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Abstract

The vector Maxwell equations of non-linear optics coupled to a single Lorentz oscillator and with instantaneous Kerr
non-linearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equa-
tions are obtained. The aim of the analysis is to explore the properties of Maxwell's equations in non-linear optics, without
resorting to the commonly used non-linear Schrodinger (NLS) equation approximation in which a high frequency carrier wave
is modulated on long length and time scales due to non-linear sideband wave interactions. This is important in femto-second
pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the
equations involves the solution of a polynomial equation for the electric figleh terms of the canonical variables, with
possible multiple real roots faE. In order to circumvent this problem, non-canonical Poisson bracket formulations of the
equations are obtained in which the electric field is one of the non-canonical variables. Noether’s theorem, and the Lie point
symmetries admitted by the equations are used to obtain four conservation laws, including the electromagnetic momentum and
energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are usec
to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr
non-linearity, are shown to reduce to a single ordinary differential equation for the vayiablg?, whereE is the electric
field intensity. The differential equation has solutions- y(&¢), where¢ = z — stis the traveling wave variable ands the
velocity of the wave. These solutions exhibit new phenomena not obtainable by the NLS approximation. The characteristics
of the solutions depends on the values of the wave velgdityd the energy integration constanBoth smooth periodic
traveling waves and non-smooth solutions in which the electric field gradient diverges (i.e. solutions in&yhieh co at
specific values ofz, but where E| is bounded) are obtained. The traveling wave solutions also include a kink-type solution,
with possible important applications in femto-second technology.
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1. Introduction

Most theoretical investigations of optical pulse propagation in fibers have been conducted by using the non-linear
Schrédinger (NLS) equation or extended versions of the NLS equation. This approximation is very accurate for cases
with a slowly varying envelope, shaping the carrier wave pilsgl. However, for very short femto-second optical
pulses a first principles approach in which the basic vector Maxwell equations are solved, coupled with a variety of
resonant Lorentz oscillator models for the dielectric medium has been sug{fstecdhis approach, Maxwell's
equations are solved without invoking weakly non-linear asymptotics used in the NLS approach, in which the high
frequency carrier wave is modulated by a slowly varying envelope. The Lorentz models can involve one or more
linear or non-linear oscillators describing the polarization electric feBy solving Maxwell's equations coupled
to the Lorentz oscillator equations directly, the slowly varying envelope assumption of the NLS approach need not
be utilized. However, Hilg1] has shown, that even for cases where the NLS approximation should fail from a
strictly mathematical point of view (i.e., when the frequencies of the carrier wave and the envelope are comparable),
it nevertheless works surprisingly well, at least in the nano-second regime.

We focus on the properties of the Maxwell-Lorentz system, which are fundamentally and qualitatively different
from that obtained using the NLS equation approach. We consider the simplest case of Maxwell's equations in
one Cartesian space dimension coupled to a single resonant oscillator describing the coupling of the polarization
electric fieldP to the electric fieldE. The model assumes that the displacement cuieistrelated to the electric
field strengthE and polarizationP by a constitutive relation of the for® = E 4+ P 4+ aE**! (¢ ando are the
positive constants).

The model equations are expressed in terms of both Lagrangian and Hamiltonian variational principles. The
Hamiltonian formulation of the equations involves the solution of a polynomial equation for the electri field
terms of the canonical variables. In order to circumvent this problem non-canonical Poisson bracket formulations
of the equations are investigated in whikhs one of the non-canonical variableé3etion 2.

The Lie point symmetries admitted by the equations are obtain&kdation 3(the equations are also shown
to possess discrete, non-Lie symmetries). The Lie symmetries are used in conjunction with Noether’s theorem
(e.g.[7,8]) to determine four conservation laws for the system, including the electromagnetic momentum and
energy conservation laws associated with the space and time translation symmetries admitted by the equations
The interesting question of whether the equations admit generalized Lie symmetries is left as an open question.
Our analysis also does not address the important question of whether the equations are integrable, or admit
bi-Hamiltonian or multi-Hamiltonian structure which is a hallmark of completely integrable system§3(&gj).

The Lie point symmetries are used to derive classical similarity solutions of the equ&gxi®( 4, using the
standard method described by Ovsjannik@) Ibragimov[10], Bluman and Kumej7] and Olver8].

The traveling wave similarity solutions are investigate&ection 5 For this class of solutions, the equations can
be reduced to a single first order ordinary differential equation (ODE) for the electricKiakla function of the
traveling wave variablé = z — st, wheres is the velocity of the wave. If the integration constant,involved in
integrating Ampere’s equation is set equal to zero, the differential equation is more naturally expressed in terms of
y = E2. Both canonical and non-canonical Poisson bracket descriptions of the traveling waves are obtained. The
differential equation foy = y(&) is investigated in detail for the case of a cubic, Kerr non-lineasty=(1). The
first order ODE fory = y(£), is shown to develop shocks in the electric figlHy — co asy — y. = (1 — 52) /52
andE — E;. = yi/z). For a special choice of the energy integration constatite singularity aty = y. in the
denominator of the ODE is cancelled by a similar factor in the numerator, and leads to a special critical solution
that passes smoothly through the critical point. A further, exact kink-type, implicit solution is also obtained. The
kink solution corresponds to a heteroclinic orbit connecting two saddles ifEthe)-phase plane, where = P
is the canonical momentum. Numerical simulations are carried out to test the stability of the solutions.
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Section 6concludes with a summary and discussion.

2. Variational formulations

In this section we first discuss the model equations and the underlying physical assuntpicinn(2.) and
show that the system can be reduced to a single non-linear wave equation for the magnetic pttentidlich
the non-linear term is due to the Kerr non-linearity, and the wave dispersion is due to the effects of the Lorentz
oscillator. InSection 2.2the model equations are expressed in terms of Lagrangian and Hamiltonian variational
principles. Both canonical and non-canonical Poisson bracket formulations of the equations are obtained.

2.1. Magnetic potential formulation

The equations of the model consist of Maxwell's equations coupled to a single Lorentz oscillator governing
the polarization fieldP, in which the oscillator is driven by the electric fiell The equations of the model in
dimensionless physical variables have the fdim

B[+EZ =0, (21)

D,+ B, =0, (2.2)
20+1

D=F P, 2.3

+ 20+1 + (23)

Pi+ P—aE =0. (2.4)

Here the residual Raman molecular vibration has been neglected. We assume a transverse plane wave propagatin
along thez-axis in which the electric fieldE = (E(z,1),0,0)T, displacement curre® = (D(z,),0,0)" and
polarizationP = (P(z, 1),0,0)" all lie along thex-axis and the magnetic field inducti@ = (0, B(z, 1), 0)" lies
along they-axis. The displacement currebtin (2.3) depends non-linearly on the electric fidid and linearly on
the polarizationP. The Lorentz oscillatoequation (2.4shows that the polarization oscillations are driven by the
electric fieldE, where the coupling parameter= (e; — e)/e00. HEree; ande, are the static permittivity and
linear permittivity in the medium, respectivel§]. The non-linear term ifEq. (2.3) i.e. E2t1/(20 + 1), is the
instantaneous Kerr non-linearity wishbeing an integer. For cubic non-linearity= 1 and for quintic non-linearity
o = 2.Eqs. (2.1) and (2.2are Faraday’s law, and Ampere’s equation, respectively.

Introducing potentialg and.A for the electric and magnetic fieldsand B:

E = ¢Z’ B = AZ' (25)
Faraday’s law(2.1) can be written agE + A;), = 0. Thus
B = A27 E = _At, (26)

are representations f@ and E in terms of the magnetic potential. In this representation of the fields and
B, Faraday'’s law(2.1) is automatically satisfied, as a consequence of the integrability conditice Aiz. Thus,
(2.1)—(2.4)reduce to the system:

— -4, -
ot 20 +1
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Pi+P+aA =0 (2.8)

for AandP.
AssumingP(z, 0) = P;(z, 0) = 0, (2.8) can be integrated to yield the solution fBras a convolution integral in
the form:

P(z, 1) = —af 8“4(? £ sin(t —¢)dr. (2.9
0

Using(2.9)in (2.7)then yields the non-linear wave equation:

A(Z’ )cos(t )d =0 (2.10)

C (4 A Ay —a f
0

for A. The non-linear terri?’ Ay in (2.10)is due to the Kerr non-linearity in the relation betweRrmnd E. The
waveequation (2.10)s dispersive due to the convolution integral term which is due to the oscillatory coupling of
the polarization field? to the electric fieldE in the Lorentz model. Thu$2.10)suggests that the interplay between
non-linear pulse steepening and dispersion will play an important role in the Maxwell s{&tBr(2.4)

A more general version of a non-linear wave equationfdmbtained by eliminating® from (2.7) and (2.8)s

32
(ﬁ + 1) [Azz— 1+ A,za)Att] —aAy = 0. (2.11)
Unlike (2.10) Eqg. (2.11)does not assume special initial data foand P;.

2.2. Variational principles

The system oEgs. (2.7) and (2.8)an be obtained by requiring that the action:

o o0
L= / dz/ dr L, (2.12)
—0o0 —0oQ
be stationary, where
1 2 A20+2 2 P2 PZ
L = e — AP, 2.13
(20 + 1)(20 + 2) 2“4 20t A (2.13)

is the Lagrangian density.
The Maxwell systen{2.7) and (2.8xan be written in Hamiltonian form by using the canonical coordinates:

qg1= A, g2 = P, (2.14)
and the canonical momenta
=—=A ! — ¢, 2.15
n=s7 5 12 (2.15)
oL Pt
. 2.16
P2=op =, (2.16)

The Hamiltonian densityf is given by the standard Legendre transformation:

A20+2 P2 PZ
+ A%+ L, (2.17)

2
— _— 2 —
H=) puax—L= A 20+2 272 20 20
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and the Hamiltonian functiong{ = [ H dz. Note thatH can be written in terms of the canonical coordinates
by solving(2.15)for A;, i.e., A; = f(p1 + g2), where the functiory satisfies the polynomial equation:

Y= I = pitan (2.18)
20 +1
Hence
1, f@%2 1/01\*> ap3 43
g1 (%)™, eprz , 92 2.19
2f +20+2 2\ 0z + 2 +20z ( )

is the form ofH in terms of the canonical variables. Hamilton’s equations

dq; M ap; SH
Yy _°ont  Pi_ O i1 ), (2.20)
ot Spj ot 5qj

are equivalent to the Maxwell systgf@.7) and (2.8)when due account is taken of the impliequation (2.18jor
f.

In (2.18)Y'(f) = f%° +1 > 0 (we assumg is real), and henck( f) is a monotonic increasing function gfif
o is a positive integer. This means that there is a one—one relation bekyges p1 + g2 and f = —E. In other
words, there is only one real root Bfy. (2.18)for f for real p1 + ¢g2. However, in more complicated constitutive
relations between the electric displacemBnénd E in (2.4), Y(f) might not be a monotone function gt Only
real roots of2.18)for f = —E are physically relevant. For example, toe= 1, (2.18)is a cubic equation, whereas
for o = 2 the equation is a quintic equation fér For the case = 1, the cubiq2.18)has one real roof; and two
complex conjugate root and f3. The relevant real roof;, can be written in the form:

f=A=[C+(C*+ DB —[C+ (C*+ 1713 (2.21)
where
C=3(p1+4q2) (2.22)

[11, p. 17, Formula 3.8.2; 16, p. Q0Thus, fore = 1 (cubic Kerr non-linearity), there is only one real solution for
f, and only one real Hamiltonian {{2.19)

The relation(2.18) indicates that in general will be a multi-valued function ofp1 + g2, but we requireE
to be a single valued function af at a fixed timer for a physically valid solution. This same problem also
arises in the canonical Hamiltonian description of the traveling wave solutions of the Maxwell-Lorentz system
(2.1)—(2.4)discussed irSection 5 For these solutions, all physical variables only depend on the traveling wave
variable¢ = z — st The equations can be represented as a two-dimensional Hamiltonian system, with Hamiltonian
Ho(q. p), whereq = P andp = Pe. The canonical coordinatgin the model is a polynomial in the electric field
E. To write the equations in terms of canonical coordinates, it is necessary to solve the polynomial equation to
determine the electric field in terms@fin the case of a Kerr cubic non-linearity, there are up to three real solutions
for the electric fieldE = E(g). In order to circumvent these problems of multi-valued solutiongfer E(g), itis
simpler to change from a canonical Poisson bracket description, to a non-canonical Poisson bracket description in
which E is one of the non-canonical variables.

The occurrence of multiple valued functions in the Hamiltonequations (2.18)—(2.22% reminiscent of
multi-valued Clebsch variables that can arise in canonical formulations of the equations of ideal fluid mechanics.
For example, Zakharov and Kuznetd@@], in discussing knotted flows in ideal, incompressible fluid mechanics
use the Clebsch representatior= V¢ + AV for the fluid velocityv, ande = V x v = VA x Vy is the fluid
vorticity. The Clebsch potential is associated with potential flow and the Clebsch potentialidentified with the
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conserved fluid velocity circulation moving with a fluid element in Kelvin’s theorem. Zakharov and Kuznetsov note
that the Clebsch potentialsandu in general are multiple valued functions, and hence it is appropriate to introduce
alternative formulations and variables in which the flow field and vorticity are uniquely defined.

In order to construct a non-canonical Poisson bracket formulation of the equations, we first note that Hamilton’s
equation (2.20¢an be written in the canonical Poisson bracket form:

m

o = - He. (2.23)

wheren = (g1, g2, p1, p2)" and

8F &G 8F 8G
{F, g}c—ﬁ dz Z(%E_E%)' (2.24)

The Poisson brackéR.24)can also be written in the form:

5F . 8G
¢ = d J = 2.25
Fo= [ (225)
where
0, |
=% . (2.26)
1, O

Here,O» andl» denote the zero 2 2 matrix and the unit Z 2 matrix, respectivelyd. is known as the canonical
symplectic operator or matrix. One can also thinklptis defining the symplectic metric (e[@7]). Note that],.
is a skew-symmetric matrix with" = —J, and the Poisson brackg.25)satisfies the Jacobi identif§7,19,20]

One can construct a non-canonical Poisson bracket by transforming the canonical Poisson bracket to the nev
non-canonical coordinates (e[$9—23])). However, one may still be confronted with situations in which the solutions
of the equations evolve to produce shocks (e.g. in compressible gas dynamics, or in the inviscid Burgers equation,
the solutions can become multiple valued, unless one inserts a shock to restore the uniqueness of the weak solution
Using the non-canonical physical variables

P,
@ = (E, B, P, p;) where pp = —, (2.27)
o
the Maxwell systenf2.1)—(2.4)can be written in the Poisson bracket form:
om
) 2.28
B o (2.28)

where# is the Hamiltonian functional. The non-canonical Poisson bracké.2B)is defined by the equation

{F, G} := {F., G}, where /)] = Flm] is the functional obtained by writing the functiondl in terms of the

new variablesi and similarly, forG. Thus, to obtain the explicit form of the non-canonical Poisson bracket it is
necessary to determine the transformation of variational derivatives between the new and the old variables. These
transformations are

SF (aif) SF 6F | 8F OE SF _ 8F O 5F  8F

- all T 2o 2o (2.29)
8q1 6B g2 8P SE g2 dp1 SE dp1 dp2  Op2

whereD; is the total derivative operator with respecttdJsing(2.29)to replace the functional derivativé$/sn
in (2.25)we obtain:
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. ® 8F -5 6G
(F,G) = f dz 3 ges 29 (2.30)

for the non-canonical Poisson brack&t G}, where

0 —¢D, 0 —¢
N —D.(¢-
J= ¢y 0 0 0 , (2.31)
0 0
15 0 -1 0
c= W gy gyt (2.32)
dp1 g2

The matrix operatod in (2.31)is a skew adjoint operator with respect to the symplectic inner product

x o

(u,v) = / ugv* dz = / uajaﬂv,g dz. (2.33)
—00 —0oQ

In Appendix A we show directly that the bracké.30)is skew-symmetric and that the Jacobi identity is satisfied,

by using the results of Olvé8]. The Hamiltonian operatat in (2.31)is singular wherD.; — oo. This occurs at

points where the electric field gradiebt E — oo, and it is then necessary to consider how to treat shocks in the

electric field.

The set of non-canonical variabl€2.27) is not unique. For example, one could also use the non-canonical
variablesi = (q1, ¢2, E, p2)" = (A, P, E, P,/a)". The non-canonical Poisson bracket in this case satisfies the
conditions of skew-symmetry and the Jacobi identity, and the symplectic matrix op&ratpends om, but not
on the totak-derivative operatoD,.

3. Liesymmetries and conservation laws

In this section we obtain the Lie point symmetries of the Maxwell-Lorentz oscilgaations (2.1)—(2.49r
the equivalent syster2.7) and (2.8)and use the symmetries to obtain conservation laws for the equations by
using Noether’s theorem. We first present a short overview of the use of Lie symmetries in obtaining solutions
of differential equations irSection 3.1 This also includes a discussion of Noether's first theorem in obtaining
conservation laws for a system of differential equations that arise as a critical point of a Lagrangian variational
principle (see e.g8, Chapter 5for the Noether's first and second theorems on variational symmetries). The Lie
point symmetries admitted by the Maxwell-Lorentz oscillator sygtaf)—(2.4)and its Lie algebra are obtained in
Section 3.2The symmetries are then used in conjunction with Noether’s theorem to obtain conservation laws for the
system. We identify the stress-energy tensor for the system associated with the momentum and energy conservatior
laws.

3.1. Basic results on Lie symmetries and differential equations

The general procedure to obtain Lie symmetries of differential equations, and their application to find conservation
laws and analytic solutions of the equations are described in detail in several monographs on the subject (e.g.
[7-10,12) and in numerous papers in the literature (1§,24,25).
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Consider a system of differential equations in the dependent varigblés< « < m) and independent variables
x' (1 <i < n) of the form:

Qs(xi,u“,u?‘,uﬁ‘,...)zo, 1<s <k, (3.1)

where the subscripts denote partial derivatives (€.g= du*/dx;). To determine continuous symmetries(8f1),
it is useful to consider infinitesimal Lie transformations of the form:

=2 e+ 0, u =t e + O, (3:2)

that leave the equation system invariant {@)OLie point symmetries correspond to the case where the infinitesimal
generatorg’ = & (x, u®) and¢® = ¢*(x', u*) depend only on the’ and thex® and not on the derivatives or
integrals of the:®. Generalized Lie symmetries are obtained in the case when the transfornfattja¢so depend
on the derivatives or integrals of thé&.

The infinitesimal transformations for the first and second derivatives(t) &e given by the prolongation
formulae:

uit =i +efl, = +eg, ¢2)
where

o = Did" +Eug, & = DiDjd" + E'ug;. (34)
Here

P" = ¢% — E'ul, (3.5)

corresponds to the canonical Lie transformation for whiéh= x’ andu® = u® + €¢*. The symbolD; in (3.4)
denotes the total derivative operator with respecttaSimilar formulae to(3.4) apply for the transformation of
higher order derivatives.

The condition for invariance of the differential equation sys{8m)to O(¢) under the Lie transformatiof3.2)
can be expressed in the form:

Lx2°=X2°=0 whenever2®* =0, 1<s <k, (3.6)
where

. I

X=X+§iau_‘?f+§iiﬁg+"" (3.7)

1
is the prolongation of the vector field
-0 d
X=§—+¢%—, 3.8
Foite's o (3.8)

associated with the infinitesimal transformat{@y?2). The symbollx £2* in (3.6) denotes the Lie derivative @2*
with respect to the vector fieldl (i.e. Lx 2° = (d2*/de)c—0).
The prolonged symmetry operatgris related to the prolonged, canonical symmetry opet&itby the equation

X=X+¢D,. (3.9)

The canonical symmetry operator (or the evolutionary symmetry with charactejisticresponds to the symmetry
transformation for which’’ = x’ andu’® = u® + e¢®. The prolonged symmetry operat’f¢] is given by

.y 0
-4+ DyDiy ... Dy ———— 4. (3.10)

o
3“1'11'24..1'5

N A0 A~ 0 a0
X = % — D: ox__— D:D: o
(91 = 9 5+ D09+ DI
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The Lie bracket of two canonical symmetry operators with characteristiendg, is given by
[X[1], X[2l] = X[gs] where ¢3 = X[p1]d2 — X[p2]¢1. (3.11)

In addition, [X[¢], D;] = 0 and [D;, D;] = 0[10]. Thus, the canonical symmetry operators form a Lie algebyra,
which will be infinite dimensional if there is an infinite number of disti&:g:tlbragimov[lO] shows that the algebia
is a subalgebra df, the symmetry algebra of the prolonged vector fisldin fact, L is isomorphic to the factor alge-
bral/L.,whereL, = {X, € L : X, = &.D;}isaclosed ideal ik (i.e. [X, X.] € L, forall X, € L, andX e L).

3.1.1. Classical similarity solutions
Lie point symmetries of the systefB.1)are determined by solving the overdetermined Lie determiequation
(3.6) for the infinitesimal generatorg’ : 1 < i < n} and the{¢* : 1 < « < m}. Classical similarity solutions
of (3.1) are obtained by requiring the solution surfaces foriti@re mapped onto the same set of surfaces, in the
sense thai'™(x) = u*(x’). These conditions, to @) yield the first order partial differential equatiogfstf‘ = ¢“
(e.g.[15]), with characteristics being given by the group trajectories:
dx! _
3 =
Integration of the group trajectories yield the invariants of the point Lie group admitted by the system, and these
may be used to construct the classical similarity solutions of the sy&edmh Classical similarity solutions of the
Maxwell-Lorentz systen2.1)—(2.4)are constructed by these method$#ction 4

. du®
& and é:q&“, l<i<n, l<a<m. (3.12)

3.1.2. Noether’s first theorem and the calculus of variations
In this subsection we consider differential equation systems that arise from critical point conditions for a La-
grangian action principle, in which the action is of the form:

J[u] =/Rde(xi,u“,u?,u;},...). (3.13)
At a critical point, the action is stationary, i.e.,

8J = Ju + ev] — J[u] = /;?dXSL =0, (3.14)
where

SL = L[u + ev] — L[u] = €' E, (L) + D;W'[u, v]) + O(¢?) (3.15)

[7]. Thus, the critical point requireme8i = 0 is satisfied if the:* satisfy the Euler—-Lagrange equations:

oL oL oL oL
EJLl=— —D; | — DiD;|\— | —D;D;D, | — ...=0, 3.16
a[ ] e l(au?>+ i j<3uﬁt> ~j k<8”ﬁk>+ ( )

provided that the surface terW - n that arises from integrating); W' by using Gauss’s theorem vanishes on the
boundaryd R with outward unit normah of the integration regio® for J[«]. In (3.15)the boundary vectoW[u, v]
is given by

Wilu, v] =¥ AL _p (2 +D;D oL
V] =v Y . — ...
Buz»/ ! Builj/ ik 8”i)j/k
+y|:8L D<8L>+DD<8L> :|+y|:3L D<8L>+ }L
V. _ k [E— ¢ k [ [ V: —_ s “e .o
14 Y Y k Y Y
! e a“ijk a”ijkz ’ a”ijk a“ijks

(3.17)
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Thus, Wi[u, v] will vanish ondR if su® = ev® and its normal derivatives all vanish on the boundary. In the above
equationsE,[ L] defines the Euler operatdi, for the system. The Euler—Lagrangeguations (3.163onstitute the
differential equations2® = 0 (1 < s < m) for the system in this case. The surface vedtplays a central role in
Noether’s theorem.

3.1.2.1. Noether’s first theoremOne important idea in the proof of Noether’s theorem is the result that two
Lagrangian densities; and L, that differ by a pure divergence have the same Euler—-Lagraqgation (3.16)
This property depends on the result thgf D; F] = 0 for any sufficiently smooth functional[u]. ThusifL,—L; =
D;Al, thenE,[L1] = E4[L>]. This fact motivates the definition of a variational symmetry given below.

3.1.2.2. Definition. A canonical, generalized, Lie symmetry = x, u** = u® + €9 is called avariational
symmetnof the action(3.13), if there exists a vector field such thatYL = D, A’.

For a variational symmetry, we have tad€), thatL* — L = eXL = eD;A’. HenceL* and L differ by a pure
divergence, which implies that to(©, L andL* have the same Euler—Lagrange equations. This explains the origin
of the definition of a variational symmetry.

Bluman and Kumej7, Chapter 5konsider Boyer’s version of Noether’s theorem as well as the original version
of the theorem given by Noether. These two versions of Noether’s theorem are given below.

3.1.2.3. Boyer's version of Noether's theorentet X[$] be the Lie symmetry operator corresponding to the
generalized, canonical Lie transformatioh = x andu*® = u® + €¢®. If ¢ is a variational symmetry of the action
(3.13)(i.e., if X[¢p]L = D;A’ for some vector fieldh), then for any solution: of the Euler—Lagrange equations
E,[L] = 0, there is a corresponding conservation law:

D;i(W'[u, ¢] — A =0. (3.18)
The proof of(3.18)depends on the result:
XL = ¢"E,[L] + DiW'[u, §]. (3.19)

The resul(3.19)follows from (3.15)with v¥ = ¢ and the definition o [$]L as a Lie derivative. Usin¢3.19)
in conjunction with the fact thak[¢]L = D;A’ and notingE,[L] = O for u a solution of the Euler-Lagrange
equation (3.16¢stablishes the theorem.

Note that the theorem in this form does not give a method to find variational symmetries. One can sho that if
is a variational symmetry, then it is also a generalized symmetry of the Euler—Lagrqugton (3.16)However,
not all symmetries of the Euler—Lagrange equations are necessarily variational symmetries.

Below is the original version of Noether’s first theorem.

3.1.2.4. Noether’s theorem.If the action(3.13)is invariant under a generalized Lie transformat{8r2) (i.e.,
X = x4 €&, u® = u® + €¢®), then for any solution of the Euler-Lagrange equatiols[L] = O, there is a
corresponding conservation law:

D;(Wilu,¢) +€L)=0 (3.20)

(see e.g[7, Chapter 5Jor a proof). Thus, one can think of Noether’s original version of the theorem as the special
case of Boyer’s version of the theorem whéh= —&'L.
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3.2. Lie symmetries and conservation laws

The Lie symmetries of the Maxwell-Lorentz oscillator sys{@m)—(2.6)or the equivalent equation systéth7)
and (2.8)for .A and P can be found by solving the Lie determinirquation (3.6¥or the infinitesimal generators
of the Lie group. Below, we first write down the Lie determining equations for the system, and give the solutions
of the determining equations that correspond to the point Lie group. The point Lie algebra of the system is briefly
described, and the symmetries are then used to obtain conservation laws for the system by using Noether’s theorem,
as described i3.13) etc.

3.2.1. Lie symmetries
The infinitesimal Lie transformations for the systébil)—(2.6)are of the form:
! =t+et', 7=z+e AN=A+ep”, E =E+ept, B =B+ ep”, P =P+ egpt.
(3.21)

The corresponding canonical Lie symmetry genera#drs¢?, ¢ and$* are given by formulae analogous to
(3.5). Thus
PY = ¢ —E'w, — Ew, (3.22)

relates the canonical symmetry generattirto ¢, wherew can be any of the dependent variabi&s, P or A.
The Lie determiningequation (3.6jor the infinitesimal generators of the systéil)—(2.4)can be written in the
form:

D,¢® + D.¢* =0, (3.23)
1+ E*)D,¢F + 20E*YE,¢F + D,¢p* + D.¢® =0, (3.24)
D?¢p" + ¢F —agf = 0. (3.25)

The auxiliaryequation (2.6piving B and E in terms of the magnetic potentid have Lie determining equations:
#% = D.¢* and ¢f = —D,p*. (3.26)

Note that these equations can also be written down in terms of the non-canonical symmetry gefiegataers,
B, oF and¢?. It is straightforward to write down the Lie determining equations for the equivalent system of
Egs. (2.7) and (2.8pr A and P, but these equations are not necessary for the analysis.

For the case of Lie point symmetries, the non-canonical symmetry generators are assumed to depend only on
(t,z, E, B, P) in (3.21)—(3.26) Using (3.22) this means that the canonical symmetry operajét§w = E, B,
P, A) can depend only orn z and the first order space and time derivativepfB, P and.A. The determining
equations (3.23)—(3.26jave solutions for the non-canonical symmetry generators of the form:

f=a, E=ay ¢F=0¢"'=0 ¢P=a3 ¢*=dazz+as, (3.27)

where the{a; : 1 < j < 4} are constants. The corresponding canonical Lie symmetry generators are

~

¢ = —@rE, — azE., ¢¥ =-a1P—azP., ¢® =az—a1B, — azB.,

&A =azz+as — a1 Ay — axA;. (3.28)
One can verify that the canonical symmeti({@<28)do in fact satisfy the Lie determining equations on the solution
manifold of (2.1)—(2.6) For example,

D¢® + D,¢F = —(a1D, + azD,)(B; + E.). (3.29)
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SinceE; + B, = 0 on the solution manifold, then the right handsidé329)is zero. Similarly, one can check that
the solution(3.28)for the canonical Lie symmetries satisfies the other Lie determieipgtions (3.24)—(3.2@&n
the solution manifold.

The Lie point symmetry generators(iBi27)correspond to the time{) and spaces) translation symmetries, the
symmetry of invariance under translationsii.e. the transformatio®’ = B + ea3) and the guage transformation
symmetry forA (i.e. the symmetry for whickd’ = A + eas). In principle, Egs. (3.23)—(3.26gould also admit
generalized Lie symmetries that depend on the higher order derivatives®fnd P. However, this possibility
will not be investigated here.

TheEgs. (2.7) and (2.8lso admit the discrete, non-Lie symmetry transformation

=1, 7 =z, A =—-A, P =—P (3.30)
Another discrete symmetry is
= —t, 7=z A = A, P=-pP (3.31)

(there may possibly be more discrete symmetries).

3.2.2. The point Lie algebra
The general vector field in the point Lie algebra corresponding to the transformat{8r&l)can be written in
the form:

X=Yaxi, (3.32)

where the basis vector fieldX; : 1 <i < 4} are
B 0 R B

X1=—, Xo = —, X3=7—, X4 = —. 3.33
S 27 % 3T %4 4= %4 (3:33)
The only non-zero commutatorX{, X ;] of the point Lie algebra are

[X2, X3] = X4 and [X3, X2] = —X3. (3.34)

Using(3.34) and noting K4, X4] = 0, it follows that the Lie algebra is solvable.

3.2.3. Conservation laws
In this section both forms of Noether’s first theorem as describ€8.18), etc. are used to obtain conservation
laws for the systenf2.7) and (2.8pf the form:

oW,  OF;
Wi, 9%

=0, j=1234 3.35
ot 9z I ( )

Because the Lagrangian dendityn (2.13)only involves first order derivatives of and P, the surface flux functions
Wilu, ¢] (i = 1, 2) in (3.17)have the form:
~ 4 OL ~p OL ~ 4 OL ~p 0L

, , 3.36
9A,; P 9A. P, (3.36)

where (x1, x2) = (1, z) are the independent variables. We derive the conservation laws associated with the four
symmetry vector fieldX 1, X2, X3 and X4 below.
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3.2.3.1. Time translation invariance&(). For this symmetry
g£=1  £=0  ¢r=-A, ¢'=-pP. (3.37)

This symmetry leaves the acti¢®.12)invariant. Using(3.36)we obtain

wl=—4, (A, + AT P) - P—fz, W2 = A A.. (3.38)
20+ 1 o
Using Noether’s theorerf8.20) the conserved density; = —(W! + L) and fluxF, = —W? are given by
W=ty B Lp24p2), (3-39)
2 20+2 2a
F1 =EB. (3.40)

The conservation la¥3.35)in this case is electromagnetic energy conservation law (Poynting’'s theorem) for a
Kerr-medium.

3.2.3.2. Space translation invariancE4). In this case
g=0 &=1 ¢t=-A, ¢'=-P. (3.41)
Using(3.36)we obtain

ExHL P) _ PP,

P , w2 = B2, (3.42)

leB(E—i—
o

The action(2.12)is invariant under the transformation. Using Noether’s theof8r20) the conserved density
W, = Wt and fluxF, = W2 + L are given by

E%+1 P.P,
Wo=B|[E P)— , 3.43
2 ( + 20+1+ ) o ( )
1 5 5 20+2 1 5 5
Fp==-(E’+B)+—— 4+ —(P?>— P> +EP. 3.44
2= B Bt S Do T2 T (3.44)

The conservation law in this case is the electromagnetic momentum conservation equation.
The above energy and momentum conservation laws can be expressed more concisely in the form
oTHY
oxH

-0 (v=0,1), (3.45)

where we use the Einstein summation convention for repeated indides?) = (1, z); andT*" is the energy—
momentum tensor for the system, with components

7% = Wy, T = Fp, T = Wy, T = F. (3.46)
From field theory (e.g13,14) T*" is given in terms of the Lagrangian densityby the formulae:

L 9g*
THY — gvoT(;;’ Tét — _i _ agﬁ, (347)
gy 0x®

where(qt, %) = (A, P) are the canonical coordinates, and the metric tegléor= diag(1, —1) is the Minkowski,
flat space metric tensor.
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3.2.3.3. Translation invariance & (X3). In this caset’ = & = ¢¥ = 0 and¢* = z. For this symmetry, the
action(2.12)is not invariant. However

. 9 9
XL = <zﬁ + aAZ) L=-A, (3.48)

and hence Boyer’s form of Noether’s theoré3ri8)applies withA = (0, —A)T. The conserved densityz = —W?!
and flux F3 = —(W? — A2) are given by

20+1
Wa=z|E P), F3=zB— A. 3.49
3 Z( +2(7+1+> 3=12 A ( )

3.2.3.4. Guage invariance&y). In this caset’ = £ = ¢¥ = 0 and¢* = 1. The actior(2.12)is invariant under

the transformation. Noether’s theord120)gives W4 = —W?1 for the conserved density arfty = —W? for the
conserved flux as:
20+1
Ws=F P, Fs=B. 3.50
4=ttt 4 (3.50)

The conservation equation in this case is Ampeegjsation (2.2which is one of the original basic equations of
the model.

4. Similarity solutions

In this section, we obtain classical similarity solutions of the Maxwell-Lorentz sy&2em and (2.8) These
solutions involve four parameters, corresponding to the four Lie point symmetries discussection 3.2 The
most useful solutions are the traveling wave solutions associated with the space and time translation symmetries
The latter solutions are investigatedSection 5

4.1. Classical similarity solutions

From(3.27) the general Lie point symmetry operaforadmitted by the systeif2.7) and (2.8)s
— 4.1
0 d A’ 4.1)

where{t, z, A, P} are the basic variables.

The classical similarity solutions of the systé¢tn7) and (2.8are obtained by integrating the group trajectories

(e.g.Section 3.1.1[7,8,15):
dr dz dA dp
P ai, P az, 9 asz + aa, 9 = 0, 4.2)

wherer is a parameter along the trajectories. Integratio(dd?) yields the integrals:

0 d 0
X = arg + az—Z + (asz + aa)

z—st=J,  A-G8P+v)=J, P=J (4.3)

for the group invariant§Jy, J, J3}, where

S=%, 8=@, p="4 (4.4)

al al al
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(we implicitly assumer; # 0). From(4.4)it follows that the Maxwell systen(2.7) and (2.8possesses classical
similarity solutions of the form:

A=2162+vz+A0®, P=PO, (4.5)
where
— (4.6)

is the similarity variable, and (¢) and P(§) are functions of obtained by substituting the solution ans@%) and
(4.6)into (2.7) and (2.8)
From(2.6), the solutions foE and B have the form:

E =sK(§), B=56z+v+ A®). 4.7

The solutions forP(¢) and A (&) depend on the traveling wave varialfle= z — st, wheres is the velocity of the
traveling wave frame. Fror#.7)

E —sB= —s(v + 62). (4.8)

Noting thatE = (E, 0,0)T, B = (0, B, 0)" and settings = (0, 0, 5) for the velocity of the traveling wave frame,
we find

E=4E+uxB)=0,0E—sB" (4.9)

for the electric field in the traveling wave frame, wherés the Lorentz gamma. Thus, we may identify the right
hand side of4.8) with the electric field in the traveling wave frame.

Substituting the solution ansa.5) and (4.6)nto Ampere’s law(2.7), and integrating with respect toyields
the integral:

E20+1

E
S+ — —s (E + + P) = c1, (4.10)
S

20+1
wherec; is an integration constant. The Lorentz oscillatquation (2.8becomes:
s?°P"(§) + P = aE. (4.11)

Hence the system reduces to a second order ODI fwyupled with an algebraic equation relatiRgand E (we
could of course also write the equations in termgi¢¥) and P(§), using the fact thak = sX(§)).
Eq. (4.10)can be solved foP in terms of E, yielding the equation:

1)

P=g(E)+ é (4.12)

where
E(1— S2) E20+1 1

8(E) = 2 T%rl s (4.13)

Using the resul{4.12)for P in (4.11)yields a second order differential equation o) of the form:
1)
2 (E) B + ' (E)ED) + 9(B) — @B + % =0 (4.12)

Thus, the similarity solutions for the system can be obtained by integrating the non-linear, second order, ordinary
differentialequation (4.14jor E = E(§).
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Note that a second independent integral of the sygted0) and (4.11kan be obtained by substituting the
solution ansat£4.5) and (4.6)nto the energy conservati@guation (3.35jor j = 1, where the conserved energy
densityW; = H, and energy flux are given in(3.39) and (3.40)This yields the energy conservation equation:

2 p2 2
scPf+ P E2 E2(T+2 1
3 2 ~
— b+ ——— — A —S8A = 4.15
20 2 T2072 2 © (4.15)
whereé is the energy integration constant. One can also obtain the in{ggt&l) by combining the derivative of
(4.10)with (4.11)

5. Traveling wave solutions

In this section, we consider the class of traveling wave similarity solutions. These solutions correspond to the
cased = 0 in (4.4). We first obtain the canonical Poisson bracket for the traveling wave solutions, and then use
this bracket to obtain the non-canonical Poisson bracket yging) as the variables, whet® andp = P are the
electric field and canonical momentum, respectively. An analysis ofEhe@)-phase-space trajectories is used to
determine the different types of traveling waves that can be obtained depending on the traveling wayewspeed
and the energy integration constdiff for the waves. This is followed by some illustrative examples.

5.1. Poisson brackets for the traveling waves

The basic differential equations for the systéhil0) and (4.11inay be cast in the Hamiltonian form:

0 oH, ) oH,

e @»__% (5.1)

9  op G dq
where

g=P and p= P, (5.2)
are the canonical variables and

2.2, 2 2,2 2042
s pc+q E“(s—-1) E .
Ho=N = Ng, 53
0 ( 2 22 2542 ¢ (5-3)
is a re-scaled version of the energy inteddall5)with normalization constant
o
N=-. (5.4)

N

In order to express the Hamiltonidfy in terms of the canonical variables it is necessary to invert the rel@tiaf)

for § = 0, i.e. to solve the equation:
B E(l _ SZ) E20+1 c1
B 52 204+1 s

(5.5)

for E as a function ofy. Since there are multiple roots (6.5) for E = E(g), it is in general simpler to use a
non-canonical Poisson bracket description of the equations, in wliich) are the non-canonical phase-space
coordinates.
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In the canonical Poisson bracket description of Hamilt@gsation (5.1)the equations are written in the form
ne = {n, Ho}., wheren = (q, p)' are the canonical variables, ahd= z — stis the traveling wave variable. The
canonical Poisson brackgf, G}, has the form:

0F 0G  JF oG

FGl=—————=(F,, F,)-J-(Gy, G, 5.6
{ } 86] 3p 3p 36] (q p) (q p) ( )
where
0 1
J= , (5.7)
-1 0

is the canonical symplectic matrix.
If one uses the non-canonical variab{és p) Hamilton’s equations for the system may be written in the Poisson
bracket form:

fie = {7, Ho} where i = (E, p). (5.8)

Here, the non-canonical Poisson bracket G} is

- dF 0G  OF oG i s o
(F.G)=Ej| —=— — —— | =V;F"-3-V;G, (5.9)
dE dp  Op OE
where
- 0 E,
J= , (5.10)
-E, O

is the symplectic matrix operator for the non-canonical bracket. REo&) we find

1— 2
where y. = Zs . (5.11)
)

Et] B Ye — EZU
Note thatF(E, p) = F(q, p) and{F, G} = {F, G}. define the non-canonical bracket in terms of the canonical
bracket.

It remains to check the skew-symmetry and the Jacobi identity for the non-canonical l{faBkethe skew-
symmetry of the bracket follows from the skew-symmetnddf.e.J7 = —J). From[8, p. 395, Eq. (6.15)]the
Jacobi identity is satisfied if

2
TG, joky =Y T 0%+ T, 00 + 779,08 =0, i jk=12 (5.12)
=1
whered, = 3/dx! and(x!, x%) = (E, p) = 7". Noting thatJ! is independent op, and evaluating the derivatives
in (5.12) we find that(5.12)is satisfied provided. — E%° # 0. Hence the Jacobi identity is satisfied for the
non-canonical Poisson bracket, provided we avoid the singular manifold E2 = 0, where|E,| — oo and
|dE,/dE| — oo.

The above analysis shows that t#, p)-phase plane for & s? < 1 (i.e.y. > 0) splits into three separate

regions: ()E < —E,, (ii) |E| < E. and (iii) E > E., where
1/20

2
E.= (1 > ) . (5.13)

N
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Thus, the Hamiltonian dynamics may be thought of as occurring on three separate distinct manifolds, or regions
which are separated by the singular lifles= +E. in the (E, p)-phase plane.

5.2. Phase-space trajectories and critical point analysis

Hamilton’sequation (5.8Jor the evolution ofj = (E, p)T may be written in the form:

dE_ p dp_ 1 20+1

de ~  EZ —y.’ de 2

L ﬂ) . (5.14)

— v E
((O[ YO E + 2% +1 "

To further investigate the phase-space trajectofte$4) we restrict our analysis to the case of a cubic Kerr
non-linearity ¢ = 1) and assume; = 0.

5.2.1. Cas& =landc1 =0
In this case the phase-space trajectofte$4)reduce to the equation system:

dE P dp _ E(E®—y.)

& . L =E I 5.15

de E2 -y, dé 352 ( )
where

1—52

Ye = 3(ye — @), Ve = 7 (5.16)
The autonomous systefB.15)can also be written in the form:

dp _ E(E® = yo)(E* = yo) dE

= = = G(E), — = p, 5.17

= 32 (E) =P (5.17)

wherer is a parameter along the trajectories. Note that in gengfal, > oo asE — *E,., whereE, = y}/z

(unlessp — 0 also in this limit). Also note thaEe changes sign as we crogs= £E..
From(5.3) and (5.5)

fﬁ+#m—ﬁﬁﬁ_ﬁﬁ+§>

5.18
20 2 4 ( )

Ho:NE:N(

is the general integral ¢b.17) Thus, the trajectorie.17)in the (E, p)-phase plane can be obtained by plotting
the contours ofp.

The critical points of the dynamical systét17)occur at the points wherepddr = dE/dt = 0 simultaneously.
The critical points in th&€E, p) plane are located at:

where
Ec=y?  E.=y/% (5.20)

Linearization of(5.17)about the critical point§5.19)yields the equations:

d (s 0 G(E 8 8
- p _ ( Cr) p = A p i (5.21)
dr \ sE 1 0 SE SE

whereE.; denotes a value of at a critical point, and;’'(E) = dG/dE.
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Table 1
Properties of the critical points in tH&, p)-phase plane for the traveling wave solutions of the Maxwell-Lorentz sy&dmn-(2.4)the (E, p)
phase plane trajectories are giver(sl7)

Case Velocity range (+E,, 0) (+E., 0) (0,0) Comment

(a) O< |s| <s1 Center Saddle Center E,>E.>0
(b) 51 < |s| < 82 Saddle Center Center E.>E, >0
(c) so<|s| <1 - Center Saddle E.>0,E2<0
(d) sl > 1 - - Center E2<0,E?2<0

Searching for solutiongsp, SE)T = R exp(1 1) yields the eigen-equation system:

_» G/(E 0
(A—ADR = (Een | (1) _ , (5.22)
1 —A r 0

whereR = (r1, r2)T is the right eigenvector of the matrix corresponding to the eigenvalaeEq. (5.22)has a
non-trivial solution forR provideda satisfies the eigenvalue equation:

detA — Al) = 12 — G'(E¢r) = 0, (5.23)
andR = (1, 1)Tr, is the corresponding eigenvector, whesés an arbitrary constant. Evaluatigf ( Ec), we find
thatA = Ao, A = £A., Or A = £, corresponding to the point®, 0), (:E., 0) and(+E,, 0), where

»  [FPA+a) —1]1-5? 5 ALl—s[1 - (1+30/2)s7
)\.o = s6 N )\'C = SG N

A -1+ )][(14 3/2)s? — 1]

22 . (5.24)
R
Inspection of(5.24)shows that the signs Q%, ALZ, andxf can change at the characteristic speeds:
s1i=1+330)7Y2 sm=0+0)V2 s3=1 (5.25)

where O< s1 < 52 < s3 = 1. The nature of the critical poin{5.19)(i.e., whether the critical point is a saddle or a
center or something more complicated) depends on the speed of the traveling wave and theavdluaddition,
the energy integration constanhas a specific value for the trajectories that pass through the critical point, in the
case that the critical point is a saddle. A summary of the nature of the different critical points is gikadierl

The above information is sufficient to sketch the phase trajectories i(Fthe)-phase plane, in the four speed
regimes: (a) O< |s| < s1, (b) s1 < |s| < s2, (€) s2 < |s| < 1, and (d)|s| > 1. The trajectories can be obtained
by plotting the contours of the Hamiltoniddfy = Ho(E, p) in (5.18)or by numerically integrating the differential
equations (5.17)Alternatively, one can obtain an explicit representation for the trajectories in thegfesnp(E),
by solving(5.18)for p?:

1 9 D(y)
2 4 2 2,12 2
= |e— =(E*—2y.E? — E*(E* = 3y.)?| = —, 5.26
p 9s2[6 5 ( YeE) ( y)] 052 (5.26)
where
€ = 180 = 1852 Hy, y = E? (5.27)

(notee is a re-scaled version of the energy integration congtiahtin the present example with = 0 ando = 1,
p? is a cubic polynomial iny = E2. In the more general case where+ 0 this is not true. The polynomiak(y)
in (5.26)is

() = € — (53 + Bay® + B2y), (5.28)
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o]
L]

© ()

Fig. 1. Phase trajectori¢5.26), or the contours of the Hamiltoniaty (5.18)in the (E, p)-phase plane for the traveling wave solutions of the
Maxwell-Lorentz system. The parameteis= 0 anda = 0.5. The four cases are: (&)= 0.5, (b)s = 0.8, (c)s = 0.9 and (d)s = 1.2,
corresponding to the four different speed regimesahle 1

where

9 1—s2
Ba = 2 6yc, B2 =9y:(yc — @), Ye = > -

S
From (5.5) p = g = (yc — y)E¢, and hence the phase plane traject(#y26) is equivalent to the first order

differential equation
dy\? 4yP(y)
- == 5.30
(dé) 952(}7 - yc)z ( )

for y as a function o€.
Representative phase-space trajectqise26)in the (E, p)-phase plane are given Fig. 1(a)—(d), which cor-
respond to the different casesTable 1 The parameters used Fig. 1(a), s = 0.5 anda = 0.5 andc¢; = 0,

(5.29)
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corresponds to the velocity regime<0|s| < s1. In this regimeE, > E. > 0. The different orbits correspond to
different values of the energy integration constaint(5.26) On the vertical dashed linesBt= +E., |[E¢| — oo,
andEe changes sign acrog= £E.. The arrows correspond to the direction of increasirigside the heteroclinic
orbit joining the saddles &t-E, 0) there are closed orbits corresponding to smooth, periodic traveling waves of the
Maxwell-Lorentz syster(2.1)—(2.4) Note in general thatE:| — oo for the solution trajectories that intersect with
the curvesE = +E., except for the special separatrix solution which passes smoothly through the saddle points at
(£E;, 0). For|E| > E_, there are periodic orbits inside the separatrix which circle about the center&at0).
These solutions give rise to smooth, periodic traveling waves. Trajectories outside the separatrix, have the property
|E¢| — oo asE — *E.. Note from(5.15)that the tangent vector to the curvgs:, pg) reverse across the vertical
linesk = +E.. The arrows on the curves show the direction of increasjlag determined from the tangent vector
(Ee, pg) from (5.15)

We now consider more precisely the character of the separafigifi(a) which passes smoothly through the sad-
dle point singularities at- £, 0). This solution is called the critical solution by analogy with the transonic solution
in stellar wind theory, where the wind passes smoothly through the sonic critical point from subsonic to supersonic
flow [26]. The phase-space trajectories correspond to solutions of the first order diffezgotibn (5.30%or y(£).
For an appropriate choice ef @(y) has a double zero at= y., and the factor ofy — y.)2 in the denominator of
(5.30)cancels with a corresponding factor(@f— y.)2 of ®(y) in the numerator.

More generally, we can look for other special solution§o80)for which @(y) has a double zero at= y, say,
i.e.d(y,) = @' (y,) = 0 simultaneously at = y,. Differentiating(5.28)yields

D'(y) = =30y — yo) (¥ — Ye), (5.31)

wherey, = 3(y. — a) andy, = (1 — 5% /s® (see(5.16). Thus,y = y. andy = y, are both double roots of
@(y) = 0 for appropriate choices of the energy integration constanhe first possibilityy = y. corresponds to
the critical solution. The second possibility= y. corresponds to the heteroclinic orbithig. 1(b), and gives rise
to a kink-type solution. Below we consider in more detail the critical solution case.

(i) The critical solution
The conditions?’(y.) = 0 and®(y.) = 0 are satisfied by choosing

€=ecr=yoys wherey; = 3(4y: — 9a). (5.32)
In this case
D) = D) = —(y — y)?(y — ya)- (5.33)

Thus, the equation of the separatrifig. 1(a) is p? = @ (y)/9s%, wherey = E2. Note thatp = O aty = y,
(E = +£E.), and aty = y; (E = +E4, whereE; = yj/z). In order forE,; to be real requires that; > 0.
This latter condition requires that the wave speée restricted to the range® |s| < (1 + 9«/8)~Y2. The
differentialequation (5.30jeduces to:

dy 2 1

e — Y2 5.34

d 3s[y(yd »] (5.34)
Note that the(y — y.)? factor in ®©)(y) cancels with théy — y.)? factor in the denominator it5.30) The
solution of(5.34)is

y = yasin? (%) , (5.35)
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wheregg is an integration constant. The corresponding solutiorEfgs

E = +y./?sin <ﬂ> . (5.36)
3s
For the solution folE to be real requires that; > 0. Since
4 9

it is necessary to choosed |s| < (1 + 9«/8)~1/2in order to ensure that is real. The solution is a smooth,
periodic traveling wave. It is straightforward to show that the electric field amplifjde- yj/z, and the
Hamiltonian integraHo = y2y,/185° both tend to zero as| — (1+ 9«/8)~/2 and that bottE, and Hy are
unbounded in the limit ag| — 0.

Fig. 1(b) shows a typical phase-space plot of the trajectqfezb)for the speed regime, < |s| < s2 of
Table 1 In this regimeE. > E,, and heteroclinic orbits connect the two saddle¢-ak,, 0) and (E,, 0),
whereE, = yj}/z. The periodic orbits which circle the origi®, 0) in the (E, p) plane correspond to smooth,
periodic traveling wave solutions. The solutions Wit} > E. develop infinite electric field gradientge| at
E = +E.. Below, we consider in more detail the heteroclinic orbits connecting the saddle£at0).

The heteroclinic orbit
From(5.31) we know thai®’(y,) = 0. By choosing

3o , (30/2)y?
€ = €p = ?ye or = T‘s‘z’ (538)
ensures thab(y.) = 0 also. In this casg = y, is a double root ofo(y) = 0. Using this value of, we obtain
oM (y) = d(y) = (v — y)* (330 — y). (5.39)

as the form of®(y) for ¢ = en. The corresponding phase-space trajectory in(fhep) plane(5.26) has the
form: p?2 = " (y)/9s%, wherey = E2. This trajectory is the heteroclinic orbit Fig. 1(b).
From(5.30)the corresponding differential equation foe= y(&¢) reduces to:

dy  20—yo) [ (3 12
P N— [y (7 - ﬂ ' (5.40)

Note that(5.40)has a singularity ap = y.. At y = y., y'(§) = 0 andp = 0. This point corresponds to the
saddle points attE,, 0) in the (E, p) plane. The differentiaéquation (5.40¢an be integrated to obtain an
implicit, exact solution fory = y(&) in the form:
30
N _} , (5.41)

1 T+ 1T,
E=os|—In
T—1, 2

Te
whereo = +1 and the integration constant ({6.41) has been set equal to zero. The functiens z(y) and
6 = 6(y), the constant, andE are given by

3a . (0 3\Y2 (06 0 y  \Y?
=gez) 2= (5) o) )2 ams)

Be Ye 172
Te = tan(5> = (m) . (542)

If we restrict the range dof in (5.41) and (5.42)o |9| < 6., theny < y.. For the case where the sign function
o =1in(5.41) we find thatt — —yel/2 as¢ - —ooandE — y;}/z as¢é — oo. This is a kink-type solution,
which is illustrated in the next subsection.
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The critical solution irFig. 1(a) plays the role of a separatrix in the speed regime|d| < s1. However, for
s1 < |s| < (14 9/8)~Y2, the critical solution corresponds to a smooth periodic orbit about the origin, which
lies inside the separatrix, ifig. 1(b), and the diameter of the orbit shrinks to zerdsas> (1 + 9/8) Y2
This is consistent with the formulg®.32) and (5.38jor ¢ andep, which represent the contour heights of
the critical and heteroclinic orbits in th&, p) plane. In particular

€h = ecr + 432 — yo). (5.43)

Thus,ecr > € in the velocity range G< |s| < s1, €n = €cr ats = 51 andep, > e¢r for s1 < |s| < s2.

Fig. 1(c) shows the phase plane trajectories in the velocity regime |s| < 1. In this regime, there are
no smooth periodic traveling wave solutions, since all solutions unavoidably intersect the singular lines at
E = +E,, where|E¢| — oo. The separatrix orbit through the origin is given py = ®©(y)/9s?, where
@O (y) is the form of®(y) obtained withe = 0.

Fig. 1(d) illustrates the phase trajectories for > 1. In this regime, there are periodic, ellipse like orbits
about the origin in th€E, p) plane, which correspond to smooth periodic traveling waves.

5.3. lllustrative examples

For the traveling wave solutioif4.10) and (4.11with § = ¢1 = 0, and cubic Kerr non-linearity, the displacement
currentD = E + P + E3/3, magnetic inductiom8 and polarizatiorP are given in terms of by the formulae:

3
B=v+£, D:EZ, P:E(yC—E—>, (5.44)
s s 3

wherev is a constant. Without loss of generality, we set 0 in the examples below.

Fig. 2illustrates the critical solutio = E,; sin(¢/3s) of (5.36) and (5.44jor the case» = 0, = s = 0.5.
Panel (a) shows the variation 8f B, P andD as a function of the traveling wave varialjle- z — st The solutions
for D and B are re-scaled versions of the profile 8D = E/s? and B = E/s). The solution forP from (5.35)
is a cubic inE and has a more complicated form. The trajectory in(tfiep)-phase plane is the critical solution or
separatrix irFig. 1(a). The critical solution trajectory passes smoothly through the critical poittisft, 0), and
visits the three separate disjoint regiof8} < E.; E > E. andE < —E_ in its periodic orbit. Panel (b) ifig. 2
illustrates the same trajectory in thg p)-phase plane, whege= P andp = P; are the canonical variables. The
critical points in panel (b) are all center critical points. The phase plane trajectory starts on the outer ellipse at A
(¢ = 0), and proceeds in a clockwise fashion to visit all three ellipses, until it ends up back at point A. Each ellipse

20 . . . . £

@) g (b)

Fig. 2. (a) The variation of, B, P andD for the critical solutionE = E,; sin(&/3s) given in(5.36) and (5.44yith v = 0, and (b) theéq, p)-phase
plane trajectory. The parameters are- 0.5 ands = 0.5.
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N B O RN

Fig. 3. The sinusoidal, critical solutiqi®.36)perturbed by 0.01 sift/6s) at timer = 0, for the case = 0.5 ands = 0.6. Note the formation
of two shocks in the electric field. This results in instability at late times.

represents a different Hamiltonian branch, corresponding to the three solutitmS)dér £ = E(g) for the case
o =1andc; =0.

The critical solution described if%.36) and (5.44has a sinusoidal solution for the electric field. We have used
this exact solution of the vector Maxwell equations as a check on our numerical code. The code follows the exact
solution as far in time as we have calculatee=(1000). As a humerical test of the stability of the solut{6r86),
we have added a small perturbation to the exact sinusoidal solutidhdbtimer = O of the form 001 sin(z/6s)
for the caser = 0.5 ands = 0.6. The results of the numerical simulations are present€ir8. The figure shows
that the sinusoidal solution is unstable for the given initial perturbation. The instability manifests itself by shock
formation on the steep parts of the sinusoidal solution.

Fig. 4illustrates the kink solutiof5.41), (5.42) and (5.44pr the casex = 0.5, s = 0.8 andv = 0. Panel (a)
shows the profiles of, B, P andD as functions of, which consist of monotonic increasing, and odd functioris of
In particular, as noted i(6.42) etc.E — —yi/z = —-0.433as - —ocandkE — yi/z as¢ — oo. Panel (b) shows
that the solution corresponds to the heteroclinic orbit connecting the two saddle pointggnphghase plane.

The kink solution is given by an implicit formula which makes it rather complicated to investigate its stability.
Therefore, we conducted direct numerical simulations to illustrate the kink solution and to study its stability. By
choosingE(z, 0) = Axink tanh((z — zo)/w) we start the simulations with an initial condition which is a fairly
good approximation to the solution, both né&ae= 0, and for|§] — oo. This initial data can be thought of as a

-1.0 . . . 1-0.10

(@) ¢ (b)

Fig. 4. lllustrates the kink solution described|41), (5.42) and (5.44pr the casex = 0.5, s = 0.8 andv = 0. Panel (a) shows the variation of
E, B, P andD as functions of the traveling wave varialjlePanel (b) shows the solution corresponds to the heteroclinic orbit iig tp8-phase
plane.
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0.02
0.01

0
-0.01
-0.02

@ (b)

Fig. 5. A travelling kink and anti-kink wave, forming a square like pulse, using the parameter wats5, 0 = 1, s = 0.81. Panel (a) shows
the E-field and (b) showg) = P,. The initial data aretyjnk = 0.269209 andv = 5.46321.

perturbation of the exact kink solution, and serves as a test of the exact solution. The amplitw@ad widthw

are determined from the conservation of energy along the heteroclinic orbit connecting the two hyperbolic critical
points. That is,Ho(g = a+/3(yc — ), p = 0) = Ho(g = 0, pmax). In other words, we match the approximate
tanh -kink solution to the analytical one. It is also clear that whén 0) is fixed, the initial data foB(z, 0) and

P(z, 0) can be calculatedrig. 5a) shows a kink and an anti-kink travelling in the same direction. The reason for
presenting a kink anti-kink pair is due to our use of periodic boundary conditions in the numerical scheme. Only
pairs of kinks and anti-kinks can satisfy these boundary conditions. Initially the kinks adjust their shape to the
exact solution by shedding off linear radiation waves (not showrign5). After a transient period the kinks attain

the shape given by the analytical solution. In addition, for short periods of time we have added a space dependent
damping term in the equation fd@t which we use to damp out the linear radiation away from the kiRlg.5a)

shows the kinks propagating in a frictionless media givekds. (2.1)—(2.4gfter the transient period and after
damping out radiation wavekig. 5b) depicts the variabl® = P, as function of space and time. This variable

has been introduced in order to wrigs. (2.1)—(2.4as a set of four first order differential equations, suitable for
numerical solution.

Egs. (2.1)-(2.4have been solved numerically using fourth order accurate spatial central differences (five-point
formula)[5]. The resulting first order system of ordinary differential equations was then solved using the DVERK
Runge—Kautta algorithm based on Verner’s fifth and sixth order forn{élag-or 1+ 1 dimensional problems we
find this approach easy to implement, providing an accurate as well as robust method for numerical integration.

In order to investigate the robustness of the kinks we have conducted kink anti-kink collision experiments as
shown inFig. 6. The figure shows the spatial profiles B¢z, t), B(z, 1), P(z,t) andQ(z, ) = P;(z, t) at different
time instants. The two pulses approaching each other atrtisaed from opposite directions pass through each
other, and approximately preserve their initial form provided the amplitude of the pulses are not too large. A small
amount of radiation after the collision is observed indicating that the kinks (anti-kinks) are not solitons but merely
solitary waves or quasi-solitons.

5.3.1. Traveling waves fd¥ < |s| < s; and|s| > 1
The ODE(5.40) which originally arose from analysis of the heteroclinic solution in the speed regirmés| <
s2, can also be used outside this velocity regime. In fact, its solutions describe smooth periodic traveling waves
in the speed regimes & [s| < s1 and|s| > 1. It also describes solutions in whi¢Bz| — oo asE — *E, if
s2 < |s| < 1.
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0.02

-0.02

Fig. 6. Collision between two square like pulses. Parameter valeef.5,0 = 1,5 = £0.81; Q = P;.

In the above speed regime, the OEE40)can be integrated to yield the solution:

E=s [3 tan~Y(7) — 2 tan-t (l)} , (5.45)
) 70
where
y 12 0oy \M2
=1t =4 — =| —— 4
=g <3a/2—y> S <3a/2—yc> ’ (5.49)

and the parameters are ordered so that8x/2 < y. < y.. A sketch ofyg versusy from (5.40)shows that there
are smooth periodic traveling waves forQy < 3w/2. The electric field in the wave is given by

E = (330)?sing (5.47)

(noted = 2¢ in (5.42)). The solution(5.45)is strictly only defined fof¢| < /2, due to the multi-valued character
of tan~1(x). Taking the above-range to correspond to half a period of the wave, one can define the extension
£B)(¢) of &(¢) by the equation

£E (@) =& —nm) + 3T if ¢ €[(n— Hm, (n + D)7l (5.48)

wheren is an integer, and

B 2\ 1—s2(1+30/2)\ "
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Fig. 7. Profiles ofE, B, P and D as functions of for the traveling wave solutio(b.45)—(5.49¥or the cases (a) = 0.5 and (b)s = 1.01. The
parametetr = 0.5.

is the spatial period of the waviEq. (5.49)shows that the period of the wave depends,anith T; ~ 275 ass — 0
andT; ~ 6rs ass — (14 3a/2)~1/2. The solutions foiE, P, B and D are smooth, sinusoidal-shape functions of
&, and correspond to closed, periodic orbits in the p)-phase plane.

5.3.2. Examples

The solution(5.45)—(5.49)ields smooth, periodic, traveling wave solutions, both for the casd{) < s and
for the casds| > 1. Fig. 7 shows the profiles of, B, P and D as functions ot for « = 0.5 and for two values
of s. Fig. 7(a) gives an example of the traveling wave solution in the slow speed regimg0< s1 for the case
wheres = 0.5. Fig. 7(b) gives an example of the wave in the fast speed regimé (s = 1.01 in the figure).

The solution fos = 1.01inFig. 7(b) has very large gradieni, every half period of the wave. Itis straightforward
toshowthatas | 1,|E¢| — oo at points on the profile whet ~ 0. This can be seen formally from the differential
equation (5.40jor y. In the limit ass — 1, y. — 0, and the ODE has a singularity at= 0 (dy/d¢ « y~%/2 as
y — 0). In the speed regime < [s| < 1, the traveling wave solutiofb.45)—(5.49)develops an infinite gradient
for E¢ and the solution must involve shocks (i.e., either afinite jump,ior |E¢| — oo at E = £E. must occur on
the solution profile). The profiles fat, B, andD in Fig. 7(b) are almost the same profile since: 1, and exhibit
steep gradients at points whefex~ 0. However the polarization P is smooth and has relatively small gradients.

5.3.3. Traveling waves fop < |s| < 1

The solution(5.45)also applies in this case. In order to obtain a solution w@tl& 0 requires thap be restricted
to the range O< y < 3w/2. In this case it appears that one can obtain periodic travelling waves in \&hish
bounded, but withEg¢| — oo asy — y.. Examples of solutions in whiclEs| — co asE — *E. are described
below.

Fig. 8@a) shows the traveling wave solutidgh= E*) = E(&) obtained from(5.45)—(5.49)by varying¢ from
¢ = —m/2t0¢ = m/2 (the solid curve) for the case= 0.9 andae = 0.5. The dashed curve corresponds to the
solutionE = EC) = —E(£). The solutions irFig. §a) are clearly multi-valued. However, one can patch together
pieces of the solutiong = E™) andE = E() to produce the single valued wave profileRig. 8(b). This is
achieved by noting that one can add a non-zero integration cogtdatthe right hand side d6.45) i.e.,

£ =£9(¢) + &, (5.50)

is also a solution of5.40)where£ (@ (¢) is the solution(5.45) The solution inFig. 8(b) has period

2
Ty = 2sm (3 - —> + 8l&.|, (5.51)
70
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Fig. 8. (a) The solution foff = E(&) obtained from the traveling wave soluti@.45)—(5.49)y varying the parameter from ¢ = —n/2 to
¢ = n/2, for the case = 0.9 andae = 0.5 (the solid curve). The dashed curve corresponds to the solAtien— E(§). Panel (b) shows the
solution for E obtained by patching together segments of the solutions in (a), with appropriate choices of the integration&oastgnfor
the different solution segments. Note thag| — oo in both panels whe® = £E..

where

£ o= [3¢C - T—Zotan*1 (ﬂﬂ , (5.52)

70

is the point where = y., T = tang., and|E¢| — oo. In the figure,y. = 0.23457,¢, = 34° andé, = —0.29017.

Fig. 9shows the change in the waveform #iin Fig. 8b) as the wave speadncreases. Ifrig. ¥a),s = 0.95,
whereass = 0.99 in Fig. 9b). The waveform irFig. Yb) is similar to the smooth, periodic waveform férin
Fig. 7(b) for s = 1.01, in which|Eg| is bounded. Thus, the solutions fiigs. 8(b) and an be regarded as the
extension of the smooth traveling waves feor > 1 into the regimess < |s| < 1, where the solutions exhibit
gradient blowup af = +E. (i.e.,|E¢] - oc atE = £E,).

Clearly, other solutions withEz| — oo asE — *E. can be constructed. For example, the solutiorfsigs. 8
and 9only apply forzg > 2/3 (i.e.|s| > s4 = [5/(3x + 5)]¥/?). Fors = s4 the solution involves a cusp at the top
of the profile forE. It also turns out that foy = s4, the implicit solution(5.45)for E(&) can be inverted, and an
explicit solution forE as a function of can be obtained. It is also worth noting that there exist classes of solutions
of the form(5.41)with s1 < |s| < so with y = E2 in the rangey. < y < 3«/2 which exhibit gradient blowup (i.e.,
|Eg| - oo asE — £E,).

The above solution examples, are representative of the type of traveling waves that are desdBk&@) in
However, the examples considered special cases where the fué¢iipm the numerator had two equal, real roots.
In these cases it is relatively easy to obtain analytical solutior{5.80) More generally, the solution 6.30)

10 ‘ ‘ ‘ ‘ ‘ ‘ 10
£ £
0.5 B 0.5 ]
0.0 0.0
-0.5F 7 —-05 8
-1.0 ‘ ‘ ‘ ‘ ‘ ‘ -1.0 ‘ ‘ ‘ ‘ ‘ ‘
0.0 05 1.0 1.5 20 25 30 0.0 0.5 1.0 1.5 2.0 2.5 3.0

@ 3 (b) ¢

Fig. 9. The evolution of the waveform fd# in Fig. 8b) ass increases. In (a) = 0.95 and in (b)s = 0.99. The parameter = 0.5.
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depends on the character of the roots of the cdlgig) = 0. The discriminant of the cubi&(y) = 0[11, Formula
3.8.2, p. 17%can be written as:

D = X(e — ecr) (e — en), (5.53)

wheree, is the valug5.32)of ¢ for the critical solution, andp is the valug5.38)0f € for the heteroclinic solution.
The roots of the cubi®(y) = 0 are real and distinct iD < 0O; there are three real roots, at least two of which are
equal if D = 0 (i.e. if e = ¢¢r Or € = ¢p); and there is one real root and two complex conjugate rodfs ¥ 0.
The main point we wish to emphasize here is that the type of solutioffis20)that can be obtained (i.e. smooth
periodic solutions, or solutions with singularitiesiat= +E.) depends on the discriminaftin (5.33) We note
(without proof) that in the case of three real rootsddly) = 0, (5.30)can be integrated in terms of elliptic integrals.

6. Conclusions

The vector Maxwell equations coupled to a single Lorentz oscillator with instantaneous Kerr non-linearity were
formulated in terms of Lagrangian and Hamiltonian variational principles. The canonical Hamiltonian description
of the equations involves the solution of a polynomial equation for the electric igld terms of the canonical
variables, with possible multiple real roots #6rIn order to circumvent this problem, non-canonical Poisson bracket
formulations of the equations are obtained in which the electric field is one of the non-canonical variables.

Using the Lie point symmetries admitted by the equations and Noether’s theorem, we obtained four conservation
laws for the equations. The symmetries were also used to obtain classical similarity solutions of the equations.
The traveling wave similarity solutions were investigated using both Hamiltonian and non-Hamiltonian methods.
In particular, the solutions in the case of a cubic Kerr non-lineafity={ E + P + E3/3) were studied in detail.

Two solutions of particular interest are: (i) the kink (or anti-kink) solution, which corresponds to a heteroclinic
orbit connecting two saddle points in th&, p)-phase plane, wherk is the electric field, ang is the canonical
momentum (the orbit can also be described in a similar way iri¢hg)-phase plane, wherg, p) are canonical
coordinates) and (i) the critical solution, which consists of a smooth, periodic traveling wave solution, which has
the special property that the traveling wave O(BE30)has no singularities. For other solutiong6f30) the ODE
always has a singularity.

The traveling wave solutions were described using both canonical and nhon-canonical Poisson bracket descriptions.
The canonical coordinates used to describe the traveling wave-ar® andp = P, whereP is the polarization
electric field, and = z — stis the traveling wave variable. A non-canonical Poisson bracket description of the
equations was also used, in which the non-canonical variables consisted of the electdicdieldhe canonical
momentump. This latter approach has the advantage that one does not need to solve a cubic for the electric
field E = E(g) in the analysis. For the case of a cubic, Kerr non-linearity, there are five critical points for the
Hamiltonian in thg E, p)-phase plane. The solution trajectories in ¢he p) plane revealed four different possible
solution topologies depending on the speed of the wave. Analysis of the critical, traveling wave solution, revealed
that in the slowest speed regime, the solution has a very complicated trajectoryih ghephase plane. Numerical
simulations revealed that this solution is unstable, in the sense that small perturbations of the critical solution lead
to the formation of shocks. However, a more thorough stability analysis of this solution has not been carried out,
and the stability of this solution is an open problem for further studies.

An investigation of the traveling wave soluti¢f.45)(which can be thought of as an extension of the heteroclinic
solution), showed that smooth periodic solutions with spégds 1, develop very steep gradients, as|s| | 1
(Fig. 7(b)). In fact the solution for = 1 exhibits gradient blowup at points on the wave profile whea 0 (in this
caseE. = 0). It was demonstrated iRigs. 8 and 9how the smooth solution withy| > 1 could be extended into
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the regime(1 4+ a)~¥? < |s| < 1, where the solutions exhibit gradient blowupEg at points wherel = £E..
Other solutions which exhibit gradient blowup can also be constructed.

The travelling-wave kink and anti-kink solutions, which correspond to heteroclinic orbits irigthe or
(E, p)-phase planes, only exist for a restricted range of velocitiefsthe traveling wave. In this velocity range,
the critical points in the E, p)-phase plane consist of two saddles and three center critical points. The kink
and anti-kink solutions correspond to the heteroclinic orbits connecting the two saddles. The numerical simu-
lations indicated that the kinks are stable, but a more complete analytical proof of their stability has not been
carried out.

Numerical simulations were also used to investigate the collision of kink anti-kink pairs. As a note on possible
applications of the kink solutions we mention that kink anti-kink pairs form square like pulses, which in a communi-
cation system could represent the digit one. Absence of a square like pulse could represent the digit zero. However
the plateaus in the kinks have a finite value of the electric field and the polarization which means we need to store
a rather substantial amount of energy in a fiber for utilizing kinks and anti-kinks in fiber communication systems.
The advantages are extremely short and stable pulses.

Finally we mention that the kink solutions can switch the polarization from negative to positive or vice versa on
an ultra fast time scale of the order few femto-seconds. This may be exploited in switching devices or in optical
computing.
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Appendix A

In this appendix, we show that the non-canonical Poisson brd2ked) is skew-symmetric and satisfies the
Jacobi identity. We use the notation:

__ 6P

T osue’

_Q g R

P“ = =
Su®’ Su®

o (A1)

for the variational derivatives of the functionds Q andR. In the present analysig' = 7*. The functionalP[u]
is of the form

Plu] = / oLl dz. (A.2)

—00

and similarly for@ andR. We require that the Poisson brack2t30) satisfy the conditions of skew-symmetry
({P, Q} = —{Q, P}) and the Jacobi identity:

IP, 2. R) ={{P, QL R} + {{Q. R}, P} + {({R, P}, @} = 0. (A.3)
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To prove skew-symmetry of the bracket, we note fr@80)that:
o0
(P.Q}= f dz(P*, P?, P3, P - (—¢D. 0% — ¢0*, —D.(¢0"), 0%, ¢0" — 0%T
—0oQ

= —/ dz{D.[¢(P*Q? + P?0Y)]
+(0% 0% 03 0% - (—¢D,P? — ¢P*, —D,(¢PY), P4 cPt — P3TY. (A4)

Assuming|z(P10% + P201)| — 0 as|z| — oo, (A.4) reduces to the equatid®, Q} = —{Q, P}, which proves
the skew-symmetry of the bracket.

To prove that the Jacobi identity is satisfied, we note ff@r&q. (7.11)] that the Jacobi identitfA.3) is equivalent
to:

I(P,Q,R) = / dz[P- X[IR](D) - Q + R - X[IQ]J) - P+ Q- X[IP]J) - R] = 0, (A.5)

where X[¢] is the prolonged, canonical symmetry opera®rl0) (note thatX[¢] would be written as pf/& in
Olver’s notation). The first term ifA.5) can be expanded as:

/ P-X[JRIJ)-Qdz= f dz[ PY[¢¢/ (D, R? + RY(D. 0% + 0Y)] + P2D.[(D.R? + R*¢¢ 01

—0oQ —00

— PYD.R?* + RH¢t' 01, (A.6)

where¢’ = d¢/dE and¢ is given in(2.32) Similar expressions for the other two termg#5) can be obtained
by cyclically permutingP, Q andR in (A.6). Adding the three resultant expressions analogo@s %) and (A.5)
reduces to:

TP, Q,R) = / D.(A)dz, A7)
where
A =[O P2(D,R? + R + R*Q*(D, P? + P* + P'R*(D, 0% + 0%)]. (A.8)

Thus, assumingl — 0 as|z| — oo we findZ(P, Q, R) = 0, which proves the Jacobi identi@.3). In the above
analysis, the integrals involved are assumed to converge, and are well defined. It should be noted that certain surface
terms analogous td are assumed to vanish in the derivation of the conditfas) from the Jacobi identityA.3).
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