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Chapter 0

Introduction: Sin and Death

Synopsis: A short historical introduction to serve as motivation for the course, and to
put the material in context. The underlying Principle of Mechanics as beVagia-
tional Principle

Newton’s Laws During the 17th century thinking man was obssed with Sin and
Death. How, if God was perfect could He create a Universe which was not perfect?
Why should there be so much suffering and apparent waste in the world? The answer
was that it was all in some way necessary to lead to the final point: The salvation of
Mankind. That path was determined by the end point.

Newton had given the world a mechanicsal universe, working according to a set of
simple fixed laws and the whole majestic clockwork had no need for a Divine Hand to
drive it.

Some of the greatest minds of the time were seduced into trying to find the under-
lying metaphysical reason for Newton’s Laws: Trying, if not to find the hand of the
creator then at least to find his finger prints on the Cosmos.

Leibnitz, in particlular, was determined to prove that all was for the best in the best
possible world. He felt that the world we live in exhibits:

‘The greatest simplicity in its premises and the greatest wealth in it phe-
nomena.

Leibitz had 3 major problems with Newtonian Mechanics

1. Occult Virtues: Leibnitz held that Newton had not explained ‘Gravity’ by postu-
lating a ‘Gravitational Force’ - Forces are define in terms of directly measurable
guantities (masses and velocities and their rates of change), ie as a property of
theirmotion Leibtitz felt that the underlying mechanism had not been found: He
argued that Newtonian theory was a kinematical one, that is a science of motion.
What he sought was a science of powers. le. Dynamics
Leibnitz recognised that energy was conserved in certain mechanical systems
and suggested that a principle of energy conservation might be the underlying
one, from which all Laws of Motion could be derived. He deduced something
like a potential energy function.

2. Action at a Distance: To get round this he postulated an ether of very fine par-
ticles. Much of his ideas on this subject anticipated what we would call a field

1



2 CHAPTER 0. INTRODUCTION: SIN AND DEATH

theory..

3. Absolute Space: How could the stars be treated as an absolute frame of refer-
ence? Leibitz argued that space was not a thing in itself, just a relation between
objects in it. He claimed that all inertial frames should be as good as the next.

Action In this intellectual climate Maupertuis advanced an argument based on God'’s
efficiency. He claimed that the Laws of Nature were acted out in a way where the
least possiblactionwas expended. He was unclear as to what ‘action’ was, but is had

something to do withnwvs.

The Variational Principle Euler liked the idea and defined the action of a particle
moving fromA to B as
B
/ muo ds.
A

He postulated that for any given particle, the path taken was ‘chosen’ so that the action
would be least. Actually, he always assumed the existance of a potential energy func-
tion V(r) from which all forces were derived. le in our terms we are dealing with a
conservative force.

To progress further he invented t@alculus of Variatiorﬁ that is, anecessary
conditionto extremiseof the integral

B
dy
Fy,—,t)dt
f, P

oF (0P
oy dt\oy/)

We can generalise this to a setMfindependent coordinates:

is that

B
(5/ F(YnyYn,t)dt =0
A

oF d [/ OF
[ =) = 1<n<N\.
Oy, dt (8yn) 0, ==

This is called the/ariational Principle

Having shown this Euler was able to show that if we had a conservative system (i.e.
there exists a potential energy functibn then the path of a particle as deduced from
the variational principle was precisely the same as Newton’s Laws:

Consider

B t(b) t(b)
/ muds = / mo?dt = / 2T dt
A t(a) t(a)

1see Methods IB if you need to review this - it forms a cruciaérin this course.




whereT = kinetic energy= % (i + j2). If there exists a potential
energy functior’/ then

T+V=-constan=eF = L=T-V =2T - F.

We want to make the integral

t(b)
/ L, i, ) dt
t(a)

stationary, but the Euler Lagrange equations imply that
oLy oL
dt \ 0% or

mx) = ax7

dt
and similarly for theys. But these are Newton’s Laws

F=-VV= %(m)’()

So the Variational Principle and energy conservation imply Newton’s Law. Quite clever
maybe, but it does it give us anything new?

Yes: They’s in the E-L equations are implicitly dependent of any particluar coordinate
system. We used Cartesian coordinates, but there was no reason to do this.

Generalized Coordinates Let us introducegeneralized coordinates

{Qh ooy QBN}

If we have a system aWV particles (in3 dimensions) free from constraints, it had
degrees of freedom, and we can choose to describe the motion in terny 8V
independent variabley; }32, . Usually these generalized coordinates will not form a
convenient set oV vectors inR3.

Example: Planetry Motion. We have a radial force

um
r2

= the potential functior/(r) is radial. If we choose our coordinates to (pef) we
can define

LET—V:%m(f2+T292)—V(T>

Now if 6 [ Ld¢ = 0 then the E-L equations farimply:
oL doL
09  dt oo
d 20\ —
= @ (mr 9) =0

= mr?0 = constant=[.
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We've derived the conservation of angular momentum, you’ll recall from 1A Dynamics
that if m is constant this implies Kepler's Second Law. Applying the E-L equations for
r implies:

oo

or dtor

d . o OV
= E(mr)fmrﬂ +E_O

But now the conservation of angular momentum can be used to reptaaget

i L _ OV
mr3 ~ Or

; d 1

m7—dr(V—|—2
> mit= 2 (In2) =4 I/Jrl—l2 ar
oAt \2 ~ dr 2mr? ) dt

d /1
dt (2mr o T V(T)> =0

This is the conservation of energy.

The Differences between Analytic and Vectorial Mechanics

¢ In analytic dynamics the equations of motion can be deduced from a single uni-
fying principle. In vectorial mechanics we have Newton’s Laws

¢ Invectorial mechanics we look at the motion of the individual particles that make
up the system. In analytic dynamics we treat the system as a whole

¢ It frequently happens that there are constraints on the system (eg. in a rigid body
we have the constraint that the distances between particles remains fixed) In the
Newtonian point of view the must ascribe forces to these constraints. In analytic
mechanics we don't care about these forces, it is enough to know the constraints.



Chapter 1

From Newton to Lagrange

Synopsis: A brief recap of dynamics, followed by the development of the Lagrangian
formalism. Lagrange’s Equations must take various forms depending on the nature of
the forces (conservative, derivable from a velocity dependent potential, or even more
general), and Constraints (holonomic, monogenic, etc.). Hamilton’s Principle. Con-
served quantities.

1.1 Summary of Newton’s Laws

If r is the radius vector of a particle wrt some origin, thenwhkocity, v is

_dr

VT

Thelinear momentun® is P = mv. Newton'’s first two laws imply

d
F = X (mv) (1.1)
A reference frame in which (1) holds is callagertial or Gallelian.
Newton’s Third Law:

‘“To every action there is an equal and opposite reaction.’

What does this mean? Is it always true?

Suppose we have two particleand; and supposeexerts a forcd';; on j. Then we

can translate NIl to realf’;; = F;; le the forcej exerts ofi is equal and opposite.
This is the ‘weak’ formulation of the law.

If F;; = —F;; and the forces act along the line connecting the particles, we have a
central force. This is the strong form of the law, and it holds for many forces in Nature
eg. Gravity, Electrostatics.

Consider the example of the Biot-Savart Law between moving charges:

1. If we have two charges moving with parallel velocity vectors that are not perpen-
dicular to the line joining the two particles

Then the weak form holds, but not the strong form.

5



6 CHAPTER 1. FROM NEWTON TO LAGRANGE

2. Consider two charges moving instantaneously such that their velocity vectors are
perpendicular

The2nd charge exerts a non-zero force on the first while experiencing no ‘reac-
tion’ force at all.

1.1.1 Momentum, Work and Forces

If the force acting on the patrticle is zero then
d
a(mv) =0=mv= const=P
Define theangular momenturof a particle abou© to be
L=rAP

Define themomenbf the force, or theorque to be

N=rAF

rA T (mv)

= % (rAmv)

d
= —L
dt

So if the total torque is zero the angular momentum is constant/conserved.
The work done by an external force upon a particle in going from Ato B is

B
WAB = / F~dS,
A

butv = s so

dt

tp d
= m/ —?dt
2 ),
m
= 5(%24—“123)

tp d
Wap = / m—v~vdt
ta

=- work done = change in kinetic energy.
Definition: If the force field is st. the work done is the same for any path then we
have aconservative system
7{ F-ds=0

This is true iff
Which implies there exists a functidni(r) st. F = —VV.
B
/ F.-ds=-Vg+Vy
A

which impliesWap = Va4 — Vg =15 —Ta = Ta + V4 = Tp + Vp ie. energy is
conserved.
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1.1.2 Systems of Particles

Suppose we have a systemMfparticles. We distinguish between the external applied
force and the internal forces between particles.
Newton’s first two laws become

d t
b= Z Fj; + F 1.2)
J

(noteF;; =0.)
Applying NIII in the weak form means that the F;; term cancels.
Define thecentre of masby

R — Zz m;T; _ Zi m;r;
22 mi M

Then

=P

MR (1.3)

So the momentum of the system is the same as the momentum of it's centre of mass.
Note that to get this result we have only required the weak form of NIII.
Now consider the total torque of the system

ZH/\Pi = Z%(ri/\Pi)

i

L
= ZTi/\F?Xt—FZTi /\Fji
% iJ

But if we now assume the strong form of NIl

Ti/\Fji+r/\Fij = (Ti_rj)/\Fji
= 0 (1.4)
So
dL
J\ R — 15
g7 (1.5)
This is theconservation of angular momentum
Define
I‘; =T; — R

= v;=vVv,+V
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ie. Working in the CoM frame. Now

L:ZR/\mvi—i—Zr;/\mivg—i— (Zmﬂ'é) /\v—l—R/\% (Zmﬂ‘i)

But the last two terms are zero.
Now > m;r; define the radius vector of the centre of mass in a coord system with it's
origin at the CoM. le.

i

L :ZR/\miV—i—Zri/\mvg
or R/\MV—i—ng/\mivg

The total angular momentum about a paihts the angular momentum of the system
concentrated at the CoM plus the angular momentum about the centre.

1.1.3 Energy

We wish to calculate the work done by all the forces in moving the system from an
initial configurationA to a final oneB.

B
Wap = 3 [ Fias
Z B . B
eX. P .
Z/AF ds+izj/A Fj; - ds;

Recall thatF';; = 0 then
B
WAB = Z/ vaZ -V dt
T JA
B
1
= Z/ d <mv12>
—~Ja 2

éWAB = TB*TA

Now we want to transform to the CoM frame:
1
T = EXi:mi (V+v) - (V+V)
1 Zm-V2 + 1 z:m-v’2
2 & ! 2 £ e

2
i

1,01 ,
=T = MV +§zi:miv
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If we can assume that the external forces can be derived from a potential energy func-
tion then the first term in ?? can be written

B B
Z/ F. ds; —Z/ (ViVy) - ds
. JA T JA
B
_Zvi

A

Where we are usiny for the potential.

If, now, the internal forces are conservative then the ‘mutual’ forces otrthrend;th
particles can be obtained from a potential functiy)

If the strong form of the action-reaction law holds th¥ég; can only be a function of
the distance between thith and;jth particles,

Vij = Vij(|ri —rl)

Fji = *Vivij = VjVij = *Fij (16)

If the V;; were also functions of the difference of some other variable (e.g. velocity)
then the forces would still be equal and opposite but not necessarily lie along the line
connecting the two particles. If ?? holds thepV,;; = (r; —r;) f where f is some

other function.

Now when all the forces are conservative the second term in ?? becomes a sum over
terms of the form

B B
—/ (ViVij) - dsﬂr/ (ViVij) - ds;
A A

But, in Cartesian coordinatess; — ds; = dr; — dr; = dr;;, so the term for the-jth
pair is

/ (Vij Vig) - dry;
Then the total work due to the internal forces is
B

1 B 1

1,5,1#] ,5,17] A

(note the factor 0% is present because we’re double counting in the indices.)
If both the external and the internal forces can be derived from potentials, and internal
forces are radial, then we can define a total potential energy

1
V:ZVZ-JriZVij (1.8)
) 1]

such that the total energy is conserved.
The 2nd term in ?? is the internal potential energy of the system. In geweral
is not constant and can change as the system changes with time. But a special case
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is... Definition: A rigid bodyis a system of particles in which the distan¢es| are
constant and cannot vary with time. ie

rij* = | — x5 ° = ¢,

constVi, j, ¢

But then
d

dt

Thus if Newton’s Law holds in the strong forrk;; - dr;; = 0, and internal forces do
no work.

(I‘Z'j)z =0= r;- drij =0

1.1.4 Constraints
Take as examples:
¢ Rigid bodies
e Gas molecules in a container
e A particle moving on a solid sphere

Definition: If the condition of constraint is such that it can be written in the form
f(r1,...,ry, t) = 0 then we have Aolonomicconstraint. An example is the rigid body.
Constraints which cannot be written this way are calied-holonomiceg a gas in a
container. If the constraint contains time explicitly then it is said toHsmnomousif
it does not it is calledcleronomouseg. bead on rigid wire is subject to the latter type
of constraint, but if the bead is on a moving wire then we have the former type.

Note that this means a holonomic constraint must allow us to eliminate some vari-
ables

Very often the constraint can be writtén, g;(x1, ..., z,,) dz; = 0 then the con-
straint will be holonomic. If an integrating function existéz,, ..x,,) such thaty, =
% ie the constraint is holonomic only if

ofgi _ of dgi O*f  0Ofg;
gi +f 9z, 9i9i + f zi0w; ~ O (1.9

al‘j o 8%‘]'

Example:The Rolling Disc.

Other examples of non-holonomic constraints are a particle on the sphere, and all
constraints depending on higher derivatives

1.2 D’Alembert’s Principle and Lagrange’s Equations

1.2.1 Two preliminary lemmas

The cancellation of the dots If we have a function: = x(g;, ¢;) then
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So that
oz B ox
o4 Oqg;

The interchange of thed and thed

(8611) Z 5%8% 9q:0q; 7~ 94, Z 7T 0g;
i ox B oz
t\9q;) O

1.2.2 D’Alembert’s Principle

Definition: A virtual displacemenof a system refers to a change in the configuration
of the system as a result of an arbitrary infinitesimal displacedertonsistent with

the forces and constraints at time The displacement is called virtual so as to dis-
tinguish it from an actual displacement occurring in time during which the forces and
constraints can vary.

Suppose the system is in equilibrium, ie. the total force on each particle iszero().

Then clearly

So that

by the cancellation of the dots.

FL(Sn:O

so as not to affect constraints and forces. If we decompoasF; = F& + f; then

ZF?XR Sr; + Zfiext. 5r; =0

%

We now make the assumption that constraint forces do no work (ie the second term is
zero) under the virtual displacement. le we assume we have a rigid body. Then

> FYor =0 (1.10)

%

This is thePrinciple of Virtual Work or what some authors c&lf Alemberts Principl@

ie. The condition for he equilibrium of a system is that the virtual work of the applied
forces is zero..

Consider a system described#dgeneralised coordinates. Let us assume al constraints
are holonomic. We remark thét; } may be less in number than the total numbat

of degrees of freedom of the system (constraints).

Now the work can be done in an infinitesimal displacement will be proportional to the
elementsdg;,

dw = ZQ’I” dg,

1We shall reserve this for a later result
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Q. is then defined as thgeneralised force
Consider now a system @¥ particles, lef"; be the force on théh particle, letP; be
its momentum. From Newton

F,-P;=0

Z(FifPZ)'(Sr,;:O

K2

wheredr; is a virtual displacement. BR; = F$' + f; so

S (Ff’“—s— £, — Pi) o1, =0

7

We make the assumption that forces of constraint do no work; fe- ér; = 0 and
we obtain

Z (Fj?xt - Pi) S or; =0, (1.11)

K2

what we shall call D’Alemberts Principle - this is the dynamic principle of virtual work.

1.2.3 Lagrange’s Equations

continuing from above:

Z Pz . (5I'i = me : 6I‘i
= Zmﬂ'z . (arl -5qj)
j

0q;

= > Zi mih%—mﬂﬁi ors 0g;
. 3 dt 8(]j dt an'

J

But as we've seen

d ( 87‘1' ) 0vi dVi d?"i
=—, and — =
de dqj
So

. (97"7; _ d 6‘vi 8V7;
Tnts - () o]

_ Zi 9 1o2)) -9 LA
T\ 9 \ &2 dg; \ &2 K

Now let us make use of the fact that we have holonomic constraints - we can define our
coordinate¢; } such that they form a complete set

ri = Ti(Ql, CImt)
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So

drl Z or; dax 8?“1
Oqp dt ot

Hencedr; = Zj g;] dq; sincedr; is indept of time. So we have now that:
FoXt. §p. — Fext dr; 5
> FP-dri=) F " ag; Y
1 1]

We now define th&eneralised Forcesorresponding to our generalised coords as

or;
C— E ot
QJ 7 8q_j

Sousingl’ = 1 >, v? — KE we an write
d [oT dT
S a (G) ) - =0

which is just D’Alemberts principle again!
Since this s true for any virtual displacement anddleeare independent (holonomic)

=
d /0T oT
4 _9% 0. 1.12

de (5%‘) dq; @i (1.12)

Assume we are dealing with a conservative system ieRffdt= —V,V then

i or;
Q=2 FT T%__Z:VV daq;

7

eQ; =—-3*- so substitution into equation 2?2
d 8T) 0
— == |- =— (T -V 0
t <8Qj 9q; ( )=

But we know thatg—;; = 0 so define thé.agrangian L by

L=T-V

d /oLy oL

t \ 94 dqi

Note 1. e This is set oft second ordendes, thed’s are there only as part of the
notation

then

e The solution of LEs will involve findingn functions eg. at = 0 ¢,(0) =
Aom QQ = Ba
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Example:The Spherical Pendulum a particle of massvhich moves under gravity is
attached to a fixed point by a rod of length=- It is a particle constrained to move on
a sphere of radius. In terms of spherical coords:, 6, ¢) with 6 measured upwards
from the downward direction the kinetic and potential energies can be written:

Lo 2pi0
T = 5ma ((‘) + sin“ ¢ )
V = —mgacos
So
L=T-V
L . L .
= a— = ma?, 8— = ma®sin® ¢
00 0¢
and % = ma® sin 0 cos 09> — mgasin 8, g—; =0
So by LEs

ma®6 — ma?sin 6 cos 94) + mgasing =0
d .
and maQE (sin2 9¢) =0
= sin? 9(;3 = const

1.3 Generalisations of Lagrange’s Equations

1.3.1 Velocity Dependent Potentials
Suppose there exists a potentigy;, ¢;) such that

0, U, d(oU
7 (9(].7‘ dt 8q]
then we would be able to define a Lagrangiaa T — U and the form of LEs would

be unalteredU will be called ageneralisedr velocity dependent potential
Example:Maxwell’s Equationd

1.
c
V-D = dmp
1.
VAH-—-D = 0
c
vV-B = 0

The force on a charggis not simply

F=qE=-V¢

2presented here using the auxiliary fieBsand H and in Gaussian units: So for those who attended
Electromagnetism we hal8 = H — 47M andE = D — 47 P
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but rather
1
F=gq (E + -vA B)
C

E is not the gradient of a scalar functio’Z - B =0 = JAst B =V AA. Ais
called theMagnetic Vector Potential
We can write ?? as

1 A
VAE+;(V/\A):VA(E+18> =0
C

If we now setE + 122 = — V¢ this becomes

Poo{-vo- 10+ LwalwaaD)

Consider:

04, 0A, 04, 0A,
VIVAA), = Ug(@a:_ &y)_ Z(@a: a 8x)
04, 0A, 0A, 0A, 0A, 0A,

Yy 8x( T ox Tl or Y dy B

Now we note that
d4, 0A 0A 0A 0A,

— z ol Y
dt ot tle Ox oy dy T 0z
So that
10} dA,  0A,
v/\(V/\A)—a—x(v-A)— 5 5
=
0 1 1d 0
£o= g (0-ta) - (o a)
_ ou, d (o
N Or dt \ 0z
U=q6— 1A~
C
So we define

L-T-U

Suppose now thatot all the forces are derivable from a potential. We can retain
Lagrange’s Equations in the form

d /oL oL ~

— (=) -== Q].

dt (“)qj 8qj
WherelL contains the potential of the conservative and velocity dependent forces and
Q; represents those forces which cannot be derived from a potential of either type.
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Suppose now that we have a frictional forﬁﬁwhich is proportional to velocity
F, = —k,v,

Define
Fi= %Z (k‘wv?gj + k‘yv?y + kzzvfz)

(This is known as Rayleigh’s Function)
ThenF,; = f%, orF; = —VZF;, and the work done by théh particle against
friction is '

dW; = —F; - dr; = k- v2 dt

The component of the generalised force is

~ or;
Q]Zang

J

And LEs become

d( aL> o oF _,

A \dotq; ) ~9q; T 0q;

1.3.2 Constraints

Now let us look at a system which may be rheonomic (time dependent constraints),
non-conservative and non-holonomic.

Consider a system aV ]Barticles with masses:; and positions-;, and accelerations

a;. LetF, = m;a; or )"} (m;a; — F;) = 0. for any virtual displacement we have

N

Z (ml—ai — Fz) . (;7'1' = 0

1

Define
N
W =>F-or;
1

Let us consider a maximal s€t, }.—1, where all holonomic constraints have been
absorbed.
Suppose the more general (non-holonomic) constraints can be written

3" Apalai, Vo + Aslgint) =0 (1.13)

whereg = 1,..,m. le. there ares < N Constraintg]
We can write ?? as

n
Z Aaﬂ(Qa t) dqot + Aﬂ (qv t) dt=0
a=1
SNotation: For this sectiot is the frictional force; is the particle number, andis the direction
42? Notation here ??
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But the kinetic energy of the systemis= % Zﬁil m;T; - 1, SO

) "o ar;
TZ_DLZ@qOé—"_E

=1

DefineS,, by

g _ 4 (ory_or
Cdt e G«
(Remember cancellation of the dots and the interchange of #mal thed).
=

(03

E L
i=1 0q

Now letdq, satisfy
Z Aﬁaéqa = 07 ;/6 = 17 ey
a=1
Remark 1. We are dealing with virtual displacements, ie. termslinare lost.

or; are virtual displacements satisfying the constraints

> Sabga =W
a=1
We may write
oW = Qadga
= Z(Soc 7QOL)5QOL =0
a=1
75 Sa = Qa

because théq, are not independent, but are subject to

i Agabdga =0, B=1,...,m.

a=1

Now write S, — Q. = B, and define

F = (Bl — )\11411 — )\21421 — . )\mAml) 5Q1
+ (B2 —AA12 — XAz — .. — M Apz) 0q2
+ (Bn - )\lAln - )\2A2n T e T )\mAmn) 6Qn

(The X are Lagrange multipliers, and as such are arbitrary.)
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Note 2. F = 0 Vdq, satisfying} " _, Badga =0, > o, Agadge =0
We havem arbitrary s, we chose these so that
By = MAj A+ XA+ o+ A Am

Bm = )\1A1m + )\2A2m + ...+ )\mAnm
Then
F = (Bmt+1 — MA1m+1 — AMAomi1 — oo — AnAmmt1) 0Gm+

+ (Bn - A1Aln - )\2A2n T e T A1711477171) 5%

= F = 0 since each column is zero by the constraints. Hence the equations of motion
are:

- d (0T or .
ZAﬁaanrAB:O, dt<8qa> *@:QoﬂrZ)\ﬁAﬂa
a=1 Jé]
This will work for holonomic constraints and for many non-holonomic constraints.
Example: The Rolling Loop
Consider a loop rolling without slipping down an inclined pane. This is actually a
holonomic constraint, but it will still serve to illustrate the principle.
The constraint is

rdf = dz,
Also it is clear that
V =mg(l —x)sin¢ (1.14)
1 1 :
T = 5ma;~2 + §mr292 (1.15)
1 1 .
= L= 5m¢2 + 5mr292 —mg ()1 —x)sing (1.16)

One constrain- one Lagrange Multiplier.
The constraint is of the form

Z Alaq.oz =0
a=1

with A1p =7, A1, = —1 So Lagrange’s Equations-

mi —mgsing+ A = 0 (2.17)
mr?— X r = 0 (1.18)
= & (1.19)

where the last equation is the constraint. We have 3 equations for 3 unkrigwns-=

d .
el 1.2
i (constrain} (1.20)
= r0=%I=mi=A\ (1.21)
S = 990 andy = TISIO g — 9500 (1.22)

2r
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= hoop rolls down the plane with half the acceleration it would have if it slipped down

a frictionless plane. The force constraintis= %, and notice that the force of
constraint appears via the Lagrange Multiplié&xxample:Atwood’s Machine We have

two masses and a frictionless massless pulley. There is only one independent coordi-
nate,z, the position of the second weight determined by the constraint that the string

has lengtH.

V = —migz —mag(l — )
1
So
1 ,2
L=T-V-= §(m1 +ma) & + migr + meg(l — x)
N oL ( )
— =(m; —m
ox ! 2)9
L
and % = (m1 +m2)x
LEs = (m1+mg)d = (mi—ma)g
or j:(ml—mg)q
mi + meo
Notice

e The force of constraint (tension in the string) appeswhere We don't need
to say anything about it to find the equations of motion

e We can’'t deduce anything about it. ie. we cannot determine the tension.

Example:Motion on the sphere
A particle of massn moving under gravity on a smooth sphere of radius
The constraintis:? + y% + 22 = b (this is actually holonomic} zi + yy + 22 = 0.
We also have that
m
T="_" .9 .9 -2
5 (ac +y +z )

Define the generalised forc&s= 0, Y = 0, Z = —myg, then the equations of motion
are

zr+yy+z2z2 = 0, (1.23)
mi = Az, (1.24)
myj = Ay, (1.25)
mz = —mg+ Az (1.26)

1.3.3 Lagrange’s Equations for Impulsive Forces

Consider any dynamical system which moves according to Lagrange’s Equations:

d /oT oT
i (7). =0



Think Dirac delta-function

This is where we started
the course: The Variational
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Now integrating w.r.tz we have:

or ] b2 /tz oT /tz
il 2t = Qo dt
{a% t 4 0da t

Let us assume that s — t2, Q, — oo such thaiQ, = lim, _, fttl"’ Q. dt remains

finite. Then we call th&),, thegeneralised impulsive forces
In the infinitesimal intervalt; — t»| we assume the generalised coordinate don’t change
and the generalised velocities remain finite. Then we write

oT N
A {aq] = Qe

1.3.4 Some Definitions

Definition: For a holonomic system

d(ory_or o
dt \og¢; ) 0q; ‘

Theg—(f are sometimes calldittitious forcesdue to our change of coordinates.

Note 3. These are different from the fictitious forces introduced to make a non-inertial
frame appear inertial

Definition: The instantaneous configuration of a system can be described hy the
generalised coordinates, .., ¢,,. This corresponds to a particular point in the Cartesian
hyperspace where thgs form the coordinate axes. Thisdimensional space is called
configuration spacer coordinate space

Note 4. As time goes on the system point moves in configuration space tracing out the
path of the systemConfiguration space is not necessarily the same as physical space

Definition: We say a system isonogenidf all the forces (except the forces of
constraint) are derivable from a generalised potential which may be a function of the
(generalised) coordinates, the (generalised) velocities and the time. For such a system
we have...

1.4 Hamilton’s Principle

1.4.1 Hamilton’s Principle

The motion of the system from tinmge to ¢, is such that the integral

to

t1

Principle. Only now we're has a stationary value. We write this@s= 0.

in coordinate space and

we’re seeking only a sta-
tionary value, not necessar-

ily a minimum.
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Remarks 1. 1. We've seen that lf = T' — U and we have holonomic constraints

then
Aoy o
dt 8(]7 8(]7‘, -

= Newton’s Laws, and also Maxwell’'s Equations.

2. Recall that
d [of of
] iy Yiry T dz = .\ a7 ] =
/fyyl T (011) Py
ie: The variational principle<— Lagrange’s Equations. (assuming th& are
independent).

If we have non-holonomic constraints then

ZAgadq@ +Agdt =0, f=1,...m

And that using Lagrange multipliers we can write

d (oL oL
i (o) = 2 Koo a2
> Aapia+Ag = 0 (1.28)

ie. n 4+ m equations fon + m variables{q;}}*, {\:}7".
Note 5. From now on we shall assume the holonomicy of the constraints

1.4.2 Conservation Laws and Symmetries

If L is not a function of a given; then

d /0L oL
df(aql> =0= aqz—A

That is, A is a constant of the motion, it onserved eg. Supposé = —mf then
6'— = er = md; and becaus%(L = 0 we havemz = const le Newtons First
Law that momentum is conserved. We say that momentuntapiagte variablgo
position.

Definition: It will be convenient to defingeneralized momentay
oL
pi = 87%
Note thatp; need not be an ordinary momentum. Suppose that the Lagrangian is inde-
pendent of time

dL oL Z oL dg;

- a qf 94, dt

.
. (quaqz >:const (1.31)

(1.29)
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So we define
H=> Pdg—L

(in Cartesian coordinatd$ = >, m;7? — T'— V =T + V = energy).

Consider a generalised coordinatdor which a change inlg; represents a translation
of the entire system (eg; is the CoM). Nowv; is claerly idependent of the origin of
coordinates= g;ﬂ =0 and hence‘d% = 0. Suppose also that we have a conservative

system, ie

d<3T>_ﬁ__3V_Q,_ o g,
dt 8qj J aqj‘ I S 8(]j !

Now considering the effect of the infinitesimaly; (translation of the system along
some axis)

ri(q;) — ri(g; + dgj)

Ori _ o Tile + dgg) —7ilg)) (1.32)
8(]]' dg;—0 qu'
dn
= —. 1.33
dg, (1.33)

Wheren is a unit vector in the direction of the translation.

~ 87"1'
Q; = F, =S a-F
’ -~ 045 ;

Now suppose that; does not appear ii (and hence ih). Then

1 .
T = 5;7””12

n-F

and
. Ory
pj = ;mirz'@ (1.34)
= Y i O (1.35)
i 94;
= - (me-) (1.37)

Now sinceg; is notinL =

Qj:()iF.ﬁ:Oéﬁ'Zmivl‘:const

K3
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A variable in generalised coordinates which daesappear in the Lagrangian is said

to by cyclicor ignorable

We have seen that if the Lagrangian is independent of translation in a given direction
n there is no force in this direction and the momentum component is conserved.
Supposg; is a cyclic coordinate, andg; corresponds to a rotation of the system about
some axis. Now, just as before, we will argue that a rotation of the coordinate system
cannot affect the magnitude of the velocities %} = 0. We are assuming tha} is

ignorable soa% =0, hencegT‘; =0.
dory_ oV
at\ag;) 7T "y

Now the deriivative has a different meaning.
The changelg; must correspond to an infinitesimal rotation keeping the magnitude
of r; fixed ie

r(q;)| = |ri(g; + dgj)

So
|dr;| = |r;sin 6 dg,| (1.38)
‘mivﬁmm (1.39)
aqu

Letn indicate a unit vector defining the axis about which we rotate.

=nAr;
aq]'
(sincedr; L r; andn). So
3ri
;= F, — 1.4
Qj XZ: i dg (1.40)
= Y Fi-(nAr;) (1.41)
= > A (rAF)) (1.42)
= n- (Z Ni> , the torque on théth particle (1.43)

SoQ@; = 0= 1n-N = 0, whereN is the total torque.. But this> p; = const =
n-Zimiri/\vi =n-L

We deduce thaj; (rotation abouh) is ignorable=- zero torque=- angular momentum
is conserved.

Summary 1. We have reviewed IA Dynamics, and seen how Lagrange’s equations
are equivalent to Newton’s Laws. It should be apparent, however, that they offer a
more powerful approach to finding and solving the equations of motion: The equations
themselves are easy to find; Conserved quantities are immediately apparent.
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Chapter 2

Rigid Bodies

Synopsis: This chapter is an in-depth application of the Lagrange formalism as devel-
oped in the previous chapter. We study rotating frames of reference, Eulerian angles,
the Moment of Inertia Tensor and go on to investigate rigid body rotation, in particular
the motion of a symmetrical spinning ‘top’.

2.1 Frame of Reference

2.1.1 Rotating Frames

Let OXY represent a fixed (inertial) frame. L&ty be similar. Then
iri=j-j=1-I1=J-J=1,andi-j=1-J=0.

The relationship between the frames is

i=TIcosf+ Jsinf, j= —Isinf + Jcostheta,

So that
di . .
é = (—Isinf+Jcosf)d =jb (2.1)
dj Ny .
5= (=Icosf —Jsinf)0 = —if (2.2)
So some general vector= XI+YJ =zi+ yj =
d . .
?‘; = @i+ g+ ity (2.3)
= i+ gj+ 20j — ybi (2.4)
Now we definev = fk, so that
dr_or
a ot ¢

Where the first term is fromii + ¢j and the second fromwj — ywi. Now this is clearly
true of any vector so
d 0

4 (at + w/\) 2.5

25
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For exampleF' = mv, where m is constant so (?2)

F = m(?{—&—w/\v) (2.6)
0 .
= m(8t+wA> (f+wAr) (2.7)
0r or dw
= mﬁ—&-QwAa—i—E/\r—i-w/\(w/\r) (2.8)
So
0?r or dw

And you see we've shown that ti@oriolis Forceis 2mv At and theCentrifugal Force
ismw A (wAr).

We interpret this as saying that if we wish to pretend a non-inertial frame is inertial, we
must invent “fictitious forces’'.

2.1.2 Transforming Between Frames

A rigid body with N particles can have at mo3iV degrees of freedom. This number
will be reduced by the constrainf; = ¢7;, fixed. You need at most 6 coordinates: To
establish the position of one particle in the body we need three coordinates. Call this
particle 1. Now to fix the position of particle 2 we need only two coordinates (it must
lie on a sphere centred on particle 1 and with radiyp If we take a third particle, 3,

we can only rotate the axis joining particles 1 and 2, this is the final degree of freedom.
All other particles are uniquely fixed.

The relation between 2 Cartesian frames can be written
(21,2, 3) — (27,74, 25); x— x = Ax.

Then, for a transformation preserving length

X-x = Ax - Ax (2.9)

= Z Ak Qi = 5ij (2.10)
k

ie. AAT =ATA=1T (2.12)

= det A =41, (2.12)

Let us assume thdte;} = {x;} attimet = 0.

Remark 2. det A = —1 cannot be achieved bgny rigid change of coordinate axis.
We will assumeet A = +1 always.

We can transform from a given Cartesian frame to another with the same origin by
at most three rotations.
Suppose we start witl(, Y, Z. Then rotate through counter-clockwise about thg
axis.

Then rotate c.clockwise throughabout thet axis:
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Finally rotate c.clockwise through aboutp’
This defines our new axes, v/, 2’ Let us formalise this in matricies

cosy siny 0
B = —binw cosw O (2.13)

1
Cc = 0 cos 9 sin 9 (2.14)
0 —sinf cosé
cos¢ sing 0
D = —sin qb cos (/5 0 (2.15)

Then the entire rotation has the foutin= BCD, or

cos 1 cos ¢ — cos fsin ¢ sin Y cossing + cosfcospsiny  sinysinb
A= | —sinycos¢p —cosfsinpcosy —siny sing + cosfcospcosyy cospcos b
sin @ sin ¢ —sin 6 cos ¢ cos 6

2.1.3 Euler's Theorem

The most general displacement of a rigid body with one fixed point is a rotation about
some axes.

At any instant the orientation of such a body can be specified by an orthogonal trans-
formation A(t), for simplicity we assumel(0) = I. A(t) will be a cts. function of

time. The transformation will be a rotation if

1. The transformation leaves one direction unchanged. (the axis about which it
rotates).

2. The magnitude of vectors are left unchanged

Note: (2) follows from the orthogonality condition.

Proposition 1. The real orthogonal transformation specifying the physical
motion of a system with one fixed point always has eigenvalue
Proof
(A — AI)r = 0 has a solution iff (2.16)
det (A— ) = (2.17)

= (A-NAT = (I AT) (2.18)
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Y
X
3
ZI AR
0] Ul
0
Y
x
3
z
2! A
y'
()
>
()
Yy
T a!

Figure 2.1: Eulerian Angles: First rotate about thaxis, then about the (nevg}axis,
and finally about the’-axis.
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Sodet(A—1I)—det AT = det(I— AT). But(I — A)T = I — AT, hencalet(A—1I) =
det(I — A) usingdet AT = det A. O
For anyn x n matrix we have thatlet(—B) = (—1)"det(B), sodet(A — I) =
det(I—A) = —det(A—1I)= det(A—1T) = 0. Hence the eigenvaluesis= +1. [
Now we can transformt st.

M 00
XAX'=10 X O
0 0 X

where the)\; are the eigenvalues of A. This det A = A\ A2 A3 and)\; = 1 for some
i=1,2,3. Suppose that; = 1then\; = A\j and|)\;| = |X\2| = 1, since A is a rotation.
Then there are three cases:

1. A1 = A A\3= A =1, a ‘rotation by27’.
2. A1 = A2 = —)\3 = rotation throughr.

3.\ = ei(b, Ay = e~ then

e ¢ 0 0\ cos¢ sing 0
0 e 0 TR gy ¢ cos¢p O
0 0 1 0 0 1

ie. rotation about the-axis in the new frame. This proves Euler’'s Theorem.

Note 6. 1. For

e’ 0 0
A={10 e 0
0 0 1

we havemnathrmitr(A) = 12 cos ¢, and remember that the trace is the same for
similar matricies.

2. The sense of direction of the rotationrist yetwell defined, since if is an
eigenvalue, so too is . le. if x is an eigenvector thelx = Ax thenx is also
an eigenvector with the same eigenvalue.

We assign with A and—¢ with A(= A~1), and use aight hand rule
Similarly we haveChasles TheorenThe most general displacement of a rigid body is
a translation plus a rotation.
This suggests that the 6 coordinates needed could well be the 3 cartesian coordinates
to fix the body in space and then the 3 Eulerian angles.

2.2 The Moment of Inertia

We know that the total kinetic energy of the system can be written

’ITM}2

+T1(0,0,9)

We assume here thaf
le. the sum of translational and rotational energies. The total angular momentum agutare not independent

0, 9.
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some poinD is

L=RAMv+)» 1,AP]

(again the ang. mom. of the body concentrated at CoM plus the ang. mom. about the
CoM.) The essence of rigid body motion is that all the particles that make up the body

move and rotate together. When a rigid body moves with one point stationary then the
total ang. mom. about that point is

L=> mi(riAvy)

with r; andv; given wrt the fixed point.
Sincer; is fixed relative to the body the velocity, wrt. the space arises solely from
the rotation

a’l’i

V; = ot +wAT;
And
L = Y mi(riA(wAr))
i
= Y mi (wrf =1 (r; - w))

i
_ Ly Smi(ri —af) =30 mamy = 2 % Wz
le. | L, = —ymaayr iy —y) =3 maziy Wy
L. = 22 % = imiziyi 2 mi(r] = 27) Wz

The ang. mom. vector is related to the ang. mom. by the linear transformation

L= |1y Iy Iy Wy
IZI IZy IZZ w.’.l)

The diagonal terms are called throments of inertiavhile the off-diagonal terms are
called theproducts of inertia In the case of a continuous mass distribution we would
replace the sums by integrals in the obvious way

Iwy = _/ p(r)xy dr
\%4

Notation: Sometime we will make use of the notat{on, x2, z3) = (z,y, 2). In this
notation

Iij = / p(’l”)(?"Q(Sij — (I}i.%'j)d’i'
14
So then
L=Iw

wherel is themoment of inertia tensoA second rank tensor.
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Remark 3. Sometimes one makes use of ‘dyads’. A dgyad= a’b # ba is the
outer producbf two vectorsa andb: It is a 2nd rank tensor. Don't confuse it with the
inner produgta - b = ab™

In this language

I= ZWLZ' (riéij — TZ'I‘]')

L=1Tw= Zmz (riw —ri(r,w))

T = Z %mw? (2.19)
1

= Z 3Mavi (wAT;) (2.20)

= Z % . mi(ri N Vl‘) (221)

= w-L (2.22)

= %w Jw (2.23)

Letn be a unit vector in the direction of rotation ie.
2

1
w=wn=717= u%nT]In: ilwz

Then we say thaf is themoment of inertiaabout the axis of rotation. Now let us
consider the vectar; An. It's magnitude will be the perpendicular from the axis of the
rotation. So

2T

1= 0z Z % (vi-vi) (2.24)
= Z%(u/\ri) (wAT) (2.25)
= Zml mAr)-(mAr) (2.26)

I the moment of inertia about an axis is the sum over all the particles in the body, of
the product of the masses times their perpendicular distance from the axis.

Let the vector from the origin), to the CoM beR.. Let the radius vector fror®
andR ber; andr] respectively. Then the moment of inertia about an axs

I = Y mi(riAn)? (2.27)
= Zmi (r;+R) A n)’ (2.28)

= (Zmz) (R An)®+ Zmi (ri A n)2 + Z 2m; (R An) - (ri A @.29)
If we write M = > m;, the total mass of the system, apdm;r, = 0, by the defini-
tion of the CoM we have that
I, = Iy + M (R An)?

This is called theparallel axis theorem It states that the moment of inertia about a
given axis is the same as the Mol about a parallel axis going through the CoM + the
Mol of the CoM wrt. the original axis.
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2
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Table 2.1: Some common moments of inertia

2.2.1 Properties of the Moment of Inertia Tensor
The Moment of Inertia Tensor has the following properties:
1. Itis symmetric/,y, = Iys.
2. Allits values are reak- real eigenvalues.
3. Together these imply that it is self-adjoint.

Lemma: All eigenvalues df are real and it's eigenvectors are mutually orthogonal.
We know thatl can be put in diagonal form. The axes corresponding to this diagonal

Notation: I; is an eigent form are known as therinciple axesand the diagonal elements, I, I3 (ie. the
value andI is the identity eigenvalues of the tensor) are ghénciple moments of inertial hey satisfy
matrix

det(I— I,I) =0



2.3. SPINNING TOPS 33

Now I, = Y- m; (y? + 22) > 0 = Iy, I, I3 > 0. Now consider an inertial frame
B whose origin is at a fixed point of a rigid body (on a system of spacexéth the
origin at the centre). For an axis fixed in the body

dL OL
(mL(m)J‘”LN

ie. N; = aéi + sumjre;jpw;i L. The angular momentum components afe= [;w;,

the principle moments of inertia are time independent:

dw;
dtz + Zk:fijkijk-[k =N;
i

I;

These ard=uler's Equationsin full

N1 = Ildjl — (.LJQWg(IQ — 13) (230)
NQ = IQ(,;.)Q — W3w1q (13 — Il) (231)
N3 = I3ws —wiws(ly — 1) (2.32)

2.3 Spinning Tops
2.3.1 Deriving the Lagrangian

Figure 2.2: Eulerian Angles as applied to the spinning top

Consider a symmetric top with one point fixed. We will used a body fixed set
(z,y, z). One of the principle axes will be theaxis, as fixed in the body.

Since one point is fixed - the Eulerian angles are all we need to describe the body.
0 gives the inclination of the-axis about the verticalp measures the azimuth at the
top of the vertical ang> measures the rotation angle of the top about it's evaxis.
The general infinitesimal rotation associated witltan be considered the result of 3
rotations:
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1. ¢ =w, aboutZ (space frame)
2. 6 = wy abouts’
3. 4 = wy, aboutz (body frame)

Now w is parallel to the space-fixed ax#s=- to put it in terms of the body frame we
need to apply the orthogonal transformatién= BC' D, with

(wg), = $sinfsin (2.33)
(w¢)y = ¢sinfcost (2.34)
(we), = b cosb (2.35)

Now the direction ofwvy coincides with the’ axis. So the components af; wrt. the
body fixed axes is given by applying B:

(wg), = Ocosy (2.36)
(wp), = —Osing (2.37)
(wg), = 0 (2.38)

No transformation is needed far, since it is already about
Adding the components @ = wy + wy, + wg We get

ésinﬂsinw + étcosw
w = ¢sichos¢+Qsin¢
¢cosl + 1)

Hence the body is symmetric.

1 1
T = ;h (Wi +wy) + ifgwf (2.39)
1 T 1 . 2
L (9 + ¢ sin 9) + 5l (w+¢cos9) (2.40)
= Mglcosf (2.42)

wherel is the distance from the fixed point to the CoM, and the angles are Eulerian
Angles. Hence

_ Y22 Y AN A ‘
L—211 (9 + ¢“ sin 9)+21 3<w—|—¢c059) + Mgl cos 6.

The ¢ and) are cyclic. Hence,, = (% =1 (w + ¢ cos 9) = const. = Izws. And

Dy = g—; = (Il sin? 6 + I5 cos? 9) phi + Ig¢ cosf = const. = I;b, and we define
Ila = Ig(x)g.
So the two constraints of the motipp, andp, can be expressed in termsoandb.
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2.3.2 Conserved Quantities
The total energy is given by

1 . . I
E:T—I—Vzill (92+¢Qsin29) +§w§+Mglcos€

Now
I3t = Iya — T3¢ cos (2.43)
If we substitute in fop,, we get
I —1¢sin? 0 + Liacos = I1b (2.44)
Then equations (??) and (22)

. b—acosf
= 2.45
sin® 6 ( )

and

. Ta cos(b— acosf)
= - — 2.46
v I3 sin? 0 (2.48)

Now w3 = I}—; is a constant of the motion. It is (sometimes denotexhd) called the
spin
Define E' = E — 122, another constant. We can write
B L62 I (b—acosh)?
2 2sin? 0

V(6)

E' + Mglcos@

Or

Le* -
E’:—I; +V ()

This looks like a one dimensional problem, with an effective poteﬂf{(azl). Making
the change of variable = cos 6 we have:

I I
E'(1—-4% = 52112 + 51 (b—au)® + Mglu (1—u?)
And lettinga = 22 andg = 232 then
w? = (1 —u?)(a — Bu) — (b — au)?

Hence

/“1(6) du
T VI- Do) - (- au)?

Unfortunately this integral is elliptic, and the solutions far¢, ¢ are in terms of
elliptic integrals.
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If we look at the equations of motion, as derived from Lagrange’s Equations we have
that

Ilé—Ilgf)Qsinecosﬁ—l—IgsinG((i)—i—qlﬁcosﬁ)—Mglsin@ = 0 (247

% (I@ﬁsinQ 0+ I3cosf (1/) + ¢ cos 9)) = 0 (2.48)
% (13 (1/} + ¢ cos 9)) — 0 (249)
This last reveals
¥+ ¢cosf = const. = ws = ‘spin’
And so we can write
16 — I,¢° sin? 0 cos 0 + Iswssin® — Mglsind = 0 (2.50)
= 0*1,¢*sin? 0 + 2Mglcos§ = const=F (2.51)

This is the conservation of energy. And finally the middle equation gives
Ilésin2 0 + Isws cos@ = const. = D

The motion due to the change s callednutation and the motion due to change in
¢ is called precession.

2.3.3 Steady Motion

Steady motion hag = o = const. = ¢ = const. = €2, say. Now provided we have
0 # 0 we have:

I,Q% cosa — IswsQ +mgl =0

= a pair of real distinct precessional angular velocifigsand2,, providedw? >
41, M gl cos . le. for sufficiently fast spinw, about the axis of symmetry the top can
perform steady motion, with = «, with 2 possible precessional velocities,andws.

2.3.4 Stability Investigation

Lety(0) = —I1¢%sinf cosf + [zwsdsin — Mglsinf and the stability condition
~v(a)) = 0. Now puttingd = « + ¢ wheree is small, we have

L' + /() =0~ A(a+6) ~7(a)

If we can now show that’(e) > 0 then this equation will reduce to SHM: The steady
point is stable. Now we know that

: (D — I3ws cos 0)
_ 2.52
¢ I, sin” 6 (2:52)
= Ly(0)sin®0 = —cosf (D — Izws 0059)2

+I3ws sin’ 0 (D — Iswscos®) — 1 Mglsinf (2.53)
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Now differentiating both sides and puttindo) = 0, we have

So that

Thus

So that

3

Ly (a)sin®a = sina (D — Izws cos a)

—2[3ws cosasina (D — Tzws cos )
+2I5ws cos asin v (D — I3ws cos )

+I2w2sin? o — 4I3M gl sin® o cos a

D — Ijwycosa = 1Qsin?a
Mgl

Isws = I1Qcosa+ N

Mgl\*
Ly (o) = I?Q% — 21, M glcoso + <Qg)

7(a) O_ Myl 2+2Mgl(1—cosa)
L LQ I

37

(2.54)
(2.55)
(2.56)
(2.57)

(2.58)
(2.59)

(2.60)

(2.61)

Thereforey’(«) > 0Va # 0, and so the motion is SHM about the stable point.
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Chapter 3

Hamilton’s Equations, &
Onwards to Abstraction

Synopsis: The alternative Hamiltonian formalism is developed. Momenta and Coor-
dinates become indistinguishable. Canonical transformations/Poisson brackets allow
us to reformulate the Hamiltonian: By finding a ‘good’ set of coordinates solving the
equations of motion becomes trivial (Hamilton-Jacobi theory). Conserved quantities
and symmetries are related. Liouville's Theorem provides an important link to Statis-
tical/Continuum mechanics.

Notation 1. Until now we have usef;, or P for momenta - whether or not they were
generalised momenta. However, central to the Hamiltonian method of doing things
is the concept that coordinates and momenta are viewed equally: Henceforth we shall
write p; for the momenta of a system with coordinaieqThe transformed coordinates
shall then be written a®; andQ);.)

3.1 Hamilton’s Equations

3.1.1 An alternative approach

So far we have formulated everything in terms of thendependent variableg. We
have, in effect, treated as distinct variables, independent of theof which they are
the time derivative. For example we have u%;dto mean the derivative wriy; with

g; # gq; andqg; held constant, and the symbﬁ}i has been taken to mean the derivative
wrt. ¢; with all ¢; and allg; held constant.

We could work in a space define by, ¢;, ¢ but it will introduce a greater symmetry if
we work with theconjugate momenta

oL

p; = 3*%
The generalised momenta are said to be&onjugateto theg; and the quantities areso’ in the Lagrangian for-

said to becanonicalvariables.Definition: The Hamiltonianof the system is definedﬂnu'altlon when a Va”able
Is absent froni, its conju-

by gate variable is conserved.
H(gi,pist) =Y dipi — L(gi, dir t)
A

39
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Then
oH oH oH
dH = —d¢+ —dp; + 3.1
3Qiq+3pip+3t 31
oL oL oL
= lidpi + pidgi) — —-dgi — 5—dgi — = 3.2
> (¢i dpi + pi dgi) 2, 40~ 5, 19~ 5 (3.2)

%

But p;, = & (g;) = f=sothatdH = 3, ¢;dp; — pidg; — $; dt so equating

variables we have

. dH . oH dL _OH
qi = dpf bi = 8(]77 ot - ot

These are the canonical equations of Hamilton. They are a set of coupled partial dif-
ferential equations.

Note 7. Features:
e Hamilton’s Equations are first order. Lagrange’s Equations were second order.

e Hamilton’s Equations are i2n variablesq; andp;, Lagranges equations were
in then constraintsg;. We now need to determie constants.

H _ ZaHd% OH dp; ZaHaH_dHaH_
ot aql dt 8pi de 8qi 6]?2' dqi 8]?2' N

= H is a constant of the motion.

Example 1. One Dimensional Motion
Consider one dimensional motion and suppose the existence of a poléfitipist

F=—-2V(x). Then
L = %mvz —V(x) (3.3)
H = mv?— %rmﬂ + V(z) (3.4)
= T+ V = Total Energy (3.5)

Notation: hereq is the Example 2. Electromagnetic Field
charge, not a generalised Consider a small (non-relativistic) particle in an EM field:

coordinate 1, q
L = T—U:§mv —qp+ =-A-v (3.6)
C

1 N
- 5 ;mxzxz + EAzmz - (1¢7 (37)
in Cartesian coords. Thgeneralised momentae given by
pi = mi; + 24,
C
Then
1 q 2
H = > — (pz‘ - EAi) +q¢ (3.8)

— 2m
3
1

=H = -~ = %A)Q +q0 (3:9)
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3.1.2 Cyclic Coordinates and Conservation Theorems

o d (oL _ _oH
b= dt an N 8qj'
So if a coordinate is absent from the Hamiltonian the corresponding (conjugate) gen-
eralised momentum is conserved.
If the generalised momentup) is absent from the Hamiltonian then
OH

Z—=0=¢ =0
8pj J

Observe

Sog; is conserved.

3.1.3 The principle of Least Action

In coordinate space we have

to
o L(qu’Ht) dt = 07

t1

so we should be able to write

T>
t1 i

But let us stop here and think: This equation is implicitly in phase space. We have to
think about what we mean by an ‘independent variation’: Since we derived Lagrange’s
Equation (inn variables) be assuming; = 0, and by slight of hand we now ha2e.
variables(q;, p;), and so by writing the above we are assumipg= 0 and dp; = 0.

In the A-variation:

e The varied path over which the integral is evaluated may end at different times
from the ‘correct path’

e There may be a variation in the coordinates at the end points.
Consider the family of varied paths defined by

qi(t, @) = ¢i(t,0) +ani(t)

‘true path’
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Soa is an infinitesimal parameter which goes to zero for the ‘exact’ path. nJ loe®
not necessarilyrave to vanish at the end points,andts.
All that is required of the;; is that they are continuously differentiable. We are inter-

ested in finding theé\-variation on the action integral, ie:

to
A Ldt

t1

which we define by

to ta+Ato t2
A/ Ldt:/ L(a)dt—/ L(0) dt,
t1 t1+At 1

whereL(«) means the integral is evaluated along the path «, andL(0) means the
integral is evaluated along the path= 0, it the physical path. The variation is clearly
composed of two parts:

1. The part arising from the change in the limit of integration, which to first order
infinitesimals is

L(t2) Aty — L(t1) Al

2. The part which comes from the change in the integrand along the variﬁj path

to
/ oLdt
t1
ta

"to
A/ Ldt = L(t2) Aty — L(t1) Aty +/ sLdt

t1 t1

So

Looking at the third term

t2 2 (oL d /oL oL . 1™
L = - ) ~—Sa:
/tl sLdt Z/t {8% dt(aqi)}aqzdw{aqi&ql}

ty

................. Now

ta
0 J(4ispis i, pi, t) dt =0
t1
1Take caredg (t1) anddgz(t2) # 0 necessarily
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implies (via the Euler-Lagrange Equations) that

d (of\ of
dt(aq')aqi =0 (3.10)
a (of\ of

dt <api>_api =0 (3.10)

So If we Identlfyf(q“p“ qmpia t) = Z'L pz% - H(QMPH t) we ha.Ve

. OH

b= a, (3.12)
. OH

i = g (3.13)

le. We have recovered Hamilton’s Equations.

Remarks 2. The two Variational principles

1. We have two forms of Hamilton’s principle:

e In Coordinate Spacé fttf L(gi,qi,t)dt = 0, and we require only that
5(]7; =0

e In phase Spacé fttf ST pi¢i — H(gi,pi,t)dt = 0, and we require that
dq; = dp; = 0. Here we treat;, p; as independent variables.

Both principles give us Hamilton’s Equations

2. Y pigi — H(q, pi, t) is independent of; and in our derivation we need the
terms at the endpoints to vanish, so that we can dispose of the surface terms
when we integrate by parts. (Because our integrand is independeitwé
don't actually make use of the conditiop; = 0.
At no stagdn the variational derivation do we make use of our original defining
equation

L
pliaq}"

That is to say that neither of the coordinatgs p; is more fundamental.

3. Supposé(q,p,t) is an arbitrary twice diffable function af, ¢ Then if we add
% to the integrand _ p;¢; —H+ % then the variational principle is unaltered.

We can apply Lagrange’s Equations

t2 oL
/t obdr 9q; %

1

ta
ty

Thedgq; refers to the variation ig; at the original end points:

t

2
A [ Ldt= (LAt+ pidg)

t1

ta
ty
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Now

Agi(ta) = qi(ta+ Ata, ) — q1(t2,0) (3.14)
= q; (tg + Ato, 0) — qi(tg, 0) + omi(tg + Atz) (3.15)

So to first order i andAt, we have
Ag;(t2) = Gi(t2) Ata + dgi(t2)

Hence

to
A/ Ldt = Z (LAt — piint +piAqi) (316)
t1

to
t1

= ZPZAQZ' — HAt

We now make the following assumptions:

2
(3.17)
t1

P OH _
1. The only systems we consider are those such%bat 5 = 0.

2. The variation is stH is conserved on the varied path.

3. The varied paths are shg; = 0 at the end points.

Remark 4. The varied path might even describe gamepath inconfiguration space
as theactualpath, the difference is in trepeedhe system point transverses the curve.

Now given the above qualifications we have
ta
A/ Ldt = —H(Aty — Aty)
t1

But under the same cosiderations

t2 t2
/ Ldt:Z/ pig; dt — H(ty — t1)
A t1

and

ta
A sz(h dt =0
1 e —
‘action’
Remark 5. In older books the quantity_ p;¢; is called the action. For us, however
the action isL.

3.2 Canonical Transformations

3.2.1 Canonical Transformations

Canonical TransformationhenceforthCTs) are those that leave the Hamiltonian struc-
ture of the system invariant. Suppose we started with a Hamiltdt{anp, t) satisfy-
ing Hamilton’s Equations:

dH . OoH

— ;= — P i~ H)dt=0
P 2, /(pq )

di
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exclude the triv-
ase of the ‘scale Suppose there existfunctio®p, q,t), Q(p, ¢, t) and an associated Hamiltoniat(.P, Q, t),

formation’ where not necessarily the transformationtéinto the new coordinates, st.
APy, g5 = X Q; for OK . 0K ) .

] larg;. — =Q, — =-P <<= § [(PQ—-K)dt=0
scalar. 5P Q 70 / (PQ —K)

We ask, how are the new coordinates related to the old ones? Consider the function
defined such thaP dQ — Kdt + dF = pdq — Hd¢. le. we want

dF =pdg— PdQ+ (K—H) dt

Let us take the particular case whéte= Fi(q, @, t) then we have that

- 3F1 8F1 8F1
A = 5 dat 55 dQ+ o dt (3.18)
6F1 8F1 aFl
o5 _ Lo _p ZLl_K-H 3.19
o P B0 T (3.19)

So
ta
5[ (pg—H) dtzé/(PQ—K) dt+ 6F |12
ty
And so the transformation is Canonical.
F acts as a bridge between the old and then new coordinates. Half the variables are
from the old and half from the new. For example suppése= ¢Q thenp = Q,
P =—gandK =H.
Now there is no need faf, thegenerating functionto be a function of;, @ andt. for
example consideF, = Fy(q, P,t) and define” by

F:FZ(Qant)_QP

Then
pi—-H = PQ-K (iif (3.20)
_ _pg-k+ 2P (3.21)
dt
But
d - 8F2 8F2 8F2
. 3F2 . 8F2 o 8F2
= P= 5y Q‘ap’ K=H+ = (3.23)

We can also devise generating functions which are mixed in the sense that they depend
only onp, Q,t or p, P,t Define F = gp + F5(p, Q,t) then similarly from above we

will have
L S SN )
1= TTag KR
And, finally, definingF’ = gp — QP + Fy(p, P, t) we get
8F4 aF4

B _OFy B
1= @Top KRt

These four generating functions are all we need to describe a specific change.
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D F3 Q
Ey £
P F2 q

Figure 3.1: The functional dependence of the generating functipns F,.

3.2.2 Generalisation to Higher Dimensions

Now we can generalise this tedimensions:

oF oF
Tak F (2 i7ta i = 5 P?,:_ 3.24
ake Fi(q;,Qit), p o 20, (3.24)
OF, OFy
hen F =Fy(qi, Pit)— > QiP; = pi= " =22 (3.2
then 2(%7 z»t) Qz i = Di aQi ) Qz apl (3 5)
etc. (3.26)

In the general case,the generating function dag$iave to conform t@neof the four
general types foall degrees of freedom.

Example 3. Let us consider the Harmonic Oscillator

2 2
_p ke L0 2oy with? =
H72m+ 5 me(p +qu), withw* =
Let us take
p = f(P)cos@ (3.27)
¢ = F(P)sin@ (3.28)
mw
We require
F2(P F?(P
H=K= ( )(cos2Q+sin2Q): (P)
2m 2m

So this choice has madg cyclic.
We want to find the functiofias yet unspecified, such that the transformation is canon-
ical. To do this we observe

g = mw cot @ (3.29)
= p=nmwgqcotQ (3.30)
Now suppose there exists a function of the thpgy, Q) then

0F,

p= Tq(q,Q) = mwq cot Q



3.2. CANONICAL TRANSFORMATIONS 47

The simplest solution to this is

And then we must have that

O0F mwg? [2P |
P = —-— = = = —_—
20Q  2sin’Q 7 mw sin @

butp = F'(P)cos@Q = f(P) = v2mwP. And we have that

H=K=wP
K is cyclicinQ = P = 0= P = const. This in turn= K = const= E. And hence
p=E
Then
. 0K
Q—a—P—w:Q—wt—i—a

Where alpha is a constant determined from the initial conditions. We can now invert
the transformation to obtain

25 (wt+ )
= sin(wt + o
9 mw?

In going fromP = 2’;“;3; to ¢ we have used the positive square root. We could

have used the negative root: The only difference would have been a trivial difference
of 7 in the phasé&ransformations need not be single valued

3.2.3 Poisson Brackets
Let f(p, ¢,t) be any function of;, p. Then

df _0fdg  0f dp  Of
dt  0qg dt  Op dt = ot

Butg = %;j andp = —% SO we can write:
af afOH OfoH  of
S e ALY 31
at 9q0p  opoq | ot (3.31)
_ of
= [f,H+ ot (3.32)

where[f, H] = L 98 — L 8 This is aPoisson Bracket

Definition: If f = f(q:,pi,t) andg = g(q:, pi, t) with 1 < i < n, then we define
the Poisson Brackeby

_N~0f 09 9f 99
29y, = Z dq; Op;  Op; Oq;

K2

It has the following properties:
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o [, 1],y =0
o (antisymmetry)/,],, = — (9. /],
o (inearity)[af +bg. ], , = alf.h,, +bg. 1],

e [pi,H], , =piand[g;, H]|, = d;.

Proof. To see this we us¢ = S andp; = — i so that
8pi 8H Gpi 8H .
p’n - = D; 3.33
Z 9q; 9p;  Ip; 04; (3:33)
and |[q;, H —_— = =q; 3.34
la Z g, 0p;  Op; 0q; (3.3
similarly. O
i [qiaqj]%p = [pij]qh,, = 0.
Proof. Observe
dq; 0q;  0q; Jg;
i - L= 3.35
952431, ; Oqi, Opr,  Opg Oqi; (3:35)
= Y 6 —0i;=0 (3.36)
O
b [Qi’pj]%p = 617
Proof.
0q; Op;  0Oq; Op;
(] - “ 337
l91:23), Z Oqr Opr ~ Opy Oqx, (3.37)
Z Sindik (3.38)
61] = [p37QZ] (339)
O
o If ‘?9—':' = 0 the Hamiltonian is conserved.
Proof. Since ! = [H, H]+ 2%, thenif 2! = 0 = 4" = 0 and the Hamiltonian
is conserved. O
e (The Jacobi Identity){f, [g, h]] + [g, [k, f]] + [, [f, g]] =
Proof. Left to example sheet O

Antisymmetry, Linearity and
the Jacobi property define
what is called d.ie Algebra
wherein the Poisson Bracket
is the 'product’. Other Lie
algebras include the vector
product and the matrix com-
mutator. The QM correspon-
dence principle says that:

(f.9] — % (fg—gf) and

this only works because both
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3.3 The Sympletic Condition and CTs
3.3.1 The Special Case

We are looking for conditions that make a given transformation canonical. Let us begin
by considering some restricted canonical transformations: Those where time does not
play an explicit part. In terms of the generating functiBrwe have that%—f =0so0

thatK = H. Then

Q= Q(q,p), P = P(q,p)
So we have
@ = X5 T+ lpg (3.40)
S an 0zH  9Qi oH 3.4

qu 8pj apj a(]j

On the other hand we may invert the transformation togget ¢;(Q, P) andp; =
p;(Q, P) as
OH ap] OH 0g;
8P 3pj BP an' (9PZ

Then the transformation is canonicadly if
OH

Q=35 P (3.42)
aq]‘ ap 8P QP
——— ———
Q as a function ofy, p p as a function of), P
and <8Qi> - (8%’ ) (3.44)
8p7 q,p aPJ Q,P
In the same way, by consideritg we find that
&), @), &), -G)
945 ) 4 9Qi ) q.p i/ g 9Qi ) g.p

Let us further restrict our attention to a 2 dimensional phase S@apg and consider
the transformation t@), P, then define

0 1 52 g2 9,Q 9,Q
J:(1 0)’ M:<gg’ af’) (ap ap)

dq
Consider
0Q  9Q
% o\ [ 0Q o,P
MJMT = (3% Sp ( P P ) (3.45)
(%q L I\-0,Q —0,P

0 @, 5 ]M'> (3.46)



50 CHAPTER 3. HAMILTON’S EQUATIONS, & ONWARDS TO ABSTRACTION

But consider
o.p —9Q0P _0oraQ
e 9q Op g Op’

and in particular for our transformati@yQ = dpp etc. So
(@, P],, = 0ppdqgq — Oppdqq = (4Pl p

Now if it were thatflu,v], , = [u,v], p, then it would follow that the condition for the
restricted transformation to be canonical would be that

MJIMT = J.

We will now show that this is indeed the condition that the transformation is canonical:
We will show that aCT leaves Poisson brackets invariango it is unnecessary to
write [f, g]q p, since the quantity is the same no matter what canonical coordinates we
choose.

Notation 2. We shall writeM;; = ggi_ where
J

q1 1
_ | @ Qn (0 I
n= P1 ) E* Pl ’ ‘] <—I 0)
by by

le. both are column vectors in2zu-dimensional space, and whekés then x n identity
matrix. This might seem a bit odd, but fundamentally,(fhiep;) are our coordinates:
Whyshouldwe treat them differently?

theorem 1. A transformationy, p — @, P is canonical iff
MYIM = MTM?T = J.
This is called theSsympletic Condition

Remark 6. We prove the result first in the case when we have a restricted CT, ie. no
explicit time dependence, and then go on to prove it for the general case
It might be useful, at each
step, to write out the ma-
tricies and vectors explic-

Let us prove the special case:

itly. Proof. First, it follows from Hamilton’s Equations that
OH
. oH
n an
The elements of are the; and P;, and these are functions of thgandp;, ie. ofn
S0
. 2n ag
& = 1) (3.47)
) jz:; 877] J

= €=My (3.48)
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Now, by the inverse transformatid¢hcan be considered as a functionscdindz, so

OH B 5j8£j
o z; d&; O

Or in vector/matrix notation

OH OH
= - M=
on o0&
Now
: OH OH
—MP=MJ— =MJMT=_
3 7 Jan J €
But
OH
€= Ja?

from Hamilton’s Equations. Hence
MJIM" =J
By noting that we could just as well have gone frémP to p, ¢ we must also have
MYJM = J.
O

This proves the special case: That a restricted CT will be canonical if the symplectic
condition holds. The reverse condition holds, and fortunately the proof works in reverse
too.

Remark 7. In our example we saw that
[Q,P}qp = 1 is precisely

MTIM — < 0 [Q,P]q7p> the same as the statement
@, P],, 0 that the Jacobian of the CT
is 1, which in turn im-
We have just proved, however, that plies that/ dg dp is an in-
variant of the transforma-
MTIM = J = (0 1> tion.??? This is one of
-1 0 the Poincarre integral in-
variants

And hencd@, P]

P Q) » =1L but it was a trivial property of the Poisson
Bracket thaf @, P [ﬁ =1=

fQ P] so we clearly have that

@, Plgp=1Q,Ql,, =[PPl,,=[P,Plgp=0

This also holds in the general case, so that

[QU ]q P [Qia Pj]QJD = 6’LJ (349)
[Qi, Q;] = [Pi, Pj] 0 (3.50)



In fact CTs form a group:
The identity is canonical,
the inverse of a CT is a
CT, two successive CTs is
a CT, and the product is
associative. We only re-
quire that the CTs are an-
alytic functions of cts pa-

rameters in order to have a

Lie Group
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3.3.2 The General Case

We have yet to show that/ JM™ = JMT JM is a necessary and sufficient condition
for a CT in the general case of an arbitrary CT. le one with time dependence.

IN order to do this it will be necessary to introduce the important idea offarntesimal
contact/canonical transformatiofor anICT for short).

Lemma 1. The generating functior, = > ¢; P; generates the identity transforma-
tion.

Proof.

OF, OF,
g TP op, 471 Q

O
Now let us consider the generating function
F= Z QZPL + 6G(Q’i7 Pia t)
whered is an arbitrary diffable function andis infinitesimally small. Then
oF oG
Qi = aipi—%'f‘gapi (3.51)
oF oG
; = =P 3.52
b dq; e dq; (3-52)
Now take
opi = Pi—pi= —EaG (3.53)
9q;
oG
0¢p = Qi—qi= op, (3.54)
Now G(gi, Pi(q,p)) = G(¢i,pi +<f(g,p)) = (to first order inc)
o0q; = 58G (3.55)
Opi
op; = —¢ oG (3.56)
9qi
=dn = esJa—G (3.57)
on
Now M = % =1+ 4om=1+ ngfg So the second derivative is a square matrix:
T
fiate; _ _9°G _ fiate; %G ; ; ;
(BUQ)U = Buon Now M =1 —¢ (J 8n2) , but on7 1S symmetric, and J is
antisymmetric=
0’°G

T
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And hence
9°G 0°G
T _ - e
MJM = <I+aJ 8772) J (I 53772 J) (3.58)
9°G 902G 9
Thus to first order
MYJIM =J

= for any ICT the symplectic condition holds.
Now consider the CT = £(n, t), this evolves ctsly as time increases from some initial
value. LetG = H(g,p,t). Then

OH

6 = dt— =¢;dt = dg; (3.60)
Op;
H
(5pi = — dta = pi dt = dpi (361)
dq;

Thus the Hamiltonian acts as the generator of an ICT which corresponds to the evolu-
tion in time of the system— symplectic condition holds.

The continuous evolution of the transformatigm, ¢) from £(n, to) to £(n, t) can be

built up as a succession of ICTs in stepsd¥, so if n(tg) — £(to) is canonical as

&(tg) — &(t) is canonical we must have thatt,) — £(¢) is canonical.

It can be shown that the product of two successive CTs is a CT (question 1, prob-
lem sheet 4). So the symplectic condition holds in general.In the course of our
argument we have seen that

where the Poisson bracket is evaluated wrt. the canonical set. It can be shown that if
u, v are arbitrarily diffable functions of, p then

[u, U]q,p = [u, U]Q,P

le. all Poisson brackets are invarianfguestion 2, problem sheet 4).

3.4 MoreonlICTs

3.4.1 The Hamiltonian as the generator of an ICT

As we've seen, an ICT is a special case of a transformation that is a cts function of
a parameter. If the parameter is small enough to be treated as a function of a first
order infinitesimal then the transformation between canonical variables differ only in
infinitesimals, ie.

£=n+dn
with the change being given in terms of the generator G through the equation

0G(n)
on

om=ceJ



This is the same active
view that is used to define
the Lie Derivativeof a ten-
sor field
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Now
(" ou
n,u] = <8n) J% (3.62)
ou
= J% (3.63)
= dn=c¢cn,G] (3.64)

Now consider an ICT i whose generatds the Hamiltonian

om = dt[n,H| (3.65)
Bo= [n.H] (3.66)

If the motion of the system in a time intervdt can be described by an ICT generated
by the Hamiltonian— The motion of the system fromy to ¢ can be generated by

a single contact transformation equivalent to an infinite sequence of infinitesimals, all
generated by the Hamiltonian.

We can view the Hamiltonian as the generator of an ICT (and consequently a CT)
which describes the motion of the system with time.

A solution of the problem of finding the canonical transformation which relates coor-
dinates and momenta at time= 0 to their value at = t is equivalent to solving the
physical problem. There are two views:

e The passive ViewWe regard the transformation frofn— n as mapping from
one phase space to a new phase space. So

U(p, Q> I U(P7 Q)u
ie. the functional form will change, but not the value.

e The Active View We regard the transformation as a mapping within one phase
space - @oint transformation This time the functional form remains the same,
but the value changes. For example, the evolution of the system in time, as
generated by the Hamiltonian.

If we are working in the active sense then we can talk about the change in the function
u under a CT (cf. the passive view, which ha®, q) = U(P, Q).)

3.4.2 Symmetry and Conserved Quantities
Suppose we have an infinitesimal transformation generat€d byp, t), so that

ou Oou 0G
u(n +6m) —u(n) = %577 = 5%J%

then sincey = (q1, ..., ¢n, 1, ..., Pn) " the above becomes

9 0

e ) = Y B g (367)
ou 0G  Ou Ou

- (3q1; ops 8piaqi> (3.68)

= ¢ [u’ G] (3.69)
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So assuming that is not an explicit function of time, we can ask ‘ddes= H?’ Well
dH =¢[H,G]
oG

But 4¢ = [H,G] + ——, so

dt ot
~—~—~
=0

dG Compare this to Heisen-

a 0 < [H,G]=0 berg’s formulation of QM.

The symmetry properties of the system are equivalent to the conservation laws.
The statement now includesl constants, not just the conjugate momenta to cyclic
variables.

Example 4. Suppose; is cyclic. le. the Hamiltonian is independentgf and will be
clearly invariant under an ICT which involveg alone. The equations of transforma-
tion would be

5(]]' = 551’]’ (370)
5p; = 0 (3.71)

And thenG = p;, so

dpj

=0
dt

AH—¢[H,p;]=0=

3.5 The Hamilton-Jacobi Equation

3.5.1 ‘Nice’ coordinates

Having done all this abstract theory, we can now reap some benefits. We have two
approaches to solving problems:

1. If the Hamiltonian is conserved then we can transform to a new set of canonical
coordinatesall of which are cyclic Then the integration of the new set becomes
trivial.

2. We can seek a CT froify, p) att = ¢ to those at = 0. Under such a transfor-
mation the equations linkingy, p) with the new(qo, po) are the solutions to the
problem.

Let us consider the first approach:
We can automatically require that our new variables are constant in time if the trans-
formed Hamiltonian is zero, for then from Hamilton’s Equations

OH
0P,

=0=Q;=0= Q,; = const

and similarly for theP;. Now we know that the transformed HamiltoniKris related
to the old HamiltoniarH by the equation

oF

K=Hiot
o
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whereF' is our generating function. So if we have the new Hamiltonian being zero, we
must satisfy

oF
H+ — =0
T
It proves convenient to takE = Fy(q, P,t). For then we have, using = %—Z?,

OF, OF,
Hg, —2 =2 =
(q“ aqi7t>+ 5 0

This is theHamilton-Jacobi Equationlt is a pde for the desired generating function in
the(n + 1) variablesyy, ..., ¢u, t.
Suppose there exists a solution

S = S(q17 GnyQ1y .y Oy, t)
N———
constants
This constitutes a complete solution of the differential equation, and is ddfedl-
ton’s principle Function One constant is redundant itself only appears in the
Hamilton-Jacobi Equation via it's derivatives wr; and¢, so wlog. we can add a

constant taS and the H-J equation will still hold.
To this end was absou,; into .S and look for a solution

S = 5(q1,--Gn, A1y eey iy, ).

Once we have the constantg«; }_, the solution will be complete.
We are at liberty to take the constants to be the new (constant) momentahat is
we can set

Pi = Q4.
Now recall, for F>-type transformations

_on _on
pl_aqiﬂ _837

but this implies

_8£( o t)
pz—aqi qi, g, 1),

We can evaluate the constants of motion ito. our initial conditioris=ab. le. we find
the values of; simply by calculating?>- att = 0. And Q; is given by

Qi: P = (q,OL,t)

6ai

Example 5. Consider the Harmonic Oscillator Hamiltonian with unit mass

H= (p2+w2q2):E, withw = Vk

N |
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If we setp = % (thus assuming aRs-type transformation) we obtain the H-J equation
L9\ e
2 dq e

We notice thats depends on time only in the last term of the H-J equation, so let's try
S(gq,a,t) = W(q,a) — at. Then

1 ow\> .,
4(@)+WJ—

And so the H-J equation implies thHt = «, and we naturally associate with the

05
+ 5, =0

Q;{Q
U

g
g

energy.
Now
w2q?
W = \/2a/dq 1— 5 (3.72)
!
w2q?
S = \/2a/dq 1-—- 5 —at (3.73)
o
But

(3.74)

oS —1/2 dq

o= =o)Ly
0 w2g2
“ \/1_ 2;1

g = 1/2%Sinw(t+ﬁ) (3.75)
w

p = ﬁza—wzmcosw(t—i—ﬁ):q' (3.76)
dq dq

The initial conditions at = 0 are given by(qo, po). If we square the equations fagr
andp we get

200 = p* + w?¢® = pj,w?qg,
and the other usual trick is

w
Yo _ tan w3

Po

And we naturally identify3 with the phase angle of the oscillator. Doing a bit more

algebra:
w2q2
S = \/2a/dq 1— 5 —at (3.77)
«

Qa/cos2 w(t+p) dt —at (3.78)

= 2oz/cos2 w(t+p)— %dt (3.79)
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And the Lagrangian of the problem is

L = % (p* — w?q?) (3.80)
= 2« <cos2w (t+p5)— ;) (3.81)

l.e, in this case we have

S:/Ldt

3.5.2 The principle Function and the Lagrangian

The above example furnished us with an interesting relation between the principle func-

tion S and the Lagrangiah. Does this hold in general?

We havep; = g—f, and alsa@; = 3; = £2 (¢, a,t). This last equation can be inverted

to write g as
g = g5 (@, ,1).
Then after differentiation in the first equation we can substijyt® obtain
pi = pi(e, B, 1)
And so
%f=zgfiqi+%:2m—H:L.
We can write this general result as

S:/Ldt—i—const.



Chapter 4

Integrable Systems

Synopsis: This chapter applies some of the results of the Hamiltonian formalism, as
developed in Chapter 3, as well as investigating the important area of Adiabatic Invari-
ants: Completely Integrable systems.

4.1 Integrable Systems

What is an integrable system?

4.2 Action-Angle Variables
Let us consider a system with one degree of freedom and assume it is conservative, so
H(g, P) = a;.

Suppose we are interested in emphperiodic systems: There are two things we could
mean by this:

1. The path of the system describes a closed loop in phase space. For example
vibration. This will happen when bothandq are periodic function of time, and
have the same frequency.

2. The path of the system is periodic in phase space, for example a pendulum going
all the way round it’s fixed point. Then we will have th&¢) = p(¢ + qo)

Definition: We define thengle variable/, by

szl{pd%

where the contour integral is taken around one peroid of the system, whether it is of
type (1) or (2).

4.3 Adiabatic Invariants
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