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Vorwort

Der vorliegende Text behandelt die Klassifikation von komplexen
und reellen halbeinfachen Lie Algebren. Das erste Kapitel behandelt
den Fall der komplexen Lie Algebren und beginnt mit elementaren
Definitionen. Wir geben eine Liste aller im Text vorkommenden Lie
Algebren von Matrizen. Die Cartan Teilalgebra einer komplexen halbe-
infachen Lie Algebra wird eingeführt. Diese ist eine maximale abelsche
Teilalgebra und führt zur Wurzelraumzerlegung einer halbeinfachen Lie
Algebra. Die Wurzeln sind lineare Funktionale auf der Cartan Teilalge-
bra, die die Wirkung der adjungierten Darstellung auf die Lie Algebra
beschreiben. Die Wurzeln solch einer Zerlegung bilden eine endliche
Teilmenge eines endlichdimensionalen euklidischen Vektorraumes mit
besonderen Eigenschaften, ein reduziertes Wurzelsystem. Aus einem
Wurzelsystem lassen sich die Cartan Matrix und das Dynkin Dia-
gramm einer Lie Algebra bilden, welche die Eigenschaften der Lie Al-
gebra beschreiben. Wir definieren ein abstraktes Dynkin Diagram und
umreißen die Klassifikation derselben. Wir geben eine Liste aller ab-
strakten Dynkin Diagramme. Die Klassifikation der komplexen hal-
beinfachen Lie Algebren basiert auf dem Existenzsatz, welcher sagt,
daß jedes abstrakte Dynkin Diagramm Dynkin Diagramm einer kom-
plexen halbeinfachen Lie Algebra ist, und aus dem Isomorphismus The-
orem, welches garantiert, daß nichtisomorphe einfache Lie Algebren
verschiedene Dynkin Diagramme besitzen. Am Ende des ersten Kapi-
tels steht ein Beispiel.

Das zweite Kapitel wendet sich den reellen halbeinfachen Lie Al-
gebren zu. Wir beginnen mit der Definition reeller Formen von kom-
plexen Lie Algebren. Zu jeder komplexen Lie Algebra existiert eine
Splitform und eine kompakte reelle Form. Die kompakte reelle Form
der Komplexifizierung einer reellen halbeinfachen Lie Algebra führt zu
den äquivalenten Begriffen der Cartan Involution und der Cartan Zer-
legung, welche eine reelle halbeinfache Lie Algebra in eine maximale
kompakte Teilalgebra und einen Vektorteil zerlegt. Die Iwasawa Zer-
legung von Lie Gruppen verallgemeinert den Gram-Schidt Orthogonal-
isierungsprozeß und führt zum Begriff der eingeschränkten Wurzeln.
Diese sind lineare Funktionale auf einem maximalen abelschen Teil-
raum des Vektorteils und bilden ein abstraktes Wurzelsystem. Eine
Cartan Teilalgebra einer reellen halbeinfachen Lie Algebra ist eine
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4 VORWORT

Teilalgebra, deren Komplexifizierung eine Cartan Teilalgebra der Kom-
plexifizierung der Lie Albegra ist. Im Gegensatz zum komplexen Fall
sind nicht alle Cartan Teilalgebren konjugiert. Beim Studium der Car-
tan Teilalgebren können wir uns jedoch auf solche einschränken, die
stabil unter einer Cartan Involution sind. Wenn wir eine maximal
kompakte Cartan Teilalgebra wählen können wir ein positives System
des Wurzelsystems wählen, das aus rein imaginären und komplexen
Wurzeln besteht. Die Cartan Involution fixiert die rein imaginären
Wurzeln und permutiert die komplexen Wurzeln in Orbits aus 2 Ele-
menten. Das Vogan Diagramm einer reellen halbeinfachen Lie Algebra
besteht aus dem Dynkin Diagramm der Komplexifizierung und folgen-
der zusätzlicher Information. Die komplexen Wurzeln in 2-elementigen
Orbits werden durch Pfeile verbunden und die imaginären Wurzeln wer-
den ausgemalt so sie nicht kompakt sind. Zur Klassifizierung dienen
wieder Sätze, die den Zusammenhang zwischen Vogan Diagrammen
und reellen halbeinfachen Lie Algebren herstellen. Jedes Diagramm,
das formal wie ein Vogan Diagramm aussieht ist Vogan Diagramm
einer reellen halbeinfachen Lie Algebra. Haben zwei reelle halbein-
fache Lie Algebren das selbe Vogan Diagramm, so sind sie isomorph,
aber reelle halbeinfache Lie Algebren mit unterschiedlichen Vogan Di-
agrammen können isomorph sein. Das Problem dieser Redundenz löst
das Theorem von Borel und de Siebenthal. Wir geben eine Liste aller
Vogan Diagramme, die den Redundenztest dieses Theorems überstehen
und wenden uns schließlich der Realisierung einiger Diagramme als Lie
Algebren von Matrizen zu.

Zum Schluß besprechen wir kurz einen alternativen Weg der Klas-
sifizierung reeller halbeinfacher Lie Algebren. Nimmt man anstatt der
maximal kompakten eine maximal nichtkompakte Cartan Teilalgebra
und legt man eine andere Ordnung der Wurzeln zugrunde erhält man
den Begriff des Satake Diagramms. Eine Auflistung aller auftretenden
Satake Diagramme bildet den Schluß.



Preface

This text deals with the classification of complex and real semisim-
ple Lie algebras. In the first chapter we deal the complex case and
start with elementary definitions. We list all matrix Lie algebras which
we will deal with throughout the text. We introduce Cartan subalge-
bras of a semisimple complex Lie algebra, which are maximal abelian
subalgebras and discuss the root space decomposition. The roots are
linear functionals on the Cartan subalgebra describing the action of
the adjoint representation on the Lie algebra. These roots form re-
duced root systems which we describe as a specific finite subset of a
finite dimensional vector space with inner product. From the root sys-
tems we deduce Cartan matrices and Dynkin diagrams. We introduce
the notion of abstract Dynkin diagrams and outline the classification
of these. We give a complete list of abstract Dynkin diagrams. We
mention the Existence theorem, stating that every abstract Dynkin di-
agram comes from a complex simple Lie algebra, and the Isomorphism
Theorem, which says that nonisomorphic simple Lie algebras have dif-
ferent Dynkin diagrams, to obtain the classification. At the end of the
first chapter we look at an example.

The second chapter deals with real semisimple Lie algebras. We
start with real forms of complex Lie algebras, observing that for every
complex semisimple Lie algebra there exists a split real form and a
compact real form. The compact real form of the complexification of a
real semisimple Lie algebra yields to the notion of Cartan involutions
and the equivalent notion of Cartan decompositions, which decomposes
real semisimple Lie algebras in a maximally compact subalgebra and
a vector part. The Iwasawa decomposition on group level generalizes
the Gram-Schmidt orthogonalization process and leads to the notion
of restricted roots. These are linear functionals on a maximal abelian
subspace of the vector part, which form an abstract root system. A
Cartan subalgebra of a real semisimple Lie algebra is a subalgebra
whose complexification is a Cartan subalgebra in the complexified Lie
algebra. In contrast to the complex case not all Cartan subalgebras are
conjugate, but we may restrict to the study of Cartan subalgebras that
are stable under a Cartan involution. When we choose a maximally
compact Cartan subalgebra we can fix a positive system such that
the simple roots are either purely imaginary or complex. The Cartan
involution permutes the complex ones in 2-cycles. A Vogan diagram
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6 PREFACE

of a real semisimple Lie algebra consists of the Dynkin diagram of its
complexification plus additional information. The 2-cycles of complex
simple roots are labeled and the imaginary simple roots are painted if
they are noncompact. Every diagram that looks formally like a Vogan
diagram comes from a real semisimple Lie algebra. Two real semisimple
Lie algebras with the same Vogan diagram are isomorphic, but real
semisimple Lie algebras with different Vogan diagrams might also be
isomorphic. This redundancy is resolved by the Borel and de Siebenthal
Theorem. We give a complete list of Vogan diagrams surviving this
redundancy test an take a look at the matrix realizations of some of
these.

An alternative way of classifying real semisimple arises from choos-
ing a maximally noncompact Cartan subalgebra and another positive
system which leads to the notion of Satake diagrams.



CHAPTER 1

Classification of complex semisimple Lie Algebras

We will start with some elementary definitions and notions.
A vector space g over the field K together with a bilinear mapping

[, ] : g × g → g is a Lie algebra if the following two conditions are
satisfied:

1: [X,Y ] = −[Y,X]
2a: [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0
2b: [X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]]

2a and 2b are equivalent. We will call [, ] bracket. The second condition
is called Jacobi identity. Let g and h be Lie algebras. A homomorphism
of Lie algebras is a linear map ϕ : g→ h such that

ϕ([X,Y ]) = [ϕ(X), ϕ(Y )]

∀X,Y ∈ g. An isomorphism is a homomorphism that is one-one and
onto. An isomorphism ϕ : g→ g is called automorphism of g. The set
of automorphisms of a Lie algebra g over K is denoted by AutK g. If a

an b are subsets of g, we write

[a, b] = span{[X,Y ]|X ∈ a, Y ∈ b}
A Lie subalgebra (or subalgebra for short) h of g is a linear subspace
satisfying [h, h] ⊆ h. Then h itself is a Lie algebra. An ideal h of g is
a linear subspace satisfying [h, g] ⊆ h. Every ideal of g is a subalgebra
of g. A Lie algebra g is said to be abelian if [g, g] = 0. Let s be an
arbitrary subset of g. We call

Zg(s) = {X ∈ g|[X,Y ] = 0 ∀Y ∈ s}
the centralizer of s in g. The center of g is Zg(g) denoted Zg. If s is a
Lie subalgebra we call

Ng(s) = {X ∈ g|[X,Y ] ∈ s ∀Y ∈ s}
the normalizer of s in g. Centralizer and normalizer are Lie subalgebras
of g and s ⊆ Ng(s) always holds. If a and b are ideals in a Lie algebra
g, then so are a + b, a ∩ b and [a, b]. If a is an ideal in g we define
the quotient algebra g/a as the quotient of the vector spaces g and a

equipped with the bracket law [X+a, Y +a] = [X,Y ]+a. Furthermore
let ϕ : g → h be a map satisfying a ⊆ kerϕ. Then ϕ factors through
the quotient map g→ g/a defining a homomorphism g/a→ h.
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8 1. CLASSIFICATION OF COMPLEX SEMISIMPLE LIE ALGEBRAS

Let g be a finite-dimensional Lie algebras. We define recursively

g0 = g, g1 = [g, g], gj+1 = [gj, gj]

The decreasing sequence

g0 ⊇ g1 ⊇ g2 ⊇ . . .

is called commutator series for g. Each gj is an ideal in g and g is
called solvable if gj = 0 for some j. We define recursively

g0 = g, g1 = [g, g], gj+1 = [g, gj]

The decreasing sequence

g0 ⊇ g1 ⊇ g2 ⊇ . . .

is called lower central series for g. Each gj is an ideal in g and g is
called nilpotent if gj = 0 for some j. Since gj ⊆ gj for each j nilpotency
implies solvability. The sum of two solvable ideals is a solvable ideal.
Hence there exists a unique maximal solvable ideal, which we call the
radical rad g of g.

A Lie algebra g is simple if g is nonabelian and has no proper
nonzero ideals. A Lie algebra g is semisimple if it has no nonzero solv-
able ideals (i.e.: rad g = 0). Every simple Lie algebra is semisimple and
every semisimple Lie algebra has 0 center. If g is any finite-dimensional
Lie algebra, then g/ rad g is semisimple.

Let V be a vector space over K and letM : V → V and N : V → V
be vector space endomorphisms. Let EndK V denote the vector space
of endomorphisms of V . This is a Lie algebra with bracket defined by

[M,N ] :=M ◦N −N ◦M
A derivation of a Lie algebra g is an Endomorphism D ∈ EndK g

such that

D[X,Y ] = [DX,Y ] + [X,DY ].

Definition (2b) of the Jacobi identity says, that [X, ] acts like a deriva-
tion. A representation of a Lie algebra g on a vector space V over a field
K is a homomorphism of Lie algebras π : g→ EndK V . The adjoint rep-
resentation of g on the vector space g is defined by adX(Y ) = [X,Y ].
adX lies in Der(g) because of the Jacobi identity.

A direct sum of two Lie algebras a and b is the vector space direct
sum a ⊕ b with unchanged bracket law within each component and
[a, b] = 0.

Let g be a finite-dimensional Lie algebra over K, X,Y ∈ g. The
symmetric bilinear form defined by

B(X,Y ) = Tr(adX ◦ adY )

is called Killing form. The Killing form satisfies

B([X,Y ], Z) = B(X, [Y, Z])
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We call this property invariance. The radical of B (or generally of any
bilinear form) defined by

radB = {v ∈ g|B(v, u) = 0 ∀u ∈ g}

is an ideal of g because of the invariance of B. B is called degenerate
if radB 6= 0, otherwise it is called nondegenerate.

1.1. Proposition. Let g be a finite-dimensional Lie algebra. The
following conditions are equivalent:

(1) g is semisimple
(2) The Killing form of g is nondegenerate
(3) g = g1⊕ · · · ⊕ gm with gj a simple ideal for all j. This decom-
position is unique and the only ideals of g are direct sums of
various gj.

1.2. Corollary. If g is semisimple, then [g, g] = g. If a is any
ideal in g, then a⊥ is an ideal and g = a⊕ a⊥.

A Lie algebra g is called reductive if

g = [g, g]⊕ Zg

with [g, g] being semisimple and Zg abelian.

1.3. Corollary. If g is reductive, then g = [g, g] ⊕ Zg with [g, g]
semisimple and Zg abelian.

We now give the definitions of all matrix Lie algebras we will need.
The bracket relation will always be defined the way it is done for Lie
algebras of endomorphisms above.

H denotes the quaternions, a division algebra over R with basis
{1, i, j, k} satisfying the following conditions:

i2 = j2 = k2 = −1
ij = k, jk = i, ki = j
ji = −k, kj = −i, ik = −j

The real part of a quaternion is given by Re(a+ ib+ jc+ kd) = a. We
define some matrices used in the definitions later on. Let In denote the
identity matrix of dimension n-by-n. Let

Jn,n =

(

0 In
−In 0

)

, Im,n =

(

Im 0
0 In

)

and Kn,n =

(

0 In
In 0

)

.

The following proposition enables us to check reductiveness.

1.4. Proposition. Let g be a real Lie algebra of matrices over R,
C or H. If g is closed under conjugate transpose (i.e.: (X)∗ = (X)t ∈ g

∀X ∈ g) then g is reductive.
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Proof. Define an inner product 〈X,Y 〉 = ReTr(XY ∗) for X,Y in
g. Let a be an ideal in g and denote a⊥ the orthogonal complement of
a. The g = a⊕ a⊥ as vector space. To see that a⊥ is an ideal in g we
choose arbitrary elements X ∈ a⊥, Y ∈ g and Z ∈ a and compute

〈[X,Y ], Z〉=ReTr(XY Z∗ − Y XZ∗)
=−ReTr(XZ∗Y −XY Z∗)
=−ReTr(X(Y ∗Z)∗ −X(ZY ∗)∗)

=−〈X, [Y ∗, Z]〉
Since Y ∗ is in g, [Y ∗, Z] is in a. Thus the right hand side is 0 for all
Z and hence [X,Y ] is in a⊥ and a⊥ is an ideal and g is reductive. ¤

In the sequel we will use matrix Lie algebras listed below. These
are all reductive by proposition 1.4. To check semisimplicity one might
use corollary 1.3, to see that g is semisimple if Zg = 0.

• Reductive Lie algebras

gl(n,C) = {n-by-n matrices over C}
gl(n,R) = {n-by-n matrices over R}
gl(n,H)= {n-by-n matrices over H}

• Semisimple Lie algebras over C

sl(n,C) = {X ∈ gl(n,C)|TrX = 0} for n ≥ 2

so(n,C) = {X ∈ gl(n,C)|X +X t = 0} for n ≥ 3

sp(n,C)= {X ∈ gl(n,C)|X tJn,n + Jn,nX = 0} for n ≥ 1

• Semisimple Lie algebras over R

sl(n,R) = {X ∈ gl(n,R)|TrX = 0} for n ≥ 2

sl(n,H) = {X ∈ gl(n,H)|ReTrX = 0} for n ≥ 1

so(p, q) = {X ∈ gl(p+ q,R)|X∗Ip,q + Ip,qX = 0} for p+ q ≥ 3

su(p, q) = {X ∈ sl(p+ q,C)|X∗Ip,q + Ip,qX = 0} for p+ q ≥ 2

sp(n,R)= {X ∈ gl(2n,R)|X tJn,n + Jn,nX = 0} for n ≥ 1

sp(p, q) = {X ∈ gl(p+ q,H)|X∗Ip,q + Ip,qX = 0} for p+ q ≥ 1

so∗(2n) = {X ∈ su(n, n)|X tKn,n +Kn,nX = 0} for n ≥ 2

Now we want to understand the bracket relation of complex semisim-
ple Lie algebras.

1.5. Proposition. If g is any finite-dimensional Lie algebra over
C and h is a nilpotent subalgebra, then there is a finite subset ∆ ⊂ h∗

such that

(1) g =
⊕

α∈∆ gα where

gα := {X ∈ g|(adH − α(H)I)nX = 0 for all H ∈ h and some n}
(2) h ⊆ g0
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(3) [gα, gβ] ⊆ gα+β

The gα are called generalized weight spaces of g relative to ad h with
generalized weights α. The members of gα are called generalized weight
vectors. The decomposition statement (1) holds for any representation
of a nilpotent Lie algebra over C on a finite-dimensional complex vec-
tor space. The proof of this decomposition uses Lie´s Theorem which
states that there is a simultaneous eigenvector for any representation of
a solvable Lie algebra on a finite-dimensional vector space over an al-
gebraically closed field. Statement (2) is clear since ad h is nilpotent on
h. In statement (3) we set gα+β = {0} if α+β is no generalized weight.
The proof consists of an elementary calculation. As a consequence g0 is
a subalgebra of g. A nilpotent Lie subalgebra h of a finite-dimensional
complex Lie algebra g is a Cartan subalgebra if h = g0. One proves that
h is a Cartan subalgebra if and only if h = Ng(h). If g is semisimple a
Cartan algebra h is maximal abelian.

These are the two important theorems concerning Cartan subalge-
bras of finite-dimensional complex Lie algebras:

1.6. Theorem. Any finite-dimensional complex Lie algebra g has
a Cartan subalgebra.

1.7. Theorem. If h and h′ are Cartan subalgebras of a finite-
dimensional complex Lie algebra g, then there exists an inner auto-
morphism a ∈ Int g such that a(h) = h′.

We say that h and h′ are conjugate via a. Because of this conjuga-
tion all Cartan subalgebras of a complex Lie algebra g have the same
dimension, which is called rank of g.

This decomposition is simpler for semisimple Lie algebras. Let g

be a complex semisimple Lie algebra with Killing form B and Cartan
subalgebra h. The generalized weights of the representation ad h on g

are called roots. The set of roots is denoted by ∆ and is called root
system. The decomposition

g = h⊕
⊕

α∈∆
gα

is called root space decomposition of g. This decomposition has a
number of nice properties:

1.8. Proposition. • The gα are 1-dimensional and are there-
fore given by

gα = {X ∈ g|(adH)X = α(H)X for all H ∈ h}.
• [gα, gβ] = gα+β.
• If α and β are in ∆ ∪ {0} and α + β 6= 0 then B(gα, gβ) = 0.
• If α is in ∆ ∪ {0} then B is nonsingular on gα × g−α.
• If α ∈ ∆ then −α ∈ ∆
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• B|h×h is nondegenerate and consequently there exists to each
root α ∈ h∗ an element Hα ∈ h such that α(H) = B(H,Hα)
for all H ∈ h.
• ∆ spans h∗.
• Choose gα 3 Eα 6= 0 for all α ∈ ∆ so [H,Eα] = α(H)Eα. If
X ∈ g−α then [Eα, X] = B(Eα, X)Hα.
• If α and β ∈ ∆ then β(Hα) is a rational multiple of α(Hα).
• If α ∈ ∆ then α(Hα) 6= 0.
• The action of ad h on g is simultaneously diagonable.
• If H and H ′ ∈ h then B(H,H ′) =

∑

α∈∆ α(H)α(H ′).
• The pair of vectors {Eα, E−α} can be chosen so that B(Eα, E−α) =
1.

We define a bilinear form 〈, 〉 on h∗ by 〈ϕ, ψ〉 = B(Hϕ, Hψ) =
ϕ(Hψ) = ψ(Hϕ).

1.9. Proposition. Let V be the R linear span of ∆ in h∗. Then V
is a real form of the vector space h∗ and the restriction of the bilinear
form 〈, 〉 to V × V is a positive definite inner product. Let h0 be the
R linear span of all Hα for α ∈ ∆ then h0 is a real form of the vector
space h, the members of V are exactly those linear functionals that are
real on h0. Restricting those linear functionals to operate on h0 yields
an R isomorphism of V to h0.

Let |ϕ|2 = 〈ϕ, ϕ〉 and α ∈ ∆. The mapping sα : h∗0 → h∗0 defined by

sα(ϕ) = ϕ− 2〈ϕ, α〉
|α|2 α

is called root reflection. The root reflections are orthogonal transfor-
mations which carry ∆ to ∆.

A reduced abstract root system in a finite-dimensional real vector
space V with inner product 〈, 〉 is a finite set ∆ of nonzero elements
such that

(1) ∆ spans V

(2) the orthogonal transformation sα(ϕ) = ϕ − 2〈ϕ,α〉
|α|2 for α ∈ ∆

carry ∆ to itself

(3) 2〈β,α〉
|α|2 is an integer for α, β ∈ ∆

(4) α ∈ ∆ implies 2α /∈ ∆ (without this condition the abstract
root system is called nonreduced)

1.10. Theorem. The root system of a complex semisimple Lie al-
gebra g with respect to a Cartan subalgebra h forms a reduced abstract
root system in h∗0.

Two abstract root systems ∆ in V and ∆′ in V ′ are isomorphic if
there exists a vector space isomorphism ψ : V → V ′ such that ψ(∆) =
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∆′ and
2〈β, α〉
|α|2 =

2〈ψ(β), ψ(α)〉
|ψ(α)|2

for α, β ∈ ∆. An abstract root system ∆ in V is said to be reducible
if ∆ admits a nontrivial disjoint decomposition ∆ = ∆′ ∪ ∆′′ with
every member of ∆′ orthogonal to every member of ∆′′. ∆ is called
irreducible if no such decomposition exists.

1.11. Theorem. The root system ∆ of a complex semisimple Lie
algebra g with respect to a Cartan subalgebra h is irreducible as an
abstract root system if and only if g is simple.

Lets take a look at some properties of abstract root systems.

1.12. Proposition. Let ∆ be an abstract root system in the vector
space V with inner product 〈, 〉.

(1) If α is in ∆, then −α is in ∆.
(2) If α in ∆ is reduced, then the only members of ∆ ∪ {0} pro-
portional to α are ±α, ±2α and 0, ±2α cannot occur if ∆ is
reduced.

(3) If α ∈ ∆ and β ∈ ∆ ∪ {0}, then 2〈β,α〉
|α|2 ∈ {0,±1,±2,±3,±4}

and ±4 only occurs in a nonreduced system for β = ±2α.
(4) If α and β are nonproportional members of ∆ such that |α| <
|β|, then 2〈β,α〉

|β|2 ∈ {0,±1}
(5) If α, β ∈ ∆ with 〈α, β〉 > 0, then α − β is a root or 0. If
〈α, β〉 < 0, then α + β is a root or 0.

(6) If α, β ∈ ∆ and neither α + β nor α − β in ∆ ∪ {0}, then
〈α, β〉 = 0.

(7) If α ∈ ∆ and β ∈ ∆ ∪ {0}, then the α string containing β
has the form β + nα for −p ≤ n ≤ q with p ≥ 0 and q ≥ 0.

There are no gaps. Furthermore p − q = 2〈β,α〉
|α|2 . The α string

containing β contains at most four roots.

The abstract reduced root systems with V = R2 are the following:

A1 ⊕ A1 A2 B2 C2 G2

//

OO

oo

²²

//

XX111111

FF°°°°°°oo

»»1
11
11
1

§§°°
°°
°°

//

__?????????

OO ??ÄÄÄÄÄÄÄÄÄoo

ÂÂ?
??

??
??

??

²²ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä //

__?????
??ÄÄÄÄÄ

OO

oo

ÂÂ?
??

??

ÄÄÄÄÄ
ÄÄ

²²

ffMMMM //

XX111111
OO

FF°°°°°°
88qqqq
&&MM

MMoo

»»1
11
11
1

²²
§§°°
°°
°°xxqqq
q

with A1 ⊕ A1 being the only reducible one of the above.
We want to introduce a notion of positivity on V , the vector space

containing an abstract reduced root system ∆, such that

• for any ϕ ∈ V \{0} either ϕ or −ϕ is positive and
• the sum of positive elements is positive and positive multiples
of positive elements are positive.
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Later on, when we will classify real semisimple Lie algebras, we will
insiste on a special ordering of roots. Therefore the way we intro-
duce positivity is by means of a lexicographic ordering. Let B =
{ϕ1, ϕ2, . . . , ϕn} be a basis of V . An arbitrary element ϕ ∈ V de-
composes to ϕ =

∑n

i=1 aiϕi. We say that ϕ > 0 if there is an index k,
such that ai = 0 for all 1 ≤ i ≤ k−1 and ak > 0, otherwise ϕ < 0. It is
easily seen, that this notion of positivity preserves the above properties.
We say that ϕ > ψ if ϕ− ψ > 0.

We say a root α ∈ ∆ ⊂ V is simple if α > 0 and α does not
decompose in α = β1 + β2 with β1 and β2 both positive roots. The set
of simple roots is denoted by Π. Because of the first condition of our
positivity we either have α < β or α > β for α, β ∈ Π. Then we obtain
an ordering of simple roots by α1 < α2 < · · · < αl

1.13. Proposition. With l = dimV , there are l simple roots

{α1, α2, . . . , αl} = Π

which are linearly independent. If β is a root and is decomposed by
β = a1α1 + a2α2 + · · · + alαl, then all ai 6= 0 have the same sign and
all ai are integers.

Let ∆ be a reduced abstract root system in an l dimensional vector
space V and let Π = {α1, α2, . . . , αl} denote the simple roots in a fixed
ordering. The l-by-l matrix A = (Aij) given by

Aij =
2〈αi, αj〉
|αi|2

is called the Cartan matrix of ∆ and Π. This matrix depends on
the ordering of the simple roots but distinct orderings lead to Cartan
matrices which are conjugate by a permutation matrix.

We examine some properties of Cartan matrices.

1.14. Proposition. The Cartan matrix A = (Aij) of ∆ and Π has
the following properties:

(1) Aij is in Z for all i, j
(2) Aii = 2 for all i
(3) Aij ≤ 0 for i 6= j
(4) Aij = 0 if and only if Aji = 0
(5) there exists a diagonal matrix D with positive diagonal entries
such that DAD−1 is symmetric positive definite.

An arbitrary square matrix A satisfying the above properties is
called abstract Cartan matrix. Two abstract Cartan matrices are iso-
morphic if they are conjugate by a permutation matrix.

1.15. Proposition. A reduced abstract root system is reducible if
and only if, for some enumeration of the indices, the corresponding
Cartan matrix is block diagonal with more than one block.
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Via this proposition we move the notion of reducibility from reduced
abstract root systems to Cartan matrices. An abstract Cartan matrix
is reducible if, for some enumeration of the indices, the matrix is block
diagonal with more than one block. Otherwise it is irreducible.

The last step in reducing the problem of classification to the essen-
tial minimum are Dynkin diagrams. We associate to a reduced abstract
root system ∆ with simple roots Π and Cartan matrix A the following
graph: Each simple root αi is represented by a vertex, and we attach
to that vertex a weight proportional to |αi|2. We will omit writing the
weights if they are all the same. We connect two given vertices corre-
sponding to two distinct simple roots αi and αj by AijAji edges. The
resulting graph is called the Dynkin diagram of Π. It follows from our
last proposition, that a Dynkin diagram is connected if and only if ∆
is irreducible.

Lets look at three examples, one reducible and the others irre-
ducible.

A1 ⊕ A1 A2 G2

Root system
α2

α1

//

OO

oo

²²

α2

α1

//

XX111111

FF°°°°°°oo

»»1
11
11
1

§§°°
°°
°°

α2
α1 ffMMMM //

XX111111
OO

FF°°°°°°
88qqqq
&&MM

MMoo

»»1
11
11
1

²²
§§°°
°°
°°xxqqq
q

Cartan matrix

(

2 0
0 2

) (

2 −1
−1 2

) (

2 −3
−1 2

)

Dynkin diagram e e e e e1 e3
Because of the fact that any two Cartan subalgebras of g are con-

jugate via Int g we know, that different choice of a Cartan algebra h

leads to isomorphic root systems. To see that the choice of a simple
system Π leads to isomorphic Cartan matrices we introduce the Weyl
group.

Let ∆ be an abstract reduced root system in a vector space V . The
mapping sα : V → V defined by

sα(β) := β − 2〈β, α〉
|α|2

is the reflection of V at the hyperplane orthogonal to α. The group
of reflections generated by these sα with α ∈ ∆ is called the Weyl
group and is denoted by W = W (∆) (if ∆ is the root system of a Lie
algebra g and a Cartan subalgebra h we also write W (g, h)). As these
sα preserve ∆ the whole group W preserves ∆. If Π = {α1, . . . , αl} is a
simple system in ∆, thenW (∆) is generated by the reflections sαi with
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αi ∈ Π. The Weyl group acts simple transitive on the set of simple
systems in ∆.

1.16. Theorem. Let Π and Π′ be two simple systems in ∆. There
exists one and only one element s ∈W such that s(Π) = Π′.

1.17. Corollary. Let ∆ be an abstract root system and let ∆+

and ∆+′ be two positive systems, with corresponding simple systems Π
and Π′. The Cartan matrices of Π and Π′ are isomorphic.

Proof. By the above theorem we obtain an s ∈ W (∆) such that
Π′ = s(Π). We fix an enumeration of Π = {α1, . . . , αl} and choose
an enumeration of Π′ = {β1, . . . , βl} such that βj = s(αj) for all j ∈
{1, . . . , l}. So we have

2〈βi, βj〉
|βi|2

=
2〈sαi, sαj〉
|sαi|2

=
2〈αi, αj〉
|αi|2

since s is orthogonal and hence the resulting Cartan matrices are equal
after a permutation of indices which means that they are isomorphic.

¤

The Weyl group in another important tool in many proofs along the
classification. It is also used in the proof of the following Proposition.

1.18. Proposition. Let ∆ and ∆′ be two nonisomorphic reduced
root systems with simple systems Π resp. Π′. Then the Cartan matrices
A of ∆ and A′ of ∆′ are nonisomorphic.

Now we will give an outline of the classification of abstract Car-
tan matrices. We will work simultaneously with Cartan matrices and
their associated Dynkin diagrams. First we observe two operations on
Dynkin diagrams and their counterparts on Cartan matrices.

(1) Remove the ith vertex and all attached edges from an abstract
Dynkin diagram. The counterpart operation on an abstract
Cartan matrix is removing the ith row and column from the
matrix.

(2) If the ith and jth vertices are connected by a single edge their
weights are equal. Collapse the two vertices to a single one
removing the connecting edge, retaining all other edges. The
counterpart operation collapses the ith and jth row and col-
umn replacing the 2-by-2 matrix from the ith and jth indices
(

2 −1
−1 2

)

by the 1-by-1 matrix (2)

One shows that these two operations make abstract Dynkin dia-
grams out of abstract Dynkin diagrams and abstract Cartan matrices
out of abstract Cartan matrices. Using the defining properties of ab-
stract Cartan matrices plus operation (1) we get the following
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1.19. Proposition. Let A be an abstract Cartan matrix. If i 6= j,
then

(1) AijAji < 4
(2) Aij ∈ {0,−1,−2,−3}

An important step which uses the above proposition in the classifi-
cation is the following

1.20. Proposition. The abstract Dynkin diagram associated to the
l-by-l abstract Cartan matrix A has the following properties:

(1) there are at most l pairs of vertices i < j with at least one edge
connecting them

(2) there are no loops
(3) there are at most three edges attached to one vertex.

Using these tools we obtain the following classification of irreducible
abstract Dynkin diagrams in five steps. Note that reducible abstract
Dynkin diagrams are not connected and can therefore be obtained by
putting irreducible ones side by side.

Step 1: None of the following configurations occurs:

e e e
e

e
¡
¡¡

@
@@e e e e

e

e
e e

e

e
@
@@

¡
¡¡

¡
¡¡

@
@@

Otherwise we use operation (2) to collapse all the single-
line part in the center to a single vertex leading to a violation
of 1.20 (3).

Step 2: We do a raw classification by the maximal number of
lines connecting two vertices.
• There is a triple line. By 1.20 (3) the only possibility is

(G2) e
α1

e
α2

• There is a double line, but no triple line. The graph in
the middle of the figure in step 1 shows that only one pair
of vertices connected by two edges exists.

(B,C, F ) e
α1

e
αp

e
αp+1

e
αl

• There are only single lines. In this situation we call δ
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e eδ
e

e
a triple point. If there is no triple point, then the absence
of loops implies that the diagram is

(A) e e e e
If there is a triple point there is only one because if the
third diagram in the figure in step 1. So the other possi-
bility is

(D,E) e
α1

e
αp

e
β1

e
αp+q

e
βr

e
αp+1

¡
¡¡

@
@@

Step 3: Now we address the problem of possible weights going
through the three point of the previous step in reverse order:
• If the ith and jth vertices are connected by a single line,
then Aij = Aji = −1 which implies that the weights wi
and wj of these vertices are equal. Thus in the cases (A)
and (D,E) all weights are equal and we may take them
to be 1. In this situation we omit writing the weights in
the diagram.
• In the case (B,C, F ) we have Ap,p+1 = −2 and Ap+1,p =
−1 (Ignoring the possibility of the reverted situation is
no loss of generality). The defining property 5 of abstract
Cartan matrices leads to |αp+1|2 = 2|αp|2. Taking αk = 1
for k ≤ p we get αk = 2 for k ≥ p+ 1.
• In the case (G2) similar reasoning leads to |α1|2 = 1 and
|α2|2 = 3.

Step 4: The remaining steps deal with special situations. In
this step we cover the case (B,C, F ). In this case only these
diagrams are possible:

(B) e1 e2 e2 e2
(C) e1 e1 e1 e2
(F4) e1 e1 e2 e2

For a proof one uses the Schwarz inequality and the defining
properties of Cartan matrices.

Step 5: In the case (D,E) the only possibilities are
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(D) e e e
e

e
¡
¡¡

@
@@

(E) e
α1

e
αp

eβ
e

αp+1

e
αp+2

where p ∈ {3, 4, 5}. For a proof one uses the Parseval equality.

These steps lead to the following

1.21. Theorem. Up to isomorphism the connected Dynkin dia-
grams are the following:

• An for n ≥ 1
• Bn for n ≥ 2
• Cn for n ≥ 3
• Dn for n ≥ 4
• E6
• E7
• E8
• F4
• G2

n refers to the number of vertices of the Dynkin diagram. The restric-
tions of n in the first four items are made to avoid identical diagrams.
The diagrams carrying those names are listed in the following table.
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An e e e e
Bn

e1 e2 e2 e2
Cn e1 e1 e1 e2

Dn
e e e

e

e
¡
¡¡

@
@@

E6 e e e
e

e e
E7 e e e e

e
e e

E8 e e e e
e
e e e

F4 e1 e1 e2 e2
G2 e1 e3

We have got a classification of reduced abstract Dynkin diagrams
(resp. Cartan matrices) now which gives us a classification of reduced
abstract root systems. We want to show, that an isomorphism of the
root systems of two complex semisimple Lie algebras lifts to an isomor-
phism of these algebras themselves. The technique used will be to use
generators and relations, realizing any complex semisimple Lie algebra
as a quotient of a free Lie algebra by an ideal generated by some re-
lations. First lets look at some properties of complex semisimple Lie
algebras.

Let g be a complex semisimple Lie algebra, h a Cartan subalgebra,
∆ its root system with simple system Π = {α1, . . . , αl}, B a nondegen-
erate symmetric invariant bilinear form on g that is positive definite
on the real form of h where the roots are real and let A = (Aij) be the
Cartan matrix of ∆ and Π. For 1 ≤ i ≤ l let

• hi = 2
|αi|2Hαi ,

• ei a nonzero root vector for αi and
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• fi the nonzero root vector for −αi satisfying B(ei, fi) =
2

|αi|2 .

In this situation the set X = {hi, ei, fi}li=1 generates g as a Lie algebra.
The elements of X are called standard generators of g relative to h and
Π. These generators satisfy the following properties within g.

(1) [hi, hj] = 0
(2) [ei, fj] = δijhi
(3) [hi, ej] = Aijej
(4) [hi, fj] = −Aijfj
(5) (ad ei)

−Aij+1ej = 0 when i 6= j
(6) (ad fi)

−Aij+1fj = 0 when i 6= j

These relations are called Serre relations for g.
To build up a complex semisimple Lie algebra out of generators

and relations we introduce the notion of free Lie algebras. A free Lie
algebra on a set X is a pair (F, ι) consisting of a Lie Algebra F and
a function ι : X → F with the following universal mapping property:
Whenever l is a complex Lie algebra and ϕ : X → l is a function,
then there exists a unique Lie algebra homomorphism ϕ̃ such that the
diagram

F
ϕ̃

ÁÁ<
<

<
<

X

ι

??ÄÄÄÄÄÄÄÄ

ϕ
// l

commutes.
For a nonempty set X there exists a free Lie algebra such that the

image of X in F generates F. Let g be a Lie algebra with Cartan
subalgebra h, root system ∆, bilinear form B, simple system Π and
Cartan matrix A. We express this Lie algebra in terms of a free Lie
algebra as follows: Let F be the free Lie algebra generated by the set
X = {hi, ei, fi}li=1 and let R be the ideal generated by the differences
of the left and right sides of the Serre relations. The universal mapping
property yields a homomorphism F/R → g and the usefulness of this
description arises from a theorem stated by Serre.

1.22. Proposition. The canonical homomorphism F/R→ g is an
isomorphism.

The very last steps in the classification of complex semisimple Lie
algebras are the following two theorems, which deal with uniqueness
and existence of Lie algebras corresponding to Cartan matrices..

1.23. Theorem (Isomorphism Theorem). Let g and g′ be complex
semisimple Lie algebras with respective Cartan subalgebras h and h′

and respective root systems ∆ and ∆′. Suppose that a vector space
isomorphism ϕ : h → h′ is given with the property, that its transpose
ϕt : h′∗ → h∗ maps ∆′ onto ∆. For α ∈ ∆ write α′ = (ϕt)−1(α) ∈ ∆′.
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Fix a simple system Π in ∆. For each α ∈ Π select a nonzero root
vector Eα ∈ g and Eα′ ∈ g′ for α′. Then there exists one and only one
Lie algebra isomorphism ϕ̃ : g→ g′ such that ϕ̃|h = ϕ and ϕ̃(Eα) = Eα′
for all α ∈ Π.

1.24. Theorem (Existence Theorem). If A is an abstract Cartan
matrix, then there is a complex semisimple Lie algebra g whose root
system has A as Cartan matrix.

At the end of this chapter we would like to look at an example of
the theory we have done so far. We concider sl(n,C). sl(n,C) is the
Lie algebra of the special linear group of dimension n.

g = sl(n,C) = {X ∈ gl(n,C)|TrX = 0}
where gl(n,C) is the Lie algebra of n × n matrices with entries in C.
The bracket relation is defined by

[X,Y ] = XY − Y X.
g is closed under bracket by the fact, that Tr(XY ) = Tr(Y X) for
arbitrary matrices. We define a Lie subalgebra

h = {X ∈ g|X is a diagonal matrix}
and a real form

h0 = {X ∈ g|X is a real diagonal matrix}.
Then

h = h0 ⊕ ih0 = (h0)
C.

We define a matrix Eij to be 1 at (i, j) and 0 elsewhere. These will be
elements of the root spaces. Let

H =





h1
. . .

hn





be an arbitrary element of h. Define linear functionals ei ∈ h∗ that pick
out the i’ths diagonal entry of a matrix by

ei(H) = hi.

We calculate

HEij = hiEij and EijH = hjEij

and obtain

(adH)Eij = [H,Eij] = (ei(H)− ej(H))Eij

to see that Eij are simultanous eigenvectors for all adH, with eigen-
value ei(H)− ej(H). The linear functionals

ei − ej for all i 6= j
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are the roots. The set of roots denoted by ∆. We obtain the root space
decomposition

g = h⊕
⊕

i6=j
CEij

which we can write as

g = h⊕
⊕

i6=j
gei−ej

with the root spaces

gei−ej = {X ∈ g|(adH)X = (ei − ej)(H)X for all H ∈ h}.
This shows that h = g0 and hence h is a Cartan subalgebra of g.
Elementary computation yields

[Eij, Ei′j′ ] =















0 for i 6= j ′ and j 6= i′

Eij′ for i 6= j ′ and j = i′

−Ei′j for i = j ′ and j 6= i′

Eii − Ejj for i = j ′ and j = i′

We obtain the following structure of the bracket:

[gα, gβ]







= gα+β if α + β is a root
= 0 if α + β is neither a root nor 0
⊆ h if α + β = 0

All roots are real valued on h0 and thus can be restricted to members of
h∗0. To introduce a notion of positivity we write an arbitrary functional
ϕ ∈ h∗0 as ϕ =

∑

j ajej with
∑

j aj = 0, which is a unique description
of ϕ. We call ϕ positive if the first nonzero coefficient aj > 0. This
guarantees that

(1) for any nonzero ϕ ∈ h∗0 exactly one of ϕ and −ϕ is postitive,
(2) the sum of positive elements is positive and any positive mul-

tiple of a positive element is positive.

We say that ϕ > ψ if ϕ− ψ > 0. Hence the positive roots are

e1 − en > e1 − en−1 > · · · > e1 − e2 >
> e2 − en > · · · > e2 − e3 >

> · · · > · · · >
> en−2 − en > en−2 − en−1 >

> en−1 − en > 0

All negative roots follow in reversed order. The simple roots are all
ei − ei+1 with 1 ≤ i ≤ n − 1. Using the Killing form B we obtain
a correspondence between a root ei − ej and Hij ∈ h0, where Hij is
the diagonal matrix with 1 in the i’th diagonal entry, −1 in the j’th
diagonal entry and 0 elsewhere. This enables us to calculate the entries
of the Cartan matrix

Akl =
2〈αk, αl〉
〈αk, αk〉

=
2αk(Hαl)

αk(Hαk)
.
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With αk = ek − ek+1 and αl = el − el+1 this reads

Akl =
2(ek − ek+1)(Hl,l+1)

(ek − ek+1)(Hk,k+1)
.

Since

(ek − ek+1)(Hl,l+1) =







2 for k = l
−1 for k + 1 = l or k = l + 1
0 else

we see that

(An)kl =











2 −1
−1 2

. . .
. . . . . . −1
−1 2











.

We have already seen a picture of the root system of sl(3,C) = A2 and
from the calculations above we know that the Dynkin diagram of An is

e
e1 − e2

e
e2 − e3

e
en−1 − en

e
en − en+1



CHAPTER 2

Classification of real semisimple Lie algebras

Let V be a vector space over R. We call

V C := V ⊗R C
the complexification of V . The mapping m(c) : C → C given by
z 7→ cz is R-linear. Thus 1⊗m(c) : V ⊗R C→ V ⊗R C defines a scalar
multiplication with C. V ⊗R C is a vector space over C with the natural
embedding V ↪→ V ⊗R C by v 7→ v ⊗ 1. If {vi}i∈I is a basis of V over
R, {vi ⊗ 1}i∈I is a basis of V C over C. Therefore the dimensions

dimR V = dimC V
C

correspond in the above way.
LetW be a vector space over C. Restricting the definition of scalars

to R leads to a vector space W R over R. If {vj}j∈I is a basis of W ,
then {vj, ivj}j∈I is a basis of WR. We get (V C)R = V ⊕ iV . Therefore

dimCW =
1

2
dimRW

R

is the correspondence of dimensions.
If a complex vector space W and a real vector space V are related

by
WR = V ⊕ iV

then V is called real form ofW . The conjugate linear map ϕ : V C → V C

that is 1 on V and −1 on iV is called conjugation of V C with respect
to the real form V .

Let g be a real Lie algebra and gC = g ⊗ C its complexification.
The mapping

[, ] : (g⊗ C)× (g⊗ C)→ g⊗ C
given by

(X ⊗ a)× (Y ⊗ b) 7→ ([X,Y ]⊗ ab)
extends the bracket in a complex bilinear way. Surely the restriction
of scalars of a complex Lie algebra gives a real Lie algebra. Therefore
both, complexification and restriction of scalars make Lie algebras out
of Lie algebras.

For a real Lie algebra g we note that

[g, g]C = [gC, gC]

since by g ⊆ gC we get [g, g] ⊆ [gC, gC] and this also holds for the
C subspace [g, g]C of gC. For the reverse let a, b ∈ C and X,Y ∈ g,

25



26 2. CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS

then [X ⊗ a, Y ⊗ b] = [X,Y ] ⊗ ab ∈ [g, g]C. Allowing arbitrary linear
combinations on the left we obtain [gC, gC] ⊆ [g, g]C.

Lets look at the relation of the Killing forms. Let g0 be a real Lie
algebra with Killing form Bg0 . Let gC

0 be its complexification with its
Killing form denoted by BgC

0
. Fix any basis of g0. This is also a basis

for its complexification gC

0 . Therefore Tr(adX ◦ adY ) is unaffected by
complexifying and the Killing forms are related by

BgC
0
|g0×g0 = Bg0 .

By Cartan’s criterion for semisimplicity (i.e.: A Lie algebra is semisim-
ple if and only if its Killing form is nondegenerate) we see, that the
complexification gC

0 is semisimple if and only if g0 is semisimple.
The situation is a little bit more complicated in the case of restric-

tion of scalars. Let g be a complex Lie algebra with Killing form Bg

and let gR be the real Lie algebra obtained by restriction of scalars
with Killing form BgR . Let B = {vj}j∈I be a basis of g. Then
B′ = {vj, ivj}j∈I is a basis of gR. For X ∈ g we write adgX as the
matrix (ckl)k,l∈I with respect to the basis B. Look at the same X ∈ gR.
In the basis B′, adgR X is described by the same matrix replacing ckl by
(

akl −bkl
bkl akl

)

where akl = Re ckl and bkl = Im ckl. Therefore the Killing

forms are related by

BgR = 2ReBg.

Again by Cartan’s criterion for semisimplicity we get, gR is semisimple
if and only if g is semisimple.

We will identify two special real forms of complex semisimple Lie
algebras now. The first one will be called split real form. Let g be a
complex semisimple Lie algebra, h a Cartan subalgebra, ∆ = ∆(g, h)
the set of roots and B the Killing form of g.

2.25. Theorem. For each α ∈ ∆ it is possible to choose root vectors
Xα ∈ gα such that the following conditions hold for all α, β ∈ ∆

• [Xα, X−α] = Hα Hα as in proposition 1.8
• [Xα, Xβ] = Nα,βXα+β if α+ β ∈ ∆
• [Xα, Xβ] = 0 if α + β 6= 0 and α + β /∈ ∆

and the constants Nα,β satisfy

• Nα,β = −N−α,−β
• N2

α,β = 1
2
q(1 + p)|α|2

where β + nα is the α string of β with −p ≤ n ≤ q.

Since the above theorem shows that N 2
α,β is positive, Nα,β is real

and we obtain a real form by defining

h0 = {H ∈ h|α(H) ∈ R ∀α ∈ ∆}
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g0 = h0
⊕

α∈∆
RXα.

Every real form of g containing such an h0 for some Cartan subalgebra
h is called split real form of g and the above construction shows that
such a real form exists for every complex semisimple Lie algebra.

Another special real form, which exists for every complex semisim-
ple Lie algebra is called compact real form. A compact real form is a
real form that is a compact Lie algebra. A real Lie algebra g is compact
if the analytic group Int g of inner automorphisms is compact.

The compact real form will be of greater importance in the sequel
than the split real form. We construct it using a split real form. First
of all lets specify how a compact real form is characterized. Let u0 be
a real form of a complex semisimple Lie algebra g. If the Killing form
Bu0 is negative definite u0 is called compact real form of g.

2.26. Theorem. Every complex semisimple Lie algebra g contains
a compact real form.

Proof. Let h be a Cartan subalgebra of g and let Xα be the root
vectors as in the construction of the split real form. Define

u0 =
∑

α∈∆
RiHα +

∑

α∈∆
R(Xα −X−α) +

∑

α∈∆
Ri(Xα +X−α).

Since this is clearly a vector space real form we have to check that it
is closed under bracket and that its Killing form is negative definite.
Lets check the occurring brackets. Assume α 6= ±β.

• [iHα, iHβ] = 0
• [iHα, (Xα −X−α)] = |α|2i(Xα +X−α)
• [iHα, i(Xα +X−α)] = |α|2(Xα −X−α)
• [(Xα −X−α), (Xβ −X−β)] =
Nα,β(Xα+β −X−(α+β))−N−α,β(X−α+β −X−(−α+β))
• [(Xα −X−α), i(Xβ +X−β)] =
Nα,βi(Xα+β +X−(α+β))−N−α,βi(X−α+β +X−(−α+β))
• [i(Xα +X−α), i(Xβ +X−β)] =
−Nα,β(Xα+β −X−(α+β))−N−α,β(X−α+β −X−(−α+β))
• [(Xα −X−α), i(Xα +X−α)] = 2iHα

These computations show that u0 is closed under bracket, so we have a
real form on our hands. To show its compactness we check the Killing
form. We know that the Killing forms Bu0 of u0 and Bg of g are related
by Bu0 = Bg|u0×u0 . Since

Bg(gα, gβ) = 0 for α, β ∈ ∆ ∪ {0} and α + β 6= 0
∑

α∈∆ RiHα is orthogonal to
∑

α∈∆ R(Xα −X−α) and to
∑

α∈∆ Ri(Xα +X−α). By the same argument

• B((Xα −X−α), (Xβ −X−β)) = 0
• B((Xα −X−α), i(Xβ +X−β)) = 0
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• B(i(Xα +X−α), i(Xβ +X−β)) = 0.

Since B is positive definite on
∑

α∈∆ RHα it is negative definite on
∑

α∈∆ RiHα. With just two cases left we compute

• B((Xα −X−α), (Xα −X−α)) = −2B(Xα, X−α) = −2
• B(i(Xα +X−α), i(Xα +X−α)) = −2B(Xα, X−α) = −2

and obtain that Bg|u0×u0 is negative definite and therefore u0 is a com-
pact real form. ¤

Let g be a Lie algebra. An automorphism σ : g→ g such that σ2 =
idg is called an involution. Such an involution yields a decomposition
into eigenspaces to the eigenvalues +1 and −1. An involution θ of a
real semisimple Lie algebra g0 such that the symmetric bilinear form

Bθ(Z,Z
′) := −B(Z, θZ ′)

is positive definite is called Cartan involution. For complex g these Car-
tan involutions correspond to compact real forms. The first situation
where we observe this correspondence is the following.

2.27. Proposition. Let g be a complex semisimple Lie, u0 a com-
pact real form and τ the conjugation of g with respect to u0. Then τ is
a Cartan involution of gR.

Proof. Surely τ 2 = idgR . The Killing forms of g and gR are related
by BgR(Z1, Z2) = 2ReBg(Z1, Z2). (Therefore gR is semisimple if and
only if g is semisimple.) Decompose Z ∈ g as Z = X + iY with
X,Y ∈ u0. For Z 6= 0 we get

Bg(Z, τZ) = Bg(X + iY,X − iY )
= Bg(X,X) +Bg(Y, Y )
= Bu0(X,X) +Bu0(Y, Y ) < 0.

It follows that

(BgR)τ (Z,Z
′) = −BgR(Z, τZ ′) = −2ReBg(Z, τZ

′)

is positive definite on gR and therefore τ is a Cartan involution of
gR. ¤

To study an arbitrary real form of complex semisimple Lie algebras
we will align a compact real form to it. For a real form g0 of a complex
semisimple Lie algebra g we want to find a compact real form u0 such
that u0 = (u0 ∩ g0)⊕ (u0 ∩ ig0).

2.28. Lemma. Let ϕ and ψ be involutions of a vector space V . Let
Vϕ+ denote the eigenspace of ϕ to the eigenvalue 1 and Vϕ− the eigen-
space of ϕ to the eigenvalue −1. Using the similar notation for ψ we
get

ϕ ◦ ψ = ψ ◦ ϕ ⇐⇒
{

Vϕ+ = (Vϕ+ ∩ Vψ+)⊕ (Vϕ+ ∩ Vψ−)
Vϕ− = (Vϕ− ∩ Vψ+)⊕ (Vϕ− ∩ Vψ−)
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Proof.

(⇒): Let x ∈ V be an arbitrary element. x = xψ+ + xψ− with
xψ+ ∈ Vψ+ and xψ− ∈ Vψ− . Because of commutativity we have

ϕ(xψ+) = ϕ ◦ ψ(xψ+) = ψ ◦ ϕ(xψ+) ⇒ ϕ(xψ+) ∈ Vψ+
(⇐): We start with an arbitrary x ∈ V . Decomposing we get

x = xϕ+ + xϕ− = xϕ+,ψ+ + xϕ+,ψ− + xϕ−,ψ+ + xϕ−,ψ− .

Computing

ϕ ◦ ψ(x) = ϕ(ψ(xϕ+,ψ + xϕ+,ψ− + xϕ−,ψ+ + xϕ−,ψ−))
= ϕ(xϕ+,ψ+ − xϕ+,ψ− + xϕ−,ψ+ − xϕ−,ψ−)
= xϕ+,ψ+ − xϕ+,ψ− − xϕ−,ψ+ + xϕ−,ψ−
= ψ(xϕ+,ψ+ + xϕ+,ψ− − xϕ−,ψ+ − xϕ−,ψ−)
= ψ(ϕ(xϕ+,ψ+ + xϕ+,ψ− + xϕ−,ψ+ + xϕ−,ψ−))
= ψ ◦ ϕ(x)

Thus ϕ and ψ commute.

¤

So we search for real forms with commuting involutions.

2.29. Theorem. Let g0 be a real semisimple Lie algebra, θ a Cartan
involution and σ any involution of g0. Then there exists a ϕ ∈ Int g0
such that ϕθϕ−1 commutes with σ.

Proof. Since θ is a Cartan involution, Bθ is an inner product on
g0. Let ω = σθ. For any automorphism a of g0 we have B(aX, aY ) =
B(X,Y ) for all X,Y ∈ g0. Since ω is an automorphism and since
σ2 = θ2 = 1 and θ = θ−1, we compute

B(ωX, θY )=B(X,ω−1θY )=B(X, θ−1σ−1θY )
= B(X, θσθY ) =B(X, θωY )

and hence

Bθ(ωX, Y ) = Bθ(X,ωY ).

Thus ω is symmetric and its square ρ = ω2 is positive definite. Thus
ρr for −∞ < r <∞ is a one parameter group in Int g0. Then

ρθ = ω2θ = σθσθθ = σθσ = θθσθσ = θω−2 = θρ−1.

In terms of a basis of g0 that diagonalizes ρ, the matrix form of this
equation is

ρiiθij = θijρ
−1
jj for all i and j.

We see that

ρriiθij = θijρ
−r
jj

and therefore

ρrθ = θρ−r.
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Now we explicitly give the automorphism ϕ = ρ
1
4 which fulfills

(ϕθϕ−1)σ= ρ
1
4 θρ−

1
4 = ρ

1
2 θσ

= ρ1
2
ω−1 = ρ−

1
2
ρω−1

= ρ−
1
2ω = ωρ−

1
2

= σθρ−
1
2 = σρ

1
4 θρ−

1
4

= σ(ϕθϕ−1)

as required. ¤

With this result on our hands we easily get the following

2.30. Corollary. Every real semisimple Lie algebra g0 has a Car-
tan involution.

Proof. Let g be the complexification of g0. By our previous result
we choose a compact real form u0 of g such that the involutions σ
respectively τ of gR with respect to g0 respectively u0 commute. We
have g0 = {X ∈ g|σX = X}. Because of this and the commutativity
of the involutions we get

στX = τσX = τX

and therefore τ restricts to an involution θ = τ |g0 of g0. Furthermore
we have

Bθ(X,Y ) = −Bg0(X, θY ) = −Bg(X, τY ) =
1

2
(BgR)τ (X,Y )

for X,Y ∈ g0 and so Bθ is positive definite on g0 and θ is a Cartan
involution. ¤

Another useful Corollary of Theorem 2.29 deals with a uniqueness
property of Cartan involutions.

2.31. Corollary. Any two Cartan involutions of a real semisimple
Lie algebra g0 are conjugate via Int g0.

Proof. Let θ and θ′ be Cartan involutions of g0. By Theorem 2.29
we can find an automorphism ϕ ∈ Int g0 such that ϕθϕ−1 commutes
with θ′. Hence we may assume without loss of generality that θ and
θ′ commute. Therefore their decomposition in +1 and −1 eigenspaces
are compatible. Assume that X ∈ g0 lies in the +1 eigenspace of θ and
in the −1 eigenspace of θ′. Then θX = X and θ′X = −X and

0 < Bθ(X,X) = −B(X, θX) = −B(X,X)
0 < Bθ′(X,X) = −B(X, θ′X) = +B(X,X)

which contradicts the assumption. Therefore θ = θ′. ¤

Reinterpreting this result we see that any two compact real forms of
a complex semisimple Lie algebra g are conjugate via Int g. Each com-
pact real form has a determining associated conjugation. These con-
jugations are Cartan involutions of gR and are conjugate by a member
of Int gR. Int gR = Int g completes the argument.
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An important Corollary in view of the classification is the following
one.

2.32. Corollary. Let A be an abstract Cartan matrix. Up to
isomorphism there exist one and only one compact semisimple real Lie
algebra g0 with its complexification (g0)

C having a root system with A
as Cartan matrix.

From the first chapter we get the existence and uniqueness of g, we
know of the existence of a compact real form and because of the above
argument all compact real forms are conjugate by Int g.

We will now introduce the notion of Cartan decomposition of a
real semisimple Lie algebra g0 and we will see that this corresponds
to Cartan involutions. A vectorspace direct sum g0 = k0 ⊕ p0 of g0 is
called Cartan decomposition if

(1) the following bracket laws are satisfied

[k0, k0] ⊆ k0 , [k0, p0] ⊆ p0 , [p0, p0] ⊆ k0

(2) the Killing form

Bg0 is

{

negative definite on k0
positive definite on p0.

Let X ∈ k0 and Y ∈ p0. By the first defining property

(adX adY )(k0) ⊆ p0 and (adX adY )(p0) ⊆ k0.

Therefore Tr(adX adY ) = 0 and hence the Killing form Bg0(X,Y ) =
0. Since θY = −Y also Bθ(X,Y ) = 0. This means that k0 and p0 are
orthogonal under Bg0 and Bθ.

We will now describe the correspondence between Cartan invo-
lutions and Cartan decompositions. First let θ be a Cartan involu-
tion of g0. The involution defines an eigenspace decomposition in an
eigenspace k0 to the eigenvalue +1 and an eigenspace p0 to the eigen-
value −1. We have a decomposition of the form g0 = k0 ⊕ p0. Let
X,X ′ ∈ k0 and Y, Y ′ ∈ p0 and notice that θ is an automorphism. We
get

θ[X,X ′] = [θX, θX ′] = [X,X ′] ⇒ [k0, k0] ⊆ k0
θ[X,Y ] = [θX, θY ] = [X,−Y ] = −[X,Y ] ⇒ [k0, p0] ⊆ p0
θ[Y, Y ′] = [θY, θY ′] = [−Y,−Y ′] = [Y, Y ′] ⇒ [p0, p0] ⊆ p0

As we have seen above it follows that k0 and p0 are orthogonal under Bg0

and Bθ. Bθ is positive definite since θ is a Cartan involution and hence
Bg0 is negative definite on k0 and positive definite on p0. Therefore
g0 = k0 ⊕ p0 is a Cartan decomposition.

Conversely starting with a Cartan decomposition g0 = k0 ⊕ p0 we
define a mapping

θ =

{

+1 on k0
−1 on p0
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θ respects bracket because for X,X ′ ∈ k0 and Y, Y
′ ∈ p0 we have

[k0, k0] ⊆ k0 ⇒ θ[X,X ′] = [X,X ′] = [θX, θX ′]
[k0, p0] ⊆ p0 ⇒ θ[X,Y ] = −[X,Y ] = [X,−Y ] = [θX, θY ]
[p0, p0] ⊆ k0 ⇒ θ[Y, Y ′] = [Y, Y ′] = [−Y,−Y ′] = [θY, θY ′]

We know of the orthogonality of k0 and p0 under both Bg0 and Bθ and
we know that Bg0 is negative definite on k0 and positive definite on p0.
Hence Bθ is positive definite. Therefore θ is a Cartan involution.

Let g0 = k0 ⊕ p0 be a Cartan decomposition of g0. By bilinearity
of the Killing form we see, that k0 ⊕ ip0 is a compact real form of
g = (g0)

C. Conversely if l0 respectively q0 is the +1 respectively −1
eigenspace of an involution σ, then σ is a Cartan involution only if the
real form l0 ⊕ iq0 of (g0)

C is compact. For a complex semisimple Lie
algebra g, gR = u0 ⊕ iu0 is a Cartan decomposition of gR.

To understand the second important decomposition, the Iwasawa
decomposition, of Lie algebras we look at an example on group level.

Define

G = SL(m,C), K = SU(m,C), A = {diag(a1, . . . , am)|ai ∈ R+}
and

N = {











1 n1,2 · · · n1,m

0 1
. . .

...
...

. . . . . . nm−1,m
0 · · · 0 1











|ni,j ∈ C}.

The Iwasawa decomposition states that there is a decomposition G =
KAN or more precisely the multiplication µ : K × A × N → G is
a diffeomorphism. To show this in our special case we take the stan-
dard basis {e1, . . . , em} of Cm and an arbitrary g ∈ G. Applying g
to the basis we obtain a basis {ge1, . . . , gem}. The Gram-Schmidt or-
thogonalization process transforms this basis into an orthonormal ba-
sis {v1, . . . , vm} of Cm. By the nature of this process we get a matrix
k ∈ SU(m) such that k−1vj = ej and k

−1g is upper triangular with pos-
itive diagonal entries. i.e.: k−1g ∈ AN . g = k(k−1g) ∈ K(AN) shows
that µ is onto and K ∩ AN = {1} that it is one-one. Smoothness is
granted by the explicit formulae of the Gram-Schmidt Process.

Our goal is to observe the equivalent decomposition on algebra level.
Untill know we used the subscript 0 to refer to real forms. We will
change this notation for some time because we need a subscript refer-
ring to linear functionals. To avoid constructions like g0,0 we will omit
this subscript for a while.

So let g be a real semisimple Lie algebra with a Cartan involution
θ and corresponding Cartan decomposition g = k ⊕ p. Let B be a
nondegenerate, symmetric, invariant, bilinear form on g such that

• B(X,Y ) = B(θX, θY ) and
• Bθ := −B(X, θY ) is positive definite.
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Then B is negative definite on the compact real form k⊕ ip. Therefore
B is negative definite on a maximal abelian subspace of k ⊕ ip. By
the invariance of B and the fact, that two Cartan subalgebras of gC

are conjugate by Int gC, we conclude that for any Cartan subalgebra
of gC, B is positive definite on the real subspace where all roots are
real-valued. We define orthogonality and adjoints by Bθ, which is an
inner product on g.

Before we go into the decomposition we need the following lemma.

2.33. Lemma. Let g be a real semisimple Lie algebra and θ a Cartan
involution. For all X ∈ g we have (adX)∗ = − ad θX relative to the
inner product Bθ.

Proof.

Bθ((ad θX)Y, Z)= −B([θX, Y ], θZ) =B(Y, [θX, θZ])
= B(Y, θ[X,Z]) =−Bθ(Y, [X,Z])
=−Bθ(Y, (adX)Z)=−Bθ((adX)∗Y, Z)

¤

Let a be a maximal abelian subspace of p. Existence is guaranteed
by finite dimensionality. {adH|H ∈ a} is a commuting set of selfad-
joint transformations of g. To show selfadjointness we use the above
lemma. For X ∈ g we have

(adH)∗X = (− ad θH)X = −[θH,X] = [H,X] = (adH)X.

Commutativity is given by the Jacobi identity. For λ ∈ a∗ let

gλ := {X ∈ g|(adH)X = λ(H)X ∀H ∈ a}.
If gλ 6= 0 and λ 6= 0, we call λ a restricted root of g, or more precisely
of (g, a), gλ a restricted root space with its elements called restricted
root vectors. Let Σ denote the set of restricted roots.

2.34. Proposition. The restricted roots and restricted root spaces
have the following properties:

(1) g = g0 ⊕
⊕

λ∈Σ gλ is an orthogonal direct sum.
(2) [gλ, gµ] ⊆ gλ+µ
(3) θgλ = g−λ
(4) λ ∈ Σ⇒ −λ ∈ Σ
(5) g0 = a⊕m orthogonally, where m = Zk(a)

Proof. (1) see construction
(2) Let H ∈ a, X ∈ gλ and Y ∈ gµ. We compute

(adH)[X,Y ] = [H, [X,Y ]]

= [[H,X], Y ] + [X, [H, Y ]]

= [λ(H)X,Y ] + [X,µ(H)Y ]

= (λ(H) + µ(H))[X,Y ]
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(3) Let H ∈ a and X ∈ gλ. A quite similar computation does the
trick.

(adH)θX = [H, θX]

= θ[θH,X]

=−θ[H,X]

=−λ(H)θX

(4) A consequence of (3).
(5) θg0 = g0 by 3. Hence g0 = (k∩ g0)⊕ (p∩ g0). Since a ⊆ p∩ g0

and a is maximal abelian in p, a = p ∩ g0. By definition
k ∩ g0 = Zk(a).

¤

We choose a notion positivity on a∗ and define the set Σ+ of positive
restricted roots and n =

⊕

λ∈Σ+ gλ. We collect some facts on the
occuring subalgebras.

• n is a nilpotent subalgebra of g by 2.34 (2).
• a is abelian by definition.
• [a, n] = n because for all λ 6= 0 we have [a, gλ] = gλ.
• [a⊕ n, a⊕ n] = n

• a⊕ n is a solvable subalgebra.

The Iwasawa decomposition (on Lie algebra level) states the follow-
ing

2.35. Proposition. Let g be a semisimple Lie algebra. g is a vector
space direct sum g = k⊕ a⊕ n with k, a and n as above.

Proof. a⊕n⊕ θn is a direct sum because of 2.34 (1) and 2.34 (3).
To show that k + a + n is a direct sum we observe some intersecions.
Since a ⊆ g0 and n =

⊕

λ∈Σ+ gλ, a ∩ n = 0. Let X ∈ k ∩ (a ⊕ n).
X ∈ k gives θX = X and X ∈ a⊕ n gives θX ∈ a⊕ θn. So X ∈ a⊕ n

and X = θX ∈ a ⊕ θn, hence X lies in a. Since a ⊆ p we conclude
X ∈ k ∩ p = 0.

The second step of the proof is to show that the direct sum k⊕a⊕n

is all of g. Let X be an arbitrary element of g. We write X as

X = H +X0 +
∑

λ∈Σ
Xλ

where H ∈ a, X0 ∈ m and Xλ ∈ gλ for all λ ∈ Σ. We write
∑

λ∈ΣXλ=
∑

λ∈Σ+(X−λ +Xλ)
=
∑

λ∈Σ+(X−λ + θX−λ) +
∑

λ∈Σ+(Xλ − θX−λ).
Since θ maps X−λ + θX−λ onto itself (X−λ + θX−λ) ∈ k and since Xλ

and θX−λ ∈ gλ, (Xλ − θX−λ) ∈ gλ ⊆ n.
An arbitrary X decomposes to

X = (X0 +
∑

λ∈Σ+(X−λ + θX−λ)) + H + (
∑

λ∈Σ+(Xλ − θX−λ))
∈ g ∈ k ∈ a ∈ n
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¤

The following Lemma will enable us to find Cartan algebras in real
Lie algebras.

2.36. Lemma. Let g be a real semisimple Lie algebra. There exists
a basis {Xi} of g such that the matrices representing ad g have the
following properties:

(1) the matrices of ad k are skew symmetric
(2) the matrices of ad a are diagonal with real entries
(3) the matrices of ad n are upper triangular with all diagonal en-
tries 0.

Proof. Recall that we decomposed g = g0⊕
⊕

λ∈Σ gλ orthogonally.
Let {Xi} be an orthonormal basis of g, which is compatible with this
decomposition. We do a reordering of these vectors such that Xi ∈ gλi
and Xj ∈ gλj with i < j implies λi ≥ λj.

(1) Let X ∈ k. Therefore θX = X and (adX)∗ = − ad θX =
− adX. We have used this argument before for H ∈ a.

(2) Since each Xi is either a restricted root vector or in g0 the
matrices of ad a are diagonal, necessarily real.

(3) [gλi , gλj ] ⊆ gλi+λj

¤

Define the rank of a real semisimple Lie algebra g as the dimension
of any Cartan subalgebra h of g. This is well defined since h is a Cartan
subalgebra if and only if hC is Cartan in gC.

2.37. Proposition. Let k⊕ p be a Cartan decomposition of g. Let
a be maximal abelian in p and m = Zk(a). If t is a maximal abelian
subspace of m then h = a⊕ t is a Cartan subalgebra of g.

Proof. We have to prove that hC is maximal abelian in gC and
that adgC hC is simultaneously diagonable.

By bilinearity of the bracket hC is abelian. To prove maximality let
Z = X + iY be in hC. If Z commutes with hC then so do X and Y .
Thus we do not loose generality in using X ∈ h to test commutativity.
If X commutes with hC it lies in a⊕m. This also holds for θX. Thus
(X + θX) ∈ k lies in m and commutes with t, hence is in t. Similar
argumentation gives (X − θX) ∈ a. Thus X is in a ⊕ t and hence hC

is maximal abelian.
Using the same basis as above ad t consists of skew symmetric ma-

trices. These are diagonable over C. With the matrices in ad a already
diagonal we get a family of commuting matrices and hence the members
of ad hC are diagonable. ¤

Using h = a⊕t as Cartan subalgebra of g, we build the set ∆(gC, hC)
of roots of gC with respect to the Cartan subalgebra hC. The root space
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decomposition of gC is given by

gC = hC ⊕
⊕

α∈∆
(gC)α.

By definition

(gC)α = {X ∈ gC|(adH)X = α(H)X ∀H ∈ hC}
and

gλ = {X ∈ g|(adH)X = λ(H)X ∀H ∈ a}.
Hence

gλ = g ∩
⊕

α∈∆

α|a=λ

(gC)α

and

mC = tC ⊕
⊕

α∈∆

α|a=0

(gC)α.

2.38. Corollary. If t is a maximal abelian subspace of m = Zk(a)
then the Cartan subalgebra h = a⊕ t has the property that all roots are
real valued on a⊕ it. If m = 0 then g is a split real form of gC.

Proof. The values of the roots on a member H of ad h are the
eigenvalues of adH. For H ∈ a, adH is self adjoint and hence has real
eigenvalues. For H ∈ t, adH is skew adjoint and hence has imaginary
eigenvalues.

If m = 0, then t = 0 and h = a. All roots are real on a and g

contains the real subspace of a Cartan subalgebra hC ⊆ gC. Hence g is
a split real form of gC. ¤

We want to impose an ordering on the root system ∆, such that
the positive system ∆+ extends Σ+. We form a lexicographic ordering
on (a+ it)∗, taking values on a before it. If α ∈ ∆ is nonzero on a then
the positivity of α only depends on its values on a. Thus ∆+ extends
Σ+.

The following theorem will be used in some proofs in the sequel.

2.39. Theorem. Let G be a compact connected Lie group with Lie
algebra g0. Any two maximal abelian subalgebras of g0 are conjugate
via Ad(G).

We will now oberserve the possible choices for all parts of the Iwa-
sawa decomposition. From the Cartan decomposition we already now
that k is unique up to conjugacy.

2.40. Lemma. Let H ∈ a with λ(H) 6= 0 for all λ ∈ Σ, then
Zg(H) = m⊕ a. Hence Zp(H) = a.
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Proof. Let X be in Zg(H) and decompose

X = H0 +X0 +
∑

λ∈Σ
Xλ

with H0 ∈ a, X0 ∈ m and Xλ ∈ gλ. Then 0 = [H,X] =
∑

λ∈Σ λ(H)Xλ

and hence λ(H)Xλ = 0 for all λ ∈ Σ. By our assumption that λ(H) 6=
0, Xλ = 0. ¤

Now we fix a subalgebra k of g and look at the possible choices of
a maximal abelian subspace a of p.

2.41. Theorem. If a and a′ are two maximal abelian subalgebras of
p then there is a member k ∈ K with Ad(k)a′ = a, where K is the ana-
lytic subgroup of G with Lie algebra k. Consequently p =

⋃

k∈K Ad(k)a.

Proof. We can easily find an H ∈ a with λ(H) 6= 0 for all λ ∈ Σ
since the union of the kernels of all λ ∈ Σ is only a finite union of
hyperplanes in a. By lemma 2.40 such an H ∈ a gives Zp(H) = a.
Similarly we find an H ′ ∈ a′ such that Zp(H)′ = a′. By compactness of
Ad(K), choose a k0 ∈ K such that B(Ad(k0)H

′, H) ≤ B(Ad(k)H ′, H)
for all k ∈ K. For any Z ∈ k

r 7→ B(Ad(exp rZ)Ad(k0)H
′, H)

is a smooth function of r that is minimized for r = 0. Differentiating
and setting r = 0 we obtain

0 = B((adZ)Ad(k0)H
′, H) = B(Z, [Ad(k0)H

′, H]).

[Ad(k0)H
′, H] is in k. Since B(k, p) = 0 and since B is nondegenerate,

[Ad(k0)H
′, H] = 0. Thus Ad(k0)H

′ is in Zp(H) = a. Since a is abelian

a ⊆ Zp(Ad(k0)H
′) = Ad(k0)Zp(H

′) = Ad(k0)a
′.

Since a is maximal abelian in p we even get equality a = Ad(k0)a
′.

This proves the first statement of the theorem.
Let X ∈ p and extend the abelian subspace RX of p to a maximal

abelian subspace a′. Using the first part of the proof we write a′ =
Ad(k)a and hence X ∈ ⋃k∈K Ad(k)a. Therefore

p =
⋃

k∈K
Ad(k)a.

¤

For a fixed subalgebra k we have found that all possible a are con-
jugate. Now we fix k and a and observe the possible choices of n. Bθ

is an inner product on g and can be restricted to an inner product on
a. Since we can identify λ ∈ a∗ with Hλ ∈ a we can transfer Bθ to a∗

denoting it 〈, 〉.
2.42. Proposition. Let λ be a restricted root and let Eλ be a

nonzero restricted root vector for λ.
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(1) [Eλ, θEλ] = B(Eλ, θEλ)Hλ and B(Eλ, θEλ) < 0.
(2) RHλ ⊕ REλ ⊕ RθEλ is a Lie subalgebra of g isomorphic to

sl(2,R) and the isomorphism can be defined so that the vector

H ′
λ = 2 Hλ

|λ|2 corresponds to h =

(

1 0
0 −1

)

.

(3) If Eλ is normalized so that B(Eλ, θEλ) = − 2
|λ|2 , then

k = exp
π

2
(Eλ + θEλ)

is a member of the normalizer NK(a) of a in K and Ad(k)
acts as the reflection sλ on a∗.

Proof. (1) Since θgλ = g−λ the vector

[Eλ, θEλ] ∈ [gλ, g−λ] ⊆ g0 = a⊕m

and from

θ[Eλ, θEλ] = [θEλ, Eλ] = −[Eλ, θEλ]
it follows that [Eλ, θEλ] lies in a. For H ∈ a we compute

B([Eλ, θEλ], H)=B(Eλ, [θEλ, H])

=λ(H)B(Eλ, θEλ)

=B(Hλ, H)B(Eλ, θEλ)

=B(B(Eλ, θEλ)Hλ, H).

Since B is nondegenerate on a and Bθ is positive definite we
get the stated results

[Eλ, θEλ] = B(Eλ, θEλ)Hλ

B(Eλ, θEλ) = −Bθ(Eλ, Eλ) < 0.

(2) Let

H ′
λ =

2

|λ|2Hλ, E
′
λ =

2

|λ|2Eλ, E
′
−λ = θEλ.

Then (1) shows that

[H ′
λ, E

′
λ] = 2E ′λ, [H

′
λ, E

′
−λ] = −2E ′−λ, [E ′λ, E ′−λ] = H ′

λ

which is all we need.
(3) We normalize the vectors such that B(Eλ, θEλ) = − 2

|λ|2 , which

always works because of (1). If λ(H) = 0, then

Ad(k)H =Ad(exp π
2
(Eλ + θEλ))H

=(exp ad π
2
(Eλ + θEλ))H

=
∑∞

n=0
1
n!
(ad π

2
(Eλ + θEλ))

nH

=H.
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For the element H ′
λ the following equalities hold:

(ad π
2
(Eλ + θEλ))H

′
λ=π(θEλ − Eλ)

(ad π
2
(Eλ + θEλ))

2H ′
λ=−π2H ′

λ.

Using this equalities we get

Ad(k)H ′
λ=
∑∞

n=0
1
n!
(ad π

2
(Eλ + θEλ))

nH ′
λ

=
∑∞

m=0
1

(2m)!
((ad π

2
(Eλ + θEλ))

2)mH ′
λ

+
∑∞

m=0
1

(2m+1)!
(ad π

2
(Eλ + θEλ))((ad

π
2
(Eλ + θEλ))

2)mH ′
λ

=
∑∞

m=0
1

(2m)!
(−π2)mH ′

λ +
∑∞

m=0
1

(2m+1)!
(−π2)mπ(θEλ − Eλ)

= (cosπ)H ′
λ + (sin π)(Eλ − θEλ)

=−H ′
λ.

This is what we stated.
¤

2.43. Corollary. Σ is an abstract root system in a∗. Σ need not
be reduced.

Proof. We verify that Σ satisfies the axioms for an abstract root
system. To see that Σ spans a∗, assume λ(H) = 0 for some H ∈ a.
Then [H, gλ] = 0 for all λ and hence [H, g] = 0. But the center Zg = 0
and hence H = 0. Thus Σ spans a∗.

Let slλ denote the Lie subalgebra mentioned in 2.42 (2). This acts
by ad on g and hence on gC. Complexifying we obtain a representation
of slCλ

∼= sl(2,C) on gC. The element H ′
λ = 2 Hλ

|λ|2 which corresponds to

h acts diagonably with integer eigenvalues. H ′
λ acts on gµ by the scalar

µ(2 Hλ

|λ|2 ) = 2 〈µ,λ〉|λ|2 . Hence 2 〈µ,λ〉|λ|2 is an integer.

The last property to show is that the reflection sλ(µ) of µ along λ
is in Σ for all λ, µ ∈ Σ. Define k as in 2.42 (3), let H ∈ a and X ∈ gµ.
Then

[H,Ad(k)X] =Ad(k)[Ad(k)−1H,X] = Ad(k)[s−1λ (H), X]

=µ(s−1λ (H))Ad(k)X = (sλµ)(H)Ad(k)X

and hence gsλ(µ) is not 0. ¤

2.44. Corollary. Any two choices of n are conjugate by Adn for
some n ∈ NK(a).

We ran through all parts of the Iwasawa decomposition and see that
an Iwasawa decomposition of g is unique up to conjugacy by Int g.

An interesting aspect in classifying real semisimple Lie algebras are
the conjugacy classes of their Cartan subalgebras. Now, that we do
not deal with subscripts referring to root spaces any longer we revert
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to the subscript 0 for real Lie algebras. So g will denote a complex Lie
algebra again and g = (g0)

C if g0 is a real Lie algebra.
Let g0 be a real semisimple Lie algebra, θ a Cartan involution

and g0 = k0 ⊕ p0 the corresponding Cartan decomposition. Let B be
any nondegenerate, symmetric, bilinear form such that B(θX, θY ) =
B(X,Y ) and Bθ is positive definit.

In the case of complex Lie algebras the situation is quite easy since
all Cartan subalgebras are conjugate. This is not true in the real case.
However, the following proposition holds.

2.45. Proposition. Any Cartan subalgebra h0 of a real semisimple
Lie algebra g0 is conjugate via Int g0 to a θ stable Cartan subalgebra.

Proof. Let h0 be any Cartan subalgebra of g0 with complexifica-
tion h Cartan in g. Let σ the conjugation of g with respect to g0.

Let u0 be the compact real form of g built out of the split form
corresponding to h as in 2.26. and let τ be the conjugation with respect
to u0. Since ih0 ⊆ u0 is exactly the part of h which lies in u0, τ(h) = h.

The conjugations σ and τ are involutions of gR and τ is a Cartan
involution. As proven before ϕ = ((στ)2)

1
4 ∈ Int gR = Int g is the

element that makes σ and η̃ = ϕτϕ−1 commute. Since σ(h) = h and
τ(h) = h also ϕ(h) = h and η̃(h) = h. Using commutativity we compute

ση̃(g0) = η̃σ(g0) = η̃(g0)

which shows that η̃(g0) = g0. Since h0 = h ∩ g0 we obtain η̃(h0) = h0.
Let η = η̃|g0 . Clearly η(h0) = h0. Since

ϕτϕ−1(ϕ(u0)) = ϕτ(u0) = ϕ(u0)

η̃ is a conjugation of g with respect to ϕ(u0). Taking X and Y in gR

we have

(BgR)η̃(X,Y ) = −BgR(X, η̃Y ).

Restricting X and Y to g0 this equals

−2Bg0(X, ηY ) = 2(Bg0)η(X,Y ).

Consequently η is a Cartan involution of g0. Since any two Cartan
involutions of g0 are conjugate via Int g0 their exists a ψ ∈ Int g0 such
that θ = ψηψ−1. Then ψ(h0) is a Cartan subalgebra of g0 and

θ(ψ(h0)) = ψηψ−1ψ(h0) = ψ(η(h0)) = ψ(h0)

shows that it is θ stable. ¤

Without loss of generality we restrict to the study of θ stable Cartan
subalgebras. Let h0 be a θ stable Cartan subalgebra of g0. Then
h0 = t0 ⊕ a0 with t0 ⊆ k0 and a0 ⊆ p0. As seen above all roots are real
valued on a0 ⊕ it0. We call dim t0 the compact dimension and dim a0
the noncompact dimension of h0.
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We call a θ stable Cartan subalgebra h0 maximally noncompact if
its noncompact dimension is maximal. We call it maximally compact
if its compact dimension is maximal.

In any case a0 is an abelian subspace of p0. Therefore h0 = t0⊕a0 is
maximally noncompact if and only if a0 is a maximal abelian subspace
of p0.

A similar statement is true for maximally compact Cartan algebras.
To see this we need the following

2.46. Proposition. Let t0 be a maximal abelian subspace of k0.
Then h0 = Zg0(t0) is a θ stable Cartan subalgebra of g0 of the form
h0 = t0 ⊕ a0 with a0 ⊆ p0.

Proof. From our construction of h0 we know that it decomposes
to h0 = t0 ⊕ a0 where a0 = h0 ∩ p0. Therefore h0 is θ stable. Since all
θ stable subalgebras of a real semisimple Lie algebra are reductive, so
is h0. Hence [h0, h0] is semisimple.

We have

[h0, h0] = [t0 ⊕ a0, t0 ⊕ a0] = [a0, a0].

Recall that [p0, p0] ⊆ k0. Since t0 = h0 ∩ k0 we get

[h0, h0] = [a0, a0] ⊆ t0.

Thus the semisimple Lie algebra [h0, h0] is abelian and hence must be
0. Consequently h0 is abelian.

h = (h0)
C is maximal abelian in g. Since all elements of adg0(t0)

are skew adjoint and all elements of adg0(a0) are self adjoint and t0
commutes with a0, ad h0 is diagonably on g. Therefore h is a Cartan
subalgebra of g and consequently h0 is a Cartan subalgebra of g0. ¤

So similar to the above we see, that for a θ stable h0 = t0 ⊕ a0, t0
is an abelian subspace of k0 and h0 is maximally compact if and only
if t0 is maximal abelian in k0. We proceed with two statements about
conjugacy of special Cartan subalgebras.

2.47. Proposition. Among θ stable Cartan subalgebras h0 of g0 the
maximally noncompact ones are all conjugate via K, and the maximally
compact ones are all conjugate via K.

2.48. Proposition. Up to conjugacy by Int g0, there are only fi-
nitely many Cartan subalgebras of g0.

Recall that we used Dynkin diagrams to classify complex semisim-
ple Lie algebras. If we want to use something similar in the classifi-
cation of real semisimple Lie algebras we have to refine this concept.
These refined diagrams will be called Vogan diagrams and will consist
of Dynkin diagrams plus additional information.

Let g0 be a real semisimple Lie algebra with complexification g. Let
θ be a Cartan involution and g0 = k0 ⊕ p0 the corresponding Cartan
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decomposition. Let B be any nondegenerate symmetric invariant bi-
linear form on g0 such that B(θX, θY ) = B(X,Y ) and Bθ is positive
definite. Let h0 = t0 ⊕ a0 be a θ stable Cartan subalgebra with t0 ⊆ k0
and a0 ⊆ p0. From Corrolary 2.38 we know that all roots of (g, h),
where h = (h0)

C, are real valued on a0 ⊕ it0. Hence the roots take real
values on a0 and imaginary values on t0. We call a root real if it takes
real values on all of h0, equivalently the root vanishes on t0 and we call
a root imaginary if it takes purely imaginary values on h0, equivalently
it vanishes on a0. If a root does not vanish on either of t0 and a0 it is
called complex.

Now let h0 = t0 ⊕ a0 be a maximally compact θ stable Cartan
subalgebra of g0 with complexification h = t ⊕ a. Let ∆ = ∆(g, h)
be the set of roots. Since we choose a maximally compact Cartan
subalgebra there are no real roots.

Let {H1, . . . , Hn} be a basis of it0 and let {Hn+1, . . . , Hm} be a
basis of a0. Then {H1, . . . , Hm} is a basis of it0 ⊕ a0 and also a basis
of h. Let α, β ∈ ∆. We say that α > β if there is an index l such that

α(Hl) > β(Hl) and α(Hj) = β(Hj) for all j < l.

For any root α we define θα by

θα(H) = α(θ−1H).

Let Eα be a nonzero root vector for α and calculate

[H, θEα] = θ[θ−1H,Eα] = α(θ−1H)θEα = (θα)(H)θEα

to see that θα is a root again. If α is purely imaginary, then θα = α.
Thus gα is θ stable and hence

gα = (gα ∩ k)⊕ (gα ∩ p).

But, as dim gα = 1 we either have gα ⊆ k or gα ⊆ p. We call an
imaginary root α compact if gα ⊆ k or we call it noncompact if gα ⊆ p.

Since θ is +1 on t0 and −1 on a0 and since there are no real roots,
which means no roots that vanish on t, θ(∆+) = ∆+. Therefore θ
permutes the simple roots. More precisely θ fixes the imaginary roots,
which vanish an a, and it permutes the complex roots in 2-cycles since
it flips the real parts.

Let g0 be a real semisimple Lie algebra and h0 a Cartan subalgebra
of g0. Let θ be a Cartan involution of g0. Let ∆

+ be a system of positive
roots built in the above way. The Vogan diagram of (g0, h0,∆

+) consists
of the Dynkin diagram of ∆+ with 2-element orbits under θ labeled and
with 1-element orbits corresponding to noncompact imaginary roots
painted. Observe that this triple totally determines the Vogan diagram.
Let (g0, h0,∆

+) and (g′0, h
′
0,∆

+′) be two isomorphic triples. Since (g0)
C

is isomorphic to (g′0)
C their Vogan diagrams are based on the same

Dynkin diagram. But they also have isomorphic Cartan subalgebras
and positive systems and hence they have the same 2-element orbits
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and noncompact imaginary roots. Hence they have the same Vogan
diagram.

In order to classify complex semisimple Lie algebras, by classify-
ing Dynkin diagrams, we needed the Isomorphism Theorem 1.23 and
the Existence Theorem 1.24, which gave us a one-one correspondence
of Lie algebras and Dynkin diagrams. The same has to be done for
real semisimple Lie algebras and Vogan diagrams. First lets state an
analog for the Isomorphism Theorem. The proof will be made out of
steps, each step decreasing the possible differences between the two Lie
algebras.

2.49. Theorem. Let g0 and g′0 be real semisimple Lie algebras. If
two triples (g0, h0,∆

+) and (g′0, h
′
0,∆

′+) have the same Vogan diagram,
then g0 and g′0 are isomorphic.

Proof. Since the Lie algebras have the same Vogan diagram, they
also have the same Dynkin diagram. By the Isomorphism Theorem
1.23 we do not loose generality in assuming (g0)

C = (g′0)
C = g.

Let u0 = k0 ⊕ ip0 be the compact real form of g associated to g0
and u′0 = k′0⊕ ip′0 the one associated to g′0. Since any two compact real
forms of a complex semisimple Lie algebra g are conjugate via Int g,
there exists x ∈ Int g such that xu′0 = u0. xg

′
0 is a real form of g that is

isomorphic to g′0 and has Cartan decomposition xg′0 = xk′0⊕xp′0. Since
xk′0 ⊕ ixp′0 = xu′0 = u0, there is no loss of generality in assuming that
u′0 = u0 from the outset. Then

θ(u0) = u0 and θ
′(u0) = θ′(u′0) = u′0 = u0.

We now use theorem 2.39 to see that the Cartan subalgebras of g0
and g′0 complexify to the same Cartan subalgebra of g: Let h0 = t0⊕a0
respectively h′0 = t′0 ⊕ a′0 be the Cartan subalgebras of g0 respectively
g′0 decomposed with respect to θ respectively θ′. Since t0 ⊕ ia0 and
t′0 ⊕ ia′0 are maximal abelian in u0 and u0 is compact, there exists a
k ∈ Int u0 such that k(t′0 ⊕ ia′0) = t0 ⊕ ia0. kg′0 is isomorphic to g′0
and xh′0 = xt′0 ⊕ xa′0. Since k(t′0 ⊕ ia′0) = kt′0 ⊕ ika′0, there is no loss in
generality in assuming that (t′0⊕ia′0) = (t0⊕ia0). Therefore the Cartan
subalgebras h0 and h′0 complexify to the same Cartan subalgebra of g,
which we will denote by h. The space

u0 ∩ h = t0 ⊕ ia0 = t′0 ⊕ ia′0
is a maximal abelian subspace of u0.

Because the complexifications of both real Lie algebras and their
Cartan subalgebras are the same now, their root systems coincide.
However their positive systems still may differ. But their exists a
k′ ∈ Int u0 normalizing u0 ⊕ h with k′∆+′ = ∆+. If we replace g′0
by k′g′0 and argue the same way we walked through twice, we may
assume ∆+′ = ∆+ from the outset.
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What we have done so far is that we may assume without loss of
generality that

u′0 = u0
u′0 ∩ h′ = u0 ∩ h

∆′ = ∆ and ∆+′ = ∆+

The next step is to choose normalizations of the root vectors relative
to h. Let B be the Killing form of g. Recall the construction of a split
form of a complex semisimple Lie algebra in 2.25. We obtained root
vectors Xα. Out of this split form we constructed a compact real form

ũ0 =
∑

α∈∆
R(iHα) +

∑

α∈∆
R(Xα −X−α) +

∑

α∈∆
Ri(Xα +X−α)

of g. The subalgebra ũ0 contains the real subspace
∑

α∈∆ RiHα of h

where all roots are imaginary, which is just u0 ∩ h. Since any two
compact real forms are conjugate by Int g there exists a g ∈ Int g such
that gũ0 = u0. Then ˜gu0 = u0 is built from g(u0 ∩ h) and the root
vectors gXα. The two maximal abelian subspaces u0 ∩ h and g(u0 ∩ h)
of u0 are conjugate by u ∈ Int u0. Hence ug(u0 ∩ h) = u0 ∩ h. Let
Yα = ugXα for all α ∈ ∆. Then u0 is built from ug(u0 ∩ h) = u0 ∩ h

and the root vectors Yα.

u0 =
∑

α∈∆
R(iHα) +

∑

α∈∆
(Yα − Y−α) +

∑

α∈∆
Ri(Yα + Y−α)

Now we will use what we know about the Cartan involutions of
g0 and g′0 out of the Vogan diagram. Since the automorphism of ∆+

defined by θ and θ′ are the same, θ and θ′ have the same effect on h∗.
Thus θ(H) = θ′(H) for all H ∈ h. If α is an imaginary simple root,
then

θ(Yα) = Yα = θ′(Yα) if α is unpainted
θ(Yα) = −Yα = θ′(Yα) if α is painted.

Remember that the 2-element orbits under θ of complex simple roots
are labeled in the Vogan diagram. For α ∈ ∆ we write θYα = aαYα.
Since θ(u0) = u0 we know that

θ(u0 ∩ span{Yα, Y−α}) ⊆ u0 ∩ span{Yθα, Y−θα}.
This means that

θ(R(Yα − Y−α) + Ri(Yα + Y−α)) ⊆ θ(R(Yθα − Y−θα) + Ri(Yθα + Y−θα)).

Let x and y ∈ R and x+ iy = z ∈ C. Then

x(Yα − Y−α) + yi(Yα + Y−α) = (x+ iy)Yα − (x− iy)Y−α = zYα − z̄Y−α
Since θ(zYα−z̄Y−α) = zaαYθα−z̄a−αY−θα lies in θ(R(Yα−Y−α)+Ri(Yα+
Y−α)) it must be of the form wYθα− w̄Y−θα. Thus from zaα = z̄a−α we
conclude that

a−α = aα.
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Furthermore

aαa−α = 1

since

aαa−α = aαa−αB(Yθα, Y−θα) = B(aαYθα, a−αY−θα) =

B(θYα, θY−α) = B(Yα, Y−α) = 1.

Combining these two results we get

|aα| = aαaα = aαa−α = 1.

Since Yα = θ2Yα = θ(aαYθα) = aαaθαYα we have

aαaθα = 1.

For each pair of complex simple roots it is therefore possible to choose
square roots

√
aα and

√
aθα such that
√
aα
√
aθα = 1.

Similarly we write θ′Yα = bαYθα and obtain the same results as
above and choose square roots.

|bα| = 1√
bα
√
bθα = 1

We can define H and H ′ in u0 ∩ h by the following conditions:

• α(H) = 0 = α(H ′) for imaginary simple α
• exp(1

2
α(H)) =

√
aα, exp(

1
2
θα(H)) =

√
aθα for complex simple

α and θα
• exp(1

2
α(H ′)) =

√
bα, exp(

1
2
θα(H ′)) =

√
bθα for complex simple

α and θα

The last step in the proof is to show that the equation

θ′ ◦ Ad(exp 1

2
(H −H ′)) = Ad(exp

1

2
(H −H ′)) ◦ θ

holds. On all of h and on each Xα where α is an imaginary simple root,
θ acts like θ′. On these subspaces the two sides are equal.

If α is complex simple, then

θ′ ◦ Ad(exp 1
2
(H −H ′))Yα = θ′(e

1
2
α(H−H′)Yα)

= bα
√
aα√
bα
Yθα

=
√
bα
aα
θYα

=
√
aθα√
bθα
θYα

= Ad(exp 1
2
(H −H ′)) ◦ θYα

This proves the above equation.
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For some X ∈ k we have

θ′ ◦ Ad(exp 1

2
(H −H ′))X = Ad(exp

1

2
(H −H ′))X

and hence X lies in k′. With Y ∈ p the only thing that changes is an
additional minus on the right side. Therefore the inclusions

Ad(exp 1
2
(H −H ′))(k) ⊆ k′

Ad(exp 1
2
(H −H ′))(p) ⊆ p′

hold. By dimensional argumentation we easily see that we get equality
on these inclusions. Since the element Ad(exp 1

2
(H − H ′)) carries u0

to itself, it must carry k0 = u0 ∩ k to k′0 = u0 ∩ k′ and p0 = u0 ∩ p to
p′0 = u0 ∩ p′. Hence it must carry g0 = k0 ⊕ p0 to g′0 = k′0 ⊕ p′0. ¤

Now, that we have proved uniqueness, we address the question of
existence. We define an abstract Vogan diagram as an abstract Dynkin
diagram together with an automorphism of the diagram, which indi-
cates the 1- and 2-element orbits of vertices, and a subset of the 1-
element orbits, which indicates the painted vertices. Clearly, every
Vogan diagram is an abstract Vogan diagram.

2.50. Theorem. If an abstract Vogan diagram is given, then there
exists a real semisimple Lie algebra g0, a Cartan involution θ, a max-
imally compact θ stable Cartan subalgebra h0 = t0 ⊕ a0 and a positive
system ∆+ of ∆(g, h) that takes t0 before ia0 such that the given dia-
gram is the Vogan diagram of (g0, h0,∆

+).

Proof. By the Existence Theorem 1.24 there is a complex semisim-
ple Lie algebra g which corresponds to the Dynkin diagram on which
the abstract Vogan diagram is based. Let h be a Cartan subalgebra of
g. Let ∆ = ∆(g, h) be a root system with a positive system ∆+. Let
Xα be the root vectors of the corresponding split real form of g and
define a compact real form u0 of g in terms of h and Xα by

u0 =
∑

α∈∆
R(iHα) +

∑

α∈∆
R(Xα −X−α) +

∑

α∈∆
Ri(Xα +X−α).

The abstract Vogan diagram defines an automorphism θ of the
Dynkin diagram, which extends linearly to h∗ and is isometric. We
want to see that θ maps ∆ onto itself. Let α ∈ ∆+ be a positive root.
We write α =

∑

niαi as a sum of simple roots and call
∑

ni the level
of α. We show that θ(∆+) ⊆ ∆ by induction on the level n of α. If
the level is 1, then α is simple and thereof we know that θα is simple
either. Now let n > 1. Assume that θα ∈ ∆ for all positive α with
level < n and let α be of level n. We choose a simple root αj such that
〈α, αj〉 > 0. Then the reflection of α on the hyperplane defined by αj,

sαj(α) = α− 2〈α, αj〉
|αj|2

αj = β
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is a positive root of smaller level than α. By induction hypothesis θβ
and θαj are in ∆. Since θ is isometric θα = sθαj(θβ) and therefore θα
is in ∆.

We can transfer θ from h∗ to h, retaining the same name. Define θ
on the root vectors Xα for simple roots by

θXα =







Xα if α is unpainted and forms a 1-element orbit
−Xα if α is painted and forms a 1-element orbit
Xθα if α forms a 2-element orbit.

By the Isomorphism Theorem 1.23 θ extends to an automorphism of
g. The uniqueness in 1.23 implies that θ2 = 1.

The main step is to prove that θu0 = u0. Let B be the Killing form
of g. For α ∈ ∆ define the constant aα by θXα = aαXθα. Then

aαa−α = aαa−αB(Xθα, X−θα)

= B(aαXθα, a−αX−θα)

= B(θXα, θX−α)

= B(Xα, X−α)

= 1

.

So if we prove, that

aα = ±1 for all α ∈ ∆+

this also proves the result for all α ∈ ∆. Again we prove by induction
on the level of α. For simple roots, which have level 1, this is true
by definition. Let α ∈ ∆+ be of level n and inductively assume that
aα = ±1 holds for all α with level < n. Choose some positive roots β
and γ such that α = β + γ. Clearly β and γ are of smaller level than
α. Remember that we have chosen Xα in the construction of the split
real form such that

θXα = N−1
β,γθ[Xβ, Xγ ]

= N−1
β,γ[θXβ, θXγ ]

= N−1
β,γaβaγ[Xθβ, Xθγ ]

= N−1
β,γNθβ,θγaβaγXθβ+θγ .

Therefore
aα = N−1

β,γNθβ,θγaβaγ.

By induction hypothesis aβaγ = ±1 and Theorem 2.25 tells us that

N2
β,γ =

1

2
q(1 + p)|β|2 = 1

2
q(1 + p)|θβ|2 = N2

θβ,θγ .

Hence N−1
β,γNθβ,θγ = ±1. This proves aα = ±1 and the induction is

complete.
Let us see that

θ(R(Xα−X−α)+Ri(Xα+X−α)) ⊆ R(Xθα−X−θα)+Ri(Xθα+X−θα).



48 2. CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS

Like in the proof of Theorem 2.49 we calculate for some z = x + iy
with x, y ∈ R

x(Xα −X−α) + yi(Xα +X−α) = zXα − z̄X−α
Reverting argumentation of 2.49 the desired result is equivalent to the
fact that

θ(zXα − z̄X−α) = zaαXθα − z̄a−αX−θα
is of the form wXθα − wX−θα where z, w ∈ C. But this is clear since
we know that aα = ±1 for all α ∈ ∆. Since θ carries roots to roots we
have

θ(
∑

α∈∆
R(iHα)) =

∑

α∈∆
R(iHα).

This shows that θu0 = u0.
Let k and p be the +1 and −1 eigenspaces of θ in g, so that g = k⊕p.

We have

u0 = (u0 ∩ k)⊕ (u0 ∩ p).

Define k0 = u0 ∩ k and p0 = i(u0 ∩ p). Then

u0 = k0 ⊕ ip0.
Since u0 is a vector space real form of g so is

g0 = k0 ⊕ p0.

Since θu0 = u0 and θ is an involution we have the bracket relations

[k0, k0] ⊆ k0
[k0, p0] ⊆ p0
[p0, p0] ⊆ k0.

Therefore g0 is closed under brackets and is a Lie algebra real form of
g. The involution

θ(X) =

{

+X for X ∈ k0
−X for X ∈ p0

Hence θ is a Cartan involution of g0.
θ maps u0 ∩ h to itself. and therefore

u0 ⊕ h = (u0 ∩ k ∩ h)⊕ (u0 ∩ p ∩ h)
= (k0 ∩ h) ⊕ (ip0 ∩ h)
= (k0 ∩ h) ⊕ i(p0 ∩ h).

The abelian subspace u0∩h is a real form of h and so is h0 = (k0∩h)⊕
(p0 ∩ h). The subspace h0 is contained in g0 and is therefore a θ stable
Cartan subalgebra of g0.

A root α that is real on all of h0 has the property that θα = −α.
Since θ(∆+) = ∆+, there are no such real roots. Hence h0 is maximally
compact.
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Let us verify that ∆+ results from a lexicographic ordering that
takes i(k0 ∩ h) before p0 ∩ h. Define the following sets

{βi}li=1 the set of simple roots of ∆+ in 1-element orbits

{γi, θγi}mi=1 the set of simple roots of ∆+ in 2-element orbits

{αi}l+2mi=1 the set of all simple roots of ∆+

in the following order

{α1, . . . , αl, αl+1, αl+2, . . . , αl+2m−1, αl+2m} =
{β1, . . . , βl, γ1, θγ1, . . . , γm, θγm}

Relative to the basis {αi}l+2mi=1 define the dual basis {ωi}l+2mi=1 by 〈ωi, αj〉 =
δij. We shall write ωβj or ωγj or ωθγj in place of ωi to see the origin
of ωi more easily. We define a lexicographic ordering by using inner
products with the ordered basis

ωβ1 , . . . , ωβl , ωγ1+ ωθγ1 , . . . , ωγm+ ωθγm , ωγ1− ωθγ1 , . . . , ωγm− ωθγm
which takes i(k0 ∩ h) before p0 ∩ h. Let α be in ∆+ and decompose

α =
l
∑

i=1

niβi +
m
∑

j=1

rjγj +
m
∑

j=1

sjθγj.

Then

〈α, ωi〉 = ni ≥ 0

and

〈α, ωγj + ωθγj〉 = rj + sj ≥ 0.

If all these inner products were 0, then all coefficients of α were 0. Thus
α has positive inner product with the first member of our ordered basis
for which the inner product is nonzero. The lexicographic ordering
yields ∆+ as a positive system. Consequently (g0, h0,∆

+) is a triple
discribing a real Lie algebra with the Vogan diagram we started off. ¤

In order to classify real semisimple Lie algebras we take a look at
their complexifications.

2.51. Theorem. Let g0 be a simple Lie algebra over R and let g be
its complexification. The following two situations may occur:

(1) g0 is complex, which means that g0 = sR for some comlpex s.
Then g is C isomorphic to s⊕ s.

(2) g0 is not complex. Then g is simple over C.

Proof. (1) Let J be multiplication by
√
−1 in g0. We want

to show that the R linear map L : g→ s⊕ s given by

L(X + iY ) = (X + JY,X − JY ),
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where X,Y in g0, is an isomorphism. L respects brackets since

L([X + iY,X ′ + iY ′]) =L(([X,X ′]− [Y, Y ′]) + i([Y,X ′] + [X,Y ′]))
= ([X,X ′] + [JY, JY ′] + [X, JY ′] + [JY,X ′],

[X,X ′] + [JY, JY ′]− [JY,X ′]− [X, JY ′])
= [(X + JY,X − JY ), (X ′ + JY ′, X ′ − JY ′)]
= [L(X + iY ), L(X ′ + iY ′)]

and it is one-one. By dimensional argumentation L is an R
isomorphism. Let s̄ be the same real Lie algebra as g0 but
multiplication by

√
−1 is defined as multiplication by −i. To

see that L is a C isomorphism of g with s⊕ s̄ we compute

L(i(X + iY )) = L(−Y + iX)
= (−Y + JX,−Y − JX)
= (J(X + JY ),−J(X − JY )).

To complete the proof we show that s̄ is C isomorphic to s.
s has a compact real form u0. The conjugation τ of s with
respect to u0 is R linear and respects bracket and we have to
show, that τ : s → s̄ is a C isomorphism. Let U and V be in
u0. Then

τ(J(U + JV )) = τ(−V + JU)
= −V − JU
= −J(U − JV )
= −Jτ(U + JV )

shows this isomorphism.
(2) Let bar denote conjugation of g with respect to g0. If a is a

simple ideal in g then so is ā. Hence a∩ā and a+ā are ideals in
g invariant under conjugation and hence are complexifications
of ideals in g0. Thus they are 0 or all of g. Since a 6= 0 we
have a + ā = g.

If a∩ ā = 0 then g = a⊕ ā. Let ι : g0 → g be the inclusion
of g0 in g and π : g → a the projection of g to a. ϕ = ι ◦ π
is an R homomorphism of Lie algebras. If kerϕ is nonzero,
it must be g0 since g0 is simple. In this case g0 is contained
in ā. Since conjugation fixes g0 we get g0 ⊆ a ∩ ā = 0 which
is a contradiction. So kerϕ = 0 and ϕ is one-one. Since a

aswell as g0 are of dimension 1
2
dimR g, ϕ is onto and hence an

isomorphism. But this would mean that g0 is complex which
contradicts our initial assumption.

We conclude that a ∩ ā = g and hence a = g. Therefore g

is simple as asserted.
¤

2.52. Proposition. Let g be a complex Lie algebra which is simple
over C. Then gR is simple over R.
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Proof. Suppose that a is an ideal in gR. By Cartan’s Criterion for
Semisimplicity gR is semisimple. Hence [a, gR] ⊆ a = [a, a] ⊆ [a, gR], so

a = [a, gR].

Let X ∈ a. We write

X =
∑

j

[Xj, Yj]

for some Xj ∈ a and Yj ∈ gR. Then

iX =
∑

j

i[Xj, Yj] =
∑

j

[Xj, iYj] ∈ [a, gR] = a.

So a is a complex ideal in g. Since g is complex simple a = 0 or a = g.
Thus gR is simple over R. ¤

Theorem 2.51 tells us, that real simple Lie algebras are seperated
in two categories. The first one consists of complex simple Lie algebras
with restricted scalars. Proposition 2.52 tells us that every complex
simple Lie algebra may be used for this purpose. This category is clas-
sified already in chapter 1. The second category consists of noncomplex
simple Lie algebras. The Vogan diagram of such real Lie algebras is
therefore based on a connected Dynkin diagram. Similar to the com-
plex case we have the following

2.53. Lemma. A real noncomplex semisimple Lie algebra g0 is sim-
ple if and only if its Vogan diagram is connected.

Proof. (⇒) If g0 is simple, then g = (g0)
C is simple over C, the

Dynkin diagram of g is connected and hence the Vogan diagram of g0
is connected.

(⇐) The Vogan diagram of g0 is connected, hence the underlying
Dynkin diagram of g = (g0)

C is connected and g is simple. Therefore
g0 has to be simple. ¤

To classify noncomplex real Lie algebras we need to classify ab-
stract connected Vogan diagrams. The Borel and de Siebenthal Theo-
rem, which we will prove soon to cut down the possible candidates for
nonisomorphic real Lie algebras, uses the following two Lemmas in its
proof.

2.54. Lemma. Let ∆ be an irreducible abstract reduced root system
in a vector space V . Let Π be simple system and let ω and ω ′ be
nonzero members of V that are dominant relative to Π (i.e.: 〈ω, α〉 ≥ 0
respectively 〈ω′, α〉 ≥ 0 for all α ∈ Π). Then 〈ω, ω′〉 > 0.

Proof. The first step is to show that in the expansion

ω =
∑

α∈Π
aαα



52 2. CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS

all aα ≥ 0. We assume some negative coefficients and enumerate Π =
{α1, . . . , αl} such that

ω =
r
∑

i=1

aiαi −
l
∑

i=r+1

biαi = ω+ − ω−

where ai ≥ 0 and bi > 0. We shall show that ω− = 0. Since ω− = ω+−ω
we have

0 ≤ |ω−|2= 〈ω+, ω−〉 − 〈ω−, ω〉
=
∑r

i=1

∑l

j=r+1 aibj〈αi, αj〉 −
∑l

j=r+1 bj〈ω, αj〉.

The first term in the last row is ≤ 0 since 〈αi, αj〉 ≤ 0 for destinct
simple roots. The second term is negative by our assumption. Thus
0 ≤ |ω−|2 ≤ 0 and ω− = 0.

Now we write ω =
∑l

j=1 ajαj with all aj ≥ 0. We want to show
aj > 0 for all j using the irreducibility of ∆. Assume ai = 0. Then

0 ≤ 〈ω, αi〉 =
∑

j 6=i
aj〈αj, αi〉

with every term on the right hand side ≤ 0 by the same argument as
above. Thus aj = 0 for every αj with 〈αj, αi〉 < 0. All neighbours of
αi in the Dynkin diagram satisfy this condition. The Dynkin diagram
is connected by irreducibility of ∆. Iteration of this argument shows,
that all coefficients are 0 once one of them is 0.

Since ω 6= 0 there is at least one αi such that 〈αi, ω〉 > 0. Then

〈ω, ω′〉 =
l
∑

j=1

aj〈αj, ω′〉 ≥ ai〈αi, ω′〉 > 0

since ai > 0. ¤

2.55. Lemma. Let g0 be a noncomplex simple real Lie algebra and let
the (g0, h0,∆

+) be a triple defining a Vogan diagram of g0. Decompose
h0 = t0 ⊕ a0 as usual. Let V be the span of the simple roots that are
imaginary. Let ∆0 = ∆ ∩ V the set of roots built out of imaginary
simple ones. Let H be the subset of it0 paired with V and let Λ be the
subset of H where all roots of ∆0 take integer values and all noncompact
roots of ∆0 take odd integer values. Then Λ in nonempty. Furthermore
we can describe such elements explicitly. Let {α1, . . . , αm} be a simple
system of ∆0 and {ω1, . . . , ωm} ⊂ V defined such that 〈ωj, αk〉 = δjk.
Let I be the set of indices of all noncompact αi. Then the element

ω =
∑

i∈I
ωi

is in Λ.
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Proof. Let {α1, . . . , αm} be a simple system of ∆0 with corre-
sponding positive roots ∆+

0 . Define ω1, . . . , ωm by 〈ωj, αk〉 = δjk. If
α =

∑m

i=1 niαi is a positive root of ∆0, then 〈ω, α〉 is the sum of all ni
where αi is noncompact, which is an integer.

We shall prove ny induction on the level
∑m

i=1 of α that 〈ω, α〉 is
even if α is compact, respectively odd if α is noncompact. If α has
level 1 this is true by definition. Now let α, β ∈ ∆+

0 with α + β ∈ ∆
and suppose our assertion is true for α and β. Since the sum of ni for
which αi is noncompact is additive, we have to prove that imaginary
root satisfy

compact + compact = compact
compact +noncompact=noncompact

noncompact+noncompact= compact.
This follows from the facts, that [gα, gβ] = gα+β and the relations of
the Cartan decomposition

[k0, k0] ⊆ k0, [k0, p0] ⊆ p0, [p0, p0] ⊆ k0.

¤

2.56. Theorem (Borel and de Siebenthal Theorem). Let g0 be a
noncomplex simple real Lie algebra and let the Vogan diagram of g0 be
given that corresponds to the triple (g0, h0,∆

+). Then there exists a
simple system Π′ for ∆ = ∆(g, h), with corresponding positive system
∆+′, such that (g0, h0,∆

+′) is a triple and there is at most one painted
simple root in the Vogan diagram.
Furthermore suppose that the automorphism associated with the Vo-

gan diagram is the identity, that Π′ = {α1, . . . , αl} and that {ω1, . . . , ωl}
is the dual basis given by 〈ωj, αk〉 = δjk. Then the single painted simple
root αi may be chosen so that there is no i

′ with 〈ωi − ωi′ , ωi′〉 > 0.

Proof. Define V , ∆0 and Λ as in 2.55. To use 2.54 we need the
Dynkin diagram of ∆0 to be connected. This is equivalent to the state-
ment, that the subset of roots, which are fixed by the given automor-
phism, is a connected set. If the automorphism is the identity this is
evident. We consider this case first.

Let ∆+
0 = ∆+ ∩ V . Λ is a subset of a lattice, hence discrete and

nonempty by Lemma 2.55. Let H0 ∈ Λ be of minimal norm. Then we
can choose a new positive system ∆+

0
′
of ∆0, such that H0 is dominant.

We will show, that at most one simple root of ∆+
0
′
is painted.

Suppose H0 = 0. If α is in ∆0, then 〈H0, α〉 = 0, which is not an
odd integer. Hence by definition of Λ, α is compact. Thus all roots of
∆0 are compact and unpainted.

Now suppose H0 6= 0. Let α1, . . . , αm be the simple roots of ∆0

with respect to ∆+
0
′
. Define ω1, . . . , ωm such that 〈ωj, αk〉 = δjk. We
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write

H0 =
m
∑

j=1

njωj with nj = 〈H0, αj〉.

Each number nj is an integer since H0 is in Λ and nj ≥ 0 by dominance
of H0. Since H0 > 0, ni > 0 for some i. Then H0 − ωi is dominant
relative to ∆+

0
′
and Lemma 2.55 shows that 〈H0 − ωi, ωi〉 ≥ 0 with

equality only if H0 = ωi. If strict inequality would hold, we could
calculate for the element H0 − 2ωi ∈ Λ

|H0 − 2ωi|2 = 〈H0, H0〉 − 2〈2ωi, H0〉+ 〈2ωi, 2ωi〉
= 〈H0, H0〉 − 4〈H0 − ωi, ωi〉
< |H0|2

which contradicts our assumption that H0 is of minimal norm. Hence
equality holds and H0 = ωi. Since H0 ∈ Λ, a simple root αj ∈ ∆+

0
′

is noncompact only if 〈H0, αj〉 is an odd integer. Since 〈H0, αj〉 = 0
for j 6= 0, the only possible noncompact simple root and furthermore
the only painted one in ∆+

0
′
is αi. This proves the main part of the

theorem still restricted to the case of an identical automorphism of the
Vogan diagram. Now we turn to the additional statement keeping this
restriction.

Assume H0 = ωi. Then an inequality 〈ωi−ωi′ , ωi′〉 > 0 would imply

|H0 − 2ωi′ |2 = |H0|2 − 4〈ωi − ωi′ , ωi′〉 < |H0|2

again in contradiction with assuming H0 to be of minimal norm.
Our proof is not complete because of restricting the automorphism

associated to the Vogan diagram to the identity. Lets see what happens
if this is not the case. Choose an element s of the Weyl group W of
∆0 such that ∆+

0
′
= s∆+

0 and define the positive system ∆+′ = s∆+.
∆+ is defined by an ordering that takes values on it0 before a0. The
same is true for ∆+′ since the element s maps it0 to itself, with h0 =
t0 ⊕ a0 as usual. Let {β1, . . . , βl} be the set of simple roots of ∆+

with the subset {β1, . . . , βm} ⊆ ∆0. Then {sβ1, . . . , sβl} is the set
of simple roots of ∆+′ and among these {sβ1, . . . , sβm} is the set of

simple roots of ∆+
0
′
considered in the first part of the proof referred to

as {α1, . . . , αm}. Out of these there is at most one root noncompact.
The roots sβm+1, . . . , sβl are complex since βm+1, . . . , βl are complex
and s carries complex roots to complex roots. Thus ∆+′ has at most
one simple root that is noncompact imaginary. ¤

2.57. Theorem (Classification). The following list is up to isomor-
phism a complete list of simple real Lie algebras:

(1) the Lie algebra gR, where g is a complex simple Lie algebra
(2) the compact real form of any complex simple Lie algebra
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(3) the classical matrix algebras out of the following list

su(p, q) with p ≥ q > 0, p+ q ≥ 2
so(p, q) with p > q > 0, p+ q ≥ 3, p+ q odd
sp(p, q) with p ≥ q > 0, p+ q ≥ 3
sp(n,R) with n ≥ 3
sp(p, q) with p ≥ q > 0, p+ q ≥ 8, p+ q even
so∗(2n) with n ≥ 4
sl(n,R) with n ≥ 3
sl(n,H) with n ≥ 2

(4) the 12 exceptional noncomplex noncompact simple Lie algebras
listed in the following discussion.

The only isomorphism among Lie algebras in the above list is so∗(8) =
so(6, 2).

This isomorphism is obvious, since this is just a reflection of the
Vogan diagram based on the Dynkin diagram D4. The restrictions of
the rank are made to prevent isomorphic algebras.

The first item is obvious. The items two to four need some investi-
gations. We will start with a complete list of possible Vogan diagrams
and deal with their realizations later. We split the observed Lie alge-
bras in the cases where the automorphism of the corresponding Vogan
diagram is trivial or not. We will deal with the case of trivial automor-
phisms first.

When no simple root is painted, then g0 is a compact real form. To
look at a list of all possible Vogan diagrams of this form, just look at
the list of possible Dynkin diagrams at the end of chapter 1.

The Borel and de Siebenthal Theorem 2.56 restricts the possible
cases to zero or one painted root. So we only have to deal with the
case of one painted root. We divide matters in classical and exceptional
Dynkin diagrams, since there is an additional statement on the possible
placements of the painted root in the exceptional case in Theorem 2.56.

In the case of classical Dynkin diagrams we obtain Vogan diagrams
based on An, Bn, Cn and Dn with one vertex painted. In the case of
exceptional Dynkin diagrams, the following table lists all possibilities
of Vogan diagrams with one vertex painted. These 10 Vogan diagrams
belong to the type mentioned in 2.57 (4).

E II e e e
u

e e

E III u e e
e

e e
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E V e e e e
u

e e

E VI e e e e
e

e u

E VII u e e e
e

e e

E VIII e e e e
e
e e u

E IX u e e e
e
e e e

F I e1 e1 e2 u2
F II u1 e1 e2 e2
G e1 u3

This completes the the list of Lie algebras, whose Vogan diagrams
are equipped with a trivial automorphism. We now look at the dia-
grams with nontrivial automorphisms. A nontrivial automorphism can
only be found on the Dynkin diagrams An, Dn and E6.

An: The nature of the automorphisms of An differ, whether n is
odd or even. There is one Vogan diagram for each An where n is even.

e
e
e

e
'
&

6

?

6

?

Since there is no simple root in a 1-element orbit, no root can be
painted.

For n odd there are two possible diagrams of An listed below.



2. CLASSIFICATION OF REAL SEMISIMPLE LIE ALGEBRAS 57

e
e
e

e
u¡¡
@
@

6

?

6

?

e
e
e

e
e¡¡
@
@

6

?

6

?

The only possibly painted root is the one in the 1-element orbit.
Dn: Dn does not separate in an odd and even case, since there is

only an automorphism of the following type

e e e
e
e
6

?

¡
¡

@
@

Each of the roots (only one at a time) may be painted except for the
two rightmost roots in the 2-element orbit.

E6: The only exceptional Dynkin diagram that has a nontrivial
automorphism is E6. The following two Vogan diagrams complete the
listing of the 12 exceptional noncomplex noncompact simple Lie alge-
bras mentioned in 2.57 (4).

E I u e
e

e
e

e
¡
¡

@
@

6

?

6

?

E IV e e
e

e
e

e
¡
¡

@
@

6

?

6

?

This ends our discussion of the classification of possible Vogan di-
agrams surviving the redundancy test of the Borel and de Siebenthal
Theorem.

We will now deal with the realizations of these Vogan diagrams,
verifying some of them. The following table lists all compact real forms
of all Dynkin diagrams. We give a matrix realization if the underlying
Dynkin diagram is classical, in the case of exceptional Dynkin diagram
we give it a name.
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Diagram Compact Real Form
An su(n+ 1)
Bn so(2n+ 1)
Cn sp(n)
Dn so(2n)
E6 e6
E7 e7
E8 e8
F4 f4
G2 g2

The next table visualizes the result in the case of classical Dynkin
diagrams equipped with the trivial automorphism and exactly one root
painted. The Lie algebras written beneath a vertex means, that the
Vogan diagram with only that vertex painted corresponds to this Lie
algebra.

An e e e e
su(1, n) su(2, n− 1) su(n− 1, 2) su(n, 1)

Bn
e1 e2 e2 e2

so(2, 2n− 1) so(4, 2n− 3) so(2n− 2, 3) so(2n, 1)

Cn e1 e1 e1 e2
sp(1, n− 1) sp(2, n− 2) sp(n− 1, 1) sp(n,R)

Dn
e e e

e

eso(2, 2n− 2) so(4, 2n− 4) so(2n− 4, 4)

so∗(2n)

so∗(2n)

©©
©©

©©

HHHHHH

Following our example sl(n,C) of complex semisimple Lie algebras
we will now realize some of its nonisomorphic real forms as matrix
algebras, which means to realize Vogan diagrams based on the Dynkin
diagram of An. The Cartan involution during this example is given by
θ(X) = −X∗.

Recall the definition of the elements H,Eij in our discussion of
sl(n,C). Taking these elements as a basis of a real Lie algebra we get
sl(n,R) which is a split form of sl(n,C), since

h0 = {H ∈ h|α(H) ∈ R for all α ∈ ∆}
is a Cartan subalgebra.
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We proved, that there exists a compact real form for every complex
semisimple Lie algebra and gave an explicit formula how to obtain a
compact real form using a split real form. This compact real form is

u0 =
∑

i,j≤n
R(iHei−ej) +

∑

i,j≤n
R(Ei,j − E−i,−j) +

∑

i,j≤n
Ri(Ei,j + E−i,−j)

which is just su(n) = {X ∈ sl(n,C)|X = −X∗}. This real Lie algebra
corresponds to the Vogan diagram with trivial automorphism and no
vertex painted.

e
e1 − e2

e
e2 − e3

e
en−2 − en−1

e
en−1 − en

Now we realize the Vogan diagrams with trivial automorphism but
one vertex painted. Let

su(p, q) = {X ∈ sl(p+ q,C)|X =

(

A B

B∗ D

)

, A = −A∗, D = −D∗}

where A is a p-by-p matrix and D is a q-by-q matrix. With θ as
mentioned the Cartan decomposition looks like

k0 =

(

A 0

0 D

)

and p0 =

(

0 B

B∗ 0

)

.

The subalgebra consisting of all diagonal elements is a Cartan subal-
gebra, which lies entirely in k0 and hence is maximally compact. Using
the same ordering as above, we get the same set of simple roots. Clearly
the only simple root, whose root space is not in k0 is ep − ep+1. This is
the only noncompact root and hence painted.

e
e1 − e2

e
ep−1 − ep

u
ep − ep+1

e
ep+1 − ep+2

e
ep+q − ep+2

Collecting the information of all Vogan diagrams based on the
Dynkin diagram of An with trivial automorphism and one painted root
we get the following diagram:

e
su(1, n)

e
su(2, n− 1)

e
su(n− 1, 2)

e
su(n, 1)

The Lie algebra written beneath a vertex means, that the Vogan
diagram with only that vertex painted corresponds to this algebra. To
see an example of a Vogan diagram based on An which does not survive
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the redundancy test of the Borel and de Siebenthal Theorem 2.56 we
will realize the following Vogan diagram:

u e u e u
Let g0 = su(3, 3) a special case of the discussion of su(p, q) above.

But we change the ordering of the linear functionals to fit this condition.

e1 ≥ e4 ≥ e5 ≥ e2 ≥ e3 ≥ e6

Then the simple roots are

e1 − e4, e4 − e5, e5 − e2, e2 − e3, e3 − e6

Since the Cartan decomposition is the same as above all simple roots
are imaginary but all roots ei − ej with i ∈ {1, 2, 3} and j ∈ {4, 5, 6}
or i ∈ {4, 5, 6} and j ∈ {1, 2, 3} are noncompact, hence painted.

The remaining real Lie algebras, with Vogan diagrams based on An

and listed in the classification are the following.

e
e
e

e
'
&

6

?

6

?

e
e
e

e
u¡¡
@
@

6

?

6

?

e
e
e

e
e¡¡
@
@

6

?

6

?

The first one of these three is the last unrealized Vogan diagram
based on An, where n is even. We did not find a diagram representing
sl(n + 1,R) so far, but sl(n + 1,R)C = sl(n + 1,C) determines the
underlying Dynkin diagram to be of type An and hence this has to be
the one.

The remaining two diagrams are both based on An with n odd,
hence the above argument will not wotk. We try to verify that the first
one of those two represents g0 = sl(2n,R). The Cartan involution shall
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be negative transpose and define a Cartan subalgebra

h0 =





















































x1 γ1

−γ1 x1
. . .

xn γn

γn xn





















































built out of block diagonal matrices with Tr(H) = 0 for allH ∈ h0. The
subspace t0 is the set of all H ∈ h0 with xj = 0 for all j ∈ {1, . . . , n}
and the subspace a0 corresponds to the set of all H ∈ h0 with γj = 0
for all j ∈ {1, . . . , n}. We define linear functionals ej and fj depending
on nothing else but the j’th block of such a matrix by

ej

(

xj yj

−yj xj

)

= iyj and fj

(

xj yj

−yj xj

)

= xj.

The root system is

∆ = {±ej ± ek ± (fj − fk)|j 6= k} ∪ {±2el|1 ≤ l ≤ n}.
Roots built out of ej’s are purely imaginary while roots built out of
fj’s are real. Others are complex. We see that there are no real roots
and therefore h0 is maximally compact. The involution θ acts by +1
on all ej and by −1 on all fj. We define a lexicographic ordering by
using the spanning set

e1, . . . , en, f1, . . . , fn

and obtain a positive system

∆+ =











ej + ek ± (fj − fk) for all j 6= k

ej − ek ± (fj − fk) for all j < k

2ej for 1 ≤ j ≤ n

and a simple system

Π =











ej−1 + ej + (fj−1 − fj) for all 1 ≤ j ≤ n

ej−1 − ej + (fj−1 − fj) for all 1 ≤ j ≤ n

2en

The resulting Vogan diagram is the following:

een−1 − en + (fn−1 − fn)

e
e2 − e1 − (f2 − f1)

ee2 − e1 + (f2 − f1)

e
en−1 − en − (fn−1 − fn)

u2en
¡
¡

@
@

6

?

6

?
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And it comes from sl(2n+1,R). The remaining Vogan diagram comes
from sl(1

2
(n+ 1,H)).

We have already seen a list of all Vogan diagrams based on excep-
tional Dynkin diagrams equipped with the trivial automorphism. We
will now verify the case of E6. The main part of the Borel and de
Siebenthal Theorem 2.56 says we only have to paint one vertex. But
the supplement also restricts the possible painted vertices. Remember
that we associated to a simple system Π = {α1, . . . , α6} the dual basis
{ω1, . . . , ω6} defined by

〈ωi, αj〉 = δij.

Let the simple roots be organized in this way

e
α1

e
α3

e
α4

eα2

e
α5

e
α6

Then the dual basis has the following form:

ω1=
1
3
(4α1+3α2+ 5α3+ 6α4+ 4α5+2α6)

ω2= 1α1+2α2+ 2α3+ 3α4+ 2α5+1α6
ω3=

1
3
(5α1+6α2+10α3+12α4+ 8α5+4α6)

ω4= 2α1+3α2+ 4α3+ 6α4+ 4α5+2α6
ω5=

1
3
(4α1+6α2+ 8α3+12α4+10α5+5α6)

ω6=
1
3
(2α1+3α2+ 4α3+ 6α4+ 5α5+4α6)

Now we use the supplementary condition of 2.56 to rule out α3, α4
and α5 from being painted. For i = 3 we take i′ = 1 to see that

5

3
= 〈ω3, ω1〉 > 〈ω1, ω1〉 =

4

3
so that

〈ω3 − ω1, ω1〉 > 0.

Similarly we take i′ = 1 for i = 4 to see that

〈ω4 − ω1, ω1〉 = 2− 4

3
> 0

and we take i′ = 6 for i = 5 to see that

〈ω5 − ω6, ω6〉 =
5

3
− 4

3
> 0.

Therefore we only have to consider the three Vogan diagrams with
one of α1, α2 or α6 painted. Clearly the diagram with α6 painted is
isomorphic to the one with α1 painted. The two diagrams left are E II
and E III mentioned in our list.

The realizations of the Vogan diagrams based on Dn with nontrivial
automorphism are listed in the following table, using the same notation
as above.
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e
so(3, 2n− 3)

e
so(5, 2n− 5)

e
so(2n− 3, 3)

e
e
6

?

¡
¡

@
@
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Now that we have seen how to classify real semisimple Lie algebras
using Vogan diagrams we will take a look at an alternative way. This
will lead to the notion of Satake diagrams.

Let g be a semisimple Lie algebra over R with complexification gC.
Let g = k ⊕ p be a Cartan decomposition of g, then u = k ⊕ ip is a
compact real form of gC.

In contrast to the classification by Vogan diagrams we choose a
maximally noncompact Cartan subalgebra. Let a be maximal abelian
in p and let h be a θ stable Cartan subalgebra of g containing a. Then
h = t⊕ a with a = h ∩ p and t = h ∩ k. Let hC be the complexification
of h which is a Cartan subalgebra of gC and let

gC = hC ⊕
⊕

α∈∆
gα

be the root space decomposition of gC with respect to hC, the root
system denoted by ∆. Let furthermore

h0 = {H ∈ hC|α(H) ∈ R for all α ∈ ∆}.
B denoting the Killing form, h0 = it⊕ a becomes a euclidean space by
identifying α with Hα uniquely defined by α(H) = B(Hα, H).

Let σ and τ be the conjugation of gC with respect to the real forms
g and u = k⊕ ip. h0 is invariant under both, σ and τ since

σ|it = −1 , σ|a = 1 and τ |h0 = −1.
We denote σ(α) = α for all α ∈ ∆ and let

∆0 = {α ∈ ∆|α = −α}
which is the set of roots in ∆, that vanish on a. Denote the rank of ∆
and ∆0 by l and l0.

We now address the problem of an ordering of ∆. We search for an
ordering satisfying

α > 0⇒ α > 0 for all α /∈ ∆0

An example of such an ordering is a lexicographic ordering taking a

before it, in contrast to the ordering we used for Vogan diagrams. Let

Π = {α1, . . . , αl−l0 , αl−l0+1, . . . , αl}
be a simple system respecting this ordering. Then

Π0 = Π ∩∆0 = {αl−l0+1, . . . , αl}
is a simple system of ∆0.

2.58. Lemma. There exists a permutation ′ : {1, . . . , l − l0} →
{1, . . . , l − l0} of order 2 such that

αi = αi′ +
l
∑

j=l−l0+1
c
(i)
j αj with c

(i)
j ≥ 0 , for 1 ≤ i ≤ l − l0.
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Proof. Since Π is a simple system we can write

αi =
l
∑

j=1

c
(i)
j αj for all 1 ≤ i ≤ l − l0.

Then the c
(i)
j are nonnegative integers and there is at least one index

1 ≤ i′ ≤ l − l0 with c(i)i′ > 0. Applying σ to this equation we get

αi =

l−l0
∑

j=1

c
(i)
j αj −

l
∑

j=l−l0+1
c
(i)
j αj =

l−l0
∑

j=1

l
∑

k=1

c
(i)
j c

(j)
k αk −

l
∑

j=l−l0+1
c
(i)
j αj.

Hence we have c
(i)
i′ = 1 and c

(i)
j = 0 for all 1 ≤ j ≤ l − l0, j 6= i′. This

proves the stated equation and applying σ to this equation we get

αi′ = αi +
l
∑

j=l−l0+1
c
(i)
j αj.

Therefore (i′)′ = i which shows that ′ : {1, . . . , l− l0} → {1, . . . , l− l0}
is a permutation of order 2. ¤

Because of the fact, that ′ is a permutation of order 2 we are able
to reorder the set {1, . . . , l − l0} such that

i′ =











i for 1 ≤ i ≤ p1

i+ p2 for p1 + 1 ≤ i ≤ p1 + p2

i− p2 for p1 + p2 + 1 ≤ i ≤ p1 + 2p2,

for some p1, p2 satisfying l − l0 = p1 + 2p2. Let p = p1 + p2 and let
γi = proja αi for 1 ≤ i ≤ p be the projection of αi to a.

2.59. Proposition. Σ = {γ1, . . . , γp} becomes a simple system of
some root system of a. These are the restricted roots. Hence dim a = p.

Note that the root system spanned by Σ is contained in proja(∆−
∆0) but in general the latter is not a root system. The proof is pre-
ceeded by two lemmas.

Let W (∆) and W (∆0) denote the Weyl groups of ∆ and ∆0. Let
Wσ be the subgroup of W (∆) defined by

Wσ = {s ∈ W (∆)|sσ = σs}.
The condition to commute with σ is equivalent to s(a) = a.

2.60. Lemma. Let s ∈ Wσ. s ∈W (∆0) if and only if s|a = 1, which
means that the hyperplane fixed by s containes a. Another sufficient
condition is that {γ1, . . . , γp} = {sγ1, . . . , sγp}.

Proof. An element of W (∆0) necessarily fixes a. The second con-
dition in the lemma is stronger, since it just says that a basis is pre-
served under s. So let {γ1, . . . , γp} = {sγ1, . . . , sγp}. If {α1, . . . , αl} is a
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simple system of ∆ so is {sα1, . . . , sαl} and {sαl−l0 , . . . , sαl} is a simple
system of ∆0. There exists s0 ∈ W (∆0) such that {sαl−l0 , . . . , sαl} =
{s0αl−l0 , . . . , s0αl}. We may assume {sαl−l0 , . . . , sαl} = {αl−l0 , . . . , αl}
from the outset, replacing s by s−10 s if necessary. For 1 ≤ i ≤ l − l0,

sαi + sαi = s(αi + αi) = 2s proja αi

which is positive by assumption. Hence sαi > 0 for these i. This means
that the set of positive roots for the basis {sα1, . . . , sαl} is contained in
the positive roots for the basis {α1, . . . , αl}. Hence the bases coincide
and s = 1. ¤

2.61. Lemma. Let sa
γ be the reflection of a along the hyperplane

defined by

sa
γ(H) = H − 〈γ,H〉〈γ, γ〉 γ

for H ∈ a. For γi ∈ Σ, sγi coincides with the restriction of some
element of Wσ to a.

Proof. Let αi + αi = 2γi ∈ ∆, then sa
γi

coincides with the restric-
tion sαi+αi |a.

Suppose αi + αi /∈ ∆ but αi − αi ∈ ∆. Then

αi = αi +
l
∑

j=l−l0+1
c
(i)
j αi

and αi − 2αi /∈ ∆ gives

2〈αi, αi〉
〈αi, αi〉

=
〈2αi, αi〉
〈αi, αi〉

= 1

and

−
l
∑

j=l−l0+1
c
(i)
j

2〈αi, αj〉
〈αi, αi〉

=
2〈αi, αi〉
〈αi, αi〉

− 2〈αi, αi〉
〈αi, αi〉

= 1.

Since c
(i)
j and

−2〈αi,αj〉
〈αi,αi〉 are nonnegative integers we have c

(i)
j0

= 1 and

c
(i)
j = 0 for l − l0 + 1 ≤ j ≤ l, j 6= j0 and some j0. This means
αi = αi+αj0 , which is impossible. Thus for αi+αi /∈ ∆ also αi−αi /∈ ∆.
Hence αi is orthogonal to αi and sαisαi ∈ Wσ induce sa

γi
on a. ¤

Proof. of Proposition 2.59. We shall show that {γ1, . . . , γp} sat-
isfies the characteristic properties of a simple system. First lets show
that the elements are linearly independent. Since α1, . . . , αl are linearly
independent, there exists H ∈ h0 such that αi(H) = αi′(H) = 1 and
αk(H) = 0 for k 6= i, i′. Then H ∈ a and γi(H) = 1 and γk(H) = 0 for
k 6= i and hence γ1, . . . , γp are linearly independent.
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Now we check that − 2〈γi,γj〉〈γi,γi〉 are nonnegative integers for i 6= j. By

Lemma 2.61 sa
γi

is induced by some s ∈Wσ. We have

−〈γi, γj〉〈γi, γi〉
γi = sa

γi
γj − γj = proja(sαj − αj).

Hence
2〈γi,γj〉
〈γi,γi〉 is the sum of the coefficients of αi and α

′
i in the expression

sαj − αj as a linear combination of αk for 1 ≤ k ≤ l. Compute

2〈γi, γj〉 = 〈αi + αi, αj〉 = 〈αi + αi′ +
l
∑

j=l−l0+1
c
(i)
j αk, αj〉 ≤ 0

for j 6= i to see that − 2〈γi,γj〉〈γi,γi〉 is nonnegative. ¤

2.62. Proposition. LetW (Σ) be the Weyl group of the root system
Σ. Then every element of Wσ induces an element of W (Σ) acting on a.
This gives a homomorphism of Wσ onto W (Σ) with kernel W (∆0). For
any other simple system ∆′, ordered the way ∆ is, there is an element
s ∈ Wσ such that ∆

′ = s∆.

For a semisimple Lie algebra g we have chosen a maximally non-
compact subalgebra k, a Cartan subalgebra h such that h∩p is maximal
abelian in p and a system ∆ of simple roots in an ordering that takes
values on a before it. To show that our considerations do not depend
on the choices of these, we have the following

2.63. Proposition. Let g be a semisimple real Lie algebra and let
(k, h,∆) be as described above. If (k′, h′,∆′) is another triple satisfying
these conditions, then they are conjugate by some g ∈ Int g. This
means that k′ = gk, h′ = gh and ∆′ = g∆. Furthermore the two
systems (k, a,Σ) and (k′, a′,Σ′) are conjugate by the same element g.

We will now define the Satake diagram of a real Lie algebra g with
h, ∆, ∆0 and Σ as above by the Dynkin diagram of ∆ with the follow-
ing additional information. All vertices corresponding to an α ∈ ∆0

painted and vertices corresponding to αi 6= αi′ with ′ defined as in
Lemma 2.58 connected by an arrow ←→. We omit the cases where g

is complex and restrict to those where gC is simple.

A I d d d d
A II t d t d t
A III

d d d
d d d

d
¡
¡

@
@6

?

6

?

6

?
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d d d t
t
t

d d d t
6

?

6

?

6

?

B I d2 d2 d2 t2 t2 t1
C I d1 d1 d1 d2
C II t1 d1 t1 d1 t1 t1 t1 t2

t1 d1 t1 d1 t1 d2
D I d d d t t

t
t

¡
¡

@
@

d d d
d
d

¡
¡

@
@

6

?

d d d
d
d

¡
¡

@
@

D III t d t d d
t
d

¡
¡

@
@

t d t d d t
d
d

¡
¡

@
@

6

?

E I d d d
d

d d
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E II d d d
d
d

d¡¡

@@

6
?

6
?

E III d t t
d
d

t¡¡

@@

6
?

E IV d t t
t

t d
E V d d d d

d
d d

E VI t d t d
t

d d
E VII d d t t

t
t d

E VIII d d d d
d
d d d

E IX d d d t
t
t t d

F I d1 d1 d2 d2
G d1 d3
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