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Abstract

The vector Maxwell equations of non-linear optics coupled to a single Lorentz oscillator and with instantaneous Kerr
non-linearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equa-
tions are obtained. The aim of the analysis is to explore the properties of Maxwell’s equations in non-linear optics, without
resorting to the commonly used non-linear Schrödinger (NLS) equation approximation in which a high frequency carrier wave
is modulated on long length and time scales due to non-linear sideband wave interactions. This is important in femto-second
pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the
equations involves the solution of a polynomial equation for the electric fieldE, in terms of the canonical variables, with
possible multiple real roots forE. In order to circumvent this problem, non-canonical Poisson bracket formulations of the
equations are obtained in which the electric field is one of the non-canonical variables. Noether’s theorem, and the Lie point
symmetries admitted by the equations are used to obtain four conservation laws, including the electromagnetic momentum and
energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used
to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr
non-linearity, are shown to reduce to a single ordinary differential equation for the variabley = E2, whereE is the electric
field intensity. The differential equation has solutionsy = y(ξ), whereξ = z − st is the traveling wave variable ands is the
velocity of the wave. These solutions exhibit new phenomena not obtainable by the NLS approximation. The characteristics
of the solutions depends on the values of the wave velocitys and the energy integration constantε. Both smooth periodic
traveling waves and non-smooth solutions in which the electric field gradient diverges (i.e. solutions in which|Eξ| → ∞ at
specific values ofE, but where|E| is bounded) are obtained. The traveling wave solutions also include a kink-type solution,
with possible important applications in femto-second technology.
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1. Introduction

Most theoretical investigations of optical pulse propagation in fibers have been conducted by using the non-linear
Schrödinger (NLS) equation or extended versions of the NLS equation. This approximation is very accurate for cases
with a slowly varying envelope, shaping the carrier wave pulse[1,2]. However, for very short femto-second optical
pulses a first principles approach in which the basic vector Maxwell equations are solved, coupled with a variety of
resonant Lorentz oscillator models for the dielectric medium has been suggested[3]. In this approach, Maxwell’s
equations are solved without invoking weakly non-linear asymptotics used in the NLS approach, in which the high
frequency carrier wave is modulated by a slowly varying envelope. The Lorentz models can involve one or more
linear or non-linear oscillators describing the polarization electric fieldP. By solving Maxwell’s equations coupled
to the Lorentz oscillator equations directly, the slowly varying envelope assumption of the NLS approach need not
be utilized. However, Hile[1] has shown, that even for cases where the NLS approximation should fail from a
strictly mathematical point of view (i.e., when the frequencies of the carrier wave and the envelope are comparable),
it nevertheless works surprisingly well, at least in the nano-second regime.

We focus on the properties of the Maxwell–Lorentz system, which are fundamentally and qualitatively different
from that obtained using the NLS equation approach. We consider the simplest case of Maxwell’s equations in
one Cartesian space dimension coupled to a single resonant oscillator describing the coupling of the polarization
electric fieldP to the electric fieldE. The model assumes that the displacement currentD is related to the electric
field strengthE and polarizationP by a constitutive relation of the formD = E + P + aE2σ+1 (a andσ are the
positive constants).

The model equations are expressed in terms of both Lagrangian and Hamiltonian variational principles. The
Hamiltonian formulation of the equations involves the solution of a polynomial equation for the electric fieldE in
terms of the canonical variables. In order to circumvent this problem non-canonical Poisson bracket formulations
of the equations are investigated in whichE is one of the non-canonical variables (Section 2).

The Lie point symmetries admitted by the equations are obtained inSection 3(the equations are also shown
to possess discrete, non-Lie symmetries). The Lie symmetries are used in conjunction with Noether’s theorem
(e.g. [7,8]) to determine four conservation laws for the system, including the electromagnetic momentum and
energy conservation laws associated with the space and time translation symmetries admitted by the equations.
The interesting question of whether the equations admit generalized Lie symmetries is left as an open question.
Our analysis also does not address the important question of whether the equations are integrable, or admit a
bi-Hamiltonian or multi-Hamiltonian structure which is a hallmark of completely integrable systems (e.g.[8,18]).

The Lie point symmetries are used to derive classical similarity solutions of the equations (Section 4), using the
standard method described by Ovsjannikov[9], Ibragimov[10], Bluman and Kumei[7] and Olver[8].

The traveling wave similarity solutions are investigated inSection 5. For this class of solutions, the equations can
be reduced to a single first order ordinary differential equation (ODE) for the electric fieldE as a function of the
traveling wave variableξ = z − st, wheres is the velocity of the wave. If the integration constant,c1, involved in
integrating Ampere’s equation is set equal to zero, the differential equation is more naturally expressed in terms of
y = E2. Both canonical and non-canonical Poisson bracket descriptions of the traveling waves are obtained. The
differential equation fory = y(ξ) is investigated in detail for the case of a cubic, Kerr non-linearity (σ = 1). The
first order ODE fory = y(ξ), is shown to develop shocks in the electric field (|Eξ| → ∞ asy → yc = (1− s2)/s2

andE → Ec = y
1/2
c ). For a special choice of the energy integration constantε, the singularity aty = yc in the

denominator of the ODE is cancelled by a similar factor in the numerator, and leads to a special critical solution
that passes smoothly through the critical point. A further, exact kink-type, implicit solution is also obtained. The
kink solution corresponds to a heteroclinic orbit connecting two saddles in the(E, p)-phase plane, wherep = Pξ

is the canonical momentum. Numerical simulations are carried out to test the stability of the solutions.
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Section 6concludes with a summary and discussion.

2. Variational formulations

In this section we first discuss the model equations and the underlying physical assumptions (Section 2.1) and
show that the system can be reduced to a single non-linear wave equation for the magnetic potentialA, in which
the non-linear term is due to the Kerr non-linearity, and the wave dispersion is due to the effects of the Lorentz
oscillator. InSection 2.2, the model equations are expressed in terms of Lagrangian and Hamiltonian variational
principles. Both canonical and non-canonical Poisson bracket formulations of the equations are obtained.

2.1. Magnetic potential formulation

The equations of the model consist of Maxwell’s equations coupled to a single Lorentz oscillator governing
the polarization fieldP, in which the oscillator is driven by the electric fieldE. The equations of the model in
dimensionless physical variables have the form[4]:

Bt + Ez = 0, (2.1)

Dt + Bz = 0, (2.2)

D = E + E2σ+1

2σ + 1
+ P, (2.3)

Ptt + P − αE = 0. (2.4)

Here the residual Raman molecular vibration has been neglected. We assume a transverse plane wave propagating
along thez-axis in which the electric fieldE = (E(z, t),0,0)T, displacement currentD = (D(z, t),0,0)T and
polarizationP = (P(z, t),0,0)T all lie along thex-axis and the magnetic field inductionB = (0, B(z, t),0)T lies
along they-axis. The displacement currentD in (2.3)depends non-linearly on the electric fieldE, and linearly on
the polarizationP . The Lorentz oscillatorequation (2.4)shows that the polarization oscillations are driven by the
electric fieldE, where the coupling parameterα = (εs − ε∞)/ε∞. Hereεs andε∞ are the static permittivity and
linear permittivity in the medium, respectively[4]. The non-linear term inEq. (2.3), i.e.E2σ+1/(2σ + 1), is the
instantaneous Kerr non-linearity withσ being an integer. For cubic non-linearityσ = 1 and for quintic non-linearity
σ = 2. Eqs. (2.1) and (2.2)are Faraday’s law, and Ampere’s equation, respectively.

Introducing potentialsφ andA for the electric and magnetic fieldsE andB:

E = φz, B = Az. (2.5)

Faraday’s law(2.1)can be written as(E +At)z = 0. Thus

B = Az, E = −At , (2.6)

are representations forB andE in terms of the magnetic potentialA. In this representation of the fieldsE and
B, Faraday’s law(2.1) is automatically satisfied, as a consequence of the integrability conditionAzt = Atz. Thus,
(2.1)–(2.4)reduce to the system:

∂

∂t

(
−At − A

2σ+1
t

2σ + 1
+ P

)
+Azz = 0, (2.7)
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Ptt + P + αAt = 0 (2.8)

for A andP .
AssumingP(z,0) = Pt(z,0) = 0, (2.8)can be integrated to yield the solution forP as a convolution integral in

the form:

P(z, t) = −α

∫ t

0

∂A(z, t′)
∂t′

sin(t − t′)dt′. (2.9)

Using(2.9) in (2.7) then yields the non-linear wave equation:

Azz− (1 +A2σ
t )Att − α

∫ t

0

∂A(z, t′)
∂t′

cos(t − t′)dt′ = 0 (2.10)

for A. The non-linear termA2σ
t Att in (2.10)is due to the Kerr non-linearity in the relation betweenD andE. The

waveequation (2.10)is dispersive due to the convolution integral term which is due to the oscillatory coupling of
the polarization fieldP to the electric fieldE in the Lorentz model. Thus,(2.10)suggests that the interplay between
non-linear pulse steepening and dispersion will play an important role in the Maxwell system(2.1)–(2.4).

A more general version of a non-linear wave equation forA obtained by eliminatingP from (2.7) and (2.8)is(
∂2

∂t2
+ 1

)
[Azz− (1 +A2σ

t )Att] − αAtt = 0. (2.11)

Unlike (2.10), Eq. (2.11)does not assume special initial data forP andPt .

2.2. Variational principles

The system ofEqs. (2.7) and (2.8)can be obtained by requiring that the action:

L =
∫ ∞

−∞
dz
∫ ∞

−∞
dt L, (2.12)

be stationary, where

L = 1

2
A2

t + A2σ+2
t

(2σ + 1)(2σ + 2)
− 1

2
A2

z + P2
t − P2

2α
−AtP, (2.13)

is the Lagrangian density.
The Maxwell system(2.7) and (2.8)can be written in Hamiltonian form by using the canonical coordinates:

q1 = A, q2 = P, (2.14)

and the canonical momenta

p1 = ∂L

∂At

= At + A
2σ+1
t

2σ + 1
− q2, (2.15)

p2 = ∂L

∂Pt

= Pt

α
. (2.16)

The Hamiltonian densityH is given by the standard Legendre transformation:

H =
2∑

k=1

pkqk,t − L = 1

2
A2

t + A
2σ+2
t

2σ + 2
+ 1

2
A2

z + P2
t

2α
+ P2

2α
, (2.17)
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and the Hamiltonian functionalH = ∫∞
−∞ H dz. Note thatH can be written in terms of the canonical coordinates

by solving(2.15)for At , i.e.,At = f(p1 + q2), where the functionf satisfies the polynomial equation:

Y(f) = f 2σ+1

2σ + 1
+ f = p1 + q2. (2.18)

Hence

H = 1

2
f 2 + f 2σ+2

2σ + 2
+ 1

2

(
∂q1

∂z

)2

+ αp2
2

2
+ q2

2

2α
, (2.19)

is the form ofH in terms of the canonical variables. Hamilton’s equations

∂qj

∂t
= δH

δpj

,
∂pj

∂t
= − δH

δqj
(j = 1,2), (2.20)

are equivalent to the Maxwell system(2.7) and (2.8), when due account is taken of the implicitequation (2.18)for
f .

In (2.18)Y ′(f) = f 2σ + 1 > 0 (we assumef is real), and henceY(f) is a monotonic increasing function off if
σ is a positive integer. This means that there is a one–one relation betweenY(f) ≡ p1 + q2 andf = −E. In other
words, there is only one real root ofEq. (2.18)for f for realp1 + q2. However, in more complicated constitutive
relations between the electric displacementD andE in (2.4), Y(f) might not be a monotone function off . Only
real roots of(2.18)for f ≡ −E are physically relevant. For example, forσ = 1, (2.18)is a cubic equation, whereas
for σ = 2 the equation is a quintic equation forf . For the caseσ = 1, the cubic(2.18)has one real rootf1 and two
complex conjugate rootsf2 andf3. The relevant real rootf1, can be written in the form:

f = f1 = [C + (C2 + 1)1/2]1/3 − [C + (C2 + 1)1/2]−1/3, (2.21)

where

C = 3
2(p1 + q2) (2.22)

[11, p. 17, Formula 3.8.2; 16, p. 90]. Thus, forσ = 1 (cubic Kerr non-linearity), there is only one real solution for
f , and only one real Hamiltonian in(2.19).

The relation(2.18) indicates that in generalE will be a multi-valued function ofp1 + q2, but we requireE
to be a single valued function ofz, at a fixed timet for a physically valid solution. This same problem also
arises in the canonical Hamiltonian description of the traveling wave solutions of the Maxwell–Lorentz system
(2.1)–(2.4)discussed inSection 5. For these solutions, all physical variables only depend on the traveling wave
variableξ = z− st. The equations can be represented as a two-dimensional Hamiltonian system, with Hamiltonian
H0(q, p), whereq = P andp = Pξ. The canonical coordinateq in the model is a polynomial in the electric field
E. To write the equations in terms of canonical coordinates, it is necessary to solve the polynomial equation to
determine the electric field in terms ofq. In the case of a Kerr cubic non-linearity, there are up to three real solutions
for the electric fieldE = E(q). In order to circumvent these problems of multi-valued solutions forE = E(q), it is
simpler to change from a canonical Poisson bracket description, to a non-canonical Poisson bracket description in
whichE is one of the non-canonical variables.

The occurrence of multiple valued functions in the Hamiltonianequations (2.18)–(2.22)is reminiscent of
multi-valued Clebsch variables that can arise in canonical formulations of the equations of ideal fluid mechanics.
For example, Zakharov and Kuznetsov[20], in discussing knotted flows in ideal, incompressible fluid mechanics
use the Clebsch representationv = ∇φ + λ∇µ for the fluid velocityv, and� = ∇ × v = ∇λ × ∇µ is the fluid
vorticity. The Clebsch potentialφ is associated with potential flow and the Clebsch potentialµ is identified with the
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conserved fluid velocity circulation moving with a fluid element in Kelvin’s theorem. Zakharov and Kuznetsov note
that the Clebsch potentialsλ andµ in general are multiple valued functions, and hence it is appropriate to introduce
alternative formulations and variables in which the flow field and vorticity are uniquely defined.

In order to construct a non-canonical Poisson bracket formulation of the equations, we first note that Hamilton’s
equation (2.20)can be written in the canonical Poisson bracket form:

∂�

∂t
= {�,H}c, (2.23)

where� = (q1, q2, p1, p2)
T and

{F,G}c =
∫ ∞

−∞
dz

2∑
j=1

(
δF

δqj

δG

δpj

− δF

δpj

δG

δqj

)
. (2.24)

The Poisson bracket(2.24)can also be written in the form:

{F,G}c =
∫ ∞

−∞
dz

δF

δηα
Jαβ
c

δG

δηβ
, (2.25)

where

Jc =

 O2 I2

−I2 O2


 . (2.26)

Here,O2 andI2 denote the zero 2× 2 matrix and the unit 2× 2 matrix, respectively.Jc is known as the canonical
symplectic operator or matrix. One can also think ofJc as defining the symplectic metric (e.g.[17]). Note thatJc

is a skew-symmetric matrix withJT = −J, and the Poisson bracket(2.25)satisfies the Jacobi identity[17,19,20].
One can construct a non-canonical Poisson bracket by transforming the canonical Poisson bracket to the new

non-canonical coordinates (e.g.[19–23]). However, one may still be confronted with situations in which the solutions
of the equations evolve to produce shocks (e.g. in compressible gas dynamics, or in the inviscid Burgers equation,
the solutions can become multiple valued, unless one inserts a shock to restore the uniqueness of the weak solution).
Using the non-canonical physical variables

�̃ = (E,B, P, p2) where p2 = Pt

α
, (2.27)

the Maxwell system(2.1)–(2.4)can be written in the Poisson bracket form:

∂�̃

∂t
= {�̃,H}, (2.28)

whereH is the Hamiltonian functional. The non-canonical Poisson bracket in(2.28) is defined by the equation
{F̃, G̃} := {F,G}c, whereF̃[�̃] = F[�] is the functional obtained by writing the functionalF in terms of the
new variables̃� and similarly, forG̃. Thus, to obtain the explicit form of the non-canonical Poisson bracket it is
necessary to determine the transformation of variational derivatives between the new and the old variables. These
transformations are

δF

δq1
= −Dz

(
δF̃

δB

)
,

δF

δq2
= δF̃

δP
+ δF̃

δE

∂E

∂q2
,

δF

δp1
= δF̃

δE

∂E

∂p1
,

δF

δp2
= δF̃

δp2
, (2.29)

whereDz is the total derivative operator with respect toz. Using(2.29)to replace the functional derivativesδF/δη
in (2.25)we obtain:
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{F̃, G̃} =
∫ ∞

−∞
dz

δF̃

δη̃α
J̃αβ δG̃

δη̃β
(2.30)

for the non-canonical Poisson bracket{F̃, G̃}, where

J̃ =




0 −ζDz 0 −ζ

−Dz(ζ·) 0 0 0

0 0 0 1

ζ 0 −1 0


 , (2.31)

ζ = ∂f

∂p1
= ∂f

∂q2
= (1 + E2σ)−1. (2.32)

The matrix operator̃J in (2.31)is a skew adjoint operator with respect to the symplectic inner product

〈u, v〉 =
∫ ∞

−∞
uαv

α dz =
∫ ∞

−∞
uαJ̃

αβvβ dz. (2.33)

In Appendix A, we show directly that the bracket(2.30)is skew-symmetric and that the Jacobi identity is satisfied,
by using the results of Olver[8]. The Hamiltonian operator̃J in (2.31)is singular whenDzζ → ∞. This occurs at
points where the electric field gradientDzE → ∞, and it is then necessary to consider how to treat shocks in the
electric field.

The set of non-canonical variables(2.27) is not unique. For example, one could also use the non-canonical
variables�̂ = (q1, q2, E, p2)

T ≡ (A, P,E, Pt/α)
T. The non-canonical Poisson bracket in this case satisfies the

conditions of skew-symmetry and the Jacobi identity, and the symplectic matrix operatorĴ, depends onζ, but not
on the totalz-derivative operatorDz.

3. Lie symmetries and conservation laws

In this section we obtain the Lie point symmetries of the Maxwell–Lorentz oscillatorequations (2.1)–(2.4)or
the equivalent system(2.7) and (2.8), and use the symmetries to obtain conservation laws for the equations by
using Noether’s theorem. We first present a short overview of the use of Lie symmetries in obtaining solutions
of differential equations inSection 3.1. This also includes a discussion of Noether’s first theorem in obtaining
conservation laws for a system of differential equations that arise as a critical point of a Lagrangian variational
principle (see e.g.[8, Chapter 5]for the Noether’s first and second theorems on variational symmetries). The Lie
point symmetries admitted by the Maxwell–Lorentz oscillator system(2.1)–(2.4)and its Lie algebra are obtained in
Section 3.2. The symmetries are then used in conjunction with Noether’s theorem to obtain conservation laws for the
system. We identify the stress-energy tensor for the system associated with the momentum and energy conservation
laws.

3.1. Basic results on Lie symmetries and differential equations

The general procedure to obtain Lie symmetries of differential equations, and their application to find conservation
laws and analytic solutions of the equations are described in detail in several monographs on the subject (e.g.
[7–10,12]) and in numerous papers in the literature (e.g.[15,24,25]).
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Consider a system of differential equations in the dependent variablesuα (1 ≤ α ≤ m) and independent variables
xi (1 ≤ i ≤ n) of the form:

Ωs(xi, uα, uα
i , u

α
ij , . . . ) = 0, 1 ≤ s ≤ k, (3.1)

where the subscripts denote partial derivatives (e.g.uα
i = ∂uα/∂xi). To determine continuous symmetries of(3.1),

it is useful to consider infinitesimal Lie transformations of the form:

x′i = xi + εξi + O(ε2), u′α = uα + εφα + O(ε2), (3.2)

that leave the equation system invariant to O(ε). Lie point symmetries correspond to the case where the infinitesimal
generatorsξi = ξi(xi, uα) andφα = φα(xi, uα) depend only on thexi and theuα and not on the derivatives or
integrals of theuα. Generalized Lie symmetries are obtained in the case when the transformations(3.2)also depend
on the derivatives or integrals of theuα.

The infinitesimal transformations for the first and second derivatives to O(ε) are given by the prolongation
formulae:

u′α
i = uα

i + εζαi , u′α
ij = uα

ij + εζαij , (3.3)

where

ζαi = Diφ̂
α + ξsuα

si, ζαij = DiDjφ̂
α + ξsuα

sij. (3.4)

Here

φ̂α = φα − ξsuα
s , (3.5)

corresponds to the canonical Lie transformation for whichx′i = xi andu′α = uα + εφ̂α. The symbolDi in (3.4)
denotes the total derivative operator with respect toxi. Similar formulae to(3.4) apply for the transformation of
higher order derivatives.

The condition for invariance of the differential equation system(3.1) to O(ε) under the Lie transformation(3.2)
can be expressed in the form:

LXΩs ≡ X̃Ωs = 0 wheneverΩs = 0, 1 ≤ s ≤ k, (3.6)

where

X̃ = X + ζαi
∂

∂uα
i

+ ζαij
∂

∂uα
ij

+ · · · , (3.7)

is the prolongation of the vector field

X = ξi
∂

∂xi
+ φα ∂

∂uα
, (3.8)

associated with the infinitesimal transformation(3.2). The symbolLXΩs in (3.6)denotes the Lie derivative ofΩs

with respect to the vector fieldX (i.e.LXΩs = (dΩs/dε)ε=0).
The prolonged symmetry operatorX̃ is related to the prolonged, canonical symmetry operatorX̂ by the equation

X̃ = X̂ + ξiDi. (3.9)

The canonical symmetry operator (or the evolutionary symmetry with characteristicφ̂) corresponds to the symmetry
transformation for whichx′i = xi andu′α = uα + εφ̂α. The prolonged symmetry operatorX̂[φ̂] is given by

X̂[φ̂] = φ̂α ∂

∂uα
+ Diφ̂

α ∂

∂uα
i

+ DiDjφ̂
α ∂

∂uα
ij

+ · · · + Di1Di2 . . . Dis φ̂
α ∂

∂uα
i1i2...is

+ · · · . (3.10)
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The Lie bracket of two canonical symmetry operators with characteristicsφ̂1 andφ̂2 is given by

[X̂[φ̂1], X̂[φ̂2]] = X̂[φ̂3] where φ̂3 = X̂[φ̂1]φ̂2 − X̂[φ̂2]φ̂1. (3.11)

In addition, [X̂[φ̂],Di] = 0 and [Di,Dj] = 0 [10]. Thus, the canonical symmetry operators form a Lie algebra,L̂,
which will be infinite dimensional if there is an infinite number of distinctφ̂j. Ibragimov[10] shows that the algebrâL
is a subalgebra of̃L, the symmetry algebra of the prolonged vector fieldsX̃. In fact,L̂ is isomorphic to the factor alge-
braL̃/L∗, whereL∗ = {X∗ ∈ L̃ : X∗ = ξ

j
∗Dj} is a closed ideal iñL (i.e. [X̃,X∗] ∈ L∗ for all X∗ ∈ L∗ andX̃ ∈ L̃).

3.1.1. Classical similarity solutions
Lie point symmetries of the system(3.1)are determined by solving the overdetermined Lie determiningequation

(3.6) for the infinitesimal generators{ξi : 1 ≤ i ≤ n} and the{φα : 1 ≤ α ≤ m}. Classical similarity solutions
of (3.1)are obtained by requiring the solution surfaces for theuα are mapped onto the same set of surfaces, in the
sense thatu′α(x) = uα(x′). These conditions, to O(ε) yield the first order partial differential equationsξiuα

i = φα

(e.g.[15]), with characteristics being given by the group trajectories:

dxi

dε
= ξi and

duα

dε
= φα, 1 ≤ i ≤ n, 1 ≤ α ≤ m. (3.12)

Integration of the group trajectories yield the invariants of the point Lie group admitted by the system, and these
may be used to construct the classical similarity solutions of the system(3.1). Classical similarity solutions of the
Maxwell–Lorentz system(2.1)–(2.4)are constructed by these methods inSection 4.

3.1.2. Noether’s first theorem and the calculus of variations
In this subsection we consider differential equation systems that arise from critical point conditions for a La-

grangian action principle, in which the action is of the form:

J [u] =
∫
R

dx L(xi, uα, uα
i , u

α
ij , . . . ). (3.13)

At a critical point, the action is stationary, i.e.,

δJ = J [u + εv] − J [u] =
∫
R

dx δL = 0, (3.14)

where

δL ≡ L[u + εv] − L[u] = ε(vγEγ(L) + DiW
i[u, v]) + O(ε2) (3.15)

[7]. Thus, the critical point requirementδJ = 0 is satisfied if theuα satisfy the Euler–Lagrange equations:

Eα[L] = ∂L

∂uα
− Di

(
∂L

∂uα
i

)
+ DiDj

(
∂L

∂uα
ij

)
− DiDjDk

(
∂L

∂uα
ijk

)
+ · · · = 0, (3.16)

provided that the surface termW · n that arises from integratingDiW
i by using Gauss’s theorem vanishes on the

boundary∂R with outward unit normaln of the integration regionR for J [u]. In (3.15)the boundary vectorWi[u, v]
is given by

Wi[u, v] = vγ

[
∂L

∂u
γ
i

− Dj

(
∂L

∂u
γ
ij

)
+ DjDk

(
∂L

∂u
γ

ijk

)
− · · ·

]

+ v
γ
j

[
∂L

∂u
γ
ij

− Dk

(
∂L

∂u
γ

ijk

)
+ D3Dk

(
∂L

∂u
γ

ijk3

)
− · · ·

]
+ v

γ

jk

[
∂L

∂u
γ

ijk

− Ds

(
∂L

∂u
γ

ijks

)
+ · · ·

]
+ · · · .

(3.17)
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Thus,Wi[u, v] will vanish on∂R if δuα = εvα and its normal derivatives all vanish on the boundary. In the above
equations,Eα[L] defines the Euler operatorEα for the system. The Euler–Lagrangeequations (3.16)constitute the
differential equationsΩs = 0 (1 ≤ s ≤ m) for the system in this case. The surface vectorWi plays a central role in
Noether’s theorem.

3.1.2.1. Noether’s first theorem.One important idea in the proof of Noether’s theorem is the result that two
Lagrangian densitiesL1 andL2 that differ by a pure divergence have the same Euler–Lagrangeequation (3.16).
This property depends on the result thatEγ [DiF ] = 0 for any sufficiently smooth functionalF [u]. Thus ifL2−L1 =
DiA

i, thenEα[L1] = Eα[L2]. This fact motivates the definition of a variational symmetry given below.

3.1.2.2. Definition. A canonical, generalized, Lie symmetryx∗ = x, u∗α = uα + εφ̂α is called avariational
symmetryof the action(3.13), if there exists a vector fieldA such thatX̂L = DiA

i.
For a variational symmetry, we have to O(ε), thatL∗ − L = εX̂L = εDiA

i. HenceL∗ andL differ by a pure
divergence, which implies that to O(ε), L andL∗ have the same Euler–Lagrange equations. This explains the origin
of the definition of a variational symmetry.

Bluman and Kumei[7, Chapter 5]consider Boyer’s version of Noether’s theorem as well as the original version
of the theorem given by Noether. These two versions of Noether’s theorem are given below.

3.1.2.3. Boyer’s version of Noether’s theorem.Let X̂[φ̂] be the Lie symmetry operator corresponding to the
generalized, canonical Lie transformationx∗i = xi andu∗α = uα + εφ̂α. If φ̂ is a variational symmetry of the action
(3.13)(i.e., if X̂[φ̂]L = DiA

i for some vector fieldA), then for any solutionu of the Euler–Lagrange equations
Eγ [L] = 0, there is a corresponding conservation law:

Di(W
i[u, φ̂] − Ai) = 0. (3.18)

The proof of(3.18)depends on the result:

X̂L = φ̂γEγ [L] + DiW
i[u, φ̂]. (3.19)

The result(3.19)follows from (3.15)with vγ = φ̂γ and the definition of̂X[φ̂]L as a Lie derivative. Using(3.19)
in conjunction with the fact that̂X[φ̂]L = DiA

i and notingEγ [L] = 0 for u a solution of the Euler–Lagrange
equation (3.16)establishes the theorem.

Note that the theorem in this form does not give a method to find variational symmetries. One can show that ifφ̂

is a variational symmetry, then it is also a generalized symmetry of the Euler–Lagrangeequation (3.16). However,
not all symmetries of the Euler–Lagrange equations are necessarily variational symmetries.

Below is the original version of Noether’s first theorem.

3.1.2.4. Noether’s theorem.If the action(3.13) is invariant under a generalized Lie transformation(3.2) (i.e.,
x′ = x + εξi, u′α = uα + εφα), then for any solutionu of the Euler–Lagrange equationsEγ [L] = 0, there is a
corresponding conservation law:

Di(W
i[u, φ̂] + ξiL) = 0 (3.20)

(see e.g.[7, Chapter 5]for a proof). Thus, one can think of Noether’s original version of the theorem as the special
case of Boyer’s version of the theorem whenAi = −ξiL.
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3.2. Lie symmetries and conservation laws

The Lie symmetries of the Maxwell–Lorentz oscillator system(2.1)–(2.6)or the equivalent equation system(2.7)
and (2.8)for A andP can be found by solving the Lie determiningequation (3.6)for the infinitesimal generators
of the Lie group. Below, we first write down the Lie determining equations for the system, and give the solutions
of the determining equations that correspond to the point Lie group. The point Lie algebra of the system is briefly
described, and the symmetries are then used to obtain conservation laws for the system by using Noether’s theorem,
as described in(3.13), etc.

3.2.1. Lie symmetries
The infinitesimal Lie transformations for the system(2.1)–(2.6)are of the form:

t′ = t + εξt, z′ = z + εξz, A′ = A+ εφA, E′ = E + εφE, B′ = B + εφB, P ′ = P + εφP .

(3.21)

The corresponding canonical Lie symmetry generatorsφ̂E, φ̂B, φ̂P and φ̂A are given by formulae analogous to
(3.5). Thus

φ̂w = φw − ξtwt − ξzwz, (3.22)

relates the canonical symmetry generatorφ̂w to φw, wherew can be any of the dependent variablesE, B, P orA.
The Lie determiningequation (3.6)for the infinitesimal generators of the system(2.1)–(2.4)can be written in the

form:

Dtφ̂
B + Dzφ̂

E = 0, (3.23)

(1 + E2σ)Dtφ̂
E + 2σE2σ−1Etφ̂

E + Dtφ̂
P + Dzφ̂

B = 0, (3.24)

D2
t φ̂

P + φ̂P − αφ̂E = 0. (3.25)

The auxiliaryequation (2.6)giving B andE in terms of the magnetic potentialA have Lie determining equations:

φ̂B = Dzφ̂
A and φ̂E = −Dtφ̂

A. (3.26)

Note that these equations can also be written down in terms of the non-canonical symmetry generatorsξt , ξz, φE,
φB, φP andφA. It is straightforward to write down the Lie determining equations for the equivalent system of
Eqs. (2.7) and (2.8)for A andP , but these equations are not necessary for the analysis.

For the case of Lie point symmetries, the non-canonical symmetry generators are assumed to depend only on
(t, z, E,B, P) in (3.21)–(3.26). Using (3.22), this means that the canonical symmetry operatorsφ̂w (w = E, B,
P , A) can depend only ont, z and the first order space and time derivatives ofE, B, P andA. The determining
equations (3.23)–(3.26)have solutions for the non-canonical symmetry generators of the form:

ξt = a1, ξz = a2, φE = 0, φP = 0, φB = a3, φA = a3z + a4, (3.27)

where the{aj : 1 ≤ j ≤ 4} are constants. The corresponding canonical Lie symmetry generators are

φ̂E = −a1Et − a2Ez, φ̂P = −a1Pt − a2Pz, φ̂B = a3 − a1Bt − a2Bz,

φ̂A = a3z + a4 − a1At − a2Az. (3.28)

One can verify that the canonical symmetries(3.28)do in fact satisfy the Lie determining equations on the solution
manifold of(2.1)–(2.6). For example,

Dtφ̂
B + Dzφ̂

E = −(a1Dt + a2Dz)(Bt + Ez). (3.29)
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SinceEt +Bz = 0 on the solution manifold, then the right handside of(3.29)is zero. Similarly, one can check that
the solution(3.28)for the canonical Lie symmetries satisfies the other Lie determiningequations (3.24)–(3.26)on
the solution manifold.

The Lie point symmetry generators in(3.27)correspond to the time (a1) and space (a2) translation symmetries, the
symmetry of invariance under translations inB (i.e. the transformationB′ = B+ εa3) and the guage transformation
symmetry forA (i.e. the symmetry for whichA′ = A + εa4). In principle,Eqs. (3.23)–(3.26)could also admit
generalized Lie symmetries that depend on the higher order derivatives ofE, B andP . However, this possibility
will not be investigated here.

TheEqs. (2.7) and (2.8)also admit the discrete, non-Lie symmetry transformation

t′ = t, z′ = z, A′ = −A, P ′ = −P. (3.30)

Another discrete symmetry is

t′ = −t, z′ = z, A′ = A, P ′ = −P (3.31)

(there may possibly be more discrete symmetries).

3.2.2. The point Lie algebra
The general vector fieldX in the point Lie algebra corresponding to the transformations(3.21)can be written in

the form:

X =
4∑

i=1

aiXi, (3.32)

where the basis vector fields{Xi : 1 ≤ i ≤ 4} are

X1 = ∂

∂t
, X2 = ∂

∂z
, X3 = z

∂

∂A
, X4 = ∂

∂A
. (3.33)

The only non-zero commutators [Xi,Xj] of the point Lie algebra are

[X2, X3] = X4 and [X3, X2] = −X4. (3.34)

Using(3.34), and noting [X4, X4] = 0, it follows that the Lie algebra is solvable.

3.2.3. Conservation laws
In this section both forms of Noether’s first theorem as described in(3.13), etc. are used to obtain conservation

laws for the system(2.7) and (2.8)of the form:

∂Wj

∂t
+ ∂Fj

∂z
= 0, j = 1,2,3,4. (3.35)

Because the Lagrangian densityL in (2.13)only involves first order derivatives ofA andP , the surface flux functions
Wi[u, φ̂] (i = 1,2) in (3.17)have the form:

W1 = φ̂A
∂L

∂At

+ φ̂P ∂L

∂Pt

, W2 = φ̂A
∂L

∂Az

+ φ̂P ∂L

∂Pz

, (3.36)

where(x1, x2) = (t, z) are the independent variables. We derive the conservation laws associated with the four
symmetry vector fieldsX1, X2, X3 andX4 below.
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3.2.3.1. Time translation invariance (X1). For this symmetry

ξt = 1, ξz = 0, φ̂A = −At , φ̂P = −Pt. (3.37)

This symmetry leaves the action(2.12)invariant. Using(3.36)we obtain

W1 = −At

(
At + A

2σ+1
t

2σ + 1
− P

)
− P2

t

α
, W2 = AtAz. (3.38)

Using Noether’s theorem(3.20), the conserved densityW1 = −(W1 + L) and fluxF1 = −W2 are given by

W1 = 1

2
(E2 + B2) + E2σ+2

2σ + 2
+ 1

2α
(P2

t + P2), (3.39)

F1 = EB. (3.40)

The conservation law(3.35) in this case is electromagnetic energy conservation law (Poynting’s theorem) for a
Kerr-medium.

3.2.3.2. Space translation invariance (X2). In this case

ξt = 0, ξz = 1, φ̂A = −Az, φ̂P = −Pz. (3.41)

Using(3.36)we obtain

W1 = B

(
E + E2σ+1

2σ + 2
− P

)
− PzPt

α
, W2 = B2. (3.42)

The action(2.12) is invariant under the transformation. Using Noether’s theorem(3.20), the conserved density
W2 = W1 and fluxF2 = W2 + L are given by

W2 = B

(
E + E2σ+1

2σ + 1
+ P

)
− PzPt

α
, (3.43)

F2 = 1

2
(E2 + B2) + E2σ+2

(2σ + 1)(2σ + 2)
+ 1

2α
(P2

t − P2) + EP. (3.44)

The conservation law in this case is the electromagnetic momentum conservation equation.
The above energy and momentum conservation laws can be expressed more concisely in the form

∂Tµν

∂xµ
= 0 (ν = 0,1), (3.45)

where we use the Einstein summation convention for repeated indices;(x0, x1) = (t, z); andTµν is the energy–
momentum tensor for the system, with components

T 00 = W1, T 10 = F1, T 01 = W2, T 11 = F2. (3.46)

From field theory (e.g.[13,14]) Tµν is given in terms of the Lagrangian densityL by the formulae:

Tµν = gνσTµ
σ , Tµ

σ = ∂L

∂qαµ

∂qα

∂xσ
− δµσL, (3.47)

where(q1, q2) = (A, P) are the canonical coordinates, and the metric tensorgµν = diag(1,−1) is the Minkowski,
flat space metric tensor.
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3.2.3.3. Translation invariance ofB (X3). In this caseξt = ξz = φ̂P = 0 andφ̂A = z. For this symmetry, the
action(2.12)is not invariant. However

X̂L =
(
z

∂

∂A
+ ∂

∂Az

)
L = −Az, (3.48)

and hence Boyer’s form of Noether’s theorem(3.18)applies withA = (0,−A)T. The conserved densityW3 = −W1

and fluxF3 = −(W2 − A2) are given by

W3 = z

(
E + E2σ+1

2σ + 1
+ P

)
, F3 = zB−A. (3.49)

3.2.3.4. Guage invariance (X4). In this caseξt = ξz = φ̂P = 0 andφ̂A = 1. The action(2.12)is invariant under
the transformation. Noether’s theorem(3.20)givesW4 = −W1 for the conserved density andF4 = −W2 for the
conserved flux as:

W4 = E + E2σ+1

2σ + 1
+ P, F4 = B. (3.50)

The conservation equation in this case is Ampere’sequation (2.2)which is one of the original basic equations of
the model.

4. Similarity solutions

In this section, we obtain classical similarity solutions of the Maxwell–Lorentz system(2.7) and (2.8). These
solutions involve four parameters, corresponding to the four Lie point symmetries discussed inSection 3.2. The
most useful solutions are the traveling wave solutions associated with the space and time translation symmetries.
The latter solutions are investigated inSection 5.

4.1. Classical similarity solutions

From(3.27), the general Lie point symmetry operatorX admitted by the system(2.7) and (2.8)is

X = a1
∂

∂t
+ a2

∂

∂z
+ (a3z + a4)

∂

∂A
, (4.1)

where{t, z,A, P} are the basic variables.
The classical similarity solutions of the system(2.7) and (2.8)are obtained by integrating the group trajectories

(e.g.Section 3.1.1, [7,8,15]):

dt

dτ
= a1,

dz

dτ
= a2,

dA

dτ
= a3z + a4,

dP

dτ
= 0, (4.2)

whereτ is a parameter along the trajectories. Integration of(4.2)yields the integrals:

z − st = J1, A− (1
2δz

2 + νz) = J2, P = J3 (4.3)

for the group invariants{J1, J2, J3}, where

s = a2

a1
, δ = a3

a1
, ν = a4

a1
(4.4)
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(we implicitly assumea1 �= 0). From(4.4) it follows that the Maxwell system(2.7) and (2.8)possesses classical
similarity solutions of the form:

A = 1
2δz

2 + νz + A(ξ), P = P(ξ), (4.5)

where

ξ = z − st, (4.6)

is the similarity variable, andA(ξ) andP(ξ) are functions ofξ obtained by substituting the solution ansatz(4.5) and
(4.6) into (2.7) and (2.8).

From(2.6), the solutions forE andB have the form:

E = sA′(ξ), B = δz + ν + A′(ξ). (4.7)

The solutions forP(ξ) andA(ξ) depend on the traveling wave variableξ = z − st, wheres is the velocity of the
traveling wave frame. From(4.7)

E − sB= −s(ν + δz). (4.8)

Noting thatE = (E,0,0)T, B = (0, B,0)T and settingu = (0,0, s)T for the velocity of the traveling wave frame,
we find

Ẽ = γ(E + u × B) = γ(0,0, E − sB)T (4.9)

for the electric field in the traveling wave frame, whereγ is the Lorentz gamma. Thus, we may identify the right
hand side of(4.8)with the electric field in the traveling wave frame.

Substituting the solution ansatz(4.5) and (4.6)into Ampere’s law(2.7), and integrating with respect toξ yields
the integral:

δξ + E

s
− s

(
E + E2σ+1

2σ + 1
+ P

)
= c1, (4.10)

wherec1 is an integration constant. The Lorentz oscillatorequation (2.8)becomes:

s2P ′′(ξ) + P = αE. (4.11)

Hence the system reduces to a second order ODE forP coupled with an algebraic equation relatingP andE (we
could of course also write the equations in terms ofA(ξ) andP(ξ), using the fact thatE = sA′(ξ)).

Eq. (4.10)can be solved forP in terms ofE, yielding the equation:

P = g(E) + δξ

s
, (4.12)

where

g(E) = E(1 − s2)

s2
− E2σ+1

2σ + 1
− c1

s
. (4.13)

Using the result(4.12)for P in (4.11)yields a second order differential equation forE(ξ) of the form:

s2(g′(E)Eξξ + g′′(E)E2
ξ ) + g(E) − αE + δξ

s
= 0. (4.14)

Thus, the similarity solutions for the system can be obtained by integrating the non-linear, second order, ordinary
differentialequation (4.14)for E = E(ξ).
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Note that a second independent integral of the system(4.10) and (4.11)can be obtained by substituting the
solution ansatz(4.5) and (4.6)into the energy conservationequation (3.35)for j = 1, where the conserved energy
densityW1 ≡ H, and energy fluxF1 are given in(3.39) and (3.40). This yields the energy conservation equation:

s2P2
ξ + P2

2α
+ E2

2
+ E2σ+2

2σ + 2
− 1

2
A2

ξ − δA = ε̃, (4.15)

whereε̃ is the energy integration constant. One can also obtain the integral(4.15)by combining the derivative of
(4.10)with (4.11).

5. Traveling wave solutions

In this section, we consider the class of traveling wave similarity solutions. These solutions correspond to the
caseδ = 0 in (4.4). We first obtain the canonical Poisson bracket for the traveling wave solutions, and then use
this bracket to obtain the non-canonical Poisson bracket using(E, p) as the variables, whereE andp = Pξ are the
electric field and canonical momentum, respectively. An analysis of the(E, p)-phase-space trajectories is used to
determine the different types of traveling waves that can be obtained depending on the traveling wave speeds, α
and the energy integration constantH0 for the waves. This is followed by some illustrative examples.

5.1. Poisson brackets for the traveling waves

The basic differential equations for the system(4.10) and (4.11)may be cast in the Hamiltonian form:

∂q

∂ξ
= ∂H0

∂p
,

∂p

∂ξ
= −∂H0

∂q
, (5.1)

where

q = P and p = Pξ, (5.2)

are the canonical variables and

H0 = N

(
s2p2 + q2

2α
+ E2(s2 − 1)

2s2
+ E2σ+2

2σ + 2

)
≡ Nε̃, (5.3)

is a re-scaled version of the energy integral(4.15)with normalization constant

N = α

s2
. (5.4)

In order to express the HamiltonianH0 in terms of the canonical variables it is necessary to invert the relation(4.12)
for δ = 0, i.e. to solve the equation:

q = E(1 − s2)

s2
− E2σ+1

2σ + 1
− c1

s
(5.5)

for E as a function ofq. Since there are multiple roots of(5.5) for E = E(q), it is in general simpler to use a
non-canonical Poisson bracket description of the equations, in which(E, p) are the non-canonical phase-space
coordinates.
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In the canonical Poisson bracket description of Hamilton’sequation (5.1), the equations are written in the form
ηξ = {η,H0}c, whereη = (q, p)T are the canonical variables, andξ = z − st is the traveling wave variable. The
canonical Poisson bracket{F,G}c has the form:

{F,G}c = ∂F

∂q

∂G

∂p
− ∂F

∂p

∂G

∂q
≡ (Fq, Fp) · J · (Gq,Gp)

T, (5.6)

where

J =

 0 1

−1 0


 , (5.7)

is the canonical symplectic matrix.
If one uses the non-canonical variables(E, p) Hamilton’s equations for the system may be written in the Poisson

bracket form:

η̃ξ = {η̃, H̃0} where η̃ = (E, p)T. (5.8)

Here, the non-canonical Poisson bracket{F̃ , G̃} is

{F̃ , G̃} = Eq

(
∂F̃

∂E

∂G̃

∂p
− ∂F̃

∂p

∂G̃

∂E

)
≡ ∇η̃F̃

T · J̃ · ∇η̃G̃, (5.9)

where

J̃ =

 0 Eq

−Eq 0


 , (5.10)

is the symplectic matrix operator for the non-canonical bracket. From(5.5)we find

Eq = 1

yc − E2σ
where yc = 1 − s2

s2
. (5.11)

Note thatF̃ (E, p) = F(q, p) and{F̃ , G̃} = {F,G}c define the non-canonical bracket in terms of the canonical
bracket.

It remains to check the skew-symmetry and the Jacobi identity for the non-canonical bracket(5.9). The skew-
symmetry of the bracket follows from the skew-symmetry ofJ̃ (i.e. J̃T = −J̃). From[8, p. 395, Eq. (6.15)], the
Jacobi identity is satisfied if

I(i, j, k) =
2∑

3=1

J̃ i3∂3J̃
jk + J̃ k3∂3J̃

ij + J̃ j3∂3J̃
ki = 0, i, j, k = 1,2, (5.12)

where∂3 = ∂/∂x3 and(x1, x2) = (E, p) = η̃T. Noting thatJ̃ ij is independent ofp, and evaluating the derivatives
in (5.12) we find that(5.12) is satisfied providedyc − E2σ �= 0. Hence the Jacobi identity is satisfied for the
non-canonical Poisson bracket, provided we avoid the singular manifoldyc − E2σ = 0, where|Eq| → ∞ and
|dEq/dE| → ∞.

The above analysis shows that the(E, p)-phase plane for 0< s2 < 1 (i.e. yc > 0) splits into three separate
regions: (i)E < −Ec, (ii) |E| < Ec and (iii) E > Ec, where

Ec =
(

1 − s2

s2

)1/2σ

. (5.13)
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Thus, the Hamiltonian dynamics may be thought of as occurring on three separate distinct manifolds, or regions
which are separated by the singular linesE = ±Ec in the(E, p)-phase plane.

5.2. Phase-space trajectories and critical point analysis

Hamilton’sequation (5.8)for the evolution of̃η = (E, p)T may be written in the form:

dE

dξ
= − p

E2σ − yc
,

dp

dξ
= 1

s2

(
(α − yc)E + E2σ+1

2σ + 1
+ c1

s

)
. (5.14)

To further investigate the phase-space trajectories(5.14) we restrict our analysis to the case of a cubic Kerr
non-linearity (σ = 1) and assumec1 = 0.

5.2.1. Caseσ = 1 andc1 = 0
In this case the phase-space trajectories(5.14)reduce to the equation system:

dE

dξ
= − p

E2 − yc
,

dp

dξ
= E(E2 − ye)

3s2
, (5.15)

where

ye = 3(yc − α), yc = 1 − s2

s2
. (5.16)

The autonomous system(5.15)can also be written in the form:

dp

dτ
= −E(E2 − ye)(E

2 − yc)

3s2
≡ G(E),

dE

dτ
= p, (5.17)

whereτ is a parameter along the trajectories. Note that in general,|Eξ| → ∞ asE → ±Ec, whereEc = y
1/2
c

(unlessp → 0 also in this limit). Also note thatEξ changes sign as we crossE = ±Ec.
From(5.3) and (5.5)

H0 = Nε̃ = N

(
s2p2 + E2(yc − E2/3)2

2α
− E2yc

2
+ E4

4

)
, (5.18)

is the general integral of(5.17). Thus, the trajectories(5.17)in the(E, p)-phase plane can be obtained by plotting
the contours ofH0.

The critical points of the dynamical system(5.17)occur at the points where dp/dτ = dE/dτ = 0 simultaneously.
The critical points in the(E, p) plane are located at:

(±Ec,0), (±Ee,0) and (0,0), (5.19)

where

Ec = y1/2
c , Ee = y1/2

e . (5.20)

Linearization of(5.17)about the critical points(5.19)yields the equations:

d

dτ


 δp

δE


 =


 0 G′(Ecr)

1 0




 δp

δE


 ≡ A


 δp

δE


 , (5.21)

whereEcr denotes a value ofE at a critical point, andG′(E) ≡ dG/dE.
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Table 1
Properties of the critical points in the(E, p)-phase plane for the traveling wave solutions of the Maxwell–Lorentz system(2.1)–(2.4)(the (E,p)
phase plane trajectories are given in(5.17))

Case Velocity range (±Ee,0) (±Ec,0) (0,0) Comment

(a) 0< |s| < s1 Center Saddle Center Ee > Ec > 0
(b) s1 < |s| < s2 Saddle Center Center Ec > Ee > 0
(c) s2 < |s| < 1 – Center Saddle Ec > 0, E2

e < 0
(d) |s| > 1 – – Center E2

c < 0, E2
e < 0

Searching for solutions(δp, δE)T = R exp(λτ) yields the eigen-equation system:

(A − λI)R ≡

−λ G′(Ecr)

1 −λ




 r1

r2


 =


 0

0


 , (5.22)

whereR = (r1, r2)
T is the right eigenvector of the matrixA corresponding to the eigenvalueλ. Eq. (5.22)has a

non-trivial solution forR providedλ satisfies the eigenvalue equation:

det(A − λI) = λ2 − G′(Ecr) = 0, (5.23)

andR = (λ,1)Tr2 is the corresponding eigenvector, wherer2 is an arbitrary constant. EvaluatingG′(Ecr), we find
thatλ = ±λ0, λ = ±λc, or λ = ±λe corresponding to the points(0,0), (±Ec,0) and(±Ee,0), where

λ2
0 = [s2(1 + α) − 1](1 − s2)

s6
, λ2

c = 4(1 − s2)[1 − (1 + 3α/2)s2]

s6
,

λ2
e = 4[1 − s2(1 + α)][(1 + 3α/2)s2 − 1]

s6
. (5.24)

Inspection of(5.24)shows that the signs ofλ2
0, λ2

c andλ2
e can change at the characteristic speeds:

s1 = (1 + 1
23α)−1/2, s2 = (1 + α)−1/2, s3 = 1, (5.25)

where 0< s1 < s2 < s3 = 1. The nature of the critical points(5.19)(i.e., whether the critical point is a saddle or a
center or something more complicated) depends on the speed of the traveling wave and the value ofα. In addition,
the energy integration constantε has a specific value for the trajectories that pass through the critical point, in the
case that the critical point is a saddle. A summary of the nature of the different critical points is given inTable 1.

The above information is sufficient to sketch the phase trajectories in the(E, p)-phase plane, in the four speed
regimes: (a) 0< |s| < s1, (b) s1 < |s| < s2, (c) s2 < |s| < 1, and (d)|s| > 1. The trajectories can be obtained
by plotting the contours of the HamiltonianH0 = H̃0(E, p) in (5.18)or by numerically integrating the differential
equations (5.17). Alternatively, one can obtain an explicit representation for the trajectories in the formp = p(E),
by solving(5.18)for p2:

p2 = 1

9s2

[
ε − 9α

2
(E4 − 2ycE

2) − E2(E2 − 3yc)
2
]

≡ Φ(y)

9s2
, (5.26)

where

ε = 18αε̃ ≡ 18s2H0, y = E2 (5.27)

(noteε is a re-scaled version of the energy integration constantH0). In the present example withc1 = 0 andσ = 1,
p2 is a cubic polynomial iny = E2. In the more general case wherec1 �= 0 this is not true. The polynomialΦ(y)

in (5.26)is

Φ(y) = ε − (y3 + β4y
2 + β2y), (5.28)
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Fig. 1. Phase trajectories(5.26), or the contours of the HamiltonianH0 (5.18)in the(E, p)-phase plane for the traveling wave solutions of the
Maxwell–Lorentz system. The parametersc1 = 0 andα = 0.5. The four cases are: (a)s = 0.5, (b) s = 0.8, (c) s = 0.9 and (d)s = 1.2,
corresponding to the four different speed regimes inTable 1.

where

β4 = 9α

2
− 6yc, β2 = 9yc(yc − α), yc = 1 − s2

s2
. (5.29)

From (5.5) p = qξ = (yc − y)Eξ, and hence the phase plane trajectory(5.26) is equivalent to the first order
differential equation(

dy

dξ

)2

= 4yΦ(y)

9s2(y − yc)2
(5.30)

for y as a function ofξ.
Representative phase-space trajectories(5.26) in the (E, p)-phase plane are given inFig. 1(a)–(d), which cor-

respond to the different cases inTable 1. The parameters used inFig. 1(a), s = 0.5 andα = 0.5 andc1 = 0,
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corresponds to the velocity regime 0< |s| < s1. In this regimeEe > Ec > 0. The different orbits correspond to
different values of the energy integration constantε in (5.26). On the vertical dashed lines atE = ±Ec, |Eξ| → ∞,
andEξ changes sign acrossE = ±Ec. The arrows correspond to the direction of increasingξ. Inside the heteroclinic
orbit joining the saddles at(±Ec,0) there are closed orbits corresponding to smooth, periodic traveling waves of the
Maxwell–Lorentz system(2.1)–(2.4). Note in general that|Eξ| → ∞ for the solution trajectories that intersect with
the curvesE = ±Ec, except for the special separatrix solution which passes smoothly through the saddle points at
(±Ec,0). For |E| > Ec, there are periodic orbits inside the separatrix which circle about the centers at(±Ee,0).
These solutions give rise to smooth, periodic traveling waves. Trajectories outside the separatrix, have the property
|Eξ| → ∞ asE → ±Ec. Note from(5.15)that the tangent vector to the curves(Eξ, pξ) reverse across the vertical
linesE = ±Ec. The arrows on the curves show the direction of increasingξ, as determined from the tangent vector
(Eξ, pξ) from (5.15).

We now consider more precisely the character of the separatrix inFig. 1(a) which passes smoothly through the sad-
dle point singularities at(±Ec,0). This solution is called the critical solution by analogy with the transonic solution
in stellar wind theory, where the wind passes smoothly through the sonic critical point from subsonic to supersonic
flow [26]. The phase-space trajectories correspond to solutions of the first order differentialequation (5.30)for y(ξ).
For an appropriate choice ofε, Φ(y) has a double zero aty = yc, and the factor of(y − yc)

2 in the denominator of
(5.30)cancels with a corresponding factor of(y − yc)

2 of Φ(y) in the numerator.
More generally, we can look for other special solutions of(5.30)for whichΦ(y) has a double zero aty = yr say,

i.e.Φ(yr) = Φ′(yr) = 0 simultaneously aty = yr. Differentiating(5.28)yields

Φ′(y) = −3(y − yc)(y − ye), (5.31)

whereye = 3(yc − α) andyc = (1 − s2)/s2 (see(5.16)). Thus,y = yc andy = ye are both double roots of
Φ(y) = 0 for appropriate choices of the energy integration constantε. The first possibilityy = yc corresponds to
the critical solution. The second possibilityy = ye corresponds to the heteroclinic orbit inFig. 1(b), and gives rise
to a kink-type solution. Below we consider in more detail the critical solution case.

(i) The critical solution
The conditionsΦ′(yc) = 0 andΦ(yc) = 0 are satisfied by choosing

ε = εcr = y2
cyd where yd = 1

2(4yc − 9α). (5.32)

In this case

Φ(y) = Φ(c)(y) = −(y − yc)
2(y − yd). (5.33)

Thus, the equation of the separatrix inFig. 1(a) isp2 = Φ(c)(y)/9s2, wherey = E2. Note thatp = 0 aty = yc

(E = ±Ec), and aty = yd (E = ±Ed , whereEd = y
1/2
d ). In order forEd to be real requires thatyd > 0.

This latter condition requires that the wave speeds be restricted to the range 0< |s| < (1 + 9α/8)−1/2. The
differentialequation (5.30)reduces to:

dy

dξ
= ± 2

3s
[y(yd − y)]1/2. (5.34)

Note that the(y − yc)
2 factor inΦ(c)(y) cancels with the(y − yc)

2 factor in the denominator in(5.30). The
solution of(5.34)is

y = yd sin2
(
ξ − ξ0

3s

)
, (5.35)
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whereξ0 is an integration constant. The corresponding solution forE is

E = ±y
1/2
d sin

(
ξ − ξ0

3s

)
. (5.36)

For the solution forE to be real requires thatyd > 0. Since

yd = 4

s2

[
1 −

(
1 + 9α

8

)
s2
]
, (5.37)

it is necessary to choose 0< |s| < (1 + 9α/8)−1/2 in order to ensure thatE is real. The solution is a smooth,
periodic traveling wave. It is straightforward to show that the electric field amplitudeEd = y

1/2
d , and the

Hamiltonian integralH0 = y2
cyd/18s2 both tend to zero as|s| → (1+ 9α/8)−1/2 and that bothEd andH0 are

unbounded in the limit as|s| → 0.
Fig. 1(b) shows a typical phase-space plot of the trajectories(5.26)for the speed regimes1 < |s| < s2 of

Table 1. In this regimeEc > Ee, and heteroclinic orbits connect the two saddles at(−Ee,0) and(Ee,0),
whereEe = y

1/2
e . The periodic orbits which circle the origin(0,0) in the(E, p) plane correspond to smooth,

periodic traveling wave solutions. The solutions with|E| > Ec develop infinite electric field gradients|Eξ| at
E = ±Ec. Below, we consider in more detail the heteroclinic orbits connecting the saddles at(±Ee,0).

(ii) The heteroclinic orbit
From(5.31), we know thatΦ′(ye) = 0. By choosing

ε = εh = 3α

2
y2
e or H0 = (3α/2)y2

e

18s2
, (5.38)

ensures thatΦ(ye) = 0 also. In this casey = ye is a double root ofΦ(y) = 0. Using this value ofε, we obtain

Φ(h)(y) ≡ Φ(y) = (y − ye)
2(1

23α − y), (5.39)

as the form ofΦ(y) for ε = εh. The corresponding phase-space trajectory in the(E, p) plane(5.26)has the
form: p2 = Φ(h)(y)/9s2, wherey = E2. This trajectory is the heteroclinic orbit inFig. 1(b).

From(5.30)the corresponding differential equation fory = y(ξ) reduces to:

dy

dξ
= ± 2(y − ye)

3s(y − yc)

[
y

(
3α

2
− y

)]1/2

. (5.40)

Note that(5.40)has a singularity aty = yc. At y = ye, y′(ξ) = 0 andp = 0. This point corresponds to the
saddle points at(±Ee,0) in the(E, p) plane. The differentialequation (5.40)can be integrated to obtain an
implicit, exact solution fory = y(ξ) in the form:

ξ = σs

[
1

τe
ln

∣∣∣∣
(
τ + τe

τ − τe

)∣∣∣∣+ 3θ

2

]
, (5.41)

whereσ = ±1 and the integration constant in(5.41)has been set equal to zero. The functionsτ = τ(y) and
θ = θ(y), the constantτe andE are given by

y = 3α

2
sin2

(
θ

2

)
, E =

(
3α

2

)1/2

sin

(
θ

2

)
, τ = tan

(
θ

2

)
= ±

(
y

3α/2 − y

)1/2

,

τe = tan

(
θe

2

)
=
(

ye

3α/2 − ye

)1/2

. (5.42)

If we restrict the range ofθ in (5.41) and (5.42)to |θ| < θe, theny < ye. For the case where the sign function
σ = 1 in (5.41), we find thatE → −y

1/2
e asξ → −∞ andE → y

1/2
e asξ → ∞. This is a kink-type solution,

which is illustrated in the next subsection.
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The critical solution inFig. 1(a) plays the role of a separatrix in the speed regime 0< |s| < s1. However, for
s1 < |s| < (1+9α/8)−1/2, the critical solution corresponds to a smooth periodic orbit about the origin, which
lies inside the separatrix, inFig. 1(b), and the diameter of the orbit shrinks to zero as|s| → (1 + 9α/8)−1/2.
This is consistent with the formulae(5.32) and (5.38)for εcr andεh, which represent the contour heights of
the critical and heteroclinic orbits in the(E, p) plane. In particular

εh = εcr + 4(3α
2 − yc)

3. (5.43)

Thus,εcr > εh in the velocity range 0< |s| < s1, εh = εcr at s = s1 andεh > εcr for s1 < |s| < s2.
Fig. 1(c) shows the phase plane trajectories in the velocity regimes2 < |s| < 1. In this regime, there are

no smooth periodic traveling wave solutions, since all solutions unavoidably intersect the singular lines at
E = ±Ec, where|Eξ| → ∞. The separatrix orbit through the origin is given byp2 = Φ(0)(y)/9s2, where
Φ(0)(y) is the form ofΦ(y) obtained withε = 0.

Fig. 1(d) illustrates the phase trajectories for|s| > 1. In this regime, there are periodic, ellipse like orbits
about the origin in the(E, p) plane, which correspond to smooth periodic traveling waves.

5.3. Illustrative examples

For the traveling wave solutions(4.10) and (4.11), with δ = c1 = 0, and cubic Kerr non-linearity, the displacement
currentD = E + P + E3/3, magnetic inductionB and polarizationP are given in terms ofE by the formulae:

B = ν + E

s
, D = E

s2
, P = E

(
yc − E3

3

)
, (5.44)

whereν is a constant. Without loss of generality, we setν = 0 in the examples below.
Fig. 2 illustrates the critical solutionE = Ed sin(ξ/3s) of (5.36) and (5.44)for the caseν = 0, α = s = 0.5.

Panel (a) shows the variation ofE, B, P andD as a function of the traveling wave variableξ = z−st. The solutions
for D andB are re-scaled versions of the profile forE (D = E/s2 andB = E/s). The solution forP from (5.35)
is a cubic inE and has a more complicated form. The trajectory in the(E, p)-phase plane is the critical solution or
separatrix inFig. 1(a). The critical solution trajectory passes smoothly through the critical points at(±Ec,0), and
visits the three separate disjoint regions:|E| < Ec; E > Ec andE < −Ec in its periodic orbit. Panel (b) inFig. 2
illustrates the same trajectory in the(q, p)-phase plane, whereq = P andp = Pξ are the canonical variables. The
critical points in panel (b) are all center critical points. The phase plane trajectory starts on the outer ellipse at A
(ξ = 0), and proceeds in a clockwise fashion to visit all three ellipses, until it ends up back at point A. Each ellipse

(a) (b)

Fig. 2. (a) The variation ofE,B,P andD for the critical solutionE = Ed sin(ξ/3s) given in(5.36) and (5.44)with ν = 0, and (b) the(q, p)-phase
plane trajectory. The parameters areα = 0.5 ands = 0.5.



72 G. Webb et al. / Physica D 191 (2004) 49–80

0
4

8
12t 0

2
4

6
8

10
12

z

-2
-1
0
1
2

E

Fig. 3. The sinusoidal, critical solution(5.36)perturbed by 0.01 sin(z/6s) at timet = 0, for the caseα = 0.5 ands = 0.6. Note the formation
of two shocks in the electric field. This results in instability at late times.

represents a different Hamiltonian branch, corresponding to the three solutions of(5.5) for E = E(q) for the case
σ = 1 andc1 = 0.

The critical solution described in(5.36) and (5.44)has a sinusoidal solution for the electric field. We have used
this exact solution of the vector Maxwell equations as a check on our numerical code. The code follows the exact
solution as far in time as we have calculated (t = 1000). As a numerical test of the stability of the solution(5.36),
we have added a small perturbation to the exact sinusoidal solution forE at timet = 0 of the form 0.01 sin(z/6s)
for the caseα = 0.5 ands = 0.6. The results of the numerical simulations are presented inFig. 3. The figure shows
that the sinusoidal solution is unstable for the given initial perturbation. The instability manifests itself by shock
formation on the steep parts of the sinusoidal solution.

Fig. 4 illustrates the kink solution(5.41), (5.42) and (5.44)for the caseα = 0.5, s = 0.8 andν = 0. Panel (a)
shows the profiles ofE,B,P andD as functions ofξ, which consist of monotonic increasing, and odd functions ofξ.
In particular, as noted in(5.42), etc.E → −y

1/2
e = −0.433 asξ → −∞ andE → y

1/2
e asξ → ∞. Panel (b) shows

that the solution corresponds to the heteroclinic orbit connecting the two saddle points in the(q, p)-phase plane.
The kink solution is given by an implicit formula which makes it rather complicated to investigate its stability.

Therefore, we conducted direct numerical simulations to illustrate the kink solution and to study its stability. By
choosingE(z,0) = Akink tanh((z − z0)/w) we start the simulations with an initial condition which is a fairly
good approximation to the solution, both nearξ = 0, and for|ξ| → ∞. This initial data can be thought of as a

Fig. 4. Illustrates the kink solution described in(5.41), (5.42) and (5.44)for the caseα = 0.5, s = 0.8 andν = 0. Panel (a) shows the variation of
E, B, P andD as functions of the traveling wave variableξ. Panel (b) shows the solution corresponds to the heteroclinic orbit in the(q, p)-phase
plane.
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Fig. 5. A travelling kink and anti-kink wave, forming a square like pulse, using the parameter valuesα = 0.5,σ = 1, s = 0.81. Panel (a) shows
theE-field and (b) showsQ = Pt . The initial data areAkink = 0.269209 andw = 5.46321.

perturbation of the exact kink solution, and serves as a test of the exact solution. The amplitudeAkink and widthw
are determined from the conservation of energy along the heteroclinic orbit connecting the two hyperbolic critical
points. That is,H0(q = α

√
3(yc − α), p = 0) = H0(q = 0, pmax). In other words, we match the approximate

tanh -kink solution to the analytical one. It is also clear that whenE(z,0) is fixed, the initial data forB(z,0) and
P(z,0) can be calculated.Fig. 5(a) shows a kink and an anti-kink travelling in the same direction. The reason for
presenting a kink anti-kink pair is due to our use of periodic boundary conditions in the numerical scheme. Only
pairs of kinks and anti-kinks can satisfy these boundary conditions. Initially the kinks adjust their shape to the
exact solution by shedding off linear radiation waves (not shown inFig. 5). After a transient period the kinks attain
the shape given by the analytical solution. In addition, for short periods of time we have added a space dependent
damping term in the equation forP which we use to damp out the linear radiation away from the kinks.Fig. 5(a)
shows the kinks propagating in a frictionless media given inEqs. (2.1)–(2.4)after the transient period and after
damping out radiation waves.Fig. 5(b) depicts the variableQ = Pt as function of space and time. This variable
has been introduced in order to writeEqs. (2.1)–(2.4)as a set of four first order differential equations, suitable for
numerical solution.

Eqs. (2.1)–(2.4)have been solved numerically using fourth order accurate spatial central differences (five-point
formula)[5]. The resulting first order system of ordinary differential equations was then solved using the DVERK
Runge–Kutta algorithm based on Verner’s fifth and sixth order formulas[6]. For 1+ 1 dimensional problems we
find this approach easy to implement, providing an accurate as well as robust method for numerical integration.

In order to investigate the robustness of the kinks we have conducted kink anti-kink collision experiments as
shown inFig. 6. The figure shows the spatial profiles ofE(z, t), B(z, t), P(z, t) andQ(z, t) = Pt(z, t) at different
time instants. The two pulses approaching each other at timet = 0 from opposite directions pass through each
other, and approximately preserve their initial form provided the amplitude of the pulses are not too large. A small
amount of radiation after the collision is observed indicating that the kinks (anti-kinks) are not solitons but merely
solitary waves or quasi-solitons.

5.3.1. Traveling waves for0 < |s| < s1 and|s| > 1
The ODE(5.40), which originally arose from analysis of the heteroclinic solution in the speed regimes1 < |s| <

s2, can also be used outside this velocity regime. In fact, its solutions describe smooth periodic traveling waves
in the speed regimes 0< |s| < s1 and|s| > 1. It also describes solutions in which|Eξ| → ∞ asE → ±Ec if
s2 < |s| < 1.
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Fig. 6. Collision between two square like pulses. Parameter valuesα = 0.5, σ = 1, s = ±0.81;Q = Pt .

In the above speed regime, the ODE(5.40)can be integrated to yield the solution:

ξ = s

[
3 tan−1(τ) − 2

τ0
tan−1

(
τ

τ0

)]
, (5.45)

where

τ = tanφ = ±
(

y

3α/2 − y

)1/2

, τ0 =
(

α − yc

3α/2 − yc

)1/2

, (5.46)

and the parameters are ordered so that 0< 3α/2 < yc < ye. A sketch ofy2
ξ versusy from (5.40)shows that there

are smooth periodic traveling waves for 0< y < 3α/2. The electric field in the wave is given by

E = (1
23α)1/2 sinφ (5.47)

(noteθ = 2φ in (5.42)). The solution(5.45)is strictly only defined for|φ| < π/2, due to the multi-valued character
of tan−1(x). Taking the aboveφ-range to correspond to half a period of the wave, one can define the extension
ξ(E)(φ) of ξ(φ) by the equation

ξ(E)(φ) = ξ(φ − nπ) + 1
2(n)Tξ if φ ∈ [(n − 1

2)π, (n + 1
2)π], (5.48)

wheren is an integer, and

Tξ = 2πs

(
3 − 2

τ0

)
≡ 2πs

[
3 − 2

(
1 − s2(1 + 3α/2)

1 − s2(1 + α)

)1/2]
, (5.49)
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Fig. 7. Profiles ofE,B, P andD as functions ofξ for the traveling wave solution(5.45)–(5.49)for the cases (a)s = 0.5 and (b)s = 1.01. The
parameterα = 0.5.

is the spatial period of the wave.Eq. (5.49)shows that the period of the wave depends ons, with Tξ ≈ 2πs ass → 0
andTξ ≈ 6πs ass → (1 + 3α/2)−1/2. The solutions forE, P , B andD are smooth, sinusoidal-shape functions of
ξ, and correspond to closed, periodic orbits in the(E, p)-phase plane.

5.3.2. Examples
The solution(5.45)–(5.49)yields smooth, periodic, traveling wave solutions, both for the case 0< |s| < s1 and

for the case|s| > 1. Fig. 7 shows the profiles ofE, B, P andD as functions ofξ for α = 0.5 and for two values
of s. Fig. 7(a) gives an example of the traveling wave solution in the slow speed regime 0< |s| < s1 for the case
wheres = 0.5. Fig. 7(b) gives an example of the wave in the fast speed regimes > 1 (s = 1.01 in the figure).

The solution fors = 1.01 inFig. 7(b) has very large gradientsEξ, every half period of the wave. It is straightforward
to show that ass ↓ 1, |Eξ| → ∞ at points on the profile whereE ≈ 0. This can be seen formally from the differential
equation (5.40)for y. In the limit ass → 1, yc → 0, and the ODE has a singularity aty = 0 (dy/dξ ∝ y−1/2 as
y → 0). In the speed regimes2 < |s| < 1, the traveling wave solution(5.45)–(5.49)develops an infinite gradient
for Eξ and the solution must involve shocks (i.e., either a finite jump inE, or |Eξ| → ∞ atE = ±Ec must occur on
the solution profile). The profiles forE,B, andD in Fig. 7(b) are almost the same profile sinces ≈ 1, and exhibit
steep gradients at points whereE ≈ 0. However the polarization P is smooth and has relatively small gradients.

5.3.3. Traveling waves fors2 < |s| < 1
The solution(5.45)also applies in this case. In order to obtain a solution withy2

ξ > 0 requires thaty be restricted
to the range 0< y < 3α/2. In this case it appears that one can obtain periodic travelling waves in whichE is
bounded, but with|Eξ| → ∞ asy → yc. Examples of solutions in which|Eξ| → ∞ asE → ±Ec are described
below.

Fig. 8(a) shows the traveling wave solutionE = E(+) = E(ξ) obtained from(5.45)–(5.49)by varyingφ from
φ = −π/2 to φ = π/2 (the solid curve) for the cases = 0.9 andα = 0.5. The dashed curve corresponds to the
solutionE = E(−) = −E(ξ). The solutions inFig. 8(a) are clearly multi-valued. However, one can patch together
pieces of the solutionsE = E(+) andE = E(−) to produce the single valued wave profile inFig. 8(b). This is
achieved by noting that one can add a non-zero integration constantξ0, to the right hand side of(5.45), i.e.,

ξ = ξ(0)(φ) + ξ0, (5.50)

is also a solution of(5.40)whereξ(0)(φ) is the solution(5.45). The solution inFig. 8(b) has period

Tξ = 2sπ

(
3 − 2

τ0

)
+ 8|ξc|, (5.51)
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(a) (b)

Fig. 8. (a) The solution forE = E(ξ) obtained from the traveling wave solution(5.45)–(5.49)by varying the parameterφ from φ = −π/2 to
φ = π/2, for the cases = 0.9 andα = 0.5 (the solid curve). The dashed curve corresponds to the solutionE = −E(ξ). Panel (b) shows the
solution forE obtained by patching together segments of the solutions in (a), with appropriate choices of the integration constantξ0 = ξ0n for
the different solution segments. Note that|Eξ | → ∞ in both panels whenE = ±Ec.

where

ξc = s

[
3φc − 2

τ0
tan−1

(
tanφc

τ0

)]
, (5.52)

is the point wherey = yc, τ = tanφc, and|Eξ| → ∞. In the figure,yc = 0.23457,φc = 34◦ andξc = −0.29017.
Fig. 9shows the change in the waveform forE in Fig. 8(b) as the wave speeds increases. InFig. 9(a),s = 0.95,

whereass = 0.99 in Fig. 9(b). The waveform inFig. 9(b) is similar to the smooth, periodic waveform forE in
Fig. 7(b) for s = 1.01, in which|Eξ| is bounded. Thus, the solutions inFigs. 8(b) and 9can be regarded as the
extension of the smooth traveling waves for|s| > 1 into the regimes2 < |s| < 1, where the solutions exhibit
gradient blowup atE = ±Ec (i.e., |Eξ| → ∞ atE = ±Ec).

Clearly, other solutions with|Eξ| → ∞ asE → ±Ec can be constructed. For example, the solutions inFigs. 8
and 9only apply forτ0 > 2/3 (i.e. |s| > s4 = [5/(3α + 5)]1/2). For s = s4 the solution involves a cusp at the top
of the profile forE. It also turns out that fors = s4, the implicit solution(5.45)for E(ξ) can be inverted, and an
explicit solution forE as a function ofξ can be obtained. It is also worth noting that there exist classes of solutions
of the form(5.41)with s1 < |s| < s2 with y = E2 in the rangeye < y < 3α/2 which exhibit gradient blowup (i.e.,
|Eξ| → ∞ asE → ±Ec).

The above solution examples, are representative of the type of traveling waves that are described in(5.30).
However, the examples considered special cases where the functionΦ(y) in the numerator had two equal, real roots.
In these cases it is relatively easy to obtain analytical solutions of(5.30). More generally, the solution of(5.30)

(a) (b)

Fig. 9. The evolution of the waveform forE in Fig. 8(b) ass increases. In (a)s = 0.95 and in (b)s = 0.99. The parameterα = 0.5.
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depends on the character of the roots of the cubicΦ(y) = 0. The discriminant of the cubicΦ(y) = 0 [11, Formula
3.8.2, p. 17]can be written as:

D = 1
4(ε − εcr)(ε − εh), (5.53)

whereεcr is the value(5.32)of ε for the critical solution, andεh is the value(5.38)of ε for the heteroclinic solution.
The roots of the cubicΦ(y) = 0 are real and distinct ifD < 0; there are three real roots, at least two of which are
equal ifD = 0 (i.e. if ε = εcr or ε = εh); and there is one real root and two complex conjugate roots ifD > 0.
The main point we wish to emphasize here is that the type of solutions of(5.30)that can be obtained (i.e. smooth
periodic solutions, or solutions with singularities atE = ±Ec) depends on the discriminantD in (5.33). We note
(without proof) that in the case of three real roots forΦ(y) = 0,(5.30)can be integrated in terms of elliptic integrals.

6. Conclusions

The vector Maxwell equations coupled to a single Lorentz oscillator with instantaneous Kerr non-linearity were
formulated in terms of Lagrangian and Hamiltonian variational principles. The canonical Hamiltonian description
of the equations involves the solution of a polynomial equation for the electric fieldE, in terms of the canonical
variables, with possible multiple real roots forE. In order to circumvent this problem, non-canonical Poisson bracket
formulations of the equations are obtained in which the electric field is one of the non-canonical variables.

Using the Lie point symmetries admitted by the equations and Noether’s theorem, we obtained four conservation
laws for the equations. The symmetries were also used to obtain classical similarity solutions of the equations.
The traveling wave similarity solutions were investigated using both Hamiltonian and non-Hamiltonian methods.
In particular, the solutions in the case of a cubic Kerr non-linearity (D = E + P + E3/3) were studied in detail.
Two solutions of particular interest are: (i) the kink (or anti-kink) solution, which corresponds to a heteroclinic
orbit connecting two saddle points in the(E, p)-phase plane, whereE is the electric field, andp is the canonical
momentum (the orbit can also be described in a similar way in the(q, p)-phase plane, where(q, p) are canonical
coordinates) and (ii) the critical solution, which consists of a smooth, periodic traveling wave solution, which has
the special property that the traveling wave ODE(5.30)has no singularities. For other solutions of(5.30), the ODE
always has a singularity.

The traveling wave solutions were described using both canonical and non-canonical Poisson bracket descriptions.
The canonical coordinates used to describe the traveling wave areq = P andp = Pξ, whereP is the polarization
electric field, andξ = z − st is the traveling wave variable. A non-canonical Poisson bracket description of the
equations was also used, in which the non-canonical variables consisted of the electric fieldE and the canonical
momentump. This latter approach has the advantage that one does not need to solve a cubic for the electric
field E = E(q) in the analysis. For the case of a cubic, Kerr non-linearity, there are five critical points for the
Hamiltonian in the(E, p)-phase plane. The solution trajectories in the(E, p) plane revealed four different possible
solution topologies depending on the speed of the wave. Analysis of the critical, traveling wave solution, revealed
that in the slowest speed regime, the solution has a very complicated trajectory in the(E, p)-phase plane. Numerical
simulations revealed that this solution is unstable, in the sense that small perturbations of the critical solution lead
to the formation of shocks. However, a more thorough stability analysis of this solution has not been carried out,
and the stability of this solution is an open problem for further studies.

An investigation of the traveling wave solution(5.45)(which can be thought of as an extension of the heteroclinic
solution), showed that smooth periodic solutions with speeds|s| > 1, develop very steep gradientsEξ, as|s| ↓ 1
(Fig. 7(b)). In fact the solution fors = 1 exhibits gradient blowup at points on the wave profile whenE = 0 (in this
caseEc = 0). It was demonstrated inFigs. 8 and 9, how the smooth solution with|s| > 1 could be extended into
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the regime(1 + α)−1/2 < |s| < 1, where the solutions exhibit gradient blowup inEξ at points whereE = ±Ec.
Other solutions which exhibit gradient blowup can also be constructed.

The travelling-wave kink and anti-kink solutions, which correspond to heteroclinic orbits in the(q, p) or
(E, p)-phase planes, only exist for a restricted range of velocitiess of the traveling wave. In this velocity range,
the critical points in the(E, p)-phase plane consist of two saddles and three center critical points. The kink
and anti-kink solutions correspond to the heteroclinic orbits connecting the two saddles. The numerical simu-
lations indicated that the kinks are stable, but a more complete analytical proof of their stability has not been
carried out.

Numerical simulations were also used to investigate the collision of kink anti-kink pairs. As a note on possible
applications of the kink solutions we mention that kink anti-kink pairs form square like pulses, which in a communi-
cation system could represent the digit one. Absence of a square like pulse could represent the digit zero. However,
the plateaus in the kinks have a finite value of the electric field and the polarization which means we need to store
a rather substantial amount of energy in a fiber for utilizing kinks and anti-kinks in fiber communication systems.
The advantages are extremely short and stable pulses.

Finally we mention that the kink solutions can switch the polarization from negative to positive or vice versa on
an ultra fast time scale of the order few femto-seconds. This may be exploited in switching devices or in optical
computing.
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Appendix A

In this appendix, we show that the non-canonical Poisson bracket(2.30) is skew-symmetric and satisfies the
Jacobi identity. We use the notation:

Pα = δP

δuα
, Qα = δQ

δuα
, Rα = δR

δuα
(A.1)

for the variational derivatives of the functionalsP,Q andR. In the present analysisuα ≡ η̃α. The functionalP[u]
is of the form

P[u] =
∫ ∞

−∞
p[u] dz, (A.2)

and similarly forQ andR. We require that the Poisson bracket(2.30)satisfy the conditions of skew-symmetry
({P,Q} = −{Q,P}) and the Jacobi identity:

I(P,Q,R) ≡ {{P,Q},R} + {{Q,R},P} + {{R,P},Q} = 0. (A.3)
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To prove skew-symmetry of the bracket, we note from(2.30)that:

{P,Q} =
∫ ∞

−∞
dz(P1, P2, P3, P4) · (−ζDzQ

2 − ζQ4,−Dz(ζQ
1),Q4, ζQ1 − Q3)T

≡ −
∫ ∞

−∞
dz{Dz[ζ(P

1Q2 + P2Q1)]

+ (Q1,Q2,Q3,Q4) · (−ζDzP
2 − ζP4,−Dz(ζP

1), P4, ζP1 − P3)T}. (A.4)

Assuming|ζ(P1Q2 + P2Q1)| → 0 as|z| → ∞, (A.4) reduces to the equation{P,Q} = −{Q,P}, which proves
the skew-symmetry of the bracket.

To prove that the Jacobi identity is satisfied, we note from[8, Eq. (7.11)], that the Jacobi identity(A.3) is equivalent
to:

I(P,Q,R) =
∫ ∞

−∞
dz[P · X̂[J̃R](J̃) · Q + R · X̂[J̃Q](J̃) · P + Q · X̂[J̃P](J̃) · R] = 0, (A.5)

whereX̂[φ̂] is the prolonged, canonical symmetry operator(3.10) (note thatX̂[φ̂] would be written as pr̂V
φ̂

in
Olver’s notation). The first term in(A.5) can be expanded as:∫ ∞

−∞
P · X̂[J̃R](J̃) · Q dz =

∫ ∞

−∞
dz[P1[ζζ′(DzR

2 + R4)(DzQ
2 + Q4)] + P2Dz[(DzR

2 + R4)ζζ′Q1]

−P4(DzR
2 + R4)ζζ′Q1], (A.6)

whereζ′ = dζ/dE andζ is given in(2.32). Similar expressions for the other two terms in(A.5) can be obtained
by cyclically permutingP , Q andR in (A.6). Adding the three resultant expressions analogous to(A.6) and (A.5)
reduces to:

I(P,Q,R) =
∫ ∞

−∞
Dz(Λ)dz, (A.7)

where

Λ = ζζ′[Q1P2(DzR
2 + R4) + R1Q2(DzP

2 + P4) + P1R2(DzQ
2 + Q4)]. (A.8)

Thus, assumingΛ → 0 as|z| → ∞ we findI(P,Q,R) = 0, which proves the Jacobi identity(A.3). In the above
analysis, the integrals involved are assumed to converge, and are well defined. It should be noted that certain surface
terms analogous toΛ are assumed to vanish in the derivation of the condition(A.5) from the Jacobi identity(A.3).
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