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T H E  AFFIME GROUP O F  A LIE GROUP 

1. If G is a Lie group, then the group But(G) of all continuous auto- 
niorphisms of G has a natural Lie group structure. This gives the semi- 
direct prcduct A(G) = G . h t ( G )  the s t r~ lc tu re  of a Lie group. IYhes~ 
G is a vectcr group Rfl,A(G) is the crdinary affine group 6 ( n ) .  Follom -
ing I . Auslander [ I ]  we \\ill refer to  A(G) as  the  a-fine groilp of G,  and 
regard i t  a s  a tra~lsformation group on G by (g, a ) :  h+g.a(h) where 
g, h E G  and a E A u t ( G )  ; in the  case of a vector group, this is the usual 
action on A(%) on R7L. 

If 13 is a ccnipact subgroup of A(n),  then i t  is nell !<nonrn tha t  13 
has a fixed point on En,i.e., tha t  there is a point x E R n  such tha t  
b(x) = x  for every b E B  For k.(?z) is contained in the general linear 
group G L ( n + l ,  W) in the  usual fash;c$n, and 13 (bei~lg conlpact) 
must be coiljugate to a subgroup of the c-tl.cgonal group O ( n +  1).  
This cn~ljugation can be ticne leaving fixecl the  (n +1, n +1)-place 
nlatrix entries, and is t h ~ : s  pcssible by an element of A(%).This done, 
the translation-part.; of elellleilts of 13 must be zero, proving the 
assertic;n. 

L. Auslander [I ] has extended this thebrenl to  compact abelian 
subgroups of A(G) when G is connected, sinlply ccnnected and nil-
potent. !Ye \%ill give a further extension. 

TEIBORCTI.Let G be a connected Lie group and let S Ee the identity 
component oJ the radical oJ G. Then the J"o1lozuing conditions are equizl- 
alent : 

1. If B is a conzpact szcbgroz~p oJ the afine grozrp A(G), then G has 
a n  element x szich th~zt b(x) = x  for every b ED. 

2. ECLI~YY a ofco?~zpact szibgioup oJ A(G) i s  conjz~gate to s ~ ~ b g r o z ~ p  
Aut (G). 

3. G has no nontrizlial compact sz~bgro~~p.  
4. G is homeomorphic to E ~ ~ c l i d e a n  space. 
5. S is simply connected and G/S i s  a direct p r o d ~ ~ c t  oJ" copies of the 

zinitvrsnl coaering group oJ the real special linear groz~p SL(2, R). 
6. G i s  sznzply connected, and ezlery sinzple alzalytic szlbgroup oJ G is  

a 3-di:r,ensional noncompact gvoz~p. 

Equivalence of (3) and (4) is contained in the  Cartan-Iwasawa 
theorern [3, Theoren1 131. Ecluivalence of (4) anti (5) follows from 
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Chevalle:, 's theorem on the topology of solvable groups [2] ,  tlie fact 
tliat tlie universal coveri~ig of S E ( 2 ,  R) is the oniy sirnple Lie group 
hon~eorno~pliicto  Euclidean space, and tlie global Levi-\Vhitehead 
tle<otnpositio~i of G. I t  is not ciifficult to see t h a t  (5) is equivale~it  to  
(5) ' ~ ~ l di t  is cleclr t h a t  (1) is equivalent to  (2). Final!y, a nontrivial 
com~;,ict subgroup of G is a compact subgroup of A(G) \ihich is not 
conjugate to  a subgroup of A u t ( G ) ;  tllus (2)  implies (3). Tlle proof of 
tlie Tliesrem is now reduced to the  proof tha t  (3) i~ilplies(2) .  

2 .  Suppose t h a t  G has no no~itrivial  conipact subgroup. Then G is 
silnply connected, anrl it follo~vs t h a t  But (G)  has only finitely lilariy 
csnnected cclnponents because Aut(G) is isomorphic to  the group 
A u t ( b )  of automorphisms of the Lie algebra 6 of G, and Aut(6j) is 
a real algebraic illatrix group. Thus  A(G) has only finitely Illally con- 
nected con~poncnts.  The  Car tan- I~vasa~va  [3,  Theorem 131theorem 
is valid for Lie groups with only finitely Inany colnpone~its;  thus  
A(G) has maximal colnpact subgroups and ,  if K is one of them, every 
colilpact subgroup of A(G) is conjugate to a subgroup of K .  The  proof 
tliat (3) impiies (2) is notv reduced to  the proof tha t  k u t ( G )  contains 
a lnaxinial compact subgroup of A(G). 

Let K C A u t ( G )  C A ( G )  be a niaxiiilal colnpact subgroup of A u t ( G ) ;  
n e  vcill prove tliat K is a 111aximal compact subgroup of A(G). Let 
K' be a maximal colnpact subgroup of A(G) with K C I C ' ;  we 11iust 
prove K=K1.  I t  is easily seen tha t  K lileets every cclnpo~ient of 
A(G) ; it follo~vs tha t  nTe need only prove tha t  K arid K' have tlie same 
identity component. Again because K C K f , i t  suffices to  show t h a t  
ciilil K =dim I<'. Let f : A(G) +Aut (G) be the  cano~iical llomolnor- 
phism (g, a)-a with kernel G. K A G  and K ' A G  are conipact sub- 
groups of G and thus  are trivial by hypothesis. Furthermore IC =f ( K )  
=J(K1)hecauc,e K is a ~l iaxi~l ia l  conipact subgroup of Aut (G) ,  and 
because J(R)is contained in the  compact subgroup f ( K ' ) .This gives 
din1 K = dimJ(K1) = dim K 1  which proves t!le Theoreill. 

3. I t  is worth re::larl;ing t h a t  the main part  of the  Theorem-the 
equivalence of ( I ) ,  (2) and (3)-can be proved in tlie same way when 
G is assuliled to  have only finitely many connected colnponents. 
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