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Preface

The following notes were written before and during the course on Convex Geom-
etry which was held at the University of Karlsruhe in the winter term 2002/2003.
Although this was the first course on this topic which was given in English, the
material presented was based on previous courses in German which have been given
several times, mostly in summer terms. In comparison with these previous courses,
the standard program was complemented by sections on surface area measures and
projection functions as well as by a short chapter on integral geometric formulas.
The idea here was to lay the basis for the course on Stochastic Geometry which will
follow in the summer term.

The exercises at the end of each section contain all the weekly problems which
were handed out during the course and discussed in the weakly exercise session.
Moreover, I have included a few additional exercises (some of which are more dif-
ficult) and even some severe or even unsolved problems. The list of exercises and
problems is far from being complete, in fact the number decreases in the later sec-
tions due to the lack of time while preparing these notes.

I thank Matthias Heveling and Markus Kiderlen for reading the manuscript and
giving hints for corrections and improvements.

Karlsruhe, February 2003 Wolfgang Weil

During a repetition of the course in 2003/2004 a number of misprints and small
errors have been detected. They are corrected in the current version. Also, a few
remarks and further exercises have been added.

Karlsruhe, October 2004 Wolfgang Weil
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Introduction

Convexity is an elementary property of sets A in a real (or complex) vector space
V . A is convex if it contains all the segments joining any two points of A, i.e. if
x, y ∈ A and α ∈ [0, 1] implies that αx + (1 − α)y ∈ A. This simple algebraic
property has surprisingly many and far-reaching consequences of geometric nature,
but it also has topological consequences (if V carries a compatible topology) as well
as analytical ones (if the convexity is extended to real functions f via the graph
of f). Therefore, results on convex sets and functions play a central role in many
mathematical fields, in particular in functional analysis, in optimization theory and
in stochastic geometry.

During this course, we shall concentrate on convex sets in Rn as the prototype of a
finite dimensional real vector space. In infinite dimensions totally different methods
have to be used and different types of problems occur. Here, we concentrate on the
classical part of convexity. Starting with convex sets and their basic properties (in
Chapter 1), we discuss shortly convex functions (in Chapter 2), and then come (in
Chapter 3) to the theory of convex bodies (compact convex sets). Our goal here
is to present the essential parts of the Brunn-Minkowski theory (mixed volumes,
quermassintegrals, Minkowski inequalities, in particular the isoperimetric inequality)
as well as some more special topics (surface area measures, projection functions).
The last chapter will shortly discuss some basic formulas from integral geometry.

The course starts rather elementary. Apart from a good knowledge of linear
algebra (and, in Chapter 2, analysis) no deeper knowledge of other fields is required.
Later we will occasionally use results from functional analysis and, in some parts,
we require some familiarity with topological notions and, more important, we use
some concepts and results from measure theory.
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Preliminaries and notations

Throughout the course we work in n-dimensional Euclidean space Rn. Elements of
Rn are denoted by lower case letters like x, y, . . . , a, b, . . . , scalars by greek letters
α, β, . . . and (real) functions by f, g, . . . . We identify the vector space structure and
the affine structure of Rn, i.e. we do not distinguish between vectors and points.
The coordinates of a point x ∈ Rn are used only occasionally, therefore we indicate
them as x = (x(1), . . . , x(n)). We equip Rn with its usual topology generated by the
standard scalar product

〈x, y〉 := x(1)y(1) + · · ·+ x(n)y(n), x, y ∈ Rn,

respectively the corresponding Euclidean norm

‖x‖ := ((x(1))2 + · · ·+ (x(n))2)1/2, x ∈ Rn.

By Bn, we denote the unit ball,

Bn := {x ∈ Rn : ‖x‖ ≤ 1}

and by
Sn−1 := {x ∈ Rn : ‖x‖ = 1}

the unit sphere. Sometimes, we also make use of the Euclidean metric d(x, y) :=
‖x− y‖, x, y ∈ Rn. In combined expressions, it is sometimes convenient to write x

α
,

instead of 1
α
x, for x ∈ Rn and α ∈ R.

Convex sets in R1 are not very exciting (they are open, closed or half-open,
bounded or unbounded intervalls), the results mostly are only interesting for n ≥ 2.
In some situations, results only make sense, if n ≥ 2, although we shall not emphasize
this in all cases. As a rule, A, B, . . . denote general (convex or nonconvex) sets,
K, L, . . . will be used for compact convex sets (convex bodies) and P, Q, . . . for
(convex) polytopes.

A number of notations will be used frequently, without further explanations:

lin A linear hull of A
aff A affine hull of A
dim A dimension of A (= dimension of aff A)

9
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int A interior of A
rel int A relative interior of A (interior w.r.t. aff A)
cl A closure of A
bd A boundary of A

If f is a function on Rn with values in R or in the extended real line [−∞,∞] and
if A is a subset of the latter, we frequently abbreviate the set {x ∈ Rn : f(x) ∈ A}
by {f ∈ A}. Hyperplanes E ⊂ Rn are therefore shortly written as E = {f = α},
where f is a linear form and α ∈ R (note that this representation is not unique). The
corresponding closed half-spaces generated by E are then {f ≥ α} and {f ≤ α},
and the open half-spaces are {f > α} and {f < α}

The symbol ⊂ always includes the case of equality. The abbreviation w.l.o.g.
means ‘without loss of generality’ and is used sometimes to reduce the argument to
a special case. The logical symbols ∀ (for all) and ∃ (exists) are occasionally used
in formulas. � denotes the end of a proof.

Each section is complemented by a number of exercises. Some are very easy, but
most require a bit of work. Those which are more difficult than it appears from the
first look are marked by ∗. Occasionally, problems have been included which are
either very difficult to solve or even unsolved up to now. They are indicated by P.



Chapter 1

Convex sets

1.1 Algebraic properties

Definition. A set A ⊂ Rn is convex, if we have αx + (1− α)y ∈ A, for all x, y ∈ A
and α ∈ [0, 1].

Examples. (1) The simplest convex sets (apart from the points) are the segments.
We denote by

[x, y] := {αx + (1− α)y : α ∈ [0, 1]}
the closed segment between x and y, x, y ∈ Rn. Similarly,

(x, y) := {αx + (1− α)y : α ∈ (0, 1)}

is the open segment and we define half-open segments (x, y] and [x, y) in an analogous
way.

(2) Other trivial examples are the affine flats in Rn.

(3) If {f = α} (f a linear form, α ∈ R) is the representation of a hyperplane, the
open half-spaces {f < α}, {f > α} and the closed half-spaces {f ≤ α}, {f ≥ α} are
convex.

(4) Further convex sets are the balls

B(r) := {x : ‖x‖ ≤ r}, r ≥ 0,

and their translates.

Theorem 1.1.1. A set A ⊂ Rn is convex, if and only if

(∗) α1x1 + · · ·+ αkxk ∈ A

holds for all k ∈ N, all x1, . . . , xk ∈ A and all α1, . . . , αk ∈ [0, 1] with
∑k

i=1 αi = 1.

Remark. We call (∗) a convex combination (of the points x1, . . . , xk).

11
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Proof. Taking k = 2, we see that the condition on the convex combinations implies
convexity.

For the other direction, assume A is convex and k ∈ N. We use induction on k:
For k = 1, the assertion is trivially fulfilled.
For the step from k−1 to k, k ≥ 2, assume x1, . . . , xk ∈ A and α1, . . . , αk ∈ [0, 1]

with
∑k

i=1 αi = 1 are given. We may assume αi 6= 0, i = 1, . . . , k, and define

β1 :=
α1

α1 + · · ·+ αk−1

, . . . , βk−1 :=
αk−1

α1 + · · ·+ αk−1

,

hence βi ∈ [0, 1] and
∑k−1

i=1 βi = 1. By the induction hypothesis,
∑k−1

i=1 βixi ∈ A, and
by the convexity(

k−1∑
i=1

αi

)(
k−1∑
i=1

βixi

)
+

(
1−

k−1∑
i=1

αi

)
xk =

k∑
i=1

αixi ∈ A.

Remark and Definition. If {Ai : i ∈ I} is an arbitrary family of convex sets
(in Rn), the intersection

⋂
i∈I Ai is convex. In particular, the intersection of finitely

many closed half-spaces is convex (and closed). We call such a set polyhedral.

Definition. For sets A, B ⊂ Rn and α, β ∈ R, we put

αA + βB := {αx + βy : x ∈ A, y ∈ B}.

The set αA + βB is called a linear combination of the sets A, B, the operation + is
called vector addition. Special cases get special names:

A + B the sum set
A + x (the case B = {x}) a translate of A
αA the multiple of A
αA + x (for α ≥ 0) a homothetic image of A
−A := (−1)A the reflection of A (in the origin)
A−B := A + (−B) the difference of A and B

Remarks. (1) If A, B are convex and α, β ∈ R, then αA + βB is convex.

(2) In general, the relations A + A = 2A and A− A = {0} are wrong. For convex
A and α, β ≥ 0, we have αA + βA = (α + β)A. The latter property characterizes
convexity of a set A.

Theorem 1.1.2. Let A ⊂ Rn, B ⊂ Rm be convex and f : Rn → Rm affine. Then

f(A) := {f(x) : x ∈ A}

and
f−1(B) := {x : f(x) ∈ B}

are convex.
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Proof. Both assertions follow from

αf(x) + (1− α)f(y) = f(αx + (1− α)y).

Corollary 1.1.3. The projection of a convex set onto an affine subspace is convex.

The converse is obviously false, a shell bounded by two concentric balls is not convex
but has convex projections.

Since the intersection of convex sets is convex, we obtain, for a given set A ⊂ Rn,
a ‘smallest’ convex set containing A.

Definition. For a set A ⊂ Rn, the convex hull conv A of A is the intersection of all
convex sets containing A.

Theorem 1.1.4. For A ⊂ Rn, we have

conv A = {α1x1 + · · ·+ αkxk : k ∈ N, x1, . . . , xk ∈ A, α1, . . . , αk ∈ [0, 1],
k∑

i=1

αi = 1}.

In other words, conv A is the set of all convex combinations of points in A.

Proof. Let B denote the set on the right hand side. If C is a convex set containing
A, Theorem 1.1.1 implies B ⊂ C. Hence, we get B ⊂ conv A.

On the other hand, the set B is convex since

β(α1x1 + · · ·+ αkxk) + (1− β)(γ1y1 + · · ·+ γmym)

= βα1x1 + · · ·+ βαkxk + (1− β)γ1y1 + · · ·+ (1− β)γmym

with coefficients in [0, 1] and

βα1 + · · ·+ βαk + (1− β)γ1 + · · ·+ (1− β)γm

= β + (1− β) = 1.

Since B contains A, we get B ⊃ conv A.

Remarks. (1) Trivially, A is convex, if and only if A = conv A.

(2) Later, in Section 1.2, we will give an improved version of Theorem 1.1.4
(Caratheodory’s theorem), where the number k of points used in the represen-
tation of conv A is bounded by n + 1.
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(3) The set A of all convex subsets of Rn is a complete lattice with respect to the
inclusion order:

A ∧B := A ∩B,

A ∨B := conv (A ∪B),

infM :=
⋂

A∈M

A, M⊂ A,

supM := conv

( ⋃
A∈M

A

)
, M⊂ A.

Definition. The convex hull of finitely many points x1, . . . , xk ∈ Rn is called a
(convex) polytope P . Each xi which does not belong to the convex hull of the
remaining xj is called a vertex of P . We denote the set of all vertices of P by
vert P . If the vertices are affinely independent, the polytope P is called a simplex.
More precisely, P is called an r-simplex, if it has precisely r +1 affinely independent
vertices.

Remarks. (1) For a polytope P , we have P = conv vert P . This can be seen
directly from an inductive argument (see Exercise 9), but is also a special case of
Minkowski’s theorem, which is proved in 1.5.

(2) It is easy to see that polytopes, as convex hulls of finite sets, are closed and
bounded, hence compact. We discuss these topological questions in more generality
in 1.3. We shall also see later in 1.4 that the polytopes coincide with the bounded
polyhedral sets.

(3) The polytope property is conserved by the usual operations. Namely, if P, Q
are polytopes, then the following sets are polytopes:

• conv (P ∪Q),

• P ∩Q,

• αP + βQ, for α, β ∈ R,

• f(P ), for affine f : Rn → Rm.
Here, only the second assertion is not straight forward. The proof that P ∩ Q is
a polytope will follow later from the mentioned connection between polytopes and
bounded polyhedral sets.
(4) If P is the convex hull of affinely independent points x0, . . . , xr, then each xi is
a vertex of P , i.e. P is an r-simplex. An r-simplex P has dimension dim P = r.

Simplices are characterized by the property that their points are unique convex
combinations of the vertices.

Theorem 1.1.5. A convex set A ⊂ Rn is a simplex, if and only if there exist
x0, . . . , xk ∈ A such that each x ∈ A has a unique representation as a convex
combination of x0, . . . , xk.
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Proof. By definition, A is a simplex, if A = conv {x0, . . . , xk} with affinely indepen-
dent x0, . . . , xk ∈ Rn. The assertion therefore follows from Theorem 1.1.4 together
with the uniqueness property of affine combinations (with respect to affinely inde-
pendent points) and the well-known characterizations of affine independence (see
also Exercise 10).

Exercises and problems

1. (a) Show that A ⊂ Rn is convex, if and only if αA + βA = (α + β)A holds, for all
α, β ≥ 0.

(b) Which non-empty sets A ⊂ Rn are characterized by αA + βA = (α + β)A, for
all α, β ∈ R?

2.∗ Let A ⊂ Rn be closed. Show that A is convex, if and only if A + A = 2A holds.

3. A set
R := {x + αy : α ≥ 0}, x ∈ Rn, y ∈ Sn−1,

is called a ray (starting in x with direction y).

Let A ⊂ Rn be convex and unbounded. Show that A contains a ray.

Hint: Show first that it is sufficient to consider the case A ⊂ R2.

4. For a set A ⊂ Rn, the polar A◦ is defined as

A◦ := {x ∈ Rn : 〈x, y〉 ≤ 1 ∀y ∈ A}.

Show that:

(a) A◦ is closed, convex and contains 0.

(b) If A ⊂ B, then A◦ ⊃ B◦.

(c) (A ∪B)◦ = A◦ ∩B◦.

(d) If P is a polytope, P ◦ is polyhedral.

5. (a) If ‖ · ‖′ : Rn → [0,∞) is a norm, show that the corresponding unit ball B′ :=
{x ∈ Rn : ‖x‖′ ≤ 1} is convex and symmetric (i.e. B′ = −B′).

(b) Show that

‖ · ‖1 : Rn → [0,∞), x = (x(1), . . . , x(n)) 7→
n∑

i=1

|x(i)|,

and
‖ · ‖∞ : Rn → [0,∞), x = (x(1), . . . , x(n)) 7→ max

i=1,...,n
|x(i)|,

are norms. Describe the corresponding unit balls B1 and B∞.



16 CHAPTER 1. CONVEX SETS

(c) Show that for an arbitrary norm ‖ · ‖′ : Rn → [0,∞) there are constants
α, β, γ > 0 such that

α‖ · ‖1 ≤ β‖ · ‖∞ ≤ ‖ · ‖′ ≤ γ‖ · ‖1.

Describe these inequalities in terms of the corresponding unit balls B1, B∞, B′.
Hint: Show first the last inequality. Then prove that

inf{‖x‖∞ : x ∈ Rn, ‖x‖′ = 1} > 0,

and deduce the second inequality from that.

(d) Use (c) to show that all norms on Rn are equivalent.

6. For a set A ⊂ Rn let

ker A := {x ∈ A : [x, y] ⊂ A for all y ∈ A}

be the kernel of A. Show that kerA is convex. Show by an example that A ⊂ B
does not imply ker A ⊂ ker B.

7. Let A ⊂ Rn be a locally finite set (this means that |A ∩ B(r)| < ∞, for all r ≥ 0).
For each x ∈ A, we define the Voronoi cell

C(x,A) := {z ∈ Rn : ‖z − x‖ ≤ ‖z − y‖ ∀y ∈ A},

consisting of all points z ∈ Rn which have x as their nearest point (or one of their
nearest points) in A.

(a) Show that the Voronoi cells C(x,A), x ∈ A, are closed and convex.

(b) If conv A = Rn, show that the Voronoi cells C(x,A), x ∈ A, are bounded and
polyhedral, hence they are convex polytopes.
Hint: Use Exercise 3.

(c) Show by an example that the condition conv A = Rn is not necessary for the
boundedness of the Voronoi cells C(x,A), x ∈ A.

8. Show that, for A,B ⊂ Rn, we have conv (A + B) = conv A + conv B.

9. Let P = conv {x1, . . . , xk} and w.l.o.g. assume x1, . . . , xr are the vertices of P . Show
by induction on k ≥ r that P = conv {x1, . . . , xr}.

10. Assume that x1, . . . , xk ∈ Rn are such that each x ∈ conv {x1, . . . , xk} is a unique
convex combination of x1, . . . , xk. Show that x1, . . . , xk are affinely independent.

11. Let P = conv {x0, . . . , xn} be an n-simplex in Rn. Denote by Ei the affine hull of
{x0, . . . , xn}\{xi} and by Hi the closed half-space bounded by Ei and with xi ∈ Hi,
i = 0, . . . , n.

(a) Show that xi ∈ intHi, i = 0, . . . , n.
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(b) Show that P =
n⋂

i=0

Hi.

(c) Show that P ∩ Ei is an (n− 1)-simplex.



18 CHAPTER 1. CONVEX SETS

1.2 Combinatorial properties

Naturally, combinatorial problems arise in connection with polytopes. In the fol-
lowing, however, we discuss problems of general convex sets which are called com-
binatorial, since they involve the cardinality of points or sets. The most important
results in this part of convex geometry (which is called Combinatorial Geometry)
are the theorems of Carathéodory, Helly and Radon.

Theorem 1.2.1 (Radon). Let A ⊂ Rn be a set of at least n+2 points. Then there
exists a partition A = B ∪ C, B ∩ C = ∅, such that

conv B ∩ conv C 6= ∅.

Proof. It is sufficient to discuss the case A = {x1, . . . , xn+2}. For the coordinates

xi = (x
(1)
i , . . . , x

(n)
i ), i = 1, . . . , n + 2, we consider the system of linear equations

n+2∑
i=1

αix
(j)
i = 0, j = 1, . . . , n,

n+2∑
i=1

αi = 0.

These are n + 1 equations for the variables α1, . . . , αn+2, hence there exists a non-
trivial solution. For a fixed solution (α1, . . . , αn+2) 6= (0, . . . , 0), let

B := {xi : αi ≥ 0}, C := {xi : αi < 0}.

Then B, C build a partition of A and

y :=

∑
i:αi≥0 αixi∑
i:αi≥0 αi

=

∑
i:αi<0(−αi)xi∑
i:αi<0(−αi)

∈ conv B ∩ conv C.

As a consequence, we next derive Helly’s Theorem (in a particular version).

Theorem 1.2.2 (Helly). Let A be a finite family of at least n + 1 convex sets
A ⊂ Rn. If each n + 1 of the sets in A have a nonempty intersection, then⋂

A∈A

A 6= ∅.

Proof. We proceed by induction on k = |A|, k ≥ n + 1.
For k = n + 1, the assumption trivially implies the assertion.
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Let k ≥ n + 2 and assume that the assertion holds for all families of k − 1 sets.
Then, to each A ∈ A, there exists a point

xA ∈
⋂

A′∈A\{A}

A′ .

If xA = xÃ, for two (different) sets A, Ã ∈ A, then

xA ∈
⋂

A′∈A

A′

and we are done.
Otherwise, all points xA, A ∈ A, are different; therefore the set Ā := {xA : A ∈

A} has k ≥ n + 2 points. By Theorem 1.2.1, there exists a partition Ā = B ∪ C,
B ∩ C = ∅, and a z ∈ conv B ∩ conv C. This gives rise to two subfamilies A1 :=
{A ∈ A : xA ∈ B} and A2 := {A ∈ A : xA ∈ C} with A1∪A2 = A and A1∩A2 = ∅.
Since conv B ⊂ A′, for all A′ ∈ A2 and conv C ⊂ A′, for all A′ ∈ A1, we conclude
that z ∈ A, for all A ∈ A. Therefore,⋂

A∈A

A 6= ∅.

Helly’s Theorem has interesting applications. For some of them, we refer to the
exercises. More important for the later considerations is the following result.

Theorem 1.2.3 (Carathéodory). For a set A ⊂ Rn and x ∈ Rn the following
two assertions are equivalent:
(a) x ∈ conv A,
(b) there is an r-simplex P (0 ≤ r ≤ n) with vertices in A and such that x ∈ P .

Proof. (b)⇒(a): Since vert P ⊂ A, we have x ∈ P = conv vert P ⊂ conv A.

(a)⇒(b): By Theorem 1.1.4, x = α1x1 + · · · + αkxk with k ∈ N, x1, . . . , xk ∈ A,
α1, . . . , αk ∈ [0, 1] and

∑k
i=1 αi = 1. We assume that k is the minimal number for

which such a representation is possible, i.e. x is not in the convex hull of any k − 1
points of A. We also may assume that dim conv {x1, . . . , xk} = n (otherwise we
choose aff {x1, . . . , xk} as the new space and A′ := {x1, . . . , xk} as the new set).
Then we have to show that k = n + 1. Assume k ≥ n + 2. As in the proof of
Theorem 1.2.1, we obtain numbers β1, . . . , βk ∈ R, not all vanishing, such that

k∑
i=1

βixi = 0
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and
k∑

i=1

βi = 0.

Let J be the set of indices i ∈ {1, . . . , k}, for which βi < 0 and choose i0 ∈ J such
that

αi0

(−βi0)
= min

i∈J

αi

(−βi)
.

Then, we have

x =
k∑

i=1

(αi −
αi0

βi0

βi)xi

with αi −
αi0

βi0
βi ≥ 0 and

∑k
i=1(αi −

αi0

βi0
βi) = 1, but αi0 −

αi0

βi0
βi0 = 0. This is a

contradiction to the minimality of k.

Exercises and problems

1. (a) Prove the following version of Helly’s theorem: Let F a family of at least
n + 1 compact convex sets in Rn (F may be infinite!) and assume that any
n + 1 sets in F have a non-empty intersection. Then, there is a point x ∈ Rn

which is contained in all sets of F .

(b) Show by an example that the result in (a) is wrong if the sets in F are only
assumed to be closed (and not necessarily compact).

2. In an old German fairy tale, a tailor claimed the fame to have ‘killed seven with
one stroke’. A closer examination showed that the victims were in fact flies which
had landed on a toast covered with jam. The tailor had used a fly-catcher of convex
shape for his sensational victory. As the remains of the flies on the toast showed,
it was possible to kill any three of them with one stroke of the (suitably) shifted
fly-catcher without even turning the direction of the handle.

Is it possible that the tailor told the truth?

3. Let F be a family of finitely many parallel closed segments in R2, |F| ≥ 3. Suppose
that for any three segments in F there is a line intersecting all three segments.

Show that there is a line in R2 intersecting all the segments in F .

∗ Show that the above result remains true without the finiteness condition.

4. Prove the following version of Carathéodory’s theorem:

Let A ⊂ Rn and x0 ∈ A be fixed. Then conv A is the union of all simplices with
vertices in A and such that x0 is one of the vertices.
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5.∗ Prove the following generalization of Carathéodory’s theorem (Theorem of
Bundt):

Let A ⊂ Rn be a connected set. Then conv A is the union of all simplices with
vertices in A and dimension at most n− 1.
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1.3 Topological properties

Although convexity is a purely algebraic property, it has a variety of topological
consequences. One striking property of convex sets is that they always have (relative)
interior points. In order to prove that, we first need an auxiliary result.

Proposition 1.3.1. If P = conv {x0, . . . , xk} is a k-simplex in Rn, 1 ≤ k ≤ n, then

rel int P = {α0x0 + · · ·+ αkxk : αi ∈ (0, 1),
∑

αi = 1}.

Proof. W.l.o.g. we may assume k = n and x0 = 0. Then we have

P = {α1x1 + · · ·+ αnxn : αi ∈ [0, 1],
∑

αi ≤ 1},

and we need to show that

int P = {α1x1 + · · ·+ αnxn : αi ∈ (0, 1),
∑

αi < 1}.

Notice that x1, . . . , xn is a basis of Rn. Therefore, a point x ∈ P , x = α1x1 + · · ·+
αnxn with αi ∈ (0, 1) and such that

∑
αi < 1 has a neighborhood U , such that each

y ∈ U has a representation y = β1x1 + · · · + βnxn with βi ∈ (0, 1) and
∑

βi < 1.
This implies U ⊂ P and x is interior point of P .

Conversely, if x ∈ P has a representation x = α1x1 + · · · + αnxn, where one αi

vanishes, say α1 = 0, then x lies in the (linear) hyperplane lin {x2, . . . , xn}. Each
neighborhood of x therefore contains points y which have (at least) one negative
coefficient with respect to the basis x1, . . . , xn. By Theorem 1.1.5, y /∈ P and
therefore x is a boundary point of P . Analogously, we may treat the case x =
α1x1 + · · · + αnxn,

∑n
i=1 αi = 1. In that case, x lies in the (affine) hyperplane

aff {x1, . . . , xn}, thus in each neighborhood of x there are points y which have a
representation y = β1x1 + · · · + βnxn with β1 + · · · + βn > 1. Again y /∈ P and
therefore x is a boundary point.

Theorem 1.3.2. For a convex set A ⊂ Rn, A 6= ∅, we have rel int A 6= ∅.

Proof. If dim A = k, then A contains k + 1 affinely independent points and hence
a k-simplex P . By Proposition 1.3.1, P has relative interior points x. Each such x
fulfills x ∈ rel int A.

Theorem 1.3.2 shows that, for the investigation of a fixed convex set A, it is useful
to consider the affine hull of A, as the basic space, since then A has interior points.
We will often take advantage of this fact by assuming that the affine hull of A is
the whole space Rn. Therefore, proofs in the following frequently start with the
sentence, that we may assume (w.l.o.g.) that the convex set under consideration
has dimension n.

A further consequence of convexity is that topological notions like interior or
closure of a (convex) set can be expressed in purely geometric terms.
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Theorem 1.3.3. If A ⊂ Rn is convex, then

cl A = {x ∈ Rn : ∃y ∈ A with (x, y] ⊂ A}

and
int A = {x ∈ Rn : ∀y ∈ Rn, y 6= x, ∃z ∈ (x, y) with [x, z] ⊂ A}.

Again, we first need an auxiliary result.

Proposition 1.3.4. If A ⊂ Rn is convex, x ∈ cl A, y ∈ rel int A, then [y, x) ⊂
rel int A.

Proof. As we explained above, we may assume dim A = n. Since x ∈ cl A, there
exists a sequence xk → x, xk ∈ A, k = 1, 2, . . . . Let z ∈ (y, x), i.e. z = αy+(1−α)x,
α ∈ (0, 1). Then yk := 1

α
(z − (1 − α)xk) converges towards y, as k → ∞. Since

y ∈ int A, there is an open ball U around y with U ⊂ A. For k large enough we
have yk ∈ U . Then, there exists an open ball V around yk with V ⊂ U ⊂ A. The
convexity of A implies z ∈ αV + (1− α)xk ⊂ A. Since αV + (1− α)xk is open, z is
in int A.

Proof of Theorem 1.3.3. The case A = ∅ is trivial, hence we assume now that A 6= ∅.
Concerning the first equation, we may assume dim A = n since the sets on both

sides depend only on aff A. Let B be the set on the right hand side, then we obviously
have B ⊂ cl A. To show the converse inclusion, let x ∈ cl A. By Theorem 1.3.2
there is a point y ∈ int A, hence by Proposition 1.3.4 we have [y, x) ⊂ int A ⊂ A.
Therefore, x ∈ B.

The second equation is trivial for dim A < n since then both sides are empty.
Hence, let dim A = n. We denote the set on the right hand side by C, then the
inclusion int A ⊂ C is obvious. For the converse, let x ∈ C. Again, we choose
y ∈ int A by Theorem 1.3.2. The definition of C implies that there exists z ∈ A
with x ∈ (y, z). Proposition 1.3.4 then shows that x ∈ int A. �

Remark. Theorem 1.3.3 shows that (and how) topological notions like the interior
and the closure of a set can be defined for convex sets A on a purely algebraic basis,
without that a topology has to be given in the underlying space. This can be used
in arbitrary real vector spaces V (without a given topology) to introduce and study
topological properties of convex sets.

Corollary 1.3.5. For convex A ⊂ Rn, the sets rel int A and cl A are convex.

Proof. In view of the above remark, we deduce the results from Theorem 1.3.3,
instead of giving a direct proof based on the topological notions rel int and cl .

The convexity of rel int A follows immediately from Proposition 1.3.4.
For the convexity of cl A, let A 6= ∅, x1, x2 ∈ cl A, α ∈ (0, 1). From Theorem

1.3.3, we get points y1, y2 ∈ A with (x1, y1] ⊂ A, (x2, y2] ⊂ A. Hence

α(x1, y1] + (1− α)(x2, y2] ⊂ A.
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Since

(αx1 + (1− α)x2, αy1 + (1− α)y2] ⊂ α(x1, y1] + (1− α)(x2, y2],

we obtain αx1 + (1− α)x2 ∈ cl A, again from Theorem 1.3.3.

Corollary 1.3.6. For convex A ⊂ Rn, we have

cl A = cl rel int A

and

rel int A = rel int cl A.

Proof. The inclusion

cl rel int A ⊂ cl A

is obvious. Let x ∈ cl A. By Theorem 1.3.2 there is a y ∈ rel int A and by Proposition
1.3.4 we have [y, x) ⊂ rel int A. Since rel int A is convex (Corollary 1.3.5), Theorem
1.3.3 implies x ∈ cl rel int A.

The inclusion

rel int A ⊂ rel int cl A

is again obvious. Let x ∈ rel int cl A. Since cl A is convex (Corollary 1.3.5), we
can apply Theorem 1.3.3 to cl A. Therefore, for y ∈ rel int A, y 6= x, (which exists
by Theorem 1.3.2), we obtain z ∈ cl A such that x ∈ (y, z). By Proposition 1.3.4,
x ∈ rel int A.

We finally study the topological properties of the convex hull operator. For a closed
set A ⊂ Rn, the convex hull conv A need not be closed. A simple example is given
by the set

A := {(t, 1

t
) : t > 0} ∪ {(0, 0)} ⊂ R2.

However, the convex hull operator behaves well with respect to open and compact
sets.

Theorem 1.3.7. If A ⊂ Rn is open, conv A is open. If A ⊂ Rn is compact, conv A
is compact.

Proof. Let A be open and x ∈ conv A, x = α1x1 + · · · + αkxk, xi ∈ A, αi ∈ [0, 1],∑
αi = 1. We can choose a ball U around the origin such that xi + U ⊂ A,

i = 1, . . . , k. Since

α1(U + x1) + · · ·+ αk(U + xk) = U + x ⊂ conv A,

we have x ∈ int conv A, hence conv A is open.
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Now let A be compact. Since A is contained in a ball B(r), we have conv A ⊂
B(r), i.e. conv A is bounded. In order to show that conv A is closed, let xk → x,
xk ∈ conv A, k = 1, 2, . . . . By Theorem 1.2.3, each xk has a representation

xk = αk0xk0 + · · ·+ αknxkn

with
αk0, . . . , αkn ∈ [0, 1]

and
n∑

i=0

αki = 1.

Because A and [0, 1] are compact, we find a subsequence (kr)r∈N in N such that the
2n + 2 sequences (xkrj)r∈N, j = 0, . . . , n, and (αkrj)r∈N, j = 0, . . . , n, all converge.
We denote the limits by yj and βj, j = 0, . . . , n. Then, yj ∈ A, βj ∈ [0, 1],

∑
βj = 1

and x = β0y0 + · · · βnyn. Hence, x ∈ conv A.

Remark. The last theorem shows, in particular, that a convex polytope P is
compact; a fact, which can of course be proved in a simpler, more direct way.

Exercises and problems

1. Let P = conv {a0, . . . , an} be an n-simplex in Rn and x ∈ intP .

Show that the polytopes

Pi := conv {a0, . . . , ai−1, x, ai+1, . . . , an}, i = 0, . . . , n,

are n-simplices with pairwise disjoint interiors and that

P =
n⋃

i=0

Pi.

2. Show that, for A ⊂ Rn,

cl conv A =
⋂
{B ⊂ Rn : B ⊃ A, B closed and convex}.

3. Let A,B ⊂ Rn be convex.

(a) Show that rel int (A + B) = rel int A + rel int B.

(b) If A (or B) is bounded, show that cl (A + B) = clA + cl B.

(c) Show by an example that (b) is wrong, if neither A nor B are assumed to be
bounded.
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4. Let A,B ⊂ Rn be convex, A closed, B compact. Show that A + B is closed (and
convex). Give an example, that shows that the compactness of one of the sets A,B
is necessary for this statement.
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1.4 Support and separation theorems

Convex sets are sets which contain with their elements also all convex combinations.
In this section, we consider a description of convex sets which is of a dual nature,
in that it describes convex sets A as intersections of half-spaces. For such a result,
we have to assume that A is a closed set.

We start with results on the metric projection which are of independent interest.

Theorem 1.4.1. Let A ⊂ Rn be nonempty, convex and closed. Then for each
x ∈ Rn, there is a unique point p(A, x) ∈ A satisfying

‖p(A, x)− x‖ = inf
y∈A

‖y − x‖.

Definition. The mapping p(A, ·) : Rn → A is called the metric projection (onto A).

Proof. For x ∈ A, we obviously have p(A, x) = x. For x /∈ A, there is a ball B(r)
such that

A ∩ (x + B(r)) 6= ∅.

Then,
inf
y∈A

‖y − x‖ = inf
y∈A∩(x+B(r))

‖y − x‖.

Since Ar := A ∩ (x + B(r)) is compact and f : y 7→ ‖y − x‖ continuous, there is a
point p(A, x) := y0 ∈ A realizing the minimum of f on Ar.

If y1 ∈ A is a second point realizing this minimum, with y1 6= y0, then y2 :=
1
2
(y0 + y1) ∈ A and ‖y2 − x‖ < ‖y0 − x‖, by the triangle inequality. This is a

contradiction and hence the metric projection p(A, x) is unique.

Remark. As the above proof shows, the existence of a nearest point p(A, x) is
guaranteed for all closed sets A. The convexity of A is responsible for the uniqueness
of p(A, x). A more general class of sets consists of closed sets A, for which the
uniqueness of p(A, x) holds at least in a neighborhood of A, for all x ∈ A + rBn,
r > 0. Such sets are called of positive reach, and the largest r for which uniqueness
of the metric projection holds is called the reach of A. Convex sets thus have reach
∞.

Definition. Let A ⊂ Rn be closed and convex and E = {f = α} a hyperplane. E
is called supporting hyperplane of A, if A ∩ E 6= ∅ and A is contained in one of the
two closed half-spaces {f ≤ α}, {f ≥ α} (or in both, but this implies A ⊂ {f = α},
hence it is only possible for lower dimensional sets A). The corresponding half-space
containing A is called supporting half-space, the set A ∩ E is called support set and
any x ∈ A ∩ E is called supporting point.

If E is a supporting hyperplane of A, we also say shortly that the hyperplane E
supports A.
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Example. The set

A := {(x(1), x(2)) ∈ R2 : x(2) ≥ 1

x(1)
, x(1) > 0}

is closed and convex. The line g := {x(1) + x(2) = 2} is a supporting line, since
(1, 1) ∈ A ∩ g. The lines h := {x(1) = 0} and k := {x(2) = 0} bound the set A, but
are not supporting lines since they do not have a point in common with A.

Theorem 1.4.2. Let A ⊂ Rn be nonempty, closed and convex and let x ∈ Rn \ A.
Then, the hyperplane E through p(A, x), orthogonal to x − p(A, x), supports A.
Moreover, the half-space bounded by E and not containing x is a supporting half-
space.

Proof. Obviously x /∈ E. Let H be the half-space generated by E which fulfills
x /∈ H. Since p(A, x) ∈ E ∩ A, it remains to show that A ⊂ H. Assume that there
is y ∈ A, y /∈ H. Then 〈y − p(A, x), x− p(A, x)〉 > 0.

We make use of the following projection property:

(∗) Let x, y, z ∈ Rn be different points with 〈y − z, x − z〉 > 0. Then there exists
y′ ∈ (z, y] with ‖y′ − x‖ < ‖z − x‖.
In order to show (∗) we consider the orthogonal projection ȳ of x onto the line
through z and y. By Pythagoras’ theorem, ‖ȳ − x‖ < ‖z − x‖. If ȳ ∈ (z, y], we put
y′ := ȳ. Otherwise, we have y ∈ (z, ȳ] and put y′ := y.

We apply (∗) with z = p(A, x) and obtain a point y′ ∈ (p(A, x), y] ⊂ A with
‖y′ − x‖ < ‖p(A, x)− x‖. This is a contradiction, hence we conclude A ⊂ H.

Corollary 1.4.3. Every nonempty, closed convex set A ⊂ Rn, A 6= Rn, is the
intersection of all closed half-spaces which contain A. More specifically, A is the
intersection of all its supporting half-spaces.

Proof. Obviously, A lies in the intersection B of its supporting half-spaces. For
x /∈ A, Theorem 1.4.2 implies the existence of a supporting half-space H of A with
x /∈ H. Hence x /∈ B.

Theorem 1.4.2 and Corollary 1.4.3 do not imply that every boundary point of A is a
support point. In order to show such a result, we approximate x ∈ bd A by points xk

from Rn \A and consider the corresponding supporting hyperplanes Ek which exist
by Theorem 1.4.2. For xk → x, we want to define a supporting hyperplane in x as
the limit of the Ek. A first step in this direction is to show that p(A, xk) → p(A, x)
(where p(A, x) = x), hence to show that p(A, ·) is continuous. We even show now
that p(A, ·) is Lipschitz continuous.

Theorem 1.4.4. Let A ⊂ Rn be nonempty, closed and convex. Then,

‖p(A, x)− p(A, y)‖ ≤ ‖x− y‖,

for all x, y ∈ Rn.
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Proof. The assertion is trivial for p(A, x) = p(A, y). Hence, we now assume
p(A, x) 6= p(A, y). Let Ex, Ey be the hyperplanes through p(A, x), respectively
p(A, y), and orthogonal to p(A, x) − p(A, y). Let Hx, Hy be the corresponding dis-
joint closed half-spaces bounded by Ex, respectively Ey. If x /∈ Hx, then (∗) implies
the existence of a point in (p(A, x), p(A, y)] ⊂ A, which has smaller distance to x
than p(A, x). This is a contradiction, therefore x ∈ Hx. Analogously, we obtain
y ∈ Hy and therefore ‖x− y‖ ≥ d(Ex, Ey) = ‖p(A, x)− p(A, y)‖.

Theorem 1.4.5 (Support Theorem). Let A ⊂ Rn be closed and convex. Then
through each boundary point of A there exists a supporting hyperplane.

Proof. For given x ∈ bd A, we consider the closed unit ball x + B(1) around x. For
each k ∈ N, we choose xk ∈ x + B(1), xk /∈ A, and such that ‖x− xk‖ < 1

k
. Then

‖x− p(A, xk)‖ ≤ ‖x− xk‖ <
1

k
,

by Theorem 1.4.4. Since xk, p(A, xk) are interior points of x + B(1), there is a
(unique) boundary point yk in x+B(1) such that xk ∈ (p(A, xk), yk). Theorem 1.4.2
then implies p(A, yk) = p(A, xk). In view of the compactness of x + B(1), we may
choose a converging subsequence ykr → y. By Theorem 1.4.4, p(A, ykr) → p(A, y)
and p(A, ykr) = p(A, xkr) → p(A, x) = x, hence p(A, y) = x. Since y ∈ bd (x+B(1)),
we also know that x 6= y. The assertion now follows from Theorem 1.4.2.

Remarks. (1) Supporting hyperplanes, half-spaces and points can be defined for
nonconvex sets A as well; they only exist however, if conv A is closed and not all of
Rn. Then, conv A is the intersection of all supporting half-spaces of A.

(2) Some of the previous results can be interpreted as separation theorems. Theorem
1.4.2 says that a closed convex set A and a point x /∈ A can be separated by
a hyperplane (even strongly, since there is a separating hyperplane which has a
positive distance to both, A and x). Theorem 1.4.5 says that each boundary point
of A can be separated from A by a hyperplane. Both results can be extended to
compact convex sets B (instead of the point x).

(3) In topological vector spaces V of infinite dimensions similar support and separa-
tion theorems hold true, however there are some important differences, mainly due
to the fact that convex sets A in V need not have relative interior points. Therefore
a common assumption is that int A 6= ∅. Otherwise it is possible that A is closed
but does not have any support points, or, in the other direction, that every point of
A is a support point (although A does not lie in a hyperplane).

(4) Some of the properties which we derived are characteristic for convexity. For
example, a closed set A ⊂ Rn such that each x /∈ A has a unique metric projection
onto A, must be convex (Motzkin’s Theorem). Also the Support Theorem has a
converse. A closed set A ⊂ Rn, int A 6= ∅, such that each boundary point is a
support point, must also be convex.
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(5) Let A ⊂ Rn be nonempty, closed and convex. Then we have, for each direction
u ∈ Sn−1, a supporting hyperplane E(u) of A in direction u (i.e. with outer normal
u), if and only if A is compact.

For the rest of this section, we consider convex polytopes and show that for a
polytope P finitely many supporting half-spaces suffice to generate P (as the in-
tersection). In other words, we show that polytopes are polyhedral sets. First, we
introduce the faces of a polytope.

Definition. The support sets of a polytope P are called faces. A face F of P is
called a k-face, if dim F = k, k ∈ {0, . . . , n− 1}.

Theorem 1.4.6. The 0-faces of a polytope P ⊂ Rn are given by the vertices of P ,
i.e. they are of the form {x}, x ∈ vert P .

Proof. Let {x} be a 0-face of P and assume x /∈ vert P . Then, there exists a
supporting hyperplane {f = α} with f(x) = α, but f(y) < α, for all y ∈ vert P .
Since vert P is finite, there is a β < α with f(y) ≤ β, for all y ∈ vert P . This implies
f(z) ≤ β, for all z ∈ conv vert P = P . Since x ∈ P , this is a contradiction, hence
we have x ∈ vert P .

Conversely, let x ∈ vert P and let vert P \ {x} = {x1, . . . , xk}. Then, x /∈ P ′ :=
conv {x1, . . . , xk}. By Theorem 1.4.2 there exists a supporting hyperplane {f = α}
of P ′ through p(P ′, x) with supporting half-space {f ≤ α} and such that f(x) > α.
Consequently, the parallel hyperplane {f = β}, where β := f(x) > α, is supporting
hyperplane to P . Consider y ∈ P ∩ {f = β}. Since y = α1x1 + · · ·+ αkxk + αk+1x
with αi ≥ 0 and

∑
αi = 1, we have

β = f(y) = α1f(x1) + · · ·+ αkf(xk) + αk+1β

and hence
(1− αk+1)β ≤ (1− αk+1)α.

This is only possible if αk+1 = 1, hence y = x. Therefore P ∩ {f = β} = {x}.

Remark. In Section 1.1, the vertices of a polytope P = conv {x1, . . . , xk} have
been defined as those points in {x1, . . . , xk} which are not in the convex hull of the
others. At that stage, it was not clear whether this definition may depend on the
representation of P . Theorem 1.4.6 now shows that the set of vertices is in fact
independent of the representation P = conv {x1, . . . , xk}.
Definition. The 1-faces of a polytope are called edges, and the (n − 1)-faces are
called facets.

Remark. In the following, we shall not distinguish between 0-faces and vertices
anymore, although one is a set and the other is a point.

Theorem 1.4.7. Let P ⊂ Rn be a polytope with vert P = {x1, . . . , xk} and let F be
a face of P . Then, F = conv {xi : xi ∈ F}.
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Proof. Assume F = P ∩{f = α} and, w.l.o.g., x1, . . . xm ∈ F and xm+1, . . . , xk /∈ F .
If {f ≤ α} is the supporting half-space, we have

xm+1, . . . , xk ∈ {f < α},

i.e. f(xj) = α− δj, δj > 0, j = m + 1, . . . , k.
Let x ∈ P , x = α1x1 + · · ·+ αkxk, αi ≥ 0,

∑
αi = 1. Then,

f(x) = α1f(x1) + · · ·+ αkf(xk)

= α− αm+1δm+1 − · · · − αkδk.

Hence, x ∈ F , if and only if αm+1 = · · · = αk = 0.

Remark. Theorem 1.4.7 implies, in particular, that a face of a polytope is a poly-
tope and that there are only finitely many faces.

Corollary 1.4.8. A polytope P is polyhedral.

Proof. If dim P = k < n, we can assume w.l.o.g. that 0 ∈ E := aff P . Also, it is
possible to write E as an intersection of half-spaces H̃1, . . . , H̃j in Rn, E =

⋂r
j=1 H̃j.

If P is polyhedral in E, i.e.

P =
m⋂

i=1

Hi,

where Hi ⊂ E are k-dimensional half-spaces, then

P =
m⋂

i=1

(Hi ⊕ E⊥) ∩
r⋂

j=1

H̃j,

hence P is polyhedral in Rn. Therefore, it is sufficient to treat the case dim P = n.
Let F1, . . . , Fm be the faces of P and H1, . . . , Hm corresponding supporting half-

spaces (i.e. half-spaces with P ⊂ Hi and Fi = P ∩ bd Hi, i = 1, . . . ,m). Then we
have

P ⊂ H1 ∩ · · · ∩Hm =: P ′.

Assume, there is x ∈ P ′ \ P . We choose y ∈ int P and consider [y, x] ∩ P . Since P
is compact and convex (and x /∈ P ), there is z ∈ (y, x) with {z} = [y, x]∩ bd P . By
the support theorem there is a supporting hyperplane of P through z, and hence
there is a face Fi of P with z ∈ Fi. Since each Fi lies in the boundary of P ′, we
have z ∈ bd P ′. On the other hand, Proposition 1.3.4 shows that z ∈ int P ′, a
contradiction.
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Exercises and problems

1. Let A ⊂ Rn be closed and intA 6= ∅. Show that A is convex, if and only if every
boundary point of A is a support point.

2.∗ Let A ⊂ Rn be closed. Suppose that for each x ∈ Rn the metric projection p(A, x)
onto A is uniquely determined. Show that A is convex (Motzkin’s theorem).

3. Let A ⊂ Rn be non-empty, closed and convex. Show that A is compact, if and
only if, for any direction u ∈ Sn−1, there is a supporting hyperplane E(u) of A in
direction u (i.e. with outer normal u).

4. Let A,B ⊂ Rn be non-empty and convex, and assume rel int A ∩ rel int B = ∅.
Show that there is a hyperplane {f = α}, separating A and B (i.e. such that
A ⊂ {f ≤ α} and B ⊂ {f ≥ α}).
Hint: Use exercise 2(a) in 1.3 to show that the origin 0 can be separated from A−B.

5. Let A,K ⊂ Rn be convex, A closed, K compact, and assume A ∩K = ∅.
Show that there is a hyperplane {f = α} with A ⊂ {f < α} and B ⊂ {f > α}. Show
more generally that α can be chosen such that there is an ε > 0 with A ⊂ {f ≤ α−ε}
and B ⊂ {f ≥ α + ε} (strong separation).

6. A bavarian farmer is happy owner of a large herd of happy cows, consisting of totally
black and totally white animals. One day he finds them sleeping in the sun on his
largest meadow. Watching them, he notices that, for any four cows it would be
possible to build a straight fence, separating the black cows from the white ones.

Show that the farmer could build a straight fence, separating the whole herd into
black and white animals.

Hint: Cows are lazy. When they sleep, they sleep - even if you build a fence across
the meadow.

7. Let F1, . . . , Fm be the facets of the polytope P and H1, . . . ,Hm the corresponding
supporting half-spaces. Show that

(∗) P =
m⋂

i=1

Hi.

(This is a generalization of the representation shown in the proof of Corollary 1.4.8.)
Show further, that the representation (∗) is minimal in the sense that, for each
representation

P =
⋂
i∈I

H̃i,

with a family of half-spaces {H̃i : i ∈ I}, we have {H1, . . . ,Hm} ⊂ {H̃i : i ∈ I}.
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1.5 Extremal representations

In the previous section we have seen that the trivial representation of closed convex
sets A ⊂ Rn as intersection of all closed convex sets containing A can be improved
to a nontrivial one, where A is represented as the intersection of the supporting half-
spaces. On the other hand, we have the trivial representation of A as the set of all
convex combinations of points of A. Therefore, we discuss now the similar nontrivial
problem to find a subset B ⊂ A, as small as possible, for which A = conv B holds.
Although there are some general results for closed convex sets A, we will concentrate
on the compact case, where we can give a complete (and simple) solution for this
problem.

Definition. Let A ⊂ Rn be closed and convex. A point x ∈ A is called extreme,
if x cannot be represented as a nontrivial convex combination of points of A, i.e. if
x = αy + (1− α)z with y, z ∈ A, α ∈ (0, 1), implies that x = y = z. The set of all
extreme points of A is denoted by ext A.

Remarks. (1) If A is a closed half-space, ext A = ∅. In general, ext A 6= ∅, if and
only if A does not contain any lines.

(2) We have x ∈ ext A, if and only if A \ {x} is convex.

(3) If {x} is a support set of A, then x ∈ ext A. The converse is false.

Definition. Let A ⊂ Rn be closed and convex. A point x ∈ A is called exposed, if
{x} is a support set of A. The set of all exposed points of A is denoted by exp A.

Remark. In view of Remark (3) above, we have exp A ⊂ ext A.

Theorem 1.5.1 (Minkowski). Let K ⊂ Rn be compact and convex and A ⊂ K.
Then, K = conv A, if and only if ext K ⊂ A.

In particular, K = conv ext K.

Proof. Suppose K = conv A and x ∈ ext K. By Theorem 1.1.4, there is a represen-
tation

x = α1x1 + · · ·+ αkxk

with k ∈ N, xi ∈ A, αi > 0, and
∑

αi = 1. In case k = 1, we have x = x1 ∈ A. If
k ≥ 2,

x = α1x1 + (1− α1)
α2x2 + · · ·+ αkxk

α2 + · · ·+ αk

and
α2x2 + · · ·+ αkxk

α2 + · · ·+ αk

∈ K.

Since x is extreme, we obtain x = x1 ∈ A. Thus, in both cases we have x ∈ A,
therefore ext K ⊂ A.
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In the other direction, we need only show that K = conv ext K. We prove this
by induction on n. For n = 1, a compact convex subset of R1 is a segment [a, b] and
ext [a, b] = {a, b}.

Let n ≥ 2 and suppose the result holds in dimension n − 1. Since ext K ⊂ K,
we obviously have conv ext K ⊂ K. We need to show the opposite inclusion. For
that purpose, let x ∈ K and g an arbitrary line through x. Then g ∩ K = [y, z]
with x ∈ [y, z] and y, z ∈ bd K. By the support theorem, y, z are support points,
i.e. there are supporting hyperplanes Ey, Ez of K with y ∈ K1 := Ey ∩ K and
z ∈ K2 := Ez ∩K. By the induction hypothesis,

K1 = conv ext K1; K2 = conv ext K2.

We have ext K1 ⊂ ext K. Namely, consider u ∈ ext K1 and u = αv + (1− α)w,
v, w ∈ K, α ∈ (0, 1). Since u lies in the supporting hyperplane Ey, the same must
hold for v and w. Hence v, w ∈ K1 and since u ∈ ext K1, we obtain u = v = w.
Therefore, u ∈ ext K.

In the same way, we get ext K2 ⊂ ext K and thus

x ∈ [y, z] ⊂ conv {conv ext K1 ∪ conv ext K2}
⊂ conv ext K.

Corollary 1.5.2. Let P ⊂ Rn be compact and convex.

(a) If P is a polytope, then ext P = vert P .

(b) P is a polytope, if and only if ext P is finite.

Proof. (a) Since the vertices are 0-faces, we have vert P ⊂ ext P . Since P =
conv vert P , Theorem 1.5.1 implies the opposite inclusion ext P ⊂ vert P .

(b) One direction follows from (a). For the converse, assume that ext P is finite,
hence ext P = {x1, . . . , xk}. Theorem 1.5.1 then shows P = conv {x1, . . . , xk}, hence
P is a polytope.

Now we are able to proof a converse of Corollary 1.4.8.

Theorem 1.5.3. Let P ⊂ Rn be a bounded polyhedral set. Then P is a polytope.

Proof. P is compact. We show that ext P is finite.
Let x ∈ ext P and assume P =

⋂k
i=1 Hi with half-spaces Hi bounded by the

hyperplanes Ei, i = 1, . . . , k. We consider the convex set

D :=
k⋂

i=1

Ai,
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where

Ai =

{
Ei

int Hi

if
x ∈ Ei ,

x /∈ Ei .

We have x ∈ D ⊂ P . Since x is extreme and D is relatively open, we get dim D = 0,
hence D = {x}. Since there are only finitely many different sets D possible, ext P
must be finite. The result now follows from Corollary 1.5.2(b).

Remark. This result now shows that the intersection of finitely many polytopes is
again a polytope.

If we replace, in Theorem 1.5.1 the set ext K by exp K, the corresponding result
will be wrong (as follows from Theorem 1.5.1 and the remark preceding it). There
is however a modified version which holds true for exposed points.

Theorem 1.5.4. Let K ⊂ Rn be compact and convex. Then

K = cl conv exp K.

Proof. Since K is compact, there exists, for each x ∈ Rn, a point yx ∈ K farthest
away, i.e. a point with

‖yx − x‖ = max
y∈K

‖y − x‖.

The hyperplane E through yx orthogonal to yx− x is then a supporting hyperplane
of K.

We have E ∩K = {yx}, hence yx ∈ exp K. Let

K̂ := cl conv {yx : x ∈ Rn}.

Then K̂ ⊂ K, thus K̂ is compact.
Assume that there exists x ∈ K \ K̂. Then, by Theorem 1.4.2 there is a hy-

perplane E ′ = {f = α} with x ∈ {f > α} and K̂ ⊂ {f < α} (E ′ is obtained
by a suitable translation of the supporting hyperplane through p(K̂, x) in direction
x − p(K̂, x)). Consider the half-line s starting in x, orthogonal to E ′ and in direc-
tion of that half-space of E ′, which contains K̂. On s, we can find a point z with
‖x − z‖ > maxy∈K̂ ‖y − z‖ (e.g. we may choose a cube W large enough to contain

K̂, and such that the point x̄ with {x̄} := s∩E ′ is the center of a facet of W . Now
we choose a ball B with center z ∈ s in such a way that W ⊂ B, but x /∈ B. Then
z is the required point).

By definition of K̂, there exists yz ∈ K̂ with

‖yz − z‖ = max
y∈K

‖y − z‖ ≥ ‖x− z‖,

a contradiction. Therefore, K = K̂. Because of yx ∈ exp K, for all x ∈ Rn, we
obtain

K = K̂ ⊂ cl conv exp K ⊂ K,

hence K = cl conv exp K.
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Corollary 1.5.5 (Straszewicz). Let K ⊂ Rn be compact and convex. Then

cl exp K ⊃ ext K.

Proof. By Theorems 1.5.4 and 1.3.7, we have

K = cl conv exp K ⊂ cl conv cl exp K = conv cl exp K ⊂ K ,

hence
K = conv cl exp K.

By Theorem 1.5.1, this implies ext K ⊂ cl exp K.

Exercises and problems

1. Let A ⊂ Rn be closed and convex. Show that extA 6= ∅, if and only if A does not
contain any line.

2. Let K ⊂ Rn be compact and convex.

(a) If n = 2, show that ext K is closed.

(b) If n ≥ 3, show by an example that ext K need not be closed.

3. Let A ⊂ Rn be closed and convex. A subset M ⊂ A is called extreme (in A), if M
is convex and if x, y ∈ A, (x, y) ∩M 6= ∅ implies [x, y] ⊂ M .

Show that:

(a) Extreme sets M are closed.

(b) Each support set of A is extreme.

(c) If M,N ⊂ A are extreme, then M ∩N is extreme.

(d) If M is extreme in A and N ⊂ M is extreme in M , then N is extreme in A.

(e) If M,N ⊂ A are extreme and M 6= N , then rel int M ∩ rel int N = ∅.

(f) Let E(A) := {M ⊂ A : M extreme}. Then A =
⋃

M∈E(A)

rel int M .

4. A real (n, n)-matrix A = ((αij)) is called doubly stochastic, if αij ≥ 0 and
n∑

k=1

αkj =
n∑

k=1

αik = 1

for all i, j ∈ {1, . . . , n}. A doubly stochastic matrix with components in {0, 1} is
called permutation matrix.

Show:



1.5. EXTREMAL REPRESENTATIONS 37

(a) The set K ⊂ Rn2
of doubly stochastic matrices is compact and convex.

(b) The extreme points of K are precisely the permutation matrices.
Hint for (b): You may use the following simple combinatorial result (marriage
theorem):
Given a finite set H, a nonempty set D and a function f : H → P(D) with∣∣∣ ⋃

h∈H̃

f(h)
∣∣∣ ≥ |H̃|, for all H̃ ⊂ H,

then there exists an injective function g : H → D with g(h) ∈ f(h), for all
h ∈ H.
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Chapter 2

Convex functions

2.1 Properties and operations of convex functions

In the following, we consider functions

f : Rn → [−∞,∞].

We assume the usual rules for addition and multiplication with ∞, namely:

α +∞ := ∞, for α ∈ (−∞,∞],
α−∞ := −∞, for α ∈ [−∞,∞),
α∞ := ∞, (−α)∞ := −∞, for α ∈ (0,∞],
0∞ := 0.

Definition. For a function f : Rn → (−∞,∞], the set

epi f := {(x, α) : x ∈ Rn, α ∈ R, f(x) ≤ α} ⊂ Rn × R

is called the epigraph of f . f is convex, if epi f is a convex subset of Rn×R = Rn+1.

Remarks. (1) A function f : Rn → [−∞,∞) is concave, if −f is convex. Thus,
for a convex function f we exclude the value −∞, whereas for a concave function
we exclude ∞.

(2) If A ⊂ Rn is a subset, a function f : A → (−∞,∞) is called convex, if the
extended function f̃ : Rn → (−∞,∞], given by

f̃ :=

{
f

∞
on

A ,

Rn \ A ,

is convex. This automatically requires that A is a convex set. In view of this
construction, we need not consider convex functions defined on subsets of Rn, but
we rather can assume that convex functions are always defined on all of Rn.

39
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(3) On the other hand, we often are only interested in convex functions f : Rn →
(−∞,∞] at points, where f is finite. We call

dom f := {x ∈ Rn : f(x) < ∞}

the effective domain of the function f : Rn → (−∞,∞]. For a convex function f ,
the effective domain dom f is convex.

(4) The function f ≡ ∞ is convex, it is called the improper convex function; convex
functions f with f 6≡ ∞ are called proper. The improper convex function f ≡ ∞
has epi f = ∅ and dom f = ∅.

Theorem 2.1.1. A function f : Rn → (−∞,∞] is convex, if and only if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y),

for all x, y ∈ Rn, α ∈ [0, 1].

Proof. By definition, f is convex, if and only if epi f = {(x, β) : f(x) ≤ β} is convex.
The latter condition means

α(x1, β1) + (1− α)(x2, β2) = (αx1 + (1− α)x2, α1β1 + (1− α)β2) ∈ epi f,

for all α ∈ [0, 1] and whenever (x1, β1), (x2, β2) ∈ epi f , i.e. whenever f(x1) ≤ β1,
f(x2) ≤ β2.

Hence, f is convex, if and only if

f(αx1 + (1− α)x2) ≤ α1β1 + (1− α)β2,

for all x1, x2 ∈ Rn, α ∈ [0, 1] and all β1 ≥ f(x1), β2 ≥ f(x2). Then, it is necessary
and sufficient that this inequality is satisfied for β1 = f(x1), β2 = f(x2), and we
obtain the assertion.

Remarks. (1) A function f : Rn → R is affine, if and only if f is convex and
concave. If f is affine, then epi f is a half-space in Rn+1 (and dom f = Rn).

(2) For a convex function f , the sublevel sets {f < α} and {f ≤ α} are convex.

(3) If f, g are convex and α, β ≥ 0, then αf + βg is convex.

(4) If (fi)i∈I is a family of convex functions, the (pointwise) supremum supi∈I fi is
convex. This follows since

epi

(
sup
i∈I

fi

)
=
⋂
i∈I

epi fi.

(5) As a generalization of Theorem 2.1.1, we obtain that f is convex, if and only if

f(α1x1 + · · ·+ αkxk) ≤ α1f(x1) + · · ·+ αkf(xk),
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for all k ∈ N, xi ∈ Rn, and αi ∈ [0, 1] with
∑

αi = 1.

(6) A function f : Rn → (−∞,∞] is positively homogeneous (of degree 1), if

f(αx) = αf(x), for all x ∈ Rn, α ≥ 0.

If f is positively homogeneous, f is convex if and only if it is subadditive, i.e. if

f(x + y) ≤ f(x) + f(y),

for all x, y ∈ Rn.

The following simple result is useful to generate convex functions from convex sets
in Rn × R.

Theorem 2.1.2. Let A ⊂ Rn × R be convex and suppose that

fA(x) := inf {α ∈ R : (x, α) ∈ A} > −∞,

for all x ∈ Rn. Then, fA is a convex function.

Proof. The definition of fA(x) implies that

epi fA = {(x, β) : ∃α ∈ R, α ≤ β, and a sequence αi ↘ α with (x, αi) ∈ A}.

It is easy to see that epi fA is convex.

Remarks. (1) The condition fA > −∞ is fulfilled, if and only if A does not contain
a vertical half-line which is unbounded from below.

(2) For x ∈ Rn, let
x× R := {(x, α) : α ∈ R}

be the vertical line in Rn × R through x. Then, we have A = epi fA, if and only if

A ∩ (x× R) = x× [fA,∞), for all x ∈ Rn.

Theorem 2.1.2 allows us to define operations of convex functions by applying corre-
sponding operations of convex sets to the epigraphs of the functions. We give two
examples of that kind.

Definition and Remark. A convex function f : Rn → (−∞,∞] is closed, if epi f
is closed. If f : Rn → (−∞,∞] is convex, then cl epi f is the epigraph of a closed
convex function, which we denote by cl f .

Proof. We have to show that A := cl epi f fulfills fA > −∞. The case f ≡ ∞ is
trivial, then f is closed and fA = f .

Let f be proper, then epi f 6= ∅. W.l.o.g. we may assume that dim dom f = n.
We choose a point x ∈ int dom f . Then, (x, f(x)) ∈ bd epi f . Hence, there is
a supporting hyperplane E ⊂ Rn × R of cl epi f at (x, f(x)). The corresponding
supporting half-space is the epigraph of an affine function h ≤ f . Thus, fA ≥ h >
−∞.
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Remark. cl f is the largest closed convex function below f .

Our second example is the convex hull operator. If (fi)i∈I is a family of (arbitrary)
functions fi : Rn → (−∞,∞], we consider A :=

⋃
i∈I epi fi. Suppose conv A does

not contain any vertical line, then, by Theorem 2.1.2, conv (fi) := fconv A is a convex
function, which we call the convex hull of the functions fi, i ∈ I. It is easy to see,
that conv (fi) is the largest convex function below all fi, i.e.

conv (fi) = sup{g : g convex, g ≤ fi ∀i ∈ I}.

conv (fi) exists, if and only if there is an affine function h with h ≤ fi, for all i ∈ I.
Further applications of Theorem 2.1.2 are listed in the exercises.
The following representation of convex functions is a counterpart to the support

theorem for convex sets.

Theorem 2.1.3. Let f : Rn → (−∞,∞] be closed and convex. Then,

f = sup {h : h ≤ f, h affine}.

Proof. By assumption, epi f is closed and convex. By Corollary 1.4.3, epi f is the
intersection of all closed half-spaces H ⊂ Rn × R which contain epi f .

There are three types of closed half-spaces in Rn × R:

H1 = {(x, r) : r ≥ l(x)}, l : Rn → R affine,

H2 = {(x, r) : r ≤ l(x)}, l : Rn → R affine,

H3 = H̃ × R, H̃ half-space in Rn.

Half-spaces of type H2 cannot occur, due to the definition of epi f . Half-spaces of
type H3 can occur, hence we have to show that these ‘vertical’ half-spaces can be
neglected, i.e. epi f is the intersection of all half-spaces of type H1 containing epi f .
Then we are finished since the intersection of half-spaces of type H1 is the epigraph
of the supremum of the corresponding affine functions l.

For the result just explained it is sufficient to show that any point (x0, r0) /∈ epi f
can be separated by a non-vertical hyperplane E from epi f . Hence, let E3 be a
vertical hyperplane separating (x0, r0) and epi f and let H3 be the corresponding
vertical half-space containing epi f . Since f > −∞, there is at least one affine
function l1 with l1 ≤ f . We may represent H3 as

H3 = {(x, r) ∈ Rn × R : l0(x) ≤ 0}

with some affine function l0 : Rn → R.
For x ∈ dom f , we then have

l0(x) ≤ 0, l1(x) ≤ f(x),
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hence
αl0(x) + l1(x) ≤ f(x), for all α ≥ 0.

For x /∈ dom f , this inequality holds trivially since then f(x) = ∞. Hence

mα := αl0 + l1

is an affine function fulfilling mα ≤ f . Since l0(x0) > 0, we have mα(x0) > r0 for
sufficiently large α.

We now come to a further important operation on convex functions, the construction
of the conjugate function.

Definition. Let f : Rn → (−∞,∞] be proper and convex, then the function f ∗

defined by
f ∗(y) := sup

x∈Rn

(〈x, y〉 − f(x)), y ∈ Rn,

is called the conjugate of f .

Theorem 2.1.4. The conjugate f ∗ of a proper convex function f : Rn → (−∞,∞]
fulfills:
(a) f ∗ is proper, closed and convex.

(b) f ∗∗ := (f ∗)∗ = cl f .

Proof. (a) For x /∈ dom f , we have 〈x, y〉 − f(x) = −∞ (for all y ∈ Rn), hence

f ∗ = sup
x∈dom f

(〈x, ·〉 − f).

For x ∈ dom f , the function

gx : y 7→ 〈x, y〉 − f(x)

is affine, therefore f ∗ is convex (as the supremum of affine functions).
Because of

epi f ∗ = epi

(
sup

x∈dom f
gx

)
=

⋂
x∈dom f

epi gx

and since epi gx is a closed half-space, epi f ∗ is closed, and hence f ∗ is closed.
In order to show that f ∗ is proper, we consider an affine function h ≤ f (h exists

by Theorem 2.1.3). h has a representation

h = 〈·, y〉 − α, with suitable y ∈ Rn, α ∈ R.

This implies
〈·, y〉 − α ≤ f,
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hence
〈·, y〉 − f ≤ α,

and therefore f ∗(y) ≤ α.

(b) By Theorem 2.1.3,

cl f = sup{h : h ≤ cl f, h affine}.

Writing h again as
h = 〈·, y〉 − α, y ∈ Rn, α ∈ R,

we obtain
cl f = sup

(y,α)

(〈·, y〉 − α),

where the supremum is taken over all (y, α) with

〈·, y〉 − α ≤ cl f.

The latter holds, if and only if

α ≥ sup
x

(〈x, y〉 − cl f(x)) = (cl f)∗(y).

Consequently, we have

cl f(x) ≤ sup
y

(〈x, y〉 − (cl f)∗(y)) = (cl f)∗∗(x),

for all x. Since cl f ≤ f , the definition of the conjugate function implies

(cl f)∗ ≥ f ∗,

and therefore
cl f ≤ (cl f)∗∗ ≤ f ∗∗.

On the other hand,

f ∗∗(x) = (f ∗)∗(x)

= sup
y

(〈x, y〉 − f ∗(y)),

where

f ∗(y) = sup
z

(〈z, y〉 − f(z))

≥ 〈x, y〉 − f(x)).

Therefore,

f ∗∗(x) ≤ sup
y

(〈x, y〉 − 〈x, y〉+ f(x))

= f(x),

which gives us f ∗∗ ≤ f . By part (a), f ∗∗ is closed, hence f ∗∗ ≤ cl f .
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Finally, we mention a canonical possibility to describe convex sets A ⊂ Rn by convex
functions. The common way to describe a set A is by the function

1A(x) =

{
1

0
if

x ∈ A ,

x /∈ A ,

however, 1A is neither convex nor concave. Therefore, we here define the indicator
function δA of a (arbitrary) set A ⊂ Rn by

δA(x) =

{
0

∞
if

x ∈ A ,

x /∈ A .

Remark. A is convex, if and only if δA is convex.

Exercises and problems

1. Let A ⊂ Rn be nonempty, closed and convex and containing no line. Let further
f : Rn → R be convex and assume there is a point y ∈ A with

f(y) = max
x∈A

f(x).

Show that there is also a z ∈ ext A with

f(z) = max
x∈A

f(x).

2. Let f : Rn → (−∞,∞] be convex. Show that the following assertions are equivalent:

(i) f is closed.

(ii) f is semi-continuous from above, i.e. for all x ∈ Rn we have

f(x) ≤ lim inf
y→x

f(y).

(iii) All the sublevel sets {f ≤ α}, α ∈ R, are closed .

3. Let f, f1, . . . , fm : Rn → (−∞,∞] be convex functions and α ≥ 0. Show that:

(a) The function α ◦ f : x 7→ inf{β ∈ R : (x, β) ∈ α · epi f} is convex.

(b) The function f1 � · · · � fm : x 7→ inf{β ∈ R : (x, β) ∈ epi f1 + · · ·+ epi fm} is
convex, and we have

f1 � · · · � fm(x) = inf{f1(x1)+· · ·+fm(xm) : x1, . . . , xm ∈ Rn, x1+· · ·+xm = x}.

(f1 � · · · � fm is called the infimal convolution of f1, . . . , fm.)
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(c) Let {fi : i ∈ I} (I 6= ∅) be a family of convex functions on Rn, such that
conv (fi) exists. Show that

conv (fi) = inf{α1 ◦ fi1 � · · · � αm ◦ fim : αj ≥ 0,
∑

αj = 1, ij ∈ I, m ∈ N}.

4. Let A ⊂ Rn be convex and 0 ∈ A. The distance function dA : Rn → (−∞,∞] is
defined as

dA(x) = inf{α ≥ 0 : x ∈ αA}, x ∈ Rn.

Show that dA has the following properties:

(a) dA is positively homogeneous, ≥ 0 and convex.

(b) dA is finite, if and only if 0 ∈ intA.

(c) {dA < 1} ⊂ A ⊂ {dA ≤ 1} ⊂ cl A.

(d) If 0 ∈ intA, then int A = {dA < 1} and clA = {dA ≤ 1}.
(e) dA(x) > 0, if and only if x 6= 0 and βx /∈ A for some β > 0.

(f) Let A be closed. Then dA is even (i.e. dA(x) = dA(−x)∀x ∈ Rn), if and only
if A is symmetric with respect to 0 (i.e. A = −A).

(g) Let A be closed. Then dA is a norm on Rn, if and only if A is symmetric,
compact and contains 0 in its interior.

(h) If A is closed, then dA is closed.
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2.2 Regularity of convex functions

We start with a continuity property of convex functions.

Theorem 2.2.1. A convex function f : Rn → (−∞,∞] is continuous in int dom f .

Proof. Let x ∈ int dom f . There exists a n-simplex P with P ⊂ int dom f and
x ∈ int P . If x0, . . . , xn are the vertices of P and y ∈ P , we have

y = α0x0 + · · ·+ αnxn,

with αi ∈ [0, 1],
∑

αi = 1, and hence

f(y) ≤ α0f(x0) + · · ·+ αnf(xn) ≤ max
i=0,...,n

f(xi) =: c.

Therefore, f ≤ c on P .
Let now α ∈ (0, 1) and choose an open ball U centered at 0 such that x+U ⊂ P .

Let z = x + αu, u ∈ U . Then,

z = (1− α)x + α(x + u),

hence
f(z) ≤ (1− α)f(x) + αf(x + u) ≤ (1− α)f(x) + αc.

This gives us
f(z)− f(x) ≤ α(c− f(x)).

On the other hand,

x =
1

1 + α
(x + αu) +

(
1− 1

1 + α

)
(x− u),

and hence

f(x) ≤ 1

1 + α
f(x + αu) +

(
1− 1

1 + α

)
f(x− u),

which implies

f(x) ≤ 1

1 + α
f(z) +

α

1 + α
c.

We obtain
α(f(x)− c) ≤ f(z)− f(x).

Together, the two inequalities give

|f(z)− f(x)| ≤ α(c− f(x)),

for all z ∈ x + αU .
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Now we discuss differentiability properties of convex functions. We first consider
the case f : R1 → (−∞,∞].

Theorem 2.2.2. Let f : R1 → (−∞,∞] be convex.

(a) In each point x ∈ int dom f , the right derivative f+(x) and the left derivative
f−(x) exist and fulfill f−(x) ≤ f+(x).

(b) On int dom f , the functions f+ and f− are monotonically increasing and, for
almost all x ∈ int dom f (with respect to the Lebesgue measure λ1 on R1), we have
f−(x) = f+(x), hence f is almost everywhere differentiable on cl dom f .

(c) Moreover, f+ is continuous from the right and f− continuous from the left, and
f is the indefinite integral of f+ respectively f− respectively f ′ in int dom f .

Proof. W.l.o.g. we concentrate on the case dom f = R1.
(a) If 0 < m ≤ l and 0 < h ≤ k, the convexity of f implies

f(x−m) = f((1− m

l
)x +

m

l
(x− l)) ≤ (1− m

l
)f(x) +

m

l
f(x− l),

hence
f(x)− f(x− l)

l
≤ f(x)− f(x−m)

m
.

Similarly, we have

f(x) = f(
h

h + m
(x−m) +

m

h + m
(x + h)) ≤ h

h + m
f(x−m) +

m

h + m
f(x + h),

which gives us
f(x)− f(x−m)

m
≤ f(x + h)− f(x)

h
.

Finally,

f(x + h) = f((1− h

k
)x +

h

k
(x + k)) ≤ (1− h

k
)f(x) +

h

k
f(x + k),

and therefore
f(x + h)− f(x)

h
≤ f(x + k)− f(x)

k
.

We obtain that the left difference quotients in x increase monotonically and are
bounded above by the right difference quotients, which decrease monotonically.
Therefore, the limits

f+(x) = lim
h↘0

f(x + h)− f(x)

h

and

f−(x) = lim
k↘0

f(x)− f(x− k)

k

(
= lim

t↗0

f(x + t)− f(x)

t

)
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exist and fulfill f−(x) ≤ f+(x).
(b) For x′ > x, we have just seen that

(∗) f−(x) ≤ f+(x) ≤ f(x′)− f(x)

x′ − x
≤ f−(x′) ≤ f+(x′).

Therefore, the functions f− and f+ are monotonically increasing. As is well-known,
a monotonically increasing function has only countably many points of discontinuity
(namely jumps), and therefore it is continuous almost everywhere. In the points x
of continuity of f−, (∗) implies f−(x) = f+(x).

(c) Assume now x < y. From

f(y)− f(x)

y − x
= lim

z↘x

f(y)− f(z)

y − z
≥ lim

z↘x
f+(z)

we obtain limz↘x f+(z) ≤ f+(x), hence limz↘x f+(z) = f+(x). Similarly, we get
limz↗x f−(z) = f−(x) .

Finally we define, for arbitrary a, a function g by

g(x) := f(a) +

∫ x

a

f−(u) dy.

We first show that g is convex, and then g = f .
For z := αx + (1− α)y, α ∈ [0, 1], x < y, we have

g(z)− g(x) =

∫ z

x

f−(s) ds ≤ (z − x)f−(z),

g(y)− g(z) =

∫ y

z

f−(s) ds ≥ (y − z)f−(z).

It follows that

α(g(z)− g(x)) + (1− α)(g(z)− g(y)) ≤ α(z − x)f−(z) + (1− α)(z − y)f−(z)

= f−(z)(αz + (1− α)z − [αx + (1− α)x]) = 0,

therefore
g(z) ≤ αg(x) + (1− α)g(y),

i.e. g is convex.
As a consequence, g+ und g− exist. Since

g(y)− g(x)

y − x
=

1

y − x

∫ y

x

f−(s) ds =
1

y − x

∫ y

x

f+(s) ds ≥ f+(x),

we obtain g+(x) ≥ f+(x). Analogously, we get g−(x) ≤ f−(x). By the continuity
from the left of g− and f−, and the continuity from the right of g+ and f+, it follows
that g+ = f+ and g− = f−. Hence, h := g − f is differentiable everywhere and
h′ ≡ 0. Therefore, h ≡ c = 0 because we have g(a) = f(a).
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Now we consider the n-dimensional case. If f : Rn → (−∞,∞] is convex and
x ∈ int dom f , then, for each u ∈ Rn, u 6= 0, the equation

g(u)(t) := f(x + tu), t ∈ R,

defines a convex function g(u) : R1 → (−∞,∞] and we have x ∈ int dom g(u). By
Theorem 2.2.2, the right derivative g+

(u)(0) exists. This is precisely the directional
derivative

(+) f ′(x; u) := lim
t↘0

f(x + tu)− f(x)

t

of f in direction u. Therefore, we obtain the following corollary to Theorem 2.2.2.

Corollary 2.2.3. Let f : Rn → (−∞,∞] be convex and x ∈ int dom f . Then, for
each u ∈ Rn, u 6= 0, the directional derivative f ′(x; u) of f exists.

The corollary does not imply that f ′(x; u) = −f ′(x;−u) holds (in fact, the latter
equation is only true if g−(u)(0) = g+

(u)(0)). Also, the partial derivatives f1(x), ..., fn(x)
of f need not exist in each point x. However, in analogy to Theorem 2.2.2, on can
show that f1, ..., fn exist almost everywhere (with respect to the Lebesgue measure
λn in Rn) and that in points x, where the partial derivatives f1(x), ..., fn(x) exist,
the function f is even differentiable. Even more, a convex function f on Rn is twice
differentiable almost everywhere (in a suitable sense). We refer to the exercises, for
these and a number of further results on derivatives of convex functions.

The right-hand side of (+) also makes sense for u = 0 and yields the value 0.
We therefore define f ′(x; 0) := 0. Then u 7→ f ′(x; u) is a positively homogeneous
function on Rn and if f is convex, f ′(x; ·) is also convex. For support functions, we
will continue the discussion of directional derivatives in the next section.

Exercises and problems

1. (a) Give an example of two convex functions f, g : Rn → (−∞,∞], such that f
and g both have minimal points (i.e. points in Rn, where the infimum of the
function is attained), but f + g does not have a minimal point.

(b) Suppose f, g : Rn → R are convex functions, which both have a unique minimal
point in Rn. Show that f + g has a minimal point.

Hint: Show first that the sets

{x ∈ Rn : f(x) ≤ α} resp. {x ∈ Rn : g(x) ≤ α}

are compact, for each α ∈ R.
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2. Let f : R → R be a convex function. Show that

f(x)− f(0) =
∫ x

0
f+(t) dt =

∫ x

0
f−(t) dt,

for all x ∈ R.

3. Let A ⊂ R be open and convex and f : A → R a real function.

(a) Assume f is differentiable. Show that f is convex, if and only if f ′ is monotone
increasing (on A).

(b) Assume f is twice differentiable. Show that f is convex, if and only if f ′′ ≥ 0
(on A).

4. Let A ⊂ Rn be open and convex and f : A → R a real function.

(a) Assume f is continuously differentiable. Show that f is convex, if and only if

〈grad f(x)− grad f(y), x− y〉 ≥ 0, for all x, y ∈ A.

(Here, grad f(x) := (f1(x), . . . , fn(x)) is the gradient of f at x.)

(b) Assume f is twice continuously differentiable. Show that f is convex, if and
only if the Hesse matrix

∂2f := ((fij(x)))n×n

of f is positively semidefinite, for all x ∈ A.

5. For a convex function f : Rn → (−∞,∞] and x ∈ int dom f , we define the subgra-
dient of f at x by

∂f(x) := {v ∈ Rn : f(y) ≥ f(x) + 〈v, y − x〉 ∀y ∈ Rn}.

Show that:

(a) ∂f(x) is nonempty, compact and convex.

(b) We have

∂f(x) = {v ∈ Rn : 〈v, u〉 ≤ f ′(x;u) ∀u ∈ Rn, u 6= 0}.

(c) If f is differentiable in x, then

∂f(x) = {grad f(x)}.

6.∗ Let f : Rn → (−∞,∞] be convex and x ∈ int dom f . Suppose that all partial
derivatives f1(x), . . . , fn(x) at x exist. Show that f is differentiable at x.

7. Let f : Rn → R be convex. Show that f is differentiable almost everywhere.

Hint: Use Exercise 6.
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2.3 The support function

The most useful analytic description of compact convex sets is by the support func-
tion. It is one of the basic tools in the following chapter. The support function of
a set A ⊂ Rn with 0 ∈ A is in a certain sense dual to the distance function, which
was discussed in Exercise 2.1.3.

Definition. Let A ⊂ Rn be nonempty and convex. The support function hA : Rn →
(−∞,∞] of A is defined as

hA(x) := sup
y∈A

〈x, y〉, x ∈ Rn.

Theorem 2.3.1. For nonempty, convex sets A, B ⊂ Rn, we have:

(a) hA is positively homogeneous, closed and convex (and hence subadditive).

(b) hA = hcl A and

cl A = {x ∈ Rn : 〈x, u〉 ≤ hA(u) ∀u ∈ Rn}.

(c) A ⊂ B implies hA ≤ hB; conversely, hA ≤ hB implies cl A ⊂ cl B.

(d) hA is finite, if and only if A is bounded.

(e) hαA+βB = αhA + βhB, for all α, β ≥ 0.

(f) h−A(x) = hA(−x), for all x ∈ Rn.

(g) If Ai, i ∈ I, are nonempty and convex and A := conv
(⋃

i∈I Ai

)
, then

hA = sup
i∈I

hAi
.

(h) If Ai, i ∈ I, are nonempty, convex and closed and if A :=
⋂

i∈I Ai is nonempty,
then

hA = cl conv (hAi
)i∈I .

(i) δ∗A = hA.

Proof. (a) For α ≥ 0 and x, z ∈ Rn, we have

hA(αx) = sup
y∈A

〈αx, y〉 = α sup
y∈A

〈x, y〉 = αhA(x)

and

hA(x + z) = sup
y∈A

〈x + z, y〉 ≤ sup
y∈A

〈x, y〉+ sup
y∈A

〈z, y〉 = hA(x) + hA(z).

Furthermore, as a supremum of closed functions, hA is closed.
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(b) The first part follows from

sup
x∈A

〈x, u〉 = sup
x∈cl A

〈x, u〉, u ∈ Rn.

For x ∈ cl A, we therefore have 〈x, u〉 ≤ hA(u), for all u ∈ Rn. Conversely, suppose
x ∈ Rn fulfills 〈x, ·〉 ≤ hA(·), and assume x /∈ cl A. Then, by Theorem 1.4.2, there
exists a (supporting) hyperplane separating x and cl A, i.e. a direction y ∈ Sn−1

and α ∈ R such that

〈x, y〉 > α and 〈z, y〉 ≤ α, for all z ∈ cl A.

This implies

hcl A(y) = hA(y) ≤ α < 〈x, y〉,

a contradiction.

(c) The first part is obvious, the second follows from (b).

(d) If A is bounded, we have A ⊂ B(r), for some r > 0. Then, (c) implies
hA ≤ hB(r) = r‖ · ‖, hence hA < ∞. Conversely, hA < ∞ and Theorem 2.2.1 imply
that hA is continuous on Rn. Therefore, hA is bounded on Sn−1, i.e. hA ≤ r = hB(r)

on Sn−1, for some r > 0. The positive homogeneity, proved in (a), implies that
hA ≤ hB(r) on all of Rn, hence (c) shows that cl A ⊂ B(r), i.e. A is bounded.

(e) For any x ∈ Rn, we have

hαA+βB(x) = sup
y∈αA+βB

〈x, y〉 = sup
u∈A,v∈B

〈x, αu + βv〉

= sup
u∈A

〈x, αu〉+ sup
v∈B

〈x, βv〉 = αhA(x) + βhB(x).

(f) For any x ∈ Rn, we have

h−A(x) = sup
y∈−A

〈x, y〉 = sup
u∈A

〈x,−u〉

= sup
u∈A

〈−x, u〉 = hA(−x).

(g) Since Ai ⊂ A, we have hAi
≤ hA (from (c)), hence

sup
i∈I

hAi
≤ hA.

Conversely, any y ∈ A has a representation

y = α1yi1 + · · ·+ αkyik ,
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with k ∈ N, yij ∈ Aij , αj ≥ 0,
∑

αj = 1. Therefore, we get

hA(x) = sup
y∈A

〈x, y〉 = sup
yij

∈Aij
,αj≥0,

∑
αj=1,ij∈I,k∈N

〈x, α1yi1 + · · ·+ αkyik〉

= sup
αj≥0,

∑
αj=1,ij∈I,k∈N

(α1hAi1
(x) + · · ·+ αkhAik

(x)) ≤ sup
i∈I

hAi
(x).

(h) Since A ⊂ Ai, we have hA ≤ hAi
(from (c)), for all i ∈ I. Using the inclusion

of the epigraphs, the definition of cl and conv for functions and (a), we obtain

hA ≤ cl conv (hAi
)i∈I .

On the other hand, Theorem 2.1.3 shows that

g := cl conv (hAi
)i∈I

is the supremum of all affine functions below g. Since g is positively homogeneous,
we can concentrate on linear functions. Therefore, assume 〈·, y〉 ≤ g, y ∈ Rn, is such
a function. Then,

〈·, y〉 ≤ hAi
, for all i ∈ I.

(c) implies that y ∈ Ai, i ∈ I, hence y ∈
⋂

i∈I Ai = A. Therefore,

〈·, y〉 ≤ hA,

from which we get
g = cl conv (hAi

)i∈I ≤ hA.

(i) For x ∈ Rn, we have

δ∗A(x) = sup
y∈Rn

(〈x, y〉 − δA(y)) = sup
y∈A

〈x, y〉 = hA(x),

hence δ∗A = hA.

The following result is crucial for the later considerations.

Theorem 2.3.2. Let h : Rn → (−∞,∞] be positively homogeneous, closed and
convex. Then there exists a unique nonempty, closed and convex set A ⊂ Rn such
that

hA = h.

Proof. If h ≡ ∞, then h = hRn and, by the support theorem, Rn is the only closed
convex set A with hA ≡ ∞. Hence, we may now assume that h is proper.

We consider h∗. For α > 0, we obtain from the positive homogeneity

h∗(x) = sup
y∈Rn

(〈x, y〉 − h(y)) = sup
y∈Rn

(〈x, αy〉 − h(αy))

= α sup
y∈Rn

(〈x, y〉 − h(y)) = αh∗(x).
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Therefore, h∗ can only obtain the values 0 and∞. We put A := dom h∗. By Theorem
2.1.4(a), A is nonempty, closed and convex, and

h∗ = δA.

Theorem 2.3.1(i) implies

h∗∗ = δ∗A = hA.

By Theorem 2.1.4(b), we have h∗∗ = h, hence hA = h.

The uniqueness of A follows from Theorem 2.3.1(b).

We mention without proof a couple of further properties of support functions, which
are mostly simple consequences of the definition or the last two theorems. In the
following remarks, A is always a nonempty closed convex subset of Rn.

Remarks. (1) We have A = {x}, if and only if hA = 〈x, ·〉.
(2) We have hA+x = hA + 〈x, ·〉.
(3) A is origin-symmetric (i.e. A = −A), if and only if hA is even, i.e. hA(x) =
hA(−x), for all x ∈ Rn.

(4) We have 0 ∈ A, if and only if hA ≥ 0.

Let A ⊂ Rn be nonempty, closed and convex. For u ∈ Sn−1, we consider the sets

E(u) := {x ∈ Rn : 〈x, u〉 = hA(u)}

and

A(u) := A ∩ E(u) = {x ∈ A : 〈x, u〉 = hA(u)}.

If hA(u) = ∞, both sets are empty. If hA(u) < ∞, then E(u) is a hyperplane, which
bounds A, but need not be a supporting hyperplane (see the example in Section 1.4),
namely if A(u) = ∅. If A(u) 6= ∅, then E(u) is a supporting hyperplane of A (at each
point x ∈ A(u)) and A(u) is the corresponding support set. We discuss now the
support function of A(u). In order to simplify the considerations, we concentrate on
the case, where A is compact (then A(u) is nonempty and compact, for all u ∈ Sn−1).
A compact convex set K 6= ∅ is called a convex body. We denote by Kn the set of
all convex bodies in Rn.

Theorem 2.3.3. Let K ∈ Kn and u ∈ Sn−1. Then,

hK(u)(x) = h′K(u; x), x ∈ Rn,

i.e. the support function of K(u) is given by the directional derivatives of hK at the
point u.
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Proof. For y ∈ K(u) and v ∈ Rn, we have

〈y, v〉 ≤ hK(v),

since y belongs to K. In particular, for v := u + tx, x ∈ Rn, t > 0, we thus get

〈y, u〉+ t〈y, x〉 ≤ hK(u + tx),

and hence

〈y, x〉 ≤ hK(u + tx)− hK(u)

t

(because of hK(u) = 〈y, u〉). For t ↘ 0, we obtain

〈y, x〉 ≤ h′K(u; x).

Since this holds for all y ∈ K(u), we arrive at

hK(u)(x) ≤ h′K(u; x).

Conversely, we obtain from the subadditivity of hK

hK(u + tx)− hK(u)

t
≤ hK(tx)

t
= hK(x),

and thus
h′K(u; x) ≤ hK(x).

We show that the function x 7→ h′K(u; x) is convex, positively homogeneous and
finite. Namely,

h′K(u; x + x′) = lim
t↘0

hK(u + tx + tx′)− hK(u)

t

≤ lim
t↘0

hK(u
2

+ tx)− hK(u
2
)

t
+ lim

t↘0

hK(u
2

+ tx′)− hK(u
2
)

t

= h′K(u; x) + h′K(u; x′)

and

h′K(u; αx) = lim
t↘0

hK(u + tαx)− hK(u)

t

= αh′K(u; x),

for x, x′ ∈ Rn and α ≥ 0. By Theorem 2.3.2 (in connection with Theorem 2.3.1(d)),
there exists a nonempty, compact convex set L ⊂ Rn with

hL(x) = h′K(u; x), x ∈ Rn.
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For y ∈ L, we have

〈y, x〉 ≤ h′K(u; x) ≤ hK(x), x ∈ Rn,

hence y ∈ K. Furthermore,

〈y, u〉 ≤ h′K(u; u) = hK(u)

and
〈y,−u〉 ≤ h′K(u;−u) = −hK(u),

from which we obtain
〈y, u〉 = hK(u),

and thus y ∈ K ∩ E(u) = K(u). It follows that L ⊂ K(u), and therefore (again by
Theorem 2.3.1)

h′K(u; x) ≤ hK(u)(x).

Combining both inequalities, we obtain the assertion.

Remark. As a consequence, we obtain that K(u) consists of one point, if and
only if h′K(u; ·) is linear. In view of Exercise 2.2.5 and Exercise 2.2.6, the latter is
equivalent to the differentiability of hK at u. If all the support sets K(u), u ∈ Sn−1,
of a nonempty, compact convex set K consist of points, the boundary bd K does not
contain any segments. Such sets K are called strictly convex. Hence, K is strictly
convex, if and only if hK is differentiable on Rn \ {0}.
We finally consider the support functions of polytopes. We call a function h on Rn

piecewise linear, if there are finitely many convex cones A1, . . . , Am ⊂ Rn, such that
Rn =

⋃m
i=1 Ai and h is linear on Ai, i = 1, . . . ,m.

Theorem 2.3.4. Let K ∈ Kn. Then K is a polytope, if and only if hK is piecewise
linear.

Proof. K is a polytope, if and only if

K = conv {x1, . . . , xk},

for some x1, . . . , xk ∈ Rn. In view of Theorem 2.3.1, the latter is equivalent to

hK = max
i=1,...,k

〈xi, ·〉,

which holds, if and only if hK is piecewise linear. To be more precise, if hK has the
above form, the cones Ai of linearity are given by

Ai := {x ∈ Rn : max
j=1,...,k

〈xj, ·〉 = 〈xi, ·〉}, i = 1, . . . , k.

Conversely, if hK is linear on the cone Ai, then xi is determined by

〈xi, ·〉 = hK

on Ai.
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Exercises and problems

1. Let f : Rn → R be positively homogeneous and twice continuously partially differ-
entiable on Rn\{0}. Show that there are nonempty, compact convex sets K, L ⊂ Rn

such that
f = hK − hL.

Hint: Use Exercise 2.2.2(b).

2. Let K ⊂ Rn be compact and convex with 0 ∈ intK. Show that

(a) K◦ is compact and convex with 0 ∈ intK◦,

(b) K◦◦ := (K◦)◦ = K,

(c) K is a polytope, if and only if K◦ is a polytope,

(d) hK = dK◦ .



Chapter 3

Convex bodies

3.1 The space of convex bodies

In the following, we mostly concentrate on convex bodies (nonempty compact convex
sets) K in Rn and first discuss the space Kn of convex bodies. We emphasize that
we do not require that a convex body has interior points; hence lower-dimensional
bodies are included in Kn. The set Kn is closed under addition,

K, L ∈ Kn =⇒ K + L ∈ Kn,

and multiplication with nonnegative scalars,

K ∈ Kn, α ≥ 0 =⇒ αK ∈ Kn.

(In fact, we even have αK ∈ Kn, for all α ∈ R, since the reflection −K of a convex
body K is again a convex body.) Thus, Kn is a convex cone and the question
arises, whether we can embed this cone into a suitable vector space. Since (Kn, +)
is a (commutative) semi-group, the problem reduces to the question, whether this
semi-group can be embedded into a group. A simple algebraic criterion (which is
necessary and sufficient) is that the cancellation rule must be valid. Although this
can be checked directly for convex bodies (see the exercises), we use now the support
function for a direct embedding which has a number of additional advantages.

For this purpose, we consider the support function hK of a convex body as a
function on the unit sphere Sn−1 (because of the positive homogeneity of hK , the
values on Sn−1 determine hK completely). Let C(Sn−1) be the vector space of
continuous functions on Sn−1. This is a Banach space with respect to the maximum
norm

‖f‖ := max
u∈Sn−1

|f(u)|, f ∈ C(Sn−1).

We call a function f : Sn−1 → R convex, if the homogeneous extension

f̃ :=

{
‖x‖f( x

‖x‖)

0
for

x 6= 0,

x = 0,

59
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is convex on Rn. Let Hn be the set of all convex functions on Sn−1. By Remark (3),
p. 38, and Theorem 2.2.1, Hn is a convex cone in C(Sn−1).

Theorem 3.1.1. The mapping

T : K 7→ hK

is linear on Kn and maps the convex cone Kn one-to-one onto the convex cone Hn.
Moreover, T is compatible with the inclusion order on Kn and the pointwise order
≤ on Hn.

In particular, T embeds the (ordered) convex cone Kn into the (ordered) vector
space C(Sn−1).

Proof. The linearity of T follows from Theorem 2.3.1(e) and the injectivity from
Theorem 2.3.1(b). The fact that T (Kn) = Hn is a consequence of Theorem 2.3.2.
The compatibility with respect to the orderings follows from Theorem 2.3.1(c).

Remark. Linearity of T on the cone Kn means

T (αK + βL) = αT (K) + βT (L),

for K, L ∈ Kn and α, β ≥ 0. This linearity does not extend to difference bodies
K − L = K + (−L). The reason is that the function hK − hL is in general not
convex, but even if it is, hence if

hK − hL = hM ,

for some M ∈ Kn, the body M is in general different from the difference body
K − L. We write K 	 L := M and call this body the Minkowski difference of K
and L. Whereas the difference body K −L exists for all K, L ∈ Kn, the Minkowski
difference K 	 L only exists in special cases, namely if K can be decomposed as
K = M + L (then M = K 	 L).

With respect to the norm topology provided by the maximum norm in C(Sn−1), the
cone Hn is closed. Our next goal is to define a natural metric on Kn, such that T
becomes even an isometry (hence, we then have an isometric embedding of Kn into
the Banach space C(Sn−1)).

Definition. For K, L ∈ Kn, let

d(K, L) := inf {ε ≥ 0 : K ⊂ L + B(ε), L ⊂ K + B(ε)}.

It is easy to see that the infimum is attained, hence it is in fact a minimum.
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Theorem 3.1.2. For K, L ∈ Kn, we have

d(K, L) = ‖hK − hL‖.

Therefore, d is a metric on Kn and fulfills

d(K + M, L + M) = d(K, L),

for all K, L, M ∈ Kn.

Proof. From Theorem 2.3.1 we obtain

K ⊂ L + B(ε) ⇔ hL ≤ hK + εhB(1)

and

L ⊂ K + B(ε) ⇔ hK ≤ hL + εhB(1).

Since hB(1) ≡ 1 on Sn−1, this implies

K ⊂ L + B(ε), L ⊂ K + B(ε) ⇔ ‖hK − hL‖ ≤ ε,

and the assertions follow.

In an arbitrary metric space (X, d), the class C(X) of nonempty compact subsets of
X can be supplied with the Hausdorff metric d̃, which is defined by

d̃(A, B) := max (max
x∈A

d(x, B), max
y∈B

d(y, A)).

Here A, B ∈ C(X), and we have used the abbreviation

d(u, C) := min
v∈C

d(u, v), u ∈ X, C ∈ C(X),

(the minimal and maximal values exist due to the compactness of the sets and the
continuity of the metric). We show now that, on Kn ⊂ C(Rn), the Hausdorff metric
d̃ coincides with the metric d.

Theorem 3.1.3. For K, L ∈ Kn, we have

d(K, L) = d̃(K, L).

Proof. We have

d(K, L) = max (inf {ε ≥ 0 : K ⊂ L + B(ε)}, inf {ε ≥ 0 : L ⊂ K + B(ε)}).
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Now

K ⊂ L + B(ε) ⇔ d(x, L) ≤ ε, for all x ∈ K,

⇔ max
x∈K

d(x, L) ≤ ε,

hence
inf {ε ≥ 0 : K ⊂ L + B(ε)} = max

x∈K
d(x, L),

which yields the assertion.

We now come to an important topological property of the metric space (Kn, d):
Every bounded subset M ⊂ Kn is relative compact. This is a special property
which holds also, for example, in the metric space (Rn, d), but it does not hold in
general metric spaces.

In Kn, a subset M is bounded, if there exists c > 0 such that

d(K, L) ≤ c, for all K, L ∈M.

This is equivalent to
K ⊂ B(c′), for all K ∈M,

for some constant c′ > 0. Here, we can replace the ball B(c′) by any compact set, in
particular by a cube W ⊂ Rn. The subset M is relative compact, if every sequence
K1, K2, . . . , with Kk ∈M, has a converging subsequence. Therefore, the mentioned
topological property is a consequence of the following theorem.

Theorem 3.1.4 (Blaschke’s Selection Theorem). Let M⊂ Kn be an infinite
collection of convex bodies, all lying in a cube W . Then, there exists a sequence
K1, K2, . . . , with Kk ∈M (pairwise different), and a body K0 ∈ Kn such that

Kk → K0, as k →∞.

Proof. W.l.o.g. we assume that W is the unit cube.
For each i ∈ N, we divide W into 2in cubes of edge length 1/2i. For K ∈ M,

let Wi(K) be the union of all cubes in the ith dissection, which intersect K. Since
there are only finitely many different sets Wi(K), K ∈M, but infinitely many bodies
K ∈M, we first get a sequence (in M)

K
(1)
1 , K

(1)
2 , . . .

with
W1(K

(1)
1 ) = W1(K

(1)
2 ) = · · · ,
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then a subsequence (of K
(1)
1 , K

(1)
2 , . . . )

K
(2)
1 , K

(2)
2 , . . .

with
W2(K

(2)
1 ) = W2(K

(2)
2 ) = · · · ,

and in general a subsequence
K

(j)
1 , K

(j)
2 , . . .

of K
(j−1)
1 , K

(j−1)
2 , . . . with

Wj(K
(j)
1 ) = Wj(K

(j)
2 ) = · · · ,

for all j ∈ N (j ≥ 2).
Since

min
y∈K

(j)
l

d(x, y) ≤
√

n

2j
,

for all x ∈ K
(j)
k , we have

d(K
(j)
k , K

(j)
l ) ≤

√
n

2j
, for all k, l ∈ N, and all j.

By the subsequence property we deduce

d(K
(j)
k , K

(i)
l ) ≤

√
n

2i
, for all k, l ∈ N, and all j ≥ i.

In particular, if we choose the ’diagonal sequence’ Kk := K
(k)
k , k = 1, 2, . . . , then

d(Kk, Kl) ≤
√

n

2l
, for all k ≥ l.

Hence (Kk)k∈N is a Cauchy sequence in M.
Let

K̃k := cl conv (Kk ∪Kk+1 ∪ · · · )

and

K0 :=
∞⋂

k=1

K̃k.

We claim that

(∗) Kk → K0, as k →∞, and K0 ∈ Kn.

First, by construction we have K̃k ∈ Kn and K̃k+1 ⊂ K̃k, k = 1, 2, . . . . Therefore,
K0 ∈ Kn.
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Since (Kk)k∈N is a Cauchy sequence, for each ε > 0 there exists m ∈ N such that

d(Kk, Kl) < ε, for all k, l ≥ m.

This implies
Kl ⊂ Kk + B(ε), for all k, l ≥ m,

therefore
K̃k′ ⊂ Kk + B(ε), for all k, k′ ≥ m,

and thus
K0 ⊂ Kk + B(ε), for all k ≥ m.

Conversely, for each ε > 0, there is m̄ ∈ N such that

K̃k ⊂ K0 + B(ε), for all k ≥ m̄.

Namely, assume on the contrary that

K̃k 6⊂ K0 + B(ε), for infinitely many k.

Then
K̃ki

∩ [W \ int (K0 + B(ε))] 6= ∅,
for a suitable sequence k1, k2, . . . . Since Kki

and W \ int (K0 + B(ε)) are compact,
this would imply

∞⋂
i=1

(
Kki

∩ [W \ int (K0 + B(ε))]
)

= K0 ∩ [W \ int (K0 + B(ε))] 6= ∅,

a contradiction.
Since K̃k ⊂ K0 + B(ε) implies Kk ⊂ K0 + B(ε), we obtain

d(K0, Kk) ≤ ε, for all k ≥ max(m, m̄).

The topology on Kn given by the Hausdorff metric allows us to introduce and study
geometric functionals on convex bodies by first defining them for a special subclass,
for example the class Pn of polytopes. Such a program requires that the geometric
functionals under consideration have a continuity or monotonicity property and also
that the class Pn of polytopes is dense in Kn. We now discuss the latter aspect;
geometric functionals will be investigated in the next section.

Theorem 3.1.5. Let K ∈ Kn and ε > 0.

(a) There exists a polytope P ∈ Pn with P ⊂ K and d(K, P ) ≤ ε.

(b) There exists a polytope P ∈ Pn with K ⊂ P and d(K, P ) ≤ ε.

(c) If 0 ∈ rel int K, then there exists a polytope P ∈ Pn with P ⊂ K ⊂ (1 + ε)P .
There is even a polytope P̃ ∈ Pn with P̃ ⊂ rel int K and K ⊂ rel int ((1 + ε)P̃ ).
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Proof. (a) The family
{x + int B(ε) : x ∈ bd K}

is an open covering of the compact set bd K, therefore there exist x1, . . . , xm ∈ bd K
with

bd K ⊂
m⋃

i=1

(xi + int B(ε)).

Let
P := conv {x1, . . . , xm},

then
P ⊂ K and bd K ⊂ P + B(ε).

The latter implies K ⊂ P + B(ε) and therefore d(K, P ) ≤ ε.
(b) For each u ∈ Sn−1, there is a supporting hyperplane E(u) of K (in direction

u). Let A(u) be the open half-space of E(u) which fulfills A(u) ∩K = ∅ (A(u) has
the form {〈·, u〉 > hK(u)}). Then, the family

{A(u) : u ∈ Sn−1}

is an open covering of the compact set bd (K +B(ε)), since every y ∈ bd (K +B(ε))
fulfills y /∈ K and is therefore separated from K by a supporting hyperplane E =
E(u) of K. Therefore there exist u1, . . . , um ∈ Sn−1 with

bd (K + B(ε)) ⊂
m⋃

i=1

A(ui).

Let H(ui) := Rn \ A(ui) be the corresponding supporting half-space and

P :=
m⋂

i=1

H(ui),

then
K ⊂ P.

Since Rn \ P =
⋃m

i=1 A(ui), we also have

P ⊂ K + B(ε),

and therefore d(K, P ) ≤ ε.
(c) W.l.o.g. we may assume that dim K = n, hence 0 ∈ int K. If we copy the

proof of (b) with B(ε) = εB(1) replaced by εK, we obtain a polytope P ′ with

K ⊂ P ′ ⊂ (1 + ε)K.
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The polytope P := 1
1+ε

P ′ then fulfills

P ⊂ K ⊂ (1 + ε)P.

In particular, we get a polytope P̄ with

P̄ ⊂ K ⊂ (1 +
ε

2
)P̄ .

We choose P̃ := δP̄ with 0 < δ < 1. Then

P̃ ⊂ rel int P̄ ⊂ rel int K.

If δ is close to 1, such that (1 + ε
2
)1

δ
< 1 + ε, then

K ⊂ (1 +
ε

2
)
1

δ
P̃ ⊂ rel int ((1 + ε)P̃ ).

Remark. The theorem shows that clPn = Kn. One can even show that the metric
space Kn is separable, since there is a countable dense set P̃n of polytopes. For this
purpose, the above proofs have to be modified such that the polytopes involved have
vertices with rational coordinates.

Exercises and problems

1. Let K, L, M ∈ Kn. Without using support functions, show that:

(a) For u ∈ Sn−1, we have

K(u) + M(u) = (K + M)(u).

(b) If K + L ⊂ M + L, then K ⊂ M (generalized cancellation rule).

2. Let (Ki)i∈N be a sequence in Kn and K ∈ Kn. Show that Ki → K (in the Hausdorff
metric), if and only if the following two conditions are fulfilled:

(a) Each x ∈ K is a limit point of a suitable sequence (xi)i∈N with xi ∈ Ki, for all
i ∈ N.

(b) For each sequence (xi)i∈N with xi ∈ Ki, for all i ∈ N, every culmination point
lies in K.
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3. (a) Let K, M ∈ Kn be convex bodies, which cannot be separated by a hyperplane
(i.e., there is no hyperplane {f = α} with K ⊂ {f ≤ α} and M ⊂ {f ≥ α}).
Further, let (Ki)i∈N and (Mi)i∈N be sequences in Kn. Show that

Ki → K, Mi → M =⇒ Ki ∩Mi → K ∩M.

(b) Let K ∈ Kn be a convex body and E ⊂ Rn an affine subspace with E∩ intK 6=
∅. Further, let (Ki)i∈N be a sequence in Kn. Show that

Ki → K =⇒ (E ∩Ki) → E ∩K.

Hint: Use Exercise 2 above.

4. Let K ⊂ Rn be compact. Show that:

(a) There is a unique ball Ka of smallest diameter with K ⊂ Ka (circumball).

(b) If intK 6= ∅, then there exists a ball Ki of maximal diameter with Ki ⊂ K
(inball).

5. A body K ∈ Kn is strictly convex, if it does not contain any segments in the
boundary.

(a) Show that the set of all strictly convex bodies in Rn is a Gδ-set in Kn, i.e.
intersection of countably many open sets in Kn.

(b)∗ Show that the set of all strictly convex bodies in Rn is dense in Kn.

6. Let (Ki)i∈N be a sequence in Kn, for which the support functions hKi(u) converge
to the values h(u) of a function h : Sn−1 → R, for each u ∈ Sn−1. Show that h is
the support function of a convex body and that hKi → h uniformly on Sn−1.

7. Let P be a convex polygon in R2 with int P 6= ∅. Show that:

(a) There is a polygon P1 and a triangle (or a segment) ∆ with P = P1 + ∆.

(b) P has a representation P = ∆1 + · · ·+∆m, with triangles (segments) ∆j which
are pairwise not homothetic.

(c) P is a triangle, if and only if m = 1.

8.∗ A body K ∈ Kn, n ≥ 2, is indecomposable, if K = M + L implies M = αK + x and
L = βK + y, for some α, β ≥ 0 and x, y ∈ Rn. Show that:

(a) If P ∈ Kn is a polytope and all 2-faces of P are triangles, P is indecomposable.

(b) For n ≥ 3, the set of indecomposable convex bodies is a dense Gδ-set in Kn.

9. Let In be the set of convex bodies K ∈ Kn, which are strictly convex and indecom-
posable.

(a) Show that In is dense in Kn.

(b)P Find one element of In.
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3.2 Volume and surface area

The volume of a convex body K ∈ Kn can be defined as the Lebesgue measure
λn(K) of K. However, the convexity of K implies that the volume also exists in an
elementary sense and, moreover, that also the surface area of K exists. Therefore,
we now introduce both notions in an elementary way, first for polytopes and then
for arbitrary convex bodies by approximation.

Since we will use a recursive definition on the dimension n, we first remark that
the support set K(u), u ∈ Sn−1, of a convex body K lies in a hyperplane parallel to
u⊥. Therefore, the orthogonal projection K(u)|u⊥ is a translate of K(u), and we can
consider K(u)|u⊥ as a convex body in Rn−1 (if we identify u⊥ with Rn−1). Assuming
that the volume is already defined in Rn−1, we then denote by V (n−1)(K(u)|u⊥) the
(n− 1)-dimensional volume of this projection. In principle, the identification of u⊥

with Rn−1 requires that we have given an orthonormal basis in u⊥. However, it will
be apparent that the quantities we define depend only on the Euclidean metric in
u⊥, hence they are independent of the choice of a basis.

Definition. Let P ∈ Pn be a polytope.
For n = 1, hence P = [a, b], we define V (1)(P ) := b− a and F (1)(P ) := 2.
For n ≥ 2, let

V (n)(P ) :=


1

n

∑
(∗)

hP (u)V (n−1)(P (u)|u⊥)

0
if

dim P ≥ n− 1 ,

dim P ≤ n− 2 ,

and

F (n)(P ) :=


∑
(∗)

V (n−1)(P (u)|u⊥)

0
if

dim P ≥ n− 1 ,

dim P ≤ n− 2 ,

where the summation (∗) is over all u ∈ Sn−1, for which P (u) is a facet of P . We
shortly write V (P ) for V (n)(P ) and call this the volume of P . Similarly, we write
F (P ) instead of F (n)(P ) and call this the surface area of P .

For dim P = n − 1, there are two support sets of P which are facets, namely
P = P (u0) and P = P (−u0), where u0 is a normal vector to P . Since then
V (n−1)(P (u0)|u⊥0 ) = V (n−1)(P (−u0)|u⊥0 ) and hP (u0) = −hP (−u0), we obtain
V (P ) = 0, in coincidence with the Lebesgue measure of P . Also, in this case,
F (P ) = 2V (n−1)(P (u0|u⊥0 )). For dim P ≤ n− 2, the polytope P does not have any
facets, hence V (P ) = 0 and F (P ) = 0.
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Proposition 3.2.1. The volume V and surface area F of polytopes P, Q have the
following properties:

(1) V (P ) = λn(P ),

(2) V and F are invariant with respect to rigid motions,

(3) V (αP ) = αnV (P ), F (αP ) = αn−1F (P ), for α ≥ 0,

(4) V (P ) = 0, if and only if dim P ≤ n− 1,

(5) if P ⊂ Q, then V (P ) ≤ V (Q) and F (P ) ≤ F (Q).

Proof. (1) We proceed by induction on n. The result is clear for n = 1. Let n ≥ 2.
As we have already mentioned, V (P ) = 0 = λn(P ) if dim P ≤ n−1. For dim P = n,
let P (u1), . . . , P (uk) be the facets of P . Then, we have

V (P ) =
1

n

k∑
i=1

hP (ui)V
(n−1)(P (ui)|u⊥i ),

where, by the inductive assumption, V (n−1)(P (ui|u⊥i ) equals the (n − 1)-
dimensional Lebesgue measure (in u⊥i ) of P (ui|u⊥i ). We assume w.l.o.g. that
hP (u1), . . . , hP (um) ≥ 0 and hP (um+1), . . . , hP (uk) < 0, and consider the pyramid-
shaped polytopes Pi := conv (P (ui) ∪ {0}), i = 1, . . . k. Then V (Pi) =
1
n
hP (ui)V

(n−1)(P (ui|u⊥i )), i = 1, . . . ,m, and V (Pi) = − 1
n
hP (ui)V

(n−1)(P (ui|u⊥i )),
i = m + 1, . . . , k. Hence,

V (P ) =
m∑

i=1

V (Pi)−
k∑

i=m+1

V (Pi)

=
m∑

i=1

λn(Pi)−
k∑

i=m+1

λn(Pi)

= λn(P ).

Here, we have used that the Lebesgue measure of the pyramid Pi is 1
n

times the
content of the base (here V (n−1)(P (ui|u⊥i ))) times the height (here hP (ui)). Moreover
the Lebesgue measure of the pyramid parts outside P cancel out, and the pyramid
parts inside P yield a dissection of P (into sets with disjoint interior).

(2), (3), (4) and the first part of (5) follow now directly from (1) (and the
corresponding properties of the Lebesgue measure). It remains to show F (P ) ≤
F (Q), for polytopes P ⊂ Q. Again, we denote the facets of P by P (u1), . . . , P (uk).
We make use of the following elementary inequality (a generalization of the triangle
inequality),

(∗) V (n−1)(P (ui)|u⊥i ) ≤
∑
j 6=i

V (n−1)(P (uj)|u⊥j ), i = 1, . . . , k.
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In order to motivate (∗), we project P (uj), j 6= i, orthogonally onto the hyperplane
u⊥i . The projections then cover P (ui)|u⊥i . Since the projection does not increase the
(n− 1)-dimensional Lebesgue measure, (∗) follows. (∗) implies that

F (Q ∩H) ≤ F (Q),

for any closed half-space H ⊂ Rn. Since P ⊂ Q is a finite intersection of half-spaces,
we obtain F (P ) ≤ F (Q) by successive truncation.

For a convex body K ∈ Kn, we define

V+(K) := inf
P⊃K

V (P ), V−(K) := sup
P⊂K

V (P ),

and
F+(K) := inf

P⊃K
F (P ), F−(K) := sup

P⊂K
F (P ),

(here P ∈ Pn).

Theorem 3.2.2 (and Definition). Let K ∈ Kn.

(a) We have
V+(K) = V−(K) =: V (K)

and
F+(K) = F−(K) =: F (K).

V (K) is called the volume and F (K) is called the surface area of K.

(b) Volume and surface area have the following properties:

(b1) V (K) = λn(K),

(b2) V and F are invariant with respect to rigid motions,

(b3) V (αK) = αnV (K), F (αK) = αn−1F (K), for α ≥ 0,

(b4) V (K) = 0, if and only if dim K ≤ n− 1,

(b5) if K ⊂ L, then V (K) ≤ V (L) and F (K) ≤ F (L),

(b6) K 7→ V (K) is continuous.

Proof. (a) We first remark, that for a polytope P the monotonicity of V and F
(which was proved in Proposition 3.2.1(5)) shows that V +(P ) = V (P ) = V −(P )
and F+(P ) = F (P ) = F−(P ). Hence, the new definition of V (P ) and F (P ) is
consistent with the old one.

For an arbitrary body K ∈ Kn, we get from Proposition 3.2.1(5)

V−(K) ≤ V+(K) and F−(K) ≤ F+(K),



3.2. VOLUME AND SURFACE AREA 71

and by Proposition 3.2.1(2), V−(K), V+(K), F−(K) and F+(K) are motion invariant.
After a suitable translation, we may therefore assume 0 ∈ rel int K. For ε > 0, we
then use Theorem 3.1.5(c) and find a polytope P with P ⊂ K ⊂ (1 + ε)P. From
Proposition 3.2.1(3), we get

V (P ) ≤ V−(K) ≤ V+(K) ≤ V ((1 + ε)P ) = (1 + ε)nV (P )

and
F (P ) ≤ F−(K) ≤ F+(K) ≤ F ((1 + ε)P ) = (1 + ε)n−1F (P ).

For ε → 0, this proves (a).
(b1) – (b5) follow now directly for bodies K ∈ Kn ((b1) by approximation

with polytopes; (b2) – (b5) partially by approximation or from the corresponding
properties of the Lebesgue measure).

It remains to prove (b6). Consider a converging sequence Ki → K, Ki, K ∈ Kn.
In view of (b2), we can assume 0 ∈ rel int K. Using again Theorem 3.1.5(c), we find
a polytope P with P ⊂ rel int K, K ⊂ rel int (1 + ε)P. If dim K = n, we can choose
a ball B(r), r > 0, with K + B(r) ⊂ (1 + ε)P (choose r = minu∈Sn−1(h(1+ε)P (u) −
hK(u)).) Then Ki ⊂ (1 + ε)P , for i ≥ i0. Analogously, we get P ⊂ Ki, for i ≥ i1.
For i ≥ max(i0, i1), we therefore obtain

|V (Ki)− V (K)| ≤ (1 + ε)nV (P )− V (P )

≤ [(1 + ε)n − 1]V (K) → 0,

as ε → 0. If dim K = j ≤ n− 1, hence V (K) = 0, we have

K ⊂ int ((1 + ε)P + εW ),

where W is a cube with edge length 1 and dimension n− j, lying in the orthogonal
space (aff K)⊥. As above, we obtain Ki ⊂ (1 + ε)P + εW , for i ≥ i0. Since

V ((1 + ε)P + εW ) ≤ εn−j(1 + ε)jC

(where we can choose the constant C to be the j-dimensional Lebesgue measure of
K), this gives us V (Ki) → 0 = V (K), as ε → 0.

Remarks. (1) We shall see in the next section that the surface area F is also
continuous.

(2) We can now simplify our formulas for the volume V (P ) and the surface area
F (P ) of a polytope P . First, since we have shown that our elementarily defined
volume equals the Lebesgue measure and is thus translation invariant, we do not need
the orthogonal projection of the facets anymore. Second, since V (n−1)(P (u)) = 0,
for dim P (u) ≤ n − 2, we can sum over all u ∈ Sn−1. If we write, in addition, v
instead of V (n−1), we obtain

V (P ) =
1

n

∑
u∈Sn−1

hP (u)v(P (u))
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and
F (P ) =

∑
u∈Sn−1

v(P (u)).

These are the formulas which we will use, in the following.

Exercises and problems

1. A convex body K ∈ K2 is called universal cover, if for each L ∈ K2 with diameter
≤ 1 there is a rigid motion gL with L ⊂ gLK.

(a) Show that there is a universal cover K0 with minimal area.

P (b) Find the shape and the area of K0.
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3.3 Mixed volumes

There is another, commonly used definition of the surface area of a set K ⊂ Rn,
namely as the derivative of the volume functional of the outer parallel sets of K, i.e.

F (K) = lim
ε↘0

1

ε
(V (K + B(ε))− V (K)).

We will see now, that our notion of surface area of a convex body K fulfills also
this limit relation. In fact, we will show that V (K + B(ε)) is a polynomial in ε
(this is the famous Steiner formula) and thereby get a whole family of geometric
functionals. We start with an even more general problem and investigate how the
volume

V (α1K1 + · · ·+ αmKm),

for Ki ∈ Kn, αi > 0, depends on the variables α1, . . . , αm. This will lead us to a
family of mixed functionals of convex bodies, the mixed volumes.

Again, we first consider the case of polytopes. Since the recursive representation
of the volume of a polytope P was based on the support sets (facets) of P , we discuss
how support sets behave under linear combinations.

Proposition 3.3.1. Let m ∈ N, α1, . . . , αm > 0, P1, . . . , Pm ∈ Pn be polytopes, and
u, v ∈ Sn−1. Then,

(a) (α1P1 + · · ·+ αmPm)(u) = α1P1(u) + · · ·+ αmPm(u),

(b) dim (α1P1 + · · ·+ αmPm)(u) = dim (P1 + · · ·+ Pm)(u),

(c) if (P1 + · · ·+ Pm)(u) ∩ (P1 + · · ·+ Pm)(v) 6= ∅, then

(P1 + · · ·+ Pm)(u) ∩ (P1 + · · ·+ Pm)(v) = (P1(u) ∩ P1(v)) + · · ·+ (Pm(u) ∩ Pm(v)).

Proof. (a) By Theorem 2.3.3, we have

h(α1P1+···+αmPm)(u)(x) = h′α1P1+···+αmPm
(u; x)

= α1h
′
P1

(u; x) + · · ·+ αmh′Pm
(u; x)

= α1hP1(u)(x) + · · ·+ αmhPm(u)(x)

= hα1P1(u)+···+αmPm(u)(x).

Theorem 2.3.1 now yields the assertion.
(b) Let P := P1 + · · · + Pm and P̃ := α1P1 + · · · + αmPm. W.l.o.g. we may

assume 0 ∈ rel int Pi(u), i = 1, . . . ,m. Then, 0 ∈ rel int P (u). We put

α := min
i=1,...,m

αi, β := max
i=1,...,m

αi.

Then, 0 < α < β and (in view of (a))

αP (u) ⊂ P̃ (u) ⊂ βP (u),
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that is, dim P (u) = dim P̃ (u).
(c) Using the notation introduced above, we assume P (u)∩P (v) 6= ∅. From (a),

we then have

P (u) ∩ P (v) = (P1(u) + · · ·+ Pm(u)) ∩ (P1(v) + · · ·+ Pm(v))

= (P1(u) ∩ P1(v)) + · · ·+ (Pm(u) ∩ Pm(v)).

In order to justify the second equality, consider x ∈ P (u) ∩ P (v). Since x ∈ P ,
it has a representation x = x1 + · · ·+ xm, with xi ∈ Pi. Because of

hP (u) = 〈x, u〉 =
m∑

i=1

〈xi, u〉 ≤
m∑

i=1

hPi
(u) = hP (u),

we get that 〈xi, u〉 = hPi
(u) and thus xi ∈ Pi(u), for i = 1, ...,m. In the same way,

we obtain xi ∈ Pi(v), i = 1, ...,m.
Conversely, it is clear that any x ∈ (P1(u)∩P1(v))+ · · ·+(Pm(u)∩Pm(v)) fulfills

x ∈ P1(u) + · · ·+ Pm(u) and x ∈ P1(v) + · · ·+ Pm(v).

In analogy to the recursive definition of the volume of a polytope, we now define the
mixed volume of polytopes. Again, we use projections of the support sets (faces) in
order to make the definition rigorous. After we have shown translation invariance
of the functionals, the corresponding formulas will become simpler.

For polytopes P1, ..., Pk ∈ Pn, let N(P1, ..., Pk) denote the set of all facet normals
of P1 + · · ·+ Pk.

Definition. For polytopes P1, ..., Pn ∈ Pn, we define the mixed volume
V (n)(P1, ..., Pn) of P1, ..., Pn recursively:

V (1)(P1) := V (P1) = hP1(1) + hP1(−1) (= b− a, if P1 = [a, b]), for n = 1,

V (n)(P1, ..., Pn)

:=
1

n

∑
u∈N(P1,...,Pn−1)

hPn(u)V (n−1)(P1(u)|u⊥, ..., Pn−1(u)|u⊥), for n ≥ 2.

Theorem 3.3.2. The mixed volume V (n)(P1, ..., Pn) of polytopes P1, ..., Pn ∈ Pn

is symmetric in the indices 1, ..., n, independent of individual translations of the
polytopes P1, ..., Pn, and for dim(P1 + · · ·+Pn) ≤ n−1, we have V (n)(P1, ..., Pn) = 0.

Furthermore, for m ∈ N, P1, ..., Pm ∈ Pn, and α1, ..., αm ≥ 0, we have

(∗) V (α1P1 + · · ·+ αmPm) =
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αinV (n)(Pi1 , ..., Pin) .
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For the proof, it is convenient to extend the k-dimensional mixed volume
V (k)(Q1, ..., Qk) (which is defined for polytopes Q1, ..., Qk in a k-dimensional linear
subspace E ⊂ Rd) to polytopes Q1, ..., Qk ∈ Pn, which fulfill dim(Q1+· · ·+Qk) ≤ k,
namely by

V (k)(Q1, ..., Qk) := V (k)(Q1|E, ..., Qk|E),

where E is a k-dimensional subspace parallel to Q1 + · · ·+ Qk, 1 ≤ k ≤ n− 1. The
translation invariance and the dimensional condition, which we will prove, show that
this extension is consistent (and independent of E in case dim(Q1 + · · ·+ Qk) < k).
In the following inductive proof, we already make use of this extension in order to
simplify the presentation. In particular, in the induction step, we use the mixed
volume V (n−1)(P1(u), ..., Pn−1(u)).

In addition, we extend the mixed volume to the empty set, namely as
V (n)(P1, ..., Pn) := 0, if one of the sets Pi is empty.

Proof. We use induction on the dimension n.

For n = 1, the polytopes Pi are intervals and the mixed volume equals the
(one-dimensional) volume V (1) (the length of the intervals), which is linear

V (1)(α1P1 + · · ·+ αmPm) =
m∑

i=1

αiV
(1)(Pi).

Hence, (∗) holds as well as the remaining assertions.

Now we assume that the assertions of the theorem are true for all dimensions
≤ n − 1, and we consider dimension n ≥ 2. We first discuss the dimensional
statement. If dim (P1 + · · · + Pn) ≤ n − 1, then either N(P1, . . . , Pn−1) = ∅ or
N(P1, . . . , Pn−1) = {−u, u}, where u is the normal on aff (P1 + · · ·+Pn). In the first
case, we have V (n)(P1, . . . , Pn) = 0, by definition; in the second case, we have

V (n)(P1, . . . , Pn)

=
1

n
(hPn(u)V (n−1)(P1(u), . . . , Pn−1(u)) + hPn(−u)V (n−1)(P1(−u), . . . , Pn−1(−u))

=
1

n
(hPn(u)V (n−1)(P1(u), . . . , Pn−1(u))− hPn(u)V (n−1)(P1(u), . . . , Pn−1(u))

= 0.

Next, we show (∗). If αi = 0, for a certain index i, the correspondent summand
αiPi in the left-hand sum can be deleted, as well as all summands in the right-
hand sum which contain the index i. Therefore, it is sufficient to consider the case
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α1 > 0, ..., αm > 0. By the definition of volume and Proposition 3.3.1,

V (α1P1 + · · ·+ αmPm) =
1

n

∑
u∈N(P1,...,Pm)

h∑m
i=1 αiPi

(u) v

(
(

m∑
i=1

αiPi)(u)

)

=
m∑

in=1

αin

1

n

∑
u∈N(P1,...,Pm)

hPin
(u) v

(
m∑

i=1

αi(Pi(u)|u⊥)

)
.

The inductive assumption implies

v

(
m∑

i=1

αi(Pi(u)|u⊥)

)
=

m∑
i1=1

· · ·
m∑

in−1=1

αi1 · · ·αin−1 V (n−1)(Pi1(u), ..., Pin−1(u)).

Hence, we obtain

V (α1P1 + · · ·+ αmPm)

=
m∑

i1=1

· · ·
m∑

in−1=1

m∑
in=1

αi1 · · ·αin−1αin

1

n

∑
u∈N(P1,...,Pm)

hPin
(u) V (n−1)(Pi1(u), ..., Pin−1(u))

=
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αin V (n)(Pi1 , ..., Pin).

Here, we have used that, for a given set of indices {i1, ..., in}, the summation over
N(P1, ..., Pm) can be replaced by the summation over N(Pi1 , ..., Pin−1). Namely, for
u /∈ N(Pi1 , ..., Pin−1) the support set Pi1(u) + · · ·+ Pin−1(u) = (Pi1 + · · ·+ Pin−1)(u)
has dimension ≤ n − 2 and hence V (n−1)(Pi1(u), ..., Pin−1(u)) = 0. We will use this
fact also in the following parts of the proof.

We next show the symmetry. Since V (n−1)(P1(u), ..., Pn−1(u)) is symmetric (in
the indices) by the inductive assumption, it suffices to show

V (n)(P1, ..., Pn−2, Pn−1, Pn) = V (n)(P1, ..., Pn−2, Pn, Pn−1).

Moreover, we may assume that P := P1 + · · · + Pn fulfills dim P = n. We first
assume n ≥ 3. By definition,

V (n−1)(P1(u), ..., Pn−1(u))

=
1

n− 1

∑
ṽ∈Ñ

hPn−1(u)(ṽ)V (n−2)((P1(u))(ṽ), ..., (Pn−2(u))(ṽ)) ,

where we have to sum over the set Ñ of facet normals of P (u). Formally, we would
have to work with the projections (the shifted support sets) P1(u)|u⊥, ..., Pn−1(u)|u⊥,
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but here we make use of our extended definition of the (n − 2)-dimensional mixed
volume and of the fact that

hPn−1(u)|u⊥(ṽ) = hPn−1(u)(ṽ),

for all ṽ⊥u. The facets of P (u) are (n − 2)-dimensional faces of P , thus they arise
(because of dim P = n) as intersections P (u) ∩ P (v) of P (u) with another facet
P (v) of P . Since dim P = n, the case v = −u cannot occur. If P (u) ∩ P (v) is a
(n− 2)-face of P , hence a facet of P (u), the corresponding normal (in u⊥) is given

by ṽ = v|u⊥
‖v|u⊥‖ .

Now we have

P (u) ∩ P (v) = (P1(u) + · · ·+ Pn(u)) ∩ (P1(v) + · · ·+ Pn(v))

= (P1(u) ∩ P1(v)) + · · ·+ (Pn(u) ∩ Pn(v)),

from Proposition 3.3.1(c). For a (n− 2)-face P (u) ∩ P (v) of P , we therefore obtain

(Pi(u))(ṽ) = Pi(u) ∩ Pi(v), i = 1, ..., n− 2,

which implies

V (n−1)(P1(u), ..., Pn−1(u))

=
1

n− 1

∑
v∈N(P1,...,Pn),v 6=±u

hPn−1(u)(
v|u⊥

‖v|u⊥‖
)V (n−2)(P1(u) ∩ P1(v), ..., Pn−2(u) ∩ Pn−2(v)).

Here, we may sum again over all v ∈ N(P1, ..., Pn), v 6= ±u, since for those v, for
which P (u) ∩ P (v) is not a (n − 2)-face of P , the mixed volume V (n−2)(P1(u) ∩
P1(v), ..., Pn−2(u) ∩ Pn−2(v)) vanishes by the inductive hypothesis (resp. by defini-
tion, if the intersection is empty).

Let γ(u, v) denote the (outer) angle between u and v, then

‖v|u⊥‖ = sin γ(u, v), 〈u, v〉 = cos γ(u, v),

and hence
v|u⊥

‖v|u⊥‖
=

1

sin γ(u, v)
v − 1

tan γ(u, v)
u.

For x ∈ Pn−1(u) ∩ Pn−1(v), we have

hPn−1(u)(ṽ) = 〈x, ṽ〉

=
1

sin γ(u, v)
〈x, v〉 − 1

tan γ(u, v)
〈x, u〉

=
1

sin γ(u, v)
hPn−1(v)− 1

tan γ(u, v)
hPn−1(u).
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Hence, altogether we obtain

V (n)(P1, ..., Pn−2, Pn−1, Pn)

=
1

n

∑
u∈N(P1,...,Pn)

hPn(u) V (n−1)(P1(u), ..., Pn−1(u))

=
1

n(n− 1)

∑
u,v∈N(P1,...,Pn),v 6=±u

[ 1

sin γ(u, v)
hPn(u)hPn−1(v)

− 1

tan γ(u, v)
hPn(u)hPn−1(u)

]
V (n−2)(P1(u) ∩ P1(v), ..., Pn−2(u) ∩ Pn−2(v))

= V (n)(P1, ..., Pn−2, Pn, Pn−1),

and the symmetry is proved.

The case n = 2 is similar, but since here the (n− 2)-dimensional mixed volume
in the above consideration disappears, one has to replace the summation over all
u, v ∈ N(P1, P2) by the one over all pairs (u, v) of normals of adjacent edges of
P1 + P2.

For the remaining assertion, we put m = n in (∗). Since the left-hand side of
(∗) is invariant with respect to individual translations of the polytopes Pi, the same
holds true for the coefficients of the polynomial on the right-hand side, in particular
for the coefficient V (n)(P1, ..., Pn). Here we need the symmetry of the coefficients
and we make use of the fact that the coefficients of a polynomial in several variables
are uniquely determined, if they are chosen to be symmetric.

Remark. In the following, we use similar abbreviations as in the case of volume,

V (P1, ..., Pn) := V (n)(P1, ..., Pn)

and

v(P1(u), ..., Pn−1(u)) := V (n−1)(P1(u), ..., Pn−1(u)).

Corollary 3.3.3. For P1, ..., Pn ∈ Pn, we have

V (P1, ..., Pn) =
1

n!

n∑
k=1

(−1)n+k
∑

1≤r1<···<rk≤n

V (Pr1 + · · ·+ Prk
).

Proof. We denote the right-hand side by f(P1, ..., Pn), then formula (∗) in Theorem
3.3.2 implies that f(α1P1, ..., αnPn) is a homogeneous polynomial of degree n in the
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variables α1 ≥ 0, ..., αn ≥ 0. For P1 = {0}, we have

(−1)n+1n!f({0}, P2, ..., Pn)

=
∑

2≤r≤n

V (Pr)−

[ ∑
2≤r≤n

V ({0}+ Pr) +
∑

2≤r<s≤n

V (Pr + Ps)

]

+

[ ∑
2≤r<s≤n

V ({0}+ Pr + Ps) +
∑

2≤r<s<t≤n

V (Pr + Ps + Pt)

]
− · · ·
= 0,

which means that f({0}, α2P2, ..., αnPn) is the zero polynomial. Consequently, in
the polynomial f(α1P1, ..., αnPn), only those coefficients can be non-vanishing which
contain the index 1. Replacing 1 subsequently by 2, ..., n, we obtain that only the
coefficient of α1 · · ·αn can be non-zero. This coefficient occurs only once in the
representation of f , namely for k = n with (r1, ..., rn) = (1, ..., n). Therefore, by
Theorem 3.3.2, this coefficient must coincide with V (P1, ..., Pn).

Theorem 3.3.4 (and definition). For K1, ..., Kn ∈ Kn and arbitrary sequences

(P
(j)
1 )j∈N, ..., (P

(j)
n )j∈N of polytopes, such that P

(j)
i → Ki, i = 1, ..., n, as j →∞, the

limit

V (K1, ..., Kn) = lim
j→∞

V (P
(j)
1 , ..., P (j)

n )

exists and is independent of the choice of the approximating sequences (P
(j)
i )j∈N.

V (K1, ..., Kn) is called the mixed volume of K1, ..., Kn. The mapping V : (Kn)n → R
defined by

(K1, ..., Kn) 7→ V (K1, ..., Kn)

is also called the mixed volume. We have

(∗1) V (K1, ..., Kn) =
1

n!

n∑
k=1

(−1)n+k
∑

1≤r1<···<rk≤n

V (Kr1 + · · ·+ Krk
).

For m ∈ N, K1, ..., Km ∈ Kn und α1, ..., αm ≥ 0 we obtain

(∗2) V (α1K1 + · · ·+ αmKm) =
m∑

i1=1

· · ·
m∑

in=1

αi1 · · ·αinV (Ki1 , ..., Kin) .

Furthermore:
(a) V (K, ..., K) = V (K) and nV (K, ..., K, B(1)) = F (K), for all K ∈ Kn.
(b) V is symmetric.
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(c) V is multilinear, i.e.

V (αK + βL, K2, ..., Kn) = αV (K, K2, ..., Kn) + βV (L, K2, ..., Kn),

for all α, β ≥ 0, K, L, K2, ..., Kn ∈ Kn.
(d) We have V (K1 + x1, ..., Kn + xn) = V (K1, ..., Kn), for all Ki ∈ Kn and all
xi ∈ Rn.
(e) We have V (gK1, ..., gKn) = V (K1, ..., Kn), for all Ki ∈ Kn and all rigid motions
g.
(f) V is continuous, i.e.

V (K
(j)
1 , ..., K(j)

n ) → V (K1, ..., Kn),

provided K
(j)
i → Ki, i = 1, ..., n.

(g) V ≥ 0 and V is monotone in each argument.

Proof. The existence of the limit

V (K1, ..., Kn) = lim
j→∞

V (P
(j)
1 , ..., P (j)

n )

(including the independence from the approximating sequences) and formula (∗1)
follow from Corollary 3.3.3 and the continuity of the addition of convex bodies and
of the volume functional. (∗2) is a consequence of (∗).

(d), (e) and (f) follow now directly from (∗1).
(a) The relation V (K, ..., K) = V (K) follows for polytopes by induction and for

general bodies K by approximation with polytopes; alternatively, one can obtain it
from Corollary 3.3.3 and (∗1). Concerning the relation nV (K, ..., K, B(1)) = F (K),
we also first discuss the case K ∈ Pn. Let (Qj)j∈N be a sequence of polytopes with
Qj → B(1). Then,

nV (K, ..., K, Qj) → nV (K, ..., K, B(1))

and also
nV (K, ..., K, Qj) =

∑
u∈N(K)

hQj
(u)v(K(u))

→
∑

u∈N(K)

hB(1)(u)v(K(u)) =
∑

u∈N(K)

v(K(u)) = F (K).

For the generalization to arbitrary bodies K, we approximate K from inside and
outside by polytopes and use (f); here only the monotonicity of the surface area is
needed, not the continuity (which we have not proved yet).

(b) follows from the corresponding property for polytopes.
(c) is a consequence of (∗2), if we apply it to the linear combination

α1(αK + βL) + α2K2 + · · ·αmKm = α1αK + α1βL + α2K2 + · · ·αmKm
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twice (once as a combination of m bodies and once as a combination of m+1 bodies),
and then compare the coefficients.

(g) Again it is sufficient to prove this for polytopes. Then V ≥ 0 follows by
induction and the formula

V (P1, ..., Pn) =
1

n

∑
u∈N(P1,...,Pn−1)

hPn(u)v(P1(u), ..., Pn−1(u)),

where we may assume, in view of (d), that 0 ∈ rel int Pn, hence hPn ≥ 0. If Pn ⊂ Qn,
then hPn ≤ hQn , hence

V (P1, ..., Pn) ≤ V (P1, ..., Pn−1, Qn),

by the same formula (and V ≥ 0).

Remarks. (1) In addition to V ≥ 0, one can show that V (K1, . . . , Kn) > 0, if
and only if there exist segments s1 ⊂ K1, . . . , sn ⊂ Kn with linearly independent
directions (see the exercises below).

(2) Theorem 3.3.4 (a) and (f) now imply the continuity of the surface area F .

Now we consider the parallel body K + B(α)), α ≥ 0, of a body K ∈ Kn. Theorem
3.3.4 implies

V (K + B(α)) = V (K + αB(1)) = V (α1K1 + α2K2)

(SF ) =
2∑

i1=1

· · ·
2∑

in=1

αi1 · · ·αinV (Ki1 , ..., Kin)

=
n∑

i=0

αi

(
n

i

)
V (K, . . . , K︸ ︷︷ ︸

n−i

, B(1), . . . , B(1)︸ ︷︷ ︸
i

).

Definition. For K ∈ Kn,

Wi(K) := V (K, . . . , K︸ ︷︷ ︸
n−i

, B(1), . . . , B(1)︸ ︷︷ ︸
i

)

is called the i-th quermassintegral of K, i = 0, . . . , n, and

Vj(K) = V
(n)
j (K) :=

(
n
j

)
κn−j

Wn−j(K) =

(
n
j

)
κn−j

V (K, . . . , K︸ ︷︷ ︸
j

, B(1), . . . , B(1)︸ ︷︷ ︸
n−j

)

is called the j-th intrinsic volume of K, j = 0, . . . , n. Here, κk is the volume of the
k-dimensional unit ball. Since we have extended the mixed volume to the empty
set, we also define

Wi(∅) := Vj(∅) := 0, i, j = 0, . . . , n.

Formula (SF) directly implies the following result.
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Theorem 3.3.5 (Steiner formula). For K ∈ Kn and α ≥ 0, we have

V (K + B(α)) =
n∑

i=0

αi

(
n

i

)
Wi(K),

respectively

V (K + B(α)) =
n∑

j=0

αn−jκn−jVj(K).

Remarks. (1) We get in particular

F (K) = nW1(K) = lim
α↘0

1

α
(V (K + B(α))− V (K)),

hence the surface area is the ”derivative” of the volume functional.

(2) As a generalization of the Steiner formula (SF), one can show

Vk(K + B(α)) =
k∑

j=0

αk−j

(
n− j

n− k

)
κn−j

κn−k

Vj(K),

for k = 0, . . . , n− 1 (see the exercises).

The quermassintegrals are the classical notation used in most of the older books.
The name quermassintegral will become clear in chapter 4 where we discuss some
projection formulas. The intrinsic volumes follow the more modern terminology.
Their advantages are that the index j of Vj corresponds to the degree of homogeneity,

Vj(αK) = αjVj(K), K ∈ Kn, α ≥ 0,

and that they are independent of the surrounding dimension, i.e. for a body K ∈ Kn

with dim K = k < n, we have

V
(n)
j (K) = V

(k)
j (K), j = 0, . . . , k.

The intrinsic volumes are important geometric functionals of a convex body.
First, by definition,

Vn(K) = V (K, . . . , K) = V (K)

is the volume of K. Then,

2Vn−1(K) = nV (K, . . . , K, B(1)) = F (K)

is the surface area of K (such that, for a body K of dimension n − 1, Vn−1(K) is
the (n − 1)-dimensional content of K). At the other end, V1(K) is proportional to
the mean width of K. Namely,

κn−1

n
V1(K) = V (K, B(1), . . . , B(1)).
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Approximating the unit ball by polytopes, one can show that

V (K, B(1), . . . , B(1)) =
1

n

∫
Sn−1

hK(u)du,

where the integration is with respect to the spherical Lebesgue measure. A rigorous
proof of this fact will be given in Section 3.5. Since bK(u) := hK(u) + hK(−u) gives
the width of K in direction u (the distance between the two parallel supporting
hyperplanes), we obtain

1

n

∫
Sn−1

hK(u)du =
1]

2n

∫
Sn−1

bK(u)du

=
κn

2
B(K),

where

B(K) :=
1

nκn

∫
Sn−1

bK(u)du

denotes the mean width. Hence

V1(K) =
nκn

2κn−1

B(K).

Finally,

V0(K) =
1

κn

Wn(K) =

{
1

0
if

K 6= ∅ ,

K = ∅ .

is the Euler-Poincaré characteristic of K. It plays an important role in integral
geometry (see Chapter 4). The other intrinsic volumes Vj(K), 1 < j < n − 1, have
interpretations as integrals of curvature functions, if the boundary of K is smooth,
e.g. Vn−2(K) is proportional to the integral mean curvature of K.

Remark. From Theorem 3.3.4 we obtain the following additional properties of the
intrinsic volumes Vj:

• K 7→ Vj(K) is continuous,

• Vj is motion invariant,

• Vj ≥ 0 and V is monotone.

Later, in Section 4.3, we shall discuss a further property of Vj, namely the additivity.
The intrinsic volume Vj is additive in the sense that

Vj(K ∪M) + Vj(K ∩M) = Vj(K) + Vj(M),

for all K, M ∈ Kn such that K ∪M ∈ Kn.
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Exercises and problems

1. (a) Let s1, . . . , sn ∈ Kn be segments of the form si = [0, xi], xi ∈ Rn. Show that

n! V (s1, . . . , sn) = |det(x1, . . . , xn)|.

(b) For K1, . . . ,Kn ∈ Kn, show that V (K1, . . . ,Kn) > 0 if and only if there exist
segments si ⊂ Ki, i = 1, . . . , n, with linearly independent directions.

2. (a) For K, M ∈ K2 show the inequality

V (K, M) ≤ 1
8

F (K) F (M).

Hint: Use Exercise 7 in Section 3.1.

(b)∗ Show that equality holds in the above inequality, if and only if K, M are
orthogonal segments (or if one of the bodies is a point).

3. (a)∗ For K ∈ K2 show the inequality

V (K,−K) ≤
√

3
18

F 2(K).

(b)P Show that equality holds in the above inequality, if and only if K is an equi-
lateral triangle (or a point).

4. For K, K ′ ∈ Kn, show that∫
{x : K∩(K′+x) 6=∅}

dx =
n∑

j=0

(
n

j

)
V (K, . . . ,K︸ ︷︷ ︸

n−j

,−K ′, . . . ,−K ′︸ ︷︷ ︸
j

).

5. For K ∈ Kn, show that the intrinsic volume Vj(K) = V
(n)
j (K) is independent of the

dimension n, i.e. if dim K = k < n, then

V
(k)
j (K) = V

(n)
j (K), for 0 ≤ j ≤ k.

6. Suppose K ∈ Kn and L is a q-dimensional linear subspace of Rn, q ∈ {0, . . . , n− 1}.
Let BL denote the unit ball in L.

Show that:

(a) V (K + αBL) =
q∑

j=0

αq−jκq−j

∫
L⊥

Vj(K ∩ (L + x)) dλn−q(x), for all α ≥ 0.

(b) The (n− q)-dimensional volume of the projection K |L⊥ fulfills

Vn−q(K|L⊥) =

(
n
q

)
κq

V (K, . . . ,K︸ ︷︷ ︸
n−q

, BL, . . . , BL︸ ︷︷ ︸
q

).
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Hint for (a): Use Fubini’s theorem in Rn = L×L⊥ for the left-hand side and apply
Exercise 5.

7. For a convex body K ∈ Kn and α ≥ 0, prove the following Steiner formula for the
intrinsic volumes:

Vk(K + B(α)) =
k∑

j=0

αk−j

(
n− j

n− k

)
κn−j

κn−k
Vj(K) (0 ≤ k ≤ n− 1).

8.P Prove the following Theorem of Hadwiger:

Let f : Kn → R be additive, motion invariant and continuous (resp. monotone).
Then, there are constants βj ∈ R (resp. βj ≥ 0), such that

f =
n∑

j=0

βjVj .



86 CHAPTER 3. CONVEX BODIES

3.4 The Brunn-Minkowski Theorem

The Brunn-Minkowski Theorem was one of the first results on convex bodies
(proved around 1890). It says that, for convex bodies K, L ∈ Kn, the function

t 7→ n
√

V (tK + (1− t)L), t ∈ [0, 1],

is concave. As consequences we will get inequalities for mixed volumes, in particular
the celebrated isoperimetric inequality.

We first need an auxiliary result.

Lemma 3.4.1. For α ∈ (0, 1) and r, s, t > 0, we have

α

r
+

1− α

s
)[αrt + (1− α)st]

1
t ≥ 1

with equality, if and only if r = s.

Proof. The function x 7→ ln x is strictly concave, therefore we have

ln{(α
r

+
1− α

s
)[αrt + (1− α)st]

1
t }

=
1

t
ln(αrt + (1− α)st) + ln(

α

r
+

1− α

s
)

≥ 1

t
(α ln rt + (1− α) ln st) + α ln

1

r
+ (1− α) ln

1

s
= 0

with equality if and only if r = s (the use of the logarithm is possible since α
r

+
1−α

s
)[αrt + (1 − α)st]

1
t > 0). The strict monotonicity of the logarithm now proves

the result.

Theorem 3.4.2 (Brunn-Minkowski). For convex bodies K, L ∈ Kn and α ∈
(0, 1), we have

n
√

V (αK + (1− α)L) ≥ α n
√

V (K) + (1− α) n
√

V (L)

with equality, if and only if K and L lie in parallel hyperplanes or K and L are
homothetic.

Remark. K and L are homothetic, if and only if K = αL + x or L = αK + x,
for some x ∈ Rn, α ≥ 0. This includes the case of points, i.e. K and L are always
homothetic, if one of them is a point.
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Proof. We distinguish four cases.
Case 1: K and L lie in parallel hyperplanes. Then V (K) = V (L) = 0 and

V (αK + (1− α)L) = 0.
Case 2: We have dim K ≤ n− 1 and dim L ≤ n− 1, but K and L do not lie in

parallel hyperplanes, i.e. dim(K + L) = n. Then dim(αK + (1 − α)L) = n, for all
α ∈ (0, 1), hence

n
√

V (αK + (1− α)L) > 0 = α n
√

V (K) + (1− α) n
√

V (L),

for all α ∈ (0, 1).
Case 3: We have dim K ≤ n−1 and dim L = n (or vice versa). Then, for x ∈ K,

we obtain
αx + (1− α)L ⊂ αK + (1− α)L

and thus

(1− α)nV (L) = V (αx + (1− α)L) ≤ V (αK + (1− α)L)

with equality, if and only if K = {x}.
Case 4: We have dim K = dim L = n. We may assume V (K) = V (L) = 1.

Namely, for general K, L, we put

K :=
1

n
√

V (K)
K, L :=

1
n
√

V (L)
L

and

α :=
α n
√

V (K)

α n
√

V (K) + (1− α) n
√

V (L)
.

Then
n

√
V (αK + (1− α)L) ≥ 1

implies the Brunn-Minkowski inequality, which we have to prove. Moreover, K
and L are homothetic, if and only if K and L are homothetic.

Thus, we assume V (K) = V (L) = 1 and we have to show that

V (αK + (1− α)L) ≥ 1

with equality if and only if K, L are homothetic. Because the volume is translation
invariant, we can make the additional assumption that K and L have their center of
gravity at 0 (the center of gravity of an n-dimensional convex body M is the point
c ∈ Rn fulfilling

〈c, u〉 =
1

V (M)

∫
M

〈x, u〉dx,

for all u ∈ Sn−1). The equality case then reduces to the claim that K = L.
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We now proceed by induction on n. For n = 1 the above inequality follows
from the linearity of the 1-dimensional volume and we even have equality which
corresponds to the fact that in R1 any two convex bodies (compact intervals) are
homothetic. Now assume n ≥ 2 and the assertion is true in dimension n − 1. We
choose a unit vector u ∈ Sn−1 and denote by

Eη := {〈·, u〉 = η}, η ∈ R,

the hyperplane in direction u with (signed) distance η from the origin. For 0 ≤ τ ≤ 1,
we define β(τ) as the (unique) value for which the hyperplane Eβ(τ) intersects K
and fulfills the condition

V (K ∩ {〈·, u〉 ≤ β(τ)}) = τ.

Thus, β is a function on [0, 1] with β(1) = hK(u), β(0) = −hK(−u) and Eβ(1)

and Eβ(0) are the supporting hyperplanes to K in direction u, resp. −u. Since
τ 7→ β(τ) is strictly increasing and does not have jumps, β is continuous. It is even
differentiable on (0, 1). Namely, the function

ξ 7→ f(ξ) :=

∫ ξ

β(0)

v(K ∩ Eη)dη

is differentiable with f ′(η) = v(K ∩ Eη). Since, by Fubini’s theorem (or the Cav-
alieri principle),

τ =

∫ β(τ)

β(0)

v(K ∩ Eη)dη,

we have f(β(τ)) = τ , hence β is the inverse function to f . Consequently, β is
differentiable and

β′(τ) =
1

f ′(β(τ))
=

1

v(K ∩ Eβ(τ))
, 0 < τ < 1.

Analogously, we get for the body L a function γ on [0, 1] with

τ =

∫ γ(τ)

γ(0)

v(L ∩ Eη)dη

and

γ′(τ) =
1

v(L ∩ Eγ(τ))
, 0 < τ < 1.

Because of

α(K ∩ Eβ(τ)) + (1− α)(L ∩ Eγ(τ)) ⊂ (αK + (1− α)L) ∩ Eαβ(τ)+(1−α)γ(τ),
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for α, τ ∈ [0, 1], we obtain from the inductive assumption

V (αK + (1− α)L)

=

∫ ∞

−∞
v((αK + (1− α)L) ∩ Eη)dη

=

∫ 1

0

v((αK + (1− α)L) ∩ Eαβ(τ)+(1−α)γ(τ))(αβ′(τ) + (1− α)γ′(τ))dτ

≥
∫ 1

0

v
(
α(K ∩ Eβ(τ)) + (1− α)(L ∩ Eγ(τ))

)( α

v(K ∩ Eβ(τ))
+

1− α

v(L ∩ Eγ(τ))

)
dτ

≥
∫ 1

0

[
α n−1

√
v(K ∩ Eβ(τ)) + (1− α) n−1

√
v(L ∩ Eγ(τ))

]n−1

×
(

α

v(K ∩ Eβ(τ))
+

1− α

v(L ∩ Eγ(τ))

)
dτ.

Choosing r := v(K ∩Eβ(τ)), s := v(L ∩Eγ(τ)) and t := 1
n−1

, we obtain from Lemma
3.4.1 that the integrand is ≥ 1, which yields the required inequality.

Now assume
V (αK + (1− α)L) = 1.

Then we must have equality in our last estimation, which implies that the integrand
equals 1, for all τ . Again by Lemma 3.4.1, this yields that

v(K ∩ Eβ(τ)) = v(L ∩ Eγ(τ)), for all τ ∈ [0, 1].

Therefore β′ = γ′, hence the function β − γ is a constant. Because the center of
gravity of K is at the origin, we obtain

0 =

∫
K

〈x, u〉dx

=

∫ β(1)

β(0)

ηv(K ∩ Eη)dη

=

∫ 1

0

β(τ)dτ

and, in an analogous way,

0 =

∫ 1

0

γ(τ)dτ.

Consequently, ∫ 1

0

(β(τ)− γ(τ))dτ = 0

and therefore β = γ. In particular, we obtain

hK(u) = β(1) = γ(1) = hL(u).
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Since u was arbitrary, V (αK + (1− α)L) = 1 implies hK = hL, and hence K = L.
Conversely, it is clear that K = L implies V (αK + (1− α)L) = 1.

Remark. Theorem 3.4.2 implies that the function

f(t) := n
√

V (tK + (1− t)L)

is concave on [0, 1]. Namely, let x, y, α ∈ [0, 1], then

f(αx + (1− α)y) = n
√

V ([αx + (1− α)y]K + [1− αx− (1− α)y]L)

= n
√

V (α[xK + (1− x)L] + (1− α)[yK + (1− y)L])

≥ α n
√

V (xK + (1− x)L) + (1− α) n
√

V (yK + (1− y)L)

= αf(x) + (1− α)f(y).

As a consequence of Theorem 3.4.2, we obtain an inequality for mixed volumes which
was first proved by Minkowski.

Theorem 3.4.3. For K, L ∈ Kn, we have

V (K, . . . , K, L)n ≥ V (K)n−1V (L)

with equality, if and only if dim K ≤ n − 2 or K and L lie in parallel hyperplanes
or K and L are homothetic.

Proof. For dim K ≤ n − 1, the inequality holds since the right-hand side is zero.
Moreover, we then have equality, if and only if either dim K ≤ n− 2 or K and L lie
in parallel hyperplanes (compare Exercise 3.3.1). Hence, we now assume dim K = n.

By Theorem 3.4.2, the function

f(t) := n
√

V (tK + (1− t)L)− t n
√

V (K)− (1− t) n
√

V (L), t ∈ [0, 1],

is concave, ≥ 0 and fulfills f(0) = f(1) = 0. Moreover, f ≡ 0, if and only if K and
L are homothetic. Theorem 3.3.4 yields

V (tK + (1− t)L) =
n∑

j=0

(
n

j

)
tj(1− t)n−jV (K, . . . , K︸ ︷︷ ︸

j

, L, . . . , L︸ ︷︷ ︸
n−j

).

Since V (K) > 0, this representation allows us to extend f to a δ-neighborhood of
1, δ > 0, and also shows that this extended function f is differentiable in (0, 1 + δ).
We obtain (for t ∈ (0, 1])

f ′(t) =
1

n
V (tK + (1− t)L)

1−n
n

n∑
j=0

(
n

j

)
[jtj−1(1− t)n−j − (n− j)tj(1− t)n−j−1]
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×V (K, . . . , K︸ ︷︷ ︸
j

, L, . . . , L︸ ︷︷ ︸
n−j

)− n
√

V (K) + n
√

V (L).

Our conditions on f in [0, 1] imply that f ′(1) ≤ 0 and f ′(1) = 0, if and only if f ≡ 0
in [0, 1], hence if and only if K and L are homothetic. Since

f ′(1) =
1

n
V (K)

1−n
n [nV (K)− nV (K, . . . , K, L)]− n

√
V (K) + n

√
V (L)

= V (L)
1
n − V (K)

1−n
n V (K, . . . , K, L),

this completes the proof.

Corollary 3.4.4 (Isoperimetric inequality). Let K ∈ Kn be a convex body of
dimension n. Then, (

F (K)

F (B(1))

)n

≥
(

V (K)

V (B(1))

)n−1

.

Equality holds, if and only if K is a ball.

Proof. We put L := B(1) in Theorem 3.4.3 and get

V (K, . . . , K, B(1))n ≥ V (K)n−1V (B(1))

or, equivalently,

nnV (K, . . . , K, B(1))n

nnV (B(1), . . . , B(1), B(1))n
≥ V (K)n−1

V (B(1))n−1
.

The isoperimetric inequality states that, among all convex bodies of given volume
(given surface area), the balls have the smallest surface area (the largest volume).

Using V (B(1)) =: κn and F (B(1)) = nκn, we can re-write the inequality in the
form

V (K)n−1 ≤ 1

nnκn

F (K)n.

For n = 2 and using the common terminology A(K) for the area (the ”volume” in
R2) and L(K) for the boundary length (the ”surface area” in R2), we obtain

A(K) ≤ 1

4π
L(K)2,

and for n = 3,

V (K)2 ≤ 1

36π
F (K)3.

Exchanging K and B(1) in the proof above yields a similar inequality for the
mixed volume V (B(1), . . . B(1), K), hence we obtain the following corollary for the
mean width B(K).
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Corollary 3.4.5. Let K ∈ Kn be a convex body. Then,(
B(K)

B(B(1))

)n

≥ V (K)

V (B(1))
.

Equality holds, if and only if K is a ball.

Remark. Since B(K) is not greater than the diameter of K, the corollary implies
an inequality for the diameter.

Using Theorem 3.4.2 and the second derivatives, we obtain in a similar manner
inequalities of quadratic type.

Theorem 3.4.6. For K, L ∈ Kn, we have

(∗) V (K, . . . , K, L)2 ≥ V (K, . . . , K, L, L)V (K).

The proof is left as an exercise. The case of equality is not known completely.
Equality holds for homothetic bodies, but there are also non-homothetic bodies
(with interior points) for which equality holds.

Replacing K or L in (∗) by the unit ball, we obtain more special inequalities, for
example (in R3)

πB(K)2 ≥ F (K)

or
F (K)2 ≥ 6πB(K)V (K).

Exercises and problems

1. Give a proof of Theorem 3.4.6.

2. The diameter D(K) of a convex body K ∈ Kn is defined as

D(K) := sup{‖x− y‖ : x, y ∈ K}.

(a) Prove that
B(K) ≤ D(K) ≤ nκn

2κn−1
·B(K).

(b) If there is equality in one of the two inequalities, what can be said about K?
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3.5 Surface area measures

In Section 3.3, we have shown that, for polytopes P1, . . . , Pn ∈ Pn, the mixed volume
fulfills the formula

V (P1, . . . , Pn−1, Pn) =
1

n

∑
u∈Sn−1

hPn(u)v(P1(u), . . . , Pn−1(u)).

Here, the summation takes place over all unit vectors u for which
v(P1(u), . . . , Pn−1(u)) > 0, that is, over all facet normals of the polytope P1 + · · ·+
Pn−1. By approximation (and using the continuity of mixed volumes and support
functions), we therefore get the same formula for arbitrary bodies Kn ∈ Kn,

(∗) V (P1, . . . , Pn−1, Kn) =
1

n

∑
u∈Sn−1

hKn(u)v(P1(u), . . . , Pn−1(u)).

We define

(+) S(P1, . . . , Pn−1, ·) :=
∑

u∈Sn−1

v(P1(u), . . . , Pn−1(u))εu,

where εu denotes the Dirac measure in u ∈ Sn−1,

εu(A) :=

{
1

0
if

u ∈ A ,

u /∈ A ,

(here, A runs through all Borel sets in Sn−1). Then, S(P1, . . . , Pn−1, ·) is a finite Borel
measure on the unit sphere Sn−1, which is called the mixed surface area measure of
the polytopes P1, . . . , Pn−1. Equation (∗) is then equivalent to

(∗∗) V (P1, . . . , Pn−1, Kn) =
1

n

∫
Sn−1

hKn(u)dS(P1, . . . , Pn−1, u).

Our next goal is to extend this integral representation to arbitrary convex bod-
ies K1, . . . , Kn−1 (and thus define mixed surface area measures for general convex
bodies).

We first need an auxiliary result.

Lemma 3.5.1. For convex bodies K1, . . . , Kn−1, Kn, K
′
n ∈ Kn, we have

|V (K1, . . . , Kn−1, Kn)− V (K1, . . . , Kn−1, K
′
n)|

≤ ‖hKn − hK′
n
‖V (K1, . . . , Kn−1, B(1)).



94 CHAPTER 3. CONVEX BODIES

Proof. First, let K1, . . . , Kn−1 be polytopes. Since hB(1) ≡ 1 (on Sn−1), we obtain
from (∗), that

|V (K1, . . . , Kn−1, Kn)− V (K1, . . . , Kn−1, K
′
n)|

=
1

n

∣∣∣∣∣ ∑
u∈Sn−1

(hKn(u)− hK′
n
(u))v(K1(u), . . . , Kn−1(u))

∣∣∣∣∣
≤ 1

n

∑
u∈Sn−1

|hKn(u)− hK′
n
(u)|v(K1(u), . . . , Kn−1(u))

≤ 1

n
sup

v∈Sn−1

|hKn(v)− hK′
n
(v)|

∑
u∈Sn−1

v(K1(u), . . . , Kn−1(u))

=
1

n
‖hKn − hK′

n
‖
∑

u∈Sn−1

hB(1)(u)v(K1(u), . . . , Kn−1(u))

= ‖hKn − hK′
n
‖V (K1, . . . , Kn−1, B(1)).

By Theorem 3.3.4 (continuity of the mixed volume), the inequality extends to arbi-
trary convex bodies.

Now we can extend (∗∗) to arbitrary convex bodies.

Theorem 3.5.2. For K1, . . . , Kn−1 ∈ Kn, there exists a uniquely determined finite
Borel measure S(K1, . . . , Kn−1, ·) on Sn−1, such that

V (K1, . . . , Kn−1, K) =
1

n

∫
Sn−1

hK(u)dS(K1, . . . , Kn−1, u),

for all K ∈ Kn.

Proof. We consider the Banach space C(Sn−1) and the linear subspace C2(Sn−1)
of twice continuously differentiable functions. Here, a function f on Sn−1 is called
twice continuously differentiable, if the homogeneous extension f̃ of f ,

f̃(x) :=

{
‖x‖f( x

‖x‖)

0
if

x 6= 0 ,

x = 0 ,
x ∈ Rn,

is twice continuously differentiable on Rn \ {0}. From analysis we use the fact that
the subspace C2(Sn−1) is dense in C(Sn−1), that is, for each f ∈ C(Sn−1) there
is a sequence of functions fi ∈ C2(Sn−1) with fi → f in the maximum norm, as
i →∞ (this can be proved either by a convolution argument or by using a result of
Stone-Weierstrass type).

Further, we consider the set Ln of all functions f ∈ C(Sn−1) which have a
representation f = hK − hK′ with convex bodies K, K ′ ∈ Kn. Obviously, Ln is also
a linear subspace. Exercise 3.2.1 shows that C2(Sn−1) ⊂ Ln, therefore Ln is dense
in C(Sn−1).
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We now define a functional TK1,...,Kn−1 on Ln by

TK1,...,Kn−1(f) := nV (K1, . . . , Kn−1, K)− nV (K1, . . . , Kn−1, K
′),

where f = hK − hK′ . This definition is actually independent of the particular
representation of f . Namely, if f = hK − hK′ = hL − hL′ , then K + L′ = K ′ + L
and hence

V (K1, . . . , Kn−1, K) + V (K1, . . . , Kn−1, L
′)

= V (K1, . . . , Kn−1, K
′) + V (K1, . . . , Kn−1, L),

by the multilinearity of mixed volumes. This yields

nV (K1, . . . , Kn−1, K)− nV (K1, . . . , Kn−1, K
′)

= nV (K1, . . . , Kn−1, L)− nV (K1, . . . , Kn−1, L
′).

The argument just given also shows that TK1,...,Kn−1 is linear. Moreover, TK1,...,Kn−1

is a positive functional since f = hK − hK′ ≥ 0 implies K ⊃ K ′. Hence

V (K1, . . . , Kn−1, K) ≥ V (K1, . . . , Kn−1, K
′)

and therefore TK1,...,Kn−1(f) ≥ 0. Finally, TK1,...,Kn−1 is continuous (with respect to
the maximum norm), since Lemma 3.5.1 shows that

|TK1,...,Kn−1(f)| ≤ c(K1, . . . , Kn−1)‖f‖

with c(K1, . . . , Kn−1) := nV (K1, . . . , Kn−1, B(1)).
Since Ln is dense in C(Sn−1), the inequality just proven (or alternatively, the

theorem of Hahn-Banach) implies that there is a unique continuous extension of
TK1,...,Kn−1 to a positive linear functional on C(Sn−1). The Riesz representation
theorem then shows that

TK1,...,Kn−1(f) =

∫
Sn−1

f(u)dS(K1, . . . , Kn−1, u),

for f ∈ C(Sn−1), with a finite (nonnegative) Borel measure S(K1, . . . , Kn−1, ·) on
Sn−1, which is uniquely determined by TK1,...,Kn−1 . The assertion of the theorem
now follows, if we put f = hK .

Definition. The measure S(K1, . . . , Kn−1, ·) is called the mixed surface area mea-
sure of the bodies K1, . . . , Kn−1. In particular,

Sj(K, ·) := S(K, . . . , K︸ ︷︷ ︸
j

, B(1), . . . , B(1)︸ ︷︷ ︸
n−1−j

, ·)
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is called the jth order surface area measure of K, j = 0, . . . , n− 1.

Remarks. (1) For polytopes K1, . . . , Kn−1, the mixed surface area measure
S(K1, . . . , Kn−1, ·) equals the measure defined in (+).

(2) All surface area measures have centroid 0. Namely, since

V (K1, . . . , Kn−1, {x}) = 0,

we have ∫
Sn−1

〈x, u〉dS(K1, . . . , Kn−1, u) = 0,

for all x ∈ Rn.

(3) We have

Sj(K, Sn−1) = nV (K, . . . , K︸ ︷︷ ︸
j

, B(1), . . . , B(1)︸ ︷︷ ︸
n−j

)

=
nκn−j(

n
j

) Vj(K),

in particular

Sn−1(K, Sn−1) = 2Vn−1(K) = F (K),

which explains the name surface area measure.

(4) The measure S0(K, ·) = S(B(1), . . . , B(1), ·) = Sj(B(1), ·) (for j = 0, . . . , n− 1
and K ∈ Kn) equals the spherical Lebesgue measure ωn−1 (this follows from part
(d) of the following theorem), hence we obtain the equation

V (K, B(1), . . . , B(1)) =
1

n

∫
Sn−1

hK(u)du,

which we used already at the end of Section 3.3.

Further properties of mixed surface area measures follow, if we combine Theorem
3.5.2 with Theorem 3.3.4. In order to formulate a continuity result, we make use of
the weak convergence of measures on Sn−1 (since Sn−1 is compact, weak and vague
convergence are the same). A sequence of finite measures µi, i = 1, 2, . . . , on Sn−1

is said to converge weakly to a finite measure µ on Sn−1, if and only if∫
Sn−1

f(u)dµi(u) →
∫

Sn−1

f(u)dµ(u), as i →∞,

for all f ∈ C(Sn−1).
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Theorem 3.5.3. The mapping S : (K1, . . . , Kn−1) 7→ S(K1, . . . , Kn−1, ·) has the
following properties:
(a) S is symmetric, i.e.

S(K1, . . . , Kn−1, ·) = S(Kπ(1), . . . , Kπ(n−1), ·),

for all K1, ..., Kn−1 ∈ Kn and all permutations π of 1, . . . , n− 1.
(b) S is multilinear, i.e.

S(αK + βL, K2, ..., Kn−1, ·) = αS(K,K2, ..., Kn−1, ·) + βS(L, K2, ..., Kn−1, ·),

for all α, β ≥ 0, K, L, K2, ..., Kn−1 ∈ Kn.
(c) S is translation invariant, i.e.

S(K1 + x1, ..., Kn−1 + xn−1, ·) = S(K1, ..., Kn−1, ·),

for all Ki ∈ Kn and all xi ∈ Rn.
(d) S is rotation covariant, i.e.

S(ϑK1, ..., ϑKn−1, ϑA) = S(K1, ..., Kn−1, A),

for all Ki ∈ Kn, all Borel sets A ⊂ Sn−1, and all rotations ϑ.
(e) S is continuous, i.e.

S(K
(m)
1 , ..., K

(m)
n−1, ·) → S(K1, ..., Kn−1, ·)

weakly, as m →∞, provided K
(m)
i → Ki, i = 1, ..., n− 1.

Proof. (a), (b) and (c) follow directly from the integral representation and the
uniqueness in Theorem 3.5.2 together with the corresponding properties of mixed
volumes in Theorem 3.3.4.

(d) If ρ ◦µ denotes the image of a measure µ on Sn−1 under the rotation ρ, then
the assertion follows from∫

Sn−1

hKn(u)d[ϑ−1 ◦ S(ϑK1, ..., ϑKn−1, ·)](u)

=

∫
Sn−1

hKn(ϑ−1u)dS(ϑK1, ..., ϑKn−1, u)

=

∫
Sn−1

hϑKn(u)dS(ϑK1, ..., ϑKn−1, u)

= nV (ϑK1, ..., ϑKn−1, ϑKn)

= nV (K1, ..., Kn−1, Kn)

=

∫
Sn−1

hKn(u)dS(K1, ..., Kn−1, u),
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where Kn ∈ Kn is arbitrary.
(e) For ε > 0 and f ∈ C(Sn−1), choose K, L ∈ Kn with

‖f − (hK − hL)‖ ≤ ε

and then m0 such that K
(m)
i ⊂ Ki + B(1), i = 1, ..., n− 1, and

|V (K
(m)
1 , . . . , K

(m)
n−1, K)− V (K1, . . . , Kn−1, K)| ≤ ε,

as well as
|V (K

(m)
1 , . . . , K

(m)
n−1, L)− V (K1, . . . , Kn−1, L)| ≤ ε,

for all m ≥ m0. Then,∣∣∣∣∫
Sn−1

f(u)dS(K
(m)
1 , . . . , K

(m)
n−1, ·)(u)−

∫
Sn−1

f(u)dS(K1, . . . , Kn−1, ·)(u)

∣∣∣∣
≤
∣∣∣∣∫

Sn−1

(f − (hK − hL))(u)dS(K
(m)
1 , . . . , K

(m)
n−1, ·)(u)

∣∣∣∣
+

∣∣∣∣∫
Sn−1

(hK − hL)(u)dS(K
(m)
1 , . . . , K

(m)
n−1, ·)(u)

−
∫

Sn−1

(hK − hL)(u)dS(K1, . . . , Kn−1, ·)(u)

∣∣∣∣
+

∣∣∣∣∫
Sn−1

(f − (hK − hL))(u)dS(K1, . . . , Kn−1, ·)(u)

∣∣∣∣
≤ ‖f − (hK − hL)‖n V (K1 + B(1), . . . , Kn−1 + B(1), B(1))

+ n|V (K
(m)
1 , . . . , K

(m)
n−1, K)− V (K1, . . . , Kn−1, K)|

+ n|V (K
(m)
1 , . . . , K

(m)
n−1, L)− V (K1, . . . , Kn−1, L)|

+ ‖f − (hK − hL)‖n V (K1, . . . , Kn−1, B(1))

≤ c(K1, . . . , Kn−1)ε,

for m ≥ m0.

Corollary 3.5.4. For j = 0, . . . , n− 1, the mapping K 7→ Sj(K, ·) on Kn is trans-
lation invariant, rotation covariant and continuous.

Moreover,

Sn−1(K + B(α), ·) =
n−1∑
j=0

αn−1−j

(
n− 1

j

)
Sj(K, ·),

for α ≥ 0 (local Steiner formula).

Proof. We only have to prove the local Steiner formula. The latter follows from
Theorem 3.5.3(b).
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The interpretation of the surface area measure Sn−1(P, ·) for a polytope P is quite
simple. For a Borel set A ⊂ Sn−1, the value of Sn−1(P, A) gives the total surface area
of the set of all boundary points of P which have an outer normal in A (since this set
is a union of facets, the surface area is defined). In an appropriate way (and using
approximation by polytopes), this interpretation carries over to arbitrary bodies K:
Sn−1(K, A) measures the total surface area of the set of all boundary points of K
which have an outer normal in A.

Now we study the problem, how far a convex body K is determined by one of its
surface area measures Sj(K, ·), j ∈ {1, . . . , n−1}. For j = n−1 (and n-dimensional
bodies), we can give a strong answer to this question.

Theorem 3.5.5. Let K, L ∈ Kn with dim K = dim L = n. Then

Sn−1(K, ·) = Sn−1(L, ·),

if and only if K and L are translates.

Proof. For translates K, L, the equality of the surface area measures follows from
Corollary 3.5.4.

Assume now Sn−1(K, ·) = Sn−1(L, ·). Then, Theorem 3.5.2 implies

V (K, . . . , K, L) =
1

n

∫
Sn−1

hL(u)dSn−1(K, u)

=
1

n

∫
Sn−1

hL(u)dSn−1(L, u)

= V (L).

In the same way, we obtain V (L, . . . , L,K) = V (K). The Minkowski inequalites
(Theorem 3.3.5) therefore show that

V (L)n ≥ V (K)n−1V (L)

and
V (K)n ≥ V (L)n−1V (K),

which implies V (K) = V (L). Therefore we have equality in both inequalities and
hence K and L are homothetic. Since they have the same volume, they must be
translates.

The uniqueness result holds more generally for the j-th order surface area measures
(j ∈ {1, . . . , n − 1}), if the bodies have dimension at least j + 1 (for j = 1 even
without a dimensional restriction). The proof uses a deep generalization of the
Minkowski inequalities (the Alexandrov-Fenchel inequalities).

Theorem 3.5.5 can be used to express certain properties of convex bodies in
terms of their surface area measures. We mention only one application of this type,



100 CHAPTER 3. CONVEX BODIES

other results can be found in the exercises. We recall that a convex body K ∈ Kn

is centrally symmetric, if there is a point x ∈ Rn such that K−x = −(K−x) (then
x ∈ K and x is the center of symmetry). Also, a measure µ on Sn−1 is called even,
if µ is invariant under reflection, i.e. µ(A) = µ(−A), for all Borel sets A ⊂ Sn−1.

Corollary 3.5.6. Let K ∈ Kn with dim K = n. Then, K is centrally symmetric,
if and only if Sn−1(K, ·) is an even measure.

In the following, we study the problem which measures µ on Sn−1 arise as surface
area measures Sn−1(K, ·) of convex bodies K (the existence problem). Obviously, a
necessary condition is that µ must have centroid 0. Another condition arises from
a dimensional restriction. Namely, if dim K ≤ n − 2, then Sn−1(K, ·) = 0, whereas
for dim K = n − 1, K ⊂ u⊥, u ∈ Sn−1, we have Sn−1(K, ·) = Vn−1(K)(εu + ε−u)
(both results follow from Theorem 3.5.2). Hence, for dim K ≤ n− 1, the existence
problem is not of any interest. Therefore, we now concentrate on bodies K ∈ Kn

with dim K = n. Again, Theorem 3.5.2 shows that this implies dim Sn−1(K, ·) = n,
where the latter condition means that Sn−1(K, ·) is not supported by any lower
dimensional sphere, i.e. Sn−1(K, Sn−1 \E) > 0 for all hyperplanes E through 0. As
we shall show now, these two conditions (the centroid condition and the dimensional
condition) characterize (n−1)-st surface area measures. We first prove the polytopal
case.

Theorem 3.5.7. For k ≥ n + 1, let u1, . . . , uk ∈ Sn−1 be unit vectors which span
Rn and let v(1), . . . , v(k) > 0 be numbers such that

k∑
i=1

v(i)ui = 0.

Then, there exists a (up to a translation unique) polytope P ∈ Pn with dim P = n,
for which

Sn−1(P, ·) =
k∑

i=1

v(i)εui
,

i.e. the ui are the facet normals of P and the v(i) are the corresponding facet contents.

Proof. The uniqueness follows from Theorem 3.5.5.

For the existence, we denote by Rk
+ the set of all vectors y = (y(1), . . . , y(k)) with

y(i) ≥ 0, i = 1, . . . , k. For y ∈ Rk
+, let

P[y] :=
k⋂

i=1

{〈·, ui〉 ≤ y(i)}.
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Since 0 ∈ P[y], this set is nonempty and polyhedral. Moreover, P[y] is bounded hence
a convex polytope in Rn. Namely, assume αx ∈ P[y], for some x ∈ Sn−1 and all
α ≥ 0, then

〈x, ui〉 ≤ 0, i = 1, . . . , k.

Since the centroid condition implies

u1 = −
k∑

i=2

v(i)

v(1)
ui,

we would get

0 ≥ 〈x, u1〉 = −
k∑

i=2

v(i)

v(1)
〈x, ui〉 ≥ 0,

and hence

〈x, u1〉 = · · · = 〈x, uk〉 = 0.

As a consequence 〈x, y〉 = 0, for all y ∈ Rn, since u1, . . . , uk span Rn. Hence x = 0,
a contradiction.

Therefore, P[y] is a polytope. We next show that the mapping y 7→ P[y] is concave,
i.e.

(∗) γP[y] + (1− γ)P[z] ⊂ P[γy+(1−γ)z],

for y, z ∈ Rk
+ and γ ∈ [0, 1]. This follows since a point x ∈ γP[y] + (1 − γ)P[z],

x = γx′ + (1− γ)x′′, x′ ∈ P[y], x′′ ∈ P[z], fulfills

〈x, ui〉 = γ〈x′, ui〉+ (1− γ)〈x′′, ui〉
≤ γy(i) + (1− γ)z(i).

Since the normal vectors ui of the half spaces {〈·, ui〉 ≤ y(i)} are fixed and only
their distances y(i) from the origin vary, the mapping y 7→ P[y] is continuous (w.r.t.
the Hausdorff metric). Therefore, y 7→ V (P[y]) is continuous, which implies that the
set

M := {y ∈ Rk
+ : V (P[y]) = 1}

is nonempty and closed. The linear function

ϕ :=
1

n
〈·, v〉, v := (v(1), . . . , v(k)),

is nonnegative on M (and continuous). Since v(i) > 0, i = 1, . . . , k, there is a vector
y0 such that ϕ(y0) =: α ≥ 0 is the minimum of ϕ on M.
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We consider the polytope Q := P[y0]. Since V (Q) = 1, Q has interior points (and
0 ∈ Q). We may assume that 0 ∈ int Q. Namely, for 0 ∈ bd Q, we can choose a
translation vector t ∈ Rn such that 0 ∈ int (Q + t). Then

Q + t =
k⋂

i=1

{〈·, ui〉 ≤ ỹ
(i)
0 }

with ỹ
(i)
0 := y

(i)
0 + 〈t, ui〉, i = 1, . . . , k. Obviously, ỹ

(i)
0 > 0 and Q + t = P[ỹ0].

Moreover, V (Q + t) = V (Q) = 1 and

ϕ(ỹ0) =
1

n
〈y0, v〉+

1

n

k∑
i=1

〈t, ui〉v(i)

= ϕ(y0) +
1

n
〈t,

k∑
i=1

uiv
(i)〉

= α,

since
∑k

i=1 uiv
(i) = 0. Hence, we now assume 0 ∈ int Q, which gives us y

(i)
0 > 0 and

therefore α > 0. We define a vector w = (w(1), . . . , w(k)), where w(i) is the content
Vn−1(Q(ui)) of the support set of Q in direction ui, i = 1, . . . , k. Then,

1 = V (Q) =
1

n

k∑
i=1

y
(i)
0 w(i) =

1

n
〈y0, w〉

=
1

α
ϕ(y0) =

1

αn
〈y0, v〉.

Hence,

〈y0, w〉 = 〈y0,
1

α
v〉 = n.

Next, we define the hyperplanes

E := {〈·, w〉 = n}

and

F := {〈·, 1

α
v〉 = n}

in Rk. We want to show that E = F . First, we notice that y0 ∈ E ∩ F . Since
y0 has positive components, we can find a neighborhood U of y0, such that y ∈ U
has the following two properties. First, y(i) > 0 for i = 1, . . . , k and second every
facet normal of Q = P[y0] is also a facet normal of P[y]. We now consider y ∈ F ∩U .
Assume V (P[y]) > 1, then there exists 0 < β < 1 with

V (P[βy]) = 1.
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Since y ∈ F ,

ϕ(βy) =
1

n
〈βy, v〉 = βα < α,

a contradiction. Therefore, V (P[y]) ≤ 1. For ϑ ∈ [0, 1], the point ϑy + (1 − ϑ)y0 is
also in F ∩U . Therefore the volume inequality just proven applies and we get from
(∗)

V (ϑP[y] + (1− ϑ)Q) ≤ V (P[ϑy+(1−ϑ)y0]) ≤ 1.

This yields

V (Q, . . . , Q, P[y]) =
1

n
lim
ϑ→0

V (ϑP[y] + (1− ϑ)Q)− (1− ϑ)n

ϑ

≤ 1

n
lim
ϑ→0

1− (1− ϑ)n

ϑ
= 1.

Since by our assumption, each facet normal of Q is a facet normal of P[y], we have
hP[y]

(ui) = y(i), for all i for which w(i) > 0. Hence

1 ≥ V (Q, . . . , Q, P[y]) =
1

n

k∑
i=1

hP[y]
(ui)w

(i) =
1

n
〈y, w〉,

for all y ∈ F ∩ U . This shows that F ∩ U ⊂ E, which is only possible if E = F .
Since E = F implies w = 1

α
v, the polytope P := n−1

√
αQ fulfills all assertions of

the theorem.

We now extend this result to arbitrary bodies K ∈ Kn.

Theorem 3.5.8. Let µ be a finite Borel measure on Sn−1 with centroid 0 and
dim µ = n. Then, there exists a (up to a translation unique) body K ∈ Kn, for
which

Sn−1(K, ·) = µ.

Proof. Again, we only need to show the existence of K.
We make use of the fact that µ can be approximated (in the weak convergence)

by discrete measures (measures with finite support) µj → µ, for j → ∞, which
also have centroid 0 and fulfill dim µj = n. The measure µj can, for example, be
constructed as follows. We divide Sn−1 into finitely many pairwise disjoint Borel
sets Aij, i = 0, 1, . . . , k(j), such that µ(A0j) = 0, whereas diam(cl conv Aij) < 1

j
and

µ(Aij) > 0, for i = 1, . . . , k(j). We then put

µj :=

k(j)∑
i=1

µ(Aij)‖xij‖εuij
,
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where

xij :=
1

µ(Aij)

∫
Aij

udµ(u),

and uij :=
xij

‖xij‖ . This definition makes sense since, for i ≥ 1, it can be shown that

0 /∈ cl conv Aij and therefore xij 6= 0. Moreover, µj has centroid 0 and converges
to µ (see the exercises). Because of dim µ = n, we must have dim µj = n, for large
enough j.

From Theorem 3.5.7, we obtain polytopes Pj with 0 ∈ Pj and

µj = Sn−1(Pj, ·), j = 1, 2, . . . .

We show that the sequence (Pj)j∈N is uniformly bounded. First, F (Pj) =
µj(S

n−1) → µ(Sn−1) implies that

F (Pj) ≤ C, j = 1, 2, . . . ,

for some C > 0. The isoperimetric inequality shows that then

V (Pj) ≤ C̃, j = 1, 2, . . . ,

for another constant C̃ > 0. Now let x ∈ Sn−1 and αj ≥ 0 such that αjx ∈ Pj,
hence [0, αjx] ∈ Pj. Since

h[0,αjx] = αj max(〈x, ·〉, 0),

we get

V (Pj) =
1

n

k(j)∑
i=1

hPj
(uij)Vn−1(Pj(uij))

≥ 1

n

k(j)∑
i=1

h[0,αjx](uij)Vn−1(Pj(uij))

=
αj

n

∫
Sn−1

max(〈x, u〉, 0)dµj(u).

The weak convergence implies

1

n

∫
Sn−1

max(〈x, u〉, 0)dµj(u) → 1

n

∫
Sn−1

max(〈x, u〉, 0)dµ(u).

Since dim µ = n, we have

f(x) :=
1

n

∫
Sn−1

max(〈x, u〉, 0)dµ(u) > 0,
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for all x ∈ Sn−1. The theorem of dominated convergence shows that f is continuous,
hence

c := min
x∈Sn−1

f(x)

exists and we have c > 0. Therefore, αj ≤ C ′ for all j ≥ j0, with suitable j0 and a
certain constant C ′. This shows that the sequence (Pj)j∈N is uniformly bounded.

By Blaschke’s selection theorem, we can choose a converging subsequence
Pjr → K, r →∞, K ∈ Kn. Then

Sn−1(Pjr , ·) → Sn−1(K, ·),

but also
Sn−1(Pjr , ·) → µ.

Therefore, Sn−1(K, ·) = µ.

Exercises and problems

1. Let K, M, L ∈ Kn such that K = M + L. Show that

Sj(M, ·) =
j∑

i=0

(−1)j−i

(
j

i

)
S(K, . . . , K︸ ︷︷ ︸

i

, L, . . . , L︸ ︷︷ ︸
j−i

, B(1), . . . , B(1)︸ ︷︷ ︸
n−1−j

, ·),

for j = 0, . . . , n− 1.

2. Let K ∈ Kn,dim K = n, O ∈ On be an orthogonal matrix and

θ : Rn → Rn, x 7→ Ox

the associated linear mapping. Show that θK is a translate of K if and only if the
area measure of K is invariant under θ, i.e.

Sn−1(K, A) = Sn−1(K, θ−1(A))

for all Borel sets A ⊂ Sn−1.

3. Let K ∈ Kn and r(K) be the circumradius of K. Show that r(K) ≤ 1 if and only
if V (K, M, . . . , M) ≤ 1

nF (M) for all M ∈ Kn.

4. Let α ∈ (0, 1) and M,L ∈ Kn with dim M = dim L = n.

(a) Show that there is a convex body Kα ∈ Kn with dim Kα = n and

Sn−1(Kα, ·) = αSn−1(M, ·) + (1− α)Sn−1(L, ·).
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(b) Show that
V (Kα)

n−1
n ≥ αV (M)

n−1
n + (1− α)V (L)

n−1
n ,

with equality if and only if M and L are homothetic.

5. Complete the proof of Theorem 3.5.8 by showing that the measures µj are well-
defined (i.e. that xij 6= 0), have centroid 0, fulfill dim µj = n, for almost all j, and
converge weakly to the given measure µ (as j →∞).
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3.6 Projection functions

For a convex body K ∈ Kn and a direction u ∈ Sn−1, we define

v(K, u) := Vn−1(K |u⊥),

the content of the orthogonal projection of K onto the hyperplane u⊥. The function
v(K, ·) is called the projection function of K. We are interested in the information on
the shape of K which can be deduced from the knowledge of its projection function
v(K, ·).

First, it is clear that translates K, K + x, x ∈ Rn, have the same projection
function. Second, K and −K have the same projection function, which shows that
in general K is not determined by v(K, ·) (not even up to translations). The question
occurs whether we get uniqueness up to translations and reflections. In order to give
an answer, we need a representation of v(K, ·).

Theorem 3.6.1. For K ∈ Kn and u ∈ Sn−1, we have

v(K, u) =
1

2

∫
Sn−1

|〈x, u〉| dSn−1(K,x).

Proof. An application of Fubini’s theorem shows that

V (K + [−u, u]) = V (K) + 2v(K, u).

On the other hand, we have

V (K + [−u, u]) =
n∑

i=0

(
n

i

)
V (K, . . . , K︸ ︷︷ ︸

i

, [−u, u], . . . , [−u, u]︸ ︷︷ ︸
n−i

).

From Exercise 3.3.1, we know that

V (K, . . . , K︸ ︷︷ ︸
i

, [−u, u], . . . , [−u, u]︸ ︷︷ ︸
n−i

) = 0,

for i = 0, . . . , n− 2, hence

v(K, u) =
n

2
V (K, . . . , K, [−u, u]).

The assertion now follows from Theorem 3.5.2, since the segment [−u, u] has support
function |〈·, u〉|.
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Remarks. A couple of properties of projection functions can be directly deduced
from Theorem 3.6.1.

(1) We have v(K, ·) = 0, if and only if dim K ≤ n− 2.

(2) If dim K = n− 1, K ⊂ x⊥, then

v(K, ·) = Vn−1(K)|〈x, ·〉|.

(3) If dim K = n and K is not centrally symmetric (i.e. Sn−1(K, ·) 6= Sn−1(−K, ·)),
then there is an infinite family of bodies with the same projection function. Namely,
for α ∈ [0, 1], there is a body Kα ∈ Kn with dim Kα = n and

Sn−1(Kα, ·) = αSn−1(K, ·) + (1− α)Sn−1(−K, ·)

(see Exercise 3.5.4(a)). Then,

v(Kα, ·) = αv(K, ·) + (1− α)v(−K, ·) = v(K, ·).

This also shows that there is always a centrally symmetric body, namely K 1
2
, with

the same projection function as K.

(4) Since |〈x, ·〉| is a support function, the function v(K, ·) is a positive combination
of support functions, hence it is itself a support function of a convex body ΠK,

hΠK := v(K, ·).

We call ΠK the projection body of K. The projection body is always centrally
symmetric to the origin and, if dim K = n, then dim ΠK = n.

Before we continue to discuss projection functions, we want to describe projection
bodies geometrically.

Definition. A finite sum of segments Z := s1 + · · · + sk is called a zonotope. A
zonoid is a convex body which is the limit (in the Hausdorff metric) of a sequence
of zonotopes.

Zonotopes are polytopes and they are centrally symmetric. Namely, if si = [−yi, yi]+
xi is the representation of the segment si (with center xi and endpoints −yi + xi,
yi + xi), then

Z =
k∑

i=1

[−yi, yi] +
k∑

i=1

xi.

Hence, x :=
∑k

i=1 xi is the center of Z. Zonoids, as limits of zonotopes, are also
centrally symmetric. We assume w.l.o.g. that the center of zonotopes and zonoids
is the origin and denote the correspondings set of zonoids by Zn.

The following results show that zonoids and projection bodies are closely related.
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Theorem 3.6.2. Let K ∈ Kn. Then, K is a zonoid, if and only if there exists an
even Borel measure µ(K, ·) on Sn−1 such that

hK(u) =

∫
Sn−1

|〈x, u〉|dµ(K, x).

For a zonoid K, the measure µ(K, ·) is called the generating measure of K.

Proof. Suppose

hK(u) =

∫
Sn−1

|〈x, u〉|dµ(K, x).

As in the proof of Theorem 3.5.8, we find a sequence of even, discrete measures
µj → µ(K, ·),

µj :=
1

2

k(j)∑
i=1

αij(εuij
+ ε−uij

), uij ∈ Sn−1, αij > 0.

Then,

Zj :=

k(j)∑
i=1

[−αijuij, αijuij]

is a zonotope and

hZj
(u) =

∫
Sn−1

|〈x, u〉|dµj(x)

→
∫

Sn−1

|〈x, u〉|dµ(K, x) = hK(u),

for all u ∈ Sn−1. Therefore, Zj → K (as j →∞), i.e. K is a zonoid.
Conversely, assume that K = limj→∞ Zj, Zj zonotope. Then,

Zj =

k(j)∑
i=1

[−yij, yij]

with suitable vectors yij ∈ Rn. Consequently,

hZj
(u) =

k(j)∑
i=1

|〈yij, u〉|

=

∫
Sn−1

|〈x, u〉|dµj(x),
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where

µj :=
1

2

k(j)∑
i=1

‖yij‖(εuij
+ ε−uij

)

and
uij :=

yij

‖yij‖
.

We would like to show that the sequence (µj)j∈N converges weakly.
We have ∫

Sn−1

hZj
(u)du = κn−1V1(Zj) → κn−1V1(K).

Also, using Fubini’s theorem and Theorem 3.6.1 (for the unit ball), we get∫
Sn−1

hZj
(u)du =

∫
Sn−1

∫
Sn−1

|〈x, u〉|dudµj(x) = 2κn−1µj(S
n−1).

Hence, µj(S
n−1) is bounded from above by a constant C, for all j. Now we use the

fact that the set MC of all Borel measures ρ on Sn−1 with ρ(Sn−1) ≤ C is weakly
compact (see, e.g., the books of Billingsley, Convergence of probability measures,
Wiley 1968, p. 37; or Gänssler-Stute, Wahrscheinlichkeitstheorie, Springer 1977,
p. 344). Therefore, (µj)j∈N contains a convergent subsequence. W.l.o.g., we may
assume that (µj)j∈N converges to a limit measure which we denote by µ(K, ·). The
weak convergence implies that

hK(u) = lim
j→∞

hZj
(u)

= lim
j→∞

∫
Sn−1

|〈x, u〉|dµj(x)

=

∫
Sn−1

|〈x, u〉|dµ(K, x).

Remark. As the above proof shows, we have dim K = n, if and only if dim µ(K, ·) =
n.

Corollary 3.6.3. The projection body ΠK of a convex body K is a zonoid. Re-
versely, if Z is a zonoid with dim Z = n, then there is a convex body K with
dim K = n and which is centrally symmetric to the origin and fulfills

Z = ΠK.

Proof. The first result follows from Theorems 3.6.1 and 3.6.2. For the second, The-
orem 3.6.2 shows that

hZ(u) =

∫
Sn−1

|〈x, u〉|dµ(Z, x)
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with an even measure µ(Z, ·), dim µ(Z, ·) = n. By Theorem 3.5.8,

µ(Z, ·) = Sn−1(K, ·),

for some convex body K ∈ Kn, dim K = n, and hence Z = ΠK. By Corollary 3.5.6,
K is centrally symmetric.

Finally, we want to show that the generating measure of a zonoid is uniquely deter-
mined. We first need two auxiliary lemmas. If A is the (n×n)-matrix of an injective
linear mapping in Rn, we define

AZ := {Ax : x ∈ Z}

and denote by Aµ, for a measure µ on Sn−1, the image measure of∫
(·)
‖Ax‖dµ(x)

under the mapping

x 7→ Ax

‖Ax‖
, x ∈ Sn−1.

Lemma 3.6.4. If Z ∈ Kn is a zonoid and

hZ =

∫
Sn−1

|〈x, ·〉|dµ(Z, x),

then AZ is a zonoid and

hAZ =

∫
Sn−1

|〈x, ·〉|dAµ(Z, x).

Proof. We have

hAZ = sup
x∈AZ

〈u, x〉 = sup
x∈Z

〈u, Ax〉 = sup
x∈Z

〈AT u, x〉 = hZ(AT u)

=

∫
Sn−1

|〈x, AT u〉|dµ(Z, x) =

∫
Sn−1

|〈Ax, u〉|dµ(Z, x)

=

∫
Sn−1

|〈 Ax

‖Ax‖
, u〉|‖Ax‖dµ(Z, x) =

∫
Sn−1

|〈y, u〉|dAµ(Z, y).

Let V denote the vector space of functions

f =

∫
Sn−1

|〈x, ·〉|dµ(x)−
∫

Sn−1

|〈x, ·〉|dρ(x),

where µ, ρ vary among all finite even Borel measures on Sn−1. V is a subspace of
the Banach space Ce(S

n−1) of even continuous functions on Sn−1.
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Lemma 3.6.5. The vector space V is dense in Ce(S
n−1).

Proof. Choosing µ = cωn−1, for c ≥ 0, and ρ = 0 (or vice versa), we see that V
contains all constant functions.

By Lemma 3.6.4, the support functions hAB(1) lie in V , for all regular (n × n)-
matrices A (the body AB(1) is an ellipsoid). Since

hAB(1)(u) = ‖AT u‖, u ∈ Sn−1,

we obtain all functions

f(B, u) :=
√
〈Au, Au〉 =

√
〈AT Au, u〉

:=
√
〈Bu, u〉 =

(
n∑

i,j=1

bijuiuj

) 1
2

,

where B = AT A = ((bij)) varies among the positive definite (n× n)-matrices B. For
ε > 0, let B̃ = ((b̃ij)) with

b̃ij :=

{
bij + ε

bij

if
(i, j) ∈ {(i0, j0), (j0, i0)} ,

(i, j) /∈ {(i0, j0), (j0, i0)} .

Then, B̃ is symmetric and positive definite, for small enough ε. Consequently,

f(B̃, ·)− f(B, ·)
ε

∈ V

and

lim
ε→0

f(B̃, ·)− f(B, ·)
ε

=
∂f

∂bi0,j0

(B, ·) ∈ clV .

A direct computation yields

∂f

∂bi0j0

(B, u) =
ui0uj0

f(B, u)
.

Repeating this argument with bi1j1 etc., we obtain that all partial derivatives of f
w.r.t. variables in B are in clV , hence all functions

u 7→ ui1
1 · · ·uin

n

f(B, u)k
, i1 + · · ·+ in = 2k, k = 1, 2, . . . .

Now we choose B to be the unit matrix. Then f(B, ·) = 1, hence all even
polynomials are in clV . The theorem of Stone-Weierstrass now shows that
clV = Ce(S

n−1).
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Theorem 3.6.6. For a zonoid Z ∈ Kn, the generating measure is uniquely deter-
mined.

Proof. Assume we have two measures µ := µ(Z, ·) and ρ on Sd−1 with∫
Sn−1

|〈x, ·〉|dµ(x) =

∫
Sn−1

|〈x, ·〉|dρ(x).

Then, ∫
Sn−1

∫
Sn−1

|〈x, u〉|dµ(x)dµ̃(u) =

∫
Sn−1

∫
Sn−1

|〈x, u〉|dρ(x)dµ̃(u),

for all measures µ̃ on Sn−1. Replacing µ̃ by a difference of measures and applying
Fubini’s theorem, we obtain∫

Sn−1

f(x)dµ(x) =

∫
Sn−1

f(x)dρ(x),

for all functions f ∈ V . Lemma 3.6.5 shows that this implies µ = ρ.

Combining Theorem 3.6.6 with Theorems 3.6.1, 3.6.2 and 3.5.8, we get directly our
final result in this chapter.

Corollary 3.6.7. A centrally symmetric convex body K ∈ Kn with dim K = n is
uniquely determined (up to translations) by its projection function v(K, ·).

Exercises and problems

1. Let n ≥ 3 and P ∈ Kn be a polytope. Show that P is a zonotope, if and only if all
2-faces of P are centrally symmetric.

2. Let Z ∈ Kn be a zonoid and u1, . . . , uk ∈ Sn−1.

(a) Show that there exists a zonotope P such that

hZ(ui) = hP (ui), i = 1, . . . , k.

Hint: Use Carathéodory’s theorem for a suitable subset A of Rk.

(b) Show in addition that P can be chosen to be the sum of at most k segments.
Hint: Replace Carathéodory’s theorem by the theorem of Bundt.
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3. Let P,Q ∈ Pn be zonotopes and K ∈ Kn a convex body such that

P = K + Q.

Show that K is also a zonotope.

4.∗ Let P ∈ Pn be a polytope. Show that P is a zonotope, if and only if hP fulfills the
Hlawka inequality:

(∗) hP (x) + hP (y) + hP (z) + hP (x + y + z) ≥ hP (x + y) + hP (x + z) + hP (y + z),

for all x, y, z ∈ Rn.

Hint: For one direction, show first that (∗) implies the central symmetry of P and
then that (∗) implies the Hlawka inequality for each face P (u), u ∈ Sn−1. Then
use Exercise 1 above.

5. Let Z ∈ Kn be a zonoid.

(a) For u ∈ Sn−1, show that Z(u) is a zonoid and that

hZ(u) =
∫

Sn−1∩u⊥
|〈x, ·〉|µ(Z, dx) + 〈xu, ·〉,

where
xu := 2

∫
{x∈Sn−1:〈x,u〉>0}

xdµ(Z, x).

(b) Use (a) to show that a zonoid which is a polytope must be a zonotope.



Chapter 4

Integral geometric formulas

In this final chapter, we discuss integral formulas for intrinsic volumes Vj(K), which
are based on sections and projections of convex bodies K. We shall also discuss
some applications of stereological nature.

4.1 Invariant measures

As a motivation, we start with the formula for the projection function v(K, ·) from
Theorem 3.6.1. Integrating v(K, u) over all u ∈ Sn−1 (with respect to the spherical
Lebesgue measure ωn−1), we obtain∫

Sn−1

v(K,u)du = κn−1

∫
Sn−1

dSn−1(K, x) = 2κn−1Vn−1(K).

Since v(K, u) = Vn−1(K|u⊥), we may replace the integration over Sn−1 by one
over the space Ln

n−1 of hyperplanes (through 0) in Rn, namely by considering the
normalized image measure νn−1 of ωn−1 under the mapping u 7→ u⊥. Denoting the
integration by νn−1 shortly as dLn−1, we then get∫

Ln
n−1

Vn−1(K|Ln−1)dLn−1 =
2κn−1

nκn

Vn−1(K).

This is known as Cauchy’s surface area formula for convex bodies. Our first goal is
to generalize this projection formula to other intrinsic volumes Vj and to projection
flats Lq of lower dimensions. This requires a natural measure νq on the space of
q-dimensional subspaces first. Later we will also consider integrals over sections of
K with affine flats and integrate those with a natural measure µq on (affine) q-flats.
This first section discusses how the measures νq and µq can be introduced in an
elementary way.

We start with the set Ln
q of q-dimensional (linear) subspaces of Rn, q ∈ {0, . . . , n−

1}. Ln
q becomes a compact metric space, if we define the distance d(L, L′), for

115
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L, L′ ∈ Ln
q , as the Hausdorff distance of L ∩ B(1) and L′ ∩ B(1). We want

to introduce an invariant probability measure νq on Ln
q . Here, probability measure

refers to the Borel σ-algebra generated by the metric structure and invariance refers
to the rotation group SOn and means that

νq(ϑA) = νq(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ Ln
q (with ϑA := {ϑL : L ∈ A}). We will

obtain νq as the image measure of an invariant measure ν on SOn.
The rotation group SOn can be viewed as a subset of (Sn−1)n ⊂ Rn2

, if we identify
rotations ϑ with orthogonal matrices A (with det A = 1) and then replace A by the
n-tuple (a1, . . . , an) ∈ (Sn−1)n of column vectors. The euclidean metric on Rn2

therefore induces a metric on SOn and SOn becomes a compact metric space in this
way. It is easy to see that the operations of multiplication and inversion in SOn (i.e.
the mappings (ϑ, η) 7→ ϑη and ϑ 7→ ϑ−1) are continuous. This shows that SOn (with
the given metric) is a compact topological group. A general theorem in the theory of
topological groups implies the existence and uniqueness of an invariant probability
measure ν on SOn (called the Haar measure). Since SOn is not commutative,
invariance means here

ν(ϑA) = ν(A), ν(Aϑ) = ν(A), ν(A−1) = ν(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ SOn, where

ϑA := {ϑη : η ∈ A}, Aϑ := {ηϑ : η ∈ A}, A−1 := {η−1 : η ∈ A}.

However, we can show the existence of ν also by a direct construction.

Lemma 4.1.1. There is an invariant probability measure ν on Sn−1.

Proof. We consider the set LUn ⊂ (Sn−1)n of linearly independent n-tuples. LUn is
open and the complement has measure zero with respect to ωn−1 ⊗ · · · ⊗ ωn−1. On
LUn we define the mapping T onto SOn by

(∗) T (x1, . . . , xn) :=

(
y1

‖y1‖
... · · · ... yn

‖yn‖

)
,

where (y1, . . . , yn) is the n-tuple obtained from (x1, . . . , xn) by the Gram-Schmidt
orthogonalization procedure (and where, in addition, the sign of yn is chosen such
that the matrix on the right side of (∗) has determinant 1). Up to the sign of yn,
we thus have

yk := xk −
k−1∑
i=1

〈xk, yi〉
yi

‖yi‖
, k = 2, . . . , n,
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and y1 := x1. T is almost everywhere defined (with respect to ωn−1 ⊗ · · · ⊗ ωn−1)
and continuous. Let ν be the image measure of ωn−1⊗· · ·⊗ωn−1 under T . For each
continuous function f on SOn and ϑ ∈ SOn, we then get∫

SOn

f(ϑη)dν(η) =

∫
Sn−1

· · ·
∫

Sn−1

f(ϑT (x1, . . . , xn))dx1 · · · dxn

=

∫
Sn−1

· · ·
∫

Sn−1

f(

(
ϑy1

‖y1‖
... · · · ... ϑyn

‖yn‖

)
)dx1 · · · dxn.

Obviously, (
ϑy1

‖y1‖
... · · · ... ϑyn

‖yn‖

)
= T (ϑx1, . . . , ϑxn),

and we obtain ∫
SOn

f(ϑη)dν(η) =

∫
SOn

f(η)dν(η).

This shows that ν is invariant from the left. Invariance from the right and inversion
invariance can be shown in a similar manner (see the Exercises).

The normalized measure ν := (1/nκn)nν fulfills now all assertions of the lemma.

For the rest of this chapter we choose a fixed subspace L0
q ∈ Ln

q as a reference space
and define

νq := Φ ◦ ν,

where
Φ : SOn → Ln

q , ϑ 7→ ϑL0
q.

It is easy to see that Φ is continuous and therefore measurable. The definition of
νq is based on the fact that the rotation group SOn operates transitively on Ln

q ,
which means that for given L, L′ ∈ Ln

q there is always a rotation ϑ with L′ = ϑL.
This implies that the images ϑL0

q, ϑ ∈ SOn, run through all elements of Ln
q . We

abbreviate the integration with respect to νq by dLq.

Theorem 4.1.2. For q ∈ {1, . . . , n− 1}, the measure νq is an invariant probability
measure. It is the only invariant probability measure on Ln

q .
Moreover, for a continuous function f on Ln

q , we have∫
Ln

q

f(Lq)dLq =

∫
Ln

n−q

f(L⊥n−q)dLn−q,

for 1 ≤ q ≤ n− 1, and∫
Ln

q

f(Lq)dLq =

∫
Ln

m

(∫
Ln

q (Lm)

f(Lq)dLq

)
dLm,

for 0 ≤ q < m ≤ n− 1. (Here Ln
q (Lm) := {Lq ∈ Ln

q : Lq ⊂ Lm} and we identify this
set with Lm

q .)
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Proof. Obviously, νq is a probability measure. To show its invariance, let f be a
continuous function on Ln

q and η ∈ SOn. Then∫
Ln

q

f(ηLq)dLq =

∫
SOn

f(ηϑL0
q)dν(ϑ)

=

∫
SOn

f(ρL0
q)dν(ρ)

=

∫
Ln

q

f(Lq)dLq.

Next, we show the uniqueness. Assume that ν ′q is also an invariant probability
measure on Ln

q . Then∫
Ln

q

f(Lq)dν ′q(Lq) =

∫
SOn

∫
Ln

q

f(ϑLq)dν ′q(Lq)dν(ϑ)

=

∫
Ln

q

∫
SOn

f(ϑLq)dν(ϑ)dν ′q(Lq)

For Lq, L
′
q ∈ Ln

q there exists an η ∈ SOn with Lq = ηL′q, hence∫
SOn

f(ϑLq)dν(ϑ) =

∫
SOn

f(ϑηL′q)dν(ϑ)

=

∫
SOn

f(ϑL′q)dν(ϑ).

This shows that the function

Lq 7→
∫

SOn

f(ϑLq)dν(ϑ)

is a constant c(f), which implies that∫
Ln

q

f(Lq)dν ′q(Lq) = c(f)

∫
Ln

q

dν ′q(Lq) = c(f).

In the same way, we get ∫
Ln

q

f(Lq)dLq = c(f),

hence ∫
Ln

q

f(Lq)dν ′q(Lq) =

∫
Ln

q

f(Lq)dLq,

for all continuous functions f on Ln
q . Therefore, ν ′q = νq.
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The two integral formulas now follow from the uniqueness of νq. Namely,

f 7→
∫
Ln

n−q

f(L⊥n−q)dLn−q

defines a probability measure ν ′q on Ln
q (by the Riesz representation theorem). The

invariance of νn−q shows that ν ′q is invariant, hence ν ′q = νq. In the same manner, we
obtain the second, iterated integral formula. Here, the uniqueness result is already
used to show that the invariant measure νϑLm

q on Ln
q (ϑLm) is the image under

L 7→ ϑL of the invariant measure νLm
q on Ln

q (Lm).

Now we consider the set En
q of affine q-dimensional subspaces (q-flats, for short) in

Rn. Each Eq ∈ En
q has a unique representation Eq = Lq + x, Lq ∈ Ln

q , x ∈ L⊥q . This
allows us to define a metric on En

q , namely as

d(Eq, E
′
q) := d(Lq, L

′
q) + d(x, x′).

The metric space En
q is locally compact but not compact. We define the measure µq

as the image
µq := Ψ ◦ (ν ⊗ λn−q),

where
Ψ : SOn × (L0

q)
⊥ → En

q , (ϑ, x) 7→ ϑ(L0
q + x)

and λn−q is the Lebesgue measure on (L0
q)
⊥. Apparently, µq(En

q ) = ∞, but the set
En

q (B(1)) of q-flats intersecting the unit ball has finite measure,

µq(En
q (B(1))) = κn−q.

For the measure µq, invariance refers to the group Gn of rigid motions, that is

µq(gA) = µq(A),

for all g ∈ Gn and all Borel sets A ⊂ En
q (again gA := {gL : L ∈ A}). As in

the case of νq, we will denote integration by µq simply as dEq. For a flat Em ∈
En

m, q < m ≤ n− 1, we put En
q (Em) := {Eq ∈ En

q : Eq ⊂ Em}. Because of the unique
decomposition Em = Lm + x, Lm ∈ Ln

m, x ∈ L⊥m, we may identify En
q (Em) with Em

q

(by mapping x to the origin). We denote by dLm the integration with respect to
the corresponding measure on En

q (Em).

Theorem 4.1.3. For q ∈ {0, . . . , n− 1}, µq is an invariant measure.
For a continuous function f on En

q with compact support, we have∫
En

q

f(Eq)dEq =

∫
Ln

q

∫
L⊥q

f(Lq + x)dxdLq.
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Furthermore, ∫
En

q

f(Eq)dEq =

∫
En

m

(∫
En

q (Em)

f(Eq)dEq

)
dEm,

for 0 ≤ q < m ≤ n− 1.

Proof. For the invariance of µq, we consider g ∈ Gn and a continuous function f on
En

q with compact support. By definition of µq,∫
En

q

f(gEq)dEq =

∫
SOn

∫
(L0

q)⊥
f(gϑ(L0

q + x))dxdϑ.

We decompose g into rotation and translation,

g : z 7→ η(z + y), η ∈ SOn, y ∈ Rn,

and put x′ := ϑ−1y|(L0
q)
⊥. Then,

gϑ(L0
q + x) = ηϑ(L0

q + x + x′),

hence ∫
En

q

f(gEq)dEq =

∫
SOn

∫
(L0

q)⊥
f(ρ(L0

q + z))dzdρ

=

∫
En

q

f(Eq)dEq.

The first integral formula follows from∫
En

q

f(Eq)dEq =

∫
SOn

∫
(L0

q)⊥
f(ϑ(L0

q + x))dxdν(ϑ)

=

∫
SOn

∫
(ϑL0

q)⊥
f(ϑL0

q + x))dxdν(ϑ)

=

∫
Ln

q

∫
L⊥q

f(Lq + x)dxdLq.

For the second integral formula, we consider Eq ∈ En
q (Em). Because of Em = Lm+x,

Lm ∈ Ln
m, x ∈ L⊥m, we get

Eq = Lq + x + y
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with Lq ∈ Ln
q (Lm) and y ∈ L⊥q ∩ Lm. Therefore,∫

En
m

(∫
En

q (Em)

f(Eq)dEq

)
dEm

=

∫
Ln

m

∫
L⊥m

(∫
Ln

q (Lm)

∫
L⊥q ∩Lm

f(Lq + x + y)dydLq

)
dxdLm

=

∫
Ln

m

∫
Ln

q (Lm)

(∫
L⊥m

∫
L⊥q ∩Lm

f(Lq + x + y)dydx

)
dLqdLm

=

∫
Ln

m

∫
Ln

q (Lm)

(∫
L⊥q

f(Lq + z)dz

)
dLqdLm

=

∫
Ln

q

∫
L⊥q

f(Lq + z)dzdLq

=

∫
En

q

f(Eq)dEq,

where we have used the first integral formula and also Theorem 4.1.2.

We remark that it is also possible to prove a uniqueness result for the measure µq,
but the proof is a bit more involved. We also remark, that both measures νq and µq

are actually independent of the choice of the reference space L0
q.

Exercises and problems

1. Fill in the arguments omitted in the proof of Lemma 4.1.1 (invariance from the right
and inversion invariance) by showing that

ν(Aϑ) = ν(A), and ν(A−1) = ν(A),

for all ϑ ∈ SOn and all Borel sets A ⊂ SOn .

2. Show that∫
SOn

∫
(L1

q)⊥
f(ϑ(L1

q + x))dxdν(ϑ) =
∫

SOn

∫
(L0

q)⊥
f(ϑ(L0

q + x))dxdν(ϑ),

for L0
q , L

1
q ∈ Ln

q and a continuous function f on En
q with compact support (indepen-

dence of the reference space).

3.∗ Show that µq is the only invariant measure on En
q with

µq(En
q (B(1))) = κn−q.
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4.2 Projection formulas

Theorem 4.2.1 (Cauchy-Kubota). Let K ∈ Kn, q ∈ {0, . . . , n − 1} and j ∈
{0, . . . , q}. Then, we have ∫

Ln
q

Vj(K|Lq)dLq = βnjqVj(K)

with

βnjq =

(
q
j

)
κqκn−j(

n
j

)
κnκq−j

.

Proof. The mapping Lq 7→ K|Lq is continuous, therefore

Lq 7→ Vj(K|Lq)

is continuous.
We first consider the case q = n − 1. For j = q, we get Cauchy’s surface

formula which has been proved already at the beginning of section 4.1. For j < q,
we combine this with the Steiner formula (in dimension n− 1). We obtain

Vn−1(K + B(α)) =
nκn

2κn−1

∫
Ln

n−1

Vn−1(K|Ln−1 + [B(α) ∩ Ln−1])dLn−1

=
nκn

2κn−1

n−1∑
j=0

αn−1−jκn−1−j

∫
Ln

n−1

Vj(K|Ln−1)dLn−1.

(Here, we make use of the fact that Vn−1 is dimension invariant, hence Vn−1(K|Ln−1)
yields the same value in Ln−1 as in Rn.) On the other hand, Corollary 3.5.4 (or
Exercise 3.3.7) show that

Vn−1(K + B(α))

(
=

1

2
F (K + B(α))

)
=

n−1∑
j=0

αn−1−j (n− j)κn−j

2
Vj(K).

The formula for j < q = n − 1 follows now by comparing the coefficients in these
two polynomial expansions.

Finally, the case q < n− 1 is obtained by a recursion. Namely, assume that the
formula holds for q + 1. Then, using Theorem 4.1.2 we obtain∫

Ln
q

Vj(K|Lq)dLq =

∫
Ln

q+1

(∫
Ln

q (Lq+1)

Vj(K|Lq)dLq

)
dLq+1.
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The inner integral refers to the hyperplane case (in dimension q + 1) which we have
proved already. Therefore,∫

Ln
q

Vj(K|Lq)dLq = β(q+1)jq

∫
Ln

q+1

Vj(K|Lq+1)dLq+1

= β(q+1)jqβnj(q+1)Vj(K)

= βnjqVj(K),

where we have used the assertion for q+1 and the fact that K|Lq = (K|Lq+1)|Lq.

Remarks. (1) For j = q, the Cauchy-Kubota formulas yield

Vj(K) =
1

βnjj

∫
Ln

j

Vj(K|Lj)dLj,

hence Vj(K) is proportional to the mean content of the projections of K onto j-
dimensional subspaces. Since Vj(K|Lj) is also the content of the base of the cylinder
circumscribed to K (with direction space L⊥), Vj(K|Lj) was called the ‘quermass’
of K in direction L⊥. This explains the name ‘quermassintegral’ for the functionals
Wn−j(K) = cnjVj(K).

(2) For j = q = 1, we obtain

V1(K) =
1

βn11

∫
Ln

1

V1(K|L1)dL1.

This gives now a rigorous proof for the fact that V1(K) is proportional to the mean
width of K.

Exercises and problems

1. Prove the following generalizations of the Cauchy-Kubota formulas:

(a)
∫
Ln

q

V (q)(K1|Lq, . . . ,Kq|Lq)dLq = γnqV (K1, . . . ,Kq, B(1), . . . , B(1)︸ ︷︷ ︸
n−q

),

for K1, . . . ,Kq ∈ Kn, 0 ≤ q ≤ n− 1, and a certain constant γnq,

(b)
∫
Ln

q

S
(q)
j (K|Lq, A ∩ Lq)dLq = δnjqSj(K, A),

for K ∈ Kn, a Borel set A ⊂ Sn−1, 0 ≤ j < q ≤ n− 1, and a certain constant δnjq.
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4.3 Section formulas

Theorem 4.3.1 (Crofton). Let K ∈ Kn, q ∈ {0, . . . , n − 1} and j ∈ {0, . . . , q}.
Then, we have ∫

En
q

Vj(K ∩ Eq)dEq = αnjqVn+j−q(K)

with

αnjq =

(
q
j

)
κqκn+j−q(
n

q−j

)
κnκj

.

Proof. Here, we start with the case j = 0. From Theorem 4.1.3, we get∫
En

q

V0(K ∩ Eq)dEq =

∫
Ln

q

∫
L⊥q

V0(K ∩ (Lq + x))dxdLq.

On the right-hand side, the integrand fulfills

V0(K ∩ (Lq + x)) =

{
1

0
if

x ∈ K|L⊥q ,

x /∈ K|L⊥q .

Hence, using Theorems 4.1.2 and 4.2.1, we obtain∫
En

q

V0(K ∩ Eq)dEq =

∫
Ln

q

Vn−q(K|L⊥q )dLq

=

∫
Ln

n−q

Vn−q(K|Ln−q)dLn−q

= βn(n−q)(n−q)Vn−q(K)

= αn0qVn−q(K).

This proves the result for j = 0.
Now, let j > 0. We use the result just proven for K ∩ Eq (in Eq) and obtain

Vj(K ∩ Eq) =
1

βqjj

∫
En

q−j(Eq)

V0(K ∩ Eq−j)dEq−j.

Hence, ∫
En

q

Vj(K ∩ Eq)dEq =
1

βqjj

∫
En

q

∫
En

q−j(Eq)

V0(K ∩ Eq−j)dEq−jdEq

=
1

βqjj

∫
En

q−j

V0(K ∩ Eq−j)dEq−j

=
βn(n+j−q)(n+j−q)

βqjj

Vn+j−q(K)

= αnjqVn+j−q(K),

where we have first used Theorem 4.1.3 and then again the result above.
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Remarks. (1) Replacing the pair (j, q) by (0, n− j), we obtain

Vj(K) =
1

αn0(n−j)

∫
En

n−j

V0(K ∩ En−j)dEn−j

=
1

αn0(n−j)

∫
K∩En−j 6=∅

dEn−j

=
1

αn0(n−j)

µn−j({En−j ∈ En
n−j : K ∩ En−j 6= ∅}).

Hence, Vj(K) is (up to a constant) the measure of all (n− j)-flats which meet K.

(2) We can give another interpretation of Vj(K) in terms of flats touching K.
Namely, consider the set

A(α) := ({En−j−1 ∈ En
n−j−1 : K ∩ En−j−1 = ∅, K + B(α) ∩ En−j−1 6= ∅}).

These are the (n − j − 1)-flats meeting the parallel body K + B(α) but not K. If
the limit

lim
α→0

1

α
µn−j−1(A(α))

exists, we can interpret it as the measure of all (n − j − 1)-flats touching K. Now
(1) and Exercise 3.3.7 show that

1

α
µn−j−1(A(α)) =

αn0(n−j−1)

α
[Vj+1(K + B(α))− Vj+1(K)]

=
αn0(n−j−1)

α

j∑
i=0

αj+1−i

(
n− i

n− j − 1

)
κn−i

κn−j−1

Vi(K)

→ αn0(n−j−1)(n− j)
κn−j

κn−j−1

Vj(K),

as α → 0.

(3) We can use (1) to solve some problems of Geometrical Probability. Namely, if
K,K0 ∈ Kn are such that K ⊂ K0 and V (K0) > 0, we can restrict µq to {Eq ∈ En

q :
K0 ∩ Eq 6= ∅} and normalize it to get a probability measure. A random q-flat Xq

with this distribution is called a random q-flat in K0. We then get

Prob(Xq ∩K 6= ∅) =
Vn−q(K)

Vn−q(K0)
.

As an example, we mention the Buffon needle problem. Originally the problem
was formulated in the following way: Given an array of parallel lines in the plane
R2 with distance 1, what is the probability that a randomly thrown needle of length
L < 1 intersects one of the lines? If we consider the disc of radius 1

2
around the center

of the needle, there will be almost surely exactly one line of the array intersecting
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this disc. Hence, the problem can be formulated in an equivalent way: Assume the
needle N is fixed with center at 0. What is the probability that a random line X1

in B(1
2
) intersects N? The answer is

Prob(X1 ∩N 6= ∅) =
V1(N)

V1(B(1
2
))

=
L

π/2

=
2L

π
.

(4) In continuation of (3), we can consider, for K, K0 ∈ Kn with K ⊂ K0 and
V (K0) > 0 and for a random q-flat Xq in K0, the expected j-th intrinsic volume of
K ∩Xq, j ∈ {0, . . . , q}. We get

EVj(K ∩Xq) =

∫
Vj(K ∩ Eq)dEq∫
V0(K0 ∩ Eq)dEq

=
αnjqVn+j−q(K)

αn0qVn−q(K0)
.

If K0 is supposed to be known (and K is unknown) and if Vj(K ∩Xq) is observable,
then

αn0qVn−q(K0)

αnjq

Vj(K ∩Xq)

is an unbiased estimator of Vn+j−q(K). Varying q, we get in this way three estimators
for the volume V (K), two for the surface area F (K) and one for the mean width
B(K).

The estimation formulas in Remark (4) would be of practical interest, if the set K
under consideration was not supposed to be convex. In this final part, we therefore
want to generalize the Crofton formulas to certain non-convex sets. The set class
which we consider is the convex ring Rn, which consists of finite unions of convex
bodies,

Rn := {
k⋃

i=1

Ki : k ∈ N, Ki ∈ Kn}.

We assume ∅ ∈ Kn, hence Rn is closed against finite unions and intersections, and
it is the smallest set class with this property and containing Kn. It is easy to see
that Rn is dense in the class Cn of compact subsets of Rn (in the Hausdorff metric),
hence any compact set can be well approximated by elements of Rn.

Our first goal is to extend the intrinsic volumes Vj to sets in Rn. Since Vj is
additive on Kn (see the exercises), we seek an additive extension. Here a functional
ϕ on Rn (or Kn) is called additive, if

ϕ(K ∪M) + ϕ(K ∩M) = ϕ(K) + ϕ(M).
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On Rn, we require that this relation holds for all K, M ∈ Rn, whereas on Kn

we can only require it for K, M ∈ Kn with K ∪ M ∈ Kn. In addition, we as-
sume that an additive functional ϕ fulfills ϕ(∅) = 0. If ϕ : Rn → R is addi-
tive, the inclusion-exclusion principle (which follows by induction) shows that, for
A ∈ Rn, A =

⋃k
i=1 Ki, Ki ∈ Kn, we have

(∗) ϕ(A) =
∑

v∈S(k)

(−1)|v|−1ϕ(Kv).

Here, we have used the following notation: S(k) is the set of all non-empty finite
subsets of {1, . . . , k}, |v| is the cardinality of v, and Kv, for v = {i1, . . . , im}, is the
intersection Ki1 ∩ · · · ∩Kim . (∗) shows that the values of ϕ on Rn depend only on
the behavior of ϕ on Kn. In particular, if an additive functional ϕ : Kn → R has
an additive extension to Rn, then this extension is unique. On the other hand, (∗)
cannot be used to show the existence of such an additive extension, since the right-
hand side may depend on the special representation A =

⋃k
i=1 Ki (and, in general,

a set A ∈ Rn can have many different representations as a finite union of convex
bodies). There is a general theorem of Groemer which guarantees the existence
of an additive extension for all functionals ϕ which are additive and continuous on
Kn. For the intrinsic volumes Vj, however, we can use a direct approach due to
Hadwiger.

Theorem 4.3.2. For j = 0, . . . , n, there is a unique additive extension of Vj onto
Rn.

Proof. It remains to show the existence.
We begin with the Euler characteristic V0 and prove the existence by induction

on n, n ≥ 0.
It is convenient to start with the dimension n = 0 since R0 = {∅, {0}}(= K0).

Because of V0(∅) = 0 and V0({0}) = 1, V0 is additive on R0.
For the step from dimension n − 1 to dimension n, n ≥ 1, we choose a fixed

direction u0 ∈ Sn−1 and consider the family of hyperplanes Eα := {〈·, u0〉 = α}, α ∈
R. Then, for A ∈ Rn, A =

⋃k
i=1 Ki, Ki ∈ Kn, we have

A ∩ Eα =
k⋃

i=1

(Ki ∩ Eα)

and by induction hypothesis the additive extension V0(A ∩Eα) exists. From (∗) we
obtain that the function fA : α 7→ V0(A ∩ Eα) is integer-valued and bounded from
below and above. Therefore, fA is piecewise constant and (∗) shows that the value
of fA(α) can only change if the hyperplane Eα supports one of the convex bodies
Kv, v ∈ S(k). We define the ‘jump function’

gA(α) := fA(α)− lim
β↘α

fA(β), α ∈ R,
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and put

V0(A) :=
∑
α∈R

gA(α).

This definition makes sense since gA(α) 6= 0 only for finitely many values of α.
Moreover, for k = 1, that is A = K ∈ Kn, K 6= ∅, we have V0(K) = 0+1 = 1, hence
V0 is an extension of the Euler characteristic. By induction hypothesis, A 7→ fA(α)
is additive on Rn for each α. Therefore, as a limit, A 7→ gA(α) is additive and so V0

is additive. The uniqueness, which we have already obtained from (∗), shows that
this construction does not depend on the choice of the direction u0.

Now we consider the case j > 0. For A ∈ Rn, A =
⋃k

i=1 Ki, Ki ∈ Kn, and α > 0,
x ∈ Rn, we have

A ∩ (B(α) + x) =
k⋃

i=1

(Ki ∩ (B(α) + x)).

Therefore, (∗) implies

V0(A ∩ (B(α) + x)) =
∑

v∈S(k)

(−1)|v|−1V0(Kv ∩ (B(α) + x)).

Since V0(Kv ∩ (B(α) + x)) = 1, if and only if x ∈ Kv + B(α), we then get from the
Steiner formula∫

Rn

V0(A ∩ (B(α) + x))dx =
∑

v∈S(k)

(−1)|v|−1

∫
Rn

V0(Kv ∩ (B(α) + x))dx

=
∑

v∈S(k)

(−1)|v|−1Vn(Kv + B(α))

=
∑

v∈S(k)

(−1)|v|−1

(
n∑

j=0

αn−jκn−jVj(Kv)

)

=
n∑

j=0

αn−jκn−j

 ∑
v∈S(k)

(−1)|v|−1Vj(Kv)

 .

If we define
Vj(A) :=

∑
v∈S(k)

(−1)|v|−1Vj(Kv),

then ∫
Rn

V0(A ∩ (B(α) + x))dx =
n∑

j=0

αn−jκn−jVj(A).

Since this equation holds for all α > 0, the values Vj(A), j = 0, . . . , n, depend only
on A and not on the special representation, and moreover Vj is additive.
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Remarks. (1) The formula∫
Rn

V0(A ∩ (B(α) + x))dx =
n∑

j=0

αn−jκn−jVj(A),

which we used in the above proof, is a generalized Steiner formula; it reduces to
the classical Steiner formula if A ∈ Kn.

(2) The extended Euler characteristic V0 (also called the Euler-Poincare char-
acteristic) plays also an important role in topology. In R2 and for A ∈ R2, V0(A)
equals the number of connected components minus the number of ‘holes’ in A.

(3) On Rn, Vn is still the volume (Lebesgue measure) and F = 2Vn−1 can still be
interpreted as the surface area. The other (extended) intrinsic volumes Vj do not
have a direct geometric interpretation.

Since union and intersection can be interchanged (as we have used already in the
above arguments), the additivity of Vj allows us directly to extend the Crofton
formulas to the convex ring.

Theorem 4.3.3 (Crofton). Let A ∈ Rn, q ∈ {0, . . . , n − 1} and j ∈ {0, . . . , q}.
Then, we have ∫

En
q

Vj(A ∩ Eq)dEq = αnjqVn+j−q(A).

As we have explained in a previous remark, these formulas can be used to give
unbiased estimators for Vn+j−q(A) based on intersections A∩Xq with random q-flats
in the reference body K0. This can be used in practical situations to estimate the
surface area of a complicated tissue A in, say, a cubical specimen K0 by measuring
the boundary length L(A∩X2) of a planar section A∩X2. Since the latter quantity
is still complicated to obtain, one uses the Crofton formulas again and estimates
L(A ∩ X2) from counting intersections with random lines X1 in K0 ∩ X2. Such
stereological formulas are used and have been developed further in many applied
sciences including medicine, biology, geology, metallurgy and material science.

Exercises and problems

1. Calculate the probability that a random secant of B(1) is longer than
√

3. (Accord-
ing to the interpretation of a ‘random secant’, one might get here the values 1

2 , 1
3 or

1
4 . Explain why 1

2 is the right, ‘rigid motion invariant’ answer.)

2. Let K, K ′ ∈ Kn and K ∪K ′ ∈ Kn. Show that:

(a) (K ∩K ′) + (K ∪K ′) = K + K ′,
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(b) (K ∩K ′) + M = (K + M) ∩ (K ′ + M), for all M ∈ Kn.

(c) (K ∪K ′) + M = (K + M) ∪ (K ′ + M), for all M ∈ Kn.

3. Let ϕ(K) := V (K, . . . , K︸ ︷︷ ︸
j-mal

,Mj+1, . . . ,Mn), where K, Mj+1, . . . ,Mn ∈ Kn. Show that

ϕ is additive, that is

ϕ(K ∩K ′) + ϕ(K ∪K ′) = ϕ(K) + ϕ(K ′)

for all K, K ′ ∈ Kn with K ∪K ′ ∈ Kn.

4. Show that the mappings K 7→ Sj(K, A) are additive on Kn, for all j ∈ {0, . . . , n}
and all Borel sets A ⊂ Sn−1.

5. Show that the convex ring Rn is dense in Cn in the Hausdorff metric.

6. Let ϕ : Rn → R be additive and A ∈ Rn, A =
⋃k

i=1 Ki,Ki ∈ Kn. Give a proof for
the inclusion-exclusion formula

(∗) ϕ(A) =
∑

v∈S(k)

(−1)|v|−1ϕ(Kv).
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