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Abstract

The paper compares computational aspects of four approaches to compute conser-
vation laws of single differential equations (DEs) or systems of them, ODEs and PDEs.
The only restriction, required by two of the four corresponding computer algebra pro-
grams, is that each DE has to be solvable for a leading derivative. Extra constraints for
the conservation laws can be specified. Examples include new conservation laws that
are non-polynomial in the functions, that have an explicit variable dependence and
families of conservation laws involving arbitrary functions. The following equations are
investigated in examples: Ito, Liouville, Burgers, Kadomtsev-Petviashvili, Karney-Sen-
Chu-Verheest, Boussinesq, Tzetzeica, Benney.

1 Introduction

As is well known, conservation laws play an important role in mathematical physics. The
knowledge of conservation laws is useful in the numerical integration of partial differential
equations (PDEs) [20], for example, to control numerical errors. Also, the investigation of
conservation laws of the Korteweg de Vries equation was the starting point of the discovery of
a number of techniques to solve evolutionary equations [25] (Miura transformation, Lax pair,
inverse scattering technique, bi-Hamiltonian structures). The existence of a large number of
conservation laws of a PDE (system) is a strong indication of its integrability. Conservation
laws play an important role in the theory of non-classical transformations [22],[23] and in
the theory of normal forms and asymptotic integrability [24]. Programs described below are
able to find conservation laws involving the independent variables explicitly. Finding such
conservation laws is a good challenge for the inverse scattering technique.

The purpose of the methods described below is to pose as few restrictions as possible
on the differential equations (DEs) to be investigated. For example, it is not assumed that
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any Lie symmetries are known, nor that the equations are equivalent to the Euler-Lagrange
equations of a variational problem. Instead we attempt to solve the conservation law condition
directly. The strategy will be to make a local ansatz involving only the dependent variables
and their derivatives. Further, the order of the derivatives is bounded in order to obtain
an over-determined PDE problem which subsequently is solved with the computer algebra
package Crack [33], [34].

In an earlier paper [35] three of the methods were discussed with emphasis put on the
computer algebra algorithms involved. In this paper we present an additional fourth method
and compare these methods in terms of complexity and functionality.

The rest of the paper is organised as follows. After specifying the notation that is used,
in section 3 a reminder on issues of the equivalence of conservation laws will provide the
motivation for the four approaches which are explained in section 4 followed by an overview.
In section 5 related computer algebra programs are shortly described and examples are given.
Extensions of the basic usage of these programs are discussed in section 6.

2 Notation and setup

We adopt the notation of the book of Olver [27] where the question of equivalence of con-
servation laws is described in more detail in Chapter 4.3. This compact notation will be
explained using the sine-Gordon equation which will be used as an example throughout the
paper.

• In general derivations or generally applicable formulas the independent variables are
x = (x1, x2, . . . , xp). In examples independent variables are t, x and y.

• Functions are denoted in general by u = (u1, u2, . . . , uq). In examples the function is u
and in a few examples an additional function is v.

• Partial derivatives are written as lower index as in utx− sin u = 0. If partial derivatives
are repeated n times (n > 2) then this may be indicated by writing n in front of
the variable in the index like in ∂7u/(∂t4∂x3) = u4t3x (which is especially used in the
appendix due to the high derivatives occuring there).

• An upper index in brackets like u(n) denotes the set of all derivatives of all components
u1, . . . , uq of order up to n including order zero, i.e. the functions themselves. In our
example with u = u(t, x) this would, for example, mean u(2) = {u, ut, ux, utt, utx, uxx}.

• The differential equations that are to be investigated concerning conservation laws are
denoted 0 = ∆(x, u(n)), in our example ∆(x, u(2)) = utx − sin u. If we have q functions
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u1, . . . , uq then it is assumed that a system of q equations 0 = ∆1, 0 = ∆2, . . . , 0 = ∆q

is given.

• Latin indices i, j have a range 1, . . . , p used for xi and Greek indices α, µ have a range
1, . . . , q used for uα and ∆µ.

• Whereas u(n) denotes the set of all possible indices up to order n we will also need a
way to specify any particular partial derivative of an unspecified order. For that we
will use the so-called multiple index J . Then any ux, ut, u2t5x are all examples for uJ .
An example for the use of J is the notation of total derivatives:

• For the total derivative we use the symbol D:

Dxi = ∂xi +
q
∑

α=1



uα
xi∂uα +

p
∑

j=1

uα
xjxi∂uα

xj
+ . . .



 .

Using the multi index J a more compact notation is:

Dxi = ∂xi +
q
∑

α=1

∑

J

uα
Jxi∂uα

J
.

• If a relation 0 = W (x, u(n)) is said to be satisfied identically for any solutions of the
equation(s) 0 = ∆ then this means that W can be written as a linear combination of
∆ and any total derivatives of ∆ with arbitrary x− and u(n)−dependent coefficients
which are non-singular for 0 = ∆. The notation adopted for that relation is

0 = W |∆=0

which may be described as “W vanishes modulo ∆ = 0”. The way to check this
circumstance in practice is

– to solve each ∆µ for one leading derivative (such that no other derivative in ∆µ is
a derivative of its leading derivative and that no two leading derivatives from two
different ∆µ, ∆ν coincide and that none is a derivative of another one),

– to substitute in W (x, u(n)) all these eliminated leading derivatives as well as all
derivatives of the leading derivatives.

– We have 0 = W |∆=0 if and only if W vanishes identically after all possible substi-
tutions have been performed.
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Example: For the sine-Gordon equation 0 = ∆ = utx− sin u we will take utx as leading
derivative and do substitutions utx = sin u. Let us assume an expression

W = −8uxxuxxt + 4u3
xutx + 8uxuxx cos u− 4u3

x sin u (1)

is given and we want to compute W |∆=0. The highest derivative of utx is uxxt = ∂xutx.
We therefore substitute utxx = ∂x(sin u) = ux cos u giving

W = 4u3
xutx − 4u3

x sin u. (2)

Substituting now utx = sin u gives W = 0. We therefore found that W as given in (1)
satisfies W |∆=0 = 0.

• A conservation law of ∆ will be given in form of a so-called conserved current P i where
each P i is a differential expression in x and u, i.e. P i = P i(x, u(m)) which has a vanishing
divergence due to 0 = ∆. In other words

0 =
∑

i

DxiP i

∣

∣

∣

∣

∣

∆=0

= Div P |∆=0 .

Example: For the current

P t = −4u 2
xx + u4

x, P x = 4u2
x cos u, (3)

we find

DivP = DtP
t + DxP

x = −8uxxutxx + 4u3
xutx + 8uxuxx cos u− 4u3

x sin u, (4)

which is equal W in (1). Because of DivP |∆=0 = W |∆=0 = 0 the vector P in (3) is a
conserved current of the sine-Gordon equation and represents a conservation law.

• About the conserved quantity: By integrating 0 = DivP over a region of the p-
dimensional xi-space we obtain the vanishing of a surface integral over that region:

0 =
∮

P idSi.

By choosing a region with a cylinder-like shape where the radius of the cylinder is very
large and the bottom and top side of the cylinder lie in the p− 1 dimensional surfaces
x1 = a = constant, and x1 = b = constant the surface integral takes the form

0 =
∫

x1=b
P 1dx2 . . . dxp −

∫

x1=a
P 1dx2 . . . dxp
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if we assume that P 1 falls off sufficiently quickly for any xi → ∞ and therefore the
integral over the mantle of the cylinder vanishes

∫

mantle P idSi → 0. The minus sign
comes in because the normal vectors of the top and bottom surface point into opposite
directions.

If one of the coordinates plays the role of time, say x1, then
∫

P 1dx2 . . . dxp is called a
constant of motion as it does not change from any time a to any time b.

Example: Continuing our example we have as a constant of motion
∫

∞

−∞

(−4u 2
xx + u4

x) dx

if u is a solution of the sine-Gordon equation.

3 The equivalence of conservation laws

Although two conservation laws may look rather different, i.e. their two conserved currents,
say P and P̃ , may be different, nevertheless their information content may be the same. To
have a method of counting conservation laws and of comparing them, we need a unique way
to characterise them. To do that we first look at ways conservation laws can look different
but be equivalent. Two conservation laws DivP = 0 and Div P̃ = 0 are equivalent if
0 = Div(P − P̃ ) = DivR is a trivial conservation law.

(i) The first kind of equivalence of two conservation laws is the case that R = 0 for all
solutions of ∆ = 0, i.e. if P and P̃ differ only by multiples of ∆ and by total derivatives of
∆ (i.e. by DJ∆). To test whether this is the case for two given conserved currents P and P̃
one has to check whether

0 = (P − P̃ )
∣

∣

∣

∆=0

holds. As described above one solves the equation 0 = ∆ (or system of equations 0 = ∆µ) for
the leading derivative(s) and substitutes that (them) in P − P̃ . If P − P̃ becomes identically
zero then the two conservation laws based on P and P̃ are equivalent.

If the conservation laws are not yet calculated and one wants to ensure that the compu-
tation of P gives a unique result, without arbitrariness due to terms vanishing because of
∆ = 0 then there is no need to solve ∆ = 0 for some leading derivative(s) uJ . In that case
one just drops from the beginning of the calculation the dependency of P on the leading
derivative(s) uJ and all derivatives of uJ .

Example: When computing conserved currents P for the sine-Gordon equation 0 = utx−
sin u, then in the ansatz for P the components P t, P x are assumed to be independent of utx

and derivatives of utx, like uttx, utxx, . . . (see the appendix).
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(ii) The second kind of equivalence of two conservation laws occurs if Ri = P i − P̃ i =
∑

j DjV
ij for some expressions V ij(x, u(m)) = −V ji, anti-symmetric in i, j, because in that

case Div R =
∑

i,j DiDjV
ij = 0 (due to the symmetry DiDj = DjDi and the anti-symmetry

V ij = −V ji) for any functions u, not necessarily solutions u(x) of ∆ = 0. The existence of
V ij(x, u(m)) satisfying P i = P̃ i+

∑

j DjV
ij may not be obvious and may require a computation

checking Div P = Div P̃ . For ODEs this problems does not occur as there is only one
independent variable and no antisymmetric V ij .

The solution to this problem is not to compare conservation laws by comparing their
conserved currents P and P̃ but by comparing them by their integrating factors, for PDEs
they are called characteristic functions, in the following way. For a conservation law to
satisfy Div P |∆=0 = 0 means that DivP is identical to a linear combination of ∆µ and
total derivatives DJ∆µ. Partial integration can rewrite that as a divergence plus a linear
combination of the ∆µ alone:

Div P |∆=0 = 0 (5)

⇐⇒ ∃QJ
ν : DivP =

∑

ν,J

QJ
ν DJ∆ν (identically in all x, uα

J ) (6)

=
∑

ν,J

DJ(QJ
ν ∆ν)−DJ(QJ

ν )∆ν (repeated partial integration)

= DivR +
∑

ν

Qν∆ν

⇐⇒ DivP =
∑

ν

Qν∆ν (after renaming (P−R)→ P ). (7)

The integrating factors Qν are called characteristic functions as it is known ([27], p. 272)
that for a totally non degenerate system ∆ = 0, the equivalence class of conservation laws
DivP |∆=0 = 0 is characterised uniquely by the functions Qν up to equivalence of type (i).

One can look at equation (7) as a determining equation for P and Qν as in the method
described in section 4.2 below. Alternatively one can formulate a system of conditions that is
equivalent to (7) but which involves only functions Qν . That is achieved using the property
of Euler operators (also called variational derivatives) Eν =

∑

J(−D)J∂/∂uν
J when acting on

an expression they give identically zero iff this expression is a divergence. Conditions for the
Qν are therefore

∀ν : 0 = Eν

(

∑

µ

Qµ∆µ

)

=
∑

J

(−D)J

(

∂

∂uν
J

∑

µ

Qµ∆µ

)

. (8)

Example: Allowing Q to be of 2nd order, i.e. Q = Q(t, x, u, ut, ux, utt, uxx) where we dropped
the dependence on utx which is equal to sin u (see remark above) we find that

Q ·∆ = Q · (utx − sin u)
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does depend on u, ut, ux, utt, utx, uxx and the Euler operator therefore reads

E = ∂u −Dt∂ut
−Dx∂ux

+ (−Dt)(−Dt)∂utt
+ (−Dt)(−Dx)∂utx

+ (−Dx)(−Dx)∂uxx

= ∂u −Dt∂ut
−Dx∂ux

+ D2
t ∂utt

+ DtDx∂utx
+ D2

x∂uxx
.

Requiring condition(s) (8) to be satisfied identically in all xi, uα and derivatives of uα (i.e.
uα

J) is equivalent to the condition (7). System (8) is often very large. It can be considerably
shortened if it is projected onto the space of solutions |∆=0 (as described above):

0 =
∑

µ,J

(−D)J

(

Qµ
∂∆µ

∂uν
J

)

∣

∣

∣

∣

∣

∣

∆=0

∀ν. (9)

Conditions (9) are known as adjoint symmetry conditions which are necessary but not suffi-
cient for the Qµ to be characteristic functions of first integrals.

iii) For any two conservation laws 0 = DivP and 0 = Div P̃ , 0 = Div(P + P̃ ) is also a
conservation law. By determining conservation laws with characteristic functions of succes-
sively increasing order, constant multiples of characteristic functions of lower order can be
dropped.

iv) In the case of (systems of) ODEs the characteristic functions are called integrating
factors, and P is a scalar, called a first integral. Any arbitrary function of first integrals is a
first integral as well.

The four approaches described in the following four sections are to solve conditions (5),
(7), (8) and (9).

4 The four approaches

4.1 A first approach

The first approach is to solve
Div P |∆=0 = 0 (10)

directly.
The condition (10) is made over-determined by restricting the P i to be differential ex-

pressions in the u of at most some order k, i.e. P i = P i(x, u(k)). Characteristic features of
this approach are

(+) A single, first order PDE involving only few terms is to be solved.
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(0) Characteristic functions have to be computed from P in a straightforward calculation
(described in [35]). This is done within the computer algebra program ConLaw1

which implements the first approach including the computation of related characteristic
functions Qµ.

(−) It would be computationally expensive for a corresponding computer program to drop
during the process of solving (10) any free functions V ij = −V ji (see the discussion
of the second kind of equivalence of conservation laws in the previous section) which
correspond to trivial conservation laws1. Hence, the condition (10) has to be solved
first in full generality and trivial conservation laws (i.e. V ij) have to be identified and
dropped afterwards. That means that the task for the computer program is made
unnecessarily hard by the presence of the trivial conservation laws in the general solution
of (10). A rule of thumb says that the difficulty in solving a linear over determined
PDE system depends less on the order or size of the PDE but more on the complexity
of the result2. That means the trivial conservation laws will complicate the solution of
(10), the more so the more independent variables are present.

(−) In most cases the expressions for the P i are more complicated than the expressions
for the characteristic functions Qµ which by the above rule of thumb indicates a more
difficult computation than the solution of equations involving only Qµ.

To illustrate and compare all four approaches we will apply each to finding conservation laws
of the sine-Gordon equation

utx − sin(u) = 0. (11)

If the program ConLaw1 is called to find conservation laws with conserved current P t, P x

of order 0, then it will reply that it is not applicable. This is because Div P would be of first
order in u, so equation (11) could not be used to substitute utx (when computing |∆=0 in
(10)) and therefore any conservation laws found would be valid for any function u(t, x), not
necessarily only for solutions of the sine-Gordon equation. These conservation laws would
therefore be trivial, falling into category (ii) in section 3.

Details of higher order investigations are given in table 1 below. u(n) stands for all
derivatives of u of order 0 to n. u

(n)
tx stands for all derivatives of utx up to order n, for example,

u
(1)

tx would be the derivatives utx, uttx, utxx. Finally, u(n)/u
(k)

tx stands for all derivatives of u

1An algorithm for that is given in [35].
2For example, if an over-determined PDE (system) has no solution then a differential Gröbner Basis

calculation will quickly produce PDEs of lower and lower order until a contradiction is reached. On the other
hand, if a PDE system has arbitrary functions in its general solution (as is the case with the PDE (10)) then
computing a differential Gröbner Basis will not produce a system that is solvable by only integrating ODEs,
it will involve PDEs.
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up to order n apart from utx and all its derivatives up to order k. The conservation laws are
given in the appendix (in the table only the equation number is cited). For each conservation
law in the appendix (apart from the first) there exists another one resulting from the exchange
t↔ x.

The times given in the table are measured on a 266 MHz Pentium PC running a 80 MByte
Reduce 3.6 session under Linux using the Sep. 1998 version of the program Crack for
solving the over-determined conditions. The 80 MByte were not necessary. For example, it is
possible (using ConLaw2 which implements the 4th method described below) to investigate
up to 4th order laws with 4 MByte and up to 7th order laws with 8 MByte. To get this high
in order with relatively low memory consumption, one has to give in Crack the study of
integrability conditions a higher priority than the integration of equations. The price is a
higher computing time. The times in the last column are to be understood only as very rough
indicators3. They depend sensitively on the order of priorities with which modules are to be
used within the program Crack (see the manual [33] and about its availability the end of
the section 7).

When condition (10) is solved, the P i that are computed initially do not contain utx nor
its derivatives. Afterwards a computation as outlined in (5) - (7) is performed such that
finally ConLaw1 is able to return the conservation law in the form (7). In the process of
computing this form (7) the new P i may now involve utx (through R in (6) - (7)).

order no of independent functions to cons. time to
of P i terms variables, [no of var.] compute, [no of arg.] laws solve (10)

found

1 8 t, x, u(2)/utx, [7] P t, P x(t, x, u(1)), [5] (29),(30) 9 sec

2 12 t, x, u(3)/u
(1)

tx , [9] P t, P x(t, x, u(2)/utx), [7] (31) 38 sec

3 18 t, x, u(4)/u
(2)

tx , [11] P t, P x(t, x, u(3)/u
(1)

tx ), [9] none4 -

4 26 t, x, u(5)/u
(3)

tx , [13] P t, P x(t, x, u(4)/u
(2)

tx ), [11] none5 -

3For example, the computing times reported in [35] are at the time of revision of this paper (July 1999)
already reduced by a factor of more than ten for higher orders.
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Table 1: The program ConLaw1 applied to compute conservation laws of the
sine-Gordon equation.

4.2 A second approach

The next approach consists in solving

Div P =
∑

ν

Qν∆ν (12)

directly, i.e. finding P i, Qµ that satisfy (12) identically in xi, uα
J . Equations ∆ = DJ∆ = 0

are not used for substitutions in (12) but they are used to reduce dependencies of the Qµ.
The problem becomes over-determined by restricting the order of the Qµ, i.e. Qµ =

Qµ(x, u(k)) for some k and by taking Qµ ← Qµ|∆=0, i.e. having Qµ independent of one
leading u-derivative (and their derivatives) from each one of the equations ∆ν . If Qµ would
be allowed to depend on all u(n) which occur in (12) then this equation could simply be solved
algebraically, by eliminating one of the Qµ. But that would mean division through one ∆µ

and therefore Qµ being singular for solutions of ∆µ = 0.
The second approach has the following characteristics:

(+) The conservation law condition (12) is a single first order PDE as in the first approach.

(+) By calculating characteristic functions Qµ and furthermore characteristic functions
Qµ|∆=0, conservation laws are uniquely characterized.

(+) The effort in formulating conditions is as low as in the first approach.

(0) The P i and Qµ are computed in one computation.

(0) The number of functions to compute is higher than in the first approach and also the
number of derivatives of u on which these functions depend on because no substitutions
are done in (12). The resulting complication is not too big as more variables means a
higher over determination and simplification.

4Crack was not able to solve all the equations completely because the general solution of (10) involves free
functions (related to trivial conservation laws) which complicates the problem considerably for the computer
program.

5The computer memory was not sufficient to complete the computation.
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(−) If the order of ∆ is n and the order of Qµ is chosen to be k then the order of P i at
the start of the computation can be assumed without loss of generality to be max(k, n)
(see [26]). ‘Without loss of generality’ means that a trivially conserved current P̃ can
be subtracted from P such that P − P̃ is of order max(k, n). If the right-hand side of
equation (12) is known to be linear in the highest derivatives of order max(k, n) then
P i at the start of the computation can even be assumed without loss of generality to
be of order max(k, n)− 1.

In this approach the investigations with k < n are not much simpler than the case
k = n. This matters when the order n of ∆ and the number p of variables x are high.
Therefore this approach is not very efficient for low order conservation laws of high
order equations.

For example, for zeroth order conservation laws (k = 0) of the Kadomtsev-Petviashvili
equation (19) the P i are taken initially as functions of the 23 variables t, x, y, u, ut,
ux, uy, utt, . . . , uyy, uttt, . . . , uyyy and the conservation law condition (12) is a condition
in 38 variables (including the 4th order u-derivatives). That is a much harder problem
than the corresponding conditions (8),(9). For example, in this case condition (8) is
a single 4th order PDE in also 38 variables but for only one function Q of only four
variables!

(−) When looking for conservation laws with the first method, gradually increasing the
order of the conserved current P gives each conservation law in its lowest order form,
i.e. a form where P is of minimal order. This is not necessarily the case using the
2nd method. The transformation (6)-(7) adding R to P may increase the order of P .
This implies an increase of complexity having to go up in order to get the equivalent
conservation law. To give an example, the Tzetzeica equation uxt = eu−e−2u (analysed
in [30],[21]) has the conservation law

0 = Dt

[

3u 2
xxx − 5u 3

xx + 15u 3
xxu

2
x + u6

x

]

+

Dx

[

−3eu
(

u 2
xx + 2uxxu

2
x + 2u4

x

)

− 3e−2u
(

2u 2
xx − 8uxxu

2
x + u4

x

)]

with a third order conserved current. (In [21] an infinite list of conservation laws is
given.) Bringing the above conservation law to the form (12) as it would be found with
the second method, it becomes

6
(

uxxxxx + 5uxxxuxx − 5uxxxu
2
x − 5u 2

xxux + u5
x

) (

utx − eu + e−2u
)

= Dt

[

3u 2
xxx − 5u 3

xx + 15u 2
xxu

2
x + u6

x

]

+

Dx 3
[

2utxuxxxx − 2utxxuxxx + 5utxu
2
xx − 10utxuxxu

2
x
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+eu
(

2uxxxux − 2uxxxx − 6u 2
xx + 8uxxu

2
x − 2u4

x

)

+e−2u
(

2uxxxx + 4uxxxux + 3u 2
xx − 2uxxu

2
x − u4

x

)]

with a 4th order conserved current.

Applying the program ConLaw3 that corresponds to the above method to the sine-Gordon
equation (11) gives the following table.

order no of independent functions to cons. time to
of Q terms variables, [no of var.] compute, [no of arg.] laws solve (12)

found

0 10 t, x, u(2), [8] P t, P x(t, x, u(1)), [5] none 3 sec
Q(t, x, u), [3]

1 10 t, x, u(2), [8] P t, P x, Q(t, x, u(1)), [5] (29),(30) 8.3 sec

2 10 t, x, u(2), [8] P t, P x(t, x, u(2)), [8] none 3.5 sec
Q(t, x, u(2)/utx), [7]

3 16 t, x, u(3), [12] P t, P x(t, x, u(3)), [12] none6 -

Q(t, x, u(3)/u
(1)

tx ), [9]

Table 2: The program ConLaw3 applied to compute conservation laws of the
sine-Gordon equation.

4.3 A third approach

Instead of calculating the conserved current P i directly, the third approach is to calculate
characteristic functions Qµ first (see, e.g. Proposition 5.33 in [27]) and from them P i af-
terwards using formulas of Anco & Bluman [2],[3],[4] in a form described in [35] or using
repeatedly the Crack routine for integrating exact DEs (see also the section on Homotopy
Operators in [27]). The condition (8) (as derived in [27],[2]) is:

0 =
∑

J

(−D)J

(

∂

∂uν
J

∑

µ

Qµ∆µ

)

∀ν. (13)

6The computer memory was not sufficient to complete the computation.
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Typical features are:

(+) Equations (13) are equivalent to (12) and therefore necessary and sufficient.

(+) The usually more complicated P i are eliminated and as in the 2nd method, no trivial
conservation laws are calculated which otherwise unnecessarily complicate the calcula-
tion.

(+) The highest u-derivatives in conditions (13) are of the order 2n where n is the order
of the u-derivatives in

∑

µ Qµ∆µ. The harder the problem, i.e. the higher n and the
higher the number of variables, the more u-derivatives occur only explicitly in (13) and
can be used for a direct separation (splitting). Higher over determination simplifies the
solution of (13).

(−) Equations (13) consist of as many equations as there are dependent variables uµ. The
unknown functions Qµ appear with nth order derivatives.

(−) For an increasing order of the Qµ, increasing number of uν and increasing number of
xi, the size of (13) can soon become unmanageable.

Applying the program ConLaw4 that corresponds to the above method to the sine-Gordon
equation (11) gives the following table 3. The striking feature of this approach is the quick
increase of the “size of conditions”. Apart from the order 0 case they increase by a factor
of about 7 which itself is increasing slightly with the order. The size of conditions prevents
going higher in the order. On the other hand, the completeness of the generated conditions
simplifies the solution in difficult cases and speeds up the solution of the over determined
system as long as it is not already too large at the beginning.
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order no of independent functions to cons. time to
terms variables, [no of var.] compute, [no of arg.] laws solve (13)

found h:min:sec

0 7 t, x, u(1), utx, [6] Q(t, x, u), [3] none 0.7 sec

1 22 t, x, u(2), [8] Q(t, x, u(1)), [5] (29) 2.8 sec

2 154 t, x, u(3), [17] Q(t, x, u(2)/utx), [7] none 4.7 sec

3 1116 t, x, u(4), [24] Q(t, x, u(3)/u
(1)

tx ), [9] (31) 5 min 17 sec

4 8402 t, x, u(5), [34] Q(t, x, u(4)/u
(2)

tx ), [11] none 10 h 49 min7

5 64064 t, x, u(6), [41] Q(t, x, u(5)/u
(3)

tx ), [13] - > 2 days

Table 3: The program ConLaw4 applied to compute conservation laws of the
sine-Gordon equation.

4.4 A fourth approach

Projecting conditions (13) into the space of solutions of ∆ = 0 we obtain

0 =
∑

µ,J

(−D)J

(

Qµ
∂∆µ

∂uν
J

)

∣

∣

∣

∣

∣

∣

∆=0

∀ν. (14)

The characteristic features of this method are similar to those of the third method with the
following modifications:

7This time was nearly completely spent to formulate the condition and to separate it into 823 individual
equations for Q. Then already the 3rd step gave that Q cannot depend on 4th order derivatives.
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(+) The conditions usually involve fewer terms than in the third approach which can be
decisive. But as the conditions (14) are not sufficient, they are less over determined
and may be harder to solve than those in the third approach.

(−) Because the conditions (14) investigated by this fourth method are not equivalent to
(13) and sometimes less restrictive than conditions (13), the solutions of (14) need not
represent conservation laws. Therefore after computing the Qµ from (14), it has to be
checked whether P i exist that satisfy DivP =

∑

ν Qν∆ν ([2],[3],[4],[35]). If they do not
exist then the Qµ correspond to an adjoined symmetry but not to a conservation law.

(−) If the fourth method finds adjoined symmetries which are not conservation laws, then
it is still possible that these adjoined symmetries can be combined linearly to give
conservation laws. But how to combine adjoined symmetries to give conservation laws
is not answered by solving (14), it has to be investigated separately. This will be
illustrated with the following simple example.

Applying the third method through the program ConLaw4 to the ODE u′′ + u = 0
and restricting the search to integrating factors Q = a(x)u + b(x) that are linear in u,
the program finds the following 5 integrating factors

cos(x)2u′ + cos(x) sin(x)u, 2 cos(x)2u− 2 cos(x)u′ sin(x)− u, cos(x), sin(x), u′,

and therefore it finds 5 first integrals. In comparison, using the same ansatz for Q but
now using the fourth method with the less restrictive condition (14) the corresponding
program ConLaw2 finds 8 solutions for Q:

−2 cos(x)2u′ − 2 cos(x) sin(x)u + u′, cos(x), sin(x), u′,

cos(x)u′u + sin(x)u2, cos(x)u2 − u′ sin(x)u, − cos(x)2u + cos(x)u′ sin(x), u.

Only for the first 4 of these 8 Q-values does a P exist such that DxP = Q · (u′′ + u),
i.e. only 4 first integrals are found, the remaining 4 solutions represent only adjoined
symmetries. This inability to find 5 first integrals is not a weakness of the computer
program but the price to pay for the fourth method to have shorter conditions (14)
compared with the conditions (13) of the third method. If the conditions (14) of the
fourth method are less restrictive than the conditions (13) of the third method, why then
does it find fewer first integrals, 4 instead of 5? The answer is that the 5th conservation
law is contained in the second half of the 8 solutions: the 8th solution for Q plus 2 times
the 7th solution gives a value for Q that is not only an adjoined symmetry but also an
integrating factor for an additional first integral.
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To summarise, the fourth method gives shorter, more manageable conditions which,
strictly speaking, do not compute conservation laws but adjoined symmetries. Conser-
vation laws can be derived through appropriate linear combinations of adjoined sym-
metries which has to be investigated separately. This theoretical weakness of the fourth
method does usually play no role in practical applications.

Applying the program ConLaw2 that corresponds to the above method to the sine-Gordon
equation (11) gives the following table. The typical feature of this approach is the slower
increase of the size of conditions. Apart from the order 0 case they increase by a factor
of about 2 which itself is increasing slightly with the order. Compared with the previous
method the size of conditions grows slower which allows to go higher in the order. Because
the conditions that are generated are only necessary, not sufficient, they are slightly more
difficult and expensive to solve. This causes longer running times for low order investigations.
Time limitations could be overcome to some extend by faster computers.
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order no of independent functions to cons. time to
of Q terms variables, [no of var.] compute, [no of arg.] laws solve (14)

found h:min:sec

0 6 t, x, u(1), [5] Q(t, x, u), [3] none 1 sec

1 21 t, x, u(2)/utx, [7] Q(t, x, u(1)), [5] (29) 4.3 sec

2 45 t, x, u(3)/u
(1)

tx , [9] Q(t, x, u(2)/utx), [7] none 12 sec

3 99 t, x, u(4)/u
(2)

tx , [11] Q(t, x, u(3)/u
(1)

tx ), [9] (31) 50 sec

4 202 t, x, u(5)/u
(3)

tx , [13] Q(t, x, u(4)/u
(2)

tx ), [11] none 2 min 43 sec

5 435 t, x, u(6)/u
(4)

tx , [15] Q(t, x, u(5)/u
(3)

tx ), [13] (32) 16 min 10 sec

6 870 t, x, u(7)/u
(5)

tx , [17] Q(t, x, u(6)/u
(4)

tx ), [15] none 49 min 20 sec

7 1836 t, x, u(8)/u
(6)

tx , [19] Q(t, x, u(7)/u
(5)

tx ), [17] (33) 8 h

8 3643 t, x, u(9)/u
(7)

tx , [21] Q(t, x, u(8)/u
(6)

tx ), [19] none 5 h 22 min

9 7434 t, x, u(10)/u
(8)

tx , [23] Q(t, x, u(9)/u
(7)

tx ), [21] (34) 25 h

Table 4: The program ConLaw2 applied to compute conservation laws of the
sine-Gordon equation.
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4.5 Overview

The circumstance that the number of conservation laws for the sine-Gordon equation that
were found by the different methods varies is due to the varying computational complexity of
the determining equations they generate. The first three methods will find all conservation
laws if memory and time requirements would not matter. The fourth approach is different in
that it generates only necessary conditions which are often sufficient (if they have the same
solution set as the other methods) but sometimes not. In that case the conditions (14) have
additional adjoined symmetries as solutions. It may be that only specific linear combinations
of them give a conservation law, as demonstrated with the example in the previous section.
The following comments concentrate on complexity issues and other characteristic differences
between the four approaches.

Arranging the methods as in the table below one can compare rows I,II and columns A,B.

A B

I DivP |∆=0 = 0
∑

µ,J(−D)J

(

Qµ
∂∆µ

∂uν
J

)∣

∣

∣

∣

∆=0
= 0 ∀ν

II Div P =
∑

ν Qν∆ν
∑

J(−D)J

(

∂
∂uν

J

∑

µ Qµ∆µ

)

= 0 ∀ν

Table 5: The four approaches arranged in a table.

I-II: The conditions in row I are to be solved in the space of solutions (|∆=0), in row II they
are not. This means that methods of row I can not be applied if equations or constraints
∆µ = 0 can not be solved for a leading derivative but methods of row II can. Due to these
substitutions the conditions in row I have fewer terms and involve fewer different derivatives
of u than conditions in row II. The complexity of conditions and the number of conservation
laws up to some order obtained in row I depend on whether ∆µ = 0 is used to substitute
lower order u-derivatives by higher ones or higher ones by lower ones. There are two reasons
for this.

1) Substitutions based on 0 = ∆ in Q may give extra restrictions for Q. For example,
determining Q for conservation laws of the Korteweg de Vries equation 0 = ∆ = ut−uxxx−uux

and restricting Q to be of 2nd order, then a substitution ut = uxxx + uux would imply
Q = Q(t, x, u, ux, uxx), whereas a substitution uxxx = ut − uux would not restrict Q =
Q(t, x, u, ut, ux, utt, utx, uxx).
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2) If a lower u-derivative is substituted by higher ones using 0 = ∆ in the conservation law
conditions in row I then such substitutions may increase the order of u-derivatives in which
the conservation law conditions have to be satisfied identically. By that the desired effect of
lowering the number of u-derivatives in which the conditions have to be fulfilled identically
is lost. For example, condition IB for ∆ = utt − u 2

xxt is 0 = Qtt + 2(Quxxt)xxt which includes
up to 6th order u-derivatives (if Q is not of higher than 3rd order). By substituting utt = u 2

xxt

the order would increase to seven.
Hence, substituting lower order u-derivatives by higher order u-derivatives gives more over

determined conditions for a less general ansatz. Such conditions are easier to solve, which
may allow higher orders of Q to be investigated. However, one then may miss conservation
laws of some order in P or Q.

These aspects are not an issue in row II as no substitutions are made there.
A-B: In column A the single first order conservation law condition itself is to be solved,
and in column B the integrability conditions of column A, which result when the conserved
current P is eliminated are to be solved. Conditions in column B involve as many equations
as there are functions uµ and they are of the same order as the highest derivatives of uµ in
∆ν = 0.

The methods in column A compute P and therefore also trivial conservation laws when
determining the general solution of the determining equations. This may complicate the
solution of the determining equations to some extend. After the determining equations are
solved the trivial conservation laws are easily dropped. For method IA one simply checks
whether Div P = 0 holds identically and in method IIA trivial conservation laws have zero
integrating factors Qµ. The general solution of the determining conditions in column B do not
generate trivial conservation laws. Also, conditions in column B are more straightforward
to solve, they can be separated with respect to many high order u-derivatives and yield
highly over determined systems. The disadvantage of methods in column B is that already
their formulation may exceed available computational resources. Another potential problem
with using methods in column B is the following. If one or more linear PDEs from the
over determined conditions remain unsolved (for example, when investigating the Burgers
equation (17) then the heat equation remained unsolved (see equations (17),(18)) then the
program will usually not be able to compute P i from the Qµ. A way out is to use methods
IB or IIB to get Qµ and to use that as input to get P i from method IIA.

Differences between the approaches are amplified with problems that involve an increasing
number of PDEs and an increasing number of independent variables. A recommendation for
tackling a new single PDE / system of PDEs would be:

• If any ansatz for some or all of the P i is to be made then the method IA has to be used.
(An example is the question whether an easily integrable conservation law DxP

x = 0
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with P y = 0 exists.)

• Otherwise try IIB first.

• If the conditions become too large to handle then try IB or even IIA or IA.

• If IIB or IB provide the Qµ but not the P i (for example because arbitrary functions
appear or some conditions remain unsolved) then try IIA using the computed Qµ as
input.

5 The computer algebra programs

The names of computer algebra programs for the four approaches are: IA: ConLaw1,IB:
ConLaw2, IIA: ConLaw3, IIB: ConLaw4. They and the program Crack for solving the
over determined conditions are written in the computer algebra system Reduce (ConLaw1

through ConLaw4 by the author, Crack by the author and Andreas Brand). From the
general solution individual conservation laws are extracted by picking one arbitrary constant
or function and setting all other arbitrary constants or functions to zero. The problem is to
find, whether all arbitrary constants and functions are independent or whether some can be
dropped without loss of generality. This problem itself leads to an over determined system of
conditions which in general is very over determined and easy to solve. A description of that
method is given in [35] where also the computation of Q from P and P from Q is explained.

Compared to other computer algebra programs, the package Crack has a wide variety of
techniques for solving over determined PDE-systems. This allows the following new features
as compared with other computer programs, a list of which and a short description is given
in [12]:

• In all four computer programs P as well as Q is computed.

• By solving systems of over determined differential equations it is possible to find con-
servation laws with non-polynomial, even non-rational P, Q.

• If memory requirements are not too high then the program will make a definite state-
ment about the existence of conservation laws of a given order. In the majority of these
cases the program will find the explicit form of the conservation law, otherwise it will
return unsolved equations.

• It is possible to find conservation laws with an explicit dependence of P, Q on the
independent variables.
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• There is no limit on the number of DEs nor the number of independent variables to
be investigated for conservation laws other than a limit through the complexity of
computations. Although not demonstrated in this paper, the program is able to handle
ordinary differential equations (ODEs) as well.

• It is possible to determine values of parameters in the DE such that conservation laws
exist.

• For each of the four programs ConLaw1 through ConLaw4 an ansatz for P i and/or
Qµ can be input to specify to some extend conservation laws to be calculated.

A program written by Göktaş and Hereman [8] for computing conservation laws of PDEs
makes a polynomial ansatz for conservation laws and finds the coefficients in this ansatz by
solving a linear algebraic system of equations. Compared with that, the programs ConLaw1

through ConLaw4 are able to find more general conservation laws and to make a definitive
statement in case the order is not too high to complete the computations. On the other
hand, the program of Göktaş and Hereman was later extended to handle differential-difference
systems [9],[10],[11].

Before showing examples which highlight the special abilities of ConLaw1 through Con-

Law4 a comment to the treatment of ODEs will be made. Although all methods and pro-
grams are applicable equally well to ODEs, the form of the ansatz for the integrating factor
Q or for the first integral P to be made will usually be different. An nth-order ODE has
always first integrals of order n − 1 and any arbitrary function of first integrals is a first
integral as well. In order to obtain an over determined system of conditions, the ansatz for
a first integral must not contain functions of all variables x, u, u′, . . . , dn−1u/dxn−1 but, for
example, a polynomial in dn−1u/dxn−1 with arbitrary functions of x, u, u′, . . . , dn−2u/dxn−2

as coefficients or any other combination of functions of less than n + 1 variables, see also [4]
for more details. Special features of the ConLaw programs that are not available with other
programs are demonstrated with the following examples.

Example: The Itô equations for two functions u = u(t, x), v = v(t, x) read [15]

ut = uxxx + 6uux + 2vvx

vt = 2(uv)x.

The first 7 conservation laws calculated by the program ConLaw1 which in turn calls Crack

to solve condition (10), have the following values of P t:

u, v, u2 + v2, u2
x − 2u3 − 2uv2, (4uv2 − v2

x)/v
3,

u 2
xx − 10uu 2

x − 4vvxux + 5u4 + 6u2v2 + v4, ((2vvxx − 4uv2 − 3v 2
x )2 + 16v6)/v7.
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(P x is not shown due to its length. It could be computed easily from P t.) What is interesting
is that 2 of the 7 conservation laws have a non-polynomial expression for P t and as far as
the author knows these conservation laws have not been known so far.

Example: The following equations [16] describe low-frequency Alfvén waves propagating
parallel to an external magnetic field in a relativistic electron-positron plasma [31]. Typical
for them is the symmetry with respect to interchanging the two functions u = u(t, x), v =
v(t, x) due to the same charge-to-mass ratio for both kinds of particles. The equations are

∆1 = ut + rx = 0, with r = u(u2 + v2) + uxx,

∆2 = vt + sx = 0, with s = v(u2 + v2) + vxx. (15)

The equations themselves have the form of conservation laws. We find the following additional
ones:

4u∆1 + 4v∆2 = Dt[2(u2 + v2)] +

Dx[4uuxx − 2u 2
x + 4vvxx − 2v 2

x + 3(u2 + v2)2]

4r∆1 + 4s∆2 = Dt[(u
2 + v2)2 − 2u 2

x − 2v 2
x ] +

Dx

[

4utux + 4vtvx + 2u 2
xx + 2v 2

xx + 4(u2 + v2)×
(

(3(u2 + v2)t− x)(uut + vvt) + uuxx + vvxx

)]

4(xu− 3tr)∆1 + 4(xv − 3ts)∆2 =

Dt

[

3t(
(

2u 2
x + 2v 2

x − (u2 + v2)2
)

+ 2x(u2 + v2)
]

+

Dx2
[

(uut + vvt)
(

−x2 + (u2 + v2)
(

6tx− 9t2(u2 + v2)
))

−3t(u2 + v2)3 + 3x(u2 + v2)2 + 2x(uuxx + vvxx)− 3tr2

−3ts2 − 2uux − 2vvx − xu 2
x − xv 2

x − 6tutux − 6tvtvx

]

Whereas the first two are known [31], the last one shows an explicit x, t-dependence and is
new. Further investigation provides that no conservation laws exist with the characteristic
functions Qµ of 3rd or 4th order (if ut, vt are substituted using (15)).

Example: The following equation of Gibbons and Tsarev [7]

0 = uxx + uyuxy − uxuyy + 1 (16)

for u = u(x, y) is unusual in that it has already 5 conservation laws of first order. The
characteristic functions contain x, y explicitly. Up to first order they are:

1, uy, 3u2
y + 2ux + 3x, 2u3

y + 3uxuy + 4uyx + y,
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10u4
y + 6u2

x + 24uxu
2
y + 20uxx + 30u2

yx + 12uyy + 2u + 15x2,

3u5
y + 6u2

xuy + 10uxu
3
y + 18uxuyx + 4uxy + 12u3

yx + 6u2
yy + 12uyx

2 + 2uyu + 6xy.

Example: The Liouville equation for a function u = u(x, y) reads

∆ = uxy − eu.

Conservation laws of order zero found by ConLaw2 are

(fx + fux)∆ = Dx(−euf) + Dy(fxux + fu 2
x/2), f = f(x) arbitrary

(gy + guy)∆ = Dy(−eug) + Dx(gyuy + gu 2
y /2), g = g(y) arbitrary.

Because the ansatz made is investigated in full generality, any free functions in the conserva-
tion law will be found if the conditions can be solved completely by Crack. Otherwise the
remaining conditions are returned as in the following example.

Example: The Burgers equation in the form

∆ = ut − uxx −
1

2
u 2

x = 0, u = u(t, x) (17)

has zeroth order conservation laws

feu/2∆ = Dt(2feu/2) + Dx(e
u/2(2fx − fux)) (18)

with f = f(t, x) satisfying the linear reverse heat equation 0 = ft + fxx.
8

The occurrence of free functions in the conservation law indicates linearizability of ∆ = 0,
which is the case for both previous examples. The following example involves more than 2
variables.

Example: The Kadomtsev-Petviashvili equation for u = u(t, x, y) with the abbreviation

w = ut + 2uux + uxxx

is
0 = ∆ = wx − uyy. (19)

8Although already used in [2], [35] this example is shown again as it also serves to demonstrate an extension
to non-local conservation laws in section 6.
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Its zeroth order conservation laws include an arbitrary function c = c(t):

c∆ = Dx(cw) + Dy(−cuy) (20)

cy∆ = Dx(cyw) + Dy(cu− cyuy) (21)

(2cx + cty
2)∆ = Dt(−2cu) +

Dx

(

(2cx + cty
2)w − 2cuxx − 2cu2

)

+ (22)

Dy

(

−(2cx + cty
2)uy + 2ctuy

)

(6cxy + cty
3)∆ = Dt(−6cyu) +

Dx

(

(6cxy + cty
3)w − 6cyuxx − 6cyu2

)

+ (23)

Dy

(

−(6cxy + cty
3)uy + 3ctuy2 + 6cxu

)

.

It is somewhat remarkable that although equation (19) does not involve ut but only uxt

nevertheless the conserved density P t in the last two conservation laws involves u and not
ux.

In the following section we give examples for an extension of our method to compute non-
local conservation laws and report on the possibility to determine parameters in the equation
such that conservation laws exist.

6 Extending applicability

6.1 Non-local conservation laws

The implementations of the four methods have a common limitation: the characteristic
functions Q and the conserved current P must depend functionally only on a finite number
of derivatives of the uα. No dependencies on integrals are possible. The same restriction is
usually made when generators of Lie-symmetries are determined for differential equations.
Whereas this restriction is less severe when calculating symmetries of PDEs, it is a serious
restriction for the determination of conservation laws. To give an example, Burgers’ equation
in the form

∆ = ut − uxx − uux = 0, u = u(t, x) (24)

has as low order conservation law only the trivial one Dtu−Dx(ux + u2/2) = 0. In order to
include dependencies on

∫

u dx one could set u = vx for some function v(x, t) and investigate
conservation laws depending on v and derivatives of v. For Burgers’ equation such a substi-
tution alone is not enough. In addition one has to realize that (24) can be integrated with
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respect to x to f(t)t = vt − vxx − v 2
x for some function f = f(t). Renaming v − f → u gives

(17) and its conservation laws (18).
To give a further example, we consider the Boussinesq equation describing surface water

waves whose horizontal scale is much larger than the depth of the water [1],[13]

utt − uxx + 3uuxx + 3u 2
x + αuxxxx = 0. (25)

Calculating conservation laws, using (25) to substitute uxxxx, the only characteristic functions
Q up to 4th order are 1, x, t, xt. On the other hand, substituting u = vx, integrating (25) with
respect to x and renaming v − f → v gives

vtt − vxx + 3vxvxx + αvxxxx = 0 (26)

having 2 conservation laws with characteristic functions 1, t which x-differentiated give the
conservation laws above with characteristic functions 1, t. In addition two new conserva-
tion laws with characteristic functions vx, vt result. Repeating this step again: v = wx,
x-integration of (26), w − f → w gives

wtt − wxx + 3/2w 2
xx + αwxxxx = 0 (27)

with three third-order conservation laws. Two of them have characteristic functions wxxx, wxxt

which correspond to the above conservation laws with characteristic functions vx, vt. In
addition one extra conservation law with Q = wtxx − wtxxwxx + wtxwxxx −

2
3
wttt exists.

A third example is the Kadomtsev-Petviashvili equation already discussed above.9 After
a substitution u = vx, x-integration of (19) and v − f → v the equation is

0 = [vt + vxxx + v 2
x ]x − vyy.

Apart from conservation laws equivalent to (20),(21) three new conservation laws result with
characteristic functions

−ctty
2 − 2ctx + 4cvx

−c3ty
3 − 6cttxy + 12ctyvx + 24cvy,

−c4ty
4 − 12c3txy2 + 24ctty

2vx − 12cttx
2 + 48ctxvx + 96ctyvy + 48ctv + 144cvt.

Conserved currents are omitted due to their length. Repeating this transformation again
does not yield conservation laws with characteristic functions of order less than three.

The purpose of this paragraph was to show that even if computer algebra programs
ConLaw, Crack do only allow the investigation of local conservation laws depending on
a finite number of derivatives of the unknown functions, we still may be able to enlarge the
range of search by a contact transformation and integration of the PDE.

In the next section we extend the computation of conservation laws to the computation
of parameters such that conservation laws exist.

9The hint to try KP for this extension was given by Alan Fordy.
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6.2 Differential equations with parameters

In applications it is common that the DEs contain parameters and usually it would be
desirable to know conservation laws which are valid for all possible values of these parameters.
But as the example below shows, often conservation laws exist only for special values of
parameters. Even if these parameter values are not of interest from the application side of
view, the conservation laws valid for these values can at least be used, for example, to test
numerical code. Another purpose for determining parameters together with conservation
laws could be to find integrable equations from a more general class of equations.

The problem to determine parameters such that conservation laws exist is potentially
much harder than determining conservation laws which are valid for any values of these
parameters. This is because the conservation law determining equations become non-linear.
Expressions may become unmanageably large and many sub cases may have to be considered.
To use ConLaw1 through ConLaw4 for such calculations one only has to specify in its call
the names of parameters to be computed (more details in the ConLaw manual).

Example: The 5th-order Korteweg - de Vries equation

ut + αu2ux + βuxuxx + γuu3x + u5x = 0 (28)

with constant parameters α, β, γ includes well known special cases [6], [8], [14], [18], [28]: for
α = 30, β = 20, γ = 10 the Lax equation [19], for α = 5, β = 5, γ = 5 an equation due to
Sawata, Kotera [29] and Dodd and Gibbon [5], for α = 20, β = 25, γ = 10 an equation due
to Kaup [17] and Kupershmidt, for α = 2, β = 6, γ = 3 an equation due to Itô [15].

The following zeroth and first order conservation laws are calculated with ConLaw1

(omitting P x due to its length in the last two of these conservation laws):

• Q = 1, P t = u

• α = β = γ = 0 : As (28) becomes linear, a conservation law is obtained with a
characteristic function Q = Q(x, t) satisfying the adjoint PDE Qt + Q5x = 0 with
P t = Qu.

• α = 0, γ = β/3 : Q = x2, P t = x2u

• α = 0, γ = β/3 : Q = x, P t = xu

• γ = β/2 : Q = 2u, P t = u2

• α = 1
10

(−2β2 + 7βγ − 3γ2) :
Q = 60uxxt(β − 3γ) + 6u2t(2β2 − 7βγ + 3γ2) + 60x
P t = 30u2

xt(−β + 3γ) + u3t(4β2 − 14βγ + 6γ2) + 60ux
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• α = 1
10

(−2β2 + 7βγ − 3γ2) :
Q = 30uxx + 3u2(2β − γ),
P t = −15u2

x + u3(2β − γ)

We find the same conservation laws as found by the program of Göktaş and Hereman and in
addition a few conservation laws with explicit x, t-dependence.

7 Summary

Four approaches to find conservation laws have been compared with respect to their com-
plexity and other characteristic features.

In a number of examples, conservation laws have been given, some of them new, which
show that the programs ConLaw1,...,ConLaw4 and Crack can be used to find local,
not necessarily polynomial, conservation laws with explicit variable dependence and free
functions. The programs are, in principle, applicable to problems with arbitrarily many
equations, functions and variables.

The package is part of the Reduce distribution. The latest version of the programs
including a manual and a test file are available from
http://lie.math.brocku.ca/twolf/crack/crack.tar.gz .
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9 Appendix:

Conservation Laws of the sine-Gordon equation

In this appendix conservation laws for the sine-Gordon equation

utx − sin(u) = 0

are shown as they have been computed by ConLaw1-4 and as they are refered to in tables
above. They are not new, we provide them only to illustrate computer results. Except for
the first conservation law, for all the following there is an additional conservation law due to
the x ↔ t symmetry. These results are further examples of the ability of the programs to
compute non-polynomial conservation laws.

2(tut − xux)(utx − sin(u)) = Dt

[

2 cos(u)t− u2
xx
]

+ Dx

[

−2 cos(u)x + u2
t t
]

(29)

2ut(utx − sin(u)) = Dt [2 cos(u)] + Dx

[

u2
t

]

(30)

(8u3t + 4u3
t )(utx − sin(u)) = Dt

[

4 cos(u)u2
t + 8utxutt − 8utt sin(u)

]

+ Dx

[

−4u2
tt + u4

t

]

(31)
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2(−8u5t − 20u3tu
2
t − 20u2

ttut − 3u5
t )(utx − sin(u)) (32)

= Dt2
[

−8 cos(u)u3tut + 4 cos(u)u2
tt − 3 cos(u)u4

t − 8utxu4t − 20utxuttu
2
t

+8u4t sin(u) + 8u3tuttx + 12uttu
2
t sin(u)

]

+ Dx

[

−8u2
3t + 20u2

ttu
2
t − u6

t

]

8(−16u7t − 56u5tu
2
t − 224u4tuttut − 168u2

3tut − 280u3tu
2
tt − 70u3tu

4
t − 140u2

ttu
3
t − 5u7

t )

×(utx − sin(u)) (33)

= Dt8
[

16u6t sin(u)− 16utxu6t − 16 cos(u)u5tut + 16 cos(u)u4tutt − 8 cos(u)u2
3t

−40 cos(u)u3tu
3
t − 20 cos(u)u2

ttu
2
t − 5 cos(u)u6

t − 56utxu4tu
2
t − 112utxu3tuttut

−56utxu
3
tt − 70utxuttu

4
t + 16u5tuttx − 16u4tu3tx + 40u4tu

2
t sin(u) + 56u3tuttxu

2
t

+160u3tuttut sin(u) + 40u3
tt sin(u) + 30uttu

4
t sin(u)

]

+ Dx

[

64u2
4t − 224u2

3tu
2
t + 112u4

tt + 280u2
ttu

4
t − 5u8

t

]

2(−128u9t − 576u7tu
2
t − 3456u6tuttut − 7296u5tu3tut − 6720u5tu

2
tt − 1008u5tu

4
t

−4416u2
4tut − 24192u4tu3tutt − 8064u4tuttu

3
t − 5824u3

3t − 6048u2
3tu

3
t − 24864u3tu

2
ttu

2
t

−840u3tu
6
t − 6384u4

ttut − 2520u2
ttu

5
t − 35u9

t )

×(utx − sin(u)) (34)

= Dt2
[

128u8t sin(u)− 128 cos(u)u7tut + 128 cos(u)u6tutt − 128 cos(u)u5tu3t + 64 cos(u)u2
4t

−448 cos(u)u5tu
3
t − 1344 cos(u)u4tuttu

2
t − 1568 cos(u)u2

3tu
2
t − 1344 cos(u)u3tu

2
ttut

−560 cos(u)u3tu
5
t + 336 cos(u)u4

tt − 840 cos(u)u2
ttu

4
t − 35 cos(u)u8

t − 1008ut,xu4tu
4
t

−576ut,xu6tu
2
t − 2304ut,xu5tuttut − 4992ut,xu4tu3tut − 4416ut,xu4tu

2
tt − 128ut,xu8t

−5184ut,xu
2
3tutt − 4032ut,xu3tuttu

3
t − 4256ut,xu

3
ttu

2
t − 840ut,xuttu

6
t + 128u7tutt,x

−128u6tu3t,x + 448u6tu
2
t sin(u) + 128u5tu4t,x + 576u5tutt,xu

2
t + 2688u5tuttut sin(u)

−576u4tu3t,xu
2
t + 4480u4tu3tut sin(u) + 1152u4tutt,xuttut + 4032u4tu

2
tt sin(u)

+560u4tu
4
t sin(u) + 1920u2

3tutt,xut + 5824u2
3tutt sin(u) + 3264u3tutt,xu

2
tt

+1008u3tutt,xu
4
t + 4480u3tuttu

3
t sin(u) + 3360u3

ttu
2
t sin(u) + 280uttu

6
t sin(u)

]

+ Dx

[

−128u2
5t + 576u2

4tu
2
t − 1280u3

3tut − 3264u2
3tu

2
tt − 1008u2

3tu
4
t + 2128u4

ttu
2
t

+840u2
ttu

6
t − 7u10

t

]
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