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Chapter 1

Introduction

1.1 Sets

Let X and Y be sets. The notation Y € X means that Y is a subset of X and
Y C X means that Y is a proper subset of X, thatis Y C X and Y # X. Let X \Y
denote the set

X\Y={z|lreX and z¢Y}.

The empty set is denoted by 0.
Let X and Y be sets. The Cartesian product is defined by
X xY ={(z,y)|lzr e X,y e Y}.

Note: If X and Y are finite sets of m and n elements, respectively, then X x Y is a

finite set of mn elements.
Let Xy, -+, X, be sets. The Cartesian product is defined by

Xy X Xo x - x X, ={(z1,m9, -+, )| € X;, 1 <i < n}.

The infinite Cartesian product is defined similarly. For example, let {X,|a € I} be
a family of sets. Then

[ X = {(zo)lza € Xo,a € T}

ael

The a-coordinate projection
ot | [ Xor = Xa

o’el
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is defined by
To((Tor)) = Za.

Theorem 1.1.1 Let {X,|a € I} be a family of set. Then the Cartesian product
[1.c; Xa satisfies the following universal lifting property:

Let X be any set and let f,: X — X, be any function for each o € I. Then
there is a unique function

X =X
ael
such that
f& = Ta © f
for each «.

Proof. Let f: X — [],; X be a function defined by
f(x) = (falz))

for each z € X. Then f is a function with the property that f,(z) = m, o f(z) for
any x and so f, = 7, o f. This shows the existence of the universal lifting property.
Let g: X — [],c; Xo be any function with the property that f, = m, o g for each a.
Then the a-th coordinate of g(x) is f,(x) for each x € X. Thus g = f defined above.

This shows the uniqueness of the universal lifting property.
Let f: X — Y be a function. Then the image of f is defined by

Im(f)=f(X)={yeYl]y= f(z) for some ze& X}
The identity function on X is denoted by idx, id or 1. Thus id(z) = «.

Exercise 1.1.1 Let f: X — Y be a function. Let {X,|a € I} be a family of subsets
of X. Then

1) show that
f(U Xa) = U f(Xa);

a€cl a€cl

2) show that
F() Xa) € () F(Xa);

a€cl ael
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3) show by example that

F(O) Xa) # () F(X)

acl a€cl

in general.

Let f: X — Y be a function. Let A be a subset of X. Then the restriction
fla: A — Y is the function defined by

fla(a) = f(a)
for a € A. Let B be a subset of Y. The pre-image f !(B) is defined by
fH(B) = {z € X|f(x) € B}.
Note that f~'(B) could be an empty set.

Exercise 1.1.2 Let f: X — Y be a function. Let {Bgs|3 € J} be a family of subsets
of Y. Then

1) show that
S Be) = ' (B);
BeJ BeJ
2) show that
FH) Bs) = () £ (By);

BeJ BeJ

3) show that
FHY\ Bg) = X\ f~'(Bp).

A function f: X — Y is said to be bijective if it is one-to-one and onto. In this
case the inverse is denoted by f~':Y — X. Note that f~' is also bijective. If there
is a bijective function f from X to Y, we call that X is isomorphic to Y as sets.

Exercise 1.1.3 Let X be a set. Let X, be a family of sets with indices o in a set
I. Suppose that X, = X for each o. Show that [] ., X, is isomorphic to the set of
functions from I to X.

A relation on a set X is a subset ~ of X x X. We write z ~ y if (z,y) €~. A
relation on X is an equivalence relation if it satisfies



8 CHAPTER 1. INTRODUCTION

1) the reflexive condition: z ~ x for all z € X
2) the symmetric condition: If z ~ y, then y ~ z;
3) the transitive condition: If x ~ y and y ~ z, then = ~ 2.

The equivalence class of z is the set
{2} ={y € X|z ~y}.

Exercise 1.1.4 Let ~ be an equivalence relation on X. Show that each element of
X belongs to exactly one equivalence class.

1.2 Monoids and Groups

A binary operation (multiplication) on a set X is a function pu: X x X — X. We ab-
breviate u(x,y) to xy or z+y. A monoid M is a set M together with a multiplication
w: M x M — M satisfying the following conditions:

1) (identity) there exists an element 1 € M such that
lr=xl==x
for any x € M;
2) (associativity) the equation
(T129)73 = 21 (T273)
holds for any zq, xy, x3 € M.
A group is a monoid G satisfying

3) (inverse) For each x € G, there exists an element ! € G such that

In other words, a group is a monoid in which every element is invertible. Note that
if = is invertible, then the inverse of z is unique. A group (or monoid) G is said
to abelian or commutative if xy = yx for any z,y € G. Let G and H be monoids
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(or groups). Then the Cartesian product G x H is a monoid (or group) under the
multiplication defined by
(9,h)(g', 1) = (g4, hh).
In additive case, we write G & H for G x H.
A subset H of a group (monoid) is a subgroup (submonoid) of G if H is a group
(monoid) under the binary operation of G. Let H be a subgroup (submonoid) of G
and let g € G. The left and right cosets of H by ¢ are defined by

gH = {gh|h € H} Hg = {hg|h € H}.

Example 1.2.1 Let Z* be the set of non-negative integers. Then Z* is a monoid
under the addition +. Z" is a submonoid of Z. Z is often called the group completion
of the monoid Z*, i.e. the “smallest group” that contains Z*. The set of natural
numbers is a monoid under the multiplication. The “group completion” of natural
numbers is the set of positive rational numbers with the multiplication.

In general, monoids and the “group completion” of monoids are very complicated
and there are many research papers about these topics.

Let G and H be monoids (or groups). A homomorphism f:G — H is a function
such that f(1) =1 and

flzy) = f(2)f(y)
for any z,y € G.

Exercise 1.2.1 Let G and Hbe groups and let f:G — H be a function such that
flzy) = f(x)f(y) for any x,y € G. Show that

1) f) =1

2) f(z7h) = (f(x))" for any x € G.
Let G and H be monoids (or groups). The kernel of a homomorphism f:G — H is
the set
Ker(f) = {z € G|f(x) = 1}.

Note that a homomorphism f is one-to-one (a monomorphism) if and only if

Ker(f) ={1}.
A monoid (or group) G is called isomorphic to H if there is a bijective homomorphism
f:G — H. In this case, we write G =2 H or [:G = H.
A subgroup K of G is normal if grg ' € K for all g € G and x € K. Let G and
H be groups. Then the kernel of a homomorphism f: G — H is a normal subgroup
of GG. The image of f is a subgroup of H which is not normal in general.



10 CHAPTER 1. INTRODUCTION

Exercise 1.2.2 Let K be a normal subgroup of a group G. Show that
1) gK = Kg for any g € G;

2) the set
G/K = {gKl|g € G}

s a group under the operation
(9K)(9'K) = (99) K.
The group G/K 1is called the quotient group of G by K.
Let G be a group and let g € G. The subgroup generated by ¢ is the subset

(9) ={9"In € Z}.

Proposition 1.2.2 Let G be a group and let g € G. Then (g) is isomorphic to Z or
Z/nZ for some n.

Proof. Let ¢:7Z — (g) be the function defined by
¢(n) =g".
Then ¢ is a homomorphism of groups because
¢(m+n)=g"" = g"g" = p(m)d(n).

Note that ¢ is an epimorphism, that is ¢ is onto. If ¢™ # 1 for any positive integer
m, then ¢ is an isomorphism. Suppose that ¢™ = 1 for some positive integer m. Let

n = min{ml|g™ = 1,m > 0}.

Then
Ker(¢) = nZ

and so
(9) = Z/nZ.

If G = (g) for some g, we say that G is a cyclic group with generator g. A set of
generators for a group G is a subset S of GG such that each element in G is a product
of powers of elements taken from S. A group G is called finitely generated if it is
generated by a finite subset.

A free abelian group of rank n is the direct sum

729" =707 ¢ B 7.
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Theorem 1.2.3 (Decomposition Theorem) Let G be a finitely generated abelian
group. Then G is isomorphic to

H()@Hl@HQ@@Hma

where Hy is a free abelian group and H; is a cyclic group of prime power order for
1<i<m.

The proof can be found in any text book of algebra.
A commutator in a group G is an element

lg,h] = ghg 'h .

for some elements g, h € G. The commutator subgroup [G, G] is the subgroup of G
generated by all commutators of G. The commutator subgroup [G, G] is normal. The
group G/[G,G] is called the abelianization of the group G. Note that a group G is
abelian if and only if the commutator subgroup [G, G| is trivial. A group G is called
perfect if [G, G] = G. An example of perfect groups is the alternating groups A, for
n > 4. Non-commutative groups are much more complicated than abelian groups.

1.3 (G-sets

Let G be a group. A set X is called a left G-set if there is an operation u: G x X — X,
(9,x) — g - x, such that

1) 1-z =z forall z € X;
2) (gh)-x=g-(h-x)forall g,h € G and z € X.

A set X is called a right G-set if there is an operation u: X x G — X, (g,z) — - g,
such that

1) z- 1=z forall z € X;

2) x-(gh)=(x-g)-hforall g,h € Gand z € X.

Example 1.3.1 Let H be a subgroup of a group G. Then the set of left cosets
{gH|g € G} is a left G-set and the set of right cosets {Hglg € G} is a right G-set.
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Theorem 1.3.2 Let X be a left G-set. For any g € G, the function 0,: X — X
defined by

r—qg-x
15 a bijective.
Proof. From the definition, we have that 0,0, = 0,, and 0, = idx. Thus
040,-1 = idx = 0,10,

and so 0, is a bijective.
Similarly, if X is a right G-set, then the function 6,: X — X defined by x — z-¢g
is a bijective.

1.4 Categories and Functors

A category may be thought of intuitively as consisting of sets, possibly with additional
structure, and functions, possibly preserving additional structure. More precisely, a
category C consists of

1) A class of objects

2) For every ordered pair of objects X and Y, a set Hom(X,Y") of morphisms with
domain X and range Y; if f € Hom(X,Y'), we write f: X — Y or X Ly

3) For every ordered triple of objects X,Y and Z, a function associating to a pair
of morphisms f: X — Y and g:Y — Z their composite

gof: X —Z

These satisty the following two axioms:
Associativity. If f: X — Y, gY — Z and h: Z — W, then

ho(gof)=(hog)of: X —W.

Identity. For every object Y there is a morphism idy:Y — Y such that if
f: X =Y, thenidyof = f, and if : Y — Z, then hoidy = h.
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A category is said to be small if the class of objects is a set. The category
of sets means the category in which the objects are sets and the morphisms are
functions. The category of sets is NOT small. But there are many small categories.
For instance, the category of finite sets, that is in which the objects are finite sets and
the morphisms are functions between finite sets. We list some examples of categories:

1) The category of sets and functions.

2) The category of pointed sets (A pointed set means a non-empty set X with a
base point z, € X) and pointed functions (that is the functions that preserving
the base points).

3) The category of finite ordered sets and monotone functions (that is f(z) < f(y)
is © < y). This category is usually denoted by A. The objects in A are given by
{0,1,---,n} for n > 0 and the morphisms in A are given by monotone function
from {0,1,---,m} to {0,1,---,n} for any m,n.

4) The category of groups and homomorphisms.
5) The category of monoids and homomorphisms.

6) The category of topological spaces and continuous functions. Topological space
is a generalization of the usual spaces such as Euclidian spaces R", spheres,
polyhedra, metric spaces and etc. We will give the definition of topological
space in the next chapter.

Let C be a category. A subcategory C' C C is a category such that
a) The objects of C' are also objects of C;
b) For objects X" and Y’ of C’', Home (X', Y’) is a subset of Home (X', Y”’) and

c) If f: X" =Y and ¢":Y' — Z’" are morphisms of C’, their composite in C’ equals
their composite in C.

C’ is called a full subcategory of C if C’ is a subcategory of C and for objects X’
and Y’ in €', Home (X', Y’) = Home (X', Y'). For example, the category of groups
and homomorphisms is a subcategory of the category of sets and functions but it is
not a full subcategory. The category of finite sets and functions is a full subcategory
of the category of sets and functions.

Let C be a category. A morphism f: X — Y is called an equivalence if there is a
morphism ¢: Y — X such that go f =idx and fo g =idy.
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Let C and D be categories. A covariant functor (or contravariant functor) T from
C to D consists of an object function which assigns to every object X of C an object
T(X) of D and a morphism function which assigns to every morphism f: X — Y of
C amorphism T(f): T(X) = T(Y) [or T(f): T(Y) — T(X)] of D such that

a) T(idx) = idy(x) and
b) T(go f)=T(g) o T(f) [or T(go f)=T(f)oT(g)]

Theorem 1.4.1 Let T be a functor from a category C to a category D. Then T maps
equivalences in C to equivalences in D.

Proof. Assume that T' is covariant (the argument is similar if 7" is contravariant). Let
f: X — Y be an equivalence and let f~':Y — X be its inverse. Since f'o f =idy
and f @) f_] = idy, T(f_1) o T(f) = 1dT(X) and T(f) o T(f_1> = ldT(y) Thus T(f)
is an equivalence.

A topological problem on spaces is to how to classify topological spaces. In
other words, roughly speaking, how to know whether a space X is homeomorphic
to another space Y or not. Basic ideas in algebraic topology is to introduce various
functors from the category of topological spaces to “algebraic” categories such as the
category of groups, the category of abelian groups, and the category of modules and
etc. Homology, fundamental group and higher homotopy groups are most important
functors from the category of spaces to the category of groups.

For example, we will know that the fundamental group of R\ {0} is Z but the
fundamental group of R?\ {0} is {0}. By Theorem 1.4.1, we have that R\ {0} is not
homeomorphic to R? \ {0} and so R is not homeomorphic to R?. This is a simple
example. Actually we will be able to classify all of (2-dimensional) surfaces in this
course using the fundamental group.



Chapter 2

General Topolgy

2.1 Metric spaces

Let X be a set. A metric d for X is a function d: X x X — R satisfying
1) d(x,y) =0 if and only if z = y;

2) (triangle inequality)
d(z,y) +d(z,z) = d(y, z).

In this case X is called a metric space with the metric d.

Proposition 2.1.1 Ifd is a metric for X, then d(x,y) > 0 and d(x,y) = d(y,x) for
all z,y € X.

Proof. By the triangle inequality, we have
2d(x,y) = d(z,y) + d(z,y) = d(y,y) = 0,

d(z,y) = d(z,y) + d(z,z) = d(y, ),
d(y, =) = d(y,z) + d(y,y) = d(x,y).
Thus d(z,y) > 0 and d(z,y) = d(y, x).

Exercise 2.1.1  a) Show that each of the following is a metric for R™:

o) = (o= = o=yl d)={ 250

i=1

15
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dw,y) =Y lwi—wil;  dlw,y) = maxi<icn |7 — il
i=1

b) Show that d(x,y) does not define a metric on R.
c¢) Show that d(x,y) = min;<;<, |z; — y;| does not define a metric on R”.
d) Let d be a metric. Show that d’ defined by

d(z,y)

d'(z,y) = Hd—(x,y)

is also a metric.

Definition 2.1.2 Let (X, dx) and (Y, dy) be metric spaces. A function f: X — Y
is said to be continuous at x € X if for any €, > 0 there exists §, > 0 such that
dy (f(x), f(y)) < €, whenever dx(z,y) < 6,. The function f is said to be continuous
if it is continuous at all points x € X.

Exercise 2.1.2 Let X be a metric space with metric d. Let y € X.Show that the
function f: X — R defined by f(z) = d(z,y) is continuous.

Definition 2.1.3 A subset U of a metric space (X, d) is said to be open if for any
x € U there exists €, > 0 such that if y € X and d(y,z) < ¢, then y € U.
In other words U is open if for any x € U there exists an ¢, > 0 such that the

open ball
B, (z) ={y € X|d(y,z) < e,} CU.

Exercise 2.1.3  a) Show that B, (z) is always an open set for any x and any € > 0.
b) Which of the following subsets of R? (with the usual metric) are open?
{(@y)le® +y* <1FU{L0)}, {(zyl’+y* <1},
{@ Yzl <1}, {(z,y)lz+y <0},
{(@y)lr+y >0}, (= y)le +y =0}

Exercise 2.1.4 Show that if i/ is the family of open sets arising from a metric space
then

i) The empty set () and the whole set belong to U;
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ii) The intersection of two members of U belongs to U;

iii) The union of any number of members of U belongs to U.

Theorem 2.1.4 A function f: X — Y between two metric spaces is continuous if
and only if for any open set U in'Y the set f~'(U) is open in X.

Proof. Suppose that f is continuous and U is open in Y. Let x € f~'(U). Then
f(z) € U. Since U is open, there exists ¢ > 0 such that B.(f(z)) € U. By the
definition, there exists § > 0 such that f(y) € B.(f(x)) whenever y € Bjs(z), that is
f(Bs(z)) € B(f(x). Thus

Bs(z) € f~(Be(2)) € f7(U)
and so f~1(U) is open.

Conversely let z € X; then B.(f(x)) is an open subset of Y and so f~'(B.(f(x)))
is an open subset of X. Thus there exists 6 > 0 with

Bj(z) € [ (Bc(f(2))).

In other words dy (f(z), f(y)) < € whenever dx(z,y) < J, that is f is continuous.

2.2 'Topological Spaces

Definition 2.2.1 Let X be a set. A topology U for X is a collection of subsets of X
satisfying

i) 0 and X are in U;
ii) the intersection of two members of U is in U;
iii) the union of any number of members of U is in U.

The set X with U is called a topological space. The members U € U are called the
open sets.

Exercise 2.2.1 Let U be a topology for X. Show that the intersection of a finite
number of members of U is in U.
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Note: The intersection of infinitely many open sets is called a Borel set which is not
open in general.

Let X be a metric space and let & be the family of open sets. Then U is a
topology. This topology is called the metric topology. Note that two different metrics
may give rise to the same topology.

Exercise 2.2.2 Let X be a metric space with metric d. Let d' be the new metric
defined in Ezercise 2.1.1. Then (X,d) and (X, d") has the same topology.

Given a set X there may be different choices of topologies for X.

Exercise 2.2.3 Let X = {a,b}. Show that there are four different topologies given
as follows:

u] - {®7X}7u2 = {(ba {a}7X}7u3 = {@7 {b},X},U4 = {@7 {CL}, {b}aX}

Exercise 2.2.4 Let X be a set. Let Uy = {0, X}, let Uy = S(X) be the set of all
subsets of X and let
Us; ={U C X|X\U is (finite}.

Show that Uy ,Us and Us are topologies for X.
U, is called indiscrete topology, Us is called discrete topology and Us is called finite
complement topology.

Let X be a topological space and let A be a subset of X. The largest open set

contained in A, this is denoted by ;1 and is called the interior of A. For example, let
X = R". Then the interior of the closed ball

Dy (x) = {yld(z,y) <7}
is the open ball B,.(z) = {y|d(z,y) < r}.

Exercise 2.2.5 Let X = R" with the usual topology. Let

n
A

Ve

" =170,1] x --- x [0,1].

Show that
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Let X be a topological space. A subset N C X with x € N is called a neighborhood
of z if there is an open set U with x € U C N. For example, if X is a metric space,
then the closed ball D,(z) and the open ball B,(z) are neighborhoods of x.

Exercise 2.2.6 Let X be a topological space. Prove each of the following statements.
a) For each point x € X there is at least one neighborhood of x.
b) If N is a neighborhood of x and N C M then M is also a neighborhood of x.
c) If M and N are neighborhoods of x then so is N N M.

d) For each x € X and each neighborhood N of x there exists a neighborhood U of
x such that U C N and U is a neighborhood of each of its points.

Definition 2.2.2 A subset C' of a topological space X is said to closed if X \ C is
open.

Theorem 2.2.3 i) () and X are closed;
i1) the union of any pair of closed sets is closed;

i11) the intersection of any number of closed sets is closed.
Note: The union of infinitely many closed sets is not closed in general.

Exercise 2.2.7 Let X be a set and let V be a family of subsets of X satisfying
i) 0, X €V;
i1) the union of any pair of members of V belongs to V;
iii) the intersection of any number of members of V belongs to V.
Show that U = {X — V|V € V} is a topology for X.
Let Y be a subset of a topological space X. The set

Y = ﬂ{F\F oY F is closed}

is called the closure of Y. The set Y/ =Y \ 'Y is called the set of limit points of Y.
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Proposition 2.2.4 Let Y be a subset of a topological space X. Then x € Y if and
only if for every neighborhood N of x, NNY # ().

Proof. Let x € Y and suppose that N is a neighborhood of xwith N N'Y = (). Then
there is an open neighborhood U of x with U C N. Thus X \ U is a closed set and
Y C X \U. It follows that Y C X \ U and so z ¢ U. One gets a contradiction.

Conversely suppose that = ¢ Y. Since Y is closed, X \Y is an (open) neighborhood
of z so that (X \Y)NY =0 is a contradiction.

Exercise 2.2.8 Let X = R with the usual topology. Find the closure of each of the
following subsets of X :

A=1{1,2,3,---},B={zlx is rational},C = {z|z is irrational}.

Exercise 2.2.9 Prove each of the following statements.

a) If Y is a subset of a topological space X with Y C F C X and F is closed then
Y CF.

b) Y is closed if and only if Y =Y.

f) Y =Y UJY where Y =Y N (X \Y) (9Y is called the boundary of Y).
g) Y is closed if and only if 0Y C Y.
h) 9Y = if and only if Y is both open and closed.

i) Fora<beR
d(a,b) = 0a,b] = {a,b}.
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2.3 Continuous Functions

Definition 2.3.1 A function f: X — Y between two topological spaces is said to be
continuous if for every open set U of Y the preimage f'(U) is open in X.

A continuous function from a topological space to a topological space is often sim-
ply called a map. The category of topological spaces is defined as follows: the objects
are topological spaces and the morphisms are maps, that is continuous functions.

Theorem 2.3.2 Let X and Y be topological spaces. A function f: X — Y is con-
tinuous if and only if f~1(C) is closed for any closed subset C' of Y.

Proof. Suppose that f is continuous and let C' be a closed set in Y. Then Y \ C' is an
open set and so f~ 1Y\ C) = X\ f!(C) is an open set. It follows that f~*(C) is a
closed set. Now suppose that f~1(C) is closed for any closed set C' and let U be an
open set. Then Y \ U is a closed set and so X \ f~Y(U) = fY(Y \ U). Thus f~'(U)
is an open set.

So far we have two general methods to see whether a function is continuous or not,
that is by the definition or by the theorem above. If f: X — Y is a function between
metric spaces, then we can also use € — § method to test whether f is continuous or
not. As we know in calculus that the compositions of continuous functions is still
continuous. This is actually true in general.

Theorem 2.3.3 Let X,Y and Z be topological spaces. If f: X — Y and ;Y — Z
are continuous functions then the composite go f: X — Z 1is continuous.

Proof. Let U be any open set in Z. Then g '(U) is an open set in Y and so
(go /)~ (U) = f~"(¢g7"(U)) is an open set in X.

Definition 2.3.4 Let X and Y be topological spaces. We say that X and Y are
homeomorphic if there exist continuous functions f: X — Y, ¢:Y — X such that f o
g =idy and go f = idx. We write X =2 Y and say that f and g are homeomorphisms
between X and Y.

By the definition, a function f: X — Y is a homeomorphism if and only if
i) f is a bijective;

ii) f is continuous and
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iii) f~' is also continuous.

Equivalently f is a homeomorphism if and only if 1) f is a bijective, 2) f is con-
tinuous and 3) f is an open map, that is f sends open sets to open sets. Thus a
homeomorphism between X and Y is a bijective between the points and the open
sets of X and Y.

A very general question in topology is how to classify topological spaces under
homeomorphisms. For example, we know (from complex analysis and others) that
any simple closed loop is homeomorphic to the unit circle S'. Roughly speaking
topological classification of curves is known. The topological classification of (two-
dimensional) surfaces is known as well. However the topological classification of
3-dimensional manifolds (we will learn manifolds later.) is quite open. The famous
Poicaré conjecture is related to this problem.

Exercise 2.3.1 Give an example of spaces X, Y and a continuous bijective f: X — Y
such that f~!is NOT continuous. (Hint: Give a set X. Look at the discrete topology,
the indiscrete topology and the identity function.)

A pointed space means a topological space X together with a point xg € X. The
point x is called the base point of X. We often write x for xy. Let X and Y be
pointed spaces with base points xy and gy, respectively. A map f: X — Y is called
a pointed map if f(zo) = yo. The category of pointed topological spaces means a
category in which the objects are pointed spaces and the morphisms are pointed
maps.

2.4 Induced Topology

Definition 2.4.1 Let X be a topological space and let S be a subset of X. The
topology on S induced by the topology of X is the family of the sets of the form
U NS where U is an open set in X. We call that the subset S with induced topology
is a subspace of X.

Note: By this definition, an open set V' in .S means V = U N S for some open set U
in X. The induced topology is also called the subspace topology.

Exercise 2.4.1 Let X be a topological space with the topologyU and let S be a subset
of X. Show that
UnsS={Uuns|\U eu}

1s a topology for S.
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Example 2.4.2 Let S” be the n-sphere, that is,

n+1
S" = {I: (I],"',LEn_H) ER”+]|ZQZ3 = 1} an_H

i=1

with the induced topology. Then S™ is a (closed) subspace of R™™. Note that
S" = R*!' N S™ is an open set in S™ but S is NOT open in R**!,

Proposition 2.4.3 Let S be a subspace of a topological space X . Then the inclusion
function i: S — X s continuous.

Proof. Let U be an open set in X. Then i *(U) = U NS is an open set in S.
Note: One can show that the subspace topology is the smallest topology such that
the inclusion is continuous.

Proposition 2.4.4 Let S be a subspace of a topological space X. Then
1) If S is open in X, then any open set in the subspace S is open in X ;
2) If S is closed in X, then any closed set in the subspace S is closed in X.

Proof. The proofs of 1) and 2) are more or less identical. We only prove assertion 2).
Let V be a closed set in S. Then S\ V is an open set in S. By the definition, there
is an open set U in X such that

S\V=UnS&s.
Thus V = (X \U)NS. Since S and X \ U are closed, V is closed.
Exercise 2.4.2 Show that

1) the subspace (a,b) of R is homeomorphic to R. (Hint: Use functions like
x — tan(m(cx + d)) for suitable ¢ and d.)

2) the subspaces (1,00), (0,1) of R are homeomorphic. (Hint: z — 1/z.)

)
3) S™\ {(0,0,---,0,1)} is homeomorphic to R"™ with the usual topology. (Hint:
Define ¢: 5™\ {(0,0,---,0,1)} — R™ by

Xy X2 Tn

)

¢( 1y 42, ) n—H) (1_$n+171_$n+1 71_$n+1

and ¢¥: R" — S™\ {(0,0,---,0,1)} by

1
lar, o 20) = (21, 2, 2, 2 — 1))
It [l
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A map f: X — Y is called an embedding if f is one-to-one and X is homeomorphic
to the image f(X) with the subspace topology. The embedding problem in topology
is as follows:

Given a topological space X. Can we embed X into R” for some n? If not, can
we embed X into a Hilbert space? If yes, what is the minimal number n such
that X can be embedded in R"? This number is called the embedding number
of X.

This question is important (and difficult in general) because a topological space X
could be very abstract but the spaces R™ are much easier to be understood. For
instance, the circle S' can embed in R? but S' can not embed in R'. Thus the
embedding number of S! is 2. Well sometimes a space X could be very simple but it
could have a very complicated embedding in R™.

A knot K is a subspace of R? that is homeomorphic to the circle S'. Two knots K;
and K, are similar if there is a homeomorphism h: R* — R? such that h(K;) = Ko.
The knot theory is to study the classification of knots under this relation.

2.5 Quotient Topology

Definition 2.5.1 Let f: X — Y be a surjective function from a topological space X
to a set Y. The quotient topology on Y with respect to f is the family

U ={U|f"(U) is open in X}.
Exercise 2.5.1 Show that U above is a topology for Y.
Note: After giving the quotient topology on Y the function f: X — Y is continuous.
Example 2.5.2 (Projective Spaces) Let set RP™ and CP™ are defined as follows:
RP"={I|l is a line in R™' with 0¢€l},

CP™={l|l is a complex line in C"*' with 0¢€l}.

The topologies in RP™ and CP™ are given by the quotient topology under the quotient
maps R"™1\ {0} — RP™ and C"*!\ {0} — CP™, respectively.

By this example, one can see that the quotient space Y could be much more compli-
cated than the original space X. The following theorem gives a general method to
see whether a function from Y to another space is continuous or not.
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Theorem 2.5.3 Let X be a topological space and let f: X — Y be a surjective.
Suppose that Y are given the quotient topology with respect to f. Then a function
g:Y — Z from'Y to a topological space Z is continuous if and only if the composite
go f is continuous.

Proof. Suppose that ¢ is continuous. Since f is continuous, the composite g o f is
continuous.

Now suppose that the composite go f is continuous. Let U be any open set in Z.
Then

F e (U) = (g0 /)1 (U)

is open in X and so ¢g7'(U) is open in Y by the definition of quotient topology.
Exercise 2.5.2 Show that

1) RP' =S

2) CP' >~ §2
The famous Hopf fibration is the composite

S% —— C*\ {0} — CP' = §%
Let A be a subspace of a space X. The space X/A is the quotient space
X/A =X/ ~,
where ~ is the equivalence relation generated by
a~b

for any a,b € A. As aset X/A = (X \ A) U {x}, where = is the eqivalence class of
any particular choice of elements in A. The topology in X /A is given by the quotient
topology. Roughly speaking X/A is the quotient space X by pinching out A to be
one point.

Exercise 2.5.3 Show that D"/S™ ' is homeomorphic to S™.

The canonical inclusions R® — R**! C* — C™*! given by (z1,- -+, x,) — (z1,-*+, s, 0)
induce the maps RP?" — RP""! and CP" — CP"*!, respectively. Thus RP" and
CP™*! can be considered as the subspaces of RP"*! and CP™"!, respectively, for
each n.
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Exercise 2.5.4 Show that RP"™' /RP™ = S"*! gnd CP™"! /CP" = S+,

A fibrewise topological space means a map f: X — Y. In the case where f is an
onto, it often called a bundle. For each y € Y, the subspace f~'(y) C X is called the
fibre at y. Let f: X — Y be a bundle. Then

xX=r'w

yey

and so X can be considered as the union of subspaces f!(y) with indexes in a
topological space Y. Fibre bundles and covering spaces are special bundles. We
will study covering spaces in the next chapter. The category of fibrewise topological
spaces is a category in which the objects are fibrewise topological spaces and the
morphisms are given by the commutative diagrams

x—2 . x
f !
y — Y Ly

In other words, the working objects for fibrewise topology are continuous maps and
the “relations” between the working objects are the diagrams above. One finds
surprisingly that many results in the homotopy theory of topological spaces also
holds for the homotopy theory of fibrewise topological spaces. Well the latter one is
much more “abstract”.

2.6 Product Spaces, Wedges and Smash Products

Let X and Y be topological spaces with topologies Ux and Uy, respectively. Let

Uxxy = {JUa x Vo © X x YU, € Ux, Vi € Uy},

that is any member in Uxyy is the union of Cartesian products of open sets of X
and Y.

Exercise 2.6.1 Let X and Y be topological spaces. Show that Ux«y is a topology
for X x Y.
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Definition 2.6.1 Let X and Y be topological spaces. The (Cartesian) product X xY
is the set X x Y with the topology Uxxy .

Exercise 2.6.2 Show that R? with the usual topology is the Cartesian product R' x
R'.

Theorem 2.6.2 Let X XY be the Cartesian product of spaces X and Y. Then a set
W C X XY s open if and only if for any w € W there exist U, and V,, such that
U, is open in X, V,, is open in'Y and w € U, x V,, CW.

Proof. Let W be an open set in X X Y and let w € W. Then W = |, U, x V,,
where U, and V,, are open in X and Y, respectively. Thus there exists an index «
such that w € U, x V,. Choose U,, = U, and V,, = V,. Coversely let w run over all
elements in W we have
W= UsxV,
weW
and so W is open.

Let mx: X xY — X, (z,y) — z, and my: X XY — Y, (z,y) — y, be the
coordinate projections. Since 7y (U) = U x Y and 73, (V) = X x V, the coordinate
projections mx and 7y are continuous. Let f:Z — X and ¢: Z — Y be any maps
from a space Z to X and Y, respectively. Let ¢: Z — X X Y be the function defined
by ¢(z) = (f(2),9(z). Then ¢ is the unique function such that 7x o ¢ = f and
Ty 0 = g.

Lemma 2.6.3 The function ¢ defined above is continuous.

Proof. Let U and V be open sets in X and Y, respectively. Then ¢='(U x V) =

{2|f(z) € Uyg(z) e V} = f1(U)Nng (V) is an open set in Z. Now consider any

open set W in X x Y. Let z be any element in ¢ 1 (W) and let w = ¢(z). There exist

open sets U,, and V,, such that w € U, xV,, CW. Thus z € ¢ (U, xV,,) C ¢ (W)

and ¢! (W) is a neighborhood of each of its points. It follows that ¢~' (W) is open.
By using the categorical language, Lemma 2.6.3 shows

Theorem 2.6.4 Let X and Y be topological spaces. Then Cartesian product X XY
is the product of X and 'Y in the category of topological spaces.

Theorem 2.6.5 For any y € Y, the subspace X x {y} C X XY is homeomorphic
to X.
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Proof. Let f: X x {y} — X be the function defined by f(x,y) = x. Since f is the
composite
X x{y} — X xY = X,

the function f is continuous. Clearly f is a bijective. It suffices to show that f is an
open map, that is f sends open sets to open sets. Suppose that W is an open set in
X x {y}. Then

W= (JU. x Vo) N X x {y}
for some open sets U, and V, in X and Y, respectively. It follows that
foy= U U
a,y€Vy

is open.

Now we look at “infinite” Cartesian products. Let {X,|a € J} be a set of
topological spaces. Recall that the Cartesian product J] ., X, of the sets X, is the
set of collections of elements (z,), one element z,, in each X,. Now An open set in
[[,c, Xa is defined to be the any union of the following sets

Ual,---,an = {(LUQ)’Ial € Ua17 s Ty, € Uan}y

where aq,---,a, is any finite set of elements of J. This gives the topology on the
product ], ., Xa.

Proposition 2.6.6 The product topology on [[,., Xa is the smallest topology such
that each coordinate projection

T H X, — X,

a’'edJ

18 continuous.

Proof. Let V be a topology on [] ., X, such that each coordinate projection 7, is
continuous. Let U, be an open set in X,,. Then

N U,) = {(z})|re € U} € V. (2.1)

Since the product topology is given by the any union of any finite intersections of the
sets of the forms 2.1, it follows taht the product topology is smaller than V.
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Let X and Y be pointed spaces with base points xy and yy, respectively. Then
the wedge X VY of X and Y is defined to be the quotient space

(XHY)/{SUO,QO}"

The topology in X VY is given by the quotient topology under the quotient map
¢ X J[Y — X VY. This topology can be described as follows. A subset U in X VY
is open if and only if ¢ '(U) is open. There are two cases. If x & U, then ¢ *(U) is
either an open set in X that does not contain zy or an open set in Y that does not
contain yy. If x € U, then ¢ ' (U) = U, [ U, for some open set U; in X that contains
2o and some open set Uy in Y that contains yo. Thus

Uxvy = {q(U)|x0 ¢ U e L{X}U{q(V)|y0 g Ve UY}U{q(Ul HU2)|1‘0 elU elUx,yo e lUs € UY}

Proposition 2.6.7 Let X andY be pointed spaces with base points xo and yg, respec-
tively. Then X VY is homeomorphic to the subspace (X x{yo})U({zo} xY}) C X xY.

Proof. Let Z = (X x{yo})U({xo} xY') be the subspace of X xY. Let fx: X — X xY
and fy:Y — X x Y be the maps defined by fx(x) = (z,%) and fy(y) = (zo,y).
The there is a unique map ¢: X VY — Z such that ¢ o fx = ix and ¢ o fy = iy.
Clearly ¢ is bijective. It suffices to show that ¢ is an open map. If U € Ux with
xg & U, then ¢(U) = ZN (U xY) isopenin Z. If V € Uy with yo ¢ V, then
o(V) =ZN(X xV)isopenin Z. If U = q(U,[[Us) with g € U; € Uy and
yo € Uy € Uy, then ¢p(U) = Z N (U; x Us). Thus ¢ is an open map.
Let X and Y be pointed spaces. The smash product X A'Y is defined by

(X X< Y)/((X % {yo}) U ({zo} x Y)).
We write x A y for elements in X AY, where x € X and y € Y.

Theorem 2.6.8 Given three pointed spaces X, Y and Z, (X VY) A Z is homeomor-
phic to (X NZ)V (Y A Z).

Proof. The function f: X XY xZ — X xZxY xZ, defined by f(z,y,z) = (x, z,y, 2),
is clearly continuous. Let g be the composite

GXXYXZ Lo XxZxYxZZh(XANZ)x (Y % 2).

Then
J(XVY)xZ2)C(XANZ)V (Y NZ).



30 CHAPTER 2. GENERAL TOPOLGY

Moreover, the map g sends (X VYY) V Z to the base point, so that g induces a map
GXVY)NZ - (XANZ)V (Y ANZ),

where g((z,yo) AN2) =z Azin X AN Z and g((xo,y) N2) =yAzin Y ANZ.

Conversely, let h: (X ANZ)V (Y ANZ) — (X VY)AZ be the map such that h|xaz
and h|y,z are the inclusions X N Z —— (X AY)AZ and Y ANZ — (X ANY) N Z,
respectively. Then h(z A z) = (z,y0) Az and h(y A z) = (z0,y) A z) so that go h and
h o g are identities, and hence g is a homeomorphism.

Exercise 2.6.3 Show that S™ A 8™ = S™*™ for any n,m.

2.7 'Topological Groups and Orbit Spaces

A pointed topological space X is called an H-space of there is a continuous multipli-
cation u: X x X — X, (z,y) — zy, such that xopx = xxg = . The base point xg is
often denoted as * or 1. Equivalently, a pointed space X is an H-space if and only
if there is a map pu: X x X — X such that u|xyx = V, where V: X V X — X is the
fold map defined by V(z,2) = = and V(xg,x) = x.

An H-space is called associative if diagram

id
Xx X x X 2P v o x
idy xp 1%

X x X a X

is commutative. An associative H-space is called a topological monoid. In other
words, a topological monoid is monoid as a set such that the multiplication is con-
tinuous. A topological group G means a topological monoid such that there is a map
v:G — G, z — 7', with 227! = 1 = 2~ ', that is the inverse is a continuous
function.

Let X be a space and let G be a topological group. We say that G acts on X and
that X is a G-space if there is map p: G x X — X, denoted by (g,z) — g -z, such
that

i) 1-z=zaforall z € X;
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Moreover, the map g sends (X VYY) V Z to the base point, so that g induces a map
GXVY)NZ - (XANZ)V (Y ANZ),

where g((z,yo) AN2) =z Azin X AN Z and g((xo,y) N2) =yAzin Y ANZ.

Conversely, let h: (X ANZ)V (Y ANZ) — (X VY)AZ be the map such that h|xaz
and h|y,z are the inclusions X N Z —— (X AY)AZ and Y ANZ — (X ANY) N Z,
respectively. Then h(z A z) = (z,y0) Az and h(y A z) = (z0,y) A z) so that go h and
h o g are identities, and hence g is a homeomorphism.

Exercise 2.6.3 Show that S™ A S™ = S™*™ for any n,m.

2.7 Topological Groups and Orbit Spaces

A pointed topological space X is called an H-space of there is a continuous multipli-
cation u: X x X — X, (z,y) — zy, such that xopx = xxg = . The base point xg is
often denoted as * or 1. Equivalently, a pointed space X is an H-space if and only
if there is a map pu: X x X — X such that u|xyx = V, where V: X V X — X is the
fold map defined by V(z,2) = = and V(xg,x) = x.

An H-space is called associative if diagram

id
Xx X x X 2P v o x
idy xp 1%

X x X a X

is commutative. An associative H-space is called a topological monoid. In other
words, a topological monoid is monoid as a set such that the multiplication is con-
tinuous. A topological group G means a topological monoid such that there is a map
v:G — G, z — 7', with 227! = 1 = 2~ ', that is the inverse is a continuous
function.
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i) g-(h-x)=(gh)-x for all z € X and g,h € G, that is the diagram

GxGxdeGXpJGxX
po X idy %
GxX a X

commutes.

Theorem 2.7.1 Suppose that X is a G-space. Then the function 0, X — X given
by x — g - x is a homeomorphism. It follows that there is a homomorphism from G
to the group of homeomorphisms of X.

Proof. The function 6, is the composite

X2{glxXCGxX-L+X.

Thus 0, is continuous. From the definition of G-space we see that 0, o 0}, = 0, and

¢y =idx. Thus 6500,+ = idx = 0,1 00, and so 0, is a homeomorphism. Now the

function g — 6, is a homomorphism from G to the group of homeomorphisms of X.
Let X be a G-space. We can define an equivalence relation ~ on X by

x~y<&g-x =y for some g € G.

The quotient space X/ ~, denoted by X/G, with the quotient topology is called the
quotient space of X by G.

Example 2.7.2 1) Let G =7Z/2 = {£1} with discrete topology and let X = S™.
The G-action on X is given by +1 -2 = +x. Then S”/(Z/2) = RP".

2) Let G = 7Z with the discrete topology and let X = R. The action of G on R is
given by n-x =n+x. Then R/Z = ST

3) Let G =S' C C. Then G is a topological group under the multiplication. Let
S2n=1 C R?" = C" be the unit sphere. Let G act on S*"~! by

« - (21,2’2, ne '7Zn) = (0121,042’2, o ',OéZn>.

Then S?"~!'/S' = CP".
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Let M, be the set of n x n-matrices over R. Then M, = R" is a topological
space. Let
GL(n,R) ={A € M,,|det(A) # 0} C M,

with the subspace topology. Then GL(n, R) is a topological group, which called
the general linear group.

Let O(n) be the group of (real) orthogonal n x n matrices. O(n) is regarded as
a subspace of R™ with the subspace topology. For k < n O(k) is regarded as
the set of matrices of the form

A 0

0 In—k

with A an orthogonal k X k-matrix and [, the (n — k) x (n — k) identity
matrix. Then O(k) is a topological subgroup of O(n). In O(n) we also have
the subgroup SO(n) of orthogonal matrices with determinant 1, that is SO(n)
is the kernel of det: O(n) — Z/2.

Let U(n) denote the group of n x n unitary matrices regarded as a subspace of
C"*. We have the inclusions

UQ)cUR)cUB)<---CUn)C---

Thus U(k) is a topological subgroup of U(n) for £ < n. We also have the
subgroup SU(n) C U(n) of n X n unitary matrices with determinant 1, that is
SU(n) is the kernel of det: U(n) — S*.

Theorem 2.7.3 Suppose that X is a G-space. Then the canonical projection w: X —
X/G is an open mapping.

Proof. Let U be an open set in X. Then

7 (m(U)) = {z € X|n(z) € n(U)}

:{:EGX|:E:g-yforsomey€UsomegEG}:Ug-U.
geG

Since 0,: X — X is a homeomorphism for each g € GG, g - U is open for each g then
so 7! (m(U)) is open and hence 7(U) is open in X/G.
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Exercise 2.7.1 1) Let X be a G-space and define the stabilizer of x € X to be
the subspace

G.={9€Glg-v=u}
of G. Show that GG, is a topological subgroup of G.

2) Let X be a G-space and define the orbit of x € X to be the subspace
G-z={g zlg€G}

of X. Prove that G -z and G - y are either disjoint or equal for any z,y € X.

2.8 Compact Spaces, Hausdorff Spaces and Lo-
cally Compact Spaces

Let X be a space. A cover of a subset S is a collection of subsets {U;|j € J} of X

such that
sclJu.
jer
A cover is called finite if the indexing set J is finite. Let {U;|j € J} and {Vi|k € K}
be covers of the subset S of X. {U;|j € J} is called a subcover of {Vi|k € K} if

{U;lg € J} C{Vilk € K}.
Definition 2.8.1 Let X be a space. A subset S is called to be compact if every open

cover of S has a finite subcover. In particular, a space X is compact if every open
cover of X has a finite subcover.

Exercise 2.8.1 Show that a subset S of a space X is compact if and only if it is
compact as a space given the induced topology.

Exercise 2.8.2 Show that [0,1] C R is compact.

The following theorem is useful.

Theorem 2.8.2 Let f: X — Y be a map. If S C X is a compact subspace, then
f(S) is compact.
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Proof. Suppose that {U;|j € J} be an open cover of f(S). Then {f~"(U;)|j € J} is
an open cover of S. Since S is compact, there exists a finite subset K of J such that

S| "Wk e K}.
But f(f~"(Ui)) C Uy and so
) C U{f YUk € K} C{Uk € K}
which is a finite subcover of {U;|j € J}.
Theorem 2.8.3 A closed subset of a compact space is compact.

Proof. Let X be a compact space and let S be a closed subset of X. Let {U;} be an
open cover of S. Since S C | J{U,|j € J} we see that

X c|Jtlie pu(x\s)
and so there is a finite subcover
X | J{tilk € KU (X\ 9).

Thus
S | J{tilk € K}

which is a finite subcover of {U;|j € J}.

Theorem 2.8.4 Let X and Y be spaces. Then X and Y are compact if and only if
X XY s compact.

Proof. Suppose that X xY is compact. Since mx: X XY — X and 7y: X XY — Y are
continuous, X and Y are compact. Conversely assume that X and Y are compact.
Let {W;|j € J} be an open cover of X x Y. By definition

W= |J (Ujk x Vig)

keK(j)

where Uj, and Vj, are open in X and Y, respectively. Thus

XxYcC |J UxrxV

jeJkeK(5)
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For each = € X the subspace {z} x Y is compact and so there is a finite subcover
n(x)
{z} x Y € | Ui(x) x Vi().
i=1

Let U'(x) = ﬂ?:(‘rl) Ui(x). Then U’(zx) is an open neighborhood of x and
xXc|JU()
zeX

Since X is compact, there are finite points x4, - - -, x,, such that
m
X c|JU' ().
j=1

It follows that

XxYC U U'(z;) x Vi(z;) € U Ui(z;) x Vi(z;).

1<j<m,1<i<n(z;) 1<j<m,1<i<n(z;)
Since for each U;(z;) x V;(z;) there is an index k such that
Ui(z;) x Vi(z;) € W,

there is a finite subcover of {W}|j € J} covering X x Y.

A space X is called Hausdorff if for every pair of distinct points x and y there are
open sets U, and U, such that « € U,, y € U, and U, N U, = (. In other words, X
is Hausdorff if for any x # y in X there are neighborhood N(z) and N(y) of x and
y, respectively such that N(z) N N(y) = (). Hausdorff space is also called Ty-space.
In a Hausdorff space X, any point x is a closed subset. (This is not true for general
topological space. For example, the indiscrete topology.)

Theorem 2.8.5 A compact subset A of a Hausdorff space X 1is closed.

Proof. We may assume that A # () and A # X. Given 2z € X \ A. For each a € A,
there are disjoint open sets U,(x) and V,(z) such that a € U,(x) and z € V,(x).

Since
AC U

a€A
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and A is compact, there are finite points aq, - - -, a,, in A such that

AC O U, ().
i=1

Now the set V(z) = N, V,.(z) is an open neighborhood of x with

m

ANV(z) C (JUs (@) NV (x) =0

=1

and so V(x) C X \ A, which means that X \ A is open or A is closed.
In particular, if X can be embedded into R™ then X must be Hausdorff.

Theorem 2.8.6 (Heine-Borel) A subset S of R™ is compact if and only if it is
closed and bounded.

Proof. Suppose that S is compact. By Theorem 2.8.5, S is closed. Now

Sc|Bi(x)

zeS

and so there exist finite points xi,- -, x,, in S such that
Sc|JBi().
i=1

Thus S is bounded. Conversely suppose that S is closed and bounded. There exists
positive number r >> 0 such that

S C[—r,r]™

Since [—r,r] is compact, [—r, r|™ is compact. By Theorem 2.8.3, the closed subspace
S is compact.

Exercise 2.8.3 Let X and Y be spaces. Then X and Y are Hausdorft if and only if
X x Y is Hausdorff.

Thus the spaces like n-Torus 7™ = S' x St x .-+ x S! are (compact) Hausdorff.

Exercise 2.8.4 Let X and Y be topological spaces. Show that
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1) If X is Hausdorff, then any subspace of X is Hausdorft;
2) X and Y are Hausdorff if and only if X x Y is Hausdorff;

3) X is Hausdorff if and only if the diagonal A(X) = {(z,z) € X%z € X} is a
closed subset of X?;

4) O(n), SO(n), U(n) and SU(n) are compact Hausdorff spaces;

5) Let f:X — Y be a map. Suppose that X is compact Hausdorff and Y is
Hausdorff. Then f is a closed map. Reduce that a bijective map from a
compact Hausdorff space to a Hausdorff space is a homeomorphism.

A quotient map f: X — Y is also called identification map. A quotient space may
not be Hausdorff.

Theorem 2.8.7 Let f: X — Y be an identification map. Suppose that X is Haus-
dorff. If f is closed and f~'(y) is compact for anyy € Y, then Y is Hausdorff.

Proof. Let y; and y, be distinct points in Y. For each x € f~'(y;) and a € f'(y2),
there exist a pair of disjoint open sets U, , and V,, , with 2 € U, , and a € V,,. Fixed
z € (1) {Veala € f7'(y2)} is an open cover of f¥2. By the assumption, f~'(y2)
is compact and so there are finite points a;(z), - - -, dm()(2) such that

m(z)

S ) C U Vaai(a)-

=1

Let V(z) = (% Viaiz) and let U(z) = ) Usas(@)- Then U(z) is an open
neighborhood of z and V' (z) is an open neighborhood of f~'(y) with U(z) NV (z) =
0. Since f~'(y;) C Uwef,1(y])U(:E) and f~'(y;) is compact, there are finite points

x1,-+, 1, € fH(y1) such that
) < | JUy).
=1

Let U = U, U(z;) and V = ()]_, V(z;). Then U and V are disjoint open sets
with f='(y;) C U and f~'(y2) C V. Since f is closed, f(X \ U) and f(X \ V) are
closed subsets in Y and so W, = Y \ f(X \U) and Wy, =Y \ f(X \ V) are open
subsets in Y with y; € W, and 3, € W,. We show that W, N W, = (). Suppose that
yeWiNWsy. Theny & f(X\U) and y ¢ f(X \ V). Therfore f~'(y)N(X\U) =0
and f~'(y)N (X \ V) = 0.1t follows that f~'(y) C UNV = ) and hence W; NWs = ().
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Corollary 2.8.8 Let X be a compact Hausdorff space. Then

i) If G is a finite group and X is a G-space, then X/G is a compact Hausdorff
space;

it) If A is closed subspace of X, then X/A is compact Hausdorff.

Exercise 2.8.5 A space is called normal (Ty-space) if every point in X is closed and
every pair of disjoint closed sets has disjoint open neighborhood. Let G be a compact
topological space and let X be a normal G-space. Show that X /G is Hausdorff.

(Hint: Let 7: X — X/G be the quotient map. For each y € X/G, 7 '(y) =G - x
for some x € X with w(z) = y. Show that the orbit G-z is a quotient of G. Since G is
compact, the orbit GG - x is compact and so it is closed because Ty-space is Hausdorff.
Let y; # y2 be distinct points in X/G. Then 7~ '(y;) and 7' (yo) are disjoint closed
set and so they have disjoint open neighborhood, say U and V. By Theorem 2.7.3,
7(U) and 7(V') are disjoint open neighborhoods of y; and y9, respectively.)

For example, RP" is compact Hausdorff space because RP"™ is the quotient of S™ by
the action of Z/2. CP" is a compact Hausdorff space because it is the quotient of
S2n=1 by St

A space X is called locally compact if every point x in X has a compact neigh-
borhood.

Exercise 2.8.6 Let X be a locally compact Hausdorff space. Given a point x € X
and a neighborhood U of x. Show that there is an open set V such that x € V C
V C U and V is compact. (Hint: Let W be a compact neighborhood of z, that is
there is an open set U; such that x € Uy C W and W is compact. Let V; = U; NU.
Then V; is an open neighborhood of z and V; \ V; is compact because it is a closed
subset of the compact space W. Let A = V; \ Vi. For each y € A, there exist
disjoint open sets U(y) and V(y) such that y € U(y) and = € V(y) because X is
Hausdorff.Since A is compact and A C | J,, U(y), there are finite points yi,- -+, yn
such that A C |J;_, U(y;). Let

V=W ﬂﬁv(yi>-

i=1
Then V' is an open neighborhood of x with

1) VN A=0 (because V is disjoint with an open neighbor hood, |J_, U(y:), of
A.

Y
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2) V C Vi because V C V; and
3) V is compact because it is a closed subset of V;.

By 1) and 2) above, we have that V' C V; C U.

Theorem 2.8.9 (a) If p: X — Y is a quotient map and Z is a locally compact
Hausdorff space, then p X idz: X x Z — Y X Z is a quotient map.

(b) If A is a compact subspace of a space X and p: X — X /A is the quotient map,
then for any space Z, p X idz: X x Z — (X/A) x Z is a quotient map.

Proof.Let m = p x idy.
(a) Let A be a subset of Y x Z such that 7 (A) is open in X x Z. We show that A
is open. Let (yo,20) € Y x Z. Choose xy € X such that p(zy) = yp.

Since 77"(A) is open and Z is locally compact, there are open sets U; in X and
V in Z such that V is compact, U; x V is an open neighborhood of (g, zy) and
Uy xV C 7' (A). The point here is that p~' (p(U,)) is not necessarily open in X but
it contains U;. We do the following construction.

Suppose that U; is an open neighborhood of xq such that U; x V' C (pxidz)~'(A).
We construct an open set U; 1 of X such that

p~ (p(U)) x V C Uiy x V C 1™ (A),

as follows: For each point z € p~'(p(U;)) the space {x} x V lies in 7~ (A). Using
compactness of V, we choose a neighborhood W, of z such that W, x V C 7~ 1(A).
Let U;41 be the union of the open sets W,; then U, ; is the desired open set of X.

Finally, let U be the union of the open sets U; C Uy C ---. Then U x V is a
neighborhood of (g, 29) and U x V' C 7' (A). Since

oo infty oo
UCp ') =p " (JpW) = |Jr'ew) cJUmn =0,
i=1 =1 i=1
we have p~'(p(U)) = U and so p(U) is open in Y. Thus
pU)xV=naUxV)CA

is a neighborhood of (xg, zy) lying in A, as desired.
(b) Again it suffices to show that a subset U in X/A x Z is open if 7~ (U) is open
in X x Z. As in case (a), let (o, 20) € U and let zq € X such that p(zo) = yo.
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If 29 € A, then A x {20} C 7' (U). Since A is compact, a similar argument to
that used in case (a) shows that there exist open sets V' C X and W C Z such that
Ax{z} CVxWCr ).

But then (yo,20) € p(V) x W C U; p(V) is open since p~'(p(V)) = V (because
A CYV), and so p(V) x W is open.

If on the other hand x ¢ A, there certainly exit open sets V C X and W C Z
such that (zg,20) € V. x W C 7 1(U) and if VN A = 0, then p(V) x W is open.
However, if V. N A # ), then (p(A), z0) € U, and we have already seen that we can
then write

(p(A), z) € p(V) x W C U.

But then (yo,20) € p(VUV) x (WNW) C U; p(VUV) is open since A C V, and so
once again (o, z9) is contained in an open subset of U. It follows that U is open. &

Corollary 2.8.10 If p: A — B and q:C — D are quotient maps and if the domain
of p and the range of q are locally compact Hausdorff spaces, then

pXqgAXB—CxD
1S a quotient map.
Proof. We can write p X q as the composite
Ax BEAX9 A p 28 oy D.
Since each of these maps is a quotient map, so is the composite p X q. @

Theorem 2.8.11 If X and Y are compact and X is Hausdorff, then (X NY )N Z is
homeomorphic to X N (Y N Z).

Proof. Write p for the various quotient maps of the form X xY — X AY, and
consider the diagram

X XY XxZ=—XxY xZ
pXidZ idXxp
(XAY)x Z X x(YNANZ)

p p

(XAY)NZ XANYANZ).
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Since X and Y are compact, X VY is compact. By Theorem 2.8.9, the map
pxidg X XY XxZ—=(XANY)xZ

is a quotient map. Since X is locally compact and Hausdorff, again by Theorem 2.8.9,
the map idx xp is a quotient map. It follows that both po (p xidy) and po (idx xp)
are quotient maps. The identity map id: X XY x Z — X x Y x Z induces maps

FFIXAYINZ - XAN(YANZ)and
G XNYANZ)—= (XAY)NZ
that are clearly homeomorphisms. #

Exercise 2.8.7 Show that X A (Y A Z) is homeomorphic to X A (Y A Z) if X and
Z are locally compact and Hausdorff.

2.9 Mapping Spaces and Compact-open Topology

Given spaces X and Y, the mapping space Map(X,Y") consists of all (continuous)
maps from X to Y. The topology in Map(X,Y) is given by so-called compact-open
topology that is defined as follows.

Let K be a compact set in X and let U be an open set in Y. Let
Wiv ={f € Map(X,Y)|f(K) C U}.

The compact-open topology in Map(X,Y') is generated by W, ; where K runs
over all compact subsets in X and U runs over all open sets in Y. In other
words, an open set in Map(X,Y') is a union of a finite intersection of the subsets
with the form W .

If X and Y are pointed spaces. Then pointed mapping space, denoted by Y ¥
or Map,(X,Y), is the subspace of Map(X,Y) consisting of all pointed (continuous)
maps, that all of maps f: X — Y with f(zg) = yo.

Exercise 2.9.1 Let Y be a space and let X be a space with discrete topology. Show
that the compact-open topology on

Map(X,Y) = [] Ya,
zeX

where Y, is a copy of Y, is the same as the product topology.
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Let f:A — X and ¢:Y — B be maps. Then the function ¢g/: Map(X,Y) —
Map(A, B) is defined by
g\ =goXof
for \: X — Y. If f and g are pointed maps, then g/ induces the map ¢/: Map, (X,Y) —

Map, (4, B) because if A € Map, (X,Y), that is \ is a pointed map, then g/()) is a
pointed map.

Proposition 2.9.1 Let f: A — X andg:Y — B be | pointed] maps. Then g’: Map(X,Y) —
Map(A, B) [¢/: Map,(X,Y) — Map, (A4, B)| is continuous.

Proof. Take a sub-basic open set W s in Map(A, B), where K is compact in A and
U is open in B. Then

(9") ' (Wiw) = {X X = Ylgo M(K) C U}

= {NX > YIANf(K) Cg ' (U)} = Wraoy 1)

because f(K) is compact in X and g~'(U) is open in Y. Thus ¢/ is continuous. #

Let X and Y be pointed spaces. Then both Map,(X,Y) and Map(X,Y) are
pointed spaces, where the base-point is the constant map ¢: X — Y, ¢(x) = yy. Let
i:{zo} — X be the inclusion, then we have the sequence

Map, (X, Y) — Map(X,Y) -+ Map({zo},Y) 2 Y.

This sequence is called the canonical fibration for mapping spaces. Observe that
A € Map,(X,Y) is and only if id} (A) is the base-point. As sets, one can see that
Map(X,Y) is isomorphic to Map,(X,Y) x Y. But as spaces Map(X,Y) is quite
different from Map,(X,Y) x Y in general. The pointed mapping space Map, (S*,Y")
is denoted by QY, which is called the loop space of Y. The mapping space Map(S',Y)
is often denoted by AY and is call the free loop space of Y in many references. We
will see that QY is actually an H-space, while AY is not in general. It was found in
physics that some problems related to so-called n-body problem in physics are related
to the homology of AY for certain spaces Y. There are many machines in algebraic
topology for computing the homology of Y, but the determination of the homology
of AY for many interesting spaces Y remains as interesting problems and have been
studied by people.

Proposition 2.9.2 (a) If Z is a subspace of Y, then Map(X, Z) is a subspace of
Map(X,Y);
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(b) If Z is a pointed subspace of Y, then Map, (X, Z) is a subspace of Map,(X,Y).

Proof. The proofs of assertions (a) and (b) are similar. So we only prove assertion (a).
We have to show that a set is open in Map(X, Z) if and only if it is the intersection
with Map(X, Z) of a set that is open in Map(X,Y’). Let j: Z — Y be the inclusion.
Then j9%: Map(X, Z) — Map(X,Y) is continuous, so that if U C Map(X,Y) is
open, U NMap(X, Z) = (519%)~1(U) is open in Map(X, Z). To prove the converse, it
sufficient to consider an open set in Map(X, Z) of the form Wy, where K C X is
compact and U C Z is open. But U = V N Z for some open set V' in Y and

Wiy NMap(X, Z) = {f: X — Y|f(K) C V and f(X) C Z}

={1{ X Z|[(K)cVNZ=U}=Wky.

That is an open set in Map(X, Z) is the intersection with Map(X, Z) of an open set
in Map(X,Y). &
Given spaces X and Y, the evaluation map

e:Map(X,Y)x X =Y
is defined by
e(\,x) = A(x)

forx € X and :: X — Y. If X and Y are pointed spaces, the restriction of e gives
the evaluation map e: Map,(X,Y) x X — Y. If X is the constant map or z is the
base point xg, then e(\, z) = yo. That is e(Map,(X,Y) V X) =y and so e induces
the evaluation map

e:Map, (X, Y)ANX =Y.

Theorem 2.9.3 Let X and Y be pointed spaces. If X 1is locally compact Hausdorff,
then the evaluation maps

e:Map(X,Y) x X — Y and
e:Map, (X, Y)ANX =Y
are continuous.

Proof. Let U be an open set in Y and that e(\,z) = A(z) € U. Then z € A" 1(U)
which is open in X. Since X is locally compact and Hausdorfl, there exists an
open set V in X such that z € V. C V C A7'(U), and V is compact. Consider
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Wy x V' C Map(X,Y) x X; this contains (A, z) and if (\',2) is another point in
it, then

e(N, 2y = XN(2") e N(V) CU.
Thus Wy y x V. C e (U) and so e '(U) is open or e:Map(X,Y) x X — Y is
continuous. It follows that the restriction

e:Map, (X, Y)x X =Y

is continuous and so e: Map,(X,Y) A X — Y is continuous. é#

Note: The evaluation e: Map(X,Y) x X — Y may NOT be continuous in general.
This is somewhat “not-so-good” in the category of topological spaces. Norman Steen-
rod then introduced “compact generated topological spaces” as a convenient category
of topological spaces [4]. We just give the definition of compactly generated space. A
space X is called compactly generated if X is Hausdorff and each subset A of X with
the property that AN C' is closed for every compact subset C' of X is itself closed. A
locally compact Hausdorff space is compactly generated.

Theorem 2.9.4 Let X, Y and Z be pointed spaces. Suppose that X and Y are
Hausdorff. Then

(a) Map(X ][V, Z) = Map(X, Z) x Map(Y, Z);
(b) Map, (X VY, Z) = Map, (X, Z) x Map, (Y, Z).

Proof. We only prove assertion (b). Let zy and y, are base points of X and Y
respectively, and define

iviX = XVY, iy:Y 5 XVY

by ix(x) = (x,y0) and iy (y) = (x9,y). Then ix and iy are continuous. Define a
function
0:Map, (X, Z) x Map,(Y,Z) — Map, (X VY, ZV Z)

by (A, 1) = AV pufor \: X — Z and p: Y — Z. Consider the composites

xvy A Xvy vy X xid) y
¢ Z — 7 X 7 — 57" x 7 and

02X x 2V L (v 2)X L N

where A is the diagonal map and VZ vV Z — Z is the fold map, that is V(z, 2) =
Vi(zp,2) = z for z € Z. Given v: X VY — Z, ¢(v = (voix,voiy) and given
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AMX — Zand Y — Z, (A p) = V(AV ). Thus ¢ o and 1 o ¢ are identity
functions, and the only point that remains in showing ¢ is a homeomorphism is to
show that 6 is continuous.
To do so, consider the set Wi 7, where K C X VY is compact and U C ZV Z is
open. Now
0~ (W) = {(\ w|(AV p)(K) € U}
= {(AWIMENX) CUN(Z x {20} and p(KNY) CUN ({z0} x 2)}.

Clearly Uy = U N (Z x {z}) and Uy = U N ({20} x Z) are open. But since X and Y’
are Hausdorff, so is X x Y and hence is X VY’; thus K, X,Y are closed in X VY, so
that KN X and K NY are closed and hence compact. That is,

971<WK,U) = Wknx,u, X Wknyu,

so that 6 is continuous and hence ¢ is a homeomorphism. &

Let X be a topological space and let S be a family of subsets of X. § is called a
sub-base of open sets if any member in S is open and any open set in X is a union of
finite intersections of members in S. In other words if S is a sub-base of open sets
then the topology on X is generated by S. We are going to give a result involving
(Y x Z)X and YX x ZX. We need the following lemma.

Lemma 2.9.5 Let X be a Hausdorff space and let S be a sub-base of open sets for
a space Y. Then the sets of the form Wiy for K C X compact and U € S, form a
sub-base of open sets for Map(X,Y).

Proof. Let K C X be compact, V' CY be open and let A € Wx . Then V =, V.,

where V,, is a finite intersection of members in S, and so

K c A (Vo)

hence, since K is compact, a finite collection of the sets A\=' (V,,), say A='(V4), -+ -, A7 (V},),
suffice to cover K. Given z € K, there exists r such that x € A™1(V}). Since K is a
compact Hausdorff space and K N A~1(V}.) is an open neighborhood of x, there exists

an open set A, in K such that

reA, CA, CKNAT(V,).

Again, a finite collection of the open sets A, will cover K, and their closures are each
contained in just one set of the form A~'(V}.). Thus by taking suitable unions of A,’s,
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we can write K = [JI_, K,, where K, C A™'(V;) and K, is closed and so compact.
It follows that

A€ ﬂ Wi,.v € Wky,

r=1
since if u(K,) CV,, for each r, then u(K) C U, V, C V. But if, say, V., = J.", Us
for Uy € S, then Wk, v, = (., Wk, u,. Hence X is contained in a finite intersection
of sets of the form Wk, 1, for U, € S and this intersection is contained in Wi . #

Theorem 2.9.6 Let X, Y and Z be pointed spaces. Suppose that X is Hausdorff.
Then
Map(X,Y x Z) =2 Map(X,Y) x Map(X,Z) and

Map, (X,Y x Z) = Map,(X,Y) x Map, (X, Z).
Proof. We only prove that
Map(X,Y x Z) = Map(X,Y) x Map(X, Z).
Let py:Y x Z — Y and ps: Y X Z — Z be coordinate projections. Define a function
0:Map(X,Y) x Map(X, Z) — Map(X x X,Y x Z)
by (A, 1) = A x pfor \: X — Y and p: X — Z. Consider the composites
idx | idx

><pZ

¢ Map(X,Y x Z) =2 Map(X,Y x Z)xMap(X, Y x Z) P2, Map(X, V) xMap(X, Z)

i A
¥ Map(X,Y) x Map(X, Z) —— Map(X x X,Y x Z) —— Map(X,Y x Z),

where A is a diagonal map. If v: X — Y x Z, then ¢(v) = (py ov,pz ov) and if
XX —Yand i: X — Z, then (A, u) = (A X p) o A. Thus ¢ o9 and 1) o ¢ are
identity functions, and it remains only to prove that 6 is continuous.

Since X is Hausdorff, by Lemma 2.9.5, it sufficient to consider sets of the form
Wi sy, where K C X x X is compact and U C Y, V C Z are open. Then

0 (Wiwxv) = {(\ w(A x p)(K) U x V}={(\w|K S A (U) x u'(V)}.

But if p;,pe: X x X — X be the first and the second coordinate projections, then
p1(K) and po(K) are compact, and K C A1 (U) x pY(V) if and only if p;(K) x
pa(K) C AN Y U) x p (V). Hence

Qil(WK,UXV) = Wp1(K),V X WP2(K):V
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and so @ is continuous. #

At this point we posses rules for manipulating mapping spaces analogous to the
index laws a**¢ = a® - a® and (a - b)¢ = a° - b° for real numbers, and it remains to
investigate what rule, if any, corresponds to the index law a”¢ = (a’)¢. Now we define
the ‘association map’.

Given spaces X, Y and Z, the (unreduced) association map is the function
a:Map(X x Y, Z) — Map(X,Map(Y, Z)) defined by

[a(N)(@)](y) = Az, y)

forre X;yeYand X X xY — Z.
To justify this definition, we have to show that a()) is an element in Map(X, Map(Y, Z)).
For a fixed x, the function a(\)(x):Y — Z is continuous because it is the composite

Y2 {a}xY CXxY 2+ 2
Thus at least a(A) is a function from X to Map(Y, Z).
Proposition 2.9.7 The function a(\): X — Map(Y, Z) is continuous.

Proof. Consider Wi 7, where K C Y is compact and U C Z is open. If z € X is
a point such that a(\)(x) € Wiy, then A({z} x K) C U or {z} x K C (\)7'(U).
Since A='(U) is open and K is compact, there is an open set V in X such that

{2} x KCV x K CAXY(U).

That is
z €V C(a(N)' (Wkr)

and so () is continuous. é#

Thus the function a: Map(X x Y, Z) — Map(X, Map(Y, 7)) is well-defined. Now
we consider the pointed case. Let X, Y and Z be pointed spaces. Let p: X XY —
X A'Y be the quotient map. Then we have the map

id%: Map, (X AY, Z) — Map, (X x Y, Z) C Map(X x Y, 2Z).
Clearly o maps the image of id”, into the subspace

Map, (X, Map, (Y, Z)) € Map(X, Map,(Y, Z)) € Map(X, Map(Y, Z))
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because if X: X ANY — Z, then Aop: X XY — Z has the property that
)\Op’XVyZX\/Y—) Z

is the constant map and so a(\)(zo)(y) = a(x)(yo) = 2o for any z,y. Thus the asso-
ciation map a: Map(X xY, Z) — Map(X, Map(Y, Z)) induces the reduced association
map

a:Map, (X AY, Z) — Map, (X, Map, (Y, Z))

with
[a(A)(2)](y) = Az Ay)
forre X,yeYand : X AY — Z.

Proposition 2.9.8 If X is Hausdorff, then the association map
a:Map(X x Y, Z) — Map(X,Map(Y, Z))
is continuous and therefore the reduced association map
a: ZXNY  (ZzV)X
18 continuous.

Proof. By Lemma 2.9.5, it suffices to consider a (W s), where K C X is compact
and U C Map(Y, Z) is of the form Wy, for L CY compact and V' C Z open. Now

a ' Wro = {A\(aWN)(K) SWiyvt ={AME xL) CV} =Wk
Thus « is continuous. #
Theorem 2.9.9 (a) For all spaces X, Y and Z, the functions
a:Map(X x Y, Z) — Map(X,Map(Y, 7)) and
a: ZXN , (Z)X
are one-to-one.
(b) IfY is locally compact Hausdorff, then both o and & are onto.

(c) If both X and Y are locally compact Hausdorff, then a is a homeomorphism.
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(d) If both X and Y are compact and Hausdorff, then & is homeomorphism.

Proof. (a) We only show that & is one-to-one. Let A\, u: X AY — Z such that
a(A) = a(u). Then for any x € X and y € Y, we have

Az Ay) = [aN)(@)](y) = [a(p)(@)](y) = ulzAy),
so that A = p.
(b) Let A\: X — Map(Y, Z) be a map. Let u: X x Y — Z be the composite
X xV 2N Map(Y, Z2) x Y —— Z,
where e is the evaluation map. By Theorem 2.9.3, the evaluation e is continuous
and so is p. Clearly a(p) = A and so « is onto. Now given a pointed map \: X —
Map, (Y, Z), let p/: X ANY — Z be the composite
N Aidy

XAY 2225 Map, (Y, Z)NY — Z,

where e is the evaluation. Again by Theorem 2.9.3 e is continuous and so is p'.
Clearly (/) = X and so @ is onto.
(¢) Certainly « is continuous, one-to-one and onto, so we have only to show that the
inverse to « is continuous. Let 6 be the composite

0: Map(X, Map(Y, Z)) x X x Y 2% Map(Y, Z2) x Y —— Z,
where e are evaluations. By Theorem 2.9.3, 6 is continuous. By Proposition 2.9.7,
the function

a(0): Map(X, Map(Y, Z) — Map(X x Y, Z)

is continuous. Clearly a(f) is the inverse of the association map a.
(d) By Theorem 2.8.11, there is a homeomorphism

(ZYANXAY)Z((Z)YAX)NY.
Let 1 be the composite

eNidy

(ZVXANXAY)Z(Z)YAX)NY L2V Ay = Z

Then 9 is continuous and
a(w): (2 — 2%

is the inverse to the reduced association a. #

Let X be a pointed space. The n-fold loop space Q" (X) of X is defined by

0"(X) = Map, (5", X).

Exercise 2.9.2 Let X and Y be pointed spaces. Show that "(X xY) = Q"(X) x

Q"(Y) and Q"7(X) =2 Q™(Q"(X)).
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2.10 Manifolds and Configuration Spaces

A Hausdorff space M is called an n-manifold if each point of M has a neighborhood
homeomorphic to an open set in R".

For example, R™ and the n-sphere S™ is an n-manifold. A 2-dimensional manifold
is called a surface. The objects traditionally called ‘surfaces in 3-space’ can be made
into manifolds in a standard way. The compact surfaces have been classified as
spheres or projective planes with various numbers of handles attached.

Exercise 2.10.1 Show that the real projective space RP™ is an n-manifold and the
complex projective space CP" is a 2n-manifold.

By the definition of manifold, the closed n-disk D™ is not an n-manifold because
it has the ‘boundary’ S"~'. D" is an example of ‘manifolds with boundary’. We give
the definition of manifold with boundary as follows.

A Hausdorff space M is called an n-manifold with boundary (n > 1) if each point
in M has a neighborhood homeomorphic to an open set in the half space

R = {(z1,---,x,) € R"|z,, > 0}.

Manifold is one of models that we can do calculus ‘locally’. By means of calculus,
we need local coordinate systems. Let x € M. By the definition, there is a an open
neighborhood U(z) of x and a homeomorphism ¢, from U(z) onto an open set in
R . The collection {(U(x), ¢,)|x € M} has the property that 1) {U(x)|x € M} is
an open cover and 2) ¢, is a homeomorphism from U(z) onto an open set in R .
The subspace ¢,(U,) in R’} plays a role as a local coordinate system. The collection
{(U(x),¢,)|x € M} is somewhat too large and we may like less local coordinate
systems. This can be done as follows.

Let M be a space. A chart of M is a pair (U, ¢) such that 1) U is an open set in
M and 2) ¢ is a homeomorphism from U onto an open set in R’!. An atlas for M
means a collection of charts {(Uy, ¢o)|a € J} such that {U,|o € J} is an open cover
of M.

Proposition 2.10.1 A Hausdorff space M is a manifold (with boundary) if and only
if M has an atlas.

Proof. Suppose that M is a manifold. Then the collection {(U(z), ¢,)|x € M} is an
atlas. Conversely suppose that M has an atlas. For any © € M there exists a such
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that x € U, and so U, is an open neighborhood of x that is homeomorphic to an
open set in R”. Thus M is a manifold. 'y

We define a subset 0M as follows: « € OM if there is a chart (U,, ¢,) such that
r € U, and ¢,(z) € R"! = {x € R"|z,, = 0}. M is called the boundary of M. For
example the boundary of D" is S*~!.

Proposition 2.10.2 Let M be a n-manifold with boundary. Then OM is an (n—1)-
manifold without boundary.

Proof. Let {(U,, ¢o)|c € J} be an atlas for M. Let J' C J be the set of indices such
that U, NOM # 0 if o € J'. Then Clearly

{(Us N OM, ¢ulvromla € J'}

can be made into an atlas for OM. &

Definition 2.10.3 A Hausdorff space M is called a differential manifold of class C*
if there is an atlas of M

{(Uq, oo € J}
such that

For any a, 8 € J, the composites
G 0 b5 ds(Ua N Us) — RY
is differentiable of class C*.

The atlas {(Uy, do|a € J} is called a differential atlas of class C* on M.

Two differential atlases of class C* {(U,, ¢o)|a € I} and {(V3,15)|3 € J} are called
equivalent if

{(Ua 90l € T} U{(V, ¥)|5 € J}

is again a differential atlas of class C* (this is an equivalence relation). A differential
structure of class C* on M is an equivalence class of differential atlases of class C*
on M. Thus a differential manifold of class C* means a manifold with a differential
structure of class C*. A smooth manifold means a differential manifold of class C°.
Note: A general manifold is also called topological manifold. Kervaire and Milnor [2]
have shown that the topological sphere S has 28 distinct oriented smooth structures.
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Let M be a smooth manifold and let {(U,, ¢ )| € J} be a C*-atlas for M. For
a, 3 € J, the function

Go 065" d3(Un NUs) — R

is a smooth map from an open set in R"} to an open set in R”}. The Jacobian matrix

a a © 711’
Mog(x) = <—(¢ ax% )

b3(x)

is invertible for any x € U, NUs. A smooth manifold M is called orientable if there
is an C*-atlas {(U,¢,|a € J} for M such that the determinant of the Jacobian

det(M,p(z)) >0

for any o, 8 € J and x € U, N Us. For example RP" is orientable if and only if n is
odd. On the other hand CP" is orientable for any n.

Definition 2.10.4 let M and N be smooth manifolds of dimensions m and n respec-
tively. A map f: M — N is called smooth if for some smooth atlases {(U,, ¢.|a € I}
for M and {(Vj,v¢3)8 € J} for N the functions

V50 0 by gair1(vinva): Pa(f (Va) NUL) — RY
are of class C*°.

Proposition 2.10.5 If f: M — N 1is smooth with respect to atlases

{(Ua, Galv € 1}, {(V, 0518 € J}

for M, N then it is smooth with respect to equivalent atlases
{(Us, 05l € I}, {(V],m,|B € J'}
Proof. Since f is smooth with respect with the atlases

{(Ua7¢a|a S ]}7 {(Vﬁa¢ﬂ|ﬂ € J}v

f is smooth with respect to the smooth atlases

{(Ua bl € I} UL(Uy, 05l € Iy, {(Vi, 018 € T} U{(V], 1416 € '}
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by look at the local coordinate systems. Thus f is smooth with respect to the atlases
{(Us, 05l € I'}, {(V], 118 € J'}. &

Thus the definition of smooth maps between two smooth manifolds is independent
of choice of atlas.
Let M be a m-manifold. The (ordered) configuration space F(M,n) is defined by

F(M,n)={(x1,---,x,) € M"|x; # x; for i # j}.

In other words, the configuration space F(M,n) is the subspace of the Cartesian
product M™ by removing the ‘flat’ diagonals. The symmetric group ¥, acts on
F(M,n) by permuting coordinates. The (unordered) configuration space B(M,n) is
the quotient of F'(M,n) by ¥, that is

B(M,n)=F(M,n)/%,.

Clearly both F'(M,n) and B(M,n) are mn-manifolds. configuration spaces are arisen
from many areas in mathematics and physics. In geometry and physics, the diagonals
play as singularities in many cases and so we have to remove them, then this gives
the configuration space. In combinatorics, the homology of configuration spaces is
related to ‘subspace arrangements’. The determination of the homology of F(M,n)
and B(M,n) still remains open for general manifold M though it is known for many
cases. The fundamental groups of configuration spaces are interesting as well. A
typical example is that the fundamental group of F(R? n) is the pure braid group
K,, and the fundamental group of B(R?,n) is the Artin braid group B,. The braid
groups are important in group theory, low dimensional topology and mathematical
physics. In homotopy theory, configuration spaces are used to construct various
combinatorial models for mapping spaces. (As we have seen that mapping spaces are
quite complicated, the construction means that we construct certain ‘simpler spaces’
that has the same homotopy groups and homology groups of a mapping space. So
if one needs to know the homotopy groups and homology groups of a complicated
mapping space, one may look at these simpler spaces.)



Chapter 3

Homotopy and The Fundamental
Groups

3.1 Homotopy

3.1.1 Homotopy Relative to a Subspace

The problem of classifying topological spaces and continuous maps up to topological
equivalence (homeomorphism) does not seem to be amenable to attack directly by
computable algebraic functors. Many of the computable functors, because they are
computable, are invariant under continuous deformation. Therefore they cannot
distinguish between spaces (or maps) that can be continuously deformed from one to
the other; the most that can be hoped for from such functors is that they characterize
the space (or map) up to continuous deformation.

The intituive concept of a continuous deformation will be made precise in this
section in the concept of homotopy. This leads to the homotopy category which
is fundamental for algebraic topology. Its objects are topological spaces and its
morphisms are equivalence classes of continuous maps (two maps being equivalent of
one can be continuously deformed into the other).

Roughly speaking two continuous maps fy, fi: X — Y are said to be homotopic
if there is an intermediate family of maps f: X — Y for 0 < t < 1 which vary
continuously with respect to t. Let I = [0, 1].

Definition 3.1.1 Let f,g: X — Y be two maps. We say that f is homotopic to g if
there is a continuous map F: X x I — Y such that F(z,0) = f(x) and F(x,1) = g(z)

95
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for any x € X. The map F' is called a homotopy between f and g. We write f ~ ¢
or F: f~g.

For each 0 < t < 1, we denote F(z,t) by Fy,(xz). So gives a family of maps
Fi: X — Y. Just keep in mind that F; is continuous in t as a map from [ to
Map(X,Y). Amap f: X — Y is called null homotopic if f is homotopic to a constant
map.

Definition 3.1.2 Suppose that A is a subset of X and that f,g: X — Y are maps.
We say that f is homotopic to g relative to A, denoted f >~ grel Aor F: f ~ g rel A,
if there is a homotopy F: X x I — Y such that

1) F(z,0) = f(x) for any = € X
2) F(z,1) = g(z) for any x € X and
3) F(a,t) = f(a) for any a € Aand t € I.

We say that f is null homotopic relative to A if f is homotopic to a constant map
relative to A.

Note that f(a) = g(a) for all a € Aif f ~ grelA. When A =0, f ~ grelA is
equivalent to f ~ g: X — Y. Given two maps f, g: X — Y such that f(a) = g(a) for
a € A. The question whether f is homotopic to g relative to A is in fact an ‘extension
question’ by the following diagram

Xx{0JUX x{1}JUAXT— X x1T

F

¥
X x{0JUX x {1}UAx T2y,
where ¢|xxoy = f, ¢|xxpy = g and ¢(a,t) = f(a) = g(a) fora € Aand t € I. In
other words such an extension [ exists if and only if f is homotopic to g relative to

A.

Theorem 3.1.3 Homotopy relative to A is an equivalence relation in the set of maps
from X to Y.
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Proof. Reflezivity. For f: X — Y, define F: X x I — Y by F(x,t) = f(z). Thus
f~arel A.
Symmetry. Given F: f ~ g rel A, define F": g ~ f rel A by

F'(z,t) = F(z,1 —1).
Transitivity. Given F: f ~ g rel A and G:g ~ h rel A, define H: f ~ h rel A by

[ F(a20) 0<t<1/2
H(z’ﬂ_{G(x,%—l) 1/2<t<1.

Note that H is continuous because its restriction to each of closed sets X x [0,1/2]
and X x [1/2,1] is continuous.d

It follows that the set of maps from X to Y is partitioned into disjoint equivalence
classes by the relation of homotopy relative to A. These equivalence classes are called
homotopy classes relative to  A. We use the notation [X, Y] to denote this set of
homotopy classes. Given f: X — Y, we use [f]4 to denote the element in [X, Y],
determined by f. For (unpointed) spaces X and Y, the notation [X, Y] usually means
[X, Y]o.

Theorem 3.1.4 Let A and B be subspaces of X and Y respectively. Let fq, f1: X —
Y be homotopic relative to A and go, g1: Y — Z be homotopic relative to B such that
fi(A) € B. Then goo fo =~ gy 0 fi rel A.

Proof. Let F: fo >~ fi rel A and G: gg ~ ¢; rel B. Then the composite
XxI-Lt.y-2.7
is a homotopy relative to A from gy o fy to go o f1, and the composite
fixidr

Xx 1y 7% 7

is a homotopy relative to f; ' (B) from gy o f; to gi o fi. Since A C f;'(B), we have
shown thatgg o fo >~ go o f1 rel A and gy o fi =~ g7 o f; rel A. The result follows from
Theorem 3.1.3. &

3.1.2 Pointed Homotopy

Let X and Y be pointed spaces and let f,g: X — Y be pointed maps. f is called
(pointed) homotopic to g is f ~ g relzp, where z( is the base point. If there is no
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confusion, we simply denote f ~ ¢ for f ~ g relzy (in pointed case). For pointed
spaces, the notation [X, Y] means the set of equivalence classes of pointed maps from
X to'Y by the relation of homotopy relative to the base point zy. For any pointed map
f, [f] means the homotopy class determined by f. The homotopy category of pointed
spaces means the category in which objects are pointed spaces and morphisms are
homotopy classes [f]. The composition in the homotopy category of pointed spaces
is defined by [f] o [g] = [f o g]. Theorem 3.1.4 shows that this is a well-defined
composition operation.

Definition 3.1.5 Let X be a pointed space. The n-homotopy group m,(X) is defined
by
Tn(X) = [S™, X]

for n > 0.

Note: my(X) is NOT a group in general. m;(X) is also called the fundamental group
of X. We will show that the fundamental group m(X) is a group for any X (but
non-commutative in general). We will also show that 7, (X) is an abelian group for
n > 2.

Theorem 3.1.6 A pointed map f:Y, — Yy gives rise to a function
[ [ X, V] — [X, Y]
for any pointed space X with the following properties:
1) If f: Y7 — Yy is another map, and f' ~ f, then f. = f.;

2) If id:Y — Y s the identity map, then id,:[X,Y] — [X,Y] is the identity
function;

3) If g: Yo — Y3 is another map, then
(90 f)e=gs0 fu
Proof. Let [A] € [X, Y]] be the homotopy class of a map A\: X — Y. Define
L) =[f o A € [X, V2.

The function f, is well-defined because if \': X — Y] is another map with [X'] = [A],
that is A ~ A, then [f o A'] = [f o A] by Theorem 3.1.4. Properties 1 to 3 follow
immediately from the definition and Theorem 3.1.4. &
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Let f: X; — X5 be any pointed map. Define
f*: [X27 Y] - [X1 g Y]

by
fr(A]) =[Ao f]

for any pointed map A: Xo — Y. By the similar arguments, we have

Theorem 3.1.7 A pointed map f: X1 — Xy gives rise to a function
X, Y] — [X4,Y]
for any pointed space Y with the following properties:
1) If f: Xy — Xy is another map, and f' ~ f, then f* = f";

2) If id: X — X is the identity map, then id™:[X,Y] — [X,Y] is the identity
function;

3) If g: Xo — X3 is another map, then
(gof) =/f"oyg"
Theorem 3.1.8 Let X, Y and Z be pointed spaces. Then
1) [XVY, Z] 2 [X,Z] x [Y, Z] and
2) [X,)Y x Z| = [X,Y] x [X, Z].

Proof. 1) Let
0: (X VY, Z] — [X,Z] x Y, Z]
be defined by
O(IN) = (X ([A] i3 ([A])
for any [\] € [X VY — Z], where ix: X — VY and iy:Y — X VY be the inclusions.
We first show that € is onto. For any ([A\i], [A\2]) € [X, Z] x [Y, Z], where \: X — Z

and \y: Y — Z are pointed maps. Then there is a unique pointed map \: X VY — 7
such that A|x = Ay and Ay = Ay and so

O([A]) = ([, [A2)
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or # is onto. Now we show that 6 is one-to-one. Let A\, \: X VY — Z such that
O([\]) = O([N]). Then i%([\]) = i%([N]) and }.([A]) = 4} ([\']) that is there are
pointed homotopies

F:\x ~ Xy and

Gy = Ny
and so the map H: (X VY) x I — Z defined by

_f F(z,t) for zeX
H($’t>_{G(a:,t) for ze€Y

is a homotopy from A to \.
2). Let
0:[X,)Y x Z] = [X,Y] x [X, Z]

be the function defined by
0([A]) = (py«([A]), pz(A]))
for any \: X — Y x Z. Similar arguments show that € is one-to-one and onto. é#
Corollary 3.1.9 Let X and Y be a pointed space. Then
(X X Y) 271, (X) x m,(Y)
for each n > 0.

Theorem 3.1.10 Let X, Y and Z be pointed spaces. If Y 1is locally compact and
Hausdorff, then the association map

a:Map, (X AY, Z) — Map, (X, Map, (Y, Z))
induces and one-to-one correspondence
ay: [X NY, Z] — [X, Map, (Y, Z)].

Proof. Let p: X XY — X AY be the quotient map. Suppose that F: (X AY) x I be
a pointed homotopy between maps f,g: X AY — Z. Then the map

Fo(pxid): X xYxI—Z
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sends X x {yo} x I and {x¢} XY x I to zp and so induces a map F": (X X [)\Y — Z.
Then a(F'): X x I — ZY sends zy x I to the base-point and is clearly a homotopy
between a,(f) and a.(g). Thus a.:[X AY, Z] — [X, ZY] is a well-defined function
(though & may not be continuous in general).

By assertion (b) of Theorem 2.9.9, the function

d:ZX/\Y N (ZY>X

is onto and so a.,: [X AY, Z] — [X, Z¥] is onto.

Now we show that @, is one-to-one. Let f,g: X AY — Z such that a(f) ~ a(g),
that is there is a pointed homotopy F: X x I — ZY such that F, = f and F} = g.
By assertion (b) of Theorem 2.9.9, there is a map F": (X x I) AY — Z such that
a(F') = F. Let ¢ X xY xI — (X xI)AY be the quotient map defined by
q(z,y,t) = (z,t) ANy. Then F' o q sends X X {yo} x I and {xp} x Y x I to z. BY
Theorem 2.8.9, the map (X xY) xI — (X AY) x I is a quotient map because [
is locally compact and Hausdorff. Thus F' o ¢ induces a map F": (X AY) x I — Z,
which is clearly a pointed homotopy between f and g. #

Corollary 3.1.11 Let X be a pointed space. Then
7Tn(X> = Fo(QnX) = Wl(QnilX)

for anyn > 1.

3.1.3 Path Connected Components

Let X be a topological space. A path in X means a continuous map A: [ — X. A(0)
is called the initial point and A(1) is called the it final or it terminal point. Clearly,
a path in X is a homotopy from one point space to X. Given a space X, define an
equivalence relation by x ~ vy if there is a path in X joining x and y. Let z be any
point in X. The path-connected component of X that contains x is defined to be the
subspace

{lye Xy ~z} C X.

A space X is called path-connected if X has only one path-connected component.
In other words, X is path-connected if for any two points z,y in X there is a path
joining x and y. By Theorem 3.1.3, o~ is an equivalence relation on X and so X is a
disjoint union of its path-connected components. Let X/ ~ be the set of equivalence
classes of X by ~.
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Exercise 3.1.1 Let f: X — Y be a map. If X is path-connected, then the image
f(X) is path-connected.

Exercise 3.1.2 Let X be a non-empty space and let zy be any point in X which is
regarded as the base point. Then

mo(X) = (X/ =).
In particular, X is path-connected if and only if 7y(X) is the one-point set {0}.

Exercise 3.1.3 Let X and Y be topological spaces. Then X and Y are path-
connected if and only if X xY is path-connected. (Hint: mo(X xY) = mo(X) xm(Y).)

3.1.4 Homotopy Equivalences and Contractible Spaces

A map f: X — Y is called an homotopy equivalence if there is a map g:Y — X
such that go f ~ idx and f o g ~ idy. The map ¢ is called a homotopy inverse of
f. A space X is called homotopy equivalent to Y if there is a homotopy equivalence
between X and Y. In this case, we call that X has the same homotopy type of Y,
denoted by X ~ Y.

A space X is called contractible if the identity map is homotopic to some constant
map from X to itself.

Proposition 3.1.12 Any two maps of an arbitrary space to a contractible space are
homotopic.

Proof. Let Y be a contractible space and suppose that idy ~ ¢, where ¢:Y — Y is a
constant map. Let fy, fi: X — Y be any two maps. Then

fo=idyofy~co fy=co fi @idyof; = f
and so fo ~ fi. #

Corollary 3.1.13 If Y s a contractible space, then any two constant maps of Y to
itself are homotopic, and the identity map is homotopic to any constant map of Y to
itself.

Exercise 3.1.4 Show that any vector space V' over R is contractible. (Hint: Check
that the map F:V x I — V, (z,t) — (1 — t)z, is a homotopy between the identity
map and a constant map.)
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Theorem 3.1.14 A space is contractible if and only if it has the same homotopy
type as a one-point space.

Proof. Assume that X is contractible and let F' be a homotopy between the identity
map and a constant map ¢: X — X, © — zy. Let P be the one-point space {z,} and
let f: X — P and j: P C X. Then foj =1idp and F:idy ~ jo f. Thus f is a
homotopy equivalence from X to P.

Conversely, if X has the same homotopy type as a one-point space P, let f: X — P
be a homotopy equivalence with homotopy inverse g: P — X. Then idx ~ go f.
Because g o f is a constant map, X is contractible. &

Corollary 3.1.15 Any two contractible spaces have the same homotopy type, and
any continuous map between contractible spaces is a homotopy equivalence.

Proof. Let X and Y be two contractible spaces. Let P be a one-point space. Then
X ~P~Y and so X ~ Y. The second part follows from Proposition 3.1.12. &

Theorem 3.1.16 Let py be any point of S™ and let f:S™ — Y. The following are
equivalent:

(a) f is null homotopic;
(b) f can be continuously extended over D™;
(c¢) f is null homotopic relative to py.

Proof. (a) = (b). Let F: f ~ ¢, where ¢ is the constant map of S™ to yo € Y. Define

an extension f of f over E"*! by

. o 0< Jlaf) <1/2
flo)= { Pl/lal,2=2al) 122 o] <1.

Since F(x,1) =y for all x € S™, the map f is well-defined. f is continuous because
its restriction to each of the closed sets {z € E""'|0 < [|z]| < 1/2} and {z €
E"T1/2 < ||z|| < 1} is continuous. Since F(x,0) = f(z) for z € S”, f|s» = f and
f is a continuous extension of f to D" .

(b) = (c). If f has the continuous extension f: E"™' — Y define F:S" x [ —Y
by

Fa,t) = f((1 =)z +tpo).

Then F(x,0) = f(z) = f(z) and F(z,1) = f(po) for € S™. Since F(po,t) = f(po)
for t € I, F is a homotopy relative to {pp} from f to a constant map.

(¢) = (a). This is obvious. #
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Exercise 3.1.5 Show that any continuous map from 5™ to a contractible space has
a continuous extension over E"*!.

Exercise 3.1.6 The comb space Y is defined by
Y={(z,y) eRJ0<y<1,2=0,1/nory=00<z <1}

Show that the identity map of Y is homotopic to the constant map to (0,1) € Y.
(Hint: By Proposition 3.1.12, it suffices to show that Y is contractible. Let F: Y xI —
Y be defined by F((z,y),t) = (z,(1 —t)y). Then F is a homotopy from idy to the
projection of Y to the z-axis. Since the latter map is homotopic to a constant map,
Y is contractible.)

3.2 Retraction and Deformation

This section is concerned mainly with inclusion maps. We consider whether such a
map has a left inverse, a right inverse and a two-sided inverse in either the category
of spaces or the homotopy category.

A subspace A of X is called a retract of X if the inclusion i: A — X has a left
inverse, that is, there is a map ' X — A such that r o7 = id4. A subspace A is
called a weak retract of X if i: A C X has a left homotopy inverse, that is there is a
map 7: X — A such that r o7 =~ id .

Example 3.2.1 Let A be the comb space of exercise 3.1.6 and let X = I?. Then A is
a weak retract of X because both A and X are contractible and so the inclusion i: A C
X is a homotopy equivalence (in particular i has a left inverse. We show that A is not
a retract of X. Suppose that there were a retraction r: X — A. Let xy = (0,1) € A.
Then r(xg) = zo. Let U = {y|l|ly — xo|| < 1/2} N A = B1/2(x9) N A be the open
neighborhood of zg. There is an open neighborhood V' of g in I? such that 7(V) C U.
Let € be a small positive number such that B.(xg) N I* C V. Since B(zg) N I? is
path-connected, the image r(B.(xg) N I?) C U is path connected in U. Let m # n
be positive integers such that 1/m,1/n < e. Then (1/m,1),(1/n,1) € r(B.(zo) N I?)
because 1 is a retraction and so there is a path X in r(B.(x¢) N I?) C U joining
them. This contracts to that (1/m,1) and (1/n,1) lie in different path-connected
components of U.

Exercise 3.2.1 Show that a subspace i:A C X is a weak retract if and only if
i*: X, Alp — [A, A]p is onto.
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Despite the fact that, in general, a weak retract need not be a retract, these
concepts do coincide when A is a suitable subspace of X. This occurs frequently
enough to warrant special consideration and will prove of use later. Let (X, A) be
a pair of spaces (that is A is a subspace of X) and Y be a space. (X, A) is said to
have the homotopy extension property with respect to Y if, given maps g: X — Y and
G:A x I — Y such that g(a) = G(a,0) for z € A, there isamap F: X x [ - Y
such that F(z,0) = g(z) for x € X and F|ax; = G. In other words, the following
commutative diagram holds

guG

XXx0UAxIT Y

for any g: X — Y and G: A x [ — Y such that g|4 = Gaxo.

Proposition 3.2.2 Suppose that (X, A) has the homotopy extension property with
respect to Y and fo, fi1: A — Y are homotopic. If fo has an extension to X, then so

18 f].

Proof. Let G:A x I — Y be the homotopy from fy to f; and let g: X — Y be
the extension of fy. By the definition, there is a map F: X x I — Y such that
F|xxouaxr = gUG. Then F;: X — Y is an extension of f;. #

Of particular importance is the case when (X, A) has the homotopy extension
property with respect to any space. More generally, a map f: X' — X is called a
cofibration if for any space Y and any given maps ¢: X — Y and G: X’ x I — Y such
that

G(a',0) = g(f(2"))

for any ' € X', there exists a map F: X x I — Y such that F(z,0) = g(z) and
F(f(a),t) = G(a/,t) for any v € X, 2/ € X" and t € I. The existence of F' is
equivalent to the existence of a map represented by the dotted arrow which makes
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the following diagram commutative:
id
o r 2 v x o
G

\{
Y Y Y.

Thus an inclusion i: A C X is a cofibration if and only if (X, A) has the homotopy
extension property with respect to any space Y.

Proposition 3.2.3 An inclusioni: A C X is a cofibration if and only if X xOUA X [
1s a retract of X X 1.

Proof. Suppose that i: A C X is a cofibration. Then the identity map of X x OUA x [
can be extended to X x [ and so X x 0U A x [ is a retract of X x I. Conversely, let

rXxI —-Xx0UAxI

be a retraction. Let Y be any space and let ¢: X — Y and G: A x I — Y be maps
such that G|axo = g|a. Then the composite

guUG

XxI—+Xx0UAxI =Y
is an extension of g U G. #

Exercise 3.2.2 Let A C B C X be subspaces. Suppose that A C B and B C X are
co-fibrations. Show that A C X is a cofibration.

Exercise 3.2.3 Show that S™ C D"*! is a cofibration.

Theorem 3.2.4 [f (X, A) has the homotopy extension property with respect to A,
then A is a weak retract of X if and only if A is a retract of X.

Proof. We show that any weak retraction r: X — A is, in fact, homotopic to a
retraction. Let G: AxI — A be the homotopy from roi to id 4. Because (X, A) has the
homotopy extension property with respect to A, there is an extension F: X x [ — A
such that F(z,0) = r(z) and F(a,t) = G(a,t). Then Fi: X — A is a retraction. #
Given X' C X, a deformation D of X' in X is a homotopy D: X’ x I — X such
that D(2’,0) = a’ for 2/ € X'. If, moreover, D(X’ x 1) is contained in a subspace A
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of X, D is said to be adeformation of X' into A and X’ is said to be deformable in
X into A. A space X is said to be deformable into a subspace A if it is deformable
in itself into A. Thus a space X is contractible if and only if it is deformable into
one of its points.

Exercise 3.2.4 Show that a space X is deformable into a subspace A if and only if
the inclusion i: A C X has a right homotopy inverse.

Note that an inclusion i: A C X never has a right inverse in the category of
topological spaces except the trivial case A = X.

A subspace A C X is called a weak deformation retract of X if the inclusion
1: A C X is a homotopy equivalence.

Exercise 3.2.5 Show that A is a weak deformation retract of X if and only if A is
a weak retract of X and X is deformable into A.

A is called a deformation retract if there is a retraction r of X to A such that
roi~idy. A is called a strong deformation retract of X if there is a retraction r of
X to A such that r o7 ~ idx rel A.

Exercise 3.2.6 Suppose that X is deformable into a retract A. Show that A is a
deformation retraction of X.

Theorem 3.2.5 If (X, A) has the homotopy extension property with respect to A,
then A is a weak deformation retract of X if and only if A is a deformation retract

of X.

Proof. Since (X, A) has the extension property with respect to A and A is a weak
retract of X, A is a retract of X. Let r: X — A be a retraction. Since : A C X is a
homotopy equivalence, ¢ has a right homotopy inverse and so r is a right homotopy
inverse of 7. Thus A is a deformation retract of X.

Theorem 3.2.6 If (X xI,(X x0)U(AXxI)U(X x 1)) has the homotopy extension
property with respect to X and A is closed in X, then A is a deformation retract of
X if and only if A is a strong deformation retract of X.

Proof. < is obvious by definition. = . Let r: X — A be a retract and let F: X x [ —
X be a homotopy from idy to r o4, where i: A C X. A homotopy

G (X Xx0O)UAXxHUX x1)xI—-X
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is defined by the equations

G((x,0),t") == reX,tel
G((a,t),t') = F(a, (1 —t")t) a€ Attt el
G((x,1),t") = F(r(z),1 =t re Xt el

G is well-defined, because for a € A
G((a,0)t') = a = F(a,0)
by the first two equations and
G((a,1),t") = F(a,1 —t') = F(r(a),1 =t

by the last two equations. G is continuous because its restriction to each of the closed
sets X xox I, Ax I x I and X x 1 x [ is continuous. Furthermore

G|((X><0)U(A><I)U(X><1))><0 = F(XxO)U(AxI)U(Xxl)

[because F'(x,0) = x and since r is a retraction, F(r(x),1) = ir(r(z)) = F(z,1).]
Thus G restrict to (X x0)U (A xI)U (X x 1)) x 0 can be extended to (X x I) x 0.
From the homotopy extension property in the hypothesis, G restrict to ((X x 0) U
(AxI)U(X x 1)) x 1 can be extended to (X x I) x 1. Let G (X xI) x1 — X
be such an extension, and define H: X x I — X by H(z,t) = G'((x,t),1). Then we
have

H(z,0) = G'((x,0),1) = G((x,0),1) = reX
H(z,1) = G((z,1),1) = F(r(x),0) = () reX
H(za,t) = G((a,t),1) = F(a,0) = acAtel

and so H is a homotopy relative to A from idyx to i or, or A is a strong deformation
retract of X. #

3.3 H-spaces and Co-H-spaces

In this section, a space X means a pointed space. The notation [X, Y] means the set
of pointed homotopy classes of pointed maps from X to Y.
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3.3.1 H-spaces

An H-space consists of a pointed space P together with a continuous multiplication
p: P x P — P for which the (unique) constant map c¢: P — P is a homotopy identity,
that is, the following diagram

(Ca 1dP) (idpa C)

P PxP P

P P P

commutes up to homotopy.

Exercise 3.3.1 Let P be a pointed space and let u: P x P — P be a map. Then u
has a homotopy identity if and only if there is a homotopy commutative diagram

PxP P

\Y
PV P

P,

where V is the fold map defined by V(z,z¢) = = and V(z,y) = v.

An H-space P is called homotopy associative if the diagram

id
PxpPxpPPX pop
idp xp Y
PxP a P
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commutes up to homotopy. An H-space P is called homotopy commutative if the
diagram

T
PxP—+-PxP
[t [t
P: P

commutes up to homotopy, where T(z,y) = (y,z). A map v: P — P is called a
homotopy inverse if the diagram

pxp-t ,pF pyp
(I/, ldp) (idp, I/)
p—° .p_ % p

commutes up to homotopy.

An H-space P is called an H-group if i is homotopy associative with a homotopy
inverse.
Note: We have been to call a space X is an H-space if there is a multiplication
w: X x X — X such that p has a strict identity. In general, a multiplication p: X x
X — X that has a homotopy identity may not have a strict identity. But under
certain conditions, homotopy identity = strict identity.

Proposition 3.3.1 Let X be a pointed space with a base point xy. Let pu: X x X — X
be a multiplication with a homotopy identity, that is, X is an H-space. Suppose that
XV X C X xX isa cofibration. Then there is a multiplication u': X x X — X such
that p' has a strict identity.

Proof. Let V: X V X — X be the fold map. Since u|xyx: X V X — X is homotopic
to Vand X VX —— X x X has homotopy extension property with respect to X,
V has an extension p: X x X — X. #

Note: It is known that if {zo} — X is a cofibration, then X VX — X x X is a
cofibration. A base-point z, of X is called non-degenerate if the inclusion {zy} — X
is a cofibration.

Note: In homotopy theory, there are (were) many questions about H-spaces. We
list few of them:
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1) Suppose that P is a homotopy associative H-space. Do there exist a space @
and a multiplication p' on ) such that @ is a topological monoid under p' and
@ ~ P? Suppose that P is path-connected. The answer of this question is:
Yes if and only if P is homotopy equivalent to a loop space QX for some X.
James Stasheff studied this question in 1960’s and produced a method to test
whether a space is homotopy equivalent to a loop space. His methods has been
applied to Quantum Groups in 1980’s.

2) Since one knows that S', S® and S” are H-spaces, people asked for which n
S™ is an H-space? The answer was given by Adams in 1950’s that S™ is an
H-space if and only if n =1, 3,7.

3) We will show that the double loop spaces are homotopy associative and ho-
motopy commutative H-spaces. One has been to ask whether a double loop
space is homotopy equivalent to a (strict) commutative topological group. The
answer, was given by Milnor in 1950’s, is that if a path connected space X is
homotopy equivalent to a commutative topological space if and only if X is a
product of the spaces Y with the property that Y has at most one possible
nontrivial commutative homotopy group, that is there is an integer n such that
mi(Y) =0 for i # n and 7, (Y) is commutative.

Let P and @ be H-spaces. A (pointed) map f: P — @ is called an H-map if the

diagram

pxp-tt__.p
fxf f
QxQLL . Q

commutes up to homotopy. If this diagram commutes strictly, we call f is a homo-
morphism. Clearly a homomorphism is an H-map. On the other hand, an H-map
may not be a homomorphism in general.

Problem 3.3.2 Let X and Y be H-spaces and let f: X — Y be an H-map. Under
what conditions on X, Y and f such that there exists a homomorphism g: X — Y
with g ~ f?
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This problem has not been studied much and is related to a problem, so-called Freyd
conjecture, in homotopy theory.
Now we give some basic properties of H-spaces.

Proposition 3.3.3 Let P be an H-space. Let QQ be a space and let f:(QQ — P be
a pointed map. Suppose that f has a left pointed homotopy inverse. Then Q) is an
H-space.

Proof. Let () — P be a left pointed homotopy inverse of f, that is r o f ~ idg.
Define a multiplication pg: @ X @ — @ by the composite

OxQLL pxpte.p .0

Since there is a homotopy commutative diagram

I xf p

RQXQ—PxP P
ovolpyp Y . p
rvr T

\Y%
RQVQ——=QVQ Q,

teo has a homotopy identity and so @ is an H-space. #

Theorem 3.3.4 If P is a homotopy associative H-space (H-group), then [X, P] is a
monoid (group) for any X. Furthermore if P is homotopy commutative, then [X, P
15 commutative.

Proof. The multiplication u: P x P — P induces a function
N*[X7P] X [X7P] = [X7P X P] - [X,P]

for any X. This makes [X, P| to be an H-set. Since p is homotopy associative, .,
is associative and so [X, P] is a monoid. Furthermore if ;1 has a homotopy inverse,
then . has in inverse and so [X, P] is a group. #
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Lemma 3.3.5 Let fo, fi: A — X and go,g1: Y — B be pointed maps. Suppose that
fo =~ fi and gy ~ g1 under pointed homotopies. Assume that A is Hausdorff. Then
g’ ~ g+ Map,(X,Y) — Map, (A, B).

Proof. First we show that
ideO ~ idélz yX¥ - y4

Let F: A x I — X be a homotopy from fy to fi;. Then F' induces a map
idf «
¢:Map(X,Y) v, Map(A x I,Y) = Map(I x A,Y) — Map(/,Map(A,Y)),

where the association « is continuous because [ is Hausdorff. Since [ is locally
compact Hausdorff, the association map

a: Map(Map(X,Y) x I,Map(A,Y)) — Map(Map(X,Y'), Map(I, Map(A4,Y)))
is onto-to-onto and onto. Thus o !(¢) defines a map
F'=a7'(¢):Map(X,Y) x I — Map(A4,Y).
The map F’ is given as follows:
F'(\t)(a) = Xo F(a,t)

for X — Y and t € I. Clearly, F’ maps Map,(X,Y) x I into Map,(A,Y) with
Fy=idl®, F/ =id]' and F'(x,t) = *. Thus idf® ~ id/".

Now we show that gé)d“ o~ gild“‘:YA — BA. Let G: gy ~ ¢; be a pointed homotopy.
Consider the map

G94: Map(A,Y) x Map(A, I) = Map(A,Y x I) — Map(A, B).
Let ag be the base-point of A. The constant map A — {ay} induces a map
0:1 = Map({ap}, ) — Map(A,I).

Note that 0(t) is just the constant map from A to ¢ € I for each t. Let G’ be the
composite

G Map(A,Y) x T L% Map(4,Y) x Map(A, I) £ Map(4, B).

Then
G'(\ t)(a) = G(a,t).
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Clearly G’ maps Map, (A,Y)x I into Map, (A4, B), G, = gé)d“‘, G| = gildA and G'(x,t) =
ida ~ ida

*. Thus g, * ~ g; * and so

%" = g5 0ldy =~ g oidy! = gf'

and therefore we have the result. #

Theorem 3.3.6 Let P be an H-space (H-group) and let X be a pointed Hausdorff
space. Then Map, (X, P) is an H-space (H-group). In particular, Q" P is an H-space
for each n > 0.

Proof. The multiplication on Map, (X, P) is defined by
p=pp¥: PY x PX = (P x P)* — P,

The assertion follows from Lemma 3.3.5

3.3.2 co-H-space

A pointed space X is called a co-H -space if there is a comultiplication p': X — XV X
such that p' has a homotopy co-identity, that is there is a homotopy commutative
diagram

(idx, C) (C, ldx>

X XVvX X

/

1

X X X,

where c is the constant map. p’ is called homotopy coassociative if there is a homotopy
commutative diagram

X a XVX
74 'V idy
idy Vi
XvX X xvxvX
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A homotopy inverse is a map v: X — X such that the diagram

4 x 4

XVvX XVvX

(id, v) (v,id)

XYoo~ x_° . x

i is called homotopy cocommutative if there is a homotopy commutative diagram

X:X

/! /!

[t [t

T
XVX —~XVX,

where T'(z,y) = (y,x). An co-H-space X is called an co-H-group if p is homotopy
coassociative with a homotopy inverse.

Let X and Y be co-H-spaces. A map f: X — Y is called a co-H-map if there is
a homotopy commutative diagram

!
x X xvyx
f IV f

y — M yvy

Theorem 3.3.7 Let X be a pointed Hausdorff space. Suppose that X is a co-H-
space (co-H-group) with a comultiplication p': X — X V X. Then Map, (X,Y) is an
H-space (H-group) for any Y. In particular, [X,Y] = mo(Map,(X,Y)) is a monoid
(group).

Proof. The multiplication on Y is defined by the composite
p=id YY) Y X 2y XYy X

The assertion follows from Lemma 3.3.5.



76 CHAPTER 3. HOMOTOPY AND THE FUNDAMENTAL GROUPS
Exercise 3.3.2 Let S' be identified with 7/0I = [0,1]/{0,1}. Show that S' is a
co-H-group under the comultiplication p' defined by

, (2t, ) 0<t<1/2
“(t):{ (%2t —1) 1/2<t<1.

and a homotopy inverse v defined by v(t) =1 —t.
By this exercise, we have the following important theorem.
Theorem 3.3.8 Any loop space QX is an H-group. In particular,
T (X) = m(Q"X) = mo(QQ" (X))
s a group for n > 1.

By the definition, the multiplication on €2X is induced by the comultiplication
'S — StV St In other words, p: QX x QX — QX is given by

non A(2t) 0<t<1/2
M(/\y)\)()—{ N(2t —1) 1/2<t<1.

Lemma 3.3.9 Let fy, f1: X — A and go,91: Y — B be pointed maps. Suppose that
fo =~ fi and gy >~ g1 under pointed homotopies. Then

foNgo~= fing: XANY — ANB.

Proof. Let F: X x I — A be a pointed homotopy from fy to f;. Then we have the

map
Fxidy

FrXXYxIZ(Xx)xY "% AxY 2+ ANY,

where p is the quotient map. Clearly F” factors through (X AY) x I. Since [ is
locally compact Hausdorff, the map p x idp: X xY x I — (X AY) x [ is a quotient
map and so F” induces a (pointed) homotopy

F'"(XANY)xI—ANY

with F] = fo Aidy and F/" = f; Aidy. Thus fy Aidy ~ fi; Aidy. Similarly,
ida Ago ~ ids Agy. Thus

fo N gy = <1dA /\go) o (fO A 1dy) ~ <1dA /\g]) o (f] A 1dy) = f] N g1

and hence the result. &
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Theorem 3.3.10 Let X and Y be pointed spaces. Suppose that X is a co-H-space
(co-H-group). Then so is X NY.

Proof. The comultiplication p’ is defined by

MIX Aidy

X ANY (XVX)ANY Z(XAY)V(XAY).

By Lemma 3.3.9, X AY is a co-H-space (co-H-group if X is). &
Let X be a pointed space. The n-fold suspension of X is defined by

Y'X =85"NX.

Note that
X = (S'ASTA - ASHAX =STASTIX

if n > 1 by Theorem 2.8.11. Thus we have

Theorem 3.3.11 Let X be a pointed space. Then "X is a co-H-group for each
n > 1.

Now we want to show that m,(X) is abelian for n > 2.
Lemma 3.3.12 Let S be an H-set. Suppose that there is a function
p:S xS — 8
such that
1) ¢(x,1) =x = ¢(1,z) for any x € S and

2) 925(55137279192) = ¢(I],y1)(b<$2,y2) fOT any T1,T2,Y1,Y2 € S.

Then S is a commutative monoid and ¢(x,y) = xy for any x,y € S.
Proof. Let z %y denote ¢(x,y). Since
zy = (xx1)(1xy) = (21) x (ly) =z xy,

we have xy = ¢(z,y) for any x,y. Since

zy=z*y=(lz)*(yl) = (L*y)(zx1) = yz,
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S 1s commutative. Since

r(yz) = x(y*2) = (vx1)(y x 2) = (vy) * (12) = (2vy)z

S is associative. Thus S is a commutative monoid. &

Suppose that X is a co-H-space and Y is an H-space. Then there are two multi-
plications on [X, Y], one is induced by the comultiplication X — X V X and another
is induced by the multiplication ¥ x Y — Y.

Theorem 3.3.13 Let X be a co-H-space and let Y be an H-space. Then the two
multiplication on [X,Y] induced by p'y and py agree and are both associative and
commutative.

Corollary 3.3.14 Suppose that'Y is an H-space. Let X be any pointed space. Then
[XX,Y] is an abelian group. In particular,

1) m(Y) is abelian;
2) mo(Z) =[S, Q"' Z] is an abelian group for any pointed space Z .

Note. One of differential geometers through the internet has been to asked whether
St v St is homotopy equivalent to a topological group. We will see that m (S*V S*)
is a free group of rank 2, that is, two generators. In particular, m;(S' Vv S') is not
abelian and so S' v S is not an H-space or S' vV S! is not homotopy equivalent to a
topological group.

Exercise 3.3.3 Let py and po be two multiplications on Y such that Y is an H-space
under pq and psy. Show that

Qui >~ Qua: QY xY) — QY.

Proof of Theorem 8.5.153. The multiplication on [X,Y] induced by p/y is given as
follows: For [f], [g] € [X,Y], [f][g] is the homotopy class represented by the composite

X “oxvxMyvy Loy,

where V is the fold map. The multiplication [X, Y] induced by puy is given as follows:
For [f],[g] € [X,Y], [f] * [g] is the homotopy class represented by the composite

XS xxxyxy“y
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By Lemma 3.3.12, it suffices to show that

(A1) * (gllgD) = (L) + gD (LT * ')

for any f, f’,g,¢". This follows from the following homotopy commutative diagram

X X X
I W A
XVX XVXe— X x X
AV A w N o wox !
(XXXMMXxX%ngXVXVXL%XVquXVX)
(fxgVv(f'vyg) |fVfVgVy (fVI)x(gVy)
(YxYMMYnyjleYvaYaavaquYvY)
wV VvV V xV
YVY YVY < Y xY
\Y \Y Ju
Y Y Y,

where
G0:ZNZNINZ — (ZXZ)N(Z X Z)

is the composite

idz VT'Vidz
- 5

ZNZNIZNZ INZNIZINZ — (ZXxZ)N(ZxZ)

with T'(z,y) = (y,z). #
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3.3.3 The James Construction

Let X be a pointed (Hausdorff) space with the base-point . The James Construction
Jn(X) is defined by
Jo(X)=X"/ ~,

where ~ is the equivalence relation generated by
(1:17 EPR( T  PRONM RS PR 71:”) ~ (xla HRER o . *, Tjp1, 71:”)
for any 1 <14,5 <n and any z; € X. The elements in J,(X) is written as a word
W =TT """ Tp,
where we just keep in mind that, for example,
*T1To = T1 * Tg = T1To*

in Jg (X)
Let q,: X™ — J,(X) be the quotient map. The inclusion X"~ —— X" (21, 2,_1) —
(x1,+++,Tp_1,%), induces a map i,: J,_1(X) = J,,(X) such that the diagram

anl c Xn

Gn—1 Qn

T X e (X))

commutes. We show that i, is a closed map. Let C be a closed set in J,,_1(X). Then
¢, (C) is a closed set in X! and so

Ei:{(’rh'"7'171'—17*7:61'—}-17'”7:671) EXn|(331,"',$i1,$i+1,"',$n) eqn_L(C)}

is a closed set in X™ because E' is the intersection of X'~ ' xxx X" and 7; ' (¢, ', (C)),
where

(X1, Xn) = (T1, -+, Tim1, Tigr, -+, L)

is the coordinate projection. Since
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¢, (C) is a closed set in X™ and so 4,(C) is a closed set in J,,(X). Thus 4, maps
Jn—1(X) homeomorphically onto the closed subspace 4, (J,—1(X)) in J,(X) and so
we may identify J,,_;(X) as a closed subspace of J,(X). This gives a tower of closed
spaces

Define

with so-called weak topology, that is, C'is a closed set in J(X) if and only if CN.J,,(X)
is closed in J,(X) for each n. This makes J(X) to be a topological spaces and each
Jn(X) is a closed subspace of J(X).

An exact definition of weak topology is as follows. Let X be a space and let
{A,} be a family of closed set in whose union is X. We say X has the weak topology
with respect to {A,} if it satisfies the following condition: a subset C' of X, whose
intersection with each of A, is closed, is itself closed. Let X be a set, and let {A,}
be a family of topological spaces, each a subset of X. We shall say that {A,} is a
coherent family (of topological spaces) on X if

1) X=U, A4
2) A, N Ag is a closed set of A, for each «, 3;
3) for every a, 3, the topologies induced on A, N Ag by A, and Az coincide.

Let A, be a coherent family on X. Define a subset C' of X to be closed if C' N A, is
closed for each . Then

1) X is a topological space (that is the completements of the closes sets form a
topology on X);

2) Each A, is a closed subspace of X;

3) X has the weak topology with respect to {A,}.

Lemma 3.3.15 Suppose X has the weak topology with respect to {A,}. Let U be a
subset in X. Then U is open if and only if U N A, is open for each a.
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Proof. If U is open, clearly U N A, is open because A, is a subspace. Conversely,
assume that U N A, is open for each a. Then

(X\U)N Ay = A\ (UNAL)

is closed in A, for each a and so X \ U is closed or U is open. é#

Lemma 3.3.16 Suppose X has the weak topology with respect to {A,|ac € I} and 'Y
has the weak topology with respect to {Bg|3 € J}. Then X XY has the weak topology
with respect to

{Ao x Bsla€1,8€ J}.

Proof. Let C be a subset in X x Y such that C' N (A, x Bp) is closed for any «, .
Let U =X x Y \ C. We show that U is open. Since

UﬂAaXBg:AaXBﬁ\(OmAaXBﬁ>a

UNA, x Bgis open for any a and 3. Let ¢px: X XY — X and my: X XY — Y be
the coordinate projections. Given any « € I, then

Wx(U)mAa: U?T)((UﬂAa X Bﬁ)
BedJ

Since UNA, x Bg is open in A, x Bg and 7rX|AaxBB is the first coordinate projection,
mx(U N A, X Bg)
is open in A, for each (5 and so the union
mx(U)N A,
is open in A, for any given «. It follows that 7x(U) is open in X because X has the

weak topology. Similarly, my (U) is open in Y. Thus U is open in X x Y and hence
the result. &.

Theorem 3.3.17 Let X be a pointed locally compact Hausdorff space. Then J(X)
s a topological monoid.
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Proof. The composite
X" x Xm = Xt I g (X))

factors through J,(X) x J,,(X), that is there is a map fi,m: Jo(X) X Jo(X) —
Jn+m(X) such that the diagram

X" x X" == X"

Qn X Qm An+m

Ta(X) X T (X) 22 (X0,

where ¢, X ¢, is a quotient map because X is locally compact Hausdorff. By writing
down the elements, we have

Honm (T1T2 Ty Y1Y2* Yom) = T1T2** Tp1Y2 Yo
and So f, , induces a unique function p: J(X) x J(X) — J(X) such that the diagram

T(X) X T (X) 22 g (X)

J(X) x J(X) —2

J(X)

commutes for any n,m. We show that p is continuous. Let C' be any closed set in
J(X). For any n,m, C'N J,m(X) is closed and so

pH(C) N (Ja(X) % Im (X)) = ﬂ;,in(c N Jpm(X))

is closed. By Lemma 3.3.16, J(X) x J(X) has the weak topology with respect to
{Jn(X) x J(X)}. Thus C is closed and hence p is continuous. Clearly p has the
identity * = 1 and is associative. Thus J(X) is a topological monoid. é#

We write X (™ for the n-fold self smash of X.

Theorem 3.3.18 There is an homeomorphism
Jn(X)/ T 1 (X) =2 XM

for each n.
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Proof. Let ¢,: X™ — J,(X) and p,: X" — X be the quotient maps. Then p,
factors .J,,(X), that is, there is a function p’ : J,(X) — X™ such that p, = p/, 0q,. It
follows that p! is quotient map. Since p/ (J,,_1(X)) = *, p/, induces a quotient map

P Jn(X) ) Tt (X) — X0,

The map p! is a homeomorphism because it is one-to-one, onto and a quotient map. #
One of applications of the James construction to H-spaces is as follows.

Theorem 3.3.19 Let X be a pointed space. Then X is an H-space with a strict
identity if and only if X is a (pointed) retract of a topological monoid.

Proof. Suppose that X is a retract of a topological monoid M. Let j: X — M be
the inclusion with j(x) = 1 and let r: M — X be a retraction with (1) = *. Define
a multiplication on X by

Xx XN s s X,

Then xx = zx = x for x € X. Conversely, suppose that there is a multiplication
p: X x X — X with a strict identity. We write z - y for p(z,y). Define a map

b X" — X

by

On(@1, L2, wn) = (- (@1 - 22) - 23) -+ ) - ).
Since % = 1 is a strict identity for p, the map ¢,, factors through the quotient .J,,(X),
that is there is a map ¢/,: J,(X) — X such that the diagram

xn P
Gn
\ /
Jn(X) o x

commutes. Clearly
Pl 1ucr(x) = G 13 Ina (X) = X
and so ¢/, induces a unique function ¢": J(X) — X such that

b, = &' 1 (x)-



3.4. THE FUNDAMENTAL GROUP 85

We show that ¢’ is continuous. Let C' be a closed set in X. Then
¢ O N J(X) = ¢, (C)

is a closed set in J,(X) for each n. Thus ¢'(C) is closed because J(X) has the weak
topology with respect to {J,(X)}. Since

Ve =0 N(X) =X = X

is the identity map, the map ¢’ is a retraction and hence the result because J(X) is
a topological monoid. é#

Note. If * is non-degenerate, that is * — X is a cofibration, then X is an H-space
with a homotopy identity if and only if X is an H-space with a strict identity. (See
Proposition 3.3.1) Thus suppose that x is non-degenerate, then X is an H-space if
and only if X is a retract of a topological monoid.

Note. It is known that J(X) ~ QXX if X is a path-connected CW-complex. (For
this reason, J(X) is known as a ‘combinatorial model’ for loop suspensions. For
instance, J(S') ~ €5%) Thus suppose that X is a path-connected CW-complex
with a non-degenerate base-point, then X is an H-space is and only if X is a retract
of a loop space.

3.4 The fundamental Group

3.4.1 The fundamental Groupoid

Let A and p be two paths in X with A(1) = (0). Then the product A * p is defined
by
(A2 0<t<1/2
M*’“‘)(t)—{ p(2t — 1) 1/2<t<1.
Two paths A and )\ are briefly said to be homotopic, denoted by A\ ~ X, if they

are homotopic relative to I = {0,1}. Note that if A\ ~ X, then A(0) = X (0) and
A1) = N(1).

Lemma 3.4.1 Let Ao, A1, o, p1 are paths in X with \o(1) = uo(0) and A (1) = p1(0).
If Ao =~ A\ and pg =~ py, then Ao * pg =~ Ay * .

Proof. Let F:lambday >~ A\ and G: pg =~ p1 be the homotopies relative to dI. Then
H:I x I — X defined by

B F(2t, s) 0<t<1/2
H(t’s>_{G(2t—1,s) 12<t<1
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We show that ¢’ is continuous. Let C' be a closed set in X. Then
¢ O N J(X) = ¢, (C)

is a closed set in J,(X) for each n. Thus ¢'(C) is closed because J(X) has the weak
topology with respect to {J,(X)}. Since

Ve =0 N(X) =X = X

is the identity map, the map ¢’ is a retraction and hence the result because J(X) is
a topological monoid. é#

Note. If * is non-degenerate, that is * — X is a cofibration, then X is an H-space
with a homotopy identity if and only if X is an H-space with a strict identity. (See
Proposition 3.3.1) Thus suppose that x is non-degenerate, then X is an H-space if
and only if X is a retract of a topological monoid.

Note. It is known that J(X) ~ QXX if X is a path-connected CW-complex. (For
this reason, J(X) is known as a ‘combinatorial model’ for loop suspensions. For
instance, J(S') ~ 52) Thus suppose that X is a path-connected CW-complex
with a non-degenerate base-point, then X is an H-space is and only if X is a retract
of a loop space.

3.4 The fundamental Group

3.4.1 The fundamental Groupoid

Let A and p be two paths in X with A(1) = (0). Then the product A * p is defined
by
(A2 0<t<1/2
M*’“‘)(t)—{ p(2t — 1) 1/2<t<1.
Two paths A and )\ are briefly said to be homotopic, denoted by A\ ~ X, if they

are homotopic relative to I = {0,1}. Note that if A\ ~ X, then A(0) = X (0) and
A1) = N(1).

Lemma 3.4.1 Let Ao, A1, o, p1 are paths in X with \o(1) = uo(0) and A (1) = p1(0).
If Ao =~ A\ and pg =~ py, then Ao * pg =~ Ay * .

Proof. Let F:lambday >~ A\ and G: pg =~ p1 be the homotopies relative to dI. Then
H:I x I — X defined by

B F(2t, s) 0<t<1/2
H(t’s>_{G(2t—1,s) 12<t<1
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is a homotopy relative to O between A\ * pg and Ay * 1. #

Lemma 3.4.2 Suppose that \g, A1, Ay are paths in X with A\o(1) = A\ (0) and \(1) =
)\2(0) Then ()\0 * )\1) * )\2 ~ )\0 * ()\1 * )\2)

Proof. The map F:I x I — X defined by

Ao((48) /(1 + 5)) 0<t<(s+1)/4,
F(t,s) = A4t —s—1) (s+1)/4<t<(s+2)/4,
Ao((4t —s—2)/(2—s)) (s+2)/4<t<1,;

is a homotopy relative to I between (A * A1) * Ay and Ao * (A; * Ag).
For each z € X, we define €,: I — X as the constant path with €,(t) = = for any
t.

Lemma 3.4.3 Let X be in path in X with \(0) = x and A\(1) =y. Then e, * A >~ A
and X\ * €, >~ \.

Proof. The map F:I x I — X defined by

- . 0<t<(1-s)/t,
F(t,s)—{ M2t —1+5)/(1+45)) (1-s)/2<t<1;

is a homotopy relative to 01 between €, * A and A\. The map G:I x I — X defined
by

is a homotopy relative to I between A * ¢, and \. #
Given a path A in X, the inverse A~ is defined by A7'(¢) = A\(1 — ).

Lemma 3.4.4 Let \ be a path in X with \(0) =z and X\(1) =y. Then Ax \~' ~ ¢,
and X7 X >~ €.

Proof. The map F:I x I — X defined by

A(2t(1 — s)) 0<t<1/2,
F(t,8>:{ A2 =2t)(1—s)) 1/2<t<1;

is a homotopy relative to OI between A x A~! and €,. Similarly A" x A ~¢,. #
A category is called small if the class of objects is a set. A groupoid is a small
category in which every morphism is an equivalence. Let X be a space. Let category

P(X) is defined by:
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the objects in P(X) are points in X and morphisms from x to y are path classes
from x to y. The composite operation is defined by [u] o [\] = [A* u] for a path
A from z to y and a path p from y to z.

By the lemmas above, we have

Theorem 3.4.5 Let X be a space. Then P(X) is a groupoid.

3.4.2 Change of Base

Let X be a space with x € X. Consider z is the basepoint of X. Then m (X, z) =
m (X) is called the fundamental group of X with base point x. Recall that m (X, x)
is a group, where the multiplication is given by the path multiplication. Note that
the fundamental group depends on the choice of the base point x.

Theorem 3.4.6 Let x,y € X. If there is a path in X from x to y, then the groups
m (X, x) and m (X, y) are isomorphic.

Proof. Let A be a path from z to y, that is A(0) = z and A(1) = y . Define a function
XA T (X7 LU) — T (X7 y)

by
xa(lu]) = s o AL

This is a homomorphism of groups because
([ W]) = T s Al = AT e A AT 5 A

= AT R A AT e Al = (D) xa ()

A~! is path from y to x and so
xam(X,y) = m(X, ).
For 1 € m (X, x), we have
Xamt o xa([u]) == A+ A7k A A7 =[]

and so y,-1 o xa = id. Similarly x, o xa-t = id. Thus y, is an isomorphism of
groups. #
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Let f: X — Y be a map. Then f induces a homomorphism of groups
f*iﬂ'](X,LU) = [SlaX] — T (K f(a:))[S”,Y]

If f ~ g relx, then
fe = gem(X, $) — m(Y,y),

where y = f(x) = g(z). If X ~ Y relative the base-point, then m (X) = m (V).

Exercise 3.4.1 Prove that if there is a path in X from xzy to z, then m, (X, x¢) and
(X, z1) are isomorphic.

3.4.3 The fundamental Group of a Circle
The map e:R — S is defined by

e(t) = exp”™™.

Then e is continuous, e(t; + ty) = e(t) e(ty) and e(t;) = e(ty) if and only if ¢; — ¢y
is an integer. It follows that e ](,1 /2,1/2) 18 a homeomorphism of the open interval
(=1/2,1/2) onto S* \ {exp(mi)}. Let

log: S\ {exp(7i)} — (—1/2,1/2)

be the inverse of e |(_1/2,1/2).
A subset X C R” is called starlike from a point z( if, whenever z € X, the closed
segment [xg, x] from xy to z lies in X.

Lemma 3.4.7 Let X be compact and starlike from xy € X. Given any continuous
map f: X — S' and any ty € R such that e(ty) = f(xo), there exists a continuous
map f: X — R such that f(xg) =ty and eof(z) = f(x) for all z € X.

Proof. Clearly we can translate X so that it is starlike from the origin; hence there
is no loss of generality in assuming zy = 0. Since X is compact, f is uniformly
continuous and there exists € > 0 such that if ||z — 2'|| <, then || f(z) — f(2')| < 2
[that is, f(z) and f(2') are not antipodes in S']. Since X is bounded, there exists a
positive integer n such that ||z||/n < € for all x € X. Then for each 0 < j < n and
all z € X

gtz _gey e

n n n

<€
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I (LR~ () 1<

It follows that the quotient f((j + 1)z/n)/f(jx/n) is a point of S'\ {exp(mi)}. Let
g;: X — S"\ {exp(mi)} for 0 < j < n be the map defined by

I/
9@ = )

and so

Then for all x € X, we see that

We define f: X — R by

f(x) = to + log(go(x)) +log(g (x)) + - -~ + log(g—1 ().

Since f’ is the sum of n + 1 continuous functions from X to R, it is continuous.

Clearly f(0) =ty and eof = f. &

Lemma 3.4.8 Let X be a connected space and let f, g: X — R be maps such that
eof =eog and f(xo) = §(zo) for some xo € X. Then f=3.

Proof. Let h = f — 3: X — R. Since eof = eog, eoh is the constant map of X
to 1 € S'. Thus h is a continuous map from X to R, taking only integral values.
Because X is connected, h is constant, and since h(zg) =0, h(z) =0forallz € X. &

Let a: I — S' be a closed path at 1. Because [ is starlike from 0 and «(0) = 1 =
e(0), it follows from Lemmas 3.4.7 and 3.4.8 there exists a unique lifting &: I — R
such that @(0) = 0 and eoa = a. Because e(a(1)) = a(1) = 1, it follows that &(1) is
an integer. We define the degree of a by

deg(a) = a(1).

Lemma 3.4.9 Let o and 3 be homotopic closed paths in S* at 1. Then deg(a) =
deg(6).

Proof. Let F:1 x I — S' be a homotopy relative to I from a to 3. Because
I x I is a starlike set of R? from (0,0), it follows that there is a (unique) lifting
F:Ix 1 — R such that F(0, 0)=0ande oF = F. Since F is a homotopy relative to
dI, F(0,t) = F(1,t) = 1 for all t € I. Thus F(0,¢) and F(1,t) take on only integral
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values for all ¢ € I. It follows that F(0,t) must be constant and F(1,t) must be
constant. Because F'(0,0) = 0, F'(0,¢) = 0 for all ¢. Let &, 3:1 — R be the maps
t

defined by a(t) = F'(t,0) and B(t) = F(t,1). Then &(0) = 5(0) = 0, eod = a and
eoff = 3. Thus

deg(e) = &(1) = F(1,0) = F(1,t) = F(1,1) = B(1) = deg(). #
It follows that there is a well-defined function deg from 7(S', 1) to Z defined by
deg([a]) = deg(a).
Theorem 3.4.10 The function deg is an isomorphism of groups
deg:m(S',1) & Z.

Proof. To prove that deg is a homomorphism, let @ and # be two closed paths
in S' at 1 and let af be the closed path which is their pointwise product in the
group multiplication of S*. We know from Theorem 3.3.13 that [a] x [3] = [o/].
Let &,3:1 — R be such that @(0) = B3(0) = 0, eod = «a and eof8 = 3. Let
4 =a+ (:1 — R. Then 7(0) = 0 and e(¥) = af. Thus

deg([a] * [8]) = deg([af]) = 7(1) = a(1) + A(1) = deg([a]) + deg([5]).

The map deg is an epimorphism: For any integer n, let a: 1 — R be the path
defined by a(t) = tn and let a = eoa: I — S*. Then clearly deg([a]) = n.

The map deg is a monomorphism: If deg(a]) = 0, then there is a path &: I — R
with &(0) = &(1) = 0 and eo& = «. Since R is contractible, & ~ ¢, and

a=eoq ~eoc)=c¢c. M
Exercise 3.4.2 Show that the map f:S' — S', 2 — 2" is of degree n.
Corollary 3.4.11 The fundamental group of the torus is 7 X 7.

Theorem 3.4.12 (The Fundamental Theorem of Algebra) Every non-constant
complex polynomzial has a root.

Proof. We may assume without loss of generality that our polynomial has the form

p(z) ="+ a2+ ta,
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with n > 1. Assume that p has no zero.
Let S, be the circle |z| = r of radius r. Choose r >> 0 such that

"> ag|r" T 4 |ag|r" TR A A @ | |
Let F: S, x I — C be the map defined by
F(z,t) = 2" +t(a12" 4+ +ayp).

Since
|F(z,t)] > 2" = t(|ar||2[""" + -+ [an]) > 0

for |z| =7 and 0 <t < 1, the image of F' lies in C \ {0}. Let
G:S'x1— S

be the composite
F(z.t) ﬁ .
st 5 0\ {0} — St

Then G(1,t) = (F(r,t)/F(r,t))/|F(r,t)/F(r,t)] =1for t € I, G(2,0) = 2™ and

Go1) _ 2r2) )]

Thus f(z) = (Ip(r)l/(p(r)|p(r2)]))p(rz) ~ 2" is of degree n.
Let H:S' x I — S' be the map defined by

p(rzt [p(rt)
HE0) = o i)

where H is well-defined (and so it is continuous) because p(z) is never zero. Then
H(1,t)=1forallt, H(z,0) =1 and H(z,1) = f(z). It follows that f(z) is of degree
0, which is a contradiction (unless n = 0).

Theorem 3.4.13 (Brouwer Fixed Point Theorem) Any continuous map f: D* —
D? has a fived point, that is a point x such that f(x) = z.

Proof. Suppose that x # f(z) for all x € D?. Then we may define a map ¢: D? — S!
by setting ¢(x) to be the point on S' obtained from the intersection of the line
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segment from f(z) to x extended to meet S'. Let i: S' — D? be the inclusion. Then
¢ o1 =1idg1. Thus there is a commutative diagram

Zzﬂ'](s]):Z:ﬂ'](S])

0 =m (D% = 0=m(D?),

which is impossible. This contradiction proves the result. &

Exercise 3.4.3 Show that 7,(S') = 0 for n > 1. (Hint: Let ¢: [" — S™ = [*/0I"
the pinch map. Let f:S™ — S' be any map. Consider f o ¢: " — S'. Since I" is
starlike, there is a unique lifting a: I" — R such that «(0) = 0 and eoa = f ogq.
Since

coa(r) = foglx) = f(x) =1

for x € OI", eoa|sm is the constant map and so | is a continuous map from
AI™ to integers. Tt follows that a|s» is a constant map because 91" = S"~! is path-
connected when n > 1. Since a(0) = 0, a(x) = 0 for 2 € 9I™ and so « induces a map
a:S™ = 1"/0I™ — R. Since eoa = f o q, we have eoax = f. Since R is contractible,
a =~ ¢y and so

f=eoa~eoe; =c¢.

This show that any map from S™ to S is null homotopic and so 7, (S') = 0.)

3.4.4 Simply Connected Spaces

A space X is said to be n-connected for n > 0 if every continuous map f:S¥ — X
for k& < n has a continuous extension over E**'. A 1-connected space is also said
to simply connected. Note that if 0 < m < n, an n-connected space is m-connected.
It follows from Theorem 3.1.16 that a space X is n-connected if and only if it is
path-connected and 7 (X, ) is trivial for every base point € X and 1 < k < n. By
Exercise 3.4.1, X is n-connected if and only if it is path-connected and 7 (X, zo) = 0
for 1 < k < n and any particular choice of base point x3. Note that X is 0-connected
if and only if X is path-connected. By Exercise 3.1.5, we have

Lemma 3.4.14 A contractible space is n-connected for every n > 0.
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Exercise 3.4.4 Let A and p be paths in X from = to y. Suppose that X is simply
connected. Then A >~ p.

Lemma 3.4.15 Suppose that X = U UV with U,V open and simply connected and
U NV non-empty and path connected. Then X is simply connected.

Proof. Let f be any path in X. Then f~'(U) is an open set of I and so f~'(U) is a
disjoint union of open intervals. Let

771 0) = J(@arb)

be a disjoint union of open intervals (a,, b,). Since f~1(V') is open in I,
V) = U(es, dg).
B

Since

I = U(aaa boc) U (Cﬁa dﬁ)
aiﬂ
and [ is compact, there exists a finite subcover

n
(a5, b05) U (e, d

1 j=1

Cs

I =

%

It follows that there are finite numbers
Lh=0<ta< - <t;=1

such that [ts,ts.1] is either contained in (a;, b;) for some ¢ or in (¢, d;) for some j.
Let
fs(t) = fts + t(tstr — ts)).

Then f, is a path that starts with f(¢,) and ends with f(ts1). If [ts, tsi1] C (a4, b;)
for some 7, then f(I) = f([ts,ts41]) € U, that is f, is a path in U. Otherwise,
[ts,ts11] € (c¢j,d;) for some j and f; is a path in V. It follows that

f=fixfox-xfg,

where f, is either in U or V and so

1= LAlf - (S
We show by induction that
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If fis a loop with f(0) = f(1) € UNV such that [f] = [fi][f2] - - - [f4] with f;
is either a path in U or a path in V', then [f] = 0.

The assertion will follow from this statement.

If ¢ = 1, then [f] = [f1] and so f; must be a loop. If f; is a loop in U, then
[fi] = 0 because U is simply connected and so [f] = 0. Otherwise f; is a loop in V/
and [f] = [fi] = 0 because V is simply connected. Assume that the statement holds
for < q. Let [f] = [fi]---[f,)- We may assume that f; is a path in U without loss
of generality. Let ¢ > 1 be the largest integer such that f; is a path in U for j <.
Then fi * fox---% f; is a path in U and f; 41 is a path in V. It follows that

fi(l) = fina(0) eUNV.

Since U NV is path connected, there is a path A in U NV from f(0) to f;(1). Since
U is simply connected, and f; x -+ % f; and A\ are paths in U from f(0) to fi(1), we
have

[fi] -+ [fil = [N
and so

1= finllfival -+ Ufal = A fisallfiga] - - [fal = 0
by induction, where A * f;,; is a path in V. By induction. #

Corollary 3.4.16 S™ is simply connected for n > 2.

Exercise 3.4.5 Let X be a space. The unreduced suspension ¥X*X is the quotient
space of I x X obtained by identifying 0 x X to a point and 1 x X to a (different)
point. Suppose that X is path-connected. Show that >*“X is simply connected.

Note: XX = YX"X/I x *. If [ x x — X*X is a cofibration (this is true if x — X
is a cofibration), then ¥*X ~ ¥ X. Thus if * — X is a cofibration and X is path-
connected, then XX is simply connected.

3.5 The Seifert-Van Kampen Theorem

In this section, we provide a useful theorem for calculations of fundamental groups.
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3.5.1 Free Groups and Free Products of groups

Let X be a set. The free group F(X) generated by X is a group that satisfies the
following universal property:

1) X C F(X) is a subset.

2) Let G be any group and let f: X — G be any function. There exists a unique
homomorphism of groups f: F'(X) — G such that f]|x.

It is known that for any X F'(X) exists and unique up to isomorphism. There is an
explicit construction of the free group F(X) in terms of words:

— €1 €k
U)—I1 "'Ik,

where z; € X and ¢; = £1. For instance, if X = {21, --,2,}, the words on X are
given by

€1 .
i1

€k

xz ".:Eik

for k <0,¢;, =+l and 1 <1i; <n. A word w is called reduced if for each 1 < 7 <k
Tj# Tjp1 OF Tj = T4 With €; # —¢j41. As aset F'(X) is given by all reduced words
and the multiplication on F'(X) is given by the formal product of words, where we
use the rule:

-1 —1
T, x; =xix; =1

for each 7. For example,
—1 1 _ —1
(125 x3) - (T3 1) = 2125 27,

Clearly F/(X) is NOT a commutative group if X has more than one element because
129 and zozy are different words in F'(X) for z1, 29 € X.

Definition 3.5.1 Let f: H — G and g: H — K be homomorphisms of groups. The
push-out G [[,; K is a group that satisfies the following universal properties:

1) There are homomorphisms of groups ¢:G — G[[, K and v: K — G[[,; K
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such that ¢ o f =1 o g, that is the diagram

H / G

g @

K v GHK
H

commutes;

2) Let I' be any group and let ¢': G — I' and ¢": K — I" be homomorphisms with
¢' o f =1 og. Then there is a unique homomorphism 6: G[[,; K — T such
that ¢’ =60 o ¢ and ' =60 o).

When H is the trivial group, G[[ K = G]] qy K is called the free product of
G and K. It is known in group theory that the push-out (so-called free product
with amalgamation in group theory) always exists. The universal property show
that G [[,; K must be unique up to isomorphism if it exists. The combinatorial
construction G [[,; K can be given as follows:

First we construct the free product G ] K can be given by the words

W=y - o,

where a; € G or K for each j. w is reduced if each o; # 1 and «; and «;4 are
not lie in the same group. The product of two reduced words is the reduced words
obtained from the formal product of them. For instance, let oy, a0 € G and (6, € K.
Then

(1 Bras)(ay ' By an) = anan € G

The push-out G[];; K is the quotient group of G [[ K by the normal subgroup
generated by
f(h)g(h) !
for h € H. We can check that this construction satisfies the universal property: The
homomorphisms ¢: G — G [[, K and ¢: K — G ][, K are canonical map given by

¢(g) is word represented by g and (k) is the word represented by k for ¢ € G and
k € K. By the relation above ¢ o f = 1 o g in the group [[, K (NOT G][K).
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Assume that ¢': G — I' and ¢": K — I' be homomorphisms with ¢’ o f = ¢’ o g.
First there is a unique homomorphism 0: G][ K — T such that 6'(g) = ¢'(g) and
0'(k) = 4'(k). Since ¢' o f =1’ o g, we have that

0'(f(h)g(h)™") =1

for h € H and so 0 induces a unique homomorphism 6: G [[; K — I' with the desired
property.

Example 3.5.2 If K is the trivial group, then G[[K = G and so G [[, K is the

quotient group of G' by the normal subgroup generated by the image of f: H — G.
Z1]Z = F(xy,2,) is a free group generated by two generators. In general, the

n-fold free product of Z is a free group of rank n, that is n free generators.
Z/m]]Z/n is the quotient group of F(z1,x9) by the relations:

3.5.2 The Seifert-Van Kampen Theorem

Theorem 3.5.3 Let X be a space. Suppose that X = Uy U Uy such that Uy, Uy are
open and Uy N Uy is non-empty and path connected. Let vy € Uy NUsy be a base-point
of X. Then

T](X,I0)27T1<U],I0) H T](UQ,I()).

w1 (U1NU2,x0)

Sketch of Proof. Let j':U, — X, j2:Uy — X, i": Uy NUy — U, and i2: U, NUy — Uy
be inclusions. Since j' o' = j2? 02, the homomorphisms j!:m (U;) — 7(X) and
g2 (Uy) — m(X) induces a homomorphism

9171'1([]]) H T](UQ) —>7T1(X).

w1 (UiNU2)
Let X\: S — X be a loop in X. By the proof of Lemma 3.4.15, we have
(Al = [Aa][Ao] - - - [A],

where \; is a path either in U; or U;. We may assume that \; is a path in U;. Let 7
be the largest number such that A, ---, \; are paths in U;. Then \;(1) = A\i11(0) €
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Uy NUs,. Since Uy N Uy is path connected, there is a path p in U; N Uy from A(0) to
/\1<1) = )‘H-] (0) Then

A= [ oo A (i ] [ie] - - [

Now A; *---x \; % u~! is a loop in U; and p* A4 is a path in Uy. By repeating this
step (one can do this by induction), finally one can written down [\] as a product of
elements from 7 (Uy) or m(Us) and so 6 is an epimorphism.

It is more complicated to show that # is a monomorphism. So we omit this part
of proof. #

3.5.3 Calculations of the fundamental Group

By Using the Seifert-van Kampen theorem, we can compute the fundamental groups
of a lot of spaces.

Example 3.5.4 m(S'V S') = F(zy,25). In general, 7, (V"S") = F(xy, -+, x,).

Proof. Let x be an element in S* different from the base point. Let U = S*V(S'\{z})
and V = (S'"\ {z}) v S'. Then U and V are open sets in S' vV S'. Since U ~ S' and
V ~ 8" we have 7 (U) =Z and m (V) = Z. Now UNV = (S"\ {z}) V (S"\ {z}) is
contractible, m (U NV) = {1}. By the Seifert-van Kampen theorem, we have

7T1(Sl V Sl) = ZHZ = F(I’l,ZL’Q).
{1}

By induction, one can show that 7 (V"S') = F(xy, -+, x,). #
Note: By this example, we know that V*S' is NOT an H-space if n > 1.

Example 3.5.5 7 (RP') =Z and m (RP") = Z/2 for n > 2.

Proof. Clearly RP' = S' and so mRP' = Z. Now we compute 7 RP2,

Recall that RP?/RP! = S2. Let x € RP?*\RP! and let U = RP?\{z}. Then U is
homotopy equivalent to RP' and so 7, (U) = Z. Let V be an open neighborhood of x
that is homeomorphic to the open disk B? and is disjoint from RP'. Then mV = 0.
Clearly UNV ~ 8" m({UNV) =Z. Let j:UNV — U be the inclusion. Then
Jem(UNV) — m(U) is multiple by 2. Thus by the Seifert-van Kampen theorem
m(RP?) =m(UUV) =17Z/2Z.

Now we show that 7 (RP") = Z/2 by induction. Assume that 7 (RP" ') = Z/2
with n > 3. Let z € RP"\ RP"'. Let U = Rp™ \ {z}. Then U ~ RP""! and
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m(U) =Z/2. Let V be a small neighborhood of z with V' = B". Then m (V) = 0.
Clearly U NV ~ S"~!'. Since n > 3, S"~' is simply connected and so (U NV) = 0.
It follows that m (RP") =m(UUV)=7Z/2. &

Exercise 3.5.1 Show that CP" is simply connected for each n > 1.

Note: By looking at fundamental groups, we already know that any RP™ is NOT
homeomorphic to CP™.

Exercise 3.5.2 Let T, = T#T# - - - #7T be the g-fold connected sum of the torus T
Show that m(7}) is the quotient group of the free group F'(cy,d, ca,ds, -+, ¢4, d,) by
the one relation:

crdiey ' dy  eydocy ' dy ! ~~-cgdgcg_1d;] =1.

3.5.4 Groups and Spaces

Let X be a space. The unreduced cone CX =1 x X/1 x X. Clearly the cone CX is
contractible for any X. There is a relation between groups and so-called 2-complexes.

Lemma 3.5.6 Let ¢: F(xy, -, 2m) — F(y1,---,yn) be a homomorphism. Then
there is a (continuous) map f:V™St — VSt such that

fo=¢:m(\[8") = Flar,- 20) = m(\/ 8") = Flyr,- - yn).

Proof. The homomorphism ¢ is uniquely determined by the elements ¢(x1), - - -, ¢(z,,)
in F(y1,++,yn). Since m (V"S") = F(y1,--+,yn), there are maps

flv"'afmzsl_)\n/sl

such that [f;] = (f;)«([id]) = é(x;). Let f:v™St — v7S! be the map induced by
flv"'afm' The f*:¢ .

Let G be a group with generators xy, - - -, x5, and relations Ry, - - -, R,, where each
R; is a word in the free group F'(z1,---,xx). The group G is the quotient group of
F(xy,- -+, zx) by the normal subgroup generated by Ry, - - -, R,. Now we can construct
a space X = X (G) such that m(X) = G as follows:

First we choose the wedges of circles, X; = V¥S' and X, = V9S'. Now we define a
map f:V9S' — VFS! such that f restricted to the j-th copy of S! is a representative
of the element R; € m(V*S') = F(xy,--+,x;). Define

X=x][Ccxy/ ~.



100 CHAPTER 3. HOMOTOPY AND THE FUNDAMENTAL GROUPS

where ~ is the equivalence relation generated by

(0,2) ~ f(z)

for z € VviS'. We show that m(X) = G. Let z = 1x Xy be the element in
CXQ =1 x X2/1 X XQ, where X2 = \/qSI. Let

U=X\z=X [[(CX:\{a})/ ~.

Then U ~ X; = V¥ST and so m(U) = F(x1,- -+, x1). Let V be image of (2/1,1] x X,
in CX,. Then V' is an open neighborhood of z with m (V) = 0 (V' is contractible).
Clearly that U NV ~ X, = V4S'. Thus m(X) is the quotient group of F(zy, - - )
by the normal subgroup generated by

Im(m (UNV) = 7 (U)) = Im(fo: m (VIS — 7 (VEST)),
which is the normal subgroup generated by Ry, --- R,. Thus m (X) = G.

Now let ¢: G — H be a homomorphism. Suppose that G has generators xy, - - -
with relations Ry, - - - R, and H has generators yy, - - - ys with relations Sy, - - - S;. Then
there is a homomorphism ¢: F'(xq,---,zr) — F(y1,---,y:) such that the diagram

G ¢ H

A A

¢
F(xlv"'vxk) _’F(yla"'vys)
commutes. Thus there is a map f: X;(G) — X (H) such that

fo=om(Xi(G)) — m(Xi(H)).
Let j: Xq(H) — X (H) be the inclusion. Then the composite
0: X5(G) — X1(G) —~ X\ (H) — X(H)

is null homotopic because its restriction to each copy of S’ induces the trivial element
in the fundamental group of X (H). It follows that there is a map 0: CX»(G) — X (H)
such that 0|x,) = 0. Now the map j o f and ¢ defines a map

f:X(G G) [ CXa(G)/ ~— X(H).

Clearly f. = ¢:m(X(G)) — m (X (H)). Thus we have the following theorem.
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Theorem 3.5.7 For any group G, there is a group X(G) such that m(X(G)) = G.
If :G — H is a homomorphism, there is a map f: X(G) — X (H) such that

fi=¢0m(X(G)=G—m(X(H)) =H.

Note: The space X (G) is not unique (even up to homotopy) because a group G can
be written down in terms of different generator-relation systems.

Example 3.5.8 If a group G has only one relation (such group are called one relator
groups, the construction of X (G) is quite simple which can be described as follows:

Let zy,- -+, x; be generators for G and let R = ;] -- - xj/ be the only relation for
G. We may assume that R is an unreduced word such that all z,-- -,z occur in R.

Let Y be a t-sided polygonal region with counter-clockwise orientation. The sides
in Y are labeled by x;,,---,x;,. The j-th side is chosen to be in a positive direction
[negative direction] if ¢; = 1 [if ¢; = —1].

Let X be the quotient space of Y by identifying 1) all vertices to be one point
and 2) all oriented sides labeled by the same letter.

We can show that m(X) = G. Let = be an inner point in Y. Let U = X \ {z}.
Then U ~ V¥S!. Let V be an open e-neighborhood of z in ¥ (and so in X). Then
m (V) =0. Clearly UNV =~ S" and so m(UNV) =Z. Let j:UNV — U be the
inclusion and let o = [id§] be the generator for m (U N'V). Then

Jola) = fy - i

Thus m(X)=G. &
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Chapter 4

Covering Spaces

4.1 Covering Spaces

Definition 4.1.1 A map p: X — X is a covering projection and X (or (X,p) is a
covering space of X if

1) pis onto, and

2) for any x € X there is an open neighbourhood U (called an elementary neigh-
bourhood) of = such that

p ' (U) =] Vs

acJ

is a topological disjoint union of open sets (called sheets), each U, is mapped
homeomorphically onto U by p. (So p~'(U) 2 U x ( discrete space.)

Roughly speaking covering space just means that ‘locally’ the preimage p="(U) is
disjoint union of copies of U.

Example 4.1.2 (1). Any homeomorphism p: X — X is a one-sheeted covering
projection.

(2). Let F be a discrete space and X = X x F. Then the coordinate projection
p: X — X is a covering projection.

(3). The projection p: S™ — RP™ is a two-sheeted covering projection.

(4). p: S — 8! 2+ 2", is an n-sheeted covering.

103
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(5). The exponential map e:R — S' is a covering with infinite sheets.

Exercise 4.1.1 Let p: X > Xand ¢Y > Y be covering projections. Show that
pxq:X xY — X xY is also a covering projection.

Let G be a group and let Y be a G-space. For g € G and a subset S C Y, let
g - S denote the set {g - x|z € S}.

Definition 4.1.3 Let G be a (discrete) group and let Y be a G-space. A G-action
on Y is called properly discontinuous if

for any y € Y there exists a neighbourhood W, such that
G Fgp = G-W,Ng -W,=0
(or, equivalently, g #1 = ¢g-W,NW, =10).

Theorem 4.1.4 Let X be a G-space. If the G-action on X is properly discontinuous,
then X — X/G is a covering.

Proof. Let p: X — X/G be the quotient map. By Theorem ??, p is an open map.
For any z € X, let W be an open neighbourhood satisfying the condition of proper
discontinuity. Then p(U) is an open neighbourhood of p(x) and

') =lg-w

geG

is a disjoint union of open subsets of X. Furthermore p|,w:g - W — p(W) is a
continuous open bijective map and hence a homeomorphism. &

Exercise 4.1.2 Let X be a G-space. Suppose that X — X/G is a covering. Show
that the G-action on X is properly discontinuous.

Now the next question is how can we know a group-action is properly discontin-
uous. Recall that a group G acts freely on X if g- o # x forall x € X and g € G
with g # 1.

Exercise 4.1.3 Let X be a G-space. Suppose that the G-action on X is properly
discontinuous. Then G acts freely on X.
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Theorem 4.1.5 Let G be a finite group and let X be a Hausdorff G-space. Then
the G-action on X is properly discontinuous if and only if G acts freely on X.

Proof. = is obvious (see Exercise 4.1.3). <= Let G ={go = 1,91, -+, gn}. Since X is
Hausdorff, there exist open neighbourhoods Uy, --- U, of go-x,- - -, g, - T, respectively
such that UyNU; =@ for 1 < j < n. Let U = ﬂjzogj_] -Uj. Then U is an open
neighbourhood of = with g; - U N U = ) for each 1 < j < n because

9 -U=g;-(o Ui =(Noslg; " - V1)
i=0 i=0

=g - Ui € (g;9;") - U; = U;.
i=0
Thus the G-action on X is properly discontinuous. #
Note: If G has infinite elements, a free G-action may or may not be properly dis-
continuous. In other words, the quotient X — X/G may or may not be a covering
even if G acts freely on X and X is Hausdorff.
Now we have more examples of covering spaces.

Example 4.1.6 1) Let Z act on R by 2 — x+n. Then this action is discontinuous
and so R — R/Z = S' is a covering.

2) Let Z™ = Z*" act on R" by (zy,- -+, x,) — (1 + 11, -+, x, +1,) for z; € R and
l; € Z. Then this action is discontinuous and so R" — R"/Z" = S' x --- x S!

is a covering. In particular, when n = 2, we have the covering projection
R? =T =58"xS".

3) Let p be a prime integer and let g, - - - ¢, be integers prime to p. We define a
Z/p-action on

SP = ({30, 2) € Tl + |12 4o |zl = 1)

by

l- <207 Ce 7271) — (6271'1[/17 20, 827”[(11/17 2y, 7827”1‘171/17 Z’n)-

We show that this action is free. Suppose that

l'(Z07"'7Zn):(Z07"'7Zn>-
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Then

2milq;

/Py — .
e Zj = 2;

for each 0 < j < n, where ¢y = 1. Since (zg, - - 2z,,) € S, there exists z;, # 0
for some jy. It follows that
e27rilqj-0/p -1

and so lg;, = 0 mod p. Since g;, # 0 mod p and p is a prime, [ = 0 modp, that
is [ is the identity in Z/p. Thus this action is free.

Since S?"*! is Hausdorff, S*"*' — S?"*!/(Z/p) is a covering. The quotient
S* 1 /(Z/p), denoted by L™(p,qi, - +,q,), is called a lens space. Note that
L7(2) = RP2H1,

Let p be any non-zero integer. We define a Z/p-action on
S ={(z0, zm) €Clla* + | [ + - + |zl = 1}

by

2mil 2mil 2mil
Lo (20,5 2) = (2P 2, &2™il/P 5y oo @2il/P 4,

The argument above show that this action is free. (Note: in this case, we do
not need to assume that p is a prime.) The quotient S?"™'/(Z/p) is denoted
by L™(p). Again we have a covering projection S*"*' — L"(p).

Let M be a manifold and let
F(M,n) ={(x1,---,z,) € M"|x; # x; for i # j}

be a ordered configuration space. Let the symmetric group %, act on F'(M,n)
by permuting positions. Then F(M,n) — F(M,n)/%, is a covering. The
quotient F'(M,n)/¥,, denoted by B(M,n), is called the space of unordered
configurations.

Let G be a (Hausdorff) topological group and let H be a finite subgroup of G.
Let G/H be the set of left cosets with quotient topology. Then G — G/H is a
covering. (Note: One can directly show that G — G/H is a covering if H is a
discrete subgroup of G' (without assuming that H is finite).
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4.2 The Lifting Theorem For Covering Spaces

If p: X — X is a covering and f:Y — X is a map, then a lifting of f is a continuous
map f:Y — X such that f =po f.
The lifting problem is: Given a map f:Y — X.

i) When does there exist a lifting of f?
ii) Must such a lifting be unique?

The ‘uniqueness’ can be answered as follows.

Lemma 4.2.1 Let p: X — X be a covering and let f,f:Y — X be two lifting of

1Y — X. Suppose that Y is connected and fwo) = fyo) for some yo € Y. Then
f=1r

Proof. Let Y = {y € Y|f(y) = f(y)}. Then yy € Z. It suffices to show that Z is
open and closed. (Note: A space Y is connected if and only if Y and () are only
open and closed subsets of Y (or, equivalently, Y is not disjoint union of two open
subsets). A path-connected space is connected, but a connected space may not be
path connected in general.)

First we show that Y’ is an open subset of Y. Let y € Y’ and let U be an
elementary neighbourhood of f(y) in X. There is a (unique) sheet U, of p~'(U) such
that f(y ) = f(y) € U,. Then f~Y(U,) N f~'(U,) is an open neighbourhood of .
Since ply,: Uy — U is a homeomorphism,

f’f HUa)NF~1(Ua) f’f HUa)Nf~1 (Ua)
Thus

fHU)NfH(U.) CY
and so Y’ is open.

Now we show that Y\ Y" is open. Let y € Y\ Y’ and let U be an elementary
neighbourhood of f(y) in X. Since f(y) # f(y), there are two different sheets U,
and Ug of p~'(U) such that f(y) € U, and f(y) € Ug (o # [ because p restricted to
each sheet is a homeomorphism.) Now f~'(U,) N f~'(Us) is an open neighbourhood

of y. Since U, N Uy =0, f(2) # f(z) for any z € f'(U,) N f ' (Us) and so
U (Us) SY Y.

Thus Y \ Y’ is open and hence the result. #
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Corollary 4.2.2 Suppose that X is connected and 6: X — X is a map such that
po ¢ =p. If p(x1) = 1 for some x; € X, then ¢ is the identity map.

Proof. Both ¢ and the identity map id; are liftings of the map p: X — X. Since
¢(z1) = idg (), the assertion follows from Lemma 4.2.1. &
Let X be a pointed space with a base-point xy and Zy € X such that p(Zg) = xo.

Theorem 4.2.3 (Path-lifting Theorem) Let p: (X, %) — (X, x0) be a covering.
Then

i) Every path \: (I,0) — (X, x0) has a unique lifting \: (I,0) — (X, Zo).

i) Every map F: (I x I,(0,0)) — (X, x0) has a unique lifting F:(Ix1I,(0,0) —
(X, Zo).

Proof. We already prove the uniqueness of a lifting. So we only need to prove the
existence.

i) There exist 0 =ty < t; < -+ -t,, = 1 such that A([t;,t;11]) is contained in some
clementary neighborhood of each i. We show that there is a lifting \;: 0,2] — X
of Mz by induction on i. When i = 0, X\:[0,0] — X is given by )\(0) = Ty.
Suppose that there is a lifting \;: [0,#;] — X. Since A([t;, t:41]) lies in an elementary
neighbourhood. There is a unique lifting j: [t;, ti4q] — X (t:,4,1) such that p(t;) =
Ai(t:) (The map p is obtained by composing A| (t:,t:,1) With the inverse homeomorphism

to p-restricted-to-the-sheet-containing-\;(¢;). Let
S\i—H = :\1 U J¥N [O ti—H] — X

Then ;4 is a lifting of Alo,t:,1)- This gives a construction of A by induction.

ii) The proof essentially follows from the same idea, that is there are sequence
O=sy<s1<-<sp=land 0=ty <t; <---<t,=1such that I’ maps each
small rectangle R; ; = [si, Si+1] X [t,;41] into an elementary neighbourhood and then
defined F inductively over the rectangles

ROOaRO]a"'7ROn7R]07”'- ‘

Corollary 4.2.4 (Monodromy Lemma) Let Ao, i :(1,0) — — (X, &) be paths with
poXo~po. Then Ny~ \i. In particular, )\0( ) =M\ (1).

Proof. Let \y =po :\0 and \y = po ;. Let F:I xI — X be a homotopy relative
to {0,1} from Ay to A;. Then there is a unique lifting F:I xI — X of F with
F(O, 0) = )\0(0) = )\1(0) Then
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1) F(t, 0) = Xo (t) for any t because both of them are lifting of A\ with F(0,0) =
Xo(0). And F(1,0) = A(1).
2) F(0,s) because both of them are liftings of F'(0,5) = €\o) with

(0 €30(0)
F(0,0) = A\o(0). And F(0,1) = A(0) = A\ (0).
3) F(t,1) =

(0
(t) because F(0,1) = X (0) and both of them are liftings of ;.
particular, F'(1

(1,1) = A (D).
4) F(1,s) = €5,(1) because F(1,0) = A\o(1) and both of them are liftings of ex,(1).

This show that F is a path homotopy from Do t0 Ar. &
If in Corollary 4.2.4 we consider only loops, then we immediately have

Theorem 4.2.5 Ifp: ()N(,fo) — (X, ) is a covering, then py: ﬂl(X,fo) — (X, o)
s a monomorphism.

Let p: (X, %) — (X, z0) be a covering projection. The function t: m (X, zy) —
p (z0) is defined by [a] — &(1), where a:(1,0,1) — (X, &y, &(1)) is the unique
lifting of a as in Theorem 4.2.3. The function v is well-defined by the Monodromy
Lemma (Corollary 4.2.4).

Exercise 4.2.1 Suppose that X is path-connected. Show that the function ¢: 7 (X, z9) —

p'(z) is onto.
Hint: Let y € p '(zy). There is a path 3 from Zy to y. Let & = po 3. Then
[ = & by the uniqueness of the lifting and so ¢([a]) = &(1) = 3(1) = y.

Theorem 4.2.6 If X is simply connected, then v is a bijection.

Proof. By Exercise 4.2.1, it suffices to show that 1) is one-to-one.

Suppose that [a],[3] € m (X, x) with ¥([a]) = ¥([8]) = y € p '(x0), that is
&(1) = (1) = y, where & and (3 are the liftings of [a] and £, respectively. Since X
is simply connected, [@ % 3 '] =1 € m (X, &). Thus

R][8]7 =[pod)x (pof ] =[po(axp )] =pllaxf ') =p(1) =1
Hence [o] = [3] € m (X, x0). #
Now suppose that the quotient p: X — X /G, i +— [#], is a covering space arising
from a properly discontinuous group action. Here we can do much better.
Since p'([Zo]) = G - & = {g - tildexy|g € G}, we can identify p~*([Zo]) with G by
g-To < g. (Recall: g-%y=¢ -7y = g = ¢ by the properly discontinuous property.)
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Theorem 4.2.7 If X is path-connected, then :m (X/G, [Zo]) — G is a group epi-
morphism with kernel p.m (X, Z).

Proof. (i) By Exercise 4.2.1, the function v is onto.
(ii) To see that it’s a homomorphism, recall that the lifting &: (I,0,1) — (X, Zo, @(1))
of a loop a representing [a] € 7 (X /G, [Zo]) has a(1) = g, - & for some unique g, € G
(independent of choice of a € [a].) )

Given [a], [3] € m (X /G, [#]), with a, Blifting to a: (1,0,1) — (X, %o, ga-do), B:(1,0,1) —
(X, Zo, gs - To), note that in general & * 3 is not defined (since g, - To # Zo). However
the map g,-: X — X composes with § to give

G+ B:(1,0,1) = (X, go  Zo, g - (g5 - T0))
which lifts 5 (Note g, - £ is from Go - To t0 go - (g5 - To)). Thus
Qk (goc : B) (1,0, 1) - (XajOagagﬂ : JN:O)

is well-defined and lifts o * 3. Since this lifting of a * 8 has final point g,gs - To, we
have ¢ ([a * 3]) = gags and hence

([][B]) = d(la * B]) = gags = ¢([a])y((8]).
(iii) If ¥([a]) = e € G, then a(1) = e - &y = &(, making & a loop. Hence
o] = [po a] = p.([a]) € pom (X, Zo).

Conversely, for any a: (I,01) — (X, &), po & has lifting & with &(1) = e- &, and
so Y(p«([a])) = ¢([poa]) =e € G. &

Corollary 4.2.8 Suppose that X is path-connected space on which the group G acts
properly discontinuously. Then

V(X /G, 7)) — G

is an isomorphism if and only if X is simply-connected.

Example 4.2.9 1) Since S" is simply connected for n > 2, we have
m(RP") =m(S"/Z)2) =7/2

for n > 2.
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2) m(L"(p) = m (5™ /2Z/p) =Z/p (n 2 1).

3) m(S") =m(R/Z) =Z.

A space X is said to be locally path-connected if, for each z € X and any open
neighbourhood U of z, there is an open neighbourhood V' of x such that x € V C U
and any two points in V' can be connected by a path in U.

Theorem 4.2.10 (Lifting Theorem) Let p: (X, %) — (X, 20) is a covering space.
Let f:(Y,y0) — (X, 20) be a map. Suppose thatY is path-connected and locally path-
connected. Then f:(Y,yo) — (X,x0) admits a unique lifting f: (Y, y0) — (X, %) if
and only if

fim (Y y0) C pami (X, Zo).

Sketch of Proof. = is obvious. <= By Lemma 4.2.1, if f admits a lifting, then the
lifting is unique. Thus it suffices to prove the existence of the lifting. The construction
of f is as follows:

For each y € Y, since Y is path-connected, there is a path a:(7,0,1) —
(Y, y0,9). Solift foa: (I,0) — (X, xo) uniquely (by Theorem 4.2.3) to f o a: (I,0) —
(X, 530) Let

Then po f = f.
We must prove that

i) Zy) is independent of choice of a: (I,0,1) — (Y,y0,%), that is f is well-defined
as a function, and

ii) f is continuous.

We omit this part of the proof. &

Corollary 4.2.11 Any maps from a simply-connected locally path-connected (Y, yo)
lifts (uniquely).

Corollary 4.2.12 Any map from (S™,(1,0,---,0)) lifts uniquely (n > 2).

Corollary 4.2.13 Forn > 2, p,: ﬂn(X, Zo) — (X, xo) is an isomorphism.
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Proof. By Corollary 4.2.12, p, is onto. By Corollary 4.2.11, p, is one-to-one because
S™ x I is simply connected for n > 2.

Theorem 4.2.14 (Borsuk-Ulam) There exists no map f: 5% — S' such that f(—z) =
—f(x) for any x.

Proof. Let q: S? — RP? be the covering projection, and suppose that for all x € S?

Then we can define g: RP? — S' by g(+x) = (f(x))? making g o ¢ = po f, where
p: St — S'is defined by z — 22,

L —
q P
rp? —9 . g

Since 7 (RP?) = Z/2, g.m (RP?) is a torsion subgroup of m (S!) = Z and hence
g.m (RP?) = 0. Thus, by Theorem ??, there is a lifting g: RP? — S' such that
g =pog. (Note the map p is a covering.) Since § o ¢ and f are two liftings of g o ¢,
we have

It follows that

a contradiction. &

Corollary 4.2.15 If g: S* — R? is an antipode-preserving map, that is g(—x) =
—g(x), then some z € S* has g(z) = 0.

Proof. Otherwise f:5? — S' 2 — 2% contradicts Theorem 4.2.14.

(|

Corollary 4.2.16 If h: S? — R?, then some x € S* has h(z) = h(—x); so h is not
mjective.
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Proof. If this were not the case, then ¢g: S* — R? 1z — h(x) — h(—x) would contra-
dicts Corollary 4.2.15. &

Corollary 4.2.17 No subspace of R? is homeomorphic to S*.

Example 4.2.18 Regard the Earth as S? and the functions
P:S? — R, x — barometric pressure at z,
T:5? — R, z — temperature at
as continuous. Then Corollary 4.2.16 says that
h:S* — R? h(z) = (P(z),T(x))

has h(—z) = h(z) for some x € S?) in other words, there are always two antipodal
places on Earth with the same temperature and pressure. #
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