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Chapter 0

Introduction: Sin and Death

Synopsis:A short historical introduction to serve as motivation for the course, and to
put the material in context. The underlying Principle of Mechanics as being aVaria-
tional Principle.

Newton’s Laws During the 17th century thinking man was obssed with Sin and
Death. How, if God was perfect could He create a Universe which was not perfect?
Why should there be so much suffering and apparent waste in the world? The answer
was that it was all in some way necessary to lead to the final point: The salvation of
Mankind. That path was determined by the end point.
Newton had given the world a mechanicsal universe, working according to a set of
simple fixed laws and the whole majestic clockwork had no need for a Divine Hand to
drive it.

Some of the greatest minds of the time were seduced into trying to find the under-
lying metaphysical reason for Newton’s Laws: Trying, if not to find the hand of the
creator then at least to find his finger prints on the Cosmos.
Leibnitz, in particlular, was determined to prove that all was for the best in the best
possible world. He felt that the world we live in exhibits:

‘The greatest simplicity in its premises and the greatest wealth in it phe-
nomena.’

Leibitz had 3 major problems with Newtonian Mechanics

1. Occult Virtues: Leibnitz held that Newton had not explained ‘Gravity’ by postu-
lating a ‘Gravitational Force’ - Forces are define in terms of directly measurable
quantities (masses and velocities and their rates of change), ie as a property of
theirmotion. Leibtitz felt that the underlying mechanism had not been found: He
argued that Newtonian theory was a kinematical one, that is a science of motion.
What he sought was a science of powers. Ie. Dynamics
Leibnitz recognised that energy was conserved in certain mechanical systems
and suggested that a principle of energy conservation might be the underlying
one, from which all Laws of Motion could be derived. He deduced something
like a potential energy function.

2. Action at a Distance: To get round this he postulated an ether of very fine par-
ticles. Much of his ideas on this subject anticipated what we would call a field

1



2 CHAPTER 0. INTRODUCTION: SIN AND DEATH

theory..

3. Absolute Space: How could the stars be treated as an absolute frame of refer-
ence? Leibitz argued that space was not a thing in itself, just a relation between
objects in it. He claimed that all inertial frames should be as good as the next.

Action In this intellectual climate Maupertuis advanced an argument based on God’s
efficiency. He claimed that the Laws of Nature were acted out in a way where the
least possibleactionwas expended. He was unclear as to what ‘action’ was, but is had
something to do withmvs.

The Variational Principle Euler liked the idea and defined the action of a particle
moving fromA toB as ∫ B

A

mv ds.

He postulated that for any given particle, the path taken was ‘chosen’ so that the action
would be least. Actually, he always assumed the existance of a potential energy func-
tion V (r) from which all forces were derived. Ie in our terms we are dealing with a
conservative force.

To progress further he invented theCalculus of Variations1, that is, anecessary
conditionto extremiseof the integral∫ B

A

F (y,
dy
dt
, t) dt

is that

∂F

∂y
− d

dt

(
∂F

∂ẏ

)
= 0.

We can generalise this to a set ofN independent coordinatesyn:

δ

∫ B

A

F (yn, ẏn, t) dt = 0

⇒ ∂F

∂yn
− d

dt

(
∂F

∂ẏn

)
= 0, 1 ≤ n ≤ N.

This is called theVariational Principle.
Having shown this Euler was able to show that if we had a conservative system (i.e.
there exists a potential energy functionV ) then the path of a particle as deduced from
the variational principle was precisely the same as Newton’s Laws:

Consider ∫ B

A

mv ds =
∫ t(b)

t(a)

mv2 dt =
∫ t(b)

t(a)

2T dt

1See Methods IB if you need to review this - it forms a crucial rôle in this course.
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whereT = kinetic energy= m
2

(
ẋ2 + ẏ2

)
. If there exists a potential

energy functionV then

T + V = constant= E ⇒ L ≡ T − V = 2T − E.

We want to make the integral∫ t(b)

t(a)

L(x, ẋ, y, ẏ) dt

stationary, but the Euler Lagrange equations imply that

d
dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0

⇒ d
dt

(mẋ) = −∂V
∂x

,

and similarly for theys. But these are Newton’s Laws

F = −∇V =
d
dt

(mẋ)

So the Variational Principle and energy conservation imply Newton’s Law. Quite clever
maybe, but it does it give us anything new?
Yes: They’s in the E-L equations are implicitly dependent of any particluar coordinate
system. We used Cartesian coordinates, but there was no reason to do this.

Generalized Coordinates Let us introducegeneralized coordinates

{q1, ..., q3N}

If we have a system ofN particles (in3 dimensions) free from constraints, it has3N
degrees of freedom, and we can choose to describe the motion in terms ofany 3N
independent variables{qi}3Ni=1. Usually these generalized coordinates will not form a
convenient set ofN vectors inR3.
Example: Planetry Motion. We have a radial force

µm

r2

⇒ the potential functionV (r) is radial. If we choose our coordinates to be(r, θ) we
can define

L ≡ T − V =
1
2
m
(
ṙ2 + r2θ̇2

)
− V (r)

Now if δ
∫

Ldt = 0 then the E-L equations forθ imply:

∂L

∂θ
− d

dt
∂L

∂θ̇
= 0

⇒ d
dt

(
mr2θ̇

)
= 0

⇒ mr2θ̇ = constant= l.
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We’ve derived the conservation of angular momentum, you’ll recall from IA Dynamics
that ifm is constant this implies Kepler’s Second Law. Applying the E-L equations for
r implies:

∂L

∂r
− d

dt
∂L

∂ṙ
= 0

⇒ d
dt

(mṙ)−mrθ̇2 +
∂V

∂r
= 0

But now the conservation of angular momentum can be used to replaceθ̇ to get

mr̈ − l2

mr3
= −∂V

∂r

i.e.

mr̈ = − d
dr

(
V +

1
2
l2

mr2

)
⇒ mr̈ṙ ≡ d

dt

(
1
2
mṙ2

)
= − d

dr

(
V +

1
2
l2

mr2

)
dr
dt

⇒ d
dt

(
1
2
mṙ2 +

l2

2mr2
+ V (r)

)
= 0

This is the conservation of energy.

The Differences between Analytic and Vectorial Mechanics

• In analytic dynamics the equations of motion can be deduced from a single uni-
fying principle. In vectorial mechanics we have Newton’s Laws

• In vectorial mechanics we look at the motion of the individual particles that make
up the system. In analytic dynamics we treat the system as a whole

• It frequently happens that there are constraints on the system (eg. in a rigid body
we have the constraint that the distances between particles remains fixed) In the
Newtonian point of view the must ascribe forces to these constraints. In analytic
mechanics we don’t care about these forces, it is enough to know the constraints.



Chapter 1

From Newton to Lagrange

Synopsis:A brief recap of dynamics, followed by the development of the Lagrangian
formalism. Lagrange’s Equations must take various forms depending on the nature of
the forces (conservative, derivable from a velocity dependent potential, or even more
general), and Constraints (holonomic, monogenic, etc.). Hamilton’s Principle. Con-
served quantities.

1.1 Summary of Newton’s Laws

If r is the radius vector of a particle wrt some origin, then thevelocity, v is

v =
dr
dt

The linear momentumP is P = mv. Newton’s first two laws imply

F =
d
dt

(mv) (1.1)

A reference frame in which (1) holds is calledinertial or Gallelian.
Newton’s Third Law:

‘To every action there is an equal and opposite reaction.’

What does this mean? Is it always true?
Suppose we have two particlesi andj and supposei exerts a forceFij on j. Then we
can translate NIII to readFij = Fji Ie the forcej exerts ofi is equal and opposite.
This is the ‘weak’ formulation of the law.
If Fij = −Fji and the forces act along the line connecting the particles, we have a
central force. This is the strong form of the law, and it holds for many forces in Nature
eg. Gravity, Electrostatics.
Consider the example of the Biot-Savart Law between moving charges:

1. If we have two charges moving with parallel velocity vectors that are not perpen-
dicular to the line joining the two particles

Then the weak form holds, but not the strong form.

5



6 CHAPTER 1. FROM NEWTON TO LAGRANGE

2. Consider two charges moving instantaneously such that their velocity vectors are
perpendicular

The2nd charge exerts a non-zero force on the first while experiencing no ‘reac-
tion’ force at all.

1.1.1 Momentum, Work and Forces

If the force acting on the particle is zero then

d
dt

(mv) = 0 ⇒ mv = const = P

Define theangular momentumof a particle aboutO to be

L = r ∧P

Define themomentof the force, or thetorque, to be

N = r ∧ F = r ∧ d
dt

(mv)

=
d
dt

(r∧mv)

=
d
dt

L

So if the total torque is zero the angular momentum is constant/conserved.
The work done by an external force upon a particle in going from A to B is

WAB =
∫ B

A

F·ds,

butv = ṡ so

WAB =
∫ tB

tA

m
dv
dt
· v dt

=
m

2

∫ tB

tA

d
dt
v2 dt

=
m

2
(
v2
A − v2

B

)
⇒ work done = change in kinetic energy.

Definition: If the force field is st. the work done is the same for any path then we
have aconservative system.

This is true iff ∮
F·ds = 0

Which implies there exists a functionV (r) st. F = −∇V .∫ B

A

F · ds = −VB + VA

which impliesWAB = VA − VB = TB − TA ⇒ TA + VA = TB + VB ie. energy is
conserved.
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1.1.2 Systems of Particles

Suppose we have a system ofN particles. We distinguish between the external applied
force and the internal forces between particles.
Newton’s first two laws become

d
dt
Pi =

∑
j

Fji + Fext
i (1.2)

(noteFii = 0.)
Applying NIII in the weak form means that the

∑
Fij term cancels.

Define thecentre of massby

R =
∑
imiri∑
imi

=
∑
imiri
M

Then

d
dt

∑
i

Pi =
d
dt

(∑
i

mivi

)

=
d2

dt2
(∑

miri

)
= M

d2R
dt2

=
∑
i

Fext
i

⇒ P = MṘ (1.3)

So the momentum of the system is the same as the momentum of it’s centre of mass.
Note that to get this result we have only required the weak form of NIII.
Now consider the total torque of the system∑

i

ri ∧ Ṗi =
∑
i

d
dt

(
ri ∧ Ṗi

)
= L̇

=
∑
i

ri ∧ Fext
i +

∑
ij

ri ∧ Fji

But if we now assume the strong form of NIII

ri ∧ Fji + r ∧ Fij = (ri − rj) ∧ Fji
= 0 (1.4)

So

Next =
dL
dt

(1.5)

This is theconservation of angular momentum
Define

r′i = ri −R

⇒ vi = v′i + V
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ie. Working in the CoM frame. Now

L =
∑
i

R ∧mvi +
∑
i

r′i ∧miv′i +

(∑
i

mir′i

)
∧ v + R ∧ d

dt

(∑
i

mir′i

)

But the last two terms are zero.
Now

∑
mir′i define the radius vector of the centre of mass in a coord system with it’s

origin at the CoM. Ie. ∑
i

mir′i = 0

L =
∑
i

R ∧miV +
∑
i

ri ∧mv′i

or R ∧MV +
∑

r′i ∧miv′i

The total angular momentum about a pointO is the angular momentum of the system
concentrated at the CoM plus the angular momentum about the centre.

1.1.3 Energy

We wish to calculate the work done by all the forces in moving the system from an
initial configurationA to a final oneB.

WAB =
∑
i

∫ B

A

Fi · dsi

=
∑
i

∫ B

A

Fext · ds +
∑
ij

∫ B

A

Fji · dsi

Recall thatFii = 0 then

WAB =
∑
i

∫ B

A

miv̇i · vi dt

=
∑
i

∫ B

A

d
(

1
2
mv2

i

)
⇒WAB = TB − TA

Now we want to transform to the CoM frame:

T =
1
2

∑
i

mi

(
V + v′i

)
·
(
V + v′i

)
=

1
2

∑
i

miV
2 +

1
2

∑
i

miv
′2
i

⇒ T =
1
2
MV 2 +

1
2

∑
i

miv
′2
i



1.1. SUMMARY OF NEWTON’S LAWS 9

If we can assume that the external forces can be derived from a potential energy func-
tion then the first term in ?? can be written∑

i

∫ B

A

Fext
i · dsi = −

∑
i

∫ B

A

(∇iVi) · ds

= −
∑
i

Vi

∣∣∣∣∣
B

A

Where we are usingV for the potential.
If, now, the internal forces are conservative then the ‘mutual’ forces on theith andjth
particles can be obtained from a potential functionVij

If the strong form of the action-reaction law holds thenVij can only be a function of
the distance between theith andjth particles,

Vij = Vij(|ri − rj |)

Fji = −∇iVij = ∇jVij = −Fij (1.6)

If the Vij were also functions of the difference of some other variable (e.g. velocity)
then the forces would still be equal and opposite but not necessarily lie along the line
connecting the two particles. If ?? holds then∇iVij = (ri − rj) f wheref is some
other function.
Now when all the forces are conservative the second term in ?? becomes a sum over
terms of the form

−
∫ B

A

(∇iVij) · dsi +
∫ B

A

(∇jVij) · dsj

But, in Cartesian coordinatesdsi− dsj = dri− drj ≡ drij , so the term for thei-jth
pair is ∫

(∇ijVij) · drij

Then the total work due to the internal forces is

−1
2

∑
i,j,i6=j

∫ B

A

(∇ijVij) · drij = −1
2

∑
i,j,i6=j

Vij

∣∣∣∣∣∣
B

A

(1.7)

(note the factor of12 is present because we’re double counting in the indices.)
If both the external and the internal forces can be derived from potentials, and internal
forces are radial, then we can define a total potential energy

V =
∑
i

Vi +
1
2

∑
ij

Vij (1.8)

such that the total energy is conserved.
The 2nd term in ?? is the internal potential energy of the system. In generalVij

is not constant and can change as the system changes with time. But a special case
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is... Definition: A rigid body is a system of particles in which the distances|rij | are
constant and cannot vary with time. ie

|rij |2 = |ri − rj |2 = c2ij , const∀i, j, t

But then

d
dt

(rij)
2 = 0 ⇒ rij · drij = 0

Thus if Newton’s Law holds in the strong form:Fij · drij = 0, and internal forces do
no work.

1.1.4 Constraints

Take as examples:

• Rigid bodies

• Gas molecules in a container

• A particle moving on a solid sphere

Definition: If the condition of constraint is such that it can be written in the form
f(r1, ..., rn, t) = 0 then we have aholonomicconstraint. An example is the rigid body.
Constraints which cannot be written this way are callednon-holonomic, eg a gas in a
container. If the constraint contains time explicitly then it is said to berheonomous, if
it does not it is calledscleronomous, eg. bead on rigid wire is subject to the latter type
of constraint, but if the bead is on a moving wire then we have the former type.

Note that this means a holonomic constraint must allow us to eliminate some vari-
ables

Very often the constraint can be written
∑
i gi(x1, ..., xn) dxi = 0 then the con-

straint will be holonomic. If an integrating function existsf(x1, ..xn) such thatgi =
∂f
∂xi

ie the constraint is holonomic only if

∂fgi
∂xj

=
∂f

∂xj
gi + f

∂gi
∂xj

= gjgi + f
∂2f

∂xi∂xj
=
∂fgj
∂xi

(1.9)

Example:The Rolling Disc.

Other examples of non-holonomic constraints are a particle on the sphere, and all
constraints depending on higher derivatives

1.2 D’Alembert’s Principle and Lagrange’s Equations

1.2.1 Two preliminary lemmas

The cancellation of the dots If we have a functionx = x(qi, q̇i) then

ẋ =
∑
i

∂x

∂qi
q̇i
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So that

∂ẋ

∂q̇i
=
∂x

∂qi

The interchange of thed and the∂∂∂

d
dt

(
∂x

∂qi

)
=
∑
j

∂2x

∂qi∂qj
q̇j =

∂

∂q̇i

∑
j

∂ẋ

∂qj
q̇j =

∂ẍ

∂q̇i

So that

d
dt

(
∂x

∂qi

)
=
∂ẋ

∂qi

by the cancellation of the dots.

1.2.2 D’Alembert’s Principle

Definition: A virtual displacementof a system refers to a change in the configuration
of the system as a result of an arbitrary infinitesimal displacementδri consistent with
the forces and constraints at timet. The displacement is called virtual so as to dis-
tinguish it from an actual displacement occurring in time during which the forces and
constraints can vary.
Suppose the system is in equilibrium, ie. the total force on each particle is zero,Fi = 0.
Then clearly

Fi · δri = 0

so as not to affect constraints and forces. If we decomposeF asFi = Fext
i + fi then∑

i

Fext
i · δri +

∑
i

fext
i · δri = 0

We now make the assumption that constraint forces do no work (ie the second term is
zero) under the virtual displacement. Ie we assume we have a rigid body. Then∑

i

Fext
i · δri = 0 (1.10)

This is thePrinciple of Virtual Work, or what some authors callD’Alemberts Principle,1

ie. The condition for he equilibrium of a system is that the virtual work of the applied
forces is zero..
Consider a system described byn generalised coordinates. Let us assume al constraints
are holonomic. We remark that{qi} may be less in number than the total number3N
of degrees of freedom of the system (constraints).
Now the work can be done in an infinitesimal displacement will be proportional to the
elementsdqi,

dW =
∑
r

Qr dqr,

1We shall reserve this for a later result
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Qr is then defined as thegeneralised force.
Consider now a system ofN particles, letFi be the force on theith particle, letPi be
its momentum. From Newton

Fi − Ṗi = 0

⇒ ∑
i

(
Fi − Ṗi

)
· δri = 0

whereδri is a virtual displacement. ButFi = Fext
i + fi so∑

i

(
Fext
i + fi − Ṗi

)
· δri = 0

We make the assumption that forces of constraint do no work , ie
∑

fi · δri = 0 and
we obtain ∑

i

(
Fext
i − Ṗi

)
· δri = 0, (1.11)

what we shall call D’Alemberts Principle - this is the dynamic principle of virtual work.

1.2.3 Lagrange’s Equations

continuing from above:

∑
i

Ṗi · δri =
∑
i

mir̈i · δri

=
∑
ij

mir̈i ·
(
∂ri
∂qj

· δqj
)

=
∑
j

(∑
i

d
dt

(
miṙi

∂ri
∂qj

−miṙi
d
dt

(
∂ri
∂qj

)))
δqi

But as we’ve seen

d
dt

(
∂ri
∂qj

)
=
∂vi
∂qj

, and
dvi
dq̇j

=
dri
dqj

So ∑
i

mir̈i
∂ri
∂qj

=
∑
i

[
d
dt

(
mvi

∂vi
∂q̇j

)
−mivi

∂vi
∂qj

]

=
∑
j

d
dt

(
∂

∂q̇j

(∑
i

1
2
miv

2
i

))
− ∂

∂qj

(∑
i

1
2
miv

2
i

)
δqj

Now let us make use of the fact that we have holonomic constraints - we can define our
coordinates{qi} such that they form a complete set

ri = ri(q1, ...qn, t)
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So

vi =
dri
dt

=
∑
k

∂ri
∂qk

dqk
dt

+
∂ri
∂t

Henceδri =
∑
j
∂ri

∂qj
δqj sinceδri is indept of time. So we have now that:

∑
i

Fext
i · δri =

∑
ij

Fext
i · ∂ri

∂qj
δqj

We now define theGeneralised Forcescorresponding to our generalised coords as

Qj =
∑
i

Fext
i · ∂ri

∂qj

So usingT = 1
2

∑
i v

2
i −KE we an write

∑
ij

[{
d
dt

(
∂T

∂q̇j

)
− dT

dqj

}
−Qj

]
δqj = 0

which is just D’Alemberts principle again!
Since this s true for any virtual displacement and theqjs are independent (holonomic)
⇒

d
dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj (1.12)

Assume we are dealing with a conservative system ie thatFext
i = −∇iV then

Qj =
∑
i

Fext
i · ∂ri

∂qj
= −

∑
i

(∇iV) · ∂ri
∂qj

ieQj = − ∂V
∂qj

so substitution into equation ??⇒

d
dt

(
∂T

∂q̇j

)
− ∂

∂qj
(T −V) = 0

But we know that∂V∂q̇j
= 0 so define theLagrangian, L by

L = T −V

then

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

Note 1. • This is set ofn second orderodes, the∂’s are there only as part of the
notation

• The solution of LEs will involve finding2n functions eg. att = 0 qα(0) =
Aα, q̇α = Bα
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Example:The Spherical Pendulum a particle of massm which moves under gravity is
attached to a fixed point by a rod of lengtha. ⇒ It is a particle constrained to move on
a sphere of radiusa. In terms of spherical coords(a, θ, φ) with θ measured upwards
from the downward direction the kinetic and potential energies can be written:

T =
1
2
ma2

(
θ̇2 + sin2 θφ̇2

)
V = −mga cos θ

So

L = T −V

⇒ ∂L

∂θ̇
= ma2θ̇,

∂L

∂φ̇
= maa sin2 θφ̇

and
∂L

∂θ
= ma2 sin θ cos θφ̇2 −mga sin θ,

∂L

∂φ
= 0

So by LEs

ma2θ̈ −ma2 sin θ cos θφ̇+mga sin θ = 0

and ma2 d
dt

(
sin2 θφ̇

)
= 0

⇒ sin2 θφ̇ = const

1.3 Generalisations of Lagrange’s Equations

1.3.1 Velocity Dependent Potentials

Suppose there exists a potentialU(qi, q̇i) such that

Qj = −∂U
∂qj

+
d
dt

(
∂U

∂q̇j

)
then we would be able to define a LagrangianL = T − U and the form of LEs would
be unaltered.U will be called ageneralisedor velocity dependent potential
Example:Maxwell’s Equations2

∇∧E +
1
c2

Ḃ = 0

∇ ·D = 4πρ

∇∧H− 1
c2

Ḋ = 0

∇ ·B = 0

The force on a chargeq is not simply

F = qE = −∇φ
2Presented here using the auxiliary fieldsD andH and in Gaussian units: So for those who attended

Electromagnetism we haveB = H− 4πM andE = D− 4πP
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but rather

F = q

(
E +

1
c
v ∧B

)
E is not the gradient of a scalar function:∇ · B = 0 ⇒ ∃A st. B = ∇∧A. A is
called theMagnetic Vector Potential
We can write ?? as

∇∧E +
1
c

∂

∂t
(∇∧A) = ∇∧

(
E +



c

∂A
∂t

)
= 0

If we now setE + 1
c
∂A
∂t = −∇φ this becomes

F = q

{
−∇φ− 1

c

∂A
∂t

+
1
c

(v ∧ [∇∧A])
}

Consider:

(v (∇∧A))x = vy

(
∂Ay
∂x

− ∂Ax
∂y

)
− vz

(
∂Ax
∂x

− ∂Az
∂x

)
= vy

∂Ay
∂x

+ vz
∂Az
∂x

+ vx
∂Ax
∂x

− vy
∂Ax
∂y

− vz
∂Ax
∂z

− vx
∂Az
∂x

Now we note that

dAx
dt

=
∂Ax
∂t

+ vx
∂Ax
∂x

+ vy
∂Ay
∂y

+ vz
∂Az
∂z

So that

v ∧ (∇∧A) =
∂

∂x
(v ·A)− dAx

dt
+
∂Ax
∂t

⇒

Fx = q

(
− ∂

∂x

(
φ− 1

c
A · v

)
− 1
c

d
dt

(
∂

∂vx
(A · v)

))
= −∂u

∂x
+

d
dt

(
∂u

∂ẋ

)

U = qφ− q

c
A · v

So we define

L− T − U

Suppose now thatnot all the forces are derivable from a potential. We can retain
Lagrange’s Equations in the form

d
dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Q̃j

WhereL contains the potential of the conservative and velocity dependent forces and
Q̃j represents those forces which cannot be derived from a potential of either type.
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Suppose now that we have a frictional force,F3 which is proportional to velocity

Fx = −kxvx

Define

Fi =
1
2

∑(
kxv

2
ix + kyv

2
iy + kzv

2
iz

)
(This is known as Rayleigh’s Function)
ThenFxi = − ∂F

∂vx
, or Fi = −∇Fi, and the work done by theith particle against

friction is

dWi = −Fi · dri = k · v2
i dt

The component of the generalised force is

Q̃j =
∑
i

Fi ·
∂ri
∂qj

And LEs become

d
dt

(
∂L

∂dotqj

)
− ∂L

∂qj
+
∂F
∂qj

= 0

1.3.2 Constraints

Now let us look at a system which may be rheonomic (time dependent constraints),
non-conservative and non-holonomic.
Consider a system ofN particles with massesmi and positionsri, and accelerations
ai. LetFi = miai or

∑N
1 (miai − Fi) = 0. for any virtual displacement we have

N∑
1

(miai − Fi) · δri = 0

Define

δW =
N∑
1

F · δri

Let us consider a maximal set{qα}α=1, where all holonomic constraints have been
absorbed.
Suppose the more general (non-holonomic) constraints can be written

n∑
i

Aβα(qi, t)q̇α +Aβ(qi, t) = 0 (1.13)

whereβ = 1, ..,m. Ie. there aren < N constraints.4

We can write ?? as
n∑
α=1

Aαβ(q, t) dqα +Aβ(q, t) dt = 0

3Notation: For this sectionF is the frictional force,i is the particle number, andx is the direction
4?? Notation here ??
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But the kinetic energy of the system isT = 1
2

∑N
i=1miṙi · ṙi, so

ṙi =
n∑
α=1

∂ri
∂qα

q̇α +
∂ri
∂t

DefineSα by

Sα =
d
dt

(
∂T

∂q̇α

)
− ∂T

∂qα

(Remember cancellation of the dots and the interchange of thed and the∂).
⇒

Sα =
N∑
i=1

miai ·
∂ri
∂qα

Now let δqα satisfy

n∑
α=1

Aβαδqα = 0, , β = 1, ...,m

Remark 1. We are dealing with virtual displacements, ie. terms indt are lost.

δri are virtual displacements satisfying the constraints

n∑
α=1

Sαδqα = δW

We may write

δW =
∑
α

Qαδqα

⇒
n∑
α=1

(Sα −Qα) δqα = 0

6⇒ Sα = Qα

because theδqα are not independent, but are subject to

n∑
α=1

Aβαδqα = 0, β = 1, ...,m.

Now writeSα −Qα = Bα and define

F = (B1 − λ1A11 − λ2A21 − ...− λmAm1) δq1
+ (B2 − λ1A12 − λ2A22 − ...− λmAm2) δq2
...

+ (Bn − λ1A1n − λ2A2n − ...− λmAmn) δqn

(Theλ are Lagrange multipliers, and as such are arbitrary.)



18 CHAPTER 1. FROM NEWTON TO LAGRANGE

Note 2. F = 0 ∀δqα satisfying
∑n
α=1Bαδqα = 0,

∑n
α=1Aβαδqα = 0

We havem arbitraryλs, we chose these so that

B1 = λ1A11 + λ2A21 + ...+ λmAm1

...

Bm = λ1A1m + λ2A2m + ...+ λmAnm

Then

F = (Bm+1 − λ1A1,m+1 − λ2A2m+1 − ...− λmAm,m+1) δqm+1

...

+ (Bn − λ1A1n − λ2A2n − ...− λmAmn) δqn

⇒ F = 0 since each column is zero by the constraints. Hence the equations of motion
are:

n∑
α=1

Aβαq̇α +Aβ = 0,
d
dt

(
∂T

∂q̇α

)
− ∂T

∂qα
= Qα +

m∑
β

λβAβα

This will work for holonomic constraints and for many non-holonomic constraints.
Example: The Rolling Loop

Consider a loop rolling without slipping down an inclined pane. This is actually a
holonomic constraint, but it will still serve to illustrate the principle.

The constraint is

r dθ = dx,

Also it is clear that

V = mg(l − x) sinφ (1.14)

T =
1
2
mẋ2 +

1
2
mr2θ̇2 (1.15)

⇒ L =
1
2
mẋ2 +

1
2
mr2θ̇2 −mg (() l − x) sinφ (1.16)

One constraint⇒ one Lagrange Multiplier.
The constraint is of the form

n∑
α=1

A1αq̇α = 0

with A1θ = r, A1x = −1 So Lagrange’s Equations⇒

mẍ−mg sinφ+ λ = 0 (1.17)

mr2θ̈ − λr = 0 (1.18)

rθ̇ = ẋ (1.19)

where the last equation is the constraint. We have 3 equations for 3 unknowns,θ, x, λ⇒

d
dt

(constraint) (1.20)

⇒ rθ̈ = ẍ⇒ mẍ = λ (1.21)

⇒ ẍ =
g sinφ

2
andλ =

mg sinφ
2

andθ̈ =
g sinφ

2r
(1.22)
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⇒ hoop rolls down the plane with half the acceleration it would have if it slipped down
a frictionless plane. The force constraint isλ = mg sinφ

2 , and notice that the force of
constraint appears via the Lagrange Multiplier.Example:Atwood’s Machine We have
two masses and a frictionless massless pulley. There is only one independent coordi-
nate,x, the position of the second weight determined by the constraint that the string
has lengthl.

V = −m1gx−m2g(l − x)

T =
1
2

(m1 +m2) ẋ2

So

L = T −V =
1
2

(m1 +m2) ẋ2 +m1gx+m2g(l − x)

⇒ ∂L

∂x
= (m1 −m2) g

and
∂L

∂ẋ
= (m1 +m2) ẋ

LEs ⇒ (m1 +m2) ẍ = (m1 −m2) g

or ẍ =
(
m1 −m2

m1 +m2

)
g

Notice

• The force of constraint (tension in the string) appearsnowhere. We don’t need
to say anything about it to find the equations of motion

• We can’t deduce anything about it. ie. we cannot determine the tension.

Example:Motion on the sphere
A particle of massm moving under gravity on a smooth sphere of radiusb.
The constraint isx2 + y2 + z2 = b2 (this is actually holonomic)⇒ xẋ+ yẏ+ zż = 0.
We also have that

T =
m

2
(
ẋ2 + ẏ2 + ż2

)
Define the generalised forces̃X = 0, Ỹ = 0, Z̃ = −mg, then the equations of motion
are

xẋ+ yẏ + zż = 0, (1.23)

mẍ = λx, (1.24)

mÿ = λy, (1.25)

mz̈ = −mg + λz (1.26)

1.3.3 Lagrange’s Equations for Impulsive Forces

Consider any dynamical system which moves according to Lagrange’s Equations:

d
dt

(
∂T

∂q̇α

)
− ∂T

∂qα
= Qα
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Now integrating w.r.t.t we have:[
∂T

∂q̇α

]t2
t1

−
∫ t2

t1

∂T

∂qα
dt =

∫ t2

t1

Qα dt

Let us assume that ast1 → t2,Qα →∞ such thatQ̂α = limt1→t2

∫ t2
t1
Qα dt remainsThink Dirac delta-function

finite. Then we call thêQα thegeneralised impulsive forces.
In the infinitesimal interval|t1 − t2|we assume the generalised coordinate don’t change
and the generalised velocities remain finite.Then we write

∆
[
∂T

∂q̇α

]
= Q̂α

1.3.4 Some Definitions

Definition:For a holonomic system

d
dt

(
∂T

∂q̇i

)
=
∂T

∂qi
+ Q̃i

The ∂T
∂qi

are sometimes calledfictitious forcesdue to our change of coordinates.

Note 3. These are different from the fictitious forces introduced to make a non-inertial
frame appear inertial

Definition: The instantaneous configuration of a system can be described by then
generalised coordinatesq1, .., qn. This corresponds to a particular point in the Cartesian
hyperspace where theq’s form the coordinate axes. Thisn-dimensional space is called
configuration spaceor coordinate space.

Note 4. As time goes on the system point moves in configuration space tracing out the
path of the system. Configuration space is not necessarily the same as physical space

Definition: We say a system ismonogenicif all the forces (except the forces of
constraint) are derivable from a generalised potential which may be a function of the
(generalised) coordinates, the (generalised) velocities and the time. For such a system
we have...

1.4 Hamilton’s Principle

1.4.1 Hamilton’s Principle

The motion of the system from timet1 to t2 is such that the integral

I =
∫ t2

t1

L(qi, q̇i, t) dt,

has a stationary value. We write this asδI = 0.

This is where we started
the course: The Variational
Principle. Only now we’re
in coordinate space, and
we’re seeking only a sta-
tionary value, not necessar-
ily a minimum.
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Remarks 1. 1. We’ve seen that ifL = T − U and we have holonomic constraints
then

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0

⇒ Newton’s Laws, and also Maxwell’s Equations.

2. Recall that

δ

∫
f(yi, y′i, x) dx = 0 ⇐⇒ d

dx

(
∂f

∂y′i

)
− ∂f

∂yi
= 0

ie: The variational principle⇐⇒ Lagrange’s Equations. (assuming theqi’s are
independent).
If we have non-holonomic constraints then∑

α

Aβα dqα +Aβ dt = 0, β = 1, ...,m

And that using Lagrange multipliers we can write

d
dt

(
∂L

∂q̇α

)
− ∂L

∂qα
=

∑
β

λβAβα (1.27)

∑
α

Aαβ q̇α +Aβ = 0 (1.28)

ie. n+m equations forn+m variables,{qi}ni , {λi}m1 .

Note 5. From now on we shall assume the holonomicy of the constraints

1.4.2 Conservation Laws and Symmetries

If L is not a function of a givenqi then

d
dt

(
∂L

∂q̇i

)
= 0 ⇒ ∂L

∂q̇i
= A.

That is,A is a constant of the motion, it isconserved. eg. SupposeL = 1
2mṙ

2
i then

∂L
∂q̇i

= dL
dẋi

= mẋi and because∂L
∂xi

= 0 we havemẋ = const Ie Newton’s First
Law, that momentum is conserved. We say that momentum is aconjuagte variableto
position.
Definition: It will be convenient to definegeneralized momentaby

pi =
∂L

∂q̇i
.

Note thatpi need not be an ordinary momentum. Suppose that the Lagrangian is inde-
pendent of time

dL

dt
=

∂L

∂t
+
∑
i

q̇i
∂L

∂qi
+
∑
i

∂L

∂q̇i

dq̇i
dt

(1.29)

=
∑
i

d
dt

(
q̇i

(
∂L

∂q̇i

))
(1.30)

⇒

(∑
i

q̇i
∂L

∂q̇i
− L

)
= const (1.31)
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So we define

H =
∑
i

Piq̇i − L

(in Cartesian coordinatesH =
∑
imiṙ

2
i − T − V = T + V = energy).

Consider a generalised coordinateqj for which a change indqj represents a translation
of the entire system (eg.qj is the CoM). Nowvi is claerly idependent of the origin of
coordinates⇒ ∂vi

∂qj
= 0 and hence∂T∂qj

= 0. Suppose also that we have a conservative
system, ie

d
dt

(
∂T

∂q̇j

)
= ṗj = −∂V

∂qj
= Qj =

∑
i

∂ri
∂qj

· Fi

Now considering the effect of the infinitesimaldqj (translation of the system along
some axis)

ri(qj) −→ ri(qj + dqj)

∂ri
∂qj

≡ lim
dqj→0

ri(qj + dqj)− ri(qj)
dqj

(1.32)

=
dn̂
dqj

. (1.33)

Wheren̂ is a unit vector in the direction of the translation.

Q̃j =
∑
i

∂ri
∂qj

· Fi =
∑
i

n̂ · Fi = n̂ · F

Now suppose thatqj does not appear inV (and hence inL). Then

T =
1
2

∑
i

miṙ
2
i

and

pj =
∑
i

miṙi ·
∂ri
∂q̇j

(1.34)

=
∑
i

miṙi ·
∂ri
∂q̇j

(1.35)

=
∑
i

mi · ri · n̂ (1.36)

= n̂ ·

(∑
i

mivi

)
(1.37)

Now sinceqj is not inL⇒

Q̃j = 0 ⇒ F · n̂ = 0 ⇒ n̂ ·
∑
i

mivi = const
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A variable in generalised coordinates which doesnot appear in the Lagrangian is said
to bycyclicor ignorable.

Be warned however:Never
ignore an ignorable coor-
dinate We have seen that if the Lagrangian is independent of translation in a given direction

n̂ there is no force in this direction and the momentum component is conserved.
Supposeqj is a cyclic coordinate, anddqj corresponds to a rotation of the system about
some axis. Now, just as before, we will argue that a rotation of the coordinate system
cannot affect the magnitude of the velocities ie.∂T

∂qj
= 0. We are assuming thatqj is

ignorable so∂L
∂qj

= 0, hence∂V∂qj
= 0.

d
dt

(
∂T

∂q̇j

)
= pj = −∂V

∂qj

Now the deriivative has a different meaning.
The changedqj must correspond to an infinitesimal rotation keeping the magnitude

of ri fixed ie

|r(qj)| = |ri(qj + dqj)|

So

|dri| = |ri sin θ dqj | (1.38)

⇒
∣∣∣∣ ∂ri∂qj

∣∣∣∣ = |ri sin θ| (1.39)

Let n̂ indicate a unit vector defining the axis about which we rotate.

∂ri
∂qj

= n̂ ∧ ri

(sincedri⊥ ri andn̂). So

Qj =
∑
i

Fi ·
∂ri
∂qj

(1.40)

=
∑
i

Fi ·
(

ˆn ∧ ri
)

(1.41)

=
∑
i

n̂ · (ri ∧ Fi) (1.42)

= n̂ ·

(∑
i

Ni

)
, the torque on theith particle (1.43)

SoQj = 0 ⇒ n̂ · N = 0, whereN is the total torque.. But this⇒ pj = const =
n ·
∑
imiri ∧ vi = n · L

We deduce thatqj (rotation about̂n) is ignorable⇒ zero torque⇒ angular momentum
is conserved.

Summary 1. We have reviewed IA Dynamics, and seen how Lagrange’s equations
are equivalent to Newton’s Laws. It should be apparent, however, that they offer a
more powerful approach to finding and solving the equations of motion: The equations
themselves are easy to find; Conserved quantities are immediately apparent.
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Chapter 2

Rigid Bodies

Synopsis:This chapter is an in-depth application of the Lagrange formalism as devel-
oped in the previous chapter. We study rotating frames of reference, Eulerian angles,
the Moment of Inertia Tensor and go on to investigate rigid body rotation, in particular
the motion of a symmetrical spinning ‘top’.

2.1 Frame of Reference

2.1.1 Rotating Frames

LetOXY represent a fixed (inertial) frame. LetOxy be similar. Then

i · i = j · j = I · I = J · J = 1, andi · j = I · J = 0.

The relationship between the frames is

i = I cos θ + J sin θ, j = −I sin θ + J cos theta,

So that

di
dt

= (−I sin θ + J cos θ) θ̇ = jθ̇ (2.1)

dj
dt

= (−I cos θ − J sin θ) θ̇ = −iθ̇ (2.2)

So some general vectorr = XI + Y J = xi + yj⇒

dr
dt

= ẋi + ẏj + xi̇ + yj̇ (2.3)

= ẋi + ẏj + xθ̇j− yθ̇i (2.4)

Now we defineω = θ̇k, so that

dr
dt

=
∂r
∂t

+ ω

Where the first term is froṁxi+ ẏj and the second fromxωj−yωi. Now this is clearly
true of any vector so

d
dt

=
(
∂

∂t
+ ω∧

)
(2.5)

25
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For exampleF = mv̇, where m is constant so (??)⇒

F = m

(
∂v
∂t

+ ω ∧ v
)

(2.6)

= m

(
∂

∂t
+ ω∧

)
(ṙ + ω ∧ r) (2.7)

= m
∂2r
∂t2

+ 2ω ∧ ∂r
∂t

+
dω

dt
∧ r + ω ∧ (ω ∧ r) (2.8)

So

m
∂2r
∂t2

= F− 2ω ∧ ∂r
∂t
− dω

dt
∧ r− ω ∧ (ω ∧ r)

And you see we’ve shown that theCoriolis Forceis 2mv∧ ṙ and theCentrifugal Force
ismω ∧ (ω ∧ r).
We interpret this as saying that if we wish to pretend a non-inertial frame is inertial, we
must invent ‘fictitious forces’.

2.1.2 Transforming Between Frames

A rigid body withN particles can have at most3N degrees of freedom. This number
will be reduced by the constraintr2ij = c2ij , fixed. You need at most 6 coordinates: To
establish the position of one particle in the body we need three coordinates. Call this
particle 1. Now to fix the position of particle 2 we need only two coordinates (it must
lie on a sphere centred on particle 1 and with radiuscij). If we take a third particle, 3,
we can only rotate the axis joining particles 1 and 2, this is the final degree of freedom.
All other particles are uniquely fixed.
The relation between 2 Cartesian frames can be written

(x1, x2, x3) → (x′1, x
′
2, x

′
3); x 7→ x′ = Ax.

Then, for a transformation preserving length

x · x = Ax ·Ax (2.9)

⇒
∑
k

ajkaik = δij (2.10)

ie. AAT = ATA = I (2.11)

⇒ detA = ±1, (2.12)

Let us assume that{x′i} = {xi} at timet = 0.

Remark 2. detA = −1 cannot be achieved byany rigidchange of coordinate axis.
We will assumedetA = +1 always.

We can transform from a given Cartesian frame to another with the same origin by
at most three rotations.
Suppose we start withX,Y, Z. Then rotate throughφ counter-clockwise about theZ
axis.

Then rotate c.clockwise throughθ about theξ axis:
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Finally rotate c.clockwise throughψ aboutρ′

This defines our new axesx′, y′, z′ Let us formalise this in matricies

B =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.13)

C =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.14)

D =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (2.15)

Then the entire rotation has the formA = BCD, or

A =

 cosψ cosφ− cos θ sinφ sinψ cosψ sinφ+ cos θ cosφ sinψ sinψ sin θ
− sinψ cosφ− cos θ sinφ cosψ − sinψ sinφ+ cos θ cosφ cosψ cosψ cos θ

sin θ sinφ − sin θ cosφ cos θ


2.1.3 Euler’s Theorem

The most general displacement of a rigid body with one fixed point is a rotation about
some axes.
At any instant the orientation of such a body can be specified by an orthogonal trans-
formationA(t), for simplicity we assumeA(0) = I. A(t) will be a cts. function of
time. The transformation will be a rotation if

1. The transformation leaves one direction unchanged. (the axis about which it
rotates).

2. The magnitude of vectors are left unchanged

Note: (2) follows from the orthogonality condition.

Proposition 1. The real orthogonal transformation specifying the physical
motion of a system with one fixed point always has eigenvalue+1.

Proof

(A− λI) r = 0 has a solution iff (2.16)

det (A− λI) = 0 (2.17)

⇒ (A− I)AT =
(
I −AT

)
(2.18)
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Figure 2.1: Eulerian Angles: First rotate about thez-axis, then about the (new)ξ-axis,
and finally about thez′-axis.
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Sodet(A−I)−detAT = det(I−AT). But (I−A)T = I−AT, hencedet(A−I) =
det(I −A) usingdetAT = detA.
For anyn × n matrix we have thatdet(−B) = (−1)n det(B), so det(A − I) =
det(I−A) = −det(A−I)⇒ det(A−I) = 0. Hence the eigenvalues isλ = +1. .
Now we can transformA st.

XAX−1 =

λ1 0 0
0 λ2 0
0 0 λ3


where theλi are the eigenvalues of A. This⇒ detA = λ1λ2λ3 andλi = 1 for some
i=1, 2, 3. Suppose thatλ3 = 1 thenλ1 = λ∗2 and|λ1| = |λ2| = 1, since A is a rotation.
Then there are three cases:

1. λ1 = λ2λ3⇒ A = I, a ‘rotation by2π’.

2. λ1 = λ2 = −λ3 ⇒ rotation throughπ.

3. λ1 = eiφ, λ2 = e−iφ thene−φ 0 0
0 e−iφ 0
0 0 1

 similar−→

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1


ie. rotation about thez-axis in the new frame. This proves Euler’s Theorem.

Note 6. 1. For

A =

eiφ 0 0
0 e−iφ 0
0 0 1


we havemathrmtr(A) = 12 cosφ, and remember that the trace is the same for
similar matricies.

2. The sense of direction of the rotation isnot yet well defined, since ifλ is an
eigenvalue, so too is−λ. Ie. if x is an eigenvector theAx = λx thenx is also
an eigenvector with the same eigenvalue.

We assignφ with A and−φ with Ā(= A−1), and use aright hand rule.
Similarly we haveChasles Theorem: The most general displacement of a rigid body is
a translation plus a rotation.
This suggests that the 6 coordinates needed could well be the 3 cartesian coordinates
to fix the body in space and then the 3 Eulerian angles.

2.2 The Moment of Inertia

We know that the total kinetic energy of the system can be written

=
mv2

2
+ T ′(θ, φ, ψ)

Ie. the sum of translational and rotational energies. The total angular momentum about
We assume here thaṫθ
etc. are not independent of
θ, φψ.
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some pointO is

L = R ∧Mv +
∑
i

r′i ∧P′
i

(again the ang. mom. of the body concentrated at CoM plus the ang. mom. about the
CoM.) The essence of rigid body motion is that all the particles that make up the body
move and rotate together. When a rigid body moves with one point stationary then the
total ang. mom. about that point is

L =
∑
i

mi (ri ∧ vi)

with ri andvi given wrt the fixed point.
Sinceri is fixed relative to the body the velocityvi wrt. the space arises solely from
the rotation

vi =
∂ri
∂t

+ ω ∧ ri

And

L =
∑
i

mi (ri ∧ (ω ∧ ri))

=
∑
i

mi

(
ωr2i − ri (ri · ω)

)
ie.

LxLy
Lz

 =

∑imi(r2i − x2
i ) −

∑
imixiyi −

∑
imixizi

−
∑
imixiyi

∑
imi(r2i − y2

i ) −
∑
imiziyi

−
∑
imixizi −

∑
imiziyi

∑
imi(r2i − z2

i )

ωxωy
ωz


The ang. mom. vector is related to the ang. mom. by the linear transformation

L =

Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

ωxωy
ωx


The diagonal terms are called themoments of inertiawhile the off-diagonal terms are
called theproducts of inertia. In the case of a continuous mass distribution we would
replace the sums by integrals in the obvious way

Ixy = −
∫
V

ρ(r)xy dτ

Notation: Sometime we will make use of the notation(x1, x2, x3) = (x, y, z). In this
notation

Iij =
∫
V

ρ(r)(r2δij − xixj) dτ

So then

L = I ω

whereI is themoment of inertia tensor. A second rank tensor.
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Remark 3. Sometimes one makes use of ‘dyads’. A dyad,ab ≡ aTb 6≡ ba is the
outer productof two vectors,a andb: It is a 2nd rank tensor. Don’t confuse it with the
inner product, a · b ≡ abT

In this language

I =
∑
i

mi (riδij − rirj)

L = I · ω =
∑

mi (riω − ri(riω))

T =
∑
i

1
2
miv

2
i (2.19)

=
∑ 1

2
mivi (ω ∧ ri) (2.20)

=
∑
i

ω

2
·mi(ri ∧ vi) (2.21)

= ω · L (2.22)

=
1
2
ω · I ω (2.23)

Let n be a unit vector in the direction of rotation ie.

ω = ωn ⇒ T =
ω2

2
nTIn =

1
2
Iω2

Then we say thatI is themoment of inertiaabout the axisn of rotation. Now let us
consider the vectorri∧n. It’s magnitude will be the perpendicular from the axis of the
rotation. So

I =
2T
ω2

=
∑ mi

ω2
(vi · vi) (2.24)

=
∑ mi

ω2
(ω ∧ ri) · (ω ∧ ri) (2.25)

=
∑

mi (n ∧ ri) · (n ∧ ri) (2.26)

I the moment of inertia about an axis is the sum over all the particles in the body, of
the product of the masses times their perpendicular distance from the axis.

Let the vector from the origin,O, to the CoM beR. Let the radius vector fromO
andR beri andr′i respectively. Then the moment of inertia about an axisa is

Ia =
∑

mi (ri ∧ n)2 (2.27)

=
∑

mi ((r′i + R) ∧ n)2 (2.28)

=
(∑

mi

)
(R ∧ n)2 +

∑
mi (r′i ∧ n)2 +

∑
2mi (R ∧ n) · (r′i ∧ n)(2.29)

If we writeM =
∑
mi, the total mass of the system, and

∑
mir

′
i = 0, by the defini-

tion of the CoM we have that

Ia = Ib +M (R ∧ n)2

This is called theparallel axis theorem. It states that the moment of inertia about a
given axis is the same as the MoI about a parallel axis going through the CoM + the
MoI of the CoM wrt. the original axis.
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Table 2.1: Some common moments of inertia

2.2.1 Properties of the Moment of Inertia Tensor

The Moment of Inertia Tensor has the following properties:

1. It is symmetric,Ixy = Iyx.

2. All its values are real⇒ real eigenvalues.

3. Together these imply that it is self-adjoint.

Lemma: All eigenvalues ofI are real and it’s eigenvectors are mutually orthogonal.
We know thatI can be put in diagonal form. The axes corresponding to this diagonal
form are known as theprinciple axesand the diagonal elementsI1, I2, I3 (ie. the
eigenvalues of the tensor) are theprinciple moments of inertia. They satisfy

Notation: Ii is an eigen-
value andI is the identity
matrix

det(I− IiI) = 0
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Now Ixx =
∑
mi

(
y2
i + z2

i

)
≥ 0 ⇒ I1, I2, I3 ≥ 0. Now consider an inertial frame

B whose origin is at a fixed point of a rigid body (on a system of space axesS with the
origin at the centre). For an axis fixed in the body(

dL
dt

)
S

=
(
∂L
∂t

)
B

+ ω ∧ L = N

ie.Ni = ∂Li

∂t + sumjkεijkωjLk. The angular momentum components areLi = Iiωi,
the principle moments of inertia are time independent:

Ii
dωi
dt

+
∑
jk

εijkωjωkIk = Ni

These areEuler’s Equations. In full

N1 = I1ω̇1 − ω2ω3(I2 − I3) (2.30)

N2 = I2ω̇2 − ω3ω1(I3 − I1) (2.31)

N3 = I3ω̇3 − ω1ω2(I1 − I2) (2.32)

2.3 Spinning Tops

2.3.1 Deriving the Lagrangian

�

�

�

��

Figure 2.2: Eulerian Angles as applied to the spinning top

Consider a symmetric top with one point fixed. We will used a body fixed set
(x, y, z). One of the principle axes will be thez-axis, as fixed in the body.

Since one point is fixed - the Eulerian angles are all we need to describe the body.
θ gives the inclination of thez-axis about the vertical.φ measures the azimuth at the
top of the vertical andψ measures the rotation angle of the top about it’s ownz-axis.
The general infinitesimal rotation associated withω can be considered the result of 3
rotations:
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1. φ̇ = ωφ aboutZ (space frame)

2. θ̇ = ωθ aboutξ′

3. ψ̇ = ωψ aboutz (body frame)

Now ω is parallel to the space-fixed axisZ ⇒ to put it in terms of the body frame we
need to apply the orthogonal transformationA = BCD, with

(ωφ)x = φ̇ sin θ sinψ (2.33)

(ωφ)y = φ̇ sin θ cosψ (2.34)

(ωφ)z = φ̇ cos θ (2.35)

Now the direction ofωθ coincides with theξ′ axis. So the components ofωθ wrt. the
body fixed axes is given by applying B:

(ωθ)x = θ̇ cosψ (2.36)

(ωθ)y = −θ̇ sinψ (2.37)

(ωθ)z = 0 (2.38)

No transformation is needed forωψ since it is already aboutz.
Adding the components ofω = ωφ + ωψ + ωθ we get

ω =

θ̇ sin θ sinψ + θ̇ cosψ
φ̇ sin θ cosψ + θ̇ sinψ

φ̇ cos θ + ψ̇


Hence the body is symmetric.

T =
1
2
I1
(
ω2
x + ω2

y

)
+

1
2
I3ω

2
z (2.39)

=
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I3

(
ψ̇ + φ̇ cos θ

)2

(2.40)

V = −
∑
i

miri · g = −MR · g (2.41)

= Mgl cos θ (2.42)

wherel is the distance from the fixed point to the CoM, and the angles are Eulerian
Angles. Hence

L =
1
2
I1

(
θ̇2 + φ̇2 sin2 θ

)
+

1
2
I − 3

(
ψ̇ + φ̇ cos θ

)2

+Mgl cos θ.

Theφ andψ are cyclic. Hencepψ = ∂L
∂ψ̇

= I3

(
ψ̇ + φ̇ cos θ

)
= const. = I3ω3. And

pφ = ∂L
∂φ̇

=
(
I1 sin2 θ + I3 cos2 θ

)
ṗhi + I3ψ̇ cos θ = const. = I1b, and we define

I1a = I3ω3.
So the two constraints of the motionpψ andpφ can be expressed in terms ofa andb.
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2.3.2 Conserved Quantities

The total energy is given by

E = T + V =
1
2
I1
(
θ̇2 + φ̇2 sin2 θ

)
+
I3
2
ω2

3 +Mgl cos θ

Now

I3ψ̇ = I1a− I3φ̇ cos θ (2.43)

If we substitute in forpφ we get

I − 1φ̇ sin2 θ + I1a cos θ = I1b (2.44)

Then equations (??) and (??)⇒

ψ̇ =
b− a cos θ

sin2 θ
(2.45)

and

ψ̇ =
I1a

I3
− cos θ (b− acosθ)

sin2 θ
(2.46)

Now ω3 = I1a
I3

is a constant of the motion. It is (sometimes denotedn and) called the
spin.
DefineE′ = E − I3

ω3
2, another constant. We can write

E′ =
I1θ̇

2

2
+
I1 (b− a cos θ)2

2 sin2 θ
+Mgl cos θ︸ ︷︷ ︸

Ṽ (θ)

Or

E′ =
I1θ̇

2

2
+ Ṽ (θ)

This looks like a one dimensional problem, with an effective potentialṼ (θ). Making
the change of variableu = cos θ we have:

E′(1− u2) =
I2
2
u̇2 +

I1
2

(b− au)2 +Mglu
(
1− u2

)
And lettingα = 2E′

I1
andβ = 2Mgl

I1
then

u̇2 = (1− u2)(α− βu)− (b− au)2

Hence

ε =
∫ u1(ε)

u1(ε)

du√
(1− u2)(α− βu)− (b− au)2

Unfortunately this integral is elliptic, and the solutions forθ, φ, ψ are in terms of
elliptic integrals.
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If we look at the equations of motion, as derived from Lagrange’s Equations we have
that

I1θ̈ − I1φ̇
2 sin θ cos θ + I3 sin θ

(
φ̇+ φ̇ cos θ

)
−Mgl sin θ = 0 (2.47)

d
dt

(
I1φ̇ sin2 θ + I3 cos θ

(
ψ̇ + φ̇ cos θ

))
= 0 (2.48)

d
dt

(
I3

(
ψ̇ + φ̇ cos θ

))
= 0 (2.49)

This last reveals

ψ̇ + φ̇ cos θ = const. = ω3 = ‘spin’

And so we can write

I1θ̈ − I1φ̇
2 sin2 θ cos θ + I3ω3φ̇ sin θ −Mgl sin θ = 0 (2.50)

⇒ I1θ̇
2I1φ̇

2 sin2 θ + 2Mgl cos θ = const = F (2.51)

This is the conservation of energy. And finally the middle equation gives

I1φ̇ sin2 θ + I3ω3 cos θ = const. = D

The motion due to the change inθ is callednutation, and the motion due to change in
φ is called precession.

2.3.3 Steady Motion

Steady motion hasθ = α = const.⇒ φ̇ = const. = Ω, say. Now provided we have
θ 6= 0 we have:

I1Ω2 cosα− I3ω3Ω +mgl = 0

⇒ a pair of real distinct precessional angular velocitiesΩ1 andΩ2, providedω2
3 >

4I1Mgl cosα. Ie. for sufficiently fast spin,ω, about the axis of symmetry the top can
perform steady motion, withθ = α, with 2 possible precessional velocities,ω1 andω2.

2.3.4 Stability Investigation

Let γ(θ) = −I1φ̇2 sin θ cos θ + I3ω3φ̇ sin θ − Mgl sin θ and the stability condition
γ(α) = 0. Now puttingθ = α+ ε whereε is small, we have

I1ε
′′ + εγ′(ε) = 0 ∼ γ(α+ ε) ≈ γ′(α)

If we can now show thatγ′(ε) > 0 then this equation will reduce to SHM: The steady
point is stable. Now we know that

φ̇ =
(D − I3ω3 cos θ)

I1 sin2 θ
(2.52)

⇒ I1γ(θ) sin3 θ = − cos θ (D − I3ω3 cos θ)2

+I3ω3 sin2 θ (D − I3ω3 cos θ)− I1Mgl sin θ (2.53)
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Now differentiating both sides and puttingγ(α) = 0, we have

I1γ
′(α) sin3 α = sinα (D − I3ω3 cosα) (2.54)

−2I3ω3 cosα sinα (D − I3ω3 cosα) (2.55)

+2I3ω3 cosα sinα (D − I3ω3 cosα) (2.56)

+I2
3ω

2
3 sin2 α− 4I3Mgl sin2 α cosα (2.57)

So that

D − I3ω3 cosα = I1Ω sin2 α (2.58)

I3ω3 = I1Ω cosα+
Mgl

Ω
(2.59)

Thus

I1γ
′(α) = I2

1Ω2 − 2I1Mglcosα+
(
Mgl

Ω

)2

(2.60)

⇒ ε′′ +
γ′(α)ε
I1?????

= 0 (2.61)

So that

γ′(α)
I1

=
{

Ω−
(
Mgl

I1Ω

)}2

+
2Mgl (1− cosα)

I1

Thereforeγ′(α) > 0∀α 6= 0, and so the motion is SHM about the stable point.
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Chapter 3

Hamilton’s Equations, &
Onwards to Abstraction

Synopsis: The alternative Hamiltonian formalism is developed. Momenta and Coor-
dinates become indistinguishable. Canonical transformations/Poisson brackets allow
us to reformulate the Hamiltonian: By finding a ‘good’ set of coordinates solving the
equations of motion becomes trivial (Hamilton-Jacobi theory). Conserved quantities
and symmetries are related. Liouville’s Theorem provides an important link to Statis-
tical/Continuum mechanics.

Notation 1. Until now we have usedPi, or P for momenta - whether or not they were
generalised momenta. However, central to the Hamiltonian method of doing things
is the concept that coordinates and momenta are viewed equally: Henceforth we shall
write pi for the momenta of a system with coordinatesqi. (The transformed coordinates
shall then be written asPi andQi.)

3.1 Hamilton’s Equations

3.1.1 An alternative approach

So far we have formulated everything in terms of then independent variablesqi. We
have, in effect, treateḋqi as distinct variables, independent of theqi of which they are
the time derivative. For example we have used∂L

∂qi
to mean the derivative wrt.qi with

qj 6= qi andq̇j held constant, and the symbol∂L
∂q̇i

has been taken to mean the derivative
wrt. q̇i with all q̇j and allqj held constant.
We could work in a space define byqi, q̇i, t but it will introduce a greater symmetry if
we work with theconjugate momenta

pj =
∂L

∂q̇j
.

The generalised momentapj are said to beconjugateto theqj and the quantities are
said to becanonicalvariables.Definition: TheHamiltonianof the system is defined

So, in the Lagrangian for-
mulation when a variable
is absent fromL, its conju-
gate variable is conserved.

by

H(qi, pi, t) =
∑
i

q̇ipi − L(qi, q̇i, t)

39
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Then

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi +

∂H

∂t
(3.1)

=
∑
i

(q̇i dpi + pi dq̇i)−
∂L

∂q̇i
dqi −

∂L

∂qi
dqi −

∂L

∂t
(3.2)

But d
dtpi = d

dt

(
∂L
∂q̇i

)
= ∂L

∂qi
so thatdH =

∑
i q̇i dpi − ṗi dqi − ∂L

∂t dt so equating

variables we have

q̇i =
dH

dpi
, ṗi = −∂H

∂qi
, −∂L

∂t
=
∂H

∂t

These are the canonical equations of Hamilton. They are a set of coupled partial dif-
ferential equations.

Note 7. Features:

• Hamilton’s Equations are first order. Lagrange’s Equations were second order.

• Hamilton’s Equations are in2n variablesqi andpi, Lagranges equations were
in then constraintsqi. We now need to determine2n constants.

•
∂H

∂t
= 0 ⇒ dH

dt
=
∑
i

∂H

∂qi

dqi
dt

+
∂H

∂pi

dpi
dt

⇒
∑
i

∂H

∂qi

∂H

∂pi
− dH

dqi
∂H

∂pi
= 0

⇒ H is a constant of the motion.

Example 1. One Dimensional Motion
Consider one dimensional motion and suppose the existence of a potentialV (x) st
F = − d

dxV (x). Then

L =
1
2
mv2 − V (x) (3.3)

H = mv2 − 1
2
mv2 + V (x) (3.4)

= T + V = Total Energy (3.5)

Example 2. Electromagnetic Field
Consider a small (non-relativistic) particle in an EM field:

Notation: hereq is the
charge, not a generalised
coordinate

L = T − U =
1
2
mv2 − qφ+

q

c
A · v (3.6)

=
1
2

∑
i

mẋiẋi +
q

c
Aiẋi − qφ, (3.7)

in Cartesian coords. Thegeneralised momentaare given by

pi = mẋi +
q

c
Ai

Then

H =
∑
i

1
2m

(
pi −

q

c
Ai

)2

+ qφ (3.8)

⇒ H =
1

2m

(
p− q

c
A
)2

+ qφ (3.9)
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3.1.2 Cyclic Coordinates and Conservation Theorems

Observe

ṗj =
d
dt

(
∂L

∂q̇j

)
= − ∂H

∂qj
.

So if a coordinate is absent from the Hamiltonian the corresponding (conjugate) gen-
eralised momentum is conserved.
If the generalised momentumpj is absent from the Hamiltonian then

∂H

∂pj
= 0 ⇒ q̇j = 0

Soqj is conserved.

3.1.3 The principle of Least Action

In coordinate space we have

δ

∫ t2

t1

L(qi, q̇i, t) dt = 0,

so we should be able to write

δ

∫ T2

t1

(∑
i

piq̇i − H(pi, qi, t)

)
dt = 0.

But let us stop here and think: This equation is implicitly in phase space. We have to
think about what we mean by an ‘independent variation’: Since we derived Lagrange’s
Equation (inn variables) be assumingδqi = 0, and by slight of hand we now have2n
variables(qi, pi), and so by writing the above we are assumingδqi = 0 and δpi = 0.
In the∆-variation:

• The varied path over which the integral is evaluated may end at different times
from the ‘correct path’

• There may be a variation in the coordinates at the end points.

Consider the family of varied paths defined by

qi(t, α) = qi(t, 0)︸ ︷︷ ︸
‘true path’

+αηi(t)
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Soα is an infinitesimal parameter which goes to zero for the ‘exact’ path. Theηi do
not necessarilyhave to vanish at the end points,t1 andt2.
All that is required of theηi is that they are continuously differentiable. We are inter-

ested in finding the∆-variation on the action integral, ie:

∆
∫ t2

t1

Ldt

which we define by

∆
∫ t2

t1

Ldt =
∫ t2+∆t2

t1+∆t1

L(α) dt−
∫ t2

t1

L(0) dt,

whereL(α) means the integral is evaluated along the pathα = α, andL(0) means the
integral is evaluated along the pathα = 0, it the physical path. The variation is clearly
composed of two parts:

1. The part arising from the change in the limit of integration, which to first order
infinitesimals is

L(t2)∆t2 − L(t1)∆t1

2. The part which comes from the change in the integrand along the varied path1∫ t2

t1

δLdt

So

∆
∫ t2

t1

Ldt = L(t2)∆t2 − L(t1)∆t1 +
∫ t2

t1

δLdt

Looking at the third term∫ t2

t1

δLdt =
∑
i

∫ t2

t1

{
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
δqi dt+

[
∂L

∂q̇i
δqi

]t2
t1

................. Now

δ

∫ t2

t1

f(qi, pi, q̇i, ṗi, t) dt = 0

1Take care:δq1(t1) andδq2(t2) 6= 0 necessarily
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implies (via the Euler-Lagrange Equations) that

d
dt

(
∂f

∂q̇i

)
− ∂f

∂qi
= 0 (3.10)

d
dt

(
∂f

∂ṗi

)
− ∂f

∂pi
= 0 (3.11)

So if we identifyf(qi, pi, q̇i, ṗi, t) =
∑
i piq̇i − H(qi, pi, t) we have

ṗj = − ∂H

∂qj
(3.12)

q̇j =
∂H

∂pj
(3.13)

Ie. We have recovered Hamilton’s Equations.

Remarks 2. The two Variational principles

1. We have two forms of Hamilton’s principle:

• In Coordinate Spaceδ
∫ t2
t1

L(qi, q̇i, t) dt = 0, and we require only that
δqi = 0

• In phase Spaceδ
∫ t2
t1

∑
piq̇i − H(qi, pi, t) dt = 0, and we require that

δqi = δpi = 0. Here we treatqi, pi as independent variables.

Both principles give us Hamilton’s Equations

2.
∑
piq̇i − H(qi, pi, t) is independent oḟpi and in our derivation we need theδ-

terms at the endpoints to vanish, so that we can dispose of the surface terms
when we integrate by parts. (Because our integrand is independent ofṗi we
don’t actually make use of the conditionδpi = 0.
At no stagein the variational derivation do we make use of our original defining
equation

pi =
∂L

∂q̇i
.

That is to say that neither of the coordinatesqi, pi is more fundamental.

3. SupposeF (q, p, t) is an arbitrary twice diffable function ofp, q Then if we add
dF
dt to the integrand

∑
piq̇i−H+ dF

dt then the variational principle is unaltered.

We can apply Lagrange’s Equations∫ t2

t1

δLdt =
∑ ∂L

∂q̇i
δqi

∣∣∣∣t2
t1

Theδqi refers to the variation inqi at the original end points:

∆
∫ t2

t1

Ldt =
∑

(L∆t+ piδqi)
∣∣∣t2
t1
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Now

∆qi(t2) = qi (t2 + ∆t2, α)− q1(t2, 0) (3.14)

= qi (t2 + ∆t2, 0)− qi(t2, 0) + αηi(t2 + ∆t2) (3.15)

So to first order inα and∆t2 we have

∆qi(t2) = q̇i(t2)∆t2 + δqi(t2)

Hence

∆
∫ t2

t1

Ldt =
∑

(L∆t− piq̇i∆t+ pi∆qi)
∣∣∣t2
t1

(3.16)

=
∑

pi∆qi − H∆t
∣∣∣t2
t1

(3.17)

We now make the following assumptions:

1. The only systems we consider are those such that∂L
∂t = ∂H

∂t = 0.

2. The variation is st.H is conserved on the varied path.

3. The varied paths are st.∆qi = 0 at the end points.

Remark 4. The varied path might even describe thesamepath inconfiguration space
as theactualpath, the difference is in thespeedthe system point transverses the curve.

Now given the above qualifications we have

∆
∫ t2

t1

Ldt = −H(∆t2 −∆t1)

But under the same cosiderations∫ t2

t1

Ldt =
∑∫ t2

t1

piq̇i dt− H(t2 − t1)

and

∆
∫ t2

t1

∑
piq̇i︸ ︷︷ ︸

‘action’

dt = 0

Remark 5. In older books the quantity
∑
piq̇i is called the action. For us, however

the action isL.

3.2 Canonical Transformations

3.2.1 Canonical Transformations

Canonical Transformations(henceforthCTs) are those that leave the Hamiltonian struc-
ture of the system invariant. Suppose we started with a HamiltonianH(q, p, t) satisfy-
ing Hamilton’s Equations:

q̇i =
dH

dpi
, ṗi = −∂H

∂qi
⇐⇒ δ

∫
(pq̇ − H) dt = 0
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Suppose there exist functionsP (p, q, t), Q(p, q, t) and an associated Hamiltonian,K(P,Q, t),
not necessarily the transformation ofH into the new coordinates, st.

We exclude the triv-
ial case of the ‘scale
transformation’ where
pi = λiPi, qi = λiQi for
some scalarsλi.

∂K

∂P
= Q̇,

∂K

∂Q
= −Ṗ ⇐⇒ δ

∫
(PQ̇− K) dt = 0

We ask, how are the new coordinates related to the old ones? Consider the functionF
defined such thatP dQ− K dt+ dF = pdq − H dt. Ie. we want

dF = pdq − P dQ+ (K− H) dt

Let us take the particular case whereF = F1(q,Q, t) then we have that

dF1 =
∂F1

∂q
dq +

∂F1

∂Q
dQ+

∂F1

∂t
dt (3.18)

⇒ ∂F1

∂q
= p,

∂F1

∂Q
= −P, ∂F1

∂t
= K− H (3.19)

So

δ

∫ t2

t1

(pq̇ − H) dt = δ

∫ (
PQ̇− K

)
dt+ δF1|t2t1

And so the transformation is Canonical.
F1 acts as a bridge between the old and then new coordinates. Half the variables are
from the old and half from the new. For example supposeF1 = qQ thenp = Q,
P = −q andK = H.
Now there is no need forF , thegenerating function, to be a function ofq, Q andt. for
example considerF2 = F2(q, P, t) and defineF by

F = F2(q, P, t)−QP

Then

pq̇ − H = PQ̇− K
dF
dt

(3.20)

= −ṖQ− K +
dF2(q, P t)

dt
(3.21)

But

d
dt
F2(q, P, t) =

∂F2

∂q
dq +

∂F2

∂P
dP +

∂F2

∂t
dt (3.22)

⇒ p =
∂F2

∂q
, Q =

∂F2

∂P
, K = H +

∂F2

∂t
(3.23)

We can also devise generating functions which are mixed in the sense that they depend
only onp,Q, t or p, P, t DefineF = qp + F3(p,Q, t) then similarly from above we
will have

q = −∂F3

∂p
, P = −∂F3

∂Q
, K = H +

∂F3

∂t

And, finally, definingF = qp−QP + F4(p, P, t) we get

q = −∂F4

∂p
, Q =

∂F4

∂P
, K = H +

∂F4

∂t

These four generating functions are all we need to describe a specific change.
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Figure 3.1: The functional dependence of the generating functionsF1 to F4.

3.2.2 Generalisation to Higher Dimensions

Now we can generalise this ton-dimensions:

Take F1(qi, Qi, t), pi =
∂F

∂qi
, Pi = − ∂F

∂Qi
(3.24)

then F = F2(qi, Pi, t)−
∑

QiPi ⇒ pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
(3.25)

etc. (3.26)

In the general case,the generating function doesnot have to conform tooneof the four
general types forall degrees of freedom.

Example 3. Let us consider the Harmonic Oscillator

H =
p2

2m
+
kq2

2
=

1
2
m
(
p2 +m2ω2q2

)
, with ω2 =

k

m

Let us take

p = f(P ) cosQ (3.27)

q =
F (P ) sinQ

mω
(3.28)

We require

H = K =
F 2(P )

2m
(
cos2Q+ sin2Q

)
=
F 2(P )

2m

So this choice has madeQ cyclic.
We want to find the functionf as yet unspecified, such that the transformation is canon-
ical. To do this we observe

p

q
= mω cotQ (3.29)

⇒ p = mωq cotQ (3.30)

Now suppose there exists a function of the typeF1(q,Q) then

p =
∂F1

∂q
(q,Q) = mωq cotQ
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The simplest solution to this is

F1 =
mωq2

2
cotQ

And then we must have that

P = −∂F1

∂Q
=

mωq2

2 sin2Q
⇒ q =

√
2P
mω

sinQ

butp = F (P ) cosQ⇒ f(P ) =
√

2mωP . And we have that

H = K = ωP

K is cyclic inQ⇒ Ṗ = 0⇒ P = const. This in turn⇒ K = const= E. And hence
P = E

ω .
Then

Q̇ =
∂K

∂P
= ω ⇒ Q = ωt+ α

Where alpha is a constant determined from the initial conditions. We can now invert
the transformation to obtain

q =

√
2E
mω2

sin(ωt+ α)

In going fromP = mωq2

2 sin2Q
to q we have used the positive square root. We could

have used the negative root: The only difference would have been a trivial difference
of π in the phase:Transformations need not be single valued

3.2.3 Poisson Brackets

Let f(p, q, t) be any function ofq, p. Then

df
dt

=
∂f

∂q

dq
dt

+
∂f

∂p

dp
dt

+
∂f

∂t

But q̇ = ∂H
∂p andṗ = −∂H

∂q so we can write:

df
dt

=
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
+
∂f

∂t
(3.31)

= [f,H] +
∂f

∂t
(3.32)

where[f,H] ≡ ∂f
∂q

∂H
∂p −

∂f
∂p

∂H
∂q . This is aPoisson Bracket.

Definition: If f = f(qi, pi, t) andg = g(qi, pi, t) with 1 ≤ i ≤ n, then we define
thePoisson Bracketby

[f, g]q,p =
∑
i

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

It has the following properties:
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• [f, f ]q,p = 0

• (antisymmetry)[f, g]q,p = − [g, f ]q,p

• (linearity) [af + bg, h]q,p = a [f, h]q,p + b [g, h]q,p.

• [pi,H]q,p = ṗi and[qi,H]q,p = q̇i.

Proof. To see this we usėqi = ∂H
∂pi

andṗi = − ∂H
∂qi

so that

[pi,H]q,p =
∑
j

∂pi
∂qj

∂H

∂pj
− ∂pi
∂pj

∂H

∂qj
= ṗi (3.33)

and [qi,H]q,p =
∑
j

∂qi
∂qj

∂H

∂pj
− ∂qi
∂pj

∂H

∂qj
= q̇i (3.34)

similarly.

• [qi, qj ]q,p = [pi, pj ]q,p = 0.

Proof. Observe

[qi, qj ]q,p =
∑
k

∂qi
∂qk

∂qj
∂pk

− ∂qi
∂pk

∂qj
∂qk

(3.35)

=
∑

δij − δij = 0 (3.36)

• [qi, pj ]q,p = δij

Proof.

[qi, pj ]q,p =
∑
k

∂qi
∂qk

∂pj
∂pk

− ∂qi
∂pk

∂pj
∂qk

(3.37)

=
∑

δikδjk (3.38)

= δij = − [pj , qi] (3.39)

• If ∂H
∂t = 0 the Hamiltonian is conserved.

Proof. Since dH
dt = [H,H]+ ∂H

∂t , then if ∂H
∂t = 0⇒ dH

dt = 0 and the Hamiltonian
is conserved.

• (The Jacobi Identity):[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0.

Proof. Left to example sheet

Antisymmetry, Linearity and
the Jacobi property define
what is called aLie Algebra,
wherein the Poisson Bracket
is the ’product’. Other Lie
algebras include the vector
product and the matrix com-
mutator. The QM correspon-
dence principle says that:
[f, g] → 1

i~ (fg − gf) and
this only works because both
sides are representations of
Lie algebra products.
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3.3 The Sympletic Condition and CTs

3.3.1 The Special Case

We are looking for conditions that make a given transformation canonical. Let us begin
by considering some restricted canonical transformations: Those where time does not
play an explicit part. In terms of the generating functionF we have that∂F∂t = 0 so
thatK = H. Then

Q = Q(q, p), P = P (q, p)

So we have

Q̇i =
∑
j

∂Qi
∂qj

q̇j +
∂Qi
∂pj

ṗj (3.40)

=
∑
j

∂Qi
∂qj

∂zH

∂pj
− ∂Qi
∂pj

∂H

∂qj
(3.41)

On the other hand we may invert the transformation to getqj = qj(Q,P ) andpj =
pj(Q,P ) as

∂H

∂Pi
=
∑
j

∂H

∂pj

∂pj
∂Pi

+
∂H

∂qj

∂qj
∂Pi

Then the transformation is canonicalonly if

Q̇i =
∂H

∂Pi
(3.42)

⇒
(
∂Qi
∂qj

)
q,p︸ ︷︷ ︸

Q as a function ofq, p

=
(
∂pi
∂Pj

)
Q,P︸ ︷︷ ︸

p as a function ofQ,P

(3.43)

and

(
∂Qi
∂pj

)
q,p

= −
(
∂qi
∂Pj

)
Q,P

(3.44)

In the same way, by considerinġPi we find that(
∂Pi
∂qj

)
q,p

= −
(
∂pj
∂Qi

)
Q,P

,

(
∂Pi
∂pj

)
q,p

=
(
∂Qj
∂Qi

)
Q,P

Let us further restrict our attention to a 2 dimensional phase space(q, p) and consider
the transformation toQ,P , then define

J =
(

0 1
−1 0

)
, M =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)
=
(
∂qQ ∂pQ
∂qP ∂pP

)
Consider

MJMT =

(
∂Q
∂q

∂Q
∂p

∂P
∂q

∂P
∂p

)(
∂pQ ∂pP
−∂qQ −∂qP

)
(3.45)

=
(

0 [Q,P ]q,p
[P,Q]q,p 0

)
(3.46)
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But consider

[Q,P ]q,p =
∂Q

∂q

∂P

∂p
− ∂P

∂q

∂Q

∂p
,

and in particular for our transformation∂qQ = ∂P p etc. So

[Q,P ]q,p = ∂P p∂Qq − ∂P p∂Qq = [q, p]Q,P

Now if it were that[u, v]q,p = [u, v]Q,P , then it would follow that the condition for the
restricted transformation to be canonical would be that

MJMT = J.

We will now show that this is indeed the condition that the transformation is canonical:
We will show that aCT leaves Poisson brackets invariant. So it is unnecessary to
write [f, g]q,p, since the quantity is the same no matter what canonical coordinates we
choose.

Notation 2. We shall writeMij = ∂ξi

∂ηj
where

η =



q1
...
qn
P1

...
Pn


, ξ =



Q1

...
Qn
P1

...
Pn


, J =

(
0 I
−I 0

)

Ie. both are column vectors in a2n-dimensional space, and whereI is then×n identity
matrix. This might seem a bit odd, but fundamentally, the(qi, pi) are our coordinates:
Whyshouldwe treat them differently?

theorem 1. A transformationq, p −→ Q,P is canonical iff

MTJM = MTMT = J.

This is called theSympletic Condition.

Remark 6. We prove the result first in the case when we have a restricted CT, ie. no
explicit time dependence, and then go on to prove it for the general case

Let us prove the special case:
It might be useful, at each
step, to write out the ma-
tricies and vectors explic-
itly. Proof. First, it follows from Hamilton’s Equations that

η̇ = J
∂H

∂η

The elements ofξ are theQi andPi, and these are functions of theqi andpi, ie. of η
so

ξ̇i =
2n∑
j=1

∂ξi
∂ηj

η̇j (3.47)

⇒ ξ̇ = M η̇ (3.48)
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Now, by the inverse transformationH can be considered as a function ofξ andη, so

∂H

∂ηi
=
∑
j

∂H

∂ξj

∂ξj
∂ηi

Or in vector/matrix notation

∂H

∂η
= M

∂H

∂ξ

Now

ξ̇ = M η̇ = MJ
∂H

∂η
= MJMT ∂H

∂ξ

But

ξ̇ = J
∂H

∂ξ

from Hamilton’s Equations. Hence

MJMT = J

By noting that we could just as well have gone fromQ,P to p, q we must also have

MTJM = J.

This proves the special case: That a restricted CT will be canonical if the symplectic
condition holds. The reverse condition holds, and fortunately the proof works in reverse
too.

Remark 7. In our example we saw that

MTJM =
(

0 [Q,P ]q,p
[Q,P ]q,p 0

)
We have just proved, however, that

[Q,P ]q,p = 1 is precisely
the same as the statement
that the Jacobian of the CT
is 1, which in turn im-
plies that

∫
dq dp is an in-

variant of the transforma-
tion.??? This is one of
the Poincarre integral in-
variants

MTJM = J =
(

0 1
−1 0

)
And hence[Q,P ]q,p = − (P,Q)q,p = 1, but it was a trivial property of the Poisson
Bracket that[Q,P ]Q,P = 1 = − [Q,P ] so we clearly have that

[Q,P ]Q,P = [Q,Q]q,p = [P, P ]q,p = [P, P ]Q,P = 0

This also holds in the general case, so that

[Qi, Pj ]q,p = [Qi, Pj ]Q,P = δij (3.49)

[Qi, Qj ] = [Pi, Pj ] = 0 (3.50)
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3.3.2 The General Case

We have yet to show thatMJMT = JMTJM is a necessary and sufficient condition
for a CT in the general case of an arbitrary CT. Ie one with time dependence.
IN order to do this it will be necessary to introduce the important idea of aninfinitesimal
contact/canonical transformation(or anICT for short).

Lemma 1. The generating functionF2 =
∑
qiPi generates the identity transforma-

tion.

Proof.

∂F2

∂qi
= pi ⇒ pi = Pi, and

∂F2

∂Pi
= qi ⇒ qi = Qi

In fact CTs form a group:
The identity is canonical,
the inverse of a CT is a
CT, two successive CTs is
a CT, and the product is
associative. We only re-
quire that the CTs are an-
alytic functions of cts pa-
rameters in order to have a
Lie Group.

Now let us consider the generating function

F =
∑

qiPi + εG(qi, Pi, t)

whereG is an arbitrary diffable function andε is infinitesimally small. Then

Qi =
∂F

∂Pi
= qi + ε

∂G

∂Pi
(3.51)

pi =
∂F

∂qi
= Pi + ε

∂G

∂qi
(3.52)

Now take

δpi = Pi − pi = −ε∂G
∂qi

(3.53)

δqi = Qi − qi = ε
∂G

∂Pi
(3.54)

NowG(qi, Pi(q, p)) = G(qi, pi + εf(q, p))⇒ (to first order inε)

δqi = ε
∂G

∂pi
(3.55)

δpi = −ε∂G
∂qi

(3.56)

⇒ δη = εJ
∂G

∂η
(3.57)

NowM = ∂ξ
∂η = I + ∂

∂η δη = I + εJ ∂
2G
∂η2 So the second derivative is a square matrix:(

∂2G
∂η2

)
ij

= ∂2G
∂ηi∂ηj

. Now M = I − ε
(
J ∂

2G
∂η2

)T

, but ∂
2G
∂η2 is symmetric, and J is

antisymmetric,⇒

MT = I − ε
∂2G

∂η2
J.
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And hence

MTJM =
(
I + εJ

∂2G

∂η2

)
J

(
I − ε

∂2G

∂η2
J

)
(3.58)

= J + εJ
∂2G

∂η2
J − ε

∂2G

∂η2
J +O(ε2) (3.59)

Thus to first order

MTJM = J

⇒ for any ICT the symplectic condition holds.
Now consider the CTξ = ξ(η, t), this evolves ctsly as time increases from some initial
value. LetG = H(q, p, t). Then

δqi = dt
∂H

∂pi
= q̇i dt = dqi (3.60)

δpi = −dt
∂H

∂qi
= ṗi dt = dpi (3.61)

Thus the Hamiltonian acts as the generator of an ICT which corresponds to the evolu-
tion in time of the system−→ symplectic condition holds.
The continuous evolution of the transformationξ(η, t) from ξ(η, t0) to ξ(η, t) can be
built up as a succession of ICTs in steps ofdT , so if η(t0) → ξ(t0) is canonical as
ξ(t0) → ξ(t) is canonical we must have thatη(t0) → ξ(t) is canonical.
It can be shown that the product of two successive CTs is a CT (question 1, prob-
lem sheet 4). So the symplectic condition holds in general.In the course of our
argument we have seen that

[Pi, Qj ] = [pi, qj ] = −δij,

where the Poisson bracket is evaluated wrt. the canonical set. It can be shown that if
u, v are arbitrarily diffable functions ofq, p then

[u, v]q,p = [u, v]Q,P

Ie. all Poisson brackets are invariant. (question 2, problem sheet 4).

3.4 More on ICTs

3.4.1 The Hamiltonian as the generator of an ICT

As we’ve seen, an ICT is a special case of a transformation that is a cts function of
a parameter. If the parameter is small enough to be treated as a function of a first
order infinitesimal then the transformation between canonical variables differ only in
infinitesimals, ie.

ξ = η + δη

with the change being given in terms of the generator G through the equation

δη = εJ
∂G(η)
∂η

.
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Now

[η, u] =
(
∂ηi
∂η

)T

J
∂u

∂η
(3.62)

= J
∂u

∂η
(3.63)

⇒ δη = ε [η, G] (3.64)

Now consider an ICT int whose generatoris the Hamiltonian:

δη = dt [η,H] (3.65)

η̇ = [η,H] (3.66)

If the motion of the system in a time intervaldt can be described by an ICT generated
by the Hamiltonian−→ The motion of the system fromt0 to t can be generated by
a single contact transformation equivalent to an infinite sequence of infinitesimals, all
generated by the Hamiltonian.
We can view the Hamiltonian as the generator of an ICT (and consequently a CT)
which describes the motion of the system with time.
A solution of the problem of finding the canonical transformation which relates coor-
dinates and momenta at timet = 0 to their value att = t is equivalent to solving the
physical problem. There are two views:

• The passive ViewWe regard the transformation fromξ −→ η as mapping from
one phase space to a new phase space. So

u(p, q) −→ U(P,Q),

ie. the functional form will change, but not the value.

• The Active View We regard the transformation as a mapping within one phase
space - apoint transformation. This time the functional form remains the same,
but the value changes. For example, the evolution of the system in time, as

This is the same active
view that is used to define
theLie Derivativeof a ten-
sor field

generated by the Hamiltonian.

If we are working in the active sense then we can talk about the change in the function
u under a CT (cf. the passive view, which hasu(p, q) = U(P,Q).)

3.4.2 Symmetry and Conserved Quantities

Suppose we have an infinitesimal transformation generated byG(q, p, t), so that

u(η + δη)− u(η) =
∂u
∂η

δη = ε
∂u

∂η
J
∂G

∂η

then sinceη = (q1, ..., qn, p1, ..., pn)T the above becomes

u(η + δη)− u(η) =
∑ ∂u

∂qi
δqi +

∂u

∂pi
δpi (3.67)

= ε
∑(

∂u

∂qi

∂G

∂pi
− ∂u

∂pi

∂u

∂qi

)
(3.68)

= ε [u,G] (3.69)
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So assuming thatG is not an explicit function of time, we can ask ‘doesK = H?’ Well

δH = ε [H, G]

But dG
dt = [H, G] +

∂G

∂t︸︷︷︸
=0

, so

dG
dt

= 0 ⇐⇒ [H, G] = 0
Compare this to Heisen-
berg’s formulation of QM.

The symmetry properties of the system are equivalent to the conservation laws.
The statement now includesall constants, not just the conjugate momenta to cyclic
variables.

Example 4. Supposeqi is cyclic. Ie. the Hamiltonian is independent ofqi, and will be
clearly invariant under an ICT which involvesqi alone. The equations of transforma-
tion would be

δqj = εδij (3.70)

δpj = 0 (3.71)

And thenG = pi, so

∆H− ε [H, pj ] = 0 ⇒ dpj
dt

= 0

3.5 The Hamilton-Jacobi Equation

3.5.1 ‘Nice’ coordinates

Having done all this abstract theory, we can now reap some benefits. We have two
approaches to solving problems:

1. If the Hamiltonian is conserved then we can transform to a new set of canonical
coordinates,all of which are cyclic. Then the integration of the new set becomes
trivial.

2. We can seek a CT from(q, p) at t = t to those att = 0. Under such a transfor-
mation the equations linking(q, p) with the new(q0, p0) are the solutions to the
problem.

Let us consider the first approach:
We can automatically require that our new variables are constant in time if the trans-
formed Hamiltonian is zero, for then from Hamilton’s Equations

∂H

∂Pi
= 0 ⇒ Q̇i = 0 ⇒ Qi = const

and similarly for thePi. Now we know that the transformed HamiltonianK is related
to the old HamiltonianH by the equation

K = H +
∂F

∂t
,
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whereF is our generating function. So if we have the new Hamiltonian being zero, we
must satisfy

H +
∂F

∂t
= 0

It proves convenient to takeF = F2(q, P, t). For then we have, usingpi = ∂F2
∂qi

,

H

(
qi,

∂F2

∂qi
, t

)
+
∂F2

∂t
= 0

This is theHamilton-Jacobi Equation. It is a pde for the desired generating function in
the(n+ 1) variablesq1, ..., qn, t.
Suppose there exists a solution

S = S(q1, ..qn, α1, ..., αn+1︸ ︷︷ ︸
constants

, t).

This constitutes a complete solution of the differential equation, and is calledHamil-
ton’s principle Function. One constant is redundant:S itself only appears in the
Hamilton-Jacobi Equation via it’s derivatives wrt.qi and t, so wlog. we can add a
constant toS and the H-J equation will still hold.
To this end was absorbαn+1 into S and look for a solution

S = S(q1, ..qn, α1, ..., αn, t).

Once we have then constants{αi}ni=1 the solution will be complete.
We are at liberty to take then constants to be the new (constant) momentaPi, that is
we can set

Pi = αi.

Now recall, forF2-type transformations

pi =
∂F2

∂qi
, Qi =

∂F2

∂Pi
,

but this implies

pi =
∂S

∂qi
(qi, αi, t) ,

We can evaluate the constants of motion ito. our initial conditions att = 0. Ie. we find
the values ofqi simply by calculating∂S∂αi

at t = 0. AndQi is given by

Qi = βi =
∂S

∂αi
(q, α, t)

?????

Example 5. Consider the Harmonic Oscillator Hamiltonian with unit mass

H =
1
2
(
p2 + ω2q2

)
= E, with ω =

√
k



3.5. THE HAMILTON-JACOBI EQUATION 57

If we setp = ∂S
∂q (thus assuming anF2-type transformation) we obtain the H-J equation

1
2

[(
∂S

∂q

)2

+ ωq2

]
+
∂S

∂t
= 0

We notice thatS depends on time only in the last term of the H-J equation, so let’s try
S(q, α, t) = W (q, α)− αt. Then

1
2

[(
∂W

∂q

)2

+ ω2q2

]
= α︸︷︷︸

− ∂S
∂t

And so the H-J equation implies thatH = α, and we naturally associateα with the
energy.
Now

W =
√

2α
∫

dq

√
1− ω2q2

2α
(3.72)

S =
√

2α
∫

dq

√
1− ω2q2

2α
− αt (3.73)

But

β =
∂S

∂α
= (2α)−1/2

∫
dq√

1− ω2q2

2α

− t, (3.74)

q =

√
2α
ω2

sinω (t+ β) (3.75)

p =
∂S

∂q
=
∂W

∂q
=
√

2α cosω (t+ β) = q̇ (3.76)

The initial conditions att = 0 are given by(q0, p0). If we square the equations forq
andp we get

2α = p2 + ω2q2 = p2
0, ω

2q20 ,

and the other usual trick is

ωq0
p0

= tanωβ

And we naturally identifyβ with the phase angle of the oscillator. Doing a bit more
algebra:

S =
√

2α
∫

dq

√
1− ω2q2

2α
− αt (3.77)

= 2α
∫

cos2 ω (t+ β) dt− αt (3.78)

= 2α
∫

cos2 ω (t+ β)− 1
2

dt (3.79)
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And the Lagrangian of the problem is

L =
1
2
(
p2 − ω2q2

)
(3.80)

= 2α
(

cos2 ω (t+ β)− 1
2

)
(3.81)

I.e, in this case we have

S =
∫

Ldt

3.5.2 The principle Function and the Lagrangian

The above example furnished us with an interesting relation between the principle func-
tion S and the LagrangianL. Does this hold in general?
We havepi = ∂S

∂qi
, and alsoQi = βi = ∂S

∂αi
(q, α, t). This last equation can be inverted

to write q as

qj = qj (α, β, t) .

Then after differentiation in the first equation we can substituteqj to obtain

pi = pi(α, β, t)

And so

dS
dt

=
∑ ∂S

∂qi
q̇i +

∂S

∂t
=
∑

piq̇i − H = L.

We can write this general result as

S =
∫

Ldt+ const.



Chapter 4

Integrable Systems

Synopsis: This chapter applies some of the results of the Hamiltonian formalism, as
developed in Chapter 3, as well as investigating the important area of Adiabatic Invari-
ants: Completely Integrable systems.

4.1 Integrable Systems

What is an integrable system?

4.2 Action-Angle Variables

Let us consider a system with one degree of freedom and assume it is conservative, so

H(q, P ) = α1.

Suppose we are interested in emphperiodic systems: There are two things we could
mean by this:

1. The path of the system describes a closed loop in phase space. For example
vibration. This will happen when bothp andq are periodic function of time, and
have the same frequency.

2. The path of the system is periodic in phase space, for example a pendulum going
all the way round it’s fixed point. Then we will have tha tp(q) = p(q + q0)

Definition: We define theangle variableJ , by

J =
∮
pdq,

where the contour integral is taken around one peroid of the system, whether it is of
type (1) or (2).

4.3 Adiabatic Invariants

59
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