
Lagrangian submanifolds and 
hamiltonian systems 

By ALAN WEINSTEIN* 

This paper consists of two parts. The first part (Sections 1 to 6) is 
devoted to the geometry of lagrangian submanifolds of symplectic manifolds. 
Essentially, we assume that lagrangian submanifolds L1 and L2 in a 
symplectic manifold (P, Q) intersect along a submanifold ?, and we see 
what happens when L1 and L2 are slightly perturbed. Under fairly general 
conditions, we can prove that the perturbed lagrangian submanifolds must 
have points of intersection near ?, and we can estimate the size of the inter- 
section set in terms of the topology of ?. In the second part of the paper 
(Sections 7 to 11), we apply the intersection theory to the study of hamil- 
tonian dynamical systems. We define the notion of a canonical boundary 
value problem for a hamiltonian system, which includes the problem of 
finding periodic solutions with prescribed energy or prescribed period. 
Assuming that a given problem admits a manifold ? of solutions which is 
non-degenerate in a certain sense, we show that, after a small perturbation 
of the hamiltonian function or of the boundary conditions, there remain 
solutions near ? whose number can be estimated in terms of the topology of S. 

Our results, involving critical point theory for functions on ?, resemble 
those which might have been obtained were the calculus of variations to be 
applicable, but our functions are obtained directly from the geometry of 
symplectic manifolds, rather than from functionals on path spaces. Thus, 
we use no analysis beyond the usual tools of differential geometry: the 
implicit function theorem and integration of vector fields. Unfortunately, 
these geometrical methods are presently applicable only to problems obtained 
by slight perturbation from problems having manifolds of solutions. Whether 
this limitation is essential remains to be seen. In any case, the problems to 
which the present method is applicable are of considerable interest. They 
include the existence of periodic orbits of the second kind in the planar (un- 
restricted) three body problem [4] and of periodic orbits near an equilibrium 
point of a non-linear hamiltonian system. In particular, we prove that, near 
an equilibrium point in tj42n at which the linearized system has hamiltonian 
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>n= (X2 + y2) the non-linear system has at least n periodic orbits on each 
energy surface. See the end of Section 10 for a discussion of this and more 
detailed results. 

In Section 11, we relate our work to the averaging method of Reeb [26] 
and Moser [21] and generalize their results. 

Since lagrangian submanifolds are of interest for quantum mechanics 
[3], [18], [31], partial differential equations [7], [10], [13], and singularity 
theory [33], as well as for hamiltonian systems, we develop the general 
theory in Sections 1 through 6 in more detail than is necessary for the 
present applications. The reader whose primary interest is in the results 
concerning hamiltonian systems may wish to skip to Section 7 after reading 
the definitions in Section 1, referring back to Sections 2 through 6 only when 
it is necessary. 

Some of the results in this paper were announced in [35]. The proofs 
here are not the same as those available when the announcement was 
written. The original proofs of the announced results are contained in [36], 
which will not be published. 

Added December 21, 1972. V. I. Arnold has pointed out that his paper 
"Sur une propriete topologique des applications globalement canoniques de la 
mecanique classique", C. R. Acad. Sci. Paris 261 (1965) 3719-3722, contains 
the idea of representing certain lagrangian submanifolds of cotangent bundles 
as graphs of closed forms. I would also like to thank J. Roels, whose careful 
reading of this manuscript led to the correction of numerous typographical 
errors. It would be nice to be able to say that any errors which remain are 
his responsibility, but of course they are not. 

PART I. INTERSECTION THEORY 

1. Basic definitions 

The basic category for this paper is that of finite dimensional Co 
G-manifolds, where G is a fixed but arbitrary compact Lie group, which we 
refer to as the symmetry group. Each manifold M, therefore, is equipped 
with an action of G on it, and all the natural bundles over M are equipped 
with the natural lifting of the action on M. All mappings are equivariant; 
in particular, each covariant tensor field is invariant under the diffeomorphism 
corresponding to each element of G. 

Most of the results here can be extended to infinite-dimensional manifolds 
modeled on Banach spaces, following the approach in [34]. See, however, 
the remarks after Lemma 4.2. Staying in the finite dimensional case simplifies 
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the exposition, and I know of no significant applications to the infinite- 
dimensional situation. In fact, the appropriate objects for the geometric 
study of mechanical systems with infinitely many degrees of freedom 
(fluids, fields, elastic media, etc.) may very well be weak symplectic struc- 
tures, whose properties are much more complicated than those of symplectic 
structures [17]. 

We refer the reader to [34] for further details regarding the definitions 
and facts about symplectic manifolds which follow. 

A symplectic manifold is a pair (P, Q), where P is a manifold and Q is 
a closed 2-form on P which is non-singular in the sense that the bundle 
mapping &i?: TP T*P, defined by fi(x) = x IQ, is an isomorphism. Q is 
called a symplectic structure on P. 

A subspace V - TpP is called isotropic if (x, y) e V x V implies 
Q(x, y) = 0. V is called lagrangian if it is isotropic and if there exists an 
isotropic W such that V e W = TpP. Equivalently, V is lagrangian if 
and only if it is isotropic and dim V = (1/2) dim TpP. 

An immersion i: M - P is called isotropic [lagrangian] if the image of 
Tmi: TM Ti(m)P is isotropic [lagrangian] for each me M. Clearly, i is 
isotropic [lagrangian] if and only if i*Q 0 0 [and dim M = (1/2) dim P]. A 
submanifold L c P is called isotropic [lagrangian] if the inclusion mapping 
iL: L -P is isotropic [lagrangian]. The image of an isotropic [lagrangian] 
immersion is a union of isotropic [lagrangian] submanifolds. It is to the 
lagrangian submanifolds that our attention will generally be confined. 

Since we will be dealing with the behavior of lagrangian submanifolds 
under small perturbations, it is useful to topologize the set ?(P, Q) consisting 
of all lagrangian submanifolds of (P, Q). We will only be concerned with 
what might be called "lower" topologies. (A finer topology is defined in [10].) 

Let A be a closed subset of a manifold M whose dimension is half that 
of P, and let d be an open subset in the fine C' topology on the space 
C-(A, P) of all mappings from A to P. (See [22] for a discussion of the 
topology of mapping spaces.) 

The sets IYLA,c= {L 2 S(P, Q) I i (A) C L for some i e Cf}, for all A and 
, form a basis for a topology on 2(P, Q), called the fine (upper) C' topology. 
The subtopology generated by those 91A. for which A is compact is called 
the compact, or coarse, C' topology. 

2. Cotangent bundles 

The principal technique of this paper is the parametrization of subsets of 
2(P, Q) by closed 1-forms on certain manifolds. In this section we will 
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examine in detail the special case in which P is a cotangent bundle. In 
Section 4, we will show how to reduce the general case to the one considered 
here, by the use of cotangent coordinate systems. 

The cotangent bundle T*M of a manifold M, with projection WM, 

carries a natural 1-form wM characterized by the property that, for each 
section 0: M-y T*M, 0*(o, is equal to 0 itself. The 2-form QM =-dwM is 
a natural symplectic structure on T*M. (If M is modeled on a Banach space 
B, QM is a symplectic structure if and only if B is reflexive.) If S is an open 
subset of M, then T*S may be considered as an open subset of T*M. The 
pullbacks to T*S of wM and QM are equal to (o, and Q, respectively. 

A lagrangian submanifold L e 2(T*M, QM) is horizontal if 7MoiL is an 
embedding of L onto an open subset of M. If L is horizontal, and its pro- 
jection in M is the subset S, then there is a unique section 0: S-o T*S C T*M 
such that p(S) = L. Since L is lagrangian, O*QM = 0. But O*QM = O*Q, = 

0 *(-dwos) =-d(o*o,) = -do, so 0 is a closed 1-form on S. Conversely, if 
o is a closed 1-form on an open subset S - M, then 0(S) C T*S C T*M is 
a horizontal lagrangian submanifold whose projection in M is S. 

In summary, for any open S ' M, the mapping eSM: 0 F -z(S) is a 1-1 
correspondence between the space Z1(S) of closed 1-forms on S and the 
subset 2,(T*M, QM) ; 2(T*M, QM) consisting of the horizontal lagrangian 
submanifolds whose projection in M is S. Z1(S) inherits fine and coarse 
C' topologies as a subset of the space C-(S, T*S), and it is clear that 
eSM Z1(S) - 2(T*M, QM) is continuous when domain and range are given 
C' topologies of the same type. Then next proposition shows how close eSM 

comes to being a homeomorphism onto an open subset of 2(T*M, QM). 

PROPOSITION 2.1. (a) If ?13 is an open subset of Z1 (S), then the set of 
lagrangian submanifolds which contain an element of eS,M($) is open in 

S(T*M, Q.) in the fine C' topology. 
(b) Suppose S is compact and that 0 e Zt(S) extends to an element 

E Zr(S), where S contains S. If ?13 is any coarse C1 neighborhood of 0 in 
Z1(S), then the set of lagrangian submanifolds which contain an element of 
eS,M(_J3) is a neighborhood of e;,M(0) in the coarse C1 topology. 

Proof. Let D be the subset of C(S, T*M) consisting of those f: S 
T*M for which 7rmof is an embedding whose image is S. We claim that D 
is open in the fine C' topology. First of all, since S is open in M, the set 
9D1 of all f: S o T*M such that (zMof)(S) - S is already open in the fine 
C0 topology, and the mapping f 1 7Mof from D, to C(S, S) is continuous 
in the fine C' topologies. Since the diffeomorphisms of S are open in 
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C(S, S) (see [22]), it follows that ?D is open in 9D1. 
Let 6 be an open subset of C(S, T*M) such that 9= 6, n Z1(m). 

Since the mapping fF--fo(7rJof)-1 is continuous from ca to C-(S, T*M) 
the set C= {If E P I fo (, 1f)1 E 

- } is open in C(S, T*M). 
The proof of (a) will be complete if we can show that A1sa is precisely 

the set of lagrangian submanifolds which contain an element of eSU(93). If 
L e 9l, a then L contains f(S) for some f e a. But f(S) is equal to 
fo(7AIof)-1(S), and fo(wrlof)-1 is in e. Since wr.ofo(wrIof)-' is the identity 
on S, fo(w11,of)-1 is a 1-form on S; since f(S) is lagrangian, fo(w11of)-1 is 
closed. Thus, fo(w1of)-' e Z'(M) n c = 1B, and L contains an element of 

Conversely, suppose L e $( T*M, Q,) contains an element es,- 1(0) of 
es,.11(93). Since s is a section, s is in ?D and So(WIo?)1 - 5 lies in .93 c L, 
so 5 lies in cf. Thus, L contains e,,,(O) p (S), so L lies in a 

To prove (b), we begin by choosing an open set U c M, containing S, 
whose closure is compact and contained in S. Let e be the set consisting 
of those f: U-p T*M for which the restriction of Wr, of to U is an embedding 
whose range contains S. In the space C(U, M), the subset consisting of 
maps whose restriction to U is an embedding covering S is open. (To 
prove this "folk theorem", one may use the ideas in 1.5 and 1.6 of [12].) 
It follows that e is open in C-(U, T*M). The remainder of the proof is 
similar to that of (a); the details are left to the reader. Q.E.D. 

The intersection theory of horizontal lagrangian submanifolds seems 
rather trivial, but since this theory can be carried over to the general case, 
we state the results in some detail. 

PROPOSITION 2.2. Let L1 
',1(S) 

and L2 = '2(S) be in ?S?(T*M, Ql,). 
Then the zero set of the form c - E Z1(S) is mapped by the embedding 
(1/2) (01 + 2): So T*M onto the intersection L1 n L2. 

The proof is trivial. The proposition says that the problem of finding 
intersections of L1 and L2 is reduced to that of finding zeros of 2 -1 

We denote the formO2 - 5, by $D(L,, L2) E Z1(S) and the embedding (1/2) (f1 + 92) 

by E(L1, L2) E C-(S, T*M). 

The next result is an immediate consequence of Propositions 2.1 and 2.2. 

COROLLARY 2.3. (a) Let L, and L2 be in 2s(T*M, Q,). Let 93 be any 
C' neighborhood of $D(L,, L2) in Z1(S) and let & be any C' neighborhood 
of E(L,, L2) in C-(S, T*M). Then there exists a fine C' neighborhood 
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911 X 912 of (LI, L2) in 2(T*M, QM) x 2(T*M, QM) and mappings (D: 911 x 92 
cJ3 and E.: 91 x 972 6- such that, for each pair (L', L') in 91, x M, 
Eo(Lf, L') is an embedding of S into T*M which maps the zero set of 
(Do(Lf, L') into the intersection Lf f L2. 

(b) Suppose, in addition to the assumptions in (a), that S is compact; 
L1 and L2 are contained in L1 and L2 which lie in ?2(T*M, QM), where S 
contains 5; and ?c and 6 are coarse C' neighborhoods. Then there exists 
a coarse C' neighborhood 911 x 92 of (Li, L2) in ?(T*M, Q,) x 2(T*M, Q,) 
such that the conclusions in (a) hold. 

The preceding corollary becomes useful only if we can guarantee the 
existence of zeros for $0(L', L'). Two problems arise in this respect. The 
first is that the manifold SO is generally not compact, so that it always 
carries functions with no critical points and, hence, closed forms without 
zeros. We will deal with this problem in the next section by making an 
assumption on $(L,, L2) (= O$(L, L2)) and using the fact that $0(L', Lf) 
lies nearby. The second problem is that the form (0(L', L'), while closed, 
may not be exact. This problem is dealt with in Section 5, where we discuss 
a cohomology invariant for pairs of lagrangian submanifolds. 

3. Clean intersections and non-degenerate zero manifolds 
We begin with a definition in the general situation. If L, and L2 are ele- 

ments of 52(P, Q) and Y c L, n L2 is a closed submanifold of P, we say that 
L1 and L2 intersect cleanly along Y if, for each p e A, the inclusion T_, ' 
TEL, n TpL2 is an equality. 

Let us interpret this definition in case L1= 5,(S) and L2= 92(S) are 
elements of 2s(T*M, Q,). Denote by 0 the zero section of T*M. The 
diffeomorphism of T*M which translates each fibre wr-'(m) by - 0,(m) maps 
L1 and L2 onto O(S) and (02 - 01)(S) = $(L1, L2)(S). It is clear that L, and 
L2 intersect cleanly along I if and only if O(S) and $(L,, L2)(S) intersect 
cleanly along the submanifold O(wM(Y2))- 

The problem is reduced then to the following: given c E Z1(S) containing 
the submanifold '0X ' S in its zero set, when do O(S) and 5(S) intersect 
cleanly along O('Q)? Let s eG . Then T.(,) T*M is naturally isomorphic to 
the direct sum TsMe T*M. T,(,)O(S) corresponds to the summand TsM& 
{0}. Since 0 is a section of T*M, T,(8)f(S) is a set of the form 
{IxEDD,(x) I x e TSM}, where D8,O: TAM-E T9*M is a linear mapping naturally 
determined by e and called the intrinsic derivative of 5 at s. It follows 
from the fact that T8SO(S) is isotropic that D,,o is symmetric; i.e., (D8f)* = 
DO modulo the natural identification of (TRAM)* with T8M. In fact, DsO 
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is just the linear mapping associated with the hessian at s of any function 
defined near s whose differential is I. 

Now 

TO(S)0(S) f TO(SS(S) -{x e D.0(x) I D8(x) = 0} Ker Do 3 {0}, 

while 

TO0(S)X0 0) = TX (E {0} - 

Thus, O(S) and 5(S) intersect cleanly along 0(6V) if and only if, for every 
s e X, the inclusion Ker D.0 = T8sV is an equality. We express this equality 
by saying that ?C is a non-degenerate zero manifold for a. If 4 df for 
some function f defined on a neighborhood of fX (such f always exists, by 
the Poincare lemma for vector bundles; see Section 3 of [34]), then At is 
non-degenerate as a zero manifold for s if and only if 6X is non-degenerate 
in the sense of Bott [6] as a critical manifold for f. 

In the terminology just introduced, our result is: 

PROPOSITION 3.1. L, and L2 in 2s(T*M, QM) intersect cleanly along 
E = L, L, if and only if w7,(E) is a non-degenerate zero manifold of 
$D(L1, L2)- 

Suppose, now that ) is a closed 1-form on a manifold S, with fX = S 
as a non-degenerate zero manifold. We wish to see what happens in a 
neighborhood of AX when the form 5 is slightly perturbed. Since the 
symmetry group is compact, 6X has an equivariant tubular neighborhood 
in S. As we will be interested only in phenomena occurring near ?C, we may 
assume that S itself is the tubular neighborhood, so that there is a retrac- 
tion p: So X. For each s E $X, the pullback u of s to p-r(s) has {s} as 
a non-degenerate zero manifold. (This is easily seen if one considers 0 as 
the differential of a function f having XV as a non-degenerate critical 
manifold.) In other words, the mapping Is: p-'(s) -? T*p-I(s) is transversal 
to the zero section at s. If 9 is sufficiently close to 0 in the fine Cl topology, 
there exists for each s C 1X a uniquely determined point F(V)(s) near s in 
p-'(s) which is a zero of the pulled back form As. In fact, the mapping 
F(+r): A , S is a smooth section of p which approaches the inclusion as * 
approaches s. (A complete proof of the previous two sentences requires that 
one consider U., and U, Asr as sections of the smooth bundle U, T*p-8(s). 
One observes that Us 05, is transversal to the zero section and then applies 
standard results in transversality theory, essentially the transversal isotopy 
theorem of [2].) 
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Now let r = F(*)(s) e F(*)(OX). Since F(Q) is a section of p, we have 
a natural isomorphism 

TrS = TrP-'(s) 0 TrF(*)('fX) 

By the way F(*) was defined, 0(r) annihilates the first summand. Thus, 
0(r) is zero if and only if it annihilates the second summand. In other 
words, the zero set of the pullback of * to F(Q)('X) is contained in the 
zero set of *. Conversely, if *(r) = 0 for some r e S, then in particular 

rp(r)(r) = 0. If r is sufficiently close to 'X and * is sufficiently close to 5, 
then r must be equal to F(Q)(p(r)), and the previous observation applies. 
Our result is summarized as follows. 

PROPOSITION 3.2. Let z5 be a closed 1-form on the manifold S, having 
as a non-degenerate zero manifold. Let c CX(X, S) be any C' neighbor- 

hood of the inclusion mapping. Then there exist 

a neighborhood S1 of 'X in S, 
a neighborhood $3 of z5 in Z'(S), 

a mapping F: H a C'(X, S,) n 6 

such that, for each r e i, F(*r) is an embedding and the zero set of | Si 
is equal to the zero set of the pullback of * to F(*r)('X). In other words, the 
zero set of * I Si is the image under F(*r) of the zero set of [F(i)]*V. 

Combining Proposition 3.2 with Corollary 2.3, we have the following 
theorem, which is our fundamental result in the case of cotangent bundles. 

THEOREM 3.3. Let S be an open subset of M, and let L1 and L2 in 
2s(T*M, QM) intersect cleanly along the closed submanifold E. Let & C 

C'(Y, T*M) be any C' neighborhood of the inclusion. Then there exist a 
fine C' neighborhood (R x ML of (L,, L2) in 2(T*M, QM) x 2(T*M, QM) 
and mappings G: 91Y x Y2 - & and F: 9{, x ,2 - Z1(Y) such that, for each 
pair (L', L') in 9i1 x 9M2, G(L', L') is an embedding which maps the zero 
set of F(L', L') into the intersection LI n L'. If Y is compact, then M., x 9i2 
can be taken to be a coarse C' neighborhood. 

4. Cotangent coordinates 

Up to now, we have assumed that the lagrangian submanifolds L, and 
L2 were located in a cotangent bundle and that they were nicely situated 
there. Although, in many applications, the symplectic manifold of interest 
is indeed a cotangent bundle, the lagrangian submanifolds are often not 
horizontal. In this case, it is simpler to forget that one is in a cotangent 
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bundle and pass to the case of an arbitrary symplectic manifold. The goal 
of this section is to show how to reduce the general case to the special one 
studied in Sections 2 and 3. 

A cotangent coordinate system on a symplectic manifold (P, Q) is a triple 
(PF, M, a) where P0 is an open subset of P and a: P0 - T*M is an open 
embedding such that a*Q.? = Q. We will often denote the triple by the 
symbol a alone. A mapping at: X(P, Q) S(T*M, Q,) is defined by a,(L) = 
a(L n P). This mapping is continuous between fine or coarse C' topologies. 

The idea of this section is, given L1 and L2 in Si(P, Q), to try to con- 
struct a cotangent coordinate system (P,, M, a) such that aC(L,) and ac(L,) 
are in S2(T*M, QA,) for some open S C M, and then to apply the inter- 
section theory of Sections 2 and 3. 

We begin the task of constructing cotangent coordinate systems with a 
digression on vector bundles. A symplectic structure on a vector bundle E 
over a manifold is a bilinear form Q on E such that the mapping i: Ed E* 
defined by S(x)(y) = Q(x, y) is an isomorphism. (We make the convention 
that, whenever we write Q(x, y), it is assumed that x and y are in the same 
fibre of E.) A symplectic structure Q on a manifold P may be considered 
as a symplectic structure on the tangent bundle TP over P (but not con- 
versely, since a symplectic structure on P must be closed). More generally, 
if Y is any submanifold of P, then Q induces a symplectic structure on the 
restricted tangent bundle T2P. 

If E is any symplectic vector bundle (i.e., a vector bundle together 
with a symplectic structure Q on it), and A ' E is a subbundle, then 
A- {x E E I Q(x, y) = 0 whenever y E A} is also a subbundle of E. It is always 
true that dim A + dim A - = dim E. (Here, dim means fibre dimension, of 
course.) If AnA 0, or, equivalently, if A ] A- = E, we call A non- 
singular. In this case, the restriction of P. to A is a symplectic structure 
on A. If A ' Al, we call A isotropic. If A = A', or, equivalently, if A 
is isotropic and dim A = (1/2) dim E, we call A lagrangian. For example, if 
L is a submanifold of a symplectic manifold (P, Q), then L is isotropic 
[lagrangian] if and only if TL is isotropic [lagrangian] as a subbundle of 
TLP. 

Subbundles A, and A, in E are said to intersect uniformly if A, f A, 
is a subbundle; i.e., if A, f A, has constant fibre dimension. For example, 
if the lagrangian submanifolds L, and L, in ?(P, Q) intersect cleanly 
along X, then ?7,L, and TsL, intersect uniformly in T2P. 

The following proposition will enable us to construct good cotangent 
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coordinate systems near clean intersections of lagrangian submanifolds. 

PROPOSITION 4.1. If A1 and A2 are uniformly intersecting lagrangian 
subbundles of a symplectic vector bundle E, then there exists a lagrangian 
subbundle B c E such that A1 e]l B = A, e]l B = E. 

Proof. First, consider the case in which A1 0 A2 = E. The mapping 
a: A, A* defined by a(x)(y) = Q(x, y) is an isomorphism, because its 
kernel is Afl nA A, n A2 = 0. Let S: A, A* be the symmetric iso- 
morphism associated with a riemannian metric on the vector bundle A. 
Such a metric exists because the symmetry group is compact. Now it is 
easy to check that {x + ca-S(x) I x c Al} is a lagrangian subbundle comple- 
mentary to A, and A2, 

Second, consider the case A, - A2. By Lemma 4.2 below, there exists 
a lagrangian complement to A, 1 A2 in E. (Let E be the empty set.) 

In the general case, we can choose subbundles C1 and C2 such that 
Al = (A, n A2) ff C1 and A, = (A1 n A2) e C2. This, again, follows from 
the compactness of the symmetry group. Obviously, C1 n C2 = 0. 

We will now show that C1 eD C2 is non-singular. Let xi e C* (i = 1, 2) 
be such that X1 + x2 e (C1 e 2) ln (C1 eD C2)'. For all y2 c 2, we have 

0 = Q(xl + x2,y2) = Q(xl, y2) + Q(x2, y2) - Q(x1, y2) 

since C2 is isotropic, so xl E C2-. On the other hand, 

.ze C1 ' Al = All (A, n A2)'. 

Thus 

x, C [(A, n A2) E 0C2] A2 = A2. 

But C, n A, = 0, so xl = 0. Similarly, X2 = 0, so XI + X2 must be zero. 
In the symplectic vector bundle C1 0 C2, Cl and C2 are lagrangian, so 

we are in the first special case considered above, and there is a bundle C, 
lagrangian in C E0 C,2 such that C, 0D C, = C, 0 C = C2 C. 

The subbundle (C, E C2)' is also non-singular, and it contains A, n A2. 
In fact, counting of dimensions shows that A1 n A2 is lagrangian in 
(Cl 0 C2) L, so the second special case considered above implies that there 
is a subbundle A, lagrangian in (C1 e C2),1 such that (L, n L2) 0D A 

(Cl 0D C2)'. 
Let B = C ED A. Since E = (C10 E C2) ED (C10 f C2)' it is easy to check 

that B is lagrangian and A, (1e B = A2 e B = E. Q.E.D. 

In case Al = A2, the following relative version of Proposition 4.1 holds. 
We use the result in the proof of Proposition 4.1 and again in our later 
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discussion. Incidentally, the natural common generalization of Proposition 
4.1 and Lemma 4.2 is false. 

LEMMA 4.2. If A is a lagrangian subbundle of a symplectic vector 
bundle E over a manifold M, Y is a submanifold of M, and the restricted 
bundle A, ' E, admits a lagrangian complement Be, then BE extends to a 
lagrangian complement B of A in E. 

Proof. Choose an inner product on E, in which A, and B, are per- 
pendicular, and extend it to an inner product <, > on E. The bundle mapping 
K: E E defined by <K(x), y> = Q(x, y) is a skew-adjoint isomorphism, so 
- K2 is positive definite. Let P be the positive definite square root of - K2, 
and set J= KP-1. The arguments used in the proof of Proposition 5.1 of [34] 
show that J(A) is lagrangian and A e J(A) = E. 

It remains to show that J(A,) B,. Since A, and BE are isotropic, it 
is clear that K(A,) = B_ and K(B_) A,. As, being invariant under - K2, 
is also invariant under its square root P. Then 

J(A_) = KP-'(A7)=KA B, Q.E.D. 

We conclude this digression with some remarks. H6rmander [13] de- 
fines a cohomology invariant a for pairs of lagrangian subbundles of a 
symplectic vector bundle and shows that a vanishes if either the hypothesis 
or the conclusion of Proposition 4.1 holds. The present (though not the 
original) proof of Proposition 4.1 was strongly motivated by Hirmander's 
constructions. 

Proposition 4.1 extends immediately to the category of vector bundles 
with Hilbert space fibres, but it fails for general Banach spaces, even if the 
symmetry group and the base space each reduce to a single element. If B 
is any reflexive Banach space, B (E B* carries a symplectic structure for 
which the summands are lagrangian [34]. If there existed a mutual 
lagrangian complement, B and B* would be isomorphic. Letting B be the 
sequence space lP (p # 2), we see that this is not necessarily the case. 

Proposition 4.1 may be interpreted as a result concerning projective 
modules over the ring of Co functions on the base space. Related results 
for more general rings may be found in Novikov [23]. Novikov does not 
seem to prove Proposition 4.1, though. 

Finally, we remark to readers of [35] or [36] that Proposition 4.1 is the 
basis for the elimination of the hypothesis of "regularity" in the present 
work. 
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Returning to the original problem, suppose we are given L1 and L2 in 
'V(P, Q), intersecting cleanly along a submanifold S. Since TEL1 and TSL2 
intersect uniformly in T1P, there exists, by Proposition 4.1, a lagrangian 
subbundle BE c TEP such that 

TL1i Q BE = TSL2 e BE = T, P. 

Let M be an element of .t2(P, Q), containing A, such that TXMQ( BS = TSP. 
(For instance, we could take M to be L1 or L2, but this is not necessary.) 
By Lemma 4.2, we can extend B, to a lagrangian subbundle B ' TA!P such 
that TM B= TMP. 

We now turn our attention to the cotangent bundle T*M with zero 
section 0. The restricted bundle TO(M) T*M is naturally isomorphic to TMe 
T*M, both summands being lagrangian subbundles. Now, by Theorem 
6.1 of [34], and its proof, there is a symplectic diffeomorphism a between a 
neighborhood P0 of M in P and a neighborhood of O(M) in T*M such that 
aoi = 0 and TMa: T,[P > TO(M) T*M maps B onto the subbundle, tangent 
to the fibres, corresponding to 0 e T*M. (The equivariance is not mentioned 
in Theorem 6.1 of [34], but remarks in Sections 3 and 4 of that paper show 
that, since the symmetry group is compact, a can indeed be chosen to be 
equivariant.) Since a is symplectic, (PO, M, a) is a cotangent coordinate 
system for (P, Q). 

Look now at the lagrangian submanifolds a,(L1) and a,(L2) in T*M. 
For each s C A, we have a(s) = O(s), and Tsa: TYP-? TO(S) T*M maps B, onto 
the subspace of TO(S) T*M tangent to the fibres. Let j be 1 or 2. Since 
T8L3 n B8 = 0, the intersection of Ta(Sia(Lj)] = Ta(T8Lj) with the space 
tangent to the fibres is zero. Restricted to a(F), the mapping 

WU1oi,(Lj) 
is 

just the embedding a-'. The computation just completed shows that, for 
each s C A, the differential 

T1r)(,*7,l1i1~,(Lj)): T,(s)JaX(Lj)] >TSM 

is an isomorphism. It follows (see, for instance, Lemma 5.7 in [22]) that 
there exists a neighborhood Uj of a(E) in a,(Lj) such that WMroi,,(Lj) is an 
embedding onto a neighborhood of E in M. Then neighborhoods Uj can be 
chosen such that Wr1oi,(L1)(Ul) and 71oia,(L2)(U2) are the same set, which we 
call S. Let L' a'-(Uj). Then Uj a a,(L'), and we have the following 
theorem. 

THEOREM 4.3. Let L1 and L2 in .(P, Q) intersect cleanly along the 
closed submanifold S. Then there exist: an open neighborhood P, of E in 
P; a manifold Mcontaining E as a closed submanifold; a cotangent coordinate 
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system (PO, M, a) such that a(s) 0 0(s) for all s C Y; and open neighborhoods 
L?, L, and S of E in L, f P0, L2 f P0, and M, respectively, such that 
a,(L?) and a.(LO) lie in 2,(T*M, QM). 

Since ac(L?) and ac(L") obviously intersect cleanly along 0(?), and a, 
is continuous, we may combine Theorems 3.3 and 4.3 to obtain our principal 
result on intersections. 

THEOREM 4.4. Let Li and L2 in 2(P, Q) intersect cleanly along the 
closed submanifold a, and let 6 c C-( P) be any C' neighborhood of the 
inclusion. Then there exist a fine C' neighborhood 91, x 912 of (L,, L2) in 
2(P, Q) X J(P, Q) and mappings G: 91, x 912 - and F: 911 x 9l2 * Z'(Y2) such 
that, for each pair (L', L') in 911 x 912, G(L', L') is an embedding which 
maps the zero set of F(L', L') into the intersection L, f L'. If Y is compact, 
then ?1 x (l2 can be taken to be a coarse C' neighborhood. 

The details of the proof are left to the reader. We refer to Section 5 
for a rather explicit construction of F(L', L'). 

As a sample of the results which can be obtained from Theorem 4.4, we 
present the following corollary. 

COROLLARY 4.5. Let Li and L2 in 2(P, Q) intersect cleanly along S. 

Suppose that I is compact and that the cohomology group H'(Y2; 9F) is zero. 
Then there is a coarse C' neighborhood 911 x 912 of (L,, L2) in 2(P, Q) x 
2(P, Q) such that, for all pairs (L', L') in 911 x 912, L1 n L2 contains at 
least cat (Y) points, where cat (Y) is the Lusternik-Schnirelmann category 
of a. 

Proof. Let 911 X 912 be as in Theorem 4.4. We must show that 
F(L, L ) has at least cat (y) zeros. But H'(Y; A) = 0 implies that 
F(Lf, L') = df for some f: Amp. The zeros of F(L', L') are the critical 
points of f, which number at least cat (1) [16], [25]. Q.E.D. 

Remarks. Notice that, if the symmetry group is not trivial, H'(Y; 'iR) 
means the space of invariant closed 1-forms modulo the differentials of 
invariant functions. Nevertheless, if an invariant 1-form is the differential of 
a non-invariant function, we may average over the symmetry group to make 
it the differential of an invariant function. In other words, if we denote F 
with trivial symmetry group by A*, there is a natural injection of H'(Y; AZ) 
into Hl(?*; R). If the latter cohomology group is zero, so is the former, and 
Corollary 4.5 applies. On the other hand, H'(Y; 9Z) may be zero when 
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H'(?,; AZ) is not; e.g., v = unit complex numbers with G = Z2 acting by 
conjugation. 

As long as ? is not a single point, cat (Y) is at least 2. Other examples 
are cat (CPo) = cat (kPtn) = n + 1. Sometimes, one may use the invariance 
of F(L', L') under the symmetry group to obtain a better estimate for the 
number of zeros. 

3. A cohomology invariant 

If L1 and L2 in 't(P, Q) intersect cleanly along ?, we have seen in the 
previous section how to associate to (L', L') near (L1, L2) an element 
F(Lf, L2) of Z'(1) whose zeros are mapped by an embedding G(L', L') into 
the intersection L, n L'. The closed 1-form F(L', L2) is not invariantly 
defined but depends on the choice of a cotangent coordinate system around 
2. The aim of this section is to show that the cohomology class of F(L', L2) 
in H'(Y; 'A) is independent of the choice of cotangent coordinate system. 
We will also give some sufficient conditions for the vanishing of this cohomo- 
logy class. When these conditions are satisfied, the conclusion of Corollary 
4.5 is true for (L', L') without the assumption that H'(Y; At) be zero. 

To prove our invariance theorem, we will look again at the way in 
which the form F(L', L') arises from the cotangent coordinate system 
(PO, M, a). First of all, by Theorem 4.3, we have LI z L1 and L? = L, 
such that a,(L?) and a,(L?) are elements of 2s(T*M, QM), cleanly intersecting 
along 0(z). Now, by Proposition 2.1, if (Li, L') is close enough to (L1, L2), 
a,(L') and a,(L') contain open subsets Ul and U2 which are again in 
SS(T*M, Q,). The form $D(Ul, U2) is defined as 92 - 01, where Uj = 0j(S). 
Notice that 0(U1, U2) is also equal to *2*o)M - 9*)M, where o)u is the 
fundamental 1-form on T*M. Now F(L', L') is defined to be the form 

r(a,(L'), a,(Lo)) of Theorem 3.3, which is in turn the form IF*(N(U1, U2)) of 
Proposition 3.2, where F = F($( D1k, U2)): ? - M. Putting these equalities 
together, we have 

F(Ll, Lf) - 'SF(M) @W2o2F) (coj) ((02)*(WIr) 

Here, '1?os and 92oJf are mappings from Y to T*M which are C' close to 
the zero section. If we write w) for a*W)M, we have do - --Q, and 

F(Lf, L2) = (a-lo 52o()* a-(o 'loT)*(o 

Notice that the image of a'-lo ' is contained in L>. We may summarize all 
this by the following statement. 

LEMMA 5.1. F(L'g L-), as constructed from any cotangent coordinate 
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system, is of the form 852a - a3ce; ej is a mapping from ? into L', C' 
close to the inclusion; Y is contained in the zero set of cl, and do) -Q. 

Now suppose we construct F(L', L') from another cotangent coordinate 
system. It will be equal to S*6 - 5, where /%, /2, and 6i are as in 
Lemma 5.1. Now suppose that ,j and Fj are homotopic in L', and that 
their images are all contained in a tubular neighborhood of Y in P. (This 
will be true for (LW, L') close enough to (Li, L2).) Since the form 6i0 - c 
vanishes along A, and d(Ji - C)) -Q + Q = 0, the Poincare lemma for 
vector bundles [34] implies that there is a function 0, defined on the tubular 
neighborhood, such that dO= hi0- c). Now we compute the difference of 
the two versions of F(L', L'). It is 

2 13@- (t + acew = * @-ae- 
(O 2+ 18 +8 2w 

= d(8*0) - d(f*0) + (N8oc - /S * o) 
- (i3lc - a3rv) . 

Now each term of the form ,3ce) - Aso is exact because ej and /3j are 
homotopic in L', and se) is closed on Lo; hence, the difference of the two 
versions of F(Ll, L') is exact. We have thus proven the following result. 

PROPOSITION 5.2. Let L, and L2 in 2(P, Q) intersect cleanly along T. 
There is a neighborhood 911 x 912 of (L,, L2) in 2(P, Q) x 2(P, Q) and an 
invariantly defined mapping c: O11 x ODR2 H'(2; itk) such that, for 
(Lf, Lf) C OeL x O 1R2, the form F(Ll, L') in Theorem 4.4, defined in terms of 
any cotangent coordinate system, belongs to the cohomology class c(L1, L'). 
In particular, if c(Lf, Lf) is zero, F(L', Lf) is the differential of a function, 
and the conclusion of Corollary 4.5 applies. 

We will now go on to find a sufficient condition for the vanishing of 
c(L, L'). Notice first that the proof of Proposition 5.2 shows that, if S is 
any form such that d? = -Q, then 8*3 - 8*0 belongs to the cohomology 
class c(Ll, L'). 

PROPOSITION 5.3. For c(L1, L2) to be zero, it is sufficient that Q be exact 
on P and that the mappings e3: H'(L; k) H'(Y; R) be zero. The latter 
condition is satisfied whenever H'(Lf; $1t) = 0 = H'(L'; ?R). 

Proof. Since Q is exact on P, there is a 1-form 5 on P such that 
do -Q. By the remark immediately preceding this proposition, c(L', L') = 

2 - /]. (Square brackets around a closed form denote its cohomology 
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class.) Writing ij for the inclusion of L' into P, we have j = ijo8j, and 

[ace 1 a]= 2 i*0] - *is 

which is zero because the mappings , are zero on cohomology. Q.E.D. 

Another sufficient condition for the vanishing of c(L', L') is given in 
Proposition 6.3. 

6. One-parameter families 

Let {Yt}teJ be a smooth family of mappings of a manifold Y into (P, Q), 
parametrized by an interval J in the real numbers. If 5 is any form such 
that do =-Q, we have the homotopy formula [11] 

d 
_yt72 = wjtd(I' -h) + Jt 

id do] = 7*[d(-t o -t Q) - 

dt 

where i't is the vector field along ot representing the time derivative of 7t. 
Suppose that 7*Q = 0 for each t e J. Then the forms aft, (d/dt)7*0, and 

-t (-8t Q) are all closed for each t C J. We will use two special cases of our 
formula. 

LEMMA 6.1. (a) If e* (t -t Q) is exact for each t C J, then the cohomo- 
logy class [7*o] is independent of t. 

(b) If 7to(v) is contained in the zero set of o for some t0 c J, then 

d rtoY*C It=to =-t*o(r7to Q) dt 

The right hand side is independent of the choice of 3. 

First, we will apply Lemma 6.1 (a) to derive another sufficient condition 
for the vanishing of c(L', L'). Recall from Section 5 that there are embeddings 
,G-j: L, such that, if 0 is any form such that do = -Q, c(L, L')= 

[R 1][ R 2 

PROPOSITION 6.2. Suppose there exists a 1-parameter family {1}t e,[ol] of 
mappings from z into P such that: -i*Q = 0 and jt*{'t I Q) is exact, for 
each t C [0, 1]; 7r =l2; and [-Y*o] [E]. Then c(L, L') = 0. 

The second goal of this chapter will be to apply Lemma 6.1 (b) to derive 
a result concerning 1-parameter deformations of cleanly intersecting 
lagrangian submanifolds. 

Let J be an interval in the real numbers. Given a family L = {Lt}tej 

of elements of S(P, Q), we define L a P x J to be the subset {(p, t) I t e J 
and p c LJ}. There are natural projections HE:1 L P and TILJ: L - J. If L 
is a (locally closed) submanifold of P x J and UIL is a submersion, we call 
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L a smooth family. If L is a smooth family, it is not hard to see that the 
mapping t i Lt from J to S(P, Q) is continuous if 2(P, Q) is given the 
coarse C' topology. 

Let 0 be contained in the interval J. Given each p C L., choose a vector 
v e TpP such that there exists a vector w C T(p o)L for which TflLw = d/dt 
and T1'w = v. Let v* e Tp Lo be defined by the equation v*(u) - Qua, u) 
for all u C TpLo. In other words, v* is the restriction to TpL, of -,v -- Q. 
If v' is another choice of the vector, then v' = TflLW' where THISw' 
d/dt= TI7Iw, The difference w' - w must then be tangent to the fibre 
Lo x {O}, so that difference v' - v = TE(w - w) is tangent to Lo. Since 
L. is lagrangian, Q(v' - v, u) = 0 for all u C TpLo, and v'* is equal to v*. 
Thus, we can associate to each p in Lo an element of TpLO which depends 
only on the family L. These elements define a 1-form on L, which we 
denote by DOL. It represents the family L to first order around t = 0. 

PROPOSITION 6.3. Let L be a smooth family of lagrangian submanifolds 
of (P, Q), parametrized by an interval J containing 0. Let {'t}teJ be a 
smooth family of mappings of a manifold Z into P such that -'Jl) L, 
for each t C J. If 5 is any 1-form, defined on a neighborhood of the ̂ 4t) 
for t near 0, such that d=- Q and such that 'x0(Z) is contained it the 
zero set of A, then 

d L 
-7i-t IN lt=o = 9 *oL dt 

Proof. By Lemma 6.1 (b), (d/dt)-i*'5t=o =--*(-J ?Q). Given any 
p C 1, let w be the tangent vector at 0 of the map a: J L defined by 

~(t) = (7(p) t). Then TfLL(w) = 1 and TfL'(w) = 1o(p). By definition, the 
value v* of DOL at y0(p) satisfies the equation v*(u) -Q(i'o(p), u) for all 
u C Tro(P)L. 

For all xc T [e T (-pi - Q)](x) is, by definition, Q(-A0(p), TPY,(x)), 
which equals v*(Tv-yo(x)) = [Th1-1o(v*)](x); i.e., y*(-r -I Q) = -*(DOL). 

Q.E.D. 

As a first application of Proposition 6.3, we can conclude that DL is 
closed. In fact, given any p C Lo, we can let Y be a neighborhood of p and 
find bat} and 9 satisfying the hypotheses of the proposition. (Choose a 
cotangent coordinate system (P0, M, a) mapping Lo onto the zero section of 
T*M.) Since (d/dt)-i*~ J, is closed, so is 'y*DOL. The form DOL is thus 
locally closed and, therefore, closed. 

Our main application of Proposition 6.3 is to one-parameter deformations 
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of cleanly intersecting submanifolds. The results which follow will be seen 
in Part II to form the basis of an extension of the averaging method of 
Reeb [26] and Moser [21]. 

Suppose that L1 and L2 are smooth families parametrized by an interval 
J containing 0 and that L1,0 and L2,0 intersect cleanly along a submanifold 
S. We apply Theorem 4.4, taking L1 = L1,, and L2 -L2,0. Suppose that, for 
t sufficiently near 0 in J, the pair (L1,,, L2, ) is in the neighborhood .01 x EQ2 
of Theorem 4.4. By the continuity property mentioned above, this will 
always be true if I is compact. Then I(L1,,, L2, ) is defined for t sufficiently 
near zero. It is not hard to verify given the natural way in which J(L1,,, L2, ) 
is constructed, that J(L1,,, L2 ,) depends smoothly on t, so that we may 
consider the derivative (d/dt)J(L,,, L2,t) It=o. 

THEOREM 6.4. Let L1 and L2 be smooth families parametrized by an 
interval J containing 0. Suppose that L1,0 and L2,0 intersect cleanly along 
a sub manifold Z and that J(Ljt, L2, ) is defined, via Theorem 4.4, for all t 
sufficiently near 0. (This is necessarily the case if s is compact.) Then 

dtr(LI ty L2,t) It=o 

is equal to i*DoL2, - i'DoL, and is, therefore, independent of the cotangent 
coordinate system used to construct F(L1, L2,t). 

Proof. By Lemma 5.1, J(L1,t, L2, ) is of the form 1*tot - G*,tS, where 
sj,t maps Y into Lj, Y is contained in the zero set of co, and do =-Q. 

By construction, the families {Sjt} are smooth, and 1,t and 0,t both equal 
the inclusion is. Then 

.-F(Listy L2,t) It=o = -/32,to)It=o -/31,tck3 it=o dt - dt dt' 

which, by Proposition 6.3, is equal to G*ODOL2 - /ODQL2 which equals 
i*DQL,, - iDoLI. Q.E.D. 

Besides showing that (d/dt)I(L1,t, L2,t)t.0 is an invariant of the families 
L1 and L2, Theorem 6.4 can also be used to deduce the existence of points 
of L1, n L2, for small t. A component Y, of the zero set of a closed form +r 
on ) is called [weakly] stable if, given any neighborhood U of YO in A, 
there is a neighborhood $ of * in Z'(Y) such that every [exact] form (' 
in 93 has at least one zero in U. 

THEOREM 6.5. Let L1 and L2 be as in Theorem 6.4. If fo is a stable 
component of the zero set of iRDOL2 - i*DOL, then, given any neighborhood 
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U of 1, in P, the intersection L1,, f L2,,f nU is non-empty for t sufficiently 
near 0. If c(L1,,, L2,t) is known to be zero for all t, it is sufficient that Y, be 
weakly stable. 

Proof. Consider F(L,,,, L2,t) as a function of t. Since it vanishes at 
t = 0, it is divisible by t, and (F(L1,t, L2,,))/t = i, where Pt depends smoothly 
on t and 

PO = d F(L1't9 L2,t) Kt. dt 

By Theorem 6.4, PO = i*DoL2 -i*DoL,. If Yo is a stable component of the 
zero set of fo, P(L1,t, L2,t) = tFt has at least one zero near Yo for all 
sufficiently small t. By Theorem 4.4, this zero is mapped by the embedding 
G(Ll,t, Llt), which is near the inclusion, onto a point of L1, t nL2,t. Q.E.D. 

The importance of Theorem 6.5 is that, in practice, i*DOL2 -i*DoL, 
may be computed much more simply than F(Llt, L2, ). After verifying 
stability by transversality theory or topology, one may locate points of 
L1,, f L2,t, of which Theorem 4.4 merely guarantees the existence. In 
addition, i*DOL2 - i*DOL, is sometimes invariant under more than the 
original symmetry group, so that it becomes easier to deduce the existence 
of many zeros. Finally, we remark without proof that Theorem 6.5 holds if 
X0 is compact, even if ? is not. In this case, J(L1,,, L2, ) might only be 
defined near Zo for t near 0, but that is sufficient. 

PART II. APPLICATIONS TO HAMILTONIAN SYSTEMS 

7. Canonical relations and fixed manifolds 

The intersection theorems of Part I will be applied to certain sub- 
manifolds of the Cartesian square of a symplectic manifold. 

If (P. Q) is a symplectic manifold, the Cartesian square P x P has a 
symplectic structure %, defined as z*Q - z*Q, where z, and w2 are the 
natural projections of P x P onto P. If ,8: P P is a canonical trans- 
formation, i.e., a diffeomorphism for which IRQ = Q, then the graph 
IYP= {(p, 6(p)) I p e P} is easily seen to be a lagrangian submanifold of 
(P x P, Q). By way of generalization, we refer to any lagrangian sub- 
manifold of (P x P, Q%) as a canonical relation on (P, Q). 

The graphs of canonical transformations furnish our first examples of 
canonical relations, of which the diagonal A, = {(p, p) I p e P} is of special 
importance. If R is any canonical relation, a point p e P such that 
(p, p) e R is called a fixed point of R. 
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If L, and L2 are lagrangian submanifolds of (P, Q), then the product 
L, x L, c P x P is a canonical relation on (P, Q). It is interesting to note 
that the fixed points of L, x L2 are exactly the points of L, n Lo. (One 
could use this observation to reduce the intersection problems of Part I to 
the special case in which one of the manifolds is fixed.) 

Another important class of canonical relations, arising from hamiltonian 
dynamical systems, will be introduced in the next section. 

If R is a canonical relation on (P, Q), a submanifold Y c P is called a 
non-degenerate fixed manifold for R if R and AP intersect cleanly along 
A, = {(p, p) I p C A}. This definition is easy to interpret in the two special 
cases introduced in the previous section. If A: P a P is a canonical trans- 
formation, v is a non-degenerate fixed manifold for yfi if and only if, for 
every s C A, 3(s) s s and the kernel of (T,,e - id): T8P-* T8P is TSR. If 
L1 and L2 are lagrangian submanifolds of (P, Q), Y is a non-degenerate 
fixed manifold for L1 x L2 if and only if L, and L2 intersect cleanly 
along A. 

We can now obtain the following result, which shows what happens to 
a non-degenerate fixed manifold under small perturbations of the canonical 
relation. 

THEOREM 7.1. Let v be a non-degenerate fixed manifold for 
R c S2(P x Pi Qx), and let & c C(, P) be any C' neighborhood of the 
inclusion. Then there exist a fine C' neighborhood 91 of R in B(PX Pi QX) 
and mappings G: l 91 - & and F: 91 - Z'(Y2) such that, for each R'G 91, 
G(R') is an embedding which maps the zero set of Ir(R') into the fixed point 
set of R'. If I is compact, then 91 can be taken to be a coarse C' neighborhood. 

Proof. Apply Theorem 4.4 to the pair (Ap, R). Use the natural identi- 
fication of I with A, to make G(Ap, R') and F(Ap, R') defined on v instead 
of A. Compose G(Ap, R') with either w, or 722 to make it map into P 
instead of P x P. Q.E.D. 

Remarks. Since the map (L1, L2) - L, x L2 from 2(P, Q) x 2(P, Q) to 
2(P x P, Qx) is continuous, Theorem 4.4 may be considered as a special case 
of Theorem 7.1. 

If I is compact and H'(Y; R) = 0, we may deduce, as in Corollary 4.5, 
the existence of fixed points for R' C 91. Even if H'(Y; Rt) is not zero, we 
may be able to establish that the cohomology class c(Ap, R') is zero, in 
which case F(R') must be exact, and the conclusion still applies. Examples 
of this are given in this next section. 

If R is the graph of a canonical transformation A, then Yp,' C OI for all 
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A6' sufficiently near e in the C' topology on C-(P, P). Theorem 7.1 yields, 
therefore, fixed point theorems for canonical transformations near one with 
a non-degenerate fixed manifold. 

8. Hamiltonian svstems and canonical boundary value problems 

This section is the heart of Part II of this paper. We will present a 
general formulation which encompasses most of the boundary value pro- 
blems considered in conjunction with hamiltonian systems and the calculus 
of variations. In terms of this formulation, we will apply the intersection 
theory of Part I to derive the existence of solutions for problems obtained 
by slightly perturbing problems having manifolds of solutions. 

A hamiltonian system is a triple (P, Q, H) where (P, Q) is a symplectic 
manifold and H is a real valued function on P. H is called the hamiltonian 
function, or simply the hamiltonian. Though many of our results can be 
extended to the time-dependent situation, in which H is defined on P x ak, 
this paper will be confined to the time-independent case. We refer the 
reader to [1] as a general reference on hamiltonian systems. 

Associated with the hamiltonian system (P, Q, H) is the hamiltonian 
vector field DH on P, defined by the equation XH - Q = dH, or iH -2'odH. 
For each p P, the hamiltonian vector field -H has a maximal integral 
curve up, with o,(O) - p, defined on an open interval of Rk. The collection 
of maximal integral curves gives rise to the flow FH: 9H - P, where ?DH = 
{(p, t) C P x R I t is in the domain of up}, and FH(p, t) = up(t). 

We will examine the map FH in some detail. For each t c R, let 
IO = {p C P I (p, t) C DH}, and define IFH: VH P by 'FH(p) - FH(p, t). 
tFH is a diffeomorphism of VH onto `9)H and is called the time t mapping 
associated with the hamiltonian system (P, Q, H). It is well known that 
tFH*Q = Q, so that the graph {(p, tFH(p)) I p C I0H} is a canonical relation 
on (P, Q), which we denote by tR,. Given p C P, up(t) = p if and only if p 
is a fixed point of tRH. The set Ip = {t i op(t) = p} is either {O}, Rk, or a non- 
trivial cyclic subgroup of Rk. In the last case, we say that p is a periodic 
point for the system (P, Q, H), and we call the positive generator of IP the 
least period of p. Any positive element of I is called a period of p. If p 
is periodic with least period t0, so are all the points of {cr(t) I t C R}. This 
set, which is an embedded circle in P, is called a periodic orbit for (P, Q, H) 
with least period t0. 

The problem of determining the existence and properties of periodic 
orbits is of fundamental importance in the study of hamiltonian (and other) 
dynamical systems. It should already be evident to the reader of Section 7 
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that our intersection theory will be useful for deducing the existence of 
periodic orbits. Before doing this explicitly, we will generalize the setting 
of the problem. 

Define the mapping FH: H -P x P by FH(P, t) = (p, FH(p, t)). 
The canonical relation tRH is the image under FH of {(p, t) I p e t'H}. 

More generally, we can look for other submanifolds of ODH such that the 
restriction to them of FH is a lagrangian immersion. To find such mani- 
folds, we begin by determining further properties of FH. Denote by w and 
z the projections of P x 9k on P and 9k, respectively. 

LEMMA 8.1. FH*Q = w*Q - d(Ho ) A d: . 

Proof. Let (p, t) Ge OH. The tangent space T(P,t)DH is naturally iso- 
morphic to the product TpP x TIR. We may identify T,9Z with R in such 
a way that dr(x, a) = a. For each (x, a) in T(pt)DH, we have 

TFH(x, a) = TFH(x, 0) + TFH(O, a) = TtFH(x) + a * .H[FH(P)] 

Given (x, a) and (y, b) in T(p,t)TH and writing $ for $H[tFH(x)], we have 

FQ((x, a), (y, b)) = Q(TFH(x, a), TFH(y, b)) 
= Q(TtFH(x) + a$, TtFH(y) + b$) 
= Q(TtFH(x), TtFH(y)) + aQ($, TtFH(y)) 

- bQ($, TtFH(x)) + abQ($, $) . 

Since tFHQ = Q. $H , Q = dH, and tF*(dH) = dH, this reduces to 

Q(x, y) + a[dH(y)] - b[dH(x)] + 0 
= [z*QI((x, a), (y, b)) + dz(x, a).[d(How)](y, b) 

- dz(y, b)jd(Hoz)](x, a) 

[w*Q + dz A d(Hoir)]((x, a), (y, b)) . Q.E.D. 

COROLLARY 8.2. F}HQX = d(Honc) A dz . 

Proof. FHQ$ = Q- wQ) = w*Q - FHQ = d(Hoz) A dr. Q.E.D. 

From Corollary 8.2, we see that How and r are functionally dependent 
on any submanifold of O.H to which the restriction of FH is isotropic. (This 
generalizes the well known dependence between energy and period for 
families of periodic orbits. See [81 for a recent treatment, together with 
further references.) With this in mind, we make the following construction. 
In R2, we think of the first coordinate as representing energy and the second 
as representing time. Let C c 9Z2 be any curve (1-dimensional submanifold). 
Let OcH be the set {(p, t) e H I (H(p), t) e C and the map (How, z) is 
transversal to C at (p, t)}. Dc is a submanifold of codimension 1 in , on 
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which energy and time are related by C, so d(Hosl) A d: =0 on GOl. Since 
the range of T(P,t)(HoW, z) = Rk x R if p is not a critical point of H and 
is {O} x 9k otherwise, the transversality condition in the definition of ?)cH 
(which we will refer to as condition T) is equivalent to the negation of the 
statement: p is a critical point of H and the curve C has its tangent in the 
time direction at (H(p), t). 

For example, if C is a curve given by setting the time equal to a con- 
stant, then condition T is always satisfied. In this case D7I is essentially 
what we called t9), above. On the other hand, if C is given by setting the 
energy equal to a constant, then condition T is just that p not be a critical 
point of H. In any case, we have the following result. 

LEMMA 8.3. If C is any curve in R2, then the restriction FH; of FH to 
, is a lagrangian immersion. 

Proof. Since we have already seen that FH(QA) is zero on ?D", we have only 
to show that Fi is an immersion. It suffices to show that, for (p, t) C Hi 
the kernel of T(P,t)FH, has zero intersection with T(P,t)D. It follows from 
the calculation of TF1 in the proof of Lemma 8.1 that the kernel of T(P,t)FH 
is zero if I does not vanish at p and is {O} x 9k otherwise. If XH does 
vanish at p, though, it follows from condition T that {O} x fR has zero 
intersection with T(p,,)%. Q.E.D. 

We now define a canonical boundary value problem to be a quintuple 
(P. Q. H, C, R) where (P, Q, H) is a hamiltonian system, C is a curve 

in V 2, and R is a canonical relation on (P, Q). A solution of 9 is a pair 
(p, t) C (1D such that Ff(p, t) C R. 

A submanifold I c (DIc is called a non-degenerate solution manifold for 
9 if: FH(1) c R; FPc is an embedding on 1; for each (p, t) C A, the inverse 
image under T(P,t)Fic of TR is equal to T(p,t),. The second condition im- 
plies that Fc is an embedding on a neighborhood U of Y in 9D; the third 
condition then says that Fc(U) and R intersect cleanly along FC'(Y). 

For example, if R = Ap, then (p, t) is a solution of 9 if and only if p 
is a periodic point with period t, (H(p), t) C C, and condition T holds. (If 
condition T does not hold, then EH vanishes at p, and p is a "trivial" 
periodic point.) In case C is a curve of constant energy or constant time, 
we can describe in a simple way the condition that a manifold Y of solutions 
be non-degenerate. First of all, Fc is an embedding on Y and, hence, on a 
neighborhood U of A, if and only if w is an embedding on A. In the con- 
stant time case, this is always true. In the constant energy case, there 
must be a real valued function 0 on w(Y) such that {(p, 0O(p)) i p C 
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As far as the cleanliness of intersection with A, is concerned, in the case of 
constant time t, the condition is just that w(Z) be a non-degenerate fixed 
manifold for tFH. In the case of constant energy E, the condition is that, 
for each (p, t) e ? and each v e T4[H-1(E)], [TptFI](v) - v is zero modulo 'f(p) 
if and only if v e Tp[w(2)]. One consequence of non-degeneracy in either 
case is that w(Z) contains the entire periodic orbit of each of its points. 

We note without proof that, if (P, Q, H) is the geodesic flow on the 
cotangent bundle of a riemannian manifold M, then a non-denegerate solu- 
tion manifold for the constant energy periodic orbit problem corresponds 
exactly to a non-degenerate critical manifold for the energy integral on the 
free loop space of M. In this situation, all the results obtained in this paper 
can also be obtained through the calculus of variations on the loop space. In 
a sense, then, what we accomplish in this paper is to extend the applicability 
of critical point theory to non-riemannian hamiltonian systems. In making 
this extension, we must, apparently, restrict ourselves to perturbations of 
the periodic situation. It would be extremely interesting to see if one could 
avoid this restriction. 

In riemannian geometry, one is also interested in orbits (geodesics) 
which connect two given points in the riemannian manifold. In the general 
case, we may consider canonical boundary problems of the form (P, Q, H, C, 
L1 x L2), where L1 and L2 are lagrangian submanifolds of (P, Q). If P is 
a cotangent bundle, L1 and L2 might be fibres, normal bundles of sub- 
manifolds, or the entire zero section. We leave to the reader the problem of 
interpreting the definition of a non-degenerate solution manifold in this 
situation. In the special case where (P, Q, H) is a geodesic flow, C is a 
constant energy or constant time curve, and L1 and L2 are fibres, a single 
solution of (P, Q, H, C, L1 x L2) is non-degenerate if and only if the points 
connected by the geodesic arc it represents are not conjugate along the arc. 

The space of all canonical boundary value problems (P, Q, H, C, R), 
where (P, Q) is a fixed symplectic manifold, is denoted by @(P, Q). It may 
be identified with the product CW(P, k) x 2(R2, d (energy) A d (time)) x 
2(P x P, Qx), since every curve in 92 is a lagrangian submanifold. We 
give the compact-open C2 topology to C?(P, R) and the compact-open C' 
topologies to the other two factors. 

THEOREM 8.4. Let I be a compact, non-degenerate solution manifold 
for the canonical boundary value problem = (P, Q, H, C, R) and let & _ 

C?(Y, P x R) be any C' neighborhood of the inclusion. Then there exist a 
neighborhood 91 of 9P in i3(P, Q) and mappings G: 9l-) and F: 9{-*Z1(Z) 
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such that, for each 

-' = (P, Q, H', C', R') E 

G(9`P) is an embedding which maps the zero set of F(9P) into the set of 
solutioms of ?P'. 

Proof. Let U be a relatively compact neighborhood of Z in Cc such that 
Fc is an embedding on a neighborhood of U. By the definition of non- 
degenerate solution manifold, F1(U) and R intersect cleanly along Fi~2). 
There exists a neighborhood 91, of 9P in J(P, Q) and a neighborhood 6 of 
the inclusion in C?(1H(W), P x P) such that, for 

9)f = (P, Q, H', C', R') 

in 91, and j o S, the following holds: there is an open subset U' -C' 
near U, such that FC' is an embedding on U' whose range contains 

j(FPc(Z)); the mapping 9P' F-* Fc'(U') from 91, to 2(Px P, Q,) is continuous H~~ HI 

in the coarse C' topologies; and (FP )-'ojoFc: Z P x fR lies in &. All 
this follows from several applications of the implicit function theorem and 
the fact that FH in the C' topology depends continuously upon H in the 
C2 topology. 

Applying Theorem 4.4, we can find a coarse C' neighborhood 91, x 9l, 
of (Fic(U), R) in 2(P x P, Q%) x 2(P x P, Qx) and mappings G: 91, x 91,2 
and f: &1 x 912 Z1(Fi(Z)) such that, for each pair (L', R') in 9l x l2 

G(L', R') is an embedding which maps the zero set of F(L', R') into the 
intersection L' n R'. Now there is a neighborhood 91 of 9) in 91, such that, 
for 

-f = (P, Q, H', C', R') E 91, 

the pair (E?(U'), R') lies in 91, x 912. Define G: 91 C(, P x R) by 

G(@P') - (F-C) )oG(Ff( U'), R') 

and define F: (are Z'(Z) by 

F(9') = (F) *(F$,7(U'), R'). 
It is now straightforward to verify that A1, A, and F have the required 
properties. Q.E.D. 

Theorem 8.4 gains power from the fact that we can prove in some quite 
general situations that the closed 1-form F(9P') is exact. In this case, we 
can apply critical point theory to estimate the number of solutions for the 
perturbed problem 9P' in terms of the topology of E. 

PROPOSITION 8.5. With notation as in Theorem 8.4, suppose there exists 
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a 1-form wO on P x P such that dwos = - Qx and Ox pulls back to zero on 
A, and R'. Suppose, in addition, that C is a curve of constant time or 
constant energy. Then the closed 1-form F(9?') is exact. 

Proof. By the discussion in Section 5, there are mappings ,8: 
F1c(0Dc7) and 2: A R' such that IF(?') is cohomologous to Flex -*o 
The first term is zero because wox pulls back to zero on R'. As for 8,, it is 
homotopic through mappings Y Fc (OcD) to FH II, which we call f?. 
Since Ox is closed on Fc'(Dc'%), the homotopy invariance of induced mappings 
on cohomology implies that eSown is cohomologous to e*'ox. Now, for each 
(p, t) e A, 3(p, t) = FH(p, t). Define 7s: - P x P by Ys(p, t) = FH(P, st). 
Then 

"8(P, t) = (0, t* H[FH(p st)]) 

and 7*(!' -Qx) =-rd[Hozc]. Now, if C is a curve of constant time, 
(is | Qx) =-d[t . Ho7c]. If C is a curve of constant energy 7*{(j-iQx) = 

0. In either case, 7S*(!. Qx) is exact, so, by Lemma 6.1 (a), l*eox is coho- 
mologous to arson But y0 maps Y into zv1, on which (ox is zero. Q.E.D. 

The hypothesis of Proposition 8.5 is satisfied if there is a 1-form co on 
P such that d)= -Q and R' is either AP or L1 x L2, where L1 and L2 
are lagrangian submanifolds of P on which co pulls back to zero. This is 
true, for example, if P= T*M and L1 and L2 are homogeneous, i.e., 
invariant under scalar multiplication. (See [13].) In particular, the normal 
bundles of submanifolds of M are homogeneous. 

An application of Theorem 8.4 and Proposition 8.5 to the three-body 
problem may be found in [4]. 

9. Reversible systems 

If the symmetry group is not trivial, we can often use its presence to 
improve our estimate of the number of solutions of a canonical boundary 
value problem. Even more interesting is the fact that we can sometimes 
introduce a symmetry group where it does not exist in the original problem. 

Consider, for example, the case of a classical mechanical system 

(T*M, QM, Vowrm + K) , 

where the potential energy V is a function on M and the kinetic energy K 
is homogeneous of degree two on each fibre of T*M. Denote by fu: T*MS 
T*M the mapping which multiplies each cotangent vector by -1. The 
hamiltonian function Vo7CM + K is invariant under the action of Z2 on 
T*M generated by p, but pt is not an automorphism of (T*M, QM). In 
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fact, it is easy to verify that [*QM =-QM. We can obtain from pe a 
symplectic automorphism, not of (T*M, QM), but of (T*M x T*M, (QM)X) 

by defining ': T*M x T*M T*M x T*M by /i(x, y) = (1y, pax). 
In general, if (P, Q) is a symplectic manifold, a mapping A: P P is 

called an antisymplectic automorphism, or anticanonical transformation, if 
P*Q = - Q. The product of any two anticanonical transformations is a 
canonical transformation. 

An important example of an anticanonical transformation is the exchange 
transformation up, defined on a cartesian product (P x P, Qx) by the rule 
ap(x, y) = (y, x). If there is already an anticanonical transformation ,ce of 
(P, Q), then pe x pe is an anticanonical transformation of (P x P, Qx) which 
commutes with up, and the composition (1a x 1a)oap is a canonical trans- 
formation of (P x P, Qx). 

A hamiltonian system (P, Q, H), together with an anticanonical involu- 
tion ,ce (i.e., 2 = identity) of (P, Q) leaving H invariant will be called a 
reversible hamiltonian system. The hamiltonian vector field tH has the 
property Tao H = - Hof. Thus, if t F-* a(t) is an integral curve of tH, so 
is t F-* aoa(- t). (In the case of a classical mechanical system this fact ex- 
presses the well known reversibility in time of the equations of motion.) 

Suppose that FH(p, t) = q. Then FH(p(p), - t) = (q), and FH(a(q), t) 
1a(p). In other words, if FH(P, t) = (p, q), then 

FH(f(q), t) = (a(q), a(p)) = [(pa x f)op](p, q) 

If C is any curve in 9Z2, then (p, t) E 0H if and only if (a(p), t) E 9c, be- 
cause pe leaves H invariant; hence, the image FC(gDc) is invariant under 
(fA X fA)oup. 

Assuming that the symmetry group is initially trivial, we may now 
introduce a symmetry group Z2 in the following manner. (If the symmetry 
group is initially G, it becomes G x Z2.) The generator of Z2 acts on P x P 
by the involution (1a x 1a)oap. The generator acts on P x R by the involu- 
tion (p, t) F-* (aFH(p, t), t). We have seen that OCDI is invariant under Z2 
and that Fc is equivariant. 

We now define a reversible canonical boundary value problem as a 
sextuple (P, Q, H, C, R, a), where (P, Q, H, a) is a reversible hamiltonian 
system, (P, Q, H, C, R) is a canonical boundary value problem, and R is 
invariant under (pa x pa)oau. As examples of R, we can take R = p, or, if 
L1 and L2 are lagrangian submanifolds of (P, Q) such that pa(L,) = L2, we 
can take R = L1 x L2, 

A solution manifold Y of (P, Q. H, C, R. p) will be called reversible if 
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it is a Z2-invariant subset of OK. Using the Z2 symmetry in applying 
Theorem 4.4, we have the following result. 

THEOREM 9.1. In Theorem 8.4, if (P, Q, H, C, R, M) and (P, Q, HI, C', 
R1, a) are reversible, then the form F(9P') E Z'(Z) can be chosen to be invariant 
under the Z2 action. 

Theorem 9.1 enables us to get much better estimates for the size of the 
zero set of F(91). For instance, if Y is S", its category is only 2. If Z2 
acts freely on SI, then the quotient space has category n + 1, so any 
Z2-invariant function has at least n + 1 critical points. 

It is remarkable that to any hamiltonian system we can associate a 
reversible system. In this way, we can prove the existence of more solutions 
to certain boundary value problems. The next section is devoted to a study 
of this construction. 

10. The reversible square of a hamiltonian system 

Let (P, Q, H) be a hamiltonian system. On (P x P, QJ), with the ex- 
change transformation up, we may consider the up-invariant function H 
(1/2) (Ho i + Ho 72). (P x P, Q2_, H., up) is a reversible hamiltonian system 
whose properties reflect those of (P, Q, H). 

At a point (p, q) e P x P, the value ,HX(P, q) of the hamiltonian vector 
field associated with Ha is simply ((I/2) H(p)- (1/2)$H(q)), where T(pq)(Px P) 
is identified with TpP x TqP. It follows that (p, q, t) E ?DHX if and only if 
(p, (1/2)t) and (q, - (1/2)t) are in ?)H, in which case we have 

FHX(pq q9 t) = FH p, -t, FH q , -t). 

Notice that q = FH(p, t) if and only if FH(p, (1/2)t) = FH(q, - (1/2)t); 
in other words, q = FH(p, t) if and only if FHT(p, q, t) lies on the dia- 
gonal hp. 

Let R be any canonical relation on P. Whenever FH(P, t) = (p, q) lies 
in R, we have FHX(p, q, t) e Ap. In this circumstance, since H(q) 
H.(p, q) equals H(p), so for any curve C in CR2, (H.(p, q), t) e C if and 
only if (H(p), t) e C. 

In other words, there is a 1-1 correspondence between solutions of the 
canonical boundary value problems 9I= (P, Q, H, C, R) and 

91X = (P x P, Q.T, H.T, C, R X iAp) . 

In fact, one can check that a solution manifold of 99 is non-degenerate if 
and only if the corresponding solution manifold for 9_ is non-degenerate. 
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It is of obvious interest to determine when 

(P x P, QX, Hx, C, R x Ap, up) 

is a reversible problem. We must check when R x Ap is invariant under 
the involution (o, x ap) oup of (P x P) x (P x P). We have 

[((p X ap)oapxp](R X Ap) = (up X ap)(Ap X R) = Ap x ap(R) . 

This is equal to R x Ap if and only if R= Ap; i.e., if and only if the 
original boundary value problem 9I was a problem of finding periodic orbits. 

Let S be a solution manifold of the boundary value problem C= 
(P, Q. H, C, Ap). We will now determine when the corresponding solution 
manifold Ex of 9_ is reversible, and we will describe the action of Z2 

on Axe 
Let (p, t) E E. Then F11(p, t) = p, and the corresponding point of Ex is 

(p, p, t). The generator of Z2 takes 

(p, p, t) to ((Up x ap)(p, p, t), t) 

=(u(p X u7p) FH A, -t , FHU - -t)) t 

= (Fir -I t , FH(PA 1 t 9 t) 
= (q, q, t), 

where q is the point halfway around the closed orbit from p. We have 
remarked in Section 8 that, if Y is non-degenerate, w(Y) contains the entire 
periodic orbit of each of its points. 

The following theorem represents the application of Theorem 9.1 to this 
situation. 

THEOREM 10.1. In Theorem 8.4, if R and R' are equal to Ai, then the 
form F(9)') can be chosen to be invariant under the involution (p, t) F-4 

(FH(pq (1/2) t)9 t) . 
Notice that, by Proposition 8.5, if C is a curve of constant time or 

energy, the form F(9)') is exact if Q is exact. In fact, we only need Q to be 
exact on a neighborhood of w(Y) c P, because we can replace P by that 
neighborhood. 

For example, we may apply Theorem 10.1 to the case where Y is an 
n-sphere and C' is a curve of constant energy. Since the transversality 
condition requires that EH be nowhere-vanishing on A, n must be odd. 
Now H2(Sn; ak) = 0 for odd n, so Q is exact on a tubular neighborhood of 
w(Y). If we write F(9)') = df, the critical point set of f is a disjoint union 
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of embedded circles which correspond to periodic orbits of (P, Q, H'). The 
function f is invariant under the involution 3: (p, t) v-3 (FH(p, (172)t), t). 
For each (p, t) E 1, the least period of p is of the form t/k(p), where 
k(p) is a positive integer. If k(p) is odd for all p, the involution o is fixed 
point-free, and we may consider f as a function on f, the manifold I/Z2. 

The quotient manifold has the cohomology ring of real projective n-space 
and, hence, has category n + 1 [16]. Since the category of a circle is 2 it 
follows from the theorem in ? 4 of [16] (see also [24]) that if the critical 
set of f consists of r circles, than 2r- > n + 1, or r > (1/2)(X1 + 1). 

In the case where k(p) is even for some values of p, it remains an open 
problem to determine the minimum number of periodic orbits which remain 
near v after the hamiltonian function is perturbed. One approach to this 
problem would be to study, in addition to I, the submanifolds of v corre- 
sponding to different values of k(p). These, like I, are non-degenerate 
solution manifolds for the problem of finding periodic orbits with prescribed 
energy. 

By ignoring the Z2 action, we can obtain some weaker results without 
assuming that the k(p) are all odd. As long as it > 1, the compactness 
of v implies that f must have at least one critical circle. The circles of 
maxima and minima of f cannot coincide unless f is constant, so there are 
at least two critical circles if n > 3. Finally, if there are exactly two 
critical circles, the complement of a tubular neighborhood of the circle of 
maxima can be deformed along the gradient lines of f into a tubular neigh- 
borhood of the circle of minima. If n > 5, this is impossible because the 
complement of a circle in S' is simply connected, so there must be at least 
three critical circles. Unfortunately, this line of argument stops at n > 5. 
In fact, some preliminary work suggests that there exists a function on S7 
whose critical point set consists of three circles. Further progress on 
this problem must depend, therefore, on special properties of the 
function f. 

The preceding results on spheres of periodic orbits can be applied to 
hamiltonian systems near an equilibrium point. Let (P, Q, H) be a hamil- 
tonian system and let p E P be a critical point of H. We may assume that 
H(p) = 0. Suppose that there exist canonical coordinates (xi, *., x", 

, * * y) around p such that 

H= \1\=(x? + y2) + H2 + H., 2 

where H2 is aquadratic form in (x1?1, ..* , Xn, Ygal, * *, A), and He vanishes 
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at the origin together with all its partial derivatives of first and second 
order. If we write (z1, *., Z2fn-l)) for (xl l, *., xn, y- , , yJ) the hamil- 
tonian vector field S is 

~~~~ 
Ei=xj(yita -Xia 

+ E2(n-l) ajz n +a- be J Can , + ajjzj~ + bj> + c~ 

where A = (aij) is a matrix of constants and the bi's and cj's are functions 
which vanish at the origin together with their partial derivatives of first 
order. 

Now we make the further assumption that each -x is of the form kif, 
where X is a positive real number, each ki is a positive integer, k, = 1, and 
no eigenvalue of A is an integral multiple of V-i . It is easy to verify, 
now, that the canonical boundary value problem (P, Q, H - H,, energy = 
1, A,) has as non-degenerate solution manifold the 21 - 1 dimensional 
ellipsoid 

={(x, y, t) - )I zxz + yJ9) 1, x1 X~ 1 **= 

-1+1 = n = 0, t=Z}. 

Now define the functions XC for El # 0, by /QXx y) = (1/'2)H(sX, Sy). 
The quadratic homogeneity of the first two terms of the decomposition of H 
implies that 

?JC,(x, y) = (H - H*)(x, y) + -Hc(sx. Sy) 

Since H* vanishes to third order in x and y, ( (/X2)H*(sx, ;y) and ZJ(CX, y), 
as functions of s, x, and y, extend smoothly over the hypersurface = 0 
in such a way that ?4Co(x, y) = (H - H*)(x, y). 

By the previous discussion on spherical periodic manifolds, we conclude 
that, for s sufficiently close to zero, the boundary value problem (P, Q. 2fC, 
energy = 1, A\P) has at least (1/2)(21 - 1 + 1) = 1 circles of solutions, pro- 
vided that all the integers ki are odd. Since the transformation (x, y) F-4 

(&x, Hy) multiplies Q by r2, it is easy to see that these 1 circles of solutions 
give 1 circles of solutions to the problem (P, Q. H, energy = S2, AP). In 
other words, there are at least 1 periodic orbits for (P, H, Q) on each level 
surface of H near the equilibrium point p. 

If the k1 are not all odd, we must content ourselves with the weaker 
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result that there is at least 1 periodic orbit on each level surface if I > 1, 
at least 2 if I > 2, and at least 3 if I > 3. 

In the case 1 = 1, our result is due essentially to Liapounov [15] and 
Horn [14]; see also ?? 13-15 of [30] and Appendix C of [1]. For results in 
the case I > 1, not altogether encompassed by those in the present paper, 
see [5], [9], [19], [21], [27], [28], [29]. 

Added December 21, 1972. The author [37] has recently succeeded in 
eliminating the hypothesis above that all the ki be odd. Thus, there are 
always 1 periodic orbits on each level surface near an equilibrium at which the 
hamiltonian is positive definite. The situation in the indefinite case is more 
complicated. See [27] for some theorems and examples. 

11. On the method of averaging 

Consider a family <P, = (P, Q9 HE, C, R) of canonical boundary problems 
where s ranges over an interval J containing 0. If ? is a non-degenerate 
solution manifold for 9., we have, by Theorem 9.4, 1-forms F(9P6) GZ'(?) 
whose zeros correspond to solutions of 9IP. F(910) is the zero form, and 
(d/d,)1F(?) IE=O is given by Theorem 6.4. The importance of this derivative is 
shown by Theorem 6.5. 

According to Theorem 6.4 and the proof of Theorem 8.4, (d/dS)1F(9P) I, 
is equal to -i*DoL, where L, F_6(9)cI7). Given (p, t) e ?, to compute 
(d/dEs)F(9P) I, at (p, t) we must find a curve (p6, to) G@ c, find a tangent 
vector 

,Y =d d(FHIE(Pe, o) g 

and take F10(( - Qy ) 
The vector ) can be broken into three parts coming from the derivatives 

of F1EX, p,, and t, with respect to s. The contribution from dp6/ds is 
zero, because QX =Uz*Q - wzQ, and the two terms cancel. If we write 
O = dt6/de I,=O a function on ?, then the contribution from 0 is equal to 
O .d(Ho w). This contribution will be zero if C is a curve of constant energy 
or constant time. Finally, the contribution from the variation in PH, is, as 
in Moser [21], dA, where 

A(p, t) = diH, (FHO(pq s))ds . o d& S= 

Applying Theorem 6.5, we have the following result, which generalizes 
work of Reeb [261 and Moser [21]. 
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THEOREM 11.1. Let C1C- (P, Q, HE, C, R) be a family of canonical 
boundary value problems, where C is a curve of constant time or constant 
energy. Let Y be a non-degenerate solution manifold of 90. Let A be a 
compact, weakly stable component of the zero set of dA, where A: v 'I is 
defined by 

A(p, t) 5t dlH, (FH,(p, s))ds . 

Then, given any neighborhood U of x0 in P x R, the problem P. has a 
solution in U for all s sufficiently near 0. 

Remarks. Y, is a weakly stable component of the zero set of dA if the 
type numbers [20] of Y, as a critical set of A are not all zero. In particular, 
if Y, is a non-degenerate critical manifold of A, this condition is satisfied. 
If R= zp and Y is simply fibred by periodic orbits, the function A is 
constant on each orbit, so it comes from a function A on the orbit manifold. 
If an orbit is a non-degenerate critical point for A, it is a non-degenerate 
critical manifold for A. 

The importance of Theorem 11.1 lies in the fact that the computation 
of A requires only the integration of dH6lde along orbits of (P, Q, H0), 
while the computation of F(9e) requires one to integrate the vector field 
;He. The first task is often a relatively simple one (see [21]), while the 
second may be hopeless. 
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