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1. Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem

1.1. Tangent Space to a Level Surface. Let γ be a curve in Rn: γ : t 7→ (γ1(t), γ2(t), . . . , γn(t)).
(A curve can be described as a vector-valued function. Converse a vector-valued function gives a
curve in Rn.) The tangent line at the point γ(t0) is given with the direction

dγ

dt
(t0) =

(
dγ1

dt
(t0), . . . ,

dγn

t
(t0)

)
.

(Certainly we need to assume that the derivatives exist. We may talk about smooth curves, that is,
the curves with all continuous higher derivatives.)

Consider the level surface f(x1, x2, . . . , xn) = c of a differentiable function f , where xi refers to
i-th coordinate. The gradient vector of f at a point P = (x1(P ), x2(P ), . . . , xn(P )) is

∇f = (
∂f

∂x1
, . . . ,

∂f

∂xn
).

Given a vector ~u = (u1, . . . , un), the directional derivative is

D~uf = ∇f · ~u =
∂f

∂x1
u1 + · · ·+ ∂f

∂xn
un.

The tangent space at the point P on the level surface f(x1, . . . , xn) = c is the (n − 1)-dimensional
(if ∇f 6= 0) space through P normal to the gradient ∇f . In other words, the tangent space is given
by the equation

∂f

∂x1
(P )(x1 − x1(P )) + · · ·+ ∂f

∂xn
(P )(xn − xn(P )) = 0.

From the geometric views, the tangent space should consist of all tangents to the smooth curves
on the level surface through the point P . Assume that γ is a curve through P (when t = t0)
that lies in the level surface f(x1, . . . , xn) = c, that is

f(γ1(t), γ2(t), . . . , γn(t)) = c.

By taking derivatives on both sides,
∂f

∂x1
(P )(γ1)′(t0) + · · ·+ ∂f

∂xn
(P )(γn)′(t0) = 0

and so the tangent line of γ is really normal (orthogonal) to ∇f . When γ runs over all possible
curves on the level surface through the point P , then we obtain the tangent space at the point P .
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Roughly speaking, a tangent space is a vector space attached to a point in the surface.
How to obtain the tangent space: take all tangent lines of smooth curve through this point on the

surface.

1.2. Tangent Space and Vectors Fields on Rn. Now consider the tangent space of Rn. Accord-
ing to the ideas in the previous subsection, first we assume a given point P ∈ Rn. Then we consider
all smooth curves passes through P and then take the tangent lines from the smooth curves. The
obtained vector space at the point P is the n-dimensional space. But we can look at in a little
detail.

Let γ be a smooth curve through P . We may assume that γ(0) = P . Let ω be another smooth
curve with ω(0) = P . γ is called to be equivalent to ω if the directives γ′(0) = ω′(0). The tangent
space of Rn at P , denoted by TP (Rn), is then the set of equivalence class of all smooth curves
through P .

Let T (Rn) =
⋃

P∈Rn

TP (Rn), called the tangent bundle of Rn. If S is a region of Rn, let T (S) =⋃
P∈S

TP (S), called the tangent bundle of S.

Note. Each TP (Rn) is an n-dimensional vector space, but T (S) is not a vector space. In other
words, T (S) is obtained by attaching a vector space TP (Rn) to each point P in S. Also S is assumed
to be a region of Rn, otherwise the tangent space of S (for instance S is a level surface) could be a
proper subspace of TP (Rn).

If γ is a smooth curve from P to Q in Rn, then the tangent space TP (Rn) moves along γ to
TQ(Rn). The direction for this moving is given γ′(t), which introduces the following important
concept.

Definition 1.1. A vector field V on a region S of Rn is a smooth map (also called C∞-map)

V : S → T (S) P 7→ ~v(P ).

Let V : P 7→ ~v(P ) and W : P 7→ ~w(P ) be two vector fields and let f : S → R be a smooth
function. Then V +W : P 7→ ~v(P ) + ~w(P ) and fV : P 7→ f(P )~v(P ) give (pointwise) addition and
scalar multiplication structure on vector fields.

1.3. Operator Representations of Vector Fields. Let J be an open interval containing 0 and
let γ : J → Rn be a smooth curve with γ(0) = P . Let f = f(x1, . . . , xn) be a smooth function
defined on a neighborhood of P . Assume that the range of γ is contained in the domain of f . By
applying the chain rule to the composite T = f ◦ γ : J → R,

Dγ(f) :=
dT

dt
=

n∑
i=1

dγi(t)
dt

∂f

∂xi

∣∣∣∣∣
xi=γi(t)

Proposition 1.2.

Dγ(af + bg) = aDγ(f) + bDγ(g), where a, b are constant.

Dγ(fg) = Dγ(f)g + fDγ(g).

Let C∞(Rn) denote the set of smooth functions on Rn. An operation D on C∞(Rn) is called a
derivation if D maps C∞(Rn) to C∞(Rn) and satisfies the conditions

D(af + bg) = aD(f) + bD(g), where a, b are constant.
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D(fg) = D(f)g + fD(g).

Example: For 1 ≤ i ≤ n,

∂i : f 7→
∂f

∂xi

is a derivation.

Proposition 1.3. Let D be any derivation on C∞(Rn). Given any point P in Rn. Then there
exist real numbers a1, a2, . . . , an ∈ R such that

D(f)(P ) =
n∑
i=1

ai∂i(f)(P )

for any f ∈ C∞(Rn), where ai depends on D and P but is independent on f .

Proof. Write x for (x1, . . . , xn). Define

gi(x) =
∫ 1

0

∂f

∂xi
(t(x− P ) + P )dt.

Then

f(x)− f(P ) =
∫ 1

0

d

dt
f(t(x− P ) + P )dt

=
∫ 1

0

n∑
i=1

∂f

∂xi
(t(x− P ) + P ) · (xi − xi(P ))dt

=
n∑
i=1

(xi − xi(P ))
∫ 1

0

∂f

∂xi
(t(x− P ) + P )dt =

n∑
i=1

(xi − xi(P ))gi(x).

Since D is a derivation, D(1) = D(1 · 1) = D(1) · 1 + 1 · D(1) and so D(1) = 0. It follows that
D(c) = 0 for any constant c. By applying D to the above equations,

D(f(x)) = D(f(x)− f(P )) =
n∑
i=1

D(xi − xi(P ))gi(x) + (xi − xi(P ))D(gi(x))

=
n∑
i=1

D(xi)gi(x) + (xi − xi(P ))D(gi(x))

because D(f(P )) = D(xi(P )) = 0. Let ai = D(xi)(P ) which only depends on D and P . By
evaluating at P ,

D(f)(P ) =
n∑
i=1

D(xi)(P )gi(P ) + 0 =
n∑
i=1

aigi(P ).

Since

gi(P ) =
∫ 1

0

∂f

∂xi
(t(P − P ) + P )dt =

∫ 1

0

∂f

∂xi
(P )dt =

∂f

∂xi
(P ) = ∂i(f)(P ),

D(f)(P ) =
n∑
i=1

ai∂i(f)(P ),

which is the conclusion. �
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From this proposition, we can give a new way to looking at vector fields:
Given a vector fields P 7→ ~v(P ) = (v1(P ), v2(P ), . . . , vn(P )), a derivation

D~v =
n∑
i=1

vi(P ) · ∂i

on C∞(Rn) is called an operator representation of the vector field P 7→ ~v(P ).
Note. The operation vi(x)∂i is given as follows: for any f ∈ C∞(Rn),

D~v(f)(P ) =
n∑
i=1

vi(P ) · ∂i(f)(P )

for any P .
From this new view, the tangent spaces T (Rn) admits a basis {∂1, ∂2, . . . , ∂n}.

1.4. Integral Curves. Let V : x 7→ ~v(x) be a (smooth) vector field on an neighborhood U of P .
An integral curve to V is a smooth curve s : (−δ, ε) → U , defined for suitable δ, ε > 0, such that

s′(t) = ~v(s(t))

for −δ < t < ε.

Theorem 1.4. Let V : x 7→ ~v(x) be a (smooth) vector field on an neighborhood U of P . Then there
exists an integral curve to V through P . Any two such curves agree on their common domain.

Proof. The proof is given by assuming the fundamental existence and uniqueness theorem for sys-
tems of first order differential equations.

The requirement for a curve s(t) = (s1(t), . . . , sn(t)) to be an integral curve is:
ds1(t)
dt = v1(s1(t), s2(t), . . . , sn(t))

ds2(t)
dt = v2(s1(t), s2(t), . . . , sn(t))

· · · · · · · · ·
dsn(t)
dt = vn(s1(t), s2(t), . . . , sn(t))

with the initial conditions

s(0) = P (s1(0), s2(0), . . . , sn(0)) = (x1(P ), x2(P ), . . . , xn(P ))

s′(0) = ~v(P )
(
ds1

dt
(0), . . . ,

dsn

dt
(0)
)

= (v1(P ), . . . , vn(P )).

Thus the statement follows from the fundamental theorem of first order ODE. �

Example 1.5. Let n = 2 and let V : P 7→ ~v(P ) = (v1(P ), v2(P )), where v1(x, y) = x and v2(x, y) =
y. Given a point P = (a1, a2), the equation for the integral curve s(t) = (x(t), y(t)) is{

x′(t) = v1(s(t)) = x(t)
y′(t) = v2(s(t)) = y(t)

with initial conditions (x(0), y(0)) = (a1, a2) and (x′(0), y′(0)) = ~v(a1, a2) = (a1, a2). Thus the
solution is

s(t) = (a1et, a2et).
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Example 1.6. Let n = 2 and let V : P 7→ ~v(P ) = (v1(P ), v2(P )), where v1(x, y) = x and v2(x, y) =
−y. Given a point P = (a1, a2), the equation for the integral curve s(t) = (x(t), y(t)) is{

x′(t) = v1(s(t)) = x(t)
y′(t) = v2(s(t)) = −y(t)

with initial conditions (x(0), y(0)) = (a1, a2) and (x′(0), y′(0)) = ~v(a1, a2) = (a1,−a2). Thus the
solution is

s(t) = (a1et, a2e−t).

1.5. Implicit- and Inverse-Mapping Theorems.

Theorem 1.7. Let D be an open region in Rn+1 and let F be a function well-defined on D with
continuous partial derivatives. Let (x1

0, x
2
0, . . . , x

n
0 , z0) be a point in D where

F (x1
0, x

2
0, . . . , x

n
0 , z0) = 0

∂F

∂z
(x1

0, x
2
0, . . . , x

n
0 , z0) 6= 0.

Then there is a neighborhood Nε(z0) ⊆ R, a neighborhood Nδ(x1
0, . . . , x

n
0 ) ⊆ Rn, and a unique

function z = g(x1, x2, . . . , xn) defined for (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ) with values z ∈ Nε(z0) such

that
1) z0 = g(x1

0, x
2
0, . . . , x

n
0 ) and

F (x1, x2, . . . , xn, g(x1, . . . , xn)) = 0

for all (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ).

2) g has continuous partial derivatives with

∂g

∂xi
(x1, . . . , xn) = −Fx

i(x1, . . . , xn, z)
Fz(x1, . . . , xn, z)

for all (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ) where z = g(x1, . . . , xn).

3) If F is smooth on D, then z = g(x1, . . . , xn) is smooth on Nδ(x1
0, . . . , x

n
0 ).

Proof. Step 1. We may assume that ∂F
∂z (x1

0, x
2
0, . . . , x

n
0 , z0) > 0. Since Fz is continuous, there

exists a neighborhood Nε(x1
0, x

2
0, . . . , x

n
0 , z0) in which Fz is continuous and positive. Thus for fixed

(x1, . . . , xn), F is strictly increasing on z in this neighborhood. It follows that there exists c > 0
such that

F (x1
0, x

2
0, . . . , x

n
0 , z0 − c) < 0 F (x1

0, x
2
0, . . . , x

n
0 , z0 + c) > 0

with
(x1

0, x
2
0, . . . , x

n
0 , z0 − c), (x1

0, x
2
0, . . . , x

n
0 , z0 + c) ∈ Nε(x1

0, x
2
0, . . . , x

n
0 , z0).

Step 2. By the continuity of F , there exists a small δ > 0 such that

F (x1, x2, . . . , xn, z0 − c) < 0 F (x1, x2, . . . , xn, z0 + c) > 0

with
(x1, x2, . . . , xn, z0 − c), (x1, x2, . . . , xn, z0 + c) ∈ Nε(x1

0, x
2
0, . . . , x

n
0 , z0)

for (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ).

Step 3. Fixed (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ), F is continuous and strictly increasing on z. There is

a unique z, z0 − c < z < z0 + c, such that

F (x1, . . . , xn, z) = 0.
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This defines a function z = g(x1, . . . , xn) for (x1, . . . , xn) ∈ Nδ(x1
0, . . . , x

n
0 ) with values z ∈ (z0 −

c, z0 + c).
Step 4. Prove that z = g(x1, . . . , xn) is continuous. Let (x1

1, . . . , x
n
1 ) ∈ Nδ(x1

0, . . . , x
n
0 ). Let

(x1
1(k), . . . , x

n
1 (k)) be any sequence in Nδ(x1

0, . . . , x
n
0 ) converging to (x1

1, . . . , x
n
1 ). Let A be any

subsequential limit of {zk = g(x1
1(k), . . . , x

n
1 (k))}, that is A = lim

s→∞
zks

. Then, by the continuity of
F ,

0 = lim
s→∞

F (x1
1(ks), . . . , x

n
1 (ks), zks

)

= F ( lim
s→∞

x1
1(ks), . . . , lim

s→∞
xn1 (ks), lim

s→∞
zks

)

= F (x1
1, . . . , x

n
1 , A).

By the unique solution of the equation, A = g(x1
1, . . . , x

n
1 ). Thus {zk} converges g(x1

1, . . . , x
n
1 ) and

so g is continuous.
Step 5. Compute the partial derivatives ∂z

∂xi
. Let h be small enough. Let

z + k = g(x1, . . . , xi−1, xi + h, xi+1, . . . , xn),

that is
F (x1, . . . , xi + h, . . . , xn, z + k) = 0

with z0 − c < z + k < z0 + c. Then

0 = F (x1, . . . , xi + h, . . . , xn, z + k)− F (x1, . . . , xn, z)

= Fxi(x1, . . . , x̃i, . . . , xn, z̃)h+ Fz(x1, . . . , x̃i, . . . , xn, z̃)k
by the mean value theorem (Consider the function

φ(t) = F (x1, . . . , xi + th, . . . , xn, z + tk)

for 0 ≤ t ≤ 1. Then φ(1)−φ(0) = φ′(ξ)(1−0).), where x̃i is between xi and xi+h, and z̃ is between
z and z + k. Now

∂g

∂xi
= lim
h→0

g(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− z

h
= lim
h→0

k

h

= − lim
h→0

Fxi(x1, . . . , x̃i, . . . , xn, z̃)
Fz(x1, . . . , x̃i, . . . , xn, z̃)

. = −Fxi

Fz
,

where z̃ → z as h→ 0 because g is continuous (and so k → 0 as h→ 0).
Step 6. Since Fz is not zero in this small neighborhood, gxi

is continuous for each i. If F is smooth,
then all higher derivatives of g are continuous and so g is also smooth. �

Theorem 1.8 (Implicit Function Theorem). Let D be an open region in Rm+n and let F1, F2, . . . , Fn
be functions well-defined on D with continuous partial derivatives. Let (x1

0, x
2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 )

be a point in D where 
F1(x1

0, x
2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 ) = 0

F2(x1
0, x

2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 ) = 0

· · · · · · · · · · · ·
Fn(x1

0, x
2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 ) = 0

and the Jacobian

J =
∂(F1, F2, . . . , Fn)
∂(u1, u2, . . . , un)

= det
(
∂Fi
∂uj

)
6= 0
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at the point (x1
0, x

2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 ). Then there are neighborhoods Nδ(x1

0, . . . , x
m
0 ), Nε1(u

1
0),

Nε2(u
2
0), . . ., Nεn(un0 ), and unique functions

u1 = g1(x1, x2, . . . , xm)
u2 = g2(x1, x2, . . . , xm)

· · · · · · · · · · · ·
un = gn(x1, x2, . . . , xm)

defined for (x1, . . . , xm) ∈ Nδ(x1
0, . . . , x

m
0 ) with values u1 ∈ Nε1(u1

0), . . . , u
n ∈ Nεn(un0 ) such that

1) ui0 = gi(x1
0, x

2
0, . . . , x

m
0 ) and

Fi(x1, x2, . . . , xn, gi(x1, . . . , xm)) = 0

for all 1 ≤ i ≤ n and all (x1, . . . , xm) ∈ Nδ(x1
0, . . . , x

m
0 ).

2) Each gi has continuous partial derivatives with

∂gi
∂xj

(x1, . . . , xm) = − 1
J
· ∂(F1, . . . , Fn)
∂(u1, u2, . . . , uj−1, xj , uj+1, . . . , un)

for all (x1, . . . , xm) ∈ Nδ(x1
0, . . . , x

m
0 ) where ui = gi(x1, . . . , xm).

3) If each Fi is smooth on D, then each ui = gi(x1, . . . , xm) is smooth on Nδ(x1
0, . . . , x

m
0 ).

Sketch of Proof. The proof is given by induction on n. Assume that the statement holds for n− 1
with n > 1. (We already prove that the statement holds for n = 1.) Since the matrix(

∂Fi
∂uj

)
is invertible at the point P = (x1

0, x
2
0, . . . , x

m
0 , u

1
0, u

2
0, . . . , u

n
0 ) (because the determinant is not zero),

we may assume that
∂Fn
∂un

(P ) 6= 0.

(The entries in the last column can not be all 0 and so, if ∂Fi

∂un (P ) 6= 0, we can interchange Fi and
Fn.)

From the previous theorem, there is a solution

un = gn(x1, . . . , xm, u1, . . . , un−1)

to the last equation. Consider
G1 = F1(x1, . . . , xm, u1, . . . , un−1, gn)
G2 = F2(x1, . . . , xm, u1, . . . , un−1, gn)

· · · · · · · · · · · ·
Gn−1 = Fn−1(x1, . . . , xm, u1, . . . , un−1, gn).

Then
∂Gi
∂uj

=
∂Fi
∂uj

+
∂Fi
∂un

· ∂gn
∂uj

for 1 ≤ i, j ≤ n− 1, where
∂Fn
∂uj

+
∂Fn
∂un

· ∂gn
∂uj

= 0.



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 9

Let

B =


1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 1 0
∂gn

∂u1
∂gn

∂u2
∂gn

∂u3 · · · ∂gn

∂un−1 1


Then (

∂Fi
∂uj

)
·B =

( (
∂Gi

∂uj

)
n−1,n−1

∗
0 ∂Fn

∂un

)
.

By taking the determinant,

J =
∂(F1, . . . , Fn)
∂(u1, . . . , un)

=
∂Fn
∂un

· ∂(G1, . . . , Gn−1)
∂(u1, . . . , un−1)

.

Thus ∂(G1,...,Gn−1)
∂(u1,...,un−1) 6= 0 at P and, by induction, there are solutions

ui = gi(x1, . . . , xm)

for 1 ≤ i ≤ n− 1. �

Theorem 1.9 (Inverse Mapping Theorem). Let D be an open region in Rn. Let
x1 = f1(u1, . . . , un)
x2 = f2(u1, . . . , un)

· · · · · ·
xn = fn(u1, . . . , un)

be functions defined on D with continuous partial derivatives. Let (u1
0, . . . , u

n
0 ) ∈ D satisfy xi0 =

fi(u1
0, . . . , u

n
0 ) and the Jacobian

∂(x1, . . . , xn)
∂(u1, . . . , un)

6= 0 at (u1
0, . . . , u

n
0 ).

Then there are neighborhood Nδ(x1
0, . . . , x

n
0 ) and Nε(u1

0, . . . , u
n
0 ) such that

u1 = f−1
1 (x1, . . . , xn)

u2 = f−1
2 (x1, . . . , xn)
· · · · · ·

un = f−1
n (x1, . . . , xn)

is well-defined and has continuous partial derivatives on Nδ(x1
0, . . . , x

n
0 ) with values in Nε(u1

0, . . . , u
n
0 ).

Moreover if each fi is smooth, then each f−1
i is smooth.

Proof. Let Fi = fi(u1, . . . , un)−xi. The assertion follows from the Implicit Function Theorem. �
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2. Topological and Differentiable Manifolds, Diffeomorphisms, Immersions,
Submersions and Submanifolds

2.1. Topological Spaces.

Definition 2.1. Let X be a set. A topology U for X is a collection of subsets of X satisfying
i) ∅ and X are in U ;
ii) the intersection of two members of U is in U ;
iii) the union of any number of members of U is in U .

The set X with U is called a topological space. The members U ∈ U are called the open sets.

Let X be a topological space. A subset N ⊆ X with x ∈ N is called a neighborhood of x if there
is an open set U with x ∈ U ⊆ N . For example, if X is a metric space, then the closed ball Dε(x)
and the open ball Bε(x) are neighborhoods of x. A subset C is said to closed if X \ C is open.

Definition 2.2. A function f : X → Y between two topological spaces is said to be continuous if
for every open set U of Y the pre-image f−1(U) is open in X.

A continuous function from a topological space to a topological space is often simply called a
map. A space means a Hausdorff space, that is, a topological spaces where any two points has
disjoint neighborhoods.

Definition 2.3. Let X and Y be topological spaces. We say that X and Y are homeomorphic if
there exist continuous functions f : X → Y, g : Y → X such that f ◦ g = idY and g ◦ f = idX . We
write X ∼= Y and say that f and g are homeomorphisms between X and Y .

By the definition, a function f : X → Y is a homeomorphism if and only if
i) f is a bijective;
ii) f is continuous and
iii) f−1 is also continuous.

Equivalently f is a homeomorphism if and only if 1) f is a bijective, 2) f is continuous and 3) f is
an open map, that is f sends open sets to open sets. Thus a homeomorphism between X and Y is
a bijective between the points and the open sets of X and Y .

A very general question in topology is how to classify topological spaces under homeomorphisms.
For example, we know (from complex analysis and others) that any simple closed loop is homeo-
morphic to the unit circle S1. Roughly speaking topological classification of curves is known. The
topological classification of (two-dimensional) surfaces is known as well. However the topological
classification of 3-dimensional manifolds (we will learn manifolds later.) is quite open.

The famous Poicaré conjecture is related to this problem, which states that any simply connected
3-dimensional (topological) manifold is homeomorphic to the 3-sphere S3. A spaceX is called simply
connected if (1) X is path-connected (that is, given any two points, there is a continuous path joining
them) and (2) the fundamental group π1(X) is trivial (roughly speaking, any loop can be deformed
to be the constant loop in X). The manifolds are the objects that we are going to discuss in this
course.

2.2. Topological Manifolds. A Hausdorff space M is called a (topological) n-manifold if each
point of M has a neighborhood homeomorphic to an open set in Rn. Roughly speaking, an n-
manifold is locally Rn. Sometimes M is denoted as Mn for mentioning the dimension of M .
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(Note. If you are not familiar with topological spaces, you just think that M is a subspace of
RN for a large N .)

For example, Rn and the n-sphere Sn is an n-manifold. A 2-dimensional manifold is called
a surface. The objects traditionally called ‘surfaces in 3-space’ can be made into manifolds in
a standard way. The compact surfaces have been classified as spheres or projective planes with
various numbers of handles attached.

By the definition of manifold, the closed n-disk Dn is not an n-manifold because it has the
‘boundary’ Sn−1. Dn is an example of ‘manifolds with boundary’. We give the definition of
manifold with boundary as follows.

A Hausdorff space M is called an n-manifold with boundary (n ≥ 1) if each point in M has a
neighborhood homeomorphic to an open set in the half space

Rn+ = {(x1, · · · , xn) ∈ Rn|xn ≥ 0}.
Manifold is one of models that we can do calculus ‘locally’. By means of calculus, we need local

coordinate systems. Let x ∈M . By the definition, there is a an open neighborhood U(x) of x and
a homeomorphism φx from U(x) onto an open set in Rn+. The collection {(U(x), φx)|x ∈ M} has
the property that 1) {U(x)|x ∈ M} is an open cover and 2) φx is a homeomorphism from U(x)
onto an open set in Rn+. The subspace φx(Ux) in Rn+ plays a role as a local coordinate system. The
collection {(U(x), φx)|x ∈M} is somewhat too large and we may like less local coordinate systems.
This can be done as follows.

Let M be a space. A chart of M is a pair (U, φ) such that 1) U is an open set in M and 2) φ is
a homeomorphism from U onto an open set in Rn+. The map

φ : U → Rn+
can be given by n coordinate functions φ1, . . . , φn. If P denotes a point of U , these functions are
often written as

x1(P ), x2(P ), . . . , xn(P )
or simply x1, x2, . . . , xn. They are called local coordinates on the manifold.

An atlas for M means a collection of charts {(Uα, φα)|α ∈ J} such that {Uα|α ∈ J} is an open
cover of M .

Proposition 2.4. A Hausdorff space M is a manifold (with boundary) if and only if M has an
atlas.

Proof. Suppose that M is a manifold. Then the collection {(U(x), φx)|x ∈ M} is an atlas. Con-
versely suppose that M has an atlas. For any x ∈M there exists α such that x ∈ Uα and so Uα is
an open neighborhood of x that is homeomorphic to an open set in Rn+. Thus M is a manifold. �

We define a subset ∂M as follows: x ∈ ∂M if there is a chart (Uα, φα) such that x ∈ Uα and
φα(x) ∈ Rn−1 = {x ∈ Rn|xn = 0}. ∂M is called the boundary of M . For example the boundary of
Dn is Sn−1.

Proposition 2.5. Let M be a n-manifold with boundary. Then ∂M is an (n− 1)-manifold without
boundary.

Proof. Let {(Uα, φα)|α ∈ J} be an atlas for M . Let J ′ ⊆ J be the set of indices such that
Uα ∩ ∂M 6= ∅ if α ∈ J ′. Then Clearly

{(Uα ∩ ∂M,φα|Uα∩∂M |α ∈ J ′}
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can be made into an atlas for ∂M . �

Note. The key point here is that if U is open in Rn+, then U ∩Rn−1 is also open because: Since U
is open in Rn+, there is an open subset V of Rn such that U = V ∩Rn+. Now if x ∈ U ∩Rn−1, there
is an open disk Eε(x) ⊆ V and so

Eε(x) ∩ Rn−1 ⊆ V ∩ Rn−1 = U ∩ Rn−1

is an open (n− 1)-dimensional ε-disk in Rn−1 centered at x.

2.3. Differentiable Manifolds.

Definition 2.6. A Hausdorff space M is called a differential manifold of class Ck (with boundary)
if there is an atlas of M

{(Uα, φα)|α ∈ J}
such that

For any α, β ∈ J , the composites

φα ◦ φ−1
β : φβ(Uα ∩ Uβ) → Rn+

is differentiable of class Ck.
The atlas {(Uα, φα|α ∈ J} is called a differential atlas of class Ck on M .

(Note. Assume that M is a subspace of RN with N >> 0. If M has an atlas {(Uα, φα)|α ∈ J}
such that each φα : Uα → Rn+ is differentiable of class Ck, then M is a differentiable manifold of
class Ck. This is the definition of differentiable (smooth) manifolds in [6] as in the beginning they
already assume that M is a subspace of RN with N large. In our definition (the usual definition
of differentiable manifolds using charts), we only assume that M is a (Hausdorff) topological space
and so φα is only an identification of an abstract Uα with an open subset of Rn+. In this case we can
not talk differentiability of φα unless Uα is regarded as a subspace of a (large dimensional) Euclidian
space.)

Two differential atlases of class Ck {(Uα, φα)|α ∈ I} and {(Vβ , ψβ)|β ∈ J} are called equivalent
if

{(Uα, φα)|α ∈ I} ∪ {(Vβ , ψβ)|β ∈ J}
is again a differential atlas of class Ck (this is an equivalence relation). A differential structure of
class Ck on M is an equivalence class of differential atlases of class Ck on M . Thus a differential
manifold of class Ck means a manifold with a differential structure of class Ck. A smooth manifold
means a differential manifold of class C∞.
Note: A general manifold is also called topological manifold. Kervaire and Milnor [4] have shown
that the topological sphere S7 has 28 distinct oriented smooth structures.

Definition 2.7. let M and N be smooth manifolds (with boundary) of dimensions m and n re-
spectively. A map f : M → N is called smooth if for some smooth atlases {(Uα, φα|α ∈ I} for M
and {(Vβ , ψβ)β ∈ J} for N the functions

ψβ ◦ f ◦ φ−1
α |φα(f−1(Vβ)∩Uα) : φα(f−1(Vβ) ∩ Uα) → Rn+

are of class C∞.
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Proposition 2.8. If f : M → N is smooth with respect to atlases

{(Uα, φα|α ∈ I}, {(Vβ , φβ |β ∈ J}
for M , N then it is smooth with respect to equivalent atlases

{(U ′δ, θδ|α ∈ I ′}, {(V ′γ , ηγ |β ∈ J ′}

Proof. Since f is smooth with respect with the atlases

{(Uα, φα|α ∈ I}, {(Vβ , φβ |β ∈ J},
f is smooth with respect to the smooth atlases

{(Uα, φα|α ∈ I} ∪ {(U ′δ, θδ|α ∈ I ′}, {(Vβ , φβ |β ∈ J} ∪ {(V ′γ , ηγ |β ∈ J ′}
by look at the local coordinate systems. Thus f is smooth with respect to the atlases

{(U ′δ, θδ|α ∈ I ′}, {(V ′γ , ηγ |β ∈ J ′}.
�

Thus the definition of smooth maps between two smooth manifolds is independent of choice of
atlas.

Definition 2.9. A smooth map f : M → N is called a diffeomorphism if f is one-to-one and onto,
and if the inverse f−1 : N →M is also smooth.

Definition 2.10. Let M be a smooth n-manifold, possibly with boundary. A subset X is called a
properly embedded submanifold of dimension k ≤ n if X is a closed in M and, for each P ∈ X, there
exists a chart (U, φ) about P in M such that

φ(U ∩X) = φ(U) ∩ Rk+,

where Rk+ ⊆ Rn+ is the standard inclusion.

Note. In the above definition, the collection {(U ∩X,φ|U∩X)} is an atlas for making X to a smooth
k-manifold with boundary ∂X = X ∩ ∂M .

If ∂M = ∅, by dropping the requirement that X is a closed subset but keeping the requirement
on local charts, X is called simply a submanifold of M .

2.4. Tangent Space. Let S be an open region of Rn. Recall that, for P ∈ S, the tangent space
TP (S) is just the n-dimensional vector space by putting the origin at P . Let T be an open region
of Rm and let f = (f1, . . . , fm) : S → T be a smooth map. Then f induces a linear transformation

Tf : TP (S) → Tf(P )(T )

given by

Tf(~v) =
(
∂fi
∂xj

)
m×n

·


v1

v2

· · ·
vn


n×1

=


v1∂1(f1) + v2∂2(f1) + · · ·+ vn∂n(f1)
v1∂1(f2) + v2∂2(f2) + · · ·+ vn∂n(f2)

· · · · · · · · · · · ·
v1∂1(fm) + v2∂2(fm) + · · ·+ vn∂n(fm)

 ,

namely Tf is obtained by taking directional derivatives of (f1, . . . , fm) along vector ~v for any
~v ∈ TP (S).

Now we are going to define the tangent space to a (differentiable) manifold M at a point P as
follows:
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First we consider the set

TP = {(U, φ,~v) | P ∈ U, (U, φ) is a chart ~v ∈ T (φ(P ))(φ(U))}.

The point is that there are possibly many charts around P . Each chart creates an n-dimension vector
space. So we need to define an equivalence relation in TP such that, TP modulo these relations is
only one copy of n-dimensional vector space which is also independent on the choice of charts.

Let (U, φ,~v) and (V, ψ, ~w) be two elements in TP . That is (U, φ) and (V, ψ) are two charts with
P ∈ U and P ∈ V . By the definition,

ψ ◦ φ−1 : φ(U ∩ V ) - ψ(U ∩ V )

is diffeomorphism and so it induces an isomorphism of vector spaces

T (ψ ◦ φ−1) : Tφ(P )(φ(U ∩ V )) - Tψ(P )(ψ(U ∩ V )).

Now (U, φ,~v) is called equivalent to (V, ψ, ~w), denoted by (U, φ,~v) ∼ (V, ψ, ~w), if

T (ψ ◦ φ−1)(~v) = ~w.

Define TP (M) to be the quotient
TP (M) = TP / ∼ .

Exercise 2.1. Let M be a differentiable n-manifold and let P be any point in M . Prove that
TP (M) is an n-dimensional vector space. [Hint: Fixed a chart (U, φ) and defined

a(U, φ,~v) + b(U, φ, ~w) := (U, φ, a~v + b~w).

Now given any (V, ψ, ~x), (Ṽ , ψ̃, ~y) ∈ TP , consider the map

φ ◦ ψ−1 : ψ(U ∩ V ) → φ(U ∩ V ) φ ◦ ψ̃−1 : ψ̃(U ∩ Ṽ ) → φ(U ∩ Ṽ )

and define
a(V, ψ, ~x) + b(Ṽ , ψ̃, ~y) = (U, φ, aT (φ ◦ ψ−1)(~x) + bT (φ ◦ ψ̃−1)(~y)).

Then prove that this operation gives a well-defined vector space structure on TP , that is, independent
on the equivalence relation.]

The tangent space TP (M), as a vector space, can be described as follows: given any chart (U, φ)
with P ∈ U , there is a unique isomorphism

Tφ : TP (M) → Tφ(P )(φ(U)).

by choosing (U, φ,~v) as representatives for its equivalence class. If (V, ψ) is another chart with
P ∈ V , then there is a commutative diagram

(1)

TP (M)
Tφ
∼=
- Tφ(P )(φ(U ∩ V ))

TP (M)

wwwwwwwww
Tψ
∼=
- Tψ(P )(ψ(U ∩ V )),

T (ψ ◦ φ−1)

?

where T (ψ ◦ φ−1) is the linear isomorphism induced by the Jacobian matrix of the differentiable
map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ).
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Exercise 2.2. Let f : M → N be a smooth map, where M and N need not to have the same
dimension. Prove that there is a unique linear transformation

Tf : TP (M) - Tf(P )(N)

such that the diagram

TP (M)
Tφ
∼=

- Tφ(P )(φ(U))

Tf(P )(N)

Tf

? Tψ
∼=
- Tψ(f(P ))(ψ(V ))

T (ψ ◦ f ◦ φ−1)

?

commutes for any chart (U, φ) with P ∈ U and any chart (V, ψ) with f(P ) ∈ V . [First fix a choice
of (U, φ) with P ∈ U and (V, ψ) with f(P ) ∈ V , the linear transformation Tf is uniquely defined
by the above diagram. Then use Diagram (1) to check that Tf is independent on choices of charts.

2.5. Immersions. A smooth map f : M → N is called immersion at P if the linear transformation

Tf : TP (M) → Tf(P )(M)

is injective.

Theorem 2.11 (Local Immersion Theorem). Suppose that f : Mm → Nn is immersion at P . Then
there exist charts (U, φ) about P and (V, ψ) about f(P ) such that the diagram

U
f |U - V

Rm

φ(P ) = 0 φ

?
⊂

canonical coordinate inclusion - Rn

ψ(f(P )) = 0 ψ

?

commutes.

Proof. We may assume that φ(P ) = 0 and ψ(f(P )) = 0. (Otherwise replacing φ and ψ by φ−φ(P )
and ψ − ψ(f(P )), respectively.)

Consider the commutative diagram

U
f |U - V

φ(U)

φ

? g = ψ ◦ f ◦ φ−1
- ψ(V )

ψ

?

Rm
?

∩

Rn.
?

∩
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By the assumption,

Tg : T0(φ(U)) - T0(ψ(V ))

is an injective linear transformation and so

rank(Tg) = m

at the origin. The matric for Tg is

(2)



∂g1

∂x1

∂g1

∂x2
· · · ∂g1

∂xm

∂g2

∂x1

∂g2

∂x2
· · · ∂g2

∂xm

· · · · · · · · · · · ·

∂gm

∂x1

∂gm

∂x2
· · · ∂gm

∂xm

· · · · · · · · · · · ·

∂gn

∂x1

∂gn

∂x2
· · · ∂gn

∂xm



.

By changing basis of Rn (corresponding to change the rows), we may assume that the first m rows
forms an invertible matrix Am×m at the origin.

Define a function

h = (h1, h2, . . . , hn) : φ(U)× Rn−m - Rn

by setting

hi(x1, . . . , xm, xm+1, . . . , xn) = gi(x1, . . . , xm)

for 1 ≤ i ≤ m and

hi(x1, . . . , xm, xm+1, . . . , xn) = gi(x1, . . . , xm) + xi

for m+ 1 ≤ i ≤ n. Then Jacobian matrix of h is Am×m 0m×(n−m)

B(n−m)×m In−m

 ,

where B is taken from (m+ 1)-st row to n-th row in the matrix (2). Thus the Jacobian of h is not
zero at the origin. By the Inverse Mapping Theorem, h is an diffeomorphism in a small neighborhood
of the origin. It follows that there exist open neighborhoods Ũ ⊆ U of P and Ṽ ⊆ V of f(P ) such
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that the following diagram commutes

Ũ
f |Ũ - Ṽ

φ(Ũ)

φ|Ũ
?

g = ψ ◦ f ◦ φ−1
- ψ(Ṽ )

ψ|Ṽ
?

φ(Ũ)× 0

wwwwwwwww
⊂ - φ(Ũ)× U2

∼= h−1

?

Rm = Rm × 0
?

∩

⊂ - Rn,
?

∩

where U2 is a small neighborhood of the origin in Rn−m. �

Theorem 2.12. Let f : M → N be a smooth map. Suppose that

1) f is immersion at every point P ∈M ,
2) f is one-to-one and
3) f : M → f(M) is a homeomorphism.

Then f(M) is a smooth submanifold of M and f : M → f(M) is a diffeomorphism.

Note. In Condition 3, we need that if U is an open subset of M , then there is an open subset V of
N such that V ∩ f(M) = f(U).

Proof. For any point P in M , we can choose the charts as in Theorem 2.11. By Condition 3, f(U)
is an open subset of f(M). The charts {(f(U), ψ|f(U))} gives an atlas for f(M) such that f(M) is
a submanifold of M . Now f : M → f(M) is a diffeomorphism because it is locally diffeomorphism
and the inverse exists. �

Condition 3 is important in this theorem, namely an injective immersion need not give a dif-
feomorphism with its image. (Construct an example for this.) An injective immersion satisfying
condition 3 is called an embedding.

2.6. Submersions. A smooth map f : M → N is called submersion at P if the linear transforma-
tion

Tf : TP (M) → Tf(P )(M)

is surjective.
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Theorem 2.13 (Local Submersion Theorem). Suppose that f : Mm → Nn is submersion at P .
Then there exist charts (U, φ) about P and (V, ψ) about f(P ) such that the diagram

U
f |U - V

Rm

φ(P ) = 0 φ

?
⊂

canonical coordinate proj. - Rn

ψ(f(P )) = 0 ψ

?

commutes.

For a smooth map of manifolds f : M → N , a point Q ∈ N is called regular if Tf : TP (M) →
TQ(N) is surjective for every P ∈ f−1(Q), the pre-image of Q.

Theorem 2.14 (Pre-image Theorem). Let f : M → N be a smooth map and let Q ∈ N such
that f−1(Q) is not empty. Suppose that Q is regular. Then f−1(Q) is a submanifold of M with
dim f−1(Q) = dimM − dimN .

Proof. From the above theorem, for any P ∈ f−1(Q),

φ|f−1(Q) : f−1(Q) ∩ U - Rm−n

gives a chart about P . �

Let Z be a submanifold of N . A smooth map f : M → N is said to be transversal to Z if

Im(Tf : TP (M) → Tf(P )(N)) + Tf(P )(Z) = Tf(P )(N)

for every x ∈ f−1(Z).

Theorem 2.15. If a smooth map f : M → N is transversal to a submanifold Z ⊆ N , then f−1(Z)
is a submanifold of M . Moreover the codimension of f−1(Z) in M equals to the codimension of Z
in N .

Proof. Given P ∈ f−1(Z), since Z is a submanifold, there is a chart (V, ψ) of N about f(P ) such
that V = V1 × V2 with V1 = V ∩ Z and (V1, ψ|V1) is a chart of Z about f(P ). By the assumption,
the composite

f−1(V )
f |f−1(V )- V

proj.- V2

is submersion. By the Pre-image Theorem, f−1(V ) ∩ f−1(Z) is a submanifold of the open subset
f−1(V ) of M and so there is a chart about P such that Z is a submanifold of M .

With respect to the assertion about the codimensions,

codim(f−1(Z)) = dimV2 = codim(Z).

�

Consider the special case that both M and Z are submanifolds of N . Then the transversal
condition is

TP (M) + TP (Z) = TP (N)

for any P ∈M ∩ Z.
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Corollary 2.16. The intersection of two transversal submanifolds of N is again a submanifold.
Moreover

codim(M ∩ Z) = codim(M) + codim(Z)
in N .

3. Examples of Manifolds

3.1. Open Stiefel Manifolds and Grassmann Manifolds. The open Stiefel manifold is the
space of k-tuples of linearly independent vectors in Rn:

Ṽk,n = {(~v1, . . . , ~vk)T | ~vi ∈ Rn, {~v1, . . . , ~vk} linearly independent},

where Ṽk,n is considered as the subspace of k × n matrixes M(k, n) ∼= Rkn. Since Ṽk,n is an open
subset of M(k, n) = Rkn, Ṽk,n is an open submanifold of Rkn.

The Grassmann manifold Gk,n is the set of k-dimensional subspaces of Rn, that is, all k-planes
through the origin. Let

π : Ṽk,n → Gk,n

be the quotient by sending k-tuples of linearly independent vectors to the k-planes spanned by k
vectors. The topology in Gk,n is given by quotient topology of π, namely, U is an open set of Gk,n
if and only if π−1(U) is open in Ṽk,n.

For (~v1, . . . , ~vk)T ∈ Ṽk,n, write 〈~v1, . . . , ~vk〉 for the k-plane spanned by ~v1, . . . , ~vk. Observe that
two k-tuples (~v1, . . . , ~vk)T and (~w1, . . . , ~wk)T spanned the same k-plane if and only if each of them
is basis for the common plane, if and only if there is nonsingular k × k matrix P such that

P (~v1, . . . , ~vk)T = (~w1, . . . , ~wk)T .

This gives the identification rule for the Grassmann manifold Gk,n. Let GLk(R) be the space of
general linear groups on Rk, that is, GLk(R) consists of k × k nonsingular matrixes, which is an
open subset of M(k, k) = Rk2

. Then Gk,n is the quotient of Ṽk,n by the action of GLk(R).
First we prove that Gk,n is Hausdorff. If k = n, then Gn,n is only one point. So we assume that

k < n. Given an k-plane X and ~w ∈ Rn, let ρ~w be the square of the Euclidian distance from ~w to
X. Let {e1, . . . , ek} be the orthogonal basis for X, then

ρ~w(X) = ~w · ~w −
k∑
j=1

(~w · ej)2.

Fixing any ~w ∈ Rn, we obtain the continuous map

ρ~w : Gk,n - R

because ρ~w ◦ π : Ṽk,n → R is continuous and Gk,n given by the quotient topology. (Here we use
the property of quotient topology that any function f from the quotient space Gk,n to any space
is continuous if and only if f ◦ π from Ṽk,n to that space is continuous.) Given any two distinct
points X and Y in Gk,n, we can choose a ~w such that ρ~w(X) 6= ρ~w(Y ). Let V1 and V2 be disjoint
open subsets of R such that ρ~w(X) ∈ V1 and ρ~w(Y ) ∈ V2. Then ρ−1

~w (V1) and ρ−1
~w (V2) are two open

subset of Gk,n that separate X and Y , and so Gk,n is Hausdorff.
Now we check that Gk,n is manifold of dimension k(n− k) by showing that, for any X in Gk,n,

there is an open neighborhood UX of α such that UX ∼= Rk(n−k).
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Let X ∈ Gk,n be spanned by (~v1, . . . , ~vk)T . There exists a nonsingular n× n matrix Q such that

(~v1, . . . , ~vk)T = (Ik, 0)Q,

where Ik is the unit k × k-matrix. Fixing Q, define

Xα = {(Pk, Bk,n−k)Q | det(Pk) 6= 0, Bk,n−k ∈M(k, n− k)} ⊆ Ṽk,n.

Then EX is an open subset of Ṽk,n. Let UX = π(EX) ⊆ Gk,n. Since

π−1(UX) = EX

is open in Ṽk,n, UX is open in Gk,n with X ∈ UX . From the commutative diagram

GLk(R)×M(k, n− k)
(P,A) 7→ (P, PA)Q

∼=
- EX

M(k, n− k)

proj.

? A 7→ 〈(Ik, A)Q〉
φ−1
X

- UX ,

π

?

UX is homeomorphic to M(k, n− k) = Rk(n−k) and so Gk,n is a (topological) manifold.
For checking that Gk,n is a smooth manifold, let X and Y ∈ Gk,n be spanned by (~v1, . . . , ~vk)T

and (~w1, . . . , ~wk)T , respectively. There exists nonsingular n× n matrixes Q and Q̃ such that

(~v1, . . . , ~vk)T = (Ik, 0)Q, (~w1, . . . , ~wk)T = (Ik, 0)Q̃.

Consider the maps:
M(k, n− k)

φ−1
X

- UX A 7→ 〈(Ik, A)Q〉

M(k, n− k)
φ−1
Y

- UY A 7→ 〈(Ik, A)Q̃〉.

If Z ∈ UX ∩ UY , then
Z = 〈(Ik, AZ)Q〉 = 〈(Ik, BZ)Q̃〉

for unique A,B ∈M(k, n− k). It follows that there is a nonsingular k × k matrix P such that

(Ik, BZ)Q̃ = P (Ik, AZ)Q⇔ (Ik, BZ) = P (Ik, AZ)QQ̃−1.

Let

T = QQ̃−1 =

T11 T12

T21 T22

 .

Then
(Ik, BZ) = (P, PAZ)T = (PT11 + PAZT21, PT12 + PAZT22)

Ik = P (T11 +AZT21)

BZ = P (T12 +AZT22).
It follows that

Z ∈ UX ∩ UY if and only if det(T11 +AZT21) 6= 0 (that is, T11 +AZT21 is invertible).
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From the above, the composite

φX(UX ∩ UY )
φ−1

X- UX ∩ UY
φY- M(k, n)

is given by
A 7→ (T11 +AT21)

−1 (T12 +AT22) ,
which is smooth. Thus Gk,n is a smooth manifold.

As a special case, G1,n is the space of lines (through the origin) of Rn, which is also called
projective space denoted by RPn−1. From the above, RPn−1 is a manifold of dimension n− 1.

3.2. Stiefel Manifold. The Stiefel manifold, denoted by Vk,n, is defined to be the set of k orthog-
onal unit vectors in Rn with topology given as a subspace of Ṽk,n ⊆M(k, n). Thus

Vk,n = {A ∈M(k, n) | A ·AT = Ik}.
We prove that Vk,n is a smooth submanifold of M(k, n) by using Pre-image Theorem.

Let S(k) be the space of symmetric matrixes. Then S(k) ∼= R
(k+1)k

2 is a smooth manifold of
dimension. Consider the map

f : M(k, n) → S(k) A 7→ AAT .

For any A ∈M(k, n), TfA : TA(M(k, n)) → Tf(A)(S(k)) is given by setting TfA(B) is the directional
derivative along B for any B ∈ TA(M(k, n)), that is,

TfA(B) = lim
s→0

f(A+ sB)− f(A)
s

= lim
s→0

(A+ sB)(A+ sB)T −AAT

s

= lim
s→0

AAT + sABT + sBAT + s2BBT −AAT

s
= ABT +BAT .

We check that TfA : TA(M(k, n)) → Tf(A)(S(k)) is surjective for any A ∈ f−1(Ik).
By the identification of M(k, n) and S(k) with Euclidian spaces, TA(M(k, n)) = M(k, n) and

Tf(A)(S(k)) = S(k)). Let A ∈ f−1(Ik) and let C ∈ Tf(A)(S(k)). Define

B =
1
2
CA ∈ TA(M(k, n)).

Then
TfA(B) = ABT +BAT =

1
2
AATCT +

1
2
CAAT =======

AAT =Ik 1
2
CT +

1
2
C =====

C=CT

C.

Thus Tf : TA(M(k, n)) → Tf(A)(S(k)) is onto and so Ik is a regular value of f . Thus, by Pre-image
Theorem, Vk,n = f−1(Ik) is a smooth submanifold of M(k, n) of dimension

kn− (k + 1)k
2

=
k(2n− k − 1)

2
.

Special Cases: When k = n, then Vn,n = O(n) the orthogonal group. From the above, O(n) is a
(smooth) manifold of dimension n(n−1)

2 . (Note. O(n) is a Lie group, namely, a smooth manifold
plus a topological group such that the multiplication and inverse are smooth.)

When k = 1, then V1,n = Sn−1 which is manifold of dimension n− 1.
When k = n− 1, then Vn−1,n is a manifold of dimension (n−1)n

2 . One can check that

Vn−1,n
∼= SO(n)
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the subgroup of O(n) with determinant 1. In general case, Vk,n = O(n)/O(n− k).
As a space, Vk,n is compact. This follows from that Vk,n is a closed subspace of the k-fold

Cartesian product of Sn−1 because Vk,n is given by k unit vectors (~v1, . . . , ~vk)T in Rn that are
solutions to ~vi · ~vj = 0 for i 6= j, and the fact that any closed subspace of compact Hausdorff space
is compact. The composite

Vk,n ⊂ - Ṽk,n
π-- Gk,n

is onto and so the Grassmann manifold Gk,n is also compact. Moreover the above composite is a
smooth map because π is smooth and Vk,n is a submanifold. This gives the diagram

Vk,n ⊂
submanifold- M(k, n)

submersion at Ik
A 7→ AAT

-- S(k)

Gk,n

smooth
??

Note. By the construction, Gk,n is the quotient of Vk,n by the action of O(k). This gives identifi-
cations:

Gk,n = Vk,n/O(k) = O(n)/(O(k)×O(n− k)).

4. Fibre Bundles and Vector Bundles

4.1. Fibre Bundles. A bundle means a triple (E, p,B), where p : E → B is a (continuous) map.
The space B is called the base space, the space E is called the total space, and the map p is called
the projection of the bundle. For each b ∈ B, p−1(b) is called the fibre of the bundle over b ∈ B.

Intuitively, a bundle can be thought as a union of fibres f−1(b) for b ∈ B parameterized by B
and glued together by the topology of the space E. Usually a Greek letter ( ξ, η, ζ, λ, etc) is used to
denote a bundle; then E(ξ) denotes the total space of ξ, and B(ξ) denotes the base space of ξ.

A morphism of bundles (φ, φ̄) : ξ → ξ′ is a pair of (continuous) maps φ : E(ξ) → E(ξ′) and
φ̄ : B(ξ) → B(ξ′) such that the diagram

E(ξ)
φ- E(ξ′)

B(ξ)

p(ξ)

? φ̄- B(ξ′)

p(ξ′)

?

commutes.
The trivial bundle is the projection of the Cartesian product:

p : B × F → B, (x, y) 7→ x.

Roughly speaking, a fibre bundle p : E → B is a “locally trivial” bundle with a “fixed fibre” F .
More precisely, for any x ∈ B, there exists an open neighborhood U of x such that p−1(U) is a trivial
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bundle, in other words, there is a homeomorphism φU : p−1(U) → U × F such that the diagram

U × F
φx- p−1(U)

U

π1

?
========= U

p

?

commutes, that is, p(φ(x′, y)) = x′ for any x′ ∈ U and y ∈ F .
Similar to manifolds, we can use “chart” to describe fibre bundles. A chart (U, φ) for a bundle

p : E → B is (1) an open set U of B and (2) a homeomorphism φ : U × F → p−1(U) such that
p(φ(x′, y)) = x′ for any x′ ∈ U and y ∈ F . An atlas is a collection of charts {(Uα, φα)} such that
{Uα} is an open covering of B.

Proposition 4.1. A bundle p : E → B is a fibre bundle with fibre F if and only if it has an atlas.

Proof. Suppose that p : E → B is a fibre bundle. Then the collection {(U(x), φx)|x ∈ B} is an atlas.
Conversely suppose that p : E → B has an atlas. For any x ∈ B there exists α such that x ∈ Uα

and so Uα is an open neighborhood of x with the property that p|p−1(U) : p−1(Uα) → Uα is a trivial
bundle. Thus p : E → B is a fibre bundle. �

Let ξ be a fibre bundle with fibre F and an atlas {(Uα, φα)}. The composite

φ−1
α ◦ φβ : (Uα ∩ Uβ)× F

φβ- p−1(Uα ∩ Uβ)
φ−1

α- (Uα ∩ Uβ)× F

has the property that
φ−1
α ◦ φβ(x, y) = (x, gαβ(x, y))

for any x ∈ Uα ∩ Uβ and y ∈ F . Consider the continuous map gαβ : Uαβ × F → F . Fixing any x,
gαβ(x,−) : F → F , y 7→ gαβ(x, y) is a homeomorphism with inverse given by gβα(x,−). This gives
a transition function

gαβ : Uα ∩ Uβ - Homeo(F, F ),
where Homeo(F, F ) is the group of all homeomorphisms from F to F .

Exercise 4.1. Prove that the transition functions {gαβ} satisfy the following equation

(3) gαβ(x) ◦ gβγ(x) = gαγ(x) x ∈ Uα ∩ Uβ ∩ Uγ .

By choosing α = β = γ, gαα(x) ◦ gαα(x) = gαα(x) and so

(4) gαα(x) = x x ∈ Uα
.

By choosing α = γ, gαβ(x) ◦ gβα(x) = gαα(x) = x and so

(5) gβα(x) = gαβ(x)−1 x ∈ Uα ∩ Uβ .
We need to introduce a topology on Homeo(F, F ) such that the transition functions gαβ are

continuous. The topology on Homeo(F, F ) is given by compact-open topology briefly reviewed as
follows:

Let X and Y be topological spaces. Let Map(X,Y ) denote the set of all continuous maps from
X to Y . Given any compact set K of X and any open set U of Y , let

WK,U = {f ∈ Map(X,Y ) | f(K) ⊆ U}.
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Then the compact-open topology is generated by WK,U , that is, an open set in Map(X,Y ) is an
arbitrary union of a finite intersection of subsets with the form WK,U .

Map(F, F ) be the set of all continuous maps from F to F with compact open topology. Then
Homeo(F, F ) is a subset of Map(F, F ) with subspace topology.

Proposition 4.2. If Homeo(F, F ) has the compact-open topology, then the transition functions
gαβ : Uα ∩ Uβ → Homeo(F, F ) are continuous.

Proof. Given WK,U , we show that g−1
αβ (WK,U ) is open in Uα ∩ Uβ . Let x0 ∈ Uα ∩ Uβ such that

gαβ(x0) ∈W(K,U). We need to show that there is a neighborhood V is x0 such that gαβ(V ) ⊆WK,U ,
or gαβ(V × K) ⊆ U . Since U is open and gαβ : (Uα ∩ Uβ) × F → F is continuous, g−1(U) is an
open set of (Uα ∩Uβ)× F with x0 ×K ⊆ g−1

αβ (U). For each y ∈ K, there exist open neighborhoods
V (y) of x and N(y) of y such that V (x)×N(y) ⊆ g−1

αβ (U). Since {N(y) | y ∈ K} is an open cover

of the compact set K, there is a finite cover {N(y1), . . . , N(yn)} of K. Let V =
n⋂
j=1

V (yj). Then

V ×K ⊆ g−1
αβ (U) and so gαβ(V ) ⊆WK,U . �

Proposition 4.3. If F regular and locally compact, then the composition and evaluation maps

Homeo(F, F )×Homeo(F, F ) - Homeo(F, F ) (g, f) 7→ f ◦ g
Homeo(F, F )× F - F (f, y) 7→ f(y)

are continuous.

Proof. Suppose that f ◦ g ∈ WK,U . Then f(g(K)) ⊆ U , or g(K) ⊆ f−1(U), and the latter is open.
Since F is regular and locally compact, there is an open set V such that

g(K) ⊆ V ⊆ V̄ ⊆ f−1(U)

and the closure V̄ is compact. If g′ ∈ WK,V and f ′ ∈ WV̄ ,U , then f ′ ◦ g′ ∈ WK,U . Thus WK,V and
WV̄ ,U are neighborhoods of g and f whose composition product lies in WK,U . This implies that
Homeo(F, F )×Homeo(F, F ) → Homeo(F, F ) is continuous.

Let U be an open set of F and let f0(y0) ∈ U or y0 ∈ f−1
0 (U). Since F is regular an locally

compact, there is a neighborhood V of y0 such that V̄ is compact and y0 ∈ V ⊆ V̄ ⊆ g−1
0 (U).

If g ∈ WV̄ ,U and y ∈ V , then g(y) ∈ U and so the evaluation map Homeo(F, F ) × F → F is
continuous. �

Proposition 4.4. If F is compact Hausdorff, then the inverse map

Homeo(F, F ) - Homeo(F, F ) f 7→ f−1

is continuous.

Proof. Suppose that g−1
0 ∈WK,U . Then g−1

0 (K) ⊆ U or K ⊆ g0(U). It follows that

F rK ⊇ F r g0(U) = g0(F r U)

because g0 is a homeomorphism. Note that F rU is compact, F rK is open and g0 ∈WFrU,FrK .
If g ∈WFrU,FrK , then, from the above arguments, g−1 ∈WK,U and hence the result. �

Note. If F is regular and locally compact, then Homeo(F, F ) is a topological monoid, namely
compact-open topology only fails in the continuity of g−1. A modification on compact-open topology
eliminates this defect [1].
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4.2. G-Spaces and Principal G-Bundles. Let G be a topological group and let X be a space.
A right G-action on X means a(continuous) map µ : X ×G→ X, (x, g) 7→ x · g such that x · 1 = x
and (x · g) ·h = x · (gh). In this case, we call X a (right) G-space. Let X and Y be (right) G-spaces.
A continuous map f : X → Y is called a G-map if f(x · g) = f(x) · g for any x ∈ X and g ∈ G. Let
X/G be the set of G-orbits xG, x ∈ X, with quotient topology.

Proposition 4.5. Let X be a G-space.
1) For fixing any g ∈ G, the map x 7→ x · g is a homeomorphism.
2) The projection π : X → X/G is an open map.

Proof. (1). The inverse is given by x 7→ x · g−1.
(2) If U is an open set of X,

π−1(π(U)) =
⋃
g∈G

U · g

is open because it is a union of open sets, and so π(U) is open by quotient topology. Thus π is an
open map. �

We are going to find some conditions such that π : X → X/G has canonical fibre bundle structure
with fibre G. Given any point x̄ ∈ X/G, choose x ∈ X such that π(x) = x̄. Then

π−1(x̄) = {x · g | g ∈ G} = G/Hx,

where Hx = {g ∈ G | x · g = x}.
For having constant fibre G, we need to assume that the G-action on X is free, namely

x · g = x =⇒ g = 1

for any x ∈ X. This is equivalent to the property that

x · g = x · h =⇒ g = h

for any x ∈ X. In this case we call X a free G-space.
Since a fibre bundle is locally trivial (locally Cartesian product), there is always a local cross-

section from the base space to the total space. Our second condition is that the projection π : X →
X/G has local cross-sections. More precisely, for any x̄ ∈ X/G, there is an open neighborhood U(x̄)
with a continuous map sx̄ : U(x̄) → X such that π ◦ sx̄ = idU(x̄).

(Note. For every point x̄, we can always choose a pre-image of π, the local cross-section means
the pre-images can be chosen “continuously” in a neighborhood. This property depends on the
topology structure of X and X/G.)

Assume that X is a (right) free G-space with local cross-sections to π : X → X/G. Let x̄ be any
point in X/G. Let U(x̄) be a neighborhood of x̄ with a (continuous) crosse-section sx̄ : U(x̄) → X.
Define

φx̄ : U(x̄)×G - π−1(U(x̄)) (ȳ, g) - sx̄(ȳ) · g
for any y ∈ U(x̄).

Exercise 4.2. Let X be a (right) free G-space with local cross-sections to π : X → X/G. Then the
continuous map φx̄ : U(x̄)×G→ π−1(U(x̄)) is one-to-one and onto. �

We need to find the third condition such that φx̄ is a homeomorphism. Let

X∗ = {(x, x · g) | x ∈ X, g ∈ G} ⊆ X ×X.
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A function
τ : X∗ - G

such that
x · τ(x, x′) = x′ for all (x, x′) ∈ X

is called a translation function. (Note. If X is a free G-space, then translation function is unique
because, for any (x, x′) ∈ X∗, there is a unique g ∈ G such that x′ = x · g, and so, by definition,
τ(x, x′) = g.)

Proposition 4.6. Let X be a (right) free G-space with local cross-sections to π : X → X/G. Then
the following statements are equivalent each other:

1) The translation function τ : X∗ → G is continuous.
2) For any x̄ ∈ X/G, the map φx̄ : U(x̄)×G→ π−1(U(x̄)) is a homeomorphism.
3) There is an atlas {(Uα, φα} of X/G such that the homeomorphisms

φα : Uα ×G - π−1(Uα)

satisfy the condition φα(ȳ, gh) = φα(ȳ, g) · h, that is φα is a homeomorphism of G-spaces.

Proof. (1) =⇒ (2). Consider the (continuous) map

θ : π−1(U(x̄)) - U(x̄)×G z 7→ (π(z), τ(sx̄(π(z)), z)).

Then
θ ◦ φx̄(ȳ, g) = θ(sx̄(ȳ) · g) = (ȳ, τ(sx̄(ȳ), sx̄(ȳ) · g)) = (ȳ, g),

φx̄ ◦ θ(z) = φx̄(π(z), τ(sx̄(π(z)), z)) = sx̄(π(z)) · τ(sx̄(π(z)), z) = z.

Thus φx̄ is a homeomorphism.
(2) =⇒ (3) is obvious.
(3) =⇒ (1). Note that the translation function is unique for free G-spaces. It suffices to show

that the restriction

τ(X) : X∗ ∩ (π−1(Uα)× π−1(Uα)) =
(
π−1(Uα)

)∗ - G

is continuous. Consider the commutative diagram

(Uα ×G)∗
φ∗α
∼=
-
(
π−1(Uα)

)∗

G

τ(Uα ×G)

?
=========== G.

τ(X)

?

Since
τ(Uα ×G)((ȳ, g), (ȳ, h)) = g−1h

is continuous, the translation function restricted to
(
π−1(Uα)

)∗
τ(X) = τ(Uα ×G) ◦ ((φα)∗)−1

is continuous for each α and so τ(X) is continuous. �
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Now we give the definition. A principal G-bundle is a free G-space X such that

π : X → X/G

has local cross-sections and one of the (equivalent) conditions in Proposition 4.6 holds.

Example. Let Γ be a topological group and let G be a closed subgroup. Then the action of G
on Γ given by (a, g) 7→ ag for a ∈ Γ and g ∈ G is free. Then translation function is given by
τ(a, b) = a−1b, which is continuous. Thus Γ → Γ/G is principal G-bundle if and only if it has local
cross-sections.

4.3. The Associated Principal G-Bundles of Fibre Bundles. We come back to look at fibre
bundles ξ given by p : E → B with fibre F . Let {(Uα, φα)} be an atlas and let

gαβ : Uα ∩ Uβ - Homeo(F, F )

be the transition functions. A topological group G is called a group of the bundle ξ if
1) There is a group homomorphism

θ : G - Homeo(F, F ).

2) There exists an atlas of ξ such that the transition functions gαβ lift to G via θ, that is,
there is commutative diagram

Uα ∩ Uβ
gαβ- Homeo(F, F )

Uα ∩ Uβ

wwwwwwwww
gαβ - G,

θ

6

(where we use the same notation gαβ .)
3) The transition functions

gαβ : Uα ∩ Uβ - G

are continuous.
4) The G-action on F via θ is continuous, that is, the composite

G× F
θ×idF- Homeo(F, F )× F

evaluation- F

is continuous.
We write ξ̄ = {(Uα, gαβ)} for the set of transition functions to the atlas {(Uα, φα)}.

Note. In Steenrod’s definition [13, p.7], θ is assume to be a monomorphism (equivalently, the
G-action on F is effective, that is, if y · g = y for all y ∈ F , then g = 1.).

We are going to construct a principal G-bundle π : EG → B. Then prove that the total space
E = F ×G EG and p : E → B can be obtained canonically from π : EG → B. In other words,
all fibre bundles can obtained through principal G-bundles through this way. Also the topological
group G plays an important role for fibre bundles. Namely, by choosing different topological groups
G, we may get different properties for the fibre bundle ξ. For instance, if we can choose G to be
trivial (that is, gαβ lifts to the trivial group), then fibre bundle is trivial. We will see that the bundle
group G for n-dimensional vector bundles can be chosen as the general linear group GLn(R). The
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vector bundle is orientable if and only if the transition functions can left to the subgroup of GLn(R)
consisting of n × n matrices whose determinant is positive. If n = 2m, then GLm(C) ⊆ GL2m(R).
The vector bundle admits (almost) complex structure if and only if the transition functions can left
to GLm(C). (For manifolds, one can consider the structure on the tangent bundles. For instance,
an oriented manifold means its tangent bundle is oriented.)

Proposition 4.7. If ξ̄ is the set of transition functions for the space B and topological group G,
then there is a principal G-bundle ξG given by

π : EG - B

and an atlas {(Uα, φα)} such that ξ̄ is the set of transition functions to this atlas.

Proof. The proof is given by construction. Let

Ē =
⋃
α

Uα ×G× α,

that is Ē is the disjoint union of Uα ×G. Now define a relation on Ē by

(b, g, α) ∼ (b′, g′, β) ⇐⇒ b = b′, g = gαβ(b)g′.

This is an equivalence relation by Equations (3)-(5). Let EG = Ē/ ∼ with quotient topology and
let {b, g, α} for the class of (b, g, α) in EG. Define π : EG → B by

π{b, g, α} = b,

then π is clearly well-defined (and so continuous). The right G-action on EG is defined by

{b, g, α} · h = {b, gh, α}.

This is well-defined (and so continuous) because if (b′, g′, β) ∼ (b, g, α), then

(b′, g′h, β) = (b, (gαβ(b)g)h, β) = (b, gαβ(b)(gh), β) ∼ (b, gh, α).

Define φα : Uα ×G→ π−1(Uα) by setting

φα(b, g) = {b, g, α},

then φα is continuous and satisfies π ◦ φα(b, g) = b and

φα(b, g) = {b, 1 · g, α} = {b, 1, α} · g

for b ∈ Uα and g ∈ G. The map φα is a homeomorphism because, for fixing α, the map∐
β

(Uα ∩ Uβ)×G× β - Uα ×G (b, g′, β) 7→ (b, gαβ(b)g′)

induces a map π−1(Uα) → Uα ×G which the inverse of φα. Moreover,

φα(b, gαβ(b)g) = {b, gαβ(b)g, α} = {b, g, β} = θβ(b, g)

for b ∈ Uα ∩ Uβ and g ∈ G. Thus the {(Uα, gαβ)} is the set of transition function to the atlas
{(Uα, φα)}. �
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Let X be a right G-space and let Y be a left G-space. The product over G is defined by

X ×G Y = X × Y/(xg, y) ∼ (x, gy)

with quotient topology. Note that the composite

X × Y
πX - X

π - X/G

(x, y) 7→ x 7→ x̄

factors through X ×G Y . Let p : X ×G Y → X/G be the resulting map. For any x̄ ∈ X/G, choose
x ∈ π−1(x̄) ⊆ X, then

p−1(x̄) = π−1(x̄)×G Y = x× Y/Hx,

where Hx = {g ∈ G | xg = x}. Thus if X is a free right G-space, then the projection p : X ×G Y →
X/G has the constant fibre Y .

Proposition 4.8. Let π : X → X/G be a (right) principal G-bundle and let Y be any left G-space.
Then

p : X ×G Y - X/G

is a fibre bundle with fibre Y .

Proof. Consider a chart (Uα, φα) for π : X → X/G. Since the homeomorphism φα : Uα × G →
π−1(Uα) is a G-map, there is a commutative diagram

Uα × Y === (Uα ×G)×G Y
φα
∼=
- π−1(Uα)×G Y === p−1(Uα)

Uα

πUα

?
=========== Uα

πUα

?
============= Uα

p

?
========== Uα

p

?

and hence the result. �

Let ξ be a (right) principal G-bundle given by π : X → X/G. Let Y be any left G-space. Then
fibre bundle

p : X ×G Y - X/G

is called induced fibre bundle of ξ, denoted by ξ[Y ].
Now let p : E → B is a fibre bundle with fibre F and bundle group G. Observe that the action

of Homeo(F, F ) on F is a left action because (f ◦ g)(x) = f(g(x)). Thus G acts by left on F via
θ : G→ Homeo(F, F ).

A bundle morphism

E(ξ)
φ- E(ξ′)

B(ξ)

p(ξ)

? φ̄- B(ξ′)

p(ξ′)

?
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is call an isomorphism if both φ and φ̄ are homeomorphisms. (Note. this means that (φ−1, (φ̄)−1)
are continuous.) In this case, we write ξ ∼= ξ′.

Theorem 4.9. Let ξ be a fibre bundle given by p : E → B with fibre F and bundle group G. Let ξG

be the principal G-bundle constructed in Proposition 4.7 according to a set of transitions functions
to ξ Then ξG[F ] ∼= ξ.

Proof. Let {(Uα, φα)} be an atlas for ξ. We write φ̃α for φα in the proof of Proposition 4.7. Consider
the map θα given by the composite:

π−1(Uα)×G F �φ̃α × idF
∼=

(Uα ×G× α)G × F === Uα × F
φα
∼=
- p−1(Uα).

From the commutative diagram

((Uα ∩ Uβ)×G× β)×G F
(b, g′, y) 7→ (b, g′, gαβ(b)(y))

((b, g′, β), y) 7→ ((b, gαβ(b)g′, α), y)
- ((Uα ∩ Uβ)×G× α)×G F

(Uα ∩ Uβ)× F

wwwwwwwww
(b, y) 7→ (b, gαβ(b, y)) - (Uα ∩ Uβ)× F

wwwwwwwww

p−1(Uα ∩ Uβ)

∼= φβ

?

=========================================== p−1(Uα ∩ Uβ),

∼= φα

?

the map θα induces a bundle map

EG ×G F
θ - E(ξ)

B(ξ)
?

====== B(ξ).
?

This is an bundle isomorphism because θ is one-to-one and onto, and θ is a local homeomorphic by
restricting each chart. The assertion follows. �

This theorem tells that any fibre bundle with a bundle group G is an induced fibre bundle of
a principal G-bundle. Thus, for classifying fibre bundles over a fixed base space B, it suffices to
classify the principal G-bundles over B. The latter is actually done by the homotopy classes from
B to the classifying space BG of G. (There are few assumptions on the topology on B such as B is
paracompact.) The theory for classifying fibre bundles is also called (unstable) K-theory, which is
one of important applications of homotopy theory to geometry. Rough introduction to this theory
is as follows:

There exists a universal G-bundle ωG as π : EG→ BG. Given any principal G-bundle ξ over B,
there exists a (continuous) map f : B → BG such that ξ, as a principal G-bundle, is isomorphic to
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the pull-back bundle f∗ωG given by

E(f∗ωG) = {(x, y) ∈ B × EG | f(x) = π(y)} - EG

B

(x, y) 7→ x

? f - BG.

π

?

Moreover, for continuous maps f, g : B → BG, f∗ωG ∼= g∗ωG if and only if f ' g, that is, there is a
continuous map (called homotopy) F : B× [0, 1] → BG such that F (x, 0) = f(x) and F (x, 1) = g(x).
In other words, the set of homotopy classes [B,BG] is one-to-one correspondent to the set of
isomorphic classes of principal G-bundles over G.

Seminar Topic: The classification of principal G-bundles and fibre bundles. (References: for
instance [8, pp.48-58] Or [10, 11].)

4.4. Vector Bundles. Let F denote R, C or H-the real, complex or quaternion numbers. An
n-dimensional F-vector bundle is a fibre bundle ξ given by p : E → B with fibre Fn and an atlas
{(Uα, φα)} in which each fibre p−1(b), b ∈ B, has the structure of vector space over F such that
each homeomorphism φα : Uα × Fn → p−1(Uα) has the property that

φα|{b}×Fn : {b} × Fn - p−1(b)

is a vector space isomorphism for each b ∈ Uα.
Let ξ be a vector bundle. From the composite

(Uα ∩ Uβ)× Fn φβ- p−1(Uα ∩ Uβ)
φ−1

α- (Uα ∩ Uβ)× Fn,

the transition functions
gαβ : Uα ∩ Uβ - Homeo(Fn,Fn)

have that property that, for each x ∈ Uαβ ,

gαβ(x) : Fn - Fn

is a linear isomorphism. It follows that the bundle group for a vector bundle can be chosen as
the general linear group GLn(F). By Theorem 4.9, we have the following.

Proposition 4.10. Let ξ be an n-dimensional F-vector space over B. Then there exists a principal
GLn(F)-bundle ξGLn(F) over B such that ξ ∼= ξGLn(F)[Fn]. Conversely, for any principal GLn(F)-
bundle over B, ξGLn(F)[Fn] is an n-dimensional F-vector bundle over B. �

In other words, the total spaces of all vector bundles are just given by E(ξGLn(F))×GLn(F) Fn.

4.5. The Construction of Gauss Maps. The Grassmann manifold Gn,m(F) is the set of n-
dimensional F-subspaces of Fm, that is, all n-F-planes through the origin, with the topology de-

scribed as in the topic on the examples of Manifolds. (If m = ∞, F∞ =
∞⊕
j=1

F.) Let

E(γmn ) = {(V, x) ∈ Gn,m(F)× Fm | x ∈ V }.



32 JIE WU

Exercise 4.3. Show that
p : E(γmn ) → Gn,m(F) (V, x) 7→ V

is an n-dimensional F-vector bundle, denoted by γmn . [Hint: By reading the topic on the examples of
manifolds, check that Vn,m(F) → Gn,m(F) is a principal O(n,F), where O(n,R) = O(n), O(n,C) =
U(n) and O(n,H) = Sp(n). Then check that E(γmn ) = Vn,m(F)×O(n,F) Fn.]

A Gauss map of an n-dimensional F-vector bundle in Fm (n ≤ m ≤ ∞) is a (continuous) map
g : E(ξ) → Fm such that g restricted to each fibre is a linear monomorphism.
Example. The map

q : E(γmn ) → Fm (V, x) 7→ x

is a Gauss map.

Proposition 4.11. Let ξ be an n-dimensional F-vector bundle.
1) If there is a vector bundle morphism

E(ξ)
u- E(γmn )

B(ξ)

p(ξ)

? f- Gn,m(F)

p(γmn )

?

that is an isomorphism when restricted to any fibre of ξ, then q ◦ u : E(ξ) → Fm is a Gauss
map.

2) If there is a Gauss map g : E(ξ) → Fm, then there is a vector bundle morphism (u, f) : ξ →
γmn such that qu = g.

Proof. (1) is obvious. (2). For each b ∈ B(ξ), g(p(ξ)−1(b)) is an n-dimensional F-subspace of Fm
and so a point in Gn,m(F). Define the functions

f : B(ξ) → Gn,m(F) f(b) = g(p(ξ)−1(b)),

u : E(ξ) → E(γmn ) u(z) = (f(p(z)), g(z)).

The functions f and u are well-defined. For checking the continuity of f and u, one can look at a
local coordinate of ξ and so we may assume that ξ is a trivial bundle, namely, g : B(ξ)× Fn → Fm
restricted to each fibre is a linear monomorphism. Let {e1, . . . , en} be the standard F-bases for Fn.
Then the map

h : B - Fm × · · · × Fm b 7→ (g(b, e1), g(b, e2), . . . , g(b, en))

is continuous. Since g restricted to each fibre is a monomorphism, the vectors

{g(b, e1), g(b, e2), . . . , g(b, en)}

are linearly independent and so

(g(b, e1), g(b, e2), . . . , g(b, en)) ∈ Ṽn,m(F)

for each b, where Vn,m(F) is the open Stiefel manifold over F. Thus

h : B - Ṽn,m(F) b 7→ (g(b, e1), g(b, e2), . . . , g(b, en))
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is continuous and so the composite

f : B
h- Ṽn,m(F)

quotient-- Gn,m(F)

is continuous. The function u is continuous because the composite

E(ξ)
u - E(γmn )

E(ξ)× E(ξ)

∆

? (f ◦ p(ξ))× g- Gn,m(F)× Fm
?

∩

is continuous. This finishes the proof. �

Let ξ be a vector bundle and let f : X → B(ξ) be a (continuous) map. Then the induced vector
f∗ξ is the pull-back

E(f∗ξ) = {(x, y) ∈ X × E(ξ) |f(x) = p(y)} - E(ξ)

X
? f- B(ξ).

p

?

Proposition 4.12. There exists a Gauss map g : E(ξ) → Fm (n ≤ m ≤ ∞) if and only if

ξ ∼= f∗(γmn )

over B(ξ) for some map f : B(ξ) → Gn,m(F).

Proof. ⇐= is obvious.
=⇒ Assume that ξ has a Gauss map g. From Part (2) of Proposition 4.11, there is a commutative

diagram

E(ξ)
u- E(γmn )

B(ξ)

p(ξ)

? f- Gn,m(F).

p(γmn )

?

Since E(f∗γmn ) is defined to be the pull-back, there is commutative diagram

E(ξ)
ũ- E(f∗γmn )

B(ξ)

p(ξ)

?
====== B(ξ),

p

?

where ũ restricted to each fibre is a linear isomorphism because both vector-bundle has the same
dimension and the Gauss map g restricted to each fibre is a monomorphism. It follows that
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ũ : E(ξ) → E(f∗γmn ) is one-to-one and onto. Moreover ũ is a homeomorphism by considering a
local coordinate. �

We are going to construct a Gauss map for each vector bundle over a paracompact space. First,
we need some preliminary results for bundles over paracompact spaces. (For further information on
paracompact spaces, one can see [3, 162-169].

A family of C = {Cα | J} of subsets of a space X is called locally finite if each x ∈ X admits a
neighborhood Wx such that Wx ∩ Cα 6= ∅ for only finitely many indices α ∈ J . Let U = {Uα} and
V = {Vβ} be two open covers of X. V is called a refinement of U if for each β, Vβ ⊆ Uα for some α.

A Hausdorff space X is called paracompact if it is regular and if every open cover of X admits a
locally finite refinement.

Let U = {Uα | α ∈ J} be an open cover of a space X. A partition of unity, subordinate to U , is
a collection {λα | α ∈ J} of continuous functions λα : X → [0, 1] such that

1) The support
supp(λα) ⊆ Uα

for each α, where the support

supp(λα) = {x ∈ X | λα(x) 6= 0}
is the closure of the subset of X on which λα 6= 0;

2) for each x ∈ X, there is a neighborhood Wx of x such that λλα
|Wx

6≡ 0 for only finitely
many indices α ∈ J . (In other words, the supports of λα’s are locally finite.)

3) The equation ∑
α∈J

λα(x) = 1

for all x ∈ X, where the summation is well-defined for each given x because there are only
finitely many non-zeros.

We give the following well-known theorem without proof. One may read a proof in [2, pp.17-20].

Theorem 4.13. If X is a paracompact space and U = {Uα} is an open cover of X, then there
exists a partition of unity subordinate to U . �

Lemma 4.14. Let ξ be a fibre bundle over a paracompact space B. Then ξ admits an atlas with
countable charts.

Proof. Let {(Uα, φα | α ∈ J} be an atlas for ξ. We are going to find another atlas with countable
charts.

By Theorem 4.13, there is a partition of unity {λα | α ∈ J} subordinate to {Uα | α ∈ J}. Let

Vα = λ−1
α (0, 1] = {b ∈ B | λα(b) > 0}.

Then, by the definition of partition of unity, Vα ⊆ V̄α ⊆ Uα. For each b ∈ B, let

S(b) = {α ∈ J | λα(b) > 0}.
Then, by the definition of partition of unity, S(b) is a finite subset of J .

Now for each finite subset S of J define

W (S) = {b ∈ B |λα(b) > λβ(b) for each α ∈ S and β 6∈ S}
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=
⋂

α ∈ S
β 6∈ S

(λα − λβ)−1(0, 1].

Then W (S) is open because for each b ∈ W (S), by definition of partition of unity, there exists a
neighborhood Wb of b such that there are finitely many supports intersect with Wb; and so the above
(possibly infinite) intersection of open sets restricted to Wb is only a finite intersection of open sets.

Let S and S′ be two subsets of J such that S 6= S′ and |S| = |S′| = m > 0, where |S| is the
number of elements in S. Then there exist α ∈ S r S′ and β ∈ S′ r S because S 6= S′ but S and
S′ has the same number elements. We claim that

W (S) ∩W (S′) = ∅.

Otherwise there exists b ∈ W (S) ∩W (S′). By definition W (S), λα(b) > λβ(b) because α ∈ S and
β 6∈ S. On the other hand, λβ(b) > λα(b) because b ∈W (S′), β ∈ S′ and α 6∈ S′.

Now define

Wm =
⋃

b ∈ B
|S| = m

W (S(b))

for each m ≥ 1. We prove that (1) {Wm | m = 1, . . .} is an open cover of B; and (2) ξ restricted to
Wm is a trivial bundle for each m. (Then {Wm} induces an atlas for ξ.)

To check {Wm} is an open cover, note that each Wm is open. For each b ∈ B, S(b) is a finite set
and b ∈ W (S(b)) because λβ(b) = 0 for β 6∈ S(b) and λα(b) > 0 for α ∈ S(b). Let m = |S(b)|, then
b ∈Wm and so {Wm} is an open cover of B.

Now check that ξ restricted to Wm is trivial. From the above, Wm is a disjoint union of W (S(b)).
It suffices to check that ξ restricted to each W (S(b)) is trivial. Fixing α ∈ S(b), for any x ∈W (S(b)),
then

λα(x) > λβ(x)

for any β 6∈ S. In particular, λα(x) > 0 for any x ∈ W (S(b)). It follows that W (S(b)) ⊆ Vα ⊆ Uα.
Since ξ restricted to Uα is trivial, ξ restricted to W (S(b)) is trivial. This finishes the proof. �

Note. From the proof, if for each b ∈ B there are at most k sets Uα with b ∈ Uα, then B admits
an atlas of finite (at most k) charts. [In this case, check that Wj = ∅ for j > k.]

Theorem 4.15. Any n-dimensional F-vector bundle ξ over a paracompact space B has a Gauss map
g : E(ξ) → F∞. Moreover, if ξ has an atlas of k charts, then ξ has a Gauss map g : E(ξ) → Fkn.

Proof. Let {(Ui, φi)}1≤i≤k be an atlas of ξ with countable or finite charts, where k is finite or infinite.
Let {λi} be the partition of unity subordinate to {Ui}. For each i, define the map gi : E(ξ) → Fn
as follows: gi restricted to p(ξ)−1(Ui) is given by

gi(z) = λi(z)(p2 ◦ φ−1
i (z)),

where p2 ◦ φ−1
i is the composite

p(ξ)−1(Ui)
φ−1

i- Ui × Fn projection

p2
- Fn;
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and gi restricted to the outside of p(ξ)−1(Ui) is 0. Since the closure of λ−1
i (0, 1] is contained in Ui,

gi is a well-defined (continuous) map. Now define

g : E(ξ) →
k⊕
i=1

Fn = Fkn g(z) =
k∑
i=1

gi(z).

This a well-defined (continuous) map because for each z, there is a neighborhood of z such that
there are only finitely many gi are not identically zero on it.

Since each gi : E(ξ) → Fn is a monomorphism (actually isomorphism) on the fibres of E(ξ) over
b with λi(b) > 0, and since the images of gi are in complementary subspaces of Fkn, the map g is a
Gauss map. �

This gives the following classification theorem:

Corollary 4.16. Every vector bundle over a paracompact space B is isomorphic to an induced vector
bundle f∗(γ∞n ) for some map f : B → Gn,∞(F). Moreover every vector bundle over a paracompact
space B with an atlas of finite charts is isomorphic to an induced vector bundle f∗(γmn ) for some m
and some map f : B → Gn,m(F). �

Remarks: It can be proved that f∗γmn ∼= g∗γmn if and only if f ' g : B → Gn,m(F). From this,
one get that the set of isomorphism classes of n-dimensional F-vector bundles over a paracompact
space B is isomorphic to the set of homotopy classes [B,Gn,∞(F)].

For instance, if n = 1 and F = R, G1,∞(R) ' BO(1) ' BZ/2 ' RP∞, where BG is so-called
the classifying space of the (topological) group G, and [B,RP∞] = H1(B,Z/2), which states that
all line bundles are by the first cohomology with coefficients in Z/2Z. In particular, any real line
bundles over a simply connected space is always trivial.

If n = 1 and F = C, then G1,∞(C) ' BU(1) ' BS1 ' CP∞, and [B,CP∞] = H2(B,Z), which
states that all complex line bundles are by the second integral cohomology.

If n = 1 and F = H, then G1,∞(H) ' BSp(1) ' BS3 ' HP∞, and so [B,G1,∞(H)] = [B,HP∞].
However, the determination of [B,HP∞] is very hard problem even when B are spheres. If B = Sn,
then [B,HP∞] = πn−1(S3) that is only known for n less than 66 or so, by a lot of computations
through many papers. Some people even believe that it is impossible to compute the general
homotopy groups πn(S3).

Seminar Topic: Gauss Maps and the Classification of Vector Bundles. (References: for instance [8,
pp.26-29,31-33].)

A vector bundle is called of finite type if it has an atlas with finite charts. Given two vector
bundles ξ and η over B, the Whitney sum ξ ⊕ η is defined to be the pull-back:

E(ξ ⊕ η) - E(ξ)× E(η)

B
? ∆

diagonal
- B ×B.

p(ξ)× p(η)

?

Intuitively, ξ ⊕ η is just the fibrewise direct sum.



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 37

Proposition 4.17. For a vector bundle ξ over a paracompact space B, the following statement are
equivalent:

1) The bundle ξ is of finite type.
2) There exists a map f : B → Gn,m(F) such that ξ is isomorphic to f∗γmn .
3) There exists a vector bundle η such that the Whitney sum ξ ⊕ η is trivial.

Proof. (1) =⇒ (2) follows from Corollary 4.16. (2) =⇒ (1) It is an exercise to check that γmn is
of finite type by using the property that the Grassmann manifold Gn,m(F) = O(m,F)/O(n,F) ×
O(m − n,F) is compact, where O(n,R) = O(n), O(n,C) = U(n) and O(n,H) = Sp(n). It follows
that ξ ∼= f∗γmn is of finite type.

(2) =⇒ (3). Let (γmn )∗ be the vector bundle given by

E((γmn )∗) = {(V,~v) ∈ Gn,m(F)× Fm | ~v ⊥ V }

with canonical projection E((γmn )∗) → Gn,m(F). Then γmn ⊕ (γmn )∗ is an m-dimensional trivial
F-vector bundle. It follows that

f∗(γmn ⊕ (γmn )∗) = f∗(γmn )⊕ f∗((γmn )∗)

is trivial. Let η = f∗((γmn )∗). Then ξ ⊕ η is trivial.
(3) =⇒ (2). The composite

E(ξ) ⊂ - E(ξ ⊕ η) = B × Fm - Fm

is a Gauss map into finite dimensional vector space, where m = dim(ξ ⊕ η). By Proposition 4.12,
there is a map f : B → Gn,m such that ξ ∼= f∗γmn . �

Corollary 4.18. Let ξ be a F-vector bundle over a compact (Hausdorff) space B. Then there is a
F-vector bundle η such that ξ ⊕ η is trivial. �

In the view of (stable) K-theory, the Whitney sum is an operation on vector bundles over a (fixed)
base-space, where the trivial bundles (of different dimensions) are all regarded as 0. In this sense,
the Whitney sum plays as an addition (that is associative and commutative with 0). The bundle ξ
with property that ξ ⊕ η is trivial for some η means that ξ is invertible. Those who are interested
in algebra can push notions in algebra to vector bundles by doing constructions fibrewisely. More
general situation possibly is the sheaf theory (by removing the locally trivial condition) that is pretty
useful in algebraic geometry. In algebraic topology, people also study the category whose objects are
just continuous maps f : E → B with fixed space B, or even more general category whose objects
are diagrams over spaces. In the terminology of fibre bundles, a map f : E → B is called a bundle
(without assuming locally trivial).

5. Tangent Bundles and Vector Fields

5.1. Tangent Bundles. Let M be a differentiable manifold of dimension m. As a set, the tangent
bundle

T (M) =
⋃
P∈M

TP (M),

the disjoint union of tangent spaces. We introduce topological and differential structure on T (M)
in three stages:



38 JIE WU

(a) For an open subset V ⊆ Rm, T (V ) ∼= V ×Rm using the parallel translation isomorphisms at
each point. Take this differential structure on T (V ) by regarding V ×Rm as a subset of R2m.
(That is, T (V ) is regarded as a differentiable manifold with only one chart T (V ) ∼= V ×Rm.)

(b) For a chart (U, φ) of M , there is a bijection

Tφ : T (U)
∼=- T (φ(U)) ∼= φ(U)× Rm

which is a linear isomorphism on each tangent space Tφ : TP (M) - Tφ(P )(φ(U)), see
Subsection 2.4. Take the topological and differential structure on T (U) induced by Tφ.

(c) If (V, ψ) is another chart of M , from Diagram 1, there is a commutative diagram

TP (M)
Tφ
∼=
- Tφ(P )(φ(U ∩ V ))

TP (M)

wwwwwwwww
Tψ
∼=
- Tψ(P )(ψ(U ∩ V )),

T (ψ ◦ φ−1)

?

where T (ψ ◦ φ−1) is the linear isomorphism induced by the Jacobian matrix of the differ-
entiable map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ). Thus there is a commutative diagram

(6)

T (U ∩ V )
Tφ
∼=
- T (φ(U ∩ V ))

∼= - φ(U ∩ V )× Rm

T (U ∩ V )

wwwwwwwww
Tψ
∼=
- T (ψ(U ∩ V ))

T (ψ ◦ φ−1)

? ∼= - ψ(U ∩ V )× Rm,

(P,~v) 7→ (ψ ◦ φ−1(P ), TP (ψ ◦ φ−1)(~v))

?

where TP (ψ ◦ φ−1) is the Jacobian matrix of the differentiable map ψ ◦ φ−1 : φ(U ∩ V ) →
ψ(U ∩ V ) at the point P .

In other words, let {(Uα, φα)} be a differentiable, then the tangent bundle T (M) is a differentiable
manifold with a differentiable atlas given by

Tφα : T (Uα)
∼=- T (φα(Uα)) ∼= φα(Uα)× Rm

and transition functions given as in Diagram 6. (Note. As a topological space, T (M) is the quotient
space of the disjoint union

∐
α
T (Uα) with equivalence relation given by Diagram 6.)

Proposition 5.1. The projection π : T (M) →M, ~vP 7→ P is a vector bundle over M . Moreover π
is a differentiable submersion. �

Example. The tangent bundle of spheres are given as follows:

T (Sn) = {(x, y) ∈ Rn+1 × Rn+1 | |x| = 1, y ⊥ x}.

The projection π : T (Sn) → Sn is given by (x, y) 7→ x.
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Proposition 5.2. If f : Mm → Nn is differentiable, then Tf : TM → TN is also differentiable
with a morphism of vector bundles

TM
Tf - TN

M

π

? f - N.

π

?

Proof. By definition, f is differentiable means that there are atlases {(Uα, φα)} forM and {(Vβ , φβ)}
for N such that the composites

Rm ⊇ φα(f−1(Vβ) ∩ Uα)
φ−1

α

∼=
- f−1(Vβ) ∩ Uα

f- Vβ
ψβ

∼=
- ψβ(Vβ) ⊆ Rn

are differentiable. There is a commutative diagram

φα(f−1(Vβ) ∩ Uα)× Rm ∼= T (φα(f−1(Vβ) ∩ Uα) �Tφα T (f−1(Vβ) ∩ Uα) = Tf−1(T (Vβ)) ∩ T (Uα)

ψβ(Vβ)× Rn ∼= T (ψβ(Vβ))

Θ

?
�

Tψβ
T (Vβ),

T f

?

where
Θ(P,~v) = (ψβ ◦ f ◦ φ−1

α (P ), D(ψβ ◦ f ◦ φ−1
α ) |P (~v))

and D(ψβ ◦ f ◦φ−1
α ) |P is the Jacobian matrix of ψβ ◦ f ◦φ−1

α at P . Thus Tf is differentiable. Since
Tf restricted to each fibre is a linear transformation, (Tf, f) is a morphism of tangent bundles and
hence the result. �

5.2. Vector Fields. Let M be a differentiable manifold. A smooth cross-section X of the bundle
projection π : TM →M is called a vector field on M , that is, X : M → TM is a smooth map such
that π ◦X = idM .

Let f : M → R be a smooth function and let X,Y : M → TM be vector fields. Then the fibrewise
addition

X + Y : M → TM b 7→ X(b) + Y (b)
and scalar multiplication

f ·X : M → TM b 7→ f(b) ·X(b)
are also vector fields on M .

Let C∞(M) denote the set of smooth functions onM . Then C∞(M) admits an algebraic structure
over R given by

(f + g)(b) = f(b) + g(b) (fg)(b) = f(b)g(b).
Let VF(M) denote the set of vector fields on M . Then VF(M) is an abelian group under X + Y
with

f(gX) = (fg)X f(X + Y ) = fX + fY (f + g)X = fX + gX

for f, g ∈ C∞(M) and X,Y ∈ VF(M). Thus we have the following.

Proposition 5.3. Let M be a smooth manifold. Then VF(M) is a module over C∞(M). �
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Let X be a vector field and let P be a point in M . Then X admits a local expression in the
following sense:

Let (U, φ) be a chart around P , that is φ : U
∼=- φ(U) ⊆ Rm such that φ(P ) = 0. There is a

commutative diagram

U
X|U- T (U)

Tφ- T (φ(U)) ∼= φ(U)× Rm

U

wwwwwwwwww
========= U

π

? φ - φ(U).

proj.

?

Thus

(7) Tφ ◦X|U (Q) =

(
φ(Q),

m∑
i=1

ξiU (Q)
∂

∂xi

∣∣∣∣
Q

)
for Q ∈ U . If (V, ψ) is another chart around P with ψ(P ) = 0, then the change of coordinates is
obtained from the diagram

ψ(U ∩ V )× Rm ∼= T (ψ(U ∩ V )) �Tψ T (U ∩ V )
Tφ- T (φ(U ∩ V )) ∼= φ(U ∩ V )× Rm

ψ(U ∩ V )
?

� ψ
U ∩ V

π

? φ - φ(U ∩ V ).

proj.

?

Now we are going to describe an action of VF(M) on C∞(M). Let X be a vector field and let
f be a smooth function on M . Then Xf is a smooth function on M defined as follows:

Given any P ∈M , let (U, φ) be a chart around P such that φ(P ) = 0,

(8) (Xf)(P ) =
m∑
i=1

ξiU (P )
∂(f ◦ φ−1)

∂xi
(0).

The picture is as follows:

U
X|U- TU

Tφ- T (φ(U)) ∼= φ(U)× Rm
(x,~v) 7→ D~v(fU ◦ φ−1)(x)- R

U

π

? φ - φ(U)
? f |U ◦ φ−1

- R.

Exercise 5.1. Let X be a vector field on M and let f : M → R be a smooth function. Prove that
Xf is well-defined smooth function on M . [Hint: Since smooth is local property, it suffices to check
that Xf is well-defined, that is, to check that if (V, ψ) is another chart around P such ψ(P ) = 0
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and ψ ◦ φ−1 smooth on φ(U ∩ V ), then
m∑
i=1

ξiU (P )
∂(f ◦ φ−1)

∂xi
(0) =

m∑
i=1

ξiV (P )
∂(f ◦ ψ−1)

∂yi
(0)

by using chain rule. Note. From the proof, we need the condition that ψ ◦φ−1 is differentiable. So
the definition of Xf depends on the differential structure of M .]

The proof of the following proposition follows from the definition.

Proposition 5.4. The action of VF(M) on C∞(M) satisfies the following rules:

X(f + g) = Xf +Xg X(fg) = Xf · g + f ·Xg
for X ∈ VF(M) and f, g ∈ C∞(M). In other words, for each X ∈ VF(M), the operation

DX : C∞(M) - C∞(M) f 7→ Xf

is a derivation on the algebra C∞(M). �

Let Der(C∞(M)) denote the set of derivations on C∞(M). Then Der(C∞(M)) is a module over
C∞(M) under the operations: for D1, D2 ∈ Der(C∞(M)) and g ∈ C∞(M), the derivations D1 +D2

and gD1 are given by

(D1 +D2)(f) = D1(f) +D2(f) (gD1)(f) = g ·D1(f).

Theorem 5.5. The function

Φ: VF(M) - Der(C∞(M)) X 7→ DX

is an isomorphism of C∞(M)-modules.

We need a lemma for proving Theorem 5.5.

Lemma 5.6. Let h be a smooth function defined on a neighborhood U of P on M . There is a
(small) neighborhood V of P such that V̄ ⊆ U , and a smooth function g on M such that g = h on
V and g = 0 on the complement M r U of U

Sketch. First choose a small open neighborhood W of P such that W̄ ⊆ U . For W , check that there
are small ε1- and ε2-neighborhoods Vε1 ⊆ Vε2 ⊆W of P with ε2 > ε1, and a smooth function f with
0 ≤ f ≤ 1, f = 1 on Vε1 and f = 0 on M r Vε2 .

Next define

g(Q) =
{
f(Q)h(Q) for Q ∈ U

0 for Q ∈M \ U.
�

Proof of Theorem 5.5. Since

ΦX+Y = ΦX + ΦY ΦgX = gΦX ,

the function Φ is a morphism of C∞(M)-modules.
Step 1. Ker(Φ) = 0.

Let X be a vector field on M such that DX = 0, that is Xf = 0 for all f ∈ C∞(M). For each
P ∈M , let (U, φ) be a chart around P with φ(P ) = 0, from Equation 8

(Xf)(P ) =
m∑
i=1

ξiU (P )
∂(f ◦ φ−1)

∂xi
(0) = 0 for any f ∈ C∞(M).
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Let hj be smooth function defined on a small neighborhood of P such that hj ◦ φ−1 = xj on a
small neighborhood of 0. By Lemma 5.6, there exists fj ∈ C∞(M) such that fj = hj in a small
neighborhood of P . By inputting fj into the above equation,

0 = (Xfj)(P ) =
m∑
i=1

ξiU (P )
∂(fj ◦ φ−1)

∂xi
(0) =

m∑
i=1

ξiU (P )
∂xj

∂xi
(0) = ξj(U)(P ).

for j = 1, . . . ,m. Thus

X(P ) =
m∑
i=1

ξiU (P )
∂

∂xi
= 0

for any given P ∈M and so X = 0, that is Ker(Φ) = 0.

Now we are going to show that Φ is onto, that is, given any derivation D on C∞(M), we construct
a vector field X such that DX = D, by two steps.

Step 2. If f is a smooth function on M such that f = 0 at all points of an open set U of M , then
Df = 0 on U .

Let P be any point in U . By Lemma 5.6, there are neighborhoods UP and WP of P , and a
smooth function fP ∈ C∞(M) such that

W̄P ⊆ UP ⊆ U, fP |WP
= 1 fP |MrUP

= 0.

Set g = 1 − fP . Then gf = f because, if Q ∈ UP , then f(Q) = 0 and g(Q)f(Q) = f(Q) = 0 for
Q ∈ UP , and if Q 6∈ UP , then g(Q) = 1− fP (Q) = 1, and so g(Q)f(Q) = f(Q) for Q 6∈ UP .

Now since D is a derivation, Df = D(gf) = (Dg)f + g(Df) and so, for any given P ∈ U ,

(Df)(P ) = (Dg(P ))f(P ) + g(P )(Df(P )) = (Dg(P )) · 0 + 0 · (Df(P )) = 0

because f(P ) = 0 and g(P ) = 1− fP (P ) = 1− 1 = 0 as P ∈WP ⊆ U .
Step 3. Construct the vector field X : M → TM such that Xf = D(f) for any f ∈ C∞(M).

Let P be an arbitrary point in M , and let h be any smooth function defined on a neighborhood
V of P . By Lemma 5.6, there a neighborhood U (Ū ⊆ V ) and an f ∈ C∞(M) such that f = h
on U . If f ′ ∈ C∞(M) is also equal to h on U , then, by Step 2, Df = Df ′ on U . Hence, for any
f ∈ C∞(M) agreeing h on a neighborhood of P , the value of Df at P is independent on the choice
of f .

Now let (U, φ) be a chart around P . By Proposition 1.3, there exist real numbers a1, a2, . . . , an ∈
R such that

(9) D(h)(P ) =
n∑
i=1

ai
∂(h ◦ φ−1)

∂xi
(P )

for any h ∈ C∞(U), where ai depends on D and P but is independent on h. Define a function
X : M → TM, P 7→ X(P ), such that

Tφ ◦X(P ) =
m∑
i=1

ai
∂

∂xi
.

Then, for any f ∈ C∞(M), (Xf)(P ) = (Df)(P ) for any given P and so Xf = Df .
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To show that X is smooth, it suffices to show that X is smooth in a small neighborhood of P .
Let hj ∈ C∞(U) such that hj ◦ φ−1 = xj . By lemma 5.6, there exists a small neighborhood Vj
(V̄j ⊆ U) of P and fj ∈ C∞(M) such that fj = hj on Vj . From Equation 9,

D(fj)(Q) =
m∑
i=1

ai(Q)
∂xj

∂xi
(Q) = aj(Q)

for Q ∈ Vj . Thus aj is smooth on Vj and so X is smooth on
m⋂
j=1

Vj . This finishes the proof. �

One of the important consequences of Theorem 5.5 is to discover the Lie algebra structure on
vector fields, namely, given vector fields X and Y , we can construct canonical new vector field [X,Y ]
called commutator product or bracket of X and Y .

Let’s first look at the structure on Der(C∞(M)). Let D1 and D2 be two derivations on C∞(M).
The commutator product [D1, D2] : C∞(M) → C∞(M) is linear map defined by

[D1, D2](f) = D1(D2(f))−D2(D1(f)).

Lemma 5.7. Let D1, D2 be derivations on C∞(M). Then [D1, D2] is also a derivation on M .
Moreover the following identities hold:

(10) [D1, D2] = −[D2, D1] [D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0.

The latter is called Jacobi identity

Proof.
[D1, D2](fg) = D1(D2(fg))−D2(D1(fg))

= D1(D2(f)g + fD2(g))−D2(D1(f)g + gD1(f))

= D1(D2(f))g +D2(f)D1(g) +D1(f)D2(g) + fD1(D2(g))

−D2(D1(f))g −D1(f)D2(g)−D2(f)D1(g)− fD2(D1(g))

= ([D1, D2](f))g + f([D1, D2](g)).
Check the Jacobi identity by yourself. �

Now given vector fields X and Y , then DX and DY are derivations on C∞(M). By Theorem 5.5,
there is a unique vector field [X,Y ] such that

D[X,Y ] = [DX , DY ]

because [DX , DY ] is also a derivation. In other words,

[X,Y ]f = X(Y f)− Y (Xf)

for all f ∈ C∞(M). (Note. The composition f 7→ X(Y f) does not define a vector field in general
because it is not a derivation.)

Exercise 5.2. Prove the following identities for the bracket of vector fields:
(1). [X + Y,Z] = [X,Z] + [Y, Z];
(2). [X,Y + Z] = [X,Y ] + [X,Z];
(3). [X,Y ] = −[Y,X];
(4). [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X, for f, g ∈ C∞(M);
(5). [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.
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Let F be any field. A vector space V (possibly infinitely dimensional) is called a Lie algebra over
F if there is a bi-linear operation: [X,Y ] for X,Y ∈ V such that

[X,Y ] = −[Y,X] [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for all X,Y, Z ∈ V .

Theorem 5.8. Let M be a smooth manifold. Then VF(M) is a Lie algebra over R and Φ: VF(M) →
Der(C∞(M)) is an isomorphism of Lie algebras. �

5.3. Vector Fields on Spheres. In this subsection, we consider the very classical problem of
determining when a sphere Sn has a single unit vector field on it. A unit vector field means a vector
field X : Sn → TSn such that |X(P )| = 1 for each P . Note that

TSn = {(P,~v) ∈ Rn+1 ⊕ Rn+1 | |P | = 1, P · ~v = 0}.
Thus a vector field X : Sn → TSn can be written as a map

P 7→ (P, φX(P )),

where φX : Sn → Rn+1 is a smooth map such that P · φX(P ) = 0. Conversely, any smooth map
φ : Sn → Rn+1 such that P · φ(P ) = 0 defines a vector field X. If X is a unit vector field, then the
smooth map φX : Sn → Rn+1 satisfies two equations:

|φ(P )| = 1 P · φ(P ) = 0

for all P ∈ Sn. The first equation tells that φX is a smooth map from Sn → Sn.

Proposition 5.9. If Sn−1 has k orthogonal unit vector fields X1, . . . , Xk, then Snq−1 has k orthog-
onal unit vector fields X̃1, . . . , X̃k.

Proof. By the assumption there are maps φi : Sn−1 → Rn such that

P · φi(P ) = 0 φi(P ) · φj(P ) = δij

for all P ∈ Sn−1 and 1 ≤ i, j ≤ k. Consider Snq−1 as the join of q-copies of Sn−1, that is,

Snq−1 =

{
(t1P1, t2P2, . . . , tqPq) ∈ (Rn)⊕q = Rnq | Pi ∈ Sn−1, 0 ≤ ti ≤ 1,

q∑
i=1

t2i = 1

}
.

Define φ̃i : Snq−1 → Rnq by

φ̃i(t1P1, t2P2, . . . , tqPq) = (t1φi(P1), t2φi(P2), . . . , tqφi(Pq)).

Then P · φ̃i(P ) = 0 and φ̃i(P ) · φ̃j(P ) = δij for all P ∈ Snq−1. This defines k-orthogonal unit vector
fields on Snq−1. �

Corollary 5.10. Every odd sphere S2q−1 has a unit vector field on it.

Proof. It suffices to show that S1 has a unit vector field, which is just given by φ : S1 → S2, (x1, x2) 7→
(−x2, x1). �

Proposition 5.11. If Sn has a unit vector field, then there is a deformation H : Sn × [0, 1] → Sn

such that
H(P, 0) = P H(P, 1) = −P

for all P ∈ Sn.
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Proof. By the assumption, there is a map φ : Sn → Rn+1 such that P ·φ(P ) = 0 and |φ(P )| = 1 for
all P ∈ Sn. Define H : Sn × [0, 1] → Sn by

H(P, t) = cos(πt)P + sin(πt)φ(P ).

Then H(P, 0) = P and H(P, 1) = −P for all P ∈ Sn. [Note. This deformation is on the great
circle from P to −P in the direction φ(P ).] �

The proof of the following theorem uses a result from algebraic topology that the antipodal map
a : Sn → Sn, x 7→ −x is homotopic to the identity map if and only if n is odd.

Theorem 5.12. The sphere Sn admits a unit vector field on it if and only if n is odd. Thus any
even sphere has no unit vector fields.

Proof of the case n = 2 by assuming fundamental groups. We only prove that S2 has no unit vector
fields. Let SO(n) be the subgroup of O(n) consisting of orthogonal matrices of determinant +1.
There is a principal G-bundle:

SO(2)
j- SO(3)

π- S2,

which can be obtained by considering

S2 = {(1, 0, 0) ·A | A ∈ SO(3)}

the orbit space.
Suppose that S2 has a (continuous) unit vector field. Then there is a (continuous) map φ : S2 →

R3 such that x · φ(x) = 0 and |φ(x)| = 1 for all x ∈ S2. Define a map s : S2 → SO(3) by

s(x) =

 x
φ(x)

x× φ(x)

 .

Then s is a cross-section to the bundle projection π : SO(3) → S2, that is π ◦ s = idS2 . Define

θ : S2 × SO(2) - SO(3) (x, g) 7→ s(x) · g.

Then θ is continuous, one-to-one and onto and so θ is a homeomorphism because these are compact
spaces. By applying the fundamental groups,

θ∗ : π1(S2 × SO(2)) = π1(S2)× π1(SO(2))
∼=- π1(SO(3)).

By using the facts that π1(S2) = 0, SO(2) = S1, π1(S1) = Z, π1(SO(3)) = Z/2, θ∗ : Z ∼= Z/2 and
hence a contradiction. �

6. Riemann Metric and Cotangent Bundles

6.1. Riemann and Hermitian Metrics on Vector Bundles. If x ∈ R, let x̄ = x, and if
z = x+ iy ∈ C, let z̄ = x− iy. Let F denote either R or C.

Let V be a vector space over F. An inner product on V is a function β : V × V → F, the field of
scalars, such that

1) β(ax+a′x′, y) = aβ(x, y)+a′β(x′, y), β(x, by+b′y′) = b̄β(x, y)+b̄′β(x, y′) for x, x′, y, y′ ∈ V
and a, a′, b, b′ ∈ F.

2) β(x, y) = β(y, x) for x, y ∈ V .
3) β(x, x) ≥ 0 in R and β(x, x) = 0 if and only if x = 0.
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With an inner product β on V we can define what it means for x and y to be perpendicular, that
is, β(x, y) = 0. On Rn and Cn there is a natural inner product, the Euclidean inner product, given

by β(x, y) = x · y =
n∑
i=1

xiȳi. These formulas hold for R∞ and C∞.

Definition 6.1. Let ξ be a real or complex vector bundle over B. A Riemannian or Hermitian
matric on ξ is a function β : E(ξ ⊕ ξ) → F such that, for each b ∈ B, β restricted to the fibre
p−1(b) × p−1(b) is an inner product on p−1(b). The Riemannian metric refers to F = R and the
Hermitian metric to F = C.

For instance, Let εk be the k-dimensional trivial bundle over B. Then β(b, x, x′) = x · x′ is a
Riemannian metric in the real case and Hermitian metric in the complex case.

Theorem 6.2. Every real or complex vector bundle with a Gauss map has a Riemannian or Her-
mitian metric.

Proof. Let g : E(ξ) → F∞ be a Gauss map. Define β : E(ξ ⊕ ξ) → F by the relation

β(b, x, x′) = g(b, x) · g(b, x′)
for x, x′ ∈ p−1(b). Since g is continuous and a linear monomorphism on each fibre, β is a Riemannian
metric or Hermitian metric. �

Corollary 6.3. Every vector bundle over a paracompact space has a metric.

Theorem 6.4. Let
0 - ξ

u- η
v- ζ - 0

be a short exact sequence of vector bundles over B, that is, restricted to each fibre, u is a linear
monomorphism, Im(u) = Ker(v), v is a linear epimorphism, and u, v are identity on the base-space
B. Let β be a metric on η. Then there is a morphism of vector bundles w : ξ ⊕ ζ - η splitting
the above exact sequence in the sense of the following commutative diagram

0 - ξ
u - η

v - ζ - 0

0 - ξ

wwwwwwwwww
⊂

i - ξ ⊕ ζ

w

6

j -- ζ

wwwwwwwwww
- 0,

where i is the inclusion of the first factor, and j is the projection onto the second factor.

Proof. Let ξ′ denote Imu, where E(ξ′) ⊆ E(η. Let E(ζ ′) be the subset of x′ ∈ E(η) such that
β(x, x′) = 0 for all x ∈ E(ξ′) with pη(x) = pη(x′). (That is, ζ ′ is the fibrewise orthogonal complement
of ξ′.)

The composite
v|ζ′ : ζ ′ ⊆ η

v- ζ

is a bundle isomorphism over B because it is an linear isomorphism on each fibre and identity on
the base-space.

Define w to be the composite

w : ξ ⊕ ζ
u⊕(v|ζ′ )

−1

- ξ′ ⊕ ζ ′
fibrewise addition- η.
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Then w is a bundle isomorphism because it is a linear isomorphism on each fibre and identity on
the base-space.

The commutativity of the diagram follows from the construction of w. This proves the theorem.
�

Corollary 6.5. Let

E(ξ)
u - E(η)

B
?

========= B
?

be a morphism of vector bundles.
(1). If u is a linear epimorphism on each fibre and ξ has a metric, then

ξ ∼= η ⊕ ξ′

for some vector bundle ξ′ over B.
(2). If u is a linear monomorphism on each fibre and η has a metric, then

η ∼= ξ ⊕ ζ

for some vector bundle ζ over B. �

Example 6.6. Let f : M → N be a smooth immersion. Then there is morphism of vector bundles

Tf : TM → TN

which is a linear monomorphism on each fibre. Consider the commutative diagram

TM ⊂
u- f∗TN

v - TN

pull back

M
?

======== M
? f - N,

?

where u is a linear monomorphism on each fibre and v : E(f∗T (N))b - Tf(b)N is an isomorphism.
If M is paracompact, then every vector bundle over M has a metric and so the vector bundle f∗TN
has an orthogonal decomposition

f∗TN ∼= TM ⊕ νM.

The vector bundle νM → M is called the normal bundle of M with respect to the immersion f .
(For smooth curves in R2 or R3, one can check that νM consists of normal vectors.) If M is a
submanifold of N , the normal bundle can be used for constructing so-called tubular neighborhood
of M . �

Seminar Topic. The exponential map and tubular neighborhoods. [Reference: Serge Lang, dif-
ferential manifolds, pp.95-98.]
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6.2. Constructing New Bundles Out of Old and Cotangent Bundle. Let F be R, C or H.
Let V be the category of all finite dimensional F-vector spaces and all linear isomorphisms. Let

T : V × V × · · · V - V

be a functor in k variables, that is,

1) to each sequence (V1, . . . , Vk) of vector spaces T (V1, . . . , Vk) ∈ V and
2) to each fi : Vi →Wi for 1 ≤ i ≤ k of linear isomorphisms an isomorphism

T (f1, . . . , fk) : T (V1, . . . , Vk) - T (W1, . . . ,Wk)

so that
3) T (idV1 , . . . , idVk

) = idT (V1,...,Vk) and
4) T (f1 ◦ g1, . . . , fk ◦ gk) = T (f1, . . . , fk) ◦ T (g1, . . . , gk).

A functor T : V × · · · × V → V is called continuous if T (f1, . . . , fk) depends continuously on
f1, . . . , fk.

Let T : V×· · ·×V → V be a continuous functor of k variables, and let ξ1, . . . , ξk be vector bundles
over a common base-space B. Then a new bundle over B is constructed as follows. For each b ∈ B
let

Fb = T (Fb(ξ1), . . . , Fb(ξk)).

Let E denote the disjoint union of Fb and define p : E → B by p(Fb) = b.

Theorem 6.7. There exists a canonical topology for E so that p : E → B is a F-vector bundle over
B with fibre Fb.

The bundle is denoted by T (ξ1, . . . , ξk).

Proof. Let ξi be ni-dimensional F-vector bundle over B. There is a principle GLni
(F)-bundle

ξ
GLni

(F)

i given by πi : Ei → B such that ξi = ξ
GLni

(F)

i [Fni ] is given by

Ei ×GLni
(F) Fni - B.

Let m = dimF T (Fn1 , . . . ,Fnk). Since T is continuous functor, the function

T : GLn1(F)× · · · ×GLnk
(F) - GLm(F) (f1, . . . , fk) 7→ T (f1, . . . , fk)

is continuous group homomorphism.
Let the group GLn1(F)× · · · ×GLnk

(F) act on Fm via T , that is, the action is given by

(f1, . . . , fk) · x := T (f1, . . . , fk)(x)

for x ∈ Fm and f1, . . . , fk ∈ GLni(F). Then the vector bundle p : E → B is given by the pull-back

E - (E1 × · · · × Ek)×GLn1 (F)×···×GLnk
(F) Fm

B

p

? ∆ - B × · · · ×B

π1 × · · · × πk

?

and hence the result. �
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Remark 1. There is a different proof by looking at local coordinate system. Our proof here is to
use the fact that any vector bundle is the induced from a principal G-bundle. Similar results works
for general fibre bundles.

Remark 2. From the proof, the new bundle T (ξ1, . . . , ξk) is obtained from a new bundle over the
self Cartesian product of B via the diagonal map.

Proposition 6.8. Let ξ be a vector bundle over B. Then there is a canonical dual bundle ξ∗ over
B such that each fibre is the dual vector space of the corresponding fibre of ξ.

Proof. The left action of the general linear group on Fn induces a canonical right action on the dual
space of Fn and then switch it to the left action. �

Let {gαβ be the transitive functions of ξ, that is, gαβ is obtained from

(Uα ∩ Uβ)× Fn φβ- p−1(Uαβ)
φ−1

α- (Uα ∩ Uβ)× Fn (b, x) 7→ (b, gαβ(b, x)).

Then the transitive functions for ξ∗ are given by
(
g−1
αβ

)∗
.

In differential geometry, it is important to construct new bundles out of old. For differentiable
manifolds, we can start with the tangent bundles and then construct various new bundles from the
tangent bundles. Below we list some examples:

1. The Whitney sum ξ ⊕ η is induced from the functor T : V × V → V, (V,W ) 7→ V ⊕W .

2. The dual bundle ξ∗ is induced from the (contravariant) functor T (V ) = V ∗ = Hom(V,F).

3. The vector space Hom(V,W ) of linear transformations gives a functor T : Vop×V → V, where Vop

is the opposite category of V by changing the linear isomorphism f to be f−1. [Note. Hom(V,W )
is contravariant on V .]

4. T is obtained by the vector space of all symmetric bi-linear transformations from V × V to W .

5. The tensor product V ⊗W . [We will go through tensor products.]

6. The k-th symmetric product of V . [We will go through symmetric products.]

7. The k-th exterior product of V . [We will go through exterior products.]

8. The vector space of all 4-linear transformations K : V × V × V × V × V → R satisfying the
symmetry relations:

K(v1, v2, v3, v4) = K(v3, v4, v1, v2) = −K(v1, v2, v4, v3),

K(v1, v2, v3, v4) +K(v1, v4, v2, v3) +K(v1, v3, v4, v2) = 0.

[This last example is from the theory of Riemann curvature.]
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6.3. Cotangent Bundles and Co-vector Fields. Let M be a differentiable manifold. The cotan-
gent bundle T ∗M is defined to be the dual bundle of the tangent bundle of M .

Proposition 6.9. If a vector bundle ξ has metric, then ξ is isomorphic to its dual bundle ξ∗.

Proof. Let 〈−,−〉 : V ×V → F be any inner product on V . There is a canonical linear isomorphism
θ : V → V ∗ defined by

θ(y)(x) = 〈x, y〉.
We just need to show that θ induces a bundle isomorphism. Let {gαβ} be transitive functions for
ξ. From the commutative diagram

(Uα ∩ Uβ)× Fn × Fn
φβ- p−1

ξ (Uα ∩ Uβ)
(b, x, x′) 7→ (b, β(x, x′))- (Uα ∩ Uβ)× F

(Uα ∩ Uβ)× Fn × Fn

id×gαβ(b,−)× gαβ(b,−)

? φα- p−1
ξ (Uα ∩ Uβ)

wwwwwwwww
(b, x, x′) 7→ (b, β(x, x′))- (Uα ∩ Uβ)× F,

wwwwwwwww
the transitive functions gαβ preserves the inner products, that is,

〈gαβ(b, x), gαβ(b, y)〉 = 〈x, y〉.

By using this, we check that the following diagram

(Uα ∩ Uβ)× Fn
θ- (Uα ∩ Uβ)×Hom(Fn,F)

(Uα ∩ Uβ)× Fn

id×gαβ(b,−)

? θ- (Uα ∩ Uβ)×Hom(Fn,F)

id×
(
gαβ(b,−)−1

)∗
?

commutes.
Let p2 : (Uα ∩ Uβ)× Hom(Fn,F) → Hom(Fn,F) be the projection to the second coordinate. For

any (b, x) ∈ (Uα ∩ Uβ)× Fn and y ∈ Fn, then

p2 ◦ θ ◦ (id×gαβ(b, x)(y) = 〈y, gαβ(b, x)〉

= 〈gαβ(b, z), gαβ(b, x)〉 = 〈z, x〉,
where z = gαβ(b,−)−1(y), and

p2 ◦
(
id××

(
gαβ(b,−)−1

)∗) ◦ θ(b, x)(y) = 〈gαβ(b,−)−1(y), x〉 = 〈z, x〉.

Thus the above diagram commutes and hence θ induces a bundle isomorphism. �

Corollary 6.10. Let M be a paracompact differentiable manifold. Then the cotangent bundle T ∗M
is isomorphic to the tangent bundle TM .

Note. The geometric means of tangent bundle and cotangent bundle are different. The local
coordinate system for tangent bundle is given by { ∂

∂xi
}, while the local coordinate system for the

cotangent bundle is {dxi}, where dxi is the differential of the function (x1, . . . , xn) → xi which is
the dual of ∂i = ∂

∂xi
.



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 51

Let M be a differentiable manifold. A (smooth) cross-section of the cotangent bundle p : T ∗M →
M is called a covector field or 1-form. In other words, a 1-form is a smooth map ω : M → T ∗M
such that p ◦ ω = idM .

For a (smooth) function f on an open set U , in Rn or indeed on a manifold, and a tangent vector
vp at p ∈ U , all the following are equal:

i) vp(f), the value of the directional derivative vp on the local function f ;
ii) df(p)(vp), the value of the differential of f at p on the vector vp, which, as v varies, expresses

df(p) as a covector at p;
iii) f∗(vp), the image of vp under the derivative of f ;
iv) [f ◦γ]f(p), the equivalence class of curves representing f∗(vp) when the class [γ]p represents

vp;
iv) (f ◦γ)′(0), the classical notation for the derivative of the real-valued function f ◦γ of a real

variable.
Strictly speaking, (iii) and (iv) should be thought of as tangent vector to R at f(p) and the other
three as real numbers, but modulo parallel translation they are the same. We urge the reader not
to become overwhelmed by this plethora of definitions. It is precisely the fact that there are so
many different ways of looking at essentially the same object that leads to the beauty and power of
differential geometry and analysis.

7. Tensor Bundles, Tensor Fields and Differential Forms

7.1. Tensor Product. The construction of tensor product is actually an algebraic question. Let
R be a ring. If A and B are right and left R-module, respectively, a middle linear map from A×B
to an abelian group C is a function f : A×B → C such that

(11) f(a1 + a2, b) = f(a1, b) + f(a2, b),

(12) f(a, b1 + b2) = f(a, b1) + f(a, b2),

(13) f(ar, b) = f(a, rb)

for a1, a2, a ∈ A, b1, b2, b ∈ B and r ∈ R.
The tensor product, denoted by A ⊗R B (or simply A ⊗ B is the ground ring R is clear), is

universal object with respect to middle linear maps in the follows sense:
There is a middle linear map i : A×B → A⊗RB with the universal property that, for any
middle linear map f : A×B → C, there is a unique linear map f̃ : A⊗RB → C such that
f = f̃ ◦ i : A×B → C, that is, there is a commutative diagram

A×B
i- A⊗R B

A×B

wwwwwwwwww
f - C.

f̃

?

By using this universal property, the tensor product A ⊗R B is unique up to isomorphism (if it
exists). The explicit construction of A⊗R B is given as follows:
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A ⊗R B is the quotient of the free abelian group generated by A × B by the subgroup
generated by:

i) (a1 + a2, b)− (a1, b)− (a2, b);
ii) (a, b1 + b2)− (a, b1)− (a, b2);
iii) (ar, b)− (a, rb).

The image of (a, b) in A ⊗R B is denoted by a ⊗ b. By the construction, the elements in A ⊗R B
can be given by the finite linear combination

∑
i

niai ⊗ bi for ni ∈ Z, ai ∈ A and bi ∈ B.

Recall that the rules for left R-modules are given by
i) r(a+ b) = ra+ rb;
ii) (r + s)a = ra+ sa;
iii) r(sa) = (rs)a; [This one is changed to be (as)r = a(sr) for right R-modules.]
iv) For unitary modules, 1a = a.

For a commutative ring R, a left R-module can be regarded as a right R-module, where the right
action is given by

ar = ra.

[Note. One need to be careful about left and right R-modules in case that R is non-commutative.
Namely if we want to switch a left R-module to a right R-module by the above formula, we need to
redefine the multiplication structure in R given by r ∗ s = sr.]

Similarly, general speaking, A ⊗R B is only an abelian group. But for a commutative ring R,
A⊗R B admit an R-module structure by the following proposition.

Proposition 7.1. Let R be a commutative ring. Then A ⊗R B is an R-module with the R-action
given by

r ·
∑
i

niai ⊗ bi =
∑
i

ni(air)⊗ bi.

Proof. Consider the function:

φ : R× Z(A×B) - A⊗B (s,
∑
i

ni(ai, bi) =
∑
i

ais⊗ bi,

where Z(A⊗B) is the free abelian group generated by A×B. Since

(a1 + a2)s⊗ b = a1s⊗ b+ a2s⊗ b

as⊗ (b1 + b2) = (as)⊗ b1 + (as)⊗ b2

(ar)s⊗ b = a(rs)⊗ b = a⊗ (rs)b = a⊗ (sr)b = a⊗ s(rb) = as⊗ rb,

the map φ factors through the quotient R×A⊗R B, that is, there is a commutative diagram

R× Z(A×B)
φ- A⊗R B

R×A⊗R B
?? µ- A⊗R B.

wwwwwwwwww
Now it is straight forward to check that the rules for R-modules hold. �

Proposition 7.2. The tensor product has the following basic properties:
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1) If R is a ring with identity, then

A⊗R R ∼= A and R⊗R B ∼= B

for right unitary R-module A and left unitary R-module B.
2) Associativity:

(A⊗R B)⊗S C ∼= A⊗R (B ⊗S C)
for rings R and S, right R-module A, left R-module and right S-module B, and left S-
module C.

3) There are group isomorphisms(⊕
i∈I

Ai

)
⊗R B ∼=

⊕
Ai ⊗R B

A⊗R

⊕
j∈J

Bj

 ∼=
⊕
j∈J

A⊗Bj

for right R-modules Ai, A and left R-modules Bj , B.
4) If R is commutative, then there is an isomorphism of R-modules

A⊗R B ∼= B ⊗R A.
5) Adjoint associativity: For rings R and S, right R-module A, left R-module and right S-

module B, left S-module C, there is an isomorphism of abelian groups

α : HomS(A⊗R B,C) ∼= HomR(A,HomS(B,C))

defined for each f : A⊗R B → C by

[α(f)(a)](b) = f(a⊗ b).

Sketch. We ask the reader to finish the proof as an exercise:
(1). The isomorphisms are given by

a 7→ a⊗ 1 b 7→ 1⊗ b

for a ∈ A and b ∈ B.
(2). Check that

(a⊗ b)⊗ c 7→ a⊗ (b⊗ c)
induces a linear isomorphism.

(3). Check that (∑
i

ai

)
⊗ b 7→

∑
i

ai ⊗ b

a⊗

∑
j

bj

 7→
∑
j

a⊗ bj

induces an isomorphism.
(4). Check that a⊗ b 7→ b⊗ a induces an isomorphism.
(5). Construct the inverse β : HomR(A,HomS(B,C)) → HomS(A⊗R B,C) by

[β(g)](a⊗ b) = [g(a)](b).



54 JIE WU

�

Corollary 7.3. Let V and W be vector spaces over a field. Then
1) dimV ⊗W = (dimV )(dimW ) if V and W are finitely dimensional;
2) θV,W : V ∗ ⊗W ∼= Hom(V,W ) given by

[θV,W (f ⊗ y)](x) = f(x)y.

3) (V ⊗W )∗ ∼= V ∗ ⊗W ∗;

Proof. Let F be the ground field. (1). Let dimV = n and dimW = m. Then

V ⊗W ∼= Fn ⊗ Fm ∼=
⊕

1 ≤ i ≤ n
1 ≤ j ≤ m

F⊗F F ∼= Fnm.

(2). Let W =
⊕

j∈J F. Then

V ∗ ⊗W ∼=
⊕
j∈J

V ∗ ⊗ F
⊕
θV,F

∼=
-
⊕
j∈J

Hom(V,F) =
⊕

Hom(V,W ).

[Note. One can directly show that θ is an isomorphism.
(3).

(V ⊗W )∗ = Hom(V ⊗W,F) ∼= Hom(V,Hom(W,F)) = Hom(V,W ∗) ∼= V ∗ ⊗W ∗.

�

Corollary 7.4. Let ξ and η be vector bundles over a space B. Then the vector bundle Hom(ξ, η)
isomorphic to ξ∗ ⊗ η.

Note. One need to be careful for tensor product over which ring (if the ground ring is unclear).
For instance, C⊗C C ∼= C is a 2-dimensional real space, while C⊗R C is a 4-dimensional real space.

7.2. Tensor Algebras. Let R be a commutative ring with identity. A unitary R-module A is
called an (associative) algebra if there is multiplication

µ : A⊗R A→ A

[Note. Any middle linear map A×A→ A induces a unique linear map A⊗R A→ A.] and a unit

η : R - A.

such that
1) µ and η are morphisms of R-bi-modules;
2) unitary property: there is a commutative diagram

A⊗ F
idA⊗η- A⊗A �η ⊗ idA F⊗A

A

wwwwwwwwww
========== A

µ

?
========== A;

wwwwwwwwww



LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS 55

3) associative law: there is a commutative diagram

A⊗A⊗A
µ⊗ idA- A⊗A

A⊗A

id⊗µ

? µ - A.

µ

?

Note. Write a · b for µ(a⊗ b). From (1), η(r) = η(r · 1) = rη(1). Let e = η(1) ∈ A, then by (2) we
have

a · e = a · η(1) = a = e · a.
The map η : R→ A is multiplicative because

η(r) · η(s) = [rη(1)] · [s · η(1)] = rs[η(1) · η(1)] = rsη(1) = η(rs).

Exercise 7.1. Let A and B be algebra over R. Show that A⊗R B is also algebra over R under the
multiplication

(a⊗ b) · (a′ ⊗ b′) = (a · a′)⊗ (b · b′.

Let V be an R-module. The tensor algebra T (V ) is defined by

T (V ) =
∞⊕
i=0

V ⊗n

as an R-module, where V ⊗0 = R and

V ⊗Rn = V ⊗R V ⊗R · · · ⊗R V
is the n-fold self tensor product of V over R. The elements in T (V ) can be written as (non-
commutative) polynomials

f =
∞∑
i=0

fi

with only finitely many fi 6= 0, where fi ∈ V ⊗i called the i-homogeneous component of f .
Let η : R→ T (V ) be the inclusion and let

µ : T (V )⊗R T (V ) - T (V )

be induced from the formal product:(
V ⊗a

)
⊗R

(
V ⊗b

)
==== V ⊗a+b,

that is, if f =
∞∑
i=0

fi and g =
∞∑
i=0

gi with fi, gi ∈ V ⊗i, then

f · g = µ(f, g) =
∞∑
k=0

∑
i+j=k

figj .

The above multiplication and unit make T (V ) to be an algebra over R called the tensor algebra
generated by V .

Proposition 7.5. The tensor algebra T (V ) has the following universal property:
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Let A be any algebra and let f : V → A be any R-linear map, then there is a unique
algebraic map f̃ : T (V ) → A such that f̃ |V = f .

Proof. Let f̃ : T (V ) → A be the map such that f restricted to V ⊗n is given by

f̃(a1 ⊗ · · · ⊗ an) = f(a1) · f(a2) · · · f(an)

for ai ∈ V . Then f̃ is an algebraic map such that f̃ |V = f .
Let φ : T (V ) → A any algebraic map such that φ|V = f . Then

φ(a1 ⊗ · · · ⊗ an) = f(a1) · f(a2) · · · f(an)

for ai ∈ V and so φ = f̃ . �

Note. Let the ground ring R be a field and let V be anm-dimensional vector space. Let {e1, . . . , em}
be a basis for V . Then

ei1 ⊗ · · · eik ,
1 ≤ i1, . . . , ik ≤ m, is a basis for V ⊗k.

7.3. Graded Modules, Graded Commutative Algebras and Exterior Algebras. Let R be
a commutative ring with identity. A graded module M means a direct sum

M =
∞⊕

n=−∞
Mn.

A graded map f : M → N means

f =
∞⊕

n=−∞
fn : M =

∞⊕
n=−∞

Mn
- N =

∞⊕
n=1

Nn

for fn : Mn → Nn. Let M and N be graded modules. Then M ⊗R N is a graded module in the
sense that

M ⊗R N =
∞⊕

n=−∞

 ⊕
i+j=n

Mi ⊗Nj

 ,

in other words,
(M ⊗R N)n =

⊕
i+j=n

Mi ⊗Nj .

For graded modules M and N , let

T : M ⊗R N
∼=- N ⊗RM

be the graded map such that Tn is given by

Tn : (M ⊗R N)n =
⊕
i+j=n

Mi ⊗R Nj
⊕

i+j=n(−1)ijτ
-

⊕
j+i=n

Nj ⊗RMi,

where τ(a⊗ b) = b⊗ a. In other words

T (a⊗ b) = (−1)|a||b|b⊗ a

for a ∈M|a| and b ∈ N|b|.
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A graded R-module A is called a graded algebra if A admits a graded multiplication µ : A⊗RA→
A and a graded unit η : R → A, where R is regarded as a graded ring in the sense that (R)0 = R
and (R)n = 0 for n 6= 0. A graded algebra A is called commutative if the diagram

A⊗R A
T- A⊗R A

A

µ

?
========= A

µ

?

commutes, in other words,

a · b = (−1)|a||b|b · a

for a ∈ A|a| and b ∈ A|b|.
For graded algebras A and B, the graded module A ⊗R B has the multiplication given by the

following exercise.

Exercise 7.2. Let A and B be graded algebras over R. Show that A⊗RB is a graded algebra under
the multiplication:

A⊗R B ⊗R A⊗R B
idA ⊗T⊗idB- A⊗R A⊗R B ⊗R B

µA⊗µB- A⊗R B.

Proposition 7.6. Let R be a commutative ring with identity and let V be a graded R-module. Then
T (V ) is a graded R-algebra. �

Proposition 7.7. A graded algebra A is commutative if and only if the multiplication µ : A⊗RA→
A is an algebraic map.

Proof. Suppose that A is commutative. Then there is a commutative diagram

A⊗R A⊗R A⊗R A �idA⊗T ⊗ idA
A⊗R A⊗R A⊗R A

µ⊗ µ- A⊗R A

A⊗R A⊗R A⊗R A

wwwwwwwwww
id⊗µ⊗ id - A⊗R A⊗R A

idA⊗µ⊗ idA

?

A⊗R A

µ⊗ µ

? µ - A

µ ◦ (µ⊗ idA)

?
================ A

µ

?

Thus µ is an algebraic map.
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Conversely suppose that µ is an algebraic map. Then there is a commutative diagram

A⊗R A ============================================== A⊗R A

R⊗R A⊗R A⊗R A

wwwwwwwwww
η ⊗ idA⊗ idA⊗η- A⊗R A⊗R A⊗R A

µ⊗ µ- A⊗A

wwwwwwwwww

R⊗R A⊗R A⊗R A

idR⊗T ⊗ idR

? η ⊗ idA⊗ idA⊗η- A⊗R A⊗R A⊗R A

idA⊗T ⊗ idA

?

A⊗R A

wwwwwwwwww
========================== A⊗R A

µ⊗ µ

? µ - A.

µ

?

Thus A is graded commutative. �

Let V be a graded R-module. The free commutative graded algebra Λ(V ), with a morphism of
R-modules i : V → Λ(V ), is defined by the following universal property:

Let A be any commutative graded algebra and let f : V → A be any morphism of graded
R-modules. Then there is a unique morphism of graded R-algebras f̃ : Λ(V ) → A such
that f = f̃ ◦ i, that is there is a commutative diagram

V
i - Λ(V )

V

wwwwwwwwww
f - A.

∃! f̃

?

By the universal property, Λ(V ) is unique to isomorphism of algebras. The existence is given by
the construction that Λ(V ) is the quotient algebra of T (V ) modulo the two sided ideal generated
by the graded commutators

[a, b] = ab− (−1)|a||b|ba

for a ∈ T (V )|a| and b ∈ T (V )|b|.

Proposition 7.8. Let R be a field and let V and W be graded vector spaces. Then

Λ(V ⊕W ) ∼= Λ(V )⊗ Λ(W ).

Proof. We use the universal property to prove this statement. Let i : V ⊗W → Λ(V ) ⊗ Λ(W ) be
the map

V ⊕W
(v,w) 7→v⊗e+e⊗w- Λ(V )⊗ Λ(W ).
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Let A be any commutative graded R-algebra and let f : V ⊗W → A be any morphism of R-modules.
Let f1 and f2 be given by

f1 : V ⊂
v 7→(v,0)- V ⊕W

f- A

f2 : W ⊂
w 7→(0,w)- V ⊕W

f- A.

Then there are unique morphisms of algebras

f̃1 : Λ(V ) → A

f̃2 : Λ(W ) → A

such that f̃1 ◦ iV = f1 and f̃2 ◦ iW = f2. Let f̃ be the composite

Λ(V )⊗ Λ(W )
f̃1⊗f̃2- A⊗A

µA- A.

then f̃ is an algebraic map such that f̃ ◦ i = f .
Let g : Λ(V )⊗ Λ(W ) → A be any algebraic map such that g ◦ i = f . Then the composite

T (V ⊕W )
ĩ- Λ(V )⊗ Λ(W )

g- A

is a (unique) algebraic map such that g ◦ ĩ|V⊕W = f̃ ◦ ĩ|V⊕W = f . Since ĩ is onto, g = f̃ and so
Λ(V )⊗ Λ(W ) ∼= Λ(V ⊕W ) by the universal property. �

Now we consider the special cases of Λ(V ). Let ground ring be a field F of characteristic 0 and
let V be a finite dimensional vector space with a basis {x1, . . . , xn}.

Case I. Consider V as a graded module by (V )2 = V and (V )n = 0 for n 6= 2. Then Λ(V ) is the
polynomial algebra F[V ] generated by x1, . . . , xn because the commutators

[xi, xj ] = xixj − (−1)|xi||xj |xjxi = xixj − xjxi.

Case II. Consider V as a graded module by (V )1 = V and (V )n = 0 for n 6= 1. Then Λ(V ) is
the exterior algebra generated by x1, . . . , xn, that is, Λ(V ) is generated by x1, . . . , xn subject to the
relations

0 = [xi, xj ] = xixj − (−1)|xi||xj |xjxi = xixj + xjxi

or xixj = −xjxi. In particular 2x2
i = 0 and so x2

i = 0 since F is of characteristic 0.

Case III. Consider V as a graded module by V = V1 ⊕ V2 where dimV1 = s and dimV2 = t with
s+ t = n. Then

Λ(V ) ∼= Λ(V1)⊗ Λ(V2) = Λ(V2)⊗ F[V2]

is the tensor product of the polynomial algebra and the exterior algebra.
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7.4. Tensor Bundles, Tensor Fields. Now let F = R. Let V be a finite dimensional vector
spaces. Let

T rs (V ) = V ⊗r ⊗ (V ∗)⊗s ∼= Hom(V ⊗s, V ⊗r).
Let ξ be a vector bundle over B. Then T rs (ξ) is a vector bundle over B, called the tensor bundle of
type (r, s) on ξ, because T is (covariant on the first r factors and contravariant on the rest s factors)
functor on V .

Let M be a differentiable manifold and let ξ be the tangent bundle over M . Then

T rs (M) := T rs (ξ) = T⊗r ⊗ (T ∗)⊗s(M)

is called the tensor bundle of type (r, s) of M . A (smooth) cross-section of the tensor bundle T rs (M)
is called a tensor field of type (r, s).

Note that T 1
0 (M) = T (M) and T 0

1 (M) = T ∗(M). Thus a tensor field of type (1, 0) is a vector
field and a tensor field of type (0, 1) is a covector field.

Recall that

V ∗ ⊗ V ∗ ∼= (V ⊗ V )∗ = Hom(V ⊗ V,R) ∼= {f : V ⊕ V → R | f bi-linear}.
The Riemann metric on a differentiable manifold can be described as a tensor field of type (0, 2).

Let M be a differentiable manifold. A Riemann metric is a tensor field g ∈ T 0
2 (M) such that for

each m, gm is an inner product, that is, positive definite symmetric and bilinear.

7.5. Differential Forms. Let F = R and let V be a vector space of dimension n. Recall that
the exterior algebra Λ(V ∗) can be considered as skew symmetric algebra generated by V ∗, that is
modulo the relations

xy = −yx
for x, y ∈ V ∗. [Or free graded commutative algebra by considering V ∗ as a graded module by setting
(V ∗)1 = V ∗ and (V ∗)q = 0 for q 6= 1.] Then there is decomposition

Λ(V ∗) =
∞⊕
k=0

Λk(V ∗),

where Λk(V ∗) consists of homogeneous elements of degree k. Each Λk is a contravariant functor on
V and so, for any vector bundle ξ over B, there are constructions Λ(ξ∗) and Λk(ξ∗).

Let M be a differentiable manifold. A differential form of order k [or simply k-form] is defined
to be a (smooth) cross-section of ΛkT ∗(M). We work out a local basis for ΛkT ∗(M).

The multiplication in Λ(V ∗) is denoted by x ∧ y. Let {∂1, . . . , ∂n} be a basis for V and let
{dx1, . . . , dxn} be the dual basis for V ∗. By the definition, Λ(V ∗) is generated by dx1, . . . , dxn
subject to the relations

dxi ∧ dxj = −dxj ∧ dxi
for any 1 ≤ i, j ≤ n. In particular, dxi ∧ dxi = 0 for 1 ≤ i ≤ n. It follows that Λk(V ∗) is spanned
by the elements

dxi1 ∧ dxi2 ∧ · · · ∧ dxik
for 1 ≤ i1 < i2 < · · · < ik ≤ n.

Proposition 7.9. A basis for Λk(V ∗) is given by

dxi1 ∧ dxi2 ∧ · · · ∧ dxik
for 1 ≤ i1 < i2 < · · · < ik ≤ n. In particular, dim Λk(V ∗) =

(
n
k

)
.
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Proof. Let A =
∞⊕
k=0

Ak be the graded vector spaces with Ak is the vector space spanned by the

letters
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

for 1 ≤ i1 < i2 < · · · < ik ≤ n. Note that Ai = V ∗. Define a formal multiplication on A by

(dxi1 ∧ · · · ∧ dxik) · (dxj1 ∧ · · · dxjt) =
{

0 if {i1, . . . , ik} ∩ {j1, . . . , jt} 6= ∅
±dxl1 ∧ · · · ∧ dxlk+t

if {i1, . . . , ik} ∩ {j1, . . . , jt} = ∅,

where l1 < l2 < . . . < lk+t, {l1, . . . , lk+t} = {i1, . . . , ik, j1, . . . , jt} and the sign ± is obtained by
reorganizing (i1, . . . , ik, j1, . . . , jt) into (l1, . . . , lk+t). For instance,

(dx1 ∧ dx3 ∧ dx5) · (dx2 ∧ dx4 ∧ dx6) = (−1)2+1dx1 ∧ dx2 ∧ dx3 ∧ dx4 ∧ dx5 ∧ dx6.

Then it is straightforward to show that A is the free graded commutative algebra generated by V ∗

by checking that A is an algebra with the universal property. Thus A ∼= Λ(V ∗) as graded algebras
and so

Ak ∼= Λk(V ∗).

In particular,
dxi1 ∧ dxi2 ∧ · · · ∧ dxik

for 1 ≤ i1 < i2 < · · · < ik ≤ n give a basis for Λk(V ∗). �

Let ω be a k-form on an n-dimensional manifold M . Then ω admits local coordinates∑
1≤i1<···<ik≤n

ai1···ik(x1, . . . , xn)dxi1 ∧ · · · ∧ dxik .

Note. dxi ∧ dxj = −dxj ∧ dxi can be observed from: d(xixj) = xidxj + xjdxi. Assume that we
want ddxi = ddxj = dd(xixj) = 0. Then

0 = dd(xixj) = d(xidxj+xjdxi) = (dxi∧dxj+xiddxj)+(dxj∧dxi+xjddxi) = dxi∧dxj+dxj∧dxi.

8. Orientation and Integration

8.1. Alternating Multi-linear Functions and Forms. Let V be a vector space. An k-linear
map

µ : V × · · · × V → R
is called alternating if it is zero whenever two coordinates are equal, that is,

µ(x1, . . . , xk) = 0

if xp = xq for some 1 ≤ p < q ≤ k.

Proposition 8.1. Let µ be a k-linear map. Then µ is alternating is and only if

µ(· · ·xi · · ·xj · · · ) = −µ(· · ·xj · · ·xi · · · ).

for 1 ≤ i < j ≤ k.
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Proof. Suppose that µ is alternating. Then

0 = µ(· · ·xi + xj · · ·xi + xj · · · )

= µ(· · ·xi · · ·xi · · · ) + µ(· · ·xi · · ·xj · · · ) + µ(· · ·xj · · ·xi · · · ) + µ(· · ·xj · · ·xj · · · )
= µ(· · ·xi · · ·xj · · · ) + µ(· · ·xj · · ·xi · · · ).

Conversely assuming the assumption in the statement holds, then

µ(· · ·xi · · ·xi · · · ) = −µ(· · ·xi · · ·xi · · · )
and so

2µ(· · ·xi · · ·xi · · · ) = 0 ⇒ µ(· · ·xi · · ·xi · · · ) = 0.
�

Let Λ̃k(V ∗) denote the set of alternating k-linear maps from V ⊕k to R. Then Λ̃k(V ∗) is a vector
space.

Proposition 8.2. There is a canonical isomorphism of vector spaces:

ρV :
(
Λk(V )

)∗ - Λ̃k(V ∗).

Proof. Let Bk be the vector space of k-linear maps from V ⊕k to R. Then the map

ρ :
(
V ⊗k

)∗ - Bk [ρ(f)](x1, . . . , xk) = f(x1 ⊗ · · ·xk)
is an isomorphism by the universal property of tensor product that any multi-linear map induces
a unique linear map from tensor product. Let Ik be the sub vector space of V ⊗k spanned by the
k-fold tensors

· · · ⊗ i
α ⊗ · · ·⊗

j
α ⊗ · · ·

for some i < j and α ∈ V . Then ρ(f) is alternating if and only if f |Ik
= 0. It follows that there is

a commutative diagram (
V ⊗k/Ik

)∗
⊂-

(
V ⊗k

)∗ -- I∗k

Λ̃k(V ∗)

∼= ρ

?
⊂ - Bk,

ρ

?

that is, ρ restricted to
(
V ⊗k/Ik

)∗ gives an isomorphism

ρ :
(
V ⊗k/Ik

)∗ - Λ̃k(V ∗).

Now we use the graded arguments to show that V ⊗k/Ik ∼= Λk(V ), where V is regarded as a graded
module by setting (V )1 = V and (V )n = 0 for n 6= 1. Let

I =
∞⊕
k=1

Ik ⊆ T (V ) =
∞⊕
k=0

V ⊗k.

Then I is a graded two-sided ideal of T (V ) and so the graded quotient

A =
⊕
k=0

V ⊗k/Ik,
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where I0 = 0, is a graded quotient algebra. Check that A is graded commutative. Then the
quotient T (V ) → A factors through Λ(V ) by the universal property of Λ(V ). On other hand, since
xixj + xjxi ∈ I by considering (xi + xj)⊗2 = x2

i + xixj + xjxi + x2
j , the quotient T (V ) → Λ(V )

factors through A. Thus A = Λ(V ) and hence the result. �

Proposition 8.3. Let V be a finite dimensional vector space. There is a canonical isomorphism

θV : Λk(V ∗) ∼=
(
Λk(V )

)∗
Proof. We consider V as a graded module by setting (V )1 = V and (V )n = 0 for n 6= 1. The
tensor algebra T (V ) is then a graded algebra and so is T (V ) ⊗ T (V ), where the multiplication on
T (V )⊗ T (V ) is given by

T (V )⊗ T (V )⊗ T (V )⊗ T (V )
id⊗T⊗- T (V )⊗ T (V )⊗ T (V )⊗ T (V )

µ⊗µ- T (V )⊗ T (V ).

The linear map

∆: V - T (V )⊗ T (V ) x 7→ x⊗ 1 + 1⊗ x

induces a unique morphism of algebras

ψ : T (V ) - T (V )⊗ T (V )

with a commutative diagram

T (V )
ψ- T (V )⊗ T (V )

Λ(V )

q

?? ψ- Λ(V )⊗ Λ(V ).

q ⊗ q

??

By taking the graded dual [Let A = ⊕An be a graded module. The graded dual A∗ = ⊕A∗n.], then
there is a commutative diagram

T (V )∗ �ψ
∗
T (V )∗ ⊗ T (V )∗

Λ(V )∗

q∗

∪

6

�ψ
∗

Λ(V )∗ ⊗ Λ(V )∗.

q∗ ⊗ q∗

∪

6

It follows that Λ(V )∗ is a graded commutative algebra under ψ∗. [Check the associativity and
commutativity.] The inclusion V ∗ → Λ(V )∗ induces a unique morphism of graded algebras

θV : Λ(V ∗) - Λ(V )∗

such that θV restricted to V ∗ is the identity. Now one can prove that θV is an isomorphism by
induction on the dimension of V and by using the fact that

1) θV is an isomorphism if dimV = 1.
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2) For any finite dimensional vector spaces V and W , there is a commutative diagram

Λ(V ∗ ⊕W ∗)
θV⊕W - Λ(V ⊕W )∗

Λ(V ∗)⊗ Λ(W ∗)

∼=
6

θV ⊗ θW- Λ(V )∗ ⊗ Λ(W )∗.

∼=

?

�

The map
Λ(V ∗) ∼= Λ(V )∗

q∗- T (V )∗

is a (faithful) representation of Λ(V ∗) into T (V )∗ via the multiplication

ψ∗ : T (V )∗ ⊗ T (V )∗ - T (V )∗ α⊗ β 7→ α ∗ β.
That is for φ1, . . . , φk ∈ V ∗

q∗n(φ1 ∧ · · · ∧ φk) = φ1 ∗ · · · ∗ φk.
The multiplication ψ∗ can be described as follows:

Let 〈f, y〉 = f(y) for f ∈ W ∗ and y ∈ W . Let φ1 ∈ T (V )∗k = (V ⊗k)∗, φ2 ∈ T (V )∗l = (V ⊗l)∗,
x1, . . . , xk+l ∈ V . Then

〈φ1 ∗ φ2, x1 · · ·xk+1〉 = 〈ψ∗(φ1 ⊗ φ2), x1 · · ·xk+l〉
= 〈φ1 ⊗ φ2, ψ(x1 · · ·xk+l〉

= 〈φ1 ⊗ φ2, ψ(x1) · · · · · ψ(xk+l)〉
= 〈φ1 ⊗ φ2, (x1 ⊗ 1 + 1⊗ x1) · · · · · (xk+1 ⊗ 1 + 1⊗ xk+l〉
=

∑
(k,l)−shuffles

εσ〈φ1, xσ(1) · · ·xσ(k)〉〈φ2, xσ(k+1) · · ·xσ(k+l)〉,

where εσ is the sign of σ and a permutation σ is a (k, l)-shuffle if

σ(1) < · · · < σ(k) σ(k + 1) < · · · < σ(k + l).

The above formula describes the exterior product on alternating k-linear maps using signed shuffle
product.

Proposition 8.4. For φ1, . . . , φk ∈ V ∗ and v1, . . . , vk ∈ V , there is formula

(φ1 ∧ · · · ∧ φk)(v1, . . . , vk) = det(φi(vj)).

Proof. The proof is given by induction on k. The result is trivial for k = 1. Assume that the
statement holds for k − 1. Then

(φ1 ∧ (φ2 ∧ · · · ∧ φk))(v1, . . . , vk) =

=
∑

(1,k−1)−shuffles

εσφ1(vσ(1))(φ2 ∧ · · · ∧ φk))(vσ(2), . . . , vσ(k))

=
k∑
j=1

(−1)j−1φ1(vj) det(φl(vm))1j = det(φi(vj)),

where Aij denote the sub-matrix of A by deleting i-row and j-column. �
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Remark. The graded dual T (V )∗ of the tensor algebra with the multiplication ψ∗ is the cohomology
of the loop space ΩΣX. Since T (V )∗ is a contravariant functor on V , there is a construction T (ξ)∗

for any vector bundle ξ while ψ∗ gives certain algebraic structure on the bundle T (ξ)∗. If ξ = TM ,

then T (ξ)∗ =
∞⊕
s=0

T 0
sM . If the ground field is of characteristic 0 (for instance in that case F = R,C),

there is an functorial algebraic decomposition T (V )∗ ∼= Λ(V ∗) ⊗ B(V ∗) for certain commutative
algebra B(V ∗). The factor Λ(V ∗) gives differential forms while the Riemann metric as a tensor
form of type (0, 2) comes from the factor B(V ∗).

Let N be a differentiable manifold and let ω be a k-form on N . Then, for each q ∈ N , ωq is
an alternating k-linear map on TqN . Globally ω is a smooth map ω : T⊕kN → R such that ω is
fibrewise alternating k-linear. Let f : M → N be a smooth map. Then the composite

T⊕kM
T⊕kf- T⊕kN

ω- R
is a k-form on M called the pull-back of ω by f , denoted by f∗ω. In detail f∗(ω) is given by the
formula

f∗(ω)(p)(v1, . . . , vk) = ω(f(p))(Tf(v1), . . . , T f(vk)).
For 0-forms, that is smooth functions g ∈ C∞(N), we define f∗(g) = g ◦ f ∈ C∞(M).

Proposition 8.5. The following properties hold for the pull-backs of forms:
1) f∗(λ1ω1 + λ2ω2) = λ1f

∗(ω1) + λ2f
∗(ω2) for real numbers λi and k-forms ωi;

2) f∗(ω1 ∧ ω2) = f∗(ω1) ∧ f∗(ω2). In particular, when g is a smooth function on N , then
f∗(gω) = f∗(g)f∗(ω) = (g ◦ f)f∗(ω).

3) (g ◦ f)∗(ω) = f∗(g∗(ω)) for a smooth map g : N → P and a k-form ω on P .

Proof. The proof can be given by showing that the formulas hold on each fibre. (1) and (3) are
obvious. (2) follows from the fact that any linear map f : V →W induces a linear map f∗ : W ∗ → V ∗

and so an algebraic map Λ(f∗) : Λ(W ∗) → Λ(V ∗). �

Note. A smooth map f : M → N may not send a vector field on M to N in general. Note that
covector field is a 1-form and so any covector field on N can be pull-back to M by f .

Proposition 8.6. Let V and W be open in Rn and Rm with coordinates (xi) and (yj) respectively.
Let θ : V →W be a smooth map. Then the following holds:

1) θ∗(dyi) =
∑n
j=1

∂θi

∂xj
dxj.

2) If θ is a diffeomorphism (so that m = n) and ω = fdy1 ∧ · · · dym is a (general) m-form on
W , then

θ∗(ω) = (f ◦ θ)
[
det
(
∂θi
∂xj

)]
dx1 ∧ dx2 ∧ · · · dxm.

Proof. (1). If θ∗(dyi) =
n∑
j=1

fjdx
j , then fj = (θ∗(dyi))

(
∂
∂xj

)
. Now

θ∗(dyi)
(

∂

∂xj

)
= dyi

(
θ∗

∂

∂xj

)
= dyi

(
m∑
k=1

∂θk
∂xj

∂

∂yk

)
=
∂θi
∂xj

.

(2).
θ∗(ω) = θ∗(f)θ∗(dy1) ∧ θ∗(dy2) ∧ θ∗(dym).
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= (f ◦ θ)θ∗(dy1) ∧ θ∗(dy2) ∧ θ∗(dym).

From Part (1), θ∗(dyi) = ∂θi

∂xj
dxj , that is

θ∗(dyi)
(

∂

∂xj

)
=
∂θi
∂xj

,

the assertion follows from Proposition 8.4 because

θ∗(ω)
(

∂

∂x1
, . . . ,

∂

∂xm

)
= (f ◦ θ) det

(
∂θi
∂xj

)
and dx1 ∧ · · · ∧ dxm is only basis for Λm(Rm). �

8.2. Orientation of Manifolds. An atlas {Uα, φα} of a real vector bundle ξ is called oriented if
its transitive functions, as elements in GLn(R), have positive determinants on its domain Uα ∩ Uβ .
A real vector bundle is called oriented if it has an oriented atlas.

Let ξ be a real n-dimensional vector bundle over B. Recall that there is a principal GLn(R)-
bundle ξGLn(R) such that ξ ∼= ξGLn(R)[Rn]. Let

GL+
n (R) = {A ∈ GLn(R) | det(A) > 0}.

Then GL+
n (R) is a (normal) subgroup of GLn(R) with cokernel Z/2 = {−1, 1}. If ξ is oriented, then

the transitive functions map into GL+
n (R) and so there is a principal GL+

n (R)-bundle ξGL+
n (R) such

that ξ ∼= ξGL+
n (R)[Rn]. Conversely, if there is a principal GL+

n (R)-bundle ξ̃ such that ξ ∼= ξ̃[Rn], then
ξ is oriented because its transitive functions obtained from an atlas of ξ̃ map into GL+

n (R). This
gives the following:

Proposition 8.7. An n-dimensional real vector bundle ξ is oriented if and only if there exists a
principal GL+

n (R)-bundle ξGL+
n (R) such that ξ ∼= ξGL+

n (R)[Rn]. �

Let ξ be any principal GLn(R)-bundle given by E → B. Then there is a commutative diagram
of principal G-bundles

GL+
n (R) ⊂ - GLn(R) -- Z/2

GL+
n (R)

wwwwwwwww
⊂ - E

?

∩

- B̃ξ
?

∩

B
?

======== B,
?
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where B̃ξ = E/GL+
n (R). We have two principal G-bundles E → B̃ξ with G = GL+

n (R) and B̃ξ → B
with G = Z/2. Moreover there is a commutative diagram

(14)

Rn ======================= Rn

Z/2 ⊂ - E ×GL+
n (R) Rn
?

∩

- E ×GLn(R) Rn = E(ξ[Rn])
?

∩

pull-back

Z/2

wwwwwwwww
⊂ - B̃ξ

?
- B,

?

where the right two columns are induced vector bundles.

Proposition 8.8. Let ξ[Rn] be a vector bundle over B, where ξ is a principal GLn(R)-bundle over
B. Then the following are equivalent each other:

1) ξ[Rn] is oriented.
2) The two covering Bξ → B has a cross-section.
3) The two covering Bξ → B is a trivial bundle.

Proof. (2)⇐⇒(3) is obvious.
(1) =⇒ (2). Suppose that ξ[Rn] is oriented. Then there is a principal GL+

n (R)-bundle ξ′ such
that φ : ξ′[Rn] ∼= ξ[Rn]. The bundle isomorphism φ : ξ′[Rn] → ξ[Rn] induces a morphism of principal
GL+

n (R)-bundles

E(ξ′)
φ̃ - E(ξ)

B
?

======== B,
?

where φ̃ is the unique map such that the following diagram commutes

E(ξ′[Rn]⊕n) == E(ξ′)×GL+
n (R) (Rn)⊕n

φ⊕n- E(ξ)×GLn(R) (Rn)⊕n == E(ξ[Rn]⊕n)

E(ξ′) ====== E(ξ′)× {e1, . . . , en}
∪

6

φ̃- E(ξ)× {e1, . . . , en}
∪

6

====== E(ξ)

because in each fibre

φ⊕n(b · g, e1, e2, . . . , en) = φ⊕n(b, g(e1), g(e2), . . . , g(en))

= (b, φb ◦ g(e1), φb ◦ g(e2), . . . , φb ◦ g(en)) = (b · φb ◦ g, e1, . . . , en) ∈ E(ξ).
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[Note. For each point b · g ∈ E(ξ′), g can be regarded as a linear isomorphism of the fibre
p(ξ′[Rn])−1(b) → p(ξ′[Rn])−1(b) and φ ◦ g defines an element in E(ξ).] Now from the commutative
diagram

GL+
n (R) ⊂ - E(ξ) - B̃ξ

GL+
n (R)

wwwwwwwww
⊂ - E(ξ′)

6

- B,

6

there is a cross-section B → B̃ξ.
(2) =⇒ (1). Suppose that Bξ → B has a cross-section s : B → Bξ. Let ξ′ be the pull-back

GL+
n (Rn) ⊂ - E(ξ) - B̃ξ

pull-back

GL+
n (Rn)

wwwwwwwww
⊂ - E(ξ′)

∪

6

- B.

s

∪

6

Then ξ′[Rn] ∼= ξ[Rn] and so ξ is oriented. �

Note. From the proof, for a vector bundle ξ[Rn], the two covering B̃ξ → B is independent on
the choice of principal G-bundle representation ξ, that is, if ξ′[Rn] ∼= ξ[Rn], then there is a bundle
isomorphism from B̃ξ

′ → B to B̃ξ → B.

Exercise 8.1. Let ξ be an oriented vector bundle over B and let f : X → B be a map. Prove that
f∗ξ is oriented.

Exercise 8.2. Let ξ and η be oriented vector bundles. Show that ξ ⊕ η is also oriented.

Exercise 8.3. Let ξ and η be vector bundles . Prove that ξ×η given by E(ξ)×E(η) → B(ξ)×B(η)
is oriented if and only if both ξ and η are oriented.

.

Lemma 8.9. Let ξ be a real n-dimensional vector bundle over a paracompact space B. Then there
is a principal O(n)-bundle ξO(n) such that ξ ∼= ξO(n)[Rn]. Moreover ξ is oriented if and only if there
is a principal SO(n)-bundle ξSO(n) such that ξ ∼= ξSO(n)[Rn].

Proof. By Corollary 4.16, there is a map f : B → Gn,∞(R) such that ξ ∼= f∗(γ∞n ). Note that γ∞n is
induced by the canonical principal O(n)-bundle Vn,∞(R) → Gn,∞(R). Let E(ξO(n)) be the pull-back

E(ξO(n)) - Vn,∞(R)

B
? f- Gn,∞(R).

?

Then ξO(n)[Rn] ∼= f∗(γ∞n ) ∼= ξ.
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Suppose that ξ ∼= ξSO(n)[Rn]. Then ξ is oriented because the transitive functions of ξSO(n) has
determinant 1.

Conversely assume that ξ is oriented. By the proof of the above proposition, the bundle iso-
morphism ξO(n)[Rn] ∼= ξGLn(R) induces a morphism of principal O(n)-bundles φ : ξO(n) → ξGLn(R).
Since SO(n) = O(n) ∩GL+

n (R), there is a commutative diagram of principal G-bundles

GL+
n (R) ⊂- E(ξGLn(R)) - B̃ξ

SO(n)

wwwwwwwww
⊂ - E(ξO(n))

∼=
6

- B̃ξ.

∼=

6

Since ξ is oriented, there is a cross-section s : B → Bξ. Let ξ′ be the pull-back

E(ξ′) - E(ξO(n))

B
? s - B̃ξ.

?

. Then ξ′ is a principal SO(n)-bundle such that ξ ∼= ξ′[Rn]. �

Theorem 8.10. Let ξ be a real n-dimensional vector bundle over a paracompact space B. Then
the following statements are equivalent:

1) ξ is oriented.
2) The n-fold exterior product bundle Λn(ξ) is a trivial line bundle.
3) There is a nowhere zero cross-section to the n-fold exterior bundle Λn(ξ).
4) The dual bundle ξ∗ is oriented.
5) There is a nowhere zero cross-section to the n-fold exterior bundle Λn(ξ).
6) The n-fold exterior product bundle Λn(ξ∗) is a trivial line bundle.

Proof. Note that a real line bundle is trivial if and only if it has a nowhere zero-cross-section. Thus
(2) ⇔ (3) and (5) ⇔ (6). It obvious that (1) ⇔ (4).

(1) =⇒ (2). Suppose that ξ is oriented. By the previous lemma, there is an SO(n)-bundle ξSO(n)

such that ξ ∼= ξSO(n)[Rn]. Thus

E(Λn(ξ)) = E(ξSO(n))×SO(n) Λn(Rn).
Let g ∈ SO(n), that is, g : Rn → Rn is a linear isomorphism. By Proposition 8.4,

Λn(g) : Λn(R) = R - Λn(Rn) = R
is multiple by det(g) = 1. Thus the action of SO(n) on Λn(R) = R is trivial and Λn(ξ) is a trivial
bundle. Similarly (4) =⇒ (5).

(3) =⇒ (1). Suppose that Λnξ is a trivial bundle. There is a principal O(n)-bundle ξO(n) such
that ξ ∼= ξO(n)[Rn]. Since SO(n) acts trivially on Λn(Rn),

E(Λn(ξ)) = E(ξO(n))×O(n) Λn(Rn) =
[
E(ξO(n))/SO(n)

]
×O(n)/SO(n) Λn(Rn)

= B̃ξ ×Z/2 Λn(Rn).
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By the assumption, the line bundle B̃ξ ×Z/2 Λn(Rn) is trivial and so the principal Z/2-bundle
B̃ξ → B is trivial. Thus there is a cross-section B → B̃ξ and so ξ is oriented. �

A differentiable manifold M is called oriented if its tangent bundle is oriented. In other words, M
has an atlas which Jacobians of coordinate transformations are always positive. An orientation of
M is a maximal oriented atlas. A nowhere zero m-form is called a volume form, where m = dimM .

Corollary 8.11. 1) A paracompact manifold M is oriented if and only if there exists a volume
form on M .

2) For any differentiable manifold M , there is an oriented differentiable manifold M̃ with
principal Z/2-bundle M̃ →M . �

8.3. Integration of m-forms on Oriented m-Manifolds. Let M be a differentiable m-manifold
and let ω be an m-form on M such that

supp(ω) = {b | ω(b) 6= 0}
is contained in the coordinate neighborhood Uα of a chart (Uα, φα), where φα : Uα → φα(Uα) ⊆ Rm.
Let

(φ−1
α )∗(ω) = aα(x)dx1 ∧ · · · ∧ dxm.

Then we define ∫
M

ω =
∫
Uα

ω =
∫
φα

aα(x)dx1dx2 · · · dxn

to be the Riemann integral over φα(Uα) ⊆ Rm.
We have to check that this definition is independent on local coordinate system and we will

need the condition that M is oriented.
If the support of ω is also contained in the coordinate neighborhood of another chart (Uβ , φβ).

Let φα = θαβ ◦ φβ , that is θαβ is given by

φβ(Uα ∩ Uβ)
φ−1

β- Uα ∩ Uβ
φα- φα(Uα ∩ Uβ).

Then
(φ−1
α )∗(ω) = (φ−1

β ◦ θ−1
αβ )∗(ω)

= (θ−1
αβ )∗ ◦ (φ−1

β )∗(ω) = θ∗βα ◦ (φ−1
β )∗(ω)

= (θβα)∗(aβdy1 ∧ · · · ∧ dym)

= (aβ ◦ θβα det(J(θβα))dx1 ∧ · · · ∧ dxm,
where J(θβα) is the Jacobian matrix of θβα. Thus

aα(x) = (aβ ◦ θβα)(x) det(J(θβα))(x)

and, writing Uαβ for Uα ∩ Uβ ,∫
Uα

ω =
∫
Uαβ

ω =
∫
φα(Uαβ)

aα(x)dx1dx2 · · · dxm

=
∫
θαβ(φβ(Uαβ))

aα(x)dx1dx2 · · · dxm

=
∫
φβ(Uαβ)

aαθαβ |det(J(θαβ))|dy1dy2 · · · dym
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by changing of variable formula for multiple integrals in Rm. Assume that M is oriented and both
charts belong to the same orientation, then det(J(θαβ)) > 0. This precisely why we need our
manifolds to be oriented. Under this assumption,∫

Uα

ω =
∫
φβ(Uαβ)

aβ(y)dy1dy2 · · · dym =
∫
M

ω

independent on oriented charts.

Definition 8.12. Let ω be an m-form on an oriented compact manifold and let {gi | i = 1, . . . , k}
be a partition of unitary subordinate to a open covering {Ui} from the orientation of M . Then we
define ∫

M

ω =
k∑
i=1

∫
M

giω,

where
∫
M
gαω is defined as above, the summation is well defined because there are only finitely

many non-zero terms.

Lemma 8.13.
∫
M
ω is well-defined.

Proof. Let {hj | j = 1, . . . , l} be another partition of unitary subordinate to {Vj} on M . Then
{gihj} is a partition of unitary subordinate to {Ui ∩ Vj} on M . Now

k∑
i=1

∫
M

giω =
k∑
i=1

∫
M

l∑
j=1

hjgiω =
k∑
i=1

l∑
j=1

∫
M

hjgiω

=
l∑

j=1

∫
M

k∑
i=1

hjgiω =
l∑

j=1

∫
M

(
k∑
i=1

giω

)
=

l∑
j=1

∫
M

hjω.

�

9. The Exterior Derivative and the Stokes Theorem

9.1. Exterior Derivative on Rm. For a sequence I = (i1, i2, . . . , ik), write dxI for dxi1∧· · ·∧dxik .

Definition. For a k-form ω =
∑
I

aIdx
I on an open subset U of Rm, define dω by

dω =
∑
I

daI ∧ dxI =
∑
I

m∑
i=1

∂aI
∂xi

dxi ∧ dxI .

From the definition, d(dxI) = d(1 · dxI) = 0 ∧ dxI = 0.

For instance, let m = 4, da(x) =
m∑
i=1

∂a(x)
∂xi

dxi =
4∑
i=1

∂a(x)
∂xi

dxi,

d(a(x)dx2 ∧ dx4) =
4∑
i=1

∂a(x)
∂xi

dxi ∧ dx2 ∧ dx4

=
∂a(x)
∂x1

dx1 ∧ dx2 ∧ dx4 +
∂a(x)
∂x3

dx3 ∧ dx2 ∧ dx4 =
∂a(x)
∂x1

dx1 ∧ dx2 ∧ dx4 − ∂a(x)
∂x3

dx2 ∧ dx3 ∧ dx4.

Proposition 9.1. The following properties hold for the operation d:
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1) d is R-linear:
d(λ1ω + λ2ω2) = λ1dω1 + λ2dω2

for real constants λi and k-forms ωi.
2) d is a graded derivation:

d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)kω1 ∧ dω2

for a k-form ω1 and any form ω2.
3) d is a differential:

d2ω = d(d(ω)) = 0

for any form ω.
4) d is natural:

d(f∗ω) = f∗(dω),

where ω is a k-form on U ⊆ Rm, V ⊆ Rn and f : V → U is differentiable.

Proof. (1) is obvious.
(2). Let ω1 =

∑
I

aIdx
I and let ω2 =

∑
J

bJdx
J . Then

d(ω1 ∧ ω2) = d

∑
I,J

aIbJdx
I ∧ dxJ


=
∑
I,J

d(aIbJ) ∧ dxI ∧ dxJ

=
∑
I,J

bJdaI ∧ dxI ∧ dxJ + aIdbJ ∧ dxI ∧ dxJ

=
∑
J

bJdω1 ∧ dxJ + (−1)k
∑
I,J

aIdx
I ∧ dbJ ∧ dxJ = dω1 ∧ ω2 + (−1)kω1 ∧ dω2.

(3) For 0-forms (or functions) a(x),

d2(a(x)) = d

(
m∑
i=1

∂a

∂xi
dxi

)
=

m∑
i=1

d

(
∂a

∂xi
dxi
)

=
m∑

i,j=1

∂2a

∂xi∂xj
dxj ∧ dxi = 0

because ∂2a
∂xi∂xj

= ∂2a
∂xj∂xi

, dxi ∧ dxi = 0 and dxi ∧ dxj = −dxj ∧ dxi. For general case ω =
∑
I

aIdx
I ,

d2ω = d

(∑
I

daI ∧ dxI
)

=
∑
I

d(daI ∧ dxI) =
∑
I

d2(aI) ∧ dxI − daI ∧ d(dxI) = 0

(4). If ω = g is a 0-form on Rm, then

f∗(dg) = f∗

(
m∑
i=1

∂g

∂xi
dxi

)
=

m∑
i=1

(
∂g

∂xi
◦ f
)
f∗(dxi) =

m∑
i=1

(
∂g

∂xi
◦ f
) n∑
j=1

∂fi
∂yj

dyj

=
n∑
j=1

∂g ◦ f
∂yj

dyj = d(g ◦ f) = d(f∗(g)).
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If ω = dxi, then

d(f∗(dxi)) = d

 n∑
j=1

∂fi
∂yj

dyj

 =
n∑
j=1

d

(
∂fi
∂yj

dyj

)
=

n∑
j,k=1

∂2fi
∂yj∂yk

dyk ∧ dyj = 0 = f∗(d(dxi)).

If ω = dxI = dxi1 ∧ · · · ∧ dxk, then

d(f∗dxI) = d(f∗(dxi1) ∧ · · · ∧ f∗(dxik))

=
m∑
s=1

(−1)s−1f∗(dxi1)∧ · · · ∧ f∗(dxis−1)∧ d(f∗(dxis))∧ f∗(dxis+1)∧ · · · f∗(dxik) = 0 = f∗(d(dxI)).

For a general k-form ω =
∑
I

aIdx
I ,

d(f∗ω) =
∑
I

d(f∗(aI)f∗(dxI)) =
∑
I

d(f∗(aI)) ∧ f∗(dxI) + f∗(aI)d(f∗(dxI))

=
∑
I

f∗(daI)) ∧ f∗(dxI) = f∗

(∑
I

daI ∧ dxI
)

= f∗(dω).

We finish the proof. �

9.2. Exterior Derivative on Manifolds. Let M be a differentiable n-manifold with a k-form ω
on M . Let (Uα, φα) be a chart, that is, φα : Uα → φα(Uα) ⊆ Rn. Then

ωα = (φ−1
α )∗(ω)

is a k-form on φα(Uα).

Definition. For a k-form ω on M , the differential dω is the (k+ 1)-form η such that for each chart
(Uα, φα),

η |Uα
= φ∗α(d(φ−1

α )∗(ω)).

Proposition 9.2. Let M be a differentiable manifold and let ω be a k-form on M . Then dω is
well-defined.

Proof. Let (Uβ , φβ) be another chart and let θαβ = φα ◦ φ−1
β . Then, restricting to Uα ∩ Uβ ,

φ∗α(d(φ−1
α )∗(ω)) = (θαβφβ)∗d(φ−1

α )∗(ω)

= (φβ)∗(θ∗αβd(φ
−1
α )∗(ω)) = (φβ)∗

(
d
(
θ∗αβ(φ

−1
α )∗(ω)

))
= (φβ)∗

(
d
(
(φ−1
α ◦ θαβ)∗(ω)

))
= (φβ)∗

(
d
(
(φ−1
β )∗(ω)

))
and hence the result. �

Note. We do not assume that M is oriented.
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Exercise 9.1. Let ω is a k-form on M with k ≥ 1. Prove that

dω(X1, . . . , xk+1) =
k+1∑
i=1

(−1)i−1Xi(ω(X1, . . . , X̂i, . . . , Xk+1))

+
∑
i<j

(−1)i+jω([Xi, Xj ], X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1),

where X̂i means ‘omit Xi’.

9.3. Stokes’ Theorem. Let Rn+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. Recall that a (topological) n-
manifold means a Hausdorff space that is locally homeomorphic to open subsets of Rn+. Let M be
a differentiable manifold and let {(Uα, φα)} be an atlas for M . Recall that

∂M =
⋃
α

φ−1
α (φα(Uα) ∩ ∂Rn) ,

where ∂Rn = Rn−1, with an atlas given by

{(Uα ∩ ∂M,φα|Uα∩∂M ) | Uα ∩ ∂M 6= ∅}.

We now examine the coordinate transformation from an oriented atlas on M at a point p ∈ ∂M .
Note that the transition functions θαβ map φβ(Uα ∩Uβ)∩∂Rn onto φα(Uα ∩Uβ)∩∂Rn. Let θ̄αβ be
the restriction θαβ |Rn−1 of θαβ , mapping (the open subset of) Rn−1 into Rn−1. Then the Jacobian
Jθαβ has the block decomposition

Jθαβ =
(
Jθ̄αβ 0
∗ ∂xn

∂yn

)
with ∂xn

∂yn
> 0 because Jθαβ is a linear transformation mapping Rn−1 into Rn−1 and the last row

(∂xn∂y1, . . . , ∂xn∂yn) has positive projection on the last coordinate. Since det(Jθαβ) = det(Jθ̄αβ) ·
∂xn

∂yn
, we have the following.

Proposition 9.3. If M is an oriented, then ∂M is also oriented. �

Let ι : ∂M → M be the inclusion. Let (U, φ) be a chart of M . Then there is a commutative
diagram

∂M ⊇W = U ∩ ∂M ⊂
ι - U ⊆ M

Rn−1

φ|W
?

⊂
κ - Rn+,

φ

?

where κ is the canonical inclusion.

Lemma 9.4. ι∗ ◦ φ∗(dxn) = 0 and ι∗ ◦ φ∗(dxi) = (φ|W )∗(dxi) for 1 ≤ i ≤ n− 1.

Proof. Note that κ∗( ∂
∂xi

) = ∂
∂xi

for 1 ≤ i ≤ n− 1. Then

(κ∗(dxi))
(

∂

∂xj

)
= dxi

(
κ∗

(
∂

∂xj

))
= δij
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and so κ∗(dxi) = dxi for 1 ≤ i ≤ n− 1 and κ∗(dxn) = 0. It follows that

ι∗ ◦ φ∗(dxi) = (φ|W )∗ ◦ κ∗(dxi) = (φ|W )∗(dxi) for 1 ≤ i ≤ n− 1,

ι∗ ◦ φ∗(dxn) = (φ|W )∗ ◦ κ∗(dxn) = (φ|W )∗(dxn) = 0.

�

From the arguments of Proposition 9.3, if (x1, . . . , xn) is a positive local coordinate system for
M , then we can choose a positive orientation on ∂M such that (x1, . . . , xn−1) is a positive local
coordinate system. However, it is more convenient to choose the positive orientation of ∂M such
that if n is even, then (x1, . . . , xn−1) is positive, while if n is odd, (x1, . . . , xn−1) is negative. (In
other words, the modification of the orientation of ∂M is modified by (−1)n.) Such an orientation
of ∂M is called an orientation of ∂M compatible with the orientation of M .

Remark 9.5. If M is a closed smooth compact oriented region the boundary of Rn, then the
compatible orientation on ∂M is given such that the normal vector to ∂M is outgoing. For instance,
if the locally coordinate system of M is given by (x1, . . . , xn) with xj ≥ 0 and −εi < xi < εi for
i 6= j, then the outgoing normal vector is given by Np = −dxj and

(−dxj)∧(−1)jdx1∧· · ·∧dxj−1∧dxj+1∧· · ·∧dxn = (−1)j+1(−1)j−1dx1∧· · ·∧dxn = dx1∧· · ·∧dxn,

that is, the orientation (−1)jdx1 ∧ dx2 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn is given such that it
∧-product with the outgoing normal vector (from left) is the usual orientation of Rn. See [12,
pp.119-121] and [9, p.282] for detailed explanations of the compatible orientations.

A generalization of the fundamental theorem of the integral calculus:
∫ b
a
f ′(x)dx = f(b) − f(a)

is as follows:

Theorem 9.6 (Stokes). Let Mn be a compact oriented manifold with boundary, let ∂M have the
compatible orientation, ι : ∂M → M be the inclusion and ω ∈ Ωn−1(M) be an (n− 1)-form on M .
Then ∫

∂M

ι∗(ω) =
∫
M

dω.

Proof. Suppose that the result valid for a form ω such that the support of ω lies in a coordinate
neighborhood U . Then, for a general (m− 1)-form ω, let {fk | k = 1, . . . ,m} be a partition of unity
subordinate to a covering of M by coordinate neighborhoods {Uk} from the oriented atlas on M .

Then, for ωk = fkω, we have ω =
m∑
k=1

ωk and

∫
∂M

ι∗(ω) =
n∑
k=1

∫
∂M

ι∗(ωk) =
m∑
k=1

∫
M

dωk =
∫
M

d

m∑
k=1

ωk =
∫
M

ω.

Thus it remains to prove the special case of the theorem.
So we suppose that the support of ω is contained in a coordinate neighborhood U for a chart

(U, φ), and that on V = φ(U)

(φ−1)∗(ω) =
n∑
j=1

ajdx
1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn,
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where d̂xj indicates that the factor dxj is omitted. Then

(φ−1)∗(dω) = d((φ−1)∗(ω)) =
n∑
j=1

d(aj) ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

=
n∑
j=1

∂aj
∂xj

dxj ∧ dx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

=
n∑
j=1

(−1)j−1 ∂aj
∂xj

dx1 ∧ · · · ∧ dxn.

Let V be contained in the product Q = [c1, d1] × · · · × [cn, dn] with cn = 0. Extend aj to Q by
setting that aj(x) = 0 for x 6∈ V . Write Qj for the product [c1, d1] × · · · × [̂cj , dj ] × · · · × [cn, dn]
of all the intervals except the j-th, but continue to write xi for the coordinate in [ci, di] whether it
occurs before or after the deleted factor. Then∫

M

dω =
∫
U

dω =
∫
V

(φ−1)∗(dω)

=
∫
V

n∑
j=1

(−1)j−1 ∂aj
∂xj

dx1 · · · dxn

=
n∑
j=1

∫
Q

(−1)j−1 ∂aj
∂xj

dx1 · · · dxn

=
n∑
j=1

∫
Qj

(−1)j−1 [aj(x1, . . . , xj−1, dj , xj+1, . . . , xn)

−aj(x1, . . . , xj−1, cj , xj+1, . . . , xn)] dx1 · · · d̂xj · · · dxn (by the Fubini Theorem)
Since the points

(x1, . . . , xj−1, dj , xj+1, . . . , xn), (x1, . . . , xj−1, cj , xj+1, . . . , xn), (x1, . . . , xn−1, dn) 6∈ V
for j < n,

aj(x1, . . . , xj−1, dj , xj+1, . . . , xn) = 0 j < n

aj(x1, . . . , xj−1, cj , xj+1, . . . , xn) j < n

an(x1, . . . , xn−1, dn) = 0.
Thus ∫

M

dω = (−1)n
∫
Qn

an(x1, . . . , xn−1, 0)dx1 · · · dxn−1.

On the other hand,

(φ|W−1)∗(ι∗ω) = κ∗((φ−1)∗(ω)) = an ◦ κdx1 ∧ · · · ∧ dxn−1

= an(x1, . . . , xn−1, 0)dx1 ∧ · · · ∧ dxn−1

and so ∫
∂M

ι∗ω =
∫
U∩∂M

ι∗ω =
∫
V ∩Rn−1

(φ|W−1)∗(ι∗ω)

= (−1)n
∫
Qn

an(x1, . . . , xn−1, 0)dx1 · · · dxn−1 (where (−1)n is used)
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=
∫
M

dω.

�

Corollary 9.7. If Mm is a compact oriented differentiable manifold without boundary and ω ∈
Ωm−1M is an (m− 1)-form on M , then

∫
M
dω = 0. �

Proposition 9.8. If M is a compact oriented differentiable manifold with boundary, then there is
no smooth map f : M → ∂M such that f ◦ ι = id∂M .

Proof. Suppose that there were such a map f . Let ω be a volume (m− 1)-form on ∂M arising from
the compatible orientation. Then

df∗(ω) = f∗(dω) = 0
because dω in Ωm(∂M) which is 0. Thus

0 =
∫
M

df∗(ω) =
∫
∂M

ι∗f∗(ω) =
∫
∂M

ω.

But, as ω is a volume form, it will have everywhere positive coefficients in every charts from the
orientation atlas on ∂M . Then if {gi} is a subordinate partition of unity, ∂∂Mgiω > 0 and so∫

∂M

ω =
∑
i

∫
∂M

giω > 0.

We have the contradiction and hence the result. �

Corollary 9.9 (Brouwer Fixed Theorem). Every differentiable map g : Dn → Dn of the closed unit
ball of Rn into itself has a fixed point.

Sketch. Suppose that g has no fixed points. Let f(p) be the intersection of the directional line
−−−→
g(p)p

with boundary of ∂Dn. Then one can check that f is smooth with ι ◦ f = id∂Dn . �

Example. [Green’s Theorem] Let D be a domain in the plane bounded by a (piecewise) smooth
closed curve C. Let

ω = Pdx+Qdy,

then

dω =
(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

and so, by the Stokes’ theorem, we have∫
C

Pdx+Qdy =
∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Example.[Divergence Theorem] Let D be a bounded domain in R3 with a smooth boundary,
and let (x, y, z) be a positive coordinate system in R3. Set

ω = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Then

dω =
(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz
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and so, by the Stokes’ theorem,∫ ∫ ∫
D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

∫
∂D

ι∗ω.
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2003/2004 Semester II MA5210 Differentiable Manifolds

Homework 1

Question 1. The tangent space to S1 at a point (a, b) is a one-dimensional subspace
of R2. Explicitly calculate the subspace in terms of a and b. [The answer is obviously
the space spanned by (−b, a), but prove it.]

Question 2. Exhibit a basis for TP (S2) at arbitrary point P = (a, b, c) ∈ S2.
[Consider S2 is the surface given x2 + y2 + z2 = 1.]

Question 3. What is the tangent space to the paraboloid defined by

x2 + y2 − z2 = a

at (
√

a, 0, 0), where a > 0? What does it happen when a = 0?

Question 4. Let M be the intersection of two level surfaces f(x1, . . . , xn) = c and
g(x1, . . . , xn) = d. Given a point P in M , assume that the gradients ∇f and ∇g are
linearly independent at P , find the tangent space to M and P . What would happen
if ∇f and ∇g are linearly dependent, but both of them are non-zero?

Question 5. Let V : P 7→ (P,~v(P )), where ~v(x, y) = (−y, x), be a vector field in R2.
Find the integral curve of V through the point (a, b) at t = 0.

Question 6. Compute the Jacobian of each of the following transformation. Deter-
mine where local inverses exist.

(a) x = eu cos v, y = eu sin v;
(b) x = u2 − v2, y = 2uv;
(c) x = u2 − uv, y = v − u;
(d) x = sin(u + v), y = cos(u + v).

1
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Solutions to Homework 1

Question 1. The tangent space to S1 at a point (a, b) is a one-dimensional subspace
of R2. Explicitly calculate the subspace in terms of a and b. [The answer is obviously
the space spanned by (−b, a), but prove it.]

Solution: Let f(x, y) = x2+y2−1. Then, S1 is the level surface given by f(x, y) = 0.
At the point (a, b), the gradient of f is

∇f(a, b) = (2a, 2b).

By definition, the tangent space at (a, b) is the set of vectors (u, v) ∈ R2 passing
through (a, b) such that ∇f(a, b) · (u, v) = 0, i.e., 2au + 2bv = 0. Thus, (u, v) =
t(−b, a), where t ∈ R. Consequently, the tangent space to the surface at the point
(a, b) is the one-dimensional subspace of R2 spanned by the vector (−b, a).

Question 2. Exhibit a basis for TP (S2) at arbitrary point P = (a, b, c) ∈ S2.
[Consider S2 is the surface given x2 + y2 + z2 = 1.]

Solution: Let f(x, y, z) = x2 + y2 + z2 − 1. Then, S2 is the level surface given by
f(x, y, z) = 0. Clearly, the gradient of f at any point P = (a, b, c) is

∇f(a, b, c) = (2a, 2b, 2c).

The tangent space to S2 at P is the set of vectors (u, v, w) ∈ R3 passing through P
such that ∇f(a, b, c) · (u, v, w) = 0, which gives

2au + 2bv + 2cw = 0.

Solving, we obtain (u, v, w) = s(−b, a, 0) + t(−c, 0, a), s, t ∈ R. Consequently, a basis
for the tangent space is {(−b, a, 0), (−c, 0, a)}.

Question 3. What is the tangent space to the paraboloid defined by

x2 + y2 − z2 = a

at (
√

a, 0, 0), where a > 0? What does it happen when a = 0?

Solution: Let f(x, y, z) = x2 + y2 − z2. Then,

∇f = (2x, 2y,−2z).

At the point P = (
√

a, 0, 0), where a > 0, The gradient of f is ∇f(P ) = (2
√

a, 00).
The tangent space at P is the set of vectors (u, v, w) ∈ R3 through P such that
∇f(P ) · (u, v, w) = 0, or equivalently,

√
au = 0. Thus, u = 0 and the tangent space is

the 2-dimensional subspace of R3 spanned by the vectors (0, 1, 0) and (0, 0, 1). Now,
if a = 0, then z2 = x2 + y2 and∇f is 0 at (0, 0, 0). In fact, the point (0, 0, 0) is the
common vertex of the two opposite cones.

Question 4. Let M be the intersection of two level surfaces f(x1, . . . , xn) = c and
g(x1, . . . , xn) = d. Given a point P in M , assume that the gradients ∇f and ∇g are
linearly independent at P , find the tangent space to M and P . What would happen
if ∇f and ∇g are linearly dependent, but both of them are non-zero?

1
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Solution: Let P ∈ M. The tangent space to the surface f(x1, . . . , xn) = c at P is the
n−1-dimensional subspace T1 = {(u1, . . . , un) ∈ Rn | ∂f

∂x1 (P )u1+· · ·+ ∂f
∂xn (P )un = 0}.

Similarly, the tangent space to the level surface g(x1, . . . , xn) = d at P is the n− 1-
dimensional subspace T2 = {(v1, . . . , vn) ∈ Rn | ∂g

∂x1 (P )v1 + · · · + ∂g
∂xn (P )vn = 0}. If

∇f(P ) and ∇g(P ) are linearly independent, T1 6= T2 and the tangent space to M at
P is the n − 2-dimensional subspace formed by the intersection of the two tangent
spaces. On the other hand, if ∇f(P ) and ∇g(P ) are linearly dependent, T1 = T2 and
the tangent space to M at P is this common tangent space.

Question 5. Let V : P 7→ (P,~v(P )), where ~v(x, y) = (−y, x), be a vector field in R2.
Find the integral curve of V through the point (a, b) at t = 0.

Solution: Let s(t) = (x(t), y(t)) be the integral curve to V at t = 0. Then,

s′(t) = (x′(t), y′(t)) = ~v(s(t)) = (−y(t), x(t)).

By considering the x and y components separately, we have x′(t) = −y(t) and y′(t) =
x(t). Solving the differential equations with initial conditions s(0) = (a, b) yields

x(t) = a−
∫ t

0

y(t)dt

and

y(t) = b +

∫ t

0

x(t)dt.

Question 6. Compute the Jacobian of each of the following transformation. Deter-
mine where local inverses exist.

(a) x = eu cos v, y = eu sin v;
(b) x = u2 − v2, y = 2uv;
(c) x = u2 − uv, y = v − u;
(d) x = sin(u + v), y = cos(u + v).

Solution:

(a) x = eu cos v, y = eu sin v. The Jacobian is given by

J =
∂(x, y)

∂(u, v)

= det
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

= e2u · det
cos v − sin v
sin v cos v

= sin2 v + cos2 v

= 1.

Since J 6= 0 for all (u, v) ∈ R2, it follows from the Inverse Mapping Theo-
rem that the local inverse exists everywhere in R2.
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(b) x = u2 − v2, y = 2uv.

J =
∂(x, y)

∂(u, v)

= det
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

= det
2u −2v
2v 2u

= 4u2 + 4v2.

For (u, v) 6= (0, 0), J 6= 0 and so, we conclude from the Inverse Mapping
Theorem that the local inverses exist.

(c) x = u2 − uv, y = v − u;

J =
∂(x, y)

∂(u, v)

= det
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

= det
2u− v,−u

−1 1

= u− v.

Clearly, J = 0 if and only if (u, v) lies on the line v = u. Hence, for points
in R2 not on this line, we conclude from the Inverse Mapping Theorem that
the local inverses exist.

(d) x = sin(u + v), y = cos(u + v).

J =
∂(x, y)

∂(u, v)

= det
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

= det
cos(u + v) cos(u + v)
− sin(u + v) − sin(u + v)

= 0.

Consequently, the local inverses do not exist for all points in R2.
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Homework 2

Question 1. Let M and N be smooth manifolds.

1) Show that T(x,y)(M ×N) = Tx(M)× Ty(N).
2) Let p : M ×N → M be the projection map (x, y) 7→ x. Prove that

Tp : Tx(M)× Ty(N) → Tx(M)

is the analogous projection (~v, ~w) 7→ ~v.
3) Fixing any y ∈ N , let j : M → M × N be the inclusion x 7→ (x, y). Show

that Tj(~v) = (~v, 0).
4) Let f : M → M ′ and g : N → N ′ be smooth maps. Prove that T (f×g)(x,y) =

Tfx × Tgy.

Question 2. Let M be a smooth manifold.

1) Let ∆: M → M ×M be the diagonal map x 7→ (x, x). Prove that T∆x(~v) =
(~v,~v).

2) Let ∆(M) = {(x, x) | x ∈ M} ⊆ M × M be the diagonal. Show that the
tangent space T(x,x)(∆(M)) is the diagonal of Tx(M)× Tx(M).

Question 3. Prove the following statements:

1) If f and g are immersions, then so is f × g.
2) If f and g are immersions, then so is g ◦ f .
3) If f an immersion, then so is f restricted to any submanifold of its domain.
4) If dim M = dim N , then immersions f : M → N are the same as local diffeo-

morphisms.

Question 4. Check the map

R1 → R2, t 7→
(

et + e−t

2
,
et − e−t

2

)
is an embedding. Prove that its image is one nappe of the hyperbola x2 − y2 = 1.

Question 5. The smooth links can be regarded as 1-dimensional submanifolds of
R3. The links can be also regarded as embeddings of disjoint union of finite copies
of S1 into R3. Draw a nontrivial links consisting of 3 components with the property
that it becomes a trivial link after removing any one of the links. [This kind of links
is called Brunnian links.]

Let f : M → N be a smooth map. A point y ∈ N is called a critical value if
Tf : Tx(M) → Ty(N) is not surjective for some x ∈ f−1(y). (Namely, if y is not
regular.)

Question 6. Check that 0 is the only critical value of the map f : R3 → R1 defined
by

f(x, y, z) = x2 + y2 − z2.
1
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Prove that if a and b are either both positive or both negative, then f−1(a) and f−1(b)

are diffeomorphic. [Hint: Consider scalar multiplication by
√

b/a on R3.] Pictorially
examine the catastrophic change in the topology of f−1(c) as c passes through the
critical value.

Problem 7. Let M and Z be transversal submanifolds of N . Prove that if y ∈ M∩Z,
then

Ty(M ∩ Z) = Ty(M) ∩ Ty(Z).

Problem 8. For which values of a does the hyperboloid defined by x2 + y2 − z2 = 1
intersect the sphere x2 + y2 + z2 = a transversally? What does the intersection look
like for different values of a?
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Homework 3

Let ξ be a fibre bundle and let f : X → B be a map. Recall that the induced
bundle f ∗ξ over X is obtained from the pull-back

E(f ∗(ξ)) - E(ξ)

X

p(f ∗(ξ))

? f
- B(ξ).

p(ξ)

?

Question 1. Let ξ be a fibre bundle given by p : E → B and let f : X → B be any
(continuous) map. Suppose that {Uα} is an open cover of B such that ξ restricted
to each Uα is trivial. Show that f ∗ ξ restricted to each f−1(Uα) is trivial. From this,
show that if ξ has an atlas of countable (finite) charts, then so does any induced fibre
bundle of ξ.

Question 2. Let X be a G-space. Suppose that π : X → X/G is a principal G-
bundle with a (continuous) cross-section s : X/G → X (that is π ◦ s = idX/G). Show
that π : X → X/G is a trivial bundle.

Question 3. Let G and H be two closed subgroups of a topological group Γ. Suppose
that Γ/(H ∩ G) → Γ/G has local cross-sections. Show that Γ/(H ∩ G) → Γ/G is a
fibre bundle with fibre G/(H ∩G).

Question 4.

1) Show that Vn,m(F) = O(m, F)/O(m−n, F) → Gn,m(F) = O(m, F)/(O(n, F)×
O(m−n, F)) is a principal O(n, F)-bundle. [Hint: Read the topic on examples
of manifolds for constructing local cross-sections.]

2) Show that there is a principal S1-bundle η : S3 - S2. This fibre bundle
is called Hopf fibration. [Hint: From part (1), there is a principal O(1, C) =
U(1) = S1 bundle V1,m(C) = S2m−1 → G1,m(C) = CPm−1. Then show that
CP1 ∼= S2.]

3) Let
E(γm

n ) = {(V, x) ∈ Gn,m(F)× Fm | x ∈ V }.
Show that

p : E(γm
n ) → Gn,m(F) (V, x) 7→ V

is an n-dimensional F-vector bundle, denoted by γm
n . [Hint: Check that

E(γm
n ) = Vn,m(F)×O(n,F) Fn.]

Note to Question 4. Similar to part (2), there is another Hopf fibration S7 → S4

which is a principal S3-bundle by taking F = H, n = 1 and m = 2 from part (1). By
taking n = 1 from part (1), one obtains other fibre bundles (principal G-bundles):

Sm−1 - RPm−1 G = O(1) = Z/2;

S2m−1 - CPm−1 G = U(1) = S1;
1
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S4m−1 - HPm−1 G = Sp(1) = S3.

Question 5.

1) Show that ξ given by S1 → S1, z 7→ z2 is a principal Z/2-bundle.
2) Let ξ be given in part (1) and let Z/2 = {τ, 1} act on I = [−1, 1] by τ(t) = −t.

Show that the total space of the induced fibre bundle E(ξ[I]) is the M obius
band.

3) Let ξ be given in part (1) and let Z/2 = {τ, 1} act on S1 by τ(z) = z−1.
Show that the total space of the induced fibre bundle E(ξ[S1]) is the Klein
bottle.

Question 6.

1) Let ξ be a fibre bundle over B× [0, 1] with fibre F . Suppose that there exists
t such that ξ|B×[0,t] and ξ|B×[t,1] are trivial. Show that ξ is a trivial bundle.
[Hint: Let φ1 : E(ξ|B×[0,t]) → B×[0, t]×F and φ2 : E(ξ|B×[t,1]) → B×[t, 1]×F
be trivializations. Then

φ2 ◦ φ−1
1 : B × {t} × F - B × {t} × F (b, t, y) 7→ (b, t, θb(y)

is a homeomorphism, where θb(y) : F → F is a homeomorphism depending
continuously on b. Define a function

χ : B × [t, 1]× F - B × [t, 1]× F (b, s, y) 7→ (b, s, θ−1
b (y)).

Check that χ is a homeomorphism. Prove that the trivializations

χ ◦ φ2 : E(ξ|B×[t,1]) - B × [t, 1]× F φ1 : E(ξ|B×[0,t]) - B × [0, t]× F

induce a trivialization E(ξ) → B×[0, 1]×F by checking that χ◦φ2(z) = φ1(z)
for z ∈ E(ξ|B×{t}).]

2) Let ξ be a fibre bundle over B × [0, 1] with fibre F . Suppose that there is
finite cover {Vi} of [0, 1] such that ξ|B×Vi

is trivial for each i. Show that ξ is
a trivial bundle. [Hint: Prove it by induction.]

3) Let ξ be a fibre bundle over B × [0, 1] with fibre F . Show that there is an
open cover {Uα} of B such that ξ|Uα×[0,1] is trivial. In particular, any fibre
bundle over [0, 1] is trivial.
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Homework 4

Question 1. Let M and N be differentiable manifolds. Show that T (M × N) is
diffeomorphic to T (M)× T (N).

Question 2. Show that the tangent bundle to S1 is diffeomorphic to the cylinder
S1 × R1.

Question 3. Prove that the projection map π : T (M) → M, ~vP 7→ P, is a submer-
sion.

Question 4. Let τ(S2) = {(P,~v) ∈ T (S2) | |~v| = 1} be the circle bundle of S2.
(Note. τ(S2) = V3,2 is the Stiefel manifold.) Prove that τ(S2) is a submanifold of
T (S2) of dimension 3.

Let ξ be a vector bundle given by π : E → B and let B0 be a subspace of B. Then
π : π−1(B0) → B0 is a vector bundle over B0, called the restriction of ξ to B0, denoted
by ξ|B0.
Question 5. Prove that T (Sn+q)|Sn is isomorphic to T (Sn) ⊕ θq where θq is the
trivial bundle over Sn with fibre Rq and Sn ⊆ Sn+q is the standard inclusion.

Question 6. Using the fact that S4n−1 is the set of unit vectors in Hn, prove that
S4n−1 has three unit vector fields on it which are orthogonal at each point. [Hint: Do
the case S3 first.]

Question 7. Let X be a vector field on M and let f : M → R be a smooth function.
Prove that Xf is well-defined smooth function on M . (Exercise 5.1 in the lecture
notes.)

Question 8. Prove the following identities for the bracket of vector fields:

(1). [X + Y, Z] = [X, Z] + [Y, Z];
(2). [X, Y + Z] = [X, Y ] + [X, Z];
(3). [X, Y ] = −[Y,X];
(4). [fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X, for f, g ∈ C∞(M);
(5). [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

(Exercise 5.2 in the lecture notes.)

1
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0.1 The answers for Homework 4

Q1 proof: To prove T (M×N) is diffeomorphic to T (M)×T (N) we should
try to find one smooth map

f : T (M)× T (N) → T (M ×N)

s.t. f is one to one and onto, and f−1 should be smooth. We will give the
map f locally and prove it is well defined on whole T (M)× T (N).
Suppose (Uα, φα) and (Vα, ϕα) are charts of M and N Then (Tφα , T (Uα))
is one chart of T (M) and (Tϕα , T (Vα)) is one chart of T (N). so we can get
the map

f((Uα, φα, vM )× (Vα, ϕα, vN )) = (Uα × Vα, φα × ϕα, vM × vN )

Now suppose (θα,Wα) is one chart of M × N , then there is Uβ ⊂ M and
Vβ ⊂ N s.t. Uβ × Vβ ⊂ M × N and (φβ(P ), ϕβ(Q)) = θ(P, Q). Define
v
′
M = pm(w) and v

′
N = pm+n,n(w)(here pm(x1, ..., xm+n) = (x1, ..., xm) and

pm+n,n(x1, ..., xm+n) = (xm+1, ..., xm+n)
If (Wα, θα, w) ∈ T (M ×N), define the map

g(Wα, θα, w) = (Uβ × Vβ, φβ × ϕβ, v
′
M × v

′
N )

After changing the chart of β to α as follows, we can get g is the inverse of
f .
Next we will prove that f and g are well defined globally. It means that f
and g are independent of the choice of the chart. Suppose there are charts
(Uβ, φβ) and (Vβ, ϕβ) of M and N . If (Uα, φα, vM ) ' (Uβ, φβ, v

′
M ) and

(Vα, ϕα, vN ) ' (Vβ, ϕβ, v
′
N ) it is easy to see that

((Uα∩Uβ)×(Vα∩ϕβ), φα×ϕα, vM×vN ) ' ((Uα∩Uβ)×(Vα∩ϕβ), φβ×ϕβ, v
′
M×v

′
N )

so f is well defined. It is same to g. ¤

Q2 proof: Suppose P (t) = eit, let v0(t) = P
′
(t) = ieit then we can define

the map f : T (S1) → S1 ×R1 as

f(P (t), vP ) = (P (t), < vP , v0(t) >)

<> is the inter product of two vectors.
f is differential, one to one and onto. The inverse of f is g as

g(P (t), λ) = (P (t), λv0(t))
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g is also smooth. ¤

Q3 proof: We know

T (Uα) ∼= T (φα(U)) ∼= φα(U)×Rm

So the map π : T (M) → M is smooth( here we should check that π is well
defined on T (M)). Use the T to act on π

Tπ : T (T (M)) → T (M)

By Q1, there is

T (T (Ua)) ∼= T (T (φα(U))) ∼= T (φα(U)×Rm) ∼= T (Uα)×Rm

Tπ((P, Uα, v), y) = (P, Uα, v)

On Uα, Tπ is surjective and it is well defined globally, so π is submersion.
¤

Q4 proof: Suppose (U, φ) is one local chart of S2, then we have

T (U) ∼= T (φ(U)) ∼= φ(U)×R2

is the local chart of T (S2), then we can get the local chart for τ(S2) :
φ(U)×S1. Now we should prove that for each point P ∈ τ(S2), there exists
a chart (V, ϕ) about P in T (S2) s.t.

ϕ(V ∩ τ(S2)) = ϕ(V ) ∩R3
+

If select V = φ(U)×R2, then we need ϕ(φ(U)× S1) = ϕ(φ(U)×R2) ∩R3
+

suppose ϕ is diffeomorphism from φ(U) × R2 to φ(U) × R2, then we have
ϕ(φ(U) × S1) = φ(U) × R, now our task becomes find the diffeomorphism
from R2 to R2 s.t. S1 mapping to R× 0. Construct the smooth map as the
following step

1) maps R2 to S2

2) f : S2 → S2 as f(P ) = f(xP , yP , zP ) = (zP , yP ,−xP )
3) maps S2 to R2

It is is easy to check it is a smooth map from R2 to R2 s.t. S1 maps to
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R× 0 ¤

Q5 proof: Suppose (P, vP ) ∈ T (Sn+q)|Sn,then P = (x1, ..., xn, 0, ..., 0),
so vP = (y1, ..., yn, z1, ..., zq) fits for (x1, ..., xn) ⊥ (y1, ..., yn) and (z1, ..., zq)
is any vector in Rq. If P and vP are represented as above, we construct the
bundle morphism (f, u) : T (Sn+q) → T (Sn)⊕ θq as

(f, u)(vP , P ) = ((y1, ..., yn)⊕ (z1, ..., zq), (x1, ..., xn))

Easy to prove it is bundle isomorphism. ¤

Q6 proof:Consider the case of S3. Suppose h = a + bi + cj + dk ∈ H1, we
construct the following maps:

f1(h) = hi

f2(h) = hj

f3(h) = hk

maps f1, f2, f3 back to S3, we can get the 3 unit orthogonal vector fields.
Then use the proposition 5.9, we can get the the 3 unit orthogonal vector
fields in S4n−1 ¤

Q7 proof: The main idea is in the exercise 5.1. We need to check that Xf
is well defined globally. Suppose it is well defined locally on chart (U, φ),
then if (V, ϕ) is another chart, we should prove that Xf(P ) is agreed under
the two charts.

(Xf)U (P ) = Σm
i=1ξ

i
U (P )∂(f ◦ φ−1)/∂xi(0)

(Xf)V (P ) = Σm
i=1ξ

i
V (P )∂(f ◦ ϕ−1)/∂yi(0)

We know that φ ◦ ϕ−1 is the map from Rm to Rm.

D(ϕ◦φ−1)(∂(f◦ϕ−1)/∂yi(0)) = ∂(f◦ϕ−1(ϕ◦φ−1)/∂xi(0)) = ∂(f◦φ−1)/∂xi(0)

¤
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Q8 proof: (1), (2), (3) are just from definition.

(4) :

[fX, gY ](h) = fX(gY (h))− gY (fX(h))
= fgX(Y (h)) + fX(g)Y (h)− gfY (X(h))− gY (f)X(h)
= fg[X, Y ](h) + f(Xg)Y (h)− gY (f)X(h)

(5):
[X, [Y, Z]](h) = X(Y (Z(h)))−X(Z(Y (h)))− Y (Z(X(h))) + Z(Y (X(h)))
[Y, [Z,X]](h) = Y (Z(X(h)))− Y (X(Z(h)))− Z(X(Y (h))) + X(Z(Y (h)))
[Z, [X,Y ]](h) = Z(X(Y (h)))− Z(Y (X(h)))−X(Y (Z(h))) + Y (X(Z(h)))

Plus together and use the property of (3) we get

[X, [Y,Z]](h) + [Y, [Z, X]](h) + [Z, [X,Y ]](h) = 0

¤
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Question 1. Prove that a k-dimensional vector bundle ξ is trivial if and only if it
has k cross-sections s1, . . . , sk such that each s1(b), . . . , sk(b) are linearly independent
for each b ∈ B.

Question 2.
Let ξ and η be vector bundles over B and let f be a cross-section of the bundle

Hom(ξ, η). If the rank of the linear transformation

f(b) : Fb(ξ) - Fb(η)

is locally constant as a function of b, define the kernel Kerf ⊆ ξ and the cokernel
Cokerf , and prove that they are locally trivial.

Question 3.
Let B be a compact Hausdorff space and let C0(B) be the ring of continuous

real valued functions on B. For any vector bundle ξ over B let Γ(ξ) denote the
C0(B)-module consisting of all cross-sections of ξ.

a) Show that Γ(ξ ⊕ η) ∼= Γ(ξ)⊕ Γ(η).
b) Show that ξ ∼= η if and only if Γ(ξ) ∼= Γ(η) as C0(B)-modules.
c) Show that ξ is trivial if and only if Γ(ξ) is a free C0(B)-bundle.

[Hint: These are some statements for special cases from the paper: R. Swan, vector
bundles and projective modules, Trans. Ameri. Math. Soc., 105 (1962), 264-277.]

Question 4.
Let φ : V → W be linear isomorphism of finite dimensional vector spaces. Show

that the matrix of (φ−1)∗ : W ∗ → V ∗ is the transpose of the inverse of the matrix of
φ. [Note. You may use the formula 〈φ∗x, y〉 = 〈x, φy〉.]

Recall that a Riemann metric is a tensor field g ∈ T 0
2 (M) such that for each m,

gm is an inner product, that is, positive definite symmetric and bilinear.
Question 5.

Determine Riemann metrics g ∈ T 0
2 (R2) = (R2)∗ ⊗ (R2)∗.

Question 6. Show that

Q⊗Z Q ∼= Q Z/mZ⊗Z Z/nZ ∼= Z/(n, m)Z,

where (n, m) is the greatest common factor of m and n.

1
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Suggested Solutions to Homework 5

by Lim Meng Fai

Q1. Let p : E → B be the k-dimensional vector bundle ξ in question. Suppose E =

B × Fk, then we may define si : B → E such that for each b, si(b) = (b, ei), where ei is

the vector in Fk with all coordinates 0 except 1 at the i-th position.

Conversely given k cross-sections s1, ..., sk such that s1(b), ..., sk(b) are linearly inde-

pendent for each b ∈ B, we define a map u : E → B×Fk as follows: For each z ∈ E, we set

b = p(z). Then z ∈ p−1(b) = {b}×Fk = Fk and so we may write z = z1s1(b)+....+zksk(b).

for some zi ∈ F. We set u(z) = (b, (z1, ..., zn)). Clearly such a map is a homeomorphism

fitting into the following commutative diagram, since it is a continuous isomorphism at

each fibre.

E
u- B × Fk

B

p

?
========= B

π

?

Q2. So we have a morphism u : ξ → η of vector bundles with u|Fb(ξ) = f(b). The kernel

is given
⋃

b∈B

ker(f(b) : Fb(ξ) → Fb(η)) and cokernel by
⋃

b∈B

coker(f(b) : Fb(ξ) → Fb(η)).

For each b ∈ B, let U be a neighborhood of b such that rank of f(a) is constant for

a ∈ U , say k. Let n and m be the dimension of ξ and η as vector bundles respectively.

So we have f(a) : Fa(ξ) = Fn = V1 ⊕ V2 → Fa(η) = Fm = W1 ⊕W2, where V1 = ker f(a)

and W1 = im f(a). Since rank of f(a) is constant in U , we may set Fn−k = V1 for all

a ∈ U . Now define a map ϕ : U × Fn−k → E(keru|U) by ϕ(a, x) = f(a)(x). Clearly ϕ is

a continuous map fitting into the following commutative diagram.

U × Fn−k ϕ- E(keru|U)

U

π

?
========== U

p

?

Now for each a ∈ U , we define

V = Fn ⊕W2 = V1 ⊕ V2 ⊕W2
wa→ W1 ⊕W2 ⊕ V1 = Fm ⊕ V1 = W
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where wa|V1 = (f(a)|V1) ⊕ 1V1 , wa|V 2 = (f(a))|V2) ⊕ 0 and wa|W2 = 0 ⊕ 1W2 ⊕ 0. It

is straightforward to verify that wa is a linear isomorphism. Note that a 7→ wa is a

continuous on U . Since the set of isomorphisms between V and W is an open subset of

HomF(V, W ), there exists a neighborhood Ua of a contained in U such that wc is a linear

isomorphism for each c ∈ Ua. Now set vc : W → V to be the inverse of wc for each c ∈ Ua.

Then c 7→ vc is continuous on Ua.

Now for each x ∈ E(ker u|U), x ∈ Fa(ξ) for some a. So we may assign x 7→ (a, va(x)).

This assignment gives a continuous inverse to ϕ.

For coker f , we define the map ψ : U×W2 → E(coker u|U) as follows: For a ∈ U , since

im(f(a)) ∩W2 = 0, we may assign ψ(a, y) = y(mod(im f(a))). Its inverse is constructed

from the projection U × (W1 ⊕W2) → U ×W2 and factoring through coker u.

Remarks. Note that the kernel and cokernel need not be fibre bundles since we are only

able to prove that they are locally trivial with respect to some fibre, since the rank is

locally constant.

Endow N with the discrete topology, we see that the map from B to N given by

b 7→ rank f(b) is continuous since f is locally trivial. From here, we can deduce that

in fact this map is constant at each connected component. So in fact, it follows that if

B is connected, then we can indeed show that the kernel and cokernel are fibre bundle

(actually vector bundles since their fibre are vector spaces!).

Q3. (a) Let s be a cross-section of ξ ⊕ η. Then s : B → E(ξ ⊕ η) ⊆ E(ξ)×E(η). Define

s1 to be the composition B
s→ E(ξ) × E(η) → E(ξ). This can be seen easily to be a

cross-section of ξ. Similarly we have s2, the composite B
s→ E(ξ)×E(η) → E(η), to be a

cross-section of η. It follows that the assignment s 7→ (s1, s2) gives an injective C0(B)-map

from Γ(ξ ⊕ η) to Γ(ξ) ⊕ Γ(η). To see that this map is surjective, let s1 and s2 be cross-

sections of ξ and η respectively. We define s : B → E(ξ)× E(η) by s(b) = (s1(b), s2(b)).

Since p(ξ)s1(b) = b = p(η)s2(b), we have s(B) ⊆ E(ξ⊕ η) and s is a cross-section of ξ⊕ η

with the assignment (s1, s2).

(b) Suppose u : ξ ∼= η, then define φ : Γ(ξ) → Γ(η) by φ(s) = u ◦ s. This is a

C0(B)-map with inverse given by s′ 7→ u−1 ◦ s′ and so Γ(ξ) ∼= Γ(η).

Conversely suppose ϕ : Γ(ξ) ∼= Γ(η) is an isomorphism of C0(B)-modules. Let x ∈
E(ξ) with p(ξ)(x) = b. We can always define a local cross-section s′ on an open set U

containing b such that s′(b) = x. Since B is compact Hausdorff, we have neighborhoods of

x, V and W such that V̄ ⊆ U and W̄ ⊆ V . Let f ∈ C0(B) with f |W̄ = 1 and f |B−V = 0.

Define s(a) = f(a)s′(a) if a ∈ U and s(a) = 0 if a /∈ U . Plainly s is a cross-section

of ξ with s(b) = x. We define the map u : E(ξ) → E(η) by u(x) = ϕ(s)(b). We now
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want to show that this map is well-defined and continuous. Note that by the definition of

vector bundles, we can always find local cross-sections s1, ..., sn such that s1(b), ..., sn(b)

are linearly independent. By similar argument as above, we may extend each of this local

cross-sections to cross-sections, which we still denote by s1, ..., sn such that s1(b), ..., sn(b)

are linearly independent.

Now we shall show that u is well-defined. Suppose t is another cross-section such that

t(b) = x. Set r = s− t and clearly r is a cross-section with r(b) = 0. We may write r(a) =∑
gi(b)sb for a near b, gi(b) ∈ R. Let fi ∈ C0(B) such that fi = gi in a neighborhood of

b. (The construction of such fi is similar to that of the extension of the si’s) Therefore,

r′ = r − ∑
fisi vanishes in a neighborhood U of b. Let U0 be a neighborhood of b

such that Ū0 ⊆ U . Now let f ∈ C0(B) such that f(b) = 0 and 1 on B − U0. Then

r = fr′ +
∑

fisi =
∑

fisi on B. Since r(b) = 0 = f(b), we have
∑

fi(b)si(b) = implying

fi(b) = 0 by the independence of si(b). Now ϕ(r) = fϕ(r′) +
∑

fiϕ(si) since ϕ is C0(B)-

linear. Hence ϕ(r)(b) = 0. i.e ϕ(s)(b) = ϕ(t)(b).

To establish continuity, let y ∈ E(ξ) be such that p(ξ)(y) = a is in some neighborhood

of b, then we have y =
∑

hi(a)si(a) where hi ∈ C0(B). So u(y) =
∑

hi(a)ϕ(si)(a).

Since ϕ(si) is a cross-section of η and all the terms in the sum are continuous in y, u is

continuous.

Finally it is clear that the following diagram commutes, thus yielding a vector

E(ξ)
u - E(η)

B

p(ξ)

?
========= B

p(η)

?

bundle morphism.

Repeat the above construction for ϕ−1 : Γ(η) ∼= Γ(ξ) and we will obtain a vector

bundle morphism which is the inverse of the above, thus proving what we want.

(c) Let ζn denoted the n-dimensional trivial vector bundle. It can be checked that

ζn = ⊕n
i=1ζ

1 by induction and Γ(ζ1) ∼= C0(B). So if ξ is trivial, then by (a) and (b),

Γ(ξ) ∼= Γ(ζ1)n ∼= C0(B)n and so is free. Conversely if Γ(ξ) is free, then Γ(ξ) ∼= C0(B)n ∼=
Γ(ζn). By part (b), this implies ξ ∼= ζn and so ξ is trivial.

Q4. We still denote the matrix representation of φ with respect to a basis of V by φ.

Then for every x, y ∈ W , we have < x, φy >=< φ∗(x), y >= (φ∗x)ty = xt(φ∗)ty =<

x, (φ∗)t(y) >. Since inner product is nondegenerate, φ = (φ∗)t or φt = φ∗. So id = id∗ =

(φφ−1)∗ = (φ−1)∗φ∗. i.e (φ−1)∗ = (φ∗)−1 = (φt)−1 = (φ−1)t.
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Q5. Let x1 and x2 be an orthonormal basis for R2 (eg. (0,1) and (1,0)). Denote the

corresponding dual basis of (R2)∗ by dx1 and dx2. By definition of Riemann metric, we

may write g(x) =
∑

1≤i,j≤2

gij(x)dxi ⊗ dxj for x ∈ R2, since each g(x) is bilinear. Also by

the symmetric property, we have g12(x) = g(x)(dx1 ⊗ dx2) = g(x)(dx2 ⊗ dx1) = g21(x).

Also g11(x) = g(x)(dx1 ⊗ dx1) ≥ 0 by the positive definite property. Similarly we have

g22(x) ≥ 0.

Remarks. If we replace R2 by Rn, then by a similar argument as above choosing an

orthonormal basis for Rn, the Riemann metric is given by g(x) =
∑

i,j gij(x)dxi ⊗ dxj

with gij(x) = gji(x) and gii(x) ≥ 0.

Q6. Let i : Q×Q→ Q be given by (a, b) 7→ ab. Clearly this is middle linear. Now let A be

an abelian group and f : Q×Q→ A a middle linear map. Define f̃ : Q→ A by f̃(a) =

f(a, 1). Clearly f̃ is an abelian group homomorphism (or Z-module homomorphism).

Now suppose g is another Z-map from Q to A such that g ◦ i = f , then for each a ∈ Q,

g(a) = g ◦ i(a, 1) = f(a, 1) = f̃(a). Hence f̃ is the unique map such the following diagram

commutes.

Q×Q i - Q

Q×Q

wwwwwwwwww
f - A

∃!f̃
?

So Q satisfies the universal property for tensor products and thus Q ∼= Q⊗Z Q.

Let i : Z/mZ × Z/nZ → Z/(n,m)Z be given by (a, b) 7→ ab. Clearly this is middle

linear. Now let A be an abelian group and f : Z/mZ × Z/nZ → A a middle linear

map. Define f̃ : Z/(n, m)Z → A by f̃(a) = f(a, 1). Clearly f̃ is an abelian group

homomorphism (or Z-module homomorphism). Now suppose g is another Z-map from

Z/(n,m)Z to A such that g ◦ i = f , then for each a ∈ Z/(n, m)Z, g(a) = g ◦ i(a, 1) =

f(a, 1) = f̃(a). Hence f̃ is the unique map such the following diagram commutes.

Z/mZ× Z/nZ
i- Z/(n,m)Z

Z/mZ× Z/nZ

wwwwwwwww
f - A

∃!f̃
?

So Z/(n,m)Z satisfies the universal property for tensor products and thus Z/(n,m)Z ∼=
Z/mZ⊗Z Z/nZ. In particular, if (n,m) = 1, Z/mZ⊗Z Z/nZ = 0.
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Question 1.
Let α be a linear map of the m-dimensional vector space V into itself, and let

ω ∈ Λm(V ∗). Calculate α∗(ω).

Question 2.
Show that, for 1-forms {φ1, . . . , φk}, φ1 ∧ · · · ∧ φk = 0 if and only if {φ1, . . . , φk}

are linearly dependent. If they are linearly independent, prove that φ1 ∧ · · · ∧ φk =
ψ1 ∧ · · ·ψk if and only if φi =

∑
j

aijψj with det(aij) = 1.

[Hint for the second part: if φ1 ∧ · · · ∧ φk = ψ1 ∧ · · ·ψk 6= 0, then, from the
first part, ψ1, . . . , ψk are linearly independent. Moreover from φi ∧ ψ1 ∧ · · · ∧ ψk =
φi ∧ φ1 ∧ · · · ∧ φk = 0, {φi, ψ1, . . . , ψk} are linearly dependent.]

Question 3.
The Hodge star isomorphism ∗ from Ωk(Rm) to Ωm−k(Rm) is defined by mapping

the basic k-form dxi1 ∧ · · · ∧ dxik to εσdx
j1 ∧ · · · ∧ dxjm−k where i1 < i2 < · · · < ik,

j1 < j2 < · · · < jm−k, (i1, i2, . . . , ik, j1, . . . , jm−k) is the permutation σ of (1, 2, . . . ,m)
and εσ is the sign of σ. Let

ω = a12dx
1 ∧ dx2 + a13dx

1 ∧ dx3 + a23dx
2 ∧ dx3 ∈ Ω2(R3).

Calculate ∗ω. What is ∗ω if ω ∈ Ω2(R4)?
[Answer: for the first part: ∗ω = a23dx

1−a13dx
2 +a12dx

3, and for the second part,
∗ω = (a23dx

1 − a13dx
2 + a12dx

3) ∧ dx4.

Question 4.
We may use the standard inner product on Rn to define an isomorphism between

Rn and its dual and hence a 1-1 correspondence between vector fields and 1-forms,
where the vector field X on U ⊆ Rm corresponds to the 1-form ω = ϑ(X) defined by

ωp(Y ) = 〈X(p), Y 〉, for each Y ∈ Tp(Rm).

i) Show that, if f : U → R, then the vector field ϑ−1(df) is

gradf =
m∑

i=1

∂f

∂xi

ei,

where ei is the standard basis of Rm.

ii) If X(x) and Y (x) are vector fields
3∑

i=1

ai(x)ei and
3∑

i=1

bi(x)ei on U ⊆ R3,

calculate ϑ−1 ∗dϑ(X) and ϑ−1 ∗ (ϑ(X)∧ϑ(Y )), where ∗ is defined in Problem
3.

Question 5.
Let

ω = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz
1
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be 1-form on R3 such that dω = 0. Show that ω = df where

f(x, y, z) =

∫ 1

0

{xa(tx, ty, tz) + yb(tx, ty, tz) + zc(tx, ty, tz)}dt.

[Hint:

a(x, y, z) =

∫ 1

0

d

dt
{ta(tx, ty, tz)}dt

=

∫ 1

0

t{x∂1a(tx, ty, tz) + y∂2a(tx, ty, tz) + z∂3a(tx, ty, tz)}dt+

∫ 1

0

a(tx, ty, tz)dt.

Figure out the partial derivatives of f and use dω = 0 to find the relations between
the partial derivatives of a, b and c.]

Question 6.
Let M be a compact 3-dimensional smooth submanifold-with-boundary of R3,

f : M → R3 be the inclusion and

ω =
1

3
{xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy}.

i) Show that d(ω/r3) = 0 on R3 r {0}, where r2 = x2 + y2 + z2.
ii) Show that ∫

∂M

ι∗f ∗(ω) = vol(M),

and deduce that there is a 2-form η on S2 such that dη = 0 but η 6= dφ for
any 1-form φ.

[Hint for part (ii): ∫
∂M

ι∗f ∗(ω) =

∫
M

df∗(ω) =

∫
M

f ∗dω

by Stokes’ Theorem. Check that dω = dx∧dy∧dz. For the rest part, let M = D3 and
choose η = ι∗f ∗ω. Check that dη = 0. Show that η 6= dφ for any 1-form φ by finding
a contradiction that, if so, then

∫
S2 η = 0 by Stokes’ Theorem but

∫
S2 η = vol(S2).]



Question 1:
Let {e1, . . . , em} be the basis for V and {e∗1, . . . , e∗m} be the dual basis.
Let ω = f1 ∧ · · · ∧ fm, where fi = fi1e

∗
1 + · · ·+ fime

∗
m.

Thus, ω = det(fij)e∗1 ∧ · · · ∧ e∗m.
Then, α∗(ω)(u1, . . . , um) = ω(Tα(u1), . . . , Tα(um)) for u1, . . . , um ∈ V .

Since Tα = α, we have:

α∗(ω)(u1, . . . , um) = ω(α(u1), . . . , α(um))
= det(fij)(e∗1 ∧ · · · ∧ e∗m)(α(u1), . . . , α(um))
= det(fij) det(α) det(U), where U = (u1 · · · um)

α∗(ω)(u1, . . . , um) = det(α)ω(u1, . . . , um)

Question 2:
• φ1 ∧ · · · ∧ φk = 0 iff {φ1, . . . , φk} is linearly dependent.

(⇒) Suppose φ1 ∧ · · · ∧ φk = 0. Assume to the contrary {φ1, . . . , φk} is
linear independent. Then, the space Λ1 spanned by {φ1, . . . , φk is of
dimension k. By proposition (7.9.) the dimension of space Λk, spanned
by {φ1 ∧ · · · ∧ φk}, is

(
k
k

)
= 1. A contradiction that φ1 ∧ · · · ∧ φk = 0.

Therefore, {φ1, . . . , φk} is linear dependent.

(⇐) If {φ1, . . . , φk} is linearly dependent then there is φi such that φi is a
linear combination of {φ1, . . . , φi−1, φi+1, . . . , φk}. Therefore,
φ1 ∧ · · · ∧ φk = φ1 ∧ · · · ∧ (

∑
j 6=i ajφj) ∧ · · · ∧ φk = 0 + · · ·+ 0 = 0.

• φ1 ∧ · · · ∧ φk = ψ1 ∧ · · · ∧ ψk iff φi =
∑

j aijψj and det(aij) = 1.

(⇒) For each ψi, ψi∧ψ1∧· · ·ψk = ψi∧φ1∧· · ·φk = 0. Thus, {ψi, φ1, . . . , φk}
is linear dependent. Since {φ1, . . . , φk} is linear indepedent ψi is a
linear combination of {φ1, . . . , φk}. Denote

ψi = ai1φ1 + · · ·+ aikφk.

Then,

φ1 ∧ · · · ∧ φk = ψ1 ∧ · · · ∧ ψk (1)

=
∧
i

(ai1φ1 + · · ·+ aikφk) (2)

= det(aij) φ1 ∧ · · · ∧ φk (3)

So, det(aij) = 1.

1



(⇐) As the equations 1, 2, 3 shown above.

Question 3:

1. Sign of permutation from (1 2 3) to (1 2 3) is positive.

2. Sign of permutation from (1 2 3) to (1 3 2) is negative.

3. Sign of permutation from (1 2 3) to (2 3 1) is positive.

So the Hodge star mapping in R3 is the following:

1. dx1 ∧ dx2 to dx3.

2. dx1 ∧ dx3 to −dx2.

3. dx2 ∧ dx3 to dx1.

So ∗(a12dx
1∧dx2 +a13dx

1∧dx3 +a23dx
2∧dx3) = a12dx

3−a13dx
2 +a23dx

1.
For premutation of four elements:

1. Sign of permutation from (1 2 3 4) to (1 2 3 4) is positive.

2. Sign of permutation from (1 2 3 4) to (1 3 2 4) is negative.

3. Sign of permutation from (1 2 3 4) to (2 3 1 4) is positive.

So the Hodge star mapping in R4 is the following:

1. dx1 ∧ dx2 to dx3 ∧ dx4.

2. dx1 ∧ dx3 to −dx2 ∧ dx4.

3. dx2 ∧ dx3 to dx1 ∧ dx4.

So ∗(a12dx
1 ∧ dx2 + a13dx

1 ∧ dx3 + a23dx
2 ∧ dx3) = a12dx

3 ∧ dx4− a13dx
2 ∧

dx4 + a23dx
1 ∧ dx4.

Question 4:
Let {e1, . . . , em} be the standard basis for Rm and {e∗1, . . . , e∗m} be the dual
basis.
• If f : U 7→ R then ϑ−1(df) = grad f =

∑m
i=1

∂f
∂xi
ei.

2



Let X(p) =
∑m

i=1Xi(p)ei be vector field such that ϑ(X) = df and ~v =∑m
i=1 viei ∈ R

m be vector variable.

〈X(p), ~v〉 = dfp · ~v =
(

∂f
∂x1

∣∣∣
p
· · · ∂f

∂xm

∣∣∣
p

)
·

 v1
...
vm


m∑
i=1

Xi(p)vi =
m∑
i=1

∂f

∂xi

∣∣∣∣
p

vi

Xi(p) =
∂f

∂xi
, for each i = 1, . . . ,m.

So, X = grad f .
• X(x) =

∑3
i=1 a

i(x)ei and Y (x) =
∑3

i=1 b
i(x)ei be vector fields on U ⊆ R3.

Calculate ϑ−1 ∗ dϑ(X) and ϑ−1 ∗ (ϑ(X) ∧ ϑ(Y )).
The following is the step-by-step computation. The answer is on number
(iv) and (vii)

(i) ϑ(X)(x) =
∑3

i=1 ai(x)e∗i and ϑ(Y )(x) =
∑3

i=1 bi(x)e∗i .

(ii) dϑ(X) =
∑3

i=1

∑3
j=1

∂ai
∂xj

(e∗j ∧ e∗i ) =

(∂a2
∂x1
− ∂a1

∂x2
)(e∗1 ∧ e∗2) + (∂a3

∂x1
− ∂a1

∂x3
)(e∗1 ∧ e∗3) + (∂a3

∂x2
− ∂a2

∂x3
)(e∗2 ∧ e∗3).

(iii) ∗dϑ(X) = (∂a2
∂x1
− ∂a1

∂x2
)(e∗3)− (∂a3

∂x1
− ∂a1

∂x3
)(e∗2) + (∂a3

∂x2
− ∂a2

∂x3
)(e∗1).

(iv) ϑ−1 ∗ dϑ(X) = (∂a3
∂x2
− ∂a2

∂x3
)e1 + (∂a1

∂x3
− ∂a3

∂x1
)e2 + (∂a2

∂x1
− ∂a1

∂x2
)e3.

(v) ϑ(X) ∧ ϑ(Y ) =
(a1b2 − a2b1)(e∗1 ∧ e∗2) + (a1b3 − a3b1)(e∗1 ∧ e∗3) + (a2b3 − a3b2)(e∗2 ∧ e∗3).

(vi) ∗(ϑ(X)∧ϑ(Y )) = (a1b2−a2b1)(e∗3)−(a1b3−a3b1)(e∗2)+(a2b3−a3b2)(e∗1).

(vii) ϑ−1∗(ϑ(X)∧ϑ(Y )) = (a2b3−a3b2)e1−(a1b3−a3b1)e2+(a1b2−a2b1)e3.

Question 5:
ω = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz with dω = 0. Show that ω = df
where f =

∫ 1
0 {xa(tx, ty, tz) + yb(tx, ty, tz) + zc(tx, ty, tz)}dt.

• We compute dω.

dω = (
∂b

∂x
− ∂a

∂y
)(dx ∧ dy) + (

∂c

∂y
− ∂b

∂z
)(dy ∧ dz) + (

∂c

∂x
− ∂a

∂z
)(dx ∧ dz).
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Since dω = 0 then

∂b

∂x
=
∂a

∂y
;

∂c

∂y
=
∂b

∂z
;

∂c

∂x
=
∂a

∂z

• Lemma : ∂
∂x

∫ 1
0 a(tx, ty, tz)dt =

∫ 1
0 t

∂a(tx,ty,tz)
∂x dt.

Proof.

∂

∂x

∫ 1

0
a(tx, ty, tz)dt = lim

h→0

∫ 1
0 a(t(x+ h), ty, tz)dt−

∫ 1
0 a(tx, ty, tz)dt

h

= lim
h→0

∫ 1

0

a(t(x+ h), ty, tz)− a(tx, ty, tz)
h

dt

=
∫ 1

0
lim
h→0

t
a(tx+ th, ty, tz)− a(tx, ty, tz)

th
dt

=
∫ 1

0
t
∂a(tx, ty, yz)

∂x
dt

2

Simmilarly, for b(tx, ty, tz) and c(tx, ty, tz).
• We compute ∂xf = ∂f

∂x .

∂f

∂x
=

∂

∂x
∂x

∫ 1

0
x · a(tx, ty, tz) + y · b(tx, ty, tz) + z · c(tx, ty, tz)dt

=
∂

∂x

(∫ 1

0
x · a(tx, ty, tz)dt

)
+

∂

∂x

(∫ 1

0
y · b(tx, ty, tz)dt

)
+

∂

∂x

(∫ 1

0
z · c(tx, ty, tz)dt

)
=

∫ 1

0
a(tx, ty, tz)dt+ x · ∂

∂x

(∫ 1

0
a(tx, ty, tz)dt

)
+

y · ∂
∂x

(∫ 1

0
b(tx, ty, tz)dt

)
+ z · ∂

∂x

(∫ 1

0
c(tx, ty, tz)dt

)
Applying the lemma above,

∂f

∂x
=

∫ 1

0
a(tx, ty, tz)dt+ x

∫ 1

0
t · ∂a(tx, ty, tz)

∂x
dt+

y

∫ 1

0
t · ∂b(tx, ty, tz)

∂x
dt+ z

∫ 1

0
t · ∂c(tx, ty, tz)

∂x
dt
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Applying the relations between partial derivatives of a, b and c above.

∂f

∂x
=

∫ 1

0
a(tx, ty, tz)dt+ x

∫ 1

0
t · ∂a(tx, ty, tz)

∂x
dt+

y

∫ 1

0
t · ∂a(tx, ty, tz)

∂y
dt+ z

∫ 1

0
t · ∂a(tx, ty, tz)

∂z
dt

=
∫ 1

0
a(tx, ty, tz)dt+∫ 1

0
xt · ∂a(tx, ty, tz)

∂x
+ yt · ∂a(tx, ty, tz)

∂y
+ zt · ∂a(tx, ty, tz)

∂z
dt

∂f

∂x
= a(x, y, z)

Similarly, ∂f
∂y = b(x, y, z) and ∂f

∂z = c(x, y, z).
So df = a(x, y, z)dx+ b(x, y, z)dy + c(x, y, z)dz = ω.

Question 6:
M is a compact 3-dim smooth submanifold-with-boundary of R3 and
f : M 7→ R

3 is the inclusion. Let dω = 1
3(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy).

• Show that d(ω/r3) = 0 on R3, where r2 = x2 + y2 + z2.

d(ω/r3) =
∂(x/3r3)

∂x
dx ∧ dy ∧ dz +

∂(y/3r3)
∂y

dy ∧ dz ∧ dx+

∂(z/3r3)
∂z

dz ∧ dx ∧ dy

=
(∂(x/3r3)

∂x
+
∂(y/3r3)

∂y
+
∂(z/3r3)

∂z

)
dx ∧ dy ∧ dz

=
(1

3
r−3 − x2r−5 +

1
3
r−3 − y2r−5 +

1
3
r−3 − z2r−5

)
dx ∧ dy ∧ dz

= (r−3 − r2r−5)dx ∧ dy ∧ dz
d(ω/r3) = 0

• Show that
∫
∂M ι∗f∗(ω) = vol (M) and there is a 2-form η on S2 such that

dη = 0 but η 6= dφ for any 1-form φ.
By Stoke’s theorem(9.6),

∫
∂M ι∗f∗(ω) =

∫
M d(f∗w) =

∫
M f∗dω. Since

dω = dx ∧ dy ∧ dz,
∫
∂M ι∗f∗(ω) =

∫
M f∗(dx ∧ dy ∧ dz).

By definition of f , f∗dω = ωf(p)(Tf(u1), T f(u2), T f(u3)) = ωp(u1, u2, u3).
So,

∫
M f∗dx ∧ dy ∧ dz =

∫
M dxdydz = vol (M).

Let M = D3 and η = ι∗f∗ω. Because η is a 2-form then dη is 3-form.
That is, dη = ι∗f∗dω. Since dη is a 3-form on S2 and S2 is of dimension 2,

5



so dη = 0. Suppose η = dφ where φ is a 1-form on S2. Then by applying
corollary 9.7.,

∫
S2 dφ = 0, therefore contradicts

∫
S2 η = vol (D3).
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