + iteix,

u2(x,t) = eix + iteix +
(it)2

2!
eix,

u3(x,t) = eix + iteix +
(it)2

2!
eix +

(it)3

3!
eix,

...

un(x,t) = eix

(
1 + it +

(it)2

2!
+

(it)3

3!
+ · · ·

)
.

(9.297)
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Consequently the exact solution

u(x,t) = ei(x+t) (9.298)

is readily obtained.

Example 4. Use the decomposition method to solve the following nonlinear Schrodinger
equation.

iut + uxx−2|u|2u = 0, u(x,0) = eix. (9.299)

Solution.

Using the analysis of Example 3 yields

∞

∑
n=0

un(x,t) = eix + iL−1
t

((
∞

∑
n=0

un(x,t)

)
xx

)
−2i

(
∞

∑
n=0

An

)
. (9.300)

This gives the recursive relation

u0(x,t) = f (x),
uk+1(x,t) = iL−1

t (ukxx)−2iL−1
t (Ak) , k � 0.

(9.301)

Using the Adomian polynomials An that were derived before, the first few compo-
nents are given by

u0(x,t) = eix,

u1(x,t) = iL−1
t (u0xx)−2iL−1

t (A0) =−3iteix,

u2(x,t) = iL−1
t (u1xx)+ 2iL−1

t (A1) =
1
2!

(3it)2eix,

u3(x,t) = iL−1
t (u2xx)+ 2iL−1

t (A2) =− 1
3!

(3it)3eix.

(9.302)

In view of (9.302), the series solution is given by

u(x,t) = eix
(

1− (3it)+
1
2!

(3it)2− 1
3!

(3it)3 + · · ·
)

. (9.303)

The exact solution is therefore given by

u(x,t) = ei(x−3t). (9.304)

Exercises 9.7

In Exercises 1–5, use the variational iteration method or Adomian decomposition
method to solve the following linear Schrodinger equations:
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1. ut = iuxx, u(x,0) = e2ix

2. ut = iuxx, u(x,0) = sinx

3. ut = iuxx, u(x,0) = coshx

4. ut = iuxx, u(x,0) = 1 + cos3x

5. ut = iuxx, u(x,0) = sin2x

In Exercises 6–10, use the variational iteration method or Adomian decomposition
method to solve the following nonlinear Schrodinger equations NLS:

6. iut + uxx + |u|2u = 0, u(x,0) = e2ix

7. iut + uxx + 2|u|2u = 0, u(x,0) = e−ix

8. iut + uxx + 6|u|2u = 0, u(x,0) = e3ix

9. iut + uxx−2|u|2u = 0, u(x,0) = e2ix

10. iut + uxx + 17|u|2u = 0, u(0,t) = e8it ,ux(0,t) = 3ie8it

9.8 Korteweg-deVries Equation

The Korteweg-deVries (KdV) equation in its simplest form [7,9] is given by

ut + auux + uxxx = 0. (9.305)

The KdV equation arises in the study of shallow water waves [11]. In particular,
the KdV equation is used to describe long waves traveling in canals. It is formally
proved that this equation has solitary waves as solutions, hence it can have any num-
ber of solitons [7]. The KdV equation has received a lot of attention and has been
extensively studied. Several numerical and analytical techniques were employed to
study the solitary waves that result from this equation. The solitary waves of this
equation will be presented in Chapters 11, 12 and forthcoming chapters.

In this section, the decomposition method and the variational iteration method
will be used to handle the KdV equation. We first consider the initial value problem

ut + auux + buxxx = 0, u(x,0) = f (x), (9.306)

where a and b are constants. In an operator form, the KdV equation becomes

Ltu =−buxxx−auux. (9.307)

Applying L−1
t on both sides of (9.307) yields

u(x,t) = f (x)−bL−1
t uxxx−aL−1

t F(u(x,t)), (9.308)
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where the nonlinear term F(u(x,t)) is

F(u(x,t)) = uux. (9.309)

Using the decomposition identification for the linear and nonlinear terms yields

∞

∑
n=0

un(x,t) = f (x)−bL−1
t

(
∞

∑
n=0

un(x,t)

)
xxx

−aL−1
t

(
∞

∑
n=0

An

)
. (9.310)

The typical approach of Adomian’s method is the introduction of the recursive
relation

u0(x,t) = f (x),
uk+1(x,t) = −bL−1

t (ukxxx)−aL−1
t (Ak), k � 0.

(9.311)

The components un,n � 0 can be elegantly calculated by

u0(x,t) = f (x),
u1(x,t) = −bL−1

t (u0xxx)−aL−1
t (A0),

u2(x,t) = −bL−1
t (u1xxx)−aL−1

t (A1),

u3(x,t) = −bL−1
t (u2xxx)−aL−1

t (A2),

(9.312)

where Adomian polynomials An for the nonlinearity uux were derived before and
used in advection and Burgers problems. Summing the computed components
(9.312) gives the solution in a series form. The discussion presented above will
be illustrated as follows.

Example 1. Solve the following homogeneous KdV equation:

ut −6uux + uxxx = 0, u(x,0) = 6x. (9.313)

Solution.

The Decomposition Method

Proceeding as before we find

∞

∑
n=0

un(x,t) = 6x−L−1
t

((
∞

∑
n=0

un(x,t)

)
xxx

)
+ 6L−1

t

(
∞

∑
n=0

An

)
. (9.314)

A close observation of (9.314) admits the recursive relation

u0(x,t) = 6x,
uk+1(x,t) = −L−1

t (ukxxx)+ 6L−1
t (Ak) , k � 0,

(9.315)

that gives the first few components by

u0(x,t) = 6x,
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u1(x,t) = −L−1
t (u0xxx)+ 6L−1

t (A0) = 63xt,
u2(x,t) = −L−1

t (u1xxx)+ 6L−1
t (A1) = 65xt2,

u3(x,t) = −L−1
t (u2xxx)+ 6L−1

t (A2) = 67xt3.

(9.316)

In view of (9.316), the solution in a series form is given by

u(x,t) = 6x(1 + 36t +(36t)2 +(36t)3 + · · ·), (9.317)

and in a closed form by

u(x,t) =
6x

1−36t
, |36t|< 1. (9.318)

The Variational Iteration Method

Proceeding as in other examples and using λ =−1 we get the iteration formula

un+1(x,t) = un(x,t)−
∫ t

0

(
∂un(x,ξ )

∂ξ
−6un

∂un(x,ξ )

∂x
+

∂ 3un(x,ξ )

∂x3

)
dξ . (9.319)

Selecting u0(x,t) = 6x from the given initial condition yields the successive approx-
imations

u0(x,t) = 6x,
u1(x,t) = 6x + 63xt,
u2(x,t) = 6x + 63xt + 65xt2 + 93312xt3,
u3(x,t) = 6x + 63xt + 65xt2 + 67xt3 + · · · ,

...
un(x,t) = 6x(1 + 36t +(36t)2 +(36t)3 +(36t)4 + · · ·).

(9.320)

This gives exact solution by

u(x,t) =
6x

1−36t
, |36t|< 1. (9.321)

Example 2. Solve the following KdV equation:

ut −6uux + uxxx = 0, u(x,0) =
1
6
(x−1). (9.322)

Solution.

Proceeding as in Example 1 gives

∞

∑
n=0

un(x,t) =
1
6
(x−1)−L−1

t

((
∞

∑
n=0

un(x,t)

)
xxx

)
+ 6L−1

t

(
∞

∑
n=0

An

)
. (9.323)

This gives the relation
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u0(x,t) =
1
6
(x−1),

uk+1(x,t) = −L−1
t (ukxxx)+ 6L−1

t (Ak) , k � 0,
(9.324)

and as a result we find

u0(x,t) =
1
6
(x−1),

u1(x,t) = −L−1
t (u0xxx)+ 6L−1

t (A0) =
1
6
(x−1)t,

u2(x,t) = −L−1
t (u1xxx)+ 6L−1

t (A1) =
1
6
(x−1)t2,

u3(x,t) = −L−1
t (u2xxx)+ 6L−1

t (A2) =
1
6
(x−1)t3.

(9.325)

The solution in a series form is therefore given by

u(x,t) =
1
6
(x−1)

(
1 + t + t2 + t3 + · · ·) , (9.326)

and in a closed form by

u(x,t) =
1
6

(
x−1
1− t

)
, |t|< 1. (9.327)

Exercises 9.8

1. Show that u =− 2
x2 is a solution of ut + 6uux + uxxx = 0.

2. Show that u =
1
6

x−3
t−3

is a solution of ut + 6uux + uxxx = 0.

3. Show that u =
2

(x−2)2 is a solution of ut −6uux + uxxx = 0.

4. Show that u =
6x(x3−24t)
(x3 + 12t)2 is a solution of ut −6uux + uxxx = 0.

5. Show that u =
4(x−6t)2−3
4(x−6t)2 + 1

is a solution of ut + 6u2ux + uxxx = 0.

Use the variational iteration method or Adomian decomposition method to solve the
following KdV equations:

6. ut + 6uux + uxxx = 0, u(x,0) = x

7. ut −6uux + uxxx = 0, u(x,0) =
2
x2
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8. ut −6uux + uxxx = 0, u(x,0) =
1

12
(x−2)

9. ut −6uux + uxxx = 0, u(x,0) =
2

(x−3)2

10. ut −6uux + uxxx = 0, u(x,0) =
1
18

(x−4)

9.9 Fourth-order Parabolic Equation

We close this chapter by discussing the fourth order parabolic linear partial differ-
ential equation with constant and variable coefficients.

9.9.1 Equations with Constant Coefficients

In what follows we study the fourth order parabolic linear partial differential equa-
tion with constant coefficients of the form

∂ 2u
∂ t2 +

∂ 4u
∂ x4 = f (x,t), 0 � x � 1,t > 0, (9.328)

with initial conditions

u(x,0) = g(x), ut(x,0) = h(x). (9.329)

It is worth mentioning that the fourth order parabolic equation (9.328) governs the
transverse vibrations of a homogeneous beam. In addition, equation (9.328), subject
to specific initial and boundary conditions, was handled numerically by the finite
difference method and by the alternating group explicit method. It is our main goal
in this chapter to employ the Adomian decomposition method and the variational
iteration method to physical applications.

In an operator form, Eq. (9.328) can be rewritten as

Ltu(x,t) = f (x,t)−Lxu(x,t), (9.330)

where Lt is a second order partial derivative with respect to t, and Lx is a fourth-order
partial derivative with respect to x. Operating with the two-fold integral operator L−1

t
and using the decomposition series for u(x,t) give

∞

∑
n=0

un(x,t) = g(x)+ th(x)+ L−1
t f (x,t)−L−1

t Lx

(
∞

∑
n=0

un(x,t)

)
. (9.331)

It follows that
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u0(x,t) = g(x)+ th(x)+ L−1
t f (x,t),

uk+1(x,t) = −L−1
t Lx (uk(x,t)) ,k � 0.

(9.332)

Using few iterations we obtain

u0(x,t) = g(x)+ th(x)+ L−1
t f (x,t),

u1(x,t) = −L−1
t Lx (u0) ,

u2(x,t) = −L−1
t Lx (u1) ,

u3(x,t) = −L−1
t Lx (u2) .

(9.333)

The series solution follows immediately upon summing the components obtained in
(9.333).

It is important to point out that the homogeneous and the inhomogeneous cases
will be illustrated by discussing the following examples. For the inhomogeneous
case, the noise terms will play a major role in accelerating the convergence of the
solution.

Example 1. Solve the following homogeneous fourth order equation:

∂ 2u
∂ t2 +

∂ 4u
∂x4 = 0, (9.334)

with initial conditions

u(x,0) = cosx, ut(x,0) =−sinx. (9.335)

Solution.

The Decomposition Method

Operating with the two-fold integral operator L−1
t , and representing u(x,t) by the

decomposition series of components we obtain

∞

∑
n=0

un(x,t) = cosx− t sinx−L−1
t Lx

(
∞

∑
n=0

un(x,t)

)
. (9.336)

The recursive scheme

u0(x,t) = cosx− t sinx,

uk+1(x,t) = −L−1
t Lx

(
∞

∑
n=0

uk(x,t)

)
, k � 0,

(9.337)

follows immediately. Using few iterations we obtain

u0(x,t) = cosx− t sinx,

u1(x,t) = −L−1
t Lx (u0(x,t)) =− 1

2!
t2 cosx +

1
3!

t3 sinx,

u2(x,t) = −L−1
t Lx (u1(x,t)) =

1
4!

t4 cosx− 1
5!

t5 sinx.

(9.338)



9.9 Fourth-order Parabolic Equation 407

Therefore, the series solution is given by

u(x,t) = cosx

(
1− 1

2!
t2 +

1
4!

t4−·· ·
)
− sinx

(
t− 1

3!
t3 +

1
5!

t5−·· ·
)

. (9.339)

Consequently, the exact solution is given by

u(x,t) = cosxcos t− sinxsin t = cos(x + t). (9.340)

The Variational Iteration Method

The correction functional for this equation reads

un+1(x,t) = un(x,t)+
∫ t

0
λ (ξ )

(
∂ 2un(x,ξ )

∂ξ 2 +
∂ 4ũn(x,ξ )

∂x4

)
dξ . (9.341)

The stationary conditions give
λ = ξ − t. (9.342)

Substituting this value of the Lagrange multiplier into the correction functional gives
the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 +
∂ 4un(x,ξ )

∂ x4

)
dξ . (9.343)

We can select u0(x,t) = cosx− t sinx. Using this selection into the iteration formula
we obtain the following successive approximations

u0(x,t) = cosx− t sinx,

u1(x,t) = cosx(1− 1
2!

t2)− sinx(t− 1
3!

t3),

u2(x,t) = cosx(1− 1
2!

t2 +
1
4!

t4)− sinx(t− 1
3!

t3 +
1
5!

t5),

...

un(x,t) = cosx(1− 1
2!

t2 +
1
4!

t4 + · · ·)− sinx(t− 1
3!

t3 +
1
5!

t5−·· ·).

(9.344)

This gives the exact solution by

u(x,t) = cosxcos t− sinxsin t = cos(x + t). (9.345)

Example 2. Solve the following inhomogeneous fourth order equation:

∂ 2u
∂ t2 +

∂ 4u
∂x4 = (π4−1)sinπxsin t, (9.346)

with initial conditions
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u(x,0) = 0, ut(x,0) = sinπx. (9.347)

Solution.

Proceeding as in Example 1 we obtain

∞

∑
n=0

un(x,t) = t sinπx +(π4−1)sinπx(t− sint)−L−1
t Lx

(
∞

∑
n=0

un(x,t)

)
. (9.348)

This gives the relation

u0(x,t) = t sinπx +(π4−1)sinπx(t− sint),
uk+1(x,t) = −L−1

t Lx (uk(x,t)) , k � 0.
(9.349)

To use the noise terms phenomenon we determine the first two components, hence
we find

u0(x,t) = sin πxsint + π4 sinπx(t− sint),
u1(x,t) = −L−1

t Lx (u0(x,t))
= −π4 sin πx(t− sint)−π8 sinπx( 1

3! t
3 + sint− t).

(9.350)

A close examination of the first two components shows the appearance of the noise
term π4 sinπx(t−sin t) with opposite signs in u0(x,t) and u1(x,t). By canceling this
term from u0(x,t) and checking that the remaining term justifies the equation give
the exact solution

u(x,t) = sinπxsin t. (9.351)

9.9.2 Equations with Variable Coefficients

In what follows we investigate the variable coefficient fourth-order parabolic partial
differential equation of the form

∂ 2u
∂ t2 + μ(x)

∂ 4u
∂x4 = 0, μ(x) > 0, a < x < b,t > 0, (9.352)

where μ(x) > 0 is the ratio of flexural rigidity of the beam to its mass per unit length.
The initial conditions associated with (9.352) are of the form

u(x,0) = f (x), a � x � b,
ut(x,0) = g(x), a � x � b,

(9.353)

and the boundary conditions are given by

u(a,t) = h(t), u(b,t) = r(t), t > 0,
uxx(a,t) = s(t), uxx(b,t) = q(t), t > 0,

(9.354)
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where the functions f (x),g(x),h(t),r(t),s(t) and q(t) are continuous functions.
In an operator form, Equation (9.352) becomes

Lt u =−μ(x)
∂ 4u
∂x4 , μ(x) > 0. (9.355)

Operating with the two fold integral operator and using the initial conditions yields

u(x,t) = f (x)+ tg(x)−L−1
t

(
μ(x)

∂ 4u
∂ x4

)
. (9.356)

Using the series representation of u(x,t) leads to

∞

∑
n=0

un(x,t) = f (x)+ tg(x)−L−1
t

(
μ(x)

∂ 4

∂x4

(
∞

∑
n=0

un(x,t)

))
. (9.357)

This gives the recurrence relation

u0(x,t) = f (x)+ tg(x),

uk+1(x,t) = −L−1
t

(
μ(x)

∂ 4uk

∂x4

)
, k � 0,

(9.358)

so that
u0(x,t) = f (x)+ tg(x),

u1(x,t) = −L−1
t

(
μ(x)

∂ 4 u0

∂x4

)
,

u2(x,t) = −L−1
t

(
μ(x)

∂ 4 u1

∂x4

)
,

u3(x,t) = −L−1
t

(
μ(x)

∂ 4 u2

∂x4

)
.

(9.359)

In view of (9.359), the series solution follows immediately.

Example 3. Solve the fourth order parabolic equation

∂ 2u
∂ t2 +

(
1
x

+
x4

120

)
∂ 4u
∂x4 = 0,

1
2

< x < 1,t > 0, (9.360)

subject to the initial conditions

u(x,0) = 0, ut(x,0) = 1 +
x5

120
,

1
2

< x < 1, (9.361)

and the boundary conditions
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u

(
1
2
,t

)
=

(
1 +

(1/2)5

120

)
sin t, u(1,t) =

121
120

sin t, t > 0,

∂ 2u
∂x2

(
1
2
,t

)
=

1
6

(
1
2

)3

sin t,
∂ 2u
∂x2 (1,t) =

1
6

sin t, t > 0.

(9.362)

Solution.

The Decomposition Method

Adomian’s analysis gives the recurrence relation

u0(x,t) =

(
1 +

x5

120

)
t,

uk+1(x,t) = −L−1
t

((
1
x

+
x4

120

)
∂ 4uk

∂x4

)
, k � 0,

(9.363)

that gives

u0(x,t) =

(
1 +

x5

120

)
t,

u1(x,t) = −
(

1 +
x5

120

)
t3

3!
,

u2(x,t) =

(
1 +

x5

120

)
t5

5!
.

(9.364)

The solution in a series form is

u(x,t) =

(
1 +

x5

120

)(
t− t3

3!
+

t5

5!
−·· ·

)
, (9.365)

and in a closed form by

u(x,t) =

(
1 +

x5

120

)
sin t. (9.366)

It is important to confirm the fact that we obtained the solution by using the ini-
tial conditions only. The obtained solution satisfies the four prescribed boundary
conditions that were not used in the determination of the solution.

The Variational Iteration Method

Proceeding as before we obtain the iteration formula

un+1(x,t) = un(x,t)+
∫ t

0
(ξ − t)

(
∂ 2un(x,ξ )

∂ξ 2 +

(
1
x

+
x4

120

)
∂ 4un(x,ξ )

∂x4

)
dξ .

(9.367)

We can select u0(x,t) =

(
1 +

x5

5!

)
t. Using this selection into the iteration formula

we obtain the following successive approximations
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u0(x,t) =

(
1 +

x5

5!

)
t,

u1(x,t) =

(
1 +

x5

5!

)
(t− 1

3!
t3),

u2(x,t) =

(
1 +

x5

5!

)
(t− 1

3!
t3 +

1
5!

t5),

u3(x,t) =

(
1 +

x5

5!

)
(t− 1

3!
t3 +

1
5!

t5− 1
7!

t7),

...

un(x,t) =

(
1 +

x5

5!

)
(t− 1

3!
t3 +

1
5!

t5− 1
7!

t7 + · · ·).

(9.368)

This gives the exact solution by

u(x,t) =

(
1 +

x5

5!

)
sin t. (9.369)

We close our analysis by discussing the following nonhomogeneous equation. The
decomposition method will be combined with the effect of the noise terms phe-
nomenon. This will facilitate the convergence of the solution.

Example 4. We finally consider the nonhomogeneous parabolic equation

∂ 2u
∂ t2 +(1 + x)

∂ 4u
∂x4 = (x4 + x3− 6

7!
x7)cost, 0 < x < 1,t > 0, (9.370)

subject to the initial conditions

u(x,0) =
6
7!

x7, ut(x,0) = 0, 0 < x < 1, (9.371)

and the boundary conditions

u(0,t) = 0, u(1,t) =
6
7!

cost, t > 0,

∂ 2u
∂ x2 (0,t) = 0,

∂ 2u
∂x2 (1,t) =

1
20

cost, t > 0,

(9.372)

Solution.

Following our discussions above, we obtain

u0(x,t) =
6
7!

x7 +(x4 + x3− 6
7!

x7)(1− cost),

uk+1(x,t) = −L−1
t

(
(1 + x)

∂ 4 uk

∂x4

)
, k � 0.

(9.373)
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Proceeding as before, the noise terms appear in the components u0(x,t), and u1(x,t),
and by canceling these noise terms we obtain the exact solution

u(x,t) =
6
7!

x7 cost. (9.374)

Exercises 9.9

In Exercises 1–5, use the variational iteration method or the Adomian decomposi-
tion method to solve the following homogeneous fourth order equations:

1. utt + uxxxx = 0, u(x,0) = sinx, ut(x,0) = cosx

2. utt + uxxxx = 0, u(x,0) = sinx, ut(x,0) = 0

3. utt + uxxxx = 0, u(x,0) = cosx, ut(x,0) = 0

4. utt + uxxxx = 0, u(x,0) = 1 + cosx, ut(x,0) =−sinx

5. utt + uxxxx = 0, u(x,0) = 2, ut(x,0) = sinx

In Exercises 6–10, use the variational iteration method or the Adomian decomposi-
tion method to solve the following inhomogeneous fourth order equations:

6. utt + uxxxx = 15sin2xcost, u(x,0) = sin2x, ut(x,0) = 0

7. utt + uxxxx = 2ex+t , u(x,0) = ex, ut(x,0) = ex

8. utt + uxxxx = 12sin2xsin2t, u(x,0) = 0, ut(x,0) = 2sin2x

9. utt + uxxxx = 2ex−t , u(x,0) = ex, ut(x,0) =−ex

10. utt + uxxxx =−3sin(x + 2t), u(x,0) = sinx, ut(x,0) = 2cosx

In Exercises 11–15, use the variational iteration method or Adomian decomposition
method to solve the following fourth order equations with variable coefficients, 0 <
x < 1:

11. utt +(
x

sinx
−1)uxxxx = 0, u(x,0) =−ut(x,0) = x− sinx

12. utt +
x4

360
uxxxx = 0, u(x,0) = 0, ut(x,0) =

x6

720

13. utt +(
x

cosx
−1)uxxxx = 0, u(x,0) =−ut(x,0) = x− cosx

14. utt +(1 +
x4

360
)uxxxx =

5
2

x2 sin t, u(x,0) = 0, ut(x,0) =
5
6!

x6

15. utt +(1 +
3!
7!

x4)uxxxx = x3(sin t + cost), u(x,0) = ut(x,0) =
6
7!

x7
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Chapter 10

Numerical Applications and Padé Approximants

10.1 Introduction

In this chapter we will apply Adomian decomposition method, the variational itera-
tion method, and other numerical methods to handle linear and nonlinear differential
equations numerically. Because the decomposition method and the variational itera-
tion method provide a rapidly convergent series and approximations and faster than
existing numerical techniques, it is therefore the two methods are considered effi-
cient, reliable and easy to use from a computational viewpoint. It is to be noted that
few terms or few approximations are usually needed to supply a reliable result much
closer to the exact value. The overall error can be significantly decreased by com-
puting additional terms of the decomposition series or additional approximations.

The common numerical techniques that are usually used are the finite differ-
ences method, finite element method, and Galerkin method. The finite differences
method handles the differential equation by replacing the derivatives in the equation
with difference quotients. The finite elements method reduces any partial differen-
tial equation to a system of ordinary differential equations. However, the Galerkin
method approximates the solution of a differential equation by a finite linear combi-
nations of basic functions with specific properties. In addition, other techniques are
used such as Crank-Nicolson method, perturbation methods and collocation method.

Recently, several useful comparative discussions have been conducted between
the decomposition method and other numerical approaches. In addition, compara-
tive discussions have been conducted between the variational iteration method and
other numerical schemes. The studies have formally proved that the decomposition
method and the variational iteration method are faster and more efficient to use in
numerical applications as well as in analytical approaches. Moreover, it was shown
that both methods give approximations of a high degree of accuracy.

Concerning the decomposition method, the n-term approximant φn

φn =
n−1

∑
n=0

un, (10.1)
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offers a very good approximation for quite low values of n. The accuracy level can
be significantly enhanced by computing additional components of the solution.

The decomposition method [1] and the variational iteration method [6] have been
outlined before in previous chapters and have been extensively employed in the
text. The best way to describe the use of the decomposition method for numerical
studies is to work on several examples, ordinary and partial differential equations.
Our approach will begin first with ordinary differential equations. Partial differential
equations will be investigated as well. Some of these examples will be examined by
more than one method.

10.2 Ordinary Differential Equations

10.2.1 Perturbation Problems

It is useful to consider a comparative study between at least two of the decomposi-
tion method, the variational iteration method, Taylor series method, and the pertur-
bation technique. Two illustrative perturbation problems will be examined.

Example 1. Consider the Duffing equation

d2y
dt2 + y + εy3 = 0, y(0) = 1, y′(0) = 0. (10.2)

Solution.

The comparative study will be carried out by applying three methods.

The Decomposition Method

Applying the two-fold integral operator L−1
t to both sides of (10.2) gives

y(t) = 1−L−1
t y− εL−1

t y3. (10.3)

Using the series representation for y and y3 into (10.3) yields

∞

∑
n=0

yn = 1−L−1
t

(
∞

∑
n=0

yn

)
− εL−1

t

(
∞

∑
n=0

An

)
, (10.4)

where An are Adomian polynomials for y3. The decomposition method suggests the
recursive relation

y0(t) = 1,

yk+1 = −L−1
t (yk)− εL−1

t (Ak) , k � 0.
(10.5)

The components yn(t) can be elegantly determined by
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y0(t) = 1,

y1(t) =−L−1
t (y0)− εL−1

t (A0) =− 1
2!

(1 + ε)t2,

y2(t) =−L−1
t (y1)− εL−1

t (A1) =
1
4!

(1 + 4ε + 3ε2)t4,

y3(t) =−L−1
t (y2)− εL−1

t (A2) =− 1
6!

(1 + 25ε + 51ε2 + 27ε3)t6.

Consequently, the φ4 approximant is given by

φ4 =
3

∑
n=0

yn(t),

=

(
1− 1

2!
t2 +

1
4!

t4− 1
6!

t6
)
− ε

(
1
2!

t2− 1
3!

t4 +
25
6!

t6
)

+ O(ε2).

(10.6)

The Variational Iteration Method

The correction functional for this equation reads

yn+1(t) = yn(t)+

∫ t

0
λ (ξ )

(
∂ 2yn(ξ )

∂ξ 2 + ỹn(ξ )+ ε ỹ3
n(ξ )

)
dξ . (10.7)

This yields the stationary conditions

1−λ ′|ξ=t = 0,
λ |ξ=t = 0,

λ ′′|ξ=t = 0.
(10.8)

This in turn gives
λ = ξ − t. (10.9)

Using this value of the Lagrange multiplier into the correction functional gives the
iteration formula

yn+1(t) = yn(t)+
∫ t

0
(ξ − t)

(
∂ 2yn(ξ )

∂ξ 2 + yn(ξ )+ εy3
n(ξ )

)
dξ . (10.10)

Considering the given initial values, we can select y0(t) = 1. Using this selection,
we obtain the following successive approximations

y0(t) = 1,

y1(t) = 1− 1
2

t2− ε
1
2

t2,

y2(t) = 1− 1
2

t2 +
1
4!

t4− ε
(

1
2

t2− 1
3!

t4 +
1
40

t6
)

+ O(ε2),
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...

yn(t) =

(
1− 1

2
t2 +

1
4!

t4− 1
6!

t6
)
− ε

(
1
2

t2− 1
3!

t4 +
25
6!

t6
)

+ O(ε2).
(10.11)

The answer is consistent with the results obtained above. However, there is no need
for Adomian polynomials or any transformation for the nonlinear term y3.

The Perturbation Method

We next approach the Duffing equation (10.2) by applying the perturbation technique.
To obtain a perturbative solution for this problem, we first represent y(t) by a power
series in ε as

y(t) =
∞

∑
n=0

εnyn(t). (10.12)

This means that the initial condition can be reduced to a set of initial conditions
defined by

y0(0) = 1, y′0(0) = 0, yk(0) = y′k(0) = 0, k � 1. (10.13)

Substituting (10.12) into (10.2) and equating coefficients of like powers of ε gives
the differential equations

y′′0 + y0 = 0, y0(0) = 1, y′0(0) = 0,

y′′1 + y1 = −y3
0, y1(0) = 0, y′1(0) = 0

y′′2 + y2 = −3y2
0y1, y2(0) = 0, y′2(0) = 0.

(10.14)

Solving the first homogeneous equation and using the result in solving the inhomo-
geneous equation gives

y0 = cost,

y1 = − 1
32

cost− 3
8

t sin t +
1
32

cos3t.
(10.15)

In view of (10.15), the first-order perturbative solution to the Duffing equation [10]
is given by

y(t) = cost + ε
(
− 1

32
cost− 3

8
t sin t +

1
32

cos3t

)
+ O(ε2). (10.16)

A close examination of the decomposition method and the perturbation method
clearly shows that the decomposition method can calculate the components el-
egantly where we integrated simple terms of the form tn. However, using the
perturbation technique requires solving homogeneous and inhomogeneous differ-
ential equations with trigonometric functions and trigonometric identities, such as
cos3t in this example. This shows that the perturbation technique suffers from the
cumbersome work especially if a higher order solution is sought. On the other hand,
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we can easily evaluate additional components of the decomposition series as much
as we like.

Example 2. Solve the equation

y′ = y2 sin(εt), y(0) = 1. (10.17)

Solution.

It is to be noted that the nonlinear equation (10.17) can be solved by using the
separation of variables method where the analytic solution is

y =
ε

(ε −1)+ cosεt
. (10.18)

We next carry out the comparison between the decomposition method and the
perturbation technique.

The Decomposition Method

In an operator form, Eq. (10.17) can be rewritten as

Lty(t) = y2 sin(εt). (10.19)

Applying the inverse operator L−1
t to both sides of (10.19) yields

y(t) = 1 + L−1
t y2 sin(εt). (10.20)

Using the decomposition assumptions for y(t) and for the nonlinear term y2 gives

∞

∑
n=0

yn(t) = 1 + L−1
t

(
sin(εt)

∞

∑
n=0

An

)
. (10.21)

This suggests the recursive relation

y0(t) = 1,

yk+1 = L−1
t (sin(εt)Ak) , k � 0.

(10.22)

This gives the first four components by

y0(t) = 1,

y1(t) = L−1
t (sin(εt)A0) =

1
ε
(1− cos(εt)),

y2(t) = L−1
t (sin(εt)A1) =

1
ε2 (1− cos(εt))2,

y3(t) = L−1
t (sin(εt)A2) =

1
ε3 (1− cos(εt))3,
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y4(t) = L−1
t (sin(εt)A3) =

1
ε4 (1− cos(εt))4,

y5(t) = L−1
t (sin(εt)A4) =

1
ε5 (1− cos(εt))5.

(10.23)

This gives the φ6 approximant by

φ6 =
5

∑
n=0

yn,

= 1 +
1
ε
(1− cos(εt))+

1
ε2 (1− cos(εt))2

+
1
ε3 (1− cos(εt))3 +

1
ε4 (1− cos(εt))4 +

1
ε5 (1− cos(εt))5.

(10.24)

To enhance the approximation level, we should determine more components
yn,n � 6. Based on this, the approximants φn,n � 7 can be used to achieve higher
accuracy level.

The Perturbation Method

To obtain a perturbative solution for (10.17), we first represent y(t) by a power
series in ε as

y(t) =
∞

∑
n=0

εnyn(t). (10.25)

This means that the initial condition can be reduced to a set of initial conditions
defined by

y0(0) = 1, y′0(0) = 0, yk(0) = y′k(0) = 0, k � 1. (10.26)

Substituting (10.25) into (10.17) gives

y′0 + εy′1 + ε2y′2 + ε3y′3 + ε4y′4 + · · ·=
(
y2

0 + 2εy0y1 + ε2(2y0y2 + y2
1)
)×(

εt− 1
3!

ε3t3
)

. (10.27)

Equating coefficients of like powers of ε in (10.27) leads to the set of differential
equations

y′0 = 0, y0(0) = 1,
y′1 = ty2

0, y1(0) = 0,
y′2 = 2ty0y1, y2(0) = 0,

y′3 = t(2y0y2 + y2
1)−

1
3!

t3y2
0, y3(0) = 0,

y′4 = t(2y0y3 + 2y1y2)− 2
3!

t3y0y1, y4(0) = 0.

(10.28)

Solving the resulting equations and using the relevant initial conditions give

y0(t) = 1, y1(t) =
1
2

t2, y2(t) =
1
4

t4, y3(t) =
1
8

t6− 1
24

t4, y4(t) =
1
16

t8− 1
72

t6.

(10.29)
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The perturbative solution is therefore given by

y(t) = 1 +
1
2

εt2 +
1
4

ε2t4 + ε3
(

1
8

t6− 1
24

t4
)

+ ε4
(

1
16

t8− 1
72

t6
)

+ O(ε5).

(10.30)

Table 10.1
t y

analytic
y
perturbation

y
decomposition

0.8 1.033 04 1.033 04 1.033 04

1.5 1.126 49 1.126 51 1.126 47

2.0 1.248 96 1.248 84 1.248 56

3.0 1.807 13 1.780 24 1.775 02

Table 10.1 shows the performance of the perturbation and the decomposition
methods by considering ε = 0.1. Comparing the performance of the decomposi-
tion method and the perturbation method in this example clearly shows that the
decomposition method encountered the difficulties that arise from sinεt, where
components of the decomposition series have been computed directly. However,
using the perturbation technique, the Taylor expansion of sinεt has been used to
control the powers of ε in both sides of (10.27).

In addition, it is to be noted that approximating sin(εt) in using the perturbation
technique by the first two terms of the Taylor expansion will affect the approxi-
mation numerically. However, the decomposition method has been applied directly
without using any expansion. More importantly from the point of view of numerical
purposes, the calculations in Table 10.1 show slight improvements of the decompo-
sition method over perturbation method for small values of t.

10.2.2 Nonperturbed Problems

In this section, nonperturbed ordinary differential equations will be handled from
numerical viewpoint. A comparison will be carried here between the decomposition
method and the Taylor series method. To achieve our goal, we study the following
examples:

Example 3. Consider the first order ordinary differential equation

y′+ y =
1

1 + x2 , y(0) = 0. (10.31)

Solution.
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It is to be noted that the solution of the first order linear equation (10.31) cannot
be found in a closed form. We next carry out the comparison between the decompo-
sition method and the Taylor series method.

The Decomposition Method

In an operator form, Eq. (10.31) can be rewritten as

Lxy =
1

1 + x2 − y, y(0) = 0. (10.32)

Applying the inverse operator L−1
x to both sides of (10.32) yields

y(x) = arctanx−L−1
x y(x). (10.33)

Substituting the series expression for y(x) carries (10.33) into

∞

∑
n=0

yn(x) = arctanx−L−1
x

(
∞

∑
n=0

yn(x)

)
. (10.34)

This suggests the recursive relation

y0(x) = arctanx,
yk+1(x) = −L−1

x yk(x), k � 0.
(10.35)

This gives the first three components by

y0(x) = arctanx,

y1(x) = −L−1
x (y0(x)) =−xarctanx +

1
2

ln(1 + x2),

y2(x) = −L−1
x (y1(x)) =

1
2

(
(x2−1)arctanx + x− x ln(1 + x2)

)
,

(10.36)

where tables of integrals in Appendix A are used. This gives the φ3 approximant by

φ3 =
2

∑
n=0

yn(x),

= arctanx− xarctanx +
1
2

ln(1 + x2)

+
1
2

[
(x2−1)arctanx + x− x ln(1 + x2)

]
.

(10.37)

The Taylor Series Method

This equation can be handled by using the integrating factor μ given by

μ = ex. (10.38)

The solution of Eq. (10.31) is therefore given by the expression
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y(x) = e−x
∫ x

0

et

1 + t2 dt. (10.39)

It is clear that a closed form solution is not obtainable in this problem. Accordingly,
we use the Taylor series method where we introduce the solution in the form of an
infinite series

y(x) =
∞

∑
n=0

anxn. (10.40)

Our goal is now to determine the coefficients an,n � 0. Substituting (10.40) into
(10.31) gives (

∞

∑
n=0

anxn

)
x

+
∞

∑
n=0

anxn =
∞

∑
n=0

(−1)nx2n. (10.41)

Note that the given condition y(0) = 0 gives a0 = 0. The other coefficients an, n � 1
can be determined by equating the coefficients of like powers of x where we find

a1 = 1, a2 =− 1
2!

, a3 =− 1
3!

a4 =
1
4!

, a5 =
23
5!

, a6 =−23
6!

.

(10.42)

In view of (10.42), the solution in a series form is given by

y(x) = x− 1
2!

x2− 1
3!

x3 +
1
4!

x4 +
23
5!

x5− 23
6!

x6 + · · · . (10.43)

Example 4. Solve the second order linear equation

y′′+ 2xy′ = 0, y(0) = 0, y′(0) =
2√
π

. (10.44)

Solution.

It is to be noted that the exact solution of this equation is given by

y(x) = erf(x), (10.45)

where the error function erf (x) is defined by

erf(x) =
2√
π

∫ x

0
e−u2

du, (10.46)

and its complementary function erfc (x) is defined by

erfc(x) =
2√
π

∫ ∞

x
e−u2

du, (10.47)

such that
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erf(x)+ erfc(x) = 1. (10.48)

The Decomposition Method

Applying the two-fold integral operator L−1
x on (10.44) gives

y(x) =
2√
π

x−2L−1
x (xy′(x)). (10.49)

Proceeding as in the previous examples, the first four components of the solution
y(x) can be determined as follows:

y0(x) =
2√
π

x,

y1(x) = −2L−1
x (xy′0(x)) =− 2

3
√

π
x3,

y2(x) = −2L−1
x (xy′1(x)) =

1
5
√

π
x5,

y3(x) = −2L−1
x (xy′2(x)) =− 1

21
√

π
x7,

y4(x) = −2L−1
x (xy′3(x)) =

1

108
√

π
x9,

y5(x) = −2L−1
x (xy′4(x)) =− 1

660
√

π
x11.

Combining the obtained components gives the φ6 approximant

φ6 = y0 + y1 + y2 + y3 + y4 + y5,

=
2√
π

[
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!
+

x9

9 ·4!
− x11

11 ·5!

]
.

(10.50)

The Variational Iteration Method

Proceeding as in Example 1 we find the iteration formula

yn+1(x) = yn(x)+
∫ x

0
(ξ − x)

(
∂ 2yn(ξ )

∂ξ 2 + 2ξ
∂yn(ξ )

∂ξ

)
dξ . (10.51)

Selecting y0(x) =
2√
π

x gives the following successive approximations

y0(x) =
2√
π

x,

y1(x) =
2√
π

x− 2
3
√

π
x3,
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y2(x) =
2√
π

x− 2
3
√

π
x3 +

1
5
√

π
x5,

y3(x) =
2√
π

x− 2

3
√

π
x3 +

1

5
√

π
x5− 1

21
√

π
x7,

...

(10.52)

This gives the φ4 approximant

φ4 = y0 + y1 + y2 + y3,

=
2√
π

[
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!

]
.

(10.53)

The Taylor Series Method

To determine the series solution, several derivatives of y(x) will be evaluated in
this problem. To achieve this goal, we simply differentiate Eq. (10.44) successively
to obtain

y′′(x) = −2xy′(x),
y′′′(x) = −2xy′′(x)−2y′(x),

y(4)(x) = −2xy′′′(x)−4y′′(x),
y(5)(x) = −2xy(4)(x)−6y′′′(x),
y(6)(x) = −2xy(5)(x)−8y(4)(x),
y(7)(x) = −2xy(6)(x)−10y(5)(x).

(10.54)

Substituting the initial conditions

y(0) = 0,

y′(0) =
2√
π

,
(10.55)

into (10.54) gives

y′′(0) = 0, y′′′(0) =− 4√
π

, y(4)(0) = 0

y(5)(0) =
24√

π
, y(6)(0) = 0, y(7)(0) =−240√

π
.

(10.56)

Recall that the Taylor expansion of y(x) is given by

y(x) =
∞

∑
n=0

1
n!

y(n)(0)xn. (10.57)

Combining (10.56) and (10.57) gives the truncated Taylor series solution

y(x) =
2√
π

[
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!
+

x9

9 ·4!

]
. (10.58)
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It is clear that all three methods provided the same approximant. However, the
Taylor method required more work compared to the other methods.

Table 10.2 below shows that by adding more terms in the decomposition series,
we can easily enhance the accuracy level.

Table 10.2

x erf(x) φ3 φ4 φ5

0.2 0.222 70 0.222 70 0.222 70 0.222 70

0.4 0.428 39 0.428 44 0.428 30 0.428 39

0.6 0.603 86 0.604 56 0.603 80 0.603 86

0.8 0.742 10 0.747 10 0.741 47 0.742 25

1.0 0.842 70 0.865 09 0.838 22 0.844 10

Exercises 10.2

In Exercises 1–5, use Adomian decomposition method to find the perturbative ap-
proximation for each equation.

1. Find the φ3 approximant for the equation:

y′′ = (εx−1)y, y(0) = 1,y′(0) = 0

2. Find the φ3 approximant for the equation:

y′ = (εx + 1)y, y(0) = 1

3. Find the φ4 approximant for the linear damping oscillator equation:

u′′+ 2εu′+ u = 0, u(0) = 1, u′(0) = 0

4. Find the φ4 approximant for the Van der Pol equation:

u′′+ ε(u2−1)u′+ u = 0, u(0) = 1, u′(0) = 0

5. Find the φ3 approximant for the nonlinear equation:

y′ = y2 cos(εx), y(0) = 1

In Exercises 6 –10, use Adomian decomposition method to find the φ4 approximant
for each equation:

6. y′′+ 2xy′ = 0, y(0) = 0, y′(0) = 1

7. y′′+ 2xy′ = 0, y(0) = 0, y′(0) =
4√
π

8. y′′ −2xy′ = 0, y(0) = 0, y′(0) = 1

9. y′′ = 12x2− y2, y(0) = 0, y′(0) = 0

10. y′′ = 2 + y′+ y2, y(0) = 0, y′(0) = 0
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10.3 Partial Differential Equations

In this section, the decomposition method will be applied to partial differential equa-
tions to study the numerical approximations of the solutions. The basic outlines of
the method are well known from previous chapters.

Example 1. Find the φ5 approximation of the solution of the heat equation

ut = uxx, 0 < x < π, t > 0,
u(0,t) = 0, u(π ,t) = 0,

u(x,0) = sinx.
(10.59)

Solution.

Recall that the heat equation (10.59) has been solved in Chapter 3 by using the
decomposition and the separation of variables methods where we can easily show
that the exact solution is given by

u(x,t) = e−t sinx. (10.60)

To determine the φ5 approximation, we apply the inverse operator L−1
t to both sides

of (10.59) to obtain
u(x,t) = sinx + L−1

t (uxx). (10.61)

Substituting u(x,t) = ∑∞
n=0 un(x,t) and using the resulting recursive relation, we can

determine the first five components recurrently by

u0(x,t) = sinx, u1(x,t) =−t sinx, u2(x,t) =
1
2!

t2 sinx,

u3(x,t) = − 1
3!

t3 sinx, u4(x,t) =
1
4!

t4 sinx.
(10.62)

Consequently, the φ5 approximation is given by

φ5 = sinx

(
1− t +

1
2!

t2− 1
3!

t3 +
1
4!

t4
)

. (10.63)

Table 10.3 below shows the error that results from using the approximation
(10.63) for t = 0.5 and for appropriate values of x, where error =|exact value−φ5|.
Table 10.3

x exact value φ5 error

0.5 0.290 786 0.290 901 1.15E−4

1.0 0.510 378 0.510 580 2.02E−4

1.5 0.605 011 0.605 251 2.4E−4

2.0 0.551 517 0.551 735 2.18E−4

2.5 0.362 992 0.363 135 1.43E−4

3.0 0.085 594 0.085 628 3.44E−5
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The table clearly shows that errors can be significantly decreased by evaluating
additional components.

Example 2. Find the φ5 approximation of the solution of the wave equation

utt = uxx, 0 < x < π, t > 0,
u(0,t) = 0, u(π ,t) = π ,
u(x,0) = x, ut(x,0) = sinx.

(10.64)

Solution.

The wave equation (10.64) has been investigated in Chapter 5 by using the de-
composition and the separation of variables methods where we can easily show that
the exact solution is given by

u(x,t) = x + sinxsin t. (10.65)

To determine the φ5 approximation, we apply the two-fold inverse operator L−1
t to

both sides of (10.64) to obtain

u(x,t) = x + t sinx + L−1
t (uxx). (10.66)

Substituting u(x,t) = ∑∞
n=0 un(x,t) and proceeding as before, we can determine the

first five components recurrently by

u0(x,t) = x + t sinx, u1(x,t) =− 1
3!

t3 sinx, u2(x,t) =
1
5!

t5 sinx,

u3(x,t) = − 1
7!

t7 sinx, u4(x,t) =
1
9!

t9 sinx.
(10.67)

Consequently, the φ5 approximation is given by

φ5 = x + sinx

(
1− t +

1
2!

t2− 1
3!

t3 +
1
4!

t4
)

. (10.68)

Example 3. Find the φ5 approximation of the solution of the nonlinear partial dif-
ferential equation

ut + u2ux = 0, u(x,0) = x, t > 0. (10.69)

Solution.

Operating with L−1
t on (10.69) gives

u(x,t) = x−L−1
t (u2ux). (10.70)

Substituting u(x,t) = ∑∞
n=0 un(x,t), representing the nonlinear term u2ux by a series

of Adomian polynomials, and proceeding as before, we find
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u0(x,t) = x,
u1(x,t) = −L−1

t (A0) =−x2t,
u2(x,t) = −L−1

t (A1) = 2x3t2,

u3(x,t) = −L−1
t (A2) =−5x4t3,

u4(x,t) = −L−1
t (A3) = 14x5t4.

(10.71)

Consequently, the φ5 approximation is given by

φ5 = x(1− xt + 2x2t2−5x3t3 + 14x4t4). (10.72)

Table 10.4 below shows the errors obtained if the approximation (10.72) is used.

Table 10.4

t \ x 0.1 0.2 0.3 0.4 0.5

0.1 1.01E−9 2.30E−8 2.82E−7 1.53E−6 5.67E−6

0.2 1.1E−8 7.65E−7 8.25E−6 4.40E−5 1.60E−4

0.3 9.4E−8 5.50E−6 5.81E−5 3.04E−4 1.09E−3

0.4 3.83E−7 2.20E−5 2.28E−4 1.17E−3 4.15E−3

0.5 1.14E−6 6.40E−5 6.53E−4 3.32E−3 1.16E−2

It is to be noted that the exact solution is given by

u(x,t) =

⎧⎪⎨
⎪⎩

x, t = 0,

1
2t

(
√

1 + 4xt−1), t > 0,1 + 4xt > 0.
(10.73)

Exercises 10.3

In Exercises 1–5, use Adomian decomposition method to find the φ4 approximation
for each equation.

1. ut = uxx, u(x,0) = cosx, u(0,t) = e−t

2. utt = uxx, u(x,0) = cosx, u(0,t) = cost

3. ut +
1

36
xu2

xx = x3, u(x,0) = 0

4. ut + u2ux = 0, u(x,0) = 4x

5. ut + uux = x, u(x,0) = 2

In Exercises 6–10, use Adomian decomposition method to find the φ3 approximation
for each equation.
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6. ut + uu2
x = 0, u(x,0) = x

7. ut + uux = x2, u(x,0) = 0

8. ut + ux + u2 = 0, u(x,0) = x

9. ut = iuxx, u(x,0) = coshx

10. ut + uxx = t sinhx, u(x,0) = 1

10.4 The Padé Approximants

In this section, the powerful Padé approximants [3,4] will be investigated. Our main
concern will be directed in two ways. First, we will discuss the construction of
Padé approximants for functions and polynomials. Next, we will explore the imple-
mentation of Padé approximants in boundary value problems where the domain is
unbounded.

Polynomials are frequently used to approximate power series. However, polyno-
mials tend to exhibit oscillations that may produce an approximation error bounds.
In addition, polynomials can never blow up in a finite plane; and this makes the
singularities not apparent. To overcome these difficulties, the Taylor series is best
manipulated by Padé approximants for numerical approximations.

Padé approximant represents a function by the ratio of two polynomials [3,4,5].
The coefficients of the polynomials in the numerator and in the denominator are
determined by using the coefficients in the Taylor expansion of the function. Padé
rational approximations are widely used in numerical analysis and fluid mechanics,
because they are more efficient than polynomials.

To explore the need of Padé approximants, we consider the function

f (x) =

√
1 + 3x
1 + x

. (10.74)

The Taylor series of f (x) in (10.74) is given by

f (x) = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4 +
75
8

x5− 327
16

x6 +
753
16

x7 + O(x8). (10.75)

The Taylor series (10.75) is often used to approximate f (x) for values of x within
the radius of convergence. However, if the polynomial obtained from using a finite
number of the Taylor series (10.75) is to be evaluated for large positive values of x,
such as x = ∞, the series or any truncated number of terms of (10.75) will definitely
fail to provide a converging expression. Padé introduced a powerful tool that should
be combined with power series for calculations work. This is highly needed espe-
cially for boundary value problems where, for specific cases, the domain of validity
is unbounded. Using power series, isolated from other concepts, is not always useful
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because the radius of convergence of the series may not contain the two boundaries
[5].

Padé approximant, symbolized by [m/n], is a rational function defined by

[m/n] =
a0 + a1x + a2x2 + · · ·+ amxm

1 + b1x + b2x2 + · · ·+ bnxn , (10.76)

where we considered b0 = 1, and numerator and denominator have no common
factors. If we selected m = n, then the approximants [n/n] are called diagonal ap-
proximants.

Notice that in (10.76) there are m + 1 independent numerator coefficients and n
independent denominator coefficients, making altogether m + n + 1 unknowns [5].
This suggests that [m/n] Padé approximant fits the power series [5] of f (x) through
the orders 1,x,x2, · · · ,xm+n.

In addition, the Padé approximant will converge on the entire real axis if the
function f (x) has no singularities. It was discussed by many that the diagonal Padé
approximants, where m = n, are more accurate and efficient. Based on this, our study
will be focused only on diagonal approximants.

In the following we will introduce the simple and the straightforward method to
construct Padé approximants. Suppose that f (x) has a Taylor series given by

f (x) =
∞

∑
k=0

ckxk. (10.77)

Assuming that f (x) can be manipulated by the diagonal Padé approximant defined
in (10.76), where m = n. This admits the use of

a0 + a1x + a2x2 + · · ·+ anxn

1 + b1x + b2x2 + · · ·+ bnxn = c0 + c1x + c2x2 + · · ·+ c2nx2n. (10.78)

By using cross multiplication in (10.78) we find

a0 + a1x + a2x2 + · · ·+ anxn = c0 +(c1 + b1c0)x +(c2 + b1c1 + b2c0)x2

+(c3 + b1c2 + b2c1 + b3c0)x3 + · · · . (10.79)

Equating powers of x leads to
coefficient of x0: a0 = c0,
coefficient of x1: a1 = c1 + b1c0,
coefficient of x2: a2 = c2 + b1c1 + b2c0,
coefficient of x3: a3 = c3 + b1c2 + b2c1 + b3c0,

...
coefficient of xn: an = cn + ∑n

k=1 bkcn−k.

Notice that coefficients of xn+1,xn+2, · · · ,x2n should be equated to zero. This
completes the determination of the constants of the polynomials in the numerator
and in the denominator. The simple procedure outlined above will be illustrated by
discussing the following examples.



432 10 Numerical Applications and Padé Approximants

Example 1. Find the Padé approximants [2/2] and [3/3] for the function

f (x) =

√
1 + 3x
1 + x

. (10.80)

Solution.

The Taylor series for f (x) of (10.80) is given by

f (x) = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4 +
75
8

x5− 327
16

x6 +
753
16

x7 + O(x8). (10.81)

The [2/2] approximant is defined by

[2/2] =
a0 + a1x + a2x2

1 + b1x + b2x2 . (10.82)

To determine the five coefficients of the two polynomials, the [2/2] approximant
must fit the Taylor series of f (x) in (10.81) through the orders of 1,x, · · · ,x4, hence
we set

a0 + a1x + a2x2

1 + b1x + b2x2 = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4 + · · · . (10.83)

Cross multiplying yields

1 +(b1 + 1)x +

(
b1 + b2− 3

2

)
x2 +

(
−3

2
b1 + b2 +

5
2

)
x3

+

(
5
2

b1− 3
2

b2− 37
8

)
x4 = a0 + a1x + a2x2. (10.84)

Equating powers of x leads to

coefficient of x4:
5
2

b1− 3
2

b2− 37
8

= 0,

coefficient of x3: −3
2

b1 + b2 +
5
2

= 0,

coefficient of x2: b1 + b2− 3
2

= a2,

coefficient of x1: b1 + 1 = a1,

coefficient of x0: 1 = a0.
The solution of this system of equations is

a0 = 1, a1 =
9
2
, a2 =

19
4

,

b1 =
7
2
, b2 =

11
4

.

(10.85)

Consequently, the [2/2] Padé approximant is
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[2/2] =
1 +

9
2

x +
19
4

x2

1 +
7
2

x +
11
4

x2
. (10.86)

Two conclusions can be made here. First, we note that the Taylor series for the [2/2]
approximant is given by

[2/2]Taylor = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4 +
149
16

x5− 159
8

x6 + O(x7). (10.87)

A close examination of the Taylor series of the approximant [2/2] given by (10.87)
and the Taylor series of f (x) given by (10.81), one can easily conclude that the two
series are consistent up to x4 of each. This is normal because in order to determine
the five coefficients a0,a1,a2,b1,b2, it was necessary to use the terms of orders
1,x, · · · ,x4 in Taylor series (10.81) of f (x). Second, it was difficult to use Taylor
series (10.81) when x is large, say x = ∞. However, the limit of Padé approximant

(10.86) as x→ ∞ is
a2

b2
. In other words, as x→ ∞ we obtain

lim
x→∞

f (x) =
√

3 ≈ 1.732 05 (10.88)

and

lim
x→∞

[2/2] =
19
11

≈ 1.727 27. (10.89)

To determine the Padé approximant [3/3], we first set

[3/3] =
a0 + a1x + a2x2 + a3x3

1 + b1x + b2x2 + b3x3 = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4. (10.90)

To determine the seven coefficients of the two polynomials, we use the terms
through orders 1,x, · · · ,x6 in Taylor series of f (x) in (10.81), hence we set

a0 + a1x + a2x2 + a3x3

1 + b1x + b2x2 + b3x3 = 1 + x− 3
2

x2 +
5
2

x3− 37
8

x4

+
75
8

x5− 327
16

x6 + · · · .
(10.91)

Cross multiplying, equating coefficients of like powers of x and solving the resulting
system of equations lead to

a0 = 1, a1 =
13
2

, a2 =
27
2

, a3 =
71
8

b1 =
11
2

, b2 =
19
2

, b3 =
41
8

.
(10.92)

This gives
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[3/3] =
1 +

13
2

x +
27
2

x2 +
71
8

x3

1 +
11
2

x +
19
2

x2 +
41
8

x3
. (10.93)

It is to be noted that the Taylor series of (10.93) and the Taylor series (10.81) are
consistent up to term of order x6. In addition, the limit of Padé approximant [3/3] as

x→ ∞ is
a3

b3
. In other words, as x→ ∞ we find

lim
x→∞

f (x) =
√

3 ≈ 1.732 05 (10.94)

and

lim
x→∞

[3/3] =
71
41

≈ 1.731 707. (10.95)

a better approximation to
√

3 compared to that obtained from [2/2].

Example 2. Establish the Padé approximants [2/2] and [3/3] for

f (x) = e−x. (10.96)

Solution.

The Taylor expansion for the exponential function is

e−x = 1− x +
x2

2!
− x3

3!
+

x4

4!
− x5

5!
+

x6

6!
+ O(x7). (10.97)

The [2/2] approximant is defined by

[2/2] =
a0 + a1x + a2x2

1 + b1x + b2x2 . (10.98)

To determine the five coefficients of the two polynomials in the numerator and the
denominator, we use the Taylor series of f (x) in (10.97) as discussed before, hence
we set

a0 + a1x + a2x2

1 + b1x + b2x2 = 1− x +
x2

2!
− x3

3!
+

x4

4!
+ · · · . (10.99)

Cross multiplying yields

1 +(b1−1)x +

(
−b1 + b2 +

1
2

)
x2 +

(
1
2

b1−b2− 1
6

)
x3

+

(
−1

6
b1 +

1
2

b2 +
1

24

)
x4 = a0 + a1x + a2x2.

(10.100)

Equating powers of x leads to
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coefficient of x4: −1
6

b1 +
1
2

b2 +
1

24
= 0,

coefficient of x3:
1
2

b1−b2− 1
6

= 0,

coefficient of x2: −b1 + b2 +
1
2

= a2,

coefficient of x1: b1−1 = a1,

coefficient of x0: 1 = a0.

This system of equations gives

a0 = 1, a1 =−1
2
, a2 =

1
12

,

b1 =
1
2
, b2 =

1
12

,

(10.101)

so that the Padé approximant is

[2/2] =
1− 1

2
x +

1
12

x2

1 +
1
2

x +
1

12
x2

. (10.102)

In a similar way, we can derive the Padé approximant [3/3] by

[3/3] =
1− 1

2
x +

1
10

x2− 1
120

x3

1 +
1
2

x +
1

10
x2 +

1
120

x3
. (10.103)

Note that as x→∞, Padé approximants fluctuate between−1 and 1 as can be easily
seen from (10.102) and (10.103). In fact, e−x → 0 as x→ ∞.

Table 10.5 below shows the numerical approximations for e−x for several values
of x. We can easily observe that the Padé approximant [3/3] provides better approx-
imation than the Taylor expansion. In general, the Padé approximants give small
error near x = 0, but the error increases as |x| increases.

Table 10.5
x e−x [3/3] Taylor

0.0 1 1 1
0.2 0.818 731 0.818 731 0.818 731
0.4 0.670 320 0.670 320 0.670 320
0.6 0.548 812 0.548 811 0.548 817
0.8 0.449 329 0.449 328 0.449 367
1.0 0.367 879 0.367 876 0.368 056
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Example 3. Establish the Padé approximants [2/2] and [4/4] for

f (x) = cosx. (10.104)

Solution.

The Taylor expansion for the exponential function is

cosx = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ O(x10). (10.105)

It is useful to note that cosx and its Padé approximants are even functions. To mini-
mize the size of calculations, we substitute

z = x2, (10.106)

into (10.105) to obtain

cosz
1
2 = 1− z

2!
+

z2

4!
− z3

6!
+

z4

8!
+ O(z5). (10.107)

The [2/2] approximant in this case is defined by

[2/2] =
a0 + a1z
1 + b1z

. (10.108)

To determine the three coefficients of the two polynomials, we proceed as before to
find

a0 = 1, a1 =− 5
12

,

b1 =
1
12

,
(10.109)

so that the Padé approximant is

[2/2] =
1− 5

12
z

1 +
1

12
z
, (10.110)

or equivalently

[2/2] =
1− 5

12
x2

1 +
1

12
x2

, (10.111)

To determine the Padé approximant [4/4], we set

[4/4] =
a0 + a1z+ a2z2

1 + b1z+ b2z2 . (10.112)
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Proceeding as before gives

[4/4] =
1− 115

252
z+

313
15 120

z2

1 +
11

252
z+

13
15 120

z2
, (10.113)

or by

[4/4] =
1− 115

252
x2 +

313
15 120

x4

1 +
11

252
x2 +

13
15 120

x4
. (10.114)

Example 4. Establish the Padé approximants [3/3] and [4/4] for

f (x) =
ln(1 + x)

x
. (10.115)

Solution.

The Taylor expansion for function in (10.115) is

ln(1 + x)
x

= 1− x
2

+
x2

3
− x3

4
+

x4

5
− x5

6
+

x6

7
− x7

8
+

x8

9
+ O(x9). (10.116)

To establish [3/3] approximant, we set

[3/3] =
a0 + a1x + a2x2 + a3x3

1 + b1x + b2x2 + b3x3 . (10.117)

To determine the unknowns, we proceed as before and therefore we set

a0 + a1x + a2x2 + a3x3

1 + b1x + b2x2 + b3x3 = 1− x
2

+
x2

3
− x3

4
+

x4

5
− x5

6
+

x6

7
. (10.118)

Cross multiplying and proceeding as before we find

a0 = 1, a1 =
17
14

, a2 =
1
3
, a3 =

1
140

,

b1 =
12
7

, b2 =
6
7
, b3 =

4
35

,

(10.119)

so that the Padé approximant is

[3/3] =
420 + 510x + 140x2+ 3x3

420 + 720x + 360x2+ 48x3 . (10.120)

To determine the Padé approximant [4/4], we set
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[4/4] =
a0 + a1x + a2x2 + a3x3 + a4x4

1 + b1x + b2x2 + b3x3 + b4x4 . (10.121)

Proceeding as before we obtain

[4/4] =
3 780 + 6 510x+ 3 360x2 + 505x3 + 6x4

3 780 + 8 400x + 6 300x2 + 1 800x3 + 150x4 . (10.122)

We close this section by pointing out that many symbolic computer languages, such
as Maple and Mathematica have a built-in function that finds Padé approximants
when a Taylor series is used. In Appendix D, we list Padé tables for several well-
known functions.

Exercises 10.4

1. (a) Establish the Padé approximants [2/2] and [3/3] for

f (x) =

√
1 + 5x
1 + x

(b) Use the result in part (a) to approximate
√

5

2. (a) Establish the Padé approximants [2/2] and [3/3] for

f (x) =

√
1 + 13x

1 + x

(b) Use the result in part (a) to approximate
√

13

3. (a) Establish the Padé approximants [2/2] and [3/3] for

f (x) = sinx

(b) Use the result in part (a) to approximate sin1

4. Establish the Padé approximants [2/2] and [3/3] for

f (x) = ex

5. Establish the Padé approximants [2/2] and [3/3] for

f (x) =
ln(1− x)

x

6. Establish the Padé approximants [2/2] and [3/3] for
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f (x) =
tanx

x

7. Establish the Padé approximants [3/3] and [4/4] for

f (x) = tanh−1x

8. Establish the Padé approximants [3/3] and [4/4] for

f (x) = sinhx

9. Establish the Padé approximants [3/3] and [4/4] for

f (x) =
1

1 + x

10. Establish the Padé approximants [3/3] and [4/4] for

f (x) =
arctanx

x

11. Establish the Padé approximants [3/3] and [4/4] for

f (x) = esinx

12. Establish the Padé approximants [3/3] and [4/4] for

f (x) = etanx

10.5 Padé Approximants and Boundary Value Problems

In the previous section we have discussed the Padé approximants which have
the advantage of manipulating the polynomial approximation into a rational func-
tions of polynomials. By this manipulation we gain more information about the
mathematical behavior of the solution. In addition, we have studied that power se-
ries are not useful for large values of x, say x = ∞. Boyd [5] and others have for-
mally shown that power series in isolation are not useful to handle boundary value
problems. This can be attributed to the possibility that the radius of convergence
may not be sufficiently large to contain the boundaries of the domain. Based on this,
it is essential to combine the series solution, obtained by the decomposition method
or any series solution method, with the Padé approximants to provide an effective
tool to handle boundary value problems on an infinite or semi-infinite domains. Re-
call that the Padé approximants can be easily evaluated by using built-in function in
manipulation languages such as Maple or Mathematica.
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In this section, the boundary value problems on an infinite or semi-infinite inter-
vals will be investigated. Our approach stems mainly from the combination of the
decomposition method and the diagonal approximants. The decomposition method
is well addressed in the text and can be assumed known.

In what follows, we outline the basic steps to be followed for handling the
boundary value problems on an unbounded domain of validity. In the first step,
we use the decomposition method or the modified decomposition method to derive
a series solution. In the second step, we form the diagonal Padé approximants [n/n],
because it is the most accurate and efficient approximation. Recall that

[n/n] =
a0 + a1x + a2x2 + · · ·+ anxn

1 + b1x + b2x2 + · · ·+ bnxn . (10.123)

In the last step, the most effective use of the diagonal approximant is that it can be
used to evaluate the limit as x→ ∞. In this case

lim
x→∞

[n/n] =
an

bn
. (10.124)

However, if the boundary condition at x = ∞ is given by

y(∞) = 0, (10.125)

it follows immediately that
an = 0. (10.126)

Notice here that an is an expression that contains values from the prescribed
boundary conditions. Consequently, equation (10.126) can be solved to find the un-
known parameters of the given boundary condition.

It is interesting to note that solving the resulting polynomial (10.126) frequently
leads to a set of roots. It is normal to discard complex roots and other roots that
do not satisfy physical properties [5]. To better approximate the root α in (10.126),
several Padé approximants should be established where the obtained roots converge
to the accurate approximation of α .

To give a clear overview of the steps introduced above, three physical and popula-
tion growth models, described by ordinary differential equations, will be discussed.

Model I: The Blasius equation.

We first consider the Blasius equation [10]

y′′′+
1
2

yy′′ = 0, (10.127)

subject to the conditions

y(0) = 0, y′(0) = 1, y′′(0) = α, α > 0, (10.128)

where α can be determined by using
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lim
x→−∞

y′ = 0. (10.129)

The Decomposition Method

Following Adomian’s method we find

y(x) = x +
1
2

αx2− 1
48

αx4− 1
240

α2x5 +
1

960
αx6

+
11

20 160
α2x7 +

(
11

161 280
α3− 1

21 504
α
)

x8

− 43
967 680

α2x9 +

(
− 5

387 072
α3 +

1
552 960

α
)

x10

+

(
− 5

4 257 792
α4 +

587
212 889 600

α2
)

x11 + O(x12).

(10.130)

To determine the constant α , we should use the condition

y′(x) = 0, x→−∞. (10.131)

It is clear that this condition cannot be applied directly to the series of y′(x), where

y′(x) = 1 + αx− 1
12

αx3− 1
48

α2x4 +
1

160
αx5 +

11
2 880

α2x6

+

(
11

20 160
α3− 1

2 688
α
)

x7− 43
107 520

α2x8

+

(
− 25

193 536
α3 +

1
55 296

α
)

x9

+

(
− 5

387 072
α4 +

587
19 353 600

α2
)

x10 + O(x11).

(10.132)

As stated above, the constant α can be evaluated by establishing the Padé appro-
ximants to y′(x) in (10.132). Using computer tools, we list the first two diagonal
approximants by

[2/2] =
12 + 9αx +(1−3α2)x2

12−3αx + x2 , (10.133)

and

[3/3] =

(300α2−40)+ (300α3−70α)x−3x2 +

(
45
4

α3−3α
)

x3

(300α2−40)−30αx +(−3 +30α2)x2 +

(
25
4

α3− 10
3

α
)

x3

, (10.134)

where the approximants [4/4] and [5/5] are computed but not listed. The condi-
tion (10.131) means that we should set the coefficient of x of highest power in the
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numerator polynomial to 0. In view of this, we obtain the following equations:

−3α2 + 1 = 0,
45α3−12α = 0,

135
112

α6− 189
64

α4 +
51
28

α2− 169
560

= 0,

−12 555
56

α9 +
308 295

224
α7− 226 701

112
α5 +

300 603
448

α3− 113 681
1 680

α = 0,

(10.135)

obtained from [2/2], [3/3], [4/4], and [5/5] respectively. Solving these equations
independently, we list the results of the roots of α in Table 10.6. As stated before,
complex and negative roots may be obtained for α, where α > 0.

Table 10.6

Padé approximants roots

[2/2] 0.577 350, −0.577 350

[3/3] 0, 0.516 398,−0.516 398

[4/4] 0.522 703, −0.522 703

[5/5] complex roots

Discarding the complex roots, and noting that α > 0, indicates that the approxima-
tions of the roots of α converge to

α = 0.522 703. (10.136)

The Variational Iteration Method

The correction functional for this equation reads

yn+1(x) = yn(x)+

∫ x

0
λ (ξ )

(
∂ 3yn(ξ )

∂ξ 3 +
1
2

ỹn(ξ )
∂ 2ỹn(ξ )

∂ξ 2

)
dξ . (10.137)

The stationary conditions are given by

λ ′′′(ξ ) = 0,
1 + λ ′′|ξ=x = 0,

λ ′|ξ=x = 0,
λξ=x = 0.

(10.138)

This in turn gives

λ =−1
2
(ξ − x)2. (10.139)
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Substituting this value of the Lagrange multiplier into the functional gives the itera-
tion formula

yn+1(x) = yn(x)− 1
2

∫ x

0
(ξ − x)2

(
∂ 3yn(ξ )

∂ξ 3 +
1
2

yn(ξ )
∂ 2yn(ξ )

∂ξ 2

)
dξ , n � 0.

(10.140)

We select the initial value y0 = x +
1
2

αx2 for y0 by using the boundary conditions,

where α = y′′(0). Using this into the iteration formula gives the following successive
approximations

y0(x) = x +
1
2

αx2,

y1(x) = x +
1
2

αx2− 1
48

α x4− 1
240

α2 x5,

y2(x) = x +
1
2

αx2− 1
48

αx4− 1
240

α2x5 +
1

960
αx6

+
11

20 160
α2x7 +

(
11

161 280
α3− 1

21 504
α
)

x8− 43
967 680

α2x9

+

(
− 5

387 072
α3 +

1
552 960

α
)

x10

+

(
− 5

4 257 792
α4 +

587
212 889 600

α2
)

x11

+O(x12).
...

(10.141)
The constant α can then be determined by using Padé approximants as presented
before.

Model II: Volterra’s Population Model.

Volterra introduced a model for population growth of a species in a closed system.
The model is characterized by the nonlinear integro-differential equation [8]

κ
du
dx

= u−u2−u
∫ t

0
u(x)dx, u(0) = 0.15, (10.142)

where κ is a prescribed parameter. To study the mathematical behavior of the scaled
population of identical individuals u(t), we first set

y(t) =

∫ t

0
u(x)dx, (10.143)

so that
y′(t) = u(t), y′′(t) = u′(t). (10.144)
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Substituting (10.143) and (10.144) into (10.142), and using κ = 0.25 for numerical
purposes we find

y′′ = 4y′ −4(y′)2−4yy′, y(0) = 0, y′(0) = 0.15. (10.145)

It is interesting to point out that the population growth model (10.142) and the re-
lated nonlinear differential equation (10.145) have been investigated by using many
analytic and numerical techniques such as phase-plane and Runge-Kutta methods.

However, the decomposition method will be implemented here. Applying the
inverse operator L−1

t to both sides of (10.145) and using the initial conditions we
obtain

y(t) = 0.15t + L−1
t (4y′ −4(y′)2−4yy′). (10.146)

Following Adomian decomposition method and proceeding as before, the series
solution

u(t) = 0.15 + 0.51t + 0.669t2 + 0.1 246t3−0.85 901t4−1.186 918t5

+0.109 061t6 + 1.562 226t7 + 1.865 912t8

−0.162 759t9−2.791 820t10 + O(t11),

(10.147)

is readily obtained upon using u(t) = y′(t).
It is interesting to point out here that the focus of studies performed on this

population model was on the phenomenon of the rapid growth of u(t) to a certain
peak along the logistic curve followed by the exponential decay as t → ∞. As indi-
cated before, the series solution (10.147) is not useful in isolation of other concepts.
We cannot conduct the analysis to study the behavior of the solution u(t) at t = ∞ by
using the series (10.147). Consequently, the series (10.147) should be manipulated
to construct several Padé approximants where the performance of the approximants
show superiority over series solutions. Using computer tools we obtain the follow-
ing approximants

[4/4] =
0.15 + 0.253 224t + 0.169 713t2 + 0.051 551t3 + 0.005 221t4

1−1.711 841t + 2.491 682t2−1.323 902t3 + 0.571 875t4 , (10.148)

and

[5/5] =

0.15−0.126 408t−0.468 575t2−0.371 927t3−0.119 542t4−0.010 943t5

1−4.242 723t + 6.841 424t2−7.648 48t3 + 3.946 155t4−1.444 76t5 ,

(10.149)
Fig. 10.1 above shows the behavior of u(t) and explore the rapid growth that

will reach a peak followed by a slow exponential decay. This behavior cannot be
obtained if we graph the converted polynomial of the series solution (10.147).



10.5 Padé Approximants and Boundary Value Problems 445

Fig. 10.1 The Padé approximant [4/4] shows the rapid growth followed by a slow exponential
decay.

Model III: Thomas-Fermi Model.

The Thomas-Fermi model plays a major role in mathematical physics. The model
was introduced to investigate the potentials [2,9] and charge densities of atoms
having numerous electrons. The Thomas-Fermi model is characterized by the non-
linear equation

y′′ =
y

3
2

x
1
2

, (10.150)

subject to the boundary conditions

y(0) = 1, lim
x→∞

y(x) = 0. (10.151)

A considerable amount of research work has been invested in this important model.
The focus of study was on obtaining an approximate solution to (10.150) and to
determine a highly accurate value for the initial slope of the potential y′(0).

To avoid the cumbersome work that will arise from the radical power in y
3
2 , the

modified decomposition method will be implemented. The method will facilitate
our approach and will reduce the size of calculations.

The Decomposition Method

Applying L−1
x to both sides of (10.150) gives

y(x) = 1 + Bx + L−1
x

(
x−

1
2 y

3
2

)
, (10.152)

where B = y′(0). Using the decomposition assumption for y(x) and y
3
2 yields
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∞

∑
n=0

yn = 1 + Bx + L−1
x

(
x−

1
2

∞

∑
n=0

An

)
. (10.153)

The modified decomposition method introduces the use of the recursive relation of
the form

y0(x) = 1,

y1(x) = Bx + L−1
x

(
x−

1
2 A0

)
,

yk+1(x) = L−1
x

(
x−

1
2 Ak

)
, k � 1.

(10.154)

This gives the first few components

y0(x) = 1,

y1(x) = Bx + L−1
x

(
x−

1
2 A0

)
= Bx +

4
3

x
3
2 ,

y2(x) = L−1
x

(
x−

1
2 A1

)
=

2
5

Bx
5
2 +

1
3

x3,

y3(x) = L−1
x

(
x−

1
2 A2

)
=

3
70

B2x
7
2 +

2
15

Bx4 +
2

27
x

9
2 .

(10.155)

In view of (10.155), the series solution is given by

y(x) = 1 + Bx +
4
3

x
3
2 +

2
5

Bx
5
2 +

1
3

x3 +
3
70

B2x
7
2 +

2
15

Bx4 +
2

27
x

9
2 + · · · . (10.156)

To achieve our goal of studying the mathematical behavior of the potential y(x) and
to determine the initial slope of the potential y′(0), Padé approximants of different
degrees should be established. To form Padé approximants it is useful to set

x
1
2 = t, (10.157)

into (10.156) to obtain

y(t) = 1 + Bt2 +
4
3

t3 +
2
5

Bt5 +
1
3

t6 +
3

70
B2t7 +

2
15

Bt8 + · · · . (10.158)

Using any manipulation language such as Maple or Mathematica we find

[2/2] =
9B2−12Bt +(9B3 + 16)t2

9B2−12Bt + 16t2 ,

[4/4] =
G(t)
H(t)

,
(10.159)

where
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G(t) = 27B4 + 97B +

(
140

9
+

33
10

B3
)

t +

(
675
28

B5 +
437

5
B2

)
t2

+

(
453
14

B4 +
1 070

9
B

)
t3 +

(
−81

28
B6− 1 096

175
B3 +

455
27

)
t4,

(10.160)

and

H(t) = 27B4 + 97B +

(
140
9

+
33
10

B3
)

t−
(

81
28

B5 +
48
5

B2
)

t2

−
(

243
35

B4 + 26B

)
t3−

(
186
175

B3 +
35
9

)
t4.

(10.161)

Other Padé approximants are also computed. To determine the initial slope B =
y′(0), we use the boundary condition at t = ∞ given by

lim
t→∞

y(t) = 0, (10.162)

in the established Padé approximants. This means that we should equate the coef-
ficient of x of highest power in the numerator of each approximant by zero. The
resulting values of the initial slope B = y′(0) are tabulated in Table 10.7 as shown
below.

Table 10.7

Padé approximants Initial slope B

[2/2] −1.211 414

[4/4] −1.550 526

[7/7] −1.586 021

A better approximation has been obtained by evaluating more components of y(x)
and higher degree Padé approximants. Note that the accurate numerical solution of
B is given by

B = y′(0) =−1.588 071. (10.163)

The Variational Iteration Method
The correction functional for this equation reads

yn+1(x) = yn(x)+
∫ x

0
λ (ξ )

⎛
⎝∂ 2yn(ξ )

∂ξ 2 +
ỹ

3
2
n (ξ )√

x

⎞
⎠ dξ . (10.164)

This gives
λ = ξ − x. (10.165)

Using this value of the Lagrange multiplier into the correction functional gives the
iteration formula
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yn+1(x) = yn(x)+
∫ x

0
(ξ − x)

⎛
⎝∂ 2yn(ξ )

∂ξ 2 +
y

3
2
n (ξ )√

ξ

⎞
⎠ dξ . (10.166)

Considering the given initial values, we can select y0(x) = 1 + Bx where B = y′(0).

To avoid the cumbersome work that will arise from the radical power in y
3
2 , we use

the series of y
3
2 at every step of the calculations. This will facilitate our approach

and will reduce the size of computation. Consequently, we obtain the following
successive approximations

y0(x) = 1 + Bx,

y1(x) = 1 + Bx +
4
3

x
3
2 +

2
5

Bx
5
2 +

3
70

B2x
7
2 − 1

252
B3x

9
2 + · · · ,

y2(x) = 1 + Bx +
4
3

x
3
2 +

2
5

Bx
5
2 +

1
3

x3 +
3

70
B2x

7
2 +

2
15

Bx4 +
2

27
x

9
2 + · · · .

(10.167)
In view of this, the series solution is given by

y(x) = 1+Bx+
4
3

x
3
2 +

2
5

Bx
5
2 +

1
3

x3 +
3

70
B2x

7
2 +

2
15

Bx4 +
2
27

x
9
2 +

4
1 485

Bx
11
2 + · · · .

(10.168)
To determine the potential y′(0) = B, we follow the same discussion introduced
before where Padé approximants are used.

Model IV: Flierl-Petviashvili (FP) equation.

The Flierl-Petviashivili (FP) monopole y(x) is the radially symmetric solution [5] to
the equation

y′′+
1
x

y′ − yn− yn+1 = 0, y(0) = α, y′(0) = 0, n � 1, (10.169)

where the boundary condition is y(∞) = 0. For n = 1 we obtain the standard Flierl-
Petviashvili (FP) equation. The singularity behavior at x = 0 is a difficult element in
this type of equations. A slight change in the implementation of Adomian method is
necessary to overcome the singularity behavior at x = 0. The choice here is to define

the differential operator L in terms of the two derivatives, y′′+
1
x

y′, contained in the

problem. We first rewrite (10.169) in the form

Ly = g(y), (10.170)

where g(y) = yn +yn+1, and the differential operator L employs the first two deriva-
tives in the form

L = x−1 d
dx

(
x

d
dx

)
, (10.171)

in order to overcome the singularity behavior the point at x = 0. In view of (10.171),
the inverse operator L−1 is considered a two-fold integral operator defined by
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L−1(·) =
∫ x

0
x−1

∫ x

0
x1(·)dxdx. (10.172)

Applying L−1 of (10.172) to the first two terms y′′+
1
x

y′ of Eq. (10.169) we find

L−1

(
y′′+

1
x

y′
)

=

∫ x

0
x−1

∫ x

0
x

(
y′′+

1
x

y′
)

dxdx,

=

∫ x

0
x−1

[
xy′ −

∫ x

0
y′ dx +

∫ x

0
y′ dx

]
dx,

=
∫ x

0
y′ dx,

= y(x)− y(0),

(10.173)

where integration by parts is used to integrate xy′′.
Operating with L−1 on (10.170), it then follows

y(x) = α + L−1 (yn + yn+1) , (10.174)

where
α = y(0). (10.175)

Recall that the FP equation

y′′+
1
x

y′ − yn− yn+1 = 0, (10.176)

where the boundary conditions are given by

y(0) = α, y′(0) = 0, y(∞) = 0. (10.177)

The general series solution for Eq. (10.176) is to be constructed for all possible
values of n � 1. In an operator form, Eq. (10.176) becomes

Ly = yn + yn+1. (10.178)

Recall that in this generalization r = 1. Applying L−1 to both sides of (10.178) and
using the boundary condition we find

y(x) = α + L−1 (yn + yn+1) . (10.179)

Using the decomposition suggestions for the linear term y(x) and for the nonlinear
term yn + yn+1 we obtain

∞

∑
n=0

yn(x) = α + L−1

(
∞

∑
n=0

An

)
. (10.180)
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The components yn(x) of the solution y(x) can be elegantly computed recurrently
by

y0(x) = α,
yk+1(x) = L−1(Ak), k � 0.

(10.181)

The first few Adomian polynomials are given by

A0 = yn
0 + yn+1

0 ,

A1 = ny1yn−1
0 +(n + 1)y1yn

0,

A2 = ny2yn−1
0 + n(n−1)

y2
1

2!
yn−2

0 +(n + 1)y2yn
0 + n(n + 1)

y2
1

2!
yn−1

0 ,

A3 = ny3yn−1
0 + n(n−1)y1y2yn−2

0 + n(n−1)(n−2)
y3

1

3!
yn−3

0 + ny3yn−1
0

+n(n + 1)y1y2yn−1
0 + n(n + 1)(n−1)

y3
1

3!
yn−2

0 ,

(10.182)

and so on. Inserting (10.182) into (10.181) gives

y0 = α,

y1 =
(αn + αn+1)

4
x2,

y2 =
(αn + αn+1)(nαn +(n + 1)αn+1)

64α
x4,

y3 =
(αn + αn+1)

(
2n(3n−1)α2n + 2n(3n + 1)α2n+1 +(3n + 1)(n + 1)α2n+2

)
2 304α2 x6,

y4 =
(αn + αn+1)

(
λ1α3n + λ2α3n+1 +λ3(3nα3n+2 +(n + 1)α3n+3

)
147 456α3 x8,

(10.183)
where

λ1 = n(18n2−29n + 12),
λ2 = n(54n2−33n + 7),
λ3 = 18n2 + 7n + 1.

(10.184)

Other components are also computed up to O(x17), but not listed for brevity. In view
of (10.183), the solution in a series form is thus given by

y(x)

= α +
(αn +αn+1)

4
x2 +

(αn +αn+1)(nαn +(n + 1)αn+1)

64α
x4
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+
(αn + αn+1)

(
2n(3n−1)α2n + 2n(3n + 1)α2n+1 +(3n + 1)(n + 1)α2n+2

)
2 304α2 x6

+
(αn + αn+1)

(
λ1α3n + λ2α3n+1 +λ3(3nα3n+2 +(n + 1)α3n+3

)
147 456α3 x8

+ · · · .
(10.185)

The series solution (10.185) is used to obtain various Padé approximants [m/m].
Roots of the Padé approximants to the FP monopole α were obtained. The roots
were obtained by using the limit of the Padé approximant [m/m] as x→ ∞.

Table 10.8 Roots of the Padé approximants [8/8] monopole α for several values of n.

n [8/8] Roots n [8/8] Roots

1 −2.392 213 866 6 −1.000 861 533

2 –2.0 7 −1.000 708 285

3 −1.848 997 181 8 −1.000 601 615

4 −1.286 025 892 9 −1. 000 523 005

5 −1.001 101 141 10 −1. 000 462 636

Table 10.8 shows that the roots converge to −1 as n increases.

Model V: Third-order Boundary Layer Problem.

The third-order nonlinear boundary layer problem

f ′′′+(n−1) f f ′′ −2n( f ′)2 = 0,

f (0) = 0, f ′(0) = 1, f ′′(0) = α < 0, f ′(∞) = 0, n > 0,
(10.186)

appears in boundary layers in fluid mechanics [7]. An analytic treatment will be ap-
proached to find the numerical values of f ′′(0) = α for several values of n. Equation
(10.186) used by Kuiken [7] does not include the Blasius equation for a particular
choice of n. Indeed, this equation is for backward boundary layers, that is, boundary
layers originating at −∞. It is interesting to point out that Kuiken [7] investigated
this problem for three cases of n, namely for 0 < n < 1,n = 1 and for n > 1.

The goal will be achieved by combining the series solution that will be obtained
by the modified decomposition method with the diagonal Padé approximants as pre-
sented before. Recall that Padé approximants have the advantage of manipulating
the polynomial approximation into a rational functions of polynomials. By this ma-
nipulation we gain more information about the mathematical behavior of the solu-
tion. In addition, power series are not useful for large values of x, say x = ∞.

To apply the modified decomposition method, we first rewrite (10.186) in an
operator form

L f =−(n−1) f f ′′+ 2n( f ′)2, (10.187)

where L is a third order differential operator, and hence L−1 is a three-fold integra-
tion operator defined by
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L−1(·) =

∫ t

0

∫ t

0

∫ t

0
(·)dt dt dt. (10.188)

Operating with L−1 on both sides of (10.187) and using the initial conditions f (0) =
0, f ′(0) = 1, f ′′(0) = α we obtain

f (x) = x +
1
2

αx2−L−1 ((n−1) f f ′′ −2n( f ′)2) . (10.189)

Recall that f (x) = ∑∞
n=0 fn(x). The modified decomposition method suggests that

the function h(x) be divided into two parts

h(x) = x +
1
2

αx2,

= h0(x)+ h1(x),
(10.190)

where h0(x) = x is assigned to the component f0(x), and the other part h1(x) =
1
2

αx2

is added to the definition of the component f1(x). Under this assumption, we set the
modified recursive relation

f0(x) = x,

f1(x) =
1
2

αx2−L−1 ((n−1)A0−2nB0) ,

fk+2(x) = L−1 ((n−1)Ak+1−2nBk+1) , k � 0.

(10.191)

It is obvious that the slight variation is made on the components f0 and f1 only if
compared with the standard Adomian method.

For convenience, we list below, few terms of the Adomian polynomials An(x) for
the nonlinear term f f ′′:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A0(x) = f0(x) f ′′0 (x),

A1(x) = f0(x) f ′′1 (x)+ f1(x) f ′′0 (x),

A2(x) = f0(x) f ′′2 (x)+ f1(x) f ′′1 (x)+ f2(x) f ′′0 (x),

A3(x) = f0(x) f ′′3 (x)+ f1(x) f ′′2 (x)+ f2(x) f ′′1 (x)+ f3(x) f ′′0 (x),

A4(x) = f0(x) f ′′4 (x)+ f1(x) f ′′3 (x)+ f2(x) f ′′2 (x)+ f3(x) f ′′1 (x)+ f4(x) f ′′0 (x),
(10.192)

and for Bn(x) for the nonlinear term ( f ′)2, we find:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B0(x) = ( f ′0)
2(x),

B1(x) = 2 f ′0(x) f ′1(x),
B2(x) = ( f ′1)

2(x)+ 2 f ′0(x) f ′2(x),
B3(x) = 2 f ′1(x) f ′2(x)+ 2 f ′0(x) f ′3(x),
B4(x) = ( f ′2)

2(x)+ 2 f ′1(x) f ′3(x)+ 2 f ′0(x) f ′4(x).

(10.193)
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With f0 defined in (10.191), this can be valuable in determining the other compo-
nents. It then follows

f0(x) = x,

f1(x) =
1
2

αx2−L−1 ((n−1)A0−2nB0) ,

f2(x) = L−1 ((n−1)A1−2nB1) ,
f3(x) = L−1 ((n−1)A2−2nB2) ,
f4(x) = L−1 ((n−1)A3−2nB3) ,

(10.194)

and so on. This in turn gives

f0(x) = x,

f1(x) =
1
2

αx2 +
1
3

nx3,

f2(x) =
1

24
α(3n + 1)x4 +

1
30

n(n + 1)x5,

f3(x) =
1

120
α2(3n + 1)x5 +

1
720

α(19n2 + 18n + 3)x6 +
1

315
n(2n2 + 2n + 1)x7,

f4(x) =
1

5 040
α2(27n2 + 42n + 11)x7 +

1
40 320

α(167n3 + 297n2 + 161n + 15)x8

+
1

22 680
n(13n3 + 38n2 + 23n + 6)x9.

(10.195)
Consequently we obtain

f (x) = x +
α x2

2
+

nx3

3
+

(
1
8

nα +
1
24

α
)

x4

+

(
1

30
n2 +

1
40

nα2 +
1

120
α2 +

1
30

n

)
x5 +

(
19
720

n2 α +
1

240
α +

1
40

nα
)

x6

+

(
1

120
nα2 +

1
315

n +
2

315
n3 +

11
5 040

α2 +
3

560
n2 α2 +

2
315

n2

)
x7

+

(
11

40 320
α3 +

33
4 480

n2 α +
3

4 480
α3 n2 +

23
5 760

nα +
1

2 688
α

+
167

40 320
n3 α +

1
960

α3 n

)
x8

+

(
1

3 780
n+

527
362 880

n3 α2 +
19

11 340
n3+

709
362 880

nα2+
23

8 064
n2 α2 +

23
22 680

n2

+
13

22 680
n4 +

43
120 960

α2

)
x9 + · · · .

As stated before, Kuiken [7] studied the behavior of f (x) for three specific cases,
namely, for 0 < n < 1, n = 1, and for n > 1. To study the mathematical behavior
of the f (x), it is normal to derive approximations for f ′′(0) = α < 0 for the three
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Table 10.9 Numerical values for α = f ′′(0) for 0 < n < 1 by using Padé approximants.

n [2/2] [3/3] [4/4] [5/5] [6/6]

0.2 −0.387 298 33 −0.382 153 38 −0.381 915 384 −0.381 914 808 −0.381 912 185
1
3

−0.577 350 27 −0.561 599 92 −0.561 406 658 −0.561 448 140 −0.561 449 193

0.4 −0.645 150 64 −0.639 100 06 −0.638 973 26 −0.638 989 268 −0.638 973 479

0.6 −0.840 796 16 −0.839 360 30 −0.839 606 047 −0.839 587 538 −0.839 605 677

0.8 −1.007 983 20 −1.007 796 98 −1.007 646 82 −1.007 646 83 −1.007 792 10

prescribed cases of n. This goal can be achieved by forming Padé approximants
which will converge on the entire real axis if f (x) is free of singularities on the real
axis.

Using the boundary condition f ′(∞)= 0, the diagonal approximant [M/M] vanish
if the coefficient of x with the highest power in the numerator vanishes. Using the
Maple built-in utilities to solve the resulting polynomials gives the values of the
initial slope f ′′(0) = α listed in Table 10.9.

Table 10.9 confirms the first two conclusions made in [7]. For 0 < n < 1, the

numerical value of α converges to −1.007 792 1. For n =
1
3

, the numerical value

of α converges to −0.561 449 193 4. It is interesting to point out that Kuiken [7]

examined the specific case where n =
1
3

. For this value of n, Eq. (10.186) can be

reduced to

f ′ =
1
3

f 2−αx + 1, (10.196)

upon substituting n =
1
3

and integrating the resulting equation twice. In [1], the

general solution for this case was derived as

f (x) =−3

(
α2

9

) 1
6 Ai′

Ai
. (10.197)

where Ai is Airy function. Using this exact solution, it was found that

α =−0.561 449 193 46, (10.198)

where our result obtained above in Table 10.9 is consistent with this result.
For n = 1, and using the average of all five diagonal Padé approximants, we find

that
α =−1.154 948 004. (10.199)

For the third case where n > 1, and using the diagonal Padé approximants [2/2]–
[6/6] we obtained the following results:
The results shown above confirms the exponential decay for f (x), for n > 1 as for-
mally derived in [7]. In closing, we confirm the fact that the function f (x) decays
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Table 10.10 Numerical values for α = f ′′(0) for n > 1 by using Padé approximants.

n 4 10 100 1 000 5 000
α −2.483 954 032 −4.026 385 103 −12.843 343 15 −40.655 382 18 −104.842 067 2

algebraically for the case where 0 < n < 1, and decays exponentially for the case
where n > 1 when x tends to infinity.

Exercises 10.5

Use the Adomian decomposition method and the Padé approximants to study the
following models:

1. y′′ = 10y′ −10(y′)2−10yy′, y(0) = 0, y′(0) = 0.2

2. y′′ = 5y′ −5(y′)2−5yy′, y(0) = 0, y′(0) = 0.1

3. Find the constant α in the Flierl-Petviashvili equation:

yxx +
1
x

yx− y− y2 = 0, y(0) = α, y′(0) = 0, lim
x→∞

y(x) = 0
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Chapter 11

Solitons and Compactons

11.1 Introduction

In 1834, John Scott Russell was the first to observe the solitary waves. He ob-
served a large protrusion of water slowly traveling on the Edinburgh-Glasgow canal
without change in shape. The bulge of water, that he observed and called “great
wave of translation”, was traveling along the channel of water for a long period of
time while still retaining its shape. The remarkable discovery motivated Russell to
conduct physical laboratory experiments to emphasize his observance and to study
these solitary waves. He empirically derived the relation

c2 = g(h + a), (11.1)

that determines the speed c of the solitary wave, where a is the maximum amplitude
above the water surface, h is the finite depth and g is the acceleration of gravity. The
solitary waves are therfore called gravity waves.

The discovery of solitary waves inspired scientists to conduct a huge size of re-
search work to study this concept. Two Dutchmen Korteweg and deVries derived a
nonlinear partial differential equation, well known by the KdV equation, to model
the height of the surface of shallow water in the presence of solitary waves [11].
The KdV equation also describes the propagation of plasma waves in a disper-
sive medium. The KdV equation was introduced before in Chapter 8 where it was
handled in a traditional way. The KdV equation in its simplest form is given by

ut + auux + uxxx = 0, (11.2)

where it indicates that dispersion and nonlinearity might occur. The solitary wave
solutions are assumed to be of the form

u(x,t) = f (x− ct), (11.3)

where c is the speed of the wave propagation, and f (z), f ′(z), f ′′(z) → 0 as z →
±∞, z = x− ct.



458 11 Solitons and Compactons

In 1965, Zabusky and Kruskal [11] investigated the interaction of solitary waves
and the recurrence of initial states. They discovered that solitary waves undergo
nonlinear interaction following the KdV equation. Further, the waves emerge from
this interaction retaining its shape and amplitude. The remarkable discovery, that
solitary waves retain its identities and that its character resembles particle like be-
havior, motivated Zakusky and Kruskal [11] to call these solitary waves solitons.
Zakusky and Kruskal marked the birth of the soliton, a name intended to signify
particle like quantities. The interaction of two solitons emphasized the reality of the
preservation of shapes and speeds and of the steady pulse like character of solitons.

A great deal of research work has been invested in recent years for the study of
the soliton concept. Hirota [5,6] constructed the N-soliton solutions of the evolution
equation by reducing it to the bilinear form. The bilinear formalism established by
Hirota [5,6], and used by many such as in [3,4,7], was a very helpful tool in the
study of the nonlinear equations. Nimmo and Freeman [9] introduced an alternative
formulation of the N-soliton solutions in terms of some function of the Wronskian
determinant of N functions.

Active research works have emerged worldwide in a diverse branches of scien-
tific fields to study the soliton concept. It is now well known that solitons appear as
a result of a balance between weak nonlinearity and dispersion. The soliton concept
has attracted a huge size of studies due to its significant role in various scientific
fields such as fluid dynamics, astrophysics, plasma physics, and magneto-acoustic
waves and many others.

As will be seen in coming chapters, solitary waves appear in a variety of types,
such as solitons, kinks, peakons, cuspons and other forms. each of these types has
its own features.

Recently, in 1993, Rosenau and Hyman [10] discovered a class of solitary waves
with compact support that are termed compactons. Compactons are defined by soli-
tary waves with the remarkable soliton property that after colliding with other com-
pactons, they reemerge with the same coherent shape. These particle like waves
exhibit elastic collision that are similar to the soliton interaction associated with
completely integrable PDEs supporting an infinite number of conservation laws.

It was found in [10] that when the wave dispersion is purely nonlinear, some
novel features may be observed and the most remarkable one is the existence of the
so called compactons. The definitions given so far for compactons are:
(i) compactons are solitons with finite wavelength;
(ii) compactons are solitary waves with compact support;
(iii) compactons are solitons free of exponential tails;
(iv) compactons are solitons characterized by the absence of infinite wings;
(v) compactons are robust soliton like solutions.

Two important features of compactons structure are observed, namely:
(i) unlike the standard KdV soliton where f (z) → 0 as z → ∞, the compacton is
characterized by the absence of the exponential tails or wings, where f (z) does not
tend to 0 as z→ ∞;
(ii) unlike the standard KdV soliton where width narrows as the amplitude increases,
the width of the compacton is independent of the amplitude.



11.2 Solitons 459

The role of nonlinear dispersion in the formation of patterns in liquid drops
was investigated by Rosenau and Hyman. The study in [10] was carried out by
considering a genuinely nonlinear dispersive equation K(n,n), a special type of the
KdV equation, that was subjected to experimental and analytical studies. The re-
markable discovery by Rosenau and Hyman [10] is that solitary waves may com-
pactify under the influence of nonlinear dispersion which is capable of causing deep
qualitative changes in the nature of genuinely nonlinear phenomena. It was shown
that certain solutions of the K(n,n) equation characterized by the absence of infinite
wings can be constructed, and termed compactons. The derived results are new and
of substantial interest.

The genuinely nonlinear dispersive K(n,n) equations, a family of nonlinear KdV
like equations is of the form

ut + a(un)x +(un)xx = 0, a > 0,n > 1, (11.4)

which supports compact solitary traveling structures for a > 0. The existence and
stability of the compact entities was examined in [10].

It is important to note that Eq. (11.4) with +a is called the focusing branch,
whereas equation of the form

ut −a(un)x +(un)xx = 0, a > 0,n > 1, (11.5)

is called the defocusing branch. The studies revealed that Eq. (11.5) supports so-
lutions with solitary patterns having cusps or infinite slopes. Further, it was shown
that while compactons are the essence of the focusing branch (+a), spikes, peaks
and cusps are the hallmark of the defocusing branch (−a). This in turn means that
the focusing branch (11.4) and the defocusing branch (11.5) represent two different
models, each leading to a different physical structure. The remarkable discovery of
compactons has led, in turn, to an intense study over the last few years. The study
of compactons may give insight into many scientific processes [10] such as the su-
per deformed nuclei, preformation of cluster in hydrodynamic models, the fission
of liquid drops and inertial fusion.

For more details about compactons, see [10] and the references therein.

11.2 Solitons

In this section we will study the solitary wave solutions of some of the well known
nonlinear equations that exhibit solitons. It is interesting to point out that there is no
precise definition of a soliton. However, a soliton can be defined as a solution of a
nonlinear partial differential equation that exhibits the following properties:
(i) the solution should demonstrate a wave of permanent form;
(ii) the solution is localized, which means that the solution either decays expone-
ntially to zero such as the solitons provided by the KdV equation, or converges to a
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constant at infinity such as the solitons given by the Sine-Gordon equation;
(iii) the soliton interacts with other solitons preserving its character [3,4,7].

One basic expression of a solitary wave solution is of the form

u(x,t) = f (x− ct), (11.6)

where c is the speed of wave propagation. For c > 0, the wave moves in the positive
x direction, whereas the wave moves in the negative x direction for c < 0. More
importantly, as will be seen later, the solutions of nonlinear equations may be a
sech2, sech, or arctan(eα(x−ct)) function. Different methods were developed to ob-
tain solitons. The inverse scattering transform method [1] and the bilinear formal-
ism were developed and implemented in a huge size of research works. However,
in this section we will use the direct substitution of the standard formula (11.6) and
solve the obtained ordinary differential equation or by using Adomian decomposi-
tion method [2] if initial condition is given. In what follows, some of the well known
nonlinear equations will be studied.

11.2.1 The KdV Equation

The nonlinear dispersive equation formulated by Korteweg and de Vries (KdV) in
its simplest form [3] is given by

ut −6uux + uxxx = 0, (11.7)

with u = u(x,t) is a differentiable function. We shall assume that the solution u(x,t),
along with its derivatives, tends to zero as | x |→ ∞.

Several different approaches, such as Bäcklund transformation, a bilinear form,
and a Lax pair have been used independently by which soliton and multi-soliton
solutions for nonlinear evolution equations are obtained.

As mentioned before, solitary wave solution can be written as

u(x,t) = f (x− ct), (11.8)

where c is the soliton speed. Using (11.8) into (11.7) gives

−c f ′ −6 f f ′+ f ′′′ = 0, z = x− ct. (11.9)

Integrating (11.9) gives
−c f −3 f 2 + f ′′ = 0, (11.10)

where constant of integration is taken to be zero. Multiplying (11.10) by 2 f ′ and
integrating the resulting equation we find

( f ′)2 = c f 2 + 2 f 3, (11.11)
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an ordinary differential equation with explicit solution

f (z) =− c
2

sech2

√
c

2
z. (11.12)

Combining (11.12) and (11.8) gives

u(x,t) =− c
2

sech2

√
c

2
(x− ct). (11.13)

It is obvious that f (x,t) in (11.12), along with its derivatives, tends to zero as | x |→
∞.

Solving the KdV Equation by Adomian Method

In the following, Adomian decomposition method will be implemented to obtain a
solitary wave solution for the KdV equation

ut −6uux + uxxx = 0,

u(x,0) = −2
k2ekx

(1 + ekx)2 ,
(11.14)

where c = k2. Applying the inverse operator L−1
t on both sides of (11.14) and using

the decomposition series for u(x,t) yields

∞

∑
n=0

un(x,t) =−2
k2ekx

(1 + ekx)2 + L−1
t

(
6(

∞

∑
n=0

An)− (
∞

∑
n=0

un)xxx

)
. (11.15)

Proceeding as before, Adomian decomposition method gives the recurrence relation

u0(x,t) = −2
k2ekx

(1 + ekx)2 ,

uk+1(x,t) = L−1
t (6Ak−ukxxx) , k � 0.

(11.16)

This in turn gives

u0(x,t) = −2
k2ekx

(1 + ekx)2 ,

u1(x,t) = L−1
t (6A0−u0xxx) =−2

k5ekx(ekx−1)

(1 + ekx)3 t,

u2(x,t) = L−1
t (6A1− u1xxx) =−k8ekx(e2kx−4ekx + 1)

(1 + ekx)4 t2.

(11.17)

In view of (11.17), the solution in a series form is given by
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u(x,t) = −2
k2ekx

(1 + ekx)2 −2
k5ekx(ekx−1)

(1 + ekx)3 t− k8ekx(e2kx−4ekx + 1)

(1 + ekx)4 t2 + · · · ,
(11.18)

so that the exact solution

u(x,t) =− c
2

sech2

√
c

2
(x− ct) (11.19)

is readily obtained.
It is worth noting that another form of the KdV equation given by

ut + 6uux + uxxx = 0 (11.20)

can be proved to have the solitary wave solution

u(x,t) =
c
2

sech2

√
c

2
(x− ct). (11.21)

11.2.2 The Modified KdV Equation

We next consider the modified KdV (mKdV) equation [3,7] of the form

ut + 6u2ux + uxxx = 0,
u(x,0) = g(x).

(11.22)

We shall assume that the solution u(x,t), along with its derivatives, tends to zero as
| x |→ ∞.

Following the discussions made above, we look for a traveling wave solution in
the form

u(x,t) = f (x− ct), (11.23)

where c is the soliton speed, z = x− ct, f (z), f ′(z) and f ′′(z) tend to 0 as | x |→ ∞.
Substituting (11.23) into (11.22) gives

−c f ′+ 6 f 2 f ′+ f ′′′ = 0. (11.24)

Integrating (11.24) gives
−c f + 2 f 3 + f ′′ = 0, (11.25)

or equivalently
f ′′ = c f −2 f 3, (11.26)

where we assumed that the constant of integration is zero. The exact solution of Eq.
(11.22)

f (z) =±√csech
√

cz, (11.27)

that gives
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u(x,t) =±√csech
√

c(x− ct). (11.28)

The intermediate calculations between (11.26) and (11.27) are left as an exercise.
It is interesting to point out that the KdV equation has the soliton solution in terms
of sech2 function, whereas the solution of the mKdV equation is in terms of sech
function [3,7].

Solving mKdV Equation by Adomian Method

In the following, the decomposition method will be applied for the modified KdV
equation defined by

ut + 6u2ux + uxxx = 0,

u(x,0) = 2
kekx

1 + e2kx .
(11.29)

with u = u(x,t) is a sufficiently-often differentiable function.
Operating with L−1

t yields

∞

∑
n=0

un(x,t) = 2
kekx

1 + e2kx −L−1
t

(
6(

∞

∑
n=0

An)+ (
∞

∑
n=0

un)xxx

)
. (11.30)

Adomian’s method admits the use of the recurrence relation

u0(x,t) = 2
kekx

1 + e2kx ,

uk+1(x,t) = −L−1
t (6Ak + ukxxx) , k � 0,

(11.31)

that in turn gives

u0(x,t) = 2
kekx

1 + e2kx ,

u1(x,t) = −L−1
t (6A0 + u0xxx) =−2

k4ekx(1− e2kx)

(1 + e2kx)2 t,

u2(x,t) = −L−1
t (6A1 + u1xxx) =

k7ekx(1−6e2kx + e4kx)

(1 + e2kx)3 t2.

(11.32)

The solution in a series form is given by

u(x,t) = 2
kekx

1 + e2kx −2
k4ekx(1− e2kx)

(1 + e2kx)2 t +
k7ekx(1−6e2kx + e4kx)

(1 + e2kx)3 t2 + · · · ,
(11.33)

so that the exact solution

u(x,t) =±√csech
√

c(x− ct), (11.34)

is readily obtained noting that c = k2.
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11.2.3 The Generalized KdV Equation

A generalized form of the KdV equation [3] of the form

ut +(n + 1)(n + 2)unux + uxxx = 0, n = 1,2, · · ·
u(x,0) = g(x),

(11.35)

will be investigated. Substituting (11.23) into (11.35) yields a differential equation
for f (z)

−c f ′+(n + 1)(n + 2) f n f ′+ f ′′′ = 0. (11.36)

Integrating (11.36) gives

−c f +(n + 2) f n+1 + f ′′ = 0, (11.37)

so that
f ′′(z) = c f − (n + 2) f n+1, (11.38)

with exact solution

f (z) =

(
1
2

csech2(
1
2

n
√

cz)

) 1
n

. (11.39)

Combining (11.39) and (11.23) gives

u(x,t) =

(
1
2

csech2(
1
2

n
√

c(x− ct))

) 1
n

. (11.40)

11.2.4 The Sine-Gordon Equation

The sine-Gordon equation [4,5] is given by

utt −uxx + sinu = 0. (11.41)

The sine-Gordon equation arises in the study of superconductor transmission lines,
crystals, geometry of surfaces, laser pulses, pendular motions, and in the propaga-
tion of magnetic flux.

To determine solitary wave solutions of Eq. (11.41) we let

u(x,t) = f (x− ct), (11.42)

that carries the Sine-Gordon equation into

(c2−1) f ′′ f ′+(sin f ) f ′ = 0, (11.43)

obtained after multiplying it by f ′, noting that z = x− ct. Integrating (11.43) gives
the first order equation
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1
2
(c2−1)( f ′)2− cos f = C, (11.44)

where C is a constant of integration. It may be shown that by choosing C =−1 will
result that f will approach zero as z approaches infinity. This means that Eq. (11.44)
becomes

( f ′)2 =
4

1− c2 sin2(
f
2
), |c|< 1. (11.45)

We can easily prove that one solution of Eq. (11.45) is given by

f (z) = 4arctan

[
exp

(
− z√

1− c2

)]
, (11.46)

so that the solitary wave solution is

u(x,t) = 4arctan

[
exp

(
− x− ct√

1− c2

)]
. (11.47)

Recall that the solitary wave solutions of the KdV and the modified KdV equations
are given by sech2 and sech functions respectively. The solution obtained in (11.47)
shows that the solitary wave solution in terms of arctan(eαz). Moreover, we can
easily observe that u(x,t)→ 0 as x→ ∞, and u(x,t)→ 2π as x→−∞. A solution
for which u(x,t) increases by 2π is called a kink, and one which decreases by 2π an
antikink. Another solution of the Sine-Gordon equation can be derived in the form

u(x,t) = 4arctan

⎡
⎢⎣ sinh(

ct√
1− c2

)

ccosh(
x√

1− c2
)

⎤
⎥⎦ , c2 < 1. (11.48)

11.2.5 The Boussinesq Equation

A well known model of nonlinear dispersive waves was proposed by Boussinesq in
the form

utt = uxx + 3(u2)xx + uxxxx, a � x � b. (11.49)

The Boussinesq equation (11.1) describes motions of long waves in shallow water
under gravity and in a one-dimensional nonlinear lattice. Using u = f (z),z = (x−ct)
into (11.49) gives

(c2−1) f ′′ = 3( f 2)′′+ f (4), (11.50)

where integrating twice yields

(c2−1) f −3 f 2 = f ′′. (11.51)

Multiplying both sides of (11.51) by 2 f ′ and integrating gives



466 11 Solitons and Compactons

u(x,t) =
c
2

sech2
[√

c
2

x +

√
c

2

√
1 + ct

]
. (11.52)

The exact solution can also be written as

u(x,t) =
1
2
(c2−1)sech2

[√
c2−1

2
(x− ct)

]
. (11.53)

The intermediate calculations between (11.51) and (11.53) are left an exercise.

Solving Boussinesq Equation by the Modified Adomian Method

In what follows we will use the modified decomposition method to determine the
solitary wave solutions of a specific form of the Boussinesq equation, defined by

utt = uxx + 3(u2)xx + uxxxx, −80 � x � 80,

u(x,0) = 2
ak2ekx

(1 + aekx)2 , ut(x,0) =−2
ak3
√

1 + k2ekx(aekx−1)

(1 + aekx)3 .
(11.54)

Applying the inverse operator L−1
t yields

∞

∑
n=0

un(x,t) = 2
ak2ekx

(1 + aekx)2 −2
ak3
√

1 + k2ekx(aekx−1)

(1 + aekx)3 t

+ L−1
t

(
3(

∞

∑
n=0

An)+ (
∞

∑
n=0

un)xx +(
∞

∑
n=0

un)xxxx

)
.

(11.55)

The modified decomposition method gives the recurrence relation

u0(x,t) = 2
ak2ekx

(1 + aekx)2 ,

u1(x,t) = −2
ak3
√

1 + k2ekx(aekx−1)

(1 + aekx)3 t + L−1
t (3A0 + u0xx + u0xxxx) ,

uk+1(x,t) = L−1
t (3Ak + ukxx + ukxxxx) , k � 1.

(11.56)

Consequently, we obtain

u0(x,t) = 2
ak2ekx

(1 + aekx)2 ,

u1(x,t) = −2
ak3
√

1 + k2ekx(aekxx−1)

(1 + aekx)3 t + L−1
t (3A0 + u0xx + u0xxxx)

=−2
ak3
√

1 + k2ekx(aekx−1)

(1 + aekx)3 t +
ak4ekx(1 + k2)(a2e2kx−4aekx + 1)

(1 + aekx)4 t2, (11.57)
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where u2 and u3 are determined but not listed. In view of (11.57), the solution in a
series form is given by

u(x,t) = 2
ak2ekx

(1 + aekx)2 −2ak3
√

1 + k2ekx (aekx−1)

(1 + aekx)3 t

+ak4(1 + k2)ekx (a2e2kx−4aekx + 1)

(1 + aekx)4 t2 + · · · ,
(11.58)

and consequently, we find that the exact solution is

u(x,t) = 2
ak2ekx+k

√
1+k2 t

(1 + aekx+k
√

1+k2 t)2
, (11.59)

or equivalently

u(x,t) =
ak2

2
sech2

[
k
√

ax
2

+
k
√

a
2

√
1 + ak2 t

]
, (11.60)

where c = ak2.

11.2.6 The Kadomtsev-Petviashvili Equation

In 1970, Kadomtsev and Petviashvili generalized the KdV equation to two space
variables and formulated the well-known Kadomtsev-Petviashvili equation [8] to
provide an explanation of the general weakly dispersive waves. The KP equation is
used to model shallow-water waves with weakly non-linear restoring forces. It is a
natural generalization of the KdV equation and it gives multiple soliton solutions as
will be discussed later.

The KP equation is of the form

(ut −6uux + uxxx)x + 3uyy = 0. (11.61)

Adomian’s method will be used to solve the specific KP equation

uxt −6u2
x−6uuxx + uxxxx + 3uyy = 0, (11.62)

with the initial condition

u(x,y,0) =
−8e2x+2y

(1 + e2x+2y)2 , (11.63)

and the boundary conditions are zero at the boundary. Operating with the inverse
operator L−1

xt

L−1
xt (·) =

∫ x

0

∫ t

0
(·)dt dx, (11.64)
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gives the relation

∞

∑
n=0

un(x,y,t) =
−8e2x+2y

(1 + e2x+2y)2

+L−1
xt

(
6(

∞

∑
n=0

An)+ 6(
∞

∑
n=0

Bn)− (
∞

∑
n=0

un)xxxx−3(
∞

∑
n=0

un)yy

)
,

(11.65)

where An and Bn are Adomian polynomials for u2
x and uuxx respectively. This means

that the first few components are derived as follows:

u0(x,y,t) = − 8e2x+2y

(1 + e2x+2y)2 ,

u1(x,y,t) = L−1
xt (6A0 + 6B0− (u0)xxxx−3(u0)yy)

= −112

(
(−1 + e2x+2y)e2x+2y

(1 + e2x+2y)3 + 112
(−1 + e−160+2y)e−160+2y

(1 + e−160+2y)3

)
t.

(11.66)
The solution in series form is given by

u(x,y,t) =
−8e2x+2y

(1 + e2x+2y)2

−112

(
(−1 + e2x+2y)e2x+2y

(1 + e2x+2y)3 + 112
(−1 + e−160+2y)e−160+2y

(1 + e−160+2y)3

)
t + · · · ,
(11.67)

so that the exact single soliton solution is given by

u(x,y,t) =−2sech2(x + y−7t), (11.68)

or equivalently

u(x,y,t) =− 8e2x+2y−14t

(1 + e2x+2y−14t)2 . (11.69)

Exercises 11.2

Use the decomposition method or the substitution u = f (x− ct) to find the solitary
wave solutions of the following nonlinear problems:

1. ut −6uux + uxxx = 0, u(x,0) =−2sech2(x)

2. ut + 6uux + uxxx = 0, u(x,0) = 8sech2(2x)

3. ut + 12u2ux + uxxx = 0, u(x,0) =
√

2sech(2x)

4. utt −uxx + sinu = 0, u(x,0) = 4arctan(e−2x)
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5. (ut + 6uux + uxxx)x + 3uyy = 0, u(x,y,0) =
1
2

sech2(
1
2
(x + y))

11.3 Compactons

In 1993, Rosenau and Hyman [10] introduced a class of solitary waves with compact
support that are termed compactons. Compactons can be defined as solitons with fi-
nite wave length or solitons free of exponential tails. In other words, compactons
are solitons characterized by the absence of infinite wings and, unlike solitons, the
width of the compacton is independent of the amplitude. Rosenau and Hyman dis-
covered that solitary waves may compactify under the influence of nonlinear disper-
sion which is capable of causing deep qualitative changes in the nature of genuinely
nonlinear phenomena. Compactons were proved to collide elastically and reemerge
with the same coherent shape. Such solitary wave solutions, which vanish outside
a finite core region, are solutions of a two parameter family of genuinely nonlinear
dispersive equations K(n,n):

ut +(un)x +(un)xxx = 0, n > 1. (11.70)

As stated before, solitons appear as a result of a balance between dispersion and
weak nonlinearity. However, when the wave dispersion is purely nonlinear, some
novel features may be observed. The most interesting feature of the nonlinear dis-
persion is the existence of the so-called compactons: solitons with finite wavelength
or solitons without exponential tails.

Unlike solitons, compactons are nonanalytic solutions. The points of non ana-
lyticity at the compacton edge are related to points of genuine nonlinearity of the
equation. In addition, it was shown that in [10] that the inverse scattering tools are
inapplicable. The pseudo spectral method was used to obtain the compactons solu-
tions:

u(x,t) =

⎧⎨
⎩{

√
2cn

n + 1
cos[

n−1
2n

(x− ct)]} 2
n−1 , |x− ct|� nπ

(n−1)
, n > 1,

0, otherwise.
(11.71)

However, an additional general formula for the compactons solutions was derived
in the form

u(x,t) =

⎧⎨
⎩{

√
2cn

n + 1
sin[

n−1
2n

(x− ct)]} 2
n−1 , |x− ct|� 2nπ

(n−1)
, n > 1,

0, otherwise.
(11.72)
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The One Dimensional Focusing Branch

Consider the nonlinear dispersive equation

ut + a(un)x + b(un)xxx = 0, a,b > 0. (11.73)

Following the discussions in [10], we assume that the general solution of Eq. (11.73)
is of the form

u(x,t) = ρ sin
2

n−1 [σ(x− ct)], (11.74)

or of the form
u(x,t) = ρ cos

2
n−1 [σ(x− ct)], (11.75)

where ρ and σ are constants that will be determined. Substituting these assumptions
into (11.73) and by solving the resulting equations for ρ and σ we find

σ = ± (n−1)

2n

√
a
b
,

ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2nc

a(n + 1)

) 1
n−1

, n is even,

±
(

2nc
a(n + 1)

) 1
n−1

, n is odd.

(11.76)

Consequently, we find the following sets of general compactons solutions:
1. For n even, the general compactons solutions are given by:

u(x,t) =

⎧⎪⎨
⎪⎩{

√
2nc

a(n + 1)
sin[

(n−1)

2n

√
a
b
(x− ct)]} 2

n−1 , |x− ct|� 2nπ
σ

,

0, otherwise.

(11.77)

and

u(x,t) =

⎧⎪⎨
⎪⎩ {

√
2nc

a(n + 1)
cos[

(n−1)

2n

√
a
b
(x− ct)]} 2

n−1 , |x− ct|� nπ
σ

,

0, otherwise.

(11.78)

2. For n odd, the compactons and anticompactons solutions are defined by

u(x,t) =

⎧⎪⎨
⎪⎩±{

√
2nc

a(n + 1)
sin[

(n−1)

2n

√
a
b
(x− ct)]} 2

n−1 , |x− ct|� 2nπ
σ

,

0, otherwise.

(11.79)

and
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u(x,t) =

⎧⎪⎨
⎪⎩±{

√
2nc

a(n + 1)
cos[

(n−1)

2n

√
a
b
(x− ct)]} 2

n−1 , |x− ct|� nπ
σ

,

0, otherwise.

(11.80)

We have chosen to examine two test problems, namely K(2,2) and K(3,3).

Example 1. We first consider the initial value problem K(2,2)

ut +(u2)x +(u2)xxx = 0,

u(x,0) =
4
3

ccos2(
1
4

x).
(11.81)

Solution.

Following Adomian analysis we find

u(x,t) =
4
3

ccos2(
1
4

x)−L−1
t

(
(u2)x +(u2)xxx

)
. (11.82)

Substituting the decomposition series for u(x,t) into (11.82) gives

∞

∑
n=0

un(x,t) =
4
3

ccos2(
1
4

x)−L−1
t

(
∞

∑
n=0

An +
∞

∑
n=0

Bn

)
, (11.83)

where An and Bn are Adomian polynomials that represent the nonlinear operators
(u2)x and (u2)xxx respectively. In view of (11.83), the decomposition technique ad-
mits the use of the recursive relation

u0(x,t) =
4
3

ccos2(
1
4

x),

uk+1(x,t) = −L−1
t (Ak + Bk) , k � 0.

(11.84)

The Adomian polynomials An and Bn for (u2)x and (u2)xxx are given by

A0 = F(u0) = (u2
0)x,

A1 = u1F ′(u0) = (2u1u0)x,

A2 = u2F ′(u0)+
1
2

u2
1F ′′(u0) = (2u2u0 + u2

1)x,

(11.85)

and
B0 = G(u0) = (u2

0)xxx,
B1 = u1G′(u0) = (2u1u0)xxx,

B2 = u2G′(u0)+
1
2

u2
1G′′(u0) = (2u2u0 + u2

1)xxx.

(11.86)

This in turn gives

u0(x,t) =
4
3

ccos2(
1
4

x),
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u1(x,t) = −L−1
t (A0 + B0) =

1
3

c2t sin(
1
2

x),

u2(x,t) = −L−1
t (A1 + B1) =− 1

12
c3t2 cos(

1
2

x),

u3(x,t) = −L−1
t (A2 + B2) =− 1

72
c4t3 sin(

1
2

x).

(11.87)

The solution in a series form

u(x,t) =
4
3

ccos2(
1
4

x)+
1
3

c2t sin(
1
2

x)− 1
12

c3t2 cos(
1
2

x)− 1
72

c4t3 sin(
1
2

x)+ · · · ,
(11.88)

follows immediately, and as a result, the closed form solution

u(x,t) =

{ 4
3

ccos2(
1
4
(x− ct)), | x− ct |� 2π,

0, otherwise,
(11.89)

is readily obtained.

Example 2. We now consider the initial value problem K(3,3)

ut +(u3)x +(u3)xxx = 0,

u(x,0) =

√
3c
2

cos(
1
3

x).
(11.90)

Solution.

Following the analysis presented above we obtain

u(x,t) =

√
3c
2

cos(
1
3

x)−L−1
t

(
(u3)x +(u3)xxx

)
. (11.91)

Using the decomposition series assumption for u(x,t) gives

∞

∑
n=0

un(x,t) =

√
3c
2

cos(
1
3

x)−L−1
t

(
∞

∑
n=0

Ãn +
∞

∑
n=0

B̃n

)
(11.92)

where Ãn and B̃n are Adomian polynomials that represent the nonlinear operators
(u3)x and (u3)xxx respectively. In view of (11.92), we use the recursive relation

u0(x,t) =

√
3c
2

cos(
1
3

x),

uk+1(x,t) = −L−1
t

(
Ãk + B̃k

)
, k � 0.

(11.93)

Adomian polynomials Ãn and B̃n can be calculated as before to find

Ã0 = (u3
0)x, Ã1 = (3u1u2

0)x, Ã2 = (3u2u2
0 + 3u0u2

1)x, (11.94)
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and
B̃0 = (u3

0)xxx, B̃1 = (3u1u2
0)xxx, B̃2 = (3u2u2

0 + 3u0u2
1)xxx. (11.95)

This gives

u0(x,t) =

√
6c
2

cos(
1
3

x),

u1(x,t) = −L−1
t (Ã0 + B̃0) =

√
6c3

6
t sin(

1
3

x),

u2(x,t) = −L−1
t (Ã1 + B̃1) =−

√
6c5

36
t2 cos(

1
3

x),

u3(x,t) = −L−1
t (Ã2 + B̃2) =−

√
6c7

324
t3 sin(

1
3

x).

(11.96)

The solution in a series form is given by

u(x,t) =

√
6c
2

cos(
1
3

x)+

√
6c3

6
t sin(

1
3

x)−
√

6c5

36
t2 cos(

1
3

x)−·· · , (11.97)

and in a closed form is given by

u(x,t) =

⎧⎪⎨
⎪⎩
√

6c
2

cos(
1
3
(x− ct), | x− ct |� 3π

2
,

0, otherwise.

(11.98)

Exercises 11.3

Use the decomposition method or any other method to find the compactons solutions
for the following nonlinear dispersive equations:

1. ut +(u3)x +(u3)xxx = 0, u(x,0) = 3cos(
1
3

x)

2. ut +(u4)x +(u4)xxx = 0, u(x,0) =

(
2sin(

3
8

x)

) 2
3

3. ut +(u3)x +(u3)xxx +(u3)yyy = 0, u(x,y,0) = 3cos(
1

3
√

2
(x + y))

4.
1
2
(u2)t +(u2)x +(u2)xxx +(u2)xxxxx = 0, u(x,0) =

√
cosx

5.
1
2
(u2)t +(u2)x +(u2)xxx +(u2)xxxxx +(u2)yyyyy = 0, u(x,y,0)=

√
cos(

1√
2
(x + y))
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11.4 The Defocusing Branch of K(n,n)

As indicated before the defocusing branch

ut −a(un)x +(un)xxx = 0, n > 1, (11.99)

where a = −1, was examined in the literature. It was revealed in these studies that
solutions with solitary patterns having cusps or infinite slopes arise from the nonlin-
ear dispersive equation of the form given in (11.99).

It is natural to seek a general solution of the dispersive Eq. (11.99) in the form

u(x,t) = ρ sinh
2

n−1 [σ(x− ct)], (11.100)

or in the form
u(x,t) = ρ cosh

2
n−1 [σ(x− ct)], (11.101)

where ρ and σ are constants that will be determined. Proceeding as before, it then
follows that

σ = ± (n−1)

2n

√
a
b
, ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2nc

a(n + 1)

) 1
n−1

, n is even,

±
(

2nc
a(n + 1)

) 1
n−1

, n is odd.

(11.102)

Substituting the last result into (11.100) and (11.101) gives the related solitary pat-
terns solutions.

Exercises 11.4

Use the decomposition method or any other method to find the compactons solutions
for the following nonlinear dispersive equations:

1. ut − (u3)x +(u3)xxx = 0, u(x,0) = 3sinh(
1
3

x)

2. ut − (u4)x +(u4)xxx = 0, u(x,0) =−
(

2cosh(
3
8

x)

) 2
3

3. ut − (u3)x +(u3)xxx +(u3)yyy = 0, u(x,y,0) = 3sinh

(
1

3
√

2
(x + y)

)

4.
1
2
(u2)t − (u2)x +(u2)xxx +(u2)xxxxx = 0, u(x,0) =

√
sinhx
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5.
1
2
(u2)t − (u2)x +(u2)xxx +(u2)xxxxx +(u2)yyyyy = 0, u(x,y,0) =

√
sinh(x + y)
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Chapter 12

Solitary Waves Theory

12.1 Introduction

In 1844 the Scottish John Scott Russell was the first people to observe the solitary
waves. As stated in Chapter 11, Russell called the bulge of water, that he observed,
a “great wave of translation” [9]. The wave was traveling along the channel of water
for a long period of time while still retaining its original identity.

In Russell’s own words: “I was observing the motion of a boat which was rapidly
drawn along a narrow channel by a pair of horses, when the boat suddenly stopped-
not so the mass of water in the channel which it had put in motion; it accumulated
round the prow of the vessel in a state of violent agitation, then suddenly leaving
it behind, rolled forward with great velocity, assuming the form of a large solitary
elevation, a rounded, smooth and well-defined heap of water, which continued its
course along the channel apparently without change of form or diminution of speed.
I followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot to
a foot and a half in height. Its height gradually diminished, and after a chase of one
or two miles I lost it in the windings of the channel. Such in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon
which I have called Wave of translation.”

This single humped wave of bulge of water is now called solitary waves or soli-
tons. The solitons–localized, highly stable waves that retain its identity (shape and
speed), upon interaction–was discovered experimentally by Russell.

In 1895, Diederik Johannes Korteweg (1848–1941) together with his Ph.D stu-
dent, Gustav de Vries (1866–1934) derived analytically a nonlinear partial differe-
ntial equation, well known now as the KdV equation. The KdV equation, that con-
tains nonlinear and dispersive terms, describes the propagation of long waves of
small but finite amplitude in dispersive media. The KdV equation is a generic model
for the study of weakly nonlinear long waves, incorporating leading order nonlin-
earity and dispersion. The KdV equation which now bears the names of Korteweg
and de Vries had already appeared in a work on water waves by Boussinesq in 1872.
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The KdV equation in its simplest form is given by

ut + auux + uxxx = 0. (12.1)

The term ut in this equation describes the time evolution of the wave propagat-
ing in one direction. Moreover, this equation incorporates two competing effects:
nonlinearity represented by uux that accounts for steepening of the wave, and linear
dispersion represented by uxxx that describes the spreading of the wave. Nonlinearity
tends to localize the wave while dispersion spreads it out. In other words, in some
nonlinear media, such as a layer of shallow water or an optical fiber, the widen-
ing of a wave packet due to dispersion could be balanced exactly by the narrow-
ing effects due to nonlinearity of the medium. The balance between these weak
nonlinear steepening and dispersion explains the formulation of solitons that con-
sist of single humped waves. The stability of solitons stems from the delicate equili-
brium between these two effects of nonlinearity and dispersion. As will be discussed
later, this equation gives soliton solutions which characterize solitary waves with
particle-like properties that decrease monotonically at infinity.

In 1965, Norman J. Zabusky (1929– ) and Martin D. Kruskal (1925–2006)
investigated numerically the nonlinear interaction of a large solitary-wave overtak-
ing a smaller one, and the recurrence of initial states [11]. They discovered that
solitary waves undergo nonlinear interaction following the KdV equation. Further,
the waves emerge from this interaction retaining its original shape, amplitude and
speed, and therefore conserved energy and mass. The only effect of the interaction
was a phase shift. The remarkable discovery, that solitary waves retain their identi-
ties and that their character resembles particle like behavior, motivated Zabusky and
Kruskal [11] to call these solitary waves solitons. Zabusky and Kruskal marked the
birth of soliton, a name intended to signify particle like quantities. The interaction
of two solitons emphasized the reality of the preservation of shapes and speeds and
of the steady pulse like character of solitons, therefore the collision of KdV solitons
is considered elastic. The name soliton have been coined by Zabusky and Kruskal
after photon, phonon, proton, etc. However the name solitary wave is more general.
Solitons are special kinds of solitary waves.

12.2 Definitions

It is interesting now to give some definitions of some concepts in the mathematical
theory of waves. Linear waves like sinusoidal waves are different from solitons. The
physical definition of a wave is a movement up and down or back and forth. Also
wave is a disturbance that transmits energy from one place to another. The simplest
wave propagation equation is given by

utt = c2uxx, (12.2)
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where u(x,t) represents the amplitude of the wave, and c is the speed of the wave.
This equation has the general d’Alembert’solution

u(x,t) = f (x− ct)+ g(x + ct), (12.3)

where f and g are arbitrary functions which represent right and left propagating
waves respectively. The two distinct waves f and g propagate without changing its
identity. The functions f and g are usually determined by using the initial values
u(x,0) and ut(x,0) that are usually prescribed. Because the wave equation is linear,
the two solutions can be added according to the superposition principle. Setting
g = 0, the wave in this case is propagating in the right direction only as in the
equation ut + ux = 0 with solution u(x,t) = f (x− t) with speed c = 1.

On the other hand, a travelling wave is a wave in which the medium moves
in the direction of prorogation of the wave. Travelling waves arise in the study of
nonlinear differential equations where waves are represented by the form u(x,t) =
f (x− ct), where u(x,t) represents a disturbance moving in the negative or positive
x direction if c < 0 or c > 0 respectively. If the solution u(x,t) depends only on the
difference between the two coordinates of the partial differential equations, then the
solution keeps its exact shape, and therefore called solitary waves. A solitary wave
is a travelling wave whose transition from the asymptotic state at ξ = −∞ to the
other asymptotic state at ξ = ∞ is localized in ξ , where ξ = x−ct, and c is the wave
speed. Hereman [3] defined solitary wave as a localized gravity wave that maintains
its coherence, and has a finite amplitude and propagate with constant speed and
constant shape.

Solitons are found in many physical phenomena. Solitons arise as the solutions
of a widespread class of weakly nonlinear dispersive partial differential equations
describing physical systems. Solitons are solitary waves with elastic scattering pro-
perty. Solitons retain their shapes and speed after colliding with each other. As stated
before, the KdV equation is the pioneer model that gives rise to solitons. The name
soliton appears to have been coined by Zabusky and Kruskal. Solitons are caused by
a delicate balance between nonlinear and dispersive effects in the medium. Solitons
appear either in the sech2 bell shape or in the form of a kink. Soliton possesses
particle-like character and retains its identities in a collision. A precise definition
of a soliton is not easy to find. However, Drazin et.al [1] defined a soliton as any
solution of a nonlinear equation (or a system) which:
(i) is a solitary wave of permanent form;
(ii) is localized, so that it decays or approaches a constant at infinity;
(iii) can interact strongly with other solitons and retain its identity;
(iv) is caused by a delicate balance between nonlinear and dispersive effects.

In the physical literature, the difference between solitary waves and solitons has
become blurred. Solitary waves may be defined as soliton-like solutions of nonlinear
evolution equations describing wave processes in dispersive and dissipative media.
It is usually referred to a single soliton solution as a solitary wave [1], but when
more than one soliton appear in a solution they are called solitons. For equations
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other than the KdV equation, the solitary wave solution may not be a sech2 function;
but may be a sech or arctan(eαx) [1].

12.2.1 Dispersion and Dissipation

It is useful to study some properties of wave phenomena. We first consider the equa-
tion

ut + ux = 0. (12.4)

It can be easily seen that the solution of this equation is of the form

u(x,t) = f (x− t). (12.5)

Examples of this solution are sin(x− t),cos(x− t),ex−t , and many others. Also these
solutions can be combined, hence the superposition principle is applicable here be-
cause the equation is linear. The shape of these waves (12.5) does not change as the
wave propagate.

However, adding a third order spatial derivative, which is the dispersion term, to
Eq. (12.4) gives the simplest dispersive equation

ut + ux + uxxx = 0. (12.6)

Assume that the wave solution is of the form

u(x,t) = ei(kx−ωt), (12.7)

where k is the wave number, and ω is the frequency. Substituting (12.7) into the
dispersive equation (12.6) and using the real or imaginary part we obtain the
dispersion relation

ω = k− k2, (12.8)

and therefore the wave propagates at the velocity

c =
ω
k

= 1− k2. (12.9)

This indicates that dispersive waves are waves in which the velocity c varies with the
wave number k as shown by (12.9). Dispersive effects usually gives a relationship
between the frequency and the wave speed.

On the other hand, using an even order spatial derivative, which is the dissipative
term, in (12.4) gives the dissipative equation

ut + ux−uxx = 0. (12.10)

Using the assumption (12.7) into (12.10) gives the relation
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ω = k(1− ik), (12.11)

and this in turn gives the solution

u(x,t) = e−k2t+ik(x−t). (12.12)

It is obvious that the solution (12.12) indicates that the wave propagates at a unity
speed. The dissipation, the exponential decay of (12.12), is also clear for t →∞,k �=
0. A wave that loses amplitude, due to loss of energy over time, is called a dissipative
wave.

We have discussed so far linear equations. However, if we replace ux in (12.6)
and (12.10) by a nonlinear term uux we obtain the nonlinear equations

ut + uux + uxxx = 0, (12.13)

and
ut + uux−uxx = 0, (12.14)

respectively. These equations are the well-known KdV and Burgers equations that
will be studied in details in the forthcoming chapters. It is interesting to point out
that the delicate balance between the nonlinearity effect of uux and the dispersion
effect of uxxx gives rise to solitons, that after a fully interaction with others, the soli-
tons reemerge retaining their identities with the same speed and shape. However, the
Burgers equation (12.14) combines the effects of nonlinearity and dissipation that
gives rise to kinks. The KdV equation has solitary wave solutions characterized by
analytic sech2 functions that have exponentially decaying wings. The Burgers equa-
tion has kink solutions characterized by tanh function that approaches a constant at
infinity.

It is important to note that the superposition principle, which works for linear
equations, is not applicable for nonlinear wave equations. If two solitons of the KdV
equation collide, the solitons simply pass through each other and emerge unchanged.

Moreover, Rosenau and Hyman [8] investigated the nonlinear dispersive equation
K(n,n) given by

ut + a(un)x +(un)xxx = 0, n > 1. (12.15)

This equation combines the nonlinear convection term (un)x and the genuinely non-
linear dispersive term (un)xxx. The delicate interaction between the genuine nonli-
nearity and dispersion gives rise to compacton: soliton with compact support free
of exponential wings. In [8], it was proved that solitary waves may compactify un-
der the influence of purely nonlinear dispersion which is capable of causing deep
changes in the nature of genuinely nonlinear phenomenon. One important feature
of the compacton structure, in addition to the absence of infinite wings, is that the
width of the compacton is independent of the amplitude. It is to be noted that while
compactons are the essence of the focusing branch where a > 0, spikes, peakons,
and cusps are the hallmark of the defocusing branch where a < 0. Furthermore,
the defocusing branch was found to rise to solitary patterns having cusps or infinite
slopes. This confirms the fact that the focusing branch and the defocusing branch
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represent two different sets of models each leading to a different physical structure.
The K(n,n) equation cannot be derived from a first order Lagrangian except for
n = 1, and did not possess the usual conservation laws of energy that KdV equation
possessed.

Solitons are analytic solutions whereas compactons are nonanalytic solutions.
The points of non-analyticity at the edge of the compacton correspond to points
of genuine nonlinearity for the differential equations. Compactons exhibit elastic
collision where after colliding with other compactons they reemerge with the same
coherent shape. The main difference between linear or weakly nonlinear equations
such as the KdV and the Burgers equation versus the completely nonlinear equations
such as the K(n,n) equations is that the fully nonlinear models admit nonanalytic
solutions.

More definitions and explanations of these terms, solitons, compactons, kinks,
peakon, as well as other terms will be addressed in the forthcoming sections and
chapters. Several nonlinear evolution equations, which give travelling waves solu-
tions, will be investigated in subsequent chapters by using basic methods.

It is also interesting to define the terminology complete integrable PDEs. A co-
mmon feature of complete integrable PDEs is the existence of an infinite sequence
of independent conservation laws, and hence give rise to N-soliton solutions. A
conservation law for any equation is a divergence expression

∂ T
∂ t

+
∂X
∂x

= 0, (12.16)

where T and X are named conserved density and conserved flux respectively and
neither one involves derivatives with respect to t, is called a conservation law [1].
More about conservation laws will be presented at the end of this chapter. The KdV,
Boussinesq, KP, sine-Gordon equations are examples of completely integrable equa-
tions that will be studied in the forthcoming chapters.

12.2.2 Types of Travelling Wave Solutions

The study of equations that model wave phenomena requires the study of travelling
wave solutions. Travelling wave solution is a solution of permanent form moving
with a constant velocity. The travelling wave solutions are usually obtained by re-
ducing the nonlinear evolution equations to associated ordinary differential equa-
tions. This is mostly handled by using the ansatz u(x,t) = u(ξ ),ξ = x− ct, c is the
wave speed, that will transform the PDE in x,t to an ordinary differential equation
in ξ which can be solved by several appropriate methods.

There are many types of travelling wave solutions that are of particular interest in
solitary wave theory that is rapidly developing in many scientific fields from water
waves in shallow water to plasma physics. As stated before, travelling waves appear
in many types, and only some of these types will be addressed:
1. Solitary Waves and Solitons
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Solitary waves are localized travelling waves travelling with constant speeds and
shape, asymptotically zero at large distances. Solitons are special kinds of solitary
waves. The soliton solution is spatially localized solution, hence u′(ξ ),u′′(ξ ), and
u′′′(ξ )→ 0 as ξ →±∞, ξ = x− ct. Solitons have a remarkable soliton property in
that it keeps its identity upon interacting with other solitons.

Fig. 12.1 Graph of a soliton solution sech2 (x− t),−π � x, t � π , that has an infinite support or
infinite tails.

The KdV equation is the pioneer model for analytic bell-shaped sech2 solitary wave
solutions. Fig. 12.1 above shows a graph of a bell-shaped sech2 soliton solution
characterized by infinite wings or infinite tails.
2. Periodic Solutions
Periodic solutions are travelling wave solutions that are periodic such as cos(x− t).
The standard wave equation utt = uxx gives periodic solutions. As stated before,
because this standard wave equation is linear, it admits d’Alembert solution, and
components can be superposed. Fig. 12.2 above shows a periodic solution u(x,t) =
cos(x− t),−π � x,t � π for a standard wave equation.
3. Kink Waves
Kink waves are travelling waves which rise or descend from one asymptotic state to
another. The kink solution approaches a constant at infinity.

The standard dissipative Burgers equation

ut + uux = νuxx, (12.17)

where ν is the viscosity coefficient, is a well-known equation that gives kink solu-
tions. Other equations provide kinks solutions as well. Fig. 12.3 above shows a kink

solution u(x,t) = 1− tanh(x− t),−10 � x,t � 10 for Burgers equation with ν =
1
2

.
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Fig. 12.2 Graph of a periodic solution u(x, t) = cos(x− t),−π � x, t � π .

Fig. 12.3 Graph of a kink solution u(x, t) = 1− tanh(x− t),−10 � x, t � 10.

Fig. 12.4 shows a kink solution and a soliton solution.
4. Peakons
Peakons are peaked solitary wave solutions. In this case, the travelling wave solu-
tions are smooth except for a peak at a corner of its crest. Peakons are the points
at which spatial derivative changes sign so that peakons have a finite jump in first
derivative of the solution u(x,t). This means that peakons have discontinuities in
the x-derivative but both one-sided derivatives exist and differ only by a sign [10].
The peakons are solitons retaining their shape and speed after interacting. In [7,10],
peakons were investigated and classified as periodic peakons and peakons with
exponential decay.

The integrable Camassa-Holm and the Degasperis-Procesi equations
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Fig. 12.4 Graphs of a kink solution (lower) and a soliton solution (upper).

ut −uxxt +(b + 1)uux = buxuxx + uuxxx (12.18)

for b = 2 and b = 3 respectively, admit peaked solitary wave solutions. The CH
equation has peaked solitary wave solutions of the form

u(x,t) = ce−|x−ct|, (12.19)

where c is the wave speed. Fig.12.5 below shows a peakon solution u(x,t) =
e−|x−t|,−2 � x,t � 2 for CH equation with c = 1.

Fig. 12.5 Graph of a peakon solution u(x, t) = e−|x−t |,−2 � x, t � 2 for CH equation with c = 1.

5. Cuspons
Cuspons are other forms of solitons where solution exhibits cusps at their crests.
Unlike peakons where the derivatives at the peak differ only by a sign, the derivatives
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at the jump of a cuspon diverges. Fig. 12.6 below shows a virtual graph of a cuspon
that is not derived from a well-known model.

Fig. 12.6 Graph of a cuspon u(x, t) = e−(|(x−ct)|) 1
6 ,c = 1,−2 � x, t � 2.

Fig. 12.6 above shows a cuspon with a cusp on its crest. The derivatives at the cusp
diverges.

It is important to note that the soliton solution u(x,t), along with its derivatives,
tends to zero as | x |→ ∞. The Camassa-Holm equation and the DP equation are
two equations that give cuspons for specific cases that are discussed in details in
[7]. Unfortunately, we could not find an explicit expression for cuspons. Instead, we
used a virtual expression to represent it graphically. The assumption is that cuspon
can be represented as

u(x,t) = e−|x−ct| 1n , n > 1. (12.20)

We can easily show that uξ = ∞ at the cusp, and uξ ,uξ ξ , ...→ 0 to characterize the
soliton property.

In [7], and in the references therein, cuspons were investigated and classified as
periodic cuspons and and cuspons with exponential decay.
6. Compacton
Compacton is a new class of solitons with compact spatial support such that each
compacton is a soliton confined to a finite core. Compactons are defined by soli-
tary waves with the remarkable soliton property that after colliding with other co-
mpactons, they reemerge with the same coherent shape [8]. These particle like
waves exhibit elastic collision that are similar to the soliton collision. It was found
that a compacton is a solitary wave with a compact support where the nonlinear
dispersion confines it to a finite core, therefore the exponential wings vanish.

The genuinely nonlinear dispersive K(n,n) equations, a family of nonlinear KdV
like equations is of the form
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ut + a(un)x +(un)xx = 0, a > 0,n > 1, (12.21)

which supports compact solitary traveling structures for a > 0.
The definitions given so far for compactons are:

(i) compactons are solitons with finite wavelength;
(ii) compactons are solitary waves with compact support;
(iii) compactons are solitons free of exponential tails;
(iv) compactons are solitons characterized by the absence of infinite wings;
(v) compactons are robust soliton-like solutions.

Two important features of compactons structures are observed, namely:
(i) unlike the standard KdV soliton where u(ξ )→ 0 as ξ → ∞, the compacton is
characterized by the absence of the exponential tails or wings, where u(ξ ) does not
tend to 0 as ξ → ∞;
(ii) unlike the standard KdV soliton where width narrows as the amplitude increases,
the width of the compacton is independent of the amplitude.

It is important to note that Eq. (12.21) with (+a) is called the focusing branch,
and with (−a), the equation is called the defocusing branch of the K(n,n) equa-
tions. Many studies revealed that the defocusing branch supports solutions with
solitary patterns having cusps or infinite slopes. Further, it was shown that while
compactons are the essence of the focusing branch (+a), spikes, peaks and cusps
are the hallmark of the defocusing branch (−a). This in turn means that the focusing
branch (12.21) and the defocusing branch represent two different models, each lead-
ing to a different physical structure. Fig. 12.7 below shows a graph of a compacton
u(x,t) = cos

1
2 (x− t),c = 1,0 � x,t � 1.

Fig. 12.7 Graph of a compacton u(x, t) = cos
1
2 (x− t),c = 1,0 � x, t � 1.
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The graph shows that a compacton is a solitary wave free of exponential wings.
The remarkable discovery of compactons has led to an intense study over the last

few years. The study of compactons may give insight into many scientific processes
such as the super deformed nuclei, preformation of cluster in hydrodynamic models,
the fission of liquid drops and inertial fusion. The stability analysis has shown that
compacton solutions are stable, where the stability condition is satisfied for arbitrary
values of the nonlinearity parameter. The stability of the compactons solutions was
investigated by means of both linear stability and by Lyapunov stability criteria.
Moreover, the compactons are nonanalytic solutions whereas classical solitons are
analytic solutions. Solitons and compactons with and without exponential wings
respectively, are termed by using the suffix-on to indicate that it has the property of
a particle, such as phonon, and photon. Fig. 12.8 below shows a compacton (left)
and a soliton (right).

Fig. 12.8 The compacton graph (left) and the soliton graph without and with infinite wings respe-
ctively.

12.2.3 Nonanalytic Solitary Wave Solutions

It will be discussed later that some nonlinear dispersive equations give analytic soli-
tary wave solutions, such as the KdV equation, whereas others give nonanalytic so-
lutions such as the K(n,n) equations. The appearance of nonanalytic solitary wave
solutions, including compactons, peakons, and cuspons has increased the menagerie
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of solutions appearing in model equations, both completely integrable and noninte-
grable [4,5,7].

The distinguishing feature of the systems admitting nonanalytic solitary wave
solutions is that, in contrast to the classical nonlinear wave equations, they all in-
clude a genuinely nonlinear dispersion, such as (un)xxx of the K(n,n) equation, or
the highest order derivatives (characterizing the dispersion relation) are typically
multiplied by a function of the dependent variable as uuxxx of the Camassa-Holm
equation [4,5].

12.3 Analysis of the Methods

In the literature, researchers usually use a variety of distinct methods to analyze
nonlinear evolution equations. The methods range from reasonable to difficult that
require a huge size of work. There is no unified method that can be used for all types
of nonlinear evolution equations. For single soliton solutions, several methods, such
as the pseudo spectral method, the inverse scattering method [1], Hirota’s bilin-
ear method [4], the truncated Painlevé expansion, Bäcklund transformation method,
homogeneous balance method, projective Riccati equation method, Jacobi elliptic
functions method, and many others have been used. Lot of informations and details
about these methods are presented in several texts. However, the tanh method [6],
the tanh-coth method, and the sine-cosine method are proved to be powerful me-
thods, and therefore are recently heavily used in several research works, but rarely
in books. It is for this reason, our main methods in this text will be the implemen-
tation of these methods, namely the tanh-coth method and the sine-cosine method,
to handle nonlinear dispersive and dissipative equations. However, for N-soliton so-
lutions, the Hirota’s bilinear form combined with the simplified version of Hirota’s
method established by Hereman [3] will be used as well.

The tanh-coth method and the sine-cosine method have been applied for a wide
variety of nonlinear problems and will be used in this text for single travelling wave
solution. These two methods were proved to be powerful, reliable and effective in
handling a huge number of nonlinear dispersive and dissipative equations. More-
over, the Hirota bilinear formalism and a simplified version of this method will be
used to address the concept of multiple soliton solutions. This does not mean in
any way that other methods are not useful, but because these methods are used in
most of the available tests, we prefered to implement these relatively new developed
methods only. The main features of the tanh-coth method, sine-cosine method and
the Hirota formalism will be presented.

12.3.1 The Tanh-coth Method

A wave variable ξ = x− ct converts any PDE
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P(u,ut ,ux,uxx,uxxx, · · ·) = 0, (12.22)

to an ODE
Q(u,u′,u′′,u′′′, · · ·) = 0. (12.23)

Equation (12.23) is then integrated as long as all terms contain derivatives where
integration constants are considered zeros.

The standard tanh method is developed by Malfliet [6] where the tanh is used
as a new variable, since all derivatives of a tanh are represented by tanh itself. For
example, if we set T = tanh(ξ ), then we have

T = tanh(ξ ),
T ′ = 1−T2,
T ′′ = −2T + 2T 3,
T ′′′ = −2 + 8T2−6T 4,

T (4) = 16T −40T 3 + 24T5.

(12.24)

In other words, introducing a new independent variable

Y = tanh(μξ ), ξ = x− ct, (12.25)

where μ is the wave number, leads to the change of derivatives:

d
dξ

= μ(1−Y2)
d

dY
,

d2

dξ 2 =−2μ2Y (1−Y2)
d

dY
+ μ2(1−Y 2)2 d2

dY 2 ,

d3

dξ 3 = 2μ3(1−Y 2)(3Y 2−1)
d

dY
−6μ3Y (1−Y 2)2 d2

dY 2 + μ3(1−Y 2)3 d3

dY 3 ,

d4

dξ 4 =−8μ4Y (1−Y2)(3Y 2−2)
d

dY
+ 4μ4 (1−Y2)2(9Y 2−2)

d2

dY 2

−12μ4Y (1−Y2)3 d3

dY 3 + μ4 (1−Y2)4 d4

dY 4 ,

(12.26)
The tanh-coth method [10] admits the use of the finite expansion

u(μξ ) = S(Y ) =
M

∑
k=0

akY
k +

M

∑
k=1

bkY
−k, (12.27)

where M is a positive integer, in most cases, that will be determined. For noninteger
M, a transformation formula is used to overcome this difficulty. Expansion (12.27)
reduces to the standard tanh method for bk = 0,1 � k � M. Substituting (12.27) into
the reduced ODE results in an algebraic equation in powers of Y .

To carry out the balance method, we notice from (12.26) and (12.27) that the
highest exponents for the function u and its derivatives are as follows
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u → M,
un → nM,

(12.28)

u′ → M + 1,
u′′ → M + 2,

u(r) → M + r.
(12.29)

To determine the parameter M, we usually balance the linear terms of highest order
in the resulting equation with the highest order nonlinear terms by using the scheme
given above. We then collect all coefficients of powers of Y in the resulting equation
where these coefficients have to vanish. This will give a system of algebraic equa-
tions involving the parameters ak,bk,μ , and c. Having determined these parameters
we obtain an analytic solution u(x,t) in a closed form. The solutions we obtain may
be solitons in terms of sech2, or may be kinks in terms of tanh. However, this method
may give periodic solutions as well.

12.3.2 The Sine-cosine Method

Proceeding as in the tanh-coth method, Equation (12.23) is integrated as long as
all terms contain derivatives where integration constants are considered zeros. The
sine-cosine method admits the use of the solutions in the forms

u(x,t) = λ cosβ (μξ ), | ξ |� π
2μ

, (12.30)

and
u(x,t) = λ sinβ (μξ ), | ξ |� π

μ
, (12.31)

where λ ,μ , and β are parameters that will be determined, μ and c are the wave
number and the wave speed respectively. Equations (12.30) and (12.31) give

(un)′(μξ ) = −nβ μλ n cosnβ−1(μξ )sin(μξ ),

(un)′′(μξ ) = −n2μ2β 2λ n cosnβ (μξ )+ nμ2λ nβ (nβ −1)cosnβ−2(μξ ),
(12.32)

and

(un)′(μξ ) = nβ μλ n sinnβ−1(μξ )cos(μξ ),

(un)′′(μξ ) = −n2μ2β 2λ n sinnβ (μξ )+ nμ2λ nβ (nβ −1)sinnβ−2(μξ ).
(12.33)

Substituting (12.32) or (12.33) into (12.23) gives a trigonometric equation of
cosR(μξ ) or sinR(μξ ) terms. The parameters are then determined by first balancing
the exponents of each pair of cosine or sine to determine R. We next collect all co-
efficients of the same power in cosk(μξ ) or sink(μξ ), where these coefficients have
to vanish. This gives a system of algebraic equations among the unknowns β , λ
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and μ that will be determined. The solutions proposed in (12.30) and (12.31) follow
immediately.

The algorithms described above certainly work well for a large class of very
interesting nonlinear wave equations. The main advantage of the tanh-coth method
and the sine-cosine method, presented above, is that the great capability of reducing
the size of computational work compared to existing techniques such as the pseudo
spectral method, the inverse scattering method, Hirota’s bilinear method, and the
truncated Painlevé expansion. The whole work will be changed from solving no-
nlinear differential equation to simply solving a system of algebraic equations that
can be used by any manipulation computer program such as Mathematica or Maple.
As will be seen later, the tanh-coth method and the sine-cosine method will give the
same solutions for M is even. However, For M is odd, the two methods give distinct
solutions.

Hirota [4] constructed the N-soliton solutions of the integrable evolution equa-
tions by reducing it to the bilinear form. As stated before, completely integrable
PDEs are the equations that have infinitely many conservation laws and admit N-
soliton solutions of any order. The bilinear formalism is a very helpful tool in the
study of the nonlinear equations and it was the most suitable for computer algebra.
In what follows we highlight the main steps of this method.

12.3.3 Hirota’s Bilinear Method

A well-known third method, namely, the Hirota bilinear form, will be employed to
handle specific integrable nonlinear equations. The method is widely used especially
to handle the multi-soliton solutions of many evolution equations. Hirota introduced
the customary definition of the Hirota’s bilinear operators by

Dn
t Dm

x (a ·b) = (
∂
∂ t
− ∂

∂ t ′
)n(

∂
∂ x
− ∂

∂x′
)ma(x,t)b(x′,t ′)|x′ = x,t ′ = t. (12.34)

In what follows, we express some of the bilinear differentials operators:

Dx(a ·b) = axb−abx,
D2

x(a ·b) = a2xb−2axbx + ab2x,
DxDt(a ·b) = Dx(at b−abt) = axtb−atbx−axbt + abxt ,
DxDt(a ·a) = 2(aaxt −axat),

D4
x(a ·b) = a4xb−4a3xbx + 6a2xb2x−4axb3x + ab4x,

Dn(a ·a) = 0, for n is odd.

(12.35)

Moreover, more of the properties of the D-operators are as follows
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D2
t ( f · f )

f 2 =

∫∫
utt dxdx,

Dt D3
x ( f · f )
f 2 = uxt + 3u

∫
xut dx′,

D2
x ( f · f )

f 2 = u,

D4
x ( f · f )

f 2 = u2x + 3u2,

DtDx ( f · f )
f 2 = ln( f 2)xt ,

D6
x ( f · f )

f 2 = u4x + 15uu2x + 15u3,

D2
t ( f · f )

f 2 =

∫∫
utt dxdx,

Dt D3
x ( f · f )
f 2 = uxt + 3u

∫
ut dx′,

(12.36)

where
u(x,t) = 2(ln f (x,t))xx, (12.37)

The solution of the canonical KdV equation

ut + 6uux + uxxx = 0, (12.38)

can be expressed by

u(x,t) = 2
∂ 2

∂ x2 log f , (12.39)

where f (x,t) is given by the perturbation expansion

f (x,t) = 1 +
∞

∑
n=1

n fn(x,t), (12.40)

where is a formal expansion parameter. For the one-soliton solution we set

f (x,t) = 1 + f1, (12.41)

and for the two-soliton solution we set

f (x,t) = 1 + f1 + 2 f2, (12.42)

and so on. The functions f1, f2, f3, · · · can be determined by using the Hirota’s bi-
linear formalism or by direct substitution of (12.40) into the appropriate equation as
will be seen later. The N-soliton solution is obtained from
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f1 =
N

∑
i=1

exp(θi), (12.43)

where
θi = kix− cit, (12.44)

where ki and ci are arbitrary constants, ki is called the wave number. The relation
between ki and ci can be obtained by determining the dispersion relation.

In [3], a simplified form of the Hirota’s bilinear formalism was introduced to
minimize the cumbersome work of Hirota’s method. The simplified approach in [3]
will be examined in forthcoming chapters.

12.4 Conservation Laws

It is important to study the conservation laws of nonlinear evolution equations. The
existence of a sequence of conserved densities (with gaps) predicts integrability [2].
The lower order conservation laws can be determined directly from the equation,
whereas the higher order conservation laws need a huge size of long and tedious
work. The first few conservation laws have a physical interpretation, and additional
ones may facilitate the study of both quantitative and qualitative properties of the so-
lution [2]. The non-existence of conserved quantities does not preclude integrability
such as Burgers equation that has one conserved density [2].

A conservation law for any equation is a divergence expression

∂ T
∂ t

+
∂X
∂x

= 0, (12.45)

where T and X are named conserved density and conserved flux respectively and
neither one involves derivatives with respect to t, is called a conservation law [1].
This means that T and X may depend on x,t,u,ux, · · · but not on ut . For most equa-
tions, the density-flux pairs are polynomials in u and derivatives of u with respect to
x. For polynomial-type T and X , integration of (12.45) yields

P =

∫ ∞

−∞
T dx = constant, (12.46)

provided that X vanishes at infinity [2]. For example, we consider the canonical
form of the KdV equation

ut −6uux + uxxx = 0. (12.47)

This equation is in conservation form [2] where

T = u, X = uxx−3u2. (12.48)

This in turn gives the first conservation law
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−∞
udx = constant. (12.49)

Multiplying (12.47) by u yields

∂
∂ t

(
1
2

u2)+
∂
∂x

(uuxx− 1
2
(ux)

2−2u3) = 0, (12.50)

that gives the second law of conservation laws∫ ∞

−∞
u2dx = constant. (12.51)

Multiplying (12.47) by 3u2 gives

3u2(ut −6uux + uxxx) = 0. (12.52)

Multiplying the partial derivative of (12.47) with respect to x by ux gives

ux(uxt −6(ux)
2−6uuxx + uxxxx) = 0. (12.53)

Adding the last two quantities yields

∂
∂ t

(
u3− 1

2
(ux)

2
)

+
∂
∂x

(
−9

2
u4 + 3u2uxx−6u(ux)

2 + uxuxxx− 1
2
(uxx)

2
)

= 0.

(12.54)
This gives the third conservation law of the KdV equation

∫ ∞

−∞

(
u3− 1

2
(ux)

2
)

dx = constant. (12.55)

It was formally proved that there is an infinite set of conservation laws for the KdV
equation.

The existence of conservation laws has been considered as an indication of the
integrability of the KdV. There is an infinite set of independent conservation laws
for the KdV equation. The first five conservation laws of this set are∫ ∞

−∞
udx = constant,∫ ∞

−∞
u2dx = constant,∫ ∞

−∞
(u3− 1

2
(ux)

2)dx = constant,∫ ∞

−∞
(5u4 + 10u(ux)

2 +(uxx)
2)dx = constant,∫ ∞

−∞
(21u5 + 105u2(ux)

2 + 21u(uxx)
2 +(uxxx)

2)dx = constant,

(12.56)

where each conservation law includes a higher power of u than the preceding law.
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In what follows, we list some of the conservation laws for specific well-known
nonlinear equations.
(i) The modified KdV (mKdV) equation is given by

ut −6u2ux + uxxx = 0, (12.57)

has many conservation laws. Some of the conservation laws are given by u,u2,u4 +
(ux)

2. This in turn gives the first three conservation laws:

T1 = u, X1 = 2u3 + uxx,

T2 =
1
2

u2, X2 =
3
2

u4 + uuxx− 1
2

u2
x ,

T3 =
1
4

u4− 1
4

u2
x, X3 = u6 + u3uxx−3u2u2

x−
1
2

uxuxxx +
1
4

u2
xx.

(12.58)

(ii) The Lax fifth-order equation is given by

ut + 30u2ux + 20uxuxx + 10uu3x + u5x = 0. (12.59)

The conserved densities Ti of the Lax equation are given by

T1 = u,

T2 =
1
2

u2,

T3 =
1
3

u3− 1
6

u2
x ,

T4 =
1
4

u4− 1
2

uu2
x +

1
20

u2
2x.

(12.60)

(iii) The Sawada-Kotera fifth-order equation is given by

ut + 5u2ux + 5uxuxx + 5uu3x + u5x = 0. (12.61)

The conserved densities Ti of the Sawada-Kotera equation are given by

T1 = u,
T2 = −,

T3 =
1
3

u3−u2
x,

T4 =
1
4

u4− 9
4

uu2
x +

3
4

u2
2x.

(12.62)

Notice that the Sawada-Kotera equation does not have a conserved density that in-
cludes u2.
(iv) The Kaup-Kuperschmidt equation fifth-order equation is given by

ut + 20u2ux + 25uxuxx + 10uu3x + u5x = 0. (12.63)
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The conserved densities Ti of the Kaup-Kuperschmidt equation are given by

T1 = u,
T2 = −,

T3 =
1
3

u3− 1
8

u2
x,

T4 =
1
4

u4− 9
16

uu2
x +

3
64

u2
2x.

(12.64)

(v) The Ito fifth-order equation is given by

ut + 2u2ux + 6uxuxx + 3uu3x + u5x = 0. (12.65)

The Ito equation has a limited number of special conservation laws, hence it is
not completely integrable. It was found that the Ito equation has following three
conserved densities

T1 = u,

T2 =
1
2

u2,

T3 = −,

T4 =
1
4

u4− 9
2

uu2
x +

3
4

u2
2x.

(12.66)

(vi)The seventh-order KdV equation (sKdV) is given by

ut + 6uux + u3x−u5x + αu7x = 0, (12.67)

where α is a nonzero constant, and u = u(x,t) is a sufficiently often differentiable
function. The sKdV equation has three polynomial type conserved quantities given
by:

T1 = u,
T2 = u2,

T3 = −u3 +
1
2
(ux)

2− 1
2
(uxx)

2 +
1
2

α(u3x)
2.

(12.68)

(vii) The Sawada-Kotera-Ito seventh-order equation is given by

ut +252u2ux+63u3
x +378uuxu2x +126u2u3x +63u2xu3x+42uxu4x+21uu5x+u7x = 0.

(12.69)
This equation has an infinite number of conservation laws as proved in [2] and
others. The first four conserved densities are given by

T1 = u,

T2 = −,

T3 =
1
3

u3− 1
3

u2
x ,
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T4 =
1
4

u4− 3
4

uu2
x +

1
12

u2
2x. (12.70)

(viii) The Lax seventh-order equation is given by

ut +140u2ux+70u3
x +280uuxu2x +70u2u3x+70u2xu3x+42uxu4x +14uu5x+u7x = 0.

(12.71)
This equation has an infinite number of conservation laws as proved in [2] and
others. The first four conserved densities are given by

T1 = u,

T2 =
1
2

u2,

T3 =
1
3

u3− 1
6

u2
x , (12.72)

T4 =
1
4

u4− 1
2

uu2
x +

1
20

u2
2x.

(ix) The Kaup-Kuperschmidt seventh-order equation is given by

ut + 2016u2ux + 630u3
x + 2268uuxu2x + 504u2u3x + 252u2xu3x+

147uxu4x + 42uu5x + u7x = 0.
(12.73)

This equation has an infinite number of conservation laws as proved in [2] and
others. The first four conserved densities are given by

T1 = u,
T2 = −,

T3 = u3− 1
8

u2
x,

T4 = u4− 3
4

uu2
x +

1
48

u2
2x.

(12.74)

(x) The Camassa-Holm equation

ut −uxxt + 3uux = 2uxuxx + uuxxx, (12.75)

has the following conservation densities:

T1 = u,
T2 = u2 + u2

x,
T3 = u3 + uu2

x.
(12.76)

(xi) The sine-Gordon equation

utt −uxx + sinu = 0 (12.77)

has the following conservation laws:
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(
1
2

u2
t )x− (1− cosu)t = 0,

(1− cosu)x− (
1
2

u2
x)t = 0,

(
1
4

u4
x−u2

xx)t +(u2
x cosu)x = 0,

(
1
6

u6
x−

2
3

u2
xu2

xx +
8
9

u3
xuxxx +

4
3

u2
xxx)t +(

1
9

u4
x cosu− 4

3
u2

xx cosu)x = 0.

(12.78)

(xii) The sinh-Gordon equation

uxt = α sinhu (12.79)

has the following conservation laws [3]:

T1 = u2
x,

T2 = u4
x + 4u2

xx,
T3 = u6

x + 20u2
xu2

xx + 8u2
xxx,

T4 = 5u8
x + 280u4

xu2
xx−112u4

xx + 224u2
xu2

xxx + 64u2
xxxx.

(12.80)

(xiii) The Schrodinger equation

iut + uxx + q|u|2u = 0, −∞ < x < ∞ (12.81)

has the following conserved densities [1]:

T1 = |u|2,
T2 = u∗ux−u∗x,
T3 = |ux|2− q

2
|u|4,

(12.82)

where u∗ is the complex conjugate of u.
(xiv) The Benjamin-Ono equation

ut + 4uux + H(uxx) = 0, (12.83)

where H is the Hilbert transform defined by

H[u(x,t)] =
1
π

P
∫ ∞

−∞

u(y,t)
y− x

dy, (12.84)

where P refers to the principal value of the integral. The Benjamin-Ono equation
has the following conserved densities [1]

T1 = u, T2 = u2, T3 = u3−3uxH(u). (12.85)
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Chapter 13

The Family of the KdV Equations

13.1 Introduction

The ubiquitous Korteweg de-Dries (KdV) equation [14] in dimensionless variables
reads

ut + auux + uxxx = 0, (13.1)

where subscripts denote partial derivatives. The parameter a can be scaled to any
real number, where the commonly used values are a = ±1 or a = ±6. The KdV
equation models a variety of nonlinear phenomena, including ion acoustic waves in
plasmas, and shallow water waves. The derivative ut characterizes the time evolution
of the wave propagating in one direction, the nonlinear term uux describes the stee-
pening of the wave, and the linear term uxxx accounts for the spreading or dispersion
of the wave. The KdV equation was derived by Korteweg and de Vries to describe
shallow water waves of long wavelength and small amplitude. The KdV equation is
a nonlinear evolution equation that models a diversity of important finite amplitude
dispersive wave phenomena. It has also been used to describe a number of important
physical phenomena such as acoustic waves in a harmonic crystal and ion-acoustic
waves in plasmas. As stated before, this equation is the simplest nonlinear equation
embodying two effects: nonlinearity represented by uux, and linear dispersion re-
presented by uxxx. Nonlinearity of uux tends to localize the wave whereas dispersion
spreads the wave out. The delicate balance between the weak nonlinearity of uux

and the linear dispersion of uxxx defines the formulation of solitons that consist of
single humped waves. The stability of solitons is a result of the delicate equilibrium
between the two effects of nonlinearity and dispersion. This equation is the pioneer
of model equations that gives soliton solutions which characterize solitary waves
that decrease monotonically at infinity [1–4].

The function u(x,t) represents the water’s free surface in non-dimensional vari-
ables. The nonlinear KdV equation gives a large variety of solutions. The solutions
propagate at speed c while retaining its identity. We usually introduce the new wave
variable ξ = x− ct, so that

u(x,t) = u(ξ ). (13.2)
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The soliton solution is spatially localized solution, hence u′,u′′,u′′′ → 0 as ξ →
±∞, ξ = x− ct.

To give a preliminary approach for solving the KdV equation, we substitute
(13.2) into (13.1) to obtain

−cu′+ 6uu′+ u′′′ = 0, (13.3)

that gives
−cu + 3u2 + u′′ = 0, (13.4)

upon integrating (13.3), where constant of integration is taken to be zero. Multiply-
ing (13.4) by 2u′ and integrating the resulting equation we find

(u′)2 = cu2−2u3, (13.5)

or equivalently
du√

cu2−2u3
= dξ . (13.6)

Using a change of variable gives the solution

u(ξ ) =
c
2

sech2
√

c
2

ξ , (13.7)

or equivalently

u(x,t) =
c
2

sech2

√
c

2
(x− ct). (13.8)

It is obvious that u(x,t) in (13.8), along with its derivatives, approaches zero as ξ →
∞. It is also clear from (13.8) that the amplitude of the wave is directly proportional
to its speed c, and this in turn means that the taller the wave the faster it moves. It
moves to the right for (−c) and to the left if we replace (−c) by (+c). It is also clear
that the wave has no dispersion because of the balance between the dispersion effect
and the nonlinear effect. Consequently, the wave retains its identity and shape.

Based on (13.8), the following

u(x,t) =− c
2

csch2(

√
c

2
(x− ct)), (13.9)

is also a travelling wave solution of the KdV equation. Notice that the last solution
is not a soliton, because u(x,t) is unbounded at ξ = 0.

The KdV equation can also be approached by using the Bäcklund transformation.
To achieve this, we introduce a function v such that u = vx. This transformation will
carry out the KdV equation (13.1) to

vxt + 6vxvxx + vxxxx = 0, (13.10)

where by integrating this equation with respect to x we find
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vt + 3(vx)
2 + vxxx = 0. (13.11)

The last equation is called the potential KdV equation that will be examined later in
this chapter. Using the wave variable ξ = x− ct, and proceeding as before we can
easily obtain the solutions

v =
√

c tanh(

√
c

2
(x− ct)),

v =
√

ccoth(

√
c

2
(x− ct)).

(13.12)

Recall that u = vx, hence we find

u(x,t) =
c
2

sech2(

√
c

2
(x− ct)),

u(x,t) = − c
2

csch2(

√
c

2
(x− ct)).

(13.13)

13.2 The Family of the KdV Equations

This section focuses on the family of the KdV equations. The canonical KdV equa-
tion is a nonlinear dispersive equation of third order. However, the KdV equations
appear in three, five, seven or more order forms. Other modified forms that include
changes in the nonlinearity of uux will be examined as well. In what follows, a brief
summary of these forms will be given. The complete analysis of each form will be
addressed in the forthcoming sections.

13.2.1 Third-order KdV Equations

The family of third order Korteweg-de Vries is of the form

ut + f (u)ux + uxxx = 0, (13.14)

where u(x,t) is a function of space x and time variable t. Constants can be used as
coefficients of f (u)ux and uxxx, but these constants can be usually scaled out. The
nonlinear term f (u) appears in the following forms

f (u) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

αu,
αu2,
αun,
αux,
2αu−3βu2,
αun−βu2n.

(13.15)
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(i) For f (u) =±6u we obtain one of the standard KdV equations

ut ±6uux + uxxx = 0, (13.16)

where the factor ±6 is appropriate for complete integrability. Also, f (u) = ±u is
also used. The complete integrability means that the KdV equation has N-soliton
solutions as will be presented later.

(ii) For f (u) = 6u2, Eq. (13.14) is called the modified KdV (mKdV) equation given
by

ut + 6u2ux + uxxx = 0. (13.17)

The mKdV equation is identical to the KdV equation in that both are completely
integrable and each has infinitely many conserved quantities. The mKdV equation
appears in electric circuits and multi-component plasmas. The mKdV equation gives
algebraic solitons solutions in the form of a rational function. Stability and instabi-
lity conditions of algebraic solitons of the mKdV equation have been investigated
thoroughly in [1,2].

(iii) For f (u) = αun,n � 3, Eq. (13.14) is called the generalized KdV (gKdV) equa-
tion given by

ut +αunux + uxxx = 0, n � 3. (13.18)

Unlike the KdV equation and the mKdV equation, the generalized KdV equation
(13.18) is not integrable for n � 3, and therefore does not give multiple-soliton
solutions [8,9].

(iv) For f (u) = αux, Eq. (13.14) is called the potential KdV equation given by

ut +α(ux)
2 + u3x = 0. (13.19)

As stated before, the potential KdV equation [4] can be obtained from the standard
KdV equation by setting u = vx and integrating the resulting equation with respect
to x.

(v) For f (u) = 2αu−3βu2,α,β > 0, Eq. (13.14) is called the Gardner equation [5]
or the combined KdV-mKdV equation, given by

ut +(2αu−3βu2)ux + uxxx = 0. (13.20)

The Gardner equation is widely used in various branches of physics, such as plasma
physics, fluid physics, quantum field theory. The equation plays a prominent role in
ocean waves. The Gardner equation describes internal waves and admits quite inte-
resting tanh type solutions. The Gardner equation has been investigated thoroughly
in the literature because it is used to model a variety of nonlinear phenomena.

(vi) For f (u) = αun−βu2n we obtain another generalized KdV equation with two
power nonlinearities of the form

ut +(αun−βu2n)ux + uxxx = 0. (13.21)
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This last equation models the propagation of nonlinear long acoustic-type waves
[19]. The function f ′, where f = ( α

n+1 un+1− β
2n+1 u2n+1) is regarded as a nonlin-

ear correction to the limiting long-wave phase speed c. If the amplitude is not su-
pposed to be small, Eq. (13.21) serves as an approximate model for the description
of weak dispersive effects on the propagation of nonlinear waves along a characte-
ristic direction. The well-known Gardner equation, that is also called the combined
KdV-mKdV equation, can be obtained by setting n = 1 in Eq. (13.21).

Equation (13.21) appears in many scientific applications and gives rise to a
variety of solitons. For this reason, this equation has been subjected to thorough
studies in [19,21] and the references therein. The main focus of these studies was
the solitary wave solutions, collapsing solitons, algebraic solitons, and solitary wave
instability. Algebraic solitons are solitons that decay to zero at infinity or approach
nonzero boundary values at an algebraic rate.

13.2.2 The K(n,n) Equation

It was stated before that the KdV equation is characterized by the presence of the
weak nonlinearity term uux and the linear dispersion term uxxx. The delicate balance
between the two effects gives rise to solitons. However, a KdV-like equation was
introduced by Rosenau et. al [18] and given by

ut + a(un)x + b(un)xxx = 0. (13.22)

The K(n,n) equation (13.22) is characterized by the genuinely nonlinear term (un)x

and the genuinely nonlinear dispersion term (un)xxx. The balance between the non-
linear convection term (un)x and the genuinely dispersion term (un)xxx gives rise
to the so-called compacton, solitary wave with compact support and without tails
or wings. Equation (13.22) was thoroughly studied in the literature, and it was
found that other nonlinear evolution equations possess the property of introducing
compacton solutions. The K(n,n) equation and the compactons phenomena were
presented in the previous chapter and will be examined in this chapter as well.

13.3 The KdV Equation

The ubiquitous KdV equation in dimensionless variables reads

ut + auux + uxxx = 0. (13.23)

This equation models a variety of nonlinear wave phenomena [10–13] such as sha-
llow water waves, acoustic waves in a harmonic crystal, and ion-acoustic waves
in plasmas. The KdV equation is completely integrable and gives rise to multiple-
soliton solutions. The KdV equation has been studied by a variety of methods such
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as the inverse scattering method and the Bäcklund transformation method. Other
methods were used as well.

As stated before, in this chapter and the forthcoming chapters, we will use the
tanh-coth method, sine-cosine method, or both for analyzing the nonlinear equations
under discussion. Moreover, the Hirota’s direct method [10–13] will be used for
completely integrable equations.

We first substitute the wave variable ξ = x− ct, c is the wave speed, into (13.23)
and integrating once to obtain

−cu +
a
2

u2 + u′′ = 0. (13.24)

13.3.1 Using the Tanh-coth Method

We first balance the terms u2 with u′′. This means that the highest power of u2 is 2M,
and for u′′ is M + 2 obtained by using the scheme for the balance process presented
in the previous chapter. Using the balance process leads to

2M = M + 2, (13.25)

that gives
M = 2. (13.26)

The tanh-coth method [23,24] allows us to use the substitution

u(x,t) = S(Y) =
2

∑
j=0

a jY j +
2

∑
i=1

biY−i. (13.27)

Substituting (13.27) into (13.24), collecting the coefficients of each power of Y r,0 �

r � 8, setting each coefficient to zero, and solving the resulting system of algebraic
equations we find the following sets of solutions
(i)

a0 =
3c
a

, a1 = a2 = b1 = 0, b2 =−3c
a

, μ =
1
2

√
c, c > 0. (13.28)

(ii)

a0 =− c
a
, a1 = a2 = b1 = 0, b2 =

3c
a

, μ =
1
2

√−c, c < 0. (13.29)

(iii)

a0 =
3c
a

, a1 = b1 = b2 = 0, a2 =−3c
a

, μ =
1
2

√
c, c > 0. (13.30)

(iv)
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a0 =− c
a
, a1 = b1 = b2 = 0, a2 =

3c
a

, μ =
1
2

√−c, c < 0. (13.31)

Consequently, we obtain the following soliton solutions

u1(x,t) =
3c
a

sech2
[√

c
2

(x− ct)

]
, c > 0,

u2(x,t) = − c
a

(
1−3tanh2

[√−c
2

(x− ct)

])
, c < 0.

(13.32)

Moreover, the travelling wave solutions

u3(x,t) = −3c
a

csch2
[√

c
2

(x− ct)

]
, c > 0,

u4(x,t) = − c
a

(
1−3coth2

[√−c
2

(x− ct)

])
, c < 0.

(13.33)

follow immediately. Fig. 13.1 below shows a graph of a one-soliton solution u1(x,t)
of (13.32) for a = 3,c = 1. The graph is characterized by infinite wings or infinite
tails. This shows that u→ 0 as ξ →±∞, ξ = x− ct.

Fig. 13.1 Graph of the soliton solution u1,a = 3,c = 1 characterized by an infinite wing.

The physical structures of the obtained solutions in (13.32) depend mainly on
the sign of the wave speed c whether c > 0 or c < 0. Consequently, we obtain the
following plane periodic solutions:

u5(x,t) =
3c
a

csc2
[√−c

2
(x− ct)

]
, c < 0,
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u6(x,t) = − c
a

(
1 + 3cot2

[√
c

2
(x− ct)

])
, c > 0,

u7(x,t) =
3c
a

sec2
[√−c

2
(x− ct)

]
, c < 0,

u8(x,t) = − c
a

(
1 + 3tan2

[√
c

2
(x− ct)

])
, c > 0.

(13.34)

13.3.2 Using the Sine-cosine Method

Substituting the cosine assumption into the reduced equation (13.24) gives

−cλ cosβ (μξ )+
a
2

λ 2 cos2β (μξ )

−λ μ2β 2 cosβ (μξ )+ λ μ2β (β −1)cosβ−2(μξ ) = 0.
(13.35)

We should also use the balance between the exponents of the cosine functions. This
means that Eq. (13.35) is satisfied only if the following system of algebraic equa-
tions holds

β −1 �= 0,
2β = β −2,

μ2β 2λ = −cλ ,
a
2

λ 2 = −cλ μ2β (β −1).

(13.36)

This in turn gives
β = −2,

μ =
1
2

√−c,

λ =
3c
a

.

(13.37)

The results in (13.37) can be easily obtained if we also use the sine assumption.
Moreover, the last results give the solutions u1(x,t),u3(x,t), and u7(x,t) that were
obtained before. It is easily observed that the tanh-coth method gives more solutions
than the sine-cosine method.

13.3.3 Multiple-soliton Solutions of the KdV Equation

In this section, we will examine multiple-soliton solutions of the canonical KdV
equation

ut + 6uux + uxxx = 0. (13.38)

Hirota [10–12] established a method for the determination of exact solutions of
nonlinear PDEs. The method is called the Hirota’s direct method or the Hirota’s
bilinear formalism. A necessary condition for the direct method to be applicable
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is that the PDE can be brought into a bilinear form. Hirota proposed a bilinear
form where it was shown that soliton solutions are just polynomials of exponentials.
Finding bilinear forms for nonlinear PDEs, if they exist at all, is highly nontrivial
[6,7]. Considering u(x,t) = 2(ln( f ))xx, the bilinear form for the KdV equation is

B( f , f ) = (D4
x + DxDt)( f · f ) = 0.

Hereman et.al. [6,7] introduced a simplified version of Hirota’s method, where exact
solitons can be obtained by solving a perturbation scheme using a symbolic manip-
ulation package, and without any need to use bilinear forms. In what follows, we
summarize the main steps of the simplified version of Hirota’s method.

The simplified version of Hirota method introduces the change of dependent vari-
able

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 = 2
f f2x− ( fx)

2

f 2 , (13.39)

to carry out the KdV equation (13.38) into a quadratic equation of the form

[ f ( fxt + f4x)]−
[

fx ft + 4 fx f3x−3 f 2
2x

]
= 0. (13.40)

Equation (13.40) can be decomposed into linear operator L and nonlinear operator
N [7] defined by

L =
∂ 2

∂x∂ t
+

∂ 4

∂ x4 ,

N( f , f ) = − fx ft −4 fx f3x + 3 f2x f2x.
(13.41)

The function f (x,t) is assumed to have a perturbation expansion given by

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (13.42)

where ε is a non small formal expansion parameter. Following Hirota’s method [10–
12] and the simplified version of Hereman et. al. established in [7], we substitute
(13.42) into (13.41) and equate to zero the powers of ε to obtain

O(ε0) : B(1 ·1) = 0,
O(ε1) : B(1 · f1 + f1 ·1) = 0,
O(ε2) : B(1 · f2 + f1 · f1 + f2 ·1) = 0,
O(ε3) : B(1 · f3 + f1 · f2 + f2 · f1 + f3 ·1) = 0,
O(ε4) : B(1 · f4 + f1 · f3 + f2 · f2 + f3 · f1 + f4 ·1) = 0,
O(ε5) : B(1 · f5 + f1 · f4 + f2 · f3 + f3 · f2 + f4 · f1 + f5 ·1) = 0,

...
O(εn) : B(∑n

j=0 f j · fn− j) = 0,

where the bilinear form B is defined by

B( f , f ) = (D4
x + DxDt)( f · f ) = 0.
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It is interesting to note that the previous scheme is the same for every bilinear
operator B. In other words we can set

O(ε1) : L f1 = 0, (13.43)

O(ε2) : L f2 =−N( f1, f1), (13.44)

O(ε3) : L f3 =− f1L f2− f2L f1−N( f1, f2)−N( f2, f1), (13.45)

O(ε4) : L f4 =− f1L f3− f2L f2− f3L f1 (13.46)

−N( f1, f3)−N( f2, f2)−N( f3, f1),

O(ε5) : L f5 =− f1L f4− f2L f3− f3L f2− f4L f1 (13.47)

−N( f1, f4)−N( f2, f3)−N( f3, f2)−N( f4, f1),

...

O(εn) : L fn =−
n−1

∑
j=1

[ f jL fn− j + N( f j, fn− j)] = 0. (13.48)

The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi), (13.49)

where
θi = kix− cit, (13.50)

where ki and ci are arbitrary constants, ki is called the wave number. Substituting

u(x,t) = ekix−cit (13.51)

into the linear terms of the KdV equation (13.38) gives the dispersion relation

ci = k3
i . (13.52)

We therefore find
θi = kix− k3

i t. (13.53)

This means that
f1 = exp(θ1) = exp(k1(x− k2

1t)), (13.54)

obtained by using N = 1 in (13.49).
For the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp(k1(x− k2
1t)), (13.55)

where we used ε = 1. Recall that u(x,t) = 2(ln f )xx. This means that the one soliton
solution is given by

u(x,t) =
2k2

1exp(k1(x− k2
1t))

1 + exp(k1(x− k2
1t))2

, (13.56)
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or equivalently

u(x,t) =
k2

1

2
sech2

[
k1

2
(x− k2

1t)

]
. (13.57)

Setting k1 =
√

c in (13.57) gives the one-soliton solution obtained above by using
the tanh-coth and the sine-cosine methods.

To determine the two-soliton solutions, we first use N = 2 in (13.49) to get

f1 = exp(θ1)+ exp(θ2). (13.58)

To determine f2, we substitute (13.58) into (13.45) to evaluate the right hand side
and equate it with the left hand side to obtain

f2 = ∑
1�i< j�N

ai jexp(θi + θ j), (13.59)

where the phase factor ai j is given by

ai j =
(ki− k j)

2

(ki + k j)2 , (13.60)

and θi and θ j are given above in (13.53).
For the two-soliton solution we use 1 � i < j � 2, and therefore we obtain

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (13.61)

where the phase factor a12 is given by

a12 =
(k1− k2)

2

(k1 + k2)2 . (13.62)

This in turn gives

f (x,t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t . (13.63)

To determine the two-soliton solutions explicitly, we use (13.39) for the function f
in (13.63). Fig. 13.2 below shows a two-soliton solution for k1 = 1,k2 = 2,−20 �

x,t � 20.
To determine f3 we follow the discussion presented before. We therefore set

f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3),

(13.64)

and consequently we have
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Fig. 13.2 A two-soliton solution graph for k1 = 1,k2 = 2,−20 � x, t � 20.

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3)
+ f3(x,t).

(13.65)

Substituting (13.65) into (13.49) and proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (13.66)

where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (13.67)

and θ1, θ2 and θ3 are given above in (13.53). For the three-soliton solutions we use
1 � i < j � 3

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3)
+b123exp(θ1 + θ2 + θ3).

(13.68)

This in turn gives

f (x,t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + ek3(x−k2
3t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t +
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−(k3
1+k3

3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−(k3
2+k3

3)t

+
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t .

(13.69)



13.3 The KdV Equation 515

Fig. 13.3 Three-soliton solutions graph for k j = j, i � j � 3,−8 � x, t � 8.

To determine the three-soliton solutions explicitly, we use (13.39) for the func-
tion f (x,t) in (13.69). Fig. 13.3 above shows a three soliton solutions for−8 � x,t �

8.
In a parallel manner, we can determine f4(x,t) where we can easily show that

f4(x,t) = c1234exp(θ1 + θ2 + θ3 +θ4), (13.70)

where

c1234 = a12a13a14a23a24a34

=
(k1− k2)

2(k1− k3)
2(k1− k4)

2(k2− k3)
2(k2− k4)

2(k3− k4)
2

(k1 + k2)2(k1 + k3)2(k1 + k4)2(k2 + k3)2(k2 + k4)2(k3 + k4)2 ,
(13.71)

and θi,1 � i � 4 are given above in (13.53). For the four-soliton solution we use

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)+ exp(θ4)
+a12exp(θ1 +θ2)+ a13exp(θ1 + θ3)+ a14exp(θ1 + θ4)
+a23exp(θ2 +θ3)+ a24exp(θ2 + θ4)+ a34exp(θ3 + θ4)
+b123exp(θ1 + θ2 + θ3)+ b134exp(θ1 +θ3 +θ4)
+b124exp(θ1 + θ2 + θ4)+ b234exp(θ2 +θ3 +θ4)
+c1234exp(θ1 + θ2 + θ3 +θ4),

(13.72)

and proceed as before to obtain

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 4, bi jk = ai jaika jk. (13.73)

This in turn gives
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f (x,t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + ek3(x−k2
3t) + ek4(x−k2

4t)

+a12e(k1+k2)x−(k3
1+k3

2)t + a13e(k1+k3)x−(k3
1+k3

3)t

+a14e(k1+k4)x−(k3
1+k3

4)t + a23e(k2+k3)x−(k3
2+k3

3)t

+a24e(k2+k4)x−(k3
2+k3

4)t + a34e(k3+k4)x−(k3
3+k3

4)t

+b123e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t + b134e(k1+k3+k4)x−(k3

1+k3
3+k3

4)t

+b124e(k1+k2+k4)x−(k3
1+k3

2+k3
4)t + b234e(k2+k3+k4)x−(k3

2+k3
3+k3

4)t

+c1234 e(k1+k2+k3+k4)x−(k3
1+k3

2+k3
3+k3

4)t .

(13.74)

To determine the four-soliton solutions explicitly, we use (13.39) for the function
f (x,t) in (13.74).

In conclusion we summarize the necessary steps needed to obtain the multi-
ple soliton solutions for the completely integrable equations. The multiple-soliton
solutions of the KdV equation can be formally constructed by using u(x,t) =
2(ln f (x,t))xx where f (x,t) is given as:
(i) for one-soliton solution:

f = 1 + eθ1,

(ii) for two-soliton solutions:

f = 1 + eθ1 + eθ2 + a12eθ1+θ2 ,

(iii) for three-soliton solutions:

f = 1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 + a12a13a23eθ1+θ2+θ3 ,

and so on.
Three facts should be emphasized as a result to the analysis presented above:

(i) The first is that soliton solutions are just polynomials of exponentials as empha-
sized by Hirota [10–12] and others such as in [6,7,15,22].
(ii) The three-soliton solutions and the higher level soliton solution as well, do not
contain any new free parameters other than ai j derived for the two-soliton solutions.
(iii) Every solitonic equation that has generic N = 3 soliton solutions, then it has
also soliton solutions for any N � 4 [10–12]. In other words, completely integrable
equations give multiple-soliton solutions. Some equations as the ninth-order KdV
equation [25] has one and two-soliton solutions only, hence it is not completely
integrable.

To summarize, if we set kj = j we obtain the following functions

f (x,t) = 1 + ex−t,

f (x,t) = 1 + ex−t + e2(x−4t) +
1
9

e3(x−3t),
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f (x,t) = 1 + ex−t + e2(x−4t) + e3(x−9t)

+
1
9

e3(x−3t) +
1
4

e4(x−7t) +
1
25

e5(x−7t) +
1

900
e6(x−6t),

f (x,t) = 1 + ex−t + e2(x−4t) + e3(x−9t) + e4(x−16t) +
1
9

e3(x−3t)

+
1
4

e4(x−7t) +
9

25
e5(x−13t) +

2
25

e5(x−7t) +
1
9

e6(x−12t)

+
1
49

e7(x−13t) +
1

450
e6(x−6t) +

1
225

e(7x−73t)

+
9

4900
e(8x−92t) +

1
11025

e9(x−11t) +
1

1102500
e10(x−10t).

(13.75)

The related soliton solutions can be easily obtained by substituting f (x,t) from
(13.75) into

u(x,t) = 2(ln( f ))xx, (13.76)

to obtain the one, two, three, and four soliton solutions respectively. Other distinct
values of k j can be used. In practical, there is no need to derive the four soliton
solutions if the three-soliton solutions are obtained. It is therefore sufficient to obtain
soliton solutions for N = 1,2,3 to show that multiple-soliton solutions exist. As
stated before, the existence of the one and the two-soliton solutions only means that
the evolution equation is not completely integrable.

Fig. 13.4 below shows graphs of one, two, three and four soliton solutions where
u(x,t) is plotted against the spatial variable x for fixed time t.

Fig. 13.4 One-soliton, two-soliton, three-soliton, and four-soliton solutions (from top to bottom).
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13.4 The Modified KdV Equation

The modified KdV (mKdV) equation reads

ut −6u2ux + uxxx = 0. (13.77)

The mKdV equation is completely integrable [13,15,20], and is known to exhibit
N-soliton solutions and an infinite number of conserved densities. Recall that a con-
servation law is given by the relation

∂ T
∂ t

+
∂X
∂x

= 0,

where T and X are the density and flux respectively. This in turn gives the first three
conservation laws:

T1 = u, X1 = 2u3 + uxx;

T2 =
1
2

u2, X2 =
3
2

u4 + uuxx− 1
2

u2
x;

T3 =
1
4

u4− 1
4

u2
x , X3 = u6 + u3uxx−3u2u2

x−
1
2

uxuxxx +
1
4

u2
xx.

The modified KdV equation differs from the original KdV equation in the nonlin-
ear term only, where it includes u2ux instead of uux but both include the dispersion
term uxxx. This change in the nonlinear term causes several substantial differences
in the structures of the solutions. However, the KdV and the mKdV equations are
linked at a deeper level by the so called Miura transformation [16], given by

u = v2 + vx, (13.78)

that gives
ut = 2vvt + vxt ,
ux = 2vvx + vxx,

vxx = 2vvxx + 2v2
x + vxxx,

vxxx = 2vvxxx + 6vxvxx + vxxxx.

(13.79)

Substituting the Miura transformation (13.78)–(13.79) into the KdV equation

ut −6uux + uxxx = 0, (13.80)

leads to (
2v +

∂
∂x

)
(vt −6v2vx + vxxx) = 0. (13.81)

This in turn gives the mKdV equation

v2−6vvx + vxxx = 0. (13.82)
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This indicates that if v is a solution of the mKdV equation (13.82), then the solution
of the KdV equation can be obtained by using the Miura transformation (13.78).

The modified KdV equation describes nonlinear wave propagation in systems
with polarity symmetry. The mKdV equation is used in electrodynamics, wave prop-
agation in size quantized films, and in elastic media. The mKdV equation is inte-
grable and can be solved by the inverse scattering method.

Substituting the wave variable ξ = x− ct into the mKdV equation

ut + au2ux + uxxx = 0. (13.83)

and integrating once we find

−cu +
a
3

u3 + u′′ = 0. (13.84)

In a manner parallel to the analysis presented to approach the KdV equation, we
will use the tanh-coth method, sine-cosine method, and the Hirota’s direct method
to handle the mKdV equation.

13.4.1 Using the Tanh-coth Method

Balancing the nonlinear term u3, that has the exponent 3M, with the highest order
derivative u′′, that has the exponent M + 2, in (13.84) yields

3M = M + 2, (13.85)

that gives
M = 1. (13.86)

The tanh-coth method allows us to use the substitution

u(x,t) = S(Y ) = a0 + a1Y + b1Y
−1. (13.87)

Substituting (13.87) into (13.84), collecting the coefficients of each power of Y i,0 �

i � 6, setting each coefficient to zero, and solving the resulting system we obtain the
following sets of solutions
(i)

a0 = a1 = 0, b1 =

√
3c
a

, μ =

√
− c

2
, c < 0. (13.88)

(ii)

a0 = b1 = 0, a1 =

√
3c
a

, μ =

√
− c

2
, c < 0. (13.89)

(iii)
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a0 = 0, a1 = b1 =
1
2

√
3c
a

, μ =
1
2

√
− c

2
, c < 0. (13.90)

(iv)

a0 = 0, a1 =−b1 =−1
2

√
−3c

2a
, μ =

1
2

√
c, c > 0. (13.91)

The following soliton and kink solutions

u1(x,t) =

√
6c
a

sech [
√

c(x− ct)] , c > 0,a > 0,

u2(x,t) =

√
3c
a

tanh

[√
− c

2
(x− ct)

]
, c < 0,a < 0,

(13.92)

respectively are readily obtained. Moreover, the following travelling wave solutions

u3(x,t) =

√
3c
a

coth

[√
− c

2
(x− ct)

]
, c < 0,a < 0,

u4(x,t) =

√
6c
a

sec
[√−c(x− ct)

]
, c < 0,a < 0,

u5(x,t) =

√
−6c

a
csch [

√
c(x− ct)] , c > 0,a < 0,

(13.93)

can also be derived upon using the sign of the wave speed c and the parameter a.

13.4.2 Using the Sine-cosine Method

Substituting the cosine assumption into (13.84) yields

−cλ cosβ (μξ )+
a
3

λ 3 cos3β (μξ )

−λ μ2β 2 cosβ (μξ )+ λ μ2β (β −1)cosβ−2(μξ ) = 0,
(13.94)

We balance the exponents of the cosine functions. Equation (13.94) is satisfied only
if the following system of algebraic equations holds:

β −1 �= 0,
3β = β −2,

μ2β 2λ = −cλ ,
a
3

λ 3 = −cλ μ2β (β −1),

(13.95)

which leads to
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β = −1,
μ =

√−c,

λ =
6c
a

.

(13.96)

The results in (13.96) can be easily obtained if we also use the sine method. This in
turn gives the periodic solutions for c < 0,a < 0:

u(x,t) =

√
6c
a

sec
[√−c(x− ct)

]
, c < 0,a < 0,

u(x,t) =

√
6c
a

csc
[√−c(x− ct)

]
, c < 0,a < 0.

(13.97)

However, for c > 0,a > 0, we obtain the soliton solution

u(x,t) =

√
6c
a

sech
[√

c(x− ct)
]
. (13.98)

13.4.3 Multiple-soliton Solutions of the mKdV Equation

In this section, we will examine multiple-soliton solutions of the modified KdV
(mKdV) equation

ut + 6σu2ux + uxxx = 0, σ =±1. (13.99)

Following the approach used by Hirota [10] and Hietarinta [9], we first consider the
case where σ = 1, therefore Eq. (13.99) becomes

ut + 6u2ux + uxxx = 0. (13.100)

Proceeding as in the KdV equation, the dispersion relation is given by

ci = k3
i , (13.101)

and as a result we obtain
θi = kix− k3

i t. (13.102)

In [9,10], it is shown that the multiple-soliton solutions of the mKdV equation is
expressed by

u(x,t) = 2∂x (arctan( f/g)) = 2
fxg−gx f
f 2 + g2 . (13.103)

For the single soliton solution, it was found that

f (x,t) = eθ1 = ek1(x−k2
1t),

g(x,t) = 1.
(13.104)

Substituting (13.104) into (13.103) gives the single soliton solution
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u(x,t) =
2k1 ek1(x−k2

1t)

1 + e2k1(x−k2
1t)

. (13.105)

For the two-soliton solutions we find

f (x,t) = eθ1 + eθ2 = ek1(x−k2
1t) + ek2(x−k2

2t),

g(x,t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−(k3
1+k3

2)t .
(13.106)

Using (13.106) in (13.103) and substituting the result in the mKdV equation
(13.100), we find

a12 =
(k1− k2)

2

(k1 + k2)2 , (13.107)

and hence we set

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 3. (13.108)

Consequently, the two-soliton solutions are obtained by substitution (13.107) and
(13.106) into (13.103).

For the three-soliton solutions, it was found that

f (x,t) = eθ1 + eθ2 + eθ3 −a12a13a23eθ1+θ2+θ3

= ek1(x−k2
1t) + ek2(x−k2

2t) + ek3(x−k2
3t)

−a12a13a23e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t ,

g(x,t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3

= 1−a12e(k1+k2)x−(k3
1+k3

2)t −a13e(k1+k3)x−(k3
1+k3

3)t

−a23e(k2+k3)x−(k3
2+k3

3)t ,

(13.109)

where ai j is given in (13.108). Based on this result, the three–soliton solutions for
the mKdV equation (13.100) is obtained by substituting (13.109) into (13.103). This
shows that the mKdV equations is completely integrable and N-soliton solutions can
be obtained for finite N, where N � 1.

It is interesting to point out that for σ = −1, the mKdV equation (13.100) be-
comes

ut −6u2ux + uxxx = 0, (13.110)

with a singular soliton

u(x,t) =
√

ccsch
[√

c(x− ct)
]
, c > 0. (13.111)

The dispersion relation remains the same. However, the solution of the mKdV equa-
tion (13.110) is expressed by

u(x,t) = 2i∂x (arctan( f/g)) = 2i
fxg−gx f
f 2 + g2 , i =

√−1. (13.112)

In this case the solution is expressed in a complex form by
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u(x,t) = i
2k1 ek1(x−k2

1t)

1 + e2k1(x−k2
1t)

, i =
√−1. (13.113)

Complex solutions will not be considered in this text.

13.5 Singular Soliton Solutions

It was proved in [17] that certain nonlinear evolution equations have not only soli-
ton solutions, but also explode-decay mode solutions, or singular soliton solutions
which can be expressed by closed form of analytic solutions. In this section, we will
use the Hirota’s sense, that we used before to obtain singular N-soliton solutions for
the mKdV equation

ut −6u2ux + uxxx = 0. (13.114)

To achieve this goal, we combine the simplified version of Hereman et. al. [6,7], the
Hirota’s sense, and the Hietarinta approach that was introduced in [8,9], where the
following assumption

F(x,t) =
f (x,t)
g(x,t)

, g(x,t) �= 0, (13.115)

was first used. The bilinear form for the mKdV equation (13.99) is given by

(Dt + D3
x)( f ·g) = 0, D2

x( f · f + g ·g) = 0.

The solution of the mKdV equation is assumed to be of the form

u(x,t) =
∂ log F(x,t)

∂x
=

g fx− f gx

g f
. (13.116)

We next assume that f (x,t) and g(x,t) have perturbation expansions of the form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 εn

1 gn(x,t),
(13.117)

where ε and ε1 are non small formal expansion parameters. Following the simplified
form presented in [6,7], we define

f1 = ∑N
i=1 εexp(θi),

g1 = ∑N
i=1 ε1exp(θi),

(13.118)

where
θi = kix− cit, (13.119)

where ki and ci are arbitrary constants, ki is called the wave number.
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To obtain the first solution, we set N = 1 into (13.118), and by using (13.117) we
find

f (x,t) = 1 + ε f1(x,t),
g(x,t) = 1 + ε1 g1(x,t),

(13.120)

and hence

u(x,t) =
∂ log F(x,t)

∂x
=

∂
∂x

log

(
1 + ε f1

1 + ε1 g1

)
. (13.121)

This is a solution of the mKdV equation (13.99) if

ε1 =−ε. (13.122)

The dispersion relation is given by

ci = k3
i , (13.123)

and as a result we obtain
θi = kix− k3

i t. (13.124)

The obtained results give a new definition to (13.117) in the form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 (−1)nεn gn(x,t),

(13.125)

and consequently we obtain

f1(x,t) = exp(θ1) = exp(k1(x− k2
1t)),

g1(x,t) = −exp(θ1) =−exp(k1(x− k2
1t)).

(13.126)

Accordingly, we find

F =
1 + f1

1 + g1
=

1 + exp(k1(x− k2
1t))

1− exp(k1(x− k2
1t))

. (13.127)

The singular soliton solution

u(x,t) =
2k1exp(k1(x− k2

1t))

1− exp(k1(x− k2
1t))

, (13.128)

follows immediately.
To determine the singular two-soliton solutions, we proceed as before to find that

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2),
g(x,t) = 1− exp(θ1)− exp(θ2)+ b12exp(θ1 +θ2).

(13.129)

Substituting (13.129) into the mKdV equation (13.114), we find that (13.129) is a
solution of this equation if a12 and b12, and therefore ai j and bi j, are equal and given
by
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ai j = bi j =
(ki− k j)

2

(ki + k j)2 , (13.130)

where θi and θ j are given above in (13.124). For the two-soliton solutions we use
1 � i < j � 2 to obtain

f (x,t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t ,

g(x,t) = 1− ek1(x−k2
1t)− ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t .

(13.131)

This in turn gives the singular two-soliton solutions explicitly

u(x,t) = (13.132)

∂
∂x

⎛
⎜⎜⎝log

⎡
⎢⎢⎣

1 + ek1(x−k2
1t) + ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t

1− ek1(x−k2
1t)− ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

We can proceed in a similar manner to obtain

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 + θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 +θ3)+ f3(x,t),

g(x,t) = 1− exp(θ1)− exp(θ2)− exp(θ3)
+a12exp(θ1 + θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 +θ3)+ g3(x,t).

(13.133)
Substituting (13.133) into (13.114) to find that

f3(x,t) = b123exp(θ1 + θ2 +θ3),
g3(x,t) = −b123exp(θ1 + θ2 +θ3),

b123 = a12a13a23.
(13.134)

For the singular three-soliton solutions we use 1 � i < j � 3, we therefore obtain

f (x,t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + ek3(x−k2
3t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t +
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−(k3
1+k3

3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−(k3
2+k3

3)t

+
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t ,

g(x,t) = 1− ek1(x−k2
1t)− ek2(x−k2

2t)− ek3(x−k2
3t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t +
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−(k3
1+k3

3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−(k3
2+k3

3)t

(13.135)
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− (k1− k2)
2(k1− k3)

2(k2− k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−(k3
1+k3

2+k3
3)t .

The singular three-soliton solutions are therefore given by

u(x,t) =
∂
∂x

(
ln(

f (x,t)
g(x,t)

)

)
, (13.136)

where f (x,t) and g(x,t) are given in (13.135). This confirms the conclusion in
[17] that certain equations which have N-soliton solutions, have simultaneously,
N-singular soliton solutions so far as the equation has self-similar symmetry.

13.6 The Generalized KdV Equation

The generalized KdV (gKdV) equation reads

ut + aunux + uxxx = 0, n > 2. (13.137)

Using the wave variable ξ = x− ct and integrating once, the gKdV equation can be
transformed to the ODE

−cu +
a

n + 1
un+1 + u′′ = 0, (13.138)

Recall that for n = 1 and n = 2, the gKdV equation will be reduced to the completely
integrable KdV and mKdV equations respectively. However, the gKdV equation is
not completely integrable for n > 2. This means that the N-soliton solutions do not
exist for this equation. The gKdV equation will be investigated by using the tanh-
coth and the sine-cosine method only .

13.6.1 Using the Tanh-coth Method

Balancing the nonlinear term un+1 with the highest order derivative u′′ gives

M =
2
n
. (13.139)

To obtain closed form solutions, M should be an integer. To achieve this goal we use
the transformation

u(x,t) = v
1
n (x,t), (13.140)

That will carry out Eq. (13.138) to the ODE

−cn2(n + 1)v2 + an2v3 + n(n + 1)vv′′+(1−n2)(v′)2 = 0. (13.141)
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Balancing vv′′, that has the exponent 2M + 2, with v3, that has an exponent 3M,
gives M = 2. Accordingly, the tanh-coth method admits the use of the substitution

u(x,t) = S(Y) =
2

∑
i=0

aiY i +
2

∑
j=1

b jY− j. (13.142)

Substituting (13.142) into (13.138), collecting the coefficients of each power of
Y i,0 � i � 12, and solving the resulting system of algebraic equations we obtain
a1 = b1 = 0 and the following sets of solutions for c > 0
(i)

a0 =
c(n + 1)(n + 2)

2a
, a2 = 0, b2 =−c(n + 1)(n + 2)

2a
, μ =

n
2

√
c. (13.143)

(ii)

a0 =
c(n + 1)(n + 2)

2a
, b2 = 0, a2 =−c(n + 1)(n + 2)

2a
, μ =

n
2

√
c. (13.144)

(iii)

a0 =
c(n + 1)(n + 2)

4a
, a2 = b2 =−c(n + 1)(n + 2)

8a
, μ =

n
4

√
c. (13.145)

Using these results, and noting that u(x,t) = v
1
n (x,t), we obtain the following soliton

solution

u1(x,t) =

{
c(n + 1)(n + 2)

2a
sech2

[n
2

√
c(x− ct)

]} 1
n

, (13.146)

and the solutions

u2(x,t) =

{
−c(n + 1)(n + 2)

2a
csch2

[n
2

√
c(x− ct)

]} 1
n

,

u3(x,t) =
{

Γ
(

2− tanh2
[n

4

√
c(x− ct)

]
− coth2

[n
4

√
c(x− ct)

])} 1
n
,

(13.147)

where

Γ =
c(n + 1)(n + 2)

8a
. (13.148)

However, for c < 0, we obtain the following plane periodic solutions

u4(x,t) =

{
c(n + 1)(n + 2)

2a
sec2

[n
2

√−c(x− ct)
]} 1

n

,
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u5(x,t) =

{
c(n + 1)(n + 2)

2a
csc2

[n
2

√−c(x− ct)
]} 1

n

,

u6(x,t) =
{

Γ
(

2 + tan2
[n

4

√−c(x− ct)
]
+ cot2

[n
4

√−c(x− ct)
])} 1

n
.

(13.149)

13.6.2 Using the Sine-cosine Method

Substituting the cosine assumption into (13.138) yields

−cλ cosβ (μξ )+
a

n + 1
λ n+1 cos(n+1)β (μξ )

−λ μ2β 2 cosβ (μξ )+ λ μ2β (β −1)cosβ−2(μξ ) = 0,
(13.150)

Equation (13.150) is valid only if the following system of algebraic equations holds:

β −1 �= 0,
(n + 1)β = β −2,

μ2β 2λ = −cλ ,
a

n + 1
λ n+1 = −λ μ2β (β −1).

(13.151)

Solving this system gives

β = −2
n
,

μ =
n
2

√−c,c < 0

λ =

(
c(n + 1)(n + 2)

2a

) 1
n

.

(13.152)

These results give the soliton solutions u1(x,t) and the travelling wave solutions
obtained above by using the tanh-coth method. We can easily observe that the sine-
cosine method can be used directly and does not require the use of a transformation
formula as required by the tanh-coth method when M is not an integer.

13.7 The Potential KdV Equation

In this section we will study the potential KdV equation

ut + au2
x + u3x = 0. (13.153)

As stated before, the potential KdV equation can be obtained from the KdV equation
by using the transformation u = vx and integrating once. The potential KdV equa-
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tion (13.153) is completely integrable equation, and therefore gives rise to multiple-
soliton solutions.

The potential KdV equation (13.153) can be converted to the ODE

−cu′+ a(u′)2 + u′′′ = 0, (13.154)

by using the wave variable ξ = x− ct. The potential KdV equation will be handled
by the tanh-coth method for single soliton solution and by the Hirota’s direct method
for multiple soliton solutions.

13.7.1 Using the Tanh-coth Method

Balancing the nonlinear term (u′)2, that has the exponent (M +1)2, with the highest
order derivative u′′′, that has the exponent M + 3, leads to

(M + 1)2 = M + 3, (13.155)

and hence
M = 1,−2. (13.156)

Case (i):
For M = 1, the tanh-coth method admits the use of the substitution

u(x,t) = S(Y ) = a0 + a1Y + b1Y
−1, (13.157)

into (13.154), and by proceeding as before we obtain the following sets of solutions
(i)

a0 = R,R is an arbitrary constant,

a1 =
3
√

c
a

, b1 = 0, μ =

√
c

2
, c > 0.

(13.158)

(ii)
a0 = R,R is an arbitrary constant,

a1 = 0, b1 =
3
√

c
a

, μ =

√
c

2
, c > 0.

(13.159)

This in turn gives the following kink solution for c > 0

u1(x,t) = R +
3
√

c
a

tanh

[√
c

2
(x− ct)

]
, (13.160)

and the travelling wave solution

u2(x,t) = R +
3
√

c
a

coth

[√
c

2
(x− ct)

]
. (13.161)
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However, for c < 0, the obtained solutions are complex that are not presented in this
text.
Case (ii):

For M =−2, the tanh-coth method applies the substitution

u(x,t) = S(Y ) = 1/(a0 + a1Y + a2Y 2 + b1Y
−1 + b2Y

−2), (13.162)

into (13.154), and by proceeding as before we found that a2 = b2 = 0. Therefore,
the substitution (13.162) is reduced to

u(x,t) = S(Y ) = 1/(a0 + a1Y + b1Y−1), (13.163)

that will be substitutes into (13.154) to obtain the following sets of solutions
(i)

a0 = b1 = 0, a1 =
a

3
√

c
, μ =

√
c

2
, c > 0. (13.164)

(ii)

a0 = a1 = 0, b1 =
a

3
√

c
, μ =

√
c

2
, c > 0. (13.165)

(iii)
a1 = R,R is an arbitrary constant,

a0 =

√
3cR2−aR

√
c

3c
, b1 = 0, μ =

√
c

2
, c > 0.

(13.166)

(iv)
b1 = R,R is an arbitrary constant,

a0 =

√
3cR2−aR

√
c

3c
, a1 = 0, μ =

√
c

2
, c > 0.

(13.167)

This in turn gives the following solutions for c > 0

u3(x,t) =
3
√

c
a

tanh

[√
c

2
(x− ct)

]
,

u4(x,t) =
3
√

c
a

coth

[√
c

2
(x− ct)

]
,

u5(x,t) =
1√

3cR2−aR
√

c
3c

+ R tanh

[√
c

2
(x− ct)

] ,

u6(x,t) =
1√

3cR2−aR
√

c
3c

+ R coth

[√
c

2
(x− ct)

] .
(13.168)

The solutions u3 and u4 are the same as u1 and u2 when we set R = 0. Moreover, for
c < 0, we obtain complex solutions that will not be discussed in this text.
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13.7.2 Multiple-soliton Solutions of the Potential KdV Equation

The multiple-soliton solutions of the potential KdV equation

ut + 3(ux)
2 + uxxx = 0 (13.169)

will be derived. We closely follow our approach presented before in the previous
sections. To achieve our goal, we first introduce the change of dependent variable

u(x,t) = 2
∂ ln f (x,t)

∂x
= 2

fx

f
, (13.170)

that will convert (13.169) into

fxt − fx ft + 3( fxx)
2−4 fxxx ft + fxxxx = 0. (13.171)

Equation (13.171) can be decomposed into linear operator L and nonlinear operator
N defined by

L =
∂ 2

∂x∂ t
+

∂
∂x4 ,

N( f , f ) = − fx ft + 3 f2x f2x−4 fxxx ft .
(13.172)

The function f (x,t) may be assumed to have a perturbation expansion of the form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (13.173)

where ε is a non small formal expansion parameter.
The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi), (13.174)

where
θi = kix− cit, (13.175)

where ki and ci are arbitrary constants. Substituting (13.174) into (13.169) gives the
dispersion relation

ci = k3
i . (13.176)

Consequently, Eq. (13.175) becomes

θi = kix− k3
i t. (13.177)

This also gives
f1 = exp(θ1) = exp(k1(x− k2

1t)), (13.178)

obtained by using N = 1 in (13.174). For the one-soliton solution we set
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f = 1 + exp(θ1) = 1 + exp(k1(x− k2
1t)), (13.179)

where we used ε = 1. The single soliton solution is given by

u(x,t) =
2k1exp(k1(x− k2

1t))

1 + exp(k1(x− k2
1t))

, (13.180)

obtained upon using (13.170).
To derive the two-soliton solutions, we set N = 2 in (13.174) to get

f1 = exp(θ1)+ exp(θ2). (13.181)

To determine f2, we follow our discussion presented before to find

f2 = ∑
1�i< j�N

ai jexp(θi + θ j), (13.182)

where

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 2, (13.183)

and θi and θ j are given above in (13.44). For the two-soliton solutions we therefore
use

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (13.184)

where

a12 =
(k1− k2)

2

(k1 + k2)2 . (13.185)

This in turn gives

f = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k3
1+k3

2)t . (13.186)

The two-soliton solutions are obtained by using (13.170) for the function f in
(13.186).

We can determine f3 similarly. Proceeding as before, we therefore use

f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 + θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 +θ3),

(13.187)

and this will give

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+ f3(x,t).

(13.188)

Substituting (13.188) into (13.169) and proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (13.189)
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where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (13.190)

and θ1, θ2 and θ3 are given above in (13.175). For the three-soliton solution we use
1 � i < j � 3, we therefore obtain

f = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 +θ3)
+b123exp(θ1 +θ2 +θ3).

(13.191)

To determine the three-soliton solutions explicitly, we use (13.170) for the function
f in (13.191). This shows that the multiple-soliton solutions exist for N � 1. This
result proves that the potential KdV equation is completely integrable.

13.8 The Gardner Equation

The standard Gardner equation, or the combined KdV-mKdV equation, reads

ut + 2auux−3bu2ux + uxxx = 0, a,b > 0, (13.192)

where u(x,t) is the amplitude of the relevant wave mode. The KdV equation was
complemented with a higher-order cubic nonlinear term of the form u2ux to obtain
the Gardner equation (13.192). The Gardner equation was first derived rigorously
within the asymptotic theory for long internal waves in a two-layer fluid with a
density jump at the interface [19]. The competition among dispersion, quadratic
and cubic nonlinearities constitutes the main interest [22]. Equation (13.192), like
the KdV equation, is completely integrable with a Lax pair and inverse scattering
transform. It was found, as will be discussed later, that soliton solutions exist only
for b > 0. Gardner equation is widely used in various branches of physics, such as
plasma physics, fluid physics, quantum field theory. The equation plays a promi-
nent role in ocean waves. The Gardner equation describes internal solitary waves in
shallow seas, and admits quite interesting tanh and cn type solutions. The Gardner
equation has been investigated in the literature because it is used to model a variety
of nonlinear phenomena. The tanh method, the cosh ansatz, and the Hirota’s method
will be used to handle this problem.

13.8.1 The Kink Solution

Using the wave variable ξ = x−ct and integrating the result will convert the Gardner
equation (13.192) to the ODE

−cu + au2−bu3 + u′′ = 0, (13.193)
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Balancing u3 with u′′ gives
M = 1. (13.194)

The tanh method uses the finite expansion

u(x,t) = S(Y ) = a0 + a1Y. (13.195)

Inserting (13.195) into (13.193) and proceeding as before we obtain

a0 =
a
3b

, a1 =± a
3b

, μ =
a

3
√

2b
, c =

2a2

9b
. (13.196)

The kink solution

u(x,t) =
a

3b

(
1± tanh(

a

3
√

2b
(x− 2a2

9b
t))

)
, (13.197)

and the travelling wave solution

u(x,t) =
a

3b

(
1± coth(

a

3
√

2b
(x− 2a2

9b
t))

)
, (13.198)

are readily obtained. This confirms the reality that Gardner equation has real solu-
tions only for b > 0. For b < 0, we obtain complex solutions that are not required in
this text.

13.8.2 The Soliton Solution

In this approach we assume the ansatz

u(x,t) =
α

1 + λ cosh(μ(x− ct))
, (13.199)

where α,λ and c are parameters that will be determined. Substituting (13.199) into
(13.192), and following our analysis presented before we find

α =
3μ2

a
, λ =

1
a

√
2a2−9bμ2

2
, c = μ2. (13.200)

Substituting (13.200) into (13.199) yields the soliton solution

u(x,t) =
3μ2

a +

√
2a2−9bμ2

2
cosh μ(x− μ2 t)

, (13.201)
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for 2a2 > 9bμ2. For the special case where a = 3,b = 2 the soliton solution (13.201)
becomes

u(x,t) =
μ2

1 +
√

1− μ2 cosh μ(x− μ2 t)
, (13.202)

where μ ∈ (0,1). This means that the soliton profile (13.202) will have positive
polarity with an amplitude that ranges from zero to one. Moreover, we can easily
conclude that the width of the soliton increases with the increase in its height. More-
over, the upper bound of the soliton in (13.202) is 1 as μ → 1. Fig. 13.5 above shows,
from bottom to top, different solitary waves profiles given by (13.202) at t = 0 for
μ = 0.4,0.6,0.8,0.96.

Fig. 13.5 Different solitary waves profiles given by (13.202) at t = 0 for μ = 0.4,0.6,0.8,0.96
(From bottom to top).

13.8.3 N-soliton Solutions of the Positive Gardner Equation

As stated before, the Gardner equation (13.192), like the KdV and the mKdV equa-
tion, is completely integrable with a Lax pair and inverse scattering transform. To
show that the Gardner equation is completely integrable, without loss of generality,
we consider the two models for the Gardner equation

ut + 6uux±6u2ux + uxxx = 0, (13.203)

that describe internal solitary waves in shallow seas. The two models will be classi-
fied as positive Gardner equation and negative Gardner equation depending on the



536 13 The Family of the KdV Equations

sign of the cubic nonlinear term. To show the complete integrability, we use the
transformation

u = v∓ 1
2
, (13.204)

to convert the Gardner models (13.203) into the modified KdV equations

vt ∓ 3
2

vx + 6v2vx + vxxx = 0. (13.205)

This shows that the Gardner equation, like the modified KdV equation is completely
integrable.

To derive the N-soliton solutions, we consider first the positive Gardner equation

ut + 6uux + 6u2ux + uxxx = 0, (13.206)

that will be converted to the mKdV equation

vt − 3
2

vx + 6v2vx + vxxx = 0, (13.207)

by using the transformation

u = v− 1
2
. (13.208)

It is then normal to use the same approach used before to determine multiple soli-
ton solutions for the modified KdV equation. Using only the linear terms gives the
dispersion relation by

ci = k3
i −

3
2

ki. (13.209)

and as a result we obtain

θi = kix− (k3
i −

3
2

ki)t. (13.210)

The multiple-soliton solutions of the mKdV equation (13.207) is expressed by

v(x,t) = 2∂x (arctan( f/g)) = 2
fxg−gx f
f 2 + g2 . (13.211)

For the single soliton solution, it was found that

f (x,t) = eθ1 = ek1(x−(k2
1− 3

2 )t),
g(x,t) = 1.

(13.212)

Substituting (13.212) into (13.211) gives the single soliton solution

v(x,t) =
2k1 ek1(x−(k2

1− 3
2 )t)

1 + e2k1(x−(k2
1− 3

2 )t)
. (13.213)
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Noting that u(x,t) = v(x,t)− 1
2

, therefore the single soliton solution for the Gardner

equation (13.206)

u(x,t) =−1
2

+
2k1 ek1(x−(k2

1− 3
2 )t)

1 + e2k1(x−(k2
1− 3

2 )t)
. (13.214)

For the two-soliton solutions we find

f (x,t) = eθ1 + eθ2 = ek1(x−(k2
1− 3

2 )t) + ek2(x−(k2
2− 3

2 )t),

g(x,t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−(k3
1+k3

2− 3
2 k1− 3

2 k2)t .
(13.215)

Using (13.215) in (13.211) and substituting the result in the mKdV equation
(13.207), we find

a12 =
(k1− k2)

2

(k1 + k2)2 , (13.216)

and hence we set

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 3. (13.217)

Consequently, the two-soliton solutions are obtained by substitution (13.216) and

(13.215) into (13.211) and noting that u(x,t) = v(x,t)− 1
2

.

For the three-soliton solutions, we set

f (x,t) = eθ1 + eθ2 + eθ3 −a12a13a23eθ1+θ2+θ3

= ek1(x−(k2
1− 3

2 )t) + ek2(x−(k2
2− 3

2 )t) + ek3(x−(k2
3− 3

2 )t)

−a12a13a23e(k1+k2+k3)x−(k3
1+k3

2+k3
3− 3

2 k1− 3
2 k2− 3

2 k3)t ,
g(x,t) = 1−a12eθ1+θ2 −a13eθ1+θ3−a23eθ2+θ3

= 1−a12e(k1+k2)x−(k3
1+k3

2− 3
2 k1− 3

2 k2)t

−a13e(k1+k3)x−(k3
1+k3

3− 3
2 k1− 3

2 k3)t

−a23e(k2+k3)x−(k3
2+k3

3− 3
2 k2− 3

2 k3)t .

(13.218)

Based on this result, the three-soliton solutions for the mKdV equation (13.205) is
obtained by substituting (13.218) into (13.211) and noting that u(x,t) = v(x,t)− 1

2 .
This shows that the mKdV equations (13.207), and hence the Gardner equation
(13.206), is completely integrable and N-soliton solutions can be obtained for finite
N, where N � 1.

13.8.4 Singular Soliton Solutions

We now consider the negative Gardner equation

ut + 6uux−6u2ux + uxxx = 0. (13.219)
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Following [19], we use the Miura transformation

f =−u + u2 + ux, (13.220)

that will convert (13.219) to the KdV equation

ft −6 f fx + fxxx = 0. (13.221)

This conversion of the Gardner equation to the KdV equation emphasizes the com-
plete integrability of the Gardner equation. It is to be noted that Eq. (13.220) is the
Riccati equation, but unfortunately its solution cannot be simplified.

As stated before, we use the transformation formula

u = v +
1
2
, (13.222)

to convert the Gardner equation (13.219) into the modified KdV equation

vt +
3
2

vx−6v2vx + vxxx = 0. (13.223)

It is then normal to use the same approach used before to determine singular soliton
solutions for the modified KdV equation.

We first introduce the following assumption

F(x,t) =
f (x,t)
g(x,t)

, g(x,t) �= 0. (13.224)

The solution of the mKdV equation (13.223) is assumed to be of the form

v(x,t) =
∂ log F(x,t)

∂x
=

g fx− f gx

g f
. (13.225)

We next assume that f (x,t) and g(x,t) have perturbation expansions of the form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 εn

1 gn(x,t),
(13.226)

where ε and ε1 are non small formal expansion parameters. We next define the N-
soliton solution

f1 = ∑N
i=1 εexp(θi),

g1 = ∑N
i=1 ε1exp(θi),

(13.227)

where
θi = kix− cit, i = 1,2, · · · ,N (13.228)

where ki and ci are arbitrary constants, ki is called the wave number.
To obtain the singular one-soliton solution, we set N = 1 into (13.227), and by

using (13.226) we find
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f (x,t) = 1 + ε f1(x,t),
g(x,t) = 1 + ε1 g1(x,t),

(13.229)

and hence

v(x,t) =
∂ log F(x,t)

∂x
=

∂
∂x

log

(
1 + ε f1

1 + ε1 g1

)
. (13.230)

This is a solution of the mKdV equation (13.223) if

ε1 =−ε. (13.231)

This in turn gives the dispersion relation by

ci = ki(
3
2

+ k2
i ), (13.232)

and as a result we obtain

θi = kix− ki(
3
2

+ k2
i )t. (13.233)

The obtained results give a new definition to (13.226) in the form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 (−1)nεn gn(x,t),

(13.234)

and consequently we obtain

f1(x,t) = exp(θ1) = exp(k1(x− (
3
2

+ k2
1)t)),

g1(x,t) = −exp(θ1) =−exp(k1(x− (
3
2

+ k2
1)t)).

(13.235)

Accordingly, we find

F =
1 + f1

1 + g1
=

1 + exp(k1(x− (
3
2

+ k2
1)t))

1− exp(k1(x− (
3
2

+ k2
1)t))

. (13.236)

The singular one-soliton solution

v(x,t) =
2k1exp(k1(x− (

3
2

+ k2
1)t))

1− exp(k1(x− (
3
2

+ k2
1)t))

, (13.237)

follows immediately. Recall that the solution of the Gardner equation is given by

u(x,t) =
1
2

+ v(x,t), (13.238)

and consequently we obtain the singular soliton solution of the Gardner equation
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u(x,t) =
1
2

+
2k1exp(k1(x− (

3
2

+ k2
1)t))

1− exp(k1(x− (
3
2

+ k2
1)t))

. (13.239)

To determine the singular two-soliton solution, we first set N = 2 in (13.227) to
get

f1(x,t) = exp(θ1)+ exp(θ2),
g1(x,t) = −exp(θ1)− exp(θ2).

(13.240)

To determine f2 and g2, we assume that

f2(x,t) = ∑1�i< j�N ai jexp(θi + θ j),
g2(x,t) = ∑1�i< j�N bi jexp(θi + θ j).

(13.241)

This in turn gives

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2),
g(x,t) = 1− exp(θ1)− exp(θ2)+ b12exp(θ1 +θ2).

(13.242)

Substituting (13.242) into the mKdV equation (13.223), we find that (13.242) is a
solution of this equation if a12 and b12, and therefore ai j and bi j, are equal and given
by

ai j = bi j =
(ki− k j)

2

(ki + k j)2 , (13.243)

where θi and θ j are given above in (13.233). For the two-soliton solutions we use
1 � i < j � 2 to obtain

f (x,t) = 1 + ek1(x−( 3
2 +k2

1)t) + ek2(x−( 3
2 +k2

2)t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−( 3
2 (k1+k2)+k3

1+k3
2)t ,

g(x,t) = 1− ek1(x−( 3
2 +k2

1)t)− ek2(x−( 3
2 +k2

2)t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−( 3
2 (k1+k2)+k3

1+k3
2)t .

(13.244)

Recall that the singular two-soliton solutions are obtained by using the formulas

v(x,t) =
∂ log F(x,t)

∂x
,

F(x,t) =
f (x,t)
g(x,t)

.
(13.245)

This in turn gives the singular two-soliton solutions explicitly upon using (13.244).
Recall that

u(x,t) =
1
2

+ v(x,t). (13.246)
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We can proceed in a similar manner to derive the three-soliton solutions. To de-
termine f3 and g3 we set

f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3),
g1(x,t) = −exp(θ1)− exp(θ2)− exp(θ3),
g2(x,t) = a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3),

(13.247)

to obtain

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+ f3(x,t),

g(x,t) = 1− exp(θ1)− exp(θ2)− exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+g3(x,t).

(13.248)

Substituting (13.248) into (13.223) to find that

f3(x,t) = b123exp(θ1 + θ2 +θ3),
g3(x,t) = −b123exp(θ1 + θ2 +θ3),

(13.249)

where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (13.250)

and θ1, θ2 and θ3 are given before. For the singular three-soliton solutions we use
1 � i < j � 3, we therefore obtain

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
+b123exp(θ1 +θ2 +θ3),

g(x,t) = 1− exp(θ1)− exp(θ2)− exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
−b123exp(θ1 +θ2 +θ3),

(13.251)

where

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 3

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 .

(13.252)

In view of this result we obtain
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f (x,t) = 1 + ek1(x−( 3
2 +k2

1)t) + ek2(x−( 3
2 +k2

2)t) + ek3(x−( 3
2 +k2

3)t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−( 3
2 (k1+k2)+k3

1+k3
2)t

+
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−( 3
2 (k1+k3)+k3

1+k3
3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−( 3
2 (k2+k3)+k3

2+k3
3)t

+
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−( 3
2 (k1+k2+k3)+k3

1+k3
2+k3

3)t ,

g(x,t) = 1− ek1(x−( 3
2 +k2

1)t)− ek2(x−( 3
2 +k2

2)t)− ek3(x−( 3
2 +k2

3)t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−( 3
2 (k1+k2)+k3

1+k3
2)t

+
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−( 3
2 (k1+k3)+k3

1+k3
3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−( 3
2 (k2+k3)+k3

2+k3
3)t

− (k1− k2)
2(k1− k3)

2(k2− k3)
2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−( 3
2 (k1+k2+k3)+k3

1+k3
2+k3

3)t .

(13.253)
The singular three-soliton solutions are given by

v(x,t) =
∂
∂ x

(
log(

f (x,t)
g(x,t)

)

)
, (13.254)

where f (x,t) and g(x,t) are given in (13.253), and consequently u(x,t)=
1
2

+v(x,t).

This shows that the Gardner equation has singular multiple-soliton solutions for N
finite, where N � 1.

13.9 Generalized KdV Equation with Two Power Nonlinearities

The generalized KdV equation with two power nonlinearities is of the form

ut +(aun−bu2n)ux + uxxx = 0. (13.255)

This equation describes the propagation of nonlinear long acoustic-type waves. The
function f ′, where f = ( a

n+1 un+1− b
2n+1 u2n+1) is regarded as a nonlinear correction

to the limiting long-wave phase speed c. If the amplitude is not supposed to be small,
Eq. (13.255) serves as an approximate model for the description of weak dispersive
effects on the propagation of nonlinear waves along a characteristic direction [19].
It is to be noted that for n = 1, Eq. (13.255) is the well-known Gardner equation, the
combined KdV-mKdV equation that was examined before.
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13.9.1 Using the Tanh Method

We first apply the tanh method to the generalized KdV equation with two power
nonlinearities given by

ut +(aun−bu2n)ux + uxxx = 0, (13.256)

Using the wave variable ξ = x− ct and integrating once, Eq. (13.256) will be con-
verted to the ODE

−cu +
a

n + 1
un+1− b

2n + 1
u2n+1 + u′′ = 0, (13.257)

Balancing u2n+1, with exponent (2n + 1)M, with u′′, with exponent M + 2 in
(13.257) we find

M + 2 = (2n + 1)M, (13.258)

so that

M =
1
n
. (13.259)

To get analytic closed solution, M should be an integer, hence we use the transfor-
mation

u = v
1
n . (13.260)

Using (13.260) into (13.257) gives

−cn2(2n + 1)(n + 1)v2+ an2(2n + 1)v3−bn2(n + 1)v4

+n(2n + 1)(n + 1)vv′′+(1−n2)(2n + 1)(v′)2 = 0.
(13.261)

Balancing vv′′ with v4 gives M = 1. The tanh method admits the use of the finite
expansion

v(ξ ) = a0 + a1Y. (13.262)

Proceeding as before we obtain the following set of solutions

a0 =
a(2n + 1)

2b(n + 2)
, a1 =±a(2n + 1)

2b(n + 2)
, μ =± an

2(n + 2)

√
2n + 1

b(n + 1)
. (13.263)

Consequently, we obtain the kink solution

v1(x,t) =
a(2n + 1)

2b(n + 2)

(
1± tanh

[
an

2(n + 2)

√
2n + 1

b(n + 1)
(x− a2(2n + 1)

b(n + 1)(n + 2)2 t)

])
,

(13.264)
and the travelling wave solution
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v2(x,t) =
a(2n + 1)

2b(n + 2)

(
1± coth

[
an

2(n + 2)

√
2n + 1

b(n + 1)
(x− a2(2n + 1)

b(n + 1)(n + 2)2 t)

])
.

(13.265)
Recall that u = v

1
n . based on this we obtain the kink solution for the generalized

KdV equation (13.256) by

u1(x,t) ={
a(2n + 1)

2b(n + 2)

(
1± tanh

[
an

2(n + 2)

√
2n + 1

b(n + 1)
(x− a2(2n + 1)

b(n + 1)(n + 2)2 t)

])} 1
n

,

(13.266)
and the travelling wave solution

u2(x,t) ={
a(2n + 1)

2b(n + 2)

(
1± coth

[
an

2(n + 2)

√
2n + 1

b(n + 1)
(x− a2(2n + 1)

b(n + 1)(n + 2)2 t)

])} 1
n

.

(13.267)
For n = 1, the solutions u1(x,t) and u2(x,t) are the solutions for the Gardner equa-
tion.

13.9.2 Using the Sine-cosine Method

Substituting the cosine assumption or the sine assumption as presented before, the
method works only if a = 0 or b = 0. In either case, Eq. (13.256) will be reduced to
the generalized KdV equation that was investigated in the previous section.

13.10 Compactons: Solitons with Compact Support

As stated before, the nonlinear term uux in the standard KdV equation

ut + αuux + uxxx = 0, (13.268)

causes the steepening of wave form. The dispersion effect term uxxx in Eq. (13.268)
makes the wave form spread. The balance between the weak nonlinearity of uux

and the linear dispersion of uxxx gives rise to soliton solutions. Soliton has been
defined by Wadati [20] and many others as a nonlinear wave that has the following
properties:
(1) A localized wave propagates without change of its properties (shape, velocity,
etc.),
(2) Localized waves are stable against mutual collisions and retain their identities.
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This means that the nonlinear KdV equation (13.268) with linear dispersion admits
solitary waves that are infinite in extent or localized waves with exponential tails or
wings.

Rosenau and Hyman [18] introduced a KdV like equation in the form

ut + a(un)x +(un)xxx = 0, n > 1, (13.269)

that was called the K(n,n) equation. The convection term (un)x and the dispersion
effect term (un)xxx in the nonlinear dispersive K(n,n) equation are both genuinely
nonlinear. It is formally derived by Rosenau and Hyman [18] that the delicate inter-
action between nonlinear convection with genuine nonlinear dispersion generates
solitary waves with exact compact support that are called compactons. The study
conducted by Rosenau and Hyman revealed that Eq. (13.269) generates compactly
supported solutions with non smooth fronts. In fact compactons are solitons with
finite wavelength. This means that compactons are waves with compact support or
solitons free of exponential wings [26]. Unlike soliton that narrows as the amplitude
increases, the compacton’s width is independent of the amplitude [18]. Compactons
such as drops do not possess infinite wings, hence they interact among themselves
only across short distances. A suffix-on is used in physics to indicate the particle
property, such as in phonon, photon, and soliton. For this reason, the solitary wave
with compact support is called compacton to indicate that it has the property of a
particle.

A considerable size of studies has been conducted in the literature to show that
purely nonlinear dispersion can cause a deep qualitative change in the genuinely
nonlinear phenomenon [18,26]. It was shown that the compactons are nonanalytic
solutions, whereas classical solitons are analytic solutions. The points of non ana-
lyticity at the edge of the compacton correspond to points of genuine nonlinearity
for the differential equation and introduce singularities in the associated dynamical
system for the traveling waves.

The K(n,n) equation (13.269) cannot be derived from a first order Lagrangian
except for n = 1, and it does not possess the usual conservation laws of energy that
KdV equation (13.268) possessed [18], hence the K(n,n) equation is not integrable.
The stability analysis has shown that compacton solutions are stable, where the sta-
bility condition is satisfied for arbitrary values of the nonlinearity parameter. The
stability of the compactons solutions was investigated by means of both linear sta-
bility and by Lyapunov stability criteria as well. Compactons were proved to collide
elastically and vanish outside a finite core region. Two important features of com-
pactons structures are observed:
(1) The compacton is a soliton characterized by the absence of exponential wings,
(2) The width of the compacton is independent of the amplitude.

The compactons discovery motivated a considerable work to make compactons
be practically realized in scientific applications, such as the super deformed nuclei,
preformation of cluster in hydrodynamic models, the fission of liquid drops (nuclear
physics), inertial fusion and others.
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It is interesting to note that solitary wave solutions may be expressed in terms of
sechα , or arctan(eα(x−ct)). However, the compactons solutions may be expressed in
terms of trigonometric functions cosξ or sinξ raised to an exponent. The cusps or
infinite slopes solutions of the defocusing branches, where a < 0, are expressed in
terms of hyperbolic functions coshξ or sinhξ raised to an exponent.

The pseudo spectral method and the tri-Hamiltonian operators, among other
methods, were used to handle the K(n,n) equation. However, in this section we
will use the tanh-coth method to handle the K(n,n) equation.

13.10.1 The K(n,n) Equation

The K(n,n) equation

ut + a(un)x +(un)xxx = 0, n > 1, (13.270)

will be investigated. To determine the traveling type wave solution u(x,t) of Eq.
(13.270) we use the wave variable ξ = (x− ct) to convert (13.270) into the ODE

−cu + aun +(un)′′ = 0, (13.271)

or equivalently

−cu + aun + nun−1u′′+ n(n−1)un−2(u′)2 = 0. (13.272)

Balancing the terms un−1u′′ with exponent (n−1)M + 4 + M−2 and u with expo-
nent M gives

(n−1)M + 4 + M−2 = M, (13.273)

so that

M =− 2
n−1

. (13.274)

As stated before, M should be an integer to obtain a closed form analytic solution,
the parameter M should be an integer. To achieve this goal we use a transformation
formula

u(x,t) = v−
1

n−1 (x,t). (13.275)

This formula carries (13.272) into

−c(n−1)2v3 + a(n−1)2v2−bn(n−1)vv′′+ bn(2n−1)(v′)2 = 0. (13.276)

Balancing the terms v3 and vv′′ we find

3M = M + M + 2, (13.277)

that gives M = 2. The tanh-coth method allows us to use the substitution
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v(x,t) = S(Y ) = a0 + a1Y + a2Y
2 +

b1

Y
+

b2

Y 2 . (13.278)

Substituting (13.278) into (13.276), collecting the coefficients of each power of Y ,
and solving the resulting system of algebraic equations we obtain the following sets:
(i)

a0 =
a(n + 1)

2cn
, a1 = b1 = b2 = 0, a2 =−a(n + 1)

2cn
, μ =

n−1
2n

√−a,

(13.279)
and
(ii)

a0 =
a(n + 1)

2cn
, a1 = b1 = a2 = 0, b2 =−a(n + 1)

2cn
, μ =

n−1
2n

√−a,

(13.280)
Noting that u = v−

1
n−1 , we first obtain the solitary patterns solutions

u1(x,t) =

{
− 2cn

a(n + 1)
sinh2

[
n−1

2n

√−a(x− ct)

]} 1
n−1

, (13.281)

u2(x,t) =

{
2cn

a(n + 1)
cosh2

[
n−1

2n

√−a(x− ct)

]} 1
n−1

, (13.282)

for a < 0, where ξ = x− ct.
However, for a > 0 we obtain the compactons solutions

u3(x,t) =

⎧⎪⎨
⎪⎩

{
2cn

a(n + 1)
sin2[

n−1
2n

√
a(x− ct)]

} 1
n−1

, | ξ |� π
μ

,

0, otherwise,

(13.283)

and

u4(x,t) =

⎧⎪⎨
⎪⎩

{
2cn

a(n + 1)
cos2[

n−1
2n

√
a(x− ct)]

} 1
n−1

, | ξ |� π
2μ

,

0, otherwise,
(13.284)

The last results are in consistent with the results that other researchers obtained by
using different approaches.

13.11 Variants of the K(n,n) Equation

In this section, three variants of the K(n,n) equations will be studied. The main
goal of this work is to show that compactons arise from a variety of variants of
the K(n,n) equations. The variants that will be examined involve both genuinely
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nonlinear convection and dispersion terms where the interaction between the effects
of these concepts generates compactons. The tanh method will be used only in this
study.

13.11.1 First Variant

A variant of the K(n,n) equation of the form

ut + a(un+1)x +[u(un)xx]x = 0, a > 0, n � 1, (13.285)

was investigated by Rosenau [18]. This model emerges in nonlinear lattices and was
used to describe the dispersion of dilute suspensions for n = 1. Equation (13.285)
was considered as a variant of the KdV equation or of the K(n,n) equation.

To determine the traveling-type wave solution u(x,t) of Eq. (13.285) we use the
wave variable ξ = x−ct, and integrate the resulting ODE to transform (13.285) into
an ODE

−cu + aun+1 + u(un)′′ = 0, (13.286)

or equivalently

−cu + aun+1 + nunu′′+ n(n−1)un−1(u′)2 = 0. (13.287)

Balancing the terms unu′′ and u gives

nM + M + 2 = M, (13.288)

so that

M =−2
n
. (13.289)

To obtain a closed form analytic solution, the parameter M should be an integer. For
this reason we use a transformation formula

u(x,t) = v−
1
n (x,t), (13.290)

that will carry (13.287) into

−cv3 + av2− vv′′+ 2(v′)2 = 0. (13.291)

Balancing the terms v3 and vv′′ we find M = 2. The tanh-coth method allows us to
use the substitution

v(x,t) = S(Y ) =
2

∑
i=0

aiY i +
2

∑
j=1

b jY− j (13.292)
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into (13.291), and proceeding as before we obtain the following sets of solutions:
(i)

a0 =
a
2c

, a1 = b1 = b2 = 0, a2 =− a
2c

, μ =

√−a
2

, (13.293)

and
(ii)

a0 =
a
2c

, a1 = b1 = a2 = 0, b2 =− a
2c

, μ =

√−a
2

. (13.294)

Noting that u = v−
1
n , we first obtain the solitary patterns solutions

u1(x,t) =

{
2c
a

sinh2
[√

a
2

(x− ct)

]} 1
n

, (13.295)

u2(x,t) =−
{

2c
a

cosh2
[√

a
2

(x− ct)

]} 1
n

, (13.296)

for a < 0, where ξ = x− ct.
For a > 0, the following compactons solutions

u(x,t) =

⎧⎪⎨
⎪⎩

{
2c
a

sin2
[√

a
2

(x− ct)

]} 1
n

, | x− ct |� π
μ

,

0, otherwise,

(13.297)

u(x,t) =

⎧⎪⎨
⎪⎩

{
2c
a

cos2
[√

a
2

(x− ct)

]} 1
n

, | x− ct |� π
2μ

,

0, otherwise,

(13.298)

are readily obtained.

13.11.2 Second Variant

A second variant of the K(n,n) equation is of the form

ut + a(un+1)x +[un(u)xx]x = 0, a > 0, n � 2. (13.299)

This variant was investigated by in [26].
To determine the traveling-type wave solution u(x,t) of Eq. (13.299) we use the

wave variable ξ = x−ct, and integrate the resulting ODE to transform (13.299) into
an ODE

−cu + aun+1 + unu′′ = 0. (13.300)

Balancing the terms unu′′ and u gives
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nM + M + 2 = M, (13.301)

so that

M =−2
n
. (13.302)

To obtain a closed form analytic solution, the parameter M should be an integer. For
this reason we use a transformation formula

u(x,t) = v−
1
n (x,t), (13.303)

that will carry (13.300) into

−cv3 + av2 +α(α−1)(v′)2 +αvv′′ = 0, α =−1
n
. (13.304)

Balancing the terms v3 and vv′′ we find M = 2. The tanh-coth method uses the
substitution

v(x,t) = S(Y ) =
2

∑
i=0

aiY i +
2

∑
j=1

b jY− j, (13.305)

into (13.304), and proceeding as before we obtain the following sets of solutions:
(i)

a0 =−a(n−2)

2c
, a1 = b1 = b2 = 0, a2 =−a(n−2)

2c
, μ =

n
2

√−a,a < 0,

(13.306)
and
(ii)

a0 =−a(n−2)

2c
, a1 = b1 = a2 = 0, b2 =−a(n−2)

2c
, μ =

n
2

√−a,a < 0.

(13.307)
Noting that u = v−

1
n , we first obtain the solitary patterns solutions

u(x,t) =

{
2c

a(2−n)
sinh2

[
n

√−a
2

(x− ct)

]} 1
n

, (13.308)

and

u(x,t) =

{
− 2c

a(2−n)
cosh2

[
n

√−a
2

(x− ct)

]} 1
n

, (13.309)

for a < 0, where ξ = x− ct.
For a > 0, The following compactons solutions

u(x,t) =

⎧⎪⎨
⎪⎩

{
2c

a(2−n)
sin2

[n
2

√
a(x− ct)

]} 1
n

, | x− ct |� π
μ

,

0, otherwise,

(13.310)
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and

u(x,t) =

⎧⎪⎨
⎪⎩

{
2c

a(2−n)
cos2

[n
2

√
a(x− ct)

]} 1
n

, | x− ct |� π
2μ

,

0, otherwise,
(13.311)

are readily obtained.

13.11.3 Third Variant

A third variant of the KdV equation

ut +(au + bun)x + k(un)xxx = 0,n > 1,k �= 0, (13.312)

was studied in [26]. It is to be noted that Eq. (13.312) is the linear KdV equation
for b = 0 and n = 1. However, for a = 0, Eq. (13.312) will be reduced to the well
known K(n,n) equation that was examined before. The convection and dispersion
terms are both nonlinear.

As shown before, this equation can be transformed to the ODE

(a− c)u + bun + k(un)′′ = 0, (13.313)

upon using the wave variable ξ = x− ct and integrating the resulting equation. Eq.
(13.313) can be converted to

(a− c)u + bun + knun−1u′′+ kn(n−1)un−2(u′)2 = 0. (13.314)

Balancing u(x,t) with un−1u′′ gives

M =− 2
n−1

. (13.315)

As stated before, a transformation formula

u = v−
1

n−1 , (13.316)

enables us to achieve a closed form solution. This transformation formula converts
(13.314) to

(a− c)(n−1)2v3 + b(n−1)v2− kn(n−1)vv′′+ kn(2n−1)(v′)2 = 0. (13.317)

Balancing vv′′ with v3 gives M = 2. The tanh method gives the same results as the
tanh-coth method. The tanh method allows us to use the finite expansion

v(x,t) = S(Y ) = a0 + a1Y + a2Y 2. (13.318)
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Substituting (13.318) into (13.317), collecting the coefficients of each power of Y
and proceeding as before we obtain

a0 = − (n + 1)b
2(a− c)n

,

a1 = 0,

a2 =
(n + 1)b
2(a− c)n

,

M =
n−1

2n

√
−b

k
,

b
k

< 0.

(13.319)

where c is selected as a free parameter. Noting that u(x,t) = v−
1

n−1 , and using the
previous results we find a family of solitary patterns solutions

u1(x,t) =

{
−2n(c−a)

b(n + 1)
sinh2

[
n−1

2n

√
−b

k
(x− ct)

]} 1
n−1

, (13.320)

and

u2(x,t) =

{
2n(c−a)

b(n + 1)
cosh2

[
n−1

2n

√
−b

k
(x− ct)

]} 1
n−1

, (13.321)

valid for
b
k

< 0.

However, for
b
k

> 0, we obtain a family of compactons solutions given by

u3(x,t) =

⎧⎪⎨
⎪⎩

{
2n(c−a)

b(n + 1)
sin2

[
n−1

2n

√
b
k
(x− ct)

]} 1
n−1

, |μξ |< π ,

0, otherwise,

(13.322)

and

u4(x,t) =

⎧⎪⎨
⎪⎩

{
2n(c−a)

b(n + 1)
cos2

[
n−1

2n

√
b
k
(x− ct)

]} 1
n−1

, |μξ |< π
2

,

0, otherwise,

(13.323)

The results obtained above by using the tanh method are consistent with the results
obtained before by using the sine-cosine method.
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13.12 Compacton-like Solutions

In previous sections, we examined the conditions needed for the existence of soli-
tons. In this case, it was confirmed that solitons are due to the balance between weak
nonlinearity of uux and the linear dispersion of uxxx. Moreover, we have studied the
K(n,n) and some of its variants where the interaction between nonlinear term of
(un)x and the genuine nonlinear dispersive term (un)xxx gives rise to compactons:
solitons with compact support. In this section we will study some of the nonlinear
evolution equations that we discussed before that will give rise to compacton-like
solutions.

The main idea is to assume that the compacton-like solution is of the form

u(x,t) =
Acos2μ(x− ct)

1 + Bcos2μ(x− ct)
, (13.324)

or in the form

u(x,t) =
Asin2μ(x− ct)

1 + Bsin2μ(x− ct)
, (13.325)

where A,B,μ and c are constants that will be determined.

13.12.1 The Modified KdV Equation

Recall that the mKdV equation is

ut + au2ux + uxxx = 0. (13.326)

Substituting (13.324) or (13.324) into the mKdV equation (13.326), and proceeding
as before we obtain

A =
4μ
3

√
2
a
, B =−2

3
, c = 4μ2, (13.327)

where μ is left as a free parameter. In view of these results, we obtain the following
compacton-like solutions

u(x,t) =
4μ
3

√
2
a

⎧⎪⎪⎨
⎪⎪⎩

cos2μ(x−4μ2t)

1− 2
3

cos2μ(x−4μ2t)
, | (x−4μ2t) |� π

2μ
,

0, otherwise,

(13.328)

and

u(x,t) =
4μ
3

√
2
a

⎧⎪⎪⎨
⎪⎪⎩

sin2μ(x−4μ2t)

1− 2
3

sin2μ(x−4μ2t)
, | (x−4μ2t) |� π

μ
,

0, otherwise.

(13.329)
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13.12.2 The Gardner Equation

Recall that the Gardner equation, or the combined KdV-mKdV equation, is

ut + 6uux + 6u2ux + uxxx = 0. (13.330)

We first substitute (13.324) or (13.324) into the Gardner equation (13.330), collect
all coefficients of like cosine functions, equate these coefficients to zero, and solve
the resulting system we obtain

A =−2B(1 + B)

2 + 3B
, μ =

√
B + 1

2 + 3B
, c =−4(1 + B)(1 + 3B)

(2 + 3B)2 , B �=−2
3
,−1,

(13.331)
where B is left as a free parameter. In view of these results, we obtain the following
compacton-like solutions

u(x,t) =

⎧⎨
⎩

2B(1 + B)cos2 μ(x− ct)
(2 + 3B)(1 + Bcos2 μ(x− ct))

, | (x− ct) |� π
2μ

,

0, otherwise,
(13.332)

and

u(x,t) =

⎧⎨
⎩

2B(1 + B)sin2 μ(x− ct)

(2 + 3B)
(
1 + Bsin2 μ(x− ct)

) , | (x− ct) |� π
μ

,

0, otherwise,
(13.333)

where μ and c are defined above.

13.12.3 The Modified Equal Width Equation

The modified equal width equation is

ut + 3u2ux−uxxt = 0. (13.334)

Proceeding as before we find A =
2
3

√
2c
3

, B =−2
3
, μ =

1
2

, where c is left as a free

parameter. This gives the following solutions

u(x,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
√

6ccos2(
1
2
(x− ct))

3

(
3−2cos2(

1
2
(x− ct))

) , | (x− ct) |� π
2μ

,

0, otherwise,

(13.335)

and
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u(x,t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
√

6csin2(
1
2
(x− ct))

3

(
3−2sin2(

1
2
(x− ct))

) , | (x− ct) |� π
μ

,

0, otherwise,

(13.336)
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Chapter 14

KdV and mKdV Equations of Higher-orders

14.1 Introduction

It is well known that the third order KdV equation is the generic model for studying
weakly nonlinear waves. The equation models surface waves with small amplitude
and long wavelength on shallow water. The KdV equation involves a balance be-
tween weak nonlinearity and linear dispersion. The KdV equation is completely
integrable and the collision between solitary waves is elastic, which means that the
solitons retain original identity after collision.

In Chapter 13, we have discussed modified and extensions of the KdV equa-
tions. The equations that we studied in Chapter 13 are of third-order and give soli-
ton solutions. However, several other extensions of the standard KdV equation of
higher orders appear in scientific applications. The bilinear form for the standard
KdV equation may be extended to formulate the higher-order KdV equations. Other
higher-order KdV equations were constructed from scientific applications. The na-
ture of solitary wave interaction for these higher-order KdV equations has attracted
a considerable size of research work.

In this chapter, we will follow the same analysis employed before to handle the
higher-order KdV equations of fifth-order, seventh-order, and ninth-order for soli-
ton solutions. Moreover, higher-order modified KdV equations of fifth-order and
seventh-order that belong to Lax hierarchy will be also studied to determine N-
soliton solutions. It is interesting to note that not all higher order KdV equations
are completely integrable. The study will be focused on the determination of single
solitons, and multiple-soliton solutions for integrable equations.

In addition, the Hirota-Satsuma system will also be studied to determine N-
soliton solutions. The generalized models for shallow water wave equations are of
significant interest that will be examined as well in this chapter.
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14.2 Family of Higher-order KdV Equations

In this section we will study the family of higher-order KdV equations. The higher-
order KdV equations involve more than one dispersive terms. The fifth-order, the
seventh-order and the ninth-order KdV equations will be studied in the forthcom-
ing sections. The tanh-coth method will be used for the determination of single
soliton solutions and for periodic solutions. Moreover, the Hirota’s bilinear method
combined with Herman’s simplified form will be used for the derivation of multiple-
soliton solutions for completely integrable equations.

14.2.1 Fifth-order KdV Equations

The well-known fifth-order KdV (fKdV) equations in its standard form reads

ut +αu2ux + βuxuxx + γuu3x + u5x = 0, (14.1)

where α,β and γ are arbitrary nonzero and real parameters, and u = u(x,t) is a
sufficiently smooth function. The fifth-order KdV equations involve two dispersive
terms u3x and u5x. Because the parameters α,β and γ are arbitrary and take different
values, this will drastically change the characteristics of the fKdV equation (14.1).
A variety of the fKdV equations can be developed by changing the real values of the
parameters α,β and γ . The most well-known fifth-order KdV equations that will be
approached are the Sawada-Kotera (SK) equation, the Caudrey-Dodd-Gibbon equa-
tion, the Lax equation, the Kaup-Kuperschmidt (KP) equation, and the Ito equation.
The derivation of these fifth-order forms are derived from specific bilinear forms of
the so-called Hirota’s D-operators.

As stated before, many forms of the fKdV equation can be constructed by chang-
ing the parameters α,β and γ . However, five well known forms of the fKdV that are
of particular interest in the literature. These forms are:

(i) The Sawada-Kotera (SK) equation [12] is given by

ut + 5u2ux + 5uxuxx + 5uu3x + u5x = 0, (14.2)

and characterized by

β = γ, α =
1
5

γ2. (14.3)

Recall that the KdV equation

ut + 6uux + uxxx = 0 (14.4)

can be expressed in terms of the bilinear operators by

Dx(Dt + D3
x)( f · f ) = 0. (14.5)
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The solution of Eq. (14.4) is of the form

u(x,t) = 2
∂ 2 ln f (x,t)

∂ x2 . (14.6)

Sawada and Kotera [12] generalized (14.5) and (14.6) into the form

Dx(Dt + D5
x)( f · f ) = 0, u(x,t) = 2(ln f (x,t))xx, (14.7)

or equivalently

DxDt( f · f )+ D6
x( f · f ) = 0, u(x,t) = 2(ln f (x,t))xx. (14.8)

The Hirota’s bilinear operators have several properties, and two of these properties
are given by

DxDt( f · f ) = f 2(ln f 2)xt ,
D6

x( f · f ) = f 2(u4x + 15uu2x + 15u3).
(14.9)

Substituting (14.9) into (14.8) gives

2(ln f )xt + u4x + 15uu2x + 15u3 = 0. (14.10)

Differentiate (14.10) with respect to x and using (14.6) gives the Sawada-Kotera
equation

ut + 45u2ux + 15uxu2x + 15uu3x + u5x = 0. (14.11)

It is to be noted that the Sawada-Kotera equation (14.2) is obtained from (14.11) by

using the scaling u =
1
3

v.

(ii) The Caudrey-Dodd-Gibbon equation (CDG) [2] is given by

ut + 180u2ux + 30uxuxx + 30uuxxx + uxxxxx = 0, (14.12)

with u(x,t) is a sufficiently often differentiable function. The CDG equation is, like
the SK equation, characterized by

β = γ, α =
1
5

γ2. (14.13)

The CDG equation is completely integrable and therefore it has multiple-soliton
solutions, and is obtained from the SK equation (14.11) by using u = 2v. It was
found that the CDG equation (14.12) possesses the Painlevé property.

(iii) The Lax equation [10] reads

ut + 30u2ux + 20uxuxx + 10uu3x + u5x = 0, (14.14)

and characterized by

β = 2γ, α =
3
10

γ2. (14.15)
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Lax [10] generalized (14.5) and (14.6) into the form[
Dx(Dt + D5

x)−
5
3

Ds(Ds + D3
x)

]
( f · f ) = 0, u(x,t) = 2(ln f (x,t))xx,

Dx(Ds + D3
x)( f · f ) = 0,

(14.16)

by involving an auxiliary variable s. Equations (14.16) can be written as

DxDt( f · f )+ D6
x( f · f )− 5

3
D2

s −
5
3

DsD3
x = 0, u(x,t) = 2(ln f (x,t))xx,

DxDs( f · f )+ D4
x( f · f ) = 0.

(14.17)

Using the properties of Hirota’s D-operators, as presented before, gives

2(ln f )xt + 10u3 + 10uu2x + 5u2
x + u4x = 0. (14.18)

Differentiate (14.18) with respect to x and using (14.6) gives the Lax fifth-order
equation

ut + 30u2ux + 20uxu2x + 10uu3x + u5x = 0. (14.19)

(iv) The Kaup-Kuperschmidt (KK) equation [8,9] reads

ut + 20u2ux + 25uxuxx + 10uu3x + u5x = 0, (14.20)

is characterized by

β =
5
2

γ, α =
1
5

γ2. (14.21)

Kaup and Kuperschmidt in [8] and [9] respectively generalized (14.5) and (14.6)
into the bilinear form[

Dx(16Dt + D5
x)
]
( f · f )−30D2

x( f ·g) = 0, u(x,t) =−2(ln f (x,t))xx,
D4

x( f · f )+ 2( f ·g) = 0.
(14.22)

Using the properties of Hirota’s D-operators presented before gives the KK equation
by

ut + 45u2ux− 75
2

uxuxx−15uu3x + u5x = 0. (14.23)

The KK form (14.20) is obtained by setting u(x,t) =−2
3

v(x,t).

(v) The Ito equation [7]

ut + 2u2ux + 6uxuxx + 3uu3x + u5x = 0, (14.24)

is characterized by

β = 2γ, α =
2
9

γ2. (14.25)
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It was found that the SK, CDG, Lax, and KK equations belong to the completely
integrable hierarchy of higher-order KdV equations. These four equations have in-
finite sets of conservation laws, and therefore these equations have N-soliton so-
lutions. However, the Ito equation is not completely integrable but has a limited
number of special conservation laws.

It is important to note that there is another significant fifth-order KdV equation
that appears in the literature in the form

ut + auux + bu3x− ru5x = 0, (14.26)

where a,b,r are constants. This equation is called the Kawahara equation. When
b = 1, and r = 0, the Kawahara equation reduces to the standard third-order KdV
equation. The Kawahara equation models the dynamics of long waves in a viscous
fluid. It appears in the theory of shallow water waves with surface tension and the
theory of magneto-acoustic waves in plasmas. Moreover, the Kawahara equation
has also a modified form given by

ut + au2ux + buxxx− ruxxxxx = 0, (14.27)

where the quadratic nonlinearity uux of the Kawahara equation (14.26) is replaced
by the cubic nonlinearity u2ux. The Kawahara and the modified Kawahara equations
will be studied in Chapter 15.

14.2.2 Seventh-order KdV Equations

The higher-order KdV equation may appear in a seventh-order KdV (sKdV) equa-
tion given by generalized form

ut +au3ux +bu3
x +cuuxu2x +du2u3x +eu2xu3x + f uxu4x +guu5x+u7x = 0, (14.28)

where a,b,c,d,e, f , and g are nonzero parameters, and ukx =
∂ k

∂xk . The parameters

a,b,c,d,e, f , and g can take arbitrary values. However, there are three well-known
special cases of Eq. (14.28) derived by using an extension to the bilinear form of the
standard KdV equation. These forms are:

(i) The seventh-order Sawada-Kotera-Ito equation is given by

ut + 252u3ux + 63u3
x + 378uuxu2x + 126u2u3x + 63u2xu3x

+42uxu4x + 21uu5x + u7x = 0.
(14.29)

(ii)The seventh-order Lax equation reads

ut + 140u3ux + 70u3
x + 280uuxu2x + 70u2u3x + 70u2xu3x

+42uxu4x + 14uu5x + u7x = 0.
(14.30)
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(iii) The seventh-order Kaup-Kuperschmidt equation is given by

ut + 2016u3ux + 630u3
x + 2268uuxu2x + 504u2u3x + 252u2xu3x

+147uxu4x + 42uu5x + u7x = 0.
(14.31)

As stated before, these three cases of the seventh-order KdV equation are completely
integrable. This means that each of these equations admits an infinite number of
conservation laws, and as a result each gives rise to N-soliton solutions.

14.2.3 Ninth-order KdV Equations

The KdV equation may appear in a ninth-order KdV equation. The ninth-order
Sawada-Kotera equation (nSK) reads

ut + 45uxu6x + 45uu7x + 210u3xu4x + 210u2xu5x + 1575ux(u2x)
2

+ 3150uu2xu3x + 1260uuxu4x + 630u2u5x + 9450u2uxu2x

+ 3150u3u3x + 4725u4ux + u9x = 0.
(14.32)

Other forms of different coefficients may be derived. The ninth-order KdV equation
(14.32) is not completely integrable. Any nonlinear evolution equation should give
N-soliton solutions for N � 1 to be characterized as completely integrable. The
ninth-order forms are derived from specific bilinear forms of the so-called Hirota’s
D-operators.

In what follows we will study the higher-order KdV equations. The tanh-coth
method and the Hirota’s direct method will be used to achieve our goal of this study.

14.3 Fifth-order KdV Equations

In this section we will study a class of fifth-order KdV equation (fKdV) given in a
generalized form

ut +αu2ux + βuxuxx + γuu3x + u5x = 0, (14.33)

where α,β , and γ are arbitrary nonzero and real parameters, and u = u(x,t) is a
sufficiently-often differentiable function. As stated before, the tanh-coth method
will be used to derive single soliton solutions. The multiple-soliton solutions will
be determined for completely integrable equations by using the Hirota’s bilinear
formalism. The fKdV equation has wide applications in quantum mechanics and
nonlinear optics. It is well known that nonlinear wave phenomena of plasma media
and fluid dynamics are modelled by kink shaped tanh solution or by bell shaped
sech solutions.
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14.3.1 Using the Tanh-coth Method

We first rewrite (14.33) as

ut +
α
3

(u3)x + γ(uuxx)x +
β − γ

2
((ux)

2)x + u5x = 0. (14.34)

Using the wave variable ξ = μx− ct and integrating once, Eq. (14.34) will be con-
verted to

−cu +
α
3

μu3 + γμ3uu′′+
β − γ

2
μ3(u′)2 + μ5u(4) = 0, (14.35)

Balancing the terms u(4) with u3 in (13.257) gives M = 2. The tanh-coth method
admits the use of

u(ξ ) =
2

∑
i=0

aiY i +
2

∑
j=1

b jY− j. (14.36)

Substituting (14.36) into (14.35), collecting the coefficients of Y , and solving the
resulting system we find the following sets of solutions

(i) The first set of parameters is given by

a0 = −2
3

a2, a1 = b1 = b2 = 0,

c = −2
3

β μ3a2−24μ5,

α = −6μ2
(
60μ2 + βa2 + 2γa2

)
a2

2

.

(14.37)

(ii) The second set of parameters is given by

a0 = A,A is a constant, a1 = b1 = b2 = 0, a2 =− 60μ2

β + γ
,

c =
μ
[
γ(β + γ)2a2

0−80γμ2(β + γ)a0 + 80μ4(2β + 17γ)
]

10(β + γ)
,

α =
γ(β + γ)

10
.

(14.38)

(iii) The third set of parameters is given by

a0 = −2
3

a2, a1 = b1 = 0, b2 = a2,

c = −32
3

β μ3a2−384μ5,

α = −6μ2
(
60μ2 + βa2 + 2γa2

)
a2

2

.

(14.39)
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(iv) The fourth set of parameters is given by

a0 = A,A is a constant, a1 = b1 = 0, a2 =− 60μ2

β + γ
, b2 =− 60μ2

β + γ
,

c =
μ
[
γ(β + γ)2a2

0−80γμ2(β + γ)a0 + 320μ4(8β −7γ)
]

10(β + γ)
,

α =
γ(β + γ)

10
.

(14.40)

14.3.2 The First Condition

The first and the third sets of parameters are expressed in terms of μ and a2. It is
normal to examine the result obtained for α from these sets where we find

α =−6μ2(60μ2 +(β + 2γ)a2)

a2
2

, (14.41)

that gives
αa2

2 + 6μ2(β + 2γ)a2 + 360μ4 = 0. (14.42)

This quadratic equation has real solutions only if(
6μ2(β + 2γ)

)2
� 1440αμ4, (14.43)

that gives the first condition, that we are seeking, given by

α �
(β + 2γ)2

40
. (14.44)

The condition (14.44) enables us to use several real values for α , even for fixed
values of the parameters β and γ . In what follows we will derive soliton solutions
for all forms of fifth-order KdV that were presented above.

For fifth-order Lax equation, α = 30, β = 20 and γ = 10. We first determine a2

by using (14.41) and accordingly, the third set (14.39) gives a1 = b1 = 0 and

a2 = b2 =−2μ2,−6μ2,

a0 =
4
3

μ2, 4μ2,

c =
128

3
μ5, 896μ5.

(14.45)

This in turn gives the solutions
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u1(x,t) =
4
3

μ2−2μ2 tanh2
(

μx− 128
3

μ5t

)
−2μ2 coth2

(
μx− 128

3
μ5t

)
,

(14.46)

u2(x,t) = 4μ2−6μ2 tanh2
(

μx−896 μ5t
)
−6μ2 coth2

(
μx−896 μ5t

)
, (14.47)

where μ is a nonzero real parameter.
For the fifth-order SK equation, α = 5, β = 5 and γ = 5. We first determine a2

by using (14.41) and proceeding as before, we find a1 = b1 = 0 and

a2 = b2 =−6μ2,−12μ2,

a0 = 4μ2, 8μ2,

c = −64μ5, 256μ5.

(14.48)

This in turn gives the two solutions

u1(x,t) = 4μ2−6μ2 tanh2
(

μx + 64 μ5t
)
−6μ2 coth2

(
μx + 64 μ5t

)
, (14.49)

and

u2(x,t) = 8μ2−12μ2 tanh2
(

μx−256 μ5t
)
−12μ2 coth2

(
μx−256 μ5t

)
,

(14.50)
where μ is a nonzero real free parameter.

For the Kaup-Kuperschmidt (KK) equation, α = 20, β = 25 and γ = 10. Pro-
ceeding as before we find

a2 = b2 =−3
2

μ2,−12μ2,

a1 = b1 = 0,

a0 = μ2, 8μ2,

c = 16μ5, 2816μ5.

(14.51)

This in turn gives the solutions

u1(x,t) = μ2− 3
2

μ2 tanh2
(

μx− 16μ5 t
)
− 3

2
μ2 coth2

(
μx− 16μ5 t

)
, (14.52)

u2(x,t) = 8μ2−12μ2 tanh2
(

μx− 2816μ5 t
)
−12μ2 coth2

(
μx− 2816μ5 t

)
.

(14.53)
For the Ito equation, α = 2, β = 6 and γ = 3. Proceeding as before, we find

a2 = b2 =−6μ2,−30μ2,

a1 = b1 = 0,

a0 = 4μ2,20μ2,

c = 0,1536μ5.

(14.54)
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This in turn gives the solutions

u1(x,t) = 20μ2−30μ2 tanh2
(

μx− 1536μ5 t
)
−30μ2 coth2

(
μx− 1536μ5 t

)
,

(14.55)
and the solutions

u2(x) = 4μ2−6μ2 tanh2 (μx)−6μ2 coth2 (μx) . (14.56)

For the fifth-order CDG equation, it is left to the reader.

14.3.3 The Second Condition

In (14.40), we derived the following set

a0 = A,A is a constant, a1 = b1 = 0, a2 =− 60μ2

β + γ
, b2 =− 60μ2

β + γ
,

c =
μ
[
γ(β + γ)2a2

0−80γμ2(β + γ)a0 + 320μ4(8β −7γ)
]

10(β + γ)
,

α =
γ(β + γ)

10
.

(14.57)

as a fourth set of values for the parameters a0,a1,a2,b1,b2,c and α . It is obvious
from this set that we have a unique value for α for fixed values of β and γ . This fixed
value for α is only justified for Lax, SK, and CDG equations. A modification for
values of α should be set for KK and Ito equations to obtain solutions for variants
of these equations. It is obvious that only one soliton solution will be obtained for
Lax and the SK equations.

For the Lax equation, α = 30, β = 20 and γ = 10. Using (14.57) we find

a0 = a0, a0 is an arbitrary constant,
a1 = b1 = 0,
a2 = b2 =−2μ2,

c = 2μ(48μ4−40a0μ2 + 15a2
0),

(14.58)

where μ is left as a free parameter. This in turn gives the solution

u(x,t) = a0−2μ2 tanh2 (μx−2μ(48μ4−40a0μ2 + 15a2
0)t

)
(14.59)

−2μ2 coth2 (μx−2μ(48μ4−40a0μ2 + 15a2
0)t

)
,

Similarly, for the SK equation we find

a0 = a0, a0 is an arbitrary constant,
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a2 = b2 =−6μ2,
a1 = b1 = 0,
c = μ(16μ4−40a0μ2 + 5a2

0).
(14.60)

This in turn gives the solution

u(x,t) = a0−6μ2 tanh2 (μx− μ(16μ4−40a0μ2 + 5a2
0)t

)
(14.61)

−6μ2 coth2 (μx− μ(16μ4−40a0μ2 + 5a2
0)t

)
.

We leave it to the reader to obtain the soliton solution for the CDG equation.

14.3.4 N-soliton Solutions of the Fifth-order KdV Equations

In this section, we will examine multiple-soliton solutions of the fifth-order KdV
equations. As stated before, Hirota [5,6] proposed a bilinear form where it was
shown that soliton solutions are just polynomials of exponentials.

Hereman et.al. [3] introduced a simplified version of Hirota method, where exact
solitons can be obtained by solving a perturbation scheme using a symbolic manip-
ulation package. In what follows, we summarize the main steps of the simplified
version of Hirota’s method.

We first substitute

u(x,t) = R
∂ 2 ln f (x,t)

∂x2 = R
f f2x− ( fx)

2

f 2 , (14.62)

into (14.33), where the auxiliary function f = 1+ exp(θ ),θ = kx−wt, and solving
the equation we get

α =
γ2 + γβ

10
,

R =
60

γ + β
.

(14.63)

The Lax Equation

For Lax equation, R = 2, therefor we use the transformation

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 = 2
f f2x− ( fx)

2

f 2 , (14.64)

that will carry out the Lax equation (14.14) into a cubic equation in f given by

f 2( fxt + f6x)− f ( fx ft + 6 fx f5x−5 f2x f4x)+ 10( f 2
x f4x−2 fx f2x f3x + f 3

2x) = 0,
(14.65)

that can be decomposed into linear operator and two nonlinear operators.
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Proceeding as before, we assume that f (x,t) has a perturbation expansion of the
form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (14.66)

where ε is a non small formal expansion parameter. Following the simplified version
of Hirota’s method [5], we substitute (14.66) into (14.65) and equate to zero the
powers of ε .

The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi) =
N

∑
i=1

exp(kix− cit), (14.67)

where
θi = kix− cit, (14.68)

where ki and ci are arbitrary constants. Substituting (14.67) into (14.65), and equate
the coefficients of ε1 to zero, we obtain the dispersion relation

ci = k5
i , (14.69)

and in view of this result we obtain

θi = kix− k5
i t. (14.70)

This means that
f1 = exp(θ1) = exp(k1(x− k4

1t)), (14.71)

obtained by using N = 1 in (14.67).
For the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp(k1(x− k4
1t)), (14.72)

where we used ε = 1. The one soliton solution is therefore

u(x,t) =
2k2

1exp(k1(x− k4
1t))

(1 + exp(k1(x− k4
1t)))2

. (14.73)

To determine the two-soliton solutions, we first set N = 2 in (14.67) to get

f1 = exp(θ1)+ exp(θ2). (14.74)

To determine f2, we set

f2 = ∑
1�i< j�N

ai jexp(θi + θ j), (14.75)

and therefore we substitute
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f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (14.76)

into (14.65) and proceed as before to obtain the phase factor a12 by

a12 =
(k1− k2)

2

(k1 + k2)2 , (14.77)

and hence

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � N. (14.78)

This in turn gives

f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k5
1+k5

2)t . (14.79)

The two-soliton solutions are obtained by using (14.64) for the function f in (14.79).
Similarly, we can determine f3. Proceeding as before, we therefore set

f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3),

(14.80)

and accordingly we have

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3)
+ f3(x,t).

(14.81)

Substituting (14.81) into (14.65) and proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (14.82)

where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (14.83)

and θ1, θ2 and θ3 are given above in (14.70). For the three-soliton solution we use
1 � i < j � 3, we therefore obtain

f = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
+b123exp(θ1 +θ2 + θ3),

(14.84)

where

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 2, b123 = a12a13a23. (14.85)

This in turn gives
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f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) + ek3(x−k4
3t)

+
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k5
1+k5

2)t +
(k1− k3)

2

(k1 + k3)2 e(k1+k3)x−(k5
1+k5

3)t

+
(k2− k3)

2

(k2 + k3)2 e(k2+k3)x−(k5
2+k5

3)t

+
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 e(k1+k2+k3)x−(k5
1+k5

2+k5
3)t .

(14.86)

To determine the three-soliton solutions explicitly, we use (14.64) for the function
f in (14.86).

As stated before, the Lax equation is characterized by

β = 2γ, α =
3
10

γ2, (14.87)

where γ is any arbitrary constant, then the transformation (14.64) can be generalized
to

u =
20
γ

(ln( f (x,t))xx, (14.88)

that works for every γ .
We again emphasize the three facts presented before:

(i) The first is that soliton solutions are just polynomials of exponentials as empha-
sized by Hirota.

(ii) The three-soliton solution and the higher level soliton solution as well, do not
contain any new free parameters other than ai j derived for the two-soliton solution.

(iii) Every solitonic equation that has generic N = 3 soliton solutions, then it has
also soliton solutions [4,14,15] for any N � 4.

The Sawada-Kotera Equation

For the SK equation, R = 6, therefor the transformation

u(x,t) = 6
∂ 2 ln f (x,t)

∂x2 = 6
f f2x− ( fx)

2

f 2 , (14.89)

that will carry out the SK equation (14.2) into a quadratic equation in f given by

f ( fxt + f6x)+ (15 f2x f4x−10 f 2
3x−6 fx f5x− fx ft) = 0. (14.90)

We again assume that f (x,t) has a perturbation expansion of the form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t). (14.91)
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Substituting (14.91) into (14.90) and equate to zero the powers of ε .
The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi) =
N

∑
i=1

exp(kix− cit), (14.92)

where
θi = kix− cit. (14.93)

Substituting (14.92) into (14.90) and equate the coefficients of ε1 to zero, we obtain
the dispersion relation

ci = k5
i , (14.94)

and in view of this result we obtain

θi = kix− k5
i t. (14.95)

This means that
f1 = exp(θ1) = exp(k1(x− k4

1t)), (14.96)

obtained by using N = 1 in (14.92).
Consequently, for the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp(k1(x− k4
1t)). (14.97)

The one soliton solution is therefore given by

u(x,t) =
6k2

1exp(k1(x− k4
1t))

(1 + exp(k1(x− k4
1t)))2

. (14.98)

To determine the two-soliton solution, we first set N = 2 in (14.92) to get

f1 = exp(θ1)+ exp(θ2). (14.99)

To determine f2, we set

f2 = ∑
1�i< j�N

ai jexp(θi + θ j), (14.100)

and therefore we substitute

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (14.101)

into (14.90) and proceed as before to obtain the phase factor a12 by

a12 =
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (14.102)

and hence
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ai j =
(ki− k j)

2(k2
i − kik j + k2

j)

(ki + k j)2(k2
i − kik j + k2

j)
,1 � i < j � N. (14.103)

This in turn gives

f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) +
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
e(k1+k2)x−(k5

1+k5
2)t .

(14.104)
The two-soliton solutions can be obtained by using (14.89) for the function f in
(14.104).

Similarly, we can determine f3. Proceeding as before, we therefore set

f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 + θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 +θ3),

(14.105)

and accordingly we have

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+ f3(x,t).

(14.106)

Substituting (14.106) into (14.90) and proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (14.107)

where
b123 = a12a13a23. (14.108)

For the three-soliton solution we use 1 � i < j � 3, we proceed as before to get

f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) + ek3(x−k4
3t)

+a12e(k1+k2)x−(k5
1+k5

2)t + a13e(k1+k3)x−(k5
1+k5

3)t

+a23e(k2+k3)x−(k5
2+k5

3)t

+b123e(k1+k2+k3)x−(k5
1+k5

2+k5
3)t .

(14.109)

where ai j and b123 are defined above in (14.103) and (14.108) respectively. To de-
termine the three-solitons solution explicitly, we use (14.90) for the function f in
(14.109).

As stated before, the Sawada-Kotera equation is characterized by

β = γ, α =
1
5

γ2, (14.110)

where γ is any arbitrary constant, then the transformation (14.89) can be generalized
to

u =
30
γ

(ln( f (x,t))xx, (14.111)
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that works for every γ .

The Caudrey-Dodd-Gibbon Equation

For the CDG equation, R = 1, therefore the transformation

u(x,t) = (ln( f ))xx, (14.112)

that transforms (14.12) to

[ f ( fx f6x− ft f2x−2 fx fxt −5 f3x f4x + 9 f2x f5x)]+
[

f 2( f7x + fxxt )
]

+
[

fx(20 f 2
3x−30 f2x f4x)

]
+

[
f 2
x (12 f5x + 2 ft)

]
= 0.

(14.113)

Following the discussions introduced before, we assume that f (x,t) has a pertur-
bation expansion of the form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t). (14.114)

Substituting (14.114) into (14.113) and equate to zero the powers of ε.
The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi) =
N

∑
i=1

exp(kix− cit), (14.115)

where
θi = kix− cit. (14.116)

The dispersion relation is found to be

ci = k5
i . (14.117)

In view of this result we obtain

θi = kix− k5
i t. (14.118)

This means that
f1 = exp(θ1) = exp(k1(x− k4

1t)), (14.119)

obtained by using N = 1 in (14.115).
Consequently, for the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp(k1(x− k4
1t)), (14.120)

where we set ε = 1. The one soliton solution is therefore
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u(x,t) =
k2

1exp(k1(x− k4
1t))

(1 + exp(k1(x− k4
1t)))2

. (14.121)

To determine the two-soliton solution, we first set N = 2 in (14.115) to get

f1 = exp(θ1)+ exp(θ2). (14.122)

To determine f2, we set

f2 = ∑
1�i< j�N

ai jexp(θi + θ j), (14.123)

and therefore we substitute

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (14.124)

into (14.113) and proceed as before to obtain the phase factor a12 by

a12 =
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (14.125)

and hence

ai j =
(ki− k j)

2(k2
i − kik j + k2

j )

(ki + k j)2(k2
i − kik j + k2

j )
, 1 � i < j � N. (14.126)

This in turn gives

f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) +
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
e(k1+k2)x−(k5

1+k5
2)t .

(14.127)
To determine the two-soliton solutions explicitly, we use (14.112) for the function
f in (14.127).

Proceeding as before we obtain

f = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) + ek3(x−k4
3t)

+a12e(k1+k2)x−(k5
1+k5

2)t + a13e(k1+k3)x−(k5
1+k5

3)t

+a23e(k2+k3)x−(k5
2+k5

3)t

+b123e(k1+k2+k3)x−(k5
1+k5

2+k5
3)t .

(14.128)

where ai j and b123 = a12a13a23 are defined above. To determine the three-solitons
solution explicitly, we use (14.112) for the function f in (14.128). This means that
the N-soliton solutions exist for the CDG equation, for n � 1.
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The Kaup-Kuperschmidt Equation

For the KK equation we summarize the work in [3], where the transformation

u(x,t) =
3
2

∂ 2 ln f (x,t)
∂x2 =

3
2

f f2x− ( fx)
2

f 2 (14.129)

is used.
The dispersion relation is given by

θi = kix− k5
i t. (14.130)

For the one-soliton solution it was found that

f = 1 + exp(θ1)+
1

16
exp(2θ1), (14.131)

so that the one soliton solution is

u(x,t) =
24k1

2 e(k1 (−t k1
4+x)) (16 + 4e(k1 (−t k1

4+x)) + e(2k1 (−t k1
4+x)))

(16 + 16e(k1 (−t k1
4+x)) + e(2k1 (−t k1

4+x)))2
. (14.132)

For the two-soliton solutions it was found that

f = 1 + exp(θ1)+ exp(θ2)+
1

16
exp(2θ1)+

1
16

exp(2θ2) (14.133)

+a12exp(θ1 +θ2)+ b12 [exp(2θ1 +θ2)+ exp(θ1 + 2θ2)]

+b2
12exp(2θ1 + 2θ2),

where

a12 =
2k4

1− k2
1k2

2 + 2k4
2

2(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (14.134)

and

b12 =
(k1− k2)

2(k2
1− k1k2 + k2

2)

16(k1 + k2)2(k2
1 + k1k2 + k2

2)
. (14.135)

It is obvious that the two soliton solutions u(x,t) can be obtained by substituting
the last expression for f (x,t) into (14.129). For the higher level solitons solution, it
becomes more complicated.

It is well known that the Kaup-Kuperschmidt equation is characterized by

β =
5
2

γ, α =
1
5

γ2, (14.136)

where γ is any arbitrary constant, then the transformation (14.129) can be general-
ized to

u =
15
γ

(ln( f (x,t))xx, (14.137)
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that works for every γ .

14.4 Seventh-order KdV Equations

The generalized seventh-order KdV equations are given by

ut + au2ux + bu3
x + cuuxu2x + du2u3x + eu2xu3x + f uxu4x + guu5x + u7x = 0,

(14.138)
where a,b,c,d,e, f , and g are nonzero parameters. In a manner parallel to our ap-
proach before, we will use the tanh-coth method and the Hirota’s bilinear form com-
bined with the Hereman’s simplified form respectively.

14.4.1 Using the Tanh-coth Method

For single soliton solutions of the seventh-order KdV equations, the tanh-coth
method will be used to achieve our goal.

The Sawada-Kotera-Ito Seventh-order Equation

The wave variable ξ = x−ct converts (14.29) to an ODE where by using the balance
method we obtain M = 2. The tanh-coth method gives

u(ξ ) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i. (14.139)

Substituting this transformation formula into the reduced ODE, collecting the co-
efficients of Y , and solving the resulting system we find that a1 = b1 = 0 and the
following sets of solutions

a0 = α, a2 =−2μ2, b2 = 0, c =−608μ6 + 1344αμ4−1008α2μ2 + 252α3,

a0 =
8
3

μ2, a2 =−4μ2, b2 = 0, c =−256
3

μ6,

a0 = α, a2 = 0, b2 =−2μ2, c =−608μ6 + 1344αμ4−1008α2μ2 + 252α3,

a0 =
8
3

μ2, a2 = 0, b2 =−4μ2, c =−256
3

μ6,

(14.140)
where α is an arbitrary constant and μ is left as a free parameter. This in turn gives
the soliton solutions

u1(x,t) = α−2μ2 tanh2 [μ(x− (−608μ6 + 1344αμ4−1008α2μ2 + 252α3)t)
]
,

u2(x,t) =
8
3

μ2−4μ2 tanh2
[

μ(x +
256

3
μ6t)

]
,

(14.141)
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and the solutions

u3(x,t) = α−2μ2 coth2
[
μ(x− (−608μ6 + 1344αμ4−1008α2μ2 + 252α3)t)

]
,

u4(x,t) =
8
3

μ2−4μ2 coth2
[

μ(x +
256

3
μ6t)

]
.

(14.142)

The Lax Seventh-order Equation

Proceeding as before, we obtain M = 2 and the following sets of solutions

a0 = α, a2 =−2μ2, b2 = 0, c =−384μ6 + 784αμ4−560α2μ2 + 140α3,
a0 = α, a2 = 0, b2 =−2μ2, c =−384μ6 + 784αμ4−560α2μ2 + 140α3,

(14.143)
where α is an arbitrary constant and μ is left as a free parameter. This in turn gives
the soliton solutions

u1(x,t) = α−2μ2 tanh2
[

μ(x− (−384μ6 + 784αμ4−560α2μ2 + 140α3)t)
]
,

(14.144)
and the solution

u2(x,t) = α−2μ2 coth2
[

μ(x− (−384μ6 + 784αμ4−560α2μ2 + 140α3)t)
]
.

(14.145)

The Kaup-Kuperschmidt Seventh-order Equation

Using the wave variable ξ = x−ct transforms (14.31) and using the balance method
we find that M = 2. The tanh-coth method

u(ξ ) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i, (14.146)

is readily used as before to find that a1 = b1 = 0 and the following sets of solutions

a0 =
1
3

μ2, a2 =−1
2

μ2, b2 = 0, c =−4
3

μ6,

a0 =
1
3

μ2, a2 = 0, b2 =−1
2

μ2, c =−4
3

μ6,

(14.147)

where μ is left as a free parameter. This in turn gives the soliton solution

u1(x,t) =
1
3

μ2− 1
2

μ2 tanh2
[

μ(x +
4
3

μ6t)

]
, (14.148)

and the solution
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u2(x,t) =
1
3

μ2− 1
2

μ2 coth2
[

μ(x +
4
3

μ6t)

]
. (14.149)

14.4.2 N-soliton Solutions of the Seventh-order KdV Equations

To obtain multiple-soliton solutions for the seventh-order KdV equations, we apply
the Hirota’s bilinear form combined with the Hereman’s simplified approach where
it was shown that soliton solutions are just polynomials of exponentials. We again
summarize the main steps of the approach, where details can be found above in the
previous section.

We first substitute
u(x,t) = ekx−ct , (14.150)

in the linear terms of the equation under discussion to determine the dispersion
relation between k and c. We then substitute the single soliton solution

u(x,t) = R
∂ 2 ln f (x,t)

∂x2 = R
f f2x− ( fx)

2

f 2 , (14.151)

into the equation under discussion, where the auxiliary function f is given by

f (x,t) = 1 + f1(x,t) = 1 + eθ1, (14.152)

where
θi = kix− cit, i = 1,2, · · · ,N, (14.153)

and solving the resulting equation to determine the numerical value for R. Notice
that the N-soliton solutions can be obtained, for the Sawada-Kotera-Ito and Lax
equations, by using the following forms for f (x,t) into (14.151):

(i) For dispersion relation, we use

u(x,t) = eθi , θi = kix− cit. (14.154)

(ii) For single soliton, we use
f = 1 + eθ1. (14.155)

(iii) For two-soliton solutions, we use

f = 1 + eθ1 + eθ2 + a12eθ1+θ2 . (14.156)

(iv) For three-soliton solutions, we use

f = 1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a23eθ2+θ3 + a13eθ1+θ3 + b123eθ1+θ2+θ3 .
(14.157)

Notice that we use (14.155) to determine the dispersion relation, (14.156) to deter-
mine the factor a12 to generalize for the other factors ai j and finally we use (14.157)
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to determine b123, which is mostly given by b123 = a12a23a13. The determination of
three-soliton solutions confirms the fact that N-soliton solutions exist for any order.
In the following, we will apply the aforementioned steps to the three well-known
seventh-order equations.

The Sawada-Kotera-Ito Seventh-order Equation

Substituting
u(x,t) = eθi , θi = kix− cit. (14.158)

into the linear terms of the SK-Ito equation

ut +252u2ux+63u3
x +378uuxu2x +126u2u3x +63u2xu3x+42uxu4x+21uu5x+u7x = 0,

(14.159)
gives the dispersion relation

ci = k7
i . (14.160)

To determine R, we substitute

u(x,t) = R
∂ 2 ln f (x,t)

∂x2 = R
f f2x− ( fx)

2

f 2 , (14.161)

where f (x,t) = 1 + ek1x−k7
1t into the SK-Ito equation and solve to find that R = 2.

This means that the single soliton solution is given by

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 =
2k2

1ek1(x−k6
1t)

(1 + ek1(x−k6
1t))2

. (14.162)

For two-soliton solutions, we substitute

u(x,t) = 2
∂ 2 ln f (x,t)

∂ x2 , (14.163)

where
f = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (14.164)

into the SK-Ito equation to obtain that

a12 =
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (14.165)

and hence

ai j =
(ki− k j)

2(k2
i − kik j + k2

j)

(ki + k j)2(k2
i + kik j + k2

j)
,1 � i < j � N. (14.166)

This in turn gives
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f = 1 + ek1(x−k6
1t) + ek2(x−k6

2t) +
(k1− k2)

2(k2
1− k1k2 + k2

2)

(k1 + k2)2(k2
1 + k1k2 + k2

2)
e(k1+k2)x−(k6

1+k6
2)t .

(14.167)
To determine the two-solitons solution explicitly, we substitute the last result for
f (x,t) into (14.163).

Similarly, to determine the three-soliton solutions, we set

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+b123exp(θ1 +θ2 +θ3),

(14.168)

into (14.163) and substitute it in the SK-Ito equation to find that where

b123 = a12a13a23. (14.169)

The higher level soliton solution can be obtained in a parallel manner.

The Lax Seventh-order Equation

Using
u(x,t) = eθi , θi = kix− cit. (14.170)

into the linear terms of the Lax seventh-order equation

ut +140u2ux+70u3
x +280uuxu2x +70u2u3x+70u2xu3x+42uxu4x +14uu5x+u7x = 0,

(14.171)
yields the dispersion relation

ci = k7
i . (14.172)

Proceeding as before we find that R = 2, and hence the solution is given by

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 = 2
f f2x− ( fx)

2

f 2 , (14.173)

where f (x,t) = 1 + ek1x−k7
1t . This means that the single soliton solution is given by

u(x,t) = u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 =
2k2

1ek1(x−k6
1t)

(1 + ek1(x−k6
1t))2

. (14.174)

For two-soliton solutions, we substitute

u(x,t) = 2
∂ 2 ln f (x,t)

∂ x2 , (14.175)

where
f = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (14.176)
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into the Lax equation to obtain that

a12 =
(k1− k2)

2

(k1 + k2)2 , (14.177)

and hence

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � N. (14.178)

This in turn gives

f = 1 + ek1(x−k6
1t) + ek2(x−k6

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k6
1+k6

2)t . (14.179)

To determine the two-solitons solution explicitly, we substitute the last result for
f (x,t) into (14.174).

Similarly, to determine the three-soliton solutions, we set

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+b123exp(θ1 +θ2 +θ3),

(14.180)

into (14.175) and substitute it in the Lax equation to find that where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (14.181)

The higher level soliton solutions can be obtained in a parallel manner.

The Kaup-Kuperschmidt Seventh-order Equation

The KK seventh-order equation is given by

ut + 2016u2ux + 630u3
x + 2268uuxu2x + 504u2u3x + 252u2xu3x

+147uxu4x + 42uu5x + u7x = 0,
(14.182)

It is interesting to point out here that the assumptions made above for f (x,t) are
not applicable here. We will follow the same approach presented above for the KK
fifth-order equation. The dispersion relation is found to be

θi = kix− k7
i t. (14.183)

We next use the transformation

u(x,t) = R
∂ 2 ln f (x,t)

∂x2 = R
f f2x− ( fx)

2

f 2 , (14.184)
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where f (x,t) in this case is given by

f = 1 + exp(θ1)+
1

16
exp(2θ1). (14.185)

Substituting (14.184) into the KK equation gives R =
1
2

. This means that (14.184)

becomes

u(x,t) =
1
2

∂ 2 ln f (x,t)
∂x2 =

1
2

f f2x− ( fx)
2

f 2 . (14.186)

This in turn gives the one soliton solution by

u(x,t) =
8k2

1ek1(x−k6
1t)(e2k1(x−k6

1t) + 4ek1(x−k6
1t) + 16)

(e2k1(x−k6
1t) + 16ek1(x−k6

1t) + 16)2
. (14.187)

For the two-soliton solution it was found that

f = 1 + exp(θ1)+ exp(θ2)+
1

16
exp(2θ1)+

1
16

exp(2θ2) (14.188)

+a12exp(θ1 +θ2)+ b12 [exp(2θ1 +θ2)+ exp(θ1 + 2θ2)]

+b2
12exp(2θ1 + 2θ2),

where

a12 =
2k4

1− k2
1k2

2 + 2k4
2

2(k1 + k2)2(k2
1 + k1k2 + k2

2)
, (14.189)

and

b12 =
(k1− k2)

2(k2
1− k1k2 + k2

2)

16(k1 + k2)2(k2
1 + k1k2 + k2

2)
. (14.190)

It is obvious that the two soliton solution u(x,t) can be obtained by substituting
(14.189) into (14.186). For the higher level solitons solution, it becomes more com-
plicated and more details can be found in [3].

14.5 Ninth-order KdV Equations

It is well-known that the KdV equation

ut + 6uux + uxxx = 0 (14.191)

can be expressed in bilinear form by

Dx(Dt + D3
x)( f · f ) = 0. (14.192)

The solution of Eq. (14.191) is of the form
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u(x,t) = 2
∂ 2 ln f (x,t)

∂ x2 . (14.193)

Following Sawada and Kotera approach, we can generalize (14.192) and (14.193)
into the form

Dx(Dt + D9
x)( f · f ) = 0, u(x,t) = 2

∂ 2 ln f (x,t)
∂x2 , (14.194)

or equivalently

DxDt( f · f )+ D10
x ( f · f ) = 0, u(x,t) = 2

∂ 2 ln f (x,t)
∂x2 . (14.195)

The Hirota’s bilinear operators have several properties such as

DxDt( f · f )/ f 2 = (ln f 2)xt ,
D10

x ( f · f )/ f 2 = u8x + 45uu6x + 210u2xu4x + 1575u(u2x)
2

+630u2u4x + 3150u3u2x + 945u5.
(14.196)

Substituting (14.196) into (14.195), and differentiating the resulting equation with
respect to x we obtain the ninth-order KdV equation given by

ut + 45uxu6x + 45uu7x + 210u3xu4x + 210u2xu5x + 1575ux(u2x)
2

+3150uu2xu3x + 1260uuxu4x + 630u2u5x + 9450u2uxu2x + 3150u3u3x

+4725u4ux + u9x = 0.
(14.197)

14.5.1 Using the Tanh-coth Method

Balancing u9x with any of the terms such as uxu6x gives M = 2. The tanh-coth
method gives

u(ξ ) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i. (14.198)

Substituting this transformation formula into (14.197), collecting the coefficients of
Y , and solving the resulting system we find that a1 = b1 = 0 and the following sets
of solutions

a0 = α, a2 =−2μ2, b2 = 0,
c = 9616μ8−37440αμ6 + 47880α2μ4−25200α3μ2 + 4725α4,

(14.199)

and

a0 = α, a2 = 0, b2 =−2μ2,
c = 9616μ8−37440αμ6 + 47880α2μ4−25200α3μ2 + 4725α4,

(14.200)
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where α is an arbitrary constant and μ is left as a free parameter. This in turn gives
the soliton solution

u1(x,t) = α−2μ2 tanh2

×[
μ(x− (9616μ8−37440αμ6 + 47880α2μ4−25200α3μ2 + 4725α4)t)

]
,

(14.201)
and the solution

u2(x,t) = α2μ2 coth2

×[
μ(x− (9616μ8−37440αμ6 + 47880α2μ4−25200α3μ2 + 4725α4)t)

]
.

(14.202)

14.5.2 The Soliton Solutions

Substituting
u(x,t) = eθi , θi = kix− cit (14.203)

into the linear terms of the ninth-order equation (14.197) gives the dispersion rela-
tion

ci = k9
i , i = 1,2, · · · ,N, (14.204)

and hence θi becomes
θi = kix− k9

i t. (14.205)

To determine R, we substitute

u(x,t) = R
∂ 2 ln f (x,t)

∂x2 = R
f f2x− ( fx)

2

f 2 , (14.206)

where f (x,t) = 1+ek1x−k9
1t into the ninth-order KdV equation (14.197) and solve to

find that R = 2. This means that the single soliton solution is given by

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 =
2k2

1ek1(x−k8
1t)

(1 + ek1(x−k8
1t))2

. (14.207)

For two-soliton solutions, we substitute

u(x,t) = 2
∂ 2 ln f (x,t)

∂ x2 , (14.208)

where
f (x,t) = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (14.209)

into the ninth-order KdV equation (14.197), and solve for a12 to find that
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a12 =
(k1− k2)

2(3k6
1−9k5

1k2 + 19k4
1k2

2−23k3
1k3

2 + 19k2
1k4

2−9k1k5
2 + 3k6

2)

(k1 + k2)2(3k6
1 + 9k5

1k2 + 19k4
1k2

2 + 23k3
1k3

2 + 19k2
1k4

2 + 9k1k5
2 + 3k6

2)
,

(14.210)
and hence

ai j =
(ki− k j)

2(3k6
i −9k5

i k j + 19k4
i k2

j −23k3
i k3

j + 19k2
i k4

j −9kik5
j + 3k6

j)

(ki + k j)2(3k6
i + 9k5

i k j + 19k4
i k2

j + 23k3
i k3

j + 19k2
i k4

j + 9kik5
j + 3k6

j)
.

(14.211)
This in turn gives

f (x,t) = 1 + ek1(x−k8
1)t + ek2(x−k8

2)t

+
(k1− k2)

2(3k6
1−9k5

1k2 + 19k4
1k2

2−23k3
1k3

2 + 19k2
1k4

2−9k1k5
2 + 3k6

2)

(k1 + k2)2(3k6
1 + 9k5

1k2 + 19k4
1k2

2 + 23k3
1k3

2 + 19k2
1k4

2 + 9k1k5
2 + 3k6

2)
.

e(k1+k2)x−(k9
1+k9

2)t .
(14.212)

To determine the two-soliton solutions explicitly, we substitute the last result for
f (x,t) into (14.208).

To determine the three-soliton solutions, we first substitute

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+b123exp(θ1 +θ2 +θ3),

(14.213)

into (14.163) and then substitute it into the ninth-order KdV equation to find that

b123 �= a12a13a23. (14.214)

Accordingly, the three-soliton solutions do not exist for the ninth-order equation.
This result shows that the three-soliton solutions, and then the higher level soliton
solutions do not exist. Based on this, we conclude that the ninth-order KdV equation
is not completely integrable.

14.6 Family of Higher-order mKdV Equations

It was stated before that the modified KdV equation, where the quadratic nonlin-
earity uux of the KdV equation is replaced bt the cubic nonlinearity u2ux, appears
in many physical applications. The mKdV equation appears in applications such
as electrodynamics, electro-magnetic waves in size-quantized films, traffic flow
and elastic media. It is like the KdV equation that the mKdV equation appears in
higher-order versions as well. In [4] and [7], modified KdV equations of fifth-order,
seventh-order, and ninth-order were formally derived. In this section, only the fifth-
order mKdV and seventh-order mKdV equations will be investigated by using the
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Hirota’s bilinear method. The complete integrability of the third-order KdV equa-
tion applies equally well to the fifth-order and seventh-order mKdV equation.

14.6.1 N-soliton Solutions for Fifth-order mKdV Equation

The fifth-order modified KdV equation reads

ut +
{

6u5 + 10σ(uu2
x + u2u2x)+ u4x

}
x
= 0, σ =±1. (14.215)

We first consider the case where σ = 1. To determine the N-soliton solutions we
follow the approach used for the third-order mKdV equation. We find that the dis-
persion relation is given by

ci = k5
i , (14.216)

and as a result we obtain
θi = kix− k5

i t. (14.217)

In [4], it is shown that the multi-soliton solutions of the fifth-order mKdV equation
(14.215) is expressed by

u(x,t) = 2∂x (arctan( f/g)) = 2
fxg−gx f
f 2 + g2 . (14.218)

For the single soliton solution, it was found that

f (x,t) = eθ1 = ek1(x−k4
1t),

g(x,t) = 1.
(14.219)

Substituting (14.219) into (14.218) gives the single soliton solution

u(x,t) =
2k1 ek1(x−k4

1t)

1 + e2k1(x−k4
1t)

. (14.220)

For the two-soliton solutions we find

f (x,t) = eθ1 + eθ2 = ek1(x−k4
1t) + ek2(x−k4

2t),

g(x,t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−(k5
1+k5

2)t .
(14.221)

Using (14.221) in (14.218) and substituting the result into (14.215), we find

a12 =
(k1− k2)

2

(k1 + k2)2 , (14.222)

and hence we set

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 3. (14.223)
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Consequently, the two-soliton solutions are obtained by substitution (14.222) and
(14.221) into (14.218).

For the three-soliton solutions, it was found that

f (x,t) = eθ1 + eθ2 + eθ3 −a12a13a23eθ1+θ2+θ3

= ek1(x−k4
1t) + ek2(x−k4

2t) + ek3(x−k4
3t)

−a12a13a23e(k1+k2+k3)x−(k5
1+k5

2+k5
3)t ,

g(x,t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3

= 1−a12e(k1+k2)x−(k5
1+k5

2)t −a13e(k1+k3)x−(k5
1+k5

3)t

−a23e(k2+k3)x−(k5
2+k5

3)t ,

(14.224)

where ai j is given in (14.223). Based on this result, the three-soliton solutions for
the fifth-order mKdV equation (14.215) is obtained by substituting (14.224) into
(14.218). This shows that the fifth-order mKdV equations is completely integrable
and N-soliton solutions can be obtained for finite N, where N � 1.

14.6.2 Singular Soliton Solutions for Fifth-order mKdV Equation

It was proved in [11] that certain nonlinear evolution equations have not only soli-
ton solutions, but also explode-decay mode solutions, or singular soliton solutions
which can be expressed by closed form of analytic solutions. As investigated in the
third-order mKdV equation, we now consider the negative fifth-order mKdV equa-
tion

ut +
{

6u5−10(uu2
x + u2u2x)+ u4x

}
x
= 0. (14.225)

The singular soliton solutions, can be obtained by using the sense of Hirota as used
in the third-order mKdV equation. To achieve this goal we set

F(x,t) =
f (x,t)
g(x,t)

, g(x,t) �= 0. (14.226)

The solution of the fifth-order mKdV equation (14.215) is assumed to be of the form

u(x,t) =
∂ log F(x,t)

∂x
=

g fx− f gx

g f
, (14.227)

where the auxiliary functions f (x,t) and g(x,t) have perturbation expansions of the
form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 εn

1 gn(x,t),
(14.228)

where ε and ε1 are non small formal expansion parameters. Following the simplified
form presented in [3], we define the first solution by
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f1 =
N

∑
i=1

εexp(θi), g1 =
N

∑
i=1

ε1exp(θi), (14.229)

where
θi = kix− cit. (14.230)

To obtain the single singular soliton solution, we set N = 1 into (14.229), and by
using (14.228) we find

f (x,t) = 1 + ε f1(x,t), g(x,t) = 1 + ε1 g1(x,t), (14.231)

and hence

u(x,t) =
∂ log F(x,t)

∂x
=

∂
∂x

log

(
1 + ε f1

1 + ε1 g1

)
. (14.232)

This is a solution of the mKdV equation (14.215) if

ε1 =−ε. (14.233)

This in turn gives the dispersion relation by ci = k5
i , and as a result we set

θi = kix− k5
i t. (14.234)

The obtained results give a new definition to (14.228) in the form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 (−1)nεn gn(x,t),

(14.235)

and consequently we obtain

f1(x,t) = exp(θ1) = exp(k1(x− k4
1t)),

g1(x,t) = −exp(θ1) =−exp(k1(x− k4
1t)).

(14.236)

Accordingly, the singular soliton solution

u(x,t) =
2k1exp(k1(x− k4

1t))

1− exp(2k1(x− k4
1t))

(14.237)

follows immediately.
To determine the two singular soliton solutions, we proceed as before to find

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2),
g(x,t) = 1− exp(θ1)− exp(θ2)+ b12exp(θ1 +θ2).

(14.238)

Substituting (14.238) into the mKdV equation (14.215), we find that (14.238) is a
solution of this equation if a12 and b12, and therefore ai j and bi j, are equal and given
by

ai j = bi j =
(ki− k j)

2

(ki + k j)2 , (14.239)
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where θi and θ j are given above in (14.234). For the second solution we use 1 � i <
j � 2 to obtain

f (x,t) = 1 + ek1(x−k4
1t) + ek2(x−k4

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k5
1+k5

2)t ,

g(x,t) = 1− ek1(x−k4
1t)− ek2(x−k4

2t) +
(k1− k2)

2

(k1 + k2)2 e(k1+k2)x−(k5
1+k5

2)t .

(14.240)

Recall that the two singular soliton solutions are obtained by using the formulas

u(x,t) =
∂ log F(x,t)

∂x
,

F(x,t) =
f (x,t)
g(x,t)

,

(14.241)

We can proceed in a similar manner to derive a three singular soliton solutions,
where we find

f3(x,t) = b123exp(θ1 + θ2 +θ3),
g3(x,t) = −b123exp(θ1 + θ2 +θ3),

(14.242)

where

b123 = a12a13a23 =
(k1− k2)

2(k1− k3)
2(k2− k3)

2

(k1 + k2)2(k1 + k3)2(k2 + k3)2 , (14.243)

and this gives

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
+b123exp(θ1 +θ2 +θ3),

g(x,t) = 1− exp(θ1)− exp(θ2)− exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
−b123exp(θ1 +θ2 +θ3).

(14.244)

The three singular soliton solutions are given by

u(x,t) =
∂
∂ x

(
ln

(
f (x,t)
g(x,t)

))
, (14.245)

where f (x,t) and g(x,t) are given in (14.244).

14.6.3 N-soliton Solutions for the Seventh-order mKdV Equation

The seventh-order modified KdV equation reads
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20u7 + 70(u4u2x + 2u3u2

x)+ 14(u2u4x + 3uu2
2x + 4uuxu3x + 5u2

xu2x)+ u6x
}

x
+ut = 0.

(14.246)
The seventh-order mKdV equation is completely integrable. To determine the N-
soliton solutions we proceed as before where the dispersion relation reads

ci = k7
i , (14.247)

and as a result we obtain
θi = kix− k7

i t. (14.248)

The multi-soliton solutions of the seventh-order mKdV equation (14.246) is ex-
pressed by

u(x,t) = 2∂x (arctan( f/g)) = 2
fxg−gx f
f 2 + g2 . (14.249)

For the single soliton solution, it was found that

f (x,t) = eθ1 = ek1(x−k6
1t),

g(x,t) = 1.
(14.250)

Substituting (14.250) into (14.249) gives the single soliton solution

u(x,t) =
2k1 ek1(x−k6

1t)

1 + e2k1(x−k6
1t)

. (14.251)

For the two-soliton solutions we find

f (x,t) = eθ1 + eθ2 = ek1(x−k6
1t) + ek2(x−k6

2t),

g(x,t) = 1−a12eθ1+θ2 = 1−a12e(k1+k2)x−(k7
1+k7

2)t .
(14.252)

Using (14.252) in (14.249) and substituting the result into (14.246), we find

a12 =
(k1− k2)

2

(k1 + k2)2 , (14.253)

so that

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � 3. (14.254)

Consequently, the two-soliton solutions are obtained by substitution (14.253) and
(14.252) into (14.249).

For the three-soliton solutions, it was found that

f (x,t) = eθ1 + eθ2 + eθ3−a12a13a23eθ1+θ2+θ3

= ek1(x−k6
1t) + ek2(x−k6

2t) + ek3(x−k6
3t)

−a12a13a23e(k1+k2+k3)x−(k7
1+k7

2+k7
3)t ,
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g(x,t) = 1−a12eθ1+θ2 −a13eθ1+θ3 −a23eθ2+θ3

= 1−a12e(k1+k2)x−(k7
1+k7

2)t −a13e(k1+k3)x−(k7
1+k7

3)t

−a23e(k2+k3)x−(k7
2+k7

3)t ,

(14.255)

where ai j is given in (14.254). Based on this result, the three-soliton solutions for
the seventh-order mKdV equation (14.246) is obtained by substituting (14.255) into
(14.249). This shows that the seventh-order mKdV equations is completely inte-
grable and N-soliton solutions can be obtained for finite N, where N � 1.

14.7 Complex Solution for the Seventh-order mKdV Equations

Other solutions that blow up, or singular soliton solutions, can be obtained by fol-
lowing the discussion presented before. We first set

F(x,t) =
f (x,t)
g(x,t)

, g(x,t) �= 0. (14.256)

The solution of the seventh-order mKdV equation (14.246) is assumed to be of the
form

u(x,t) = R
∂ log F(x,t)

∂x
=

g fx− f gx

g f
, (14.257)

where the auxiliary functions f (x,t) and g(x,t) have perturbation expansions of the
form

f (x,t) = 1 + ∑∞
n=1 εn fn(x,t),

g(x,t) = 1 + ∑∞
n=1 εn

1 gn(x,t),
(14.258)

where ε and ε1 are non small formal expansion parameters. We next define

f1 = ∑N
i=1 εexp(θi),

g1 = ∑N
i=1 ε1exp(θi),

(14.259)

where
θi = kix− cit, (14.260)

where ki and ci are arbitrary constants, ki is called the wave number.
To obtain the single singular soliton solution we use

f (x,t) = 1 + ε f1(x,t),
g(x,t) = 1 + ε1 g1(x,t),

(14.261)

and hence

u(x,t) =
∂ log F(x,t)

∂x
=

∂
∂x

log

(
1 + ε f1

1 + ε1 g1

)
. (14.262)

This is a solution of the mKdV equation (14.246) if
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ε1 =−ε. (14.263)

This in turn gives the dispersion relation by

ci = k7
i , (14.264)

and as a result we obtain
θi = kix− k7

i t. (14.265)

The obtained results give

f1(x,t) = exp(θ1) = exp(k1(x− k6
1t)),

g1(x,t) = −exp(θ1) =−exp(k1(x− k6
1t)).

(14.266)

Accordingly, we find

F =
1 + f1

1 + g1
=

1 + exp(k1(x− k6
1t))

1− exp(k1(x− k6
1t))

. (14.267)

and R = i, i =
√−1. The complex solution

u(x,t) =
2ik1exp(k1(x− k6

1t))

1− exp(2k1(x− k6
1t))

, (14.268)

follows immediately. Other complex solutions were not obtained.

14.8 The Hirota-Satsuma Equations

Hirota and Satsuma [6] proposed a coupled KdV equation which describes inter-
actions of two long waves with different dispersion relations. The Hirota-Satsuma
equations are

ut =
1
2

uxxx + 3uux−6vvx,

vt = −vxxx−3uvx.
(14.269)

If v = 0, Eq. (14.269) reduces to the KdV equation. In this section we will use the
tanh-coth method and the simplified version of the Hirota’s bilinear formalism to
handle the Hirota-Satsuma system. The following three conserved densities

I1 = u,
I2 = u2−2v2,

I3 =
3
2
(u3− 1

2
(ux)

2)−3(uv2− (vx)
2),

(14.270)

were confirmed.
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14.8.1 Using the Tanh-coth Method

Using the wave variable ξ = x− ct, system (14.269) is converted to

−cu− 1
2

u′′ − 3
2

u2 + 3v2 = 0,

−cv′+ v′′′+ 3uv′ = 0.
(14.271)

Balancing the nonlinear term u2 with the highest order derivative u′′ in the first
equation of the couple gives

2M = M + 2, (14.272)

that gives
M = 2. (14.273)

Substituting for u from the first equation into the second equation, and balancing
the nonlinear term v2v′ with the highest order derivative v′′′ in the second equation
of the couple gives

M1 + 3 = 2M1 + M1 + 1, (14.274)

that gives
M1 = 1. (14.275)

The tanh-coth method allows us to use the substitution

u(x,t) = S(Y ) = a0 + a1Y 2 + a2Y−2,
v(x,t) = S1(Y ) = b0 + b1Y + b2Y−1,

(14.276)

where we found that u(x,t) does not include Y or Y−1 terms. Substituting (14.276)
into (14.271), collecting the coefficients of each power of Y i,0 � i � 8, setting each
coefficient to zero, and solving the resulting system of algebraic equations we obtain
the following sets of solutions
(i)

a0 =
c
3

+
2
3

λ 2, a1 =−2λ 2, a2 = 0,

b0 = 0, b1 =
1√
2

c, b2 = 0,

μ = λ ,

(14.277)

where

λ =
(2 +

√
10)c

2
. (14.278)

(ii)

a0 =
c
3

+
2
3

λ 2, a1 = 0, a2 =−2λ 2,

b0 = 0, b1 = 0, b2 =
1√
2

c,

μ = λ ,

(14.279)
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(iii)

a0 =
c
3
− 1

3
λ 2, a1 =−1

2
λ 2, a2 =−1

2
λ 2,

b0 = 0, b1 =
1

2
√

2
c, b2 =

1

2
√

2
c,

μ = λ .

(14.280)

In view of these results we obtain the following sets of solutions

u1(x,t) =
c
3

+
2
3

λ 2−2λ 2 tanh2 [λ (x− ct)] ,

v1(x,t) =
1√
2

c tanh [λ (x− ct)].
(14.281)

u2(x,t) =
c
3

+
2
3

λ 2−2λ 2 coth2 [λ (x− ct)] ,

v2(x,t) =
1√
2

ccoth [λ (x− ct)].
(14.282)

and

u3(x,t) =
c
3
− 1

3
λ 2− 1

2
λ 2

(
tanh2

[
1
2

λ (x− ct)

]
+ coth2

[
1
2

λ (x− ct)

])
,

v3(x,t) =
1

2
√

2
c

(
coth

[
1
2

λ (x− ct)

]
+ coth

[
1
2

λ (x− ct)

])
.

(14.283)

14.8.2 N-soliton Solutions of the Hirota-Satsuma System

In this section, we will examine multiple-soliton solutions of the Hirota-Satsuma
system [6]

ut =
1
2

uxxx + 3uux−6vvx,

vt = −vxxx−3uvx.
(14.284)

Hirota introduced the dependent variable transformation

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 = 2
f f2x− ( fx)

2

f 2 ,

v(x,t) =
g
f
,

(14.285)

that will convert (14.284) into the bilinear forms

Dx(Dt − 1
2

D3
x)( f · f ) =−3g2,

(Dt + D3
x)( f ·g) = 0.

(14.286)
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We next assume that f (x,t) and g(x,t) have the perturbation expansions

f (x,t) = 1 + ∑∞
n=0 εn fn(x,t),

g(x,t) = ∑∞
n=0 σ n gn(x,t),

(14.287)

where ε and σ are non small formal expansion parameter. Following Hirota’s
method and the simplified version in [3] we first set

f1(x,t) = ∑N
i=1 exp(2θi),

g1(x,t) = ∑N
i=1 exp(θi),

(14.288)

where
θi = kix− cit, (14.289)

where ki and ci are arbitrary constants. Substituting (14.288) into (14.284) gives the
dispersion relation

ci = k3
i , (14.290)

and in view of this result we obtain

θi = kix− k3
i t. (14.291)

This means that

f1(x,t) = exp(2θ1) = exp(2k1(x− k2
1t)),

g1(x,t) = exp(θ1) = exp(k1(x− k2
1t)),

ε =
1

8k4
1

,

σ = 1,

(14.292)

obtained by using N = 1 in (14.288). In what follows we list the solutions obtained
by Hirota, and more details can be found there. For the one-soliton solution, it was
found that

f = 1 +
1

8k4
1

exp(2θ1),

g = exp(θ1).
(14.293)

The one soliton solution is therefore

u(x,t) = 2(ln f )xx, v(x,t) = g/ f . (14.294)

For the two-soliton solution it was found that

f = 1 +
1

8k4
1

e2θ1 +
1

8k4
2

e2θ2

+
2

(k1 + k2)2(k2
1 + k2

2)
eθ1+θ2 +

(k1− k2)
4

64k4
1k4

2(k1 + k2)4
e2(θ1+θ2),

g = eθ1 + eθ2 +
1

8k4
1

(k1− k2)
2

(k1 + k2)2 e2θ1+θ2 +
1

8k4
2

(k1− k2)
2

(k1 + k2)2 eθ1+2θ2.

(14.295)
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The two-soliton solution is obtained by substituting (14.295) into (14.294).
It is interesting to point out that Hirota and Satsuma derived the one and two-

soliton solutions only and used this result to suggest the existence of the N-soliton
solutions.

14.8.3 N-soliton Solutions by an Alternative Method

Tam et.al. [13] applied a slightly different approach and derived entirely new one,
two and three-soliton solutions to the Hirota-Satsuma system.

The dependent variable transformation

u(x,t) = 2
∂ 2 ln f (x,t)

∂x2 = 2
f f2x− ( fx)

2

f 2 ,

v(x,t) =
g
f

(14.296)

was applied to convert (14.284) into the bilinear forms

Dx(Dt − 1
2

D3
x)( f · f ) =−3g2 +C f 2,

(Dt + D3
x)( f ·g) = 0,

(14.297)

where C in an integration constant. For C = 0 we obtain the bilinear forms (14.286).
In [13], C = 3 was used to convert the last bilinear form to

Dx(Dt − 1
2

D3
x)( f · f ) = 3( f 2−g2),

(Dt + D3
x)( f ·g) = 0.

(14.298)

It was obtained after some tests and guesses that for the one-soliton solution

f = 1 + exp(θ1)+
1

32
(4 + k4

1)exp(2θ1),

g = 1 +
1
2
(2 + k4

1)exp(θ1)+
1

32
(4 + k4

1)exp(2θ1).
(14.299)

This result is distinct from that obtained in (14.293). Consequently, the one soliton
solution is therefore

u(x,t) = 2(ln f )xx, v(x,t) = g/ f . (14.300)

For the two-soliton solution it was found that, after correcting some of the coeffi-
cients in [13]

f = 1 + exp(θ1)+ exp(θ2)+ A1exp(2θ1)+ A2exp(2θ2)+ A3exp(θ1 +θ2)

+A4exp(2θ1 + θ2)+ A5exp(θ1 + 2θ2)+ A6exp(2(θ1 + θ2)),
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g = 1 +
1
2
(2 + k4

1)exp(θ1)+
1
2
(2 + k4

2)exp(θ2)+ B1exp(2θ1)+ B2exp(2θ2)

+ B3exp(θ1 +θ2)+ B4exp(2θ1 +θ2)+ B5exp(θ1 + 2θ2)
+ B6exp(2(θ1 + θ2)),

(14.301)
where

Ai =
1

32
(4 + k4

i ), i = 1,2,

A3 =
2(k4

1 + k4
2)+ k4

1k4
2

2(k1 + k2)2(k2
1 + k2

2)
,

Aj+3 =
1

32
(4 + k4

j)
(k1− k2)

2

(k1 + k2)2 , j = 1,2,

A6 = A1A2
(k1− k2)

4

(k1 + k2)4 ,

Bi =
1

32
(4 + k4

i ), i = 1,2,

B3 =
(k8

1 + k8
2)− k4

1k4
2 + 2(k4

1 + k4
2)

2(k1 + k2)2(k2
1 + k2

2)
,

B4 =
1
2
(2 + k4

2)×
1

32
(4 + k4

1)
(k1− k2)

2

(k1 + k2)2 ,

B5 =
1
2
(2 + k4

1)×
1

32
(4 + k4

2)
(k1− k2)

2

(k1 + k2)2 ,

B6 = A6.

(14.302)

The two-soliton solution is obtained by substituting (14.301) into (14.300). The
explicit three-soliton solution is obtained in [13]. Because the three-soliton solutions
were obtained, this clearly indicates that the N-soliton solutions, N � 3 exist for the
coupled KdV equations.

14.9 Generalized Short Wave Equation

In this section, the generalized short water wave (GSWW) equation

ut −uxxt−αuut−β ux

∫ x
ut dx + ux = 0, (14.303)

where α and β are non-zero constants.
Ablowitz et. al. [1] studied the specific case α = 4 and β = 2 where Eq. (14.303)

is reduced to

ut −uxxt −4uut−2ux

∫ x
ut dx + ux = 0. (14.304)
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This equation was introduced as a model equation which reduces to the KdV equa-
tion in the long small amplitude limit. However, Hirota et.al. [5] examined the model
equation for shallow water waves

ut −uxxt −3uut−3ux

∫ x
ut dx + ux = 0, (14.305)

obtained by substituting α = β = 3 in (14.303).
The customary definition of the Hirota’s bilinear operators [5,14,15] are given by

Dn
t Dm

x (a ·b) = (
∂
∂ t
− ∂

∂ t ′
)n(

∂
∂x
− ∂

∂x′
)ma(x,t)b(x′,t ′)

∣∣∣∣x′ = x,t ′ = t. (14.306)

Some of the properties of the D-operators are as follows

D2
t ( f · f )

f 2 =
∫∫

utt dxdx,

Dt D3
x ( f · f )
f 2 = uxt + 3u

∫
xut dx′,

D2
x ( f · f )

f 2 = u,

D4
x ( f · f )

f 2 = u2x + 3u2,

DtDx ( f · f )
f 2 = ln( f 2)xt ,

D6
x ( f · f )

f 2 = u4x + 15uu2x + 15u3,

D2
t ( f · f )

f 2 =

∫∫
utt dxdx,

Dt D3
x ( f · f )
f 2 = uxt + 3u

∫
ut dx′,

(14.307)

where
u(x,t) = 2(ln f (x,t))xx, (14.308)

We first remove the integral term in (14.303) by introducing the potential

u(x,t) = vx(x,t), (14.309)

that will carry (14.303) into the equation

vxt − vxxxt −αvxvxt −βvxxvt + vxx = 0, (14.310)

Substituting
v(x,t) = eθi , θi = kix− cit, (14.311)
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into the linear terms of equation (14.310), and solving the resulting equation we
obtain the dispersion relation

ci =
ki

1− k2
i
, i = 1,2, · · · ,N,ki �=±1, (14.312)

and hence θi becomes

θi = kix− ki

1− k2
i

t. (14.313)

To determine R, we substitute

v(x,t) = R
∂ ln f (x,t)

∂x
= R

fx

f
(14.314)

into Eq. (14.310) and solve to find that

R =
12

α +β
,α +β �= 0, (14.315)

where f (x,t) = 1 + e
k1x− k1

1−k2
1

t
.

It is interesting to point out that for single solitons solutions, the result (14.315)
works for all values of α and β . However, the complete integrability of (14.303)
requires that

(α−β )(α−2β ) = 0. (14.316)

This in turn suggests that α = β and α = 2β are the only integrable cases of the
GSWW equation (14.303), and hence for (14.310).

Case i
Substituting α = β into (14.310) gives

vxt − vxxxt −βvxvxt −βvxxvt + vxx = 0, β �= 0. (14.317)

This means that

R =
6
β

, β �= 0. (14.318)

Consequently, the solution is given by

v(x,t) =
6
β

∂ ln f (x,t)
∂x

=
6k1e

k1x− k1
1−k2

1
t

β

(
1 + e

k1x− k1
1−k2

1
t
) . (14.319)

Using u(x,t) = vx(x,t) yields the single soliton solution of the first shallow water
wave equation by
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u(x,t) =
6
β

(ln f (x,t))xx =
6k2

1e
k1x− k1

1−k2
1

t

β

(
1 + e

k1x− k1
1−k2

1
t
)2 . (14.320)

For two-soliton solutions, we substitute

v(x,t) =
6
β

∂ ln f (x,t)
∂x

, (14.321)

where
f (x,t) = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (14.322)

into (14.310), where θ1 and θ2 are given in (14.313), to obtain

a12 =
(k2

1− k1k2 + k2
2−3)(k1− k2)

2

(k2
1 + k1k2 + k2

2−3)(k1 + k2)2
, (14.323)

and hence

ai j =
(k2

i − kik j + k2
j −3)(ki− k j)

2

(k2
i + kik j + k2

j −3)(ki + k j)2
, 1 � i < j � N. (14.324)

Notice that the coefficients ai j do not depend on β . This in turn gives

f (x,t) = 1 + e
k1x− k1

1−k2
1

t
+ e

k2x− k2
1−k2

2
t

+
(k2

1− k1k2 + k2
2−3)(k1− k2)

2

(k2
1 + k1k2 + k2

2−3)(k1 + k2)2
e
(k1+k2)x−(

k1
1−k2

1
+

k2
1−k2

2
)t
.

(14.325)

To determine the two-soliton solutions explicitly, we substitute (14.325) into the

formula u(x,t) =
6
β

(ln f (x,t))xx.

For the three-soliton solutions, we set

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)
+b123exp(θ1 +θ2 +θ3),

(14.326)

into (14.321) and substitute it into (14.310) to find that

b123 = a12a13a23. (14.327)

To determine the three-soliton solutions explicitly, we substitute the last result for

f (x,t) in the formula u(x,t) =
6
β

(ln f (x,t))xx. The higher level soliton solutions,

for n � 4 can be obtained in a parallel manner. This confirms that the first shallow
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water wave equation (14.317) is completely integrable that admits multiple-soliton
solutions of any order.

Case ii
Substituting α = 2β into (14.310) gives

vxt − vxxxt −2βvxvxt −βvxxvt + vxx = 0, β �= 0. (14.328)

This means that

R =
4
β

, β �= 0. (14.329)

Consequently, the solution is given by

v(x,t) =
4
β

∂ ln f (x,t)
∂x

=
4k1e

k1x− k1
1−k2

1
t

β

(
1 + e

k1x− k1
1−k2

1
t
) . (14.330)

Using u(x,t) = vx(x,t) yields the single soliton solution of the first shallow water
wave equation by

u(x,t) =
4
β

(ln f (x,t))xx =
4k2

1e
k1x− k1

1−k2
1

t

β

(
1 + e

k1x− k1
1−k2

1
t
)2 . (14.331)

For two-soliton solutions, we substitute

v(x,t) =
4
β

∂ ln f (x,t)
∂x

, (14.332)

where
f (x,t) = 1 + eθ1 + eθ2 + a12eθ1+θ2 , (14.333)

into (14.328), where θ1 and θ2 are given in (14.313), to obtain

a12 =
(k1− k2)

2

(k1 + k2)2 , (14.334)

and hence

ai j =
(ki− k j)

2

(ki + k j)2 , 1 � i < j � N. (14.335)

Notice that the coefficients ai j do not depend on β . This in turn gives

f (x,t) = 1 + e
k1x− k1

1−k2
1

t
+ e

k2x− k2
1−k2

2
t
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+
(k1− k2)

2

(k1 + k2)2 e
(k1+k2)x−(

k1
1−k2

1
+

k2
1−k2

2
)t
. (14.336)

To determine the two-soliton solutions explicitly, we substitute (14.336) into the

formula u(x,t) =
4
β

(ln f (x,t))xx.

Similarly, to determine the three-soliton solutions, we set

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)

+a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3)

+b123exp(θ1 +θ2 +θ3),

(14.337)

into (14.332) and substitute it into (14.310) to find that

b123 = a12a13a23. (14.338)

To determine the three-soliton solutions explicitly, we substitute the last result for

f (x,t) in the formula u(x,t) =
4
β

(ln f (x,t))xx. The higher level soliton solutions,

for n � 4 can be obtained in a parallel manner. This confirms that the generalized
shallow water wave equation (14.328) is completely integrable that admits multiple-
soliton solutions of any order. It is clear that β can be positive or negative numbers,
but β �= 0.
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Chapter 15

Family of KdV-type Equations

15.1 Introduction

In this chapter we will study a family of KdV-type equations. These equations ap-
pear in many scientific fields as will be examined for each model. This family of
KdV-type equations contains the following forms:
(i) The complex modified KdV equation [16] (CMKdV) is of the form

wt + wxxx +α(|w|2w)x = 0, (15.1)

where w is a complex valued function of the spatial coordinate x and the time t, and
α is a real constant.
(ii) The Benjamin-Bona-Mahony (BBM) equation [2] is given by

ut + aux−6uux + buxxt = 0, (15.2)

where a and b are constants. This equation is also called the regularized long wave
(RLW) equation.
(iii) The Modified Equal Width (MEW) equation [17] is given by

ut + 3u2ux−auxxt = 0. (15.3)

(iv) The Kawahara equation [9] is of fifth-order and given by

ut + 6uux + uxxx−uxxxxx = 0, (15.4)

and the modified Kawahara equation [9] is of the form

ut + 6u2ux + uxxx−uxxxxx = 0. (15.5)

(v) The Kadomtsev-Petviashvili (KP) equation [8] is of the form

(ut + auux + uxxx)x + kuyy = 0. (15.6)
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(vi) The Zakharov-Kuznetsov (ZK) equation [20] is given by

ut + auux + b(∇2u)x = 0, (15.7)

where ∇2 = ∂ 2
x +∂ 2

y +∂ 2
z is the isotropic Laplacian. The (2+1)-dimensional Zakharov-

Kuznetsov (ZK) equation is given by

ut + auux + b(uxx + uyy)x = 0. (15.8)

(vii) The Benjamin-Ono equation [1,13]

ut + 4uux + H(uxx) = 0, (15.9)

where H is the Hilbert transform defined by

H[u(x,t)] =
1
π

P
∫ ∞

−∞

u(y,t)
y− x

dy, (15.10)

where P stands for the Cauchy principal value of the integral.
(viii) The KdV-Burgers equation reads

ut + 6uux + auxx + uxxx = 0, a �= 0. (15.11)

(ix) The seventh-order KdV equation (sKdV) is given by

ut + 6uux + u3x−u5x + αu7x = 0, (15.12)

where α is a nonzero constant.
(x) The ninth-order KdV equation (nKdV) is of the form

ut + 6uux + u3x−u5x +αu7x +βu9x = 0, (15.13)

where α and β are arbitrary nonzero constants.
In what follows, we will study the KdV-related equations that were described

above. In a manner parallel to the approach applied in the previous chapter, the
sine-cosine method, the tanh-coth method, and the Hirota’s bilinear formalism will
be used here.

15.2 The Complex Modified KdV Equation

We first aim to cast light on the complex modified KdV equation [16]

wt + wxxx +α(|w|2w)x = 0, (15.14)

where w is a complex valued function of the spatial coordinate x and the time t, α
is a real parameter. This equation has been proposed as a model for the nonlinear
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evolution of plasma waves. The physical model (15.14) incorporates the propagation
of transverse waves in a molecular chain model, and in a generalized elastic solid.
The two-dimensional steady state distribution of lower hybrid waves is governed by
the CMKdV equation (15.14).

The CMKdV equation (15.14) is completely integrable by the inverse scattering
method and it admits sech-shaped soliton solutions whose amplitudes and velocities
are free parameters. This equation will be solved by the sine-cosine and the tanh-
coth methods.

15.2.1 Using the Sine-cosine Method

We begin our analysis by decomposing w into its real and imaginary parts, where
we set

w = u + iv, i2 =−1, (15.15)

to obtain the coupled pair of the modified KdV (mKdV) equations

ut + uxxx + α
[
(u2 + v2)u

]
x = 0,

vt + vxxx + α
[
(u2 + v2)v

]
x = 0.

(15.16)

These two coupled nonlinear equations describe the interaction of two orthogonally
polarized transverse waves, where u and v represent y-polarized and z-polarized
transverse waves respectively, propagating in the x-direction in an xyz coordinate
system.

Using the wave variable ξ = x− ct into the system (15.16) and integrating we
obtain

−cu + αu3 +αuv2 + u′′ = 0,
−cv + αv3 +αu2v + v′′ = 0.

(15.17)

We then use the cosine assumption [18]

u(x,t) = λ cosβ (μξ ), v(x,t) = λ̃ cosβ̃ (μξ ) (15.18)

into (15.17) to get

−cλ cosβ (μξ )+ αλ 3 cos3β (μξ )+ αλ λ̃ 2 cosβ (μξ )cos2β̃ (μξ )

−μ2λ β 2 cosβ (μξ )+ μ2λ β (β −1)cosβ−2(μξ ) = 0,

−cλ̃ cosβ̃ (μξ )+ αλ̃ 3 cos3β̃ (μξ )+ αλ 2λ̃ cosβ̃ (μξ )cos2β (μξ )

−μ2λ̃ β̃ 2 cosβ̃ (μξ )+ μ2λ̃ β̃ (β̃ −1)cosβ̃−2(μξ ) = 0.
(15.19)

Using the balance method, by equating the exponents and the coefficients of cos j ,
we get
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β −1 �= 0, β̃ −1 �= 0,

3β = β + 2β̃ = β −2, 3β̃ = 2β + β̃ = β̃ −2,

μ2β 2 =−c, μ2β̃ 2 =−c,
αλ 3 + αλ 2λ̃ =−λ μ2β (β −1), αλ̃ 3 +αλ λ̃ 2 =−λ̃ μ2β̃ (β̃ −1).

(15.20)

Solving the system (15.20) leads to the results

β = β̃ =−1,
μ =

√−c, c < 0,

λ = λ̃ =

√
c
α

.

(15.21)

Consequently, for c < 0, we obtain the following periodic solutions

u(x,t) = v(x,t) =

√
c
α

csc
(√−c(x− ct)

)
, 0 < μ(x− ct) < π , (15.22)

and

u(x,t) = v(x,t) =

√
c
α

sec
(√−c(x− ct)

)
, |μ(x− ct)|< π

2
. (15.23)

Noting that w(x,t) = u(x,t)+ iv(x,t), the solutions of the CMKdV equation read

w1(x,t) = (1 + i)

√
c
α

csc
(√−c(x− ct)

)
, 0 < μ(x− ct) < π , (15.24)

and

w2(x,t) = (1 + i)

√
c
α

sec
(√−c(x− ct)

)
, |μ(x− ct)|< π

2
. (15.25)

However, for c > 0, we obtain the complex solutions

w(x,t) = (1 + i)

√
− c

α
csch

(√
c(x− ct)

)
, (15.26)

and

w(x,t) = (1 + i)

√
c
α

sech
(√

c(x− ct)
)
. (15.27)

15.2.2 Using the Tanh-coth Method

In this section, we will use the tanh-coth method [19] as presented before to handle
the (CMKdV) equation. It was shown before that the CMKdV equation takes the
form of two coupled nonlinear equations of the system
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ut + uxxx + α
[
(u2 + v2)u

]
x = 0,

vt + vxxx + α
[
(u2 + v2)v

]
x = 0.

(15.28)

Using the wave variable ξ = x− ct into the system (15.28) and integrating once we
find

−cu + αu3 +αuv2 + u′′ = 0,
−cv + αv3 +αvu2 + v′′ = 0.

(15.29)

The tanh-coth method admits the use of finite series

u(x,t) = S(Y) = ∑M
m=0 amY m,

v(x,t) = S̃(Y ) = ∑M1
m=0 bmY m,

(15.30)

to express the solutions u(x,t) and v(x,t), where Y = tanh(μξ ). Substituting (15.30)
into the ODE (15.28) gives

−cS +αS3 + αSS̃2 + μ2(1−Y2)
(−2YS′+(1−Y2)S′′

)
= 0,

−cS̃+ α S̃3 + αS2S̃ + μ2(1−Y2)
(−2YS̃′+(1−Y2)S̃′′

)
= 0.

(15.31)

Balancing the linear term of highest order with the nonlinear term in both equations
we find

3M = M + 2M1 = 4 + M−2,
3M1 = 2M + M1 = 4 + M1−2.

(15.32)

which gives M = M1 = 1. This means that

u(x,t) = a0 + a1Y + a2Y−1,
v(x,t) = b0 + b1Y + b2Y−1.

(15.33)

Substituting (15.33) into the two components of (15.31), and collecting the coeffi-
cients of Y gives two systems of algebraic equations for a0,a1,a2,b0,b1,b2 and μ .
Solving these systems leads to the following sets:
(i)

a1 =

√
c
α

, μ =

√
− c

2
, c < 0,α < 0, other parameters are zeros. (15.34)

(ii)

b1 =

√
c
α

, μ =

√
− c

2
, c < 0,α < 0, other parameters are zeros. (15.35)

(iii)

a2 =

√
c
α

, μ =

√
− c

2
, c < 0,α < 0, other parameters are zeros. (15.36)

(iv)
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b2 =

√
c
α

, μ =

√
− c

2
, c < 0,α < 0, other parameters are zeros. (15.37)

(v)

a1 = a2 =
1
2

√
c
α

, μ =
1
2

√
− c

2
, c < 0,α < 0, other parameters are zeros.

(15.38)
(vi)

b1 = b2 =
1
2

√
c
α

, μ =
1
2

√
− c

2
, c < 0,α < 0, other parameters are zeros.

(15.39)
(vii)

a1 =−a2 =

√
− c

2α
, μ =

1
2

√
c, c > 0,α < 0, other parameters are zeros.

(15.40)
(viii)

b1 =−b2 =

√
− c

2α
, μ =

1
2

√
c, c > 0,α < 0, other parameters are zeros.

(15.41)
(ix)

b1 = γ, a1 =

√
c−αγ2

α
, μ =

√
− c

2
, c < αγ2 < 0, α < 0,

other parameters are zeros.
(15.42)

(x)

b2 = β , a2 =

√
c−αβ 2

α
, μ =

√
− c

2
, c < αβ 2 < 0, α < 0,

other parameters are zeros.
(15.43)

(xi)

b1 = −b2 = β , a1 =−a2 =

√
−c + 2αβ 2

2α
,

μ =
1
2

√
c, c > 0, c + 2αβ 2 > 0, α < 0,

other parameters are zeros.

(15.44)

(xii)

b1 = b2 = β , a1 = a2 =
1
2

√
c−4αβ 2

α
,

μ =
1
2

√
− c

2
, c < 0, c−4αβ 2 < 0, α < 0,

other parameters are zeros,

(15.45)
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where β and γ are constants. Based on these results, we obtain real and complex
solutions. Recall that the solution is given by w = u + iv, hence we obtain the fol-
lowing solutions, where c < 0,α < 0

w1(x,t) =

√
c
α

tanh

(√
− c

2
(x− ct)

)
,

w2(x,t) = i

√
c
α

tanh

(√
− c

2
(x− ct)

)
, i2 =−1,

w3(x,t) =

√
c
α

coth

(√
− c

2
(x− ct)

)
,

w4(x,t) = i

√
c
α

coth

(√
− c

2
(x− ct)

)
,

w5(x,t) =
1
2

√
c
α

(
tanh

(
1
2

√
− c

2
(x− ct)

)
+ coth

(
1
2

√−c
2

(x− ct)

))
,

w6(x,t) = i
1
2

√
c
α

(
tanh

(
1
2

√
− c

2
(x− ct)

)
+ coth

(
1
2

√
−c
2

(x− ct)

))
,

w7(x,t) =

√
− c

2α

(
tanh

(
1
2

√
c(x− ct)

)
− coth

(
1
2

√
c(x− ct)

))
,

w8(x,t) = i

√
− c

2α

(
tanh

(
1
2

√
c(x− ct)

)
− coth

(
1
2

√
c(x− ct)

))
,

w9(x,t) =

(√
c−αγ2

α
+ iγ

)
tanh

(√
− c

2
(x− ct)

)
,

w10(x,t) =

(√
c−αβ 2

α
+ iβ

)
]coth

(√
− c

2
(x− ct)

)
,

w11(x,t) =

(√
−c + 2αβ 2

2α
+ iβ

)(
tanh

(
1
2

√
c(x− ct)

)
− coth

(
1
2

√
c(x− ct)

))
,

w12(x,t) =

(
1
2

√
c−4αβ 2

α
+ iβ

)

×
(

tanh

(
1
2

√
− c

2
(x− ct)

)
+ coth

(
1
2

√
− c

2
(x− ct)

))
,

valid for the relations given above. Notice that some solutions are identical such
as w5 = w3 and w6 = w4. It is obvious that the tanh-coth method gives different
solutions compared to that obtained by the sine-cosine method. Moreover, other
solutions can be obtained if c > 0 for some solutions, and if c < 0 for the remaining
solutions. This is left as an exercise to the reader.
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15.3 The Benjamin-Bona-Mahony Equation

The regularized long-wave (RLW) equation is given by

ut + aux + 2uux + buxxt = 0, (15.46)

where a and b are constants. For a = 1 and b = 1, Eq. (15.46) is reduced to the
Benjamin-Bona-Mahony (BBM) equation. The BBM equation [2] (or also the RLW
equation) was introduced as an alternative to the KdV equation for describing uni-
directional propagation of weakly long dispersive waves [2] on inviscid fluids. Eq.
(15.46) is obtained from the KdV equation by replacing the third-order derivative
uxxx by a mixed derivative uxxt . This change results in a bounded dispersion rela-
tion, whereas the KdV equation possesses an unbounded dispersion relation. The
BBM equation is a superior model for long waves, and the boundedness of the dis-
persion relation of the BBM equation was used to utilize the regularity results for
its solutions. Unlike the KdV equation which is completely solvable by the inverse
scattering method, the BBM equation is found not to be completely integrable, and
therefore it does not have N-soliton solutions. Moreover, the BBM equation has a
stable solitary wave solution and dispersive property.

It is interesting to point out that like the KdV equation, the BBM equation was
formally derived to describe an approximation for surface water waves in a uni-
form channel. Moreover, the BBM equation covers also, in addition to the surface
waves of long wavelength in liquids, it covers hydromagnetic waves in cold plasma,
acoustic waves in anharmonic crystals, and acoustic-gravity waves in compressible
fluids. The wide applicability of the BBM equation has attracted a considerable size
of attention from researchers. In what follows we will apply the sine-cosine and the
tanh-coth methods to handle the BBM equation.

15.3.1 Using the Sine-cosine Method

The wave variable ξ = x− ct carries out Eq. (15.46) to the ODE

(a− c)u′+(u2)′ −bcu′′′ = 0. (15.47)

Integrating (15.47), setting the constant of integration to zero, we obtain

(a− c)u + u2−bcu′′ = 0. (15.48)

Substituting the cosine assumption into (15.48) gives

(a− c)λ cosβ (μξ )+ λ 2 cos2β (μξ )+ bcμ2β 2λ cosβ (μξ )

−bcλ μ2β (β −1)cosβ−2(μξ ) = 0.
(15.49)
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Equating the exponents of the first and the last cosine functions, collecting the co-
efficients of each pair of cosine functions of like exponents, and setting it equal to
zero, we obtain the following system of algebraic equations:

β −1 �= 0,
β −2 = 2β ,

bcμ2β 2 = c−a,
bcλ μ2β (β −1) = λ 2.

(15.50)

This system gives
β = −2,

μ =
1
2

√
c−a

bc
,

c−a
bc

> 0,

λ =
3
2
(c−a),

(15.51)

that can also be obtained by using the sine method. Based on this result, we obtain
the following periodic solutions

u1(x,t) =
3
2
(c−a)sec2

[
1
2

√
c−a

bc
(x− ct)

]
, (15.52)

and

u2(x,t) =
3
2
(c−a)csc2

[
1
2

√
c−a

bc
(x− ct)

]
, (15.53)

valid for
c−a

bc
> 0. However, for

c−a
bc

< 0, we obtain the soliton solution

u3(x,t) =
3
2
(c−a)sech2

[
1
2

√
a− c

bc
(x− ct)

]
, (15.54)

and the travelling wave solution

u4(x,t) =−3
2
(c−a)csch2

[
1
2

√
a− c

bc
(x− ct)

]
. (15.55)

15.3.2 Using the Tanh-coth Method

Recall that the reduced BBM equation is

(a− c)u + u2−bcu′′ = 0. (15.56)

Balancing u2 with u′′ we find
2M = M + 2, (15.57)
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so that
M = 2. (15.58)

The tanh-coth method introduces the finite expansion

u(x,t) = S(Y ) = a0 + a1Y + a2Y 2 +
b1

Y
+

b2

Y 2 . (15.59)

Substituting (15.59) into (15.56), collecting the coefficients of each power of Y , and
using Mathematica to solve the resulting system of algebraic equations we found
that a1 = b1 = 0, where c is left as a free parameter. In addition we obtained the
following sets:
(i)

a0 =−3(a− c)
2

, a2 =
3(a− c)

2
, b2 = 0, μ =

1
2

√
a− c

bc
,

a− c
bc

> 0. (15.60)

(ii)

a0 =
(a− c)

2
, a2 =−3(a− c)

2
, b2 = 0, μ =

1
2

√
c−a

bc
,

c−a
bc

> 0. (15.61)

(iii)

a0 =−3(a− c)
2

, a2 = 0, b2 =
3(a− c)

2
, μ =

1
2

√
a− c

bc
,

a− c
bc

> 0. (15.62)

(iv)

a0 =
(a− c)

2
, a2 = 0, b2 =−3(a− c)

2
, μ =

1
2

√
c−a

bc
,

c−a
bc

> 0. (15.63)

In view of these results, we obtain the following soliton solutions

u1(x,t) =
3(c−a)

2
sech2

[
1
2

√
a− c

bc
(x− ct)

]
,

a− c
bc

> 0,

u2(x,t) =
(a− c)

2

(
1−3tanh2

[
1
2

√
c−a

bc
(x− ct)

])
,

c−a
bc

> 0,

(15.64)

and the travelling wave solutions

u3(x,t) = −3(c−a)

2
csch2

[
1
2

√
a− c

bc
(x− ct)

]
,

a− c
bc

> 0,

u4(x,t) =
(a− c)

2

(
1−3coth2

[
1
2

√
c−a

bc
(x− ct)

])
,

c−a
bc

> 0.

(15.65)
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Notice that
a− c

bc
plays a major role in describing the structure of the obtained solu-

tion, therefore the last four solutions will give the following periodic solutions:

u5(x,t) =
3(c−a)

2
sec2

[
1
2

√
c−a

bc
(x− ct)

]
,

c−a
bc

> 0,

u6(x,t) =
(a− c)

2

(
1 + 3tan2

[
1
2

√
a− c

bc
(x− ct)

])
,

a− c
bc

> 0,

u7(x,t) =
3(c−a)

2
csc2

[
1
2

√
c−a

bc
(x− ct)

]
,

c−a
bc

> 0,

u8(x,t) =
(a− c)

2

(
1 + 3cot2

[
1
2

√
a− c

bc
(x− ct)

])
,

a− c
bc

> 0.

(15.66)

Remark: It is interesting to point out that the solutions obtained by the tanh-coth
method includes the solutions obtained by the sine-cosine method among others.
This is true if M is even. However, for M is odd, the two methods give different
solutions as discussed before and will be emphasized later.

15.4 The Medium Equal Width (MEW) Equation

The medium equal width equation [17] is given by

ut + 3u2ux−auxxt = 0. (15.67)

The MEW equation (15.67), which is related to the RLW equation, has solitary
waves with both positive and negative amplitudes, all of which have the same width.
The MEW equation is a nonlinear wave equation with cubic nonlinearity with a
pulselike solitary wave solution. This equation appears in many physical applica-
tions and is used as a model for nonlinear dispersive waves. The equation gives rise
to equal width undular bore. As stated before, this equation will be approached by
using the sine-cosine method and the tanh-coth method.

15.4.1 Using the Sine-cosine Method

Using the wave variable ξ = x− ct converts (15.67) to an ODE

−cu + u3 + acu′′ = 0, (15.68)

obtained after integrating once and setting the constant of integration to zero. Sub-
stituting the cosine ansatz into (15.68) gives
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−cλ cosβ (μξ )+ λ 3 cos3β (μξ )−acμ2β 2λ cosβ (μξ )

+acλ μ2β (β −1)cosβ−2(μξ ) = 0. (15.69)

Equating the exponents and the coefficients of each pair of the cosine functions we
find the following system of algebraic equations:

β −1 �= 0, β −2 = 3β , acμ2β 2 =−c, acλ μ2β (β −1) =−λ 3. (15.70)

Solving the last system yields

β = −1,

μ =
1√−a

, a < 0,

λ =
√

2c.

(15.71)

The last results can be easily obtained if we also use the sine ansatz. Consequently,
the following periodic solutions

u1(x,t) =
√

2c csc

[
1√−a

(x− ct)

]
, 0 <

1√−a
(x− ct) < π , (15.72)

and

u2(x,t) =
√

2c sec

[
1√−a

(x− ct)

]
, | 1√−a

(x− ct)|< π
2

, (15.73)

are readily obtained. However, for a > 0,c < 0, we obtain the travelling wave solu-
tions

u3(x,t) =
√−2ccsch

[
1√
a
(x− ct)

]
, (15.74)

and for a > 0 and c > 0 we obtain the soliton solution

u4(x,t) =
√

2csech

[
1√
a
(x− ct)

]
. (15.75)

15.4.2 Using the Tanh-coth Method

Recall that the wave variable ξ = x− ct converts the MEW equation to an ODE

−cu + u3 + acu′′ = 0, (15.76)

obtained after integrating once and setting the constant of integration to zero. Bal-
ancing u3 with u′′ gives M = 1. Consequently, the tanh-coth method introduces the
finite expansion

u(x,t) = S(Y ) = a0 + a1Y +
b1

Y
. (15.77)
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Substituting (15.77) into (15.76), collecting the coefficients of each power of Y , and
proceeding as before, we obtain the following sets:

a0 = 0, a1 =
√

c, b1 = 0, μ =
1√−2a

, a < 0, (15.78)

and

a0 = 0, a1 = 0, b1 =
√

c, μ =
1√−2a

, a < 0, (15.79)

This in turn gives the following kink solution

u5(x,t) =
√

c tanh

(
1√−2a

(x− ct)

)
, a < 0, (15.80)

and the travelling wave solution

u6(x,t) =
√

ccoth

(
1√−2a

(x− ct)

)
, a < 0, (15.81)

However, for a > 0,c < 0, we obtain the solutions

u7(x,t) =
√−c tan

(
1√
2a

(x− ct)

)
, (15.82)

and

u8(x,t) =
√−ccot

(
1√
2a

(x− ct)

)
. (15.83)

Remark It is interesting to emphasize the fact indicated before that the solutions
obtained by the sine-cosine method are included in the solutions obtained by the
tanh-coth method only if the parameter M is even. However, the two methods give
different solutions if M is odd.

15.5 The Kawahara and the Modified Kawahara Equations

The standard Kawahara equation [9] is a fifth-order KdV equation of the form

ut + 6uux + uxxx−uxxxxx = 0, (15.84)

that describes a model for plasma waves, capillary-gravity water waves. The Kawa-
hara equation appears in the theory of shallow water waves with surface tension and
in the theory of magneto-acoustic waves in a cold collision free plasma. Kawahara
studied this equation numerically and observed that this equation has both oscilla-
tory and monotone solitary wave solutions. The inclusion of a fifth-order dispersive
term uxxxxx is necessary to model magneto acoustic waves. The Kawahara equation
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also contains the simplest kinematic term uux that appears also in KdV, Burgers,
Kuramoto-Sivashinsky equations, and in the description of weak turbulence.

Moreover, we will also study the modified Kawahara equation

ut + 6u2ux + uxxx−uxxxxx = 0. (15.85)

Equation (15.85) was proposed first by Kawahara [9] as an important dispersive
equation. It contains two dispersive terms uxxx and uxxxxx and also the nonlinear term
(u3)x. It is also called the singularly perturbed KdV equation. It also appears in the
theory of shallow water waves with surface tension and in the theory of magneto-
acoustic waves in plasmas.

15.5.1 The Kawahara Equation

We first study the standard Kawahara equation (15.84). Using the transformation
u(x,t) = u(ξ ),ξ = x− ct and integrating once, Eq. (15.84) is transformed to the
ODE

−cu + 3u2 + u′′ −u(4) = 0. (15.86)

Balancing u(4) with u2 gives M = 4. Because M is even, the tanh-coth method
and the sine-cosine method gives the same solutions, therefore only the tanh-coth
method will be used. The tanh-coth method admits the use of the finite expansion

u(x,t) = S(Y ) =
4

∑
i=0

aiY i +
4

∑
i=1

biY−i. (15.87)

Substituting (15.87) into (15.86), collecting the coefficients of each power of Y , and
proceeding as before, we found that a1 = a3 = b1 = b3 = 0, and the following sets:
(i)

a0 =
35
338

, a2 =− 35
338

, a4 =
35
338

, b2 = b4 = 0, c =
36
169

, μ =
1

2
√

13
,

(15.88)
(ii)

a0 =
11

338
, a2 =− 35

169
, a4 =

35
338

, b2 = b4 = 0, c =− 36
169

, μ =
1

2
√

13
,

(15.89)
(iii)

a0 =
35
338

, a2 = a4 = 0, b2 =− 35
338

, b4 =
35

338
, c =

36
169

, μ =
1

2
√

13
,

(15.90)
(iv)
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a0 =
11

338
, a2 = a4 = 0, b2 =− 35

169
, b4 =

35
338

, c =− 36
169

, μ =
1

2
√

13
.

(15.91)
In view of these results we obtain the soliton solutions

u1(x,t) =
35

338
sech4

[
1

2
√

13

(
x− 36

169
t

)]
,

u2(x,t) =
1

338

(
11−70tanh2

[
1

2
√

13

(
x +

36
169

t

)]

+35tanh4
[

1

2
√

13

(
x +

36
169

t

)])
,

(15.92)

and the travelling wave solutions

u3(x,t) =
35

338
csch4

[
1

2
√

13

(
x− 36

169
t

)]
,

u4(x,t) =
1

338

(
11−70coth2

[
1

2
√

13

(
x +

36
169

t

)]

+35coth4
[

1

2
√

13

(
x +

36
169

t

)])
.

(15.93)

15.5.2 The Modified Kawahara Equation

We next consider the modified Kawahara equation (15.85). Using the transformation
u(x,t) = u(ξ ),ξ = x− ct and integrating once, Eq. (15.85) is transformed to the
ODE

−cu + 2u3 + u′′ −u(4) = 0. (15.94)

Balancing u(4) with u3 gives M = 2. We then use the finite expansion

u(x,t) = S(Y ) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i. (15.95)

Substituting (15.95) into (15.94), collecting the coefficients of each power of Y , and
solving the system of coefficients, we found that a1 = b1 = 0, and the following
sets:
(i)

a0 =−1
2

√
3
5
, a2 =

1
2

√
3
5
, b2 = 0, c =

4
25

, μ =
1

2
√

5
, (15.96)

(ii)

a0 =−1
2

√
3
5
, a2 = 0, b2 =

1
2

√
3
5
, c =

4
25

, μ =
1

2
√

5
, (15.97)
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(iii)

a0 = 0, a2 =
1
4

√
3
5
, b2 =−1

4

√
3
5
, c =− 11

100
, μ =

i

2
√

10
. (15.98)

In view of these results we obtain the bell-shaped soliton solution

u1(x,t) =−1
2

√
3
5

sech2
[

1

2
√

5

(
x− 4

25
t

)]
, (15.99)

and the solutions

u2(x,t) = −1
2

√
3
5

csch2
[

1

2
√

5

(
x− 4

25
t

)]
,

u3(x,t) = −1
4

√
3
5

(
tan2

[
1

2
√

10

(
x +

11
100

t

)]

−cot2
[

1

2
√

10

(
x +

11
100

t

)])
.

(15.100)

15.6 The Kadomtsev-Petviashvili (KP) Equation

This section is concerned with the single soliton and the multiple-soliton solutions
of the Kadomtsev-Petviashvili (KP) equation [8]

(ut + 6uux + uxxx)x +λ uyy = 0, (15.101)

where u = u(x,y,t) is a real-valued function of two spatial variables x and y, and one
time variable t, and λ is a constant scalar. When λ = 0, Eq. (15.101) reduces to the
KdV equation. When λ < 0, the equation is known as the KP-I equation which is
a good model when surface tension is strong and dominates in very shallow water.
However, for λ > 0, the equation is called the KP-II equation which is a good model
when surface tension is weak or absent. In other words, the coefficients λ > 0 and
λ < 0 are used for weak surface tension and strong surface tension respectively. This
means that the two KP equations have different physical structures and different
properties.

The KP equation is used to model shallow-water waves with weakly non-linear
restoring forces. It is also used to model waves in ferromagnetic media. The KP
equation [8] is a model for shallow long waves in the x direction with some mild
dispersion in the y direction. It is a natural generalization of the KdV equation and
it is a completely integrable equation by the inverse scattering transform method.
Kadomtsev and Petviashvili [8] generalized the KdV equation from (1+1) to (2+1)
dimensions. They developed this equation when they relaxed the restriction that the
waves be strictly one-dimensional of the KdV equation.
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We first aim to use the tanh-coth method to determine single soliton and periodic
solutions for the KP equation. Unlike previous sections where only the tanh-coth
method is used, the Hirota’s direct method, based on the bilinear formalism, com-
bined with the simplified version [5,15] of this bilinear formalism, will be used to
determine multi-soliton solutions for the KP equation.

15.6.1 Using the Tanh-coth Method

The KP equation
(ut + 6uux + uxxx)x + uyy = 0, (15.102)

will be converted to the ODE

(r2− c)u + 3u2 + u′′ = 0, (15.103)

obtained upon using ξ = x + ry− ct, integrating twice, and using λ = 1. Balancing
the nonlinear term u2 with the highest order derivative u′′ gives M = 2. The tanh-
coth method admits the use of the substitution

u(x,t) = S(Y ) =
2

∑
i=0

aiY
i +

2

∑
i=1

biY
−i. (15.104)

Substituting (15.104) into (15.103), collecting the coefficients of each power of
Y i,0 � i � 8, setting each coefficient to zero, and solving the resulting system of
algebraic equations, we found that a1 = b1 = 0 and the following sets of solutions:
(i)

a0 =
c− r2

2
, a2 =−c− r2

2
, b2 = 0, μ =

1
2

√
c− r2, c > r2. (15.105)

(ii)

a0 =−c− r2

6
, a2 =

c− r2

2
, b2 = 0, μ =

1
2

√
r2− c, c < r2. (15.106)

(iii)

a0 =
c− r2

2
, a2 = 0, b2 =−c− r2

2
, μ =

1
2

√
c− r2, c > r2. (15.107)

(iv)

a0 =−c− r2

6
, a2 = 0, b2 =

c− r2

2
, μ =

1
2

√
r2− c, c < r2. (15.108)

This in turn gives the soliton solutions
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u1(x,y,t) =
c− r2

2
sech2

[
1
2

√
c− r2(x + ry− ct)

]
, c > r2,

u2(x,y,t) = −c− r2

6
(1−3tanh2

[
1
2

√
r2− c(x + ry− ct)

]
, c < r2.

(15.109)

Moreover, we obtain the following travelling wave solutions

u3(x,y,t) = −c− r2

2
csch2

[
1
2

√
c− r2(x + ry− ct)

]
, c > r2,

u4(x,y,t) = −c− r2

6
(1−3coth2

[
1
2

√
r2− c(x + ry− ct)

]
, c < r2.

(15.110)

The tanh-coth method gives the solutions u1 and u2, each is a single soliton solution.
The parameter c plays an important role in the physical structure of the solutions
obtained in (15.110). Consequently, we obtain the following plane periodic solutions

u5(x,y,t) =
c− r2

2
sec2

[
1
2

√
r2− c(x + ry− ct)

]
, c < r2,

u6(x,y,t) = −c− r2

6

(
1 + 3tan2

[
1
2

√
c− r2(x + ry− ct)

])
, c > r2,

u7(x,y,t) =
c− r2

2
csc2

[
1
2

√
r2− c(x + ry− ct)

]
, c < r2,

u8(x,y,t) = −c− r2

6

(
1 + 3cot2

[
1
2

√
c− r2(x + ry− ct)

])
, c > r2.

(15.111)

15.6.2 Multiple-soliton Solutions of the KP Equation

We now examine multiple-soliton solutions of the KP equation

(ut + 6uux + uxxx)x±uyy = 0. (15.112)

Hirota [6,7] introduced the direct method that usually leads to a bilinear form, if such
a form exists. It was shown by this method that soliton solutions are just polynomials
of exponentials. The direct method uses the dependent variable transformation

u(x,y,t) = 2(ln( f ))xx, (15.113)

that transforms (15.112) into the bilinear form

B( f , f ) = (D4
x + DxDt ±D2

y)( f · f ) = 0, (15.114)

or equivalently

[ f ( fxt + f4x± f2y)]−
[

fx ft + 4 fx f3x−3 f 2
2x± f 2

y

]
= 0. (15.115)
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Hereman et. al. [5] introduced a simplified version of Hirota’s method, that was
introduced in Chapter 13, where exact solitons can be obtained by solving a per-
turbation scheme using a symbolic manipulation package, and without any need to
use bilinear forms. In what follows, we summarize the main steps of the simplified
version of Hirota’s method.

Equation (15.115) can be decomposed into linear operator L and nonlinear oper-
ator N defined by

L =
∂ 2

∂x∂ t
+

∂ 4

∂ x4 ±
∂ 2

∂y2 ,

N( f , f ) = − fx ft −4 fx f3x + 3 f2x f2x± f 2
y .

(15.116)

We next assume that f (x,y,t) has a perturbation expansion of the form

f (x,y,t) = 1 +
∞

∑
n=1

εn fn(x,y,t), (15.117)

where ε is a non small formal expansion parameter. Following Hirota’s method [6,7]
and the simplified version introduced in [5], we substitute (15.117) into (15.116) and
equate to zero the powers of ε to get:

O(ε1) : L f1 = 0, (15.118)

O(ε2) : L f2 =−N( f1, f1), (15.119)

O(ε3) : L f3 =− f1L f2−N( f1, f2)−N( f2, f1), (15.120)

O(ε4) : L f4 =− f1L f3− f2L f2− f3L f1−N( f1, f3) (15.121)

−N( f2, f2)−N( f2, f1),

... (15.122)

O(εn) : L fn =−
n−1

∑
j=1

[ f jL fn−1 + N( f j, fn− j)] = 0.

The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi), (15.123)

where
θi = kix + miy− cit, (15.124)

where ki,mi and ci are arbitrary constants. Substituting (15.123) into (15.119) gives
the dispersion relation

ci =
k4

i ±m2
i

ki
, (15.125)

and in view of this result we obtain
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θi = kix + miy− k4
i ±m2

i

ki
t. (15.126)

This means that

f1 = exp(θ1) = exp

(
k1x + m1y− k4

1±m2
1

k1

)
, (15.127)

obtained by using N = 1 in (15.123).
Consequently, for the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp

(
k1x + m1y− k4

1±m2
1

k1
t

)
, (15.128)

where we set ε = 1. The one soliton solution for the KP equation is obtained by
recalling that u(x,t) = 2(ln f )xx, therefore we obtain

u(x,y,t) =

2k2
1exp

(
k1x + m1y− k4

1±m2
1

k1
t

)
(

1 + exp

(
k1x + m1y− k4

1±m2
1

k1
t

))2 , (15.129)

or equivalently

u(x,y,t) =
k2

1

2
sech2

[
1
2

(
k1x + m1y− k4

1±m2
1

k1
t

)]
. (15.130)

To determine the two-soliton solutions, we first set N = 2 in (15.123) to get

f1 = exp(θ1)+ exp(θ2), (15.131)

and accordingly we have

f = 1 + exp(θ1)+ exp(θ2)+ f2(x,y,t). (15.132)

To determine f2, we substitute the last equation into (15.120) to obtain

f2 = ∑
1�i< j�2

ai jexp(θ1 +θ2), (15.133)

where

a12 =
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2
, (15.134)

and θ1 and θ2 are given above in (15.124). For the two-soliton solutions we use
1 � i < j � 2, and therefore we obtain

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (15.135)
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or equivalently

f = 1 + exp(θ1)+ exp(θ2)+
3k2

1k2
2(k1− k2)

2− (k1m2− k2m1)
2

3k2
1k2

2(k1 + k2)2− (k1m2− k2m1)2
exp(θ1 +θ2).

(15.136)
To determine the two-soliton solutions for the KP equation explicitly, we use
(15.113) for the function f in (15.136).

Similarly, we can determine f3. Proceeding as before, we therefore set

f1(x,y,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,y,t) = a12exp(θ1 +θ2)+ a23exp(θ2 + θ2)+ a13exp(θ1 +θ3),

(15.137)

and accordingly we have

f (x,y,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 + θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 +θ3)
+ f3(x,y,t).

(15.138)

Substituting (15.138) into (15.121) and proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (15.139)

where

ai j =
3k2

i k2
j (ki− k j)

2− (kim j− k jmi)
2

3k2
i k2

j (ki + k j)2− (kim j− k jmi)2
, 1 � i < j � 3, (15.140)

and
b123 = a12a13a23, (15.141)

and θ1, θ2 and θ3 are given above in (15.124). For the three-soliton solutions we use
1 � i < j � 3, we therefore obtain

f = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 +θ3)
+b123exp(θ1 +θ2 +θ3).

(15.142)

To determine the three-soliton solutions explicitly, we use (15.113) for the function
f in (15.142).

Similarly, we can determine f4. Proceeding as before we set

f4 = c1234exp(θ1 + θ2 + θ3 +θ4), (15.143)

where
c1234 = a12a13a14a23a24a34, (15.144)

and θi,1 � i � 4 are given above in (15.124). For the four-soliton solution we use
1 � i < j � 4, we therefore obtain
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f = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)+ exp(θ4)
+a12exp(θ1 + θ2)+ a13exp(θ1 + θ3)+ a14exp(θ1 +θ4)
+a23exp(θ2 + θ3)+ a24exp(θ2 + θ4)+ a34exp(θ3 +θ4)
+b123exp(θ1 + θ2 + θ3)+ b124exp(θ1 +θ2 +θ4)+ b134exp(θ1 + θ3 + θ4)
+b234exp(θ2 + θ3 + θ4)+ c1234exp(θ1 +θ2 + θ3 + θ4),

(15.145)
where

ai j = ai j =
3k2

i k2
j (ki− k j)

2− (kim j− k jmi)
2

3k2
i k2

j (ki + k j)2− (kim j− k jmi)2
, 1 � i < j � 4,

bi jr = ai jaira jr, 1 � i < j < r � 4,
c1234 = a12a13a14a23a24a34.

(15.146)

To determine the four-solitons solution explicitly, we use (15.113) for the function
f in (15.145).

We formally justified the N-soliton solutions for N = 1,2,3,4. This means that
the multiple-soliton solutions exist for N � 1, but the computational work becomes
more and more exhausting. We again emphasize the following conclusions that were
made before:

(i) the soliton solutions are just polynomials of exponentials as emphasized by Hi-
rota [6,7], and

(ii) the three-soliton solutions and the higher level soliton solution as well, do not
contain any new free parameters other than ai j derived for the two-soliton solutions.

15.7 The Zakharov-Kuznetsov (ZK) Equation

The Zakharov-Kuznetsov (ZK) equation [20] is given by

ut + auux +(∇2u)x = 0, (15.147)

where ∇2 = ∂ 2
x + ∂ 2

y + ∂ 2
z is the isotropic Laplacian. The ZK equation is a gener-

alization of the KdV equation. The ZK equation governs the behavior of weakly
nonlinear ion-acoustic waves in a plasma comprising cold ions and hot isothermal
electrons in the presence of a uniform magnetic field. The ZK equation, which is a
more isotropic, was first derived for describing weakly nonlinear ion-acoustic waves
in a strongly magnetized lossless plasma in two dimensions. Unlike the KP equa-
tion, the ZK equation is not integrable by the inverse scattering transform method.
This means that we cannot determine N-soliton solutions for this equation. It was
found that the solitary wave solutions of the ZK equation are inelastic.

In this section we employ the tanh-coth method to the Zakharov-Kuznetsov equa-
tion in the (2 + 1) dimensions, two spatial and one time variables:

ut + auux + b(uxx + uyy)x = 0, (15.148)
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where a and b are constants. Using the wave variable ξ = x+y−ct carries the PDE
(15.148) into the ODE

−cu′+
a
2
(u2)′+ 2bu′′′ = 0, (15.149)

where by integrating (15.149) and neglecting the constant of integration we obtain

−cu +
a
2

u2 + 2bu′′ = 0. (15.150)

Balancing u′′ with u2 in (15.150) gives M = 2. The tanh-coth method admits the use
of the finite expansion

u(μξ ) = S(Y ) =
2

∑
k=0

akY
k +

2

∑
k=1

bkY
−k, (15.151)

Substituting (15.151) into (15.150), collecting the coefficients of Y , setting it equal
to zero, and solving the resulting system we find the following sets of solutions
(i)

a0 =
3c
a

, a1 = 0, a2 =−3c
a

, b1 = 0, b2 = 0, μ =
1
2

√
c

2b
. (15.152)

(ii)

a0 =
3c
a

, a1 = 0, a2 = 0, b1 = 0, b2 =−3c
a

, μ =
1
2

√
c

2b
. (15.153)

(iii)

a0 =
3c
2a

, a1 = 0, a2 =−3c
4a

, b1 = 0, b2 =−3c
4a

, μ =
1
4

√
c

2b
. (15.154)

(iv)

a0 =− c
a
, a1 = 0, a2 =

3c
a

, b1 = 0, b2 = 0, μ =
1
2

√
− c

2b
. (15.155)

(v)

a0 =− c
a
, a1 = 0, a2 = 0, b1 = 0, b2 =

3c
a

, μ =
1
2

√
− c

2b
. (15.156)

(vi)

a0 =
c

2a
, a1 = 0, a2 =

3c
4a

, b1 = 0, b2 =
3c
4a

, μ =
1
4

√
− c

2b
. (15.157)

For
c
b

> 0, the sets (15.152), (15.153), and (15.154) give the soliton solution
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u1(x,y,t) =
3c
a

sech2
[

1
2

√
c

2b
(x + y− ct)

]
, (15.158)

and the travelling wave solutions

u2(x,y,t) =−3c
a

csch2
[

1
2

√
c

2b
(x + y− ct)

]
, (15.159)

and

u3(x,y,t) =
3c
4a

(
2− tanh2

[
1
4

√
c

2b
(x + y− ct)

]
− coth2

[
1
4

√
c

2b
(x + y− ct)

])
.

(15.160)

However, for
c
b

< 0, the sets (15.152), (15.153), and (15.154) give the periodic

solutions

u4(x,y,t) =
3c
a

sec2
[

1
2

√
− c

2b
(x + y− ct)

]
, (15.161)

u5(x,y,t) =
3c
a

csc2
[

1
2

√
− c

2b
(x + y− ct)

]
, (15.162)

and

u6(x,y,t) =
3c
4a

(
2 + tan2

[
1
4

√
− c

2b
(x + y− ct)

]
+ cot2

[
1
4

√
− c

2b
(x + y− ct)

])
.

(15.163)
On the other hand, for

c
b

< 0, the sets (15.155), (15.156), and (15.157) give the

soliton solution

u7(x,y,t) =− c
a

(
1−3tanh2

[
1
2

√
− c

2b
(x + y− ct)

])
, (15.164)

and the travelling wave solutions

u8(x,y,t) =− c
a

(
1−3coth2

[
1
2

√
− c

2b
(x + y− ct)

])
, (15.165)

and

u9(x,y,t) =
c

4a

(
2 + 3tanh2

[
1
4

√
− c

2b
(x + y− ct)

]

+3coth2
[

1
4

√
− c

2b
(x + y− ct)

])
, (15.166)

However, for
c
b

> 0, the sets (15.155), (15.156), and (15.157) also give the solitons

solutions
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u10(x,y,t) =− c
a

(
1 + 3tan2

[
1
2

√
c

2b
(x + y− ct)

])
, (15.167)

u11(x,y,t) =− c
a

(
1 + 3cot2

[
1
2

√
c

2b
(x + y− ct)

])
, (15.168)

and

u12(x,y,t) =
c

4a

(
2−3tan2

[
1
4

√
c

2b
(x + y− ct)

]
−3cot2

[
1
4

√
c

2b
(x + y− ct)

])
.

(15.169)

15.8 The Benjamin-Ono Equation

The Benjamin-Ono (BO) equation [1,13] is defined by

ut + 4uux + H(uxx) = 0, (15.170)

where H is the Hilbert transform defined by

H[u(x,t)] =
1
π

P
∫ ∞

−∞

u(y,t)
y− x

dy, (15.171)

where P refers to the principal value of the integral. The BO equation describes
internal waves. It is a completely integrable equation that gives N-soliton solutions.
To obtain the multiple-soliton solutions, we follow the analysis developed by Drazin
[3] and Matsuno [11,12]. A solution of the BO equation which is real and finite over
all x and t is of the form

u(x,t) =
i
2

∂
∂ x

(
ln

f ∗(x,t)
f (x,t)

)
, (15.172)

where f ∗(x,t) is the complex conjugate of f (x,t). Matsuno [11,12] formally proved
that

H[u(x,t)] = iu(x,t)− 1
f (x,t)

(
∂ f (x,t)

∂x

)
. (15.173)

Substituting (15.172) and (15.173) into (15.170) gives the bilinear equation

Im( f ∗t f ) = f ∗x fx−Re( f ∗xx f ). (15.174)

The solution of (15.174) is expressed as [11]

fN = detMN×N , (15.175)

where the square matrix MN×N is defined by
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Mnm =

⎧⎪⎨
⎪⎩

iθn + 1, forn = m,

2
√

knkm

kn− km
, forn �= m,

(15.176)

where
θn = kn(x− knt−bn), (15.177)

where kn and bn are arbitrary constants, and kn �= km for n �= m. Setting N = 1 in
(15.175) we get

f1 = 1 + iθ1, (15.178)

where by using (15.172) the one-soliton solution

u(x,t) =
k1

k2
1(x− k1t−b1)2 + 1

. (15.179)

Setting N = 2 in (15.175) we get

f2 =−θ1θ2 + i(θ1 +θ2)+ a12, (15.180)

where

anm =

(
kn + km

kn− km

)2

. (15.181)

where by using (15.172) the two-soliton solutions are readily obtained. Similarly,
for N = 3, we find

f3 =−(θ1θ2 +θ2θ3 +θ3θ1)+ i(k12θ3 +k23θ1 +k31θ2−θ1θ2θ3)+k12+k23+k31−2,
(15.182)

where the three-soliton solutions can be obtained by using (15.172).

15.9 The KdV-Burgers Equation

In this section we will study the KdV-Burgers equation

ut + 6uux + auxx + uxxx = 0, a �= 0. (15.183)

The Burgers-KdV equation (15.183) arises from many physical contexts such as the
propagation of undular bores in shallow water, the flow of liquids containing gas
bubbles, weakly nonlinear plasma waves with certain dissipative effect, theory of
ferro electricity, nonlinear circuit, and the propagation of waves in an elastic tube
filled with a viscous fluid. The KdV-Burgers equation incorporates the effects of
dispersion uxxx and dissipation uxx as well as nonlinearity uux.

Using the wave variable ξ = x− ct, Eq. (15.183) will be carried to

−cu + 3u2 + au′+ u′′ = 0. (15.184)
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Balancing u′′ with u2 gives M = 2. This means that we can set

u(x,t) = S(Y ) =
2

∑
r=0

arY
r +

2

∑
r=1

brY
−r. (15.185)

Substituting (15.185) into (15.184) and solving the resulting system for a0,a1,a1,
b1,b2,c, and μ , we obtain the following sets of solutions:
(i)

a0 =− a2

50
, a1 =

a2

25
, a2 =− a2

50
, b1 = b2 = 0, c =−6a2

25
, μ =

a
10

. (15.186)

(ii)

a0 =
3a2

50
, a1 =

a2

25
, a2 =− a2

50
, b1 = b2 = 0, c =

6a2

25
, μ =

a
10

. (15.187)

(iii)

a0 =− a2

50
, a1 = a2 = 0, b1 =

a2

25
, b2 =− a2

50
, c =−6a2

25
, μ =

a
10

. (15.188)

(iv)

a0 =
3a2

50
, a1 = a2 = 0, b1 =

a2

25
, b2 =− a2

50
, c =

6a2

25
, μ =

a
10

. (15.189)

(v)

a0 =
a2

20
, a1 = b1 =

a2

25
, a2 = b2 =− a2

200
, c =

6a2

25
, μ =

a
20

. (15.190)

(vi)

a0 =− 3a2

100
, a1 = b1 =

a2

50
, a2 = b2 =− a2

200
, c =−6a2

25
, μ =

a
20

. (15.191)

In view of these results we obtain the following soliton solutions

u1 = − a2

50

(
1− tanh

[
a
10

(x +
6a2

25
t)

])2

,

u2 =
a2

50

(
3 + 2tanh

[
a

10
(x− 6a2

25
t)

]
−2tanh2

[
a

10
(x− 6a2

25
t)

])
,

(15.192)

and the following travelling wave solutions
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u3 = − a2

50

(
1− coth

[
a

10
(x +

6a2

25
t)

])2

,

u4 =
a2

50

(
3 + 2coth

[
a

10
(x− 6a2

25
t)

]
−2coth2

[
a
10

(x− 6a2

25
t)

])
,

u5 =
a2

200

(
5 + 4tanh

[
a
20

(x− 6a2

25
t)

]
− tanh2

[
a

20
(x− 6a2

25
t)

])

+
a2

200

(
5 + 4coth

[
a
20

(x− 6a2

25
t)

]
− coth2

[
a

20
(x− 6a2

25
t)

])
,

u6 = − a2

200

(
3−4tanh

[
a
20

(x +
6a2

25
t)

]
+ tanh2

[
a

20
(x +

6a2

25
t)

])
− a2

200

(
3−4coth

[
a
20

(x +
6a2

25
t)

]
+ coth2

[
a

20
(x +

6a2

25
t)

])
.

(15.193)

15.10 Seventh-order KdV Equation

In this section we will study other forms of the seventh-order KdV equations that
are built in the Kawahara sense. The seventh-order KdV equation (sKdV)

ut + 6uux + u3x−u5x + αu7x = 0, (15.194)

where α is a nonzero constant, and u = u(x,t) is a sufficiently often differentiable
function, will be studied. The sech method used in [4,10] will be used to study this
equation. The sKdV equation (15.194) has been introduced by Pomeau et. al [14]
for discussing the structural stability of the KdV equation under singular perturba-
tion. The sKdV equation possesses the dispersion term u3x and two higher order
dispersion terms, namely, u5x and u7x. Moreover, Eq. (15.194) has three polynomial
type conserved quantities given by:

I1 =
∫ ∞

−∞
udx,

I2 =
∫ ∞

−∞
u2dx,

I3 =

∫ ∞

−∞

(
−u3 +

1
2
(ux)

2− 1
2
(uxx)

2 +
1
2

α(u3x)
2
)

dx,

(15.195)

15.10.1 The Sech Method

We begin our analysis by rewriting (15.194) as

−cu + 3u2 + u′′ −u(4) +αu(6) = 0, (15.196)
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by using the wave variable ξ = μ(x− ct) and integrating once. Balancing the terms
u(6) with u2 in (15.196) we find that M = 6. Following [4,10], we assume that the
solution is of the form

u(ξ ) = a0 + a1 sech6(μξ ). (15.197)

Substituting (15.197) into (15.196), collecting the coefficients of sech j, and solving
the resulting system we find the following two sets of solutions
(i)

a0 = 0, a1 =
86625
591361

, c =
180000
591361

, μ =
5√

1538
, α =

769
2500

. (15.198)

(ii)

a0 =− 60000
591361

, a1 =
86625
591361

, c =−180000
591361

, μ =
5√

1538
, α =

769
2500

.

(15.199)
This in turn gives the soliton solutions

u1(x,t) =
86625

591361
sech6

(
5√

1538

(
x− 180000

591361
t

))
, (15.200)

and

u2(x,t) =− 60000
591361

+
86625
591361

sech6
(

5√
1538

(
x +

180000
591361

t

))
. (15.201)

In addition, we obtain the following traveling wave solutions

u3(x,t) =− 86625
591361

csch6
(

5√
1538

(
x− 180000

591361
t

))
, (15.202)

and

u4(x,t) =− 60000
591361

− 86625
591361

csch6
(

5√
1538

(
x +

180000
591361

t

))
. (15.203)

It is interesting to point out that these travelling solitary wave solutions exist only if
the signs of the coefficients of the are opposite. Moreover, the solutions exist only
for fixed value of α given before in (15.198).

However, if the coefficients of terms u3x and u5x have identical positive signs,
we obtain periodic solutions that include sec6(μξ ). In this case, we assume that the
solution is of the form

u(ξ ) = a0 + a1 sec6(μξ ). (15.204)

Substituting (15.204) into (15.196), collecting the coefficients of sec j, and solving
the resulting system we find the following two sets of solutions
(i)
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a0 = 0, a1 =− 86625
591361

, c =−180000
591361

, μ =
5√

1538
, α =

769
2500

.

(15.205)
(ii)

a0 =
60000

591361
, a1 =− 86625

591361
, c =

180000
591361

, μ =
5√

1538
, α =

769
2500

.

(15.206)
This in turn gives the solutions

u5(x,t) =− 86625
591361

sec6
(

5√
1538

(
x +

180000
591361

t

))
, (15.207)

u6(x,t) =− 86625
591361

csc6
(

5√
1538

(
x +

180000
591361

t

))
, (15.208)

u7(x,t) =
60000
591361

− 86625
591361

sec6
(

5√
1538

(
x− 180000

591361
t

))
, (15.209)

and

u8(x,t) =
60000
591361

− 86625
591361

csc6
(

5√
1538

(
x− 180000

591361
t

))
. (15.210)

15.11 Ninth-order KdV Equation

In this section we will study the ninth-order KdV equation (nKdV)

ut + 6uux + u3x−u5x +αu7x +βu9x = 0, (15.211)

where α and β are arbitrary nonzero constants, and u is a sufficiently often differen-
tiable function. The equation is constructed using the sense of Kawahara equation.
The sech method will be used again to study this equation. The nKdV equation pos-
sesses the dispersion term u3x and three higher order dispersion terms, namely, u5x,
u7x and u9x and possesses polynomial type conserved quantities.

15.11.1 The Sech Method

We begin our analysis by rewriting (15.211) as

−cu + 3u2 + u′′ −u(iv) + αu(vi) +β uviii = 0, (15.212)

by using the wave variable ξ = μ(x− ct) and integrating once. Balancing the terms
u(viii) with u2 in (15.212) we find
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M + 8 = 2M, (15.213)

so that M = 8. Following our discussion above, we assume that the solution is of the
form

u(ξ ) = a0 + a1 sech8(μξ ). (15.214)

Substituting (15.214) into (15.212) and proceeding as before we find the following
two sets of solutions
(i)

a0 = 0, a1 =
3816888075
22609585952

, c =
249120900
706549561

,

μ =
1
4

√
5649
26581

, α =
212648
506527

, β =− 11304792976
180266374449

.

(15.215)

(ii)

a0 = − 83040300
706549561

, a1 =
3816888075

22609585952
, c =−249120900

706549561
,

μ =
1
4

√
5649

26581
, α =

212648
506527

, β =− 11304792976
180266374449

.

(15.216)

This in turn gives the soliton solutions

u1(x,t) =
3816888075

22609585952
sech8

(
1
4

√
5649
26581

(
x− 249120900

706549561
t

))
, (15.217)

and

u2(x,t) = − 83040300
706549561

(15.218)

+
3816888075
22609585952

sech8

(
1
4

√
5649

26581

(
x +

249120900
706549561

t

))
,

and the solutions

u3(x,t) =
3816888075

22609585952
csch8

(
1
4

√
5649
26581

(
x− 249120900

706549561
t

))
, (15.219)

and

u4(x,t) = − 83040300
706549561

(15.220)

+
3816888075
22609585952

csch8

(
1
4

√
5649

26581

(
x +

249120900
706549561

t

))
.
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The obtained travelling solitary wave solutions exist only if the signs of the coeffi-
cients of the terms u3x and u5x are opposite. Moreover, the solutions exist only for
specific values of α and β obtained above in (15.215).

However, if the coefficients of the terms u3x and u5x have identical positive signs
we obtain periodic solutions that include sec8(μξ ). To achieve our goal, we assume
that the solution is of the form

u(ξ ) = a0 + a1 sec8(μξ ). (15.221)

Substituting (15.221) into (15.212) and proceeding as before we find the following
two sets of solutions
(i)

a0 = 0, a1 =− 3816888075
22609585952

, c =−249120900
706549561

,

μ =
1
4

√
5649
26581

, α =
212648
506527

, β =
11304792976
180266374449

.

(15.222)

(ii)

a0 =
83040300
706549561

, a1 =− 3816888075
22609585952

, c =
249120900
706549561

,

μ =
1
4

√
5649

26581
, α =

212648
506527

, β =
11304792976

180266374449
.

(15.223)

This in turn gives the solutions

u5(x,t) =− 3816888075
22609585952

sec8

(
1
4

√
5649
26581

(
x +

249120900
706549561

t

))
, (15.224)

u6(x,t) =− 3816888075
22609585952

csc8

(
1
4

√
5649
26581

(
x +

249120900
706549561

t

))
, (15.225)

u7(x,t) =
83040300
706549561

− 3816888075
22609585952

sec8

(
1
4

√
5649
26581

(
x− 249120900

706549561
t

))
,

(15.226)
and

u8(x,t) =
83040300
706549561

− 3816888075
22609585952

csc8

(
1
4

√
5649
26581

(
x− 249120900

706549561
t

))
.

(15.227)
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Chapter 16

Boussinesq, Klein-Gordon and Liouville
Equations

16.1 Introduction

In the preceeding two chapters we examined the family of the KdV and the KdV-
type of equations, where the first order partial derivative ut was involved in all
these equations [1]. In this chapter, we will study the nonlinear evolution equations
where each contains the second order partial derivative utt in addition to other par-
tial derivatives. This family of nonlinear equations gained its importance because it
appears in many scientific applications and physical phenomena.

The new family is of the form

utt −uxx + P(u) = 0, (16.1)

where u(x,t) is a function of space x and time variable t. The nonlinear term P(u)
appears in the following forms

P(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3(u2)xx +λ uxxxx,
−3(u2)xx +λ uxxtt ,
u−u2,
e±u,
e±u + e−2u,
sin u,
sinhu.

(16.2)

(i) For P(u) = −3(u2)xx + λuxxxx we obtain the nonlinear fourth order Boussinesq
equation

utt −uxx−3(u2)xx +λuxxxx = 0. (16.3)

The Boussinesq equation [2] is completely integrable. As stated before, a common
feature of complete integrable equations is the existence of an infinite number of
conservation laws, and therefore the Boussinesq equation has N-soliton solutions
as will be derived later. The equation with λ = −1 is called the bad Boussinesq
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equation or the ill-posed classical equation, whereas with λ = 1 is known as the
good Boussinesq equation or the well-posed equation.

(ii) For P(u) = −3(u2)xx + λuxxtt , the equation is called the improved Boussinesq
equation [3] given by

utt −uxx−3(u2)xx + λuxxtt = 0. (16.4)

An analogous characterization to that used for the Boussinesq equation can be set
here. In other words, there is a bad improved Boussinesq equation and a good im-
proved Boussinesq equation for λ =−1 and λ = 1 respectively.

(iii) For P(u) = u− u2, Eq. (16.1) is called the nonlinear Klein-Gordon equation
with quadratic nonlinearity [4,5,10] and given by

utt −uxx + u−u2 = 0. (16.5)

The Klein-Gordon equation appears also with other order of nonlinearities, such as
P(u) = u−u3, and P(u) = u−un.

(iv) For P(u) = e±u, Eq. (16.1) gives the well known Liouville equation [11] given
by

utt −uxx + e±u = 0. (16.6)

(v) For P(u) = sinu, Eq. (16.1) gives the well known sine-Gordon equation [12,13]
given by

utt −uxx + sinu = 0. (16.7)

The sine-Gordon equation is complete integrable, and the N-soliton solutions of the
sine-Gordon equation [12,13] will be examined in this chapter.

(vi) For P(u) = sinhu, Eq. (16.1) gives the well known sinh-Gordon equation given
by

utt −uxx + sinhu = 0. (16.8)

In addition, we will study a second family of equations of the form

uxt + P1(u) = 0, (16.9)

where u(x,t) is a function of space x and time variable t. The nonlinear term P1(u)
appears in the following forms

P(u) =

⎧⎨
⎩

eu + e−2u,
e−u + e−2u,
peu + qu−u + re−2u.

(16.10)

(i) For P1(u)= eu+e−2u, Eq. (16.9) gives the well known Dodd-Bullough-Mikhailov
equation (DBM) [11] given by

uxt + eu + e−2u = 0. (16.11)
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(ii) For P1(u) = e−u + e−2u, Eq. (16.9) gives the well known Tzitzeica-Dodd-
Bullough (TDB) [11] given by

uxt + e−u + e−2u = 0. (16.12)

(iii) For P1(u) = peu +qe−u + re−2u, Eq. (16.9) gives the well known Zhiber-Shabat
equation [14] given by

uxt + peu + qe−u + re−2u = 0. (16.13)

We first begin the study of the first family of equations. Our approach stems mainly
from the tanh-coth method. The Hirota’s bilinear formalism [8] will be used for
completely integrable equations.

16.2 The Boussinesq Equation

In this section we will study only the bad Boussinesq equation [2]

utt −uxx−3(u2)xx−uxxxx = 0, (16.14)

with u(x,t) is a sufficiently often differentiable function. Eq. (16.14) was introduced
by Boussinesq to describe the propagation of long waves in shallow water under
gravity propagating in both directions. It also arises in other physical applications
such as nonlinear lattice waves, iron sound waves in a plasma, and in vibrations in
a nonlinear string. It is used in many physical applications such as the percolation
of water in porous subsurface of a horizontal layer of material. This particular form
(16.14) is of special interest because it is completely integrable and admits inverse
scattering formalism.

Many well known methods, such as the inverse scattering transform method, the
bilinear formalism, and Bäcklund transformation method were used to handle the
completely integrable Boussinesq equation. In this chapter we will follow the ap-
proaches used before, namely the tanh-coth method to establish single solitary wave
solutions, and the Hirota’s method that will be combined with the simplified version
of Hereman et. al. in [6] to determine the N-soliton solutions for the bad Boussi-
nesq equation (16.14). However, the good Boussinesq equation or the well-posed
equation can be handled in a like manner. As stated before, many other methods are
introduced in many texts.

16.2.1 Using the Tanh-coth Method

The Boussinesq equation
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utt −uxx−3(u2)xx−uxxxx = 0, (16.15)

will be converted to the ODE

(c2−1)u−3u2−u′′ = 0, (16.16)

obtained upon using ξ = x− ct and integrating twice. Balancing the nonlinear term
u2 with the highest order derivative u′′ gives

2M = M + 2, (16.17)

so that
M = 2. (16.18)

The tanh-coth method admits the use of the substitution

u(x,t) = S(Y ) =
2

∑
i=0

aiY
i +

2

∑
i=0

biY
−i. (16.19)

Substituting (16.19) into (16.16), collecting the coefficients of each power of Y i,0 �

i � 8, setting each coefficient to zero, and solving the resulting system of algebraic
equations, we found that a1 = b1 = 0 and the following sets of solutions:
(i)

a0 =
c2−1

2
, a2 =−c2−1

2
, b2 = 0, μ =

1
2

√
c2−1, c2 > 1. (16.20)

(ii)

a0 =−c2−1
6

, a2 =
c2−1

2
, b2 = 0, μ =

1
2

√
1− c2, c2 < 1. (16.21)

(iii)

a0 =
c2−1

2
, b2 =−c2−1

2
, a2 = 0, μ =

1
2

√
c2−1, c2 > 1. (16.22)

(iv)

a0 =−c2−1
6

, b2 =
c2−1

2
, a2 = 0, μ =

1
2

√
1− c2, c2 < 1. (16.23)

This in turn gives the solitons solutions

u1(x,t) =
c2−1

2
sech2

[
1
2

√
c2−1(x− ct)

]
, c2 > 1,

u2(x,t) = −c2−1
6

(
1−3tanh2

[
1
2

√
1− c2(x− ct)

])
, c2 < 1.

(16.24)
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Moreover, the travelling wave solutions

u3(x,t) = −c2−1
2

csch2
[

1
2

√
c2−1(x− ct)

]
, c2 > 1,

u4(x,t) = −c2−1
6

(
1−3coth2

[
1
2

√
1− c2(x− ct)

])
, c2 < 1.

(16.25)

are readily obtained.
The wave speed c plays an important role in the physical structure of the solutions

obtained above. Consequently, we obtain the following plane periodic solutions

u5(x,t) =
c2−1

2
sec2

[
1
2

√
1− c2(x− ct)

]
, c2 < 1,

u6(x,t) = −c2−1
6

(
1−3tan2

[
1
2

√
c2−1(x− ct)

])
, c2 > 1,

u7(x,t) =
c2−1

2
csc2

[
1
2

√
1− c2(x− ct)

]
, c2 < 1,

u8(x,t) = −c2−1
6

(
1−3cot2

[
1
2

√
c2−1(x− ct)

])
, c2 > 1.

(16.26)

16.2.2 Multiple-soliton Solutions of the Boussinesq Equation

In this section, we will examine multiple-soliton solutions of the Boussinesq equa-
tion

utt −uxx−3(u2)xx−uxxxx = 0. (16.27)

The Hirota’s method [7,8] uses the dependent variable transformation

u(x,t) = 2(ln( f ))xx, (16.28)

that transforms (16.27) into the bilinear form [9]

B( f , f ) = (D2
t −D2

x −D4
x)( f · f ) = 0, (16.29)

or equivalently

[ f ( f2t − f2x− f4x)]−
[

f 2
t + f 2

x + 4 fx f3x−3 f 2
2x

]
= 0. (16.30)

Hereman et. al. [6] introduced a simplified version of Hirota’s method, where exact
solitons can be obtained by solving a perturbation scheme using a symbolic manip-
ulation package, and without any need to use bilinear forms. In what follows, we
summarize the main steps of the simplified version of Hirota’s method.

Equation (16.30) can be decomposed into linear operator L and nonlinear opera-
tor N defined by
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L = ∂2t − ∂2x− ∂4x,
N( f , f ) = f 2

t + f 2
x + 4 fx f3x−3 f 2

2x.
(16.31)

We next assume that f (x,t) has a perturbation expansion of the form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (16.32)

where ε is a non small formal expansion parameter. Following Hirota’s method and
the simplified version [6], we substitute (16.32) into (16.31) and equate to zero the
powers of ε to get:

O(ε1) : L f1 = 0, (16.33)

O(ε2) : L f2 =−N( f1, f1), (16.34)

O(ε3) : L f3 =− f1L f2− f2L f1−N( f1, f2)−N( f2, f1), (16.35)

O(ε4) : L f4 =− f1L f3− f2L f2− f3L f1−N( f1, f3) (16.36)

−N( f2, f2)−N( f3, f1),

... (16.37)

O(εn) : L fn =−
n−1

∑
j=1

[ f jL fn− j + N( f j, fn− j)] = 0.

The N-soliton solution is obtained from

f1 =
N

∑
i=1

exp(θi), (16.38)

where
θi = kix− cit, (16.39)

where ki and ci are arbitrary constants. Substituting (16.38) into (16.31) gives the
dispersion relation

ci =−ki

√
1 + k2

i , (16.40)

and in view of this result we obtain

θi = kix + ki

√
1 + k2

i t. (16.41)

This means that

f1 = exp(θ1) = exp(k1x + k1

√
1 + k2

1 t), (16.42)

obtained by using N = 1 in (16.38).
Consequently, for the one-soliton solution, we set

f = 1 + exp(θ1) = 1 + exp(k1x + k1

√
1 + k2

1t), (16.43)
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where we set ε = 1. The one soliton solution is obtained by recalling that

u(x,t) = 2(ln f )xx, (16.44)

therefore we obtain

u(x,t) =
2k2

1ek1(x+
√

1+k2
1 t)(

1 + ek1(x+
√

1+k2
1 t)

)2 , (16.45)

or equivalently

u(x,t) =
k2

1

2
sech2

[
1
2
(k1(x +

√
1 + k2

1 t))

]
. (16.46)

To determine the two-soliton solutions, we first set N = 2 in (16.38) to get

f1 = exp(θ1)+ exp(θ2), (16.47)

and accordingly we have

f = 1 + exp(θ1)+ exp(θ2)+ f2(x,t). (16.48)

To determine f2, we substitute the last equation into (16.31) to obtain

f2 = a12exp(θ1 +θ2), (16.49)

where the coupling coefficient a12 is given by

a12 =

√
1 + k2

1

√
1 + k2

2− (2k2
1−3k1k2 + 2k2

2 + 1)√
1 + k2

1

√
1 + k2

2− (2k2
1 + 3k1k2 + 2k2

2 + 1)
, (16.50)

and θ1 and θ2 are given above in (16.39). For the two-soliton solutions we use
1 � i < j � 2, and therefore we obtain

f = 1 + exp(θ1)+ exp(θ2)+ a12exp(θ1 +θ2), (16.51)

or equivalently

f = 1 + exp(θ1)+ exp(θ2)

+

√
1 + k2

1

√
1 + k2

2− (2k2
1−3k1k2 + 2k2

2 + 1)√
1 + k2

1

√
1 + k2

2− (2k2
1 + 3k1k2 + 2k2

2 + 1)
exp(θ1 + θ2). (16.52)

To determine the two-soliton solutions for the Boussinesq equation explicitly, we
use (16.28) for the function f in (16.52).

Similarly, we can determine f3. Proceeding as before, we therefore set
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f1(x,t) = exp(θ1)+ exp(θ2)+ exp(θ3),
f2(x,t) = a12exp(θ1 +θ2)+ a23exp(θ2 +θ3)+ a13exp(θ1 + θ3),

(16.53)

and accordingly we have

f (x,t) = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a23exp(θ2 + θ3)+ a13exp(θ1 + θ3)
+ f3(x,t).

(16.54)

Proceeding as before we find

f3 = b123exp(θ1 + θ2 + θ3), (16.55)

where

ai j =

√
1 + k2

i

√
1 + k2

j − (2k2
i −3kik j + 2k2

j + 1)√
1 + k2

i

√
1 + k2

j − (2k2
i + 3kik j + 2k2

j + 1)
, 1 � i < j � 3, (16.56)

and
b123 = a12a13a23, (16.57)

and θ1, θ2 and θ3 are given above in (16.39). For the three-soliton solution we use
1 � i < j � 3, we therefore obtain

f = 1 + exp(θ1)+ exp(θ2)+ exp(θ3)
+a12exp(θ1 +θ2)+ a13exp(θ1 +θ3)+ a23exp(θ2 + θ3)
+b123exp(θ1 +θ2 + θ3).

(16.58)

To determine the three-solitons solution explicitly, we use (16.28) for the function
f in (16.58). We can now easily conclude that because we derived the three-soliton
solutions, then the N-soliton solutions exist for any integer N � 1.

16.3 The Improved Boussinesq Equation

In this section we will study the improved Boussinesq equation

utt −uxx−3(u2)xx−uxxtt = 0. (16.59)

The main difference between the Boussinesq equation and the improved Boussinesq
equation is that the last one contains a mixed fourth-order space-time derivative
uxxtt . The improved Boussinesq equation appears in acoustic waves on elastic rods
with circular cross-section when transverse motion and nonlinearity are examined.
Moreover, the bad improved Boussinesq equation is used to describe the wave prop-
agation at right angles to the magnetic field, to study the propagation of ion-sound
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waves in a plasma, to study nonlinear lattice waves, and also to approach the bad
Boussinesq equation. In this section, we will examine the bad improved Boussinesq
equation only, and the good one can be handled in a like manner.

The improved Boussinesq equation will be converted to the ODE

(c2−1)u−3u2− c2u′′ = 0, (16.60)

obtained upon using ξ = x− ct and integrating twice. Balancing the nonlinear term
u2 with the highest order derivative u′′ gives M = 2. The tanh-coth method admits
the use of the substitution

u(x,t) = S(Y ) =
2

∑
i=0

aiY i +
2

∑
i=0

biY−i. (16.61)

Substituting (16.61) into (16.60), and proceeding as before we obtain the following
sets of solutions:
(i)

a0 =
c2−1

2
, a2 =−c2−1

2
, b2 = 0, μ =

1
2c

√
c2−1, c2 > 1. (16.62)

(ii)

a0 =−c2−1
6

, a2 =
c2−1

2
, b2 = 0, μ =

1
2c

√
1− c2, c2 < 1. (16.63)

(iii)

a0 =
c2−1

2
, b2 =−c2−1

2
, a2 = 0, μ =

1
2c

√
c2−1, c2 > 1. (16.64)

(iv)

a0 =−c2−1
6

, b2 =
c2−1

2
, a2 = 0, μ =

1
2c

√
1− c2, c2 < 1. (16.65)

This in turn gives the solitons solutions

u1(x,t) =
c2−1

2
sech2

[
1
2c

√
c2−1(x− ct)

]
, c2 > 1,

u2(x,t) = −c2−1
6

(
1−3tanh2

[
1
2c

√
1− c2(x− ct)

])
, c2 < 1.

(16.66)

Moreover, the travelling wave solutions

u3(x,t) =−c2−1
2

csch2
[

1
2c

√
c2−1(x− ct)

]
, c2 > 1,
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u4(x,t) = −c2−1
6

(
1−3coth2

[
1
2c

√
1− c2(x− ct)

])
, c2 < 1 (16.67)

are readily obtained.
The wave speed c plays an important role in the physical structure of the solutions

obtained above. Consequently, we obtain the following plane periodic solutions

u5(x,t) =
c2−1

2
sec2

[
1
2c

√
1− c2(x− ct)

]
, c2 < 1,

u6(x,t) = −c2−1
6

(
1−3tan2

[
1
2c

√
c2−1(x− ct)

])
, c2 > 1,

u7(x,t) =
c2−1

2
csc2

[
1
2c

√
1− c2(x− ct)

]
, c2 < 1,

u8(x,t) = −c2−1
6

(
1−3cot2

[
1
2c

√
c2−1(x− ct)

])
, c2 > 1.

(16.68)

16.4 The Klein-Gordon Equation

In this section we will study the Klein-Gordon equation, with quadratic nonlinearity,
that reads

utt −uxx + u−u2 = 0. (16.69)

The Klein-Gordon equations play a significant role in many scientific applications
such as solid state physics, nonlinear optics and quantum field theory. Equation
(16.69) can be transformed to

(c2−1)u′′+ u−u2 = 0, (16.70)

by using the wave variable ξ = x−ct. Balancing u′′ with u2 in (16.70) gives M = 2.
The tanh-coth method allows to use the finite expansion

u(ξ ) =
2

∑
j=0

a jY j +
2

∑
j=1

b jY− j. (16.71)

Substituting (16.71) into (16.70), collecting the coefficients of Y we obtain a system
of algebraic equations for a0,a1,a2,b1,b2, and μ . Solving this system gives a1 =
b1 = 0 and the following four sets of solutions
(i)

a0 =
3
2
, a2 =−3

2
, b2 = 0, μ =

1

2
√

1− c2
, c2 < 1 (16.72)

(ii)

a0 =−1
2
, a2 =

3
2
, b2 = 0, μ =

1

2
√

c2−1
, c2 > 1 (16.73)
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(iii)

a0 =
3
2
, a2 = 0, b2 =−3

2
, μ =

1

2
√

1− c2
, c2 < 1 (16.74)

(iv)

a0 =−1
2
, a2 = 0, b2 =

3
2
, μ =

1

2
√

c2−1
, c2 > 1 (16.75)

The first two sets give solitons solutions

u1(x,t) =
3
2

sech2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1, (16.76)

and

u2(x,t) =−1
2

(
1−3tanh2

[
1

2
√

c2−1
(x− ct)

])
, c2 > 1. (16.77)

The last two sets lead to the solutions

u3(x,t) =−3
2

csch2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1, (16.78)

and

u4(x,t) =−1
2

(
1−3coth2

[
1

2
√

c2−1
(x− ct)

])
, c2 > 1. (16.79)

It is obvious that the wave speed c plays a major role in the physical structure of the
obtained solutions. Consequently, we obtain the periodic solutions

u5(x,t) =
3
2

sec2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1, (16.80)

u6(x,t) =−1
2

(
1 + 3tan2

[
1

2
√

1− c2
(x− ct)

])
, c2 < 1, (16.81)

u7(x,t) =
3
2

csc2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1, (16.82)

and

u8(x,t) =−1
2

(
1 + 3cot2

[
1

2
√

1− c2
(x− ct)

])
, c2 < 1. (16.83)

16.5 The Liouville Equation

In this section we will study the Liouville equation [14]
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utt −uxx + e±u = 0, (16.84)

that arises in hydrodynamics where u(x,t) is the stream function. To apply the tanh-
coth method, we first use the Painlevé transformation

v = e±u, (16.85)

so that
u =± lnv, (16.86)

that gives

utt = ±1
v

vtt ∓ 1
v2 (vt)

2,

uxx = ±1
v

vxx∓ 1
v2 (vx)

2.
(16.87)

These transformations will convert Eq. (16.84) into the ODE form

±(vtt − vxx)± (v2
t − v2

x)+ v3 = 0, (16.88)

Using the wave variable ξ = x− ct carries the last equation into

±(c2−1)vv′′ ± (c2−1)(v′)2 + v3 = 0. (16.89)

Balancing vv′′ with v3 gives M = 2. The tanh-coth method allows us to use

v(ξ ) =
2

∑
j=0

a jY j +
2

∑
j=1

b jY− j. (16.90)

Substituting (16.90) into (16.89), and proceeding as before we find that a1 = b1 = 0
and the following sets of solutions
(i)

a0 =±2μ2(c2−1), a2 = 0, b2 = 0. (16.91)

(ii)
a0 =±2μ2(c2−1), a2 = 0, b2 =∓2μ2(c2−1). (16.92)

(iii)

a0 =±4μ2(c2−1), a2 =∓2μ2(c2−1), b2 =∓2μ2(c2−1), (16.93)

where μ and c are left as free parameters. This in turn gives the following solutions

v1(x,t) = ±2μ2(c2−1)sech2 (μ(x− ct)), ±c2 > 1,

v2(x,t) = ∓2μ2(c2−1)csch2 (μ(x− ct)), ∓c2 > 1,

v3(x,t) = ±8μ2(c2−1)sech2 (2μ(x− ct)), ±c2 > 1,

v4(x,t) = ∓8μ2(c2−1)csch2 (2μ(x− ct)), ∓c2 > 1.

(16.94)

Consequently, the exact solutions can be obtained by noting that u(x,t)=± lnv(x,t).
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16.6 The Sine-Gordon Equation

The sine-Gordon equation
utt −uxx + sinu = 0, (16.95)

gained its importance when it gave kink and antikink solutions with the collisional
behaviors of solitons. The first appearance of the sine-Gordon equation is not in
wave problems, but in the study of differential geometry of surfaces with Gaussian
curvature K =−1. This equation appeared in many scientific fields such as the prop-
agation of fluxons in Josephson junctions between two superconductors, the motion
of rigid pendulum attached to a stretched wire, solid state physics, nonlinear optics,
and dislocations in metals. A kink is a solution with boundary values 0 and 2π at
the left infinity and at the right infinity respectively. However, antikink is a solution
with boundary values 0 and −2π at the left infinity and at the right infinity respec-
tively. The two soliton solutions of the sine-Gordon equation can be interpreted as a
collision of a kink and antikink, collision of two kinks, or collision of two antikinks.
Most importantly, the sine-Gordon equation is a completely integrable equation,
therefore it has multi-soliton solutions that will be examined later.

16.6.1 Using the Tanh-coth Method

We begin our analysis by introducing the transformations

v = eiu, (16.96)

so that

sinu =
v− v−1

2i
, cosu =

v + v−1

2
, (16.97)

that also gives

u = arccos

(
v + v−1

2

)
. (16.98)

This transformation will change the sine-Gordon equation (16.95) into the ODE
form

2vvtt −2vvxx−2v2
t + 2v2

x + v3− v = 0, (16.99)

or equivalently
v3− v + 2(c2−1)vv′′+ 2(1− c2)(v′)2 = 0, (16.100)

by using the wave variable ξ = x− ct. Balancing vv′′ with v3 gives M = 2. The
tanh-coth method allows us to use

v(ξ ) =
2

∑
j=0

a jY j +
2

∑
j=1

b jY− j. (16.101)
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Proceeding as presented before we find that a1 = b1 = 0 and
(i)

a0 = 0, a2 =−1, b2 = 0, μ =
1

2
√

c2−1
, c2 > 1. (16.102)

(ii)

a0 = 0, a2 = 1, b2 = 0, μ =
1

2
√

1− c2
, c2 < 1. (16.103)

(iii)

a0 = 0, a2 = 0, b2 =−1, μ =
1

2
√

c2−1
, c2 > 1. (16.104)

(iv)

a0 = 0, a2 = 0, b2 = 1, μ =
1

2
√

1− c2
, c2 < 1. (16.105)

This in turn gives

v1(x,t) =− tanh2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.106)

v2(x,t) = tanh2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.107)

v3(x,t) =−coth2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.108)

v4(x,t) = coth2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.109)

We can also obtain the periodic solutions

v5(x,t) = tan2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.110)

v6(x,t) =− tan2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.111)

v7(x,t) = cot2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.112)

v8(x,t) =−cot2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.113)

Recall that

u = arccos

(
v + v−1

2

)
, (16.114)

therefore we obtain the solutions, for c2 > 1,
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u1(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩−

1
2

tanh4
[

1

2
√

c2−1
(x− ct)+ 1

]
tanh2

[
1

2
√

c2−1
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.115)

u2(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩−

1
2

coth4
[

1

2
√

c2−1
(x− ct)+ 1

]
coth2

[
1

2
√

c2−1
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.116)

u3(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩−

1
2

tan4

[
1

2
√

c2−1
(x− ct)+ 1

]
tan2

[
1

2
√

c2−1
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.117)

and

u4(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩−

1
2

cot4
[

1

2
√

c2−1
(x− ct)+ 1

]
cot2

[
1

2
√

c2−1
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ . (16.118)

On the other hand, for c2 < 1 we find

u5(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩

1
2

tanh4
[

1

2
√

1− c2
(x− ct)+ 1

]
tanh2

[
1

2
√

1− c2
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.119)

u6(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩

1
2

coth4
[

1

2
√

1− c2
(x− ct)+ 1

]
coth2

[
1

2
√

1− c2
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.120)

u7(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩

1
2

tan4

[
1

2
√

1− c2
(x− ct)+ 1

]
tan2

[
1

2
√

1− c2
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ , (16.121)

and

u8(x,t) = arccos

⎧⎪⎪⎨
⎪⎪⎩

1
2

cot4
[

1

2
√

1− c2
(x− ct)+ 1

]
cot2

[
1

2
√

1− c2
(x− ct)

]
⎫⎪⎪⎬
⎪⎪⎭ . (16.122)
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16.6.2 Using the Bäcklund Transformation

The standard form of the sine-Gordon equation [5]

uTT −uXX + sinu = 0, (16.123)

can be converted to the characteristic form of the sine-Gordon equation

uxt = sinu, (16.124)

by using the transformations

x =
1
2
(X−T ), t =

1
2
(X + T ). (16.125)

Bäcklund introduced the well-known auto-Bäcklund transformation for the sine-
Gordon equation

1
2
(u− v)x = psin

1
2
(u + v),

1
2
(u + v)t = p−1 sin

1
2
(u− v), p �= 0.

(16.126)

Differentiating this pair of transformations with respect to t and x respectively gives

1
2
(u− v)xt =

p
2
(u + v)t cos

1
2
(u + v) = sin

1
2
(u− v)cos

1
2
(u + v),

1
2
(u + v)xt =

p−1

2
(u− v)x cos

1
2
(u− v) = sin

1
2
(u + v)cos

1
2
(u− v).

(16.127)

Adding and subtracting the last equations gives

uxt = sinu,
vxt = sinv.

(16.128)

This means that the Bäcklund transformation (16.126) gives two solutions u and v
to the sine-Gordon equation. Setting v = 0 into Bäcklund transformation yields the
two separable ODEs

ux = 2psin(
1
2

u),

ut = 2p−1 sin(
1
2

u),
(16.129)

where by integrating these equations with respect to x and t respectively we obtain

2px = 2ln | tan(
1
4

u)|+ f (t),

2t
p

= 2ln | tan(
1
4

u)|+ g(x),
(16.130)
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where f (t) and g(x) are arbitrary functions that result from integration. This in turn
gives

tan(
1
4

u) = Aepx+ t
p , (16.131)

and hence the exact solution is given by

u(x,t) = 4tan−1
(

Aepx+ t
p

)
, (16.132)

where A is an arbitrary constant.
Drazin [5] used the last result to formally derive the two-soliton solutions of the

characteristic equation (16.124). The two-soliton solutions were assumed to be of
the form

u(x,t) = 4tan−1
(

g(x,t)
f (x,t)

)
, (16.133)

where
g(x,t) = (p1 + p2)eθ1 − eθ2,
f (x,t) = (p1− p2)(1 + eθ1+θ2),

(16.134)

where
θi = pix +

t
pi

, i = 1,2. (16.135)

Notice that

sinu =
4g f ( f 2−g2)

( f 2 + g2)2 . (16.136)

16.6.3 Multiple-soliton Solutions for Sine-Gordon Equation

In this section, we will examine multiple-soliton solutions of the standard sine-
Gordon equation

utt −uxx + sinu = 0. (16.137)

We first derive the dispersion relation by substituting

u(x,t) = eθ , θ = kx− ct, (16.138)

into the linearized equation
utt −uxx + u = 0, (16.139)

where we approximated sin u by u. This gives the dispersion relation by

k2− c2 = 1, (16.140)

or equivalently

c =±
√

k2−1, (16.141)
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and as a result we set

θi = kix− cit = kix±
√

k2
i −1t, i = 1,2,3, · · · ,N. (16.142)

The bilinear form for the sine-Gordon equation is

(D2
x −D2

t )( f · f )− ( f 2− f ∗2)/2 = λ f 2 = 0, (16.143)

together with its complex conjugate, where f ∗ is the complex conjugate of f .
Based on the obtained results by Bäcklund transformation, it was assumed in [7]

that the N-soliton solutions are of the form

u(x,t) = 4tan−1
(

g(x,t)
f (x,t)

)
, f (x,t) �= 0. (16.144)

(i) For the one soliton solution: It was found that

f (x,t) = 1,

g(x,t) = eθ , θ = kx±√k2−1t.
(16.145)

This means that the one soliton solution is given by

u(x,t) = 4tan−1
(

ekx±
√

k2−1 t
)

. (16.146)

(ii) For the two-soliton solutions: It was found that

f (x,t) = 1 + a12eθ1+θ2 ,

g(x,t) = eθ1 + eθ2 , θi = kix±
√

k2−1t,
(16.147)

where

ai j =− (ki− k j + ci− c j)
2

(ki− k j + ci− c j)2 . (16.148)

(iii) For the three-soliton solutions: It was found that

f (x,t) = 1 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3 ,
g(x,t) = eθ1 + eθ2 + eθ3 + a123eθ1+θ2+θ3 ,

(16.149)

where
a123 = a12a13a23. (16.150)

For n � 4, the last results can be generalized for N-soliton solutions. For justifica-
tion, notice that

sinu =
4g f ( f 2−g2)

( f 2 + g2)2 . (16.151)
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16.7 The Sinh-Gordon Equation

We close our study of the first set of equations by investigating the sinh-Gordon
equation

utt −uxx + sinhu = 0, (16.152)

or equivalently

utt −uxx +
1
2
(eu− e−u) = 0. (16.153)

The Painlevé transformation
v = eu, v = lnu, (16.154)

will convert the sinh-Gordon equation (16.153) into the ODE form

(c2−1)vv′′ −2(c2−1)(v′)2 + v3− v = 0. (16.155)

Balancing vv′′ with v3 gives M = 2. The tanh-coth method allows us to use

v(ξ ) =
2

∑
j=0

a jY
j +

2

∑
j=1

b jY
− j. (16.156)

Proceeding as presented before we find that a1 = b1 = 0 and
(i)

a0 = 0, a2 =−1, b2 = 0, μ =
1

2
√

c2−1
, c2 > 1. (16.157)

(ii)

a0 = 0, a2 = 1, b2 = 0, μ =
1

2
√

1− c2
, c2 < 1. (16.158)

(iii)

a0 = 0, a2 = 0, b2 =−1, μ =
1

2
√

c2−1
, c2 > 1. (16.159)

(iv)

a0 = 0, a2 = 0, b2 = 1, μ =
1

2
√

1− c2
, c2 < 1. (16.160)

This in turn gives

v1(x,t) =− tanh2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.161)

v2(x,t) = tanh2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.162)

v3(x,t) =−coth2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.163)
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v4(x,t) = coth2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.164)

We can also obtain the periodic solutions

v5(x,t) = tan2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.165)

v6(x,t) =− tan2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.166)

v7(x,t) = cot2
[

1

2
√

1− c2
(x− ct)

]
, c2 < 1. (16.167)

v8(x,t) =−cot2
[

1

2
√

c2−1
(x− ct)

]
, c2 > 1. (16.168)

The exact solution can be obtained by using

u(x,t) = lnv(x,t). (16.169)

We will next study the second family of equations. We will follow a parallel
approach to that used before.

16.8 The Dodd-Bullough-Mikhailov Equation

The Dodd-Bullough-Mikhailov equation appears in problems varying from fluid
flow to quantum field theory. It appears in scientific applications such as solid state
physics and nonlinear optics. The Dodd-Bullough-Mikhailov equation is given by

uxt + eu + e−2u = 0. (16.170)

We first use the Painlevé transformation [11]

v = eu, (16.171)

so that
u = lnv. (16.172)

This transformation (16.171) transforms Eq. (16.170) into the ODE form

vvtx− vxvt + v3 + 1 = 0. (16.173)

Using the wave variable ξ = x− ct carries (16.173) into the ODE

v3− cvv′′+ c(v′)2 + 1 = 0. (16.174)
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Balancing vv′′ with v3 gives M = 2. This gives the solution in the form

v(ξ ) =
2

∑
j=0

a jY
j +

2

∑
j=1

b jY
− j. (16.175)

Substituting this assumption into (16.174) and solving as before, we obtain a1 =
b1 = 0 and the following sets
(i)

a0 =
1
2
, a2 =−3

2
, b2 = 0, μ =

1
2

√
−3

c
, c < 0. (16.176)

(ii)

a0 =
1
2
, a2 = 0, b2 =−3

2
, μ =

1
2

√
−3

c
, c < 0, (16.177)

where c is left as a free parameter. This gives

v1(x,t) =
1
2

(
1−3tanh2

[
1
2

√
−3

c
(x− ct)

])
, c < 0, (16.178)

and

v2(x,t) =
1
2

(
1−3coth2

[
1
2

√
−3

c
(x− ct)

])
, c < 0. (16.179)

On the other hand, for c > 0 we find the periodic solution

v(x,t) =
1
2

(
1 + 3tan2

[
1
2

√
3
c
(x− ct)

])
, c > 0, (16.180)

and

v(x,t) =
1
2

(
1 + 3cot2

[
1
2

√
3
c
(x− ct)

])
, c > 0. (16.181)

The exact solutions can be obtained by using

u(x,t) = lnv(x,t), (16.182)

and noting the domain of the natural logarithm.

16.9 The Tzitzeica-Dodd-Bullough Equation

We next consider the Tzitzeica-Dodd-Bullough (TDB) equation

uxt = e−u + e−2u. (16.183)
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Using the transformation [11]

v(x,t) = e−u, u(x,t) =− lnv(x,t), (16.184)

carries (16.183) into the ODE

−vvxt + vxvt − v3− v4 = 0, (16.185)

that can be transformed to the ODE

cvv′′ − c(v′)2− v3− v4 = 0, (16.186)

upon using the wave variable ξ = x− ct. Balancing vv′′ with v4 gives M = 1. This
means that we can set the solution in the form

v(ξ ) = S(Y ) = a0 + a1Y +
b1

Y
. (16.187)

Substituting the tanh-coth assumption into (16.186), and solving we find for c > 0
(i)

a0 =−1
2
, a1 =

1
2
, b1 = 0, μ =

1
2
√

c
. (16.188)

(ii)

a0 =−1
2
, a1 =−1

2
, b1 = 0, μ =

1
2
√

c
. (16.189)

(iii)

a0 =−1
2
, a1 = 0, b1 =

1
2
, μ =

1
2
√

c
. (16.190)

(iv)

a0 =−1
2
, a1 = 0, b1 =−1

2
, μ =

1
2
√

c
. (16.191)

(v)

a0 =−1
2
, a1 =−1

4
, b1 =−1

4
, μ =

1
4
√

c
. (16.192)

(vi)

a0 =−1
2
, a1 =

1
4
, b1 =

1
4
, μ =

1
4
√

c
. (16.193)

This gives, for c > 0:

v1(x,t) =−1
2

(
1− tanh

[
1

2
√

c
(x− ct)

])
, (16.194)

v2(x,t) =−1
2

(
1 + tanh

[
1

2
√

c
(x− ct)

])
, (16.195)
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v3(x,t) =−1
2

(
1− coth

[
1

2
√

c
(x− ct)

])
, (16.196)

v4(x,t) =−1
2

(
1 + coth

[
1

2
√

c
(x− ct)

])
, (16.197)

v5(x,t) =−1
4

(
2 + tanh

[
1

4
√

c
(x− ct)

]
+ coth

[
1

4
√

c
(x− ct)

])
, (16.198)

v6(x,t) =−1
4

(
2− tanh

[
1

4
√

c
(x− ct)

]
− coth

[
1

4
√

c
(x− ct)

])
. (16.199)

The exact solutions for the TDB equation can be obtained by using u(x,t) =
− lnv(x,t) and noting the domain of the natural logarithm. For c < 0, complex so-
lutions arise.

16.10 The Zhiber-Shabat Equation

We close this study of the second family of equations by investigating the Zhiber-
Shabat equation [14]

uxt + peu + qe−u + re−2u = 0, (16.200)

where p,q, and r are arbitrary constants. For q = 0, Eq. (16.200) reduces to the
Dodd-Bullough-Mikhailov equation that was studied before. For p = 0,q =−1,r =
1, Eq. (16.200) gives the Tzitzeica-Dodd-Bullough equation that was examined in
the previous equation. For r = 0, we obtain the sinh-Gordon equation that also was
studies before. The aforementioned equations arise in many applications such as
solid state physics, plasma physics, nonlinear optics, chemical kinetics and quantum
field theory.

We first use u(x,t) = u(ξ ) that will carry out the Zhiber-Shabat equation (16.200)
into

−cu′′+ peu + qe−u + re−2u = 0. (16.201)

We use the Painlevé property

v = eu, u = lnv, (16.202)

that will transform (16.201) into the ODE

−c(vv′′ − (v′)2)+ pv3 + qv + r = 0. (16.203)

Balancing vv′′ with v3 gives M = 2. The tanh-coth method gives

v(ξ ) =
2

∑
j=0

a jY j +
2

∑
j=1

b jY− j. (16.204)
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Without loss of generality, we set p = q = r = 1. Substituting (16.204) into (16.203),
and proceeding as before we obtain

a0 =
γ1

24α1
,

a1 = b1 = 0,

a2 = b2 =−2γ2
1 −15α1γ1 + 21α2

1

432α2
1

,

μ1 =
1

24α1

√
2(15α1γ1−2γ2

1 −216α2
1)

3c
,

(16.205)

where
α1 = (188 + 36

√
93)

1
3 ,

γ1 = α2
1 + 2α1−44.

(16.206)

Notice that 15α1γ1− 2γ2
1 − 216α2

1 < 0 by using the numerical value of α1. Recall
that u(x,t) = lnv(x,t), hence we obtain the solution

u(x,t)= ln

{
γ1

24α1
− 2γ2

1 −15α1γ1 + 21α2
1

432α2
1

(
tanh2 [μ1(x− ct)]+ coth2 [μ1(x− ct)]

)}
,

(16.207)
for c < 0, where μ1 is given above by (16.205).

However, for c > 0, we obtain the travelling wave solutions

u(x,t) = ln

{
γ1

24α1
+

2γ2
1 −15α1γ1 + 21α2

1

432α2
1

(
tan2 [μ1(x− ct)]+ cot2 [μ1(x− ct)]

)}
,

(16.208)
where

μ1 =
1

24α1

√
−2(15α1γ1−2γ2

1 −216α2
1)

3c
. (16.209)
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Chapter 17

Burgers, Fisher and Related Equations

17.1 Introduction

In the preceeding three chapters we examined the nonlinear evolution equations
that include dispersion terms. In this chapter, we will study the nonlinear evolution
equations where each equation contains the dissipative term uxx in addition to other
partial derivatives. This new family of nonlinear equations gained its importance
because it appears in many scientific applications and physical phenomena.

The new family of nonlinear equations, that will be discussed in this chapter, is
of the form

ut −uxx = P(u), (17.1)

where u(x,t) is a function of space x and time variable t. The nonlinear term P(u)
appears in the following forms

P(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uux,
u(1−u),
u(k−u)(u−1),
uux + u(1−u),
uux + u(k−u)(u−1),
−u(1−u)(a−u),

a + benλ u.

(17.2)

(i) For P(u) =−uux, we obtain the Burgers equation [1,3,11]

ut + uux−uxx = 0. (17.3)

(ii) For P(u) = u(1−u), we obtain the Fisher equation [4,5]

ut −uxx = u(1−u). (17.4)

(iii) For P(u) = uux + u(1−u), the Huxley equation [16] reads
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ut −uxx = u(k−u)(u−1),k �= 0. (17.5)

(iv) For P(u) = uux + u(1−u), we obtain the Burgers-Fisher equation [15]

ut −uxx = uux + u(1−u). (17.6)

(v) For P(u) = uux + u(k−u)(u−1), we obtain Burgers-Huxley equation [10,11]

ut −uxx = uux + u(k−u)(u−1). (17.7)

(vi) For P(u) =−u(1−u)(a−u), we obtain the FitzHugh-Nagumo equation [16]

ut −uxx =−u(1−u)(a−u). (17.8)

(vii) For P(u) = a + enλ u, we obtain a parabolic equation with exponential nonlin-
earity of the form

ut −uxx = a + benλ u. (17.9)

In addition to these equations, the coupled Burgers equation [13]

ut −2uux−uxx−uyy−2vuy = 0,
vt −2uvx− vxx− vyy−2vvy = 0,

(17.10)

will be examined for single and multiple-soliton solutions.
Moreover, the Kuramoto-Sivashinsky (KS) equation [2]

ut + auux + bu2x + ku4x = 0, (17.11)

will also be investigated. For k = 0,a = 1,b = −1, the KS equation (17.11) will be
reduced to the Burgers equation.

It is interesting to point out that other equations of distinct forms of P(u) exist in
the literature such as Newell-Whitehead equation. These equations of distinct forms
can be handled in a manner similar to the approach that we will use in this chapter;
therefore we leave it as exercises. Our approach stems mainly from the tanh-coth
method [9]. The Hirota’s bilinear formalism [6,7,8] will be used for completely
integrable equations.

17.2 The Burgers Equation

In this section we will study the Burgers equation [1,3,11]

ut + uux−uxx = 0. (17.12)

Equation (17.12) is the lowest order approximation for the one-dimensional
propagation of weak shock waves in a fluid. It is also used in the description of the
variation in vehicle density in highway traffic. It is one of the fundamental model
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equations in fluid mechanics. The Burgers equation demonstrates the coupling be-
tween dissipation effect of uxx and the convection process of uux. Unlike the KdV
equation that combines the nonlinear uux and dispersion uxxx effects, the Burgers
equation combines the nonlinear uux and dissipation uxx effects.

Burgers introduced this equation to capture some of the features of turbulent
fluid in a channel caused by the interaction of the opposite effects of convection and
diffusion. It is also used to describe the structure of shock waves, traffic flow, and
acoustic transmission. Burgers equation is completely integrable. The wave solu-
tions of Burgers equation are single and multiple-front solutions.

17.2.1 Using the Tanh-coth Method

The Burgers equation
ut −2uux−uxx = 0, (17.13)

will be converted to the ODE

cu + u2 + u′ = 0, (17.14)

obtained upon using ξ = x− ct and integrating once. Balancing the nonlinear term
u2 with the highest order derivative u′ gives M = 1. The tanh-coth method admits
the use of the substitution

u(x,t) = S(Y ) = a0 + a1Y + b1Y
−1. (17.15)

Substituting (17.15) into (17.14), collecting the coefficients of each power of Y i,0 �

i � 4, setting each coefficient to zero, and solving the resulting system of algebraic
equations, we find the following sets of solutions:
(i)

a0 =− c
2
, a1 =

c
2
, b1 = 0, μ =

c
2
. (17.16)

(ii)
a0 =− c

2
, b1 =

c
2
, a1 = 0, μ =

c
2
. (17.17)

This in turn gives the front wave (kink) solution

u1(x,t) =− c
2

(
1− tanh

[ c
2
(x− ct)

])
, c > 0, (17.18)

and the travelling wave solutions

u2(x,t) =− c
2

(
1− coth

[ c
2
(x− ct)

])
, c > 0. (17.19)

For c < 0, we obtain the solutions
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u3(x,t) =− c
2

(
1 + tan

[ c
2
(x− ct)

])
, (17.20)

and
u4(x,t) =− c

2

(
1− cot

[ c
2
(x− ct)

])
. (17.21)

It is also to be noted that many other solutions, periodic and rational, exist for Bur-
gers equation. These solutions can be found in Appendix C.

17.2.2 Using the Cole-Hopf Transformation

It is interesting to give the main steps of the Cole-Hopf transformation. The solution
of the Burgers equation can be expressed by

u(x,t) =
∂
∂x

ln f =
fx

f
, (17.22)

where f (x,t) is given by the perturbation expansion

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (17.23)

where ε is a formal expansion parameter. For the single front solution we set

f (x,t) = 1 + ε f1, (17.24)

and for the two-soliton solutions we set

f (x,t) = 1 + ε f1 + ε2 f2, (17.25)

and so on. The functions f1, f2, f3, · · · can be determined by substituting the last
equation into the appropriate equation as will be seen later.

As stated before, we use the Cole-Hopf transformation

u(x,t) = (ln( f ))x, (17.26)

that transforms the Burgers equation into

f ( ft − fxx)x− fx( ft − fxx) = 0. (17.27)

We next follow the sense of the Hirota’s direct method [7,8] and the Hereman
method [6] where we assume that f (x,t) has a perturbation expansion of the form

f (x,t) = 1 +
∞

∑
n=1

εn fn(x,t), (17.28)
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where ε is a non small formal expansion parameter. The N-front solution is obtained
by assuming that

fi = exp(θi), (17.29)

where
θi = kix− cit, (17.30)

where ki and ci are arbitrary constants. Substituting (17.28) into (17.27) and equate
to zero the powers of ε , and by using (17.29) we obtain the relation

ci =−k2
i , (17.31)

and in view of this result we obtain

θi = kix + k2
i t. (17.32)

This means that
f1 = exp(θ1) = exp(k1x + k2

1t), (17.33)

obtained by using (17.29).
Consequently, for the single front solution, we set

f = 1 + exp(θ1) = 1 + exp(k1x + k2
1t), (17.34)

where we set ε = 1. The single front solution is obtained by recalling that

u(x,t) = (ln f )x, (17.35)

therefore we obtain

u(x,t) =
k1ek1x+k2

1t

1 + ek1x+k2
1t

. (17.36)

To determine the two-front solutions, we first set

f = 1 + exp(θ1)+ f2. (17.37)

To determine f2, we substitute the last equation into (17.27) to find

f2 = exp(θ2), (17.38)

and as a result we obtain

f = 1 + exp(θ1)+ exp(θ2), (17.39)

or equivalently

f = 1 + ek1x+k2
1t + ek2x+k2

2t . (17.40)

This gives the two front solutions



670 17 Burgers, Fisher and Related Equations

u(x,t) =
k1ek1x+k2

1t + k2ek2x+k2
2t

1 + ek1x+k2
1t + k2ek2x+k2

2t
. (17.41)

Proceeding in the same manner, we can generalize and set

f = 1 +
N

∑
i=1

exp(θi), (17.42)

to obtain the multiple-wave solutions

u(x,t) =

N

∑
i=1

kiekix+k2
i t

1 +
N

∑
i=1

ekix+k2
i t

. (17.43)

This result is consistent with the result obtained in [13].

17.3 The Fisher Equation

The Fisher equation describes the process of interaction between diffusion and re-
action. This equation is encountered in chemical kinetics and population dynamics
[11] which includes problems such as nonlinear evolution of a population in one-
dimensional habitual, neutron population in a nuclear reaction. The Fisher equation

ut −uxx−u(1−u) = 0, (17.44)

will be carried into the ODE

−cu′ −u′′ −u(1−u) = 0, (17.45)

upon using ξ = x− ct. Balancing u′′ with u2 gives M = 2.
The tanh-coth method applies the finite expansion

u(ξ ) =
2

∑
j=0

a jY j +
2

∑
j=1

b jY− j. (17.46)

Substituting (17.46) into (17.45), and proceeding as before to solve for a0,a1,a2,b1,b2,c,
and μ we find
(i)

a0 =
1
4
, a1 =−1

2
, a2 =

1
4
, b1 = b2 = 0, c =

5√
6
, μ =

1

2
√

6
. (17.47)

(ii)
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a0 =
1
4
, a1 = a2 = 0, b1 =−1

2
, b2 =

1
4
, c =

5√
6
, μ =

1

2
√

6
. (17.48)

(iii)

a0 =
3
8
, a1 =−1

4
, a2 =

1
16

, b1 =−1
4
, b2 =

1
16

, c =
5√
6
, μ =

1

4
√

6
.

(17.49)
The first set gives the kink solution

u1(x,t) =
1
4

(
1− tanh

[
1

2
√

6
(x− 5√

6
t)

])2

. (17.50)

As a result we obtain the following solutions

u2(x,t) =
1
4

(
1− coth

[
1

2
√

6
(x− 5√

6
t)

])2

, (17.51)

and

u3(x,t) =
1
16

(
3−4tanh

[
1

4
√

6
(x− 5√

6
t)

]
+ tanh2

[
1

2
√

6
(x− 5√

6
t)

])
(17.52)

+
1
16

(
3−4coth

[
1

4
√

6
(x− 5√

6
t)

]
+ coth2

[
1

2
√

6
(x− 5√

6
t)

])
.

17.4 The Huxley Equation

The Huxley equation [15,16] reads

ut −uxx−u(k−u)(u−1)= 0, k �= 0. (17.53)

This equation is used for nerve propagation in neurophysics and wall propagation
in liquid crystals. The wave variable ξ = x−ct carries out Eq. (17.53) into the ODE

−cu′ −u′′ −u(k−u)(u−1)= 0. (17.54)

Balancing u′′ with u3 gives M = 1. The tanh-coth method becomes

u(ξ ) = a0 + a1Y +
b1

Y
. (17.55)

Substituting (17.55) into (17.54), and proceeding as before we obtain the sets of
solutions
(i)

a0 =
1
2
, a1 =±1

2
, b1 = 0, c = γ, μ =

1

2
√

2
. (17.56)
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(ii)

a0 =
1
2
, a1 = 0, b1 =±1

2
, c = γ, μ =

1

2
√

2
. (17.57)

(iii)

a0 =
1
2
, a1 =±1

4
, b1 =±1

4
, c = γ , μ =

1

2
√

2
. (17.58)

(iv)

a0 =
k
2
, a1 =± k

2
, b1 = 0, c = λ , μ =

k

2
√

2
. (17.59)

(v)

a0 =
k
2
, a1 = 0, b1 =± k

2
, c = λ , μ =

k

2
√

2
. (17.60)

(vi)

a0 =
k
2
, a1 =± k

4
, b1 =± k

4
, c = λ , μ =∓ k

4
√

2
, (17.61)

where

γ =
2k−1√

2
,

λ =
2− k√

2
.

(17.62)

Based on this, the first three sets give the following solutions

u1(x,t) =
1
2

(
1± tanh

[
1

2
√

2
(x− γt)

])
. (17.63)

u2(x,t) =

(
1± coth

[
1

2
√

2
(x− γt)

])
. (17.64)

u3(x,t) =
1
4

(
2± tanh

[
1

4
√

2
(x− γt)

]
± coth

[
1

4
√

2
(x− γt)

])
. (17.65)

u4(x,t) =
k
2

(
1± tanh

[
k

2
√

2
(x−λ t)

])
. (17.66)

u5(x,t) =
1
2

(
1± coth

[
k

2
√

2
(x−λ t)

])
. (17.67)

and

u6(x,t) =
k
4

(
2± tanh

[
k

4
√

2
(x−λ t)

]
± coth

[
k

4
√

2
(x−λ t)

])
, (17.68)

where γ and λ are defined above in (17.62). Notice that the solutions in (17.63) and
(17.66) are kink solutions.
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17.5 The Burgers-Fisher Equation

The Burgers-Fisher equation [15] reads

ut −uxx = uux + u(1−u), (17.69)

that will be carried into the ODE

cu′+ uu′+ u′′+ u(1−u) = 0, (17.70)

obtained after using the wave variable ξ = x−ct. Balancing u2 with u′′ gives M = 2
that does not lead to any solution. However, balancing uu′ with u′′ gives M = 1. This
means that we can set

u(ξ ) = a0 + a1Y +
b1

Y
. (17.71)

Substituting (17.71) into (17.70), and proceeding as before we obtain the sets of
solutions
(i)

a0 =
1
2
, a1 =

1
2
, b1 = 0, c =−5

2
, μ =

1
4
. (17.72)

(ii)

a0 =
1
2
, a1 = 0, b1 =

1
2
, c =−5

2
, μ =

1
4
. (17.73)

(iii)

a0 =
1
2
, a1 =

1
4
, b1 =

1
4
, c =−5

2
, μ =

1
8
. (17.74)

This in turn gives the following kink solution

u1(x,t) =
1
2

(
1 + tanh

[
1
4
(x +

5
2

t)

])
, (17.75)

and the following solutions

u2(x,t) =
1
2

(
1 + coth

[
1
4
(x +

5
2

t)

])
, (17.76)

and

u3(x,t) =
1
4

(
2 + tanh

[
1
8
(x +

5
2

t)

]
+ coth

[
1
8
(x +

5
2

t)

])
. (17.77)

17.6 The Burgers-Huxley Equation

The Burgers-Huxley equation reads
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ut −uxx = uux + u(k−u)(u−1). (17.78)

The Burgers-Huxley equation is used for description of nonlinear wave processes in
physics, economics and ecology [11]. The negative coefficients of uxx and u3 follows
from the physical meanings of the problem. This equation can be converted to the
ODE

cu′+ uu′+ u′′+ u(k−u)(u−1)= 0, (17.79)

upon using the wave variable ξ = x− ct. Balancing u3 with u′′ gives M = 1. This
allows us to set

u(ξ ) = a0 + a1Y + b1Y−1. (17.80)

Substituting (17.80) into (17.79) collecting the coefficients of Y i, i � 0, and setting
these coefficients to zero we obtain a system of algebraic equations in a0,a1,b1,μ
and c. Solving the resulting system we find the following sets of solutions:
Case 1: We found that b1 = 0, and

a0 =
1
2
, a1 =−1

2
, μ =

1
4
, c =

1−4k
2

,

a0 =
k
2
, a1 =− k

2
, μ =

k
4
, c =

k−4
2

,

a0 =
k + 1

2
, a1 =−k−1

2
, μ =

k−1
4

, c =
k + 1

2
,

a0 =
1
2
, a1 =

1
2
, μ =

1
2
, c = k−1,

a0 =
k
2
, a1 =

k
2
, μ =

k
2
, c = 1− k,

a0 =
k + 1

2
, a1 =

k−1
2

, μ =
k−1

2
, c =−(1 + k).

(17.81)

Case 2: We found that a1 = 0, and

a0 =
1
2
, b1 =−1

2
, μ =

1
4
, c =

1−4k
2

,

a0 =
k
2
, b1 =− k

2
, μ =

k
4
, c =

k−4
2

,

a0 =
k + 1

2
, b1 =−k−1

2
, μ =

k−1
4

, c =
k + 1

2
,

a0 =
1
2
, b1 =

1
2
, μ =

1
2
, c = k−1,

a0 =
k
2
, b1 =

k
2
, μ =

k
2
, c = 1− k,

a0 =
k + 1

2
, b1 =

k−1
2

, μ =
k−1

2
, c =−(1 + k).

(17.82)

The first case gives the kink solutions

u1(x,t) =
1
2

(
1− tanh

[
1
4

(
x− 1−4k

2
t

)])
,
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u2(x,t) =
k
2

(
1− tanh

[
k
4

(
x− k−4

2
t

)])
,

u3(x,t) =
k + 1

2
− k−1

2
tanh

[
k−1

4

(
x− k + 1

2
t

)]
,

u4(x,t) =
1
2

(
1 + tanh

[
1
2

(x− (k−1)t)

])
,

u5(x,t) =
k
2

(
1 + tanh

[
k
2

(x− (1− k)t)

])
,

u6(x,t) =
k + 1

2
+

k−1
2

tanh

[
k−1

2
(x +(1 + k)t)

]
.

(17.83)

The second case gives the following travelling wave solutions

u7(x,t) =
1
2

(
1− coth

[
1
4

(
x− 1−4k

2
t

)])
,

u8(x,t) =
k
2

(
1− coth

[
k
4

(
x− k−4

2
t

)])
,

u9(x,t) =
k + 1

2
− k−1

2
coth

[
k−1

4

(
x− k + 1

2
t

)]
,

u10(x,t) =
1
2

(
1 + coth

[
1
2

(x− (k−1)t)

])
,

u11(x,t) =
k
2

(
1 + coth

[
k
2

(x− (1− k)t)

])
,

u12(x,t) =
k + 1

2
+

k−1
2

coth

[
k−1

2
(x +(1 + k)t)

]
.

(17.84)

17.7 The FitzHugh-Nagumo Equation

We next consider the FitzHugh-Nagumo equation

ut = uxx−u(1−u)(a−u), (17.85)

that will be transformed to the ODE

cu′+ u′′ −u(1−u)(a−u)= 0, (17.86)

by using the wave variable ξ = x− ct. Balancing the terms u′′ with u3 gives M = 1.
The tanh-coth method admits the use of

u(ξ ) = a0 + a1Y + b1Y−1. (17.87)

Substituting (17.87) into (17.86), collecting the coefficients of Y , and solving the
resulting system we find the following sets of solutions
(i) Case 1: We found that b1 = 0, and
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a0 =
1
2
, a1 =

1
2
, c =

2a−1√
2

, μ =
1

2
√

2
,

a0 =
a
2
, a1 =−a

2
, c =

a−2√
2

, μ =
a

2
√

2
,

a0 =
a + 1

2
, a1 =−a−1

2
, c =

a + 1√
2

, μ =
a−1

2
√

2
.

(17.88)

(ii) Case 2: We found that a1 = 0, and

a0 =
1
2
, b1 =

1
2
, c =

2a−1√
2

, μ =
1

2
√

2
,

a0 =
a
2
, b1 =−a

2
, c =

a−2√
2

, μ =
a

2
√

2
,

a0 =
a + 1

2
, b1 =−a−1

2
, c =

a + 1√
2

, μ =
a−1

2
√

2
.

(17.89)

The first set gives the kink solution

u1(x,t) =
1
2

(
1 + tanh

[
1

2
√

2
(x− 2a−1√

2
t)

])
. (17.90)

u2(x,t) =
a
2

(
1− tanh

[
a

2
√

2
(x− a−2√

2
t)

])
. (17.91)

u3(x,t) =
a + 1

2
− a−1

2
tanh

[
a−1

2
√

2
(x− a + 1√

2
t)

]
. (17.92)

The second set gives the following solution

u4(x,t) =
1
2

(
1 + coth

[
1

2
√

2
(x− 2a−1√

2
t)

])
. (17.93)

u5(x,t) =
a
2

(
1− coth

[
a

2
√

2
(x− a−2√

2
t)

])
. (17.94)

u6(x,t) =
a + 1

2
− a−1

2
coth

[
a−1

2
√

2
(x− a + 1√

2
t)

]
. (17.95)

17.8 Parabolic Equation with Exponential Nonlinearity

As stated before, this equation is defined by

ut = uxx + a + benλ u, (17.96)

or equivalently
cu′+ u′′+ a + benλ u = 0, (17.97)
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obtained by using ξ = x− ct.
We first use the transformation

v(x,t) = enλ u, (17.98)

or equivalently

u(x,t) =
1

nλ
lnv(x,t). (17.99)

This transformation will carry out (17.97) into the ODE

cvv′+ vv′′ − (v′)2 + anλ v2 + bnλv3 = 0. (17.100)

Balancing the terms vv′′ with v3 we find M = 2, and hence the tanh-coth method
uses

u(ξ ) =
2

∑
i=0

aiY
i +

2

∑
i=1

biY
−i. (17.101)

Substituting (17.101) into (17.100), and proceeding as before we obtain
(i) Case 1: We find that b1 = b2 = 0 and

a0 = − a
4b

, a1 =± a
2b

, a2 =
a

4b
, c =∓

√
anλ

2
, μ =

1
2

√
anλ

2
, a > 0. (17.102)

(ii) Case 2: We find that a1 = a2 = 0 and

a0 = − a
4b

, b1 =∓ a
2b

, b2 =− a
4b

, c =±
√

anλ
2

, μ =
1
2

√
anλ

2
, a > 0.

(17.103)

The first set gives the kink solutions u(x,t) =
1

nλ
lnv(x,t) for aλ > 0, where

v1(x,t) =
−a
4b

(
1± tanh

[
1
2

√
anλ

2

(
x±

√
anλ

2
t

)])2

. (17.104)

The second set gives the solution

v2(x,t) =
−a
4b

(
1± coth

[
1
2

√
anλ

2

(
x±

√
anλ

2
t

)])2

. (17.105)

The exact solutions can be obtained by substituting the last results into (17.99) and
noting the domain of the natural logarithm.

On the other hand, for aλ < 0 we obtain complex solutions that are beyond the
scope of this text.
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17.9 The Coupled Burgers Equation

As stated before, the coupled Burgers equation [13] is given by

ut −2uux−uxx−uyy−2vuy = 0,
vt −2uvx− vxx− vyy−2vvy = 0.

(17.106)

To handle this coupled equation, we use the couple Cole-Hopf transformations

u(x,y,t) = (ln( f ))x, v(x,y,t) = (ln( f ))y, (17.107)

that transform the coupled Burgers equation into two equations given by

f ( ft − fxx− fyy)x− fx( ft − fxx− fyy) = 0,
f ( ft − fxx− fyy)y− fy( ft − fxx− fyy) = 0.

(17.108)

We next assume that f (x,y,t) has a perturbation expansion of the form

f (x,y,t) = 1 +
∞

∑
n=1

εn fn(x,y,t), (17.109)

where ε is a non small formal expansion parameter. The N-front solution is obtained
by assuming that

fi = exp(θi), (17.110)

where
θi = kix + miy− cit, (17.111)

where ki,mi and ci are arbitrary constants. Substituting (17.109) into (17.108) and
equate to zero the powers of ε, and by using (17.110) we obtain the relation

ci =−k2
i −m2

i , (17.112)

and in view of this result we obtain

θi = kix + miy +(k2
i + m2

i )t. (17.113)

This means that

f1 = exp(θ1) = exp(k1x + m1y +(k2
1 + m2

1)t), (17.114)

obtained by using (17.110).
Consequently, for the single front solution, we set

f = 1 + exp(θ1) = 1 + exp(k1x + m1y +(k2
1 + m2

1)t), (17.115)

where we set ε = 1. The single front solution is obtained by recalling that
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u(x,y,t) = (ln f )x, v(x,y,t) = (ln f )y, (17.116)

therefore we obtain

u(x,y,t) =
k1ek1x+m1y+(k2

1+m2
1)t

1 + ek1x+m1y+(k2
1+m2

1)t
,

v(x,y,t) =
m1ek1x+m1y+(k2

1+m2
1)t

1 + ek1x+m1y+(k2
1+m2

1)t
.

(17.117)

To determine the two-front solutions, we first set

f = 1 + exp(θ1)+ f2. (17.118)

To determine f2, we substitute the last equation into (17.108) to find

f2 = exp(θ2), (17.119)

and as a result we obtain

f = 1 + exp(θ1)+ exp(θ2), (17.120)

or equivalently

f = 1 + ek1x+m1y+(k2
1+m2

1)t + ek2x+m2y+(k2
2+m2

2)t . (17.121)

This gives the two-front solutions

u(x,y,t) =
k1ek1x+m1y+(k2

1+m2
1)t + k2ek2x+m2y+(k2

2+m2
2)t

1 + ek1x+m1y+(k2
1+m2

1)t + ek2x+m2y+(k2
2+m2

2)t
,

v(x,y,t) =
m1ek1x+m1y+(k2

1+m2
1)t + m2ek2x+m2y+(k2

2+m2
2)t

1 + ek1x+m1y+(k2
1+m2

1)t + ek2x+m2y+(k2
2+m2

2)t
.

(17.122)

Proceeding in the same manner, we can generalize and set

f = 1 +
N

∑
i=1

exp(θi), (17.123)

to obtain the multiple-wave solutions

u(x,y,t) =

N

∑
i=1

kie
kix+miy+(k2

i +m2
i )t

1 +
N

∑
i=1

ekix+miy+(k2
i +m2

i )t

,

v(x,y,t) =

N

∑
i=1

miekix+miy+(k2
i +m2

i )t

1 +
N

∑
i=1

ekix+miy+(k2
i +m2

i )t

.

(17.124)
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17.10 The Kuramoto-Sivashinsky (KS) Equation

The Kuramoto-Sivashinsky (KS) equation

ut + auux + bu2x + ku4x = 0, (17.125)

describes the fluctuations of the position of a flame front, the motion of a fluid go-
ing down a vertical wall, or a spatially uniform oscillating chemical reaction in a
homogeneous medium [2]. This equation was examined as a prototypical exam-
ple of spatiotemporal chaos in one space dimension. Moreover, this equation was
originally derived in the context of plasma instabilities, flame front propagation,
and phase turbulence in reaction-diffusion system.

Using the wave variable ξ = x−ct carries the KS equation (17.125) into the ODE

−cu +
a
2

u2 + bu′′+ ku′′′ = 0, (17.126)

obtained upon integrating the resulting ODE and setting the constant of integration
to zero.

Balancing u′′′ with u2 gives M = 3. The tanh-coth method admits the use of the
finite expansion

u(ξ ) =
3

∑
i=0

aiY i +
3

∑
i=1

biY−i,Y = tanh(μξ ). (17.127)

Substituting (17.127) into (17.126), collecting the coefficients of Y , proceeding as
before, and solving the resulting system of algebraic equations for a0,a1,a2,a3,b1,b2,b3

and μ , we obtain the following two sets of solutions

a0 =
30b
19a

√
−b
19k

, a1 =
135b
152a

√
−b
19k

, a2 = 0, a3 =− 15b
152a

√
−b
19k

,

b1 =
135b
152a

√
−b
19k

, b2 = 0, b3 =− 15b
152a

√
−b
19k

,

μ =
1
4

√
−b
19k

, c =
30b
19

√
−b
19k

,
b
k

< 0, (17.128)

and

a0 =
30b
19a

√
11b
19k

, a1 = − 45b
152a

√
11b
19k

, a2 = 0, a3 =
165b
152a

√
11b
19k

,

b1 = − 45b
152a

√
11b
19k

, b2 = 0, b3 =
165b
152a

√
11b
19k

,

μ =
1
4

√
11b
19k

, c =
30b
19

√
11b
19k

,
b
k

> 0. (17.129)
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The first set gives the soliton solution for
b
k

< 0:

u(x,t) =
15b
152a

√
−b
19k

(
16 + 9Y−Y 3 + 9Y−1−Y−3) , (17.130)

where μ and c are given above. For
b
k

> 0, complex solution can be derived.

The second set gives the soliton solution for
b
k

> 0:

u(x,t) =
15b

152a

√
11b
19k

(
16−3Y + 11Y3−3Y−1 + 11Y−3) , (17.131)

where Y = tanh [μ(x− ct)].
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Chapter 18

Families of Camassa-Holm and Schrodinger
Equations

18.1 Introduction

In this chapter, we will study two families of nonlinear evolution equations that
gained its importance because of its appearance in many scientific applications and
physical phenomena. These are the family of Camassa-Holm equations and the
family of Schrodinger equations.

The Camassa-Holm family of equations is of the form

ut −uxxt + aux + buux = kuxuxx + uuxxx, (18.1)

where a,b, and k are constants, and u(x,t) is the unknown function depending on
temporal variable t and spatial variable x. For b = 3 and k = 2, Eq. (18.1) reduces to
the Camassa-Holm equation

ut −uxxt + aux + 3uux = 2uxuxx + uuxxx, (18.2)

that models the unidirectional propagation of nonlinear shallow-water waves over
a flat bottom [1]. In (18.2), u(x,t) is the fluid velocity, or, equivalently, the water’s
free surface. One aspect of the Camassa-Holm equation is its bi-Hamiltonian struc-
ture and the existence of many conservation laws. This feature indicates that the CH
equation is completely integrable. Another aspect of interest is that for a = 0, it ad-
mits a new kind of of solitary waves which have a discontinuous slope at their crest.
The peaked solitary wave is termed peakon which has nonanalytic nature unlike the
smooth soliton. Peakon has discontinuities in the spatial derivative. Both one-sided
spatial derivatives exist and differ only by a sign. For a = 0, the CH equation gives
multi-soliton solutions in the form of peaked solitary waves.

We will study in this chapter four well-known equations of this family for the
following specific values of the constants b and k. The set of constants

b = 3, k = 2,

b = 4, k = 3,
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b = 1, k = 3, a = 1,
b = 3, k = 2, a is replaced by2a,

(18.3)

are used to obtain the following equations

ut −uxxt + aux + 3uux = 2uxuxx + uuxxx,
ut −uxxt + aux + 4uux = 3uxuxx + uuxxx,

ut −uxxt + ux + uux = 3uxuxx + uuxxx,
ut −uxxt + 2aux + 3uux = 2uxuxx + uuxxx,

(18.4)

known as the Camassa-Holm equation (CH) [1], the Degasperis-Procesi (DP) equa-
tion [2], the Fornberg-Whitham (FW) equation [12], and Fuchssteiner-Fokas-Camassa-
Holm (FFCH) equation [4,5] respectively. It is obvious that these four equations
contain both linear dispersion term uxxt and the nonlinear dispersion term uuxxx.

As stated before, the completely integrable wave Camassa-Holm (CH) equation
describes the unidirectional propagation of shallow water waves over a flat bottom
and possesses peakons solutions if a = 0. The CH equation is bi-Hamiltonian and
has an infinite number of conservation laws. It has been shown that the CH equation
has peaked solitary wave solutions of the form

u(x,t) = ce(−|x−ct|), (18.5)

if a = 0, where c is the wave speed. Solitary wave solutions of the CH equation have
discontinuous first derivative at the wave peak in contrast to the smoothness of most
previously known species of solitary waves and thus are called peakons. The name
“peakons”, that is, solitary waves with slope discontinuities, was used to single them
from general solitary wave solutions since they have a corner at the peak of height
c.

The completely integrable Degasperis-Procesi (DP) equation [2,8] also possesses
peakons solutions if a = 0. The CH and the DP equations are bi-Hamiltonian and
have an associated isospectral problem. Both equations are formally integrable [2]
by means of the scattering/inverse scattering approach. Moreover, both equations
admit peaked solitary wave solutions. The CH and the DP equations present simi-
larities although they are truly different. The isospectral problem for the DP equation
is of third order, whereas the CH equation admits a second order isospectral problem
[2].

Degasperis and Procesi [2] showed that the family of CH equations (18.1) cannot
be integrable unless b = 3 or b = 4 by using the method of asymptotic integrability.
The CH equation is a shallow water equation and was originally derived as an
approximation to the incompressible Euler equation and found to be completely
integrable with a Lax pair.

The Fornberg-Whitham (FW) equation appeared in the study of the qualitative
behaviors of wave-breaking. This equation admits a peaked solution of the form

u(x,t) = Ae−
1
2 |x− 4

3 t|. (18.6)
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The Fuchssteiner-Fokas-Camassa-Holm (FFCH) equation first arose in the work of
Fuchssteiner and Fokas using a bi-Hamiltonian approach [5].

A second family of nonlinear equations will be examined in this chapter. This
family of equations consists of the following fourth order nonlinear Schrodinger
equations [10,11]

i
∂w
∂ t

+ a
∂ 2w
∂x2 −b

∂ 4w
∂x4 + c|w|2w = 0, (18.7)

and

i
∂w
∂ t

+ a
∂ 2w
∂x2 −b

∂ 4w
∂x4 + c|w|2nw = 0, (18.8)

with a cubic and power law nonlinearities respectively. The function w is a com-
plex valued function of the spatial coordinate x and the time t. The function w is a
sufficiently differentiable function. The physical models (18.7) and (18.8) occur in
various areas of physics, including nonlinear optics, plasma physics, superconduc-
tivity and quantum mechanics. With b = 0, equations (18.7) and (18.8) collapse to
the standard second order NLS equation. The fields of application of the standard
NLS equation varies from optics, propagation of the electric field in optical fibers,
self-focusing and collapse of Langmuir waves in plasma physics, to modelling deep
water waves and freak waves in the ocean.

Moreover, the cubic complex Ginzburg-Landau equation [3,7,9] is given by

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2w, (18.9)

where w(x,t) : R2 �→ C is a complex function, x is real, t � 0, and the coefficients
a,b, and R are real. The CGL (18.9) is the generic amplitude model describing the
slow phase and amplitude modulations of a spatially distributed assembly of coupled
oscillators near its Hopf bifurcation. The complex field w describes the modulations
of the oscillator field, and b and R are two real control parameters [7].

The cubic CGL equation (18.9) has been used to study many practical problems
such as chemical turbulence, Poiseuille flow, Taylor-Coutte flow, Rayleigh-Bénard
convection, reaction-diffusion systems, nonlinear optics, and hydrodynamical sta-
bility problems. It exhibits rich dynamics and has become a paradigm for the tran-
sition to spatio-temporal chaos. The CGL can be thought of as a normal form for a
Hopf bifurcation in a variety of spatially extended systems. In fact, the amplitude w
describes slow modulations in space and time of the underlying bifurcating spatially
periodic pattern.

In addition, the generalized complex Ginzburg-Landau equation with a nonlin-
earity of order (2n + 1) is given by

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw, (18.10)

will be examined as well.
On the other hand, the generalized form of the quintic complex Ginzburg-Landau

equation
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wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw− (1 + id)|w|4nw, (18.11)

with nonlinearity of order (4n + 1) will be investigated. For n = 1, Eq. (18.11) is a
one-dimensional model of the large scale behavior of many non equilibrium pattern
forming systems [9].

18.2 The Family of Camassa-Holm Equations

The family of the Camassa-Holm equations

ut −uxxt + aux + buux = kuxuxx + uuxxx, (18.12)

will be handled by using the tanh-coth method [6]. Moreover, an exponential algo-
rithm will be used as well to obtain peakon solutions.

18.2.1 Using the Tanh-coth Method

Equation (18.12) will be converted to the ODE

(a− c)u + cu′′+
b
2

u2− k−1
2

(u′)2−uu′′ = 0, (18.13)

obtained upon using the transformation ξ = x− ct. The only balance that works in
this case is between uu′′ and (u′)2, where we obtain M =−1. The tanh-coth method
admits the use of

u(x,t) = (a0 + a1Y + b1Y−1)−1. (18.14)

Substituting (18.14) into (18.13), proceeding as before to get
(i)

a0 =
bk

2 [(k + 1)(c−a)−bc]
, a1 =± bk

2 [(k + 1)(c−a)−bc]
,

b1 = 0, μ =
1
2

√
b

k + 1
, k �=−1.

(18.15)

(ii)

a0 =
bk

2 [(k + 1)(c−a)−bc]
, a1 = 0,

b1 =± bk
2 [(k + 1)(c−a)−bc]

, μ =
1
2

√
b

k + 1
, k �=−1,

(18.16)

where c is left as a free parameter for these two cases. Consequently, we obtain the
solutions
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u1(x,t) =
2 [(k + 1)(c−a)−bc]

bk

(
1± tanh

[
1
2

√
b

k + 1
(x− ct)

]) , k �=−1, (18.17)

that blows up for x→−∞ for + tanh, and blows up for x→ ∞ for − tanh. This in
turn gives the solutions

u(x,t) = − a(
1± tanh

[
1
2
(x− ct)

]) ,

u(x,t) = − 2a

3

(
1± tanh

[
1
2
(x− ct)

]) ,

u(x,t) =
2(3c−4a)

3

(
1± tanh

[
1
4
(x− ct)

]) ,

u(x,t) = − 2a(
1± tanh

[
1
2
(x− ct)

]) ,

(18.18)

for the CH, DP, FW, and FFCH equations respectively. The previous solutions are
valid only for b > 0,k > 0. However, for b < 0,k > 0, we obtain complex solutions.

The second set gives the general solution for the CH family given by

u2(x,t) =
2 [(k + 1)(c−a)−bc]

bk

(
1± coth

[
1
2

√
b

k + 1
(x− ct)

]) , k �=−1. (18.19)

However, if c is not left as a free parameter, we obtain the following sets of solutions:
(iii)

a0 =−b + k−1
4a

, a �= 0, a1 =±b + k−1
4a

, b1 = 0,

c =
a(k−1)

b + k−1
, μ =

1
2

√
b

k + 1
, k �=−1.

(18.20)

(iv)

a0 =−b + k−1
4a

, a �= 0, a1 = 0, b1 =±b + k−1
4a

,

c =
a(k−1)

b + k−1
, μ =

1
2

√
b

k + 1
, k �=−1.

(18.21)

for b + k �= 1. The last two sets give the solutions

u3(x,t) =− 4a

(b + k−1)

(
1± tanh

[
1
2

√
b

k + 1

(
x− a(k−1)

b + k−1
t

)]) , (18.22)



688 18 Families of Camassa-Holm and Schrodinger Equations

and

u4(x,t) =− 4a

(b + k−1)

(
1± coth

[
1
2

√
b

k + 1

(
x− a(k−1)

b + k−1
t

)]) , (18.23)

for b+k �= 1,
b

k + 1
> 0. It is important to note that the specific solutions for the CH,

DP, FW and FFCH equations can be obtained by substituting the prescribed values
of b and k, i.e.

b = 3, k = 2, b = 4, k = 3, , b = 1, k = 3, a = 1, b = 3, k = 2, a is replaced by2a,
(18.24)

for the CH, DP, FW and FFCH equations respectively.
It is interesting to point out that the following set of solutions

u5(x,t) = λ0 +

(
−2λ0 +

2 [(k + 1)(c−a)−bc]
bk

)
cosh2

[
1
2

√
b

k + 1
(x− ct)

]
,

(18.25)

u6(x,t) = λ0 +

(
−2λ0 +

2 [(k + 1)(c−a)−bc]
bk

)
cos2

[
1
2

√
− b

k + 1
(x− ct)

]
,

(18.26)

u7(x,t) = λ0 +

(
2λ0− 2 [(k + 1)(c−a)−bc]

bk

)
sinh2

[
1
2

√
b

k + 1
(x− ct)

]
,

(18.27)

u8(x,t) = λ0−
(

2λ0− 2 [(k + 1)(c−a)−bc]
bk

)
sin2

[
1
2

√
− b

k + 1
(x− ct)

]
,

(18.28)
can be shown to satisfy the family of the Camassa-Holm equations.

18.2.2 Using an Exponential Algorithm

The exponential algorithm assumes that the solution u(x,t) can be set in the form

u(x,t) = λ + α e−μ|x−ct|, (18.29)

where λ ,α , and μ are parameters that will be determined.
Substituting the exponential algorithm (18.29) into

ut −uxxt + aux + buux = kuxuxx + uuxxx, (18.30)

and proceeding as before we find
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α = α0,α0 is arbitrary constant,

λ =
(k + 1)(c−a)−bc

bk
,

μ =

√
b

k + 1
, k �=−1.

(18.31)

This in turn gives the peakon solution

u(x,t) =
(k + 1)(c−a)−bc

bk
+α0e

−
√

b
k+1 |x−ct|

, k �=−1. (18.32)

This means that we obtain the following peakons solutions

u(x,t) = −a
2

+ α0e−|x−ct|,

u(x,t) = −a
3

+ α0e−|x−ct|,

u(x,t) = −a +α0e−|x−ct|,

u(x,t) =
3c−4

3
+ α0e−

1
2 |x−ct|,

(18.33)

for the CH, DP, FFCH and FW equations respectively. For a = 0, we obtain the well
known solutions obtained by other methods.

18.3 Schrodinger Equation of Cubic Nonlinearity

The nonlinear Schrodinger equation with cubic nonlinearity [10,11] is given by

i
∂w
∂ t

+ a
∂ 2w
∂x2 −b

∂ 4w
∂x4 + c|w|2w = 0, (18.34)

will be studied in this section by using the tanh-coth method only.
We first set the transformation

w(x,t) = u(x)eiα t , i2 =−1, (18.35)

where α is a real parameter. The assumption (18.35) transforms (18.34) into the
ODE

bu(4)−au′′+αu− cu3 = 0. (18.36)

Balancing u(4) with u3 in (18.36) gives M = 2. This means that

u(x) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i. (18.37)
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Substituting (18.37) into (18.36), collecting the coefficients of Y , and solving the
resulting system we find

a0 =−
√

3a2

10bc
, a1 = 0, a2 =

√
3a2

10bc
,

b1 = b2 = 0, μ =

√
a

20b
,

a
b

> 0, α =
4a2

25b
,

(18.38)

and

a0 =−
√

3a2

10bc
, a1 = a2 = 0,

b1 = 0, b2 =

√
3a2

10bc
, μ =

√
a

20b
,

a
b

> 0, α =
4a2

25b
,

(18.39)

For
a
b

< 0, we obtain the following solutions

w(x,t) =

√
3a2

10bc
sec2(

√
− a

20b
x)eiαt , (18.40)

and

w(x,t) =

√
3a2

10bc
csc2(

√
− a

20b
x)eiαt . (18.41)

However, for
a
b

> 0, we obtain solitons solutions for u(x), and therefore we find

w(x,t) =

√
3a2

10bc
sech2(

√
a

20b
x)eiα t , (18.42)

and

w(x,t) =

√
3a2

10bc
csch2(

√
a

20b
x)eiα t , (18.43)

where α =
4a2

25b
.

18.4 Schrodinger Equation with Power Law Nonlinearity

We next consider the fourth-order nonlinear Schrodinger equation with power law
nonlinearity given by

i
∂w
∂ t

+ a
∂ 2w
∂x2 −b

∂ 4w
∂x4 + c|w|2nw = 0, (18.44)
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by following the same approach used before.
We first set the assumption

w(x,t) = u(x)eiα t , i2 =−1, (18.45)

where α is a real parameter. The assumption (18.45) transforms (18.44) into the
ODE

bu(4)−au′′+αu− cu2n+1 = 0. (18.46)

Balancing u(4) with u2n+1 in (18.46) we find

8 + M−4 = (2n + 1)M, (18.47)

so that M =
2
n

. To obtain an analytic solution, we should use the transformation

u(x) = vγ(x), γ =
1
n
, (18.48)

so that (18.46) becomes

bγv3v(4) + 4bγv2v′v′′′+ 3bγ(γ−1)v2(v′′)2

6bγ(γ−1)(γ−2)v(v′)2v′′+ bγ(γ−1)(γ−2)(γ−3)(v′)4

−aγv3v′′ −aγ(γ−1)v2(v′)2 +αv4− cv6 = 0.
(18.49)

Balancing v6 with v3v(4) gives M = 2. This admits the use of the finite expansion

v(x) =
2

∑
i=0

aiY i +
2

∑
i=1

biY−i. (18.50)

Substituting (18.50) into (18.46), collecting the coefficients of Y , and solving the
resulting system we find

a0 = −
√

a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 ,

a1 = 0,

a2 =

√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 ,

b1 = b2 = 0,

μ =
n
2

√
a

b(n2 + 2n + 2)
,

a
b

> 0,

α =
(n + 1)2a2

b(n2 + 2n + 2)2 ,

(18.51)

and
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a0 = −
√

a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 ,

a1 = a2 = 0,
b1 = 0,

b2 =

√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 ,

μ =
n
2

√
a

b(n2 + 2n + 2)
,

a
b

> 0,

α =
(n + 1)2a2

b(n2 + 2n + 2)2 .

(18.52)

For
a
b

< 0, we obtain the following periodic solutions

w(x,t) =

{√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 sec2
(

n
2

√
− a

b(n2 + 2n + 2)
x

)} 1
n

eiαt ,

(18.53)
and

w(x,t) =

{√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 csc2
(

n
2

√
− a

b(n2 + 2n + 2)
x

)} 1
n

eiαt .

(18.54)

However, for
a
b

> 0, we obtain solitons solutions for u(x), and therefore we find

w(x,t) =

{√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 sech2
(

n
2

√
a

b(n2 + 2n + 2)
x

)} 1
n

eiαt ,

(18.55)
and

w(x,t) =

{√
a2(n + 1)(n + 2)(3n + 2)

4bc(n2 + 2n + 2)2 csch2
(

n
2

√
− a

b(n2 + 2n + 2)
x

)} 1
n

eiαt ,

(18.56)

where α =
(n + 1)2a2

b(n2 + 2n + 2)2 .

18.5 The Ginzburg-Landau Equation

The cubic complex Ginzburg-Landau (cGL) equation is given by

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2w, (18.57)
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where w(x,t) : R2 �→ C is a complex function, x is real, t � 0, and the coefficients
a,b, and R are real. The cGL (18.57) is the generic amplitude model describing
the slow phase and amplitude modulations of a spatially distributed assembly of
coupled oscillators near its Hopf bifurcation [3]. The complex field w describes the
modulations of the oscillator field, and b and R are two real control parameters.

The cubic cGL equation (18.57) has been used to study many practical problems
such as chemical turbulence, Poiseuille flow, Taylor-Coutte flow, Rayleigh-Bénard
convection, reaction-diffusion systems, nonlinear optics, and hydrodynamical sta-
bility problems. It exhibits rich dynamics and has become a paradigm for the tran-
sition to spatio-temporal chaos . The cGL can be thought of as a normal form for a
Hopf bifurcation in a variety of spatially extended systems. In fact, the amplitude w
describes slow modulations in space and time of the underlying bifurcating spatially
periodic pattern [7].

The generalized complex Ginzburg-Landau equation with a nonlinearity of order
(2n + 1) is given by

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw, (18.58)

where n is a positive integer, n � 1. The function w(x,t) and the parameters are the
same as in (18.57).

On the other hand, the generalized form of the quintic equation

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw− (1 + id)|w|4nw, (18.59)

with nonlinearity of order (4n + 1), will be examined as well.
We aim to derive explicit and implicit complex solutions for each equation by

using the method of separation of variables to reduce each equation to an equivalent
separable ODE that can be easily solved.

18.5.1 The Cubic Ginzburg-Landau Equation

We begin our analysis by investigating the cubic cGL

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2w. (18.60)

We assume that the complex field w(x,t) can be expressed as

w(x,t) = u(t)eiα x, i2 =−1, (18.61)

so that
wt = u′(t)eiα x,

wxx = −α2u(t)eiα x.
(18.62)

Substituting (18.62) into (18.60) gives
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u′(t) = β u(t)+ γu3(t), (18.63)

where
β = (1−α2)− iaα2,
γ = −1− ib.

(18.64)

Solving the separable ODE (18.63) yields

1
β

lnu− 1
2β

ln(β + γu2) = t +δ , (18.65)

form which we find

u(t) =

√
βeβ (t+δ )√

1− γ e2β (t+δ)
, (18.66)

where δ is a constant of integration. Combining (18.66) with (18.61) we obtain the
exact complex solution

w(x,t) =

√
βeβ (t+δ)√

1− γ e2β (t+δ )
eiα x, (18.67)

where β and γ are complex defined before in (18.64).
However, plane wave solutions of the form

w(x,t) = Ce−iAt+iBx, (18.68)

can be assumed, where A,B and C are constants. Substituting (18.68) into (18.60)
and solving for A we find

A = (B2a + b)+ i(R−1−B2). (18.69)

This in turn gives the plane wave solutions

w(x,t) = Ce((R−1−B2)−i(B2a+b))t+iBx. (18.70)

18.5.2 The Generalized Cubic Ginzburg-Landau Equation

We now consider the generalized cGL

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw, (18.71)

with a nonlinearity of order (2n+1). Proceeding as before we assume that the com-
plex field w(x,t) can be expressed as

w(x,t) = u(t)eiα x, i2 =−1, (18.72)
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so that
u′(t) = β u(t)+ γu2n+1(t), (18.73)

where
β = (1−α2)− iaα2,
γ = −1− ib.

(18.74)

Solving the separable ODE (18.73) yields

2n + 1
2nβ

lnu− 1
2nβ

ln(βu + γu2n+1) = t + δ1, (18.75)

form which we find

u(t) =

{ √
βe2nβ (t+δ1)√

1− γ e2nβ (t+δ1)

} 1
2n

, (18.76)

where δ1 is a constant of integration. Combining (18.76) with (18.72) we obtain the
exact solution

w(x,t) =

{ √
βe2nβ (t+δ1)√

1− γ e2nβ (t+δ1)

} 1
2n

eiα x, (18.77)

where β and γ are complex defined before in (18.74).
However, plane wave solutions of the form

w(x,t) = Ce−iAnt+iBnx, (18.78)

can be assumed, where A,B and C are constants. Substituting (18.78) into (18.71)
and solving for A we find

A =
(n2B2a + b)+ i(R−1−n2B2)

n
. (18.79)

This in turn gives the plane wave solutions

w(x,t) = Ce((R−1−n2B2)−i(n2B2a+b))t+iBx. (18.80)

18.5.3 The Generalized Quintic Ginzburg-Landau Equation

Finally, the generalized quintic cGL

wt = (1 + ia)wxx + Rw− (1 + ib)|w|2nw− (1 + id)|w|4nw, (18.81)

with nonlinearity of order (4n + 1) will be investigated. We first set

w(x,t) = u(t)eiα x, i2 =−1, (18.82)
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and proceeding as before we obtain

u′(t) = βu(t)+ γu2n+1(t)+ λu4n+1, (18.83)

where
β = (R−α2)− iaα2, γ =−1− ib, λ =−1− id. (18.84)

Solving the separable ODE (18.83) yields

1
β

lnu− 1
4nβ

ln(β +γu2n +λu4n)− γ
2nβ

√
4β λ − γ2

arctan

[
γ + 2λu2n√

4β λ − γ2

]
= t +δ3,

(18.85)
hence we find the implicit solution

ln

(
u4n

β + γu2n + λu4n

)
− 2γ√

4β λ − γ2
arctan

[
γ + 2λu2√
4β λ − γ2

]
= 4nβ (t + δ3)

(18.86)
where δ3 is a constant of integration. In view of (18.86), the amplitude function
w(x,t) can be obtained implicitly.

Plane wave solutions of the form

w(x,t) = Ce−iAnt+iBnx, (18.87)

can be assumed, where A,B and C are constants. Substituting (18.68) into (18.81)
and solving for A we find

A =
(n2B2a + b + d)+ i(R−2−n2B2)

n
. (18.88)

This in turn gives the plane wave solutions

w(x,t) = Ce((R−2−n2B2)−i(n2B2a+b+d))t+iBx. (18.89)
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Appendix A

Indefinite Integrals

A.1 Fundamental Forms

1.
∫

xn dx =
1

n + 1
xn+1 +C, n �=−1.

2.

∫
1
x

dx = ln |x|+C.

3.
∫

eax dx =
1
a

eax +C.

4.

∫
1

a2 + x2 dx =
1
a

tan−1 x
a

+C.

5.
∫

1√
a2− x2

dx = sin−1 x
a

+C.

6.
∫

1

x
√

x2−1
dx = sec−1x +C.

7.
∫

cosaxdx =
1
a

sinax +C.

8.

∫
sinaxdx = −1

a
cosax +C.

9.

∫
tanaxdx = −1

a
ln |cosax|+C.

10.
∫

cotaxdx =
1
a

lnsinax +C.

11.
∫

tanax secaxdx =
1
a

secax +C.

12.
∫

secxdx = − ln(secx− tanx)+C.

13.

∫
cscxdx = − ln(cscx + cotx)+C.

14.
∫

sec2axdx =
1
a

tanax +C.

15.

∫
csc2axdx = −1

a
cotax +C.
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A.2 Trigonometric Forms

1.
∫

sin2xdx =
1
2

x− 1
4

sin 2x+C.

2.

∫
cos2xdx =

1
2

x +
1
4

sin2x+C.

3.

∫
sin3xdx = −1

3
cosx

(
2 + sin2x

)
+C.

4.
∫

cos3xdx =
1
3

sinx
(
2 + cos2x

)
+C.

5.

∫
tan2xdx = tanx− x +C.

6.

∫
cot2xdx = −cotx− x +C.

7.

∫
xsinxdx = sinx− xcosx +C.

8.
∫

xcosxdx = cosx + xsinx +C.

9.

∫
x2 sinxdx = 2xsinx− (

x2−2
)

cosx +C.

10.

∫
x2 cosxdx = 2xcosx +

(
x2−2

)
sinx +C.

11.

∫
sinxcosxdx =

1
2

sin2x +C.

12.
∫

1
1 + sinx

dx = − tan(
1
4

π− 1
2

x)+C.

13.

∫
1

1− sinx
dx = tan(

1
4

π +
1
2

x)+C.

14.
∫

1
1 + cosx

dx = tan(
1
2

x)+C.

15.

∫
1

1− cosx
dx = −cot(

1
2

x)+C.

A.3 Inverse Trigonometric Forms

1.

∫
sin−1xdx = xsin−1x +

√
1− x2 +C.

2.

∫
cos−1xdx = xcos−1x−

√
1− x2 +C.

3.
∫

tan−1xdx = xtan−1x− 1
2

ln(1 + x2)+C.

4.

∫
xsin−1xdx =

1
4
[(2x2−1)sin−1x + x

√
1− x2]+C.

5.

∫
xcos−1xdx =

1
4
[(2x2−1)cos−1x− x

√
1− x2]+C.
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6.
∫

xtan−1xdx =
1
2
[(x2 + 1)tan−1x− x]+C.

7.
∫

xcot−1xdx =
1
2
[(x2 + 1)cot−1x + x]+C.

8.

∫
sec−1xdx = xsec−1x− ln(x +

√
x2−1)+C.

9.

∫
xsec−1xdx =

1
2
[x2sec−1x−

√
x2−1]+C.

A.4 Exponential and Logarithmic Forms

1.
∫

eax dx =
1
a

eax +C.

2.
∫

xeax dx =
1
a2 (ax−1)eax +C.

3.

∫
x2eax dx =

1
a3 (a2x2−2ax + 2)eax +C.

4.
∫

x3eax dx =
1
a4 (a3x3−3a2x2 + 6ax−6)eax +C.

5.
∫

ex sinxdx =
1
2
(sinx− cosx)ex +C.

6.

∫
ex cosxdx =

1
2
(sinx + cosx)ex +C.

7.

∫
lnxdx = x lnx− x +C.

8.

∫
x lnxdx =

1
2

x2(lnx− 1
2
)+C.

A.5 Hyperbolic Forms

1.
∫

sinhaxdx =
1
a

coshax +C.

2.

∫
coshaxdx =

1
a

sinhax +C.

3.
∫

xsinhxdx = xcoshx− sinhx +C.

4.
∫

xcoshxdx = xsinhx− coshx +C.

5.

∫
sinh2xdx =

1
2
(sinhxcoshx− x)+C.

6.
∫

cosh2xdx =
1
2
(sinhxcoshx + x)+C.

7.

∫
tanhaxdx =

1
a

lncoshax +C.
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8.
∫

cothaxdx =
1
a

lnsinhax +C.

9.
∫

sech2xdx = tanhx +C.

10.

∫
csch2xdx = −cothx +C.

A.6 Other Forms

1.
∫

1√
a2− x2

dx = arcsin
x
a

+C.

2.

∫
1

a2 + x2 dx =
1
a

arctan
x
a

+C.

3.
∫

1√
2ax− x2

dx = arccos
a− x

a
+C.

4.
∫

1
a2− x2 dx =

1
2a

ln
x + a
x−a

+C.



Appendix B

Series

B.1 Exponential Functions

1. eax = 1 + ax +
(ax)2

2!
+

(ax)3

3!
+

(ax)4

4!
+ · · ·.

2. e−ax = 1−ax +
(ax)2

2!
− (ax)3

3!
+

(ax)4

4!
+ · · ·.

3. e−x2
= 1− x2 +

x4

2!
− x6

3!
+ · · ·.

4. ax = 1 + x lna +
1
2!

(x lna)2 +
1
3!

(x lna)3 + · · · ,a > 0.

5. esinx = 1 + x +
x2

2!
− 3x4

4!
− 8x5

5!
− 3x6

6!
+ · · ·.

6. ecosx = e(1− x2

2!
− 4x4

4!
− 31x6

6!
+ · · ·).

7. etanx = 1 + x +
x2

2!
+

3x3

3!
+

9x4

4!
+

57x5

5!
+ · · ·.

8. esin−1x = 1 + x +
x2

2!
+

2x3

3!
+

5x4

4!
+ · · ·.

B.2 Trigonometric Functions

1. sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·.

2. cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·.

3. tanx = x +
x3

3
+

2x5

15
+

17x7

315
+ · · ·.

4. secx = 1 +
x2

2!
+

5x4

4!
+

61x6

6!
+

1385x8

8!
+ · · ·.
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B.3 Inverse Trigonometric Functions

1. sin−1x = x +
1
2

x3

3
+

1 ·3
2 ·4

x5

5
+

1 ·3 ·5
2 ·4 ·6

x7

7
+ · · · , x2 < 1.

2. tan−1x = x− x3

3
+

x5

5
− x7

7
+ · · ·.

B.4 Hyperbolic Functions

1. sinhx = x +
x3

3!
+

x5

5!
+

x7

7!
+ · · ·.

2. coshx = 1 +
x2

2!
+

x4

4!
+

x6

6!
+ · · ·.

3. tanhx = x− x3

3
+

2x5

15
− 17x7

315
+ · · ·.

B.5 Inverse Hyperbolic Functions

1. sinh−1x = x− 1
2

x3

3
+

1 ·3
2 ·4

x5

5
− 1 ·3 ·5

2 ·4 ·6
x7

7
+ · · ·.

2. tanh−1x = x +
x3

3
+

x5

5
+

x7

7
+ · · ·.



Appendix C

Exact Solutions of Burgers’ Equation

1.u(x,t) = 2tanx.

2.u(x,t) =−2cotx.

3.u(x,t) =−2tanhx.

4.u(x,t) =−2
x
.

5.u(x,t) =
x
t
.

6.u(x,t) =−2cothx.

7.u(x,t) =
x
t
.

8.u(x,t) =
x
t
− 2

x + t
.

9.u(x,t) =
x
t
− 2

x + nt
, n is an integer.

10.u(x,t) =
2

x + n
, n is an integer.

11.u(x,t) =
x
t
+

2
x + t

+
x + t

2t2− t
.

12.u(x,t) =− 2
1± e−t−x .

13.u(x,t) =
2

1± e−t+x .

14.u(x,t) = 1 + 2k tan(k(x− t)).

15.u(x,t) = 1−2k tanh(k(x− t)).
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16.u(x,t) = 1− 1
x− t

.

17.u(x,t) =
2sinx

cosx± et .

18.u(x,t) =− 2cosx
sinx± et .

19.u(x,t) =
x
t
+

2
t

tan
x
t
.

20.u(x,t) =
x
t
− 2

t
cot

x
t
.

21.u(x,t) =
x
t
− t

x
.



Appendix D

Padé Approximants for Well-Known Functions

D.1 Exponential Functions

D.1.1. f (x) = ex,

[2/2] =
12 + 6x + x2

12−6x + x2 ,

[3/3] =
120 + 60x + 12x2+ x3

120−60x + 12x2− x3 ,

[4/4] =
1680 + 840x + 180x2+ 20x3 + x4

1680−840x + 180x2−20x3 + x4 .

D.1.2. f (x) = e−x,

[2/2] =
12−6x + x2

12 + 6x + x2 ,

[3/3] =
120−60x + 12x2− x3

120 + 60x + 12x2+ x3 ,

[4/4] =
1680−840x + 180x2−20x3 + x4

1680 + 840x + 180x2+ 20x3 + x4 .

D.2 Trigonometric Functions

D.2.1. f (x) = sinx,

[2/2] =
6x

6 + x2 ,
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[3/3] =
60x−7x3

60 + 3x2 ,

[4/4] =
5880x−620x3

5880 + 360x2 + 11x4 .

D.2.2. f (x) = cosx,

[2/2] =
12−5x2

12 + 5x2 ,

[3/3] =
12−5x2

12 + 5x2 ,

[4/4] =
15120−6900x2 + 313x4

15120 + 660x2 + 13x4 .

D.2.3. f (x) = tanx,

[2/2] =
3x

3− x2 ,

[3/3] =
15x− x3

15−6x2 ,

[4/4] =
105x−10x3

105−45x2 + x4 .

D.2.4. f (x) = secx,

[2/2] =
12 + x2

12−5x2 ,

[3/3] =
12 + x2

12−5x2 ,

[4/4] =
15120 + 660x2 + 13x4

15120−6900x2 + 313x4 .

D.2.5. f (x) = tan−1x,

[2/2] =
3x

3 + x2 ,

[3/3] =
15x + 4x3

15 + 9x2 ,
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[4/4] =
105x + 55x3

105 + 90x2 + 9x4 .

D.3 Hyperbolic Functions

D.3.1. f (x) = sinhx,

[2/2] =
6x

6− x2 ,

[3/3] =
60x + 7x3

60−3x2 ,

[4/4] =
5880x + 620x3

5880−360x2 + 11x4 .

D.3.2. f (x) = coshx,

[2/2] =
12 + 5x2

12− x2 ,

[3/3] =
12 + 5x2

12− x2 ,

[4/4] =
15120 + 6900x2 + 313x4

15120−660x2 + 13x4 .

D.4 Logarithmic Functions

D.4.1. f (x) = ln(1 + x),

[2/2] =
6x + 3x2

6 + 6x + x2 ,

[3/3] =
60x + 60x2 + 11x3

60 + 90x + 36x2 + 3x3 ,

[4/4] =
420x + 630x2 + 260x3 + 25x4

420 + 840x + 540x2+ 120x3 + 6x4 .

D.4.2. f (x) = ln(1− x),

[2/2] =
−6x + 3x2

6−6x + x2 ,
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[3/3] =
60x−60x2 + 11x3

−60 + 90x−36x2+ 3x3 ,

[4/4] =
−420x + 630x2−260x3 + 25x4

420−840x + 540x2−120x3 + 6x4 .

D.4.3. f (x) = ln(1 + x)/x,

[2/2] =
30 + 21x + x2

30 + 36x + 9x2 ,

[3/3] =
420 + 510x + 140x2 + 3x3

420 + 720x + 360x2+ 48x3 ,

[4/4] =
3780 + 6510x + 3360x2+ 505x3 + 6x4

3780 + 8400x +6300x2+ 1800x3 + 150x4 .

D.4.4. f (x) = ln(1− x)/x,

[2/2] =
30−21x + x2

−30 + 36x−9x2 ,

[3/3] =
420−510x + 140x2−3x3

−420 + 720x−360x2+ 48x3 ,

[4/4] =
3780−6510x + 3360x2−505x3 + 6x4

−3780 + 8400x−6300x2+ 1800x3−150x4 .
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The Error and Gamma Functions

E.1 The Error function

The error function erf (x) is defined by:

1.erf (x) =
2√
π

∫ x

0
e−u2

du.

2.erf (x) =
2√
π

(
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!
+ · · ·

)
.

The complementary error function erf c(x) is defined by :

3.erf c(x) =
2√
π

∫ ∞

x
e−u2

du.

4.erf (x)+ erf c(x) = 1.

5.erf c(x) = 1− 2√
π

(
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!
+ · · ·

)
.

E.2 The Gamma function (x)

1.Γ(x) =
∫ ∞

0
tx−1 e−t dt.

2.Γ(x + 1) = xΓ(x), Γ(1) = 1,Γ(n + 1) = n!, n is an integer .

3.Γ(x)Γ(1− x) =
π

sinπx
.

4.Γ(1/2) =
√

π .
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Infinite Series

F.1 Numerical Series

1.
∞

∑
n=0

(−1)n

n + 1
= ln2.

2.
∞

∑
n=0

(−1)n

2n + 1
=

π
4

.

3.
∞

∑
n=1

1
n2 =

π2

6
.

4.
∞

∑
n=1

(−1)n+1

n2 =
π2

12
.

5.
∞

∑
n=1

1
(2n−1)2 =

π2

8
.

6.
∞

∑
n=1

n
(n + 1)!

= 1.

7.
∞

∑
n=1

1
n(n + 1)

= 1.

8.
∞

∑
n=1

(−1)n

n(n + 1)
= 1−2ln2.

9.
∞

∑
n=1

1
n(n + 2)

=
3
4

.

10.
∞

∑
n=1

(−1)n

n(n + 2)
=−1

4
.
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11.
∞

∑
n=1

1
(2n−1)(2n + 1)

=
1
2

.

12.
∞

∑
k=0

(−1)k

n2k =
n2

n2 + 1
.

13.
∞

∑
k=0

1
k!

= 2 = 2.718281828....

14.
∞

∑
k=0

(−1)k

k!
=

1
e

= 0.3678794412....

F.2 Trigonometric Series

1.
∞

∑
k=1

1
k

sin(kx) =
1
2
(π− x), 0 < x < 2π .

2.
∞

∑
k=1

(−1)k−1

k
sin(kx) =

1
2

x, −π < x < π .

3.
∞

∑
k=1

sin [(2k−1)x]
2k−1

=
π
4

, 0 < x < π .

4.
∞

∑
k=1

(−1)k−1 sin [(2k−1)x]
2k−1

=
1
2

ln tan
( x

2
+

π
4

)
, − 1

2
π < x <

1
2

π .

5.
∞

∑
k=1

(−1)k sin [(2k−1)x]
(2k + 1)2 =

⎧⎪⎨
⎪⎩

1
4

πx, if − 1
2

π < x <
1
2

π ,

1
4

π(π− x), if
1
2

π < x <
3
2

π.

6.
∞

∑
k=1

1
k

cos(kx) =− ln

(
2sin

1
2

x

)
, 0 < x < 2π .

7.
∞

∑
k=1

(−1)k−1

k
cos(kx) = ln

(
2cos

1
2

x

)
, −π < x < π .

8.
∞

∑
k=1

1
k2 cos(kx) =

1
12

(
3x2−6πx + 2π2) , 0 < x < 2π .

9.
∞

∑
k=1

(−1)k

k2 cos(kx) =
1

12

(
3x2−π2) , −π < x < π .
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10.
∞

∑
k=1

(−1)k−1 cos [(2k−1)x]
2k−1

=
π
4

, 0 < x < π .

11.
∞

∑
k=1

cos [(2k−1)x]
(2k−1)2 =

π
4

(π
2
−|x|

)
, −π < x < π .



Answers

Exercises 1.2

1.(a)3 (b)2 (c)1 (d)4

2.(a) linear (b)nonlinear
(c) linear (d)nonlinear

3.(a) inhomogeneous (b)homogeneous
(c) inhomogeneous (d)homogeneous

Exercises 1.3

1. Hyperbolic 2.Elliptic 3.Parabolic

4.Hyperbolic 5. Parabolic 6.Hyperbolic

7.Elliptic 8.Parabolic 9. Hyperbolic

10.Elliptic if y > 0, Parabolic if y = 0, Hyperbolic if y < 0

Exercises 2.2

1.u(x,y) = x2y2 2.u(x,y) = x2 + y2

3.u(x,y) = e−xy 4.u(x,y) = ex + ey

5.u(x,y) = ex+y 6.u(x,y) = x− y

7.u(x,y) =
1
3

x3 +
1
3

y3 8.u(x,y) = x + ey

9.u(x,y) = y + ex 10.u(x,y) = xey

11.u(x,y) = yex 12.u(x,y) = ex−y

13.u(x,y,z) = x + y + z 14.u(x,y,z) = ex+y+z

15.u(x,y,z) = yzex 16.u(x,y,z) = ex + y + z

17.u(x,y) = 3x2 + 2x + 4xy 18.u(x,y) = x2 + x + 2xy

+y + y2 + y + y2
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19.u(x,y) = sin(x + y) 20.u(x,y) = cosh(x + y)

Exercises 2.3

1.u(x,y) = x3 + y3 2.u(x,y) = coshx + coshy

3.u(x,y) = xy 4.u(x,y) = sinx + cosy

5.u(x,y) = xsiny + ysinx 6.u(x,y) = xcosy− ycosx

7.u(x,y) = xey + yex 8.u(x,y) = xe−y− ye−x

9.u(x,y) = x2y2 10.u(x,y) = xy2 + yx2

11.u(x,y) = sinx + coshy 12.u(x,y) = xey

13.u(x,y) = x2y3 + x3y2 14.u(x,y) = x3y4 + x4y3

15.u(x,y) = (x + y)2 16.u(x,y) = (x + y)2

17.u(x,y) = x2− xy + y2 18.u(x,y) = ex + ey + x

Exercises 2.4

1.u(x,y) = x3 + y3 2.u(x,y) = x2− y2

3.u(x,y) = (x + y)2 4.u(x,y) = coshx + coshy

5.u(x,y) = sinx + cosy 6.u(x,y) = x2y2

7.u(x,y) = sinx + siny 8.u(x,y) = ex− ey

9.u(x,y) = x2 + y3 10.u(x,y) = 1 + x2 + siny

11.u(x,y) = 1 + x + sinhy 12.u(x,y) = sinx + sinhy

Exercises 2.5

Answers are the same as in Exercises 2.2

Exercises 2.6

1.u(x,y) = x2 + y2 2.u(x,y) = ex + ey

3.u(x,y) = e−xy 4.u(x,y) = 2x + 3y− cosx

5.u(x,y) = ex+y 6.u(x,y) = xey

7.u(x,y) = yex 8.u(x,y) = coshx + coshy

9.u(x,y) = 2xy 10.u(x,y) = x2y2

11.u(x,y) = y− kx 12.u(x,y) = x− y

13.u(x,y) = x + siny 14.u(x,y) = 4xey
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15.u(x,y) = xy 16.u(x,y) = ex + ey

17.u(x,y) = exy 18.u(x,y) = ex+y

19.u(x,y) = xsinhy 20.u(x,y) = ycoshx

Exercises 2.7

1.u(x,t) = sinh(x + t), υ(x,t) = cosh(x + t)

2.u(x,t) = sin(x + t), υ(x,t) = cos(x + t)

3.u(x,t) = cos(x + t), υ(x,t) = cos(x + t)

4.u(x,t) = (x + t), υ(x,t) = (x− t)

5.u(x,t) = sinx + sint, υ(x,t) = sin x− sint

6.u(x,t) = sinh(x− t), υ(x,t) = cosh(x− t)

7.u(x,y,t) =−w = sin(x + y− t), υ(x,y,t) = cos(x + y− t)

8.u(x,y,t) = sin(x + y + t), υ(x,y,t) =−w = cos(x + y + t)

9.u(x,y,t) = (x + y + t), υ(x,y,t) = (x + y− t), w(x,y,t) = x− y + t

10.u(x,y,t) = ex, υ(x,y,t) = ey, w(x,y,t) = et

Exercises 3.2

1.u(x,t) = x + e−t sinx 2.u(x,t) = 4 + e−t cosx

3.u(x,t) = e−t sinx 4.u(x,t) = e−5t sinx

5.u(x,t) = e−t sinhx 6.u(x,t) = e−t coshx

7.u(x,t) = e−t sinx +
1
4

sin2x 8.u(x,t) = x2 + e−t sinx

9.u(x,t) = x3 + e−t sinx 10.u(x,t) = 3x2 + e−t cosx

11.u(x,t) = x2 + e−t cosx 12.u(x,t) = x3 + e−t cosx

13.u(x,t) = 1 + e−π2t sin(πx) 14.1 + e−4π2t sin(πx)

15.u = e−4t cosx 16.u = x + e−2t sinx

17.u = e−t cosx 18.u = 2 + e−t cosx

Exercises 3.3

The answers are the same as in Exercises 3.2.

Exercises 3.4.1

1.u(x,t) = e−t sinx + 2e−9t sin(3x)

2.u(x,t) = e−π2t sin(πx)+ e−4π2t sin(2πx)



718 Answers

3.u(x,t) = e−16t sin(2x)

4.u(x,t) = e−2π2t sin(πx)

5.u(x,t) = 1 + e−t cosx

6.u(x,t) = 3 + 4e−2t cosx

7.u(x,t) = 1 + e−3t cosx + e−12t cos(2x)

8.u(x,t) = 2 + 2e−16π2t cos(2πx)

9.u(x,t) =
8
π

∞

∑
m=0

1
(2m+ 1)

e−4(2m+1)2t sin(2m+ 1)x

10.u(x,t) =
6
π

∞

∑
m=0

1
(2m+ 1)

e−2(2m+1)2t sin(2m+ 1)x

11.u(x,t) = π− 8
π

∞

∑
m=0

1
(2m+ 1)2 e−(2m+1)2t cos(2m+ 1)x

12.u(x,t) = (1 +
π
2

)− 4
π2

∞

∑
m=0

1
(2m+ 1)

e−(2m+1)2t cos(2m+ 1)x

Exercises 3.4.2

1.u(x,t) = 1 + 2x + 3e−π2t sin(πx) 2.u(x,t) = 1 + 4e−t sinx

3.u(x,t) = x + e−4t sin2x 4.u(x,t) = 4−4x + e−9t sin(3x)

5.u(x,t) = 2 + 3x + e−t sinx 6.u(x,t) = 1 + 2x + 3e−4π2t sin(2πx)

Exercises 3.4.3

1.u(x,t) = e−2t sinx 2.u(x,t) = e−5π2t sin(2πx)

3.u(x,t) = e−4t sinx 4.u(x,t) = e−3π2t sin(πx)

5.u(x,t) = 1 + e−2t sinx 6.u(x,t) = 3 + 3e−3π2t sin(πx)

Exercises 4.2.1

1.u(x,y,t) = e−4t sin xsiny

2.u(x,y,t) = 2e−2t sinxsin y

3.u(x,y,t) = e−4t cos(x + y)

4.u(x,y,t) = e−6t sin(x− y)

5.u(x,y,t) = e−5t sin xsiny

6.u(x,y,t) = e−8t sin(x + y)

7.u(x,y,t) = e−4t sin xsiny + sinx
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8.u(x,y,t) = e−6t sin xsiny + cosx

9.u(x,y,t) = e−2t sin(x + y)+ cos(x + y)

10.u(x,y,t) = e−2t sinxsin y + sinx + siny

11.u(x,y,t) = e−2t sinxsin y + x2

12.u(x,y,t) = e−2t sinxsin y + y2

Exercises 4.2.2

1.u = e−6t sinxsinysinz 2.u = 2e−3t sinxsin ysinz

3.u = e−3t sin(x + y + z) 4.u = e−4t sinxsinysinz

5.u = 2x2 + e−3t sinxsinysinz 6.u = y2 + e−3t sinxsin sinz

7.u = sinx + e−2t sin(y + z) 8.u = x2 + e−3t(sinx + siny + sinz)

Exercises 4.3.1

1.u(x,y,t) = e−13t sin2xsin3y

2.u(x,y,t) = e−6t sin xsiny + e−24t sin2xsin2y

3.u(x,y,t) = e−8t sin xsiny + e−20t sinxsin2y + e−20t sin2xsiny

4.u(x,y,t) = e−2t cosxsin y

5.u(x,y,t) = e−2t sin xcosy

6.u(x,y,t) = e−2t cosxsin y + e−8t cos2xsin2y

7.u(x,y,t) = e−4t sin xcosy + e−16t sin2xcos2y

8.u(x,y,t) = e−13t cos2xcos3y

9.u(x,y,t) = 1 + e−5t cosxcos2y

10.u(x,y,t) = 4 + e−32t cos2xcos2y

Exercises 4.3.2

1.u(x,y,z,t) = e−29t sin2xsin3ysin4z

2.u(x,y,z,t) = e−3t sinxsin ysinz+ e−12t sin2xsin2ysin2z

3.u(x,y,z,t) = e−6t sinxsin ysin2z+ e−14t sinxsin 2ysin3z

4.u(x,y,z,t) = e−3t cosxsinysin z

5.u(x,y,z,t) = e−3t sinxcosycosz

6.u(x,y,z,t) = e−3t cosxsinycosz
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7.u(x,y,z,t) = e−3t sinxcosysin z

8.u(x,y,z,t) = 2 + 3e−6t cosxcos2ycosz

9.u(x,y,z,t) = 1 + e−3t cosxcosycosz+ e−12t cos2xcos2ycos2z

10.u(x,y,z,t) = 1 + 2e−3t cosxcosycosz+ 3e−29t cos2xcos3ycos4z

Exercises 5.2.2

1.u(x,t) = sin(2x)cos(4t) 2.u(x,t) = sinxsin t + sinxcost

3.u(x,t) = 2 + cosxcost 4.u(x,t) = 1 + x + sinxsin t

5.u(x,t) = sinxcos(3t) 6.u(x,t) = sinxsin(2t)

7.u(x,t) = cosxcos t 8.u(x,t) = x + cosxcost

9.u(x,t) = cosx + sinxsin t 10.u(x,t) = sinx + sinxcost

11.u(x,t) = 1 + sinxsin(2t) 12.u(x,t) = x4 + sinxcos t

13.u(x,t) = x3 + sinxsin t 14.u(x,t) = 1 + cosx + sinxsin t

15.u(x,t) = 2x2 + sinxcost 16.u(x,t) = x2 + cosxsin t

17.u(x,t) = sinx + cosxsin t 18.u(x,t) = x2 + cosxcost

19.u(x,t) = t4 + t3x + cosxsin t 20.u(x,t) = t2 + x3 + sinxsin t

21.u(x,t) = x2 cosh t 22.u(x,t) = x2et

23.u(x,t) = x4 sinh t 24.u(x,t) = x3 cosht

Exercises 5.2.3

1.u(x,t) = 4t + sinxsin t 2.u(x,t) = sin(x + t)

3.u(x,t) = cos(x + t) 4.u(x,t) = sin(x− t)

5.u(x,t) = 6t + sinxcos t 6.u(x,t) = 6t + 2xt2

7.u(x,t) = x2t + t3 + ex sinht 8.u(x,t) = cosxsin t + xet

9.u(x,t) = x2 + t2 + sinxsin t

10.u(x,t) = t + 2xt + cosx(cost−1)

11.u(x,t) = x2 + t2− sinx + sinxsin t

12.u(x,t) = cosx + cosxcost
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Exercises 5.3.2

The answers are given in 5.2.2.

Exercises 5.3.3

The answers are given in 5.2.3.

Exercises 5.4.1

1.u(x,t) = sin(3x)sin(3t) 2.u(x,t) = sinxcost

3.u(x,t) = 2sin(2x)sin(2t) 4.u(x,t) = sinxcos(2t)

5.u(x,t) = sin(2x)cos(4t) 6.u(x,t) = sinxsin(3t)

7.u(x,t) = 1 + cosxsin(3t) 8.u(x,t) = 2 + cosxcos(2t)

9.u(x,t) = cosxsin(3t)

10.u(x,t) = cosxsin t + cosxcost

11.u(x,t) =
∞

∑
n=1

(−1)n+1

5n2 sin(nx)sin(nt)

12.u(x,t) =
∞

∑
n=0

4
(2n + 1)2 sin(nx)sin 2(2n + 1)t

Exercises 5.4.2

1.u(x,t) = 1 + sin(πx)sin(πt)

2.u(x,t) = 2 + x + 2sin(πx)cos(πt)

3.u(x,t) = 3x + 4sin(πx)sin(πt)

4.u(x,t) = 4−3x + sin(πx)sin(πt)

5.u(x,t) = 3 + 4x + sin(πx)sin(2πt)

6.u(x,t) = 1 + x + sin(2πx)sin(4πt)

7.u(x,t) = 3x + x2 + t2 + cos(πx)cos(πt)

8.u(x,t) = 4x + cos(πx)sin(πt)

9.u(x,t) = 2x + 2x2 + 2t2 + cos(πx)cos(πt)

10.u(x,t) = x + cos(πx)sin(2πt)

11.u(x,t) = 2x + cos(πx)cos(2πt)

12.u(x,t) = x + x2 + t2 + cos(πx)sin(3πt)
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Exercises 5.5.1

1.u(x,t) = 2t + sinxsin t 2.u(x,t) = sin(x + t)

3.u(x,t) = cos(x + t) 4.u(x,t) = sin(x + 4t)

5.u(x,t) = 2t + sinxcos t 6.u(x,t) = cos(x + 2t)

7.u(x,t) = sinh(x + t) 8.u(x,t) = x + e−x sinh t

9.u(x,t) = coshxcosh t 10.u(x,t) = sinhxsinh(2t)

11.u(x,t) = t + 2xt + cosxcost 12.u(x,t) = 4t + 4xt + sinxcost

Exercises 6.2.1

1.u(x,y,t) = sinxsin ysin(2t)

2.u(x,y,t) = sin(2x)sin(2y)sin(4t)

3.u(x,y,t) = sin(2x)sin(2y)cos(4t)

4.u(x,y,t) = 2 + sinxsin ysin t

5.u(x,y,t) = 1 + y + sinxsinysin(2t)

6.u(x,y,t) = 1 + x + sinysin t

7.u(x,y,t) = sinxsin ysin(2t)

8.u(x,y,t) = sinxsin ycos(3t)

9.u(x,y,t) = sinx + sinxsinysin t

10.u(x,y,t) = cosx + sinysin t

11.u(x,y,t) = x2 + y2 + sinxsin t

12.u(x,y,t) = 2x2 + 2y2 + 2sinxsin ycos(2t)

13.u(x,y,t) = t2 + tx + ty + sinxsin ysin t

14.u(x,y,t) = t3 + t2x + ty + sinxsinycos(2t)

15.u(x,y,t) = y2 + sinxcost

16.u(x,y,t) = x2 + sinysin t

17.u(x,y,t) = sinx + sinysin t

18.u(x,y,t) = cosxcosysin(2t)

19.u(x,y,t) = t4 + t2y + sinxsinysin t

20.u(x,y,t) = t2 + x2 + y2 + sinxsinysin t

21.u(x,y,t) = x2y2 sinht

22.u(x,y,t) = x2y2et

23.u(x,y,t) = x2 sinht + y2 cosht



Answers 723

24.u(x,y,t) = x2e−t + y2et

25.u(x,y,t) = y2e−t − x2et

Exercises 6.2.2

1. u(x,y,z,t) = sin2xsin2ysin2zsin6t

2. u(x,y,z,t) = 1 + sinxsin ysinzsin t

3. u(x,y,z,t) = 3 + sinxsin ysinzcos3t

4. u(x,y,z,t) = sinxsin ysinzsin 3t

5. u(x,y,z,t) = sin(x + 2y)sin(z+ 2t)

6. u(x,y,z,t) = sinxsin 2ysin3zcos4t

7. u(x,y,z,t) = cos(x + y)sin(z+ t)

8. u(x,y,z,t) = 1 + z+ sinxsin ysinzsin t

9. u(x,y,z,t) = sinx + siny + sinzsin t

10. u(x,y,z,t) = cosx + cosy + sinzsin t

11. u(x,y,z,t) = x2 + y2 + z2 + sint

12. u(x,y,z,t) = t2 + tx + ty + tz+ sint

13. u(x,y,z,t) = t2(x + y + z)+ sinysin t

14. u(x,y,z,t) = x2 + y2 + z2 + cosycost

15. u(x,y,z,t) = x2 + sinysin zcost

16. u(x,y,z,t) = cosxcosycoszsin2t

17. u(x,y,z,t) = 1 + sinxsinysin zcos2t

18. u(x,y,z,t) = 1 + sinxsiny + sinzsin t

19. u(x,y,z,t) = t2 + x2 + y2 + z2 + cosxcosycoszcost

20. u(x,y,z,t) = x4 + y4 + coszcos t

21. u(x,y,z,t) = x2y2z2 cosht

22. u(x,y,z,t) = x3 sinh t +(y3 + z3)cosh t

23. u(x,y,z,t) = x2et + y2e−t + z2et

24. u(x,y,z,t) = (x3 + y3 + z3)sinh t

Exercises 6.3.1

1. u(x,y,t) = sin2xsin2ycos4t

2. u(x,y,t) = sinxsin2ycos5t

3. u(x,y,t) = sinxsinysin2t
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4. u(x,y,t) = sinxsin2ysin5t

5. u(x,y,t) = 2 + cosxcosysin2t

6. u(x,y,t) = 1 + cosxcosycos4t

7. u(x,y,t) = sinxcosysin2t

8. u(x,y,t) = cosxsinycos2t

9. u(x,y,t) = cosxsinysin2t

10. u(x,y,t) = 3 + cosxcos2ysin5t

11. u(x,y,t) =
32
π2

∞

∑
n=0

∞

∑
m=0

1
(2n + 1)(2m+ 1)

×sin(2n + 1)xsin(2m+ 1)ycos(
√

2λnmt),

λnm =
√

(2n + 1)2 +(2m+ 1)2

12. u(x,y,t) =
48
π2

∞

∑
n=0

∞

∑
m=0

1
(2n + 1)(2m+ 1)

×sin(2n + 1)xsin(2m+ 1)ysin(
√

2λnmt),

λnm =
√

(2n + 1)2 +(2m+ 1)2

Exercises 6.3.2

1. u(x,y,z,t) = sin2xsin2ysin2zsin12t

2. u(x,y,z,t) = sinxsin 2ysin3zcos14t

3. u(x,y,z,t) = sinxsin ysin2zsin6t

4. u(x,y,z,t) = cosxcos2ycos2zsin6t

5. u(x,y,z,t) = 3 + cosxcosycoszsin 6t

6. u(x,y,z,t) = 4 + cosxcosycoszcos 6t

7. u(x,y,z,t) = sinxcosycoszsin3t

8. u(x,y,z,t) = sinxsin ycoszsin3t

9. u(x,y,z,t) = cosxsin ysinzcos6t

10. u(x,y,z,t) = sinxsinycos2zcos6t

11. u(x,y,z,t) = sinxsinycoszsin
√

3t

12. u(x,y,z,t) = cosxcosycos2zsin6t

Exercises 7.2.1

1.u(x,y) = sinhxcosy 2.u(x,y) = coshxsin y
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3.u(x,y) = coshxcosy 4.u(x,y) = sin 2xsinh2y

5.u(x,y) = sin2xcosh2y 6.u(x,y) = cos3xcosh3y

7.u(x,y) = sinh2xcos2y 8.u(x,y) = cosh2xcos2y

9.u(x,y) = cosxcoshy 10.u(x,y) = sinxcoshy

11.u(x,y) = sinhxcosy 12.u(x,y) = sinxcoshy

13.u(x,y) = x + sinxsinhy 14.u(x,y) = y + sinxcoshy

15.u(x,y) = 1 + sinxsinhy 16.u(x,y) = 1 + cosxsinhy

Exercises 7.3.1

Answers are the same as in Exercises 7.2.1.

Exercises 7.4.1

1.u(x,y) = sin2xsinh2y 2.u(x,y) = sinh3xsin3y

3.u(x,y) = 4sinh2xsin2y 4.u(x,y) = cosxcoshy

5.u(x,y) = sinxcoshy 6.u(x,y) = cos2xcosh2y

7.u(x,y) = sinhxsin(π− y) 8.u(x,y) = sin2xsinh(2π−2y)

9.u(x,y) = C0 + cos2xcosh2y 10.u(x,y) = C0 + cosh2xcos2y

Exercises 7.4.2

1. u(x,y,z) = sinxsin 2ysinh
√

5z

2. u(x,y,z) = sin6xsin8ysinh10z

3. u(x,y,z) = sin2xsin2ysinh
√

8z

4. u(x,y,z) = sinxsin 2ysinh
√

5(π− z)

5. u(x,y,z) = sin3xsin4ysinh5(π− z)

6. u(x,y,z) = sin5xsin12ysinh13(π− z)

7. u(x,y,z) = cosxcos2ycosh
√

5z+C0

8. u(x,y,z) = cos5xcos12ycosh13z+C0

9. u(x,y,z) = cos3xcos4ycosh5(π− z)+C0

10. u(x,y,z) = cos2xcos2ycosh
√

8+C0(π− z)

11. u(x,y,z) = sin8xsin15ycosh17z

12. u(x,y,z) = sin3xcos4ysinh5z

Exercises 7.5.1

1.u(r,θ ) = 2 + 3r sinθ + 4r cosθ 2.u(r,θ) = 1 + r4 cos4θ

3.u(r,θ ) = 1− r6 cos6θ 4.u(r,θ) = r2 sin2θ + r2 cos2θ
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5.u(r,θ ) = C0 + 2r4 sin4θ 6.u(r,θ ) = C0 + r(sinθ − cosθ )

7.u(r,θ ) = C0 + r2 sin 2θ 8.u(r,θ ) = C0 + r3 cos3θ

9.u(r,θ ) = C0 + r2 sin 2θ + r3 cos3θ 10.u(r,θ) = C0 + r2 cos2θ

Exercises 7.5.2

1. u(r,θ ) = 1 + lnr +

(
r− 1

r

)
cosθ +

(
r− 1

r

)
sin θ

2. u(r,θ ) = 1 + lnr + r cosθ + r sinθ

3. u(r,θ ) = 1 +

(
r− 1

r

)
sinθ

4. u(r,θ ) = 1 +

(
r− 2

r

)
cosθ +

(
r− 2

r

)
sinθ

5. u(r,θ ) = 1 + lnr +

(
r− 1

r

)
cosθ

6. u(r,θ ) = 1 + lnr +

(
r− 1

r

)
sinθ

7. u(r,θ ) = C0 + lnr +

(
r +

1
r

)
sinθ

8. u(r,θ ) = C0 +

(
r− 1

r

)
cosθ

9. u(r,θ ) = C0 +

(
3r +

2
r

)
sinθ

10. u(r,θ ) = C0 + lnr +

(
r +

1
r

)
cosθ +

(
r +

1
r

)
sin θ

11. u(r,θ ) = C0 + 2

(
r− 1

r

)
cosθ

12. u(r,θ ) = C0 +

(
3r +

2
r

)
sin θ

Exercises 8.2

1.A0 = u4
0

A1 = 4u3
0u1

A2 = 4u3
0u2 + 6u2

0u2
1

A3 = 4u3
0u3 + 12u2

0u1u2 + 4u0u3
1
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2.A0 = u2
0 + u3

0

A1 = u1(2u0 + 3u2
0)

A2 = u2(2u0 + 3u2
0)+ u2

1(1 + 3u0)
A3 = u3(2u0 + 3u2

0)+ u1u2(2 + 6u0)+ u3
1

3.A0 = cos2u0

A1 = −2u1 sin2u0

A2 = −2u2 sin2u0−2u2
1 cos2u0

A3 = −2u3 sin2u0−4u1u2 cos2u0 +
4
3

u3
1 sin 2u0

4.A0 = sinh2u0

A1 = 2u1 cosh2u0

A2 = 2u2 cosh2u0 + 2u2
1 sinh2u0

A3 = 2u3 cosh2u0 + 4u1u2 sinh2u0 +
4
3

u3
1 cosh2u0

5.A0 = e2u0

A1 = 2u1e2u0

A2 = 2(u2 + u2
1)e

2u0

A3 = 2

(
u3 + 2u1u2 +

2
3

u3
1

)
e2u0

6.A0 = u2
0u0x

A1 = 2u0u1u0x + u2
0u1x

A2 = 2u0u2u0x + u2
1u0x + 2u0u1u1x + u2

0u2x

A3 = 2u0u3u0x + 2u1u2u0x + 2u0u2u1x

+ u2
1u1x + 2u0u1u2x + u2

0u3x

7.A0 = u0u2
0x

A1 = 2u0u0xu1x + u1u2
0x

A2 = 2u0u0xu2x + u0u2
1x

+ 2u1u0xu1x + u2u2
0x

A3 = 2u0u0xu3x + 2u0u1xu2x + 2u1u0xu2x

+ u1u2
1x

+ 2u2u0xu1x + u2
0x

u3

8.A0 = u0eu0

A1 = (u0u1 + u1)eu0

A2 =

(
u0u2 +

1
2

u0u2
1 + u2

1 + u2

)
eu0

A3 =

(
u0u3 + u0u1u2 +

1
6

u0u3
1 + 2u1u2 +

1
2

u3
1 + u3

)
eu0
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9.A0 = u0 sinu0

A1 = u0u1 cosu0 + u1 sinu0

A2 = u0u2 cosu0− 1
2

u0u2
1 sinu0 + u2

1 cosu0 + u2 sinu0

A3 = u0u3 cosu0−u0u1u2 sinu0− 1
6

u0u3
1 cosu0

+ 2u1u2 cosu0− 1
2

u3
1 sinu0 + u3 sinu0

10.A0 = u0 coshu0

A1 = u0u1 sinhu0 + u1 coshu0

A2 = u0u2 sinhu0 +
1
2

u0u2
1 coshu0 + u2

1 sinhu0 + u2 coshu0

A3 = u0u3 sinhu0 + u0u1u2 coshu0 +
1
6

u0u3
1 sinhu0

+ 2u1u2 sinhu0 +
1
2

u3
1 coshu0 + u3 coshu0

11.A0 = u2
0 + sinu0

A1 = 2u0u1 + u1 cosu0

A2 = 2u0u2 + u2
1 + u2 cosu0− 1

2
u2

1 sinu0

A3 = 2u0u3 + 2u1u2 + u3 cosu0−u1u2 sinu0− 1
6

u3
1 cosu0

12.A0 = u0 + cosu0

A1 = u1−u1 sin u0

A2 = u2−u2 sin u0− 1
2

u2
1 cosu0

A3 = u3−u3 sin u0−u1u2 cosu0 +
1
6

u3
1 sinu0

13.A0 = u0 + lnu0

A1 = u1 +
u1

u0

A2 = u2 +
u2

u0
− 1

2
u2

1

u2
0

A3 = u3 +
u3

u0
− u1u2

u2
0

+
1
3

u3
1

u3
0

14.A0 = u0 lnu0

A1 = u1(1 + lnu0)

A2 = u2(1 + lnu0)+
1
2

u2
1

u0
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A3 = u3(1 + lnu0)+
u1u2

u0
− 1

6
u3

1

u2
0

15.A0 = u
1
2
0

A1 =
1
2

u1u
− 1

2
0

A2 =
1
2

u2u
− 1

2
0 − 1

8
u2

1u
− 3

2
0

A3 =
1
2

u3u
− 1

2
0 − 1

4
u1u2u

− 3
2

0 +
1

16
u3

1u
− 5

2
0

16.A0 = u−1
0

A1 = −u1u−2
0

A2 = −u2u−2
0 + u2

1u−3
0

A3 = −u3u−2
0 + 2u1u2u−3

0 −u3
1u−4

0

Exercises 8.3

1.y = tan3x

2.y = tanh4x

3.y = 1 + x

4.y = 1− ln(1 + ex),−1 < ex � 1

5.y = x−2

6.y = 1 +
1

1− x
7.y = x

8.y =−x

9.y =
π
2

+
(

1− π
2

)
x− 1

2!

(
1− π

2

)
x2 +

1
3!

π
2

(
1− π

2

)
x3 + · · ·

10.y = 1 + x + x2 +
4
3

x3 + · · ·

11.y = 2 + 2x + 3x2 +
12
3

x3 + · · ·

12.y = 1− x +
3
2

x2− 8
3

x3 + · · · , y = e−xy

13.y = cosx

14.y = tanx

15.y = tanhx
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16.y = 1− e−x

17.y = 1− 1
2

x2 +
1
12

x4− 1
72

x6 + · · ·

18.y + 1 +
1
2

x2 +
1
8

x4 +
3
80

x6 + · · ·

19.y =
π
2

+
1
2

x2− 1
240

x6 +
1

19200
x10 + · · ·

20.y = 1 +
e
2

x2 +
e2

12
x4 +

13e3

720
x6 + · · ·

21.y = x3

22.y = x + sinx

23.y = 1− cosx

24.y = sinhx

Exercises 8.4

The answers are given in Exercises 8.3.

Exercises 8.5

1.u = x2 + xy

2.u = y2 + xy

3.u = x + t

4.u = 1 + xt

5.u =
x

1− t
6.u = t + sinx

7.u = 2x2 tanh t

8.u = x3 tanht

9.u = 3x−27x2t + 486x3t2−·· ·
u = 3x, for t = 0,

1
6t

(
√

1 + 36xt−1), for t > 0

10.u = 2y + arctanx

11.u = t + tanhx 12.u = t + tanx

13.u = x2y2 14.u = y + ex

15.u = x + lny 16.u = y + lnx

17.u = ye−x 18.u = ycosx

19.u = x + ln(1 + y) 20.u = x +
1
y
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21.u = y + arctanx 22.u = t + sinhx

23.u = t + sinx 24.u = t + cosx

25.u = sinhx− t sinhxcoshx +
1
2
(2sinhxcosh2x + sinh3x)t2 + · · ·

26.u = cosx + t sinxcosx +(sin2xcosx)t2 + · · ·

27.u = x2t− 2
3

x2t3 +
8
15

x2t5 + · · ·
28.u = x− t

29.u = x− x2t + 2x3t2 + · · ·
30.u = x− xt +

3
2

xt2 + · · ·

Exercises 8.6

The answers are given in Exercises 8.5.

Exercises 8.7

1.u(x,t) = x + t v(x,t) = x− t

2.u(x,t) = e−x+t v(x,t) = ex−t

3.u(x,t) = ex+t v(x,t) = e−x−t

4.u(x,t) = e2x+3t v(x,t) = e−2x−3t

5.u(x,y,t) = x + y + t v(x,y,t) = x− y + t, w =−x + y + t

6.u(x,y,t) = ex+y−t v(x,y,t) = ex−y+t , w = e−x+y+t

7.u(x,y,t) = ex+y−t v(x,y,t) = ex−y+t , w = e−x+y+t

8.u(x,y,t) = x + y + et v(x,y,t) = x− y + e−t, w =−x + y + e−t

Exercises 8.8

The answers are given in Exercises 8.7.

Exercises 9.2

1.u(x,t) = t + e−x 2.u(x,t) = t2 + xt

3.u(x,t) = 1 + x2t2 4.u(x,t) = t + sinx

5.u(x,t) =
x

t−1
6.u(x,t) = x tanh t− secht

7.u(x,t) = (1 + x) tanht 8.u(x,t) = x + et

9. u(x,t) =

⎧⎨
⎩

4x, for t = 0

1
8t

(
√

1 + 64xt−1), for t > 0
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10.u = x2−2x3t + 5x4t2 + · · ·
Exercises 9.3

1.u(x,y) = y + ex+y 2.u(x,y) = xy + ex+y

3.u(x,y) =−(x + y)+ ex+y 4.u(x,y) = x2 + ex+y

5.u(x,y) = (x + y)ex+y 6.u(x,y) = ex+y

7.u(x,y) =
x + y

2
− ln(ex + ey) 8.u(x,y) =

x− y
2
− ln(ex + e−y)

9.u(x,y) =
x
2
− ln(ex + ey) 10.u(x,y) =

y
2
− ln(ex + ey)

11.u(x,y) =
x
5
− 2

5
ln(ex + ey) 12.u(x,y) =− ln(ex + ey)

Exercises 9.4

1.u(x,t) = cosxcost 2.u(x,t) = cosxsin t

3.u(x,t) = sinxsin t 4.u(x,t) = t sinx

5.u(x,t) = t coshx 6.u(x,t) = 1 + xt

7.u(x,t) = 1 + xt 8.u(x,t) = x3t3

9.u(x,t) = t2 + x2 10.u(x,t) = xcost

11. φ3 =
π
6

+
1
4

t2 +

√
3

96
t4

12. φ3 =
π
4

+
1

2
√

2
t2 +

1
48

t4

13. φ3 = t +
1
3

t3

14. φ3 = π + t− 1
3

t3

15. φ3 =
3π
2

+ t− 1
4

t2

Exercises 9.5

1.u(x,t) =
x

1 + t
2.u(x,t) =

x
t−1

3.u(x,t) =
2x

1 + 2t
4.u(x,t) =

2x
2t−1

5.u(x,t) =
1

1 + x

(
1 +

1
(1 + x)2 t +

2
(1 + x)4 t2−·· ·

)
6.u(x,t) =

x
t−1

7.u(x,t) =
2x

1 + 2t
8.u(x,t) = 4tan2x
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9.u(x,t) =
x
t
+

x + t
2t2− t

10.u(x,t) =
x
t
− 2

x + 3t

Exercises 9.6

1.u(x,t) = ex−t 2.u(x,t) = ex+t

3.u(x,t) = ex + e−t 4.u(x,t) = e2x−t

5.u(x,t) = ex− e−t 6.u(x,t) = sinhx + e−t

7.u(x,t) = coshx− e−t 8.u(x,t) = ex + e−3t

9.u(x,t) = e2x + e−2t 10.u(x,t) = sinh2x + e−2t

Exercises 9.7

1.u(x,t) = ei(2x−4t) 2.u(x,t) = sinxe−it

3.u(x,t) = coshxeit 4.u(x,t) = 1 + cos3xe−9it

5.u(x,t) = sin2xe−4it 6.u(x,t) = ei(2x−3t)

7.u(x,t) = ei(t−x) 8.u(x,t) = ei(3x−3t)

9.u(x,t) = ei(2x−6t) 10.u(x,t) = ei(3x+8t)

Exercises 9.8

6.u(x,t) =
x

1 + 6t

7.u(x,t) =
2
x2

8.u(x,t) =
1
6

(
x−2
2− t

)
9.u(x,t) =

2
(x−3)2

10.u(x,t) =
1
6

(
x−4
3− t

)
Exercises 9.9

1.u(x,t) = sin(x + t) 2.u(x,t) = sinxcost

3.u(x,t) = cosxcost 4.u(x,t) = 1 + cos(x + t)

5.u(x,t) = 2 + sinxsin t 6.u(x,t) = sin2xcost

7.u(x,t) = ex+t 8.u(x,t) = sin2xsin2t

9.u(x,t) = ex−t 10.u(x,t) = sin(x + 2t)

11.u(x,t) = (x− sinx)e−t 12.u(x,t) =
x6

6!
sin t
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13.u(x,t) = (x− cosx)e−t 14.u(x,t) =
5
6!

x6 sin t

15.u(x,t) =
6
7!

x7(sin t + cost)

Exercises 10.2

1. φ3 =

(
1− 1

2!
x2 +

1
4!

x4− 1
6!

x6
)

+ ε
(

1
3!

x3− 1
30

x5
)

+ ε2

(
1

180
x6

)

2. φ3 =

(
1 + x +

1
2!

x2
)

+ ε
(

1
2!

x2 +
1
2

x3
)

+ ε2

(
1
8

x4
)

3. φ4 =

(
1− 1

2!
t2 +

1
4!

t4− 1
6!

t6
)

+ ε
(

2
3!

t3− 4
5!

t5
)

+ ε2

(
− 4

4!
t6
)

4. φ4 =

(
1− 1

2!
t2 +

1
4!

t4− 1
6!

t6
)

+ ε
(
− 6

5!
t5
)

5. φ3 = 1 +
1
ε

sin(εx)− 1
2ε2 (1− cos(2εx))

6. φ4 = x− x3

3
+

x5

5 ·2!
− x7

7 ·3!
, y =

√
π

2
erf(x)

7. φ4 =
4√
π

(
x− x3

3
+

x5

5 ·2!
− x7

7 ·3!

)
, y = 2erf(x)

8. y(x) = x +
x3

3
+

x5

10
+

x7

42

9. φ4 = x4− 1
90

x10 +
1

10800
x16

10. φ4 = x2 +
1
3

x3 +
1

12
x4 +

1
30

x6 +
13

630
x7 +

1
1350

x10

Exercises 10.3

1. φ4 = cosx

(
1− t +

t2

2!
− t3

3!

)

2. φ4 = cosx

(
1− t2

2!
+

t4

4!
− t6

6!

)

3. φ4 = x3

(
t− 1

3
t3 +

2
15

t5− 17
315

t7
)

4. φ4 = 4x
(
1−16xt + 512x2t2−20480x3t3

)
5. φ4 = 2

(
1− 1

2
t2 +

5
24

t4− 61
120

t6
)

+ x

(
t− 1

3
t3 +

2
15

t5− 17
315

t7
)
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6. φ3 = x− xt +
3
2

xt2

7. φ3 = x2

(
t− 2

3
xt3 +

2
3

x2t5
)

8. φ3 = x− (1 + x2)t +(2x + x3)t2

9. φ3 =

(
1 +(it)+

1
2!

(it)2
)

coshx

10. φ3 = 1 +

(
t2

2!
− t3

3!
+

t4

4!

)
sinhx

Exercises 10.4

1. (a) [2/2] =
1 + 7x + 11x2

1 + 5x + 5x2

[3/3] =
1 + 10x + 31x2 + 29x3

1 + 8x + 19x2 + 13x3

(b)
√

5≈ 2.2,
√

5≈ 2.230769

2. (a) [2/2] =
1 + 17x + 61x2

1 + 11x + 19x2

[3/3] =
1 + 24x + 171x2+ 337x3

1 + 18x + 87x2+ 97x3

(b)
√

13≈ 3.210526,
√

13≈ 3.474227

3. (a) [2/2] =
6x

6 + x2

[3/3] =
60x−7x3

60 + 3x2

4. (a) [2/2] =
12 + 6x + x2

12−6x + x2

[3/3] =
120 + 60x + 12x2+ x3

120−60x + 12x2− x3

5. (a) [2/2] =
−30 + 21x− x2

30−36x + 9x2

[3/3] =
420−510x + 140x2−3x3

−420 + 720x−360x2+ 48x3

6. (a) [2/2] =
−15 + x2

−15 + 6x2

[3/3] =
−15 + x2

−15 + 6x2
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7. (a) [3/3] =
−15x + 4x3

−15 + 9x2

[4/4] =
105x−55x3

105−90x2 + 9x4

8. (a) [3/3] =
60x + 7x3

60−3x2

[4/4] =
5880x + 620x3

5880−360x2+ 11x4

9. (a) [3/3] =
1

1 + x

[4/4] =
1

1 + x

10. (a) [3/3] =
15 + 4x2

15 + 9x2

[4/4] =
945 + 735x2 + 64x4

945 + 1050x2 + 225x4

11. (a) [3/3] =
120 + 60x + 28x2− x3

120−60x + 28x2+ x3

[4/4] =
240 + 120x−140x2−100x3−49x4

240−120x−140x2+ 100x3−49x4

12. (a) [3/3] =
120 + 60x−28x2+ x3

120−60x−28x2− x3

[4/4] =
240 + 120x−500x2−220x3 + 111x4

240−120x−500x2+ 220x3 + 111x4

Exercises 10.5

1. u(x) = .2 + 1.6x + 4.6x2− .933333x3−44.466667x4

−101.506667x5 + 157.857778x6+ 1291.071746x7+ O(x8)

u[4/4] =
.2 + .922403x +1.802939x2+ 1.820630x3 + .841658x4

1−3.387987x + 13.118589x2−13.255201x3 + 15.045083x4

2. u(x) = .1 + .45x + .875x2+ .716667x3− .540104x4

−2.260417x5−2.507231x6 + .377294x7 + O(x8)

u[4/4] =
.1 + .221916x + .201328x2+ .087574x3 + .014724x4

1−2.280845x + 3.527084x2−2.205410x3 + .956694x4

3. u(x) = α +
1
4
(α +α2)r2 +

1
4
(α + 3α2 + 2α2)r4

+
1

2034
(α + 9α2 + 16α3 + 8α4)r6 + O(r8)
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α =−2.392

Exercises 11.2

1. u(x,t) =−2sech2(x−4t)

2. u(x,t) = 8sech22(x−16t)

3. u(x,t) =
√

2sech2(x−4t)

4. u(x,t) = 4arctan

[
exp

(
−2

(
x−

√
3

2
t

))]

5. u(x,y,t) =
1
2

sech2
[

1
2
(x + y−4t)

]
Exercises 11.3

1. u(x,t) = 3cos

[
1
3
(x−6t)

]

2. u(x,t) =

{
2sin

[
3
8

(
x− 5

2
t

)]} 2
3

3. u(x,y,t) = 3cos

[
1

3
√

2
(x + y−6t)

]

4. u(x,t) = cos
1
2 (x−2t)

5. u(x,y,t) = cos
1
2

[
1√
2
(x + y−2t)

]
Exercises 11.4

1. u(x,t) = 3sinh

[
1
3
(x−6t)

]

2. u(x,t) =−
[

2cosh

(
3
8

(
x− 5

2
t

))] 2
3

3. u(x,y,t) = 3sinh

[
1

3
√

2
(x + y−6t)

]

4. u(x,t) = sinh
1
2 (x−2t)

5. u(x,y,t) = sinh
1
2 (x + y−4t)
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A
Adomian decomposition method, 19, 70, 144,

195, 238, 287
modified decomposition, 19, 41

Adomian polynomials, 288
exponential nonlinearity, 291
hyperbolic nonlinearity, 291
nonlinear derivatives, 290
trigonometric nonlinearity, 290

Adomian, G., 3
Adomiay polynomials

logarithmic nonlinearity, 292
Advection problem, 354
Airy’s equation, 23
Alternative algorithm, 293

B
Bäcklund transformation, 504, 654
BBM equation, 605, 612
Benjamin-Ono equation, 606, 629
Bilinear form, 458, 491, 494, 511
Blasius equation, 440
Boundary conditions, 12, 69

Dirichlet, 12, 238
inhomogeneous, 99, 184
mixed, 12
Neumann, 12

Boundary layer problem, 451
Boundary value problems, 439
Boussinesq equation, 639
Boussinesq equation, 8, 465, 639, 641

improved, 646
Burgers equation, 8, 381, 666

Burgers equation, 668
Burgers-Fisher equation, 666, 673
Burgers-Huxley equation, 666, 673
coupled Burgers equation, 666, 678

C
Camassa-Holm equation, 8, 683, 686
Characteristics method, 19
Classifications of PDEs, 14
Compactons, 469, 483, 488, 544

compacton-like, 553
Conservation Laws, 496
Crank-Nicolson method, 415
Cuspons, 487

D
D’Alembert solution, 157, 190
Defocusing branch, 459
DeVries,G., 401, 457
Dispersion, 482
Dissipation, 482
Dodd-Bullough-Mikhailov equation, 640
DP equation, 9, 684
Duffing equation, 416

E
Error function, 423

complementary, 423

F
Fifth-order KdV equation, 558, 562

CDG equation, 559, 573
Ito equation, 560
KK equation, 561
Lax equation, 561
SK equation, 561

Finite differences method, 415
Finite element method, 415
Fisher equation, 8, 665, 670
Fisher,R.A., 665
FitzHugh-Nagumo, 675
FitzHugh-Nagumo equation, 666
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Focusing branch, 459
Fornberg-Whitham equation, 684
Fourier coefficients, 182
Fourth order equation, 405

constant coefficients, 405
variable coefficient, 408

Freeman, N. C., 458
Fuchssteiner-Fokas-Camassa-Holm equation,

684

G
Galerkin method, 415
Gardner equation, 506, 533
Ginzburg-Landau equation, 685, 693

cubic, 693
generalized Cubic, 694
generalized quintic, 695

Goursat problem, 360
GSWW equation, 597, 599

H
Heat equation, 70

higher dimensional, 107
homogeneous, 70, 73, 84, 109, 117
inhomogeneous, 70, 80, 87, 113
one dimensional, 69
three dimensional, 116, 134
two dimensional, 108, 124

Hirota, 458
bilinear method, 491, 494

Hirota-Satsuma system, 592
Huxley equation, 665, 671
Hyman, 483

I
IBVP, 69, 144
Initial conditions, 12,69
Initial Value Problem, 69, 190
Integro-differential equation, 443
Inverse scattering method, 491

K
K(n,n) equation, 8, 546
Kawahara equation, 605, 617

modified, 618
KdV equation, 8, 401, 459, 503, 606, 632

complex modified, 605
generalized, 506, 526
modified, 8, 462, 506, 518
ninth-order, 606, 634
potential KdV, 505, 528

KdV-Burgers equation, 630
Kink, 485
Klein-Gordon equation, 370

linear, 371
nonlinear, 375

Korteweg, D. J., 460, 479
KP equation, 8, 467, 605, 620
Kruskal, M. D., 458, 480

L
Lagrange multipliers, 47, 64
Laplace’s equation, 237, 259

for a desc, 268
for an annulus, 275
in polar coordinates, 5, 268

Lateral heat loss, 102
Lax pair, 460
Linear Schrodinger equation, 394
Liouville equation, 8, 639, 649

M
Method of characteristics, 54
Method of separation of variables, 71

for heat equation, 89
for Laplaces equation, 251

MEW equation, 605, 615
Multiple-soliton solutions, 510

for Boussinesq equation, 643
for fifth-order KdV, 567
for Gardner equation, 535
for Hirota-Satsuma system, 594

for KdV, 510
for KP equation, 622
for mKdV, 506
for potential KdV, 531
for seventh-order KdV, 576
for Sine-Gordon equation, 655

N
Neumann BCs, 187
Neumann boundary conditions, 238
Noise terms, 36
Nonlinear Partial Differential Equations, 7
Nonlinear partial differential equations, 285
Nonlinear PDE, 6, 319
Nonperturbed Problem, 421

O
Order of a PDE, 5
Ordinary differential equations, 301

P
Padé approximants, 430
Peakons, 486
Perturbation method, 416

Q



Index 741

Quintic GL equation, 695

R
Riccati equation, 491
Rosenau, P., 483
Runge-Kutta methods, 444
Russell J. S., 457, 479

S
Schrodinger equation, 8

cubic nonlinearity, 689
nonlinear, 397, 685
power law nonlinearity, 690

Seventh-order KdV, 576, 632
Kaup-Kuperschmidt equation, 581
Lax equation, 580
Sawada-Kotera-Ito equation, 576

Sine-Gordon equation, 8, 378, 464, 640
Sinh-Gordon equation, 8, 657
Solitary patterns, 459
Solitary Waves, 481, 484
Solitons, 457, 459, 484
Stable solution, 12
Superposition principle, 92, 127, 176
Systems of PDES, 59

by Adomian method, 59, 341
by VIM, 59, 347
linear, 59
nonlinear, 341

T
Tanh-coth Method, 491, 508

TDB equation, 659
Telegraph equation, 388
The K(n,n) Equation, 507
The Sine-cosine Method, 493
Thermal diffusivity, 69
Transient solution, 99

V
Variational iteration emthod(VIM), 19

for heat equation, 84
for Laplace’s equation, 247
for systems, 347
for wave equation, 162, 170

Volterra’s Population Model, 443

W
Wave equation, 143

homogeneous, 146, 162, 197, 211
infinite domain, 157, 170, 190
inhomogeneous, 152, 168, 203, 216
one dimensional, 143
three dimensional, 210
travelling, 481
two dimensional, 196

Well-posed, 12
Wronskian, 458

Z
Zabusky, N. J., 458, 480
Zakharov-Kuznetsov (ZK) equation, 606, 626
Zhiber-Shabat equation, 641



Nonlinear Physical Science

(Series Editors: Albert C.J. Luo, Nail H. Ibragimov)

Nail. H. Ibragimov/ Vladimir. F. Kovalev: Approximate and Renor-
mgroup Symmetries

Abdul-Majid Wazwaz: Partial Differential Equations and Solitary
Waves Theory

Albert C.J. Luo: Discontinuous Dynamical Systems on Time-varying
Domains

Anjan Biswas/ Daniela Milovic/ Matthew Edwards: Mathematical
Theory of Dispersion-Managed Optical Solitons

Hanke,Wolfgang/ Kohn, Florian P.M./ Wiedemann, Meike: Self-
organization and Pattern-formation in Neuronal Systems under Con-
ditions of Variable Gravity


	Cover
	NONLINEAR PHYSICAL SCIENCE
	Partial Differential Equations and Solitary Waves Theory
	Copyright
	3642002501

	Preface
	Contents
	Part I - Partial Differential Equations
	1 Basic Concepts�����������������������
	1.1 Introduction�����������������������
	1.2 Definitions����������������������
	1.2.1 Definition of a PDE��������������������������������
	1.2.2 Order of a PDE���������������������������
	1.2.3 Linear and Nonlinear PDEs��������������������������������������
	1.2.4 Some Linear Partial Differential Equations�������������������������������������������������������
	1.2.5 Some Nonlinear Partial Differential Equations����������������������������������������������������������
	1.2.6 Homogeneous and Inhomogeneous PDEs�����������������������������������������������
	1.2.7 Solution of a PDE������������������������������
	1.2.8 Boundary Conditions��������������������������������
	1.2.9 Initial Conditions�������������������������������
	1.2.10 Well-posed PDEs�����������������������������

	1.3 Classifications of a Second-order PDE������������������������������������������������
	References�����������������

	2 First-order Partial Differential Equations���������������������������������������������������
	2.1 Introduction�����������������������
	2.2 Adomian Decomposition Method���������������������������������������
	2.3 The Noise Terms Phenomenon�������������������������������������
	2.4 The Modified Decomposition Method��������������������������������������������
	2.5 The Variational Iteration Method�������������������������������������������
	2.6 Method of Characteristics������������������������������������
	2.7 Systems of Linear PDEs by Adomian Method���������������������������������������������������
	2.8 Systems of Linear PDEs by Variational Iteration Method�����������������������������������������������������������������
	References�����������������

	3 One Dimensional Heat Flow����������������������������������
	3.1 Introduction�����������������������
	3.2 The Adomian Decomposition Method�������������������������������������������
	3.2.1 Homogeneous Heat Equations���������������������������������������
	3.2.2 Inhomogeneous Heat Equations�����������������������������������������

	3.3 The Variational Iteration Method�������������������������������������������
	3.3.1 Homogeneous Heat Equations���������������������������������������
	3.3.2 Inhomogeneous Heat Equations�����������������������������������������

	3.4 Method of Separation of Variables��������������������������������������������
	3.4.1 Analysis of the Method�����������������������������������
	3.4.2 Inhomogeneous Boundary Conditions����������������������������������������������
	3.4.3 Equations with Lateral Heat Loss���������������������������������������������

	References�����������������

	4 Higher Dimensional Heat Flow�������������������������������������
	4.1 Introduction�����������������������
	4.2 Adomian Decomposition Method���������������������������������������
	4.2.1 Two Dimensional Heat Flow��������������������������������������
	4.2.2 Three Dimensional Heat Flow����������������������������������������

	4.3 Method of Separation of Variables��������������������������������������������
	4.3.1 Two Dimensional Heat Flow��������������������������������������
	4.3.2 Three Dimensional Heat Flow����������������������������������������

	References�����������������

	5 One Dimensional Wave Equation��������������������������������������
	5.1 Introduction�����������������������
	5.2 Adomian Decomposition Method���������������������������������������
	5.2.1 Homogeneous Wave Equations���������������������������������������
	5.2.2 Inhomogeneous Wave Equations�����������������������������������������
	5.2.3 Wave Equation in an Infinite Domain������������������������������������������������

	5.3 The Variational Iteration Method�������������������������������������������
	5.3.1 Homogeneous Wave Equations���������������������������������������
	5.3.2 Inhomogeneous Wave Equations�����������������������������������������
	5.3.3 Wave Equation in an Infinite Domain������������������������������������������������

	5.4 Method of Separation of Variables��������������������������������������������
	5.4.1 Analysis of the Method�����������������������������������
	5.4.2 Inhomogeneous Boundary Conditions����������������������������������������������

	5.5 Wave Equation in an Infinite Domain: D’Alembert Solution�������������������������������������������������������������������
	References�����������������

	6 Higher Dimensional Wave Equation�����������������������������������������
	6.1 Introduction�����������������������
	6.2 Adomian Decomposition Method���������������������������������������
	6.2.1 Two Dimensional Wave Equation������������������������������������������
	6.2.2 Three Dimensional Wave Equation��������������������������������������������

	6.3 Method of Separation of Variables��������������������������������������������
	6.3.1 Two Dimensional Wave Equation������������������������������������������
	6.3.2 Three Dimensional Wave Equation��������������������������������������������

	References�����������������

	7 Laplace’s Equation���������������������������
	7.1 Introduction�����������������������
	7.2 Adomian Decomposition Method���������������������������������������
	7.2.1 Two Dimensional Laplace’s Equation�����������������������������������������������

	7.3 The Variational Iteration Method�������������������������������������������
	7.4 Method of Separation of Variables��������������������������������������������
	7.4.1 Laplace’s Equation in Two Dimensions�������������������������������������������������
	7.4.2 Laplace’s Equation in Three Dimensions���������������������������������������������������

	7.5 Laplace’s Equation in Polar Coordinates��������������������������������������������������
	7.5.1 Laplace’s Equation for a Disc������������������������������������������
	7.5.2 Laplace’s Equation for an Annulus����������������������������������������������

	References�����������������

	8 Nonlinear Partial Differential Equations�������������������������������������������������
	8.1 Introduction�����������������������
	8.2 Adomian Decomposition Method���������������������������������������
	8.2.1 Calculation of Adomian Polynomials�����������������������������������������������
	8.2.2 Alternative Algorithm for Calculating Adomian Polynomials����������������������������������������������������������������������

	8.3 Nonlinear ODEs by Adomian Method�������������������������������������������
	8.4 Nonlinear ODEs by VIM��������������������������������
	8.5 Nonlinear PDEs by Adomian Method�������������������������������������������
	8.6 Nonlinear PDEs by VIM��������������������������������
	8.7 Nonlinear PDEs Systems by Adomian Method���������������������������������������������������
	8.8 Systems of Nonlinear PDEs by VIM�������������������������������������������
	References�����������������

	9 Linear and Nonlinear Physical Models���������������������������������������������
	9.1 Introduction�����������������������
	9.2 The Nonlinear Advection Problem������������������������������������������
	9.3 The Goursat Problem������������������������������
	9.4 The Klein-Gordon Equation������������������������������������
	9.4.1 Linear Klein-Gordon Equation�����������������������������������������
	9.4.2 Nonlinear Klein-Gordon Equation��������������������������������������������
	9.4.3 The Sine-Gordon Equation�������������������������������������

	9.5 The Burgers Equation�������������������������������
	9.6 The Telegraph Equation���������������������������������
	9.7 Schrodinger Equation�������������������������������
	9.7.1 The Linear Schrodinger Equation��������������������������������������������
	9.7.2 The Nonlinear Schrodinger Equation�����������������������������������������������

	9.8 Korteweg-de Vries Equation�������������������������������������
	9.9 Fourth-order Parabolic Equation������������������������������������������
	9.9.1 Equations with Constant Coefficients�������������������������������������������������
	9.9.2 Equations with Variable Coefficients�������������������������������������������������

	References�����������������

	10 Numerical Applications and Padé Approximants
	10.1 Introduction������������������������
	10.2 Ordinary Differential Equations�������������������������������������������
	10.2.1 Perturbation Problems�����������������������������������
	10.2.2 Nonperturbed Problems�����������������������������������

	10.3 Partial Differential Equations������������������������������������������
	10.4 The Padé Approximants
	10.5 Padé Approximants and Boundary Value Problems
	References�����������������

	11 Solitons and Compactons���������������������������������
	11.1 Introduction������������������������
	11.2 Solitons��������������������
	11.2.1 The KdV Equation������������������������������
	11.2.2 The Modified KdV Equation���������������������������������������
	11.2.3 The Generalized KdV Equation������������������������������������������
	11.2.4 The Sine-Gordon Equation��������������������������������������
	11.2.5 The Boussinesq Equation
	11.2.6 The Kadomtsev-Petviashvili Equation�������������������������������������������������

	11.3 Compactons����������������������
	11.4 The Defocusing Branch of K(n,n)�������������������������������������������
	References�����������������


	Part II - Solitray Waves Theory
	12 Solitary Waves Theory�������������������������������
	12.1 Introduction������������������������
	12.2 Definitions�����������������������
	12.2.1 Dispersion and Dissipation����������������������������������������
	12.2.2 Types of Travelling Wave Solutions������������������������������������������������
	12.2.3 Nonanalytic Solitary Wave Solutions�������������������������������������������������

	12.3 Analysis of the Methods�����������������������������������
	12.3.1 The Tanh-coth Method����������������������������������
	12.3.2 The Sine-cosine Method������������������������������������
	12.3.3 Hirota’s Bilinear Method��������������������������������������

	12.4 Conservation Laws�����������������������������
	References�����������������

	13 The Family of the KdV Equations�����������������������������������������
	13.1 Introduction������������������������
	13.2 The Family of the KdV Equations�������������������������������������������
	13.2.1 Third-order KdV Equations���������������������������������������
	13.2.2 The K(n,n) Equation���������������������������������

	13.3 The KdV Equation����������������������������
	13.3.1 Using the Tanh-coth Method����������������������������������������
	13.3.2 Using the Sine-cosine Method������������������������������������������
	13.3.3 Multiple-soliton Solutions of the KdV Equation������������������������������������������������������������

	13.4 The Modified KdV Equation�������������������������������������
	13.4.1 Using the Tanh-coth Method����������������������������������������
	13.4.2 Using the Sine-cosine Method������������������������������������������
	13.4.3 Multiple-soliton Solutions of the mKdV Equation�������������������������������������������������������������

	13.5 Singular Soliton Solutions��������������������������������������
	13.6 The Generalized KdV Equation����������������������������������������
	13.6.1 Using the Tanh-coth Method����������������������������������������
	13.6.2 Using the Sine-cosine Method������������������������������������������

	13.7 The Potential KdV Equation��������������������������������������
	13.7.1 Using the Tanh-coth Method
	13.7.2 Multiple-soliton Solutions of the Potential KdV Equation����������������������������������������������������������������������

	13.8 The Gardner Equation��������������������������������
	13.8.1 The Kink Solution�������������������������������
	13.8.2 The Soliton Solution����������������������������������
	13.8.3 N-soliton Solutions of the Positive Gardner Equation������������������������������������������������������������������
	13.8.4 Singular Soliton Solutions����������������������������������������

	13.9 Generalized KdV Equation with Two Power Nonlinearities������������������������������������������������������������������
	13.9.1 Using the Tanh Method�����������������������������������
	13.9.2 Using the Sine-cosine Method������������������������������������������

	13.10 Compactons: Solitons with Compact Support������������������������������������������������������
	13.10.1 The K(n,n) Equation����������������������������������

	13.11 Variants of the K(n,n) Equation��������������������������������������������
	13.11.1 First Variant����������������������������
	13.11.2 Second Variant�����������������������������
	13.11.3 Third Variant����������������������������

	13.12 Compacton-like Solutions�������������������������������������
	13.12.1 The Modified KdV Equation����������������������������������������
	13.12.2 The Gardner Equation�����������������������������������
	13.12.3 The Modified Equal Width Equation������������������������������������������������

	References�����������������

	14 KdV and mKdV Equations of Higher-orders�������������������������������������������������
	14.1 Introduction������������������������
	14.2 Family of Higher-order KdV Equations������������������������������������������������
	14.2.1 Fifth-order KdV Equations���������������������������������������
	14.2.2 Seventh-order KdV Equations�����������������������������������������
	14.2.3 Ninth-order KdV Equations���������������������������������������

	14.3 Fifth-order KdV Equations�������������������������������������
	14.3.1 Using the Tanh-coth Method����������������������������������������
	14.3.2 The First Condition���������������������������������
	14.3.3 The Second Condition����������������������������������
	14.3.4 N-soliton Solutions of the Fifth-order KdV Equations������������������������������������������������������������������

	14.4 Seventh-order KdV Equations���������������������������������������
	14.4.1 Using the Tanh-coth Method����������������������������������������
	14.4.2 N-soliton Solutions of the Seventh-order KdV Equations��������������������������������������������������������������������

	14.5 Ninth-order KdV Equations�������������������������������������
	14.5.1 Using the Tanh-coth Method����������������������������������������
	14.5.2 The Soliton Solutions�����������������������������������

	14.6 Family of Higher-order mKdV Equations�������������������������������������������������
	14.6.1 N-soliton Solutions for Fifth-order mKdV Equation���������������������������������������������������������������
	14.6.2 Singular Soliton Solutions for Fifth-order mKdV Equation����������������������������������������������������������������������
	14.6.3 N-soliton Solutions for the Seventh-order mKdV Equation���������������������������������������������������������������������

	14.7 Complex Solution for the Seventh-order mKdV Equations�����������������������������������������������������������������
	14.8 The Hirota-Satsuma Equations����������������������������������������
	14.8.1 Using the Tanh-coth Method����������������������������������������
	14.8.2 N-soliton Solutions of the Hirota-Satsuma System��������������������������������������������������������������
	14.8.3 N-soliton Solutions by an Alternative Method����������������������������������������������������������

	14.9 Generalized Short Wave Equation�������������������������������������������
	References�����������������

	15 Family of KdV-type Equations��������������������������������������
	15.1 Introduction������������������������
	15.2 The Complex Modified KdV Equation���������������������������������������������
	15.2.1 Using the Sine-cosine Method������������������������������������������
	15.2.2 Using the Tanh-coth Method����������������������������������������

	15.3 The Benjamin-Bona-Mahony Equation���������������������������������������������
	15.3.1 Using the Sine-cosine Method������������������������������������������
	15.3.2 Using the Tanh-coth Method����������������������������������������

	15.4 The Medium Equal Width (MEW) Equation�������������������������������������������������
	15.4.1 Using the Sine-cosine Method������������������������������������������
	15.4.2 Using the Tanh-coth Method����������������������������������������

	15.5 The Kawahara and the Modified Kawahara Equations������������������������������������������������������������
	15.5.1 The Kawahara Equation�����������������������������������
	15.5.2 The Modified Kawahara Equation��������������������������������������������

	15.6 The Kadomtsev-Petviashvili (KP) Equation����������������������������������������������������
	15.6.1 Using the Tanh-coth Method����������������������������������������
	15.6.2 Multiple-soliton Solutions of the KP Equation�����������������������������������������������������������

	15.7 The Zakharov-Kuznetsov (ZK) Equation������������������������������������������������
	15.8 The Benjamin-Ono Equation�������������������������������������
	15.9 The KdV-Burgers Equation������������������������������������
	15.10 Seventh-order KdV Equation���������������������������������������
	15.10.1 The Sech Method������������������������������

	15.11 Ninth-order KdV Equation�������������������������������������
	15.11.1 The Sech Method������������������������������

	References�����������������

	16 Boussinesq, Klein-Gordon and Liouville Equations����������������������������������������������������������
	16.1 Introduction������������������������
	16.2 The Boussinesq Equation
	16.2.1 Using the Tanh-coth Method����������������������������������������
	16.2.2 Multiple-soliton Solutions of the Boussinesq Equation

	16.3 The Improved Boussinesq Equation
	16.4 The Klein-Gordon Equation�������������������������������������
	16.5 The Liouville Equation����������������������������������
	16.6 The Sine-Gordon Equation������������������������������������
	16.6.1 Using the Tanh-coth Method����������������������������������������
	16.6.2 Using the Bäcklund Transformation
	16.6.3 Multiple-soliton Solutions for Sine-Gordon Equation�����������������������������������������������������������������

	16.7 The Sinh-Gordon Equation������������������������������������
	16.8 The Dodd-Bullough-Mikhailov Equation������������������������������������������������
	16.9 The Tzitzeica-Dodd-Bullough Equation������������������������������������������������
	16.10 The Zhiber-Shabat Equation���������������������������������������
	References�����������������

	17 Burgers, Fisher and Related Equations�����������������������������������������������
	17.1 Introduction������������������������
	17.2 The Burgers Equation��������������������������������
	17.2.1 Using the Tanh-coth Method����������������������������������������
	17.2.2 Using the Cole-Hopf Transformation������������������������������������������������

	17.3 The Fisher Equation�������������������������������
	17.4 The Huxley Equation�������������������������������
	17.5 The Burgers-Fisher Equation���������������������������������������
	17.6 The Burgers-Huxley Equation���������������������������������������
	17.7 The FitzHugh-Nagumo Equation����������������������������������������
	17.8 Parabolic Equation with Exponential Nonlinearity������������������������������������������������������������
	17.9 The Coupled Burgers Equation����������������������������������������
	17.10 The Kuramoto-Sivashinsky (KS) Equation���������������������������������������������������
	References�����������������

	18 Families of Camassa-Holm and Schrodinger Equations������������������������������������������������������������
	18.1 Introduction������������������������
	18.2 The Family of Camassa-Holm Equations������������������������������������������������
	18.2.1 Using the Tanh-coth Method����������������������������������������
	18.2.2 Using an Exponential Algorithm��������������������������������������������

	18.3 Schrodinger Equation of Cubic Nonlinearity������������������������������������������������������
	18.4 Schrodinger Equation with Power Law Nonlinearity������������������������������������������������������������
	18.5 The Ginzburg-Landau Equation����������������������������������������
	18.5.1 The Cubic Ginzburg-Landau Equation������������������������������������������������
	18.5.2 The Generalized Cubic Ginzburg-Landau Equation������������������������������������������������������������
	18.5.3 The Generalized Quintic Ginzburg-Landau Equation��������������������������������������������������������������

	References�����������������


	Appendix���������������
	A Indefinite Integrals�����������������������������
	A.1 Fundamental Forms����������������������������
	A.2 Trigonometric Forms������������������������������
	A.3 Inverse Trigonometric Forms��������������������������������������
	A.4 Exponential and Logarithmic Forms��������������������������������������������
	A.5 Hyperbolic Forms���������������������������
	A.6 Other Forms����������������������

	B Series���������������
	B.1 Exponential Functions��������������������������������
	B.2 Trigonometric Functions����������������������������������
	B.3 Inverse Trigonometric Functions������������������������������������������
	B.4 Hyperbolic Functions�������������������������������
	B.5 Inverse Hyperbolic Functions

	C Exact Solutions of Burgers’ Equation���������������������������������������������
	D Padé Approximants for Well-Known Functions
	D.1 Exponential Functions��������������������������������
	D.2 Trigonometric Functions����������������������������������
	D.3 Hyperbolic Functions�������������������������������
	D.4 Logarithmic Functions��������������������������������

	E The Error and Gamma Functions��������������������������������������
	E.1 The Error function�����������������������������
	E.2 The Gamma function Γ(x)

	F Infinite Series������������������������
	F.1 Numerical Series���������������������������
	F.2 Trigonometric Series�������������������������������


	Answers��������������
	Index������������


 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     same as current
      

        
     1
     1
     1
     602
     336
    
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.1a
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base



