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1. TANGENT SPACES, VECTOR FIELDS IN R™ AND THE INVERSE MAPPING THEOREM

1.1. Tangent Space to a Level Surface. Let v be a curve in R”: v: t — (y(¢),72(t),...,7"(t)).
(A curve can be described as a vector-valued function. Converse a vector-valued function gives a
curve in R™.) The tangent line at the point (o) is given with the direction

o) = (D D).

t

(Certainly we need to assume that the derivatives exist. We may talk about smooth curves, that is,
the curves with all continuous higher derivatives.)

Consider the level surface f(z!,22,...,2") = ¢ of a differentiable function f, where z* refers to
i-th coordinate. The gradient vector of f at a point P = (z!(P),z?(P),...,2™(P)) is
of of
Vi=(=—,...,=—).
Given a vector @ = (ul,... ,u"), the directional derivative is
. Of 4 of
Daf =Vf -i@=—— v 2L
f f-u 91 Y + et B
The tangent space at the point P on the level surface f(z!,...,2") = c is the (n — 1)-dimensional

(if Vf # 0) space through P normal to the gradient V f. In other words, the tangent space is given
by the equation 5 5
L Pt~ (P) +o S (PYam —an(P) =0,
From the geometric views, the tangent space should consist of all tangents to the smooth curves
on the level surface through the point P. Assume that + is a curve through P (when ¢ = tg)
that lies in the level surface f(z!,...,2") = ¢, that is

FEA A2 @), (1) = e
By taking derivatives on both sides,

%(P)(vl)’(to) ot %(P)(W")'(to) =0

and so the tangent line of 7 is really normal (orthogonal) to Vf. When ~ runs over all possible
curves on the level surface through the point P, then we obtain the tangent space at the point P.
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Roughly speaking, a tangent space is a vector space attached to a point in the surface.
How to obtain the tangent space: take all tangent lines of smooth curve through this point on the
surface.

1.2. Tangent Space and Vectors Fields on R™. Now consider the tangent space of R™. Accord-
ing to the ideas in the previous subsection, first we assume a given point P € R™. Then we consider
all smooth curves passes through P and then take the tangent lines from the smooth curves. The
obtained vector space at the point P is the n-dimensional space. But we can look at in a little
detail.

Let v be a smooth curve through P. We may assume that v(0) = P. Let w be another smooth
curve with w(0) = P. + is called to be equivalent to w if the directives 4'(0) = w’(0). The tangent
space of R™ at P, denoted by Tp(R"™), is then the set of equivalence class of all smooth curves
through P.

Let T(R") = U Tp(R"™), called the tangent bundle of R™. If S is a region of R™, let T'(S) =

PeRn
U Tp(S), called the tangent bundle of S.
PesS
Note. Each Tp(R™) is an n-dimensional vector space, but T'(S) is not a vector space. In other

words, T'(.S) is obtained by attaching a vector space Tp(R™) to each point P in S. Also S is assumed
to be a region of R™, otherwise the tangent space of S (for instance S is a level surface) could be a
proper subspace of Tp(R™).

If ~ is a smooth curve from P to Q in R”, then the tangent space Tp(R™) moves along 7 to
To(R™). The direction for this moving is given +/(t), which introduces the following important
concept.

Definition 1.1. A wvector field V on a region S of R™ is a smooth map (also called C*°-map)
V:S—T(S) P~ d(P).
Let V: P — ¢(P) and W: P — @W(P) be two vector fields and let f: S — R be a smooth

function. Then V +W: P — ¢(P) 4+ W(P) and fV: P f(P)U(P) give (pointwise) addition and
scalar multiplication structure on vector fields.

1.3. Operator Representations of Vector Fields. Let J be an open interval containing 0 and

let v: J — R"™ be a smooth curve with v(0) = P. Let f = f(z!,...,2") be a smooth function

defined on a neighborhood of P. Assume that the range of v is contained in the domain of f. By
applying the chain rule to the composite T'= fo~y: J — R,

dT - dy'(t) of

D = — = -

2() dt Z dt oz

i=1 zi=vi(t)

Proposition 1.2.
D, (af +bg) = aD,(f) +bD(g), wherea,b are constant.

D’Y(fg) = D'y(f)g + fD'v(g)-

Let C*°(R™) denote the set of smooth functions on R™. An operation D on C*°(R™) is called a
deriation if D maps C*°(R™) to C°°(R™) and satisfies the conditions

D(af +bg) = aD(f) +bD(g), where a,b are constant.
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D(fg) = D(f)g + fD(g).
Example: For 1 <i <n,
of
ot

0i: f—
is a derivation.

Proposition 1.3. Let D be any derivation on C*°(R™). Given any point P in R™. Then there

exist real numbers a',a?,...,a™ € R such that

P) =Y "d'0i(f)(P)
i=1
for any f € C®(R™), where a® depends on D and P but is independent on f.
Proof. Write z for (z!,...,2"). Define

1
gi(z) = /O ggi (t(x — P) + P)dt.

Then )
fla) = 5(P) = [ (e =P)+ Py

= /0 of (t(x — P) 4+ P) - (2" — 2*(P))dt

£ Oxt
1=1

= Z(xl —2'(P)) of (t(x — P)+ P)d Z zt — gi(x).

Jv;
i=1 0 0

Since D is a derivation, D(1) = D(1-1) = D(1)-1+1- D( ) and so D(1) = 0. It follows that
D(c) = 0 for any constant ¢. By applying D to the above equations,

n

D(f(2)) = D(f(z) = f(P)) = ) _ D(a’ — 2*(P))gi(x) + (¢’ — &' (P))D(gi(x))

i=1

=Y D(z")gi(x) + (2 — 2" (P))D(gi(x))

i=1
because D(f(P)) = D(z*(P)) = 0. Let a® = D(2%)(P) which only depends on D and P. By
evaluating at P,

D(F)(P) = 3 D )(P)gi(P) +0 =Y algi(P)

Since

(Pyit = 2L (P = 0,()(P),

Lar Lof
i axi(t(P—P)—i—P)dt— r

= Zaié)i(f)(P)

which is the conclusion. O

9i(P) =
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From this proposition, we can give a new way to looking at vector fields:
Given a vector fields P +— §(P) = (v1(P),v?(P),...,v"(P)), a derivation

= Zvi(P) 19)

on C*(R™) is called an operator representation of the vector field P — ¥(P).
Note. The operation vi(x)0; is given as follows: for any f € C>°(R"™),

for any P.
From this new view, the tangent spaces T'(R™) admits a basis {01, 2,...,0,}.

1.4. Integral Curves. Let V: x — #(x) be a (smooth) vector field on an neighborhood U of P.

An integral curve to V is a smooth curve s: (=4, ¢) — U, defined for suitable §, ¢ > 0, such that
s'(t) = o(s(t))

for -0 <t <e.

Theorem 1.4. Let V: x +— ¥(x) be a (smooth) vector field on an neighborhood U of P. Then there
exists an integral curve to 'V through P. Any two such curves agree on their common domain.

Proof. The proof is given by assuming the fundamental existence and uniqueness theorem for sys-
tems of first order differential equations.
The requirement for a curve s(t) = (s'(t),...,s"(t)) to be an integral curve is:

ds*(t)
ds%?t)
dt

3
—
~
=
=

A7) — o (s (t), 82(1), - .., 5™ (1))

with the initial conditions

s(0)=P (s*(0),5%(0),...,5"(0)) = (z*(P),z*(P),...,2"(P))

ds! ds™
'(0) = ¥(P = (0),...,— = (v}(P),...,v"(P)).
SO =37) (G0 ) = P (P)
Thus the statement follows from the fundamental theorem of first order ODE. O

Example 1.5. Let n = 2 and let V: P — #(P) = (v}(P),v?*(P)), where v!(z,y) = z and v?(x,y) =
y. Given a point P = (a', a?), the equation for the integral curve s(t) = (x(t),y(t)) is

{ 0= —sto
y'(t) = v?(s(t) = y(t)
Wilth initial conditions (2(0),y(0)) = (a',a?) and (2/(0),4'(0)) = ¥(a',a®) = (a',a?). Thus the
solution is
s(t) = (a'e’, a?e").
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Example 1.6. Let n =2 and let V: P — §(P) = (v}(P),v?(P)), where v!(x,y) = x and v?(z,y) =
—y. Given a point P = (a!,a?), the equation for the integral curve s(t) = (z(t), y(t)) is
{ 2'(t) = v'(s(t)) = x(t)
y'(t) =v*(s(t) = —y(t)
with initial conditions (x(0),y(0)) = (a',a?) and (2/(0),%'(0)) = ¥(a',a?®) = (a*, —a?). Thus the
solution is

s(t) = (a'e, a’e™).
1.5. Implicit- and Inverse-Mapping Theorems.

Theorem 1.7. Let D be an open region in R™! and let F be a function well-defined on D with

continuous partial derivatives. Let (z}, 23, ..., 28, 20) be a point in D where
OF
F(ag,xd, ..., 28, 2) =0 E(mé,x%,...,xﬁ,zo)#o.

Then there is a neighborhood N.(z9) C R, a neighborhood Ns(x{,...,z8) C R", and a unique
function z = g(at,2?,... 2") defined for (z',...,a™) € Ns(ad, ..., z8) with values z € N.(29) such
that

1) zo = g(ad,23,...,28) and

F(a',2?,... 2" g(x',...,2™) =0
for all (zt,...,2™) € Ns(ad,... z0).
2) g has continuous partial derivatives with
ag (9:17' N ,zn) _ 7in(xla e 7‘75“72)
oxt F.(zb,...,2", 2)
for all (zt,...,2") € Ns(al,... al) where z = g(a*, ..., a").

3) If F is smooth on D, then z = g(x',... 2™) is smooth on Ns(z},...,a0).
Proof. Step 1. We may assume that %—f(xé,x%,...,x&z@ > 0. Since F, is continuous, there
exists a neighborhood N.(x},z2,... 28, 20) in which F, is continuous and positive. Thus for fixed
(x',...,2"), F is strictly increasing on z in this neighborhood. It follows that there exists ¢ > 0
such that

F(xp, 23, ..., 00,20 —c) <0 F(ad,x2,..., 20, 20 4+¢) >0
with
(x5, @3, ... 2, 20 —¢), (xg, 28, ..., 2, 20 +¢) € Ne(zg, 23, ..., 20, 20).

Step 2. By the continuity of F’, there exists a small § > 0 such that

F(x',2%,...,2" 20 —¢c) <0 F(az',2?,...,2" 20 4+¢) >0
with
(zh, 22 2"z — ), (xh, 2?2 20 + ) € Ne(xh, 23, ..., 2l 20)
for (x1,...,2") € Ns(a}, ..., xf).
Step 3. Fixed (x!,...,2") € Ns(x},...,2}), F is continuous and strictly increasing on 2. There is

a unique z, zg — c < z < 29 + ¢, such that

F(z!,...,2", 2) =0.



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 7

This defines a function z = g(z!,...,2") for (z!,...,2") € Ns(z},...,z8) with values 2z € (29 —
¢, 20+ ¢).

Step 4. Prove that z = g(x!,...,2") is continuous. Let (x1,...,2%) € Ns(x{,...,28). Let
(x1(k),...,27(k)) be any sequence in Ng(x{,...,z8) converging to (x1,...,27). Let A be any

subsequential limit of {2 = g(z1(k),...,z7(k))}, that is A = lim zj,. Then, by the continuity of
F,
0= lim F(x}(ks),...,27(ks),21.)

§—00
= F(lim zl(ky),..., lim 27 (ky), lim 2, )

= F(x1,...,27, A).
By the unique solution of the equation, A = g(z1,...,2%). Thus {2} converges g(zi,...,z7) and
so g is continuous.
Step 5. Compute the partial derivatives 5972 Let h be small enough. Let

z24+k=g(, .. 272t b2t ™),
that is
F(az',...,a' +h,...,2" 2 +k)=0

with zg —c < 24+ k < zg + ¢. Then

0=F(' ..., 2" +h,...,2" 2 +k)— F(z',..., 2" 2)

=F(at,..., 3. . 2" Hh+ F. (2!, ..., 3", ... 2" 2k
by the mean value theorem (Consider the function

o(t) = F(x', ... 2" +th,... 2", z +tk)

for 0 <t < 1. Then ¢(1) —¢(0) = ¢'(£)(1—0).), where 7' is between z* and z* +h, and Z is between
z and z + k. Now

dg lim glat, .zt at bt ) — 2 lim k
8372‘ h—0 h h—0 h
1 ~i o
— lim Fpi(zt,...,2%...,2" 2) _F,
=0 Fy(zl, ... 3% ... 2" 2) E.’

where Z — z as h — 0 because g is continuous (and so k — 0 as h — 0).
Step 6. Since F, is not zero in this small neighborhood, ¢, is continuous for each i. If F is smooth,
then all higher derivatives of g are continuous and so g is also smooth. O

Theorem 1.8 (Implicit Function Theorem). Let D be an open region in R™*™ and let Fy, Fy, ..., F,
be functions well-defined on D with continuous partial derivatives. Let (x§,2%,... 0% ud,ud, ... ub)
be a point in D where

1,2 m ,1 .2 ny _—
Fy(zg, x5, - - 2", Up, U, - - -, uf) =0

1,2 m ,1 ,2 ny —
Fy(xg, x5, .-, 28", ug, UG, - - uy) =0

1.2 1,2 ny _
Fo(zg, 2§, - -, 23", ug, UG, - - -, ug) =0

and the Jacobian

S _OF, P Fy) <8F,:) 40

O(ul,u?, ... un) oud
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at the point (b, 22, ... a0 u, v, ... ul). Then there are neighborhoods Ns(z}, ..., z), Ne, (u}),
Ne,(ud), ..., N, (ul), and unique functions
ul 1(:1;171‘ ) axm)
u2 = 2($1,$2, a‘rm)
un - gn(x17x2’ 7xm)
defined for (zt,...,a™) € Ns(ad,...,z0") with values u* € N, (u}),...,u™ € N, (ul) such that
1) ub = gi(xd,23,...,20") and
Fy(x' 2%, 2" gi(zt, ..., 2™)) =0
for all1 <i<mn and all (z',...,2™) € Ns(z{,...,z5").
2) Each g; has continuous partial derivatives with
891(3}1 xm):_l 6(F175F7l)
Oxd ™ 7T JoO(utu?, . uwd T xd gt )
for all (zt,...,2™) € Ns(al,...,zl") where u® = g;(x',... ™).
3) If each F; is smooth on D, then each u' = g;(x',... ™) is smooth on Ns(z{,...,z5).

Sketch of Proof. The proof is given by induction on n. Assume that the statement holds for n — 1
with n > 1. (We already prove that the statement holds for n = 1.) Since the matrix

OF;
ouJ

is invertible at the point P = (x8,23,..., 25", ub,ud,. .., ul) (because the determinant is not zero),
we may assume that

oF,
S(P) 0.
OF;

(The entries in the last column can not be all 0 and so, if 5% (P) # 0, we can interchange F; and
E,.)
From the previous theorem, there is a solution

n __ 1 m 1 n—1
u' =gp(z,...,x™ut, . u )
to the last equation. Consider
- 1 1 —1
G1 = Fi(at, . .,2™ut, oo w1 g)
1 1 —1
Go = Fo(xt,...,2™ut, ., u™ 1 gn)
_ 1 1 -1
anl - anl(x 9. 7xm,u ) ,un ,gn)

Then
oul  Ouw | dur Oud

for 1 <i4,5 <n—1, where
JF, n oF, O0Ogn
oul  Ou™r Oul




LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 9

Let
1 0 0 0
0 1 0 0 0
1
B = O .. .. O O
0 0 0 1 0
99n  99n  Ogn 9gn 1
oul ou? ous3 Oun—1
Then

By taking the determinant,

IFy,.. Fn)  OF, (Gh...,Gu1)
Oul,...,um) — Our O(ul,... un—1)’

Thus % # 0 at P and, by induction, there are solutions

u' = gi(zt, ... 2™)

for1<i<n-—1. O

Theorem 1.9 (Inverse Mapping Theorem). Let D be an open region in R™. Let

't = fi(ul,. .. u")
.132 = f2(u17 s aun)
" = fn(ulv s ’un)
be functions defined on D with continuous partial derivatives. Let (ud,...,ul) € D satisfy z§ =
filud, ..., ul) and the Jacobian
a(xt,. .. z") 1
m#o at (UO7...,u8).

Then there are neighborhood Ns(z§,...,x%) and N(uj, ..., ul) such that

u' _ffl(xlv ,x")
—1
u2 = J2 (‘rlv 7xn)
um = fn—l(xl7 7xn)
is well-defined and has continuous partial derivatives on Ns(z§, ..., x}) with values in Nc(ug, . .., ul).

Moreover if each f; is smooth, then each f[l s smooth.

Proof. Let F; = f;(u',...,u™) — ;. The assertion follows from the Implicit Function Theorem. [J
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2. TOPOLOGICAL AND DIFFERENTIABLE MANIFOLDS, DIFFEOMORPHISMS, IMMERSIONS,
SUBMERSIONS AND SUBMANIFOLDS

2.1. Topological Spaces.

Definition 2.1. Let X be a set. A topology U for X is a collection of subsets of X satisfying

i) 0 and X are in U;
ii) the intersection of two members of U is in U;
iii) the union of any number of members of U is in U.

The set X with U is called a topological space. The members U € U are called the open sets.

Let X be a topological space. A subset N C X with z € N is called a neighborhood of z if there
is an open set U with x € U C N. For example, if X is a metric space, then the closed ball D, (z)
and the open ball B.(x) are neighborhoods of z. A subset C' is said to closed if X \ C is open.

Definition 2.2. A function f: X — Y between two topological spaces is said to be continuous if
for every open set U of Y the pre-image f~!(U) is open in X.

A continuous function from a topological space to a topological space is often simply called a
map. A space means a Hausdorff space, that is, a topological spaces where any two points has
disjoint neighborhoods.

Definition 2.3. Let X and Y be topological spaces. We say that X and Y are homeomorphic if
there exist continuous functions f: X — Y,g: Y — X such that fog =idy and go f =idx. We
write X 2 Y and say that f and g are homeomorphisms between X and Y.

By the definition, a function f: X — Y is a homeomorphism if and only if
i) f is a bijective;
ii) f is continuous and
iii) f~! is also continuous.
Equivalently f is a homeomorphism if and only if 1) f is a bijective, 2) f is continuous and 3) f is
an open map, that is f sends open sets to open sets. Thus a homeomorphism between X and Y is
a bijective between the points and the open sets of X and Y.

A very general question in topology is how to classify topological spaces under homeomorphisms.
For example, we know (from complex analysis and others) that any simple closed loop is homeo-
morphic to the unit circle S'. Roughly speaking topological classification of curves is known. The
topological classification of (two-dimensional) surfaces is known as well. However the topological
classification of 3-dimensional manifolds (we will learn manifolds later.) is quite open.

The famous Poicaré conjecture is related to this problem, which states that any simply connected
3-dimensional (topological) manifold is homeomorphic to the 3-sphere S3. A space X is called simply
connected if (1) X is path-connected (that is, given any two points, there is a continuous path joining
them) and (2) the fundamental group 71 (X) is trivial (roughly speaking, any loop can be deformed
to be the constant loop in X). The manifolds are the objects that we are going to discuss in this
course.

2.2. Topological Manifolds. A Hausdorff space M is called a (topological) n-manifold if each
point of M has a neighborhood homeomorphic to an open set in R"™. Roughly speaking, an n-
manifold is locally R™. Sometimes M is denoted as M™ for mentioning the dimension of M.
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(Note. If you are not familiar with topological spaces, you just think that M is a subspace of
RY for a large N.)

For example, R™ and the n-sphere S™ is an n-manifold. A 2-dimensional manifold is called
a surface. The objects traditionally called ‘surfaces in 3-space’ can be made into manifolds in
a standard way. The compact surfaces have been classified as spheres or projective planes with
various numbers of handles attached.

By the definition of manifold, the closed n-disk D™ is not an m-manifold because it has the
‘boundary’ S"~!. D" is an example of ‘manifolds with boundary’. We give the definition of
manifold with boundary as follows.

A Hausdorff space M is called an n-manifold with boundary (n > 1) if each point in M has a
neighborhood homeomorphic to an open set in the half space

RY = {(z1,--- ,2,) € R"[z,, > 0}.

Manifold is one of models that we can do calculus ‘locally’. By means of calculus, we need local
coordinate systems. Let x € M. By the definition, there is a an open neighborhood U(z) of 2 and
a homeomorphism ¢, from U(z) onto an open set in R’'. The collection {(U(x),¢,)|lx € M} has
the property that 1) {U(z)|x € M} is an open cover and 2) ¢, is a homeomorphism from U(x)
onto an open set in R’ . The subspace ¢,(U,) in R} plays a role as a local coordinate system. The
collection {(U(x), ¢,)|x € M} is somewhat too large and we may like less local coordinate systems.
This can be done as follows.

Let M be a space. A chart of M is a pair (U, ¢) such that 1) U is an open set in M and 2) ¢ is
a homeomorphism from U onto an open set in R’. The map

¢: U — R}
can be given by n coordinate functions ¢1,...,¢,. If P denotes a point of U, these functions are
often written as
' (P),2*(P),...,z"(P)
or simply ', z2,...,2". They are called local coordinates on the manifold.

An atlas for M means a collection of charts {(Uy, ¢o )| € J} such that {U,|a € J} is an open
cover of M.

Proposition 2.4. A Hausdorff space M is a manifold (with boundary) if and only if M has an
atlas.

Proof. Suppose that M is a manifold. Then the collection {(U(z),¢.)|x € M} is an atlas. Con-
versely suppose that M has an atlas. For any x € M there exists a such that z € U, and so U, is
an open neighborhood of x that is homeomorphic to an open set in R’}. Thus M is a manifold. [

We define a subset M as follows: z € OM if there is a chart (U,, ¢,) such that z € U, and
do(r) € R"1 = {2 € R"|z,, = 0}. OM is called the boundary of M. For example the boundary of
D" is S7L
Proposition 2.5. Let M be a n-manifold with boundary. Then OM is an (n — 1)-manifold without

boundary.

Proof. Let {(Uy,da)|la € J} be an atlas for M. Let J' C J be the set of indices such that
Uy NOM # 0 if a« € J'. Then Clearly

{(Ua nOM, palu,nomlo € J'}
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can be made into an atlas for OM. O

Note. The key point here is that if U is open in R}, then U N R"~! is also open because: Since U
is open in R, there is an open subset V' of R" such that U = V NR%}. Now if 2z € U N R"~! there
is an open disk F.(z) C V and so

E(x)NR"™ I CVAR" ' =UnR"!

is an open (n — 1)-dimensional e-disk in R"~! centered at x.

2.3. Differentiable Manifolds.

Definition 2.6. A Hausdorff space M is called a differential manifold of class C* (with boundary)
if there is an atlas of M
{(Ua, ¢a)la € J}
such that
For any «, 8 € J, the composites

$a 0 b5 p(Ua NUg) — RY

is differentiable of class C*.

The atlas {(Uy, ¢l € J} is called a differential atlas of class C* on M.

(Note. Assume that M is a subspace of RY with N >> 0. If M has an atlas {(Uy, ¢ )| € J}
such that each ¢q: U, — R is differentiable of class C*, then M is a differentiable manifold of
class C*. This is the definition of differentiable (smooth) manifolds in [6] as in the beginning they
already assume that M is a subspace of RY with N large. In our definition (the usual definition
of differentiable manifolds using charts), we only assume that M is a (Hausdorfl) topological space
and so ¢, is only an identification of an abstract U, with an open subset of R’. In this case we can
not talk differentiability of ¢, unless U, is regarded as a subspace of a (large dimensional) Euclidian
space.)

Two differential atlases of class C* {(Uy, ¢o)|a € I} and {(Vj,15)|8 € J} are called equivalent
if

{(Ua, pa)l € T} U{(Vs,95)|8 € J}
is again a differential atlas of class C* (this is an equivalence relation). A differential structure of
class C* on M is an equivalence class of differential atlases of class C* on M. Thus a differential
manifold of class C* means a manifold with a differential structure of class C*. A smooth manifold
means a differential manifold of class C*°.

Note: A general manifold is also called topological manifold. Kervaire and Milnor [4] have shown
that the topological sphere S7 has 28 distinct oriented smooth structures.

Definition 2.7. let M and N be smooth manifolds (with boundary) of dimensions m and n re-
spectively. A map f: M — N is called smooth if for some smooth atlases {(Uy, ¢o|a € I} for M
and {(Vg,¢g)08 € J} for N the functions

P30 f o da lonr—1 (Vv Gal(f T (Va) NUL) — RY

are of class C°.
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Proposition 2.8. If f: M — N is smooth with respect to atlases
{(Uaa(ba'aej}’ {(VB,¢ﬁ|5€J}
for M, N then it is smooth with respect to equivalent atlases
{(Us, 05l e I'}, {(V],my|B €T}
Proof. Since f is smooth with respect with the atlases
{(Ua, @alar e I}, {(Vs, 056 € J},
f is smooth with respect to the smooth atlases
{(Ua, ¢ala € TYU{(Us, sl € I}, {(Va, dplB € T} U{(Vy, 14|18 € T’}
by look at the local coordinate systems. Thus f is smooth with respect to the atlases
{(Uz§795|a € Il}v {(V';7777|5 € J/}‘
O

Thus the definition of smooth maps between two smooth manifolds is independent of choice of
atlas.

Definition 2.9. A smooth map f: M — N is called a diffeomorphism if f is one-to-one and onto,
and if the inverse f~1: N — M is also smooth.

Definition 2.10. Let M be a smooth n-manifold, possibly with boundary. A subset X is called a
properly embedded submanifold of dimension k < n if X is a closed in M and, for each P € X, there
exists a chart (U, ¢) about P in M such that
$(UNX) = ¢(U)NRE,

where R% C R% is the standard inclusion.
Note. In the above definition, the collection {(UNX, ¢|unx)} is an atlas for making X to a smooth
k-manifold with boundary 0X = X N oM.

If OM = (), by dropping the requirement that X is a closed subset but keeping the requirement
on local charts, X is called simply a submanifold of M.

2.4. Tangent Space. Let S be an open region of R™. Recall that, for P € S, the tangent space
Tp(S) is just the n-dimensional vector space by putting the origin at P. Let T' be an open region
of R™ and let f = (f1,..., fm): S — T be a smooth map. Then f induces a linear transformation

Tf: TP(S) — Tf(p)(T)

given by
o U; Uigl(fl)+Uzgz(f1)+'“+vzgn(f1)
nx1 Ulal(fm)+v282(fm)+"'+vn6n(fm)
namely Tf is obtained by taking directional derivatives of (f1,..., fin) along vector ¥ for any
U E Tp(S)

Now we are going to define the tangent space to a (differentiable) manifold M at a point P as
follows:
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First we consider the set
Tp ={(U,6,7) | P €U, (U,¢)isachart e T(d(P))(4(U))}

The point is that there are possibly many charts around P. Each chart creates an n-dimension vector
space. So we need to define an equivalence relation in Tp such that, 7p modulo these relations is
only one copy of n-dimensional vector space which is also independent on the choice of charts.

Let (U, ¢,v) and (V, 4, @) be two elements in 7p. That is (U, ¢) and (V,4) are two charts with
P €U and P € V. By the definition,

Yool p(UNV) — p(UNV)
is diffeomorphism and so it induces an isomorphism of vector spaces
T(po¢™"): Typy (U NV)) — Ty ((UNV)).
Now (U, ¢,7) is called equivalent to (V,1, @), denoted by (U, ¢, V) ~ (V, ¢, ), if
T(Y 0 6~)(@) = .
Define Tp(M) to be the quotient
Tp(M)="1p/ ~.

Exercise 2.1. Let M be a differentiable n-manifold and let P be any point in M. Prove that
Tp(M) is an n-dimensional vector space. [Hint: Fixed a chart (U, ¢) and defined
a(U, ¢,0) + b(U, ¢, @) := (U, ¢, av + bw).
Now given any (V,v,Z), (V, 1, ) € Tp, consider the map
¢oyp L p(UNV) = o(UNV) g0~ p(UNV) = o(UNV)
and define
a(V, 9, @) +b(V, 4, §) = (U, ¢,aT (¢ 0™ )(Z) + bT (¢ 0 0~ )(7)-
Then prove that this operation gives a well-defined vector space structure on T’p, that is, independent
on the equivalence relation.]

The tangent space Tp(M), as a vector space, can be described as follows: given any chart (U, ¢)
with P € U, there is a unique isomorphism

Ty: Tp(M) — Typy(o(U)).

by choosing (U, ¢, 7) as representatives for its equivalence class. If (V1) is another chart with
P €V, then there is a commutative diagram

Tp(M) —2 Ty (6(U NV)
(1) T(pog™t)

To(M) —% Ty (0(U N V)),

where T'(1) o 1) is the linear isomorphism induced by the Jacobian matrix of the differentiable
map o¢ L p(UNV) —p(UNV).
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Exercise 2.2. Let f: M — N be a smooth map, where M and N need not to have the same
dimension. Prove that there is a unique linear transformation
such that the diagram

Tp(M) —2v Ty (6(1))

rf T(pofod™t)

T
Tr(p)(N) = Tusooy ((V))

commutes for any chart (U, ¢) with P € U and any chart (V,4) with f(P) € V. [First fix a choice
of (U,¢) with P € U and (V,4) with f(P) € V, the linear transformation T f is uniquely defined
by the above diagram. Then use Diagram (1) to check that T'f is independent on choices of charts.

2.5. Immersions. A smooth map f: M — N is called immersion at P if the linear transformation
Tf: Tp(M) — Typ)(M)
is injective.

Theorem 2.11 (Local Immersion Theorem). Suppose that f: M™ — N™ is immersion at P. Then
there exist charts (U, ) about P and (V,v) about f(P) such that the diagram

U flu .V
p(P)=0¢ Y(f(P) =04
R™ canonical coordinate inclusion . R"

commutes.

Proof. We may assume that ¢(P) = 0 and ¢(f(P)) = 0. (Otherwise replacing ¢ and 1 by ¢ — ¢(P)
and ¢ — (f(P)), respectively.)
Consider the commutative diagram

flo

U .V
o) P
' = ofo -1 !

o) L= T00 )
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By the assumption,
Tg: To(o(U)) — To(p(V))

is an injective linear transformation and so

rank(Tg) =m

at the origin. The matric for Tg is
99 99 og'
oxrl  Ox? ox™m
99> 9g* 9%
ozl  Ox2 oxm

2

” o o o
ozl  Ox2 oxm
o ooy
ozl  Ox2 oxm

By changing basis of R™ (corresponding to change the rows), we may assume that the first m rows
forms an invertible matrix A,,x., at the origin.
Define a function

h=(h',h? ...,h"): p(U) x R"™™ —~ R"

by setting

for 1 <i<m and

for m 4+ 1 <7 <n. Then Jacobian matrix of h is

Apmxm O x (n—m)

B(n—m)xm Infm

where B is taken from (m + 1)-st row to n-th row in the matrix (2). Thus the Jacobian of h is not
zero at the origin. By the Inverse Mapping Theorem, A is an diffeomorphism in a small neighborhood
of the origin. It follows that there exist open neighborhoods U C U of P and V C V of f(P) such
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that the following diagram commutes

U f|U R f/
Pl Y|y
. g=dofogt L
o(U) P(V)
~|pt
(U) x 0 < s ¢(U) x Uy
R™=R™ x 0 < - R",
where U; is a small neighborhood of the origin in R™*~™. O

Theorem 2.12. Let f: M — N be a smooth map. Suppose that

1) f is immersion at every point P € M,
2) f is one-to-one and
3) f: M — f(M) is a homeomorphism.

Then f(M) is a smooth submanifold of M and f: M — f(M) is a diffeomorphism.

Note. In Condition 3, we need that if U is an open subset of M, then there is an open subset V' of
N such that V N f(M) = f(U).

Proof. For any point P in M, we can choose the charts as in Theorem 2.11. By Condition 3, f(U)
is an open subset of f(M). The charts {(f(U),%|fw))} gives an atlas for f(M) such that f(M) is
a submanifold of M. Now f: M — f(M) is a diffeomorphism because it is locally diffeomorphism
and the inverse exists. 0

Condition 3 is important in this theorem, namely an injective immersion need not give a dif-
feomorphism with its image. (Construct an example for this.) An injective immersion satisfying
condition 3 is called an embedding.

2.6. Submersions. A smooth map f: M — N is called submersion at P if the linear transforma-
tion
Tf: TP(M) — Tf(p)(M)

is surjective.
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Theorem 2.13 (Local Submersion Theorem). Suppose that f: M™ — N™ is submersion at P.
Then there exist charts (U, ¢) about P and (V,v) about f(P) such that the diagram

. o v
¢(P)=0¢ P(f(P)) =09
R™ c canonical coordinate proj. . R"

commutes.

For a smooth map of manifolds f: M — N, a point @Q € N is called reqular if Tf: Tp(M) —
To(N) is surjective for every P € f~1(Q), the pre-image of Q.

Theorem 2.14 (Pre-image Theorem). Let f: M — N be a smooth map and let @ € N such
that f~1(Q) is not empty. Suppose that Q is reqular. Then f~1(Q) is a submanifold of M with
dim f~1(Q) = dim M — dim N.

Proof. From the above theorem, for any P € f~1(Q),
A1 [THQNU —= R™"
gives a chart about P. 0
Let Z be a submanifold of N. A smooth map f: M — N is said to be transversal to Z if
Im(Tf: Tp(M) — Typ)(N)) + Typ)(Z) = Typ)(N)
for every x € f~1(Z).

Theorem 2.15. If a smooth map f: M — N is transversal to a submanifold Z C N, then f~1(2)
is a submanifold of M. Moreover the codimension of f~1(Z) in M equals to the codimension of Z
m N.

Proof. Given P € f~1(Z), since Z is a submanifold, there is a chart (V,v) of N about f(P) such
that V. .=V; x V5 with V; =V N Z and (V4,4]v,) is a chart of Z about f(P). By the assumption,
the composite

V) flg=10v) v P Va

is submersion. By the Pre-image Theorem, f~1(V) N f~1(Z) is a submanifold of the open subset
f71(V) of M and so there is a chart about P such that Z is a submanifold of M.
With respect to the assertion about the codimensions,

codim(f~!(Z)) = dim V3 = codim(Z).
O

Consider the special case that both M and Z are submanifolds of N. Then the transversal
condition is

Tp(M)+Tp(Z) =Tp(N)
forany Pe M N Z.
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Corollary 2.16. The intersection of two transversal submanifolds of N is again a submanifold.
Moreover

codim(M N Z) = codim(M) + codim(Z)
m N.

3. EXAMPLES OF MANIFOLDS

3.1. Open Stiefel Manifolds and Grassmann Manifolds. The open Stiefel manifold is the
space of k-tuples of linearly independent vectors in R™:

Vin = {(@1,...,5%)" | 5 € R™, {#,..., 0} linearly independent},

where f/k,n is considered as the subspace of k x n matrixes M (k,n) = R*™. Since Vk’n is an open
subset of M (k,n) = RV}, is an open submanifold of R¥".

The Grassmann manifold Gy, is the set of k-dimensional subspaces of R", that is, all k-planes

through the origin. Let
T Vkr,n — Gk:,n

be the quotient by sending k-tuples of linearly independent vectors to the k-planes spanned by k
vectors. The topology in G, is given by quotient topology of 7, namely, U is an open set of Gy ,,
if and only if 7=1(U) is open in Vkm-

For (#,...,v)7 € f/k,n, write (¥1,...,0k) for the k-plane spanned by @1, ..., 0. Observe that
two k-tuples (7, ...,0%)? and (i1, ...,w,)? spanned the same k-plane if and only if each of them
is basis for the common plane, if and only if there is nonsingular k X k matrix P such that

P(@,...,5)" = (@, 5"

This gives the identification rule for the Grassmann manifold Gy . Let GL;(R) be the space of
general linear groups on R¥, that is, GLj(R) consists of & x k nonsingular matrixes, which is an
open subset of M (k, k) = R¥*. Then G, is the quotient of an by the action of GLg(R).

First we prove that Gy, is Hausdorft. If & = n, then G, ,, is only one point. So we assume that
k < n. Given an k-plane X and @ € R"”, let p;z be the square of the Euclidian distance from  to
X. Let {eq,...,exr} be the orthogonal basis for X, then

k
pa(X) = @@= Y (@ e;)
j=1

Fixing any W € R", we obtain the continuous map
Pw: Gk,n — R

because pg o m: f/kyn — R is continuous and Gy, given by the quotient topology. (Here we use
the property of quotient topology that any function f from the quotient space Gy, to any space
is continuous if and only if f o7 from Vk,n to that space is continuous.) Given any two distinct
points X and Y in Gy, we can choose a @ such that pgz(X) # pz(Y). Let V4 and V2 be disjoint
open subsets of R such that pg(X) € Vi and pz(Y) € V. Then p' (V1) and p;' (Vz) are two open
subset of Gy, ,, that separate X and Y, and so Gy, ,, is Hausdorff.

Now we check that Gy, ,, is manifold of dimension k(n — k) by showing that, for any X in Gy .,
there is an open neighborhood Ux of a such that Uy & RF(n—Fk)
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Let X € Gy, be spanned by (91,...,7)T. There exists a nonsingular n x n matrix Q such that
(T, )T = (I, 0)Q,
where [} is the unit k x k-matrix. Fixing @, define
Xo = {(Pr, Bent)Q | det(Py) # 0, By i, € M(k,n —k)} C Vi
Then Ex is an open subset of an Let Ux = nw(Ex) C G- Since
©'(Ux) = Ex

is open in f/k,n, Ux is open in Gy, , with X € Ux. From the commutative diagram
(P,A) — (P,PA)Q

GLL(R) x M(k,n — k) _ - Ex
proj. ™
M(k.n— k) A (e, A)Q) Uy,

Ux is homeomorphic to M (k,n — k) = R¥("=%) and so Gy ,, is a (topological) manifold.
For checking that Gy, is a smooth manifold, let X and Y € Gy ,, be spanned by (1,..., 0%
and (0, ..., )T, respectively. There exists nonsingular n x n matrixes @ and @ such that

(7717"'7?7]6)T: (IkaO)Q7 (U_jla"';wk)T: (IkaO)Q

)T

Consider the maps:

M(k,n —k) —— Ux A (I, A)Q)
bx

M(k,n— k) —— Uy A (I, A)Q).
Y

If Z e Ux NUy, then ~

Z = ((Ix, Az)Q) = ((Ix, B2)Q)
for unique A, B € M(k,n — k). It follows that there is a nonsingular k x k matrix P such that

(Ik,Bz)Q = P(Ik7Az)Q = (Ik,Bz) = P(Ik,Az)QQ_l.

Let
T11 Tho

T=Q0"'=
Toy T2
Then
(Iy,Bz) = (P,PAz)T = (PT11 + PAzT, PTio + PAzTs)
I, = P(Ty + AzT5)

Bz = P(Tn + Azng).
It follows that
Z € UX N Uy if and only if det(TH + AzTgl) 7§ 0 (that iS, T11 + A2T21 is invertible).
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From the above, the composite

¢X(UX ﬂUy) & Ux NUy & M(k,n)
is given by
A— (Tll =+ ATQl)_l (T12 + AT22) )
which is smooth. Thus G}, is a smooth manifold.

As a special case, G1, is the space of lines (through the origin) of R™, which is also called
projective space denoted by RP™*~1. From the above, RP"~! is a manifold of dimension n — 1.

3.2. Stiefel Manifold. The Stiefel manifold, denoted by Vj ,,, is defined to be the set of k orthog-
onal unit vectors in R™ with topology given as a subspace of Vi, ,, € M (k,n). Thus

Vin ={A € M(k,n) | A- AT = I,}.
We prove that Vi, is a smooth submanifold of M (k,n) by using Pre-image Theorem.

(k+1)k

Let S(k) be the space of symmetric matrixes. Then S(k) = R~z  is a smooth manifold of
dimension. Consider the map

f:M(k,n)— S(k) A~ AAT.
Forany A € M(k,n), Tfa: Ta(M(k,n)) — Tta)(S(k)) is given by setting T f4(B) is the directional
derivative along B for any B € Ty (M(k,n)), that is,
f(A+sB) - f(4)
s
(A+sB)(A+sB)T — AAT

Tfa(B) = lim

= lir%
s— S
AAT ABT BAT 2BBT — AAT
= lim tsaD 4 sBA ¥ — ABT + BAT.
5— S

We check that T'f4: Ta(M(k,n)) — Tpay(S(k)) is surjective for any A € f~*(I).
By the identification of M (k,n) and S(k) with Euclidian spaces, T4 (M (k,n)) = M(k,n) and
Tpa)(S(k)) = S(k)). Let A€ f~(I;) and let C € T(a)(S(k)). Define

B= %CA € Ta(M(k, n)).

Then

AAT=1, 1 c=c”T

1 1 1
Tfa(B) = ABT + BAT = 5AATCT + 5CAAT 20T +5C C.
Thus T'f: Ta(M(k,n)) — T¢a)(S(k)) is onto and so Iy is a regular value of f. Thus, by Pre-image
Theorem, Vi ,, = f~1(I}) is a smooth submanifold of M (k,n) of dimension
ko — (k+ 1)k _ k(2n—k—1).
2 2
Special Cases: When k = n, then V,, ,, = O(n) the orthogonal group. From the above, O(n) is a
(smooth) manifold of dimension @ (Note. O(n) is a Lie group, namely, a smooth manifold
plus a topological group such that the multiplication and inverse are smooth.)
When k =1, then V; ,, = S™~1 which is manifold of dimension n — 1.

When k =n — 1, then V;,_1 , is a manifold of dimension w One can check that
Vn—l,n = SO(n)
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the subgroup of O(n) with determinant 1. In general case, Vi, = O(n)/O(n — k).

As a space, Vi, is compact. This follows from that Vj , is a closed subspace of the k-fold
Cartesian product of S"~! because Vi,n is given by k unit vectors (T1,...,7)T in R™ that are
solutions to ¥; - ¥; = 0 for ¢ # j, and the fact that any closed subspace of compact Hausdorff space
is compact. The composite

~ T
Vk,n — Vk,n - Gk,n

is onto and so the Grassmann manifold Gy, is also compact. Moreover the above composite is a
smooth map because 7 is smooth and V} 5, is a submanifold. This gives the diagram

submanifold submersion at I},
Viw ———— M (k, - S(k
smooth

Gk,n

Note. By the construction, Gy, is the quotient of V4 ,, by the action of O(k). This gives identifi-
cations:

Gr.n = Vi /O(k) = O(n)/(O(k) x O(n — k)).

4. FIBRE BUNDLES AND VECTOR BUNDLES

4.1. Fibre Bundles. A bundle means a triple (F,p, B), where p: E — B is a (continuous) map.
The space B is called the base space, the space F is called the total space, and the map p is called
the projection of the bundle. For each b € B, p~1(b) is called the fibre of the bundle over b € B.

Intuitively, a bundle can be thought as a union of fibres f~1(b) for b € B parameterized by B
and glued together by the topology of the space E. Usually a Greek letter ( £,7,(, A, etc) is used to
denote a bundle; then F(£) denotes the total space of £, and B(&) denotes the base space of £.

A morphism of bundles (¢,4): €& — £ is a pair of (continuous) maps ¢: E(¢) — E(¢') and
é: B(€) — B(¢') such that the diagram

commutes.
The trivial bundle is the projection of the Cartesian product:

p: BXx F — B, (z,y) — x.

Roughly speaking, a fibre bundle p: E — B is a “locally trivial” bundle with a “fixed fibre” F.
More precisely, for any & € B, there exists an open neighborhood U of z such that p=1(U) is a trivial
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bundle, in other words, there is a homeomorphism ¢y : p~1(U) — U x F such that the diagram

UxF—@»V%m

T p

U———=U
commutes, that is, p(¢(z’,y)) = 2’ for any 2’ € U and y € F.

Similar to manifolds, we can use “chart” to describe fibre bundles. A chart (U, ¢) for a bundle
p: E — Bis (1) an open set U of B and (2) a homeomorphism ¢: U x F — p~1(U) such that
p(p(2’,y)) = 2’ for any 2’ € U and y € F. An atlas is a collection of charts {(Uy, ¢o)} such that
{Uy} is an open covering of B.

Proposition 4.1. A bundle p: E — B is a fibre bundle with fibre F if and only if it has an atlas.

Proof. Suppose that p: E — B is a fibre bundle. Then the collection {(U(z), ¢, )|z € B} is an atlas.

Conversely suppose that p: £ — B has an atlas. For any x € B there exists « such that z € U,
and so U, is an open neighborhood of = with the property that p|,-1(y: p~ 1 (U,) — U, is a trivial
bundle. Thus p: E — B is a fibre bundle. O

Let & be a fibre bundle with fibre F' and an atlas {(Uy, ¢4)}. The composite

_ é _ bt
bt ods: (UaNUs) x F 2 p~ YU, NUs) —2» (U, NUg) x F

has the property that
d);l o (ZSg(JC,y) = (:L‘,gag(x,y))
for any x € U, NUg and y € F. Consider the continuous map gop: Usp X F' — F. Fixing any =,
gap(x,—): F — F, y — gop(z,y) is a homeomorphism with inverse given by ggq(z, —). This gives
a transition function
gap: Uy NUg — Homeo(F, F),
where Homeo(F, F') is the group of all homeomorphisms from F' to F.

Exercise 4.1. Prove that the transition functions {gag} satisfy the following equation

(3) 9ap(2) © gy (2) = gay(z) € UaNUsNU,.
By choosing @ = 8 =7, gaa(Z) © gaa(T) = gaa(z) and so
(4) Joa(2) =12 z €U,

By choosing a =7, gas(2) © gga(x) = gaa(z) = z and so
(5) gﬁa(x) = gocﬁ(x)_l zeUy,N U/g.

We need to introduce a topology on Homeo(F, F') such that the transition functions g,s are
continuous. The topology on Homeo(F, F) is given by compact-open topology briefly reviewed as
follows:

Let X and Y be topological spaces. Let Map(X,Y) denote the set of all continuous maps from
X to Y. Given any compact set K of X and any open set U of Y, let

Wi ={f € Map(X,Y) | f(K) CU}.
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Then the compact-open topology is generated by Wi y, that is, an open set in Map(X,Y) is an
arbitrary union of a finite intersection of subsets with the form Wy r.

Map(F, F) be the set of all continuous maps from F to F with compact open topology. Then
Homeo(F, F) is a subset of Map(F, F') with subspace topology.

Proposition 4.2. If Homeo(F, F) has the compact-open topology, then the transition functions
gap: Uy NUg — Homeo(F, F) are continuous.

Proof. Given Wk, we show that g;ﬁl(WK,U) is open in U, NUg. Let g € Uy N Ug such that
9ap(wo) € Wi ry. We need to show that there is a neighborhood V' is 2 such that g.5(V) € Wk v,
or gos(V x K) C U. Since U is open and gog: (Uy NUp) x F — F is continuous, g~ '(U) is an
open set of (U, NUg) x F with g x K C g;é(U). For each y € K, there exist open neighborhoods
V(y) of z and N(y) of y such that V(x) x N(y) C g;é(U) Since {N(y) | y € K} is an open cover

of the compact set K, there is a finite cover {N(y1),...,N(yn)} of K. Let V = ﬁ V(y;). Then
V x K C g, 5(U) and so gas(V) € Wk u. - O
Proposition 4.3. If F regular and locally compact, then the composition and evaluation maps
Homeo(F, F') x Homeo(F, F) — Homeo(F, F) (9, f)— fog
Homeo(F,F) x FF —— F (f,y) — f(y)
are continuous.

Proof. Suppose that fogé€ Wk . Then f(g(K)) CU, or g(K) C f~}(U), and the latter is open.
Since F' is regular and locally compact, there is an open set V' such that
g(K)SV eV e i)

and the closure V' is compact. If ¢/ € Wi,y and f' € Wy, then f' o g’ € Wk y. Thus Wi,y and
Wy ¢ are neighborhoods of g and f whose composition product lies in Wy 7. This implies that
Homeo(F, F') x Homeo(F, F') — Homeo(F, F) is continuous.

Let U be an open set of F and let fy(yo) € U or yo € f(;l(U). Since F' is regular an locally
compact, there is a neighborhood V of yo such that V is compact and yo € V C V C g5 ).
If g € Wy and y € V, then g(y) € U and so the evaluation map Homeo(F, ) x F' — F is
continuous. d

Proposition 4.4. If F is compact Hausdorff, then the inverse map
Homeo(F, F) — Homeo(F, F') frft
18 continuous.
Proof. Suppose that g; ' € Wi r. Then g5 '(K) C U or K C go(U). Tt follows that
FNK2OF~gU)=go(F~\U)

because gp is a homeomorphism. Note that F'\ U is compact, F'\ K is open and go € Wr. v, r k-
If g € Wp v, rk, then, from the above arguments, g’1 € Wk v and hence the result. O

Note. If F is regular and locally compact, then Homeo(F, F') is a topological monoid, namely
compact-open topology only fails in the continuity of g—!. A modification on compact-open topology
eliminates this defect [1].
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4.2. G-Spaces and Principal G-Bundles. Let G be a topological group and let X be a space.
A right G-action on X means a(continuous) map p: X X G — X, (z,g9) — x-gsuch that -1 ==z
and (z-g)-h =x-(gh). In this case, we call X a (right) G-space. Let X and Y be (right) G-spaces.
A continuous map f: X — Y is called a G-map if f(z-g) = f(x) g for any x € X and g € G. Let
X/G be the set of G-orbits G, x € X, with quotient topology.

Proposition 4.5. Let X be a G-space.

1) For fizing any g € G, the map x — x - g is a homeomorphism.

2) The projection m: X — X/G is an open map.
Proof. (1). The inverse is given by z +— z - g~ 1.

(2) If U is an open set of X,
i@ U)=JU-g
geG

is open because it is a union of open sets, and so 7(U) is open by quotient topology. Thus 7 is an
open map. Il

We are going to find some conditions such that 7: X — X /G has canonical fibre bundle structure
with fibre G. Given any point Z € X/G, choose x € X such that m(x) = Z. Then

7 Nz)={z-g| g€ G} =G/H,,

where H, ={g € G | x-g =z}
For having constant fibre G, we need to assume that the G-action on X is free, namely
r-g=x — g=1
for any x € X. This is equivalent to the property that
r-g=x-h = g=h
for any € X. In this case we call X a free G-space.

Since a fibre bundle is locally trivial (locally Cartesian product), there is always a local cross-
section from the base space to the total space. Our second condition is that the projection 7: X —
X/G has local cross-sections. More precisely, for any Z € X/G, there is an open neighborhood U(Z)
with a continuous map sz: U(Z) — X such that 7o sz = idy ().

(Note. For every point Z, we can always choose a pre-image of 7, the local cross-section means
the pre-images can be chosen “continuously” in a neighborhood. This property depends on the
topology structure of X and X/G.)

Assume that X is a (right) free G-space with local cross-sections to 7: X — X/G. Let T be any
point in X/G. Let U(Z) be a neighborhood of Z with a (continuous) crosse-section sz: U(Z) — X.
Define

¢ U(Z) x G — 71 (U(@)  (§.9) — s2(9) - g
for any y € U(Z).

Exercise 4.2. Let X be a (right) free G-space with local cross-sections to m: X — X/G. Then the
continuous map ¢z: U(Z) x G — 7~ 1(U()) is one-to-one and onto. O

We need to find the third condition such that ¢z is a homeomorphism. Let
X*={(z,z-9)|z€X,gec G} C X x X.
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A function
X" — G
such that
x-7(r,2’)=2"  forall (z,2") € X

is called a translation function. (Note. If X is a free G-space, then translation function is unique
because, for any (x,2’) € X*, there is a unique g € G such that 2’ = z - g, and so, by definition,

T(x,2') =g.)

Proposition 4.6. Let X be a (right) free G-space with local cross-sections to m: X — X/G. Then
the following statements are equivalent each other:

1) The translation function 7: X* — G is continuous.
2) For any 7 € X/G, the map ¢z: U(z) x G — 71 (U(z)) is a homeomorphism.
3) There is an atlas {(Un, ¢}t of X/G such that the homeomorphisms

bo: Uy x G — 171Uy
satisfy the condition ¢ (Y, gh) = ¢y, g) - h, that is ¢ is a homeomorphism of G-spaces.

Proof. (1) = (2). Consider the (continuous) map

0: n U@) — U@ X G 2 (n(2), 7(52(m(2)), 2)).
Then

00 ¢z(y,9) = 0(sz(Y) - 9) = (4, 7(s2(9), 52(¥) - 9)) = (¥,9),

¢z 00(2) = ¢z(m(2),7(s2(7(2)), 2)) = s2(7(2)) - 7(s2(7(2)), 2) = 2.
Thus ¢z is a homeomorphism.
(2) = (3) is obvious.

(3) = (1). Note that the translation function is unique for free G-spaces. It suffices to show
that the restriction

7(X): X N (7 (Ua) x 7 HUL)) = (771 (Ua))” — G
is continuous. Consider the commutative diagram

(U x G 2% (1 (U))"

IR

T(Us X G) 7(X)

G ———=a@G.
Since
7(Ua x G)((5,9), (5:h)) = g~ 'R
)*
)~

is continuous for each « and so 7(X) is continuous. O

Y,
is continuous, the translation function restricted to (w‘l(Ua)
) o ((¢a)”

T(X)=7Us x G) o ((
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Now we give the definition. A principal G-bundle is a free G-space X such that
X - X/G
has local cross-sections and one of the (equivalent) conditions in Proposition 4.6 holds.
Example. Let I' be a topological group and let G be a closed subgroup. Then the action of G
on I' given by (a,g) — ag for a € T and g € G is free. Then translation function is given by

7(a,b) = a~ b, which is continuous. Thus I' — I'/G is principal G-bundle if and only if it has local
cross-sections.

4.3. The Associated Principal G-Bundles of Fibre Bundles. We come back to look at fibre
bundles £ given by p: E — B with fibre F. Let {(U,, ¢o)} be an atlas and let

gap: Uy NUg — Homeo(F, F)
be the transition functions. A topological group G is called a group of the bundle £ if
1) There is a group homomorphism

0: G —— Homeo(F, F).

2) There exists an atlas of ¢ such that the transition functions g.g lift to G via 6, that is,
there is commutative diagram

U NUg Jol} Homeo(F, F)

Jap

U N U3 G,

(where we use the same notation gogs.)
3) The transition functions
Japs: U, N Ug — G
are continuous.
4) The G-action on F via 6 is continuous, that is, the composite
Oxidp evaluation

G x F —— Homeo(F,F)x F ———— F

is continuous.
We write & = {(Ua, gap)} for the set of transition functions to the atlas {(Ua, ¢a)}-

Note. In Steenrod’s definition [13, p.7], € is assume to be a monomorphism (equivalently, the
G-action on F is effective, that is, if y - g = y for all y € F, then g = 1.).

We are going to construct a principal G-bundle 7: E¢ — B. Then prove that the total space
E = F xg E€ and p: E — B can be obtained canonically from 7: E¢ — B. In other words,
all fibre bundles can obtained through principal G-bundles through this way. Also the topological
group G plays an important role for fibre bundles. Namely, by choosing different topological groups
G, we may get different properties for the fibre bundle £. For instance, if we can choose G to be
trivial (that is, gag lifts to the trivial group), then fibre bundle is trivial. We will see that the bundle
group G for n-dimensional vector bundles can be chosen as the general linear group GL,(R). The
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vector bundle is orientable if and only if the transition functions can left to the subgroup of GL,,(R)
consisting of n x n matrices whose determinant is positive. If n = 2m, then GL,,(C) C GLq,,(R).
The vector bundle admits (almost) complex structure if and only if the transition functions can left
to GL,,(C). (For manifolds, one can consider the structure on the tangent bundles. For instance,
an oriented manifold means its tangent bundle is oriented.)

Proposition 4.7. If £ is the set of transition functions for the space B and topological group G,
then there is a principal G-bundle £ given by

7 E¢ —» B
and an atlas {(Us, ¢a)} such that & is the set of transition functions to this atlas.

Proof. The proof is given by construction. Let

E:UUaxGxa,

that is E is the disjoint union of U, x G. Now define a relation on E by
(b7g7oz) ~ (bl7g/7/8) —= b= blag = gaﬁ(b)g/'

This is an equivalence relation by Equations (3)-(5). Let EY = E/ ~ with quotient topology and
let {b,g,a} for the class of (b,g,a) in E¢. Define 7: E¢ — B by

m{b,g,a} =0,
then 7 is clearly well-defined (and so continuous). The right G-action on E€ is defined by
{b,9,a}-h ={b,gh,a}.
This is well-defined (and so continuous) because if (b, ¢’, 3) ~ (b, g, @), then
(¥, g'h, B) = (b, (9ap(b)9)h, B) = (b, gap(b)(gh), B) ~ (b, gh, cv).
Define ¢ : Uy x G — 7~ 1(U,) by setting
$a(b,9) = {b,9,a},
then ¢, is continuous and satisfies 7 o ¢, (b, g) = b and
¢a(b,9) ={b,1-g,a} ={b,1,a}-g

for b € U, and g € G. The map ¢,, is a homeomorphism because, for fixing «, the map

H(Ua N Uﬁ) x G x ﬂ - Ua x G (bv g/aﬂ) = (ba gaﬁ(b)g/)
B

induces a map 7~ !(U,) — U, x G which the inverse of ¢,. Moreover,

¢a(b7 gaﬁ(b)g) = {b7 gaﬁ(b)gva} = {bagaﬁ} = eﬁ(b7 g)

for b € U, NUg and g € G. Thus the {(Ua,gap)} is the set of transition function to the atlas
{Ua, da)}- g
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Let X be a right G-space and let Y be a left G-space. The product over G is defined by
X xgY =X xY/(zg,y) ~ (z,9y)
with quotient topology. Note that the composite

X ™

XxY - X - X/G

(xy) = @ 3z

factors through X xg Y. Let p: X Xg Y — X/G be the resulting map. For any T € X/G, choose
r € 1(Z) C X, then

p Hz)=7"1Z) xgY =2 xY/H,,
where H, = {g € G | zg = x}. Thus if X is a free right G-space, then the projection p: X xgV —
X/G has the constant fibre Y.

Proposition 4.8. Let 7: X — X/G be a (right) principal G-bundle and let Y be any left G-space.
Then

p: X xgY — X/G
s a fibre bundle with fibre Y.

Proof. Consider a chart (Uy, ¢o) for m: X — X/G. Since the homeomorphism ¢q: Uy X G —
7 1(Uy,) is a G-map, there is a commutative diagram

Us XY == (Uy x G) xg Y %’é 7N Us) xa Y = p *(U,)
TU, TUq p p

U e} Ua Ua UDL

and hence the result. O

Let £ be a (right) principal G-bundle given by 7: X — X/G. Let Y be any left G-space. Then

fibre bundle
p: X xgY — X/G
is called induced fibre bundle of &, denoted by £[Y].

Now let p: F — B is a fibre bundle with fibre F' and bundle group G. Observe that the action
of Homeo(F, F') on F is a left action because (f o g)(z) = f(g(x)). Thus G acts by left on F' via
0: G — Homeo(F, F).

A bundle morphism
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is call an isomorphism if both ¢ and ¢ are homeomorphisms. (Note. this means that (¢, (¢)™!)
are continuous.) In this case, we write £ = ¢'.

Theorem 4.9. Let & be a fibre bundle given by p: E — B with fibre F' and bundle group G. Let £
be the principal G-bundle constructed in Proposition 4.7 according to a set of transitions functions
to & Then £C[F] = €.

Proof. Let {(Uq, ¢o)} be an atlas for . We write b for ¢ in the proof of Proposition 4.7. Consider
the map 6, given by the composite:

an X idF

¢

7N Uy) xa F (Ua X G x @)g x F ==Uy x F —* p~'(Ua).

From the commutative diagram

b.g.y) = 0.9.92500W) iy (1) x G x ) xa F

(e 003) % G X 0 6 E 0 547 = (b gas ), 9]

(b’ y) = (b’ gaﬁ(b7 y))

(UaNUg) x F > (UsNUg) x F
= (;5[3 = ¢a
p_l(Uochﬂ) p_l(UaﬂU5)7
the map 6, induces a bundle map
G 0
E” xg F — E(§)
B(¢) B(g).
This is an bundle isomorphism because 6 is one-to-one and onto, and 6 is a local homeomorphic by
restricting each chart. The assertion follows. O

This theorem tells that any fibre bundle with a bundle group G is an induced fibre bundle of
a principal G-bundle. Thus, for classifying fibre bundles over a fixed base space B, it suffices to
classify the principal G-bundles over B. The latter is actually done by the homotopy classes from
B to the classifying space BG of G. (There are few assumptions on the topology on B such as B is
paracompact.) The theory for classifying fibre bundles is also called (unstable) K -theory, which is
one of important applications of homotopy theory to geometry. Rough introduction to this theory
is as follows:

There exists a universal G-bundle wg as m: EG — BG. Given any principal G-bundle £ over B,
there exists a (continuous) map f: B — BG such that £, as a principal G-bundle, is isomorphic to
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the pull-back bundle f*wg given by
E(f*'we) ={(z,y) € BX EG | f(x) =7(y)} — EG

(z,y) = m

B I, BG.
Moreover, for continuous maps f,g: B — BG, f*wg = g*wq if and only if f ~ g, that is, there is a
continuous map (called homotopy) F: B x[0,1] — BG such that F(x,0) = f(x) and F(z,1) = g(x).
In other words, the set of homotopy classes [B, BG] is one-to-one correspondent to the set of
isomorphic classes of principal G-bundles over G.

Seminar Topic: The classification of principal G-bundles and fibre bundles. (References: for
instance [8, pp.48-58] Or [10, 11].)

4.4. Vector Bundles. Let F denote R, C or H-the real, complex or quaternion numbers. An
n-dimensional F-vector bundle is a fibre bundle ¢ given by p: E — B with fibre F™ and an atlas
{(Us, ¢a)} in which each fibre p=1(b), b € B, has the structure of vector space over F such that
each homeomorphism ¢, : U, x F* — p~1(U,) has the property that

d)a'{b}XF”: {b} X Fn _— pil(b)

is a vector space isomorphism for each b € U,,.
Let £ be a vector bundle. From the composite

(Ua NUg) x F" 220 p= (U, NUp) 22w (Ua NUp) x F™,

the transition functions
gap: Us NUz — Homeo(F",F")
have that property that, for each x € U,g,
gop(z): F" — F"

is a linear isomorphism. It follows that the bundle group for a vector bundle can be chosen as
the general linear group GL, (F). By Theorem 4.9, we have the following.

Proposition 4.10. Let £ be an n-dimensional F-vector space over B. Then there exists a principal
GL,(F)-bundle €5 ) over B such that & = ¢SM O[], Conversely, for any principal GL,, (F)-
bundle over B, 5" (F)[F"] is an n-dimensional F-vector bundle over B. 0

In other words, the total spaces of all vector bundles are just given by E(fGL"(F)) XaL, (k) F™.

4.5. The Construction of Gauss Maps. The Grassmann manifold G, ,,(F) is the set of n-
dimensional F-subspaces of F™, that is, all n-F-planes through the origin, with the topology de-

scribed as in the topic on the examples of Manifolds. (If m = oo, F** = @ F.) Let
j=1

E() = {(V:2) € Gu(F) x F™ | z € V.
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Exercise 4.3. Show that

p: E(vy") — Gum(F) (Vix) =V
is an n-dimensional F-vector bundle, denoted by 4. [Hint: By reading the topic on the examples of
manifolds, check that V,, ,,(F) — G, (F) is a principal O(n,F), where O(n,R) = O(n), O(n,C) =
U(n) and O(n,H) = Sp(n). Then check that E(v]") = Vi, ;m(F) Xo(n,r) F™]

A Gauss map of an n-dimensional F-vector bundle in F™ (n < m < o0) is a (continuous) map
g: E(§) — F™ such that g restricted to each fibre is a linear monomorphism.
Example. The map
¢ B = F" (Viz) =2
is a Gauss map.
Proposition 4.11. Let & be an n-dimensional F-vector bundle.

1) If there is a vector bundle morphism

E(¢) —— E())

p(&) P

B(&) —Tv Gpp(®)

that is an isomorphism when restricted to any fibre of £, then qou: E(§) — F™ is a Gauss
map.

2) If there is a Gauss map g: E(§) — F™, then there is a vector bundle morphism (u, f): & —
vt such that qu = g.

Proof. (1) is obvious. (2). For each b € B(£), g(p(€)~1(b)) is an n-dimensional F-subspace of F™
and so a point in G,, ,,(F). Define the functions

f:B&) = Gum(F)  f(b) = g(p(&)~" (1)),
u: B(E) = E(v")  u(z) = (f(p(2)), 9(2))-

The functions f and u are well-defined. For checking the continuity of f and wu, one can look at a
local coordinate of ¢ and so we may assume that ¢ is a trivial bundle, namely, g: B(§) x F* — F™
restricted to each fibre is a linear monomorphism. Let {eq, ..., e,} be the standard F-bases for F™.
Then the map

h:B—F"x..- xF" b (g(be1),g(b,ea),...,q(b,en))
is continuous. Since g restricted to each fibre is a monomorphism, the vectors
{9(be1),9(b,e2),-., g(b,en)}
are linearly independent and so
(9(b,e1), g(b,e2), -, g(byen)) € Vi (F)
for each b, where V,, ,,,(F) is the open Stiefel manifold over F. Thus
hi B—> Vom(F) b (g(b,e1), 9(b,2), ., 9(b,en))
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is continuous and so the composite
h ~ quotient
f: B > Vn,m(F) > G’ﬂ’m(F)
is continuous. The function u is continuous because the composite

u

E(§) ~ E(v)
A
B x B(¢) LD 6, (5) wEm
is continuous. This finishes the proof. 0

Let £ be a vector bundle and let f: X — B(£) be a (continuous) map. Then the induced vector
f*€ is the pull-back

E(f76) ={(z,y) € X x E(§) [f(z) = p(y)} — E(§)

p
f
X > B(¢).
Proposition 4.12. There exists a Gauss map g: E(§) — F™ (n <m < 00) if and only if
£= (')

over B(§) for some map f: B(§) — Gpnm/(F).

Proof. <= is obvious.
— Assume that ¢ has a Gauss map g. From Part (2) of Proposition 4.11, there is a commutative
diagram

E(¢) —— E()

p(§) (")
f
B(§) — Gpm(F).
Since E(f*+) is defined to be the pull-back, there is commutative diagram

B(&) —% B(f4m)

p(§) p

B(¢) B(¢),

where @ restricted to each fibre is a linear isomorphism because both vector-bundle has the same
dimension and the Gauss map g restricted to each fibre is a monomorphism. It follows that
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a: E(§) — E(f*y™) is one-to-one and onto. Moreover @ is a homeomorphism by considering a
local coordinate. O

We are going to construct a Gauss map for each vector bundle over a paracompact space. First,
we need some preliminary results for bundles over paracompact spaces. (For further information on
paracompact spaces, one can see [3, 162-169).

A family of C = {C,, | J} of subsets of a space X is called locally finite if each x € X admits a
neighborhood W, such that W, N C,, # () for only finitely many indices « € J. Let U = {U,} and
V = {Vi} be two open covers of X. V is called a refinement of U if for each 3, V3 C U, for some «.

A Hausdorff space X is called paracompact if it is regular and if every open cover of X admits a
locally finite refinement.

Let U = {U, | o € J} be an open cover of a space X. A partition of unity, subordinate to U, is
a collection {\, | @ € J} of continuous functions A, : X — [0, 1] such that
1) The support
supp(Aa) € Uq
for each «, where the support

supp(Aa) = {z € X | Aa(2) # 0}
is the closure of the subset of X on which A, # 0;
2) for each x € X, there is a neighborhood W, of = such that Ay _|w, # 0 for only finitely
many indices o € J. (In other words, the supports of A\,’s are locally finite.)

3) The equation
Z Aa(z) =1
acJ
for all x € X, where the summation is well-defined for each given x because there are only
finitely many non-zeros.

We give the following well-known theorem without proof. One may read a proof in [2, pp.17-20].

Theorem 4.13. If X is a paracompact space and U = {U,} is an open cover of X, then there
ezists a partition of unity subordinate to U. O

Lemma 4.14. Let £ be a fibre bundle over a paracompact space B. Then £ admits an atlas with
countable charts.

Proof. Let {(Uy, do | @ € J} be an atlas for &. We are going to find another atlas with countable
charts.
By Theorem 4.13, there is a partition of unity {\, | @ € J} subordinate to {U, | @ € J}. Let

Vo = 2;1(0,1] = {b€ B | A\o(b) > 0}.
Then, by the definition of partition of unity, V,, C Vi, C U,. For each b € B, let
S) ={ae J| (b)) > 0}.

Then, by the definition of partition of unity, S(b) is a finite subset of J.
Now for each finite subset S of J define

W(S)={be B |Aa(b) > Ag(b) foreach a € Sand ¢S}
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= 1 Ga=2)'(0.1]:
a €S

BES

Then W(S) is open because for each b € W(S), by definition of partition of unity, there exists a
neighborhood W}, of b such that there are finitely many supports intersect with W;; and so the above
(possibly infinite) intersection of open sets restricted to W), is only a finite intersection of open sets.

Let S and S’ be two subsets of J such that S # S’ and |S| = |S’| = m > 0, where |S| is the
number of elements in S. Then there exist « € S\ 5" and 8 € S’ \ S because S # S’ but S and
S’ has the same number elements. We claim that

W(S)NW(S') = 0.

Otherwise there exists b € W(S) N W (S’). By definition W(S), Ao (b) > Az(b) because « € S and
B ¢ S. On the other hand, Ag(b) > A\, (b) because b € W(S'), € S  and a ¢ 5’.
Now define

W= | W(SO)
beB
|S] =m

for each m > 1. We prove that (1) {W,, | m =1,...} is an open cover of B; and (2) £ restricted to
Wi, is a trivial bundle for each m. (Then {W,,} induces an atlas for £.)

To check {W,,} is an open cover, note that each Wy, is open. For each b € B, S(b) is a finite set
and b € W(S(b)) because A\g(b) = 0 for 8 ¢ S(b) and A, (b) > 0 for o € S(b). Let m = |S(b)|, then
b € W, and so {W,,} is an open cover of B.

Now check that ¢ restricted to Wy, is trivial. From the above, W,, is a disjoint union of W (S(b)).
It suffices to check that & restricted to each W(S(b)) is trivial. Fixing a € S(b), for any xz € W(S(b)),
then

Nal2) > Ag(a)
for any 0 ¢ S. In particular, A,(x) > 0 for any x € W(S(b)). It follows that W (S(b)) C V,, C U,.
Since ¢ restricted to U, is trivial, £ restricted to W(S(b)) is trivial. This finishes the proof. O

Note. From the proof, if for each b € B there are at most k sets U, with b € U,, then B admits
an atlas of finite (at most k) charts. [In this case, check that W; = 0 for j > k.]

Theorem 4.15. Any n-dimensional F-vector bundle & over a paracompact space B has a Gauss map
g: E(&) — F>®. Moreover, if ¢ has an atlas of k charts, then & has a Gauss map g: FE(£) — FF™,

Proof. Let {(U;, ¢;) 11<i<k be an atlas of £ with countable or finite charts, where k is finite or infinite.
Let {\;} be the partition of unity subordinate to {U;}. For each 4, define the map g;: E(§) — F"
as follows: g; restricted to p(&)~1(U;) is given by

9i(2) = Xi(2) (p2 0 &7 ' (2)),

where ps o (bi_l is the composite

_ . n Dro jection n
P(&) (Un) e Uy x BT P
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and g; restricted to the outside of p(¢)~!(U;) is 0. Since the closure of A\;*(0,1] is contained in U;,
gi is a well-defined (continuous) map. Now define

k k
9: E(€) — @F" =F"  g(z) = Zm(z)

This a well-defined (continuous) map because for each z, there is a neighborhood of z such that
there are only finitely many g; are not identically zero on it.

Since each g;: E(£) — F" is a monomorphism (actually isomorphism) on the fibres of E(§) over
b with \;(b) > 0, and since the images of g; are in complementary subspaces of F¥", the map g is a
Gauss map. O

This gives the following classification theorem:

Corollary 4.16. FEvery vector bundle over a paracompact space B is isomorphic to an induced vector
bundle f*(y2°) for some map f: B — Gy,00(F). Moreover every vector bundle over a paracompact
space B with an atlas of finite charts is isomorphic to an induced vector bundle f*(y') for some m
and some map f: B — Gy m(F). d

Remarks: It can be proved that f*y7" = g*y if and only if f ~ ¢g: B — G, (F). From this,
one get that the set of isomorphism classes of n-dimensional F-vector bundles over a paracompact
space B is isomorphic to the set of homotopy classes [B, Gy, o0 (F)].

For instance, if n = 1 and F = R, G1,0(R) ~ BO(1) ~ BZ/2 ~ RP*>, where BG is so-called
the classifying space of the (topological) group G, and [B,RP*] = H'(B,Z/2), which states that
all line bundles are by the first cohomology with coefficients in Z/27Z. In particular, any real line
bundles over a simply connected space is always trivial.

If n=1and F = C, then G1 o(C) ~ BU(1) ~ BS! ~ CP*, and [B,CP*] = H?(B,Z), which
states that all complex line bundles are by the second integral cohomology.

If n=1and F = H, then G «(H) ~ BSp(1) ~ BS? ~ HP>, and so [B, G1,«(H)] = [B, HP*>].
However, the determination of [B, HP*°] is very hard problem even when B are spheres. If B = S,
then [B,HP>] = 7,,_1(S%) that is only known for n less than 66 or so, by a lot of computations
through many papers. Some people even believe that it is impossible to compute the general
homotopy groups 7, (S%).

Seminar Topic: Gauss Maps and the Classification of Vector Bundles. (References: for instance [8,
pp.26-29,31-33].)

A vector bundle is called of finite type if it has an atlas with finite charts. Given two vector
bundles £ and 1 over B, the Whitney sum £ @ n is defined to be the pull-back:

E(€@n) E(§) x E(n)
p(§) x p(n)
A
B - B x B.
diagonal

Intuitively, £ @ 7 is just the fibrewise direct sum.
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Proposition 4.17. For a vector bundle & over a paracompact space B, the following statement are
equivalent:

1) The bundle € is of finite type.
2) There exists a map f: B — G m(F) such that € is isomorphic to f*~y.
3) There exists a vector bundle n such that the Whitney sum § @ n is trivial.

Proof. (1) = (2) follows from Corollary 4.16. (2) = (1) It is an exercise to check that 7 is
of finite type by using the property that the Grassmann manifold G, ,,(F) = O(m,F)/O(n,F) x
O(m — n,F) is compact, where O(n,R) = O(n), O(n,C) = U(n) and O(n,H) = Sp(n). It follows
that £ = f*4)" is of finite type.

(2) = (3). Let (v/™)* be the vector bundle given by

E((yn)") ={(V,0) € Gpm(F) xF™ | 7 LV}

with canonical projection E((7)")*) — Gpm(F). Then 4" & (777")* is an m-dimensional trivial
F-vector bundle. It follows that

fromtem)) =1 e A ((n))
is trivial. Let n = f*((7/™)*). Then & @ 7 is trivial.
(3) = (2). The composite

E(§) — B(€@n) = B x F" —» F™

is a Gauss map into finite dimensional vector space, where m = dim (£ @ ). By Proposition 4.12,
there is a map f: B — G, such that £ = f*y". d

Corollary 4.18. Let £ be a F-vector bundle over a compact (Hausdorff) space B. Then there is a
F-vector bundle n such that & B n is trivial. O

In the view of (stable) K-theory, the Whitney sum is an operation on vector bundles over a (fixed)
base-space, where the trivial bundles (of different dimensions) are all regarded as 0. In this sense,
the Whitney sum plays as an addition (that is associative and commutative with 0). The bundle £
with property that £ ® n is trivial for some 7 means that £ is invertible. Those who are interested
in algebra can push notions in algebra to vector bundles by doing constructions fibrewisely. More
general situation possibly is the sheaf theory (by removing the locally trivial condition) that is pretty
useful in algebraic geometry. In algebraic topology, people also study the category whose objects are
just continuous maps f: F — B with fixed space B, or even more general category whose objects
are diagrams over spaces. In the terminology of fibre bundles, a map f: F — B is called a bundle
(without assuming locally trivial).

5. TANGENT BUNDLES AND VECTOR FIELDS

5.1. Tangent Bundles. Let M be a differentiable manifold of dimension m. As a set, the tangent
bundle

T(M) = ] Tr(M),
PeM

the disjoint union of tangent spaces. We introduce topological and differential structure on T'(M)
in three stages:
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(a) For an open subset V' C R™, T'(V) = V x R™ using the parallel translation isomorphisms at
each point. Take this differential structure on T'(V') by regarding V x R™ as a subset of R?™.
(That is, T(V) is regarded as a differentiable manifold with only one chart T'(V) & V xR™.)

(b) For a chart (U, ¢) of M, there is a bijection

Ty: T(U) — T(¢(U)) = ¢(U) x R™

which is a linear isomorphism on each tangent space Ty: Tp(M) —— Ty py(¢(U)), see
Subsection 2.4. Take the topological and differential structure on T'(U) induced by Ty.
(c) If (V,4) is another chart of M, from Diagram 1, there is a commutative diagram

T
Tp(M) —= Ty (6(U N V)
T(poo~t)
Ty
Tp(M) —> Typ)(H(UNV)),
where T'() o 1) is the linear isomorphism induced by the Jacobian matrix of the differ-

entiable map 1o ¢~ 1: ¢(UNV) — (U N V). Thus there is a commutative diagram

~

TWUAV) %L T($(U NV)) S(UNV) x R™
(6) T(pogt) (P, %) = (o ¢~ (P), Tr(y 0 o~ 1)(¥))
TWNV) % TN V)) WU AV x R™,

where Tp(1) o 1) is the Jacobian matrix of the differentiable map 1o ¢=1: p(UNV) —
(U NV) at the point P.

In other words, let {(U,, ¢«)} be a differentiable, then the tangent bundle T'(M) is a differentiable
manifold with a differentiable atlas given by

Ty : T(Us) — T(¢a(Ua)) = ¢a(Us) x R™

and transition functions given as in Diagram 6. (Note. As a topological space, T (M) is the quotient
space of the disjoint union [[T'(U,) with equivalence relation given by Diagram 6.)
(0%

Proposition 5.1. The projection w: T(M) — M, Up — P is a vector bundle over M. Moreover
1s a differentiable submersion. O

Example. The tangent bundle of spheres are given as follows:
T(S") = {(z,y) e R xR"™ | 2| =1, y L a}.

The projection 7: T'(S™) — S™ is given by (z,y) — x.
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Proposition 5.2. If f: M™ — N7 is differentiable, then Tf: TM — TN is also differentiable
with a morphism of vector bundles

Tf
TM TN
™ ™
v—I

Proof. By definition, f is differentiable means that there are atlases {(Uy, ¢o)} for M and {(Vz, ¢5)}
for N such that the composites

m _ ot - f ¥ n
R™ 2 ¢a(f 1 (Vp) NUa) —=> f7H(Vp) NUa —— Vi —> ¢5(Vs) CR
are differentiable. There is a commutative diagram

$a(f71(VB) NU) x R™ = T(¢a(f~' (V) NUa) oo T(f~'(Ve) NUa) =TT (V) N T (Ua)

S) Tf

Ty

Y(Vp) x R™ Z T(¢5(Vp)) = Z T(Vs),

where

O(P,7) = (¥po fod ' (P),D(¥po fooy’) |p (D))
and D(¢pg0 fop 1) |p is the Jacobian matrix of ¢50 fo ¢ ! at P. Thus T'f is differentiable. Since
T f restricted to each fibre is a linear transformation, (T'f, f) is a morphism of tangent bundles and
hence the result. O

5.2. Vector Fields. Let M be a differentiable manifold. A smooth cross-section X of the bundle
projection w: TM — M is called a vector field on M, that is, X: M — TM is a smooth map such
that mo X = id,,.

Let f: M — R be a smooth function and let X,Y : M — T'M be vector fields. Then the fibrewise
addition

X+Y: M —-TM b— X(b)+Y(b)
and scalar multiplication
f-X:M—>TM b— f(b) X(b)

are also vector fields on M.

Let C*°(M) denote the set of smooth functions on M. Then C*°(M) admits an algebraic structure
over R given by

(f+9)0) = f(b) +9(b)  (fg)(b) = f(b)g(b).
Let VF(M) denote the set of vector fields on M. Then VF(M) is an abelian group under X + Y
with
fgX)=(f9)X [X+Y)=fX+[fY (f+9X=FfX+gX

for f,g € C>*(M) and X,Y € VF(M). Thus we have the following.

Proposition 5.3. Let M be a smooth manifold. Then VF(M) is a module over C*>°(M). O
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Let X be a vector field and let P be a point in M. Then X admits a local expression in the
following sense:

Let (U, ¢) be a chart around P, that is ¢: U — ¢(U) € R™ such that ¢(P) = 0. There is a
commutative diagram

Xlv

U TWU) 2 T(H(U) = $(U) x R™

T proj.

o(U).
Thus

™) T, 0 X|p(Q ( ZfU W)

for Q@ € U. If (V,4) is another chart around P with ¢ (P) = 0, then the change of coordinates is
obtained from the diagram

BUAV) X R™ = T((U N V) 22 T N V) 22 T(6(U N V) = 6(U N V) x R™

us proj.

Y ¢

H(UNV) < Uunv

dUNV).

Now we are going to describe an action of VF(M) on C*°(M). Let X be a vector field and let
f be a smooth function on M. Then X f is a smooth function on M defined as follows:

Given any P € M, let (U, ¢) be a chart around P such that ¢(P) =

(®) ZsU A 207 )

xl
The picture is as follows:

X|u T (2,7) = Di(fv o dp™")(x)

U - TU — 8 T(6(U)) = $(U) x R™ R
m
U ¢ - o(U) fluog™ C R

Exercise 5.1. Let X be a vector field on M and let f: M — R be a smooth function. Prove that
X f is well-defined smooth function on M. [Hint: Since smooth is local property, it suffices to check
that X f is well-defined, that is, to check that if (V) is another chart around P such #(P) = 0



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 41

and 1) o 1 smooth on ¢(U N V) then

va » Zév L

by using chain rule. Note. From the proof, we need the condition that 1 o ¢! is differentiable. So
the definition of X f depends on the differential structure of M.]

The proof of the following proposition follows from the definition.
Proposition 5.4. The action of VF(M) on C°° (M) satisfies the following rules:
X(f+9)=Xf+Xg X(fo)=Xf-g+[ Xg
for X e VF(M) and f,g € C*(M). In other words, for each X € VF(M), the operation
i C%(M) —= C=(M) [ X[
is a derivation on the algebra C°(M). O

Let Der(C°°(M)) denote the set of derivations on C°°(M). Then Der(C*°(M)) is a module over
C°° (M) under the operations: for Dy, Dy € Der(C*°(M)) and g € C*°(M), the derivations Dy + Dy
and gD; are given by

(D1 + D2)(f) = Di(f) + D2(f)  (9D1)(f) =g D1(f).
Theorem 5.5. The function
&: VF(M) —— Der(C¥(M)) X — Dy
is an isomorphism of C*°(M)-modules.

We need a lemma for proving Theorem 5.5.

Lemma 5.6. Let h be a smooth function defined on a neighborhood U of P on M. There is a
(small) neighborhood V' of P such that V C U, and a smooth function g on M such that g = h on
V and g =0 on the complement M U of U

Sketch. First choose a small open neighborhood W of P such that W C U. For W, check that there
are small €1- and ex-neighborhoods V,; C V., C W of P with €3 > €1, and a smooth function f with
0<f<1,f=1onV, and f=0o0n M \V,,.

Next define HOMQ) 0cu
or S
g(Q){ 0 for Qe M\U.

Proof of Theorem 5.5. Since
Pxiy =®x + Py Pyx =gPx,

the function ® is a morphism of C'°°(M)-modules.
Step 1. Ker(®) = 0.

Let X be a vector field on M such that Dx = 0, that is X f = 0 for all f € C°°(M). For each
P e M, let (U,¢) be a chart around P with ¢(P) = 0, from Equation 8

ZgU ¢ >( 0)=0 for any f e C®(M).
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Let h; be smooth function defined on a small neighborhood of P such that h; o ¢~ =27 on a
small neighborhood of 0. By Lemma 5.6, there exists f; € C°°(M) such that f; = h; in a small
neighborhood of P. By inputting f; into the above equation,

0= (X£)(P ZgU N ZgU 0 =g w)P)

for j=1,...,m. Thus

m

ZEU axz =
for any given P € M and so X = 0, that is Ker(q)) =0.

Now we are going to show that ® is onto, that is, given any derivation D on C*°(M), we construct
a vector field X such that Dx = D, by two steps.

Step 2. If f is a smooth function on M such that f = 0 at all points of an open set U of M, then
Df=0onU.

Let P be any point in U. By Lemma 5.6, there are neighborhoods Up and Wp of P, and a
smooth function fp € C*°(M) such that

WpCUpCU, frlwe=1 fpluww,=0.

Set g =1— fp. Then gf = f because, if @ € Up, then f(Q) = 0 and g(Q)f(Q) = f(Q) = 0 for
Q € Up, and if Q ¢ Up, then g(Q) =1 — fp(Q) =1, and so g(Q) f(Q) = f(Q) for Q & Up.
Now since D is a derivation, Df = D(gf) = (Dg)f + g(Df) and so, for any given P € U,

(Df)(P) = (Dg(P))f(P)+g(P)(Df(P)) = (Dg(P))-0+0-(Df(P)) =0

because f(P)=0and g(P)=1— fp(P)=1—-1=0as Pe Wp CU.
Step 3. Construct the vector field X : M — TM such that X f = D(f) for any f € C>®(M).

Let P be an arbitrary point in M, and let h be any smooth function defined on a neighborhood
V of P. By Lemma 5.6, there a neighborhood U (U C V) and an f € C°°(M) such that f = h
on U. If f/ € C®°(M) is also equal to h on U, then, by Step 2, Df = Df’ on U. Hence, for any
f € C™(M) agreeing h on a neighborhood of P, the value of Df at P is independent on the choice
of f.

Now let (U, ¢) be a chart around P. By Proposition 1.3, there exist real numbers a', a2,
R such that

,at e

n o b1
© pn)(p) =Y X020 (py

=1

for any h € C°°(U), where a' depends on D and P but is independent on h. Define a function
X: M —TM, P+~ X(P),such that

TsoX(P)=) a o
i=1

Then, for any f € C°(M), (X f)(P) = (Df)(P) for any given P and so X f = Df.
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To show that X is smooth, it suffices to show that X is smooth in a small neighborhood of P.

Let h; € C*°(U) such that hj o ¢! = 27. By lemma 5.6, there exists a small neighborhood Vi
(V; CU) of P and f; € C>°(M) such that f; = h; on V;. From Equation 9,

Za 02 (@)=

for @ € V;. Thus @’ is smooth on V; and so X is smooth on ﬂ V;. This finishes the proof. O
j=1

One of the important consequences of Theorem 5.5 is to discover the Lie algebra structure on
vector fields, namely, given vector fields X and Y, we can construct canonical new vector field [X, Y]
called commutator product or bracket of X and Y.

Let’s first look at the structure on Der(C°(M)). Let D1 and Dy be two derivations on C*°(M).
The commutator product [Dy, Da]: C*°(M) — C*°(M) is linear map defined by

(D1, Do(f) = D1(Da(f)) — Da(D1(f))-

Lemma 5.7. Let Dy, Dy be derivations on C°(M). Then [D1, Ds] is also a derivation on M.
Moreover the following identities hold:

(10) [D1, D2} = —[D2, D] [D1, [D2, D3]] + [D2, [D3, D1]] + [Ds, [D1, Do]] = 0.
The latter is called Jacobi identity
Proof.

[D1, D2](fg) = D1(D2(f9g)

= Di(D2(f)g + [D2(9)) — D2 )
= D1(D2(f))g + D2(f)D1(g9) + D1(f)D2(g) + fD1(D2(g))
—D2(D1(f))g — D1(f)D2(g) — )D1(g9) — fD2(D1(g))

= ([D1, D:)(f))g + f([D1, D2](g))-
Check the Jacobi identity by yourself. O

Dy(D1(fg))

) —
(D1(f)g +gD1(f))
(
Da(f

Now given vector fields X and Y, then Dx and Dy are derivations on C*°(M). By Theorem 5.5,
there is a unique vector field [X, Y] such that

Dixy) = [Dx, Dy]
because [Dyx, Dy] is also a derivation. In other words,
(X, Y]f = X(Yf) = Y(X])

for all f € C*°(M). (Note. The composition f — X (Y f) does not define a vector field in general
because it is not a derivation.)
Exercise 5.2. Prove the following identities for the bracket of vector fields:

(1), [X +Y,2] = [X, 2] + [V, 2);

(2). [X,Y + 7] = [X, Y]+ [X, Z];
( V] = -y, X];
(
(

) [
3). [X,
4). [fX,gY) = Fg[X.Y] + [(Xg)Y — g(Y )X, for f,g € C=(M);
5. X[V, 2]l + [V, [2, X]| +[Z,[X, Y]] = 0
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Let F be any field. A vector space V' (possibly infinitely dimensional) is called a Lie algebra over
F if there is a bi-linear operation: [X,Y] for X,Y € V such that

(X, Y]=-[V,X] [X,[Y,Z]]+[V,[Z X]| + [2,[X,Y]] = 0
forall X,Y,Z V.

Theorem 5.8. Let M be a smooth manifold. Then VF(M) is a Lie algebra over R and ®: VF(M) —
Der(C*(M)) is an isomorphism of Lie algebras. O

5.3. Vector Fields on Spheres. In this subsection, we consider the very classical problem of
determining when a sphere S™ has a single unit vector field on it. A unit vector field means a vector
field X : S™ — T'S™ such that | X(P)| = 1 for each P. Note that

TS™ ={(P,¥) e R"" @R"™ | |P|=1,P -7 =0}.
Thus a vector field X : S™ — T'S™ can be written as a map
P (Pa ¢X(P))7

where ¢y : S™ — R™"! is a smooth map such that P - ¢x(P) = 0. Conversely, any smooth map
¢: S™ — R™! such that P - ¢(P) = 0 defines a vector field X. If X is a unit vector field, then the
smooth map ¢x: S — R™t! satisfies two equations:

lo(P)l =1 P-¢(P)=0
for all P € S™. The first equation tells that ¢x is a smooth map from S™ — S™.

Proposition 5.9. If S’jfl has k orthogonal unit vector fields X, ..., Xy, then S"4=1 has k orthog-
onal unit vector fields X1, ..., Xj.

Proof. By the assumption there are maps ¢;: S"~! — R"™ such that
P-¢i(P)=0  ¢i(P)-¢;(P) = dy
for all P € S" ! and 1 <4i,j < k. Consider S™~! as the join of g-copies of S™"~1, that is,
q
gt = {<t1p1,t2p2,...,tqpq> (R =R Pes o<t <1 1 1}'
i=1
Define ¢;: §"4~1 — R™ by
Gi(t1Pr taPa, . g Py) = (1103(P1), 1204(P2), - .. 10i(Py)).
Then P-¢;(P) = 0 and ¢;(P) - ¢;(P) = d;; for all P € §™4~1. This defines k-orthogonal unit vector
fields on S™7—1, O
Corollary 5.10. Every odd sphere 5?9~ has a unit vector field on it.

Proof. Tt suffices to show that S! has a unit vector field, which is just given by ¢: S — S, (z1,22) —
(—.’L‘Q, ml). Il

Proposition 5.11. If S™ has a unit vector field, then there is a deformation H: S™ x [0,1] — S™
such that

H(P,0)=P H(P,1)=-P
for all P € S™.
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Proof. By the assumption, there is a map ¢: S” — R"*! such that P-¢(P) = 0 and |¢(P)| = 1 for
all P € S™. Define H: S™ x [0,1] — S™ by
H(P,t) = cos(nt) P + sin(nt)¢p(P).

Then H(P,0) = P and H(P,1) = —P for all P € S™. [Note. This deformation is on the great
circle from P to —P in the direction ¢(P).] O

The proof of the following theorem uses a result from algebraic topology that the antipodal map
a: S™— S™ x+— —x is homotopic to the identity map if and only if n is odd.

Theorem 5.12. The sphere S™ admits a unit vector field on it if and only if n is odd. Thus any
even sphere has no unit vector fields.

Proof of the case n = 2 by assuming fundamental groups. We only prove that S2? has no unit vector
fields. Let SO(n) be the subgroup of O(n) consisting of orthogonal matrices of determinant +1.
There is a principal G-bundle:

S0(2) —L+ SO(3) —» 52,
which can be obtained by considering

5% ={(1,0,0)- A | A€ SO(3)}

the orbit space.
Suppose that S? has a (continuous) unit vector field. Then there is a (continuous) map ¢: S? —
R3 such that z - ¢(x) = 0 and |p(z)| = 1 for all x € S?. Define a map s: S — SO(3) by

z x ¢(x)
Then s is a cross-section to the bundle projection 7: SO(3) — S?2, that is 7 o s = idgz. Define
0: 5% x SO(2) — SO(3) (x,9) — s(x)-g.

Then 6 is continuous, one-to-one and onto and so 6 is a homeomorphism because these are compact
spaces. By applying the fundamental groups,

0, m(S? x SO(2)) = m1(S?) x T (SO(2)) —> 11 (SO(3)).
By using the facts that m(S?) = 0, SO(2) = S1, m1(SY) = Z, 71 (SO3)) = Z/2, 0.: Z = Z/2 and
hence a contradiction. g

6. RIEMANN METRIC AND COTANGENT BUNDLES

6.1. Riemann and Hermitian Metrics on Vector Bundles. If z € R, let T = z, and if
z=x+1iy € C, let Z=x —iy. Let F denote either R or C.
Let V' be a vector space over F. An inner product on V is a function g: V x V — F, the field of

scalars, such that

1) Blav+ad'z',y) = aB(z,y)+d' B(z',y), Bz, by+b'y") = bB(x,y)+V B(x,y) for z, 2" y,y € V

and a,a’,b,b' € F.
2) B(z,y) =By, ) for z,y € V.
3) B(z,xz) > 0in R and B(z,z) = 0 if and only if z = 0.
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With an inner product § on V we can define what it means for x and y to be perpendicular, that
is, B(z,y) = 0. On R™ and C™ there is a natural inner product, the Euclidean inner product, given

by B(x,y) =z -y = > x;5;- These formulas hold for R* and C*°.

i=1
Definition 6.1. Let & be a real or complex vector bundle over B. A Riemannian or Hermitian
matric on £ is a function §: E(§ @ ) — F such that, for each b € B, [ restricted to the fibre
p~1(b) x p~1(b) is an inner product on p~!(h). The Riemannian metric refers to F = R and the
Hermitian metric to F = C.

For instance, Let €¥ be the k-dimensional trivial bundle over B. Then B(b,z,2') = x -2 is a
Riemannian metric in the real case and Hermitian metric in the complex case.

Theorem 6.2. Fvery real or complex vector bundle with a Gauss map has a Riemannian or Her-
mitian metric.

Proof. Let g: E(§) — F* be a Gauss map. Define §: E(£ ®£) — F by the relation
B(b,z,z") = g(b,x) - (b, ")

for z,2’ € p~1(b). Since g is continuous and a linear monomorphism on each fibre, 3 is a Riemannian
metric or Hermitian metric. g

Corollary 6.3. FEvery vector bundle over a paracompact space has a metric.

Theorem 6.4. Let

0—>¢—>n—>(—>0
be a short exact sequence of vector bundles over B, that is, restricted to each fibre, u is a linear
monomorphism, Im(u) = Ker(v), v is a linear epimorphism, and u,v are identity on the base-space
B. Let B be a metric on n. Then there is a morphism of vector bundles w: & ® { — n splitting
the above exact sequence in the sense of the following commutative diagram

0 S - 0

i J
0 - ¢ Y
where i is the inclusion of the first factor, and j is the projection onto the second factor.
Proof. Let & denote Imu, where E(£') C E(n. Let E(¢’) be the subset of 2’ € E(n) such that
B(z,2") = 0forall x € E(¢') with p,(x) = p,(2'). (That is, ¢’ is the fibrewise orthogonal complement
of ¢'.)

The composite

><4>0

)

vl ('S —=¢
is a bundle isomorphism over B because it is an linear isomorphism on each fibre and identity on
the base-space.
Define w to be the composite

u®(vler) 7t , fibrewise addition
e A

wiew¢ UL g
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Then w is a bundle isomorphism because it is a linear isomorphism on each fibre and identity on
the base-space.

The commutativity of the diagram follows from the construction of w. This proves the theorem.

O

Corollary 6.5. Let

B ———— B
be a morphism of vector bundles.

(1). If u is a linear epimorphism on each fibre and £ has a metric, then

t=nad

for some vector bundle & over B.
(2). If u is a linear monomorphism on each fibre and n has a metric, then

n=EDC
for some vector bundle { over B. O
Example 6.6. Let f: M — N be a smooth immersion. Then there is morphism of vector bundles
Tf.:TM — TN

which is a linear monomorphism on each fibre. Consider the commutative diagram

™ %+ prN Y TN
pull back
M——M / N,

where v is a linear monomorphism on each fibre and v: E(f*T(N))y, — T¢@) N is an isomorphism.
If M is paracompact, then every vector bundle over M has a metric and so the vector bundle f*T'N
has an orthogonal decomposition

TN =TM ®vM.

The vector bundle vM — M is called the normal bundle of M with respect to the immersion f.
(For smooth curves in R? or R3, one can check that vM consists of normal vectors.) If M is a
submanifold of N, the normal bundle can be used for constructing so-called tubular neighborhood
of M. 0

Seminar Topic. The exponential map and tubular neighborhoods. [Reference: Serge Lang, dif-
ferential manifolds, pp.95-98.]
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6.2. Constructing New Bundles Out of Old and Cotangent Bundle. Let F be R, C or H.
Let V be the category of all finite dimensional F-vector spaces and all linear isomorphisms. Let

T:VxVx-V—>Y

be a functor in k variables, that is,
1) to each sequence (V1,..., V) of vector spaces T(Vi,..., Vi) € V and
2) to each f;: V; — W, for 1 <i < k of linear isomorphisms an isomorphism
T(fl,...,fk): T(Vl,...,Vk) e T(Wl,...,Wk)
so that
3) T(idvl, e ,idvk) = idT(Vl,H.,Vk) and
4) T(fl Ogla"'afk ng) :T(fl77fk) oT(gla"'agk:)-

A functor T: V x --- x V — V is called continuous if T(f1,..., fr) depends continuously on
f17 ey fk~
Let T: Vx---xV — V be a continuous functor of k variables, and let &1, ..., & be vector bundles

over a common base-space B. Then a new bundle over B is constructed as follows. For each b € B
let

By =T(Fy(&1), - -, Fu(&r))-
Let E denote the disjoint union of F} and define p: E — B by p(Fy) = b.

Theorem 6.7. There exists a canonical topology for E so that p: E — B is a F-vector bundle over
B with fibre Fy.

The bundle is denoted by T'(&1, ..., &k).

Proof. Let & be n;-dimensional F-vector bundle over B. There is a principle GL,, (F)-bundle

§SL"1'(F) given by m;: E; — B such that §; = fiGL"" ® [F™i] is given by
E; XGL,. (F) F* —— B.
Let m = dimp T'(F™,...,F™). Since T is continuous functor, the function

T: GL”l(]F) X X GLnk(IF) - GLm(F) (flw“afk) }_)T(flaafk)

is continuous group homomorphism.
Let the group GLy, (F) x -+ x GL,,, (F) act on F™ via T, that is, the action is given by

(fla"'7fk) X = T(f17>fk)(x)
for x € F™ and f1,..., fx € GL,,(F). Then the vector bundle p: E — B is given by the pull-back

E (E1 X+ X Eg) XGL,, (F)x-xGLy, (F) F™
p T X oo X Tk
A
B » Bx---xB

and hence the result. O
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Remark 1. There is a different proof by looking at local coordinate system. Our proof here is to
use the fact that any vector bundle is the induced from a principal G-bundle. Similar results works
for general fibre bundles.

Remark 2. From the proof, the new bundle T'({y, ..., &) is obtained from a new bundle over the
self Cartesian product of B via the diagonal map.

Proposition 6.8. Let & be a vector bundle over B. Then there is a canonical dual bundle £ over
B such that each fibre is the dual vector space of the corresponding fibre of €.

Proof. The left action of the general linear group on F” induces a canonical right action on the dual
space of F™ and then switch it to the left action. O

Let {gap be the transitive functions of ¢, that is, gos is obtained from
-1

n @ _ Pa n
(Ua NUs) X F" 22 p~'(Ung) 25 (Ua N UB) X E (b,2) = (b, gas (b, 2)).

Then the transitive functions for £* are given by (g;é) .

In differential geometry, it is important to construct new bundles out of old. For differentiable
manifolds, we can start with the tangent bundles and then construct various new bundles from the
tangent bundles. Below we list some examples:

1. The Whitney sum & & n is induced from the functor T: V x V =V, (V, W) — V & W.

2. The dual bundle £* is induced from the (contravariant) functor T'(V) = V* = Hom(V, F).

3. The vector space Hom(V, W) of linear transformations gives a functor 7': V°P xV — V), where VP
is the opposite category of V by changing the linear isomorphism f to be f~!. [Note. Hom(V, W)
is contravariant on V]

4. T is obtained by the vector space of all symmetric bi-linear transformations from V' x V to W.
5. The tensor product V @ W. [We will go through tensor products.]

6. The k-th symmetric product of V. [We will go through symmetric products.]

7. The k-th exterior product of V. [We will go through exterior products.]

8. The vector space of all 4-linear transformations K: V x V x V x V x V — R satisfying the
symmetry relations:
K(’Ula V2, V3, 'U4) = K(U?n V4, V1, UZ) = _K(U17 V2, U4, 103)7
K (v1,v2,v3,v4) + K (v1,v4,v2,v3) + K(v1,v3,v4,v2) = 0.

[This last example is from the theory of Riemann curvature.|
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6.3. Cotangent Bundles and Co-vector Fields. Let M be a differentiable manifold. The cotan-
gent bundle T*M is defined to be the dual bundle of the tangent bundle of M.

Proposition 6.9. If a vector bundle & has metric, then £ is isomorphic to its dual bundle £*.

Proof. Let (—,—): V xV — F be any inner product on V. There is a canonical linear isomorphism
0:V — V* defined by

0(y)(z) = (z,y).
We just need to show that 8 induces a bundle isomorphism. Let {g,3} be transitive functions for
&. From the commutative diagram

(Ua e UB) % Fn X Fn iﬁ» pgl(Ua N Uﬁ) (b7x’.’l?,) = (b7ﬂ($71’/)l (Ua N Uﬂ) % TF

id Xgag(b, 7) X gag(b, 7)

! !
(Ua NUs) x F" x B —22 pe " (Ua NUp) (b2, 2) = 6.5=,29) ¢ A Us) x F,

the transitive functions g,s preserves the inner products, that is,
(908(b, ), gap(b,y)) = (2, y).
By using this, we check that the following diagram

0
(UaNUg) x F* — (U, NUg) x Hom(F", F)

id xgapg(b, —) id x (Qaﬁ(ba_)_l)*

0
(UaNUg) x F* — (U, NUg) x Hom(F", F)
commutes.
Let pa: (Uy NUg) x Hom(F™,F) — Hom(F™,F) be the projection to the second coordinate. For
any (b,x) € (UyNUg) x F™ and y € F", then
P20 00 (id Xgap(b, 7)(y) = (Y, gap(b, ))
= <gaﬁ(bv z),gag(b, 5L’)> = <Za 1L’>,
where z = go5(b,—)"(y), and

pro (idx x (gas(d, ) 71)") 0 006,2) () = (gas(b, ) (1), 2) = (2,).
Thus the above diagram commutes and hence 8 induces a bundle isomorphism. O

Corollary 6.10. Let M be a paracompact differentiable manifold. Then the cotangent bundle T M
1s isomorphic to the tangent bundle T M.

Note. The geometric means of tangent bundle and cotangent bundle are different. The local
coordinate system for tangent bundle is given by {a%i}, while the local coordinate system for the
cotangent bundle is {dz;}, where dx; is the differential of the function (z1,...,2,) — x; which is
the dual of 9; = B%L
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Let M be a differentiable manifold. A (smooth) cross-section of the cotangent bundle p: T*M —
M is called a covector field or 1-form. In other words, a 1-form is a smooth map w: M — T*M
such that p ow = idy,.

For a (smooth) function f on an open set U, in R™ or indeed on a manifold, and a tangent vector
vp at p € U, all the following are equal:

i) v,(f), the value of the directional derivative v, on the local function f;

ii) df (p)(vp), the value of the differential of f at p on the vector v,, which, as v varies, expresses
df (p) as a covector at p;

iii) fi(vp), the image of v, under the derivative of f;

iv) [fo7]f(p), the equivalence class of curves representing f.(v,) when the class [y], represents
Up;

iv) (fo7v)’(0), the classical notation for the derivative of the real-valued function f o~ of a real
variable.

Strictly speaking, (iii) and (iv) should be thought of as tangent vector to R at f(p) and the other
three as real numbers, but modulo parallel translation they are the same. We urge the reader not
to become overwhelmed by this plethora of definitions. It is precisely the fact that there are so
many different ways of looking at essentially the same object that leads to the beauty and power of
differential geometry and analysis.

7. TENSOR BUNDLES, TENSOR FIELDS AND DIFFERENTIAL FORMS

7.1. Tensor Product. The construction of tensor product is actually an algebraic question. Let
R be aring. If A and B are right and left R-module, respectively, a middle linear map from A x B
to an abelian group C'is a function f: A x B — C such that

(11) flar + az,b) = f(a1,b) + f(az,b),
(12) f(aa bl + b2) = f(a7b1) + f(aa b2)a
(13) f(ar,b) = f(a,rd)

for a1,as,a € A, by,bo,b € B and r € R.
The tensor product, denoted by A ® g B (or simply A ® B is the ground ring R is clear), is
universal object with respect to middle linear maps in the follows sense:

There is a middle linear map i: A x B — A®pg B with the universal property that, for any
middle linear map f: A x B — C, there is a unique linear map f: A®g B — C such that
f=/foi: Ax B — C, that is, there is a commutative diagram

Ax B —'s A®rB
f

Ax B ! C.

By using this universal property, the tensor product A ® g B is unique up to isomorphism (if it
exists). The explicit construction of A ® B is given as follows:
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A ®p B is the quotient of the free abelian group generated by A x B by the subgroup
generated by:
i) (a1 + az2,b) — (a1,b) — (az,b);
ii) (a,b1 +ba) — (a,b1) — (a,ba);
iit) (ar,b) — (a,rd).
The image of (a,b) in A ®r B is denoted by a ® b. By the construction, the elements in A ® g B
can be given by the finite linear combination Y n;a; ® b; for n; € Z,a; € A and b; € B.
Recall that the rules for left R-modules are Zgiven by
i) r(a+b) =ra+rb;
ii) (r+ s)a=ra+ sa;
iii) r(sa) = (rs)a; [This one is changed to be (as)r = a(sr) for right R-modules.]
iv) For unitary modules, la = a.

For a commutative ring R, a left R-module can be regarded as a right R-module, where the right
action is given by
ar =ra.

[Note. One need to be careful about left and right R-modules in case that R is non-commutative.
Namely if we want to switch a left R-module to a right R-module by the above formula, we need to
redefine the multiplication structure in R given by r x s = sr.]

Similarly, general speaking, A ®r B is only an abelian group. But for a commutative ring R,
A ®pr B admit an R-module structure by the following proposition.

Proposition 7.1. Let R be a commutative ring. Then A @ B is an R-module with the R-action
given by
r- Zniai X bZ = Zni(air) X bz

Proof. Consider the function:

¢: RxZ(Ax B) —= A® B (s,Y ni(ai,b) =Y ais®b;,

where Z(A ® B) is the free abelian group generated by A x B. Since
(a1 +a2)s®@b=a15®@b+as®b
as ® (by + b)) = (as) ® by + (as) ® by
(ar)s@b=a(rs) @b=a® (rs)b=a® (sr)b = a® s(rb) = as @ rb,
the map ¢ factors through the quotient R x A ® g B, that is, there is a commutative diagram

RxZ(AxB) 2s AcnB

Rx Ao B -t AwpB.
Now it is straight forward to check that the rules for R-modules hold. g

Proposition 7.2. The tensor product has the following basic properties:
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1) If R is a ring with identity, then
ARrR=2A and RIr B= B

for right unitary R-module A and left unitary R-module B.
2) Associativity:
(A®rB)®s C 2 A®Rr (B®s C)
for rings R and S, right R-module A, left R-module and right S-module B, and left S-
module C.
3) There are group isomorphisms

(EBAz) orB=A or B

i€l

Aer | DB | 2P Aw B,
jeJ jeJ
for right R-modules A;, A and left R-modules B, B.
4) If R is commutative, then there is an isomorphism of R-modules

A®r B>~ BQ®gA.

5) Adjoint associativity: For rings R and S, right R-module A, left R-module and right S-
module B, left S-module C, there is an isomorphism of abelian groups

a: Homg(A®p B,C) = Hompg (A4, Homg (B, C))
defined for each f: ARr B — C by
[a(f)(a)](b) = fla®b).
Sketch. We ask the reader to finish the proof as an exercise:
(1). The isomorphisms are given by
a—a®l b—1®Db

fora e Aand b € B.
(2). Check that
(a®@b)®@c—a® (b®c)

induces a linear isomorphism.

(3). Check that

(Zm) ®b'—>2ai®b
a® ij HZG@I)J'
J J

induces an isomorphism.
(4). Check that a ® b+— b® a induces an isomorphism.
(5). Construct the inverse 8: Hompg(A, Homg(B,C)) — Homg(A ®r B,C) by

[6(9)l(a ®b) = [g(a)](b).
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O
Corollary 7.3. Let V and W be vector spaces over a field. Then
1) dimV @ W = (dim V)(dim W) if V and W are finitely dimensional;
2) Oyw: V*@W = Hom(V,W) given by
[Ov.w (f @ y)l(z) = f(z)y.
3) (VW) 2V W*;
Proof. Let F be the ground field. (1). Let dimV = n and dim W = m. Then
VoW 2F'gF" EB F @p F 2 F»™.
1<i<n
1<5j<m
(2). Let W=D, ;F. Then
view=@v:oF 224 @ Hom(V,F) = @ Hom(V, W).
jeJ T jes
[Note. One can directly show that # is an isomorphism.
(3).
(VeW)* =Hom(V @ W,F) 2 Hom(V,Hom(W,F)) = Hom(V,W*) 2 V* @ W*.
O

Corollary 7.4. Let £ and n be vector bundles over a space B. Then the vector bundle Hom(&, n)
isomorphic to £* ® n.

Note. One need to be careful for tensor product over which ring (if the ground ring is unclear).

For instance, C ®¢c C = C is a 2-dimensional real space, while C ® g C is a 4-dimensional real space.

7.2. Tensor Algebras. Let R be a commutative ring with identity. A unitary R-module A is
called an (associative) algebra if there is multiplication

w:ARrA— A
[Note. Any middle linear map A x A — A induces a unique linear map A @z A — A.] and a unit
n: R — A
such that

1) p and n are morphisms of R-bi-modules;
2) unitary property: there is a commutative diagram

ida ®n N ®idg

AQF —— A® A Fo A
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3) associative law: there is a commutative diagram

id
AodeA P4 404
id®up 7
A® A o A

Note. Write a - b for u(a ® b). From (1), n(r) =n(r-1) =rn(1). Let e = n(1) € A, then by (2) we
have
a-e=a-n(l)y=a=cec-a.
The map n: R — A is multiplicative because
n(r) -n(s) = [ra(D)] - [s - n(1)] = rs[n(1) - n(1)] = rsn(1) = n(rs).

Exercise 7.1. Let A and B be algebra over R. Show that A®g B is also algebra over R under the
multiplication

(a®b)-(d @b)=(a-ad)@(b-V.
Let V be an R-module. The tensor algebra T(V') is defined by

oo

T(V)=ver

i=0
as an R-module, where V®° = R and
VR — V QrV ®r--QrV

is the n-fold self tensor product of V over R. The elements in T(V) can be written as (non-
commutative) polynomials
o0
F=Y_f
i=0

with only finitely many f; # 0, where f; € V®? called the i-homogeneous component of f.
Let n: R — T'(V) be the inclusion and let

p: T(V)@rT(V) — T(V)
be induced from the formal product:

(V®a) QR (V®b) V®a+b7

that is, if f = Y fi and g = Y g; with f;,g; € V®?, then
=0 1=0

fra=ult9)=> > fig

k=0i+j=k
The above multiplication and unit make T(V) to be an algebra over R called the tensor algebra
generated by V.

Proposition 7.5. The tensor algebra T(V) has the following universal property:
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Let A be any algebra and let f: V — A be any R-linear map, then there is a unique
algebraic map f: T(V) — A such that fly = f

Proof. Let f: T(V) — A be the map such that f restricted to V®" is given by
flar®--®an) = f(ar) - flas)--- flan)

for a; € V. Then f is an algebraic map such that f|y = f
Let ¢: T(V) — A any algebraic map such that ¢|y = f. Then

Plar ® -+ @an) = f(a1) - flaz) - flan)
foraiEVandsogb:f. O

Note. Let the ground ring R be a field and let V' be an m-dimensional vector space. Let {e1, ..., e}
be a basis for V. Then

eil ® ...eik7
1<iy,...,i, < m, is a basis for VO,

7.3. Graded Modules, Graded Commutative Algebras and Exterior Algebras. Let R be
a commutative ring with identity. A graded module M means a direct sum

o0
M = EB M,,.

n=—oo

A graded map f: M — N means

@an @M—»N @N

n=—oo n=—oo

for f,: M, — N,. Let M and N be graded modules. Then M ®r N is a graded module in the
sense that
(oo}

MerN= P | P MieN;|,

n=-—oo \it+j=n
in other words,

(M@r N)w= € M;®N;.
i+j=n

For graded modules M and N, let

T:M®r N —> Nog M
be the graded map such that T,, is given by
Tp: (M ®gr N @ M; ®g Nj ———— By D77 @ N; ®@r M,
i+j=n j+i=n
where 7(a ® b) = b® a. In other words
T(a®b) = (-1)tlh @ a
for a € M| and b € Ny
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A graded R-module A is called a graded algebra if A admits a graded multiplication p: AQr A —
A and a graded unit n: R — A, where R is regarded as a graded ring in the sense that (R)y = R
and (R), = 0 for n # 0. A graded algebra A is called commutative if the diagram

T
ARrA — A®RrA

commutes, in other words,
a-b= (,l)lallb\b .a

for a € A\a\ and b € A\b|
For graded algebras A and B, the graded module A ® p B has the multiplication given by the
following exercise.

Exercise 7.2. Let A and B be graded algebras over R. Show that AQg B is a graded algebra under
the multiplication:

idg ®TQ®idp HARUB
[ ——

A®rB®R®r A®r B ARrA®r B®r B —— AQ®Rr B.

Proposition 7.6. Let R be a commutative ring with identity and let V' be a graded R-module. Then
T(V) is a graded R-algebra. O

Proposition 7.7. A graded algebra A is commutative if and only if the multiplication p: AQr A —
A is an algebraic map.

Proof. Suppose that A is commutative. Then there is a commutative diagram

AopAop Aoy A SA9TOMA o A epdon A " Agp, A
ida ®p ®ida 4
AgpAopAop A 99RO Asna
e p po(p®ida)
A@p A K A A

Thus p is an algebraic map.
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Conversely suppose that p is an algebraic map. Then there is a commutative diagram

A®rA A®p A
®idg ®idg ® ®
ROrA®RARRAIT-"AAT] AopAorAor A2t A0 A
dr ®T ®idg idy ®T ®ida I
®idg ®ida ® '
RepAopAop A 1T ATCAT] pop A@r AR A
B p
Y M 4
A®rA A®p A A.
Thus A is graded commutative. O

Let V be a graded R-module. The free commutative graded algebra A(V'), with a morphism of
R-modules i: V' — A(V), is defined by the following universal property:

Let A be any commutative graded algebra and let f: V' — A be any morphism of graded
R-modules. Then there is a unique morphism of graded R-algebras f: A(V) — A such
that f = f o1, that is there is a commutative diagram

7

1% A(V)
3 f
v a4

By the universal property, A(V') is unique to isomorphism of algebras. The existence is given by
the construction that A(V) is the quotient algebra of T (V) modulo the two sided ideal generated
by the graded commutators

[a,b] = ab — (—1)1*1"lpg
for a € T(V)jq and b € T(V) .
Proposition 7.8. Let R be a field and let V and W be graded vector spaces. Then
AVeW)=ZAV) AW).

Proof. We use the universal property to prove this statement. Let i: V@ W — A(V) @ A(W) be
the map

VoW Llmeeetey () o A(W).
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Let A be any commutative graded R-algebra and let f: V®W — A be any morphism of R-modules.
Let f; and f2 be given by
frvE yaw Joa

w—(0,w

for W20y L4

Then there are unique morphisms of algebras

fi: A(V)— A

fo: AW) — A

such that fl oiy = f; and f2 oiw = fo. Let f be the composite
AVYR AW) 8% Ag A #40 A,

then f is an algebraic map such that foz’ = f.
Let g: A(V) ® A(W) — A be any algebraic map such that g o ¢ = f. Then the composite

TVeW) — A(V)2 AW) 2+ 4

is a (unique) algebraic map such that g o ilyew = fo ilvew = f. Since i is onto, g = f and so
AV)@ A(W) 2 A(V & W) by the universal property. O

Now we consider the special cases of A(V). Let ground ring be a field F of characteristic 0 and
let V be a finite dimensional vector space with a basis {z1,...,z,}.

Case I. Consider V as a graded module by (V)2 =V and (V),, = 0 for n # 2. Then A(V) is the
polynomial algebra F[V] generated by z1,...,z, because the commutators

lzi]|2;]

[l‘i, J}j} = TiTj; — (—1) Tjly = TjLj — LTy

Case II. Consider V as a graded module by (V); = V and (V),, = 0 for n # 1. Then A(V) is
the exterior algebra generated by x4, ..., xz,, that is, A(V) is generated by z1, ..., z, subject to the
relations

0= [mi,xj] =Ti%; — (—1)'36"’”%'1'3‘5(}7; = XiT; + T;T;

or z;xj; = —zjz;. In particular 227 = 0 and so 27 = 0 since F is of characteristic 0.

Case III. Consider V' as a graded module by V = V; & V5 where dim V; = s and dim V5 = ¢ with
s+t =mn. Then

A(V) = A1) @ A(Va) = A(V2) @ F[V2]

is the tensor product of the polynomial algebra and the exterior algebra.
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7.4. Tensor Bundles, Tensor Fields. Now let F = R. Let V be a finite dimensional vector
spaces. Let
TI(V) =V ® (V*)®° 2 Hom(V®*, V).
Let £ be a vector bundle over B. Then T7 (£) is a vector bundle over B, called the tensor bundle of
type (r, s) on £, because T is (covariant on the first r factors and contravariant on the rest s factors)
functor on V.
Let M be a differentiable manifold and let £ be the tangent bundle over M. Then

TI(M) :=T{(&) =T%" & (T")**(M)

is called the tensor bundle of type (r,s) of M. A (smooth) cross-section of the tensor bundle T7 (M)
is called a tensor field of type (r, s).

Note that T¢(M) = T(M) and TY(M) = T*(M). Thus a tensor field of type (1,0) is a vector
field and a tensor field of type (0,1) is a covector field.

Recall that

VeV ' 2VeV) =Hm(VV,R)Z{f: V&V — R | f bilinear}.
The Riemann metric on a differentiable manifold can be described as a tensor field of type (0, 2).

Let M be a differentiable manifold. A Riemann metric is a tensor field g € T9(M) such that for
each m, g, is an inner product, that is, positive definite symmetric and bilinear.

7.5. Differential Forms. Let F = R and let V' be a vector space of dimension n. Recall that
the exterior algebra A(V*) can be considered as skew symmetric algebra generated by V*, that is
modulo the relations

Ty = —yx
for z,y € V*. [Or free graded commutative algebra by considering V* as a graded module by setting
(V*)1 =V*and (V*)y =0 for ¢ # 1.] Then there is decomposition

A(VT) = éA’“(V*%
k=0

where A¥(V*) consists of homogeneous elements of degree k. Each A is a contravariant functor on
V and so, for any vector bundle & over B, there are constructions A(£*) and A¥(£¥).

Let M be a differentiable manifold. A differential form of order k [or simply k-form] is defined
to be a (smooth) cross-section of A*T*(M). We work out a local basis for A*T*(M).

The multiplication in A(V*) is denoted by = Ay. Let {91,...,0,} be a basis for V and let
{dz1,...,dx,} be the dual basis for V*. By the definition, A(V*) is generated by dz1,...,dz,
subject to the relations

dl‘i A dSCj = 7dl‘j A dl‘i
for any 1 < i,j < n. In particular, dz; A dz; = 0 for 1 < i < n. It follows that A*(V*) is spanned
by the elements

dxz-l VAN d.%‘i2 VARERIVAN d.’L‘lk
forl1 <iqp <ig<- - <ip<n.

Proposition 7.9. A basis for A¥(V*) is given by
d.]?il A dl‘iz VARERIVAN dl‘zk
for 1 <iy <iy <--- <ip <n. In particular, dim A*(V*) = (Z)
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o]

Proof. Let A = @ Ay, be the graded vector spaces with Ay is the vector space spanned by the
k=0

letters

dz;, Ndzi, N\ - ANdx;,
for 1 <y <ig < --- < i <n. Note that A; = V*. Define a formal multiplication on A by
{ 0 if i, iy 0 G, £ D
ida?ll/\"'/\dxlkH if {i17...,ik}ﬂ{j1,...,jt}:®7

where ] < Iy < ... < gy, {l1,-- s lest} = {i1,-- ik, J1,- .-, ¢} and the sign + is obtained by
reorganizing (i1,...,%k,j1,.-.,J¢) into (I1,...,lk++). For instance,

(dxsy N+ ANday,) - (dej, A---dxj,) =

(dz1 Adxg Adxs) - (dzg A dxy A dag) = (71)2+1dx1 ANdxo N\ dxs N dry Ades A dag.

Then it is straightforward to show that A is the free graded commutative algebra generated by V*
by checking that A is an algebra with the universal property. Thus A = A(V*) as graded algebras
and so

Ay = AR (V).
In particular,
dzi, Ndxi, N\ Ndwg,
for 1 <iy <ig < --- < i} < n give a basis for A¥(V*). O

Let w be a k-form on an n-dimensional manifold M. Then w admits local coordinates

Z at (g wg)da, A Ada,

1<ip<--<ipg<n

Note. dz; A dx; = —dx; A dz; can be observed from: d(mixj) = x;dx; + xjdr;. Assume that we
want ddz; = ddz; = dd(x;x;) = 0. Then

0= dd(l‘zl‘]) = d(l‘zd$]+$]d$z) = (d$i/\d1‘j +$1dd5€j)+(d$]/\dl‘z—|—.Z‘]ddl‘7,) = dmi/\dxj —|—d$j/\d1‘i.

8. ORIENTATION AND INTEGRATION

8.1. Alternating Multi-linear Functions and Forms. Let V be a vector space. An k-linear
map

w:Vx--xV-R
is called alternating if it is zero whenever two coordinates are equal, that is,
w(@y,...,xx) =0
if x, =2, forsome 1 <p<qg<k.
Proposition 8.1. Let u be a k-linear map. Then u is alternating is and only if
p(agemye ) = —p(ajeaiee).
for1<i<j<k.
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Proof. Suppose that p is alternating. Then
O:N(.xz+x]..xl+x]..)

=l ) pC iy ) ) ()
=p(mpmy ) (e
Conversely assuming the assumption in the statement holds, then
p(ozi o mg ) = =@y
and so
(- mi o wi ) =0 = p(miewee) =0.
O

Let A*(V*) denote the set of alternating k-linear maps from V&* to R. Then A¥(V*) is a vector
space.

Proposition 8.2. There is a canonical isomorphism of vector spaces:
pv: (AR(V))" — AR(V™).
Proof. Let By, be the vector space of k-linear maps from V®* to R. Then the map
pr (VOFY — Bi [p(P)(@1,...,m0) = fl@1 @)

is an isomorphism by the universal property of tensor product that any multi-linear map induces
a unique linear map from tensor product. Let I be the sub vector space of V®* spanned by the
k-fold tensors

...®&®...®&®...
for some ¢ < j and o € V. Then p(f) is alternating if and only if f|;, = 0. It follows that there is
a commutative diagram

(V®k/1k)* ., (V®k)* I

(a3

p p

A (V*) «—— By,
that is, p restricted to (V®k /T k)* gives an isomorphism
p: (V®k/lk)* — AR (V).

Now we use the graded arguments to show that V®* /I, & A¥(V), where V is regarded as a graded
module by setting (V); =V and (V),, =0 for n # 1. Let

I= é[k CT(V) = év%
k=1 k=0

Then I is a graded two-sided ideal of T'(V') and so the graded quotient

A=PVver/,

k=0
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where Iy = 0, is a graded quotient algebra. Check that A is graded commutative. Then the
quotient T'(V) — A factors through A(V) by the universal property of A(V). On other hand, since
z;x; + xjz; € I by considering (z; + x;)®? = 2? + v;2; + x,2; + m?, the quotient T'(V) — A(V)
factors through A. Thus A = A(V) and hence the result. O

Proposition 8.3. Let V be a finite dimensional vector space. There is a canonical isomorphism
By = AF(V*) = (AR(V))”

Proof. We consider V' as a graded module by setting (V); = V and (V),, = 0 for n # 1. The
tensor algebra T'(V) is then a graded algebra and so is T(V) ® T(V'), where the multiplication on
T(V)®T(V) is given by

idT®
—_—

TWV)@T(V)@T(V)@T(V) TWVYRT(V)2T(V) T(V) L245 T(V)o T(V).

The linear map
AV —TV)QTV) z—z1+1@x
induces a unique morphism of algebras
V:T(V) —TV)T(V)

with a commutative diagram

T(V) Y, T(V)@T(V)
) q®q
¥

A(V) —5% A(V) @ A(V).

By taking the graded dual [Let A = ©A,, be a graded module. The graded dual A* = @A .], then
there is a commutative diagram

vy < Ty e T(vV)
q- ¢

,11[}*

AV)* <= A(V)* @ A(V)*.

It follows that A(V)* is a graded commutative algebra under *. [Check the associativity and
commutativity.] The inclusion V* — A(V)* induces a unique morphism of graded algebras

Oy A(VF) — A(V)*

such that 6y restricted to V* is the identity. Now one can prove that 6y is an isomorphism by
induction on the dimension of V' and by using the fact that

1) Oy is an isomorphism if dimV = 1.
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2) For any finite dimensional vector spaces V' and W, there is a commutative diagram

Ovow

AV W) AV e W)*

(a3 o~

AV @A) D E L o Ay,

The map
AV = AV L (V)
is a (faithful) representation of A(V*) into T'(V)* via the multiplication
YTV QT(V) —T(V)* a®f— axp.
That is for ¢1,...,¢0r € V*
Go(B1 A A Gr) = by %o 5 b
The multiplication ¥* can be described as follows:
Let (f,y) = f(y) for f € W* and y € W. Let ¢ € T(V); = (VEF)*, ¢ € T(V); = (VO)*,
1y, Trtt € V. Then
(P1 % 2,21+ wpy1) = (V7 (1 @ d2), 1 -+~ Thps)
= (¢1 ® g2, Y (1 Thy1)
= (1 @ d2,¥(x1) -+ Y(Trt1))

= (01 @¢, (T @1 +1@x1) - (Thy1 @1+ 1@ T 41)
= Z € (D1, To(1) "+ To(i) ) (B2; To(kt1) " To(ktl))s
(k,l)—shuffles

where €, is the sign of o and a permutation o is a (k,)-shuffle if
o(l) <---<o(k) ok+1)<---<olk+1).

The above formula describes the exterior product on alternating k-linear maps using signed shuffle
product.

Proposition 8.4. For ¢1,...,¢, € V* and vy,...,v, €V, there is formula
(p1 A= A i)(v1, ..., v) = det(@;(vj)).

Proof. The proof is given by induction on k. The result is trivial for £ = 1. Assume that the
statement holds for kK — 1. Then

(1 A (¢2 ASEE /\lec))(ulv"'vuk) =
= Z €501 (Ua(l))(¢2 ARERNA ¢k))(va (2)s--- ava'(k))

(1, kfl)fshuﬁics

= Z 1™ 1 (v;) det(én(vm))1; = det(ei(v;)),

where A;; denote the sub- matrlx of A by deleting i-row and j-column. O
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Remark. The graded dual T'(V')* of the tensor algebra with the multiplication ¢* is the cohomology
of the loop space 2¥X. Since T'(V)* is a contravariant functor on V, there is a construction T'(§)*
for any vector bundle & while ¢* gives certain algebraic structure on the bundle T'(§)*. If ¢ = TM,

then T'(§)* = EB TOM. If the ground field is of characteristic 0 (for instance in that case F = R, C),

there is an functorlal algebraic decomposition T'(V)* = A(V*) ® B(V*) for certain commutative
algebra B(V*). The factor A(V*) gives differential forms while the Riemann metric as a tensor
form of type (0,2) comes from the factor B(V*).

Let N be a differentiable manifold and let w be a k-form on N. Then, for each ¢ € N, wy is
an alternating k-linear map on Ty N. Globally w is a smooth map w: T9*N — R such that w is
fibrewise alternating k-linear. Let f: M — N be a smooth map. Then the composite

Dk w
oy L roh N 2L R

is a k-form on M called the pull-back of w by f, denoted by f*w. In detail f*(w) is given by the
formula

frw)p) (1. ve) = w(F )T f(vr), - Tf(vr))-
For 0-forms, that is smooth functions g € C*°(N), we define f*(g) = go f € C>*(M).

Proposition 8.5. The following properties hold for the pull-backs of forms:
1) f*( w1 + Aaws) = A1 f*(w1) + Ao f*(w2) for real numbers \; and k-forms w;;
2) f*(wr Awa) = f*(w1) A f*(wa). In particular, when g is a smooth function on N, then
[rlgw) = f(9)f*(w) = (g o f)f*(w).
3) (go f)*(w) = f*(g*(w)) for a smooth map g: N — P and a k-form w on P.

Proof. The proof can be given by showing that the formulas hold on each fibre. (1) and (3) are
obvious. (2) follows from the fact that any linear map f: V' — W induces a linear map f*: W* — V*
and so an algebraic map A(f*): A(W*) — A(V™*). O

Note. A smooth map f: M — N may not send a vector field on M to N in general. Note that
covector field is a 1-form and so any covector field on N can be pull-back to M by f.

Proposition 8.6. Let V and W be open in R™ and R™ with coordinates (x;) and (y;) respectively.
Let 6: V. — W be a smooth map. Then the following holds:
1) 0" (dy') = Y7, Gorda’.
2) If6isa dz’ﬁeomorphzsm (so that m = n) and w = fdy' A---dy™ is a (general) m-form on
W, then

0* (w) = (f 0 ) {det (ge

Ly

>:|dl‘ Adz? A - da™.

Proof. (1). It 0*(dy’) = S° f;da?, then f; = (0 (dy' ) (). Now
= "

w0 i o _ 00y _ 00;
) (5,;) = (0-5,;) = (Z o2, ayk> = Do

0" (w) = 0" (f)0" (dy") A 0" (dy®) A O* (dy™).
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= (fo0)0"(dy') A0 (dy*) A 0" (dy™).

From Part (1), 6*(dy?) = 2%dz7, that is

— Oxj
N RN

the assertion follows from Proposition 8.4 because

. 0 J \ 00;
0" (w) <6xl,...,axm> = (fo0)det <8xj)

and da' A -+ Adz™ is only basis for A™(R™). O

8.2. Orientation of Manifolds. An atlas {U,, ¢,} of a real vector bundle £ is called oriented if
its transitive functions, as elements in GL,, (R), have positive determinants on its domain U, N Ug.
A real vector bundle is called oriented if it has an oriented atlas.

Let £ be a real n-dimensional vector bundle over B. Recall that there is a principal GL, (R)-

bundle ¢5%»(®) such that ¢ = ¢S (B[R] Let
GL} (R) = {A € GL,(R) | det(A) > 0}.

Then GL (R) is a (normal) subgroup of GL, (R) with cokernel Z/2 = {—1,1}. If £ is oriented, then
the transitive functions map into GL} (R) and so there is a principal GL} (R)-bundle £ ®) such
that ¢ = ¢9Ln B[R], Conversely, if there is a principal GL; (R)-bundle € such that £ = £[R™], then
€ is oriented because its transitive functions obtained from an atlas of £ map into GL}(R). This
gives the following:

Proposition 8.7. An n-dimensional real vector bundle £ is oriented if and only if there exists a
principal GL; (R)-bundle €942 ®) such that ¢ = ¢S1 B [R™), O

Let & be any principal GL,,(R)-bundle given by F — B. Then there is a commutative diagram
of principal G-bundles

GL(R) = GL,(R) — Z/2

n N

CLI(R) —— F -~ B¢

n
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where B¢ = E/GL/ (R). We have two principal G-bundles £ — B¢ with G = GL;(R) and B¢ — B
with G = Z/2. Moreover there is a commutative diagram

R™ R™
Y
(14) Z/2 — E Xgpt @ R E xq,®) R" = E(¢[R"])
pull-back
~ Y
72 < » B¢ » B,

where the right two columns are induced vector bundles.

Proposition 8.8. Let {[R"] be a vector bundle over B, where £ is a principal GL, (R)-bundle over
B. Then the following are equivalent each other:

1) ¢[R™] is oriented.
2) The two covering BS — B has a cross-section.
3) The two covering B¢ — B is a trivial bundle.

Proof. (2)<=(3) is obvious.

(1) => (2). Suppose that &[R"] is oriented. Then there is a principal GL (R)-bundle ¢ such
that ¢: ¢'[R"] = ¢[R™]. The bundle isomorphism ¢: &'[R”] — £[R"] induces a morphism of principal
GL;! (R)-bundles

¢

E(¢) E(£)

B:_B7

where ¢ is the unique map such that the following diagram commutes

Dn
E(S'R"%") = E(£) Xgrt @) ®")®" L B oL, @ (R")®" = B({R"]®")

E(€) % {e1,...,en} _¢. E(€) x {e1, ..., en} === E(¢)

E(¢)
because in each fibre

(b@n(b +g,€1,€2,... ,€n) = (b@n(bvg(el)ag(eZ)a e 7g(en))

= (b, dpogler), dpogle),....dpoglen)) = (b-Ppog,er,...,en) € E(E).
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[Note. For each point b-g € E(£'), g can be regarded as a linear isomorphism of the fibre
p(¢'[R"])~1(b) — p(¢'[R™])~1(b) and ¢ o g defines an element in E(¢).] Now from the commutative
diagram

B¢

GL;, (R) — E(€)

GL; (R) — E(¢') B,

there is a cross-section B — BE.
(2) => (1). Suppose that BS — B has a cross-section s: B — B%. Let & be the pull-back

GL; (R") — E(¢) Bt
pull-back |s
GLE(R") — B(€) B.
Then ¢'[R™] = £[R"] and so £ is oriented. O

Note. From the proof, for a vector bundle ¢[R"], the two covering B¢ — B is independent on
the choice of principal G-bundle representation &, that is, if £'[R™] = £[R™], then there is a bundle
isomorphism from BY — B to B¢ — B.

Exercise 8.1. Let & be an oriented vector bundle over B and let f: X — B be a map. Prove that
f*€ is oriented.

Exercise 8.2. Let £ and n be oriented vector bundles. Show that £ ® n is also oriented.

Exercise 8.3. Let £ and n be vector bundles . Prove that £ xn given by E(§) x E(n) — B(§) x B(n)
is oriented if and only if both & and n are oriented.

Lemma 8.9. Let & be a real n-dimensional vector bundle over a paracompact space B. Then there
is a principal O(n)-bundle €9 such that € =2 €O [R™]. Moreover £ is oriented if and only if there
is a principal SO(n)-bundle €5 such that & = ¢SO [R"],

Proof. By Corollary 4.16, there is a map f: B — G o0(R) such that £ = f*(v5°). Note that 7;° is
induced by the canonical principal O(n)-bundle V;, o (R) — Gy, o (R). Let E(£°0) be the pull-back

E(gO(n)) - VmOO(R)

B — G, «(R).
Then £0[RM] 2 f*(72%) = €.
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Suppose that & == £50(n) [R™]. Then ¢ is oriented because the transitive functions of £50(n) has
determinant 1.

Conversely assume that £ is oriented. By the proof of the above proposition, the bundle iso-
morphism £°[R"] 2 ¢GLn(®) induces a morphism of principal O(n)-bundles ¢: £ — ¢GLn(R),
Since SO(n) = O(n) N GL;! (R), there is a commutative diagram of principal G-bundles

GL (R) — E(®) —— B

~ o~

SO(n) — E(9M) — BE.
Since ¢ is oriented, there is a cross-section s: B — B¢, Let £ be the pull-back
E(¢) — E(7™)

B—° . B

. Then ¢’ is a principal SO(n)-bundle such that & = ¢'[R"]. O

Theorem 8.10. Let £ be a real n-dimensional vector bundle over a paracompact space B. Then
the following statements are equivalent:

1) & is oriented.

2) The n-fold exterior product bundle A™(€) is a trivial line bundle.

There is a nowhere zero cross-section to the n-fold exterior bundle A™(§).
The dual bundle £ is oriented.

There is a nowhere zero cross-section to the n-fold exterior bundle A™(§).
The n-fold exterior product bundle A™(&*) is a trivial line bundle.

S U W
D=

Proof. Note that a real line bundle is trivial if and only if it has a nowhere zero-cross-section. Thus
(2) & (3) and (5) < (6). It obvious that (1) < (4).
(1) = (2). Suppose that ¢ is oriented. By the previous lemma, there is an SO(n)-bundle £59(")

such that ¢ = ¢59()[R"]. Thus

E(A"(§)) = E(€%°™) xg0(m) A™(R™).
Let g € SO(n), that is, g: R® — R” is a linear isomorphism. By Proposition 8.4,

AN (g): A"(R) =R — A"(R") =R
is multiple by det(g) = 1. Thus the action of SO(n) on A"(R) = R is trivial and A™(§) is a trivial
bundle. Similarly (4) = (5).

(3) = (1). Suppose that A"¢ is a trivial bundle. There is a principal O(n)-bundle £ such
that & =2 ¢2(M[R™]. Since SO(n) acts trivially on A™(R"),

E(A"(€)) = B(€%") xom) A"(R") = [E(€°™)/SOm)| Xom)/s0m) A" (R")

= B xz/5 A"(R™).
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By the assumption, the line bundle B¢ xy 72 A"(R™) is trivial and so the principal Z/2-bundle
B¢ — B is trivial. Thus there is a cross-section B — B¢ and so € is oriented. O

A differentiable manifold M is called oriented if its tangent bundle is oriented. In other words, M
has an atlas which Jacobians of coordinate transformations are always positive. An orientation of
M is a maximal oriented atlas. A nowhere zero m-form is called a volume form, where m = dim M.

Corollary 8.11. 1) A paracompact manifold M is oriented if and only if there exists a volume
form on M.

2) For any differentiable manifold M, there is an oriented differentiable manifold M with

principal Z/2-bundle M — M. O

8.3. Integration of m-forms on Oriented m-Manifolds. Let M be a differentiable m-manifold
and let w be an m-form on M such that

supp(w) = {b | w(b) # 0}
is contained in the coordinate neighborhood U,, of a chart (Uy, ¢ ), where ¢ : Uy — ¢o(Us) C R™.

Let
(P ) (W) = an(x)dx' A--- A dz™.

/w—/w—/aa dxdac ~dz”
CR’"

to be the Riemann integral over ¢, (U,

We have to check that this deﬁnltlon is independent on local coordinate system and we will
need the condition that M is oriented.

If the support of w is also contained in the coordinate neighborhood of another chart (Ug, ¢g).
Let ¢ = 045 0 ¢, that is 0,3 is given by

Then we define

95" $a
¢5(Us NUg) 2> Uy NUg —2> ¢0(Uy N Up).
Then
(6a)*(w) = (65" 0025)" ()
= (035)" 0 (65 ) (W) = 0500 (¢5")* (W)
= (Qﬂa)*(agdyl VARERIAN dym)
= (ag 0 Opa det(J(0pa))dat A--- A dz™
where J(63q) is the Jacobian matrix of 63,. Thus
aa(z) = (ag © Opa)(x) det(J(0sa)) ()
and, writing U,g for U, N Ug,

/w—/ w—/ dwdw - dz™
aﬁ a(UuB)

_ / to(z)dz dz? - - - dz™
0ap(ds(Uap))

- / G| det(J (Bup))|dy'dg? - dy™
¢I3(Ua/3)
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by changing of variable formula for multiple integrals in R™. Assume that M is oriented and both
charts belong to the same orientation, then det(J(6,3)) > 0. This precisely why we need our
manifolds to be oriented. Under this assumption,

/ w—/ (y)dy'dy? - dym:/ w
¢B(Ua5) M

independent on oriented charts.

Definition 8.12. Let w be an m-form on an oriented compact manifold and let {g; | i =1,...,k}
be a partition of unitary subordinate to a open covering {U;} from the orientation of M. Then we

define i
W = giw,
L3,

where f v Jaw is defined as above, the summation is well defined because there are only finitely
many non-zero terms.

Lemma 8.13. [, w is well-defined.

Proof. Let {h; | j = 1,...,1} be another partition of unitary subordinate to {V;} on M. Then
{gih;} is a partition of unitary subordinate to {U; N V;} on M. Now

) IR 3 (D SINTEED 9) of AT

=1 j=1

:;/M;hjgiw=;/jw <;giw> =;/thw.

9. THE EXTERIOR DERIVATIVE AND THE STOKES THEOREM

9.1. Exterior Derivative on R™. For a sequence I = (i1, s, ..., i), write dz’ for dz®t A-- - Adz'*.

Definition. For a k-form w = Y ardz! on an open subset U of R™, define dw by
T

dw:ZdaI/\dx Zzaal
J;

From the definition, d(dz!) = d(1-dz!) = 0 A dx! = 0.

. da(x Oa(x
For instance, let m = 4, da(z) = ) ag(“)dxl = 231 3ii)daﬂz,
1= 1=
0
d(a(z)dz? A dz*) = a(z) dx; A dx® A da?
P 8331
Oa(z) Oa

- dzy A da? A da? +8()d nde? ndet = 0% gon e ndet — M) gos A ded A dat
83?1 83 81 8373

Proposition 9.1. The following properties hold for the operation d:
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1) d is R-linear:
d()\lw + )\2(.«]2) = Mdwi + Aadws
for real constants \; and k-forms w;.
2) d is a graded derivation:
d(w1 AN wg) = dw1 N wo + (*l)kwl A dWQ

for a k-form wy and any form ws.

3) d is a differential:
d*w = d(d(w)) =0

for any form w.
4) d is natural:

d(f*w) = f*(dw),
where w is a k-form on U CR™, V CR™ and f: V — U is differentiable.

Proof. (1) is obvious.
(2). Let wy = Y ardx’ and let wy = Y bydx’. Then
T J

d(wi Awy) =d (Z arbydz! A de)

I1,J

= Zd(a[bj) N dl‘l A de
1,J

= Zdea, Adz' Ade? + ardby A dat A da?

J
= bydwy Ada” + (=1)* Y arda’ Adby A da? = dwy Awy + (—1)Fwr A dws.
J 1,J

(3) For 0-forms (or functions) a(x),

d2(a($))=d< afdx)de(a ) Z&’caxj dad Ndx' =0
i=1

because 83282 = am (%l dr* ANdz' = 0 and da’ A dx? = —dzd A da'. For general case w = ZI: ardz?,

=d (Z day A da;f> = d(day Nda') =" d*(ar) Ada' — day Ad(dz") =0
I I

I

(4). If w =g is a O-form on R™, then

(i) =B (G =5 (gher) S o

1=1 =1

=S %0 4~ aige p) = dis7(9)).

Jj=1
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If w = dx’, then

* AN . 8fz ) . - af’t ) . N px i
d(f*(dx ))—d(zayjdy]) _;d(a ) Z yjaykdy Ady’ =0 = f*(d(dz?)).

If w=do! =dax® A--- Ada, then
d(f*da’) = d(f*(dz") A+ A F(da™))

= (1 T ) A A ) A (d)) A ) A da) = 0 = ¥ (d(da)).
s=1

For a general k-form w = 3" aydz?,
T

= d(f*(an)f*(da")) =Y d(f*(ar) A f*(da") + f*(ar)d(f*(da"))
I I
—Zf (dar)) A f*(dz") (Zda;/\dm ) = f*(dw).
We finish the proof. O

9.2. Exterior Derivative on Manifolds. Let M be a differentiable n-manifold with a k-form w
on M. Let (U,, ¢o) be a chart, that is, ¢ : Uy — ¢o(Uy) C R™. Then

wa = (¢5")" (W)

is a k-form on ¢4 (Uy).

Definition. For a k-form w on M, the differential dw is the (k + 1)-form 7 such that for each chart
(Uas $a),
1 v.= ¢a(d(05") (W)

Proposition 9.2. Let M be a differentiable manifold and let w be a k-form on M. Then dw is
well-defined.

Proof. Let (Us, ¢3) be another chart and let 63 = ¢a 0 ¢5'. Then, restricting to Uy N Ug,
$a(d(d51) (W) = (bapdp) d(é ") (w)
= (¢p)" (0apd(05 ") (W) = (¢6)" (d (025(0a")" (W))) = (65)" (d (85" ©bap)*(w)))
— (69" (a((¢5"))))
and hence the result. O

Note. We do not assume that M is oriented.
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Exercise 9.1. Let w is a k-form on M with k > 1. Prove that

k+1
dw(X1, . wpn) = 3 (D)7 X(w(Xy, . Xy X))
i=1
+Z(—l)i+jw([Xi,Xj],X1, . .,Xi, . ,Xj, . ,Xk+1),

1<j
where Xi means ‘omit X;’.
9.3. Stokes’ Theorem. Let R} = {(x1,...,2,) € R" | 2, > 0}. Recall that a (topological) n-

manifold means a Hausdorff space that is locally homeomorphic to open subsets of R’. Let M be
a differentiable manifold and let {(Uy, ¢o)} be an atlas for M. Recall that

oM = 63" (6a(Ua) NOR™).

where OR" = R"~!, with an atlas given by
{(Ua N aM? ¢O¢|UQQBM) ‘ Us N oM 7& ®}

We now examine the coordinate transformation from an oriented atlas on M at a point p € 9M.
Note that the transition functions 6,5 map ¢5(Us NUg) NOR™ onto ¢o(Us NUg) NOR™. Let 0,3 be
the restriction 6,5|gn-1 of 0,5, mapping (the open subset of) R"~! into R"~!. Then the Jacobian

J0,3 has the block decomposition
JOap 0
JOap = ( . P e )

with % > 0 because J,5 is a linear transformation mapping R”~! into R"~! and the last row
(0x,0y1, . ..,02,0y,) has positive projection on the last coordinate. Since det(J0,s3) = det(JOaz) -

gz" , we have the following.
Yn
Proposition 9.3. If M is an oriented, then OM 1is also oriented. g

Let ¢: 9M — M be the inclusion. Let (U, ¢) be a chart of M. Then there is a commutative
diagram

OM OW=UnNOM —~— U C M

dlw )

R e Ry
where « is the canonical inclusion.
Lemma 9.4. 1* 0 ¢*(dz™) = 0 and 1* o ¢*(dz®) = (¢|w)*(dz?) for 1 <i<n—1.

Proof. Note that K*(aim) = B%i for 1 <3 <n—1. Then

(" (da)) (8‘9) _ <m (ai)) _s,
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and so £*(dx?) = dx® for 1 <i <n — 1 and x*(dz™) = 0. It follows that
¥ o ¢*(dx") = (d|lw)* o k*(dz") = (¢|w)*(dx?) for1<i<n-—1,

Vo ¢t (da”) = (¢lw) o k7 (da") = (¢lw)* (dz") = 0.
O

From the arguments of Proposition 9.3, if (z!,...,2") is a positive local coordinate system for
M, then we can choose a positive orientation on M such that (z!,...,2""1) is a positive local
coordinate system. However, it is more convenient to choose the positive orientation of M such
that if n is even, then (2',...,2"~ 1) is positive, while if n is odd, (x',..., 2"~ 1) is negative. (In
other words, the modification of the orientation of M is modified by (—1)™.) Such an orientation
of OM is called an orientation of OM compatible with the orientation of M.

Remark 9.5. If M is a closed smooth compact oriented region the boundary of R™, then the
compatible orientation on M is given such that the normal vector to OM is outgoing. For instance,
if the locally coordinate system of M is given by (z1,...,2,) with 2; > 0 and —e¢; < x; < ¢; for

¢ # j, then the outgoing normal vector is given by N, = —dz’ and
(—da YA (=1 dz* A Ada? TP ANd2d TN Ada™ = (=17 (1) Mdat A Ada™ = dat A- - Ada™,

that is, the orientation (—1)7daz' A dz? A -+ A da?=t A dzdTt A -+ A da™ is given such that it
A-product with the outgoing normal vector (from left) is the usual orientation of R™. See [12,
pp.119-121] and [9, p.282] for detailed explanations of the compatible orientations.

A generalization of the fundamental theorem of the integral calculus: ff f(x)dz = f(b) — f(a)
is as follows:

Theorem 9.6 (Stokes). Let M™ be a compact oriented manifold with boundary, let IM have the
compatible orientation, 1z OM — M be the inclusion and w € Q"~Y(M) be an (n — 1)-form on M.

Then
/ M (w) :/ dw.
oM M

Proof. Suppose that the result valid for a form w such that the support of w lies in a coordinate
neighborhood U. Then, for a general (m — 1)-form w, let {fx | kK =1,...,m} be a partition of unity
subordinate to a covering of M by coordinate neighborhoods {Uy} from the oriented atlas on M.

m
Then, for wy, = frw, we have w = Y wy and
k=1

Thus it remains to prove the special case of the theorem.
So we suppose that the support of w is contained in a coordinate neighborhood U for a chart
(U, ¢), and that on V = ¢(U)

(671 (w) = Zajd$1 A Adad Ao Ada™,
j=1
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where d/x\ﬂ indicates that the factor dz? is omitted. Then

(6™ H)*(dw) = d((¢™1)*(w)) = Zd(aj) AdzP A Adzi A A dz™

:Z?dﬁ/\dml/\u'/\d/ﬁ/\uﬁ\dz"
T
j=1""
= (—1)3_1&d.%‘1 A Adz™.
X a$j
j=1

Let V be contained in the product @ = [c1,d1] X -+ X [¢n, dy] With ¢, = 0. Extend a; to @ by

setting that a;(x) = 0 for x € V. Write @, for the product [c1,d1] X -+ X [¢j,d;j] X -+ X [cp, dy]
of all the intervals except the j-th, but continue to write x; for the coordinate in [¢;, d;] whether it
occurs before or after the deleted factor. Then

Vv
n
0]
:/Z(—l)“1 Y dat - da”
vVia O
n
0
=Z/(—1>J*1 Y dat . da
= Q 896]
n
ZZ/ (—1)]_1 [aj(xl,...,xj,l,dj,ijrl,...,mn)
j=17Qj
—a;(T1,. . L1, €5 Tjq, ., )] dzt - da - - - dz" (by the Fubini Theorem)
Since the points
(xlw"7$j717dj7xj+17'"7$n)7<x17'"amjflacjamj+1a"'7xn)7(x17"'7$n717dn) ¢V
for j < n,
aj(xl,...7mj,17dj,xj+1,...7xn) =0 j<n
aj(xl,...,xj_l,cj,xj+1,...,xn) j<n
an(x1,.. ., Tp_1,dy) =0.
Thus

/ d(.d: (_1)”/ a’rl(‘rlv"'7xn—170)dm1.'.dxnil'
M Qn
On the other hand,

(@l ™) () = £ (671) (@) = an 0wz A A da™?

=an(x1,...,Tp_1,0)dz" A Adz"™?

[ovo=[ e[ ey
oM UnaM VARn-1
= (—1)”/ an(T1, .. Tp1,0)dat - dax™ ! (where (—1)" is used)

n

and so



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 7

= / dw.
M

Corollary 9.7. If M™ is a compact oriented differentiable manifold without boundary and w €
QMM is an (m — 1)-form on M, then [,, dw = 0. O

O

Proposition 9.8. If M is a compact oriented differentiable manifold with boundary, then there is
no smooth map f: M — OM such that f o1 =1idgp;-

Proof. Suppose that there were such a map f. Let w be a volume (m — 1)-form on M arising from
the compatible orientation. Then

df*(w) = f*(dw) =0
because dw in 2™ (0M) which is 0. Thus

But, as w is a volume form, it will have everywhere positive coefficients in every charts from the
orientation atlas on OM. Then if {g;} is a subordinate partition of unity, dsarg;w > 0 and so

w = giw > 0.
=],

We have the contradiction and hence the result. O

Corollary 9.9 (Brouwer Fixed Theorem). Every differentiable map g: D™ — D™ of the closed unit
ball of R™ into itself has a fixed point.

Sketch. Suppose that g has no fixed points. Let f(p) be the intersection of the directional line g(p)p
with boundary of dD™. Then one can check that f is smooth with ¢ o f =idgpn. g

Example. [Green’s Theorem]| Let D be a domain in the plane bounded by a (piecewise) smooth
closed curve C. Let

w = Pdx + Qdy,
then
_(0Q op

and so, by the Stokes’ theorem, we have

/ Pdzx + Qdy = / (6‘@ — C()P) dxdy.
C p\dx Oy

Example.[Divergence Theorem] Let D be a bounded domain in R3 with a smooth boundary,
and let (z,vy,2) be a positive coordinate system in R3. Set

w = Pdy Ndz + Qdz A dx + Rdx A dy.

Then
oP 0Q OR
dw = ((f?:v+8y+8z) dz AN dy A dz
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and so, by the Stokes’ theorem,

(1]
2
(3
(4]
[
[

5
6

[7]
(8]
[9]

[10]
[11]
(12]

13]

/// (ap ac?—f—g]:)dxdydz:/al)ﬁw.
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2003/2004 Semester 11 MAS5210 Differentiable Manifolds
Homework 1

Question 1. The tangent space to S* at a point (a, b) is a one-dimensional subspace
of R2. Explicitly calculate the subspace in terms of a and b. [The answer is obviously
the space spanned by (—b, a), but prove it.]

Question 2. Exhibit a basis for Tp(S?) at arbitrary point P = (a,b,c) € S
[Consider S? is the surface given x2 + y? + 2% = 1]

Question 3. What is the tangent space to the paraboloid defined by

x2—|—y2—22:a

at (1/a,0,0), where a > 07 What does it happen when a = 07

Question 4. Let M be the intersection of two level surfaces f(z!,...,2") = ¢ and
g(zt,...,2") = d. Given a point P in M, assume that the gradients V f and Vg are
linearly independent at P, find the tangent space to M and P. What would happen

if Vf and Vg are linearly dependent, but both of them are non-zero?

Question 5. Let V: P — (P, 4(P)), where ¥(z,y) = (—y, ), be a vector field in R?,
Find the integral curve of V' through the point (a,b) at t = 0.

Question 6. Compute the Jacobian of each of the following transformation. Deter-
mine where local inverses exist.
(a) z = e"cosv, y = e"sinwv;
)z =u?— % y=2uv;
(c) z=u?—wv, y=v—u;
) x =sin(u +v), y = cos(u + v).



2003/2004 Semester 11 MAS5210 Differentiable Manifolds
Solutions to Homework 1

Question 1. The tangent space to S at a point (a, b) is a one-dimensional subspace
of R?. Explicitly calculate the subspace in terms of a and b. [The answer is obviously
the space spanned by (—b, a), but prove it.]

Solution: Let f(z,y) = 2*+y*—1. Then, S! is the level surface given by f(z,y) = 0.
At the point (a,b), the gradient of f is

Vf(a,b) = (2a,2b).
By definition, the tangent space at (a,b) is the set of vectors (u,v) € R? passing
through (a,b) such that Vf(a,b) - (u,v) = 0, i.e., 2au + 2bv = 0. Thus, (u,v) =
t(—b,a), where t € R. Consequently, the tangent space to the surface at the point
(a,b) is the one-dimensional subspace of R? spanned by the vector (—b, a).

Question 2. Exhibit a basis for Tp(S?) at arbitrary point P = (a,b,c) € S
[Consider S? is the surface given x? + y? + 2% = 1]

Solution: Let f(z,y,2) = 2 + y*> + 22 — 1. Then, S? is the level surface given by
f(z,y,2) = 0. Clearly, the gradient of f at any point P = (a,b,c) is

Vf(a,b,c) = (2a,2b,2c).

The tangent space to S? at P is the set of vectors (u,v,w) € R? passing through P
such that V f(a,b,c) - (u,v,w) = 0, which gives

2au + 2bv + 2cw = 0.

Solving, we obtain (u,v,w) = s(—b,a,0) +t(—c,0,a), s,t € R. Consequently, a basis
for the tangent space is {(—b,a,0), (—c,0,a)}.

Question 3. What is the tangent space to the paraboloid defined by

x2+y2—22:a

at (1/a,0,0), where a > 07 What does it happen when a = 07

Solution: Let f(z,y,z) = 2% + y*> — 2% Then,
Vf=(2x,2y,—2z2).

At the point P = (1/a,0,0), where a > 0, The gradient of f is V f(P) = (24/a,00).
The tangent space at P is the set of vectors (u,v,w) € R3 through P such that
Vf(P)-(u,v,w) =0, or equivalently, \/au = 0. Thus, u = 0 and the tangent space is
the 2-dimensional subspace of R* spanned by the vectors (0,1,0) and (0,0, 1). Now,
if @ =0, then 2% = 2% + y? andV f is 0 at (0,0,0). In fact, the point (0,0,0) is the
common vertex of the two opposite cones.

Question 4. Let M be the intersection of two level surfaces f(z!,...,2") = ¢ and
g(z',... 2") = d. Given a point P in M, assume that the gradients V f and Vg are
linearly independent at P, find the tangent space to M and P. What would happen
if Vf and Vg are linearly dependent, but both of them are non-zero?

1
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Solution: Let P € M. The tangent space to the surface f(z!,...,2") = cat P is the
n—1-dimensional subspace T = {(ul,...,u") € R" | 2L(P)ul+- -+ 2L (P)u" = 0}.
Similarly, the tangent space to the level surface g(z',...,2") = d at P is the n — 1-
dimensional subspace Ty, = {(v!,...,v") € R" | %(P)vl + -+ ;;gn (P)v™ = 0}. If
Vf(P) and Vg(P) are linearly independent, T} # T and the tangent space to M at
P is the n — 2-dimensional subspace formed by the intersection of the two tangent
spaces. On the other hand, if V f(P) and Vg(P) are linearly dependent, 73 = T5 and

the tangent space to M at P is this common tangent space.

Question 5. Let V: P+ (P,0(P)), where ¥(z,y) = (—y, ), be a vector field in R?.
Find the integral curve of V' through the point (a,b) at t = 0.

Solution: Let s(t) = (x(¢),y(t)) be the integral curve to V" at ¢ = 0. Then,

s'(t) = (1), y'(1)) = V(s(t)) = (—y(t), x(t)).
By considering the = and y components separately, we have 2/(t) = —y(t) and /(t) =
x(t). Solving the differential equations with initial conditions s(0) = (a,b) yields

z(t) =a— /Oty(t)dt
and

y(t) =b+ /Otx(t)dt.

Question 6. Compute the Jacobian of each of the following transformation. Deter-
mine where local inverses exist.

(a) z =e€"cosv, y=e'sinwv;

(b) z =u? —v?, y = 2uv;
(c) x=u?—uv, y=0v—u;
(d) z =sin(u+v), y = cos(u +v).

Solution:

(a) z = e"cosv, y = e*sinv. The Jacobian is given by

o ow
= det g gy
du v

¢ CoOsv —sinv
sinv  Ccosv

= sin?v + cos® v

= 1.

Since J # 0 for all (u,v) € R?, it follows from the Inverse Mapping Theo-
rem that the local inverse exists everywhere in R2.



(b) z =u? —v? y = 2uv.

;= Oy
O(u,v)
oz Oz
= det g @
ED)
2u —2v
- detZU 2u
= 4u® + 42

For (u,v) # (0,0),J # 0 and so, we conclude from the Inverse Mapping
Theorem that the local inverses exist.
(c) x =u?—uv, y=0v—u;

FRC)
O(u,v)
Oz Oz
= detJu 3
du v
2u — v, —u
= det 1 1
= u—v

Clearly, J = 0 if and only if (u,v) lies on the line v = u. Hence, for points
in R? not on this line, we conclude from the Inverse Mapping Theorem that
the local inverses exist.

(d) z =sin(u+v), y = cos(u + v).

J =

oz O
= detdy &

ou  Ov
cos(u+v)  cos(u+v)
—sin(u +v) —sin(u + v)
= 0.

Consequently, the local inverses do not exist for all points in R2.
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Homework 2

Question 1. Let M and N be smooth manifolds.

1) Show that T(; (M x N) = T,(M) x T,(N).
2) Let p: M x N — M be the projection map (x,y) — z. Prove that

Tp: T,(M) x T,(N) — T, (M)

is the analogous projection (¥, ) + .

3) Fixing any y € N, let j: M — M x N be the inclusion x — (z,y). Show
that T'j(v) = (9,0).

4) Let f: M — M’ and g: N — N’ be smooth maps. Prove that T'(f X g)(z,) =
Tf. xTg,.

Question 2. Let M be a smooth manifold.

1) Let A: M — M x M be the diagonal map = — (z,z). Prove that TA (V) =
(0, V).

2) Let A(M) = {(z,x) | € M} C M x M be the diagonal. Show that the
tangent space (. .)(A(M)) is the diagonal of T, (M) x T,(M).

Question 3. Prove the following statements:

1) If f and g are immersions, then so is f X g.

2) If f and g are immersions, then so is g o f.

3) If f an immersion, then so is f restricted to any submanifold of its domain.

4) If dim M = dim N, then immersions f: M — N are the same as local diffeo-
morphisms.

Question 4. Check the map

¢ —t ot —t
R R2, t’_)(e+e e e)

2 72

is an embedding. Prove that its image is one nappe of the hyperbola 2% — y? = 1.

Question 5. The smooth links can be regarded as 1-dimensional submanifolds of
R3. The links can be also regarded as embeddings of disjoint union of finite copies
of S into R®. Draw a nontrivial links consisting of 3 components with the property
that it becomes a trivial link after removing any one of the links. [This kind of links
is called Brunnian links.)

Let f: M — N be a smooth map. A point y € N is called a critical value if
Tf: T,(M) — T,(N) is not surjective for some z € f~'(y). (Namely, if y is not
regular.)

Question 6. Check that 0 is the only critical value of the map f: R® — R! defined
by

f(x,y,z)=x2+y2—22.
1
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Prove that if @ and b are either both positive or both negative, then f~1(a) and f~1(b)
are diffeomorphic. [Hint: Consider scalar multiplication by \/b/_a on R3.] Pictorially
examine the catastrophic change in the topology of f~!(c) as ¢ passes through the
critical value.

Problem 7. Let M and Z be transversal submanifolds of V. Prove that ify € MNZ,
then
T,(MNZ)=T,(M)NT,(Z).

Problem 8. For which values of a does the hyperboloid defined by 2% +3? — 22 =1
intersect the sphere 22 + 4% + 22 = a transversally? What does the intersection look
like for different values of a?
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Homework 3

Let £ be a fibre bundle and let f: X — B be a map. Recall that the induced
bundle f*¢ over X is obtained from the pull-back

E(f*(§)) — E(§)

x—7 B,
Question 1. Let £ be a fibre bundle given by p: F — B and let f: X — B be any
(continuous) map. Suppose that {U,} is an open cover of B such that & restricted
to each U, is trivial. Show that f ¢ restricted to each f~!(U,) is trivial. From this,

show that if £ has an atlas of countable (finite) charts, then so does any induced fibre
bundle of .

Question 2. Let X be a G-space. Suppose that 7: X — X/G is a principal G-
bundle with a (continuous) cross-section s: X/G — X (that is 7o s = idx/s). Show
that 7: X — X/G is a trivial bundle.

Question 3. Let G and H be two closed subgroups of a topological group I'. Suppose
that I'/(H N G) — I'/G has local cross-sections. Show that I'/(H NG) — I'/G is a
fibre bundle with fibre G/(H N G).

Question 4.

1) Show that V,, ,,,(F) = O(m,F)/O(m—n,F) — G, m(F) = O(m,F)/(O(n,F) x
O(m—n,TF)) is a principal O(n, F)-bundle. [Hint: Read the topic on examples
of manifolds for constructing local cross-sections.]

2) Show that there is a principal S'-bundle 1: S —— S2. This fibre bundle
is called Hopf fibration. [Hint: From part (1), there is a principal O(1,C) =
U(1) = S* bundle Vi, (C) = $*™ ! — G4,,(C) = CP™!. Then show that
CP! = 52

3) Let

E() = {(Vi2) € Gu(F) x E™ | 2 € V).
Show that
p: E(v') = Gon(F) (V,z) =V
is an n-dimensional F-vector bundle, denoted by ~7*. [Hint: Check that
E() = Vam(F) Xogmm F" ]

Note to Question 4. Similar to part (2), there is another Hopf fibration S7 — S*

which is a principal S*-bundle by taking F = H, n = 1 and m = 2 from part (1). By

taking n = 1 from part (1), one obtains other fibre bundles (principal G-bundles):
smt L~ RP™ ! G =0(1)=17/2;

St CP™ G =U(1) = S
1



Sm=t _  HP™ ! G =Sp(l) =5

Question 5.

1) Show that ¢ given by S' — S, 2+ 2% is a principal Z/2-bundle.

2) Let & be given in part (1) and let Z/2 = {7,1} acton [ = [—1, 1] by 7(¢) = —t.
Show that the total space of the induced fibre bundle E(£[I]) is the M obius
band.

3) Let & be given in part (1) and let Z/2 = {7,1} act on S* by 7(z) = 27 L.
Show that the total space of the induced fibre bundle E(£[S!]) is the Klein
bottle.

Question 6.

1) Let £ be a fibre bundle over B x [0, 1] with fibre F. Suppose that there exists
t such that &|pxjo, and &| g1 are trivial. Show that ¢ is a trivial bundle.
[Hint: Let ¢1: E(§|pxjoq) — Bx[0,t]x F and ¢pg: E(&|pxp1)) — Bx[t,1]xF
be trivializations. Then

ppod': Bx{t} x F—— Bx {t} x F (b, t,y) — (b,t,0,(y)
is a homeomorphism, where 0(y): F' — F is a homeomorphism depending
continuously on b. Define a function
X: Bx[t,1]x F —= Bx[t,1]xF  (bs,y)— (bs,0,'(y)).
Check that x is a homeomorphism. Prove that the trivializations
X0 ¢2: E(&|pxpy) — B x [t,1] x F ¢1: E(€|pxjoy) — B < [0,t] x F

induce a trivialization E(§) — Bx|0, 1] x F' by checking that yo¢ps(z) = ¢1(z)
for 2 € E(&|pxq)-]

2) Let & be a fibre bundle over B x [0,1] with fibre F. Suppose that there is
finite cover {V;} of [0, 1] such that &|pxy; is trivial for each i. Show that & is
a trivial bundle. [Hint: Prove it by induction.

3) Let £ be a fibre bundle over B x [0, 1] with fibre F'. Show that there is an
open cover {U,} of B such that £y« is trivial. In particular, any fibre
bundle over [0, 1] is trivial.
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Question 1. Let M and N be differentiable manifolds. Show that 7'(M x N) is
diffeomorphic to T (M) x T(N).

Question 2. Show that the tangent bundle to S! is diffeomorphic to the cylinder
St x R

Question 3. Prove that the projection map 7: T (M) — M, ¥p — P, is a submer-
sion.

Question 4. Let 7(S?) = {(P,v) € T(S?%) | |v] = 1} be the circle bundle of S2.
(Note. 7(S5?%) = V33 is the Stiefel manifold.) Prove that 7(5?) is a submanifold of
T(S?) of dimension 3.

Let £ be a vector bundle given by 7: F — B and let By be a subspace of B. Then
7. Y(By) — By is a vector bundle over By, called the restriction of £ to By, denoted
by €| Be.

Question 5. Prove that 7'(S™"7)|S™ is isomorphic to T'(S™) @ 67 where 07 is the
trivial bundle over S™ with fibre R? and S™ C S™"4 is the standard inclusion.

Question 6. Using the fact that S%~! is the set of unit vectors in H", prove that
S4m=1 has three unit vector fields on it which are orthogonal at each point. [Hint: Do
the case S? first.]

Question 7. Let X be a vector field on M and let f: M — R be a smooth function.
Prove that X f is well-defined smooth function on M. (Exercise 5.1 in the lecture
notes.)

Question 8. Prove the following identities for the bracket of vector fields:
(1)‘ [X +Y, Z] = [Xv Z] + [K Z];
(2). [X, Y +Z]=[X,Y]+ [X, Z]
(3). [X,Y] = —[Y. X];
(4). [fX,gY] = fglX, Y]+ f(Xg9)Y — g(Y /)X, for f,g € C=(M);
5). [X,[Y,Z]]|+ Y, 2, X]] + [Z,[X,Y]] =0.
(Exercise 5.2 in the lecture notes.)
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0.1 The answers for Homework 4

Q1 proof: To prove T (M x N) is diffeomorphic to T (M) x T(N) we should
try to find one smooth map

f:T(M)xT(N)—T(M x N)

s.t. f is one to one and onto, and f~! should be smooth. We will give the
map f locally and prove it is well defined on whole T'(M) x T(N).
Suppose (Ua, ¢o) and (Vi, pa) are charts of M and N Then (Ty,,T(Us))
is one chart of T'(M) and (T,,,T(Vy)) is one chart of T'(N). so we can get
the map

f((Uaa¢aavM) X (Vaa(Pa;UN)) = (Ua X Vom(z)oz X Qay UM X 'UN)
Now suppose (6, Wy) is one chart of M x N, then there is Us C M and
Vg C N st. Ugx Vg C M x N and (¢3(P),3(Q)) = 6(P,Q). Define
U;\/I = pm(w) and ”;v = Pmann(w)(here pp (21, ..., Timgn) = (T1, ..., i) and

pm—l—n,n(l‘lu ey xm-‘,—n) = (l‘m-‘,—lv ooy xm—i—n)
If (Wy,0n,w) € T(M x N), define the map

9(Wa, 0o, w) = (Ug x Va, dp X 9a,v37 X Uy)

After changing the chart of 8 to « as follows, we can get g is the inverse of

I

Next we will prove that f and g are well defined globally. It means that f
and ¢ are independent of the choice of the chart. Suppose there are charts
(Us, ¢3) and (Vg,¢p) of M and N. If (Uy,¢a,vn) =~ (Ug,gzﬁg,v;\/[) and
(Va, 00, o) = (Vi 03, Uy ) it is easy to see that
(UanUs) X (V). o X P, var xvn) = (UaNUg) % (V@) $pX 0, Vs XV )

so f is well defined. It is same to g.

Q2 proof: Suppose P(t) = €', let vo(t) = P'(t) = ie' then we can define
the map f: T(S') — S! x R! as

f(P(t)va) - (P(t)7 < 'Up,U()(i) >)

<> is the inter product of two vectors.
f is differential, one to one and onto. The inverse of f is g as

g(P(t),A) = (P(t), Avo(t))



g is also smooth. [

Q3 proof: We know
T(Ua) = T(¢a(U)) = ¢a(U) x R™

So the map 7 : T(M) — M is smooth( here we should check that 7 is well
defined on T'(M)). Use the T to act on 7

Tr:T(T(M)) —T(M)
By Q1, there is
T(T(Ua)) = T(T(¢a(U))) = T(¢a(U) x R™) =T (Uas) x R

TTF((P, Ua,v),y) = (P, Uavv)

On U,, T~ is surjective and it is well defined globally, so 7 is submersion.
O

Q4 proof: Suppose (U, ¢) is one local chart of S, then we have
T(U) = T(¢(U)) = $(U) x R?

is the local chart of T(S?), then we can get the local chart for 7(S?) :
#(U) x S'. Now we should prove that for each point P € 7(5?), there exists
a chart (V, ) about P in T(S?) s.t.

e(VN7(5%) = @(V)NRY

If select V = ¢(U) x R?, then we need ¢(¢(U) x S') = ¢(¢(U) x R*) N R3.
suppose ¢ is diffeomorphism from ¢(U) x R? to ¢(U) x R?, then we have
©(p(U) x S1) = ¢(U) x R, now our task becomes find the diffeomorphism
from R? to R? s.t. S' mapping to R x 0. Construct the smooth map as the
following step

1) maps R? to S?
2) f:5%— S%as f(P)= f(zp,yp,2zp) = (2P, yp, —Tp)
3) maps S? to R?

It is is easy to check it is a smooth map from R? to R? s.t. S maps to
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Rx00

Q5 proof: Suppose (P,vp) € T(S""9)|S™ then P = (z1,...,2p,0,...,0),
SO Up = (Y1, s Yns 21, -, 2¢) fits for (z1,...,2n) L (y1,...,yn) and (21, ..., 2¢)
is any vector in R?. If P and vp are represented as above, we construct the
bundle morphism (f,u) : T(S"t) — T(S™) & 07 as

(fiw)(vp, P) = (Y1, -1 Un) ® (215 -5 29)s (T15 -0y Tn))

Easy to prove it is bundle isomorphism. [

Q6 proof:Consider the case of S3. Suppose h = a + bi + c¢j + dk € H', we
construct the following maps:

F1(h) = hi
f2(h) = hj
fs(h) = hk

maps f1, fo, f3 back to S3, we can get the 3 unit orthogonal vector fields.
Then use the proposition 5.9, we can get the the 3 unit orthogonal vector
fields in S4"~! O

Q7 proof: The main idea is in the exercise 5.1. We need to check that X f
is well defined globally. Suppose it is well defined locally on chart (U, ¢),
then if (V, ¢) is another chart, we should prove that X f(P) is agreed under
the two charts.

(X f)u(P) =S &5 (P)O(f o ¢71)/027(0)

(Xf)v(P) = S,1& (P)A(f o ™) /0y*(0)
We know that ¢ o ¢! is the map from R™ to R™.
D(po¢™ 1) (0(fop™")/0y'(0) = O(for™ (pog™") /02 (0)) = D(fop™")/0a(0)
0



4

Q8 proof: (1),(2),(3) are just from definition.

(4):

(X, 9Y](h) = fX(gY (h)) — gY (f X (h))
= f9X(Y(h)) + X (9)Y (h) — gfY (X (h)) — gY ()X ()
= f9lX.Y](h) + f(Xg)Y (h) — gY (f)X(h)

(5):

(X, [V, Z]|(h) = X(Y(Z(h))) = X(Z(Y (h))) = Y (Z(X(h))) + Z(Y (X (n)))
Y12, X]|(h) = Y(Z(X(h))) = Y(X(Z(h))) = Z(X(Y (h))) + X (Z(Y(n)))
(7, [X, Y]I(h) = Z2(X(Y (h))) = Z(Y(X(h))) = X (Y (Z(h))) + Y (X(2(n)))

Plus together and use the property of (3) we get

(X, IV, Z1I(h) + [, [2, X])(h) + [Z, [X, Y]](h) = O
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Question 1. Prove that a k-dimensional vector bundle ¢ is trivial if and only if it
has k cross-sections sy, . .., g such that each s;(b), ..., s;(b) are linearly independent
for each b € B.

Question 2.
Let £ and 1 be vector bundles over B and let f be a cross-section of the bundle
Hom(&,n). If the rank of the linear transformation

f(b): Fy(§) — Fy(n)

is locally constant as a function of b, define the kernel Ker; C ¢ and the cokernel
Cokery, and prove that they are locally trivial.

Question 3.

Let B be a compact Hausdorff space and let C°(B) be the ring of continuous
real valued functions on B. For any vector bundle £ over B let T'(§) denote the
C"(B)-module consisting of all cross-sections of &.

a) Show that I'(¢ & n) =T'(§) @ I'(n).
b) Show that & = if and only if T'(§) 2 T'(n) as C°(B)-modules.
c¢) Show that £ is trivial if and only if T'(¢) is a free C°(B)-bundle.

[Hint: These are some statements for special cases from the paper: R. Swan, vector
bundles and projective modules, Trans. Ameri. Math. Soc., 105 (1962), 264-277.]

Question 4.

Let ¢: V — W be linear isomorphism of finite dimensional vector spaces. Show
that the matrix of (¢~1)x: W* — V* is the transpose of the inverse of the matrix of
¢. [Note. You may use the formula (¢*z,y) = (x, ¢y).]

Recall that a Riemann metric is a tensor field g € T3 (M) such that for each m,
gm 1s an inner product, that is, positive definite symmetric and bilinear.
Question 5.
Determine Riemann metrics g € Ty (R?) = (R?)* @ (R?)*.
Question 6. Show that
QezQ=Q  Z/MZLRyZ/nZ =7/(n,m)Z,

where (n,m) is the greatest common factor of m and n.



MA 5210
Suggested Solutions to Homework 5
by Lim Meng Fai

Q1. Let p : E — B be the k-dimensional vector bundle £ in question. Suppose F =
B x F*, then we may define s; : B — E such that for each b, s;(b) = (b, ¢;), where e; is
the vector in F* with all coordinates 0 except 1 at the i-th position.

Conversely given k cross-sections sy, ..., s such that sq(b), ..., sg(b) are linearly inde-
pendent for each b € B, we define amap u : E — B xF* as follows: For each z € E, we set
b=p(2). Then z € p~1(b) = {b} xF* = F* and so we may write z = 2z;51(b)+....+zpsx(b).
for some z; € F. We set u(z) = (b, (21, ..., 2n)). Clearly such a map is a homeomorphism
fitting into the following commutative diagram, since it is a continuous isomorphism at
each fibre.

u

E B x F*
p T
B:B

Q2. So we have a morphism v : { — 7 of vector bundles with u|p, ) = f(b). The kernel
is given U ker(f(b) : F,(§) — Fy(n)) and cokernel by U coker(f(b) : Fy(&) — Fy(n)).

beB beB
For each b € B, let U be a neighborhood of b such that rank of f(a) is constant for

a € U, say k. Let n and m be the dimension of ¢ and n as vector bundles respectively.
So we have f(a) : F,(§) =F" =V, ® Vo — F,(n) = F" =W, & Wy, where V; = ker f(a)
and W, = im f(a). Since rank of f(a) is constant in U, we may set F"~% = V; for all
a € U. Now define a map ¢ : U x F** — E(keru|U) by ¢(a,z) = f(a)(z). Clearly ¢ is

a continuous map fitting into the following commutative diagram.

U x F* % B(keru|U)

Now for each a € U, we define

V=F"aW,=Via VW, BZW, W,V =F"®V, =W



where w,|y, = (f(a)lyy) @ v, walv, = (f(a))|y,) ® 0 and wylw, = 0@ 1y, & 0. It
is straightforward to verify that w, is a linear isomorphism. Note that a — w, is a
continuous on U. Since the set of isomorphisms between V' and W is an open subset of
Homp(V, W), there exists a neighborhood U, of a contained in U such that w, is a linear
isomorphism for each ¢ € U,. Now set v. : W — V to be the inverse of w, for each ¢ € U,.
Then ¢ — v, is continuous on U,.

Now for each x € E(ker u|U), x € F,(§) for some a. So we may assign = — (a, v,(x)).
This assignment gives a continuous inverse to .

For coker f, we define the map ¢ : U x Wy — E(coker u|U) as follows: For a € U, since
im(f(a)) N Wy = 0, we may assign ¥(a,y) = y(mod(im f(a))). Its inverse is constructed
from the projection U x (W1 @ Wy) — U x Wy and factoring through coker u.

Remarks. Note that the kernel and cokernel need not be fibre bundles since we are only
able to prove that they are locally trivial with respect to some fibre, since the rank is
locally constant.

Endow N with the discrete topology, we see that the map from B to N given by
b — rank f(b) is continuous since f is locally trivial. From here, we can deduce that
in fact this map is constant at each connected component. So in fact, it follows that if
B is connected, then we can indeed show that the kernel and cokernel are fibre bundle

(actually vector bundles since their fibre are vector spaces!).

Q3. (a) Let s be a cross-section of ¢ ®n. Then s: B — E(§ & n) C E(§) x E(n). Define
s1 to be the composition B % E(£) x E(n) — E(€¢). This can be seen easily to be a
cross-section of &. Similarly we have sy, the composite B = E(€) x E(n) — E(n), to be a
cross-section of 7). It follows that the assignment s — (s1, s5) gives an injective C°(B)-map
from I'(§€ & n) to I'(§) & I'(n). To see that this map is surjective, let s; and so be cross-
sections of & and 7 respectively. We define s : B — E(§) x E(n) by s(b) = (s1(b), s2(b)).
Since p(€)s1(b) = b = p(n)s2(b), we have s(B) C E({ @ n) and s is a cross-section of £ & n

with the assignment (sy, s3).

(b) Suppose u : £ = n, then define ¢ : I'(§) — I'(n) by ¢(s) = wos. Thisis a
C°(B)-map with inverse given by s’ +— u~! o s’ and so I'(¢) = T'(n).

Conversely suppose ¢ : ['(§) = T'(n) is an isomorphism of C°(B)-modules. Let x €
E(&) with p(&)(x) = b. We can always define a local cross-section s’ on an open set U
containing b such that s'(b) = z. Since B is compact Hausdorff, we have neighborhoods of
x, V and W such that V. C U and W C V. Let f € C°(B) with f|y =1 and f|p_y = 0.
Define s(a) = f(a)s'(a) if a € U and s(a) = 0 if a ¢ U. Plainly s is a cross-section
of & with s(b) = x. We define the map u : E(§) — E(n) by u(z) = ¢(s)(b). We now



want to show that this map is well-defined and continuous. Note that by the definition of
vector bundles, we can always find local cross-sections si, ..., s, such that s;(b), ..., s,(b)
are linearly independent. By similar argument as above, we may extend each of this local
cross-sections to cross-sections, which we still denote by sy, ..., s, such that s;(b), ..., s, ()
are linearly independent.

Now we shall show that u is well-defined. Suppose t is another cross-section such that

t(b) = . Set r = s—t and clearly r is a cross-section with r(b) = 0. We may write r(a) =
>~ gi(b)sy for a near b, g;(b) € R. Let f; € C°(B) such that f; = g; in a neighborhood of
b. (The construction of such f; is similar to that of the extension of the s;’s) Therefore,
" = r — Y fis; vanishes in a neighborhood U of b. Let Uy be a neighborhood of b
such that Uy C U. Now let f € C°B) such that f(b) = 0 and 1 on B — Uy. Then
r=fr'+> fisi=>_ fisi on B. Since r(b) = 0 = f(b), we have Y, f;(b)s;(b) = implying
fi(b) = 0 by the independence of s;(b). Now ¢(r) = fo(r') + > fip(s;) since ¢ is CY(B)-
linear. Hence ¢(r)(b) = 0. i.e ¢(s)(b) = ¢(t)(b).

To establish continuity, let y € F(£) be such that p(£)(y) = a is in some neighborhood
of b, then we have y = > h;(a)s;(a) where h; € C°(B). So u(y) = > hi(a)p(si)(a).
Since p(s;) is a cross-section of 7 and all the terms in the sum are continuous in ¥y, u is
continuous.

Finally it is clear that the following diagram commutes, thus yielding a vector

E(¢) —— E(n)
p(&) p(n)
B B

bundle morphism.
Repeat the above construction for ¢! : T'(n) = T'(¢) and we will obtain a vector

bundle morphism which is the inverse of the above, thus proving what we want.

(c) Let ¢"™ denoted the n-dimensional trivial vector bundle. It can be checked that
(" = @ ¢! by induction and T'(¢') = C°%B). So if ¢ is trivial, then by (a) and (b),
['(¢) 2T(¢H" = C%B)" and so is free. Conversely if T'(€) is free, then T'(§) = C°(B)" =
['(¢™). By part (b), this implies £ = (" and so £ is trivial.

Q4. We still denote the matrix representation of ¢ with respect to a basis of V by ¢.
Then for every z,y € W, we have < z,¢y >=< ¢*(z),y >= (¢*z)'y = 2'(¢*)'y =<
x, (¢*)!(y) >. Since inner product is nondegenerate, ¢ = (¢*)" or ¢' = ¢*. So id = id* =
(¢¢71)* — (stl)*qs* le (¢71)* — (¢*)71 — (¢t)71 — (¢71)t.



Q5. Let x; and x5 be an orthonormal basis for R? (eg. (0,1) and (1,0)). Denote the
corresponding dual basis of (R?)* by dx; and dxy. By definition of Riemann metric, we

may write g(z) = Z gij(z)dz; @ dx;j for x € R?, since each g(z) is bilinear. Also by
1<i,j<2
the symmetric property, we have gi2(z) = g(z)(dz; ® dxg) = g(x)(dzy @ dxy) = go1 ().

Also g11(z) = g(x)(dzy ® dxy) > 0 by the positive definite property. Similarly we have
g22(x) > 0.

Remarks. If we replace R? by R", then by a similar argument as above choosing an
orthonormal basis for R”, the Riemann metric is given by g(z) = >_, ; gij(v)dr; ® dx;

with g;;(z) = gj(z) and g;;(x) > 0.

Q6. Leti: QxQ — Q be given by (a,b) — ab. Clearly this is middle linear. Now let A be
an abelian group and f : Q x Q — A a middle linear map. Define f : Q — A by f(a) =
f(a,1). Clearly f is an abelian group homomorphism (or Z-module homomorphism).
Now suppose ¢ is another Z-map from Q to A such that g oi = f, then for each a € Q,
g(a) =goi(a,1) = f(a,1) = f(a). Hence f is the unique map such the following diagram

commutes.
QxQ——Q
3f
QxQ— . 4

So Q satisfies the universal property for tensor products and thus Q = Q ®7z Q.

Let i : Z/mZ X Z/nZ — Z](n,m)Z be given by (a,b) — ab. Clearly this is middle
linear. Now let A be an abelian group and f : Z/mZ x Z/nZ — A a middle linear
map. Define f : Z/(n,m)Z — A by f(a) = f(a,1). Clearly f is an abelian group
homomorphism (or Z-module homomorphism). Now suppose g is another Z-map from
Z/(n,m)Z to A such that g oi = f, then for each a € Z/(n,m)Z, g(a) = goi(a,1) =

f(a,1) = f(a). Hence f is the unique map such the following diagram commutes.
Z]/mZ x 7./nZ - Z/(n,m)Z
3 f
Z/mZ X Z|nZ A

So Z/(n, m)Z satisfies the universal property for tensor products and thus Z/(n, m)Z
Z]mZ @y Z/nZ. In particular, if (n,m) =1, Z/mZ @z Z/nZ = 0.

~
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Question 1.
Let « be a linear map of the m-dimensional vector space V into itself, and let
w e A™(V*). Calculate a*(w).

Question 2.

Show that, for 1-forms {¢1,...,¢r}, 1 A -+ A ¢ = 0 if and only if {¢q,...,dr}
are linearly dependent. If they are linearly independent, prove that ¢; A--- A ¢p =
wl AN wk if and only if ¢Z = Z aijwj with det(&i]’) =1.

J

[Hint for the second part: if ¢1 A -+ A g = U1 A -+ by # 0, then, from the
first part, 1, ...,y are linearly independent. Moreover from ¢; A ¥y A --- Ay =

Gi NDpL N N =0, {p;, 1, ...} are linearly dependent. ]

Question 3.

The Hodge star isomorphism x from QF(R™) to Q™ *(R™) is defined by mapping
the basic k-form dz'* A --- A dx™ to e,dx/t A --- A daxim—+ where iy < i < -+ < iy,
J1<J2 < < Jmks (i1,09, - 0k, J1,- -+, Jm—k) is the permutation o of (1,2,...,m)
and €, is the sign of 0. Let

w = appdz' A dr* + apzda’ A da® + agsda® A da® € Q*(R?).

Calculate *w. What is xw if w € Q*(R*)?
[Answer: for the first part: *w = agzdz! — ai3dz® + ayodx®, and for the second part,
xw = (agzdrt — ajsdz® + aypdr®) A dxt.

Question 4.

We may use the standard inner product on R™ to define an isomorphism between
R™ and its dual and hence a 1-1 correspondence between vector fields and 1-forms,
where the vector field X on U C R™ corresponds to the 1-form w = ¥(X) defined by

wp(Y) = (X(p),Y), for each Y € T,(R™).
i) Show that, if f: U — R, then the vector field 9~1(df) is

gradf = ; 8_:@-6“

where ¢; is the standard basis of R™.
3

3
ii) If X(z) and Y (z) are vector fields Y a’(z)e; and > b'(z)e; on U C R3,
i=1 i=1
calculate 91« d¥(X) and 9~ * (9 (X) A9(Y)), where x* is defined in Problem
3.

Question 5.
Let
w = a(z,y,z)dr + b(z,y, 2)dy + c(,y, 2)dz
1



2

be 1-form on R3 such that dw = 0. Show that w = df where

1
flx,y,2) = / {za(tx, ty,tz) + yb(tx, ty,tz) + zc(tx, ty, tz) hdt.
0
[Hint:
d
olwy.2) = [ Gtaltzty,t2) )
o di

1 1
= / t{xoa(tx, ty,tz) + yosa(tx, ty, tz) + z0sa(tx, ty, tz) }dt + / a(tz,ty,tz)dt.
0 0

Figure out the partial derivatives of f and use dw = 0 to find the relations between
the partial derivatives of a, b and c.]

Question 6.

Let M be a compact 3-dimensional smooth submanifold-with-boundary of R3,
f: M — R3? be the inclusion and

1
w= g{xdy ANdz+ydz A\ dx + zdx A dy}.

i) Show that d(w/r?) = 0 on R? \ {0}, where r? = 2% + 2 + 22.
ii) Show that

/6 P ) = vol(a),

and deduce that there is a 2-form 1 on S? such that dn = 0 but n # d¢ for

any 1-form ¢.
| ere = [ arw -] ra

[Hint for part (ii):
by Stokes” Theorem. Check that dw = dxAdyAdz. For the rest part, let M = D3 and
choose n = +* f*w. Check that dn = 0. Show that n # d¢ for any 1-form ¢ by finding
a contradiction that, if so, then [, 7 = 0 by Stokes’ Theorem but [, n = vol(5?).]



Question 1:
Let {e1,...,en} be the basis for V and {e],..., e’ } be the dual basis.
Let w= fi A--- A f,, where f; = filef + 4 flme:;@
Thus, w = det(fi;)ef A--- Aej,.
Then, o (w)(ut, ..., up) = w(Ta(uy),...,Ta(uy)) for uy, ..., u, € V.
Since Tae = «, we have:

a(W)(ur, .y um) = wla(u),. .., ( ))

= det(fi;)(e] A+ er)(a(ur), ..., a(un))

= det(fi;) det(a )det(U), where U = (ug -+ Um)
oF (W) (ugy e yty) = det(a)w(ug, ..., up)

Question 2:
e p1 NN =0 iff {b1,..., b} is linearly dependent.

(=) Suppose ¢1 A -+ A ¢ = 0. Assume to the contrary {¢1,...,¢dx} is
linear independent. Then, the space A' spanned by {¢1,..., ¢} is of
dimension k. By proposition (7.9.) the dimension of space A*, spanned
by {¢1 A+ A i}, is (2) = 1. A contradiction that ¢1 A--- A ¢y = 0.
Therefore, {¢1,..., ¢} is linear dependent.

(<) If {¢1,...,¢r} is linearly dependent then there is ¢; such that ¢; is a
linear combination of {¢1,...,¢i—1, ®it1,...,0r}. Therefore,
¢1/\"'/\¢k:¢1/\"‘/\(2j#a]‘¢j)/\‘“/\¢k:O+"'+0:0-

e PN NP =11 N AU iff ¢ = Zjaiﬂ/}j anddet(aij) =1.

(=) Foreach v;, i Ap1A- g = PiAP1A- - - ¢ = 0. Thus, {9, ¢1, ..., P}
is linear dependent. Since {¢1,...,¢x} is linear indepedent 1); is a
linear combination of {¢1, ..., ¢r}. Denote

Vi = apdr+ -+ iR P

Then,
GLA AN = YA APy (1)
— /\(ai1¢1 + ot aipdr) (2)
= det(aij) o ARERNAN(IA (3)

So, det(ai;) = 1.



(<) As the equations 1, 2, 3 shown above.

Question 3:
1. Sign of permutation from (123) to (123) is positive.
2. Sign of permutation from (123) to (132) is negative.
3. Sign of permutation from (123) to (231) is positive.
So the Hodge star mapping in R? is the following:
1. dz' A dz? to da?.
2. dzt Adx? to —dz?.
3. dx? Adz? to dxt.

So #(ajadr! Adx? +ayzdzt Aded + agzdx?® Ndx?) = ajada® — arzde® 4 agzdx!.
For premutation of four elements:

1. Sign of permutation from (1234) to (1234) is positive.

2. Sign of permutation from (1234) to (1324) is negative.

3. Sign of permutation from (1234) to (2314) is positive.
So the Hodge star mapping in R* is the following:

1. dx' Adx? to da® A dat.

2. dx' Adad to —da? A dat.

3. dx? A da® to dol A dat.

So *(ajada’ A dx? + ajzda’ A da® 4 agzda® A dx?) = ajada® A da* — agzda® A
dz* + agzdz A daz?.

Question 4:

Let {e1,...,emn} be the standard basis for R™ and {e7,..., e}, } be the dual
basis.

o If f: U — R then 971(df) = grad f = 37", FLe;.



Let X(p) = >, Xi(p)ei be vector field such that 9(X) = df and ¢ =
>t vie; € R™ be vector variable.

U1
7 = b= (2L 3_f’
KXo = v = (5] ah]))

Um

ZXl(p),U’L = ¢ axz Ui

=1 =1 p

0
Xi(p) = 8—3];’ for each i =1,...,m.

So, X = grad f.

o X(x)= Z?:1 a'(z)e; and Y (x) = Z§:1 bi(x)e; be vector fields on U C R3.
Calculate 971 % d¥(X) and 971 * (9(X) AI(Y)).

The following is the step-by-step computation. The answer is on number
(1v) and (vii)

(i) 9(X)(2) = X0y ai@)ef and 9(Y)(z) = Yo7y bi(w)e}.
(id) d9(X) =330, 35 Geles nep) =

(522 — Sa)(ef Aeh) + (522 — G)(ef Aeh) + (522 — 522)(e5 A eb).

(11) +d0(X) = (322 — 981 (e5) — (322 — o) (ef) + (2 — 222)(¢5).

() 071w dd(X) = (92 — 922ye) 4 (G0 Ja)e, 4 (D22 _ Dai)oy
() I(X)AD(Y) =
(ale — CLle)(éi< VAN 6;) + (a1b3 — agbl)(e”{ AN 6;;) + (CLng — a3b2)(€§ AN 6;)

(Ui) *(19(X)/\19(Y)) = (albg—agbl)(e:’;)—(albg—agbl)(e§)+(a2b3—a3b2)(e*{).
(Uii) 19_1*(19(X)/\19(Y)) = (a2b3—a3b2)61—(albg—a3b1)62+(a152—a251)63.

Question 5:

w = a(z,y,z)dx + b(z,y, 2)dy + c(x,y, z)dz with dw = 0. Show that w = df
where f = fol {za(tx, ty, tz) + yb(tx, ty, tz) + zc(tx, ty, tz) }dt.

e We compute dw.

ob  Oa Oc  0Ob Oc  Oa
dw = (— — —)(dz N dy) + (8_y — a)(dy Ndz) + (% — &)(dx Adz).



Since dw = 0 then
O _ou 0c_ob o _da
or Oy = Oy 0z ' 0x Oz

e Lemma: 2 [a(tz,ty,tz)dt = [ t220m2) gy

Proof.

fo t(x + h), ty, tz)dt — fo (tz, ty, tz)dt

o 1
3_/ a(tx,ty,tz)dt = lim
T Jo

h—0 h
1 —
_ oy [ W@t Rty tz) —alte, ty tz)
h—0 0 h
1 J—
_ / hmta(tas—t—th,ty,tz) a(tx,ty,tz)dt
0 h—0 th
1
_ / 8@(7533 ty, yz)dt
0 8$

Simmilarly, for b(tx,ty,tz) and c(tz, ty,tz).
e We compute 0, f = %.

of

B 1
5 = %8‘7‘"/0 x-a(te,ty, tz) + y - b(tx, ty,tz) + z - c(tx, ty, tz)dt

1

1
= %(/0 x-a(tm,ty,tz)dt)—i—%(/o y-b(t$,ty,tz)dt)—|—
1
82(/ z-c(tx,ty,tz)dt)
T NJo
1 o 1
= /Oa(tx,ty,tz)dt+x 3:U</ (tm,ty,tz)dt)+
0 L 3} !
- — b(tx, ty,tz)dt - — tx,ty, tz)dt
Y am(/o (tz,ty, t2) )+Z (93:</0 c(tz, ty, tz) >

Applying the lemma above,

1 1
or _ /a(tx,ty,tz)dt—i—x/ g otz ty,tz) ),
a.f 0 0 81’

1 1
y/ ' 8b(tm,ty,tz)dt N z/ . Gc(tx,ty,tz)dt
0 6[E 0 8.’15



Applying the relations between partial derivatives of a, b and ¢ above.

1 1
of _ /a(m,ty,tz)dtﬂ/ p. daltnty,tz) ,,
8$ 0 0 81’

1 to, ty, t 1 to, ty, t
y/ ;. Oaltz, ty, Z)dt—l—z/ ;. Oaltz,ty,t2)
0 dy 0 0z

1
= /a(ta:,ty,tz)dt—l—
0

1 da(tx, ty,t daltx, ty,t da(tx, ty,t
/wt‘ a(t, ty, Z)+yt- altz, ty,tz) . OGaltz,ty, tz)
0

Ox oy 0z dt

O _ aley,2)
a$ = am,y,z

Slmllarly, y = b(z,y, z) and % = c(z,9, 2).

So df = a(x,y, z)dx + b(z,y, z)dy + c(x,y, z)dz = w.

Question 6:

M is a compact 3-dim smooth submanifold with-boundary of R? and

f: M — R3 is the inclusion. Let dw = (xdy /\ dz —|— ydz ANdx + zdx A dy).
e Show that d(w/r3) =0 on R3, wherer =22 +y* + 22

3 3
dw/r®) = de Ndy N dz + Mdy Ndz A dx +
ox y
3
Mdz Adx N\ dy
0z
B o(x/3r3)  O(y/3r3)  0(z/3r%)
— ( 5 + ay + 5, )dm/\dy/\dz
— (174*3 22070 4 17~ — %0+ 1773 — z2r*5)dx Ndy N dz
3 3 3
= (r3 —=r¥%)dz ANdy N dz
dw/r3) = 0

o Show that [4,, " f*(w) = vol (M) and there is a 2-form 1 on S? such that
dn =0 but n # do for any 1-form ¢.

By Stoke’s theorem(9.6) faM CfH(w) = [y d( = [y [fdw. Since
dw = dx N dy A dz, faM *f* = [yl dac/\dy/\dz)
By definition of f, f*dw = wf y(Tf(u1), Tf(u2), T f(uz)) = wp(ur, uz, us).
So, [y frdz Ndy Ndz = [, dxdydz = vol (M).

Let M = D3 and = 1* f*w. Because 7 is a 2-form then dn is 3-form.
That is, dn = * f*dw. Since dn is a 3-form on S? and S? is of dimension 2,



so dn = 0. Suppose 1 = d¢ where ¢ is a 1-form on S?. Then by applying
corollary 9.7., [q» d¢ = 0, therefore contradicts [, n = vol (D?).
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