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Abstract

This paper focuses upon the derivation of the non-classical symmetries of
Bluman and Cole as they apply to Richard’s equation for water flow in an
unsaturated uniform soil. It is shown that the determining equations for the
non-classical case lead to four highly non-linear equations which have been
solved in five particular cases. In each case the corresponding similarity ansatz
has been derived and Richard’s equation is reduced to an ordinary differential
equation. Explicit solutions are produced when possible. Richard’s equation is
also expressed as a potential system and in reviewing the classical Lie solutions
a new symmetry is derived together with its similarity ansatz. Determining
equations are then produced for the potential system using the non-classical
algorithm. This results in an under-determined set of equations and an example
symmetry that reveals a missing classical case is presented. An example of a
classical and a non-classical symmetry reduction applied to the infiltration of
moisture in soil is presented. The condition for surface invariance is used to
demonstrate the equivalence of a classical Lie and a potential symmetry.

PACS numbers: 47.55.Mh, 02.20.—a, 02.30.Jr

1. Introduction

The symmetry analysis presented here is motivated by problems associated with water flow
in unsaturated soils and the need described by Philip [1] to develop more quasi-analytic and
analytic methods to describe the strongly non-linear Fokker—Planck equations which describe
such a flow. It is worth reflecting that most of the water in the hydrological cycle is located
in the unsaturated soil between the time of rainfall and its return to the atmosphere. It is clear
therefore that processes of water movement in unsaturated soil play a central role in problems
of, for example, irrigation, plant ecology and solute transport. Perhaps less obvious is that
the importance of unsaturated flow is greatest in a dry country, such as Australia where as
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Philip [1] states 93% of precipitation enters the soil and only 1% is returned to the atmosphere
by evaporation. Moreover whilst much of the theory associated with water flow was developed
in the moist environments of Europe the challenge for modellers is in the description of flow
for arid and semiarid environments of, for example, Africa and middle-east. It is for these
applications where the Fokker—Planck equation, applied to flow of moisture in its vapour
phase, requires further analysis.
Water flow in unsaturated soil, under suction because of capillary forces, was first

described by Richards [2] through the equation:

M _ v kvw+ 2 1

g = ( )+ o ey
where u is the volumetric water content, K is the hydraulic conductivity, x is the vertical space
coordinate and ¥ = W (u) is the matric potential, negative in unsaturated soils which describes
the potential of force interaction between solid soil and water. The analysis here will focus
upon non-hysteretic cases where W (u) is a single-valued function and where the diffusivity is
defined through

dw
D=K—. 2)
du

Only one-dimensional flow will be considered and the soil will be taken to be homogeneous
so that both D and K are functions of « alone. Richard’s equation therefore will have the form:

A(x,t, U, Us, Uy, Mxx)Eut_(Dux)x_Kuux:() (3)

where a suffix indicates a partial derivative.

The use of similarity methods to describe flow in unsaturated soil is not new, though
limited in scope and has found practical application in the theory of infiltration. For example,
in the case of horizontal absorption Philip [3] describes travelling wave solutions based upon
an ansatz using the Boltzmann similarity variable w:

U = u(w) w=xt"? @)
although the resulting mathematical forms for the diffusivity are not well adapted for fitting
empirical data.

In a second example, with application to horizontal flow, with Neuman boundary
conditions the infiltration process is described using the ansatz:

u(x, 1) = Y(wytim w=xt"m D(u) = cu". (5)

Of course, similarity solutions of Richard’s equation as described by (3) are well known.
Sposito [4], Edwards [5] and El-labany et al [6] have conducted a classical Lie analysis of this
equation, and Sophocleous [7] has presented a classical analysis of the equation in its potential
form. Gandarias [8] presents potential symmetries for a form of heterogeneous porous media
with power law diffusivity and hydraulic conductivity. There is however no detailed analysis of
the non-classical approach of Bluman and Cole [9] applied to equation (3) although Gandarias
et al [10] have presented a non-classical analysis of the equation in a restricted form. It
is the aim here to review the current range of similarity solutions of Richard’s equation as
described by (3) and to extend the range of such solution by undertaking a non-classical
symmetry analysis. In doing so new potential symmetries will also be presented. Examples
of the applicability of a classical and also a non-classical symmetry reduction to descriptions
of water flow, in particular, infiltration in unsaturated soils are introduced in section 6.
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2. Classical results for Richard’s equation

In the classical Lie group method one-parameter infinitesimal point transformations,with group
parameter ¢ are applied to the dependent and independent variables (x, ¢, «). In this case, the
transformation are

F=x+en(x,t,u)+ 0() f=t+en(x, t,u)+ 0

7] =u+8¢(x,t,u)+0(62) ©
and the Lie method, see, for example, Clarkson and Mansfield [11], requires form invariance
of the solution set:

Y ={ux,t), A=0}. (7)
This results in a system of overdetermined, linear equations for the infinitesimals 71y, 72, ¢.
The corresponding Lie algebra of symmetries is the set of vector fields

a a 0
X=m@, t,u)—+m&, t,u)—+¢(x, 1,u)—. ®)
ax ot ou
The condition for invariance of (3) is the equation
X2 (A)|a=0 =0 ©)
where the second prolongation operator X’ ,(52) is written in the form
0 d 0
XD = X4l — 4l — bl _—_ 10
E ¢ ou; ¢ ouy ¢ Oy (10)

where ¢!, 11 and ¢!**! are defined through the transformations of the partial derivatives
of u. In particular

iy = uy + e (x, 1, u) + O(?)
ir = u, + eV (x, 1, u) + O(€?) (11)
fizs = e + 6@ (x, 1, u) + O(€2).

Once the infinitesimals are determined the symmetry variables may be found from condition
for invariance of surface u = u(x, t):

Q= —nuy —nu, =0. (12)
Throughout the following, it has been found convenient to set
D=H, (13)

and also the MACSYMA program symmgrp.max has been used to calculate the determining
equations.

In the case of Richard’s equation (3) the nine well-known, for example, Sposito [4],
Edwards [5], overdetermined linear determining equations are

n, =0 m, =0 (14)
m, Hyw —m,, H, =0 m2, Huy +m2,, H, =0 (15)
N2, Huu + 12, Hy + 11, = 0 Ox Ky + dxxHy — ¢y =0 (16)
o, Hy K, — ¢Hyy + o, H? — o, H, + 21, H, =0 (17)
2m1, Hy Ky + ¢ Hy Hyw — 9 H,y,, + ¢ Hy Hy + $u Hy — 21, HY =0 (18)
¢H, Ky — ¢Huu Ky + 01, Hy Ky + 20 Hy Hyy + 2¢ Hy — 1, H + 11, H, = 0. (19)

As may be seen from table 1 the classical symmetries are given for power and exponential
functions of H and K in which the infinitesimal n; and 7, are linear functions of x and 7 and
where ¢ is linear in u. Note that each of these symmetries has been used by Edwards [5] to
reduce Richard’s equation to an ordinary differential equation.
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Table 1. Classical symmetries of Richard’s equation (based on Sposito [4] and Edwards [5]).

Entry  Functions H and K Infinitesimals
1 H = cu* m=G—wWx,¢=u
K = kut* m=0x=-2u+1)t
2 H = cu* n=ix,p=u
K =klnu m=R+1)t
3 H = cu* n =G —1Dx —kt
K =k(ulnu —u) m=xk—-Dt,p=u
4 H =ceM n =R —pux
K = ken m=0—20), ¢ =1
5 H=ce K = ku® nm =ix —2kt,my =At,p =1
6 H = cu, K = ku? n=-x,m=-2t,¢p=u
7 H=cu n = —2kxt, ny = —2kt*
K = ku? ¢ = x +2kut
8 H = cu, K = ku® m=—2ki,mx=0,¢ =1

3. Non-classical point symmetry

The non-classical method is a generalization of the classical Lie group approach due to
Bluman and Cole [9] that incorporates the invariant surface condition (12) into the condition
(9) for form invariance of Richard’s equation (3). It follows that non-classical symmetries of

Richard’s equation may be found by solving the non-linear set of determining equations:
2 (8)|a=o.00 = 0. (20)

It is important to note that the non-classical method is just one example of a more general
conditional symmetry approach described by Ibragimov [13] in which the condition (9) for
form invariance of a partial differential equation is supplemented by an additional condition.

To apply (20) two cases must be considered as follows.

3.1. Case A:ny = 1,1 =n(x, t,u)

It is straightforward to show that there are four non-linear determining equations as follows:

H, My Hyy — nuuHy) =0 (21
o-H, K, + ¢2Huu + ¢xxHu2 —¢:H, —2n,¢H, =0 (22)
277L¢HuKu + ¢HuHuuu - ¢H1,42u + ¢uHuHuu + ¢uuHu2 - ZnuxHuz + 27777L¢Hu =0 (23)
¢HMKMM - ¢HML¢KM + nXHMKM + 2¢XHL¢HMM - 77¢Huu
+2¢uxHuz - nxxHuz - 27]L1¢Hu + ntHu + znanu =0. (24)
Solutions of these equations will be generated below.
32.CaseB:ny=0,m=n=1
In this case the four determining equations are
OH, = 0 (25)
¢xKu + ¢xxHu - ¢l =0 (26)
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¢Hu Huuu - ¢Hu2u + ¢u HuHuu + ‘puu Huz =0 (27)

¢HuKuu - ¢HuuKu +2¢xHuHuu +2¢leHu2 =0. (28)
There is only one solution of these equations as follows, namely the infinite symmetry

a
n=1 H=cu K =ku ¢=8—u=c()u+g (29)
X

where g = g(x, t) and satisfies

C8xx T kgx — & = 0. (30)
Substituting the relations into Richard’s equation (3) gives rise to the solution

u(x,t) = e {fg(x,t)dx+<p(t)} . a3

4. Symmetry reductions for case A

Using (21) and (23) the following explicit forms for n(x, #, u) and ¢ (x, ¢, u) may be obtained:
n(x,t,u) = f(x,0)H@u) + g(x, 1) (32)
o, t,u) = H " H> —2fZ(u) +2fgX (u) +2f*Wu) + HS(x, 1) + R(x, 1)} (33)

where f, g, R, S depend on x, 7 and W, X and Z depend only on u. Explicit non-classical
symmetries may now be found by considering two sub-cases f = 0 and f # 0 separately.

4.1. Sub-case f =0

When f = 0 equations (32) and (33) become

n=g ¢ = H"{HS(x,1)+ R(x,1)) (34)
and the determining equations (22) and (24) are now
(HHu Ky — HHy Ko+ §Hu) (R + HS) + HJ (e — 282) — H (8K + 81 +288:) = 0

(35)
and
H)(Ryy + HS,) + Hy (R + HS)? + H2K (R, + HS,)
—2g,H*(R+ HS) — H*(R, + HS,) = 0. (36)
The following two solutions of these equations have been found. In the first case:
c k
f=0 H=—- K=- (37
u u
where ¢ and k are constants and where the infinitesimals are
. k .
r;:cze_kT qj:ﬂe_k?. (38)
c

These may be substituted into the surface invariant condition (12) and the method of
characteristics employed to determine the following ansatz for u(x, 7):

ur, 1) =y (@e* (39)
where the similarity variable w(x, ) is given by

rw o koot

e =ec — —. (40)

c
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Substitution of these relationships into Richard’s equation (3) gives the ordinary differential
equation

4eV e 8c1p3) 2k,
e o Ve o e
Clearly equations (40) and (41) together define 1 (w) and w(x, t) to give the final form
of the solution (39).

In the second reduction, the following solutions of (35) and (36) have also been found

f=0 H = arbitrary K = arbitrary (42)

— ey, =0. (41)

with infinitesimals

n=un  ¢=0. (43)

Substitution of these results into Richard’s equation gives rise to standard travelling wave
solutions. It is interesting to note that these straightforward solutions do not satisfy the
determining equations for classical symmetry (14) to (19).

4.2. The sub-case f # 0

For this sub-case, substitution of (32) and (33) into the determining equation (23) gives rise to
the following condition on f and g:

ap—gar — fas =0 (44)
where a; are constants for which the functions Z, X and W satisfy

Z, Xu

— — K = apu + a; — +u=au+as 45)
Hlt Hu

W,

—u+/Hdu=a4u+a5. (46)
H,

The remaining two determining equations (22) and (24) have the lengthy form:
f«(4H;Z, — H*H,K,, + H*K,H,, — HH,K,) +2fZ (H,K,, — K, H,)
+2f*(-HHZ —2H,Z — H, K, W + K, H,, W)
+2fg(—HwZ — H KX + Ky Hy X)
+feg (—4H;X, + H*H,, —2HH;) + 2fg. (-2H,X, — HH,)
+2f%g (HH,uX +2H, X + Hy W) +2fg Hy X
+ ffs (H Hyy — 8BH; W,)) +2f°W (HH,, +2H]) — 2H; S,
+(KyHy — H,Ku)(R+ HS) + f (HH,, +2H]) (R + HS)
+gH, (R+HS)— g H’K, —3f HH + g, . H’
— f[(HH; — g H; —2gg:H; =0 (47)

4f*H,Z*+ ff. (—4H*H,Z +AHH, Z + AH, K, W)
+ foo (H*HK, —2H}Z) + fg. (AH;Z +2H, K, X)
—8f2¢H XZ -8 H,WZ —4fH,,Z(R+HS)
—2f H*K,Z+2f,H>Z +4f*¢*H,, X*
+ ffr8 (4H*Hy X —4HH?X) + fog, (4H)X — 2H*H?)
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+8f3¢H, WX +4fgH, X(R+HS)+2f,gH*K, X +2fg. . HX
+2fxgH)X —2fg Hi X —Afgg, Hy X —2figHIX +4 f*H,,W*

+f°f. (4H*H, W —AHH; W) + f7 (4H]W + H*H,,, — 2H’H)
+4f?H, W(R+HS) +4ff HW —4f’g H*W

—4ffiH’W — H*(R, + HS,) + H’ (R, + HS,,) + H>K, (R, + HS,)
+H,(R+HS) + f. 2H*H,, —2HH]) (R+ HYS)

—2g,HX(R+ HS) + fo H*H — f H*H? = 0. (48)

The following symmetry reductions are possible from these equations.

4.2.1. First reduction. In this sub-case,

f = Co K,,, = —C()H (49)
where ¢y is constant and the corresponding infinitesimals are
n=coH ¢ =0. (50)

These results enable closed form solutions of Richard’s equation to be found in following
way. Using the surface invariant condition (12) and method of characteristics, it may be shown
that

ulx,t) = yY(w) w=x—coHt (29
from which the second equation gives

(@uu + CoHuut s + (@, + coHyt)utx = 0. (52)
Thus with Richard’s equation

Hyu? + Hyu =0 H=aw+b (53)
and so finally

4.2.2. Second reduction. Consider now the sub-case

k
f=- H=cu K = ku?® (55)
C
with infinitesimals
Ku? h
n=k+h)  p= W) (56)
c

where h = h(x, t) such that
h, = chy +2khh,. (57)

When h = 0, the method of characteristics applied to the surface invariant condition gives the
ansatz:

(NI

2%t -

uix,n) =| —+v() (58)
c

where ¥y and w are such that

_c (¥, )%_E by 59)
x_k<c 1/f(60> Vo (
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Table 2. Non-classical symmetries of Richard’s equation.

Infinitesimals
Entry  Functions H and K = ¢ = nu+u,

kx

1 H = i n=c e ¢
_ k _ cku &
K=3 ¢="Zte
2 H, K arbitrary n=n()
$=0
3 H = H(u) n=coH
K, =—coH ¢=0
4 H=cu n==ku+h)
K = ku2 ¢ — _kzuz(lﬁ-h)
c
hy = chyy +2khhy
. . J it
5 H =ce™ n= _C(]C:(I‘IX6+L‘2[
. Ferh M
K = ke ¢ = )L(z(l]+:1X+C22t)

Substitution of these relationships into Richard’s equation gives rise to the ordinary
differential equation for ¥ (w):

3y 3k w 2k
o — Vo KN Y (60)
2 c c?
4.2.3. Third reduction. In this sub-case,
A
fz_—cl H =ce K = ke (61)
co+cCc1x + ot
and the infinitesimals are
A e)\u kci eAu _
___care’ - rare ma (62)
co+cC1x + ot Aco + c1x + cot)
In the case when ¢, = 0 it may be shown that surface invariance with characteristics gives
M = Y (w)e @ (63)
where
clkkwe%wt = (c0+c1a)— %) e% — (c0+c1x— C%) e%. (64)

The ordinary differential equation for v/ (w) is obtained by direct substitution into (3) and is
found to be

c(co + 1) Ypw + [k(co + cro) — cc1Y, — ke = 0. (65)

The non-classical symmetries found above are summarized in table 2.

5. Potential symmetry—classical algorithm

Richard’s equation may also be written as the potential system A = (A, Ay) = 0 where
Aj=v,—u=0 Ay =v, — Hu, — K =0. (66)
In this case, the classical Lie analysis is based upon the infinitesimal transformations:

=x+enx,t,u,v)+ 0(62) f=t+en(x,t,u,v)+ 0(62)
=u+ep(x,t,u,v)+ 0(€?) D =v+epa(x,t,u,v)+ O().

=1

(67)

N|
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Note that since u = v, these define contact transformations for v. The associated generator

X = a+ a+q>8+<;58 (68)
T T T T

and the condition for form invariance of (66) are found by applying the first prolongation so
that now

X (A)a=0.a,-0 = 0. (69)

It may be shown that the seven linear determining equations are

m, =0 (70)
n,H, —m, =0 (71)
un, +1m2, =0 (72)
¢, —umi, =0 (73)
2m, K + ¢1Hyy — ¢, Hy + 1, Hy + 12, H, — 1, H, =0 (74)
$2, K — uni, K — ug, H, — ¢, Hy + ¢ H, +u’n1, Hy, +uni H, =0 (75)
¢1H,K, —n, K* — ¢ H, K — ¢1H, K +un H,K

+m, H,K +u¢, H; + ¢\ H; — ¢, H, +uni, H, =0. (76)

There are two main cases to be considered. In the first ;, # 0 whilst in the second,
considered in detail by Sophocleous [7], n;, = 0.
5.1. The case n;, #0

This case does not appear to have been considered in the literature and the corresponding
determining equations give rise to the following solution

u o ! u !
H:c( ) K:ku< ) when ¢y #0, 1 77
co+uc Cotuc
H :ce_"lL“ K =kue_$ when ¢y =0 (78)
H:cln( - ) K=ku  when co=1 (79)
1+cu
with infinitesimals
Ny = cpX +C1v m =c3+t
80
¢1 = —u(co +ciu) ¢, =0. (80)
In this case there are two invariant surface conditions for «, v namely
Q=@ —nuxy —nou; =0 (1)
Q= ¢ — v, —mu, =0 (82)
and so from (80)
—u(co+ciu) = (cox +cv)uy, + (c3 +t)u; (83)
and

0 = (cox + crv)v, + (c3 + t)v;. (84)
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However, since (84) is a differential consequence of (83) it is necessary only to solve (84) with
the result that

o= w(v) (85)
where
I
= CcoX +Cciv) — cv c 0
o= [(Z+L3) (H(-)L 1) 1 ] 07 (86)
x—clvln( 3) co=0.
It follows from (86) that
L
Vo =u = ——(‘)((m) 1) (87)
wy +1 ln(‘w) =0
and so with
F(v) = cow +civ (88)
then Richard’s equation reduces to the ordinary differential equations:
1— FF}°
e FEL 4p —0  when e #0.1 (89)
Co C3
cF,, when c¢y=1 (90)
c3
and
Cop—eim —k=0  ¢=0. 1)
C1 C3

Note, for example, that in the case ¢y = 1/2, ¢3 = 1 the explicit solution for v is

erf ( a a, a) € 2 ( 2)
= day =+ 1 c o, 9
vV ZC

5.2. The case n;, =0

In this case it follows that 7, = 1,(¢) and the corresponding results have been studied in detail
by Sophocleous [7] and table 3 is based upon his results.

5.3. Potential symmetry—non-classical algorithm

A natural extension of the analysis of the previous section is the extension to a non-classical
consideration of the system (66). In this case the determining equations are found by
incorporating the surface conditions (81) and (82) so form invariance is found by applying the
first prolongation:

X (A)]a,=0,8,20,2,=0.9:=0 = 0. (93)
It may be shown that the resulting two determining equations are

¢2“K - L“?uK - M¢2,,Hu - ¢2X Hu + ¢1Hu + uzanu
+unH, — $2¢, +unds, +un,gy — u’ni, =0 (94)
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Table 3. Potential symmetries of Richard’s equation (based upon Sophocleous [7]).

Entry  Functions H and K Infinitesimals
1 H=cu m=0-wx—kot), ¢ =u
K = ku" +kou m=2(1—-wit, ¢ =02 —pv
2 H=cu m = kot —x), M = —2ut
K:ke)‘”+kou ¢1:1,¢2:—uv+x+kot
3 H=cu n = —kt,ny =2t
K =klnu + kou ¢ =u, Py =2v+kt
4 H=cu N =x—kot,n2 =0
K = kulnu + kou 1 =u,pp=v
5 H=cu n = —2kt,m =0
K = ku? =1, =x
6 H=cu N = —2kxt, np = —2ki?
K = ku?® ¢1:x+2kut,¢2:ct+§
7 H =ceM N1 = Ax — 2kt,ny = At
K = ku? o1=1,¢r=x+v
8 H=ceM no=— pwx —kopt, ny = (A — 2t
K = ke + kou ¢ =1, =x +kot + (L — p)v
9 H = cu* m=0—wx+ko(u—Dt, ¢ =u
K = ku" + kou m=0x=-2u+Dt,po=0N—pn+1v
11 H = cu* m=% @ +k), =0
K =ku ¢1:u,¢2:@v
12 H = cu* m=0—=Dx—kt,p1=u
K = kuln(u) + kou m=x—-Dt, ¢ =2xrv
13 H = cu* N =ix —kot,p1 =u

K = klin(u) + kou nm=A+Dt,¢p =R+ 1Dv+kt

¢ H,K, — K> — ¢ HuK — ¢, H, K +un,H,K +nH,K
—n¢2, K + 20,02 K — unn, K + ¢p1¢2H,y — un Hy,
+ugyHy +¢1 Hy — ¢, Hy — 2, Hy + ung, Hy, — 1, H,
+é1,02Hy — nxb2Hy —ungy, H, +un,é1H, +un, H,
+unny Hy, +n¢ada, — una, — nuds +unnup = 0. (95)

Note that equation (94) incorporating equations (66) is the condition for the differential
consistency of the two surface conditions (81) and (82). This expression may be used to find
¢ with the result that

un, K K u? u u
_unK 4o K uTnne  wagane  ugnn  $agn, U, — uny +udn, + o,
H, H, H, H, H, H,
(96)

o1

It follows that (95) becomes

— u*n,H,K, — un.H,K, +u¢y H,K, + ¢, H, K, — un,, K> — 21, K*
+ 2, K> +unyHy K +un.Hu K — udy, Hu K — ¢o, Hu K
+3un,H,K +2n,H,K +2u*n,, H,K +2un, H,K — ¢», H,K
—2ugy, H K — 2¢5, H,K — 20’0 K + 2u@on,, K — 4unn, K
+4¢on, K +2ugy, nK — 24262, K + w0y Hyw — u>$2ny Huw
+uPnny Hyy — udone Hy — >, Hyy — uho, 0 Hyy + uo o, H
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+ oo, Huy — 0o Hy — une Hy — 2uPne Hy +u’dy Hy + o H,
+2u¢2wH3 +unH, + 2u2m7vHu —2u¢on, H, +2unn, H,

—2¢o0. Hy + 207 1 Hy — 20§y Hy + 2001 Hy — 2o H,
—2u’¢y, nH, — 2ug, nH, — ¢, Hy + 2ueods, Hy + 2025, H,

— 0 N + 207 2NN — U1 P3N — 2070 0y + Sugann, — 2031,

+1 o, n° — 212, 0 + P3¢, = 0. ©7)

This equation is, of course, under-determined and so in principle there are infinity of
symmetries. By way of a particular example however consider the case

$ =0 (98)
with
H = cu* K = ku* (99)
and X # 0. Here the determining equations are satisfied by
co+v
n=m= W 00— (100)
mn =1 (101)

and

W ey +)er(1 — 1) +u’(co+ v)(cr + k(1 — A) — (co + v)?
u*(co + v)2ca(l — )2 ’
This example has been presented because, as may be seen from table 3, the case (99) does

not produce classical potential symmetries, that is the non-classical approach uncovers this
missing case.

¢1 = (102)

6. Examples applied to the problem of infiltration

6.1. A classical Lie/potential symmetry reduction

As a particular practical illustration of the potential symmetry reduction of Richard’s equation
consider the Dirichlet problem, of the vertical infiltration of water from a soil surface

u0,1) = f() 1>20 (103)
where f(¢) is a given function of ¢, into a uniform soil mass for which
u(x,0) =gkx) x>0 (104)

where x is depth measured positively from the soil surface. Similar problems have been
discussed by many authors, for example, Philip [3], Hillel [ 14] and Miyazaki [15]. They discuss
many appropriate mathematical forms for diffusivity and hydraulic conductivity including
exponential and power law relationships. In this example it will be assumed that

D) = H, Hu) = cu” K (u) = ku" (105)

which corresponds to the particular potential symmetry given by table 3 (entry 9). It follows
that the two appropriate surface invariant conditions are therefore

Q=u—*—wxu, —A—-2u+tu, =0 (106)

Q=G—p+Dv—G—wWxv, — (h—2u+ v, = 0. (107)
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However, these are differentially related using the argument given by equations (81) to (84)
and the potential symmetry is entirely equivalent to the classical symmetry presented in table 1
(entry 1). Integration of equation (106) defines the similarity transformation:

u(x, 1) = Yr(w)(1 +1) =2 w(x, 1) = x(1+ 1) 75 (108)
and so from equations (103) and (104):

w(0,1) = £(1) = Y (0)(1 + )72 (109)

u(x,0) = g(x) = Y (@)les- (110)

The similarity transformation (108) may be used to reduce Richard’s equation (3) to the

ordinary differential equation:
_ _ A=Wy — ¥
A2 Yy + (b — DY) — kg, + 2T Ve — V11
AT Y Yoo + O = DY} = k"o + =0 P (11

where the minus sign attached to the hydraulic conductivity term indicates that x has a positive
value in the downward direction.

Consider now the particular problem based upon data provided by Philip [3], Hillel [14]
and Miyazaki [15] where

D(u) = 0.75u* = Hu) = 0.154° cm® s~ K ) = 0.003u® cm s~ (112)

Note that the physical units chosen are those commonly used in soil physics. Thus
equation (108) is

u(x, 1) = Y(w)y(1+1)"10 o, t) =x(1+1)~10 (113)

and (111) is specifically

3oy, +y
10

Initially it is assumed that the surface water content is 0.5 cm® cm~3 and that at a depth of
15 cm the soil is much dryer with volumetric water content of 0.1 cm? cm~3 then the conditions
(109) and (110) give rise to

¥ (0) = 0.5 ¥(15) = 0.1. (115)

Equations (114) and (115) together specify a standard boundary value problem whose
solution was found numerically using MAPLE software. The result is presented graphically
in figure 1 in terms of the curve u(x, 0) versus x, entirely equivalent to ¥ (w) versus w.

The corresponding infiltration curves are calculated using equation (113) and the results
are presented in figure 2 which show the penetration of water into the soil after 200 and 2000 s.

Although this example is somewhat idealized it does demonstrate that the symmetry
method offers a straightforward solution approach involving the numerical solution of an
ordinary rather than a partial differential equation. Moreover the approach has not been reliant
of the use of the Boltzmann transformation (4) which is often seen in the many textbooks on
infiltration.

0.75V Y + 30 Y2 — 0.024¢ ", + 0. (114)

6.2. A non-classical symmetry reduction

Consider the physical interpretation of the non-classical symmetry given in table 2 (entry 5)
for which

D =H, H®u) = ce* K(u) = ke, (116)
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Depth x (cms)

010y 02 03 04 05

Volumetric water content u

Figure 1. Initial profile of volumetric water content versus depth.

Depth x (cms)

Volumetric water content u

Figure 2. Redistribution of moisture content in a soil, drying at the surface, after 200 and 2000 s.

For this case equations (63) to (65) apply and without loss of generality it will be assumed
that ¢p = ccy/k. This has the advantage of rendering equation (65) integrable with the result
that

kw ke
Y(w)=Al2——)ec +w+B (117)
c
where A and B are constants. In addition (63) and (64) may be written in the form

x= (w‘(‘) ) +km) e (118)
w
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50

40

304

Depth x (cms)

204

0 01 02 03 04 05 0.6

Volumetric water content u

Figure 3. Redistribution of moisture at times ¢ = 0, 1000 and 4000 s. Note that at each depth the
volumetric moisture content increases as time passes.

Mt — V(o) e*lf(w*x) (119)

where x = w when ¢t = 0 and where the x variable will once again be measured positively in
the downwards direction
From (119) this initial condition means that

M0 — yr(x). (120)

If in addition u (0, 0) = u( then equations (120) and ( 117) together imply that
ka) ke A
Y(w)y=A|2——)ec +w—2A+e", (121)
c

The constant A may be found by additionally imposing the condition:
ulxp,0) =up (122)

to equations (120) and (121).

It follows that in this way ¥ (w) may be fully specified and so equations (118) and (119)
can be used parametrically to produce curves of u versus x for particular values of ¢.

As a specific example consider a soil of thickness 50 cm which initially has volumetric
moisture content #y = 0.4 at the surface and which is initially dry #;, = 0 at x; = 50 cm. In
addition suppose the diffusivity and hydraulic conductivity are given by

D = H, H(u) = 0.0001 ™ cm? s~ K (1) = 0.000014¢* cms™!. (123)

These conditions together with equations (120) to (122) imply that A = —7.133 and so
V¥ (w) is fully defined. It follows that equations (118) and (119) can now be used parametrically
to produce curves which describe the redistribution of volumetric moisture content u versus
depth x for particular values of time ¢. The results are given in figure 3.
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7. Conclusion

In this paper the main aim has focused upon Richard’s equation in its one-dimensional
form as it applies to the flow of moisture in an unsaturated soil or other unsaturated porous
media. In particular, the classical and non-classical symmetry reduction methods have been
applied to the equation of flow in a uniform soil with unspecified hydraulic conductivity and
moisture diffusivity. The analysis has centred upon Richard’s equation expressed both in its
standard second-order form, and also as a potential system of two first-order partial differential
equations.

A review of the classical symmetries has been presented in tables 1 and 3 and as expected
there are apparently many more symmetries for the potential system than for the standard
second-order system form of Richard’s equation. However, in section 6 an example with
H = cu*, K = ku" is given that demonstrates the equivalence of a potential and a classical
symmetry reduction. This is achieved using two surface invariant conditions which are
differentially dependent. It is to be expected that this method will demonstrate the equivalence
of many of the entries in tables 1 and 3. Nonetheless, it is also clear that the potential method
does give rise to new symmetries and one apparently not previously published is presented
at equations (77) to (79). The corresponding reduction to a system of first-order ordinary
differential equations has been presented.

A non-classical symmetry reduction of Richard’s equation is presented in sections 3 and
4, and the determining equation are shown to be over-determined, heavily non-linear and very
lengthy. Nonetheless, it has been possible to determine solutions in five cases although the
nature of H (u) and K (u) lacks the generality of the classical case. However, in each case
the reduction of Richard’s equation to an ordinary differential equation is presented and in the
particular instance when H = H (u), K,, = —coH an exact analytic solution is presented. A
further analytic solution is presented in section 6. The non-classical method is also discussed in
the context of the potential system in section 5 and this results in two non-linear undetermined
equations for the three infinitesimals 71, ¢; and ¢,. However, it is also shown that one of these
equations merely expresses the differential dependence of two surface conditions and so only
one determining equation remains for the two functions 7 and ¢,. It follows that this equation
can be closed only by the introduction of a further condition and there is need for research to
determine the nature of such additional conditions. In this paper the assumption ¢, = 0 is
introduced to enable a non-classical potential symmetry to be found.

In section 6 a case of classical (Lie/potential) symmetry and also a non-classical symmetry
is applied to a Dirichlet problem of the vertical infiltration of moisture from the surface into a
dry soil. Richard’s equation is reduced to an ordinary boundary value problem which is solved
numerically in the classical case whilst an analytic solution is presented for the non-classical
example. The results are presented in figures 2 and 3. Whilst this method illustrates the
usefulness of the symmetry method underspecialized boundary conditions there is no doubt
that further research is necessary to establish its applicability under a broader range of physical
circumstances and also the possible range of initial and boundary problems to which they may
correspond.

References

[1] Philip J R 1988 Quasi-analytic and analytic approaches to unsaturated flow Flow and Transport in the Natural
Environment: Advances and Applications ed W L Steffen and O T Denmead (Berlin: Springer)

[2] Richard’s L A 1931 Capillary conduction of liquids through porous mediums Physics 1 318-33

[3] Philip J R 1957 The theory of infiltration. 1 Soil Sci. 83 345-57



Non-classical and potential symmetry analysis of Richard’s equation for moisture flow in soil 839

[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]

Sposito G 1990 Lie group invariance of Richard’s equation Fluids in Hierarchical Porous Medium ed ] Cushman
(New York: Academic) pp 32747

Edwards M P 1994 Classical symmetry reductions of nonlinear diffusion-convection equations Phys. Lett. A
190 149-54

El-labany S K, Elhanbaly A M and Sabry R 2002 Group classification and symmetry reduction of variable
coefficient non-linear diffusion—convection equation J. Phys. A: Math. Gen. 35 8055-63

Sophocleous C 1996 Potential symmetries of nonlinear diffusion convection equations J. Phys. A. Math. Gen.
29 6951-9

Gandarias M1 1996 Potential symmetries of a porous medium equation J. Phys. A: Math. Gen. 29 5919-34

Bluman G W and Cole J D 1969 The general similarity solution of the heat equation J. Math. Mech. 18 102542

Gandarias M1, Romero J L and Diaz J M 1999 Nonclassical symmetry reductions of a porous medium equation
with convection J. Phys. A: Math. Gen. 32 1461-73

Clarkson P A and Mansfield E 1994 On a shallow water wave equation Nonlinearity 7 975-99

Champagne B, Hereman W and Winternitz P 1991 The computer calculation of Lie point symmetries of large
systems of differential equations Comput. Phys. Commun. 66 319—40

Ibragimov N H 1996 Lie Group Analysis of Differential Equations vol 3 (Boca Raton, FL: CRC Press)

Hillel D 1998 Environmental Soil Physics (New York: Academic)

Miyazaki T 1993 Water Flow in Soils (New York: Marcel Dekker)



