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Abstract

We use Cartan’s equivalence method to study the differential invariants of a single second order ordinary

differential equation relative to the pseudo–group of point transformations. As a result of the analysis a simple

characterization is given of those second order equations which are linearizable by a point transformation.
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I. Introduction

There has been some interest recently in the problem of determining when a given second order ordinary

differential equation is equivalent via a point transformation to a linear equation [7]. Likewise Thompson

[10] has investigated the linearizability problem for systems of autonomous second order ordinary differential

equations and derived some surprisingly simple necessary and sufficient conditions for linearizability. The

corresponding problem for non–autonomous systems is, however, much more complicated.

In this paper we present a solution to the linearization problem for the case of a single equation under

point transformations, using É. Cartan’s equivalence method [1]. Cartan consided the equivalence problem

for second order equations under point transformations [2]; however, Cartan was more concerned with inves-

tigating the differential geometry of projective connections than studying second order differential equations

for their own sake. Consequently, his treatment of the equivalence problem (Section 8 of [2]) is even harder

to interpret than usual. In any case, with any work of Cartan one normally has to reconstruct it ab initio

to fully understand and interpret it. Accordingly, we present here our version of the Cartan method, as

imparted to us by our mutual advisor Robert Gardner, applied to second order equations. This will enable

us not only to solve the linearization problem, but also prepares the way for future investigations on (Lie)

infinitesimal symmetry groups of second order equations. Furthermore, our study adds to the growing num-

ber of problems in ordinary differential equations being analyzed by the Cartan method (compare [9] and

[5]).

We appreciate that in order to understand fully the Cartan equivalence method, at least as it is pre-

sented here, the reader will have to be fully conversant with modern differential geometry as presented in,

for example, [8]. However, we trust that the theorem characterizing linearizable second order equations,

presented in Section IV, will be accessible to a wide audience. In addition, in Section III we take some

trouble to try to convey the essentially algorithmic nature of the equivalence method, which was clearly

described for the first time in [4].

Finally, we make remarks concerning notation which are particularly intended to expedite the reading of

Section III. First of all, we denote the exterior product of differential forms simply by juxtaposition, without

a wedge product symbol. Secondly, we shall have occasion to write equations such as

π ≡ 0 (mod ω1, ω2, ω3) (1.1)

where π, ω1, ω2, ω3 are 1–forms. By this we mean simply that π is a linear combination, possibly with

function coefficients, of ω1, ω2, ω3. Thirdly, we use the notation J1(R×R) to denote the bundle of 1-jets of

locally defined functions from Rto R. J1(R×R) can be thought of as the three dimensional space obtained
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by introducing the derivative as an independent variable. Fourthly, we shall use frequently a result from

exterior algebra known as Cartan’s lemma, the most elementary form of which can be found in Sternberg

([8] Chapter 1). Fifthly and lastly, we commend to the reader several recent references which are germane

to the discussion here, particularly, [4], [5], [9] and [11].

5



II. Preliminaries

We begin with some basic facts and definitions. We consider a single second order ordinary differential

equation

y′′ = F (x, y, y′). (2.1)

(We assume of course that the equation is regular in the sense that the second order derivative may be

solved for explicitly). We view the equation as defining a line element field on J1(R×R) and a solution of

it as a curve on J1(R×R) which annihilates the two dimensional Pfaffian module spanned by the 1–forms

ω2 = dy′ − F dx, ω3 = dy − y′ dx.

We are concerned with the local equivalence of differential equations of the form (2.1) under the pseudo–

group of point transformations. By a point transformation, we mean a local diffeomorphism of R×R

X = X(x, y) (2.2a)

Y = Y (x, y) (2.2b)

which is extended in the natural way to a diffeomorphism of J1(R ×R), by adjoining to (2.2a) and (2.2b)

the equation

Y ′ =
∂Y
∂y y′ + ∂Y

∂x

∂X
∂y y′ + ∂X

∂x

. (2.2c)

For future reference we also note that by a linear equation we mean one of the form

y′′ = λ(x) + µ(x)y + ν(x)y′ (2.3)

and (2.1) is said to be linearizable if it can always be transformed locally by a point transformation to the

form (2.3). (Of course we note that the solutions to (2.3) constitute technically an affine rather than a linear

space unless λ is identically zero.)

An equation of the form (2.1) defines a G–structure on J1(R × R). By a G–structure on an n–

dimensional manifold M , we mean a reduction of the coframe bundle FM to a principal bundle BG with

structure group G, a closed subgroup of GL(n,R). Generally one may construct a (local) G–structure from

an equivalence problem as follows. In an equivalence problem one is given open sets U ⊂ Rn, V ⊂ Rn and

coframes tω = (ω1, . . . , ωn) and tΩ = (Ω1, . . . ,Ωn) on U and V , respectively, and one seeks a diffeomorphism

Φ : U −→ V such that Φ∗Ω = γV Uω, where γV U is a function with values in G. The local G–structures are

then given by U ×G and V ×G. It can be shown that the equivalences Φ are in one–to–one correspondence

with diffeomorphisms Φ(1) : U × G −→ V × G such that Φ(1)∗Ω = ω where ω and Ω are the canonical

Rn-valued 1–forms on U ×G and V ×G, respectively. (For more on G–structures see [4], [6], [8]).
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In the case at hand, if we are given a second equation

Y ′′ = G(X, Y, Y ′). (2.4)

then an equivalence is a map (2.2) which sends solution curves of (2.1) to solution curves of (2.4). If we

choose ω1 = dx then tω = (ω1, ω2, ω3) is a coframe “adapted” to (2.1) and we may analogously choose a

coframe Ω adapted to (2.4). Then a map Φ is an equivalence if and only if Φ∗Ω = γV Uω, where γV U is of

the form

γV U =

 A 0 B
0 C E
0 0 AC

 (2.5)

where AC is non–zero. The group G of our G–structure then consists of 3× 3 matrices of the form of (2.5).

The reader may easily verify that the canonical R3–valued 1–form ω on BG = U ×G is given by

 ω1

ω2

ω3

 =

 A 0 B
0 C E
0 0 AC

  ω1

ω2

ω3

 (2.6)

(The reader should compare [5] and [9] where different problems in the context of second order ordinary

differential equations are shown to lead to a G–structure.) In anticipation of the equivalence problem

calculation to be performed in Section III, we note that the derivative of (2.6) (the structure equations) is

given by

 dω1

dω2

dω3

 =

 dA
A 0 dB

AC −
B dA
A2C

0 dC
C

dE
AC −

E dC
AC2

0 0 dA
A + dC

C

  ω1

ω2

ω3

 +


B

AC ω1ω2 − B2

(AC)2 ω2ω3 + BE
(AC)2 ω3ω1

E+Fy′C

AC ω1ω2 +
(

Fy

A2 −
Fy′E

A2C − E2

A2B2

)
ω1ω3 +

(
Fy′B

A2C + BE
A2C2

)
ω2ω3

ω1ω2 + B
AC ω2ω3 + E

AC ω3ω1

 . (2.7)
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III. Intrinsic solution of the equivalence problem.

We continue by applying the Cartan equivalence method to compute the differential invariants of equa-

tions of the form (2.1) under the pseudo–group of point transformations. The calculations are similar to those

of [5] and [9]. We remind the reader at the outset that there are two main elements in the Cartan method,

namely, reduction and prolongation. Reduction consists of choosing more specialized coframes which capture

finer geometric properties of the G–structure under consideration. Prolongation consists, roughly speaking,

of computing “derivatives” of the G–structure and enables one to obtain differential invariants of higher and

higher order.

One of the principal objectives of the Cartan method is to obtain, at some stage, an identity structure,

that is a G–structure with G the trivial group. Such an identity–structure determines a coframing or

parallelization of the manifold concerned and this particular coframe determines the equivalence class of

the differential equation. In the case of an identity–structure the differential invariants depend only on

finitely many derivatives of the data defining the structure and the problem of deciding whether two such

G–structures are equivalent becomes, at least in principle, entirely deterministic (see [1], [4], [8]). We shall

see below that the G–structures determined by second order equations lead to identity–structures.

Before proceeding to the calculation, we make another important conceptual point. We have described

in Section II how a second order equation, with local presentation (2.1), leads to a G–structure. Furthermore,

we recall that in [4] it was shown how the key idea in the Cartan method of analyzing a G–structure on

an n–manifold M , was to study the structure equations for the derivative dω of the canonical Rn–valued

1–form ω. Now ω is of course an invariant geometric object independent of coordinate considerations. As

such, it is possible to apply the Cartan method in an invariant manner; that is, all the differential forms

arising from the various reductions and prolongations are invariant. In that case one speaks of applying the

method “intrinsically” (cf. [4] and [9]).

However in most cases, one would like to compute the “differential invariants” of the G–structure, to

use a common phrase from Lie Theory. In other words, one would like invariants determined in terms of the

function F in (2.1). Now the introduction of local coordinates enables one to trivialize the principal G–bundle

over M associated to the G–structure and all subbundles and prolonged bundles obtained, respectively, by

reduction and prolongation. The invariants embodied in the intrinsic form of the structure equations can

then be realized in a concrete form. In fact the simplest procedure for computing the differential invariants is

as follows. First of all, one performs the intrinsic calculation. This will generally lead to various cases because

in the reduction process, one frequently has to make genericity assumptions, the validity of which can only

be seen from a “parametric” calculation. (See [4] and [8] for the significance of these genericity assumptions
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which amount to choosing G–orbits in the image of the structure function. In the equivalence problem we

are considering here, however, we at no stage have to make such genericity assumptions.) Assuming then

that eventually one obtains an identity–structure, one may then mimic the intrinsic calculation using the

local data determining the G–structure and an initial choice of coframe.

Having made our preliminary comments we proceed next to use the Cartan equivalence method to study

the local invariants of (2.1) under the pseudo–group of point transformations. Comparing with [9], we recall

that in (2.6) and (2.7) ω is to be interpreted as the canonical R3–valued 1–form on the G–structure BG.

As such we must compute its exterior derivative dω and absorb as much torsion (the terms quadratic in the

ωi’s) as possible in a way which respects the Lie algebra g of G (see [4] and [11] for a fuller explanation of

the absorption technique). In fact we find that by defining

α =
dA

A
− Fy′

A
ω1 − B

AC
ω2

β =
dB

AC
− B dA

A2C
− BE

(AC)2
ω1 +

B2

(AC)2
ω2

γ =
dC

C
+

E + Fy′C

AC
ω1 +

2B

AC
ω2

ε =
dE

AC
− E dC

AC2
+

FyC2 − E(E + Fy′C)
(AC)2

ω1 +
(E + Fy′CB)

(AC)2
ω2

we may rewrite (2.7) in the form

 dω1

dω2

dω3

 =

 α 0 β
0 γ ε
0 0 α + γ

  ω1

ω2

ω3

 +

 0
0

ω1ω2

 . (3.1)

Here all products of 1–forms are exterior products and the 3 × 3 matrix on the right hand side of (3.1) is

g–valued. (The fact that (3.1) resembles the structure equation for a linear connection explains our use of

the term “torsion” for the terms quadratic in the ωi’s.)

Returning now to (3.1), since the torsion coefficients are constant, we cannot effect a group reduction (cf.

[4], [8] and [9]) and consequently, we must prolong. In order to prolong, we have to find the indeterminacy

in the set of forms α, β, γ and ε satisfying (3.1). If ᾱ, β̄, γ̄, ε̄ are another set of forms satisfying (3.1) then

we find by an application of Cartan’s lemma that necessarily

ᾱ = α + Qω3 (3.2a)

β̄ = β + Qω1 + Rω3 (3.2b)

γ̄ = γ + Sω3 (3.2c)

ε̄ = ε + Sω2 + Tω3 (3.2d)
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for some functions Q,R,S and T on BG. The point of the prolongation procedure is now to use (3.2) to

construct a G1
0–structure with total space BG1

0
over the space BG. (The reason for the notation G1

0 for the

new group will be explained presently.) In fact using (3.2) we can exhibit the group G1
0 as follows in what

is in effect the G1
0–analogue of (2.6)



ω1

ω2

ω3

ᾱ
β̄
γ̄
ε̄


=



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 Q 1 0 0 0
Q 0 R 0 1 0 0
0 0 S 0 0 1 0
0 S T 0 0 0 1





ω1

ω2

ω3

α
β
γ
ε


. (3.3)

We must next find the analogue on BG1
0

of (3.1). Notice that since the base of our G1
0–structure BG is

7–dimensional, the torsion corresponding to each of dᾱ, dβ̄, dγ̄ and dε̄ contains, in principle, 21 terms. By

differentiating (3.1) we can, however, see that most of those torsion terms are actually zero. Indeed we find

that

0 = (dᾱ + 2ε̄ω1 + βω2)ω1 + (dβ̄ − β̄γ̄)ω3 (3.4a)

0 = (dγ̄ − 2β̄ω2 − ε̄ω1)ω2 + (dε̄− ε̄ᾱ)ω3 (3.4b)

0 = (dᾱ + 2ε̄ω1 + β̄ω2)ω3 + (dγ̄ − 2β̄ω2 − ε̄ω1)ω3 (3.4c)

Next applying Cartan’s lemma several times to (3.4) we easily obtain

dᾱ = −2ε̄ω1 − β̄ω2 + θω3 + bω1ω2 (3.5a)

dβ̄ = β̄γ̄ + θω1 + ρω3 (3.5b)

dγ̄ = 2β̄ω2 + ε̄ω1 + σω3 − bω1ω2 (3.5c)

dε̄ = −ᾱε̄ + σω3 + τω3 (3.5d)

for some real–valued function b and 1–forms θ, ρ, σ and τ . Thus when we differentiate (3.3) and absorb

compatibly with the Lie algebra g1
0 of G1

0 we obtain (dropping the bars for convenience)

d



ω1

ω2

ω3

α
β
γ
ε


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 θ 0 0 0 0
θ 0 ρ 0 0 0 0
0 0 σ 0 0 0 0
0 σ τ 0 0 0 0





ω1

ω2

ω3

α
β
γ
ε


+



αω1 + βω3

γω2 + εω3

(α + γ)ω3 + ω1ω2

−bω1ω2 − 2εω1 − βω2

βγ
bω1ω2 + 2βω2 + εω1

εα


(3.6)
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where the first matrix on the right–hand side of (3.6) satisfies the Lie algebra relations of g1
0 .

The next stage in the equivalence method consists of trying to reduce the group G1
0. The only (possibly)

non–constant torsion coefficient in (3.6) is b and accordingly we compute the infinitesimal action of G1
0 on

this torsion component. (For more on the G–action on the torsion, compare [4], [8], [9] (equation (4) ff.))

Now differentiating the equation for dα in (3.6) and substituting in the result expressions for dω1,dω2,dω3,dβ

and dε from (3.6) we find

(db + 2θ − 2σ)ω1ω2ω3αγ = 0 (3.7)

and hence

db + 2θ − 2σ ≡ 0 (mod ω1, ω2, ω3, α, γ). (3.8)

(The “mod” notation is explained in Section I.) Equation (3.8) means that b is acted on by translation and

so we may achieve a reduction by setting b equal to zero. (For more on the reduction procedure see [4], [8]

and [9].)

The vanishing of b determines a principal subbundle of our G1
0–structure, with structure group which

we denote by G1
1, in other words a G1

1–structure. (The reason for the notation G1
0 introduced above should

now be evident: in general, Gp
q denotes the structure group corresponding to the qth reduction after p

prolongations.) We can obtain the structure equations of the G1
1–structure directly from (3.6) and (3.8)

without the necessity of starting from the analogue of (2.5) or (3.3). We obtain, after absorption and

considering equations similar to (3.5)

d



ω1

ω2

ω3

α
β
γ
ε


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 θ 0 0 0 0
θ 0 ρ 0 0 0 0
0 0 θ 0 0 0 0
0 θ τ 0 0 0 0





ω1

ω2

ω3

α
β
γ
ε


+



αω1 + βω3

γω2 + εω3

(α + γ)ω3 + ω1ω2

−2εω1 − βω2

βγ
aω1ω3 + cω2ω3 + 2βω2 + εω1

aω1ω2 + εα


(3.9)

Again we consider the possibility of performing a group reduction and note that a and c in (3.9) are the only

possible non–constant torsion coefficients. Accordingly, we determine the infinitesimal G1
1–action on a and

c. Proceeding much as we did to derive (3.7) and thence (3.8), we obtain from the derivatives of dα, dε and

dβ, dγ, respectively, (
da
dc

)
≡

(
3τ
3ρ

)
(mod ω1, ω2, ω3, α, γ). (3.10)

An application of Cartan’s lemma similar to that used in (3.4) reveals that on translating a and c to

zero, (
τ
ρ

)
≡

(
0
0

)
(mod ω1, ω2, ω3). (3.11)
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The vanishing of a and c in (3.9) determines what, according to the notation we have established, is a

G1
2–structure. From (3.9) and (3.11) we easily derive the structure equations of the G1

2–structure, after

absorption, as

d



ω1

ω2

ω3

α
β
γ
ε


=



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 θ 0 0 0 0
θ 0 0 0 0 0 0
0 0 θ 0 0 0 0
0 θ 0 0 0 0 0





ω1

ω2

ω3

α
β
γ
ε


+



αω1 + βω3

γω2 + εω3

(α + γ)ω3 + ω1ω2

−2εω1 − βω2

I1ω
2ω3 + βγ

2βω2 + εω1

I2ω
1ω3 + εα


(3.12)

As usual, the next step is to see whether we can obtain a group reduction by investigating the G1
2–action

on the (possibly) non–constant torsion coefficients I1 and I2. From the derivatives of dβ and dε in (3.12) we

find that (
dI1

dI2

)
≡

(
0
0

)
(mod ω1, ω2, ω3, α, β, γ, ε). (3.13)

Equation (3.13) signifies that the functions I1 and I2 are “invariants”; by this we mean that I1 and I2 are

(the pullbacks of) real–valued functions on the space BG invariant under the G1
2–action. In other words, if

Φ is an automorphism of the G1
2–structure (a diffeomorphism of the BG1

2
the canonical R7–valued 1–form;

compare [4], [9]), then

Φ∗I1 = I1 (3.14a)

Φ∗I2 = I2 (3.14b).

Since I1 and I2 are invariants they cannot be used to obtain a group reduction and we must prolong to

a G2
0–structure over the bundle BG1

2
. However, it is easy to check from (3.12) that the group G2

0 is the trivial

group {1}, or equivalently, that (3.12) determines θ uniquely. Thus the intrinsic part of the calculation is

complete, save only for deriving an expression for the 2–form dθ, which we do now as a final illustration of

the use of Cartan’s lemma.

From (3.12), differentiating either of the equations for dα or dγ we obtain

(dθ − θα− θγ − βε)ω3 = 0. (3.15a)

Similarly, differentiating dβ and dε, respectively, we obtain

(dθ − θα− θγ − βε)ω1 + (dI1ω
2 + 3I1γω2 + I1αω2)ω3 = 0 (3.15b)

(dθ − θα− θγ − βε)ω2 + (dI2ω
1 + 3I2αω2 + I1γω2)ω3 = 0. (3.15c)
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From (3.15a) we have that

dθ = θα + θγ + βε + ξω3 (3.16)

for some 1–form ξ. Now from (3.15b) or (3.15c) we find easily that

dθ = θα + θγ + βε + I3ω
1ω3 + I4ω

2ω3 (3.17)

for some functions I3 and I4 on the G2
0–structure. Thus we arrive at the following intrinsic form of the

structure equations of the identity–structure:

d



ω1

ω2

ω3

α
β
γ
ε
θ


=



αω1 + βω3

γω2 + εω3

(α + γ)ω3 + ω1ω2

−2εω1 − βω2 + θω3

I1ω
2ω3 + βγ + θω1

2βω2 + εω1 + θω3

I2ω
2ω3 − αε + θω2

θα + θγ + βε + I3ω
1ω3 + I4ω

2ω3


. (3.18)

It is easy to see also from (3.18) that I3 and I4, in addition to I1 and I2, are invariant functions.
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IV. Linearization and parametric solution of the equivalence problem

In the previous section we showed that the G–structures corresponding to second order equations are

of order two; that is to say we obtain a identity–structure after two prolongations. In this section we first of

all make some preliminary remarks about the structure equations (3.18) and then, in light of these, consider

the linearization problem for second order equations.

Differentiating the equations for dβ and dε, respectively, in (3.18) we obtain

(I1α + 3I1γ + I4ω
1 + dI1)ω2ω3 = 0 (4.1)

(3I2α + I2γ + I3ω
2 + dI2)ω1ω3 = 0. (4.2)

From (4.1) it is clear from the independence of the 1–forms considered that if I1 is constant, then I1 and I4

are zero. Similarly from (4.2), if it is assumed that I2 is constant, then one may conclude that actually I2

and I3 are zero.

We mentioned in Section III that in order to obtain the concrete form of the invariants in an equivalence

problem, one must perform the parametric calculation in a way which mimics precisely the intrinsic one.

Next we indicate briefly what this entails. Referring back to the first step in the intrinsic calculation, we

note that (3.1) can be obtained by absorption from a knowledge of the group G = G0
0 exhibited in (2.5).

By contrast, the specific forms of α, β, γ, ε given prior to (3.1) are determined by the reference coframe

ω1,ω2, ω3. The forms ω1,ω2, ω3 together with the specific form of α, β, γ, ε given prior to (3.1) (which

could better now be written α, β, γ, ε to distinguish them from the coordinate–free forms appearing in (3.1))

furnish us with a moving coframe on the space BG. Thus, starting from the reference coframe (ω1, ω2, ω3)

on J1(R×R), we obtain a reference coframe (ω1, ω2, ω3, α, β, γ, ε) on BG and similarly a reference coframe

on BG1
2
. Geometrically the construction of those coframes derives from the fact that the coframe (ω1, ω2, ω3)

yields a local trivialization of the bundle BG and hence all of the bundles constructed over BG by the process

of reduction and prolongation. We see now, at least in principle, how we can obtain the parametric version

of (3.18) and in particular explicit expressions for the invariants I1, I2, I3, I4.

For future reference, we should like to note at this point that according to our calculations

I1 =
−1

6AC3
Fy′y′y′y′ (4.3)

I2 =
−1

6A3C

( d

dx
(FFy′y′y′) +

d

dx
Fxy′y′ + y′ d

dx
Fyy′y′ − 4

d

dx
Fyy′

− Fy′
d

dx
Fy′y′ + FFyy′y′ + 6Fyy − 3FyFy′y′ + 4Fy′Fyy′

)
(4.4)

I3 = −
(

1
C

∂

∂y′ +
B

AC

)
I2 (4.5)
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I4 = −
(

1
A

d

dx
+

2
A

Fy′ +
E

AC

)
I1, (4.6)

where the subscripts on F indicate partial derivatives and the operator d
dx is defined by

d

dx
=

∂

∂x
+ y′ ∂

∂y
+ F

∂

∂y′ .

Having obtained an identity structure with invariants I1, I2, I3, I4, the most natural question to ask is,

what is the significance of the vanishing of the invariants? In fact the vanishing of I1 and I2 (and hence I3

and I4) are the necessary and sufficient conditions for (2.1) to be locally equivalent to

y′′ = 0. (4.7)

The necessity is clear and the sufficiency follows from the general fact that the equivalence class of an

identity–structure is determined by its invariants and their covariant derivatives (see [4]). In this particular

case, we can argue directly as follows. Given two equations (2.1) and (2.4) for which the associated invariants

I1 and I2 vanish, consider the G1
2 structures B1

G1
2

and B2
G1

2
with coframes φ1 and φ2, respectively, constructed

as above. Then it is easy to check that on the product space B1
G1

2
×B2

G1
2

the collection of forms φ2 − φ1 is a

Frobenius system, and the leaves of the foliation are (locally) the graphs of maps Φ(1) : B1
G1

2
−→ B2

G1
2

which

project to local equivalences of the base spaces. Thus any two such equations with vanishing invariants are

locally equivalent; in particular they are all locally equivalent to y′′ = 0.

The vanishing of I1 implies that F in (2.1) satisfies

F = A + 3By′ + 3C(y′)2 + D(y′)3 (4.8)

for some functions A, B, C, D of x and y — a condition well known to be invariant under point transfor-

mations, but which is not obvious a priori (cf. [7]). Given (4.8), the vanishing of I2 then gives the following

two conditions:

2Cxy −Byy −Dxx + ADy + 2AyD − 3BxD − 3BDx − 3ByC + 6CCx = 0 (4.9)

Bxy − Cxx −AxD −ADx + 3AyC + 3ACy + 3BCx − 6BBy = 0 (4.10)

It is somewhat remarkable that the vanishing of I2 yields only the two conditions (4.9) and (4.10). In fact

with F given by (4.8), I2 is a degree four polynomial in y′; however the terms of degree two, three and four,

respectively, vanish identically.
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Let us now consider the linearization problem. In fact it is easy to verify that for F as given by the

right–hand side of (2.3), the invariants I1 and I2 both vanish. Thus we reach very naturally the conclusion

that an equation (2.1) is linearizable if and only if it is equivalent to (4.5). Furthermore, the infinitesimal

symmetry group of a linear or linearizable equation must be SL(3,R) since it is the infinitesimal symmetry

group of (4.8). We summarize our results more formally in the following

Theorem. The following (local) conditions are equivalent:

(i) equation(2.1) has SL(3,R) as its infinitesimal symmetry group

(ii) equation (2.1) is linearizable

(iii) equation (2.1) is locally equivalent to equation (4.5)

(iv) the F in (2.1) is a cubic polynomial in y′ given by (4.8), say, for which, in addition, (4.9) and (4.10)

are satisfied.
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V. Discussion

In this paper we have solved the problem of characterizing those second order ordinary differential

equations which are linearizable by a point transformation using Cartan’s equivalence method. The general

equivalence problem for second order equations was studied by Tresse [12] using Lie methods. Cartan [2]

also studied the equivalence problem but he was more concerned with investigating the differential geometry

of projective connections. Accordingly, Cartan’s account differs from his usual treatment of the equivalence

problem. For example, Cartan gives the value of the invariant which in Section IV we denoted by I1

as − 1
6Fy′y′y′y′ and only gives the invariant I2 in the restricted case where I1 is zero. (There is also a

typographical error in Cartan’s formula for I2 which he denotes by b: the y′ in the formula for b given in

paragraph 24 should multiply the first and not the second term in parentheses.)

In the Lie theory invariants such as I1, I2, I3, I4 are usually known as “semi”– or “relative” invariants.

However, it seems to be difficult to ascribe a precise geometrical meaning to a semi–invariant within the

Lie framework. As the Cartan method shows, the reason is that these invariants are properly invariants on

the lifted G–structures. Thus while the vanishing of, for example, I1 or I2 yield conditions on the space

J1(R×R), it is difficult to interpret I1 or I2 as determining geometric objects on J1(R×R).

Tresse’s treatment of the equivalence problem for second order equations is, in its own terms, very

complete including a discussion of infinitesimal symmetry groups and normal forms for equations with non–

trivial groups of symmetries. However, it is generally agreed that Tresse’s memoir is very difficult to read for

a modern reader. Accordingly, we are currently engaged on the not inconsiderable task of interpreting and

corroborating Tresse’s results from the Cartan equivalence problem viewpoint, as well as answering some of

the questions left unanswered by Tresse and Cartan.
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