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INVARIANTS OF SYSTEMS
OF LINEAR DIFFERENTIAL EQUATIONS

BY

E. J. WILCZYNSKI

The theory of the invariants of a single linear homogeneous differential
equation rests upon STAECKEL’S theorem, that the most general point-transfor-
mation which converts a general homogeneous linear differential equation of
the m-th order (m > 1)

dm
@ da™ +P1()dm—1+ -+ P (xy=0,
into another equation of the same form and order, is
(2) x=f(), y=ng(8,
where f(€) and g() are arbitrary functions of £.*
Those functions of P,, P,, ---, P _and the derivatives of these quantltles,

which are the same for the equatlon @ and for any equation obtained from (1)
by a transformation (2), are called invariants of (1). Functions having this
invariant property and containing also y, dy/dx, ete., are called covariants.
The investigation of such invariants and covariants has led to many new and
interesting results concerning the equation (1). This theory is associated with
the names of CoCKLE, MALET, LAGUERRE, HALPHEN, Br1oscHI, ForsYTH, and
others.

The author has recently shown that the most general point-transformation,
which converts a system of n homogeneous linear differential equations into
another of the same form and order, is

(3) X =ﬂ'§)9 yk Z“k,(f)"? (k=1’ 2, -y ”)r

where f(£) and a, () are arbitrary functions of £, and the determinant |a, ()|
does not vanish 1dentlcally +

We shall consider, in this paper, those combinations of the coefficients of a
system of linear differential equations which remain invariant when the system

*Crelle’s Journal, vol. 111.
tAmerican Journal of Mathematics, January, 1901.
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2 E. J. WILCZYNSKI: INVARIANTS OF SYSTEMS [January

is transformed by the above transformation (3). These transformations obvi-
ously form an infinite continuous group, and we shall employ Lie’s theory
throughout, as has been done in the case of a single differential equation by Dr.
BouToNn.* We shall not, in this first paper, pay much attention to the appli-
cations of the theory, nor give more than a passing mention to covariants.

§ 1. Finite transformations of the dependent variables.

We shall at first confine ourselves to the transformation of the dependent
variables. Those functions of the coefficients of the system which remain in-
variant for all such transformations, may be called seminvariantés. These are
of considerable importance in themselves, and besides furnish the basis for the
theory of invariants under the general transformation.

Let the given system be

m—1 n
(1) y(im)+l—zokz_1pikly;¢l)=0 (i=1, 2,.--, n),

and let this system be transformed by the equations

(2) Y= Z alc)\(‘”)”)\ (k=11 2,1, ”)i

where a,,(x) are arbitrary functions of x, and where the determinant
]a’”\(m)[ (ky2=1,2, .-, n),

does not vanish. As usual we denote derivatives by accents. Then we have
from (2)

®  w-1E

l _
< )“gcp)z"}&l » (k=1:27""”;Z’_—O)l’?)"')m),
=15=0 \P

] :
where in general ( p) denotes the coefticient of «* in the expansion of (1 4 x)’.
Equations (1) then become

n n m m—1 n n l
@) Sau + 3 2 (Mg + 2 2 > 3 () puaipni =0
P g
A=t A=1 p=1 =0 k=1 p=1 ¢=0

(i=1,¢2, -+, n).

The coefficient of 7 in the double sum is

m -
m—v)

and in the quadruple sum, the coefficient of 7{ is

*¥American Journal of Mathematics, vol. 21, no. 2, 1899.
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zn: [(5)10%./““ + <v —Ii l)pz b pe1 @) + -

+ (m T—I 1 p) Die m_la,(cm—l—ﬂ]
m—i—y

v+ T
Z() ( T )pi,k,v—i-fa;c;) M
T=

>
M-
I

Thus, from (4) we obtain

6) Tow+ X S [(,,7, ) e

pn=1 y=0

n m—l—y

+2 2 (V_';T)Pi,k,y+,a,(c7;2]=0 (i=1,2,--, ),
k=1 71=0

or if we Put

(6) A=lai)\l (i))‘:—'lyg"")n)’
and denote by 4;, the minor of «,, in this determinant,

n

(M) Angmw 4 3. Z n;">éA [( mn )agf—v)

pn=1py=0
n m—l-—vy
+Z Z (Vi_'r)pz k v+1a’kp,):|—0 ()'=1’2""’/”’).‘

k=1 71=0
If then we write this system in the form

m—1 n

(8) ’7,(\7”)+ZZ7TA,W77§:)=0 (A=1,2,--,n),

v=0 p=1
we have

n m—l—yp

O A=A (")l + X (") st

=1 k=1 7=0
(Ayp=1,2,--+,n;v=0,1,---,m—1).

Thus, if (1) is transformed into (8) by transformations (2), the relations be-
tween the coefficients of (1) and (8) are the equations (9).

Equations (9) represent an infinite continuous group, isomorphic with the
group represented by equations (2). For to every transformation of the latter
group corresponds one of the former, and they obviously have the group prop-
erty. Both groups can be defined by differential equations, so that L1E’s theory
of infinite groups may be applied.

§ 2. Infinitesimal transformations of the dependent variables.

We proceed to consider the infinitesimal transformations of our infinite group.
The variables y,, v,, - -+, ¥, Will undergo the most general infinitesimal transfor-
mation of form (2) if we put
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(10) - ay@) =1+ ¢, )3, ay(@)= b, ()2t
. (is=k), (G, k=1,2,--, n),

where 8¢ is an infinitesimal and the ¢,’s are arbitrary functions of ». We
wish to find the corresponding infinitesimal transformations of the coefficients

p ikl *
Neglecting infinitesimals of order higher than the first, we find

1+ ¢118t ’ ¢128t’ Tt ¢1n8t

$,8t, 1+ ¢,,0t, -, ¢,,0t

(11) A= 1=1+(¢11+¢22+"‘+¢M)8t’

,,9, P ¢,.5t
and similarly
(12) {A“ =1+ (4’11 + ¢+t b, — ¢ii)8t ’

A,=—¢,5 (k).

Substituting these values in (9), we have

n m—1—v

Am,,, = g — ¢t [(mﬁ ) P8t 4+ > > (v+ T)pz kiDL 8t

k=1 71=0

+p,~w] + L+ Gt bt oo+ $,)8] [(m”i )8

n m—l—vy

+Z Z (V+’r) 1\ k,v+f¢§c‘;;.)8t+p)\p.y]’

k=1 7=0
or

ATy = Prs = 2 uPid 4 () H70
(13)

n m—l—yp

D I S e P S e

k=1 1=

Dividing by A=1+ (¢, + -+ + ¢,,)%, and denoting the infinitesimal
difference m,,, — Py, bY Op,,,, we find

Py
)\Ii— = Z (¢hu p)\kv - ¢)\kpkp-v)

(14) nomlov,y 47 m -
+]; ; ( )4’/:,;]’)\ k,v+1+(m_y) )\,;.v’

(l’ﬂ:1,27"')"§”=011:2’"';m—l)‘
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These are the required infinitesimal transformations of p,,,. Those of p;,,,
Py tc., may be obtained from (14) by differentiation.

§ 8. Calculation of the seminvariants for m =n=2.

The complexity of the general problem is so great that it appears wise to

limit the further discussion in this paper to the very special case m=n= 2.

This will throw considerable light on the general case.
Let us put, in this case, for abbreviation

P, pym—1 = Prp1 = Pap s DPrp,m—2=D apo = Qu s
(15) it
IPru
We have then, from (14),

K
Pm = Z (¢k;u.p4\k —buPrn) + 205, ¢

A , I
P,\M, %=P)\“, K=QM‘, ete.

3, 2 , ,
(16) 9 ]0,\,; ; (Prn Pt — ParPiw + P Prs — Prsliw) + 2025

ql\“ E (Pr — PraGrn) + Z Frn Pat+ DL -

Now if f'is a seminvariant depending only upon p,, , p;,, ¢, Wemust have
(17) )\Z(Pt\usp)\u + 'P)’\usp)'\p. + Q)\/J.SQAM) = 0
)

for all values of ¢, ¢/, ¢”:. Putting the coefficients of these twelve arbi-
trary functions equal to zero, we obtain the following system of partial differ-
ential equations for such seminvariants :

2'P7,‘3 + Qrs = 0 ’
(18) 2P, + ;(pMP;s — PaLix + Par @) = 0, (r, s=1, 2).

2
; (PMP o — Pl + 20 LPry — poPry + I Q)\s — Qs Qr)\) = 0.

This is a complete system of twelve equations with twelve independent vari-
ables. But there are two relations among them, so that we shall have two in-
_ dependent solutions, i. e., two independent seminvariants containing only the
variables p,, , p1. s ¢, -
The first four equations of the system tell us that the quantities p/, ‘and ¢,
can occur only in combinations

2p;a - 4Qra *
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The next four equations, written separately, are
2Py, + (Pu—Pu) Pl + Pu(Prs — P)) + Pu@u + P =0
2P, + pouPy — Pl +Pu@u + Pn@u=0,
2Py 4 PPl — PuPi+ Pu@us+ Q=0
2Py, + (P — Pu) P + Pu(Pli — P) + P @u + P @ =10
They show that the only possible combinations of p_ , p, , g, are

(19)

uy = 2p;, — 4gy, + Pl + PP s
Uy, = 201, — 49, + PPy + P) >
Uy = 2p;y — 49y + PPy + P) >
Uy, = 2p;, — 45y + Py + PrPr s

(20)

so that the seminvariants, here considered, are functions of w,;, u,, u, , %,
only. '
The last four equations (18) are

U, = (py — Pp)Pro + pu( P — Po) + (1, — P) P
+ pu(Pro — P1) + (@ — 20) Qe + (@ — Q) =05
U= puPy—puPu+puPy—pioPh+ 0a@n — 12@e=10,
U= puPy—puly+ 0P —PuPon+ 0:Q0 — @@n=20,
U, = (pp— pu)Pou + 2l Ly — Pr) + (P — P1) P
+ PP — Pr) + (9 — 9) @ + 0(Qu — @) =0,

with the obvious relation

(22) U+ U,=0.

But there is another relation between these four equations and the other eight,
these latter being themselves obviously independent. If we compute from them
P, and P, and substitute the values of these quantities, thus obtained, in (21),
that system becomes

(uu - uzz) le - uzl( Qu - sz) =0,
(23) - (uu - “22) Qzl + ulZ( Qu - sz) =0,
Uy Q)z — Uy Q21 =0,

where the last equation is a consequence of the other two.
The two independent solutions of this system are
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(24) I= Uy + Uy s J= Uy Ugy — Uity 5

and these are the seminvariants required.

Let us proceed to obtain next those seminvariants which contain also the
quantities p7, and ¢;,. They must satisfy the following system of partial dif-
ferential equations :

(a) 2-P;,3 + Q;s = O
(b) 2Prs + Qrs + E (p)\r-P;\s ps)\ A + pM‘Q;\S) = 0 ’

(25) (c) 2P, + ); (PrPrs = Parlin — 2007
. + G @ — @ @ + P @rs) = 0,
(@) A; (PxrLrs = PoLrs + PiePrs — P + PP
= Pl + Do ln — 40 @ + 6 Qs — 20 €)= 0,

among which there is one relation. Thus there are 15 independent equations
and 20 variables. There are therefore five seminvariants satisfying these equa-
tions. Of these we already know four, namely, 7, J, dIjdx, dJ;dx, which are
obviously independent.

L ;
et us pus L= dl”‘ ete.
du
Then, since according to (20), we have
2
(26) wy = 2p;, — 49, + Z:l PyPis
Jj=
therefore
2
(27) u:’k = 2p/i/k - 4927: + Z:l (pijp;'k + p;jpjk) .
‘7=

It will be easily proved from equations (25) () and (b) that our seminvari-
ants are functions of the twelve arguments

(28) Pir Uy Wope
Denoting the left members of ‘(25) () by Q,---Q,, so that
‘Q1= 2-P11+ ceey, \Qz= 2_P12+ ceey Q3=O_P21+ ceey Q4=2P22+.. s
we find
(29) Q,(uy) = Qy(u,) = Qy(u,) = Q(u,) =0,
QP =2, Qpy) =0, Qp)=0, Qp,)=0,
Q) =0, Qpn)=2, Qp,)=0, Q(p,)=0,
Qpa) =0, Qpn)=0, Qp,)=2, Qp,)=0,
Q(Pn) =0, Opn) =0, Qp) =0, Qfpy) =2,

(30)
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and
Q) =0, Q)= —u,,
Q) = + gy, Q) =0,
Q(u,) = — uy, Q) =u, —u,,
(31) Dy(uy) = 0, 0,0) = + s
Q)(uy) = + uy, Quuy) =0,
Qyup) = — (w0, — )y Quy) = —wy,,
00) =0, Q)=+,
Qyuy,) = — w5 Qul)=0.

From these equations it is easily seen that the eight independent functions of )
the arguments (28) which verify the equations Q, = 0, are the quantities w,,
and

vy = 2wy + Pitly — Pyl

Uy = 2“{2 + (pu - Pzz)ulz - plz(uu - uzz) ’

vy = 2uy — (Py — Pu)la + Por(Wyy — %) 5

Vg = 2ty — Py + Pyt -

Denoting by X, ---, X, the left members of (25) (d) we find :
X)) =0, X,(vy) = — vy,

(32)

X3('”11) =+ Uy X;('Uu) =0,
‘Yl('ulz) = — V> Xz(vlz) =V — Vg
Xy(v,) =0, X,(,) = + v,

(33)
X)) =+ vys Xyvy) =0,

Xy(vg) = — (v — V) X(vy) = — vy,
Xd=0, =+,

o) = — s X (o) =0,

the equations for X (u,,), etc., being precisely of the same form.
From (33) we find that

n + Vaa and V1V — V1Y

are solutions of the equations X, =0. But
(34) v, + v, = 217,
while
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(35) K= V11055 — V130519

is obviously a new seminvariant, independent of 7, JJ, dI/dx, dJ/dx.

If we should now write down the differential equations satisfied by the semin-
variants involving p@® and ¢® besides the quantities already considered, there
would be twenty such equations with only one relation between them, and
twenty-eight independent variables. Hence there must be 28 — 19 = 9 such
seminvariants. But we know eight of these, viz.:

(36) I,1r,1; J,J,J; K, K';

these are independent, for it is easily seen that from the existence of a relation
between them would follow the existence of a relation between 7, 17, J, J ', K.
But these quantities were independent.

‘We can obtain the ninth semivariant without writing down and integrating
the last mentioned system of twenty equations. The process which we shall
employ is much more instructive, and is capable of generalization.

We notice first this theorem : the quantities u, and v, are cogredient.

This follows from equations (83), together with the corresponding equations
for X,(u,), as well as from the following formule, which express the infinites-
imal transformations of u, and v,,. It will be found from (16) and (20), that

ou
7321} = ¢21u12 - ¢12u21 ’

ou.
v Tstﬂ = (‘l’zz - ‘1’11)“12 + ¢12(u11 - u”) ’
(37)
Ttm = (b1 — Po)tty, + Pyy(2y, — ) s

22
ot T T ¢21u12 + ¢1z“21 ’

and from (16), (32), and (37),

)

T;l = ¢21”12 - ¢12”21 ’

)

3—;2 = (¢22 - ¢11)'U]z + ¢12(v11 - 7)22) ’
(38) 50 .

?tz_l = (¢11 - ¢2z)vzl + ¢21(7)22 - '011) ’

)

T;Z = - ¢21vlz + 4’12”21 .
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. - , e ot
Now certain combinations of thew,’s and p,’s, viz. v, + v,, and v, v, — vV, ,

were seminvariants. Since the v,’s are cogredient with the w,’s, the same com-
binations with v, in place of u, will also be seminvariants.
Let us, therefore, put
’
wyy = 20;; + Py — P>
’
wy, = 200, + (P — PV — PiVy — V)
’
Wy = 2"721 - (pu - pzz)”zl + p21(vll - 7)22) ’

’
Wy = 2”22 — D1V + PV 3

(39)

then we know that w,, + w,, and w w,, — w w, are seminvariants. But

. wy + Wy, = 2(v;, + vy,) = 417,
while

(40) L = ww,, — ww,

is the new seminvariant. That it is independent of the other eight can be easily
seen by considering the special case in which p, = 0. :

‘We now have all the seminvariants, viz.: I, J, A, L, and their derivatives.
For, suppose we wish to find the seminvariants involving p and ¢¢). They are
determined by a system of 24 — 1 = 23 independent equations with 36 inde-
pendent variables. Therefore, there exist 36 — 23 = 13 such seminvariants.
But they are merely the 8 seminvariants (36) and L, I”, J”, K", L.

Thus all seminvariants of the system (1) for m = n = 2, are functions of
the quantities I, J, K, L, and of their derivatives.

It is interesting to note what would be the result of continuing our above
process for obtaining seminvariants. Suppose we had formed

iy = 2w;1 + Py — Py » ete.
Then would

tu - tzz =g 1(“11 - “22) + gz(vu - ”22) + g s(wu - wzz) ’
b = Gz + 91z + 95,5
by =149 1% + GV + G35y 5

where g, , g,, g, are seminvariants.
For ¢,, g,, g, are the quotients of determinants of the third order formed
out of the matrix

tu - tzz s Uy — Uy Vg — Vppy Wy — Wy
tlZ ) Uiy s Vig Wy,
t u,

219 219 ,021 ’ w2l I
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and an account of the cogrediency of these quantities, such quotients are semin-
variants. In fact, the determinants themselves are seminvariants.

§ 4. An application of the theory of seminvariants.

The theory, developed in the preceding paragraphs, was first suggested by
the following considerations. Let

dny dn—ly
(41) D(y)= g +Pi gyt -+py=0
be a homogeneous, linear, differential equation, and let y,, ---, y, form a
fundamental system of (41), so that
(41a) D(y) =0 (i=1,2, -, n).

Suppose that the coefficients of (41) are uniform functions of x, and let
x = a, be a singular point of one or all of these coefficients. If the variable «
describes a closed circuit around this singular point @, , v, ---, ¥, will, in
general, undergo a linear substitution with constant coefficients, changing into

n
§k= ZM:’:'):‘/@' (k=1, 2, -+, n),
=1

where the determinant A{*)| &= 0. Denote this substitution by 4, , so that we
may write

(42) ) yk= Ap.yk‘
Now let us put in (41a)
(43) yk=2a’ki .= Sn, (k=1,2,--,m),

=1

il £ 0
and where a,; are uniform functions of . Then 7, ---, 7, will verify a system
of n linear differential equations, obtained from (41a) by the transformation (43).
This system is not a general system but has the special property that correspond-
ing to a circuit of 2 around a, , 7,, - - -, 7, undergo the substitution

8714, 8,

which is the transformed of 4, by the substitution S, and has as its coefficients
uniform functions of x.

Conversely, if a system of » linear differential equations has this property, it
is ob(riously possible to find a substitution

where again the determinant

Y, = Sn,

which reduces it to the form (41a), or what amounts to the same thing, n linear
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combinations of 7, - --, 7 can be formed with variable coefficients which form a
fundamental system of a single linear differential equation of the nth order.
Such functions as 7,, -+, 5, are a very special kind of what I have called A
functions.* :

The question then arises: what are the necessary and sufficient conditions in
order that a system of linear differential equations may have the property in
question ? )

In our particular case, m = n = 2, it must then be possible to transform the
given system into one of the form

(44) Yi +pyi + qy;=0 (i=1, 2),

by a transformation of the form (43). The seminvariants of the given system
must therefore be equal to those of (44). But for (44) we have

(45) Pe=Pun=9%=9=0: Pu=pPr=0y Gu=9=9>
so that
Uy = Uy =2 — 4q +p*, w,=u, =0,

’
(46) v, = U, = 2uj, v,=1,=0,
’ ”
w,, = w,, = vy, = 4u], w,=w, =0,
whence
J— — ny2
47) I=2mu,, J=ul,

K= 4(u;,)*, L =16(u;)*.

‘We have then in this case the relations:

2 2 2
(48) I 4J—0, K— (%) -0, L_4(%£{> —0.

As will be seen from the expression deduced for the invariants in §56, all of
the invariants vanish in this case. ,

But the vanishing of all of the invariants, or even the fulfillment of the equa-
tions (48), while necessary, are not sufficient conditions for this case. The
conditions (46) however, from which the others were derived, are both necessary
and sufficient. It suffices to write down the system of invariant equations

(49) ull"'u22=0’ u12=u21=0,

for the other equations (46) follow from these.

That the conditions (49) are sufficient follows from the results of §6. It
will there be shown that every system of linear differential equations of the sec-
ond order can by a transformation of the form ‘

(50) Yi=ayn + a,n, (i=1, ?),

*American Journal of Mathematies, vol. 16, No. 2, 1899.
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be reduced to a form called the semi-canonical form. The result of this redue-
tion in general is the system (82), which in our case reduces to

(61) n; = Fuym; (i=1,2),

i. e., 7, and 7, satisfy the same linear differential equation of the second order.
Thus we have seen that a system of the form

(52) Y + payi + Py + Gath + Ce=0 (i=1, 2)

can, by a transformation of form (50), be reduced to the form (44), if and

only if the conditions (49) are fulfilled. In that case, the integration of the

system (62) is equivalent to the integration of a single linear differential equa-

tion of the second order. The invariants are all zero, and by a change of both

dependent and independent variables this equation may be reduced to the form
d*u

L —0.

(53) o

§ 5. Calculation of the invariants for m =n = 2.

The invariants of our system must obviously be functions of the seminvari-
ants which we have already found. We shall therefore first investigate how
these seminvariants are affected by a transformation of the independent vari-
able x.

As before, let

(54) Yi + Paly F Py + Guth + 4 =0 (i=1,2),
be the given system. If we introduce the new independent variable
this system becomes
(85) ' Yi+ Ty + ToYs + kg + ey, =0 (i=1, 2),
where
p E// p p p &//
WIE T e T T YR
(56)
ik (S’ )
For an infinitesimal transformation, we put
(57) E(@) = x + Pp(x)dt, &x = P(x)dt,

where 8¢ is an infinitesimal and ¢(x) an arbitrary function. We shall then have
Sy = (— &py + ¢, &y, = — ¢,
(58) 8py = — &pydt, 8py = (— P + ¢,
8q, = — 2¢'q,0t.
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If f is any function of @, and /" its derivative, we have

. Af _¥df)  df
Of = %—%——S(d)—d (o) fd (390)
or
(59) ¥ = S0~ S

Thus we find from (68)

Oy = (8% — ¢"py — 2¢p],)8¢,
Pr= (= ¢'p,— 2¢p],)%,
= (= ¢py— 267},
Oy = (39 — ¢"p,, — 24p;,)8t .
Therefore, making use of (20), (568), and (60), we find

uu = (20;’(3) —2¢ u“)b\t, 8“12 =—2¢ Uy ot
Suy = — 2¢'u, 8¢ sy Ouy, = (204 — 2¢'u,,)8¢.

(60)

(61)

Consequently we shall have, remembering the definition of 7 and o/,
{ 81 = (4¢® — 2¢'1 )8t
8S = (2¢O — 4¢'J)d¢.

In the same way we find

(62)

dv,, = (46 — 4¢"u,, — 3¢'v),)dt,
dv, = (— 4¢"u,, — 3¢v,,)dt ,

(63) ” ’
vy = (— 4¢"uy — 3¢'v,)0¢,
= (4¢® — 4¢"u,, — 3¢'v,,)dt ,
whence
(64) SH = (8¢WI" — 8¢"J — 6¢' K )dt,

after a slight transformation, involving equation (67) for J” .
We find further

— (8¢ — 8¢, — 10¢"v, — 4w )5t ,
Buy, = (— 86Dy, — 106", — 4d'w )3t ,
duw, = (— 8¢®u, — 10¢"v, — 4d'w,)3t
B,y = (8D — 8, — 10¢"v,, — 4w, )t ;

(65)

whenee follows
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(66) 8L = [32¢]" — 16¢®(2J" — K) — 20¢" K" — 8¢’ L]ot,
if it be noted that

— — = 92.J
Uy Vgp + %y, vy Uyy Vg Uy Vyp = .,J ’

’
(67) VW + Vgp W)y — Vg Wy — Vg Wy = 2K ’
4
Wiy Ugy —F Wy Uyy — Wiy Uy — Wy Uy = 2(2J - K) .

Let us now, by an obvious extension of the theory of invariants of a single
linear differential equation, assign to p,, the weight — 1, to ¢, the weight — 2,
while to p{) and ¢ are assigned the weights — 1 — A, — 2 — u respectively.
Then it is easy to see that the following statements are true. '

1. Ewery absolute invariant is isobaric in the coefficients and of weight
zero. .

2. If an absolute invariant is a rational function of the coefficients and of
their derivatives, it is the quotient of two relative invariants of the same
weight.

3. A relative invariant is isobaric in the coefficients, and if the common
weight of all of its terms is — v, it satisfies the equation

(68) E(x)0,(8) = 0,(x),
or, for infinitesimal transformations,
(68a) 86, = — vd'(x)0,3¢ .

We shall speak of such an invariant as being of weight v, rather than — ».
The negative weights have been introduced, following the example of ForsyrH,
principally because they have a decided aidvantage when we consider covariants.

The proof of the above three statements is essentially the same as in the case
of a single linear differential equation, and need not, therefore, be given.

It is now a simple matter to find the rational invariants of any assigned
weight, or else to establish their non-existence.

First, it is clear that no such invariants of weights 1, 2, 8 exist. An in-
variant of weight 4 must verify the equation

80, = — 4¢'(x)0,0t .
The invariant is

(69) 0,=I"—4J.
An invariant of weight 5 must be of the form
all’ + bI® + cJ’.

We find that no such invariant exists, or that it vanishes identically.
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An invariant of weight 6 must verify the equation

36,
5l = — 60,

The most general expression of weight 6 is

O,=al®+blJ + cK + dI® + eJ” + fII" + gI’z.
‘We find

30,

sp = 3ali(4¢¥ — 26'1) + bI(2¢<3)I—4¢’J) + bJAEO — 24 T)

+ (80T — 8T — 64'K)

4 A4 — 26OT — 96OI — 12¢OT" — 106" T® — 64’ I®)
4 2D + AOT 1 2T — 4¢OT — 9" — 64/ ")

+ AU = 24T = 55T — 44/ T) 4 1347 = 24T
+ 20T (49 — 24T — 3¢ "),

and this must be equal to —6¢’0, for all values of ¢, ¢, ---, L, I', .-, J, J,
-, K. We find therefore the equations:

d=0, e+2/=0, 2¢4+¢+29=0, 6a+b—f=0,
b—e=0, 8 +9%=0, 5 +49=0,

whence

a=—1}e, b=e, c=—%¢, d=0, f=—1le, g=3e.
Putting e = — 8, we find
(70) 0,=2I(I*— 4J) 4 5(K — I’z) + 4(K —2J" 4+ I17).

There is no invariant of weight 7, and there are two independent invariants
of weight 8, one of which is 62, while the other is

0, = 148(L — 4I"") — 54(I* + 4J)9, — 20176, + 251'0, — 20619’
(1)
— 2069 — 902[(K — I'") — 220(K" — 21I'I® — 2T").

We can easily find an invariant of weight 10, without going through this
general process. We have :

K — I
T

= 4" (I —2J") — 6¢' (K — I'%),

ST — 2" , T o
ML =2T) a1 — 4y — 5§ (I — 2T,
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whence eliminating ¢”, we find

56 ,
o= —104'6,,,

where

(72) L b, = (D=4 (K- IT —2J).

From any two invariants 6, and 6, , of weights A and u respectively, we can
always deduce a third. For we have

0x(§)  6x(=)
0:E)  Ou(x)

an absolute invariant. Hence, by logarithmic differentiation,
%) 0@}1 0:() _, 0u(@)

D WLV PR W 3

{M@) 6.6 = o0 0w

Therefore
(78) Oy = p0,0, — 20,0,

is a new invariant of weight A + u + 1. It is called by ForsyTn the Jacobian
of 6, and 6, , in his theory of invariants of a single equation.

‘We thus obtain
6, =386,0,—260, ,

)

0,=26,0,— 60, ,

(74) 015 = 50100; - 204010 ’
¥, =46,0, — 36,0, ,

917 = 59100(; - 3060{0 ’

919 = 5010% - 4030{0 ’

from which still others can be derived. Of all of the invariants found so far

0,,06,,0,, 0,

10
are the only ones which involve no higher derivatives of p, than the third, and
no higher derivatives of ¢, than the second, or what amounts to the same thing,
these are the only invariants found so far which depend only on the seminvari-
ants

(75) I, 1,1J,J,J"; K, K'; L.
Moreover the invariants (74) are not all independent. For instance we have
the syzygy

Trans. Am. Math. Soc. 2
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(76) 200, + 56,0, — 666, =0.

In order to obtain all of the invariants depending only upon the semin-
variants (75), we write down the partial differential equations which such in-
variants must verify.

From the expressions for 61, 81", 81", &J, ete., 6L, we find that these
partial differential equations are five in number, viz. :

f If " .f f ’ f ’/f
Yf 21I+3I I,+4I I"+4J"y+5J J,+6J 2"

of of o _
+6K{7K+7K3K,+8L

—sr L

of .. of of ,of
Vo f=—2l 0 =51 5y —4J 35 — 9 55 —

., af , of
— (8" + BK) 7 — 20K 2 =
(") a

Y, f= 4f 2Iaf+2lf+"laf+2(]" 2J)(9

ol oI oJ oJ" A

’ aJP Fr af
~ 8] 4 — 162" — K) 57 =0

or i ,of 4 . o
Y f=45p+ 200 41 3% + 81 5 + 81751 =0,

i Y, f= 48{,,—{— 2[(?;,',—{— 81 ]f,, + 3277 (?f_ 0,

where ¥, /= 0 is obtained by equating to zero the coefficient of ¢ in &f.
They are independent and, therefore, have 9 — 5 = 4 independent solutions,

1. e., there are four independent absolute, or five independent relative invariants.

We have already found four of these, viz.: 6,, 6,, 6, 0 The fifth invari-

ant, found by integrating (77), is

10 15 °

0,, = 0,[(I* — 4J)(L — 41" + 4(II" — 2J" + K)] —6;,".
But this can be shown to be divisible by 8, , so that we may complete our system

of invariants by taking 6,,/6, , which is

(18) O,=0,(L—4I") + 4K — I")IT" = 2J" + K) — 0K —2I'T")
— 20)(K' — 2T T'YII" — 2J" + K).
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§ 6. Canonical forms of a system of two linear differential equations of the
second order.

Our system of equations (54) can always be transformed into another which
contains no first derivatives, by a transformation of the form

yi = aﬂ’?l + “ﬂﬂz (’i:l, 2);
where a,, are functions of . For, on making this transformation, we find
@y + agny + (20, + pay, + Pota)ny + (24, + puay, + Py,
(79) + (a, +p11a11 + pizaél + gut + 2u)M,
+ (@, + paal, + paa, + Ttz + 4@p), =0 (i=1,2),
so that, if we take a  subject to the conditions
(80) { a;l = %«<pllall + plZaZI)’ a;2 = - %(plldIZ + plZaZZ)’
“;1 = %’(pzlau + p22a21)’ aéz = %(pzlalz + pzzazz)’
equations (79) will contain no terms in 7; and n,. The functions (a, , a,) and
(a5, @,,) must therefore be taken as solutions of the same system of linear dlffer-
ential equations, viz.,

l @ =— Q’(pua + plZ‘B) ’
(81)

B =— QL(p21a +]9223)-

Moreover (a,, a,) and (a,, a,) must be independent solutions of (81), for
otherwise the determinant

ARy — Ay

would vanish. The functions a,, can therefore be determined so as to effect the
desired result, by integrating (81).

If one makes use of (80) and the equations obtained from (80) by differentia-
tion the transformed system (79) becomes

(82) @y + @y = fauy, + ayu)n, + 1@y + au)n,,
Ay, + @y, = f(ayuy + ayu,), + 1@ty + @y,
where the quantities «,, have been previously defined.

Thus every binary system of homogeneous linear differential equations of
the second order can be converted into another, involving no first derivatives,
i. e., into one for which p, = 0. We will say that this transformed system has
the semi-canonical form.

Suppose we have reduced a system to its semi-canonical form. Zet us find
the most general sub-group G’ of our general infinite continuous group @,
which leaves the semi-canonical form of the system unaltered.
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In the semi-canonical form p,, = 0. Let us make the most general infinites-
imal transformation of the general group G'. The coefficients of the first deri-
vatives in the transformed system will be, according to (16) and (58),

{ Bpu = (2¢;, — ¢")8t ’ 81’12 = 2¢128t ’
8pzl = 2¢;18t > szz = (2¢,, — ¢”>8t ’
for the infinitesimal transformations of the coefficients due to infinitesimal
transformations of both dependent and independent variables are equal to those
due to the transformations of the dependent variables alone plus those due to
the transformation of the independent variable alone.*

But for all of the transformations of our sub-group G, these quantities
must vanish. Therefore must

¢{2=¢;1=0a 2¢;1_¢”=0, 2¢é2_¢//=0,

or, if we denote by c, arbitrary constants,

{ ¢11 = ¢, + %‘ﬁ/’ ¢12 = Cpy»
¢21 =Cy» ¢‘22 = Cyp+ ‘21’¢,s

so that the sub-group G depends upon 4 arbitrary parameters c,, , and an ar-
bitrary function ¢'(x) .

We can determine a sub-group G of the subgroup G, namely, that which
leaves q,, + q,, tnvariant.

We have, in the same way as above, according to (16) and (58),

8(911 + %2) = [2¢/(Q11 + %z) + (121) + 4')(222)]& ’

so that for this sub-group we have the further relation

(83)

(84) 0+ ¢ = — 2¢(qu + 22)
or, using (83),
(85) ‘36(121) + ‘#222) +2 [cu + € — (¢11 + ¢22)](911 + 922) =0,

a linear differential equation of the second order for ¢, + ¢,,. Its integration
introduces two arbitrary constants ; then ¢’ is found from (84), and the quad-
rature

$= [ $do
gives rise to a third constant. Zhus G is a seven-parameter group. We can
also represent G by (83), together with
(86) — 6% = 2¢(g, + ) >

* We have changed the sign of ¢(x), so as to make the infinitesimal transformation of the
independent variable harmonize with those of the dependent variables.
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an equation, whose integration gives rise to three constants. These together
with the four constants ¢, are the parameters of the group.
The semi-canonical form of the system can be further simplified by the re-
duction to what we shall call the canonical form. ,
Suppose we have reduced our system by a first transformation to the semi-
canonical form

(87) y,: + 0¥ + 90y = 0 (¢=1,2).
If now we make the transformation
E=E&=), y,=Bun + By, (i=1,2),

we find

/2d 1’1 d’l}l

B G+ B G+ (B + 28,) L+ (B + 28,8 T

(88)
+ (B:; + ¢uBy + 2.8)m + (B:; + 9.8, + 91'21822)772 =0 (i=1,2),

which is again in the semi-canonical form if

BE +28,F =0,

or
B@k = \/g/ ?
where ¢,, are arbitrary constants, whose determinant does not vanish. Put
ep=ep=1, e,=¢,=0,
or
1
(89) Bu=RBn=RB= VE s Bu=8,=0.

Then (88) becomes

g ag + (B + 2B+ 4P, =0,

(90)
BS/Z dgz + 92118"71 + (B” + 9223)772 = O b
or
2
(91) E;’T’ + pum + P, =0 (i=1,2).

Now B can be determined that in (91), p,, + p,, = 0; for this purpose it is
only necessary to take for 38 a solution of the linear differential equation

(92) 28" + (911 + 922)18 =0.

‘We have proved the following theorem :
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Every system .Qf linear, homogeneous differential equations of the second
order can be converted into a system having the canonical form

2
; :
827 + Pum + P, » (i=1,2),
where
P+ P = 0.

In order to effect this reduction, it is necessary to integrate a system of
homogeneous linear differential equations of the first order (81), a single
homogeneous linear differential equation of the second order (92), and finally
to effect the quadrature

to) = [

This canonical form of the system corresponds to the LAGUERRE-FOrSYTH
form of a single linear differential equation.

The sub-group of G which leaves this canonical form unaltered is especially
simple. It s the group @” for the particular case that ¢, + ¢,, = 0, whence,
according to (86),

=0, or ¢=A+ ux+ va?,
and from (83),
¢11=cu+21‘/"'+m’ 4’12:012’

¢21=021’ ¢22=022+%//‘+m'

The finite transformations of this group are

(98) §=‘T;~7++’§, m:%l_yz (i=1, 2).

The functions called, by Forsyth, guadriderivatives are invariants for this
sub-group. If @_ is an invariant of weight o, then

(94) 0, ,=200,0, — (20 +1)0.

is what FOrRsYTH calls the quadriderivative of 0 .
We find that for the general infinitesimal transformations of the general
group G,
80, | = — 2070268t — 2(c 4+ 1)¢'0, 3t .

For our sub-group ¢ = 0, so that 6, , is indeed an invariant of the sub-
group. Its weight is 20 + 2.



1901] OF LINEAR DIFFERENTIAL EQUATIONS 23

§ 7. Covariants.

We shall not treat of covariants in an exhaustive manner in this paper. It
will be sufficient to note a few simple theorems.

First we may observe that no absolute covariant exists which depends. only
upon y,, ¥y, dy,/de, dy,/dw, ete., i. e., which does not contain x explicitly,
and makes no use of the_fact that y, and y, are solutions of (54).

For we have, taking infinitesimal transformations of the dependent variables
only,

Syi = (¢i1.7/1 + ¢iz?/2)8t ’
&y = ($uy: + uys + Pity + ia)0t,

Sy = (" P+ Pyt Y - BTV,

But this group in 2m variables is always transitive. For if we take the
special case obtained by putting ¢, ¢, ¢;,, etc., equal to arbitrary con-
stants, the group becomes a finite 4m parameter group in 2m variables which is
a particular case of a general group of linear substitutions with mn* parameters
and mn variables. This general group has been studied by the author and was
found to be transitive.* Therefore the more general infinite group is also tran-
sitive, i. e., it has no invariants, and thus the theorem is proved.

It is even impossible to construct functions 2z, and z, of y,, y, and of their
successive derivatives, not involving x explicitly, which shall be cogredient with
y, and y,.

For, if it were not so, from z, and z, could then be constructed a third co-
gredient set, say 7, and 7,, and the quotient '

YiRs — Y&
Y — Yo

would be an absolute covariant of the form whose non-existence we have just
shown.

An infinite number of covariants, containing = explicitly, can be constructed
as follows. Put \

Y=Y+ pa¥ + Dty + €t + also
vi=v+ Pa¥s + Py + Qath + 9i2:_y2’

Then 7,, ¥, ete., are cogredient with y,. Therefore the determinants

?/1?2 - y2y_1’ ?/1?2 - .7/2:‘71, ete.,

*Proceedings of the California Academy of Sciences, vol. 1, no. 6.
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are covariants. All of these vanish in consequence of the given system of dif-
ferential equations.
Their covariant property is expressed by an equation of the form

aa,6 —a.a .
O(nls Ny f) = _II_ZW O(yls Yy m) ’
where
n=ayy, + ayy,, &= E(m) (i=1,2),

is the transformation of the variables.
Suppose we have reduced our given system to its canonical form. Then

Yy — Y,

is a covariant of the sub-group (93) which leaves this canonical form unchanged.

To find all of the covariants of the system we could proceed as in the case of
the invariants by setting up the system of partial differential equations which
they satisfy. We might also construct functions cogredient with y, and v, .
The determinant of two such systems would be a covariant.

UNIVERSITY OF CALIFORNIA, BERKELEY,
October 6, 1900.
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