Lagrangian submanifolds and
hamiltonian systems

By ALAN WEINSTEIN*

This paper consists of two parts. The first part (Sections 1 to 6) is
devoted to the geometry of lagrangian submanifolds of symplectic manifolds.
Essentially, we assume that lagrangian submanifolds L, and L, in a
symplectic manifold (P, Q) intersect along a submanifold X, and we see
what happens when L, and L, are slightly perturbed. Under fairly general
conditions, we can prove that the perturbed lagrangian submanifolds must
have points of intersection near X, and we can estimate the size of the inter-
section set in terms of the topology of X. In the second part of the paper
(Sections 7 to 11), we apply the intersection theory to the study of hamil-
tonian dynamical systems. We define the notion of a canonical boundary
value problem for a hamiltonian system, which includes the problem of
finding periodic solutions with prescribed energy or prescribed period.
Assuming that a given problem admits a manifold £ of solutions which is
non-degenerate in a certain sense, we show that, after a small perturbation
of the hamiltonian function or of the boundary conditions, there remain
solutions near ¥ whose number can be estimated in terms of the topology of X.

Our results, involving critical point theory for functions on X, resemble
those which might have been obtained were the calculus of variations to be
applicable, but our functions are obtained directly from the geometry of
symplectic manifolds, rather than from functionals on path spaces. Thus,
we use no analysis beyond the usual tools of differential geometry: the
implicit function theorem and integration of vector fields. Unfortunately,
these geometrical methods are presently applicable only to problems obtained
by slight perturbation from problems having manifolds of solutions. Whether
this limitation is essential remains to be seen. In any case, the problems to
which the present method is applicable are of considerable interest. They
include the existence of periodic orbits of the second kind in the planar (un-
restricted) three body problem [4] and of periodic orbits near an equilibrium
point of a non-linear hamiltonian system. In particular, we prove that, near
an equilibrium point in R*" at which the linearized system has hamiltonian
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2 o, (@ + v, the non-linear system has at least n periodic orbits on each
energy surface. See the end of Section 10 for a discussion of this and more
detailed results.

In Section 11, we relate our work to the averaging method of Reeb [26]
and Moser [21] and generalize their results.

Since lagrangian submanifolds are of interest for quantum mechanics
[3], [18], [31], partial differential equations [7], [10], [13], and singularity
theory [33], as well as for hamiltonian systems, we develop the general
theory in Sections 1 through 6 in more detail than is necessary for the
present applications. The reader whose primary interest is in the results
concerning hamiltonian systems may wish to skip to Section 7 after reading
the definitions in Section 1, referring back to Sections 2 through 6 only when
it is necessary.

Some of the results in this paper were announced in [35]. The proofs
here are not the same as those available when the announcement was
written. The original proofs of the announced results are contained in [36],
which will not be published.

Added December 21, 1972. V. I. Arnold has pointed out that his paper
“Sur une propriété topologique des applications globalement canoniques de la
mécanique classique”, C. R. Acad. Sci. Paris 261 (1965) 3719-3722, contains
the idea of representing certain lagrangian submanifolds of cotangent bundles
as graphs of closed forms. I would also like to thank J. Roels, whose careful
reading of this manuscript led to the correction of numerous typographical
errors. It would be nice to be able to say that any errors which remain are
his responsibility, but of course they are not.

PART I. INTERSECTION THEORY

1. Basic definitions

The basic category for this paper is that of finite dimensional C~
G-manifolds, where G is a fixed but arbitrary compact Lie group, which we
refer to as the symmetry group. Each manifold M, therefore, is equipped
with an action of G on it, and all the natural bundles over M are equipped
with the natural lifting of the action on M. All mappings are equivariant;
in particular, each covariant tensor field is invariant under the diffeomorphism
corresponding to each element of G.

Most of the results here can be extended to infinite-dimensional manifolds
modeled on Banach spaces, following the approach in [34]. See, however,
the remarks after Lemma 4.2. Staying in the finite dimensional case simplifies
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the exposition, and I know of no significant applications to the infinite-
dimensional situation. In fact, the appropriate objects for the geometric
study of mechanical systems with infinitely many degrees of freedom
(fluids, fields, elastic media, etc.) may very well be weak symplectic struc-
tures, whose properties are much more complicated than those of symplectic
structures [17].

We refer the reader to [34] for further details regarding the definitions
and facts about symplectic manifolds which follow.

A symplectic manifold is a pair (P, Q), where P is a manifold and Q is
a closed 2-form on P which is non-singular in the sense that the bundle
mapping Q: TP — T*P, defined by Q(x) = 2 —Q, is an isomorphism. Q is
called a symplectic structure on P.

A subspace V& T,P is called <sotropic if (x,y)e V x V implies
Q(x,y) = 0. V is called lagrangian if it is isotropic and if there exists an
isotropic W such that V@ W = T,P. Equivalently, V is lagrangian if
and only if it is isotropic and dim V = (1/2) dim T,P.

An immersion i: M — P is called isotropic [lagrangian] if the image of
T.i:T,M— T,,,P is isotropic [lagrangian] for each m e M. Clearly, ¢ is
isotropic [lagrangian] if and only if +*Q = 0 [and dim M = (1/2) dim P]. A
submanifold L & P is called isotropic [lagrangian] if the inclusion mapping
1.2 L — P is isotropic [lagrangian]. The image of an isotropic [lagrangian]
immersion is a union of isotropic [lagrangian] submanifolds. It is to the
lagrangian submanifolds that our attention will generally be confined.

Since we will be dealing with the behavior of lagrangian submanifolds
under small perturbations, it is useful to topologize the set £(P, Q) consisting
of all lagrangian submanifolds of (P, Q). We will only be concerned with
what might be called “lower” topologies. (A finer topology is defined in [10].)

Let A be a closed subset of a manifold M whose dimension is half that
of P, and let @ be an open subset in the fine C' topology on the space
C=(4, P) of all mappings from A to P. (See [22] for a discussion of the
topology of mapping spaces.)

The sets 91,,; = {L & (P, Q) | (A4) & L for some i@}, for all A and
(, form a basis for a topology on £(P, Q), called the fine (upper) C' topology.
The subtopology generated by those 91,,s for which A is compact is called
the compact, or coarse, C' topology.

2. Cotangent bundles

The principal technique of this paper is the parametrization of subsets of
(P, Q) by closed 1-forms on certain manifolds. In this section we will
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examine in detail the special case in which P is a cotangent bundle. In
Section 4, we will show how to reduce the general case to the one considered
here, by the use of cotangent coordinate systems.

The cotangent bundle T*M of a manifold M, with projection =,
carries a natural 1-form w, characterized by the property that, for each
section ¢: M — T*M, ¢*w, is equal to ¢ itself. The 2-form Q, = —dw, is
a natural symplectic structure on T*M. (If M is modeled on a Banach space
B, Q, is a symplectic structure if and only if B is reflexive.) If S is an open
subset of M, then T*S may be considered as an open subset of T*M. The
pullbacks to T*S of w, and Q, are equal to ws; and Qg, respectively.

A lagrangian submanifold L € £(T*M, Q,,) is horizontal if w,oi, is an
embedding of L onto an open subset of M. If L is horizontal, and its pro-
jection in M is the subset S, then there is a unique section ¢: S—>T*S& T* M
such that #(S) = L. Since L is lagrangian, ¢*Q, = 0. But ¢*Q, = ¢*Qs =
¢*(—dwg) = —d(¢*ws) = —dg, so ¢ is a closed 1-form on S. Conversely, if
¢ is a closed 1-form on an open subset S & M, then ¢(S) & T*S & T*M is
a horizontal lagrangian submanifold whose projection in M is S.

In summary, for any open S & M, the mapping eg,,: ¢ +— ¢(S) isa 1-1
correspondence between the space Z'(S) of closed 1-forms on S and the
subset £4(T*M, Q,) = £(T*M, Q,,) consisting of the horizontal lagrangian
submanifolds whose projection in M is S. Z'(S) inherits fine and coarse
C' topologies as a subset of the space C=(S, T*S), and it is clear that
st ZY(S) — £(T*M, Q,) is continuous when domain and range are given
C* topologies of the same type. Then next proposition shows how close ey,
comes to being a homeomorphism onto an open subset of L(T*M, Q).

PROPOSITION 2.1. (a) If B is an open subset of Z' (S), then the set of
lagrangian submanifolds which contain an element of es ,(B) is open in
L(T*M, Q,,) in the fine C* topology.

(b) Suppose S is compact and that ¢ € Z'(S) extends to an element
é e Z\(S), where S contains S. If B is any coarse C' neighborhood of ¢ in
Z\(S), then the set of lagrangian submanifolds which contain an element of
es.(B) is a neighborhood of ez, ($) in the coarse C' topology.

Proof. Let 9 be the subset of C=(S, T*M) consisting of those f: S —
T*M for which m,of is an embedding whose image is S. We claim that 9
is open in the fine C* topology. First of all, since S is open in M, the set
9, of all f: S— T*M such that (z,of)(S) & S is already open in the fine
C° topology, and the mapping f - wyof from 9D, to C=(S, S) is continuous
in the fine C' topologies. Since the diffeomorphisms of S are open in



LAGRANGIAN SUBMANIFOLDS 381

C=(S, S) (see [22]), it follows that D is open in D,.

Let & be an open subset of C=(S, T*M) such that B = &N Z'(M).
Since the mapping fi— fo(m,0of)™" is continuous from D to C=(S, T*M)
the set @ = {f € D| fo(m,of) " €&} is open in C=(S, T*M).

The proof of (a) will be complete if we can show that 91 is precisely
the set of lagrangian submanifolds which contain an element of ey (B). If
L €94, then L contains f{S) for some fe(. But f(S) is equal to
fo(myof)7(S), and fo(m,of) " is in &. Since wyofo(m,0f)™" is the identity
on S, fo(w,of) " is a 1-form on S; since f(S) is lagrangian, fo(m,of)™" is
closed. Thus, fo(z,of)'e Z(M)N&E = B, and L contains an element of
es,u(B).

Conversely, suppose L e £(T*M,Q,) contains an element eg ,(p) of
es.(B). Since ¢ is a section, ¢ is in D and go(w,09) ' = ¢ lies in B = &,
so ¢ lies in (. Thus, L contains eg ,(¢) = ¢(S), so L lies in 94 4.

To prove (b), we begin by choosing an open set U & M, containing S,
whose closure is compact and contained in S. Let € be the set consisting
of those f: U— T*M for which the restriction of 7,of to U is an embedding
whose range contains S. In the space C=(U, M), the subset consisting of
maps whose restriction to U is an embedding covering S is open. (To
prove this “folk theorem”, one may use the ideas in 1.5 and 1.6 of [12].)
It follows that € is open in C=(U, T*M). The remainder of the proof is
similar to that of (a); the details are left to the reader. Q.E.D.

The intersection theory of horizontal lagrangian submanifolds seems
rather trivial, but since this theory can be carried over to the general case,
we state the results in some detail.

PROPOSITION 2.2. Let L, = ¢,(S) and L, = ¢,(S) be in L(T*M, Q,).
Then the zero set of the form ¢, — ¢, € Z'(S) is mapped by the embedding
(1/2) (¢, + ¢,): S — T*M onto the intersection L, N L.

The proof is trivial. The proposition says that the problem of finding
intersections of L, and L, is reduced to that of finding zeros of ¢, — ¢,.
We denote the form ¢,— ¢, by ®(L,, L,) € Z'(S) and the embedding (1/2) (¢, + ¢.)
by E(L,, L, € C=(S, T*M).

The next result is an immediate consequence of Propositions 2.1 and 2.2.

COROLLARY 2.3. (a) Let L, and L, be in L£5(T*M, Q). Let B be any
C' neighborhood of ®(L,, L,) in Z'(S) and let & be any C' neighborhood
of E(L,, Ly in C=(S, T*M). Then there exists a fine C' mneighborhood
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DX, of (Ly, Ly) in £(T*M, Q,) x &(T*M, Q,) and mappings D, 9, X O,—
B and E:91, X 9,—E& such that, for each pair (Li, Ly) in 91, X 91,
E\(L;, L) ts an embedding of S into T*M which maps the zero set of
Oy(L;, L) tnto the intersection L} N L.

(b) Suppose, in addition to the assumptions in (a), that S is compact;
L, and L, are contained in L, and L, which lie in 35(T*M, Q,,), where S
contains S; and B and & are coarse C' neighborhoods. Then there exists
a coarse C* neighborhood 9, x N, of (L, L, in L(T*M, Q) x &(T*M, Q,)
such that the conclusions in (a) hold.

The preceding corollary becomes useful only if we can guarantee the
existence of zeros for ®, (L), L;). Two problems arise in this respect. The
first is that the manifold S, is generally not compact, so that it always
carries functions with no critical points and, hence, closed forms without
zeros. We will deal with this problem in the next section by making an
assumption on ®(L,, L,) (=Do(Ly, L,)) and using the fact that ®,(L!, L}
lies nearby. The second problem is that the form ®.(L}, L;), while closed,
may not be exact. This problem is dealt with in Section 5, where we discuss
a cohomology invariant for pairs of lagrangian submanifolds.

3. Clean intersections and non-degenerate zero manifolds

We begin with a definition in the general situation. If L, and L, are ele-
ments of £(P, Q) and X L, N L, is a closed submanifold of P, we say that
L, and L, intersect cleanly along T if, for each p e X, the inclusion T,X &
T,L, N T,L, is an equality.

Let us interpret this definition in case L, = ¢,(S) and L, = ¢,(S) are
elements of L£,(T*M, Q,). Denote by 0 the zero section of T*M. The
diffeomorphism of T*M which translates each fibre 75;'(m) by — ¢,(m) maps
L, and L, onto 0(S) and (¢, — ¢,)(S) = ®(L,, L,)(S). It is clear that L, and
L, intersect cleanly along X if and only if 0(S) and ®(L,, L,)(S) intersect
cleanly along the submanifold 0(z,(%)).

The problem is reduced then to the following: given ¢ € Z'(S) containing
the submanifold 9C & S in its zero set, when do 0(S) and 4(S) intersect
cleanly along 0(9X)? Let se 9. Then T,,T*M is naturally isomorphic to
the direct sum T\M P T:M. T,,0(S) corresponds to the summand T M P
{0}. Since ¢ is a section of T*M, T,,4(S) is a set of the form
{xP D) |ve T,M}, where D,s. T.M— T M is alinear mapping naturally
determined by ¢ and called the intrinsic derivative of ¢ at s. It follows
from the fact that T,¢(S) is isotropic that D.¢ is symmetric; i.e., (D,¢)* =
D, modulo the natural identification of (T*M)* with T,M. In fact, D,
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is just the linear mapping associated with the hessian at s of any function
defined near s whose differential is ¢.
Now

Ty0,0(S) N Toy9(S) = {w D Dyg(w) | Dyg(w) = 0} = Ker D, P {0},

while
To,0(60) = T,9C @ {0} .

Thus, 0(S) and ¢(S) intersect cleanly along 0(¢X) if and only if, for every
s €S\, theinclusion Ker D¢ & T,SC is an equality. We express this equality
by saying that 9C is a mon-degenerate zero mantfold for ¢. If ¢ = df for
some function f defined on a neighborhood of 9C (such f always exists, by
the Poincaré lemma for vector bundles; see Section 3 of [34]), then & is
non-degenerate as a zero manifold for ¢ if and only if ¢X is non-degenerate
in the sense of Bott [6] as a critical manifold for f.
In the terminology just introduced, our result is:

PROPOSITION 3.1. L, and L, in L4T*M, Q,) intersect cleanly along

S L,nL, if and only if 7,(2) 1s a mon-degenerate zero manifold of
O(L,, L,).

Suppose, now that ¢ is a closed 1-form on a manifold S, with &« & S
as a non-degenerate zero manifold. We wish to see what happens in a
neighborhood of 9 when the form ¢ is slightly perturbed. Since the
symmetry group is compact, X has an equivariant tubular neighborhood
in S. As we will be interested only in phenomena occurring near ¢, we may
assume that S itself is the tubular neighborhood, so that there is a retrac-
tion 0: S— 9C. For each se ¢\, the pullback ¢, of ¢ to p7'(s) has {s} as
a non-degenerate zero manifold. (This is easily seen if one considers ¢ as
the differential of a function f having 9C as a non-degenerate critical
manifold.) In other words, the mapping ¢,: 07'(s) — T*p'(s) is transversal
to the zero section at s. If v is sufficiently close to ¢ in the fine C' topology,
there exists for each se $C a uniquely determined point F(y)(s) near s in
07'(s) which is a zero of the pulled back form +,. In fact, the mapping
F(y): & — S is a smooth section of o which approaches the inclusion as +
approaches ¢. (A complete proof of the previous two sentences requires that
one consider U, ¢, and |, v, as sections of the smooth bundle U, T*07'(s).
One observes that |, ¢, is transversal to the zero section and then applies
standard results in transversality theory, essentially the transversal isotopy
theorem of [2].)
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Now let » = F(y)(s) € F(4)(9C). Since F(v) is a section of o, we have
a natural isomorphism

T.S = T,07'(s) @ T,F(y)(X) .

By the way F(y) was defined, ¢(r) annihilates the first summand. Thus,
#(r) is zero if and only if it annihilates the second summand. In other
words, the zero set of the pullback of + to F(4)(9C) is contained in the
zero set of 4. Conversely, if +(r) = 0 for some r €S, then in particular
Yo (r) = 0. If r is sufficiently close to 9C and + is sufficiently close to ¢,
then » must be equal to F(y)(0(r)), and the previous observation applies.
Our result is summarized as follows.

PROPOSITION 3.2. Let ¢ be a closed 1-form on the manifold S, having
oC as a non-degenerate zero manifold. Let & = C~(9C, S) be any C* neighbor-
hood of the inclusion mapping. Then there exist

a netghborhood S, of 9C in S,
a netghborhood B of ¢ in Z'(S),
a mapping F: B — C(, S) N &

such that, for each + € B, F(y) is an embedding and the zero set of | S,
18 equal to the zero set of the pullback of + to F(y)(9C). In other words, the
zero set of | S, is the image under F(y) of the zero set of [F(y)]*+yr.

Combining Proposition 3.2 with Corollary 2.3, we have the following
theorem, which is our fundamental result in the case of cotangent bundles.

THEOREM 3.3. Let S be an open subset of M, and let L, and L, in
Ly(T*M, Q,,) intersect cleanly along the closed submanifold X. Let &<
C=(Z, T*M) be any C' mneighborhood of the inclusion. Then there exist a
fine C' metghborhood 91, x 9, of (L, Ly in L£(T*M, Q,) x &(T*M, Q,)
and mappings G: 9, X N, — & and T': 9, X 9, — Z'(Z) such that, for each
pair (L7, Lj) in 91 X 9, G(L], L;) is an embedding which maps the zero
set of T'(L], L}) into the intersection L, N L;. If T is compact, then 91, X 9,
can be taken to be a coarse C' meighborhood.

4. Cotangent coordinates

Up to now, we have assumed that the lagrangian submanifolds L, and
L, were located in a cotangent bundle and that they were nicely situated
there. Although, in many applications, the symplectic manifold of interest
is indeed a cotangent bundle, the lagrangian submanifolds are often not
horizontal. In this case, it is simpler to forget that one is in a cotangent
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bundle and pass to the case of an arbitrary symplectic manifold. The goal
of this section is to show how to reduce the general case to the special one
studied in Sections 2 and 3.

A cotangent coordinate system on a symplectic manifold (P, Q) is a triple
(P,, M, «) where P, is an open subset of P and a: P,— T*M is an open
embedding such that a*Q, = Q. We will often denote the triple by the
symbol & alone. A mapping «.: (P, Q) —L(T*M, Q,,) is defined by a,(L) =
a(L N P,). This mapping is continuous between fine or coarse C' topologies.

The idea of this section is, given L, and L, in £(P, Q), to try to con-
struct a cotangent coordinate system (P,, M, «) such that a,(L, and a,(L,)
are in L((T*M, Q,) for some open S < M, and then to apply the inter-
section theory of Sections 2 and 3.

We begin the task of constructing cotangent coordinate systems with a
digression on vector bundles. A symplectic structure on a vector bundle E
over a manifold is a bilinear form Q on E such that the mapping Q: E — E*
defined by Q(x)(y) = Q(x, ) is an isomorphism. (We make the convention
that, whenever we write Q(x, v), it is assumed that © and y are in the same
fibre of E.) A symplectic structure Q on a manifold P may be considered
as a symplectic structure on the tangent bundle TP over P (but not con-
versely, since a symplectic structure on P must be closed). More generally,
if £ is any submanifold of P, then Q induces a symplectic structure on the
restricted tangent bundle 7TP.

If E is any symplectic vector bundle (i.e., a vector bundle together
with a symplectic structure Q on it), and 4 & E is a subbundle, then
A-={ve E|Q(z, y) = 0 whenever y € A} is also a subbundle of E. It isalways
true that dimA4 + dim A* = dim E. (Here, dim means fibre dimension, of
course.) If ANA- =0, or, equivalently, if A@ A" = E, we call A non-
singular. In this case, the restriction of Q to A is a symplectic structure
on A. If A< A, we call A isotropic. If A = A", or, equivalently, if A
is isotropic and dim A = (1/2) dim E, we call A lagrangian. For example, if
L is a submanifold of a symplectic manifold (P, Q), then L is isotropic
[lagrangian] if and only if TL is isotropic [lagrangian] as a subbundle of
T, P.

Subbundles A4, and A, in E are said to intersect uniformly if A4, N 4,
is a subbundle; i.e., if A, N A4, has constant fibre dimension. For example,
if the lagrangian submanifolds L, and L, in £(P, Q) intersect cleanly
along X, then T:L, and T.L, intersect uniformly in T;P.

The following proposition will enable us to construct good cotangent
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coordinate systems near clean intersections of lagrangian submanifolds.

ProPOSITION 4.1. If A, and A, are uniformly intersecting lagrangian
subbundles of a symplectic vector bundle E, then there exists a lagrangian
subbundle B < E such that A, B = A, B = E.

Proof. First, consider the case in which A, @ A, = E. The mapping
a: A, — AF defined by a(x)(y) = Qx, y) is an isomorphism, because its
kernel is A N4, = A, NA,=0. Let S: 4, — AF be the symmetric iso-
morphism associated with a riemannian metric on the vector bundle A.
Such a metric exists because the symmetry group is compact. Now it is
easy to check that {x + a™'S(») |z € A,} is a lagrangian subbundle comple-
mentary to A, and A.,.

Second, consider the case A, = A,. By Lemma 4.2 below, there exists
a lagrangian complement to 4, = A, in E. (Let X be the empty set.)

In the general case, we can choose subbundles C, and C, such that
A=A NA)DC, and A, = (4, N A) D C,. This, again, follows from
the compactness of the symmetry group. Obviously, C, N C, = 0.

We will now show that C, @ C, is non-singular. Let x,€C; (1 =1, 2)
be such that », + x,€ (C, D C,) N (C, P C,)*. For all y, e C,, we have

0= Q@ + @, %) = Qy, ¥2) + Ao, Yo) = Q@ o)
since C, is isotropic, so x, € C;. On the other hand,

xleclgA1:Afg(A1ﬂAz)Lo
Thus
ze[(ANA)PC] = A4, = A4,.

But C,N A, =0, so a, = 0. Similarly, x, = 0, so x, + %, must be zero.

In the symplectic vector bundle C, @ C,, C, and C, are lagrangian, so
we are in the first special case considered above, and there is a bundle C,
lagrangian in C, @ C,, such that C,C, = C.pC = C,p C.

The subbundle (C, @ C,)* is also non-singular, and it contains A4, N A4,.
In fact, counting of dimensions shows that A4, N A4, is lagrangian in
(C, & C,)*, so the second special case considered above implies that there
is a subbundle A, lagrangian in (C,& C,)*, such that (L,N L) P A4 =
(C. D Cy*.

Let B=C@ A. Since E= (C,pC,) P (C.P Cy*, it is easy to check
that B is lagrangianand A, B= A, B = E. Q.E.D.

In case A, = A,, the following relative version of Proposition 4.1 holds.
We use the result in the proof of Proposition 4.1 and again in our later
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discussion. Incidentally, the natural common generalization of Proposition
4.1 and Lemma 4.2 is false.

LEmMA 4.2. If A is a lagrangian subbundle of a symplectic vector
bundle E over a manifold M, T is a submanifold of M, and the restricted
bundle As & Es admits a lagrangian complement Bs, then Bs extends to a
lagrangian complement B of A in E.

Proof. Choose an inner product on Es in which 4; and B; are per-
pendicular, and extend it to an inner product {, ) on E. The bundle mapping
K: E— FE defined by {(K(x), ¥> = Q(x, y) is a skew-adjoint isomorphism, so
— K? is positive definite. Let P be the positive definite square root of — K?,
and set J= KP™'. The arguments used in the proof of Proposition 5.1 of [34]
show that J(A) is lagrangian and A P J(A) = E.

It remains to show that J(A4s) = Bs. Since A; and Bs are isotropic, it
is clear that K(As;) = Bs and K(Bs) = As. As, being invariant under — K?,
is also invariant under its square root P. Then

J(As) = KP7'(A4;) = K(4s) = Bs . Q.E.D.

We conclude this digression with some remarks. Hormander [13] de-
fines a cohomology invariant « for pairs of lagrangian subbundles of a
symplectic vector bundle and shows that & vanishes if either the hypothesis
or the conclusion of Proposition 4.1 holds. The present (though not the
original) proof of Proposition 4.1 was strongly motivated by Hormander’s
constructions.

Proposition 4.1 extends immediately to the category of vector bundles
with Hilbert space fibres, but it fails for general Banach spaces, even if the
symmetry group and the base space each reduce to a single element. If B
is any reflexive Banach space, B B* carries a symplectic structure for
which the summands are lagrangian [34]. If there existed a mutual
lagrangian complement, B and B* would be isomorphic. Letting B be the
sequence space [? (p = 2), we see that this is not necessarily the case.

Proposition 4.1 may be interpreted as a result concerning projective
modules over the ring of C* functions on the base space. Related results
for more general rings may be found in Novikov [23]. Novikov does not
seem to prove Proposition 4.1, though.

Finally, we remark to readers of [35] or [36] that Proposition 4.1 is the
basis for the elimination of the hypothesis of “regularity” in the present
work.
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Returning to the original problem, suppose we are given L, and L, in
L(P, Q), intersecting cleanly along a submanifold X. Since T5L, and TsL,
intersect uniformly in TP, there exists, by Proposition 4.1, a lagrangian
subbundle B; & TP such that

Tle @ BE - TELg @ Bz - T2P .

Let M be an element of (P, Q), containing X, such that T\M P Bs = T-P.
(For instance, we could take M to be L, or L, but this is not necessary.)
By Lemma 4.2, we can extend B; to alagrangian subbundle B < T, P such
that T, B = T,P.

We now turn our attention to the cotangent bundle T*M with zero
section 0. The restricted bundle T, T*M is naturally isomorphic to TM &
T*M, both summands being lagrangian subbundles. Now, by Theorem
6.1 of [34], and its proof, there is a symplectic diffeomorphism « between a
neighborhood P, of M in P and a neighborhood of 0(M) in T*M such that
@oi,, = 0 and T,a: T, P— Ty, T*M maps B onto the subbundle, tangent
to the fibres, corresponding to 0 T*M. (The equivariance is not mentioned
in Theorem 6.1 of [34], but remarks in Sections 3 and 4 of that paper show
that, since the symmetry group is compact, @ can indeed be chosen to be
equivariant.) Since « is symplectic, (P,, M, o) is a cotangent coordinate
system for (P, Q).

Look now at the lagrangian submanifolds «,(L,) and «,(L,) in T*M.
For each se X, we have a(s) = 0(s), and T.a: T,P— T,,, T*M maps B, onto
the subspace of T, T*M tangent to the fibres. Let j be 1 or 2. Since
T.L; N B, = 0, the intersection of T, [a.(L;)] = T.«(T,L;) with the space
tangent to the fibres is zero. Restricted to (), the mapping @y ots,, is
just the embedding a™. The computation just completed shows that, for
each se X, the differential

Ta(s)(ﬂﬂoia;(Lj)): Ta(s)[a:(Lj)] - TsM

is an isomorphism. It follows (see, for instance, Lemma 5.7 in [22]) that
there exists a neighborhood U; of a(Z) in a.(L;) such that myoi.., is an
embedding onto a neighborhood of ¥ in M. Then neighborhoods U; can be
chosen such that m,04,,,,(U) and 7,0%,.,(U,) are the same set, which we
call S. Let L} = a™'(U;). Then U,; = a,(L}), and we have the following
theorem.

THEOREM 4.3. Let L, and L, in £(P, Q) intersect cleanly along the
closed submanifold E. Then there exist: an open neighborhood P, of T in
P; a manifold M containing X as a closed submanifold; a cotangent coordinate
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system (P,, M, &) such that a(s) = 0(s) for all s € Z; and open neighborhoods
LY, Ly, and S of £ an L, NP, L,N P, and M, respectively, such that
a, (L) and a (L) lie in L(T*M, Q,).

Since «,(L}) and «.(L}) obviously intersect cleanly along 0(X), and «,
is econtinuous, we may combine Theorems 3.3 and 4.3 to obtain our principal
result on intersections.

THEOREM 4.4. Let L, and L, in L£(P, Q) intersect cleanly along the
closed submanifold X, and let & S C=(Z, P) be any C' neighborhood of the
inclusion. Then there exist a fine C' metghborhood 91, X 9, of (L., L,) in
L(P,Q) < L(P, Q) and mappings G: 9, X 9, — & and I': 9, X 9,— Z'(Z) such
that, for each pair (L], Lj) in 9, x 9, G(L], Lj) is an embedding which
maps the zero set of T'(L}, L)) into the intersection L} N L. If T is compact,
then 91, X O, can be taken to be a coarse C* meighborhood.

The details of the proof are left to the reader. We refer to Section 5
for a rather explicit construection of I'(L], Lj).

As a sample of the results which can be obtained from Theorem 4.4, we
present the following corollary.

COROLLARY 4.5. Let L, and L, in L£(P, Q) intersect cleanly along X.
Suppose that X is compact and that the cohomology group H(Z; R) is zero.
Then there ts a coarse C' meighborhood 91, X 9, of (L,, L,) in L£(P, Q) x
L(P, Q) such that, for all pairs (L}, L) tn 9, X O, L, N L, contains at
least cat (X) points, where cat (X) is the Lusternik-Schnirelmann category
of Z.

Proof. Let 91, X 91, be as in Theorem 4.4. We must show that
T'(L], L)) has at least cat(Z) zeros. But H'Z;R) = 0 implies that
T'(Li, L,) = df for some f: X —QR. The zeros of I'(L], L) are the critical
points of f, which number at least cat (X) [16], [25]. Q.E.D.

Remarks. Notice that, if the symmetry group is not trivial, H*(Z; R)
means the space of invariant closed 1-forms modulo the differentials of
invariant functions. Nevertheless, if an invariant 1-form is the differential of
a non-invariant function, we may average over the symmetry group to make
it the differential of an invariant function. In other words, if we denote ¥
with trivial symmetry group by Z,, there is a natural injection of H'(Z; R)
into H'(Z,; R). If the latter cohomology group is zero, so is the former, and
Corollary 4.5 applies. On the other hand, H'(Z;R) may be zero when
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H'(Z,; Q) is not; e.g., ¥ = unit complex numbers with G = Z, acting by
conjugation.

As long as ¥ is not a single point, cat (Z) is at least 2. Other examples
are cat (CP") = cat (RP*) = n + 1. Sometimes, one may use the invariance
of T'(L], L)) under the symmetry group to obtain a better estimate for the
number of zeros.

3. A cohomology invariant

If L, and L, in £(P, Q) intersect cleanly along X, we have seen in the
previous section how to associate to (L}, L;) near (L, L,) an element
(L, L) of Z*(X) whose zeros are mapped by an embedding G(L!, L;) into
the intersection LN L.. The closed 1-form T'(L; L!) is not invariantly
defined but depends on the choice of a cotangent coordinate system around
Y. The aim of this section is to show that the cohomology class of I'(L;, L3)
in H'(Z; R) is independent of the choice of cotangent coordinate system.
We will also give some sufficient conditions for the vanishing of this cohomo-
logy class. When these conditions are satisfied, the conclusion of Corollary
4.5 is true for (L}, L}) without the assumption that H'(Z; R) be zero.

To prove our invariance theorem, we will look again at the way in
which the form T'(L{, L) arises from the cotangent coordinate system
(P,, M, @). First of all, by Theorem 4.3, we have L{S L, and L;<S L,
such that «,(L9) and a,(L}) are elements of £4(T*M, Q,), cleanly intersecting
along 0(X). Now, by Proposition 2.1, if (L}, L;) is close enough to (L,, L,),
a (L)) and (L} contain open subsets U, and U, which are again in
L4(T*M, Q,). The form ®(U, U, is defined as ¢, — ¢,, where U; = ¢;(S).
Notice that @(U,, U,) is also equal to ¢fw, — ¢fw,, where w, is the
fundamental 1-form on T*M. Now I'(L], L} is defined to be the form
[(a,(L}), a,(L}) of Theorem 3.3, which is in turn the form F*(®(U,, U,)) of
Proposition 3.2, where F = F(®(U,, U,)): £ — M. Putting these equalities
together, we have

F(Li, L:;.) = ?*(oja),, - ¢1>kwM) = (¢2°?)*(w31) - (53’1037)*((031) .

Here, ¢,0F and ¢,oF are mappings from X to 7*M which are C' close to
the zero section. If we write w for a*w,, we have dw = —Q, and

DL, L) = (@ og0F) @ — (@leg0F) @ .

Notice that the image of a~'o¢; is contained in L. We may summarize all
this by the following statement.

LEmMA 5.1. T'(L{, L), as constructed from any cotangent coordinate
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system, is of the form pLfw — Bfw; B; is a mapping from X into L), C*
close to the tnelusion; X is contained in the zero set of w, and dw = —Q.

Now suppose we construct I'(L], L;) from another cotangent coordinate
system. It will be equal to B;® — B¥®, where (5, B, and @ are as in
Lemma 5.1. Now suppose that 5; and 53, are homotopic in L/, and that
their images are all contained in a tubular neighborhood of ¥ in P. (This
will be true for (L, Li) close enough to (L,, L;).) Since the form & — @
vanishes along %, and d(® — w) = —Q + Q = 0, the Poincaré lemma for
vector bundles [34] implies that there is a function 4, defined on the tubular

neighborhood, such that dfé = @ — w. Now we compute the difference of
the two versions of T'(L], L}). It is

Biw — Brd — Biw + prfw = Bid — Biw — Bfd + Biw + Biw
— Biw — Bfw + Bio
= d(B:0) — d(Bf0) + (Biw — Biw)
— (Brw — Bfw) .

Now each term of the form Bfw — Biw is exact because S; and 3, are
homotopic in L), and w is closed on Lj}; hence, the difference of the two
versions of T'(L{, L)) is exact. We have thus proven the following result.

PRrROPOSITION 5.2. Let L, and L, in L(P, Q) intersect cleanly along Z.
There 1s a neighborhood N, x M, of (L, L,) in L(P, Q) x L(P, Q) and an
invariantly defined wmapping c: O, X M, — HY(Z; R) such that, for
(L}, L) €O, X DMy, the form T'(L;, L) in Theorem 4.4, defined in terms of
any cotangent coordinate system, belongs to the cohomology class ¢(L;, Lsj).
In particular, if e¢(L, L)) is zero, T'(L;, L;) is the differential of a function,
and the conclusion of Corollary 4.5 applies.

We will now go on to find a sufficient condition for the vanishing of
c(L!, L}). Notice first that the proof of Proposition 5.2 shows that, if ¢ is

any form such that do = —Q, then BF¢ — Bf¢ belongs to the cohomology
class ¢(L}, L3).

PROPOSITION 5.3. For ¢(L}, L) to be zero, it is sufficitent that Q be exact
on P and that the mappings BF: HY(L}; R) — H'(Z; R) be zero. The latter
condition is satisfied whenever H'(Lj; R) = 0 = H'(Ly; R).

Proof. Since Q is exact on P, there is a 1-form ¢ on P such that
d¢ = —Q. By the remark immediately preceding this proposition, ¢(Li, L;)=
[B¥¢ — BiF¢]. (Square brackets around a closed form denote its cohomology



392 ALAN WEINSTEIN

class.) Writing ¢; for the inclusion of L} into P, we have B; = 7,°4;, and
(B¢ — B¢l = BIlirg] — BF[eid] ,
which is zero because the mappings B} are zero on cohomology. Q.E.D.

Another sufficient condition for the vanishing of c¢(L], L} is given in
Proposition 6.3.

6. One-parameter families

Let {7}, be a smooth family of mappings of a manifold X into (P, Q),
parametrized by an interval J in the real numbers. If ¢ is any form such
that dé = —Q, we have the homotopy formula [11]

Ltp = ildt —9) + 7~ dg] = WA —~9) = 7~
where 7, is the vector field along v, representing the time derivative of 7,.
Suppose that v;Q = 0 for each teJ. Then the forms v/¢, (d/dt)v/¢, and

v#(7, — Q) are all closed for each teJ. We will use two special cases of our
formula.

LEMMA 6.1. (@) If 7¥ (7, — Q) is exact for each t €J, them the cohomo-
logy class [v}¢] is independent of t.

(b) If 7,,(Z) is contained in the zero set of ¢ for some t,€J, then

d .« . ~
%% Glime, = —Vir(Teg — Q) «

The right hand side is independent of the choice of ¢.

First, we will apply Lemma 6.1 (a) to derive another sufficient condition
for the vanishing of ¢(L}, L}). Recall from Section 5 that there are embeddings
B;+ Z— L’ such that, if ¢ is any form such that d¢ = —Q, ¢(Li, L)) =
[8:¢] — [BI¢]

PROPOSITION 6.2. Suppose there exists a 1-parameter family {7.}ier,n Of
mappings from T into P such that: v;Q = 0 and v§ (7, — Q) is exact, for
each te[0,1]; v = By and [v¥¢] = [Bi¢l. Then c(Li, Lj) = 0.

The second goal of this chapter will be to apply Lemma 6.1 (b) to derive
a result concerning l-parameter deformations of cleanly intersecting
lagrangian submanifolds.

Let J be an interval in the real numbers. Given a family L = {L,},c,
of elements of £(P,Q), we define L = P x J to be the subset {(p, t)|teJ
and p e L,}. There are natural projections ITf: L — P and II{: L — J. If L
is a (locally closed) submanifold of P x J and IIf is a submersion, we call
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L a smooth family. If L is a smooth family, it is not hard to see that the
mapping t+ L, from J to £(P, Q) is continuous if L(P, Q) is given the
coarse C' topology.

Let 0 be contained in the interval J. Giveneach p € L,, choose a vector
ve T,P such that there exists a vector we T,,,L for which TII{w = d/dt
and TIIfw = v. Let v*e T;L, be defined by the equation v*(u) = —Q(v, u)
for all we T,L,. In other words, v* is the restriction to T,L, of —v — Q.
If v is another choice of the vector, then v = TIIZw' where TII]w =
d/dt = TII{w, The difference w’ — w must then be tangent to the fibre
L, x {0}, so that difference v' — v = TII(w’ — w) is tangent to L,. Since
L, is lagrangian, Qv — v, u) = 0 for all we T,L,, and v'* is equal to v*.
Thus, we can associate to each p in L, an element of T:L, which depends
only on the family L. These elements define a 1-form on L, which we
denote by D,L. It represents the family L to first order around ¢ = 0.

PROPOSITION 6.3. Let L be a smooth family of lagrangian submanifolds
of (P, Q), parametrized by an interval J containing 0. Let {v},.; be a
smooth family of mappings of a manifold T into P such that v,(Z) S L,
for each ted. If ¢ is any 1-form, defined on a mneighborhood of the ~,(Z)
for t mear 0, such that do = —Q and such that v,(Z) is contained in the
zero set of ¢, then
%’\/t*‘}" !t=0 = ’\/:DOL .

Proof. By Lemma 6.1 (b), (d/dt)vi¢l,—o = —75(V — Q). Given any
peZ, let w be the tangent vector at 0 of the map o:J — L defined by
o(t) = (v.(p), t). Then TII{(w) = 1 and TIIL(w) = 7,(p). By definition, the
value v* of DL at 7,(p) satisfies the equation v*(u) = —Q(7,(p), ) for all
w e Ty L.

For all xe T,3, [v(—7 — Q)]@) is, by definition, Q(—7.(p), T,7:(@)),
which equals v*(T,7,(x)) = [ T;7(v*)](@); i.e., 75 (=7 — Q) = v (D,L).

Q.E.D.

As a first application of Proposition 6.3, we can conclude that D,L is
closed. In fact, given any p e L,, we can let £ be a neighborhood of » and
find {v.} and ¢ satisfying the hypotheses of the proposition. (Choose a
cotangent coordinate system (P,, M, @) mapping L, onto the zero section of
T*M.) Since (d/dt)vi¢|.-, is closed, so is viD,L. The form D,L is thus
locally closed and, therefore, closed.

Our main application of Proposition 6.3 is to one-parameter deformations
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of cleanly intersecting submanifolds. The results which follow will be seen
in Part II to form the basis of an extension of the averaging method of
Reeb [26] and Moser [21].

Suppose that L, and L, are smooth families parametrized by an interval
J containing 0 and that L,, and L,, intersect cleanly along a submanifold
Y. Weapply Theorem 4.4, taking L, = L,,and L, = L,,. Suppose that, for
t sufficiently near 0in J, the pair (L,,, L,,) isin the neighborhood 91, x 91,
of Theorem 4.4. By the continuity property mentioned above, this will
always be trueif X is compact. Then I'(L,., L,,) is defined for ¢ sufficiently
near zero. It is not hard to verify given the natural way in which T'(L,,,, L,,,)
is constructed, that I'(L,,, L., depends smoothly on %, so that we may
consider the derivative (d/dt)T'(L,,,, Ls,;) |s=o-

THEOREM 6.4. Let L, and L, be smooth families parametrized by an
interval J containing 0. Suppose that L., and L., intersect cleanly along
a submanifold T and that T'(L,,, L,,) is defined, via Theorem 4.4, for all t
sufficiently near 0. (This is necessarily the case if X is compact.) Then

O%F(LM, Lo oo

1s equal to ¥ D,L, — i¥D,L, and s, therefore, independent of the cotangent
coordinate system used to construct I'(L,,,, Ls,,,).

Proof. By Lemma 5.1, I'(L,,,, L,,) is of the form g,w — Bf,w, where
B;,. maps X into L;,, X is contained in the zero set of w, and dw = —Q.

By construction, the families {g;,} are smooth, and 3,, and g, both equal
the inclusion ¢<. Then

%P Ly L) loo = %@;tw oo — %@itw lomo

which, by Proposition 6.3, is equal to B¥,D.L. — BiD,L., which equals
¥ DL, — ¥ D,L,. Q.E.D.

Besides showing that (d/dt)['(L,,., L,,.).—, is an invariant of the families
L, and L,, Theorem 6.4 can also be used to deduce the existence of points
of L,, N L,, for small ¢{. A component %, of the zero set of a closed form ~»
on I is called [weakly] stable if, given any neighborhood U of %, in I,
there is a neighborhood @ of 4 in Z'(X) such that every [exact] form '
in B has at least one zero in U.

THEOREM 6.5. Let L, and L, be as tn Theorem 6.4. If T, is a stable
component of the zero set of iDL, — ©¥D,L,, then, given any neighborhood
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U of Z,in P, the intersection L,, N L,, N U is non-empty for t sufficiently
near 0. If c(Ly,, L,,;) is known to be zero for all t, it is sufficient that Z, be
weakly stable.

Proof. Consider I'(L,,, L, as a function of t. Since it vanishes at
t =0, it is divisible by ¢, and (l"(LM, L, )t = I',, where T', depends smoothly
on ¢t and

f‘o = ‘%F(Lm, Lz,t) |t=0 .

By Theorem 6.4, T, = i} D,L, — i}D,L,. If 3, is a stable component of the
zero set of Ty, I'(L,. L,, = tI'; has at least one zero near 3, for all
sufficiently small ¢. By Theorem 4.4, this zero is mapped by the embedding
G(L,,, L,,), which is near the inclusion, onto a point of L,, N L,,. Q.E.D.

The importance of Theorem 6.5 is that, in practice, DL, — i D,L,
may be computed much more simply than I'(L,,, L,,. After verifying
stability by transversality theory or topology, one may locate points of
L,.NL,, of which Theorem 4.4 merely guarantees the existence. In
addition, <DL, — i¥D,)L, is sometimes invariant under more than the
original symmetry group, so that it becomes easier to deduce the existence
of many zeros. Finally, we remark without proof that Theorem 6.5 holds if
%, is compact, even if ¥ is not. In this case, I'(L,,, L,, might only be
defined near X, for ¢ near 0, but that is sufficient.

PART II. APPLICATIONS TO HAMILTONIAN SYSTEMS

7. Canonical relations and fixed manifolds

The intersection theorems of Part I will be applied to certain sub-
manifolds of the cartesian square of a symplectic manifold.

If (P, Q) is a symplectic manifold, the cartesian square P x P has a
symplectic structure Q,, defined as #Q — #FQ, where =, and 7, are the
natural projections of P x P onto P. If 8: P— P is a canonical trans-
formation, i.e., a diffeomorphism for which B*Q = Q, then the graph
v = {(p, B(p)) | p€ P} is easily seen to be a lagrangian submanifold of
(P x P,Q,). By way of generalization, we refer to any lagrangian sub-
manifold of (P x P, Q,) as a canonical relation on (P, Q).

The graphs of canonical transformations furnish our first examples of
canonical relations, of which the diagonal A, = {(p, ) | p € P} is of special
importance. If R is any canonical relation, a point pe P such that
(p, p) € R is called a fized point of R.



396 ALAN WEINSTEIN

If L, and L, are lagrangian submanifolds of (P, Q), then the product
L, x L, =< P x P is a canonical relation on (P, Q). It is interesting to note
that the fixed points of L, x L, are exactly the points of L, N L.. (One
could use this observation to reduce the intersection problems of Part I to
the special case in which one of the manifolds is fixed.)

Another important class of canonical relations, arising from hamiltonian
dynamical systems, will be introduced in the next section.

If R is a canonical relation on (P, Q), a submanifold £ < P is called a
non-degenerate fixed manifold for R if R and A, intersect cleanly along
A: = {(p, p) | pe Z}. This definition is easy to interpret in the two special
cases introduced in the previous section. If g: P— P is a canonical trans-
formation, T is a non-degenerate fixed manifold for v, if and only if, for
every s€ZX, B(s) = s and the kernel of (T,p — id): T,P — T,P is T.,X. If
L, and L, are lagrangian submanifolds of (P, Q), X is a non-degenerate
fixed manifold for L, x L, if and only if L, and L, intersect cleanly
along X.

We can now obtain the following result, which shows what happens to
a non-degenerate fixed manifold under small perturbations of the canonical
relation.

THEOREM 7.1. Let X be a mnon-degenerate fixzed manifold for
Re QP < P,Q,), and let &< C(Z, P) be any C*' metghborhood of the
inclusion. Then there exist a fine C*' meighborhood 9 of R in L£(P < P, Q,)
and mappings G:N—& and T: 91— Z'(X) such that, for each R’ €9,
G(R") is an embedding which maps the zero set of T'(R') into the fized point
set of R'. If T is compact, then O can be taken to be a coarse C* neighborhood.

Proof. Apply Theorem 4.4 to the pair (A, R). Use the natural identi-
fication of T with A. to make G(Ap, R’) and I'(Ap, R’) defined on I instead
of A:. Compose G(Ap, R’) with either 7, or 7, to make it map into P
instead of P x P. Q.E.D.

Remarks. Since the map (L,, L,) — L, x L, from £(P, Q) x £(P, Q) to
(P x P, Q,) is continuous, Theorem 4.4 may be considered as a special case
of Theorem 7.1.

If T is compact and H'(Z; R) = 0, we may deduce, as in Corollary 4.5,
the existence of fixed points for R’ e€91. Even if H'(Z; R) is not zero, we
may be able to establish that the cohomology class c¢(Ap, R’) is zero, in
which case T'(R’) must be exact, and the conclusion still applies. Examples
of this are given in this next section.

If R is the graph of a canonical transformation g, then 7, €9t for all
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B’ sufficiently near g in the C* topology on C=(P, P). Theorem 7.1 yields,
therefore, fixed point theorems for canonical transformations near one with
a non-degenerate fixed manifold.

8. Hamiltonian systems and canonical boundary value problems

This section is the heart of Part II of this paper. We will present a
general formulation which encompasses most of the boundary value pro-
blems considered in conjunction with hamiltonian systems and the calculus
of variations. In terms of this formulation, we will apply the intersection
theory of Part I to derive the existence of solutions for problems obtained
by slightly perturbing problems having manifolds of solutions.

A hamiltonian system is a triple (P, Q, H) where (P, Q) is a symplectic
manifold and H is a real valued function on P. H is called the hamiltonian
function, or simply the hamiltonian. Though many of our results can be
extended to the time-dependent situation, in which H is defined on P X X,
this paper will be confined to the time-independent case. We refer the
reader to [1] as a general reference on hamiltonian systems.

Associated with the hamiltonian system (P, Q, H) is the hamiltonian
vector field &, on P, defined by the equation &, —Q = dH, or &, = Q'-dH.
For each pe P, the hamiltonian vector field Z, has a maximal integral
curve g, with ¢,(0) = p, defined on an open interval of K. The collection
of maximal integral curves gives rise to the flow Fj: Dy — P, where 9, =
{(p,t) e P x R|t is in the domain of o,}, and F(p, t) = 0,().

We will examine the map F, in some detail. For each tcQ, let
‘Dy ={peP|(p,t)e Dy}, and define 'Fy:'D, — P by 'Fyu(p) = Fu(p, ).
tF', is a diffeomorphism of *9, onto ~*9D, and is called the time t mapping
associated with the hamiltonian system (P, Q, H). It is well known that
‘Fyp*Q = Q, so that the graph {(p, ‘Fu(p))|pec'D,} is a canonical relation
on (P, Q), which we denote by *R,. Given pe P, d,(t) = p if and only if p
is a fixed point of ‘R,. The set I, = {¢t|o,(t) = p} is either {0}, R, or a non-
trivial cyclic subgroup of Q. In the last case, we say that p is a periodic
point for the system (P, Q, H), and we call the positive generator of I, the
least period of p. Any positive element of I, is called a period of p. If p
is periodic with least period t,, so are all the points of {o5(t)|te R}. This
set, which is an embedded circle in P, is called a periodic orbit for (P, Q, H)
with least period %,.

The problem of determining the existence and properties of periodic
orbits is of fundamental importance in the study of hamiltonian (and other)
dynamical systems. It should already be evident to the reader of Section 7
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that our intersection theory will be useful for deducing the existence of
periodic orbits. Before doing this explicitly, we will generalize the setting
of the problem.

Define the mapping Fy: Dy — P x P by Fu(p, t) = (p, Fu(p, t)).

The canonical relation 'R, is the image under F' of {0, ©)| pe'Dy}.
More generally, we can look for other submanifolds of 9, such that the
restriction to them of F, is a lagrangian immersion. To find such mani-
folds, we begin by determining further properties of F,. Denote by 7 and
7 the projections of P X R on P and R, respectively.

LEMMA 8.1. *Q = *Q — d(Hom) A dt .

Proof. Let (p,t)eDy. The tangent space T',,Dy is naturally iso-
morphic to the product T,P x T.R. We may identify T,R with R in such
a way that dr(x, @) = a. For each (x, @) in T, , Dy, we have

TFy(x, a) = TFy(x,0) + TF4(0, a) = T*Fyu(®@) + a-é4['Fu(p)] .
Given (x, @) and (y, b) in T, Dy and writing & for &4[*Fy(x)], we have

F3Q((z, @), (y, b)) = QTFx(x, a), TFx(y, b))
= Q(T*Fulw) + at, T*F,(y) + bS)
= Q(T'Fu(@), T*'Fy(y) + aQ(, T'Fr(y))
— bQ(&, T*Fu(2) + abQ(&, &) .

Since ‘F;Q = Q, &; 2 Q = dH, and 'F}(dH) = dH, this reduces to

Q(, ) + a[dH(y)] — b[dH(@)] + 0
= [7*Q)((z, ), (y, b)) + dr(z, a)-[d(H-m)](y, b)
— dz(y, b)-[d(Hom)](w, a)
[*Q + dr A d(Hom)]((z, @), (¥, b)) - Q.E.D.
COROLLARY 8.2. FrQ, = d(Hom) A dr .
Proof. FrQ,= Fr(zrQ — Q) = 7*Q — F3Q = d(Hom) A dr. Q.E.D.
From Corollary 8.2, we see that Hoxw and ¢ are functionally dependent
on any submanifold of 9, to which the restriction of F; is isotropic. (This
generalizes the well known dependence between energy and period for
families of periodic orbits. See [8] for a recent treatment, together with
further references.) With this in mind, we make the following construction.
In R?, we think of the first coordinate as representing energy and the second
as representing time. Let C <= R? be any curve (1-dimensional submanifold).
Let 9% be the set {(p,t)e9Dy|(H(p),t)eC and the map (Hor,7) is
transversal to C at (p, t)}. 9% is a submanifold of codimension 1 in 9, on
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which energy and time are related by C, so d(Hox) A dz = 0 on 9%. Since
the range of T, ,(Homw,7) = R x R if p is not a critical point of H and
is {0} X R otherwise, the transversality condition in the definition of 9
(which we will refer to as condition T) is equivalent to the negation of the
statement: p is a critical point of H and the curve C has its tangent in the
time direction at (H(p), t).

For example, if C is a curve given by setting the time equal to a con-
stant, then condition T is always satisfied. In this case 97 is essentially
what we called ‘D, above. On the other hand, if C is given by setting the
energy equal to a constant, then condition 7T is just that p not be a critical
point of H. In any case, we have the following result.

LEMMA 8.3. If C is any curve in R°, then the restriction Ff of F, to
@, s a lagrangian tmmersion.

Proof. Since we have already seen that F',(Q,) is zero on 95, we have only
to show that F% is an immersion. It suffices to show that, for (p, t) € DY,
the kernel of T, ,F, has zero intersection with T,,,9%. It follows from
the calculation of TF',; in the proof of Lemma 8.1 that the kernel of T“,,t)FN',‘j
is zero if Z, does not vanish at p and is {0} x R otherwise. If &, does
vanish at p, though, it follows from condition 7T that {0} x R has zero
intersection with T, ,95. Q.E.D.

We now define a canonical boundary value problem to be a quintuple
9 = (P,Q, H,C, R) where (P, Q, H) is a hamiltonian system, C is a curve
in ®% and R is a canonical relation on (P, Q). A solution of P is a pair
(p, t) € D5 such that F5(p, t) € R.

A submanifold X < D% is called a non-degenerate solution manifold for
@ if: F§(Z) S R; Ff is an embedding on 3; for each (p, t) € I, the inverse
image under T, ,F% of TR is equal to T,,,>. The second condition im-
plies that F'; is an embedding on a neighborhood U of T in 9%; the third
condition then says that F'S(U) and R intersect cleanly along F/(Z).

For example, if R = A,, then (p, t) is a solution of &P if and only if »
is a periodic point with period ¢, (H(p), t) e C, and condition T holds. (If
condition T does not hold, then &, vanishes at p, and p is a “trivial”
periodic point.) In case C is a curve of constant energy or constant time,
we can describe in a simple way the condition that a manifold T of solutions
be non-degenerate. First of all, 'S is an embedding on T and, hence, on a
neighborhood U of Z, if and only if 7 is an embedding on X. In the con-
stant time case, this is always true. In the constant energy case, there
must be a real valued function ¢ on 7(Z) such that £ = {(p, 0(p)) | p € ()}
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As far as the cleanliness of intersection with A, is concerned, in the case of
constant time ¢, the condition is just that #(Z) be a non-degenerate fixed
manifold for *F;. In the case of constant energy E, the condition is that,
for each (p, t) € T and each v e T,[H(E)], [T, Fu](v) — v is zero modulo &(p)
if and only if ve T,[7(2)]. One consequence of non-degeneracy in either
case is that 7(X) contains the entire periodic orbit of each of its points.

We note without proof that, if (P, Q, H) is the geodesic flow on the
cotangent bundle of a riemannian manifold M, then a non-denegerate solu-
tion manifold for the constant energy periodic orbit problem corresponds
exactly to a non-degenerate critical manifold for the energy integral on the
free loop space of M. In this situation, all the results obtained in this paper
can also be obtained through the calculus of variations on the loop space. In
a sense, then, what we accomplish in this paper is to extend the applicability
of critical point theory to non-riemannian hamiltonian systems. In making
this extension, we must, apparently, restrict ourselves to perturbations of
the periodic situation. It would be extremely interesting to see if one could
avoid this restriction.

In riemannian geometry, one is also interested in orbits (geodesics)
which connect two given points in the riemannian manifold. In the general
case, we may consider canonical boundary problems of the form (P, Q, H, C,
L, x L,), where L, and L, are lagrangian submanifolds of (P, Q). If P is
a cotangent bundle, L, and L, might be fibres, normal bundles of sub-
manifolds, or the entire zero section. We leave to the reader the problem of
interpreting the definition of a non-degenerate solution manifold in this
situation. In the special case where (P, Q, H) is a geodesic flow, C is a
constant energy or constant time curve, and L, and L, are fibres, a single
solution of (P, Q, H, C, L, x L,) is non-degenerate if and only if the points
connected by the geodesic arc it represents are not conjugate along the are.

The space of all canonical boundary value problems (P, Q, H, C, R),
where (P, Q) is a fixed symplectic manifold, is denoted by B(P, Q). It may
be identified with the product C=(P, R) x £(R? d (energy) A d (time)) x
(P x P,Q,), since every curve in R? is a lagrangian submanifold. We
give the compact-open C*? topology to C=(P, R) and the compact-open C*
topologies to the other two factors.

THEOREM 8.4. Let T be a compact, non-degenerate solution manifold
for the canonical boundary value problem P = (P, Q, H, C, R) and let 6=
C=(Z, P x R) be any C' neighborhood of the tnclusion. Then there exist a
netghborhood 9 of P in B(P, Q) and mappings G: N—E& and I': 91— Z'(Z)
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such that, for each
9" =(P,Q H,C,R)ecD,

G(9') is an embedding which maps the zero set of T'(P') into the set of
solutions of 9.

Proof. Let U be a relatively compact neighborhood of £ in 9% such that
F¢ is an embedding on a neighborhood of U. By the definition of non-
degenerate solution manifold, FS(U) and R intersect cleanly along F5(Z).
There exists a neighborhood 91, of @ in R(P, Q) and a neighborhood & of
the inclusion in C“(F’Q(E), P x P) such that, for

9 =(p,Q H,C,R)

in 9, and je&, the following holds: there is an open subset U’ = 9%,
near U, such that F¢ is an embedding on U’ whose range contains
j(F‘};(Z)); the mapping @' — FS(U') from 91, to &Px P, Q,) is continuous
in the coarse C' topologies; and (F§) ojoF: T — P x R lies in & All
this follows from several applications of the implicit function theorem and
the fact that F, in the C' topology depends continuously upon H in the
C* topology.

Applying Theorem 4.4, we can find a coarse C' neighborhood 9N, x 512
of (F5(U), R) in &P x P,Q,) x &P x P, Q,) and mappings G: 9, x 9N, —&
and T: 9, x 91, — Z'(F§(Z)) such that, for each pair (L', R') in N, x I,
G(L', R) is an embedding which maps the zero set of I'(L’, R’) into the
intersection L’ N R’. Now there is a neighborhood 91 of & in 97, such that,
for

P =(PQ H,C,R)c,
the pair (F;/(U’), R)) lies in 91, x 9%,. Define G: 91— C=(Z, P x R) by
G(9) = (Fg)-G(Fg(U), R
and define I': 91 — Z'(Z) by
(@) = (Fo*T(Fg(U"), R) .
It is now straightforward to verify that 91, 8, and T' have the required
properties. Q.E.D.

Theorem 8.4 gains power from the fact that we can prove in some quite
general situations that the closed 1-form I'(9’) is exact. In this case, we
can apply critical point theory to estimate the number of solutions for the
perturbed problem &’ in terms of the topology of Z.

PROPOSITION 8.5. With notation as in Theorem 8.4, suppose there exists
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a 1-form w, on P X P such that dw, = —Q, and w, pulls back to zero on
Ap and R'. Suppose, in addition, that C is a curve of comstant time or
constant energy. Then the closed 1-form T'(P') is exact.

Proof. By the discussion in Section 5, there are mappings B,: T —
Fg(@g) and B,: = — R’ such that I'(9”) is cohomologous to Brw, — Biw,.
The first term is zero because w, pulls back to zero on R’. As for g, it is
homotopic through mappings Z— F¢.(9%) to F,|Z, which we call g.
Since w, is closed on F5/(9%.,), the homotopy invariance of induced mappings
on cohomology implies that g}w, is cohomologous to g*w,. Now, for each
(m, e, B, t) = Fu(p,t). Define v,:=Z— P x P by 7,(p, t) = Fpu(p, st).
Then

Yo(p, t) = (0, t-&4[Fu(p, sb)]) ,

and v¥(7, —Q,) = —7-d[Hoz]. Now, if C is a curve of constant time,
v¥(7, = Q,) = —d[t-Hox]. If Cis a curve of constant energy v¥ (7, —Q,) =
0. In either case, v¥(7, — Q,) is exact, so, by Lemma 6.1 (a), 8*®, is coho-
mologous to vfw,. But v, maps ¥ into A,, on which w, is zero. Q.E.D.

The hypothesis of Proposition 8.5 is satisfied if there is a 1-form ® on
P such that dw = —Q and R’ is either A, or L, x L,, where L, and L,
are lagrangian submanifolds of P on which @ pulls back to zero. This is
true, for example, if P= T*M and L, and L, are homogeneous, i.e.,
invariant under scalar multiplication. (See [13].) In particular, the normal
bundles of submanifolds of M are homogeneous.

An application of Theorem 8.4 and Proposition 8.5 to the three-body
problem may be found in [4].

9. Reversible systems

If the symmetry group is not trivial, we can often use its presence to
improve our estimate of the number of solutions of a canonical boundary
value problem. Even more interesting is the fact that we can sometimes
introduce a symmetry group where it does not exist in the original problem.

Consider, for example, the case of a classical mechanical system

(T*My QM, VOEM + K) ’

where the potential energy V is a function on M and the kinetic energy K
is homogeneous of degree two on each fibre of T*M. Denote by p: T*M —
T*M the mapping which multiplies each cotangent vector by —1. The
hamiltonian function Ver, + K is invariant under the action of Z, on
T*M generated by g, but g is not an automorphism of (T*M, Q,). In
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fact, it is easy to verify that p*Q, = —Q,. We can obtain from ¢ a
symplectic automorphism, not of (T*M, Q,), but of (T*M x T*M, (Qy).),
by defining fi: T*M x T*M — T*M x T*M by [z, y) = ((y, px).

In general, if (P, Q) is a symplectic manifold, a mapping ¢: P— P is
called an antisymplectic automorphism, or anticanonical transformation, if
p#*Q = —Q. The product of any two anticanonical transformations is a
canonical transformation.

An important example of an anticanonical transformation is the exchange
transformation ¢,, defined on a cartesian product (P x P, Q,) by the rule
op(®, y) = (y, x). If there is already an anticanonical transformation g of
(P, Q), then ¢ x p is an anticanonical transformation of (P x P, Q,) which
commutes with o, and the composition (¢ X #)oo, is a canonical trans-
formation of (P x P, Q,).

A hamiltonian system (P, Q, H), together with an anticanonical involu-
tion g (i.e., ¢ = identity) of (P, Q) leaving H invariant will be called a
reversible hamiltonian system. The hamiltonian vector field &, has the
property Two&, = —&yop. Thus, if ¢ — o(t) is an integral curve of &, so
is t > poo(—t). (In the case of a classical mechanical system this fact ex-
presses the well known reversibility in time of the equations of motion.)

Suppose that F(p, t) = q¢. Then Fy(z(p), —t) = t2(q), and F,(x(q), t) =
t(p). In other words, if F,(p, t) = (p, q), then

Fu(t(@), t) = (@), @) = [(2 X p)o05](p, ) -

If C is any curve in R%, then (p,?) €Dy if and only if ((p), t) € D%, be-
cause ¢ leaves H invariant; hence, the image F$(9%) is invariant under
(£ X {)o0p.

Assuming that the symmetry group is initially trivial, we may now
introduce a symmetry group Z, in the following manner. (If the symmetry
group is initially G, it becomes G X Z,.) The generator of Z, actson P x P
by the involution (¢ X p)ocp. The generator acts on P X R by the involu-
tion (p, ¢) - (#Fu(p, t), t). We have seen that 9f is invariant under Z,
and that F'¢ is equivariant.

We now define a reversible canonical boundary value problem as a
sextuple (P, Q, H, C, R, 1t), where (P, Q, H, 1) is a reversible hamiltonian
system, (P, Q, H, C, R) is a canonical boundary value problem, and R is
invariant under (¢ X f)oo,. As examples of R, we can take R = A,, or, if
L, and L, are lagrangian submanifolds of (P, Q) such that u(L,) = L,, we
can take R = L, X L,.

A solution manifold £ of (P, Q, H, C, R, 1) will be called reversible if
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it is a Z,-invariant subset of 9%. Using the Z, symmetry in applying
Theorem 4.4, we have the following result.

THEOREM 9.1. In Theorem 8.4, if (P,Q, H,C, R, 1) and (P, Q, H', C*,
R, 1) are reversible, then the form T(P') € ZY(Z) can be chosen to be invariant
under the 7, action.

Theorem 9.1 enables us to get much better estimates for the size of the
zero set of I'(9"). For instance, if ¥ is S, its category is only 2. If Z,
acts freely on S”, then the quotient space has category = + 1, so any
Z.-invariant function has at least n + 1 critical points.

It is remarkable that to any hamiltonian system we can associate a
reversible system. In this way, we can prove the existence of more solutions
to certain boundary value problems. The next section is devoted to a study
of this construction.

10. The reversible square of a hamiltonian system

Let (P, Q, H) be a hamiltonian system. On (P x P, Q,), with the ex-
change transformation o,, we may consider the o,-invariant function H, =
(1/2)(How, + Hom,). (P x P, Q,, H,, 0p) is a reversible hamiltonian system
whose properties reflect those of (P, Q, H).

At a point (p, q) € P x P, the value &, (p, ¢) of the hamiltonian vector
field associated with H, is simply ((1/2)¢,(p), —(1/2)64(g)), where T(,,,(PX P)
is identified with T,P x T,P. It follows that (p, q, t) € Dy, if and only if
(p, (1/2)t) and (g, —(1/2)t) are in 9, in which case we have

Fyz(p, q,t) = <FH<py %t>, FH(Q, _%t)> .

Notice that ¢ = Fy(p,t) if and only if Fu(p, (1/2)t) = Fu(q, —(1/2)t);
in other words, q¢ = F,(p, t) if and only if Fy (p,q,t) lies on the dia-
gonal Aj.

Let R be any canonical relation on P. Whenever F,(p, t) = (p, q) lies
in R, we have F (p, q,t) € Ap. In this circumstance, since H(q) = H(p),
H,(p,q) equals H(p), so for any curve C in R*, (H,(p,q),t)eC if and
only if (H(p), t) e C.

In other words, there is a 1-1 correspondence between solutions of the
canonical boundary value problems ¢ = (P, Q, H, C, R) and

P, =(Px P,Q, H,C,Rx Ap).

In fact, one can check that a solution manifold of & is non-degenerate if
and only if the corresponding solution manifold for &, is non-degenerate.
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It is of obvious interest to determine when
(Px P,Q,, H,,C, R X Ap, 0p)

is a reversible problem. We must check when R X A, is invariant under
the involution (¢, X 0,)°0,,, of (P X P) x (P x P). We have

[(@p X 0p)o0pp|(R X Ap) = (0p X 0p)(Ap X R) = Ap X 05(R) .

This is equal to R x A, if and only if R = A,; i.e., if and only if the
original boundary value problem & was a problem of finding periodic orbits.

Let ¥ be a solution manifold of the boundary value problem & =
(P,Q, H,C, A;). We will now determine when the corresponding solution
manifold X, of P, is reversible, and we will describe the action of Z,
on Z,.

Let (p,t)eZ. Then F,(p,t) = p, and the corresponding point of X, is
(p, v, t). The generator of Z, takes

(p, p9 t) tO ((UP X GP)(p, p9 t)’ t)

- <(0P X op)<FH<10, %t)’ FH<p’ _%t»’ t)
= (F,,(p, —%t), FH<20, %t>’ t)

=(g,9,1),

where ¢ is the point halfway around the closed orbit from p. We have
remarked in Section 8 that, if ¥ is non-degenerate, m(Z) contains the entire
periodic orbit of each of its points.

The following theorem represents the application of Theorem 9.1 to this
situation.

THEOREM 10.1. In Theorem 8.4, if R and R’ are equal to Ap, then the
form T'(P') can be chosen to be invariant under the involution (p,t) —

(FH(p, (1/2)t), t)'

Notice that, by Proposition 8.5, if C is a curve of constant time or
energy, the form T'(9’) is exact if Q is exact. In fact, we only need Q to be
exact on a neighborhood of 7(Z) & P, because we can replace P by that
neighborhood.

For example, we may apply Theorem 10.1 to the case where X is an
n-sphere and C’ is a curve of constant energy. Since the transversality
condition requires that &, be nowhere-vanishing on X, n must be odd.
Now H*S™; R) = 0 for odd =, so Q is exact on a tubular neighborhood of
m(Z). If we write T'(P’) = df, the critical point set of f is a disjoint union
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of embedded circles which correspond to periodic orbits of (P, Q, H'). The
function f is invariant under the involution é: (p, t) — (Fu(p, (1/2)t), t).
For each (p,t)eZX, the least period of p is of the form ¢/k(p), where
k(p) is a positive integer. If k(p) is odd for all p, the involution ¢ is fixed
point-free, and we may consider f as a function on f, the manifold X/Z,.
The quotient manifold has the cohomology ring of real projective n-space
and, hence, has category n + 1 [16]. Since the category of a circle is 2 it
follows from the theorem in §4 of [16] (see also [24]) that if the critical
set of f consists of » circles, than 2r = n + 1, or r = (1/2)(n + 1).

In the case where k(p) is even for some values of p, it remains an open
problem to determine the minimum number of periodic orbits which remain
near T after the hamiltonian function is perturbed. One approach to this
problem would be to study, in addition to X, the submanifolds of ¥ corre-
sponding to different values of k(p). These, like X, are non-degenerate
solution manifolds for the problem of finding periodic orbits with prescribed
energy.

By ignoring the Z, action, we can obtain some weaker results without
assuming that the k(p) are all odd. As long as n = 1, the compactness
of T implies that f must have at least one critical circle. The circles of
maxima and minima of f cannot coincide unless f is constant, so there are
at least two critical circles if n = 8. Finally, if there are exactly two
critical circles, the complement of a tubular neighborhood of the circle of
maxima can be deformed along the gradient lines of f into a tubular neigh-
borhood of the circle of minima. If % = 5, this is impossible because the
complement of a circle in S” is simply connected, so there must be at least
three critical circles. Unfortunately, this line of argument stops at » = 5.
In fact, some preliminary work suggests that there exists a function on S’
whose critical point set consists of three circles. Further progress on
this problem must depend, therefore, on special properties of the
function f.

The preceding results on spheres of periodic orbits can be applied to
hamiltonian systems near an equilibrium point. Let (P, Q, H) be a hamil-
tonian system and let p € P be a critical point of H. We may assume that
H(p) = 0. Suppose that there exist canonical coordinates (z,, +--, @,,
Y, *++, ¥,) around p such that

H= 30 G+ o) + Ho+ He

where H, isa quadratic formin (x,,,, *+*, %,, Y121, =, Yu), and H, vanishes
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at the origin together with all its partial derivatives of first and second
order. If we write (2, ++ -, Zon_y) fOr (@1, =<+, Tn, Yyuy, * =+, Ya), the hamil-
tonian vector field &, is

! (0 0
Nl — )
El:l \»J (')'U-b a?h

+ 2.(7%:? aijzi-,i -+ Ell <bii -+ Cf~i> ’
1,]= 02, 7 ax y

i 0Y;

where A = (a;;) is a matrix of constants and the b;’s and ¢;’s are functions
which vanish at the origin together with their partial derivatives of first
order.

Now we make the further assumption that each X\, is of the form &\,
where \ is a positive real number, each k; is a positive integer, k, = 1, and
no eigenvalue of A is an integral multiple of 1 —1.\. It is easy to verify,
now, that the canonical boundary value problem (P, Q, H — H,, energy =
1, A,) has as non-degenerate solution manifold the 2! — 1 dimensional
ellipsoid

1 o 9
Z= {(/U’ Y, t) i ?Ei:l Ni(@F + ’!/E) =1, Tppg = 200 = 0,y

27
=yl+1:'..:yn209 t:'i‘}.

Now define the functions K., for ¢ == 0, by K .(z, y) = (1/*)H(sx, cy).
The quadratic homogeneity of the first two terms of the decomposition of H
implies that

K(x,y) = (H— H)(x, ) + éﬂ*@x, ey) -

Since H, vanishes to third order in x and y, (1/e®)H,(cx, ey) and I(.{x, y),
as functions of ¢, x, and y, extend smoothly over the hypersurface ¢ = 0
in such a way that I (z, y) = (H — H,)(z, v).

By the previous discussion on spherical periodic manifolds, we conclude
that, for ¢ sufficiently close to zero, the boundary value problem (P, Q, .,
energy = 1, A;) has at least (1/2)(2] — 1 + 1) = [ circles of solutions, pro-
vided that all the integers k; are odd. Since the transformation (z, y)—
(ex, ey) multiplies Q by % it is easy to see that these [ circles of solutions
give [ circles of solutions to the problem (P, Q, H, energy = &* A;). In
other words, there are at least [ periodic orbits for (P, H, Q) on each level
surface of H near the equilibrium point p.

If the k; are not all odd, we must content ourselves with the weaker
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result that there is at least 1 periodic orbit on each level surface if [ > 1,
at least 21if [ > 2, and at least 3 if [ = 3.

In the case I = 1, our result is due essentially to Liapounov [15] and
Horn [14]; see also §§ 13-15 of [30] and Appendix C of [1]. For results in
the case [ >1, not altogether encompassed by those in the present paper,
see [5], [9], [19], [21], [27], [28], [29].

Added December 21, 1972. The author [37] has recently succeeded in
eliminating the hypothesis above that all the %; be odd. Thus, there are
always [ periodic orbits on each level surface near an equilibrium at which the
hamiltonian is positive definite. The situation in the indefinite case is more
complicated. See [27] for some theorems and examples.

11. On the method of averaging

Consider a family @, = (P, Q, H., C, R) of canonical boundary problems
where & ranges over an interval J containing 0. If X is a non-degenerate
solution manifold for 9,, we have, by Theorem 9.4, 1-forms I'(?.) e Z'(3)
whose zeros correspond to solutions of &. T(9P,) is the zero form, and
(d/de)T(D,) |.=, is given by Theorem 6.4. The importance of this derivative is
shown by Theorem 6.5.

According to Theorem 6.4 and the proof of Theorem 8.4, (d/de)I'(P.) .
is equal to —¢¢D,L, where L, = Fgg(gbgi). Given (p,t)eX, to compute
(d/de)T(DP,) |.=o at (p, t) we must find a curve (p,, t.) € D7, find a tangent
vector

d /=~
77 = %(FHE(pey te)) |5=0 ’

and take Fj (7 —Q,).

The vector 7 can be broken into three parts coming from the derivatives
of F’,,s, p., and t. with respect to e. The contribution from dp./de is
zero, because Q, = 77Q — n;Q, and the two terms cancel. If we write
6 = dt./de|._,, a function on Z, then the contribution from @ is equal to
6-d(Hom). This contribution will be zero if C is a curve of constant energy

or constant time. Finally, the contribution from the variation in FN’,,e is, as
in Moser [21], dA, where

A, ) = U] (Fufp, 5)ds.

Applying Theorem 6.5, we have the following result, which generalizes
work of Reeb [26] and Moser [21].
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THEOREM 11.1. Let @, = (P,Q, H,,C, R) be a family of canonical
boundary value problems, where C is a curve of constant time or constant
energy. Let T be a non-degenerate solution manifold of P,. Let I, be a

compact, weakly stable component of the zero set of dA, where A:Z — R 1is
defined by

dH,
de ‘(F (D, 8))ds .

t
At =,
Then, given any neighborhood U of Z, in P x R, the problem 9. has a
solution in U for all ¢ sufficiently near 0.

Remarks. I, is a weakly stable component of the zero set of dA if the
type numbers [20] of I, as a critical set of A are not all zero. In particular,
if %, is a non-degenerate critical manifold of A, this condition is satisfied.
If R=A, and I is simply fibred by periodic orbits, the function A is
constant on each orbit, so it comes from a function A on the orbit manifold.

If an orbit is a non-degenerate critical point for A, it is a non-degenerate
critical manifold for A.

The importance of Theorem 11.1 lies in the fact that the computation
of A requires only the integration of dH,/de along orbits of (P, Q, H,),
while the computation of T'(P,) requires one to integrate the vector field

$u.. The first task is often a relatively simple one (see [21]), while the
second may be hopeless.
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