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Abstract

The feedback equivalence of three state, two in-
put non-linear control systems is analyzed using Car-
tan’s method of equivalence. The control linear and
linear equivalents are classified, including examples
of control linear systems which are inequivalent to
linear system. Existence of time critical closed loop
controls is demonstrated for “fully non-linear” control
systems. The existence of natural contact structures
and Riemannian structures is demonstrated for cer-
tain classes of systems.

1. Introduction

The study of geometric control theory took a new
direction in 1982 when, for the first time, R. Gard-
ner applied the method of equivalence to it [1]. The
method itself, along with many examples, including
some applications to control theory, was skillfully pre-
sented by R. Gardner at the 1987 CBMS-NSF con-
ference at Texas Tech [2]. Since 1982, numerous ap-
plications of the equivalence method have been made
to geometric control, and important results have been
obtained, including:

(i) the existence of time optimal closed loop feed-

backs [3]

(i) the classification of control linear and linear sys-
tems [4,5]

(iii) an optimal algorithm for putting non-linear, lin-
earizable systems into Brunowski normal form
[6,7,8].

We will apply the method of equivalence to three
state, two input systems. We will completely clas-
sify the control linear and linear systems. We will
find special geometries attached to the nonlineariz-
able systems. A natural variational problem is at-
tached to all systems, and we will see an application
of it to give time critical closed loop controls.

2. Control Systems and Feedback Equivalence

The solution curves of the control system

d
d—?:f(w,u) r € R ueR? (1)

are equivalent to the integral curves of the Pfaffian
system {dx’ — fi(x,u)dt}?_,. (We use the notation
{w"}?_; to denote the module generated by the linear

span of w!,... ,w".) A feedback transformation is a
diffeomorphism (¢,z, %) = ®(¢,z,u) such that ¢ = ¢,
Z = ¢(x) and @ = Y(z,u). The feedback transfor-
mations act on the control system producing a new
system p
T —
W= Few. )
Systems (1) and (2) are considered to be feedback
equivalent, since they are related by a feedback trans-
formation. This notion naturally suggests the in-
verse problem: given systems (1) and (2), determine
if there is a feedback transformation which relates
them. Thus we must find a diffeomorphism ® such
that
(S") integral curves of (1) map to integral curves of
(2)
(F') @ is a feedback transformation.
These two conditions are equivalent to
(8) O {d' — Fidi}3_, — {da’ — fidt}3_,
(F) t=t, ®*{dz'}3_, = {do'}3_, and ®*{du*}?_, =
0 (mod {dz*,du®})
Conditions (S) and (F) together imply
(I) ®*[{dz’ — fidt} N {dz'}] = {da’ — fidt} N {dz'}.
We can find generators for these intersections by
choosing G'L(3) valued functions Ay and Ay such that

Ao(z,0)f(z,u) = 8 = Ao(z,u) f(z,u).

Typically, Ay will be defined on an open set U C
R? x R? and A, will be defined on another open set
V c R® x R% Letting nu = Agdx and 7y = Aydz
we have {dz’ — fidt} N {dz'} = {n{; — dt,ni,n3} N
{ntr, gy = {nirongy}. Similarly, {dz* — fdt} N
{dz'} = {7%,7%}. Finally, condition (S) together
with the fact that ®*(df) = dt implies that ®*(7{,) =
ny (mod {n%,n}). Together, these observations
imply that the control system (1) is feedback equiva-
lent to system (2) if and only if there is a diffeomor-
phism ® such that £ = ¢ and

dt 1 0 0 dt
* ﬁV = 0 A 0 nu ) (3)
du 0 B C du

where A!(1,0,0) = *(1,0,0). Since 7y is independent
of t and ny is independent of ¢, we see that (3) is



equivalent to

P* nv _ A0 nu
dua B C du |-
The condition of feedback equivalence of two systems

is therefore reduced to the condition that the deriva-
tive of a diffeomorphism ® belongs to the group

G = {(g g) c GL(5) ‘ AY(1,0,0) :%1,0,0)}.

The problem of feedback equivalence is now adapted
to the method of equivalence, and we may proceed
with its application. We introduce on the set U x G
the column vector of 1-forms

n _ A 0 nu

L B C du )’
which form a feedback-invariant, independent set of
1-forms. We use the method of equivalence to derive

additional feedback invariants, which we then use to
classify the control systems.

3. Summary of Results

Given a control system (1) and a suitably chosen
GL(3) valued function Ag(x,u) with Agf = *(1,0,0),
the first major invariant we will uncover is the rank
of the bottom two rows of the matrix Agdf/Ju. This
2 x 2 submatrix will either have rank 1 or rank 2.
(We are assuming that the rank of 9f/0u = 2, since
otherwise we could eliminate one of the controls by
a feedback transformation.) These two cases have a
nice geometric interpretation. If we view the control
system as defining a two dimensional surface in each
of the tangent spaces to R>, then the rank 1 case is
equivalent to saying that in each tangent space, the
surface determined by f is ruled by the rays emanat-
ing from the origin. For each of these major cases, we
get a classification theorem.

It is easy to check that, by construction, the
integral curves of the control system coincide with
the integral curves of the Pfaffian system {n?,n®} for
which n* # 0, and that the integral [n* over a solu-
tion curve of the control system gives the time taken
to traverse the curve. We see that the variational
problem of finding time optimal curves among all so-
lutions curves to (1) is naturally contained in this
problem. The Euler-Lagrange equations for this vari-
ational problem will appear in a natural way and we
will be able to show that for “generic” control sys-
tems, there exist time critical closed loop controls.
We summarize these results in the following theorems.

Theorem 1. Given a control system (1) and a GL(3)
valued matrix Ag(z,u) such that Ao f = (1,0,0),
then the rank of the bottom 2 rows of the 3 X 2 matrix

Ao 0f JOu is a feedback invariant. If the rank of the
last 2 rows of the matrix is 1 then we can construct
an invariant set of independent 1-forms on a higher
space such that the structure of the 2-form

dp’ = i AP + Pt A+ Qu A

determines 3 cases. They are:
I If P =@ = 0 then the system is locally equiva-
lent to the linear normal form

dz 10 ul
E = 0 ]. u2 .
0 0

II. If P # 0,Q = 0 then the system is locally equiv-
alent to the control linear normal form

dzx 10 ul
E == O 1 u2 .
0 z!

II. If @ # 0 then there is an invariant basis of
1-forms on a higher space, and the structure
equations of this basis determine the equivalence
class.

It is worth mentioning that case II in the above
theorem is a control linear system. We will check
that no linear control system satisfies the conditions
of case II; thus we have an example of a control linear
system that is not feedback linearizable. The next
theorem covers the remaining case.

Theorem 2. Let (1) be a control system as in the
statement of theorem 1 except that we now assume
that the rank of the bottom 2 rows of the 3 x 2 matrix
ApOf/Ou is 2. Then we can construct an invariant
set of independent 1-forms on a higher space such
that the structure of the 2-form

At = PP A2 +Qn* AP 4+ Ryt AP+
Eu' A\> + Fr2 An* + Fur An? + G An?
determines 4 cases.

I If dp' = 0 then the system is locally equivalent
to the linear non-controllable normal form

e 0 0 0 x! 10\ /1

— =100 0 2 |+[0 1 .

dt u?
0 0 1 3 00

II. If dn* # 0 and dn* An* = 0 then the system is lo-
cally equivalent to the linear controllable normal
form



I Ifdp* Ant # 0, (dn')> Ant =0and E = F =
G = 0 then the system is locally equivalent to
the control linear normal form

1 0 0
d 1
—dfz 0 1 (“2>+ 0

22 0 v 1

IV. If (dn*)? An' # 0 we can construct an invariant
basis of 1-forms on a 6 dimensional space and
the structure equations of this basis determine
the equivalence class.

The control linear form in case III is also not
feedback linearizable. From the coefficients of dn®,
we form the symmetric bilinear form

E(n*)? 4+ 2F n’n® + G (n*)%.

This bilinear form drops to U, even though none of
the individual terms E, F, G, n? or n drop to U.
The bilinear form is related to the Hessian of the La-
grangian in the variational problem f n', and non-
degeneracy of the Hessian is equivalent to nondegen-
eracy of the bilinear form, occurring only in case IV
of theorem 2. If the bilinear form is nondegenerate,
then we can normalize it to the form

(7 6)=(5 2)

where ¢, = +1, ¢ = 1,2, depending on the index of
the bilinear form. Notice that nondegeneracy is an
open condition, since it can be expressed in terms of
the non-vanishing of a determinant, and the condi-
tion that the bottom 2 rows of Ag df/0u be linearly
independent is also open. Thus the “generic” control
system (1) will satisfy the conditions of case IV in
theorem 2. The final theorem applies to this nonde-
generate case.

Theorem 3. For every control system (1) that sat-
isfies the conditions of case IV in theorem 2, there
exist functions h(x) such that the integral curves of
the differential equation

dx

o = Jw b))

are critical curves for the variational problem [ n'.
In other words, there exist time critical closed loop
feedback functions. Moreover, there is a subclass of
these systems for which the invariant quadratic form
(nt)2—e1 (n?)2—eq (n3)?%, which is defined on the space
of states and controls, U, drops to the 3 dimensional
space of states. Thus there is a (possibly pseudo)
Riemannian metric on the space of states, and the
time critical closed loop feedback curves are geodesics
for this metric.

We see that the “generic” control system (1) has
an associated time optimal variational problem and

time critical closed loop feedback functions. We also
see a familiar geometry, namely Riemannian geome-
try, contained in this case. There are non-standard
geometries in this case as well, and they can be stud-
ied using Cartan’s theory of generalized geometries.

In theorems 1 and 2, there are 3 linear systems
and 2 control linear systems. It can be shown that
every control linear system (and hence every linear
system) must be equivalent to one of these 5 systems.
Thus we have a complete classification of all the linear
and control linear systems with 3 state and 2 control
variables.

4. Proofs of Theorems

We begin the method of equivalence by comput-
ing the Lie algebra of the group G defined in section
2. Letting S: G — GL(5) be the inclusion map, we
see that the right invariant Maurer-Cartan form is

(a0
ass= (5 9).

where @, (8 and 7 are matrices of right invariant 1-
forms on G. The condition A*(1,0,0) = *(1,0,0) im-
plies that the first column of the matrix & must be 0.
The non-zero entries of dSS~! form a basis for the
right invariant 1-forms on G. Knowing the shape of
dSS—!', we know that we can write

n a 0 n T1>
d = A + ,
<u> <ﬂ 7) (u) (ﬂ
where the first column of « is 0, and T7 and T, are
column vectors of 2-forms that are quadratic in the
7’s and the p’s. We can modify the §’s and the 7’s so
as to make 75 = 0, and we can modify the a’s so that

Ty has no terms that are linear in {n%,73}. Thus the
first structure equation is

n a 0 " MpAnt )

d = A + . 4
(u) (ﬂ 7> <u> ( 0 W
Equation (4) determines the 3 x 2 matrix of func-

tions M uniquely. We can get a formula for M by
computing dn  (mod 72, n?). Performing this calcu-
lation will show that

of

M=—-AA,=LC™t
Oauc

The first obvious invariant is the rank of M, which is
also the rank of 9 f/0u. We will assume that the rank
of M = 2, since otherwise we could eliminate one of
the controls by a feedback transformation.

From the explicit formula for M and because
the matrix A must satisfy the condition A*(1,0,0) =
t(1,0,0), we see that the rank of the last 2 rows of M



is also invariant. Since the rank of M = 2, we have 2
possibilities.
[1] The rank of the last 2 rows equals 1.
[2] The rank of the last 2 rows equals 2.
We compute the infinitesimal action on M by
using the identity d?n = 0 and equation (4). We get
that

0=(dM —aM+My)Apu—MuA (M p)
(mod n', 7%, 7*), (5)

where M is the first row of the matrix M.

Proof of Theorem 1. Theorem 1 is about case [1].
In this case we can reduce to the subbundle of U x G
defined by the equation

1
M=1|0
0

O = O

and equation (5) becomes the 2 equations

0 ol 0
0=(~-— 2))Au—
00 )2 (at)

0=ajAp?
(mod n',n* 1%

The structure equations (4) can now be written in the
form

1 1 1 2 1
n _ [ Q2 o3 n 2 1
d = A + An' (6
(W) (% ﬁ) (ﬁ> (ﬁ> G
dn* = a3 A’ + Pt AP+ QuP An? (7)
B 0 ol 0
dﬂ—ﬁ/\ﬁ‘f'(o a%)AM+<u2Au1>(8)

By differentiating equation (7), we compute that the
infinitesimal action on the functions P and (@ is

V)

dP—Pad+Pa2+QB =0
dQ—QO[§+2QOéQ =\,
(mod ', n?, 73, 1, u?)

and we see that () is acted on by multiplication, and
P is acted on by multiplication and, if @ # 0, by
translation. There are 3 possible cases:
L. P=Q=0 < dpPAn>=0.
IL P#A0and Q =0 < dpPAn® # 0 and
dnp> AP At =0.
. Q#0 < dpP AP Ant #£0.
These are the cases that are listed in theorem 1. We
begin with case I.
If P =@ = 0, then equation (7) is simply
dn® = a3 An?® and the structure equations, (6), (7)
and (8) form an involutive system with constant tor-
sion. Thus, all of the control systems in this case are

equivalent, and any one of them is a normal form. It
is easy to show that the control system

dx 10 ut
E — 0 1 u2
0 0

is in this class and is therefore a normal form. This
proves case I of theorem 1.

In case II, a calculation finally yields the struc-
ture equations

1 1 1 2 1
n _ [ O3 n 2 1
d = A + A
(W) (@ ﬁ) (ﬁ) <ﬁ> !
dn3:a§/\773+771/\772+u1/\173

N S
d“‘(ﬂ% 902 ﬁ%)“”

0 ol 0
(0 ﬁ)A“+<ﬁAuJ'

The reduced equations form an involutive system
with constant torsion. Thus, every control system
in this case is equivalent. It is easy to check that the
control system

d:r 1 0 ul
E - 0 1 U2
0 1

X

is in this case and is therefore a normal form for this
case. This proves case II of theorem 1.

In case III, a lengthy calculation gives structure
equations that uniquely determine all of the 1-forms
in the equations, and we have an invariant basis of 1-
forms, or identity structure, on a 9 dimensional space.
This completes the proof of case III of theorem 1.
Proof of Theorem 2. We now proceed to the sec-
ond major case, [2], where the rank of the last 2 rows
of the matrix M is 2. Theorem 2 covers this case. We
can normalize the matrix M to

0 0
M=|1 0
0 1

and equations (4) and (5) imply that the structure
equations have the form

dnl:Pnl/\n2+Qn2/\n3+Rn1/\n3+
Eul/\n2+FM2/\n2+F,ul/\773+
Gu?an?

2 2 2 2 1
n _ [y a3 n 1% 1
d = A + A
<W> (ﬁ @) <ﬁ> <M> 7

2 2 1
dp = /\+(a2 a3>A(”>.
w=BAn a:g a§ #2



The equation for dn' shows that n' drops to the state-
control space, U. Thus n' is an invariant 1-form on
U. For notational convenience we will write

_ (03 o3
77 \ad o)

All of the torsion is in the equation for dn', and dif-
ferentiating dn' gives the infinitesimal action. Part
of the action is expressed by the equation

(5 E)en(E E)o (2 Ermo
(mod n, ).

The symmetric matrix

(+ 6)

is acted on as a quadratic form. In fact we can show
that the invariant quadratic form

E*)? +2F p’n® + G (n*)? (10)

drops to the space U by showing that the Lie deriva-
tive of (10) along every vector field tangent to the
fibers of U x G over U is equal to 0. This is easy
to do since these vector fields are precisely the ones
which annihilate the n’s and the p’s, and since the
Lie derivative is a derivation. The verification follows
easily using the structure equations and equation (9).

The first case to consider is the case where all of
the invariants vanish, i.e., dn' = 0. In this case we
have an involutive system with constant torsion, so
all systems in this case are equivalent. It is easy to
check that the control system

b [0 0 0\ [t 10\ /.

— =10 0 O 2] +10 1

dt u?
0 0 1 3 0 0

falls in this case and is therefore a normal form for
this case. This proves I of theorem 2.

The next case to consider is the case where dn' #
0 and dn' An' = 0. This implies that £ = F =
G = @ = 0 and that the row vector (P,R) # 0. A
calculation gives us the structure equations
dnt =n' An?
dn? = ut At
dn®* = a3 An? +a3 An® + i Ant

B 0 0 ) ( —ut AP )
dy = AN+ .
= (3 @ @)t (b L
Again, these form an involutive system with constant
torsion. It is easy to check that the control system

4w [0 0 0\ [z L0\
—=(0 00 x2+01<u2>
0 1 0/ \a3 0 0

falls in this case and is thus a normal form. This
proves case II of theorem 2.

The next case we consider is the case where dn' A
n' # 0 and (dn')? An' = 0 which implies that

E F
det(F G)zO.

We will only consider the rank 0 case, i.e., F = F =
G = 0. Another calculation gives the structure equa-
tions

dnt =  An? 402 AP
dn? = i At + 2 A — it AP
d’ = a3 A+ p® At —p® A

e —ﬁ%)
d“‘(ﬁ% g —pl )M

(ot o mh i na)
a3 Apt+pt Ant—pt A )

This is another involutive system with constant tor-
sion, and a normal form for this case is

de 1 0
22 0

is in this class and is therefore a normal form for this
class. This proves case III of theorem 2.

We consider the final case (dn')? An' # 0 which

implies that
E F
det ( r G) #0.

Notice that since n' drops to the 5 dimensional space
of states and controls, U, it defines a contact structure
on the space of states and controls. The infinitesimal
action on the above matrix shows that it can be nor-
malized to diag(e1, €2), where ¢; = £1, fori = 1,2, de-
pending on the index of the symmetric matrix. Con-
tinuing the calculation, we eventually get an identity
structure, with partial structure equations

dn' = ep An? + e AP

0 = o Ui pY
= (—61620[% 0 ) A <773 + ,LL2 /\7]

2

(mod /\(n, 1))

QL
7N
I 3
w
~

Il

This completes the proof of case IV of theorem 2.

In case IV of theorem 2, we can form the invari-
ant quadratic form (9')? — €;(n?)? — e2(n®)? on the



space of states and controls, U. This quadratic form
only involves differentials of the state variables, and
we ask when will it drop from the space of states and
controls to the space of states. A simple Lie deriva-
tive argument shows that the form drops if and only if
the the congruence in the last equation is an equality.
If this occurs then we can write dn = 6 A 1 where

0 elul €2M2
0=\ put 0 a3
ILL2 761620[% 0

and 6 satisfies the equation

1 0 0 1 0 0
0 —e 0 0 +t9 0 —e¢ 0 =0,
0 0 —e 0 0 -—e

thus 0 is the “Levi-Civita” connection for the pseudo-
Riemannian metric. We see that the structure equa-
tions in this case are the familiar structure equations
of Riemannian geometry.

Proof of Theorem 3. Assume we are in case IV of
theorem 2. It is clear from the definition of ' that in-
tegrating n' along solution curves of (1) gives the time
taken to traverse the curve from the initial endpoint
to the final endpoint. In [1] we see that the Euler-
Lagrange equations for the variational problem [ n'
are computed from dn' and, in this case, are given by
the Pfaffian equations n? = n® = u! = p? = 0. From
the structure equations we have that the Pfaffian sys-
tem {n?,n3, ut, u?} is completely integrable; thus we
can find a non-singular 2 x 2 matrix 7" and functions
g1, g2 such that

1
M _ dg1 2 .3
(;ﬂ)_T(dgz) (mod 7, n°).

Since dg; A2 A2 A pt A p? = 0, we see that g;
is a function on the space of states and controls, U,
for i = 1,2. Now 0 # pl Ap2 At A2 An? =
det T det(9g/0u)du' Adu?® An* An? An? which implies
that det(dg/du) # 0. If we pick 2 constants, ¢; and
cs, then by the implicit function theorem we can solve
for u! and u? as functions of (x!,22% 2%) from the
equation (g1,g2) = Y(c1,c2). Let u = h(z) be the
solution and substitute h into equation (1). Then the
solution curves of the equation dx/dt = f(x,h(x))
necessarily satisfy the Pfaffian equations n? = n® = 0.
Since ¢ is constant along the solution curves, it also
satisfies the equations dg; = dg2 = 0 and therefore
u' = p? = 0. Hence, these solution curves satisfy the
Euler-Lagrange equations for [ n', and we have time
critical closed loop feedback functions. This proves
theorem 3.

5. Closing Remarks

A simple analysis verifys that every linear system
is equivalent to one of the three linear forms in this
paper. A similar analysis shows that every control
linear is equivalent to either a linear system or one
of the two control linear systems in this paper. We
may reasonably call the systems that are not equiv-
alent to control linear or linear systems the “truly
non-linear” systems. It is interesting to note that
the truly non-linear systems all have identity struc-
tures and therefore constitute a generalized geometry
in the sense of Cartan. We even saw a familiar geom-
etry, namely Riemannian, in one of the cases. This
suggests that Cartan’s approach will continue to be
of significant help in the study of the truly non-linear
control systems.
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