
Programs for Applying Symetries of PDEs

Thomas Wolf
School of Mathematical Sciences

Queen Mary and Westfield College
University of London

London E l 4NS
T . W o l f @ m a t h s . q m w . u k

F e b r a r y 15, 1995

A b s a c

In this paper the programs APPLYSYM, QUASILIIPDE and DETRAFO are de
scribed which aim at the utilization of infinitesimal symmetries of differential
equations. The purpose of QUASILINPDE is the general solution of quasili-
near PDEs. This procedure is used by APPLYSYM for the application of point
symmetries for either

calculating similarity variables to perform a point transformation which
lowers the order of an ODE or effectively reduces the number of explicitly
occuring independent variables in a PDE(sys t em) or for

generalizing given special solutions of ODEs /PDEs with new constant
parameters

The program DETRAFO performs arbitrary point- and contact transforma
tions of ODEs /PDEs and is applied if similarity and symmetry variables have
been found. The program APPLYSYM is used in connection with the program
LIEPDE for formulating and solving the conditions for point- and contact sym
metries which is described in [4]. The actual problem solving is done in all
these programs through a call to the package CRACK for solving overdetermined
PDE-systems

mailto:T.Wolf@maths.qmw.uk

Contents
Introduction and overview of the s y m m e t r y m e t h o d
1. The first step: Formulating the symmetry conditions
1.2 The second step: Solving the symmetry conditions
1.3 The third step: Application of infinitesimal symmetries

Applying symmetr ie s with APPLYSYM
2. The first mode: Calculation of similarity and symmetry variables . .
2.2 The second mode: Generalization of special solutions
2.3 Syntax 9
2.4 Example: A second order ODE 10
2.5 Limitations of APPLYSYM 15

Solving quasilinear P D E s 15
3. The content of QUASILINPDE 15
3.2 Syntax 17
3.3 Examples 18
3.4 Limitations of QUASILINPDE 19

Transformation of DEs 19
4. The content of DETRAFO 19
4.2 Syntax 20
4.3 Limitations of DETRAFO 20

Availabil ity 20

ntroduction and overview of th symetry me
thod

The investigation of infinitesimal symmetries of differential equations (DEs) with
computer algebra programs attrackted considerable attention over the last years.
Corresponding programs are available in all major computer algebra systems. I
a review article by W. Hereman [1] about 200 references are given, many of them
describing related software.

One reason for the popularity of the symmetry method is the fact that Sophus
Lie's method [2],[3] is the most widely used method for computing exact solutions of
non-linear DEs. Another reason is that the first step in this method, the formulation
of the determining equation for the generators of the symmetries, can already be
very cumbersome, especially in the case of PDEs of higher order and/or in case of
many dependent and independent variables. Also, the formulation of the conditions
is a straight forward task involving only differentiations and basic algebra - an ideal
task for computer algebra systems. Less straight forward is the automatic solution
of the symmetry conditions which is the strength of the program LIEPDE for a
comparison with another program see [4]).

The novelty described in this paper are programs aiming at the final third step:
Applying symmetries for

calculating similarity variables to perform a point transformation which lowers
the order of an ODE or effectively reduces the number of explicitly occuring
independent variables of a PDE(sys tem) or for

generalizing given special solutions of ODEs/PDEs with new constant para
meters.

Programs which run on their own but also allow interactive user control are in-
dispensible for these calculations. On one hand the calculations can become quite
lengthy, like variable transformations of PDEs (of higher order, with many varia
bles). On the other hand the freedom of choosing the right linear combination of
symmetries and choosing the optimal new symmetry- and similarity variables makes
it necessary to 'play' with the problem interactively.

The focus in this paper is directed on questions of implementation and efciency,
no principally new mathematics is presented.

In the following subsections a review of the first two steps of the symmetry
method is given as well as the third, i.e. the application step is outlined. Each of
the remaining sections is devoted to one procedure.

1.1 The first step: Formulating the symmetry conditions

To obey classical Liesymmetries, differential equations

HA = (1)

for unknown functions ya
} 1 < a < p of independent variables x 1 < i < g must

be forminvariant against infinitesimal transformations

! + ef + o
in first order of e. To transform the equations (1) by (2), derivatives of y must
be transformed, i.e. the part linear in must be determined. The corresponding
formulas are (see e.g. [10], [20])

ia Dfl

h i k J x k J i k Jxk

where D/D means total differentiation w.r.t. x and from now on lower latin
indices of functions } (and later u) denote partial differentiation w.r.t. the inde
pendent variables x and later vl). The complete symmetry condition then takes
the form

mod (4)

d ^ l

where mod HA 0 means that the original PDE-system is used to replace some
partial derivatives of y to reduce the number of independent variables, because
the symmetry condition (4) must be fulfilled identically in x\y and all partial
derivatives of y .

For point symmetries r] are functions of x,yf and for contact symmetries
they depend on x,yf and yk. We restrict ourself to point symmetries as those are
the only ones that can be applied by the current version of the program APPLYSYM
see below). For literature about generalized symmetries see [1]

Though the formulation of the symmetry conditions (4), (5), (3) is straightfor
ward and handled in principle by all related programs [1], the computational effort
to formulate the conditions (4) may cause problems if the number of xl and ya is
high. This can partially be avoided if at first only a few conditions are formulated
and solved such that the remaining ones are much shorter and quicker to formulate.

A first step in this direction is to investigate one PDE HA = 0 after another, as
done in [22]. Two methods to partition the conditions for a single PDE are described
by Bocharov/Bronstein [9] and Stephani [20].

In the first method only those terms of the symmetry condition XHA 0 are
calculated which contain at least a derivative of ya of a minimal order m. Setting
coefficients of these u-derivatives to zero provides symmetry conditions. Lowering
the minimal order m successively then gradually provides all symmetry conditions.

The second method is even more selective. If HA is of order n then only terms of
the symmetry condition HA = 0 are generated which contain n' th order derivatives
of ya. Furthermore these derivatives must not occur in HA itself. They can therefore
occur in the symmetry condition (4) only in jj1 • e. in the terms

ya
n

If only coefficients of ra'th order derivatives of ya need to be accurate to formulate
preliminary conditions then from the total derivatives to be taken in (3) only that
part is performed which differentiates w.r.t. the highest y"derivatives. This means
for example, to form only y^nk^ I ̂ Vmn f the expression, which is to be differentiated
totally w.r.t. x, contains at most second order derivatives of y .

The second method is applied in LIEPDE. Already the formulation of the remai
ning conditions is speeded up considerably through this iteration process. These
methods can be applied if systems of DEs or single PDEs of at least second order
are investigated concerning symmetries.

1.2 The second step: Solving the symmetry conditions

The second step in applying the whole method consists in solving the determining
conditions (4), (5), (3) which are linear homogeneous PDEs for CTV- The complete
solution of this system is not algorithmic any more because the solution of a general
linear PDE-system is as difficult as the solution of its non-linear characteristic ODE-
system which is not covered by algorithms so far.

Still algorithms are used successfully to simplify the PDE-system by calculating
its standard normal form and by integrating exact PDEs if they turn up in this
simplification process [4]. One problem in this respect, for example, concerns the
optimization of the symbiosis of both algorithms. By that we mean the ranking of
priorities between integrating, adding integrability conditions and doing simplifica
tions by substitutions - all depending on the length of expressions and the overall
structure of the PDE-system. Also the extension of the class of PDEs which can be
integrated exactly is a problem to be pursuit further.

The program LIEPDE which formulates the symmetry conditions calls the pro
gram CRACK to solve them. This is done in a number of successive calls in order to
formulate and solve some first order PDEs of the overdetermined system first and
use their solution to formulate and solve the next subset of conditions as described
in the previous subsection. Also, LIEPDE can work on DEs that contain parametric
constants and parametric functions. An ansatz for the symmetry generators can be
formulated. For more details see [4] or [17

The call of LIEPDE is
LIEPDE({(/e, fun, var}, {od, lp, fl});
where

de is a single DE or a list of DEs in the form of a vanishing expression or in
the form

fun is the single function or the list of functions occuring in de.

var is the single variable or the list of variables in de.

od is the order of the ansatz for . It is 0 for point symmetries and
for contact symmetries (accepted by LIEPDE only in case of one ODE/PDE
for one unknown function).

If lp is n then the standard ansatz for is taken which is

for point symmetries [od) is l(x, j (x,y

for contact symmetries (od 1) is = 0„s filUi

= n(x

If lp is not m then lp is the ansatz for and must have the form

for point symmetries {xi_xl = . . . , . . . , e ta_ul = . . . , . . .} where
x i_ , eta_ are fixed and xl,...,ul are to be replaced by the actual
names of the variables and functions.

otherwise spot_ = . . . where the expression on the right hand side is
the ansatz for the SymmetryPOTential

fl is the list of free functions in the ansatz in case lp is not n

The result of LIEPDE is a list with 3 elements, each of which is a list:

{{«mi on. . . {xi_ eta_ flist}}.

The first list contains remaining unsolved symmetry conditions con{. It is the em
pty list {} i all conditions have been solved. The second list gives the symmetry
generators, i e . expressions for £, and r The last list contains all free constants and
functions occuring in the first and second list.

V ̂ x^ ^ t ^^^y i ^^x^y^z "zit £r£y i^z^ \ ^^x^z i

^t^xzz T ^t^^y t r£y^Xy LKKy LKyKz^i zixz ^^t^zi

9k ^ 9 k Ik 9k 9k k +9k+k k
^rhy itt ^^yxx tJrhy? ^""yizz Lj"Jx"Jzit '-J'trhz^ ^z^yz
Z / C ^ / C y ^ L K K y i ^ y ^ z i t t ^^zixx ^^zi d^zizz

1.3 The third step: Application of infinitesimal symmetries

If infinitesimal symmetries have been found then the program APPLYSYM can use
them for the following purposes:

1. Calculation of one symmetry variable and further similarity variables. After
transforming the DE(system) to these variables, the symmetry variable will
not occur explicitly any more. For ODEs this has the consequence that their
order has effectively been reduced.

2. Generalization of a special solution by one or more constants of integration.

Both methods are described in the following section.

A p p l y i n g e t r i e s it APPLYSYM

2.1 The first mode: Calculation of s i i l a t y and s y m e t r y
variables

In the following we assume that symmetry generator X} given in (5), is known
such that ODE(s)/PDE(s) HA 0 satisfy the symmetry condition (4). The aim
is to find new dependent functions (x\yß) and new independent variables
v% vl(x,y 1 < «,/? p 1 < &,i such that the symmetry generator
X = ^(x\y + r(x^yd transforms to

dv

Inverting the above transformation to xl xl(v, u), ya ya(v) and setting
HA{X{V , y a (v . . .) = hA(v uf\ . . .) this means that

HA{x,y,^...) mod HA =

X h A (v . . .) mod hA =

(v . . . mod 0.

Consequently, the variable v does not occur explicitly in n the case of an
ODE(-system) (v = v) the new equations 0 = h(v,du/dv,. . .) are then of
lower total order after the transformation z z(ul) /v with now z . . .
as unknown functions and u as independent variable.

The new form (6) of X leads directly to conditions for the symmetry variable v
and the similarity variables u 8 | ^ all functions of x , y 7) :

?(x,y + r(x,ydyav (7

{x\y + r{x\ydaU

The general solutions of (7), (8) involve free functions of p + q 1 arguments.
From the general solution of equation (8), p 1 functionally independent special
solutions have to be selected (u . . . , v and u , . . . , ug)} whereas from (7) only one
solution v is needed. Together, the expressions for the symmetry and similarity
variables must define a non-singular transformation x,y —> u}v.

Different special solutions selected at this stage will result in different resulting
DEs which are equivalent under point transformations but may look quite differently.
A transformation that is more difficult than another one will in general only compli
cate the new DE(s) compared with the simpler transformation. We therefore seek
the simplest possible special solutions of (7), (8). They also have to be simple be
cause the transformation has to be inverted to solve for the old variables in order to
do the transformations.

The following steps are performed in the corresponding mode of the program
APPLYSYM

The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them

Through a call of the procedure QUASILINPDE (described in a later section) the
two linear first order PDEs (7), () are investigated and, if possible, solved.

From the general solution of (7) 1 special solution is selected and from (8)
1 special solutions are selected which should be as simple as possible.

The user is asked whether the symmetry variable should be one of the inde
pendent variables (as it has been assumed so far) or one of the new functions
(then only derivatives of this function and not the function itself turn up in
the new DE(s)).

Through a call of the procedure DETRAFO the transformation x\y
of the DE(s) is finally done.

The program returns to the starting menu.

2.2 The second mode neralization of special soutions

A second application of infinitesimal symmetries is the generalization of a known
special solution given in implicit form through 0 = F(x\ya). If one knows a sym
metry variable v and similarity variables vr

}u
a

} 2 < r p then vl can be shifted
by a constant c because of dv HA = 0 and therefore the DEs 0 HA(VT a , . . .
are unaffected by the shift. Hence from

= F(x\y = F { x { v , y { v)) {v

follows that

{v {v\x\ y {x\ y {x\ y))

defines implicitly a generalized solution ya ya(x\c).
This generalization works only i and i does not already have a

constant additive to v1.
The method above needs to know (u^ (up,) and

(x,yp) (x\yp) which may be practically impossible. Better is, to inte
grate \y along

^)) ^))

with initial values xl x\ ya ya for 0. (This ODE-system is the characteristic
system of (8).)

nowing only the finite transformations

(x\y (x,y (10

gives immediately the inverse transformation x% x%(x\ y ya ya(x\ y
just by and renaming \ya <

The special solution = F(x\ya) is generalized by the new constant through

{x\y = F { x , y))

after dropping t h e .
The steps performed in the corresponding mode of the program APPLYSYM show

features of both techniques:

The user is asked to specify a symmetry by selecting one symmetry from all
the known symmetries or by specifying a linear combination of them

The special solution to be generalized and the name of the new constant have
to be put in.

Through a call of the procedure QUASILINPDE, the PDE (7) is solved which
amounts to a solution of its characteristic ODE system where v

QUASILINPDE returns a list of constant expressions

(x , y 1 < i<p (11)

which are solved for x ya y a) to obtain the generalized
solution through

= F{x\y = F (x (x , y)) , y (x , y))) .

The new solution is availabe for further generalizations w.r.t. other symmetries.

If one would like to generalize a given special solution with m new constants because
m symmetries are known, then one could run the whole program m times, each time
with a different symmetry or one could run the program once with a linear combi
nation of m symmetry generators which again is a symmetry generator. Running
the program once adds one constant but we have in addition ra 1 arbitrary con
stants in the linear combination of the symmetries, so new constants are added.
Usually one will generalize the solution gradually to make solving (9) gradually more
d i fcu l t .

2.3 Syntax

The call of APPLYSYM is APPLYSYM({de fun, var}, {sym, ons})

de is a single DE or a list of DEs in the form of a vanishing expression or in
the form

fun is the single function or the list of functions occuring in de.

var is the single variable or the list of variables in de.

sym is a linear combination of all s y m m e t e s , each with a different constant
coefficient, in form of a list of the ^ and r/: {xi_. , . . . ,eta_. , . . . } ,
where the indices after 'xi_' are the variable names and after 'eta_' the function
names.

ons is the list of constants in sym} one constant for each symmetry.

The list that is the first argument of APPLYSYM is the same as the first argument
of LIEPDE and the second argument is the list that LIEPDE returns without its first
element (the unsolved conditions). An example is given below.

What APPLYSYM returns depends on the last performed modus. After modus 1
the return is
{{newde wfun} uar}} trafo
where

de lists the transformed equation(s)

wfun lists the ne function name(s)

var lists the new variable name(s)

afo lists the transformations x x l (v , y a ya(v

fter modus 2, APPLYSYM returns the generalized special solution.

2.4 xample: A second rder ODE

Weyl's class of solutions of Einsteins field equations consists of axialsymmetric time
independent metrics of the form

ds = e~2U [k (dp dz2) d<2} 2 C d t (12

where U and k are functions of p and z. If one is interested in generalizing these
solutions to have a time dependence then the resulting DEs can be transformed such
that one longer third order ODE for U results which contains only p derivatives [23
Because U appears not alone but only as derivative, a substitution

(13

lowers the order and the introduction of a function

h = (14)

simplifies the ODE to

3phh" 5 p 2 + 5p 20ph3 20h4 16h6 (15

w h e r e d p . Calling LIEPDE through

10

depend h , r ;
p rob :={{-20*h**4+16*h**6+3*r**2*h*df (h , r ,2)+5*r*h*df (h , r)

- 2 0 * h * * 3 * r * d f (h , r) + 4 * h * * 2 - 5 * r * * 2 * d f (h , r) * * 2 > ,
{ h } , {r>>;

s y m : = l i e p d e (p r o b , { 0 , n i l , n i l }) ;
end;

gives

sym := {{>, {x i_ r= - c l 0 * r - c l l * r , e ta_h=clO*h*r >, { c l 0 , c l l } > .

All condit ions have been solved because t he first e lement of sym is { } . T h e two

exist ing symmet r ies are therefore

dp dh and dp (16

Corresponding finite t ransformat ions can be calculated wi th APPLYSYM th rough

newde:=applysym(de,re sym);

T h e in terac t ive session is given below wi th t he user input following the p r o m p t
I n p u t : 3 : ' or following ' ? ' E m p t y lines have been deleted.)

you want t o f i n d i l a r i t y and symmetry v a r i a b l e (e n t e r ' 1 ; ')
o r g e n e r a l i z e a p e c i a l o l u t i o n wi th new p a r a e t e r (e n t e r ' 2 ; ')
o r e x i t t h e p r o g r a (e n t e r ' ; ')

n p u t : 3 : 1;

We enter ' 1 ; ' because we want to reduce dependencies by finding similar i ty varia
bles and one s y m m e t r y variable and then doing the t ransformat ion such t h a t t he
s y m m e t r y variable does not explicit ly occur in t he D E

he 1. symmetr

x i _ r = - r

e ta_h=h*r
he 2 . symmetr

x i _ r = - r

Which i n g l e symmetry or l i n e a r combina t ion of symmetrie
do you want t o app ly? "$

n t e r an e x p r e s s i o n wi th (s y _ (i) ' f o r t h e i ' t h symmetr

s y _ (D ;

We could have entered ' s y _) ; ' or a combina t ion of b o t h as well wi th t he calculat ion
running then differently.

he symmetr to be applied in the following

{xi_r= - r ,eta_h=h*r }
nter the n a e of the new dependent ariable
nput:3: u;
nter the n a e of the new independent ariable
nput:3:

This was the input part, now the real calculation starts.

he ODEPDE syste under i n t i g a t i o n i

0 = 3*df(h,r,2)*h*r - 5*df(h,r) *r - 20*df(h,r)*h *r

+ 5*df(h,r)*h*r + 16*h - 20*h + 4*h
for the function() : h.
t will be looked for a new dependent ariable u
and an independent ariable uch that the tranfored
de(-syste) doe not depend on u or
1. eterination of the ilarity variable

he quailinear PDE 0 = r *(df(u_,h)*h - df(u_,r)*r).
he equialent characteritic syste

0= - df(u_,r)*r

0= - r *(df(h,r)*r + h)
for the function h(r) u_(r).

The PDE is equation ().

he general olution of the PDE gien through
0 = ff(u_,h*r)
with arbitrary function ff(..).

uggetion for thi function ff proide
0 = - h*r + u_

ou like thi choice or

?y

For the following calculation only a single special solution of the PDE is neces
sary and this has to be specified from the general solution by choosing a special
function f f. (This function is called f f to prevent a clash with names of user varia
bles/functions.) In principle any choice of f f would work, if it defines a non-singular
coordinate transformation, i e . here r must be a function of u_. If we have q indepen
dent variables and p functions of them then f f has p\ q arguments. Because of the
condition 0 = f f one has essentially the freedom of choosing a function of p + q 1
arguments freely. This freedom is also necessary to select p 1 different functions
f f and to find as many functionally independent solutions u_ which all become the

12

new similarity variables, q of them become the new functions u and p 1 of them
the new variables v2

}. . ., v. Here we have p = q 1 (one single ODE).
Though the program could have done that alone, once the general solution

f f (. .) is known, the user can interfere here to enter a simpler solution, f pos
sible.

2. e t e r i n a t i o n of the symmetry variable

he q u a i l i n e a r PDE 0 = df(u_,h)*h*r - df(u_,r)*r 1.
he e q u i a l e n t c h a r a c t e r i t i c syste

0=df(r,u_) + r

0=df(h,u_) - h*r
for the function r(u_) h(u_)

ew attempt with a different independent ariable

he equialent characteritic syste

0=df(u_,h)*h*r - 1

0=r *(df(r,h)*h + r)

for the function r(h) u_(h)

he general olution of the PDE gien through

- 2*h *r *u_ + h

0 = ff(h*r,)

with arbitrary function ff(..).

uggetion for thi function ff(.. ield

h *(- 2*r *u_ + 1)
0 =

ou like thi choice or

?y

Similar to above.

he ugge ted olution of the algebraic syste which wi l l
do the t r a n f o r a t i o n i

q r t () * q r t (2)
{h=qrt () * q r t (2) *u, r= }

2*

the olution o or

?y

In the intended tranforation hown aboe the dependent

ariable i u and the independent ariable is v

he symmetry variable is v i.e. the tranfored expression
will be free of

13

t h i s s e l e c t i o n of dependent and independent a r i a b l e or

W so far assumed t h a t t he s y m m e t r y variable is one of t he new variables, bu t
of course we also could choose it to be one of t he new functions. If it is one of
t he functions t hen only derivatives of this function occur in t he new DE, not t he
function itself. If it is one of t he variables t hen this variable will not occur explicitly.

In our case we prefer (wi thout s t rong reason) to have t he function as s y m m e t r y
variable. We therefore answered wi th ' no ' . As a consequence, u and v will exchange
names such t h a t still all new functions have t he n a m e u and the new variables have
n a m e v.

l e a e enter a l i t of u b t i t u t i o n or example, t o
ake the a r i a b l e , which i s so far c a l l u l , t o an

independent a r i a b l e 2 and the a r i a b l e , which
o far c a l l e d 2 , t o an dependent a r i a b l e u l ,

en ter : ' { u l = 2 , 2=ul>; '
nput :3 : { u = = u } ;

he tranfored equation which hould be free of u

0=3*df(u,,2)* - 16*df(u,) * - 20*df(u,) * + 5*df(u,)
you want t o f i n d i l a r i t y and symmetry v a r i a b l e (enter ' 1 ; ')

or g e n e r a l i z e a p e c i a l o l u t i o n with new p a r a e t e r (enter ' 2 ; ')
or e x i t the progra (enter ' ; ')

n p u t : 3 : ;

We stop here. The following is returned from our APPLYSYM call:

{ { { 3 * d f (u , 2) * - 1 6 * d f (u ,) * - 2 0 * d f (u ,) * + 5 * d f (u ,) > ,
{ u } ,

}> ,
q r t (u) * q r t (2)

{r= , h = q r t (u) * q r t (2) * }>
2*u

The use of APPLYSYM effectively provided us t he finite t ransformat ion

2u)-1' h = 2u)1lv. (17

and the ne O D E

3u" 16u 20u 5M (18

where u(v) and /dv. Using one s y m m e t r y we reduced the 2. order O D E

(15) to a first order O D E (18) for u' plus one in tegra t ion. T h e second s y m m e t r y

can be used to reduce t he remain ing O D E to an in tegra t ion too by in t roducing

variable w t h rough v , i e . w 2v2). W i t h

(19

14

he remaining ODE i

ith solution

- ^ p(l)U 1)

4 P 1) ,
= — st. l)

Writing (19) as p = (d d p) d p) we get u by integration and with (17) further
parametric solution for

3 l) \

U (i) ^ a J 20

i/2(I) 1 / jP y/y/
: z l
(4 l) ;

where Ci,c2 = nst, and C 1 . Finally, the metric function Up) is obtained as
an integral from (13)(14).

2.5 L i i t a t i o n s of APPLYSYM

Restrictions of the applicability of the program APPLYSYM result from limitations
of the program QUASILINPDE described in a section below. Essentially this means
that symmetry generators may only be polynomially non-linear in x\ya. Though
even then the solvability can not be guaranteed, the generators of Lie-symmetries
are mostly very simple such that the resulting PDE (22) and the corresponding
characteristic ODE-system have good chances to be solvable.

Apart from these limitations implied through the solution of differential equa
tions with CRACK and algebraic equations with SOLVE the program APPLYSYM itsel
is free of restrictions, i.e. if once new versions of RACK, SOLVE would be available
then APPLYSYM would not have to be changed.

Currently, whenever a computational step could not be performed the user is
informed and has the possibility of entering interactively the solution of the unsolved
algebraic system or the unsolved linear PDE

ving quasilinear PDE

3.1 T h e c o n t e n t of QUASILINPDE

The generalization of special solutions of DEs as well as the computation of similarity
and symmetry variables involve the general solution of single first order linear PDEs.
The procedure QUASILINPDE is a general procedure aiming at the general solution
of PDEs

^ , 4(j)W (w, 4(j>W2 . . . (w, 4(j)W = b(w, < 22

in n independent variables 1 . . . n for one unknown function (w).

15

1. The first step in solving a quasilinear PDE (22) is the formulation of the
corresponding characteristic ODE-system

—^ (w,4 23

for regarded now as functions of one variable

Because the 8 and do not depend explicitly on e, one of the equations
(23),(24) with non-vanishing right hand side can be used to divide all others
through it and by that having a system with one less ODE to solve. If the
equation to divide through is one of (23) then the remaining system would be

...k ... 25
dw
d(

26

with the independent variable wk instead of e. If instead we divide through
equation 24) then the remaining system would be

dw
- - . . . „ 27

with the independent variable instead of

The equation to divide through is chosen by a subroutine with a heuristic to
find the simplest" non-zero right hand side (or , i e . one which

is constant or

depends only on one variable or

is a product of factors, each of which depends only on one variable.

One purpose of this division is to reduce the number of ODEs by on. Secondly,
the general solution of (23), (24) involves an additive constant to e which is
not relevant and would have to be set to zero. By dividing through one ODE
we eliminate e and lose the problem of identifying this constant in the general
solution before we would have to set it to zero.

2. To solve the system (25), (26) or (27), the procedure CRACK is called. Although
being designed primarily for the solution of overdetermined PDE-systems,

RACK can also be used to solve simple not overdetermined ODE-systems.
This solution process is not completely algorithmic. mproved versions of

RACK could be used, without making any changes of QUASILINPDE necessary.

If the characteristic ODE-system can not be solved in the form (25), (26) or
(27) then successively all other ODEs of (23), (24) with non-vanishing right
hand side are used for division until one is found such that the resulting ODE-
system can be solved completely. Otherwise the PDE can not be solved by
QUASILINPDE

16

3. If the characteristic ODE-system (23), (24) has been integrated completely
and in full generality to the implicit solution

. . . , j . . . 28

then according to the general theory for solving first order PDEs, e has to be
eliminated from one of the equations and to be substituted in the others to
have left n equations. Also the constant that turns up additively to e is to be
set to zero. Both tasks are automatically fulfilled, if, as described above, e is
already eliminated from the beginning by dividing all equations of (2 3 , (24)
through one of them

On either way one ends up with n equations

j , l... 29

involving constants

The final step is to solve (29) for the to obtain

..n. 30

The final solution {w) of the PDE 22) is then given implicitly through

= F i ((/> , (f>, ...))

where is an arbitrary function with arguments.

3.2 Syntax

The call of QUASILINPDE is
QUASILINPDEe/e fun, varlist

de is the differential expression which vanishes due to the PDE de 0 or de
may be the differential equation itself in the form

fun is the unknown function.

varlist is the list of variables of fun.

The result of QUASILINPDE is a list of general solutions

{ s o / s o / . . . } .

If QUASILINPDE can not solve the PDE then it returns {}. Each solution so/ is a
list of expressions

ea e a . . .

such that the dependent function (/ in (22)) is determined implicitly through an
arbitrary function and the algebraic equation

= Fex ex • • .) .

17

3.3 xamples
Example 1:
To solve the quasilinear first order PDE

for the function (x} y z) the input would be

depend u,x,y,z;
de:=x*df(u,x)+u*df(u,)-z*df(u,z) - 1;
varlist:={x,y,z};
QUASILIIPDEde,u,arlit);

this example the procedure returns

{ { x } }

i.e. there is one general solution (because the outer list has only one element which
itself is a list) and is given implicitly through the algebraic equation

(x

with arbitrary function
Example 2:
For the linear inhomogeneous PDE

for z(x,y

QUASILINPDE returns the result that for an arbitrary function the equation

= F i±V(*

defines the general solution for z.
Example 3:
For the linear inhomogeneous PDE 3 .) from [15]

z)(w for (x,yz)

QUASILINPDE returns the result that for an arbitrary function the equation

= F (w, y ln(x)(z)

defines the general solution for w} i e . for any function /

f(\n{x) z) y

solves the DE

18

3.4 Li i t a t ions of
One restriction on the applicability of QUASILINPDE results from the program RACK
which tries to solve the characteristic ODE-system of the PDE. So far RACK can
be applied only to polynomially non-linear DE's, i e . the characteristic ODE-system
(25),(26) or (27) may only be polynomially non-linear e. in the PDE 22) the
expressions a8 and may only be rational in Wj, </.

The task of CRACK is simplified as (28) does not have to be solved for Wj, </. On
the other hand (28) has to be solved for the Q . This gives a second restriction coming
from the REDUCE function SOLVE. Though SOLVE can be applied to polynomial and
transzendential equations, again no guarantee for solvability can be given.

Trasformation of DE

4.1 The content of DETRAFO

Finally, after having found the finite transformations, the program APPLYSYM calls
the procedure DETRAFO to perform the transformations. DETRAFO can also be used
alone to do point- or higher order transformations which involve a considerable
computational effort if the differential order of the expression to be transformed is
high and if many dependent and independent variables are involved. This might
be especially useful if one wants to experiment and try out different coordinate
transformations interactively, using DETRAFO as standalone procedure.

To run DETRAFO, the old functions ya and old variables xl must be known ex
plicitly in term of algebraic or differential expressions of the new functions and
new variables v. Then for point transformations the identity

dy uß 31)

xi 32

uß <$<

provides the transformation

ss 34

with det(d/vl) 0 because of the regularity of the transformation which is
checked by DETRAFO. Non-regular transformations are not performed.

DETRAFO is not restricted to point transformations. In the case of contact- or
higher order transformations, the total derivatives dyavl a n d v l then only
include all v% derivatives of u which occur in

» . . .)

19

4.2 Syntax

The call of DETRAFO is

DETRAFO ex} . . . e a } ,
{ofun fex, ofun fex, . . . ,ofun fe},
{ovar ex ovar x2} . . ., ouar } }

{rifun, nfun, ..., nfun},
{nuar} nvar} . . . , var})

where m q are arbitrary.

The differential expressions to be transformed.

The second list is the list of old functions ofun expressed as expressions fex in
terms of new functions nfun and new independent variables var.

Similarly the third list expresses the old independent variables ovar as ex
pressions ex in terms of new functions nfun and ne independent variables

var.

The last two lists include the new functions nfun and new independent varia
bles var.

Names for ofun, ovar, nfun and nvar can be arbitrarily chosen.
As the result DETRAFO returns the first argument of its input, i e . the list

tX ! tX . . . tX

where all cx circ transformed.

4.3 L i i t a t i o n s of DETRAFO

The only requirement is that the old independent variables xl and old functions
y° must be given explicitly in terms of new variables v and new functions u as
indicated in the syntax. Then all calculations involve only differentiations and basic
algebra.

vaiabity
The programs run under REDUCE 3 . 4 . 1 or later versions and are available by an
onymous ftp from 138.37.80.15, directory f t p / p u b / c r a c k .

20

eferences

[1] W. Hereman, Chapter 13 in vol 3 of the CRC Handbook of Lie Group Analysis of
Differential Equations, Ed.: N.H. Ibragimov, CRC Press, Boca aton, Florida
(1995). Systems described in this paper are among others:
DELIA (Alexei Bocharov e t .a l) Pascal
DIFFGR0B2 (Liz Mansfield) Maple
DIMSYM (James Sherring and Geoff Prince E D C E
HSYM (Vladimir Gerdt) Reduce
LIE (V. Eliseev, R.N. Fedorova and V.V. ornyak) educe
LIE (Alan Head) muMath
Lie (Gerd Baumann) Mathematica
LIEDF/INFSYM (Peter Gragert and Paul ersten) Reduce
Liesymm (John Carminati, John Devitt and Greg Fee) Maple

athSym (Scott Herod) Mathematica
NUSY (Clara Nucci) Reduce
PDELIE (Peter Vafeades) Macsyma
SPDE (Fritz Schwarz) Reduce and Axiom
SYM_DE (Stanly Steinberg) Macsyma
Symmgroup.c (Dominique Berube and Marc de Montigny) Mathematica
STANDARD FOR (Gregory Reid and Alan Wittkopf) Maple
SYMCAL (Gregory Reid) Macsyma and Maple
S Y M M P . M A X (Benoit Champagne, Willy Hereman and Pavel Winternitz
Macsym
LIE package (Khai Vu) Maple
Toolbox for symmetries (Mark Hickman) Maple
Lie symmetries (Jeffrey Ondich and Nick Coult) Mathematica.

2] S. Lie, Sophus Lie's 1880 Transformation Group Paper, Translated by
M. Ackerman, comments by Hermann, Mathematical Sciences Press, Broo-
kline, (1975).

3] S. Lie, Differentialgleichungen, Chelsea Publishing Company, New York, (1967).

] T. Wolf, An efficiency improved program LIEPDE for determining Lie - symme
tries of PDEs, Proceedings of the workshop on Modern group theory methods
in Acireale (Sicily) Nov. (1992)

5] C.Riquier, Les systemes d'equations aux derivees partielles, Gauthier-Villars
Paris (1910).

6] J .Thomas, Differential Systems, AMS, Colloquium publications, v. 21,
N.Y. (1937).

[7] M.Janet , Lecons sur les systemes d'equations aux derivees, Gauthier-Villars
Paris (1929).

21

8] V.L. Topunov, Reducing Systems of Linear Differential Equations to a Passive
Form, Acta Appl Math. 16 (1989) 191-206.

9] A.V. Bocharov and M.L. Bronstein, Efficiently Implementing Two Methods of
the Geometrical Theory of Differential Equations: An Experience in Algorithm
and Software Design, Acta. Appl ath. 16 (1989) 143-166.

[10] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer
Verlag New York (1986).

[11] G.J.Reid, A triangularization algorithm which determines the Lie symmetry
algebra of any system of PDEs J.Phys. A: ath. Gen. 23 (1990) L853-L859.

[12] F. Schwarz, Automatically Determining Symmetries of Partial Differential
Equations Computing 34, (1985) 91106.

[13] W.I. Fushchich and V.V. Kornyak, Computer Algebra Application for De
termining Lie and Lie-Bäcklund Symmetries of Differential Equations
J. Symb. Comp. 7 (1989) 611-619.

[14] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Band 1,
Gewöhnliche Differentialgleichungen, Chelsea Publishing Company, New York,
1959.

[15] E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen, Band 2,
Partielle Differentialgleichungen, 6.Auf, Teubner, Stuttgart:Teubner, 1979.

[16] T. Wolf, An Analytic Algorithm for Decoupling and Integrating systems of Non
linear Partial Differential Equations, J. Comp. Phys., no. 3, 60 (1985) 437446
and, Zur analytischen Untersuchung und exakten Lösung von Differentialglei
chungen mit Computeralgebrasystemen, Dissertation B, Jena (1989).

[17] T.Wolf, A. Brand, The Computer Algebra Package CRACK for Investigating
PDEs, Manual for the package CRACK in the REDUCE network library and
in Proceedings of ERCIM School on Partial Differential Equations and Group
Theory, April 1992 in Bonn, G Bonn.

[18] M.A.H. MacCallum, F.J. Wright, Algebraic Computing with CE, Claren
don Press, Oxford (1991).

[19] M.A.H. MacCallum, An Ordinary Differential Equation Solver for CE,
Proc.ISAAC'88, Springer Lect. Notes in Comp Sei. 358, 196-205.

[20] H. Stephani, Differential equations, Their solution using symmetries, Cam
bridge niversity Press (1989).

[21] V . I . a r p m a n , Phys. Lett. A 136, 216 (1989)

22

[22] B.Champagne, W. Hereman and P. Winternitz, The computer calcula
tion of Lie point symmetries of large systems of differential equations
Comp. Phys.Comm 66, 319-340 (1991)

[23] M. ubitza, private communication

23

