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Preface

Infinite dimensional groups and manifolds are inevitably present in physics once the
passage is made from point particle mechanics to classical field theory and, a fortiori,
from quantum mechanics to quantum field theory. Though mathematicians time and
again considered this subject during the 20th century, it seems fair to say that the
renewed communication of the last two decades between the mathematical and the
theoretical physics communities, centered around string theory and quantum fields,
gave strong new stimuli to the study of infinite dimensional geometry, and related
algebra and analysis.

The present collection of articles is an outgrowth of the 70th meeting of theoretical
physicists and mathematicians at the Institut de Recherche Mathématique Avancée
(IRMA) in Strasbourg in May 2002, organized by Vladimir Turaev and myself on
Groupes et variétés de dimension infinie en mathématiques et physique quantique.
Since, together with Claude Roger, I had the opportunity to organize a colloquium in
the Centre International de Rencontres Mathématiques (CIRM) in Marseille-Luminy
on the related subject Géométrie de dimension infinie et applications à la théorie
des champs in November 2002, some of the speakers of the latter colloquium also
contributed to this collection of articles.

Since the subject of infinite dimensional geometry is rapidly developing and touch-
ing by its very nature many areas, a general “tour d’horizon” seems very ambitious.
Instead, I would like to point out some central topics of current research that will show
up in these proceedings:

• the intimate relation between flows on infinite dimensional manifolds and partial
differential equations, ranging from integrable equations and solitons to fluid
dynamics;

• the search for both general and sensible classes of examples of manifolds and
groups and the study of their structure, notably groups of maps and gauge groups,
and groups of operators;

• the extension of fundamental algebraic and geometric constructions from finite
to infinite dimensions and the developement of the necessary analytic tools;

• rigorous geometric and algebraic approaches to (parts of) quantum field theory,
especially in the presence of symmetries;

• the study of “large N limits” or “1/N expansions” (as, e.g., but not only for
SU(N) gauge theories) in quantum physics and in mathematics.

I now sketch the content of the individual contributions.
In “Lie groups of germs of analytic mappings”, Helge Glöckner gives some foun-

dational material on the theory of this class of infinite dimensional groups. More
precisely, he considers, for a non-empty compact set K of a metrizable topological



vi Preface

vector space over R or C, and a Banach–Lie group G, the group �(K,G) of germs
aroundK ofG-valued analytic mappings. In particular, he establishes a useful “push-
forward property” and obtains, as the main result of this article, that �(K,G) is an
analytic Baker–Campbell–Hausdorff Lie group, i.e. an analytic Lie group having a lo-
cally diffeomorphic exponential map and having its multiplication being locally given
by the Baker–Campbell–Hausdorff series.

In “The flow completion of the Burgers equation”, Boris A. Khesin and Peter W.
Michor study certain partial differential equations from the point of view of vector
fields on infinite dimensional manifolds. More precisely, given a smooth map f :
R
n → R

k , the equation

ut + (f (u) · ∇)u = 0

in the unknown u in C∞(Rk,Rn) is equivalent to ut = X(u), where X(u) =
−(f (u) ·∇)u is re-interpreted as a vector field on the mapping manifoldC∞(Rk,Rn).
Upon generalizing Richard Palais’ construction of the flow completion of a manifold-
with-vector field to a (possibly non-separated) manifold-with-complete vector field
to infinite dimensions, they describe the flow completion in the above case explicitly.
This yields, e.g., a geometric framework for the study of the question how solutions
of this class of partial differential equations, including notably the Burgers equation,
develop shocks.

Marcos Mariño reviews in “Enumerative geometry and knot invariants” the re-
cently emerged idea of a large N duality between links in three-dimensional mani-
folds and strings in associated six-dimensional manifolds, N specifying here SU(N)
or U(N) resp. the number of certainD-branes, i.e. submanifolds specifying boundary
conditions for open strings. This string/gauge theory duality conjecture predicts a
close relation between knot invariants provided by Chern–Simons gauge theory on
a three-manifold M , and enumerative invariants, counting holomorphic curves on a
Calabi–Yau manifold associated toM . In his contribution, Marcos Mariño recalls first
some background on closed and open strings and on Chern–Simons theory, reviews
then “large N transitions”, and finally tests this duality by considering several of its
numerical predictions in detail.

In “Gerbes, (twisted) K-theory, and the supersymmetric WZW model”, Jouko
Mickelsson discusses the important issue of non-preservation of classical symmetries
upon passage to a quantum theory. In many cases, this phenomenom is mathematically
described by a projective representation (as opposed to a linear representation) of the
group of classical symmetries, on a Hilbert space of quantum states. Such “anomalies”
can often be expressed in terms of Dixmier–Douady classes (in the integer-valued third
cohomology group) or in terms of gerbes, or via twistedK-theory. Jouko Mickelsson
explains in his contribution these different appearances of anomalies, and he gives
explicitly a very interesting class of examples related to loop groups and, via restriction
to the zero modes, to the Kostant–Dirac operator on finite dimensional homogeneous
spaces, coined “supersymmetric Wess–Zumino–Witten models”.
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Karl-Hermann Neeb considers in “Current groups for non-compact manifolds and
their central extensions” groups of maps from a manifold into a Lie group. These
current groups, first studied by physicists because of their rôle in classical and quantum
field theory, form an important class of infinite dimensional Lie groups since they are a
natural and non-trivial generalization of the well-studied class of loop groups (having
as source the circle S1 and as target typically a finite dimensional compact Lie group).
Though the representation theory of current groups is only poorly understood by now,
the importance of projective representations and thus of central extensions should
persist upon going from loop groups to these more general groups. Karl-Hermann
Neeb studies these extensions here for two different classes of current groups of smooth
maps from a non-compact manifoldM to a possibly infinite dimensional Lie groupK .
For Lie algebra two-cocycles of “product type” on the corresponding current algebras,
known since the work of Andrew Pressley and Graeme Segal, he gives a very detailed
answer to the question whether one can “integrate” a given Lie algebra extension
to a Lie group extension. A principal result is that a certain delicate condition, the
discreteness of a period group associated to the Lie algebra cocycle, is – in the case
of product type cocycles – fulfilled for all finite dimensional manifoldsM if and only
if it is fulfilled for M being the circle.

In “Traces and characteristic classes on loop spaces”, Sylvie Paycha and Steven
Rosenberg pursuit the Chern–Weil approach to the construction of characteristic
classes of infinite dimensional vector bundles. Given a (topological non-trivial) struc-
ture group, e.g. for the tangent bundle of a manifold, the theory of classifying spaces
yields of course automatically characteristic classes in the topological sense. Sylvie
Paycha and Steven Rosenberg are working on the explicit construction of these classes
via connections and “traces”, i.e. certain continuous linear functionals on algebras
containing the Lie algebra of the structure group. In particular they give a detailed
analysis of several traces and the differential forms obtained from mimickimg the fi-
nite dimensional Chern–Weil theory in the case that the structure group is Cl∗0 (M,E),
the group of zeroth-order invertible classical pseudo-differential operators acting on
a finite dimensional vector bundle over a closed finite dimensional manifold M .

S. G. Rajeev advocates in “New classical limits of quantum theories” the idea that
not only the usual limit h̄ → 0 but also other limits, as, e.g., N → ∞ for a SU(N)
Yang–Mills theory might yield a “underlying classical theory.” He illustrates this by
recalling the classical Hartree–Fock theory and the Thomas–Fermi approximation, as
well as by considering atoms in the limit of large spatial dimension. Then S. G. Rajeev
explains the beautiful idea of treating the space of modular forms of weight k on the
Hecke congruence subgroup �0(n) of SL(2,Z) as converging to a (semi-)classical
limit via k → ∞ and to a “neo-classical limit” as n → ∞.

Let me take the opportunity to thank Vladimir Turaev for his efficient and pleasant
co-organisation of the conference in Strasbourg and his unfailing support for these
proceedings, as well as the whole staff of the IRMA, notably Josiane Moreau and
Claudine Orphanides, for providing excellent conditions in May 2002. My thanks
are due also to Claude Roger and the staff of the CIRM in Luminy, especially to
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Anna Zeller-Meier. It is of course a pleasure to acknowledge the financial support of
the IRMA and the CNRS for the Strasbourg meeting, and of the CIRM and the GDR
SG-MAT for the Luminy meeting. Finally, I would like to express my gratitude to all
referees for their effort for this volume.

Metz, May 2004 Tilmann Wurzbacher
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Lie groups of germs of analytic mappings

Helge Glöckner

TU Darmstadt, FB Mathematik AG 5
Schlossgartenstr. 7, 64289 Darmstadt, Germany

email:gloeckner@mathematik.tu-darmstadt.de

Abstract. Let X be a metrizable topological vector space over K ∈ {R,C}, K ⊆ X be a
non-empty compact subset, and G be a Banach-Lie group over K. In this paper, we turn
the group �(K,G) of germs around K of K-analytic G-valued mappings into a K-analytic
Baker–Campbell–Hausdorff Lie group.

2000 Mathematics Subject Classification: 22E65; 22E67, 46H05, 46T25.

Introduction

Besides groups of real analytic diffeomorphisms of compact manifolds ([19], [20])
it is important in connection with Lie pseudogroups associated with involutive sys-
tems of analytic partial differential equations to consider also Lie groups of germs of
K-analytic local diffeomorphisms around 0 ∈ K

n fixing the origin, and generaliza-
tions of such groups (see [23] for K = C, [18] for K = R). Similarly, replacing
globally defined mappings with germs, it is our goal here to consider not groups of
smooth or real analytic Lie group-valued mappings (as usually done), but groups of
germs of analytic mappings with values in Lie groups.

Throughout the introduction, letX be a metrizable topological K-vector space over
K ∈ {R,C}, and K ⊆ X be a non-empty compact subset. We are mostly interested
in the case where X is locally convex, but the constructions work just as well for
general X.

Groups of germs. IfG is a Banach–Lie group over K, we consider the group�(K,G)
of germs [γ ] around K of K-analytic mappings γ : U → G defined on open neigh-
bourhoods U ⊆ X of K . As our main result, we show that �(K,G) can be made
a K-analytic Lie group modelled on the space of germs �(K,L(G)), equipped with
its natural locally convex direct limit topology (Theorem 5.10). By construction,
�(K,G) will be a so-called Baker–Campbell–Hausdorff (BCH-) Lie group, i.e., it
has an exponential function inducing a local isomorphism of K-analytic manifolds
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on some zero-neighbourhood, and the group multiplication close to (1, 1) is given by
the BCH-series, in exponential coordinates. BCH-Lie groups are particularly well-
behaved infinite-dimensional Lie groups, whose basic Lie theory closely resembles
the familiar finite-dimensional case (see [24], [15]).

Mappings between spaces of germs. To facilitate our constructions, we establish
analyticity properties for typical mappings between spaces of germs. Given Banach
spacesE and F over K, an open neighbourhood U ofK inX, an open subset V ⊆ E,
and a K-analytic mapping f : U × V → F , we show that the push-forward

f∗ : �(K, V ) → �(K,F ), f∗([γ ]) := [x �→ f (x, γ (x))]
is K-analytic on the open set �(K, V ) := {[γ ] ∈ �(K,E) : γ (K) ⊆ V } (Proposi-
tions 3.3 and 4.6). Once this main technical tool is established, standard ideas from
the theory of mapping groups Cr(M,G) on compact manifolds (see [21] or [15]) can
be used to create the Lie group structure on �(K,G).

Intricacies of the discussion of f∗. If both X and E are finite-dimensional, then
�(K,E) is a Silva space (as is well-known), i.e., a locally convex direct limit of an
ascending sequence of Banach spaces, with compact bonding maps. In this special
case, analyticity of f∗ (in the complex case) might also be proved in the naïve way,
by a mere verification that f∗ is complex analytic on each step of the directed system
(which is the case here by standard arguments). This simpler approach is correct be-
cause the locally convex direct limit topology on a Silva space Y = lim−→ Yn coincides

with the topology of direct limit topological space [12, §7.1]; as also finite powers
of Y are Silva, this entails that a map g : W → Z on an open subset W ⊆ Y is
Cr in the Michal–Bastiani sense (as in [21] or [13]), resp., complex analytic if and
only if so is each restriction g|W∩Yn : W ∩ Yn → Z. More generally, for locally
convex X and finite-dimensional E it is known that �(K,E) is Silva if and only if
X is a Schwartz space (cf. [3], Thm. 7 and Prop. 9, where K = E = C). If E is an
infinite-dimensional Banach space, then �(K,E) never is a Silva space.1 In the case
of locally convex direct limits which are not Silva spaces, analyticity of a map g on
the steps does not entail analyticity of g : counter-examples are well known (e.g., the
algebra multiplication map in [14, §10.9] or analogous examples in [10]). Therefore
the naïve argument just described cannot be used anymore. Instead, we have to prove
analyticity of f∗ on a more technical level, working directly with the locally convex
direct limit topology.

Algebras of germs and their unit groups. If A is a unital Banach algebra over K,
it is known that �(K,A) is a so-called “continuous inverse algebra,” viz. a locally
convex, unital, associative topological K-algebra whose group of units is open and
whose inversion map is continuous (see [26, Thm. 1] for the important special case

1If �(K,E) is Silva, the unit ball evx(Holb(U,B1(0))) = B1(0) ⊆ E is relatively compact, whence
dim(E) < ∞. HereU is an open neighbourhood ofK inX, x ∈ K , and evx : �(K,E) → E is evaluation.
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whereX = C
n,A = C; [17, 1.15] whenK ⊆ C

n (without proof); cf. also [27, §6.6]).
Indeed, the unit group is open as it contains the open convex identity neighbourhood
�(K,B1(1)) of germs taking values in the unit ballB1(1) ⊆ A× around 1 ∈ A; and by
[10], �(K,A) is locally m-convex as a countable inductive limit of Banach algebras
(whence inversion is continuous). Using that pushforwards f∗ are K-analytic, we
present here a self-contained alternative proof which provides additional information:
the unit group �(K,A)× is isomorphic to �(K,A×) and therefore is a K-analytic
BCH-Lie group (regardless of completeness properties).

For general information concerning continuous inverse algebras, we refer to
[25]–[27], [17], [14]. The algebras �(K,C), K ⊆ C

n, play an important role in
the theory of such algebras, in connection with multi-variable holomorphic functional
calculus [26], [4]. In [14], continuous inverse algebras B were inspected from the
point of view of infinite-dimensional Lie theory. It turned out that B× is a K-analytic
BCH-Lie group provided B is Mackey complete, but there exist non-Mackey com-
plete continuous inverse algebras whose unit groups are not BCH and do not even
have a globally defined exponential map [14]. Completeness (and related) properties
of spaces of germs have been investigated in [2], [7], [11], [22] and further works by
these authors. For example, �(K,E) is complete if E is finite-dimensional and X is
locally convex ([11], [22]).

1 Preliminaries

In this section, we describe preliminaries concerning analytic mappings. For basic
definitions and facts in infinite-dimensional Lie theory, we refer to [21] (devoted to
Lie groups modelled on sequentially complete, locally convex spaces) and [13]. As
before, K ∈ {R,C}.
Definition 1.1 ([6, Defn. 5.6]). Let E be a complex topological vector space, F be
a locally convex complex topological vector space, U ⊆ E be an open, non-empty
subset, and f : U → F a map. Then f is called complex analytic or C-analytic if it
is continuous and for every x ∈ U , there exists a zero-neighbourhood V ⊆ E such
that x + V ⊆ U and

f (x + h) =
∞∑
n=0

βn(h) for all h ∈ V as a pointwise limit,

for suitable continuous homogeneous polynomials βn : E → F of degree n ∈ N0.

1.2. Recall that a mapping β : E → F is called a homogeneous polynomial of
degree n ∈ N0 if there exists a complex n-linear map µ : En → F such that β(x) =
µ(x, . . . , x) for all x ∈ E (resp., β(x) = µ(0) if n = 0). Hereµ can always be chosen
as a symmetricn-linear map, and this symmetric choice is unique; it is denotedβ := µ.
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The homogeneous polynomial β is continuous if and only if so is β (see [5] for these
facts). Also recall that each βn in Definition 1.1 is uniquely determined; it is given by
βn = 1

n!δ
n
xf where δnxf : E → F is the n-th Gateaux-differential of f at x defined

via

δnxf (h) := dn

dtn

∣∣
t=0f (x + th) = dnf (x, h, . . . , h) for h ∈ E.

Here dnf : U×En → F is thenth differential of f defined via dnf (x, h1, . . . , hn) :=(
Dh1 . . . Dhnf

)
(x) using directional derivatives in the directions hj .

We remark that, for mappings from normed spaces to locally convex spaces, the
preceding definition of complex analytic mappings is equivalent to the one in [8], due
to [6, Prop. 5.1].

Definition 1.3. Let E be a real topological vector space, F be a locally convex real
topological vector space, ∅ = U ⊆ E be open, and f : U → F be a map. Then
f is called real analytic or R-analytic if f extends to a complex analytic mapping
V → FC, defined on some open neighbourhood V of U in the complexification
EC = E ⊕ iE of E.

This notion of a real analytic mapping is stronger than the one used in [6] (which
mimics Definition 1.1 above), enabling us to use some of their results. Unfortunately,
many results in [6] are only formulated for sequentially complete ranges F . Part of
the results (for instance, the Identity Theorems) remain valid for trivial reasons also
for general F , since analytic mappings into F are also analytic as mappings into the
completion F of F . Less trivial generalizations can be looked up in [13] (for locally
convex spaces), as well as [1] and [16] (for not necessarily locally convex domains).
Essentially, we only need: (a) Compositions of composable K-analytic mappings are
K-analytic. (b) Real analyticity is a local property: If (Ui)i∈I is an open cover ofU and
f |Ui : Ui → F is real analytic for each i ∈ I , then f is real analytic [16, Rem. 1.12].

1.4. For later use, we define ‖β‖ := sup{‖β(v)‖ : v ∈ E such that ‖v‖ ≤ 1 } for a
continuous homogeneous polynomial β : E → F of degree n between Banach spaces,
and ‖µ‖ := sup{‖µ(v1, . . . , vn)‖ : v1, . . . , vn ∈ E such that ‖v1‖, . . . , ‖vn‖ ≤ 1 }
for a continuous n-linear map µ : En → F .

2 Spaces of germs of complex analytic mappings

Given a metrizable, complex topological vector spaceX, a non-empty, compact subset
K ⊆ X and a complex Banach space E, we let �C(K,E) (�(K,E) for short) be
the complex vector space of germs of complex analytic E-valued maps around K
(defined in the obvious way). Since every complex analytic map γ : U → E on an
open neighbourhood U of K is bounded on some smaller open neighbourhood of K ,
we have �(K,E) = lim−→ Holb(U,E) as a vector space, where U ranges through the
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directed set of open neighbourhoods of K and Holb(U,E) denotes the Banach space
of bounded complex analytic mappings from U to E, equipped with the supremum
norm.2 The bonding maps are the restriction maps Holb(U,E) → Holb(V ,E),
γ �→ γ |V (where K ⊆ V ⊆ U ), which apparently are linear maps of operator norm
≤ 1, and the limit maps are Holb(U,E) → �(K,E), γ �→ [γ ]. We give �(K,E)
the (a priori not necessarily Hausdorff) locally convex direct limit topology. SinceK
is compact and X is metrizable, there exists a descending sequence U1 ⊇ U2 ⊇ · · ·
of open neighbourhoods of K in X such that every neighbourhood of K contains
some Un (a “fundamental sequence of open neighbourhoods of K”), which can (and
will) always be chosen such that every connected component of each Un meets K .
This entails that the bonding maps ρm,n : Holb(Un,E) → Holb(Um,E) are injective
for all n ≤ m and so are the limit maps λn : Holb(Un,E) → �(K,E). Then
�(K,E) = lim−→ Holb(Un,E) by cofinality.

As in the well-known case where X is locally convex, also in the general case
the locally convex space �(K,E) is Hausdorff. [Let g ∈ {0} ⊆ �(K,E), say
g = [γ ], where γ : U → E. Given x ∈ K , k ∈ N0, � ∈ E′ and v1, . . . , vk ∈
X, using the direct limit universal property the linear map φ : �(K,E) → C,
φ([η]) := �(dkη(x; v1, . . . , vk)) is easily seen to be continuous (cf. [5, Thm.A]
and [6, Prop. 6.5]). Now C being Hausdorff, we deduce from the preceding that
dkγ (x; v1, . . . , vk) = 0. Hence γ vanishes on a neighbourhood of the arbitrary
element x ∈ K and thus [γ ] = 0 ].

Clearly�(K,E1 ×· · ·×En) ∼= �(K,E1)×· · ·×�(K,En) canonically as locally
convex spaces, if E1, . . . , En are complex Banach spaces.

3 Pushforwards of germs of complex analytic maps

3.1. Let X be a metrizable complex topological vector space, K ⊆ X a non-empty,
compact subset, E and F complex Banach spaces, U ⊆ X an open neighbourhood
of K , V ⊆ E a non-empty, open subset, and f : U × V → F be a complex analytic
map. We define

�(K, V ) := {[γ ] ∈ �(K,E) : γ (K) ⊆ V } .
Apparently, if [γ ] ∈ �(K, V ), then γ−1(V ) is an open neighbourhood of K . We
consider the “push-forward”

f∗ : �(K, V ) → �(K,F ), f∗([γ ]) := [f∗(γ )],
where the representative γ : W → E is chosen such thatW ⊆ U and im(γ ) ⊆ V , and
f∗(γ ) is defined via f∗(γ )(x) := f (x, γ (x)) for x ∈ W . If X is locally convex, then

2Holb(U,E) is closed in the Banach spaceCb(U,E) of bounded continuousE-valued maps as the limit
γ ∈ Cb(U,E) of any uniformly convergent sequence in Holb(U,E) is K-analytic by [6, Prop. 6.5].
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f∗(γ ) = f � (idW, γ ) : W → F is complex analytic as a composition of complex
analytic maps. IfX is not locally convex, then (idW, γ ) : W → X×E is not complex
analytic (as its range is not locally convex). However, being a composition of C∞

C

maps, f∗(γ ) is C∞
C

and hence complex analytic as its range is locally convex [1, §7].

If V is an open, convex zero-neighbourhood, then �(K, V ) is open in �(K,E),
as it is convex and apparently its inverse image in each Holb(Un,E) is open. This
entails that �(K, V ) is open for any open subset V ⊆ E.

3.2 Notation. Abbreviate An = Holb(Un,E) for n ∈ N, where U1 ⊇ U2 ⊇ · · · is a
fundamental sequence of open neighbourhoods of K . It is easy to see that the sets

V(ε) := conv
( ⋃
n∈N

λn(B
An
εn
(0))

)
⊆ �(K,E)

are open and form a basis for the filter of zero-neighbourhoods in �(K,E) when ε =
(εn)n∈N ranges through (R+)N; here BAnεn (0) is the open εn-ball around 0 in An, with
respect to the supremum norm‖.‖An . Similarly, writingBn := Holb(Un, F ), we define
analogous sets W(ε) for ε ∈ (R+)N forming a basis of open zero-neighbourhoods for
�(K,F ).

We are now in the position to prove our main technical tool.

Proposition 3.3. In the situation of 3.1, the mapf∗ : �(K, V ) → �(K,F ) is complex
analytic. If V is a balanced open zero-neighbourhood in particular, then

f∗([η]) =
∞∑
n=0

δn0 (f∗)([η])
n! for all [η] ∈ �(K, V ) , (1)

where the n-th Gateaux differential δn0 (f∗) : �(K,E) → �(K,F ) is the continuous
homogeneous polynomial of degree n given by δn0 (f∗)([η]) = [x �→ δn0fx(η(x))],
where fx := f (x, •) : V → F for x ∈ U .

Proof. Given [γ ] ∈ �(K, V ), we now show that f∗ is continuous at [γ ], and given
by a convergent power series on some neighbourhood of [γ ] (whence f is complex
analytic).

3.4. Let [γ ] ∈ �(K, V ), where γ : W → E; we may assume that W ⊆ U . There
is δ > 0 such that γ (K) + B2δ(0) ⊆ V . Replacing W with γ−1(γ (K) + Bδ(0)),
we achieve that im(γ ) + Bδ(0) ⊆ V for some δ > 0. Then g : W × Bδ(0) → F ,
g(x, y) := f (x, γ (x) + y) − f (x, γ (x)) is complex analytic, and apparently
f∗([γ ] + [η]) = g∗([η]) + f∗([γ ]) for all [η] ∈ �(K,Bδ(0)). Thus f∗ will be
continuous at [γ ] and given by a power series around [γ ] if we can show that g∗ is
continuous at 0 and given by a power series around 0. Replacing f with g and V with
Bδ(0), we may therefore assume that 0 ∈ V , [γ ] = 0, and f (x, 0) = 0 for all x ∈ U .
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3.5. As K × {0} ⊆ X × E is compact and f continuous, there exists an open neigh-
bourhood U0 ⊆ U of K in X and ρ > 0 such that Bρ(0) ⊆ V and f (U0 × Bρ(0)) ⊆
f (K×{0})+B1(0) = B1(0). Thus f (U0×Bρ(0)) is bounded inF . Hence, shrinking
U and V if necessary, we may assume that f is bounded, of supremum normM < ∞,
say, and V = Bρ(0) for some ρ > 0.

3.6. Given x ∈ U , consider the complex analytic mapping fx := f (x, •) : V =
Bρ(0) → F . Let D ⊆ C be the open unit disk around 0. Given w ∈ Bρ(0), we have
δn0fx(w) = dnfx(0, w, . . . , w) = h(n)(0) for eachn ∈ N0, whereh : D → F , h(z) :=
fx(zw). The Cauchy Estimates [6, Cor. 3.2] entail that

‖δn0fx(w)‖
n! = ‖h(n)(0)‖

n! ≤ M
1n =

M . Hence ∥∥∥∥δn0fxn!
∥∥∥∥ ≤ Mρ−n, for all x ∈ U and n ∈ N0. (2)

With (2) and [5], proof of Prop. 1, Part 10, we deduce that

Rn := sup

{∥∥∥∥dnfx(0, •)

n!
∥∥∥∥ : x ∈ U

}
≤ 2nnn

n! sup

{∥∥∥∥δn0fxn!
∥∥∥∥ : x ∈ U

}
≤ 2nnn

n! Mρ−n .
(3)

Since limn→∞ n
n√
n! = e as a consequence of Stirling’s formula (where e is Euler’s

constant), (3) entails that

R := lim sup
n→∞

n
√
Rn ≤ 2eρ−1 < ∞ .

3.7. We may assume that the fundamental sequence U1 ⊇ U2 ⊇ · · · of open neigh-
bourhoods of K in X is chosen such that U1 ⊆ U . We define complex analytic maps
hn : U × En → F and pn : U × E → F via

hn(x, v1, . . . , vn) := dnfx(0, v1, . . . , vn)

n! = dnf ((x, 0), (0, v1), . . . , (0, vn))

n! and

pn(x, v) := δn0fx(v)

n! = hn(x, v, . . . , v),

for n ∈ N. For n, j ∈ N, we get a symmetric n-linear map βn,j : Holb(Uj , E)n →
Holb(Uj , F ) via βn,j (η1, . . . , ηn)(x) := hn(x, η1(x), . . . , ηn(x)). We let

βn : �(K,E)n → �(K,F )

be the n-linear mapping determined by

βn([η1], . . . , [ηn]) := [βn,j (η1, . . . , ηn)] if η1, . . . , ηn ∈ Holb(Uj , E), j ∈ N.

Then (pn)∗ : �(K,E) → �(K,F ) apparently satisfies (pn)∗([η]) = βn([η], . . . , [η]),
and thus (pn)∗ is a homogeneous polynomial of degree n.
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3.8. Choose r ∈ ]0, ρ] such that 1
r
> R. Then

∑∞
n=1 Rnr

n < ∞ and hence, for each
k ∈ N and η ∈ Holb(Uk, E) =: Ak such that ‖η‖Ak < r ,

f (x, η(x)) =
∞∑
n=1

pn(x, η(x)),

with convergence uniform in x ∈ Uk . Hence

f∗(η) =
∞∑
n=1

(pn)∗(η)

in Holb(Uk, F ) =: Bk and thus

f∗([η]) = µk

( ∞∑
n=1

(pn)∗(η)
)

=
∞∑
n=1

(pn)∗([η])

in�(K,F ), the mapµk : Holb(Uk, F ) → �(K,F ), ζ �→ [ζ ] being continuous linear.

3.9. Suppose that ε = (εj )j∈N ∈ (R+)N is given. For j ∈ N, we define

δj := min

{
r,

rεj

2j (1 +∑∞
n=1 Rnr

n)

}
.

Let δ := (δj )j∈N. We claim that

f∗([η]) =
∞∑
n=1

(pn)∗([η]) ∈ W(ε) (4)

for all [η] ∈ V(δ). In fact, given [η], there existsm ∈ N, real numbers t1, . . . , tm ≥ 0
and elements ηj ∈ Aj = Holb(Uj , E) such that

∑m
j=1 tj = 1, ‖ηj‖Aj < δj for

j = 1, . . . , m, and

[η] =
m∑
j=1

tj [ηj ] . (5)

Then‖ηj |Um‖Am < δj ≤ r for each j = 1, . . . , m, entailing that
∥∥∑m

j=1 tj ηj |Um
∥∥
Am
< r

(where
∑m
j=1 tj ηj |Um has the same germ as η), and thus f∗([η]) = ∑∞

n=1(pn)∗([η])
by 3.8, establishing the first half of (4). Next, using (5), we obtain for each N ∈ N :

N∑
n=1

(pn)∗([η]) =
N∑
n=1

βn([η], . . . , [η])

=
N∑
n=1

m∑
j1,...,jn=1

( n∏
i=1

tji

)
βn([ηj1 ], . . . , [ηjn ]) =

m∑
j=1

2−jµj (ξj ),
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abbreviating ξj := 2j
∑N
n=1

∑
α∈In,j

(∏n
i=1 tαi

) · βn,j (ρj,α1(ηα1), . . . , ρj,αn(ηαn))

where In,j := {α = (αi) ∈ {1, . . . , m}n : ‖α‖∞ = j}, and ρj,αi : Holb(Uαi , E) →
Holb(Uj , E) is the restriction map. Note that ‖βn,j (ρj,α1(ηα1), . . . , ρj,αn(ηαn))‖Bj ≤
Rn · δj · rn−1. Hence

‖ξj‖Bj ≤ 2j δj
r

N∑
n=1

Rnr
n

∑
α∈In,j

( n∏
i=1

tαi

)
︸ ︷︷ ︸

≤∑m
j1,...,jn=1(

∏n
i=1 tji )=1

≤ δj2j

r

N∑
n=1

Rnr
n < εj .

Set s := ∑m
j=1 2−j < 1. By the preceding,

∑N
n=1(pn)∗([η]) = s

∑m
j=1

2−j
s
µj (ξj ) ∈

sW(ε), for all N ∈ N. Letting N → ∞, we deduce that

f∗([η]) =
∞∑
n=1

(pn)∗([η]) ∈ sW(ε) = sW(ε) ⊆ W(ε) ,

as asserted. Consequently, f∗ is continuous at 0.

3.10. Note that, since pn might play the role of f , by what has already been shown the
map (pn)∗ is continuous at 0 and thus continuous, being a homogeneous polynomial
[5, Thm. 1]. Since f∗([η]) = ∑∞

n=1(pn)∗([η]) for all [η] ∈ �(K,Br(0)) by 3.8, we
see that f∗ is given on the zero-neighbourhood �(K,Br(0)) by a convergent series
of continuous homogeneous polynomials. This completes the proof of the complex
analyticity of f∗.

3.11. To prove the final assertion, note that the complex analytic mapping f∗ is given

on the balanced zero-neighbourhood �(K, V ) by its Taylor series
∑∞
n=1

δn0 (f∗)
n! (cf. [6,

Prop. 5.5]). On the other hand, by 3.8, f∗ is given by f∗(0) +∑∞
n=1(pn)∗ on some

zero-neighbourhood. Thus δ0
0(f∗) = f∗(0) and

δn0 (f∗)
n! = (pn)∗ for n ∈ N, which

entails the final assertion. ��

4 Spaces of germs of real analytic mappings

In this section, we transfer the definitions and results of Sections 2 and 3 to the real
case.

4.1. Let X be a metrizable, real topological vector space, K ⊆ X be a non-empty,
compact subset, andE be a real Banach space. LetXC = X⊕iX andEC = E⊕iE be
the complexifications of X and E, respectively. Then the real vector space �R(K,E)

of germs [γ ] about K of real analytic E-valued mappings γ : U → E on open
neighbourhoods U ⊆ X of K is defined as in the complex case, replacing the word
“complex” with “real” there.
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4.2. If γ : U → E is a real analyticE-valued map on an open neighbourhoodU ofK
in X, then there is a complex analytic map γ̃ : Ũ → EC on an open neighbourhood
Ũ of U in XC which extends γ , by definition of real analyticity. It is easy to see that
the map

� : �R(K,E) → �C(K,EC), �([γ ]) := [γ̃ ] (6)

is well defined, injective, R-linear, and that im� ⊆ �C(K,EC) consists precisely
of those germs possessing a representative η : W → EC defined on an open neigh-
bourhood W of K in XC, such that η(W ∩ X) ⊆ E. (To perform the simple proofs,
the following observation is useful: Given a germ in �R(K,E), we can always find a
representative γ : U → E such that γ̃ as above is defined on Ũ := U + iV for some
balanced open zero-neighbourhood V in X; then γ̃ is the unique complex analytic
map on Ũ extending γ ).

4.3. Let L := im�. Then �C(K,EC) = L⊕ iL internally as a real topological vec-
tor space, since L and iL are the (+1)-eigenspace and (−1)-eigenspace, respectively,
of the continuous antilinear involution σ of �C(K,EC) defined via σ([γ ]) :=
[u + iv �→ γ (u− iv)], where the bar indicates complex conjugation in EC, and
u ∈ U , v ∈ V , where the domain of definition of the representative γ of the germ is
chosen as U + iV with U an open neighbourhood ofK in X and V an open balanced
zero-neighbourhood in X.

4.4. We give �R(K,E) the real locally convex vector topology induced by �. Then
apparently �C(K,EC) = �R(K,E)C is the complexification of �R(K,E) (via �).

Remark 4.5. �R(K,E) can be described as the locally convex direct limit of the
spaces {[γ |U ] : γ ∈ Holb(U + iV ,EC), γ (U) ⊆ E} ⊆ �R(K,E), equipped with the
topology induced by Holb(U + iV ,EC). Furthermore, intrinsic descriptions of the
topology can be given.

If V is an open subset in E, we set �R(K, V ) :={[γ ] ∈ �R(K,E) : γ (K) ⊆ V }.
Then �R(K, V ) = �−1(�C(K, V + iE)), showing that �R(K, V ) is open in
�R(K,E).

Proposition 4.6. Proposition 3.3 remains valid if C is replaced with R, except that it
may be necessary to shrink the zero-neighbourhood U in order that (1) holds.

Proof. Being real analytic, f extends to a complex analytic mapping f̃ : Ũ → FC

on some open neighbourhood Ũ of K × V in XC × EC. Let [γ ] ∈ �R(K, V ),
say γ : W → E. Then γ (K) ⊆ V . Using the compactness of K and γ (K), we
find an open neighbourhood U1 ⊆ U of K in X, open zero-neighbourhoods U2
in X and V2 in E, and an open neighbourhood V1 ⊆ V of γ (K) in E such that
(U1 + iU2) × (V1 + iV2) ⊆ Ũ . Then g := f |U1×V1 is real analytic, with complex
analytic extension g̃ := f̃ |(U1+iU2)×(V1+iV2). There is a complex analytic extension
γ̃ : W̃ → EC of γ to an open neighbourhood W̃ ofW inXC. After replacing γ with its
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restriction to U1 ∩ γ−1(V1) and γ̃ with its restriction to (U1 + iU2)∩ γ̃−1(V1 + iV2),
we see that g∗(γ̃ ) is a complex analytic extension of f∗(γ ), and thus f∗(γ ) is real
analytic, whence f∗([γ ]) = [f∗(γ )] defines an element of�R(K, F ) indeed. Next, by
Proposition 3.3, the map (g̃)∗ : �C(K, V1 + iV2) → �C(K, FC) is complex analytic.
Now

(g̃)∗ ��1|�C(K,V1+iV2)
�R(K,V1)

= �2 � g∗, (7)

where �1 : �R(K,E) → �C(K,EC) and �2 : �R(K, F ) → �C(K, FC) are as
in (6). Thus g∗ has a complex analytic extension and hence is real analytic. Since
f∗|�R(K,V1) = g∗, we see thatf∗ is real analytic on the open neighbourhood�R(K, V1)

of the given germ [γ ]. Thus f∗ is locally real analytic and hence real analytic. Taking
[γ ] = 0 here, in view of (7) the final assertion of the proposition follows from the
corresponding assertion in Proposition 3.3. ��

Corollary 4.7. Let X be a metrizable topological vector space over K ∈ {R,C},
K ⊆ X be a non-empty, compact subset, E and F Banach spaces over K, V ⊆ E be
a non-empty, open subset, and f : V → F be a K-analytic map. Then

�K(K, f ) : �K(K, V ) → �K(K, F ), [γ ] �→ [x �→ f (γ (x))]
is a K-analytic mapping. If V is an open zero-neighbourhood, then there exists an
open zero-neighbourhood Q ⊆ V in E such that

�K(K, f )([η]) =
∞∑
n=0

�K(K, δ
n
0f )([η])
n! for all [η] ∈ �R(K,Q) . (8)

Proof. The map g : X×V → F , g(x, y) := f (y) is K-analytic, and�K(K, f ) = g∗.
The assertions now follow immediately from Proposition 3.3 (if K = C), resp. 4.6
(K = R). ��

5 Lie groups of germs of analytic mappings

Let K ∈ {R,C}, X be a metrizable topological K-vector space, K ⊆ X be a non-
empty compact subset, and G be a Banach–Lie group over K. In this section, we
turn the group �K(K,G) of germs of G-valued K-analytic mappings around K into
a K-analytic Lie group, modelled on the locally convex topological K-vector space
�K(K,L(G)).

5.1. The group�K(K,G) of germs ofG-valued K-analytic maps aroundK is defined
in the obvious way. The group multiplication is defined via [γ ] · [η] := [W1 ∩W2 �
x �→ γ (x)η(x)] for K-analytic mappings γ : W1 → G, η : W2 → G on open
neighbourhoods W1, W2 of K . The identity element is [x �→ eG].
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5.2. We choose a norm ‖.‖ onL(G) defining its topology and makingL(G) a normed
Lie algebra, viz. ‖[u, v]‖ ≤ ‖u‖ · ‖v‖ for all u, v ∈ L(G). There is an open
balanced zero-neighbourhood U ⊆ L(G) such that U1 := expG(U) is open in G,
ψ := expG |U1

U a diffeomorphism, and such that the BCH-series
∑∞
n=1 βn converges

on U × U to a K-analytic map ∗ = µ : U × U → L(G) [9, §II.7.2, Prop. 1]. Here
βn : L(G)2 → L(G) is the homogeneous polynomial of degree n in the BCH-series.

5.3. The map �K(K,µ) : �K(K,U × U) → �K(K,L(G)) is K-analytic by Corol-
lary 4.7, and there is an open zero-neighbourhood U0 ⊆ U such that

�K(K,µ)([(γ, η)]) =
∞∑
n=1

[βn � (γ, η)] for all [(γ, η)] ∈ �K(K,U0 × U0) . (9)

5.4. Since �(K,U2) ∼= �(K,U)2 as K-analytic manifolds, we deduce from 5.3
that m : �(K,U)2 → �(K,L(G)), m([γ ], [η]) := [x �→ γ (x) ∗ η(x)] is K-
analytic. We let V ⊆ U be any open, balanced zero-neighbourhood in L(G) such
that V ∗ V ⊆ U , and set V1 := expG(V ). We give �K(K,U1) := {[γ ] ∈ �K(K,G) :
γ (K) ⊆ U1 } the K-analytic manifold structure which makes the bijection � :
�K(K,ψ) : �K(K,U) → �K(K,U1), [γ ] �→ [ψ�γ ] a diffeomorphism of K-analytic
manifolds, where �K(K,U) is considered as an open submanifold of �K(K,L(G)).

5.5. U being connected, the Identity Theorem [6, Prop. 6.6 I] shows that expG(u∗v) =
expG(u) expG(v) for all (u, v) ∈ U × U , as this holds in some zero-neighbourhood.
Hence �(m([γ ], [η])) = �([γ ])�([η]) for all [γ ], [η] ∈ �K(K, V ), entailing that
the group multiplication of �K(K,G) restricts to a K-analytic map �K(K, V1)

2 →
�K(K,U1). Similarly, the inversion map �K(K,U1) → �K(K,U1) corresponds to
�K(K,U) → �K(K,U), [γ ] �→ −[γ ] under �, and is therefore K-analytic.

5.6. Let [γ ]∈�K(K,G), where γ : W → G. Since the map h : W× L(G)→L(G),
h(x, u) := Adγ (x)(u) is K-analytic and hence continuous, there exists an open neigh-
bourhood W0 of K in W and an open zero-neighbourhood P ⊆ U in L(G) such
that

Adγ (x).u ∈ U for all x ∈ W0 and all u ∈ P . (10)

After replacing the representative γ with γ |W0 , we may assume that W = W0. Note
that h(x, •) is linear for each x ∈ W . Therefore Proposition 3.3 (resp., Proposition 4.6)
shows that h∗ : �K(K,L(G)) → �K(K,L(G)), h∗([η]) := [x �→ h(x, η(x))]
is a K-analytic and thus continuous linear map. Consider now the inner automor-
phisms Ig : G → G, k �→ gkg−1 for g ∈ G, and I[γ ] : �K(K,G) → �K(K,G),
[η] �→ [γ ][η][γ ]−1. Let [η] ∈ �K(K, P ), where η : W1 → L(G) is chosen such
that im η ⊆ P and W1 ⊆ W . For each x ∈ W1, we have expG(Adγ (x)(η(x))) =
Iγ (x)(expG(η(x))), entailing that

�(h∗([η])) = I[γ ](�([η])). (11)
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Since �|�K(K,P ) is a diffeomorphism of K-analytic manifolds onto the open identity
neighbourhoodQ := �(�K(K, P )), we deduce from (11) and the K-analyticity of h∗
that I[γ ]|Q is K-analytic.

5.7. In view of 5.5 and 5.6, [15, Prop. 1.13] provides a unique K-analytic manifold
structure on�K(K,G)making it a K-analytic Lie group, and making�K(K, V1), with
its given K-analytic manifold structure induced by �K(K,U1), an open submanifold
of �K(K,G).

5.8. The map Exp := �K(K, expG) : �K(K,L(G)) → �K(K,G), [γ ] �→ [expG �γ ]
is K-analytic on �K(K, V ), by definition of the manifold structure on �K(K,G). For
each n ∈ N and [γ ] ∈ �K(K, nV ), we have Exp([γ ]) = Exp([ 1

n
γ ])n, whence also

Exp|�K(K,nV ) is K-analytic. Hence Exp is K-analytic on all of �K(K,L(G)) and
thus smooth. In particular, for each [γ ] ∈ �K(K,L(G)), say γ : W → L(G), the
map ξ : R → �K(K,G), ξ(t) := Exp(t[γ ]) is smooth. Given s, t ∈ R, we have
expG(sγ (x)+ tγ (x)) = expG(sγ (x)) expG(tγ (x)) for all x ∈ W and thus ξ(s+ t) =
ξ(s)ξ(t). Furthermore, identifying T1(�K(K,G)) with �K(K,L(G)) by means of
the isomorphism of topological vector spaces d�−1(1, •) now and throughout the
following, we have ξ ′(0) = [γ ]. Hence �K(X,G) has a globally defined exponential
map (see [21] or [13] for this concept), given by Exp : �K(K,L(G)) → �K(K,G).

5.9. Note that by (9),�−1(�([γ ])�([η])) is given by the BCH-series of�K(K,L(G)),
with respect to the continuous Lie bracket

[., .]1 := �K(K, [., .]) : �K(K,L(G)
2) ∼= �K(K,L(G))

2 → �K(K,L(G)) .

The second order term in the BCH-series being the antisymmetric bilinear map 1
2 [., .]1,

we deduce from [21, (5.2)] that the Lie bracket on �K(K,L(G)) as the Lie algebra
of �K(K,G) coincides with [., .]1. This in turn implies that (9) is the BCH-series of
�K(K,L(G)) also when�K(K,L(G)) is identified with the Lie algebra of�K(K,G).
Summing up:

Theorem 5.10. Let K ∈ {R,C}, X be a metrizable topological K-vector space, ∅ =
K ⊆ X a compact subset, and G be a Banach–Lie group over K. Then there is
a uniquely determined K-analytic BCH-Lie group structure on �K(K,G) modelled
on �K(K,L(G)) such that �K(K, expG) : �K(K,L(G)) → �K(K,G) is a local
diffeomorphism of K-analytic manifolds on some zero-neighbourhood. ��

6 Algebras of germs of analytic mappings

The results are now applied to the case of algebras.

Theorem 6.1. Let K ∈ {R,C}, X be a metrizable topological K-vector space, K ⊆
X a non-empty, compact subset, and A be a unital, associative Banach algebra
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over K. Then �K(K,A) is a continuous inverse algebra over K, whose group of
units �K(K,A)

× is a K-analytic BCH-Lie group, with Lie algebra �K(K,A) and ex-
ponential function Exp : �K(K,A) → �K(K,A)

×, Exp([γ ]) = ∑∞
n=0

1
n! [γ ]n. The

map � : �K(K,A
×) → �K(K,A)

×, [γ ] �→ [γ ] is an isomorphism of Lie groups.

Proof. The algebra multiplicationµ : A×A → A being a continuous K-bilinear map
and thus K-analytic, Corollary 4.7 shows that the bilinear map

�K(K,A)
2 ∼= �K(K,A

2) → �K(K,A), ([γ ], [η]) �→ �K(K,µ)(γ, η) = [γ ]·[η]
is K-analytic and thus continuous. Thus �K(K,A) is a topological algebra.

The map q : B1(0) → A, a �→ (1 − a)−1 is K-analytic, where B1(0) is the unit
ball in A. By Corollary 4.7, also Q := �K(K, q) : �K(K,B1(0)) → �K(K,A) is
K-analytic. We have

(1 − [γ ]) ·Q([γ ]) = [x �→ (1 − γ (x))(1 − γ (x))−1] = [1] = Q([γ ]) · (1 − [γ ])
for each [γ ] ∈ �K(K,B1(0)). It follows that the open identity neighbourhood
1 − �K(K,B1(0)) is contained in �K(K,A)

×, and [γ ]−1 = Q(1 − [γ ]) for each
[γ ] ∈ 1 − �K(K,B1(0)), which is a K-analytic function of [γ ]. Hence �K(K,A)

×
is open and that inversion is continuous on all of �K(K,A)

× (see [14, §2]). Thus
�K(K,A) is a continuous inverse algebra.

The exponential map expA : A → A, expA(x) := ∑∞
n=0

1
n!x

n restricts to a
K-analytic diffeomorphism expA |VU from some open zero-neighbourhood U in A
onto some open identity-neighbourhood V in A× (cf. [9, Ch. I, §7, no. 3]). Corol-
lary 4.7 (applied to AC in the real case) entails that the map Exp := �K(K, expA) :
�K(K,A) → �K(K,A)

× is K-analytic, and given for all [γ ] ∈ �K(K,A) by
the convergent series Exp([γ ]) = ∑∞

n=0
1
n! [γ ]n. Corollary 4.7 also entails that

Exp|�K(K,V )
�K(K,U)

= �K(K, expA |VU ) : �K(K,U) → �K(K, V ) is a K-analytic bijec-

tion with K-analytic inverse �K

(
K,
(

exp |VU
)−1). Thus Exp induces an isomorphism

of K-analytic manifolds on some zero-neighbourhood.
It is clear that the map � described in the theorem is well-defined, a homomor-

phism of groups, and bijective. Since � � �K(K, expA×) = �K(K, expA) = Exp,
where Exp : �K(K,A) → �K(K,A)

× induces a local diffeomorphism of K-analytic
manifolds at 0 and so does �K(K, expA×) : �K(K,A) → �K(K,A

×) (see Theo-
rem 5.10, where this map is called Exp), we deduce that the isomorphism of groups
� induces an isomorphism of K-analytic manifolds on some identity neighbourhood,
and hence is an isomorphism of Lie groups. ��
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Abstract. For a manifold equipped with vector field there exists the universal completion
consisting of a (possibly non-Hausdorff) manifold with a complete vector field on it. We
describe the universal completion of the partial differential equations ut +F(u)ux = 0 viewed
as vector fields on infinite dimensional manifolds.
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1 Introduction

For a pair (M,X) consisting of a smooth manifold M and a vector field X on it
there exists the universal completion (M̄, X̄), a possibly non-Hausdorff manifold M̄
with a complete vector field X̄, where (M,X) is embedded equivariantly as an open
subspace. In this note we describe the universal completion of some partial differential
equations viewed as vector fields on infinite dimensional manifolds. The equations
are ut + f (u)ux = 0 where u = u(x, t) : R

n × R → R
n, and f : R

n → R
n is

some smooth map. A special case is the inviscid Burgers equation ut + 3uux = 0
(also called the Hopf equation). The universal completion gives some insight at how
solutions of these equations develop shocks. Namely, in the universal completion the

∗B.A. Khesin and P. W. Michor were both supported by ‘Fonds zur Förderung der wissenschaftlichen
Forschung, Projekt P 14195 MAT’.
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solutions are uniquely extended beyond the shocks, and become multivalued functions
with infinite derivatives.

Recall that the inviscid Burgers equation can be regarded as the geodesic equation
on the infinite dimensional group of diffeomorphisms of R

n (cf. e.g. [1, 9]). Such a
derivation of the geodesic equation in the one-dimensional case, on the manifold of all
embeddings Emb(R,R), is reminded below, following [7]. The universal completion
described in this note requires the consideration of multivalued velocity fields. These
fields are solutions in the phase space of the system. In the configuration space, the
completion corresponds to an extension of the diffeomorphism group to the semigroup
of polymorphisms.

2 The universal flow completion

2.1 Vector fields on infinite dimensional manifolds. Let M be a connected smooth
manifold of possibly infinite dimension, modeled on convenient vector spaces (see [5,
section 27] for necessary definitions). Let us assume that M is smoothly Hausdorff,
i.e., the global smooth functions onM separate points. LetX be a smooth (kinematic)
vector field onM . We say thatX admits a local flow, if there exists a smooth mapping

M × R ⊃ D(X) −−−−→
FlX

M

defined on a C∞-open neighborhood D(X) of M × 0 such that

(1) D(X) ∩ ({x} × R) is a connected open interval.

(2) If FlXs (x) exists then FlXt+s(x) and FlXt (FlXs (x)) exist simultaneously and are
equal to each other.

(3) FlX0 (x) = x for all x ∈ M .

(4) d
dt

FlXt (x) = X(FlXt (x)).

It is shown in [5, 32.14], that then for each integral curve c of X we have c(t) =
FlXt (c(0)) (see [5, 32.14] for the proof, as well as for counterexamples against ex-
istence, uniqueness, etc. of integral curves for more general X). Thus there exists
a unique maximal flow. Furthermore, X is FlXt -related to itself, i.e., T (FlXt ) � X =
X � FlXt .

2.2 Theorem. Let X ∈ X(M) be a smooth vector field on a (connected) smooth,
possibly infinite-dimensional, manifold M modeled on convenient vector spaces. Let
us assume that the vector field X admits a local flow.

Then there exists a universal flow completion j : (M,X) → (M̄, X̄) of (M,X).
Namely, there exists a (connected) smooth not necessarily Hausdorff manifold M̄ ,
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a complete vector field X̄ ∈ X(M̄), and an embedding j : M → M̄ onto an open
submanifold such thatX and X̄ are j -related: Tj �X = X̄�j . Moreover, for any other
equivariant morphism f : (M,X) → (N, Y ) for a manifoldN and a complete vector
field Y ∈ X(N) there exists a unique equivariant morphism f̄ : (M̄, X̄) → (N, Y )

with f̄ � j = f . The leaf spaces M/X and M̄/X̄ are homeomorphic.

An equivariant morphismf : (M,X) → (N, Y ) is a smooth mappingf : M → N

satisfying Tf � X = Y � f . It follows that then f � FlXt = FlYt �f wherever FlXt is
defined.

Sketch of Proof. The finite dimensional version of this theorem is due to Palais [8].
The formulation here is from [4] and the proof given in [4] goes through in the infinite-
dimensional case as well.

Since we shall need the construction, we sketch it here: Consider the manifold
R×M with a coordinate function s on R, the vector field X̃ := ∂s×X ∈ X(R×M), and
let M̄ := R×

X̃
M be the orbit space (or leaf space) of the vector field X̃. We consider

the flow mapping FlX̃ : D(X̄) → R ×M given by FlX̃t (s, x) = (s + t,FlXt (x)).
For each s ∈ R we have the injective mapping

js : M inst−−−−→ {s} ×M ⊂ R ×M
π−→ R ×

X̃
M = M̄

which is a homeomorphism on its open image js(M) in M̄ in the quotient topology.
We use the mappings js : M → M̄ as charts. The chart change for r < s are then
(js)

−1 � jr = FlXs−r restricted to (js)−1(jr (M)) ⊂ M .
The flow (t, (s, x)) → (s+ t, x) on R×M commutes with the flow of X̃ and thus

induces a flow on the leaf space M̄ = R ×
X̃
M . Differentiating this flow we get a

vector field X̄ on M̄ .
The construction (M,X) → (M̄, X̄) is a functor from the category of smooth

convenient smoothly Hausdorff manifolds with vector fields admitting local flows
and smooth mappings intertwining the vector fields into the category of possibly non-
Hausdorff manifolds with smooth vector fields with global flows and smooth mappings
intertwining these fields. For a pair (M,X) with a complete vector field X the flow
completion (M̄, X̄) is equivariantly diffeomorphic to (M,X) since then any of the
charts js : M → M̄ is also surjective. From this the universal property follows. ��

2.3 Example. Consider M = R, X = −x2∂x . The solutions of the ordinary differ-
ential equation ẋ = −x2 are x(t) = 1/(t + 1/x(0)) which are all incomplete, and 0.
The foliation in R×M is given by the graphs of the functions x(t) = 1/(t + 1/x(0)).
Consider the following illustration of R ×M and its foliation. Note that this incom-
pleteness of a quadratic field is similar to the incompleteness of the Burgers equa-
tion described below. Examples leading to non-Hausdorff completions can be found
in [4].
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Figure 1. The flow of the field ẋ = −x2. The embeddings jt are induced by the vertical
slices. The completion is M̄ = R, the identification is given by the inclined line, for
example.

2.4 Remark on Hamiltonian systems. Suppose that M is a symplectic or Poisson
manifold and thatXf is the Hamiltonian vector field of a smooth functionf . Then there
exists a unique symplectic or Poisson structure on the flow completion M̄ and a unique
smooth function f̄ such that X̄ is again the Hamiltonian vector field of f̄ . Moreover,
if f = f1, . . . , fn is a maximal Poisson commuting set of smooth function such that
(M,Xf ) is a completely integrable system, then there are unique extensions f̄1, . . . , f̄n

to M̄ such that the flow completion (M̄,Xf ) is again a completely integrable system.
In the infinite-dimensional symplectic case (M,ω) should be a weak symplectic

manifold and all (possibly, infinitely many) functions fi have to be taken in the space
C∞
ω (M,R) of smooth functions with a smoothω-gradient, see [5], section 48. All this

is an easy consequence of the fact that the symplectic or Poisson structures and the
conservation laws fi are invariant under the flow of Xf , and that restrictions of this
flow are the chart transfer mappings for the atlas used to define the flow completion.

3 The Burgers equation as a geodesic equation

3.1 The principal bundle of embeddings. LetM andN be smooth connected finite-
dimensional manifolds without boundary, such that dimM ≤ dimN . The space
Emb(M,N) of all embeddings (immersions which are homeomorphisms on their
images) fromM intoN is an open submanifold ofC∞(M,N)which is stable under the
right action of the diffeomorphism group ofM . HereC∞(M,N) is a smooth manifold
modeled on spaces of sections �c(f ∗TN) with compact support. In particular, the
tangent space at f is canonically isomorphic to the space of vector fields along f with
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compact support in M . If f and g differ on a non-compact set then they belong to
different connected components of C∞(M,N).

Then Emb(M,N) is the total space of a smooth principal fiber bundle whose
structure group is the diffeomorphism group of M . Its base, denoted by B(M,N),
is a Hausdorff smooth manifold modeled on nuclear (LF)-spaces. It can be thought
of as the “nonlinear Grassmannian” of all submanifolds of N which are of type M .
If we take a Hilbert space H instead of N , then B(M,H) is the classifying space
for Diff(M) if M is compact, and the classifying bundle Emb(M,H) carries also a
universal connection, see details in [5, sections 42–44].

3.2 A geodesic equation. Consider the convenient manifold Emb(R,R) of all em-
beddings of the real line into itself, which contains the diffeomorphism group Diff(R)
as an open subset. Each connected component is a free orbit of the diffeomorphism
group Diff(R) for the action of composition from the right. The tangent bundle
is trivial, T Emb(R,R) = Emb(R,R) × C∞

c (R,R), tangent vectors are smooth
functions with compact support. For our purposes, we may restrict attention to the
space of orientation-preserving embeddings, denoted by Emb+(R,R). The case S1

is treated in a similar fashion and the results are also valid in this situation, where
Emb(S1, S1) = Diff(S1).

Following V. Arnold’s approach to Euler equations on diffeomorphism groups, we
define the weak Riemannian metric on Emb+(R,R) by the formula:

Gf (h, k) =
∫

R

h(x)k(x)|fx(x)| dx, f ∈ Emb(R,R), h, k ∈ C∞
c (R,R).

It is invariant under the right action of the diffeomorphism group. The energy of a
curve f of embeddings is

E(f ) = 1
2

∫ b

a

Gf (ft , ft )dt = 1
2

∫ b

a

∫
R

f 2
t fx dxdt.

Consider smooth variations of f (x, t)with fixed endpoints. Then variational calculus
provides the following form of the geodesic equation with its corresponding initial
data:

ftt = −2
ftftx

fx
,

where

f (. , 0) ∈ Emb+(R,R), ft (. , 0) ∈ C∞
c (R,R).

The geodesic equation has the following conservation law: if instead of the obvious
framing we change variables to T Emb = Emb ×C∞

c � (f, h) → (f, hf 2
x ) =: (f,H)

then the geodesic equation becomes Ht = ∂
∂t
(ftf

2
x ) = f 2

x (ftt + 2 ftftx
fx
) = 0, so that

H = ftf
2
x is constant in t .
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3.3 The geodesic property of the Burgers equation. We restrict our attention from
the whole space Emb(R,R) to the open subset Diff(R). Consider the trivialization
of T Diff(R) by right translation. The derivative of the inversion Inv : g → g−1 is
given by

Tg(Inv)h = −T (g−1) � h � g−1 = h � g−1

gx � g−1 for g ∈ Diff(R), h ∈ C∞
c (R,R).

Defining u := ft � f−1, or, in more detail, u(x, t) = ft (f ( , t)−1(x), t), we have

ux = (ft � f−1)x = (ftx � f−1)
1

fx � f−1 = ftx

fx
� f−1,

ut = (ft � f−1)t = ftt � f−1 + (ftx � f−1)(f−1)t

= ftt � f−1 + (ftx � f−1)
1

fx � f−1 (ft � f−1)

which, by the geodesic equation of 3.2 becomes

ut = ftt � f−1 −
(
ftxft

fx

)
� f−1 = −3

(
ftxft

fx

)
� f−1 = −3uxu.

The geodesic equation on Diff(R) in right trivialization, that is, in Eulerian formula-
tion, is hence

ut = −3uxu

which is just the inviscid Burgers equation. Similarly, one obtains the derivation in
the n-dimensional case.

4 The flow completion of some hyperbolic systems

4.1 A partial differential equation. Let f = (f1, . . . , fk) : R
n → R

k be smooth
and consider the partial differential equation

ut + (f (u) · ∇)u = 0

or, which is the same,

ut + f1(u)ux1 + · · · + fk(u)uxk = 0, R
k × R ⊇ U

u−→ R
n,

where U is an open neighborhood of R
k × 0 in R

k ×R
n, and u is a smooth R

n-valued
function on U . This type of equations are called hyperbolic conservation laws in
physics, see [2].

We consider now the manifold C∞(Rk,Rn) of all smooth R
n-valued functions on

R
k with the manifold structure described in [5, section 42]. The tangent bundle is

trivial, and the space C∞
c (R

k,Rn) of functions with compact support serves as the
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fiber. Note that C∞
c (R

k,Rn) is an open connected component in C∞(Rk,Rn). We
consider the characteristic vector field

X(u) = (f (u) · ∇)u.
It is a vector field on C∞(Rk,Rn) if X(u) has compact support for each u. This is
the case if u has compact support. In the general case one has to leave the realm of
manifolds with charts. (See [6] for a setting for infinite dimensional manifolds based
on curves instead of charts, which is applicable in this situation.)

For the sake of simplicity, let us restrict attention to C∞
c (R

k,Rn). There, flow
lines of the vector field X are given by solutions of the above partial differential
equation (where one has to adapt the domain of definition). We may thus consider
(C∞
c (R

k,Rn),X) as smooth convenient manifolds with vector fields admitting local
flows.

4.2 Characteristics and solutions. To describe the universal completion of the quasi-
linear equation ut + (f (u) · ∇)u = 0 we apply the characteristic method (see e.g. [3]
or [1], where in particular, the case of the Burgers equation is treated).

In the space R
k+n with coordinates (x, y) consider the vector field Y (x, y) =

(f (y), 0) = f1(y)∂x1 + · · · + fk(y)∂xk with differential equation ẋ = f (y), ẏ = 0.
It has the complete flow FlYt (x, y) = (x + tf (y), y).

Let now u(x, t) be a curve of functions. We ask when the graph of u can be
reparametrized in such a way that it becomes a solution curve of the push forward
vector field Y∗ : f → Y � f on the space of embeddings Emb(Rk,Rk+n). Thus
consider a time dependent reparametrization z → x(z, t), i.e., x ∈ C∞(Rk+1,Rk).
The curve t → (x(z, t), u(x(z, t), t)) in R

k+n is an integral curve of Y if and only if(
f � u � x

0

)
= ∂t

(
x

u � x
)

=
(

xt
ut � x + (∇u � x) · xt

)
(1)

⇐⇒
{
xt = f � u � x
0 = (ut + (f � u) · ∇u) � x (2)

This implies that the graph of u(·, t), namely the curve t → (x → (x, u(x, t))), may
be parameterized as a solution curve of the vector field Y∗ on the space of embeddings
Emb(Rk,Rk+n) starting at x → (x, u(x, 0)) if and only if u is a solution of the partial
differential equation ut + (f (u) · ∇)u = 0. The parameterization z → x(z, t) is then
given by xt (z, t) = f (u(x(z, t), t)) with x(z, 0) = z ∈ R

k .
For k = n the characteristics have a simple physical meaning. Consider freely

flying particles in R
n, and trace a trajectory x(t) of one of the particles. Denote

the velocity of a particle at the position x at the moment t by u(t, x), or rather, by
f (u(x, t)) := ẋ(t). (For the inviscid Burgers equation, u(x, t) := ẋ(t).) Due to the
absence of interaction, the Newton equation of any particle is ẍ(t) = 0.

Example. The inviscid 1D Burgers equation (see [1]). Consider the equation ut +
3uux = 0 with k = n = 1 and f (u) = 3u. There the flow of the vector field Y = 3u∂x
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is tilting the plane to the right with constant speed. The illustration shows how a graph
of an honest function is moved through a shock (when the derivatives become infinite)
towards the graph of a multivalued function; each piece of it is still a local solution. We

Figure 2. The characteristic flow of the inviscid Burgers equations tilts the plane.

also refer to [2] for a treatment of more general equations ut +A(u)ux = 0 (where A
is matrix valued with all eigenvalues distinct) as the limits of equations with “viscous”
right hand side ε�u.

We now interpret the characteristics in the space of graphs of functions. Given
a function u0 ∈ C∞

c (R
k,Rn) with compact support we consider the graph of u0 as

the submanifold �(u0) = {(x, u0(x)) : x ∈ R
k} of R

k+n. Let pr1 : R
k+n → R

k

and pr2 : R
k+n → R

n be the projections. Consider the interval of all t ∈ R such
that pr1 |F lYt (�(u0)) : F lYt (�(u0)) → R

k is a diffeomorphism for all t ′ ∈ [0, t] or
t ′ ∈ [t, 0], respectively. Then

u(x, t) = pr2(pr1 |F lYt (�(u0)))
−1(x)

is a solution of equation 4.1 with initial value u(x, 0) = u0(x). Thus the vector field
X on C∞

c (R
k,Rn) admits a local flow.

4.3 The flow completion. Now one can see that after some time graphs of functions
become graphs of multivalued functions. This explains the following construction of
the completion.

We consider the principal bundle of all proper smooth embedded k-surfaces in
R
k+n which deviate from R

k × 0 only in a compact set, with projection

π : EmbRk (R
k,Rk+n) → BRk (R

k,Rk+n)

onto the convenient manifold of k-dimensional submanifolds of R
k+n which deviate

from R
k × 0 only in a compact set. The structure group is the group of Diffc(Rk)

of diffeomorphisms with compact support. We have the graph embedding, a smooth
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mapping

γ : C∞
c (R

k,Rn) → EmbRk (R
k,Rk+n), γ (u)(x) = (x, u(x)).

Let us assume now that f (0) = 0. Then the flow FlYt (x, y) = (x + tf (y), y) of
the vector field Y (x, y) = f1(y)∂x1 + . . . fk(y)∂xk on R

k+n acts on parameterized
k-surfaces in EmbRk (R

k,Rk+n) by (FlYt �(c1, c2))(x) = (c1(x) + tf (c2(x)), c2(x))

and is the flow of the vector field Y∗ on EmbRk (R
k,Rk+n) given by Y∗(c1, c2) =

(f1 � c2)∂x1 + · · · + (fk � c2)∂xk = (f � c2, 0). The vector field Y∗ is invariant under
the principal right action of g ∈ Diffc(Rk)which is given by (c1, c2) → (c1�g, c2�g).
Thus Y∗ induces a smooth vector field Z on the base manifold BRk (R

k,Rk+n) whose
flow is again FlYt applied to closed submanifolds of R

k+n.
We consider now the space G of all closed non-compact k-dimensional submani-

folds N ∈ BRk (R
k,Rk+n) such that for some t ∈ R the mapping pr1 � FlYt |N : N →

R
k is a diffeomorphism. By the choice of topology on BRk (R

k,Rk+n) the space G is
open, and obviously invariant under the flow of the vector field Z.

Proposition. Let f (0) = 0. Then the flow completion C∞
c (R

k,Rn) of the infinite
dimensional manifold with vector field (C∞

c (R
k,Rn),X) is diffeomorphic to (G, Z).

The mapping jt : (C∞
c (R,R

n),X) → G is given by jt = FlZt �π � γ .

Proof. In the proof of theorem 2.2 we have seen that the completion C∞
c (R

k,Rn)

can be described by taking the pieces jt (C∞
c (R,R

n)) which are all diffeomorphic to
C∞
c (R,R

n) and gluing them via the smooth mappings (js)−1 � jr = FlXs−r for r < s.
But this is realized in the open subset G ⊂ BRk (R

k,Rk+n) by the global flow FlZ .
Thus we reconstructed the atlas describing the completion in 2.2 as a smooth manifold.

��
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1 Introduction

Enumerative geometry and knot theory have benefitted considerably from the insights
and results in string theory and topological field theory. The theory of Gromov–Witten
invariants has emerged mostly from the consideration of topological sigma models and
topological strings, and mirror symmetry has provided a surprising point of view with
powerful techniques and deep implications for the theory of enumerative invariants.
On the other hand, the new invariants of knots and links that emerged in the eighties
turned out to be deeply related to Chern–Simons theory, a topological gauge theory
introduced by Witten in [92], which also provided a new family of invariants of three-
manifolds. It is safe to say that these two topics, enumerative geometry and knot
theory, have been deeply transformed through the emergence of these connections to
physics.

A more recent surprise, however, is that, in many situations, knot invariants are
related to enumerative invariants. The reason is that Chern–Simons gauge theory has
a string description in the sense envisaged by ’t Hooft [86], and this description turns
out to involve topological strings, i.e. the physical counterparts of Gromov–Witten
invariants. This relation between two seemingly unrelated areas of geometry is there-
fore based on a beautiful realization of the large N string/gauge theory duality. The
connection between Chern–Simons theory and topological strings was first pointed
out by Witten in [95], and the current picture emerged in the works of Gopakumar and
Vafa [37] and Ooguri and Vafa [76].

In this paper we have tried to review these developments. We have focused mostly
in presenting results, general ideas and examples. Some of the physical arguments
leading to these results are not covered in detail, mostly for reasons of space, but also
with the hope that mathematicians will find this review more readable. Important
related developments, like the interplay with mirror symmetry and the relation with
M-theory on manifolds ofG2 holonomy, are only mentioned in the text. Other reviews
of the topics covered here include [88, 57], and more recently [40], which provides
extensive mathematical background.

The plan of this paper is the following. In section 2 we review some basic facts
about open and closed topological strings and their structure in terms of integer in-
variants. In section 3, we give a quick review of Chern–Simons theory and knot and
link invariants. In section 4, we state the basic ideas of string/gauge theory duality in
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the 1/N expansion, and we show, following Gopakumar and Vafa, that Chern–Simons
theory has a description in terms of closed strings on the resolved conifold. In sec-
tion 5 we show in detail how to incorporate Wilson loops in the duality. It turns out
that the Chern–Simons/string duality can be extended to closed strings propagating in
more complicated toric geometries, and we summarize some of the results in section 6.
Finally, some conclusions and open problems are collected in section 7.

2 Topological strings

2.1 Topological sigma models

The starting point to construct topological strings is an N = (2, 2) superconformal
field theory, the N = (2, 2) nonlinear sigma model. This model can be twisted in
two ways in order to produce a topological field theory [91, 58, 93], which are usually
called the A and the B model. We will focus here on the A-model.

The field content of this model is the following. First, we have a map x : �g → X

from a Riemann surface of genus g to a target spaceX, that will be a Kähler manifold
of complex dimension d. We also have fermions χ ∈ x∗(T X), which are scalars
on �g , and a fermionic one form ψα with values in x∗(T X). This last field satisfies
a selfduality condition which implies that its only nonzero components are ψIz̄ ∈
x∗(T (1,0)X) and ψIz ∈ x∗(T (0,1)X), where T (1,0)X, T (0,1)X denote, respectively, the
holomorphic and the antiholomorphic tangent bundles, and I, I are the corresponding
indices. The theory also has a BRST, or topological, chargeQwhich acts on the fields
according to

{Q, x} = iχ,

{Q,χ} = 0,

{Q,ψIz̄ } = −∂z̄xI − iχJ�IJKψ
K
z̄ ,

{Q,ψIz } = −∂zxI − iχJ�I
JK
ψKz̄ .

(2.1)

The twisted Lagrangian turns out to be Q-exact, up to a topological term:

L = i{Q,V } +
∫
�g

x∗(ω), (2.2)

where ω = J + iB is the complexified Kähler class of X, and V (sometimes called
the gauge fermion) is given by

V =
∫
�g

d2zGIJ (ψ
I
z ∂z̄x

J + ∂xx
IψJz̄ ). (2.3)
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In this equation, GIJ is the Kähler metric of X. Notice that the last term in (2.2) is
a topological invariant characterizing the homotopy type of the map x : �g → X,
therefore the energy-momentum tensor of this theory is given by:

Tαβ = {Q, bαβ}, (2.4)

where bαβ = δV/δgαβ . The fact that the energy-momentum tensor isQ-exact means
that the theory is topological, and the fact that the Lagrangian is Q-exact up to a
topological term means that the semiclassical approximation is exact. The classical
solutions of the sigma model action are holomorphic maps x : �g → X, which are
also known as worldsheet instantons, and the functional integral localizes to these
configurations. The relevant operators in this theory, as in any topological theory of
cohomological type, are the Q-cohomology classes. In this case they are given by
operators of the form,

Oφ = φi1...ipχ
i1 . . . χ ip , (2.5)

where φ = φi1...ipdx
i1 ∧ · · · ∧ dxip is a closed p-form representing a nontrivial class

inHp(X). Moreover, one can derive a selection rule for correlation functions of such
operators: the vacuum expectation value 〈Oφ1 . . .Oφ�〉 vanishes unless

�∑
k=1

deg(Oφk ) = 2d(1 − g)+ 2
∫
�g

x∗(c1(X)), (2.6)

where deg(Oφk ) = deg(φk). The right hand of this equation is nothing but the virtual
dimension of the moduli space of holomorphic maps, Mhol

�g→X. Since the operators
(2.5) can be interpreted as differential forms on this moduli space, the above selection
rule just says that we have to integrate top forms.

In the case of a Calabi–Yau manifold of complex dimension 3, we have c1(X) = 0,
and the selection rule says that at genus g = 0 (i.e. when the Riemann surface is a
sphere S

2) we have to insert three operators associated to 2-forms. The correlation
functions can be evaluated by summing over the different topological sectors of holo-
morphic maps. These sectors can be labelled by “instanton numbers.” Let �i denote
a basis of H2(X), with i = 1, . . . , b2. If the image of x(S2) is in the homology class
β =∑i ni�i , then we will say that the worldsheet instanton is in the sector specified
by β, or equivalently, by the integers ni . The trivial sector corresponds to β = 0,
i.e. the image of the sphere is a point in the target, and in this case the correlation
function is just the classical intersection number D1 ∩D2 ∩D3 of the three divisors
Di , i = 1, 2, 3, associated to the 2-forms, while the nontrivial instanton sectors give
an infinite series. The final answer looks, schematically,

〈Oφ1Oφ2Oφ3〉 = (D1 ∩D2 ∩D3)+
∑
β

I0,3,β(φ1, φ2, φ3)q
β (2.7)

The notation is as follows: let ω = ∑b2
i=1 tiωi , be the complexified Kähler form of

X, where ωi is a basis for H 2(X) dual to �i , and ti are the complexified Kähler
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parameters. Set qi = e−ti . If β =∑i ni�i , then qβ denotes
∏
i q
ni
i . The coefficients

I0,3,β(φ1, φ2, φ3) “count” in some appropriate way the number of holomorphic maps
from the sphere to the Calabi–Yau, in the topological sector specified by β, and in
such a way that the point of insertion of Oφi gets mapped to the divisorDi . This is an
example of a Gromov–Witten invariant, although to get the general picture we have
to couple the model to gravity, as we will see very soon.

When c1(X) > 0, correlation functions also have the structure of (2.7): the trivial
sector gives just the classical intersection number of the cohomology ring, and then
there are quantum corrections associated to the worldsheet instantons. One important
aspect of the case c1(X) > 0 is that the right hand side of (2.6) contains the positive
integer

∑
i ni
∫
�i
c1(X), where ni are the instanton numbers labelling the topological

sector of the holomorphic map. As the ni increase, it won’t be possible to satisfy the
selection rule for the insertions. Therefore, only a finite number of topological sectors
contribute to the correlation function, which will be given by the sum of a classical
intersection number plus a finite number of “quantum” corrections. This is the starting
point in the definition of the quantum cohomology of X, see [23] for details.

2.2 Closed topological strings

In the above considerations on topological sigma models we have focused on g = 0.
For g = 1 and a Calabi–Yau manifold, the only vacuum expectation value (vev) that
may lead to a nontrivial answer is that of the unit operator, i.e. the partition function
itself, while for g > 1 the virtual dimension of the moduli space is negative and
the above theory is no longer useful to study the enumerative geometry of the target
space X. This corresponds mathematically to the fact that, for a generic metric on
the Riemann surface �g , there are no holomorphic maps at genus g > 1. In order
to circumvent this problem, we have to couple the theory to two-dimensional gravity,
which means considering all possible metrics on the Riemann surface. The resulting
model is called a topological string theory. We will start by giving a general idea from
a more mathematical point of view (see [23] for a rigorous discussion), and then we
will present the physical construction.

The moduli space of possible metrics (or equivalently, complex structures) on a
Riemann surface with punctures is the famous Deligne–Mumford spaceMg,n of stable
curves with n marked points (the definition of what stable means can be found for
example in [43]). The moduli space we have to consider in the theory of topological
strings also involves maps. It consists on one hand of a point inMg,n, i.e. a Riemann
surface with n punctures, (�g, p1, . . . , pn), and this involves a choice of complex
structure on�g . On the other hand, we have a map x : �g → Xwhich is holomorphic
with respect to the choice of complex structure on �g .

Let us now fix the topological sector of the holomorphic map, i.e. the homology
class β = x∗[�g]. In general, there will be many maps in this sector. The set given
by the possible data (x,�g, p1, . . . , pn) associated to the class β can be promoted
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to a moduli space Mg,n(X, β), provided a certain number of conditions are satisfied.
This is the basic moduli space we will need in the theory of topological strings. Its
(complex) virtual dimension is given by:

(1 − g)(d − 3)+ n+
∫
�g

x∗(c1(X)). (2.8)

If we compare (2.8) to (2.6), we see that there is an extra 3(g−1)+nwhich comes from
the Mumford–Deligne space Mg,n. The moduli space Mg,n(X, β) comes equipped
with the natural maps

π1 : Mg,n(X, β) −→ Xn,

π2 : Mg,n(X, β) −→ Mg,n. (2.9)

The first map is easy to define: given a point (x,�g, p1, . . . , pn) in Mg,n(X, β),
we just compute (x(p1), . . . , x(pn)). The second map sends (x,�g, p1, . . . , pn) to
(�g, p1, . . . , pn), i.e. forgets the information about the map and leaves the punctured
curve (there are some subtleties with this map, associated to the stability conditions;
see [23]). We can now formally define the Gromov–Witten invariant Ig,n,β as follows.
Let us consider cohomology classes φ1, . . . , φn in H ∗(X). The map π1 induces a
map π∗

1 : H ∗(X)n → H ∗(Mg,n(X, β)), and we can pullback φ1 ⊗ · · · ⊗ φn to get
a differential form on the moduli space of holomorphic maps. This form can be
integrated as long as there is a well-defined fundamental class for this space, and the
result is the Gromov–Witten invariant Ig,n,β(φ1, . . . , φn):

Ig,n,β(φ1, . . . , φn) =
∫
Mg,n(X,β)

π∗
1 (φ1 ⊗ · · · ⊗ φn). (2.10)

By using the Gysin map π2!, one can reduce this to an integral over the moduli space
of curvesMg,n. The Gromov–Witten invariant Ig,n,β(φ1, . . . , φn) vanishes unless the
degree of the form equals the dimension of the moduli space. Therefore, we have the
following selection rule:

1

2

n∑
i=1

deg(φi) = (1 − g)(d − 3)+ n+
∫
�g

x∗(c1(X)) (2.11)

Notice that Calabi–Yau threefolds play a special role in the theory, since for those
targets the virtual dimension only depends on the number of punctures, and therefore
the above condition is always satisfied if the forms φi have degree 2. The invariants
(2.10) generalize the invariants obtained from topological sigma models. In particular,
I0,3,β are the invariants involved in the evaluation of correlation functions of the
topological sigma model with a Calabi–Yau threefold as its target in (2.7). When
n = 0, one gets an invariant Ng,β = Ig,0,β which does not require any insertions.
We will refer to this as the Gromov–Witten invariant of the Calabi–Yau threefold X
at genus g and in the class β. These are the only (closed) Gromov–Witten invariants
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that we will deal with here. It can be also shown that, for genus 0 [23],

I0,3,β(φ1, φ2, φ3) = N0,β

∫
β

φ1

∫
β

φ2

∫
β

φ3, (2.12)

so from these Gromov–Witten invariants one can recover as well the information about
the three-point functions of the topological sigma model.

The physical point of view on the Gromov–Witten invariants Ng,β comes about
as follows. It is clear that we have to couple the topological sigma model to two
dimensional gravity in order to get nontrivial invariants. To do that, one realizes
[26, 15] that the structure of the twisted theory is tantalizingly close to that of the
bosonic string. In the bosonic string, there is a nilpotent BRST operator, QBRST,
and the energy-momentum tensor turns out to be a QBRST-commutator: T (z) =
{QBRST, b(z)}. This is precisely the same structure that we found in (2.4), so the
field bαβ plays the role of a ghost. Therefore, one can just follow the prescription of
coupling to gravity for the bosonic string and define a genus g free energy as follows:

Fg =
∫
Mg

〈
6g−6∏
k=1

(b, µk)〉, (2.13)

where

(b, µk) =
∫
d2z(bzz(µk)

z
z̄ + bz̄z̄(µk)

z̄
z ), (2.14)

andµk are the usual Beltrami differentials. The vev in (2.13) refers to the path integral
over the fields of the twisted sigma model. The result, which depends on the choice of
complex structure of the Riemann surface, is then integrated over the moduli spaceMg .
Fg can be evaluated again, like in the topological sigma model, as a sum over instanton
sectors. It turns out [15] that Fg is a generating functional for the Gromov–Witten
invariants Ng,β , or more precisely,

Fg(t) =
∑
β

Ng,βq
β. (2.15)

It is also useful to introduce a generating functional for the all-genus free energy:

F(gs, t) =
∞∑
g=0

Fg(t)g
2g−2
s . (2.16)

The parameter gs can be regarded as a formal variable, but in the context of type II
strings it is nothing but the string coupling constant.

The first term in (2.15) corresponds to the contribution of constant maps, with
β = 0. It was shown in [15] (see also [35]) that, for g ≥ 2, this contribution can
be expressed as an integral over Mg . The result is as follows: on Mg there is a
complex vector bundle E of rank g, called the Hodge bundle, whose fiber at a point
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� is H 0(�,K�). The contribution of constant maps to Fg is then given by

Ng,0 = (−1)g
χ(X)

2

∫
Mg

c3
g−1(E), g ≥ 2, (2.17)

where cg−1 is the (g− 1)-th Chern class of E, and χ(X) is the Euler characteristic of
the target space.

In general, Gromov–Witten invariants can be computed by using the localization
techniques pioneered by Kontsevich [55]. These techniques are easier to implement in
the case of non-compact Calabi–Yau manifolds (the so-called local case), where one
can compute Ng,β for arbitrary genus. For example, let us consider the non-compact
Calabi–Yau manifold O(−3) → P

2. This is the total space of P
2 together with its

anticanonical bundle, and it has b2 = 1, corresponding to the hyperplane class of P
2.

Therefore, the class β is labelled by a single integer, the degree of the curve in P
2. By

using the localization techniques of Kontsevich, adapted to the noncompact case, one
finds [20, 53]:

F0(q) = − t3

18
+ 3 q − 45 q2

8
+ 244 q3

9
− 12333 q4

64
· · ·

F1(q) = − t

12
+ q

4
− 3 q2

8
− 23 q3

3
+ 3437 q4

16
· · ·

F2(q) = χ(X)

5720
+ q

80
+ 3 q3

20
− 514 q4

5
· · ·

(2.18)

and so on. In (2.18), t is the Kähler class of the manifold, χ(X) = 2 is the Euler
characteristic of the local P

2, and q = e−t . The first term in F2 is the contribution of
constant maps, and we will provide later on a universal expression for it.

It should be mentioned that there is of course a very powerful method to com-
pute Fg , namely mirror symmetry (the B-model). In the B-model, the Fg amplitudes
are deeply related to the variation of complex structures on the Calabi–Yau manifold
(Kodaira–Spencer theory) and can be computed through the holomorphic anomaly
equations of [15]. B-model computations of Gromov–Witten invariants and Fg am-
plitudes can be found for example in [15, 20, 44, 53, 50]. Finally, it should be
mentioned that, when type II theory is compactified on a Calabi–Yau manifold, the
Fg appear naturally as the couplings of some special set of F-terms of the low-energy
supergravity action [15, 7]. This point of view has shown to be extremely important
in understanding the properties of topological strings.

2.3 Open topological strings

Let us now consider open topological strings. The natural starting point is a topological
sigma model in which the worldsheet is now a Riemann surface �g,h of genus g with
h holes. Such models were analyzed in detail in [95]. The main issue is of course
to specify boundary conditions for the maps x : �g,h → X. It turns out that, for
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the A-model, the relevant boundary conditions are Dirichlet, supported on Lagrangian
submanifolds of the Calabi–YauX. If we denote byCi , i = 1, . . . , h the holes of�g,h
(i.e. the disconnected components of the boundary ∂�g,h), we have to pick Lagrangian
submanifolds Li , and consider maps such that

x(Ci) ⊂ Li . (2.19)

These boundary conditions are a consequence of requiringQ-invariance at the bound-
ary. One also has boundary conditions on the fermionic fields of the theory, which
require that χ and ψ at the boundary Ci take values on x∗(TLi ). We can also cou-
ple the theory to Chan–Paton degrees of freedom on the boundaries, giving rise to a⊗

i U(Ni) gauge symmetry. The model can then be interpreted as a topological open
string theory in the presence ofNi topological D-branes wrapping the Lagrangian sub-
manifolds Li . Notice that, in contrast to physical D-branes in Calabi–Yau manifolds,
which wrap special Lagrangian submanifolds [13, 75], in the topological framework
the conditions are relaxed to just Lagrangian.

Once boundary conditions have been specified, one can define the free energy
of the topological string theory similarly to what we did in the closed case. Let us
consider for simplicity the case in which one has a single Lagrangian submanifold
L, so that all the boundaries of �g,h are mapped to L. Now, in order to specify
the topological sector of the map, we have to give two different kinds of data: the
boundary part and the bulk part. For the bulk part, the topological sector is labelled by
relative homology classes, since we are requiring the boundaries of x∗[�g,h] to end
on L. Therefore, we will set

x∗[�g,h] = Q, Q ∈ H2(X,L) (2.20)

To specify the topological sector of the boundary, we will assume that b1(L) = 1, so
that H1(L) is generated by a nontrivial one cycle γ . We then have

x∗[Ci] = wiγ, wi ∈ Z, i = 1, . . . , h, (2.21)

in other words, wi is the winding number associated to the map x restricted to Ci . We
will collect these integers into a single vector h-uple denoted by w = (w1, . . . , wh).

There are various generating functionals that we can consider, depending on the
topological data that we want to keep fixed. It is very useful to fix g, h and the winding
numbers, and sum over all bulk classes. This produces the following generating
functional of open Gromov–Witten invariants:

Fw,g(t) =
∑
Q

FQw,ge−Q·t . (2.22)

In this equation, we have labelled the relative cohomology classes Q of embedded
Riemann surfaces by a vector Q of b2(X) integers defined as∫

Q
ω = Q · t, (2.23)
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where t = (t1, . . . , tb2(X)) are the complexified Kähler parameters of the Calabi–Yau
manifold. In many examples relevant to knot theory, the entriesQ are naturally chosen
to be half-integers. Finally, the quantities FQw,g are the open string Gromov–Witten
invariants, and they “count” in an appropriate sense the number of holomorphically
embedded Riemann surfaces of genus g in X with Lagrangian boundary conditions
specified by L and in the class represented by Q,w. These are in general rational
numbers.

We can now consider the total free energy, which is the generating functional for
all topological sectors:

F(V ) =
∞∑
g=0

∞∑
h=1

∑
w1,...,wh

ih

h!g
2g−2+h
s Fg,w(t)Tr V w1 . . .Tr V wh, (2.24)

where gs is the string coupling constant, and V is a matrix source that keeps track
of the topological sector at the boundary. The factor ih is very convenient in order
to compare to the Chern–Simons free energy, as we will see later. The factor h! is a
symmetry factor which takes into account that the holes are indistinguishable (or one
could have absorbed them into the definition of Fg,w).

In order to compare open Gromov–Witten invariants to knot invariants, it is useful
to introduce the following notation. When allwi are positive, one can labelw in terms
of a vector k. Given an h-uple w = (w1, . . . , wh), we define a vector k as follows:
the i-th entry of k is the number of wj ’s which take the value i. For example, if
w1 = w2 = 1 and w3 = 2, this corresponds to k = (2, 1, 0, . . . ). In terms of k, the
number of holes and the total winding number are

h = |k| ≡
∑
j

kj , � =
∑
i

wi =
∑
j

jkj . (2.25)

Note that a given kwill correspond to manyw’s which differ by permutation of entries.
In fact there are h!/∏j kj ! h-tuples w which give the same vector k (and the same
amplitude). We can then write the total free energy for positive winding numbers as:

F(V ) =
∞∑
g=0

∑
k

i|k|∏
j kj !

g
2g−2+h
s F

g,k(t)ϒk(V ) (2.26)

where

ϒk(V ) =
∞∏
j=1

(TrV j )kj . (2.27)

Although a rigorous theory of open Gromov–Witten invariants is not available,
localization techniques make possible to compute them in various situations [51, 67,
39, 73, 16, 52]. It is also possible to use mirror symmetry to compute disc invariants
(i.e. when g = 0, h = 1), as it was first shown in [4] and subsequently explored in
[2, 72, 65, 47, 38]. Finally, we also mention that the open string amplitudes Fg,w also
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appear as low-energy couplings of type II superstrings compactified on Calabi–Yau
manifolds in the presence of D-branes [15, 89].

2.4 Integer invariants from topological strings

The closed and open Gromov–Witten invariants that have been introduced are both
rational, due to the orbifold structure of the moduli spaces. On the other hand, these
invariants are deeply related to questions in enumerative geometry, but the relation
between the invariants and the number of holomorphic curves of a given genus and
in a given homology class is far from being simple. An obvious reason for this is
multicovering. Suppose you have found a holomorphic map x : S

2 → X in genus
zero of degree d. Then, simply by composing this with a degree k cover S

2 → S
2,

you get another holomorphic map of degree kd. Therefore, at every degree, in order
to count the actual number of “primitive” holomorphic curves, one should subtract
the contributions coming from multicovering of curves with lower degree. On top
of that, the contribution of a k-cover appears in N0,kd with weight k−3. Therefore,
although in genus zero the Gromov–Witten invariants are not integer, this is due to
the effects of multicovering, and once this has been taken into account one extracts
integer numbers that correspond in many cases to actual numbers of rational curves.
The multicovering phenomenon at genus 0 was found experimentally in [19] and later
on derived in [8].

Another geometric effect that has to be taken into account is bubbling [14, 15].
Imagine that you found a map x : �g → X from a genus g surface to a Calabi–Yau
threefold. By gluing to �g a small Riemann surface of genus h, and making it very
small, you get an approximate holomorphic map from a Riemann surface whose genus
is topologically g + h. This means that “primitive” maps at genus g contribute to all
genera g′ > g, and in order to count curves properly we should take this effect into
account.

These facts suggest that, although the Gromov–Witten invariants are not in general
integer numbers, they have some hidden integrality structure, and that one can extract
from them integer invariants that are related to a counting problem. But it turns out
that, instead of deriving the various effects of multicovering and bubbling from a
geometrical point of view, the underlying integral structure of the Gromov–Witten
invariants is better revealed when the Fg is regarded as a low-energy coupling in a
compactification of type IIA theory on a Calabi–Yau manifold. Using this approach,
Gopakumar andVafa showed [36] that one can write the generating functionalF(gs, t)
in terms of contributions associated to BPS states, and they used type IIA/M-theory
duality to obtain a completely new point of view on topological strings. They showed
in particular that Gromov–Witten invariants of closed strings can be written in terms of
some new, integer invariants known as Gopakumar–Vafa invariants. These invariants
count in a very precise way the number of BPS states that arise in the Calabi–Yau
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compactification of type IIA theory. We will now describe this result in some detail
and provide some examples.

The result of Gopakumar and Vafa concerns the overall structure of F(gs, t).
According to [36], the generating functional (2.16) can be written as

F(gs, t) =
∞∑
g=0

∑
β

∞∑
d=1

n
g
β

1

d

(
2 sin

dgs

2

)2g−2

qdβ, (2.28)

where ngβ , which are the Gopakumar–Vafa invariants, are integer numbers. In (2.28),

t denotes the set of b2(X) Kähler parameters, and qβ is defined as in (2.7). It is very
illuminating to expand (2.28) in powers of gs and extract from it the structure of a
given Fg . One easily obtains, for g = 0, the well-known structure of the prepotential
[19, 8]:

F0 = 1

3!
∫
X

ω3 +
∫
X

c2(X) ∧ ω + χ(X)
ζ(3)

2
+
∑
β

n0
βLi3(q

β), (2.29)

up to the polynomial terms in t . Here χ(X), c2(X) denote respectively the Euler
characteristic and the second Chern class of the Calabi–Yau target. We recall that Lij
denotes the polylogarithm of index j , which is defined by:

Lij (x) =
∞∑
n=1

xn

nj
. (2.30)

Notice that Li1(x) = − log(1 − x), while for j ≤ 0, Lij (x) is a rational function of x:

Lij (x) =
(
x
d

dx

)|j | 1

1 − x
= |j |! x|j |

(1 − x)|j |+1 + · · · . (2.31)

For g = 1, one obtains:

F1 = 1

24

∫
X

c2(X) ∧ ω +
∑
β

(
1

12
n0
β + n1

β

)
Li1(q

β). (2.32)

Finally, for g > 1, the Gopakumar–Vafa result gives:

Fg(t) = (−1)gχ(X)|B2gB2g−2|
4g(2g − 2)(2g − 2)! (2.33)

+
∑
β

( |B2g|n0
β

2g(2g − 2)! + 2(−1)gn2
β

(2g − 2)! ± · · · − g − 2

12
n
g−1
β + n

g
β

)
Li3−2g(q

β).

In this equation, Bn denote the Bernoulli numbers. The first term in (2.33) is the
contribution to Fg associated to maps from �g to a single point. Comparing it with
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(2.17) we find that the Gopakumar–Vafa structure result predicts:

∫
Mg

c3
g−1(E) = |B2gB2g−2|

2g(2g − 2)(2g − 2)! . (2.34)

This expression was conjectured by Faber [30], derived in [70] from heterotic/type
IIA duality, and proved in [31].

The polylogarithm in (2.33) indicates that the degree k multicover of a curve of
genus g contributes with a factor k2g−3 to Fg . This generalizes the results of [19] for
genus 0 and results for genus 1 in [14]. The multicover contribution was also found in
[70] by using heterotic/type II duality. But equation (2.33) also takes into account in a
precise way the effect of bubbling onFg: at every genus g, one has to take into account
all the previous genera g′ < g in order to extract the Gopakumar–Vafa invariants ngβ .

The Gopakumar–Vafa invariants contain all the information of the Gromov–Witten
invariants, and vice versa: if one knows the Gopakumar–Vafa invariants ngβ for all g
and β, one can deduce the Ng,β , and the other way around. This follows just by
comparing (2.28) with (2.16), and it is worked out in detail in [17], where explicit
formulae for the relation between Ng,β and ngβ are given. But one remarkable aspect

of the Gopakumar–Vafa picture is that, in many situations, the integer invariants ngβ can
be computed much more easily than their Gromov–Witten counterparts [36, 50]. In
fact, their computation involves in many cases just classical algebraic geometry, so one
gets rid of the complications of the moduli space of maps. The physical reason behind
is that in the Gopakumar–Vafa picture one looks at worldsheet instantons using the
physical gauge approach (in the terminology of [97]), i.e. one views the worldsheet
instanton as a submanifold of the target, and not as a map embedding a Riemann
surface �g inside a Calabi–Yau. Related developments can be found in [45].

Let us consider some simple examples of the Gopakumar–Vafa invariants. The
simplest one refers to the noncompact Calabi–Yau manifold O(−1)⊕ O(−1) → P

1,
also known as the resolved conifold, which will play an important role later on. This
manifold is toric, and can be described as the zero locus of

|x1|2 + |x4|2 − |x2|2 − |x3|2 = s (2.35)

quotiented by a U(1) that acts as

x1, x2, x3, x4 → eiαx1, e−iαx2, e−iαx3, eiαx4 (2.36)

This is the description that appears naturally in the linear sigma model of [96]. Notice
that, for x2 = x3 = 0, (2.35) describes a P

1 whose area is proportional to s. Therefore,
(x1, x4) can be taken as homogeneous coordinates of the P

1 which is the basis of the
fibration, while x2, x3 can be regarded as coordinates for the fibers. This manifold has
b2(X) = 1, corresponding to the P

1 in the base, and its total free energy turns out to
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be

F(gs, t) =
∞∑
d=1

1

d
(

2 sin dgs
2

)2 q
d, (2.37)

where q = e−t and t is the complexified area of the P
1. We see that the only nonzero

Gopakumar–Vafa invariant is n0
1 = 1. On the other hand, this model already has an

infinite number of nontrivial Ng,β invariants, but these are all due to bubbling and
multicovering: the model only has one true “primitive” curve, which is just P

1, and
this is what the Gopakumar–Vafa invariant is computing.

A more complicated example is the local P
2 geometry considered before, which

already has an infinite number of nontrivial Gopakumar–Vafa invariants. These have
been computed in [53, 50, 3] using the A-model, the B-model, and the duality with
Chern–Simons theory that we will explain in section 6. Some results are presented in
Table 2.4. In this table, the integer d labels the class β, and corresponds to the degree
of the curve in P

2. Notice that the first Gromov–Witten invariants are N0,1 = 3, and
N0,2 = −45/8, as listed in (2.18), therefore using the multicovering/bubbling formula
one finds n0

1 = N0,1 = 3, and N0,2 = n0
1/8 + n0

2, which gives n0
2 = −6.

Table 1. Gopakumar–Vafa invariants ng
d

for O(−3) → P
2.

d g = 0 1 2 3 4
1 3 0 0 0 0
2 −6 0 0 0 0
3 27 −10 0 0 0
4 −192 231 −102 15 0
5 1695 −4452 5430 −3672 1386

For open topological strings one can derive a similar expression relating open
Gromov–Witten invariants to a new set of integer invariants, that we will denote by
nw,g,Q. The corresponding multicovering/bubbling formula was derived in [76, 63],
following arguments similar to those in [36], and states that the free energies of open
topological string theory in the sector labelled by w can be written in terms of the
integer invariants nw,g,Q as follows:

∞∑
g=0

g
2g−2+h
s Fw,g(t) = (2.38)

1∏
i wi

∞∑
g=0

∑
d|w

∑
Q

(−1)h+g nw/d,g,Q dh−1
(

2 sin
dgs

2

)2g−2∏
i

(
2 sin

wigs

2

)
e−dQ·t .
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Notice there is one such identity for each w. In this expression, the sum is over all
integers d which satisfy that d|wi for all i = 1, . . . , h. When this is the case, we
define the h-uple w/d whose i-th component is wi/d. The expression (2.38) can be
expanded to give a set of multicovering/bubbling formulae for different genera. Up
to genus 2 one finds,

F
Q
w,g=0 = (−1)h

∑
d|w

dh−3nw/d,0,Q/d,

F
Q
w,g=1 = −(−1)h

∑
d|w

(
dh−1nw/d,1,Q/d − dh−3

24

(
2d2 −

∑
i

w2
i

)
nw/d,0,Q/d

)
,

F
Q

k,g=2
= (−1)h

∑
d|w

(
dh+1nw/d,2,Q/d + dh−1

24
nw/d,1,Q/d

∑
i

w2
i (2.39)

+ dh−3

5760

(
24d4 − 20d2

∑
i

w2
i − 2

∑
i

w4
i + 5

∑
i1,i2

w2
i1
w2
i2

)
nw/d,0,Q/d

)
.

In these equations, the integer d has to divide the vector w (in the sense explained
above) and it is understood that nwd,g,Q/d is zero if Q/d is not a relative homology
class.

It is important to notice that the integer invariants nw,g,Q are not the most funda-
mental ones. When all the winding numbers are positive, we can represent w by a
vector k = (k1, k2, . . . ), as we explained in 2.3. Such a vector can be interpreted as a
label for a conjugacy class C(k) of the symmetric group S�, where � =∑j jkj is the

total winding number: C(k) is the conjugacy class with k1 one-cycles, k2 two-cycles,
and so on. The invariant nw,g,Q will be denoted as nk,g,Q, and D-brane physics states
that it can be written as

nk,g,Q =
∑
R

χR(C(k))NR,g,Q, (2.40)

whereNR,g,Q are integer numbers labelled by representations of the symmetric group,
i.e. by Young tableaux, and χR is the character of S� in the representation R. The
above relation is invertible, since by orthonormality of the characters one has

NR,g,Q =
∑

k

χR(C(k))
zk

nk,g,Q, (2.41)

where

zk = �!
|C(k)| =

∏
kj !
∏

jkj . (2.42)

Notice that integrality of NR,g,Q implies integrality of nk,q,Q, but not the other way
around. In that sense, the invariants NR,g,Q are more fundamental. We will further
clarify this issue in section 4.
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3 Chern–Simons theory and knot invariants

In this section we make a short review of Chern–Simons theory and its relations to
knot invariants.

3.1 Chern–Simons theory: basic ingredients

Chern–Simons theory, introduced by Witten in [92], provides a quantum field theory
description of a wide class of invariants of three-manifolds and of knots and links in
three-manifolds. The Chern–Simons action with gauge group G on a generic three-
manifold M is defined by

S = k

4π

∫
M

Tr
(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
. (3.1)

Here, k is the coupling constant, and A is a G-gauge connection on the trivial bundle
overM . We will assume for simplicity thatG is a simply-laced group, unless otherwise
stated. As noticed by Witten, since this action does not involve the metric, the resulting
quantum theory is topological, at least formally. In particular, the partition function

Zk(M) =
∫

[DA]eiS (3.2)

should define a topological invariant of the manifold M . A detailed analysis [92]
shows that this is in fact the case, with an extra subtlety: the invariant depends on the
three-manifold and of a choice of framing, i.e. a choice of trivialization of the bundle
TM⊕TM (this should be called, strictly speaking, a 2-framing, but we will refer to it
as framing, following standard practice). As explained in [9], for every three-manifold
there is a canonical choice of framing, and the different choices are labelled by an
integer s ∈ Z in such a way that s = 0 corresponds to the canonical framing. In the
following all the results will be presented in the canonical framing.

The partition function of Chern–Simons theory can be computed in a variety of
ways. One can for example use perturbation theory and produce an asymptotic series
in k around a classical solution to the action. The classical solutions of Chern–Simons
theory are just flat connectionsF(A) = 0 onM . Let us assume that these are a discrete
set of points (this happens, for example, if M is a rational homology sphere). In that
situation, one expresses Zk(M) as a sum of terms associated to stationary points:

Zk(M) =
∑
c

Z
(c)
k (M), (3.3)

where c labels the different flat connections A(c) onM . The structure of the perturba-
tive series was analyzed in various papers [92, 83, 11] and is given by the following
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expression:

Z
(c)
k (M) = Z

(c)
1−loop(M). exp

{ ∞∑
�=1

S
(c)
� x�

}
. (3.4)

In this equation, x is the effective expansion parameter:

x = 2πi

k + y
, (3.5)

where y is the dual Coxeter of the group, and we will set l = k+ y. ForG = SU(N),
y = N . The one-loop correction Z(c)1−loop(M) was first analyzed in [92], and studied
in great detail since then. It involves some important normalization factors of the
path-integral, and determinants of differential operators. After some work it can be
written in terms of topological invariants of the three-manifold and the flat connection
A(c),

Z
(c)
1−loop(M) = (2πx)

1
2 (dimH 0

A(c)
−dimH 1

A(c)
)

vol(Hc)
e− 1

x
SCS(A

(c))− iπ
4 ϕ

√
|τ (c)R |, (3.6)

where H 0,1
A(c)

are the de Rham cohomology groups with values in the Lie algebra ofG

and associated to the flat connectionA(c), τ (c)R is the Reidemeister–Ray–Singer torsion
of A(c), Hc is the isotropy group of A(c), and ϕ is a certain phase. More details about
the structure of this term can be found in [92, 32, 48, 83]. The terms S(c)� in (3.4)
correspond to connected diagrams at � + 1 loops, and since they involve evaluation
of group factors of Feynman diagrams, they depend explicitly on the gauge group G
and the isotropy subgroup Hc. In the SU(N) or U(N) case, and for A(c) = 0 (the
trivial flat connection) they are polynomials in N . For the trivial flat connection, one
also has that dimH 0

A(c)
= dimG, dimH 1

A(c)
= 0, and Hc = G. The terms S(c)� are

also topological invariants associated to the three-manifold and the flat connection,
and they emerge naturally from the perturbative analysis of Chern–Simons theory.

As Witten showed in [92], it is also possible to use nonperturbative methods to
obtain a combinatorial formula for (3.2). This goes as follows. By canonical quanti-
zation, one associates a Hilbert space H(�) to any two-dimensional compact manifold
that arises as the boundary of a three-manifold, so that the path-integral over a man-
ifold with boundary gives a state in the corresponding Hilbert space. In order to
compute the partition function of a three-manifold M , one can perform a Heegard
splitting i.e. represent M as the connected sum of two three-manifolds M1 and M2
sharing a common boundary �, where � is a Riemann surface. If f : � → � is
a homeomorphism, we will write M = M1 ∪f M2, so that M is obtained by gluing
M1 to M2 through their common boundary by using the homeomorphism f . This is
represented in Fig. 1. We can then compute the full path integral (3.2) over M by
computing first the path integral over M1 and M2. This produces two wavefunctions
|�M1〉, |�M2〉 in H(�). On the other hand, the homeomorphism f : � → � will be
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M2

�

M1

Figure 1. Heegard splitting of a three-manifold M into two three manifolds M1 and M2
with a common boundary �.

represented by an operator in the Hilbert space,

Uf : H(�) → H(�) (3.7)

and the partition function can then be evaluated as

Zk(M) = 〈�M2 |Uf |�M1〉. (3.8)

In order to use this method, we have to find first the Hilbert space associated to a
boundary. There is one special case in which this can be done quite systematically,
namely when � = T

2, a two-torus. As it was first shown in [92] (and worked out
in detail in [28, 64, 59]), the states of the Hilbert space of Chern–Simons theory
associated to the torus, H(T2), are in one to one correspondence with the integrable
representations of the Wess–Zumino–Witten (WZW) model with gauge group G at
level k 1. A representation given by a highest weight � is integrable if the weight
ρ + � is in the Weyl alcove Fl , where l = k + y and ρ denotes as usual the Weyl
vector, given by the sum of the fundamental weights. The Weyl alcove is given by
�w/l�r modded out by the action of the Weyl group. For example, in SU(N) a weight
p =∑r

i=1 piλi is in Fl if

r∑
i=1

pi < l, and pi > 0, i = 1, . . . , r. (3.9)

1We will use the following notations in the following: the fundamental weights of G will be denoted
by λi , the simple roots by αi , with i = 1, . . . , r , and r denotes the rank of G. The weight and root lattices
of G are denoted by �w and �r , respectively, and |�+| denotes the number of positive roots.



Enumerative geometry and knot invariants 45

In the following, the basis of integrable representations will be labelled by the weights
in Fl , and the states in the Hilbert state of the torus H(T2) will be denoted by |p〉 =
|ρ+�〉 where�, as we have stated, is an integrable representation of the WZW model
at level l. The states |p〉 can be chosen to be orthonormal [28, 64, 59].

There is a special class of homeomorphisms of T
2 that have a simple expression

as operators in H(T2). These are Sl(2,Z) transformations, whose generators T and
S have the following simple matrix elements in the above basis:

Tαβ = δαβe2πi(hα−c/24),

Sαβ = i|�+|

(k + y)r/2

(
Vol�w

Vol�r

) 1
2 ∑
w∈W

ε(w) exp
(
− 2πi

k + y
α · w(β)

)
. (3.10)

In the first equation, hα is the conformal weight of the primary field associated to α:

hα = α2 − ρ2

2(k + y)
, (3.11)

and c is the central charge of the WZW model. In the second equation, the sum overw
is a sum over the elements of the Weyl group W , and ε(w) is the signature ofw. These
explicit formulae allow us to compute the partition function of any three-manifold that
admits a Heegard splitting along a torus, like for example a lens space. The case of
S

3 is particularly simple. It is well-known that S
3 can be obtained by gluing two solid

tori along their boundaries through an S transformation. The wavefunction associated
to the solid torus is simply the vacuum, which corresponds to |ρ〉, and we find

Z(S3) = 〈ρ|S|ρ〉 = Sρρ. (3.12)

By using Weyl’s denominator formula,∑
w∈W

ε(w)ew(ρ) =
∏
α>0

2 sinh
α

2
, (3.13)

one finds

Z(S3) = 1

(k + y)r/2

(
Vol�w

Vol�r

) 1
2 ∏
α>0

2 sin
(π(α · ρ)
k + y

)
. (3.14)

Besides providing invariants of three-manifolds, Chern–Simons theory also pro-
vides invariants of knots and links inside three-manifolds (for a survey of modern knot
theory, see [68, 80]). Some examples of knots and links are depicted in Fig. 2. When
dealing with knots, we will always consider that the Chern–Simons gauge group is
G = SU(N) or U(N). Given a knot K in S

3, we can consider the trace of the holon-
omy of the gauge connection around K in a given irreducible representation R of
SU(N), which gives the Wilson loop operator:

WK
R (A) = TrR

(
P exp

∮
γ

A
)
, (3.15)
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31

51

21  
2

41

61

41  2

Figure 2. Some knots and links. In the notation xLn , x indicates the number of crossings,
L the number of components (in case it is a link with L > 1) and n is a number used
to enumerate knots and links in a given set characterized by x and L. The knot 31 is
also known as the trefoil knot, while 41 is known as the figure-eight knot. The link 22

1 is
called the Hopf link.
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where P denotes path-ordered exponential. This is a gauge invariant operator whose
definition does not involve the metric on the three-manifold. The irreducible repre-
sentations of SU(N) can be labelled by highest weights or equivalently by the lengths
of rows in a Young tableau, li , where l1 ≥ l2 ≥ · · · . If we now consider a link L with
components Ki , i = 1, . . . , L, we can in principle compute the correlation function,

W(R1,...,RL)(L) = 〈WK1
R1
. . .W

KL

RL
〉 = 1

Z(M)

∫
[DA]

( L∏
i=1

W
Ki

Ri

)
eiS . (3.16)

The topological character of the action, and the fact that the Wilson loop operators
can be defined without using any metric on the three-manifold, indicate that (3.16)
is a topological invariant of the link L. These correlation functions can be studied
in a variety of ways. The nonperturbative approach pioneered by Witten in [92], by
exploiting the relation with WZW model, shows that these correlation functions are

rational functions of q± 1
2 , λ± 1

2 , where

q = ex = exp

(
2πi

k +N

)
, λ = qN . (3.17)

It turns out that the correlation function (3.16) is the quantum group invariant of the
link L associated to the irreducible representationsR1, . . . , RL ofUq(su(N)) (see for
example [82] for a general definition of the quantum group invariant).

The invariants of knots and links obtained as correlation functions in Chern–Simons
theory include and generalize the HOMFLY polynomial [33] (which is a generalization
itself of the Jones polynomial). The HOMFLY polynomial of a link L, PL(q, λ), can
be defined through the so-called skein relation. This goes as follows. Let L be a link
in S

3, and let us focus on one of the crossings in its plane projection. The crossing
can be an overcrossing, like the one depicted in L+ in Fig. 3, or an undercrossing,

L+ L− L0

Figure 3. Skein relations for the HOMFLY polynomial.

like the one depicted in L−. If the crossing is L+, we can form two other links either
by undoing the crossing (and producing L0 of Fig. 3) or by changing L+ into L−. In
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both cases the rest of the link is left unchanged. Similarly, if the crossing is L−, we
form two links by changing L− into L+ or into L0. The links produced in this way
will be in general topologically inequivalent to the original one (they can even have a
different number of components). The skein relation

λ
1
2PL+ − λ− 1

2PL− = (q
1
2 − q− 1

2 )PL0 (3.18)

expresses the HOMFLY polynomial of the original link in terms of the links that are
obtained by changing the crossing. By using recursively this relation, one can undo
all the crossings and express the polynomial in terms of its value on the unknot, or
trivial knot. This value is usually taken to be P = 1. The HOMFLY polynomial
corresponds to a Chern–Simons SU(N) link invariant with all the components in the
fundamental representation Rα = :

W( ,..., )(L) = λlk(L)

(
λ

1
2 − λ− 1

2

q
1
2 − q− 1

2

)
PL(q, λ) (3.19)

where lk(L) is the linking number of L. This can be shown, as in [92], by proving
that the vev in the fundamental representation satisfies the skein relation.

The link invariants defined in (3.16) can be computed in many different ways.
A particularly useful framework is the formalism of knot operators [59]. In this
formalism, one constructs operators that “create” knots wrapped around a Riemann
surface in the representation R of the gauge group associated to the highest weight�:

WK
� : H(�) → H(�). (3.20)

Notice that the topology of � restricts the type of knots that one can consider. So far
these operators have been constructed in the case when � = T

2. The knots that can
be put on a torus are called torus knots, and they are labelled by two integers (n,m)
that specify the number of times that they wrap the two cycles of the torus. Here, n
refers to the winding number around the noncontractible cycle of the solid torus, while
m refers to the contractible one. The trefoil knot 31 in Fig. 2 is the (2, 3) torus knot,
and the knot 51 is the (2, 5) torus knot. The operator that creates the (n,m) torus knot
will be denoted by W(n,m)

� , and it has a fairly explicit expression:

W
(n,m)
� |p〉 = e2πinmhρ+�

∑
µ∈M�

exp

[
−iπµ2 nm

k +N
− 2πi

m

k +N
p · µ

]
|p + nµ〉.

(3.21)
In this equation, hρ+� is the conformal weight, and M� is the set of weights cor-
responding to the irreducible representation with highest weight �. This equation
allows us to compute the vev of the Wilson loop around a torus knot in S

3 as follows:
first of all, one makes a Heegard splitting of S

3 into two solid tori, as we explained
before. Then, one puts the torus knot on the surface of one of the solid tori by acting
with the knot operator (3.21) on the vacuum |ρ〉. Finally, one glues together the tori
by performing an S-transformation. The normalized vev of the Wilson loop is then
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given by:

〈W(n,m)
� 〉 = 〈ρ|SW(n,m)

� |ρ〉
〈ρ|S|ρ〉 . (3.22)

One can show that [59]

W
(1,0)
� |ρ〉 = |ρ +�〉. (3.23)

On the other hand, the operator W(1,0)
� clearly creates a trivial knot, or unknot, on the

torus, therefore the states |ρ + �〉 are obtained by doing the path integral over the
solid torus with an insertion of a Wilson loop around the noncontractible loop in the
representation �, as shown in [92]. We can now evaluate easily the corresponding
Chern–Simons invariant. Using the explicit expression in (3.10), we find:

WR�(unknot) = 〈ρ|SW(1,0)
� |ρ〉

〈ρ|S|ρ〉 =
∑
w∈W ε(w)e− 2πi

k+N ρ·w(�+ρ)∑
w∈W ε(w)e− 2πi

k+N ρ·w(ρ) . (3.24)

Using Weyl’s denominator formula, the vacuum expectation value can be written as a
character

WR�(unknot) = ch�

[
− 2πi

k +N
ρ

]
. (3.25)

Moreover, using (3.13), we can finally write

WR�(unknot) =
∏
α>0

sin
(
π

k+N α · (�+ ρ)
)

sin
(
π

k+N α · ρ) . (3.26)

Notice that, in the limit k+N → ∞ (i.e. in the semiclassical limit), this becomes the
dimension of the representation R. For this reason, the above quantity is called the
quantum dimension of R, denoted by dimqR. It can be explicitly written as follows.
Define the q-numbers:

[x] = q
x
2 − q− x

2 , [x]λ = λ
1
2 q

x
2 − λ− 1

2 q− x
2 . (3.27)

If R has a Young tableau with cR rows of lengths li , i = 1, . . . , cR , then the quantum
dimension can be explicitly written as:

dimqR =
∏

1≤i<j≤cR

[li − lj + j − i]
[j − i]

cR∏
i=1

∏li−i
v=−i+1[v]λ∏li

v=1[v − i + cR] . (3.28)

This gives the Chern–Simons invariant of the unknot in the representation R.
What about other torus knots? When acting with the knot operator (3.21) on the

vacuum, we get the set of weights ρ + nµ, where µ ∈ M�. These weights will
have representatives in the Weyl alcove Fl , which can be obtained by a series of
Weyl reflections. The set of representatives in Fl will be denoted by M(n,�), and it
depends on the irreducible representation with highest weight �, and on the integer
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number n. Using the fact that ρ + nµ = w(ρ + ξ) for some w ∈ W , we conclude
that the Chern–Simons invariant of a torus knot (n,m) can be written as:

e2πinmhρ+�
∑

ρ+ξ∈M(n,�)

exp

[
− iπm

n(k +N)
ξ · (ξ + 2ρ)

]
chξ
[
− 2πi

k +N
ρ
]
. (3.29)

Notice that, since the representatives ρ+ ξ live in Fl , the weights ξ can be considered
as highest weights for a representation, hence (3.29) makes sense. As an example of
this procedure, one can compute the invariant in the fundamental representation. By
performing Weyl reflections, one can show that M(n, λ1) is given by the following
weights [60]:

ρ + (n− i)λ1 + λi, i = 1, . . . , N. (3.30)

The computation of the characters is now straightforward (they are just the quantum
dimensions of the weights (3.30)), and one finally obtains:

W
(n,m) = t

1
2 λ− 1

2
(λt−1)

(m−1)(n−1)
2

tn − 1

∑
p+i+1=n
p,i≥0

(−1)i t−mi+
1
2p(p+1)

∏i
j=−p(λ− tj )

(i)!(p)!
(3.31)

This is in fact the unnormalized HOMFLY polynomial of an (n,m) torus knot. If we
divide by the vev of the unknot, we find the expression for the HOMFLY polynomial
first obtained in [49]. For the trefoil one has for example:

W = 1

q
1
2 − q− 1

2

(− 2λ
1
2 + 3λ

3
2 − λ

5
2
)+ (q 1

2 − q− 1
2 )(−λ 1

2 + λ
3
2
)
. (3.32)

With more effort one can obtain invariants of torus knots and links in arbitrary repre-
sentations [60, 61, 63]. For the trefoil in representations with two boxes one finds:

W = (λ− 1)(λq − 1)

λ(q
1
2 − q− 1

2 )2 (1 + q)

(
(λq−1)2(1 − λq2 + q3

− λq3 + q4 − λq5 + λ2q5 + q6 − λq6)
)

W = (λ− 1)(λ− q)

λ(q
1
2 − q− 1

2 )2 (1 + q)

(
(λq−2)2(1 − λ− λq

+ λ2q + q2 + q3 − λq3 − λ q4 + q6)
)

(3.33)

For the Hopf link, one finds:

W( , ) =
(
λ

1
2 − λ− 1

2

q
1
2 − q− 1

2

)2

− λ−1(λ− 1), (3.34)

which can be also easily obtained using the skein relations of the HOMFLY polynomial
(3.18) together with (3.19).
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3.2 Framing dependence

In the above discussion on the correlation functions of Wilson loops we have missed
an important ingredient. We mentioned that, in order to define the partition function
of Chern–Simons theory at the quantum level, one has to specify a framing of the
three-manifold. It turns out that the evaluation of correlation functions like (3.16) also
involves a choice of framing of the knots, as Witten discovered in [92]. Since this is
important in the duality with topological strings, we will explain it in some detail.

A good starting point to understand the framing is to take Chern–Simons theory
with gauge group U(1). This is also useful to understand U(N) versus SU(N) Chern–
Simons theory, and to get a concrete feeling of how to deal with correlation functions
like (3.16). The Abelian Chern–Simons theory turns out to be extremely simple, since
the cubic term in (3.1) drops out, and we are left with a Gaussian theory [79]. The
different representations are labelled by integers, and in particular the vevs of Wilson
loop operators can be computed exactly. In order to compute them, however, one has
to choose a framing for each of the knots Ki . This arises as follows: in evaluating
the vev, contractions of the holonomies corresponding to different Ki produce the
following integral:

lk(Ki ,Kj ) = 1

4π

∮
Ki

dxµ
∮

Kj

dyνεµνρ
(x − y)ρ

|x − y|3 . (3.35)

This is in fact a topological invariant, i.e. it is invariant under deformations of the
knots Ki , Kj , and it is in fact their linking number lk(Ki ,Kj ). On the other hand,
contractions of the holonomies corresponding to the same knot K involve the integral

φ(K) = 1

4π

∮
K
dxµ

∮
K
dyνεµνρ

(x − y)ρ

|x − y|3 . (3.36)

This integral is well-defined and finite (see, for example, [42]), and it is called the
cotorsion of K . The problem is that the cotorsion is not invariant under deformations
of the knot. In order to preserve topological invariance one has to choose another
definition of the composite operator (

∫
K A)2 by means of a framing. A framing of the

knot consists of choosing another knot Kf around K , specified by a normal vector
field n. The cotorsion φ(K) becomes then

φf (K) = 1

4π

∮
K
dxµ

∮
Kf

dyνεµνρ
(x − y)ρ

|x − y|3 = lk(K,Kf ). (3.37)

The correlation function that we obtain in this way is a topological invariant (a linking
number) but the price that we have to pay is that our regularization depends on a set
of integers pi = lk(Ki ,K

f
i ) (one for each knot). The vev (3.16) in the Abelian case

can now be computed, after choosing the framings, as follows:〈∏
i

exp
(
ni

∫
γi

A
)〉

= exp
(πi
k

∑
i

n2
i pi + πi

k

∑
i �=j

ninj lk(Ki ,Kj )
)
. (3.38)
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This regularization is nothing but the ‘point-splitting’ method familiar in the context
of QFT’s.

Let us now consider Chern–Simons theory with gauge group SU(N), and suppose
that you want to compute a correlation function like (3.16). If you try to do it in
perturbation theory, for example, you will find very soon that self-contractions of the
holonomies lead to the same kind of ambiguities that we found in the Abelian case,
i.e. you will have to make a choice of framing for each knot Ki . The only difference
is that the self contraction comes with a group factor TrRi (TaTa) for each knot Ki ,
where Ta is a basis of the Lie algebra [42]. The precise result can be better stated as
the effect on the correlation function (3.16) under a change of framing, and it says
that, under a change of framing of Ki by pi units, the vev of the product of Wilson
loops changes as follows [92]:

W(R1,...,RL) → exp
[
2πi

∑
i

pihRi

]
W(R1,...,RL), (3.39)

In this equation, hR is the conformal weight of the WZW primary field corresponding
to the representation R. In (3.11) we labelled R through α = ρ +�, where � is the
highest weight of R. In fact, one can write (3.11) as

hR = CR

2(k +N)
, (3.40)

where CR = TrR(TaTa) is the quadratic Casimir in the representation R. For SU(N),
one has

C
SU(N)
R = N�+ κR − �2

N
, (3.41)

where � is the total number of boxes in the tableau, and

κR = �+
∑
i

(
l2i − 2ili

)
. (3.42)

We then see that the evaluation of vacuum expectation values of Wilson loop operators
in Chern–Simons theory depends on a choice of framing for knots. It turns out that for
knots and links in S

3, there is a standard or canonical framing, defined by requiring
that the self-linking number is zero. The expressions listed in (3.33) and (3.34) are all
in the standard framing, and the skein relations for the HOMFLY polynomial produce
invariants in the standard framing as well. Once the value of the invariant is known
in the standard framing, the value in any other framing specified by nonzero integers
pi can be easily obtained from (3.39).

Let us now consider a U(N) Chern–Simons theory. The U(1) factor decouples
from the SU(N) theory, and all the vevs factorize into an U(1) and an SU(N) piece.
Representations of U(N) are also labelled by Young tableaux, and they decompose
into a representation of SU(N) corresponding to that tableau, and a representation of
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U(1) with charge:

n = �√
N
, (3.43)

where � is the number of boxes in the Young tableau. In order to compute the vevs
associated to the U(1) of U(N), one has to take also into account that the coupling
constant k is shifted as k → k + N . We then find that the vev of a product of U(N)
Wilson loops in representations Ri is given by:

W
U(N)
(R1,...,RL)

=exp

(
πi

N(k +N)

∑
i

�2
i pi+

πi

N(k +N)

∑
i �=j

�i�j lk(Ki ,Kj )

)
W

SU(N)
(R1,...,RL)

,

(3.44)
where the SU(N) vev is computed in the framing specified by pi . Notice that, in the
case of knots, the SU(N) and U(N) computations differ in a factor which only depends
on the choice of framing, while for links the answers also differ in a topological piece
involving the linking numbers. The change of framing for vacuum expectation values
in the U(N) theory is again governed by (3.39) and (3.40), but now the quadratic
Casimir is given by

C
U(N)
R = N�+ κR, (3.45)

Notice that the difference between the change of SU(N) and U(N) vevs under the
change of framing is consistent with (3.44). In terms of the variables (3.17) we see
that U(N) vevs change, under the change of framing, as

W(R1,...,RL) → q
1
2

∑
i κRi pi λ

1
2

∑
i �ipiW(R1,...,RL). (3.46)

3.3 Generating functionals for Wilson loops

As we will see, the relation between Chern–Simons theory and string theory involves
the vacuum expectation values for arbitrary irreducible representations of U(N), so it
is convenient to have a generating functional that encodes all the information about
them. We will for simplicity consider the case in which one has just a single knot.
We then have to find a suitable basis for the Wilson loop operators. There are two
natural basis for the problem: the basis labelled by representations R, and the basis
labelled by conjugacy classes C(k) of the symmetric group. Let U be the holonomy
of the gauge connection around the knot K , and consider the operator ϒk(U) defined
as in (2.27). The vevs of these operators give the “k-basis” for the vacuum expectation
values of the Wilson loops:

Wk = 〈ϒk(U)〉 =
∑
R

χR(C(k))WR (3.47)
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where χR are characters of the permutation group S� in the representation R, and we
have used Frobenius formula

TrR(U) =
∑

k

χR(C(k))
zk

ϒk(U), (3.48)

and zk has been defined in (2.42). If V is a U(M) matrix (a “source” term), one can
define the following operator, which was introduced in [76] and is known sometimes
as the Ooguri–Vafa operator:

Z(U, V ) = exp
[ ∞∑
n=1

1

n
TrUn Tr V n

]
. (3.49)

When expanded, this operator can be written in the k-basis as follows,

Z(U, V ) = 1 +
∑

k

1

zk
ϒk(U)ϒk(V ). (3.50)

We see that Z(U, V ) includes all possible Wilson loop operators ϒk(U) associated to
a knot K . One can also use Frobenius formula to show that

Z(U, V ) =
∑
R

TrR(U)TrR(V ), (3.51)

where the sum over representations starts with the trivial one. In Z(U, V ) we assume
that U is the holonomy of a dynamical gauge field and that V is a source. The
vacuum expectation value Z(V ) = 〈Z(U, V )〉 has then information about the vevs of
the Wilson loop operators, and by taking its logarithm one can define the connected
vacuum expectation values W(c)

k :

FCS(V ) = logZ(V ) =
∑

k

1

zk!
W
(c)

k ϒk(V ) (3.52)

One has, for example:

W
(c)
(2,0,... ) = 〈(TrU)2〉 − 〈TrU〉2 = W +W −W 2 .

The free energy FCS(V ), which is a generating functional for connected vevs W(c)

k ,
will be the relevant object for the duality with topological strings.
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4 Chern–Simons theory and large N transitions

4.1 The 1/N expansion

As ’t Hooft pointed out in [86] (see [21] for a nice review), given a theory with U(N)
or SU(N) gauge symmetry one can always perform a 1/N expansion of the free
energy and the correlation functions. To do that, one writes the Feynman diagrams of
the theory as “fatgraphs” or ribbon graphs. The amplitude associated to these ribbon
graphs depends on the coupling constant x and on the rank of the gauge group (through
its group factor). Let us consider for example the expansion of the free energy. This
will involve connected vacuum bubbles with V vertices, E propagators and h loops
of internal indices, and therefore will have a factor

xE−V Nh = x2g−2+hNh = x2g−2th, (4.1)

where t = Nx is the so called ’t Hooft parameter. In writing this equation we regard
the fatgraph as a Riemann surface with holes, i.e. each internal loop represents the
boundary of a hole, and we used Euler’s relation E − V + h = 2g − 2. In Fig. 4 we
show a fatgraph with g = 1 and h = 9, and in Fig. 5 the Riemann surface that can be
associated to it. We can then write,

F p =
∞∑
g=0

∞∑
h=1

F
p
g,hx

2g−2th. (4.2)

The superscript p means that this is the perturbative contribution to the free energy.
The full free energy may also have a nonperturbative contribution. This is easily

Figure 4. This figure, taken from [77], shows a fatgraph with h = 9 and g = 1.

seen, in the case of Chern–Simons theory, in (3.4): the free energy has a perturbative
contribution coming from the S�, but there is a nonperturbative contribution due to the
one-loop prefactor (which also depends on N , x) and involves one-loop determinants
as well as the precise normalization of the path integral. In (4.2) we have written the
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Figure 5. The Riemann surface associated to the fatgraph of the previous figure.

diagrammatic series as an expansion in x around x = 0, keeping t fixed. Equivalently,
we can regard it as an expansion in 1/N for fixed t , and then theN dependence appears
asN2g−2. The above expansion can be interpreted as the perturbative expansion of an
open string theory, where F p

g,h corresponds to some amplitude on a Riemann surface
of genus g with h holes like the one depicted in Fig. 5. If we now introduce the
function

F
p
g (t) =

∞∑
h=1

F
p
g,ht

h, (4.3)

the total perturbative free energy can be written as

F p(x, t) =
∞∑
g=0

x2g−2F
p
g (t), (4.4)

which looks like a closed string expansion where t is some modulus of the theory.
Notice that in writing (4.3) we have grouped together all open Riemann surfaces with
the same bulk topology but with different number of holes, so by “summing over all
holes” we “fill up the holes” to produce a closed Riemann surface. This leads to ’t
Hooft’s idea [86] that, given a gauge theory, one should be able to find a string theory
interpretation in the way we have described, namely, the fatgraph expansion of the
free energy is resummed to give a function of the ’t Hooft parameter Fg(t) at every
genus that is then interpreted as a closed string amplitude.

We can now ask what is the interpretation of the vacuum expectation values of
Wilson loop operators in this context. Using standard largeN techniques (as reviewed
for example in [21]), it is easy to see that the vevs that have a well-defined behavior in
the 1/N expansion are the connected vevs W(c)

k introduced in (3.52). One finds that
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these vevs admit an expansion of the form,

W
(c)

k =
∞∑
g=0

W
g,k(t)x

2g−2+|k|. (4.5)

This can be regarded as an open string expansion, where W
g,k(t) are interpreted as

amplitudes in an open string theory at genus g and with h = |k| holes. The vector
k specifies the winding numbers of the holes around a one-cycle in the target space
of the theory, according to the rule we gave in subsection 2.3. We could say that the
Wilson loop “creates” a one-cycle in the target space where the boundaries of Riemann
surfaces can end, and the generating functional for connected vevs (3.52) is interpreted
as the total free energy of an open string, as in (2.24). These open strings shouldn’t
be confused with the ones that we associated to the expansion (4.2). The open strings
underlying (4.5) should be regarded as an open string sector in the closed string theory
associated to the resummed expansion (4.4).

This is then the program to interpret gauge theories with U(N) or SU(N) symmetry
in terms of a string theory. So far this program has been led to completion in just a few
examples. A first example is a class of gauge theories in zero dimensions, the matrix
models of Kontsevich, which are equivalent to topological minimal matter in two
dimensions coupled to gravity [54], i.e. to topological strings in d < 1 dimensions.
Another example is Yang–Mills theory in two dimensions, which also has a string
theory description [41, 22]. Finally, N = 4 supersymmetric Yang–Mills theory is
equivalent to type IIB string theory on S

5 × AdS5 [6]. The last example shows very
clearly that the target of the string theory is not necessarily the spacetime where the
gauge theory lives, and that the string description may need “extra” dimensions. The
question we want to address now is the following: is there a string description of
Chern–Simons theory? As we will see, at least for Chern–Simons on the three-sphere,
the answer is yes. The resulting description provides a very nice realization of ’t Hooft
ideas, and as we will show, leads to new insights on knot and link invariants2.

4.2 Chern–Simons theory as an open string theory

In order to give a string theory interpretation of Chern–Simons theory on S
3, a good

starting point is to give an open string interpretation to the 1/N expansion of the free
energy (4.2). This was done by Witten in [95], and we will summarize here the main
points of the argument.

First of all, we have to recall that open bosonic strings have a spacetime description
in terms of the cubic open string field theory introduced in [90]. The action of this
theory is given by

S = 1

gs

∫ (
1

2
� � QBRST� + 1

3
� � � � �

)
. (4.6)

2Other attempts to find a string theory interpretation of Chern–Simons theory can be found in [78, 27].
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In this equation, � is the string field, � is the associative, noncommutative product
obtained by gluing strings, and the integration is a map

∫ : � → R that involves
the gluing of the two halves of the string field (more details can be found in [90]). If
we add Chan–Paton factors, the string field is promoted to a U(N) matrix of string
fields, and the integration includes Tr. This action has all the information about the
spacetime dynamics of open bosonic strings, with or without D-branes. In particular,
one can derive the Born-Infeld action describing the dynamics of D-branes from this
cubic string field theory (see for example [85]).

Consider now a three-manifoldM . The total space of its cotangent bundleT ∗M is a
noncompact Calabi–Yau manifold. Moreover, it is easy to see thatM is a Lagrangian
submanifold in T ∗M . We can then consider a system of N topological D-branes
wrapping M , thus providing Dirichlet boundary conditions for the open strings. We
want to obtain a spacetime action describing the dynamics of these topological D-
branes. To do this, we can exploit again the analogy between open topological strings
and the open bosonic string that we used to define the coupling of topological sigma
models to gravity (i.e., that both have a nilpotent BRST operator and an energy-
momentum tensor that is QBRST-exact). Using the fact that both theories have a
similar structure, one can argue [95] that the dynamics of topological D-branes in
T ∗M is governed as well by (4.6). However, one has to work out what is exactly the
string field, the � algebra and so on in the context of topological open strings. It turns
out that the string field is simply a U(N) gauge connectionA onM , the integration of
string functionals becomes ordinary integration of forms on M , and the star product
becomes the usual wedge product of forms. We then have the following dictionary:

� → A, QBRST → d

� → ∧, ∫ → ∫
M
.

(4.7)

The resulting action (4.6) is then the usual Chern–Simons action, and we have the fol-
lowing relation between the string coupling constant and the Chern–Simons coupling

gs = 2π

k +N
, (4.8)

after accounting for the usual shift k → k + N . Notice that, in the open bosonic
string, the string field involves an infinite tower of string excitations. For the open
topological string, the topological character of the model implies that all excitations
areQ-exact (and therefore decouple), except for the lowest lying one, which is a U(N)
gauge connection. In other words, the usual reduction to a finite number of degrees
of freedom that occurs in topological theories downsizes the string field to a single
excitation.

The topological open string theory that we are obtaining has some important dif-
ferences with the one that we described in section 2. As Witten pointed out in [95],
there are no honest worldsheet instantons in this geometry! To be precise, world-
sheet instantons whose boundaries lie in M must have zero area, and one would then
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conclude that the only contributions come from constant maps. A detailed analysis
shows however that there are nontrivial worldsheet instantons contributing to the path
integral, but they are degenerate and belong to the boundary of the moduli space of
holomorphic maps. These degenerate instantons look just like fatgraphs, and in fact
they correspond to the Feynman diagrams of the 1/N expansion of Chern–Simons
theory! In particular, to characterize topologically these degenerate instantons we just
need their genus g and number of holes h, which are of course the same ones of the
associated fatgraph. There are no winding numbers to specify.

The outcome of this discussion is that, for topological open strings on noncompact
Calabi–Yau manifolds of the formT ∗M , the dynamics is governed by the usual Chern–
Simons action on M . In particular, the coefficient F p

g,h in (4.2) can be interpreted as
the free energy of an open string of genus g and h holes propagating on T ∗M and
with Lagrangian boundary conditions specified by M .

This result can be extended [95], and the more general picture will be extremely
useful later on. Consider a Calabi–Yau manifold X together with some Lagrangian
submanifoldsMi ⊂ X, withNi D-branes wrapped overMi . In this case the topological
open strings will have contributions from degenerate holomorphic curves, which are
captured by Chern–Simons theories in the way we explained for T ∗M , as well as
some honest holomorphic curves. As shown in [95], these honest holomorphic curves
are open Riemann surfaces whose boundaries are embedded knots inside the three-
manifolds Mi and give rise to Wilson loops. Each holomorphic curve with area A
ending on Mi over the knot Ki will contribute e−A

∏
i TrUKi

to the free energy,
where UKi

denotes the holonomy of the Chern–Simons U(Ni) gauge connection Ai
around the knot Ki . We can then take into account the contributions of all curves by
including the corresponding Chern–Simons theories SCS(Ai), which account for the
degenerate curves, coupled in an appropriate way to the honest holomorphic curves.
The spacetime action will then have the form

S(Ai) = SCS(Ai)+ Fndg(UKi
) (4.9)

where

Fndg =
∑

instantons

e−A
∏
i

TrUKi
(4.10)

denotes the contribution of the non-degenerate holomorphic curves, and it is a sum
over honest open worldsheet instantons. Notice that all the Chern–Simons theories
SCS(Ai) have the same coupling constant, equal to the string coupling constant. More
precisely,

2π

ki +Ni
= gs. (4.11)

In the action (4.9), the honest holomorphic curves are put “by hand” in Fndg, and in
principle one has to solve a nontrivial enumerative problem to find them. Once they
are included in the action, the path integral over the Chern–Simons connections will
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join degenerate instantons to these honest worldsheet instantons: if we have a nonde-
generate worldsheet instanton ending on a knot K , it will give rise to a Wilson loop
operator in (4.10), and the evaluation of the vacuum expectation value will generate, in
the 1/N expansion, all possible fatgraphs � joined to the knot K , as it is well-known
in Chern–Simons perturbation theory in the presence of Wilson loops (see for example
[56]). These fatgraphs are interpreted as degenerate instantons. Therefore, the path
integral with the action (4.9) will be a sum of contributions coming from partial degen-
erations of Riemann surfaces, in which a surface �g,h degenerates to another surface
�g′,h′ whose boundary ends on a knot K , together with a fatgraph whose external legs
end in K as well. An example of this situation is depicted in Fig. 6, where a disc ends
on an unknot, and the fatgraph generated by Chern–Simons perturbation theory gives

Figure 6. This figure shows a partially degenerated worldsheet instanton of genus g = 0
and with h = 3 ending on an unknot. The instanton is made out of a honest holomorphic
disk and the degenerate piece, which is a fatgraph.

in the end a Riemann surface of g = 0 and h = 3. This more complicated scenario
was explored in [5, 24, 25, 3], and we will provide examples of (4.9) in section 6.

4.3 The conifold transition

We have learned that Chern–Simons theory on S
3 is a topological open string theory

on T ∗
S

3. Notice that the target of the string theory is different from (and has higher
dimensionality than) the spacetime of the gauge theory, as in the string description of
N = 4 Yang–Mills theory. The next step is to see if there is a closed string theory
leading to the resummation (4.4). As shown by Gopakumar and Vafa in an important
paper [37], the answer is yes.

One way to motivate their result is as follows: since the holes of the Riemann
surfaces are due to the presence of D-branes, “filling the holes” to get the closed
strings means getting rid of the D-branes. But this is precisely what happens in the
AdS/CFT correspondence [6], where type IIB theory in flat space in the presence of
D-branes is conjectured to be equivalent to type IIB theory in AdS5 × S

5 with no
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D-branes. The reason for that is that, at large N , the presence of the D-branes can
be traded by a deformation of the background geometry, and the radius of the S

5 is
related to the number of D-branes. In other words, we can make the branes disappear
if we change the background geometry at the same time. As Gopakumar and Vafa
have pointed out, large N dualities relating open and closed strings should involve
transitions in the geometry. This reasoning suggests to look for a transition involving
the background T ∗

S
3. It turns out that such a transition is well-known in the physical

and the mathematical literature, and it is called the conifold transition (see for example
[18]). Let us explain this in detail.

Although we have regarded T ∗
S

3 as the total space of the cotangent space bundle
of the three-sphere, this background can be also regarded as the deformed conifold
geometry, which is usually described by the algebraic equation

4∑
µ=1

η2
µ = a. (4.12)

To see this equivalence, let us write ηµ = xµ+ ipµ, where xµ, pµ are real coordinates.
We find the two equations

4∑
µ=1

(x2
µ − p2

µ) = a,

4∑
µ=1

xµpµ = 0. (4.13)

The first equation indicates that the locus pµ = 0, µ = 1, . . . , 4, describes a sphere
S

3 of radius R2 = a, and the second equation shows that the pµ are coordinates for
the cotangent space. Therefore, (4.12) is nothing but T ∗

S
3.

It is useful to rewrite the deformed conifold in yet another way. Introduce the
following complex coordinates:

x = η1 + iη2, v = i(η3 − iη4),

u = i(η3 + iη4), y = η1 − iη2.
(4.14)

The deformed conifold can be now written as

xy = uv + a. (4.15)

Notice that in this parameterization the geometry has a T
2 fibration

x, y, u, v → xeiθa , ye−iθa , ueiθb , ve−iθb (4.16)

where the θa and θb actions above can be taken to generate the (1, 0) and (0, 1) cycles
of the T

2. The T
2 fiber can degenerate to S

1 by collapsing one of its one-cycles. In
the equation above, for example, the U(1)a action fixes x = 0 = y and therefore fails
to generate a circle there. In the total space, the locus where this happens, i.e. the
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x = 0 = y subspace of X, is a cylinder uv = −a . Similarly, the locus where the
other circle collapses, u = 0 = v, gives another cylinder xy = a. Therefore, we can
regard the whole geometry as a T

2 × R fibration over R
3: if we define z = uv, the

R
3 of the base is given by Re(z) and the axes of the two cylinders. The fiber is given

by the circles of the two cylinders, and by Im(z). It is very useful to represent the
above geometry by depicting the singular loci of the torus action in the base R

3. The
loci where the cycles of the torus collapse, which are cylinders, project to lines in the
base space. Notice that S

3 can be regarded as a torus fibration over an interval, with
singular loci at the endpoints. In Fig. 7, the three-sphere of the deformed conifold

a

b

z = −a

z = 0

Figure 7. This figure represents T ∗
S

3, regarded as a T
2 × R fibration of R

3. Two of the
directions represent the axes of the two cylinders, and the third direction represents the
real axis of the z-plane.

geometry is represented by a dashed line in the z-plane between z = 0 and z = −a,
together with the θa and the θb circles that degenerate over the endpoints.

The conifold singularity appears when a = 0 and the three-sphere collapses. This
is described by the equation:

xy = uv. (4.17)

In algebraic geometry, singularities can be avoided in two ways, in general. The
first way is to deform the complex geometry. This leads in our case to the deformed
conifold (4.12). The other way is to resolve the singularity, for example by performing
a blow up, and this leads to the resolved conifold geometry (see for example [18]).
The resolution of the geometry can be explained as follows. When a = 0, (4.15) says
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that xy = uv. We can solve (4.17) by setting

x = λv, u = λy (4.18)

where λ is regarded as an inhomogeneous coordinate in P
1. The space described by

the complex coordinates x, y, λ, u, v together with the relations (4.18) is the resolved
conifold, and it turns out to be the bundle O(−1) ⊕ O(−1) → P

1, as one can see
from (4.18) [18]. To make contact with the toric description given in (2.35), we put
x = x1x2, y = x3x4, u = x1x3 and v = x2x4. We then see that λ = x1/x4 is the
inhomogeneous coordinate for the P

1 described in (2.35) by |x1|2 + |x4|2 = s. It is
instructive to represent the resolved conifold by solving the constraint (2.35) in the
first octant of R

3, and depicting the fixed point locus of the isometries above. In terms
of the coordinates x1, . . . , x4, the T

2 action (4.16) is given by

x1, x2, x3, x4 → ei(θa+θb)x1, e−iθa x2, e−iθbx3, x4, (4.19)

and the fixed loci are depicted in Fig. 8. In the conifold transition, the three-sphere of

a

a

b

b

x2 = 0

a + b

x4 = 0

s

x1 = 0

x3 = 0

Figure 8. This figure represents the resolved conifold O(−1) ⊕ O(−1) → P
1 and the

fixed point loci of the T
2 action.

the deformed conifold shrinks to zero size as a goes to zero, and then a two-sphere of
size s blows up giving the resolved conifold.

We know that Chern–Simons theory is an open topological string on the deformed
conifold geometry with N topological D-branes wrapping the three-sphere. The con-
jecture of Gopakumar and Vafa is that at large N the D-branes induce a conifold
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transition in the background geometry, so that we end up with the resolved conifold
and no D-branes. But in the absence of D-branes that enforce boundary conditions
we just have a theory of closed topological strings. Therefore, Chern–Simons theory
on S

3 is equivalent to closed topological string theory on the resolved conifold.
This conjecture has been proved by embedding the duality in type II superstring

theory [89] and lifting it to M-theory [1, 10], and more recently a worldsheet derivation
has been presented in [77]. In the remaining of this section, we will give evidence for
the conjecture at the level of the free energy.

4.4 First test of the duality: the free energy

A nontrivial test of the duality advocated by Gopakumar and Vafa is to verify that the
free energy of U(N) Chern–Simons theory on the sphere agrees with the free energy
of closed topological strings on the resolved conifold. The partition function of CS
with gauge group U(N) on the sphere is a slight modification of (3.14):

Z = 1

(k +N)N/2

∏
α>0

2 sin
(π(α · ρ)
k +N

)
. (4.20)

and differs from it in an overall factorN1/2/(k+N)1/2 which is the partition function
for the U(1) factor (recall that U(N) = U(1) ⊗ SU(N)/ZN ). Using the explicit
description of the positive roots of SU(N), one gets

F = logZ = −N
2

log(k +N)+
N−1∑
j=1

(N − j) log

[
2 sin

πj

k +N

]
. (4.21)

We can now write the sin as

sin πz = πz

∞∏
n=1

(
1 − z2

n2

)
, (4.22)

and we find that the free energy is the sum of two pieces. One of them is the nonper-
turbative piece:

F np = −N
2

2
log(k +N)+ 1

2
N(N − 1) log 2π +

N−1∑
j=1

(N − j) log j, (4.23)

and the other piece is the perturbative one:

F p =
N−1∑
j=1

(N − j)

∞∑
n=1

log

[
1 − j2g2

s

4π2n2

]
, (4.24)

where gs corresponds to the open string coupling constant and it is given by (4.8). To
see that (4.23) corresponds to the nonperturbative piece of the free energy, we notice
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that the volume of U(N) can be written as (see for example [77]):

vol(U(N)) = (2π)
1
2N(N+1)

G2(N + 1)
(4.25)

where G2(z) is the Barnes function, defined by

G2(z+ 1) = �(z)G2(z), G2(1) = 1. (4.26)

It is now easy to see that

F np = log
(2πgs)

1
2N

2

vol(U(N))
(4.27)

so it is given by the log of (3.6), where A(c) is in this case the trivial flat connection.
Therefore, F np is the log of the prefactor associated to the normalization of the path
integral, which is not captured by Feynman diagrams.

Let us work out the perturbative piece (4.24). By expanding the log, using that∑∞
n=1 n

−2k = ζ(2k), and the formula

N−1∑
j=1

j2k = −N
2k

2
+

k∑
l=0

(
2k + 1

2l

)
B2l

2k + 1
N2k+1−2l (4.28)

we find that (4.24) can be written as

F p =
∞∑
g=0

∞∑
h=2

F
p
g,hg

2g−2+h
s Nh, (4.29)

where F p
g,h is given by:

F
p
0,h = − 2ζ(h− 2)

(2π)h−2(h− 2)h(h− 1)
,

F
p
1,h = 1

6

ζ(h)

(2π)hh
,

F
p
g,h = 2

ζ(2g − 2 + h)

(2π)2g−2+h

(
2g − 3 + h

h

)
B2g

2g(2g − 2)
, g ≥ 2.

(4.30)

This gives the contribution of connected diagrams with two loops and beyond to the
free energy of Chern–Simons on the sphere, so we can write

∞∑
�=1

S�(N)x
l =

∞∑
g=0

∞∑
h=2

(−1)g−1+h/2Fg,hx2g−2+hNh, (4.31)

where x is given by (3.5), and we have explicitly indicated the dependence of S� on
N . Notice that the only nonzero Fg,h have h even. One can check that the Fg,h
that we have obtained in (4.30) are in agreement with known results of perturbative
Chern–Simons theory on the sphere (see for example [12, 69]). The nonperturbative
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piece also admits an expansion that can be easily worked out from the asymptotics of
the Barnes function [78, 77]. One finds:

F np = N2

2

(
log(Ngs)− 3

2

)
− 1

12
logN+ζ ′(−1)+

∞∑
g=2

B2g

2g(2g − 2)
N2−2g. (4.32)

So far, what we have uncovered is the open string expansion of Chern–Simons
theory, which is (order by order in x) determined by the perturbative expansion. In
order to find a closed string interpretation, we have to sum over the holes, as in (4.3).
Define the ‘t Hooft parameter t as:

t = igsN = xN, (4.33)

then

F
p
g (t) =

∞∑
h=1

F
p
g,h(−it)h. (4.34)

We will now focus on g ≥ 2. To perform the sum explicitly, we write again the ζ
function as ζ(2g − 2 + 2p) =∑∞

n=1 n
2−2g−2p, and use the binomial series,

1

(1 − z)q
=

∞∑
n=0

(
q + n− 1

n

)
zn, (4.35)

to obtain

F
p
g (t) = (−1)g|B2gB2g−2|

2g(2g − 2)(2g − 2)! + B2g

2g(2g − 2)

∑′

n∈Z

1

(−it + 2πn)2g−2 , (4.36)

where ′ means that we omit n = 0. Now we notice that, if we write

F np =
∞∑
g=0

F
np
g (t)g

2g−2
s (4.37)

then for, g ≥ 2,

F
np
g (t) = B2g

2g(2g − 2)
(−it)2−2g,

which is precisely the n = 0 term missing in (4.36). We then define:

Fg(t) = F
p
g (t)+ F

np
g (t). (4.38)

Finally, since ∑
n∈Z

1

n+ z
= 2πi

1 − e−2πiz , (4.39)
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by taking derivatives w.r.t. z we can write

Fg(t) = (−1)g|B2gB2g−2|
2g(2g − 2)(2g − 2)! + |B2g|

2g(2g − 2)!Li3−2g(e
−t ), (4.40)

again for g ≥ 2. If we now compare (4.40) to (2.33), we see that it has precisely the
structure of the free energy of a closed topological string, with n0

1 = 1, and the rest
of the Gopakumar–Vafa invariants being zero. Also, from the first term, which gives
the contribution of the constant maps, we find that χ(X) = 2. In fact, (4.40) is the Fg
amplitude of the resolved conifold. One can also work out the expressions for F0(t)

and F1(t) and find agreement with the corresponding results for the resolved conifold
[37]. This is a remarkable check of the conjecture.

5 Wilson loops and large N transitions

5.1 Incorporating Wilson loops

How do we incorporate Wilson loops in the largeN duality for Chern–Simons theory?
As we discussed in the previous section, once one has a closed string description of the
1/N expansion, Wilson loops are related to the open string sector in the closed string
geometry. Since the string description involves topological strings, it is natural to
assume that Wilson loops are going to be described by open topological strings in the
resolved conifold, and this means that we need a Lagrangian submanifold specifying
boundary conditions.

These issues were addressed in an important paper by Ooguri and Vafa [76]. In
order to give boundary conditions for the open strings in the resolved conifold, Ooguri
and Vafa constructed a Lagrangian submanifold ĈK in T ∗

S
3 for any knot K in S

3.
This Lagrangian is rather canonical, and it is called the conormal bundle of K . The
details are as follows: suppose that the knot is parameterized by a curve q(s), where
s ∈ [0, 2π), for example. The conormal bundle of K is then the space

ĈK =
{
(q(s), p) ∈ T ∗

S
3
∣∣ ∑

i

pi q̇i = 0, 0 ≤ s < 2π
}

(5.1)

where pi are coordinates for the cotangent bundle, and q̇i denote the derivatives w.r.t.
s. This space is an R

2-fibration of the knot itself, where the fiber on the point q(s)
is given by the two-dimensional subspace of T ∗

q S
3 of planes orthogonal to q̇(s). ĈK

has in fact the topology of S
1 × R

2, and intersects S
3 along the knot K .

One can now consider, together with the N branes wrapping S
3, a set of M probe

branes wrapping ĈK , and study the effective theory that one obtains in this way.
On the N branes wrapping S

3 we have U(N) Chern–Simons theory. But the strings
stretched between the N branes and the M branes give an extra state in topological
string field theory, which turns out to be a massless complex scalar field φ in the
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bifundamental representation (N,M), and living in the intersection of the two branes,
K . If A denotes the U(N) gauge connection on S

3, and Ã denotes the U(M) gauge
connection on ĈK , the action for the scalar is given by∮

K
Tr φ̄ Dφ, (5.2)

where D = d + A − Ã. Here we regard Ã as a source. We can now proceed to
integrate out φ [76]. This is just a one loop computation giving

exp
[− log detD

] = exp
[−Tr log

(
U− 1

2 ⊗ V
1
2 − U

1
2 ⊗ V − 1

2
)]
. (5.3)

In this equation, U , V are the holonomies of A, Ã around the knot K . To obtain this
equation, we have diagonalized A, Ã and taken into account that

log det
[ d
ds

+ iθ
]

=
∞∑

n=−∞
log(n+ θ) = log sin(πθ)+ const., (5.4)

where use has been made of (4.22). In this way we obtain the effective action for the
A field

SCS(A)+
∞∑
n=1

1

n
TrUnTrV −n (5.5)

where SCS(A) is the Chern–Simons action for A associated to the N branes on the
three-sphere 3. Therefore, in the presence of the probe branes, the action gets deformed
by the Ooguri–Vafa operator that we introduced in (3.49). Since we are regarding the
M branes as a probe, the holonomyV is an arbitrary source, and we will putV −1 → V .

Let us now follow this system through the geometric transition. The N branes
disappear, and the background geometry becomes the resolved conifold. However,
the M probe branes are still there. The first conjecture of Ooguri and Vafa is that
these branes are wrapping a Lagrangian submanifold CK of O(−1)⊕ O(−1) → P

1

that can be obtained from ĈK through the geometric transition. The final outcome is
therefore the existence of a map

{knots in S
3} → {Lagrangian submanifolds in O(−1)⊕ O(−1) → P

1} (5.6)

which sends

K → CK . (5.7)

Moreover, one has b1(CK) = 1. This conjecture is clearly well-motivated in the
physics of the problem, and some aspects of the map (5.6) are already well understood:
in [76] Ooguri and Vafa constructed CK explicitly when K is the unknot, and [63]
proposed Lagrangian submanifolds for certain algebraic knots and links (including
torus knots). Taubes has generalized this proposal [84] and constructed in detail a

3In the above equation we have factored out a contribution involving the U(1) pieces of U(N), U(M).
These can be reabsorbed in a change of framing.
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map from a wide class of knots to Lagrangian submanifolds in the resolved conifold.
Later on we will discuss the case of the unknot.

The resulting Lagrangian submanifold CK in the resolved geometry provides
boundary conditions for open strings, and therefore it gives the open string sector
that is needed in order to extend the large N duality to Wilson loops. The second
conjecture of [76] states that the free energy of open topological strings (2.24) with
boundary conditions specified by CK is identical to the free energy of the deformed
Chern–Simons theory with action (5.5), which is nothing but (3.52):

Fstring(V ) = FCS(V ). (5.8)

Notice that, since b1(CK) = 1, the topological sectors of maps with positive winding
numbers correspond to vectors k labelling the connected vevs, and one finds

i|k|
∞∑
g=0

F
g,k(t)g

2g−2+|k|
s = 1∏

j j
kj
W
(c)

k . (5.9)

Of course, F
g,k(t) are (up to constants) the functions of the ’t Hooft parameter that

appeared in (4.5). The variable λ defined in (3.17) that appears in the Chern–Simons
invariants of knots and links is related to the ’t Hooft parameter through

λ = et .

Notice that the Chern–Simons invariants are labelled by vectors k, therefore they only
give rise to positive winding numbers in the string side. At the same time, they involve
both positive and negative powers of λ, while in the string side we only have negative
powers. Therefore, in order to make (5.8) precise, we further need some sort of
analytic continuation that gives an appropriate matching of the variables. In the cases
where both sides of the equality are known, there is such an analytic continuation,
and it is expected that this will be the case in more general situations. Up to these
subtleties, (5.9) tells us that the Chern–Simons invariant in the left-hand side is a
generating function for open Gromov–Witten invariants, for all degrees and genera,
but with fixed boundary data (i.e. the number of holes and the winding numbers). To
extract a particular open Gromov–Witten invariant from the Chern–Simons invariant,
we consider the connected vev labelled by the vector k associated to the boundary
data, we write it in terms of λ = et and q = ex , and then we expand the result in
powers of x = igs . The coefficients of this series, which are polynomials in λ, are
then equated to the generating function of open Gromov–Witten invariants at fixed
genus g.

We should mention that, although we have focused on knots for simplicity, all
these results can be extended to links, as shown in [63].
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5.2 BPS invariants for open strings from knot invariants

In section 2 we have learned that Gromov–Witten invariants can be written in terms
of integer, or BPS invariants. We will now find what is the precise relation between
Chern–Simons invariants and these integer invariants. This will lead to some surprising
structure results for the Chern–Simons invariants of knots.

The first step is to introduce the so-called f -polynomials, through the relation:

FCS(V ) =
∞∑
n=1

∑
R

1

n
fR(q

n, λn)TrRV
n. (5.10)

As shown in [61, 62], the fR polynomials are completely determined by this equation,
and can be expressed in terms of the usual vevs of Wilson loops WR by:

fR(q, λ) =
∞∑

d,m=1

(−1)m−1µ(d)

dm

∑
k1,...,km

∑
R1,...,Rm

χR

(
C
(( l∑

j=1

kj
)
d

))

×
m∏
j=1

χRj (C(
kj ))

zkj
WRj (q

d, λd),

(5.11)

where kd is defined as follows: (kd)di = ki and has zero entries for the other compo-
nents. Therefore, if k = (k1, k2, . . . ), then

kd = (0, . . . , 0, k1, 0, . . . , 0, k2, 0, . . . )

where k1 is in the d-th entry, k2 is in the 2d-th entry, and so on. The sum over
k1, . . . , km is over all vectors with |kj | > 0. In (5.11), µ(d) denotes the Moebius
function. Recall that the Moebius function is defined as follows: if d has the prime
decomposition d = ∏a

i=1 p
mi
i , then µ(d) = 0 if any of the mi is greater than one. If

all mi = 1 (i.e. d is square-free) then µ(d) = (−1)a . Some examples of (5.11) are

f (q, λ) = W (q, λ),

f (q, λ) = W (q, λ)− 1

2

(
W (q, λ)2 +W (q2, λ2)

)
,

f (q, λ) = W (q, λ)− 1

2

(
W (q, λ)2 −W (q2, λ2)

)
. (5.12)

Therefore, given a representation R with � boxes, the polynomial fR is given byWR ,
plus some “lower order corrections” that involveW ′

R where R′ has �′ < � boxes. One
can then easily compute these polynomials starting from the results for vevs of Wilson
loops in Chern–Simons theory. Although we are calling fR polynomials, they are not,
strictly speaking. In fact, it follows from the multicovering/bubbling formula that the
fR have the structure

fR(q, λ) = PR(q, λ)

q
1
2 − q− 1

2

. (5.13)
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But we can be more precise about the structure of fR . As shown in [63], one can write

the fR in terms of even more basic objects, that were denoted by f̂R . The precise
relation between them is

fR =
∑
R′
MRR′ f̂R′ (5.14)

where the sum in R′ runs over all representations with the same number of boxes than
R, and the matrix MRR′ is given by:

MRR′ =
∑
R′′
CRR′R′′SR′′(q). (5.15)

In this equation, CRR′R′′ are the Clebsch–Gordon coefficients of the symmetric group.
They can be explicitly written in terms of characters [34]:

CRR′ R′′ =
∑

k

|C(k)|
�! χR(C(k))χR′(C(k))χR′′(C(k)). (5.16)

The SR(q) are monomials defined as follows. IfR is a hook or L-shaped representation
of the form

(5.17)

with � boxes in total, and �− d boxes in the first row, then

SR(q) = (−1)dq− �−1
2 +d , (5.18)

and SR(q) = 0 for the rest of the representations. For example, for the case of two
boxes one has that S (q) = q−1/2 and S (q) = −q1/2, while for � = 3 one has

S (q) = q−1, S (q) = −1, S (q) = q. (5.19)

The square matrixMRR′ that relates fR to f̂R is invertible. This can be easily seen: de-
fine the polynomials Pk(q), labelled by conjugacy classes, as the character transforms
of the monomials SR(q):

Pk(q) =
∑
R

χR(C(k))SR(q). (5.20)

It can be seen that

Pk(q) =
∏
j (q

− j
2 − q

j
2 )kj

q− 1
2 − q

1
2

. (5.21)
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In terms of these polynomials, the matrix MRR′ is written as

MRR′ =
∑

k

1

zk
χR(C(k))χR′(C(k))Pk(q), (5.22)

and using the orthogonality of the characters one can see that

M−1
RR′ =

∑
k

1

zk
χR(C(k))χR′(C(k))(1/Pk(q)). (5.23)

Therefore, one can obtain the polynomials f̂R from the fR , i.e. one can obtain the
polynomials f̂R from the knot invariants of Chern–Simons theory. The claim is now
that the f̂R are generating functions for the BPS invariantsNR,g,Q that were introduced
in (2.40). More precisely, one has

f̂R(q, λ) =
∑
g≥0

∑
Q

NR,g,Q
(
q− 1

2 − q
1
2
)2g−1

λQ (5.24)

Therefore, this gives a very precise way to compute the BPS invariants NR,g,Q from
Chern–Simons theory: compute the usual vevs WR , extract fR through the relation
(5.11), compute f̂R , and expand them as in (5.24).

We would like to point out two important things. First, the fact that one can extract
the integer invariants NR,g,Q from Chern–Simons theory in the way we have just
described is by no means obvious and constitutes a strong check of the largeN duality
between Chern–Simons theory and topological strings. We will see examples of this
in the next subsection. Another important comment is that the statement that f̂R have
the structure predicted in (5.24) is equivalent to the multicovering/bubbling formula
for open string invariants (2.38) (more precisely, it is equivalent to the strong version
of this formula, which says that in addition to (2.38) one can write the nk,g,Q in terms
of integer NR,g,Q through (2.40)). This is easily seen by noticing that, according to
(5.14) and (5.15), fR is given by

fR(q, λ) =
∑
g≥0

∑
Q

∑
R′,R′′

CRR′ R′′SR′(q)NR′′,g,Q
(
q− 1

2 − q
1
2
)2g−1

λQ. (5.25)

If we now write the exponent in the r.h.s. of (5.10) in the k basis, it is easy to see that
one obtains precisely (2.38), after making use of (5.21).

The physical origin of the structure of fR (and therefore of the multicovering/bubb-
ling formula for open Gromov–Witten invariants) can be easily understood in physical
terms. We will give a short account, referring the reader to [63] for more details. In the
D-brane approach to open string instantons, one regards the open Riemann surfaces
ending on a Lagrangian submanifold as D2-branes ending onM D4-branes wrapping
the Lagrangian submanifold. Following the approach of [36], we have to study the
moduli space of D2-branes ending on D4-branes. This moduli space is the product of
three factors: the moduli of Abelian gauge fields on the worldvolume of the D2 brane,
the moduli of geometric deformations of the D2’s in the ambient space, and finally
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the Chan–Paton factors associated to the boundaries of the D2 which appear in the D4
as magnetic charges [76]. If the D2’s are genus g surfaces with � holes in the relative
cohomology class labelled by Q, the moduli space of Abelian gauge fields gives rise
to the Jacobian Jg,� = T

2g+�−1, and the moduli of geometric deformations will be a
manifold Mg,�,Q. Finally, for the Chan–Paton degrees of freedom we get a factor of
F (the fundamental representation of SU(M)) from each hole. The Hilbert space is
obtained by computing the cohomology of these moduli, and we obtain

F⊗� ⊗H ∗(Jg,�)⊗H ∗(Mg,�,Q). (5.26)

An important point is that this Hilbert space is associated with the moduli space of �
distinguished holes, which is not physical, and we have to mod out by the action of
the permutation group S�. We can factor out the cohomology of the Jacobian T

2g of
the “bulk” Riemann surface,H ∗(T2g), since the permutation group does not act on it.
The projection onto the symmetric piece can be easily done using the Clebsch–Gordon
coefficients CRR′ R" of the permutation group S� [34]:

Sym
(
F⊗� ⊗H ∗((S1)�−1)⊗H ∗(Mg,�,Q)

)
=
∑

RR′ R′′
CRR′ R′′SR(F

⊗�)⊗ SR′(H ∗((S1)�−1))⊗ SR′′(H ∗(Mg,�,Q))
(5.27)

where SR is the Schur functor that projects onto the corresponding subspace. The
space SR(F

⊗�) is nothing but the vector space underlying the irreducible represen-
tation R of SU(M). SR′(H ∗((S1)�−1)) gives the hook Young tableau, and the Euler
characteristic of SR′′(H ∗(Mg,�,Q)) is the integer invariant NR′′,g,Q. Therefore, the
above decomposition corresponds very precisely to (5.25).

All the results above have been stated for knot invariants in the canonical framing.
The situation for arbitrary framing was analyzed in detail in [71]. Suppose that we
consider a knot in S

3 in the framing labelled by an integer p (the canonical framing
corresponds to p = 0). Then, the integer invariants NR,g,Q(p) are obtained from
(5.11) but with the vevs

W
(p)
R (q, λ) = (−1)�pq

1
2pκRWR(q, λ), (5.28)

where κR is defined in (3.42). One has, for example,

f
(p)
(q, λ) = (−1)pW (q, λ),

f
(p)
(q, λ) = qpW (q, λ)− 1

2

(
W (q, λ)2 + (−1)pW (q2, λ2)

)
,

f
(p)
(q, λ) = q−pW (q, λ)− 1

2

(
W (q, λ)2 − (−1)pW (q2, λ2)

)
,

(5.29)

and so on. Notice that the right framing factor in order to match the topological string
theory prediction is (3.45), and not (3.41). This is yet another indication that the
duality of [36] involves the U(N) gauge group, not the SU(N) group. The rationale
for introducing the extra sign (−1)p is not completely clear in the context of Chern–
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Simons theory, and it was introduced by consistency with the results for the B-model
in [2]. This sign is crucial for integrality of NR,g,Q(p).

All the above results on f -polynomials, integer invariant structure, etc., can be
extended to links, see [63, 62].

5.3 Tests involving Wilson loops

There are two types of tests of the largeN duality involving Wilson loops: a test in the
strong sense, in which one verifies that the open Gromov–Witten invariants agree with
the Chern–Simons amplitude, and a test in the weak sense, in which one verifies that
the Chern–Simons knot invariants satisfy the integrality properties that follow from
the conjectured dual description.

The only test so far of the duality in the strong sense is for the framed unknot. In
this case, we know both sides of the duality in detail and we can compare the results.
Let us start with the string description. The first thing we need is a construction of
the Lagrangian submanifold CK that corresponds to the unknot in S

3. This was done
by Ooguri and Vafa in [76]. The construction goes as follows. Let us start with T ∗

S
3

expressed as (4.12) , and consider the following anti-holomorphic involution on it.

η1,2 = η̄1,2, η3,4 = −η̄3,4. (5.30)

The symplectic form ω changes its sign under the involution, therefore its fixed point
set is a Lagrangian submanifold of T ∗

S
3. If we write ηµ = xµ + ipµ, the invariant

locus of the action (5.30) is

p1,2 = 0, x3,4 = 0 (5.31)

and intersects the deformed conifold at

x2
1 + x2

2 = a + p2
3 + p2

4 . (5.32)

Therefore, the fixed point locus intersects S
3 along the equator, which is an unknot

described by the equations

x2
1 + x2

2 = a, x3 = x4 = 0.

We conclude that, if we denote by U the unknot in S
3, the above fixed point locus

defined by (5.30) is the Lagrangian submanifold ĈU. Now we want to construct the
Lagrangian submanifold CU, obtained from ĈU after the conifold transition. To do
that, we continue to identify it with the invariant locus of the anti-holomorphic invo-
lution. We can describe this explicitly by using the coordinates (x, u, z) or (y, v, z−1)

defined in (4.14) and (4.18). In these coordinates, ĈU is characterized by

x = ȳ, u = v̄, (5.33)

and the conifold equation (4.17) restricted to ĈU becomes

xx̄ = uū. (5.34)
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The complex coordinate on the base P
1 defined by (4.18) is

z = x

ū
, (5.35)

but since |x| = |u|, z is a phase. We then find that CU is a line bundle over the
equator |z| = 1 of P

1, and the fiber over z is the subspace of O(−1)+ O(−1) given
by x = zū (remember that x, u are complex coordinates for the fibers). In particular,
CU intersects with the P

1 at the base along |z| = 1, see Fig. 9.

u
u+ zv̄

v

|z| = 1

S
2

Figure 9. This figure [76] represents the Lagrangian submanifold in O(−1)⊕O(−1) →
P

1 that corresponds to the unknot in S
3. The notation is as in [76], and is related to ours

by u → x and v → −u.

The open Gromov–Witten invariants associated to open strings inO(−1)⊕O(−1) →
P

1 whose boundaries end in the above Lagrangian submanifold have been computed
in [51, 67, 73] (see also [39]). The procedure relies on localization formulae, as in
the closed string case. However, in the open string case, it has been realized that
the open invariants depend on an extra choice of an integer (the calculation depends
on the weights on the localizing torus action). This is precisely the dependence we
expect on Chern–Simons theory, since there is a choice of framing also labelled by
an integer. This framing ambiguity in the context of open strings was first discovered
in the B-model [2], and subsequently confirmed in the A-model computation of [51]
as well as in other examples [39, 73]. Let us now make a detailed comparison of the
answers. Katz and Liu [51] compute the open Gromov–Witten invariants FQw,g for
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Q = �/2, where � =∑i wi , and obtain:

F
�/2
w,g = (−1)p�+1(p(p + 1))h−1

( h∏
i=1

∏wi−1
j=1 (j + wip)

(wi − 1)!
)

· Resu=0

∫
Mg,h

cg(E
∨(u))cg(E∨((−p − 1)u))cg(E∨(pu))u2h−4∏h

i=1(u− wiψi)
.

(5.36)

In this formula,Mg,h is the Deligne–Mumford moduli space of genus g stable curves
with h marked points, E is the Hodge bundle over Mg,h, and its dual is denoted by
E

∨. The Chern classes of the Hodge bundle will be denoted by:

λj = cj (E). (5.37)

In (5.36), we have written

cg(E
∨(u)) =

g∑
i=0

cg−i (E∨)ui, (5.38)

and similarly for the other two factors. The integral in (5.36) also involves the ψi
classes of two-dimensional topological gravity, which are constructed as follows. We
first define the line bundle Li over Mg,h to be the line bundle whose fiber over each
stable curve � is the cotangent space of � at xi (where xi is the i-th marked point).
We then have,

ψi = c1(Li ), i = 1, . . . , h. (5.39)

The integrals of the ψ classes can be obtained by the results of Witten and Kontsevich
on 2d topological gravity [94, 54], while the integrals involving ψ and λ classes (the
so-called Hodge integrals) can be in principle computed by reducing them to pure ψ
integrals [29]. Explicit formulae for some Hodge integrals can be found in [35].

In the above formula (5.36), p is an integer that parameterizes the ambiguity in the
open string calculation. A particularly simple case of the above expression is when
p = 0, i.e. the standard framing. The only contribution comes from h = 1, and the
above integral boils down to

Resu=0

∫
Mg,1

λgcg(E
∨(u))cg(E∨(−u))u2h−4

(u− wψ1)
, (5.40)

where w is the winding number. The Mumford relations [74] give c(E)c(E∨) = 1,
which implies

cg(E
∨(u))cg(E∨(−u)) = (−1)gu2g (5.41)
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After taking the residue, we end up with the following expression for the open Gromov–
Witten invariant:

F
w/2
w,g = −w2g−2

∫
Mg,1

ψ
2g−2
1 λg. (5.42)

The above Hodge integral has been computed in [31], and it is given by bg , where bg
is defined by the generating functional

∞∑
g=0

bgx
g = x/2

sin(x/2)
. (5.43)

We can now sum over all genera and all positive winding numbers to obtain [51]

F(V ) = −
∞∑
d=1

edt/2

2d sin
(
dgs
2

)TrV d. (5.44)

Notice that the above open Gromov–Witten invariants correspond to a disk instanton
wrapping the northern hemisphere of P

1, with its boundary on the equator, together
with all the multicoverings and bubblings at genus g 4. Let us now compare to the
Chern–Simons computation. In the case of the unknot in the canonical framing, Ooguri
and Vafa showed [76] that the generating function (3.52) can be explicitly computed
to all orders. The reason is that the quantum dimension in the representation R can be
regarded as the trace in the representation R of an N ×N diagonal matrix U0 whose
i-th diagonal entry is

exp
[
− πi

k +N
(N − 2i − 1)

]
. (5.45)

This is easily seen by remembering that ρ lives in the dual of the Cartan subalgebraH ,
and by using the natural isomorphism betweenH andH ∗ induced by the Killing form
we obtain the above result from (3.25). Notice that U0 is like a “master field” that
gives the right answer by evaluating a “classical” trace. Therefore, one can compute
FCS(V ) by substituting TrUn0 in (3.49), to obtain

F(V ) = −i
∞∑
d=1

edt/2 − e−dt/2

2d sin
(
dgs
2

) TrV d. (5.46)

The answer from Chern–Simons theory contains the contribution given in (5.44),
together with a similar contribution (with et/2) that corresponds to holomorphic maps
wrapping the southern hemisphere of the P

1.
What happens for p �= 0? In that case, it is no longer possible to sum up all the

correlation functions, but we can still compute the connected vevs W(c)

k at arbitrary
framing [71]. To do that, remember that the WR for the unknot in the canonical

4In this equation we have chosen the sign for the instantons wrapping the northern hemisphere in such
a way that one has edt in the generating function, in order to compare to the results in [71].



78 Marcos Mariño

framing are just the quantum dimensions of the representation R given in (3.28). We
have to correct them with the framing factor as prescribed in (5.28), compute the Wk
with Frobenius formula, and then extract the connected piece by using:

1

zk
W
(c)

k =
∑
n≥1

(−1)n−1

n

∑
k1,...,kn

δ∑n
i=1

ki ,k
n∏
i=1

Wki
zki

. (5.47)

In this equation, the second sum is over n vectors k1, . . . , kn such that
∑n
i=1

ki = k (as
indicated by the Kronecker delta), and therefore the right hand side of (5.47) involves
a finite number of terms. The generating functional for the open Gromov–Witten
invariants is then explicitly given by

∑
Q

∞∑
g=0

F
Q

k,gg
2g−2+|k|
s eQt =

(−1)p�i−|k|−�∏
j

kj !
∑
n≥1

(−1)n

n

∑
k1,...,kn

δ∑n
σ=1

kσ ,k
∑
Rσ

n∏
σ=1

χRσ (C(
kσ ))

zkσ

· eipκRσ gs/2
∏

1≤i<j≤cRσ

sin
[
(lσi − lσj + j − i)gs/2

]
sin
[
(j − i)gs/2

]
cRσ∏
i=1

∏lσi −i
v=−i+1

(
e
t
2 + ivgs

2 − e− t
2 − ivgs

2
)

∏lσi
v=1 2 sin

[
(v − i + cRσ )gs/2

] .

(5.48)

Let us compare this expression with the result of Katz and Liu in some simple examples
with h = 1. Notice that the Chern–Simons result is slightly more general, since it
gives the answer for any Q, while (5.36) only computes Q = �/2. For Riemann
surfaces with one hole the homotopy class of the map is given by a single winding
number w. For g = 1, one finds from (5.36):

F
w/2
w,1 = (−1)pw

(w − 1)!
w−1∏
l=1

(l + wp)

((∫
M1,1

λ1 − wψ1

)
p(p + 1)+

∫
M1,1

λ1

)
, (5.49)

and for g = 2,

F
w/2
w,2 = (−1)pw

(w − 1)!
w−1∏
l=1

(l + wp)

((∫
M2,1

w2ψ4
1 − wψ3

1λ1 + ψ2
1λ2

)
w2p3(p + 2)

+
(∫

M2,1

w3ψ4
1 − 2w2ψ3

1λ1 − ψ1λ1λ2 + 3wψ2
1λ2

)
wp2 (5.50)

+
(∫

M2,1

−w2ψ3
1λ1 − ψ1λ1λ2 + 2wψ2

1λ2

)
wp + w2

∫
M2,1

ψ2
1λ2

)
.
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To obtain this expression, we have used the Mumford relation, which implies in par-
ticular λ2

2 = 0 and λ2
1 = 2λ2. On the other hand, the Chern–Simons answer for the

connected vevs when w = 1 and w = 2 is:

iW
(c)
1 (gs) = (−1)p

gs

(
1 + 1

24
g2
s + 7

5760
g4
s + O(g6

s )

)
,

i

2
W
(c)
2 (gs) = 1 + 2p

gs

(
1

4
− 1

24
(p2 + p − 1)g2

s (5.51)

+ 1

1440
(7 − 11p − 8p2 + 6p3 + 3p4)g4

s + O(g6
s )

)
,

and so on. By using now the following values of the Hodge integrals for g = 1∫
M1,1

ψ1 =
∫
M1,1

λ1 = 1

24
(5.52)

and for g = 2 ∫
M2,1

ψ4
1 = 1

1152
,

∫
M2,1

ψ3
1λ1 = 1

480
,∫

M2,1

ψ2
1λ2 = 7

5760
,

∫
M2,1

ψ1λ1λ2 = 1

2880
,

we find perfect agreement between (5.49) and (5.50) for w = 1, 2, and the Chern–
Simons answer. Moreover, it is in principle possible to compute all the integrals
over Mg,h that appear in (5.36) from the explicit expression (5.48). These Hodge
integrals include an arbitrary number ofψ classes and up to three λ classes. Therefore,
all correlation functions of two-dimensional topological gravity can in principle be
extracted from (5.48). It should be noted, however, that some of the simple structural
properties of (5.36) are not at all obvious from (5.48). For example, for g = 0, h = 1,
(5.36) gives a fairly compact expression for the open Gromov–Witten invariant, and
the fact that this equals the Chern–Simons answer amounts to a rather nontrivial
combinatorial identity. It is also possible to check that the open Gromov–Witten
invariants obtained in this way can be expressed in terms of BPS invariants, see [71]
for more details.

Unfortunately, although there are proposals for the Lagrangian submanifolds that
should correspond to other knots [63, 84], the associated open Gromov–Witten invari-
ants have not been computed yet, so one is forced to test the conjecture in the “weak”
sense of showing that one can extract integer invariants from the Chern–Simons in-
variants in the way described before. This was done in [61, 81, 63] for various knots
and links and it was shown in all cases that indeed such invariants can be extracted in
a highly nontrivial way. We will give a simple example of this, involving the trefoil
knot. By using the known values for the Chern–Simons invariants (3.33), and the
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Table 2. BPS invariants for the trefoil knot in the symmetric representation.

g Q = 1 2 3 4 5
0 −2 8 −12 8 −2
1 −1 6 −10 6 −1
2 0 1 −2 1 0

Table 3. BPS invariants for the trefoil knot in the antisymmetric representation.

g Q = 1 2 3 4 5
0 −44 16 −24 16 −4
1 −4 20 −32 20 −4
2 −1 8 −14 8 −1
3 0 1 −2 1 0

defining relations for the f -polynomials (5.12), one can easily obtain:

f (q, λ) = q− 1
2 λ(λ− 1)2 (1 + q2) (q + λ2 q − λ (1 + q2))

q
1
2 − q− 1

2

,

f (q, λ) = − 1

q3 f (q, λ).

(5.53)

Notice that, although the Chern–Simons invariants have complicated denominators,
the f -polynomials have indeed the structure (5.13). One can go further and extract
the BPS invariants N ,g,Q, N

,g,Q
from (5.53), by using (5.14). The results are

presented in Table 5.3 and Table 5.3, respectively. The above results have been
obtained in the canonical framing. Some integer invariants for the trefoil knot in
arbitrary framing are listed in [71]. Results for the BPS invariants of other knots and
links can be found in [63].

6 Large N transitions and toric geometry

The duality between Chern–Simons on S
3 and closed topological strings on the re-

solved conifold gives a surprising point of view on Chern–Simons invariants of knots
and links. However, from the “gravity” point of view we do not learn much about the
closed string geometry, since the resolved conifold is quite simple (remember that it
only has one nontrivial Gopakumar–Vafa invariant). It would be very interesting to
find a topological gauge theory dual to more complicated geometries, in such a way
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that we could use our knowledge of the gauge theory side to learn about enumerative
invariants of closed strings, and about closed strings in general.

Such a program was started by Aganagic and Vafa in [4]. Their basic idea is to
construct geometries that locally contain T ∗

S
3’s, and then follow geometric transitions

to dual geometries where the “local” deformed conifolds are replaced by resolved
conifolds. Remarkably, a large class of non-compact toric manifolds can be realized
in this way, as it was made clear in [3]. Let us consider in detail an example that allows
one to recover the local P

2 geometry.
Recall from our discussion in section 4 that the deformed conifold can be rep-

resented by a graph where one indicates the degeneration loci of the cycles of the
torus fiber. Following this idea, one can construct more general T

2 × R fibrations
of R

3 by specifying degeneration loci in the basis. An example of this is shown in
Fig. 10. Notice that this geometry contains three S

3’s, represented as dashed lines in

α

β

α + β

Figure 10. This shows a Calabi–Yau which is a T
2 × R fibration of R

3, where the α, β,
and α + β cycles of the torus degenerate at three lines.

Fig. 11. One can then think about a geometric transition where the three-spheres go
to zero size, and then the corresponding singularities are blown-up to give a resolved
geometry, as shown in Fig. 11.

The resolved geometry turns out to be toric, and in fact it can be obtained by three
blowups of the Calabi–Yau manifold O(−3) → P

2. Up to flops of the three P
1’s, the

resulting geometry is the noncompact Calabi–Yau manifold given by the del Pezzo
surface B3 together with its canonical bundle. To recover the local P

2 geometry, one
just sends the sizes of the three P

1’s to infinity. The remaining “triangle” is the toric
diagram for the local P

2 geometry, see [66, 2].
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α

α

α

β
β

ββ

β

α + β

α + β

α + β

α + β

α + β

2α + β

α − β α + 2β

Figure 11. This shows the geometric transition of the Calabi–Yau in the previous figure.
In the leftmost geometry there are three minimal 3-cycles. The lengths of the dashed lines
are proportional to their sizes. The intermediate geometry is singular, and the figure on
the right is the base of the smooth toric Calabi–Yau after the transition. This Calabi–Yau
is related to B3 by flopping three P

1’s.

Let us now wrap Ni branes, i = 1, 2, 3, around the three S
3’s of the deformed

geometry depicted in Fig. 10. What is the effective topological action describing
the resulting open strings? For open strings with both ends on the same S

3, the
dynamics is described by Chern–Simons theory with gauge group U(Ni), therefore
we will have three Chern–Simons theories with groups U(N1), U(N2) and U(N3).
However, there are new sectors of open strings stretched between two spheres, giving
the nondegenerate instantons that we described in 4.2, following [95]. Instead of
describing these open strings in geometric terms, it is better to use the spacetime
physics associated to these strings. In fact, a similar situation was considered when
we analyzed the incorporation of Wilson loops in the large N duality. There we had
two sets of intersecting D-branes, giving a massless complex scalar field living in
the intersection and in the bifundamental representation of the gauge groups. Now,
if we focus, say, on the N1, N2 branes, we will get again a complex scalar φ in
(N1, N2). This complex scalar is generically massive, and its mass is proportional to
the “distance” between the two three-spheres, and it is given by a complexified Kähler
parameter that will be denote by r . We can now integrate out this complex scalar field
to obtain the correction to the Chern–Simons actions on the three-spheres due to the
presence of the new sector of open strings, which is given by:

O(U1, U2; r) = exp
[−Tr log

(
er/2U−1/2

1 ⊗ U
1/2
2 − e−r/2U1/2

1 ⊗ U
−1/2
2

)]
= exp

{ ∞∑
n=1

e−nr

n
TrUn1 TrU−n

2

}
,

(6.1)

where U1,2 are the holonomies of the corresponding gauge fields around a loop. Note
that the operator O is the amplitude for a primitive annulus of size r together with its
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multicovers, as one can see from the first equation of (2.39) for h = 2. This annulus
“connects” the two S

3’s, i.e. one of its boundaries is in one three-sphere, and the other
boundary is in the other sphere. The exponent in (6.1) is the contribution to Fndg in
(4.10) due to these configurations of open strings, and r is the complexified area of
the annulus.

The problem now is to determine how many configurations like this one con-
tribute to the full amplitude. It turns out that the only contributions come from open
strings stretching along the degeneracy locus. This was found by Diaconescu, Flo-
rea and Grassi [25] using localization arguments, and derived in [3] by exploiting
invariance under deformation of complex structures. This result simplifies the prob-
lem enormously, and gives a precise description of all the nondegenerate instantons
contributing in this geometry: they are annuli stretching along the fixed lines of the
T

2 action, together with their multicoverings. This is illustrated in Fig. 12. The action

α

R1

R1

R2

R2

R3

R3

β

α + β

Figure 12. The only nondegenerate instantons contributing to the geometry depicted here
are annuli stretching along the degeneracy locus.
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describing the dynamics of topological D-branes is then:

S =
3∑
i=1

SCS(Ai)

+
∞∑
n=1

1

n

(
e−nr1 TrUn1 TrU−n

2 + e−nr2 TrUn2 TrU−n
3 + e−nr3 TrUn3 TrU−n

1

)
,

(6.2)

where theAi are U(Ni) gauge connections on each of the S
3’s, i = 1, 2, 3, and Ui are

the corresponding holonomies around loops. There is a very convenient way to write
the free energy of the theory with the above action. First notice that, by following the
same steps that led to (3.51), one can write the operator (6.1) as

O(U1, U2; r) =
∑
R

TrRU1e−�rTrRU
−1
2 , (6.3)

where � denotes the number of boxes of the representationR. In the situation depicted
in Fig. 12, we see that there are two annuli ending on each three-sphere. The bound-
aries of these annuli give knots, so we have a two-component link in each S

3. The
holonomies around the components of these links will be in different representations
of U(N), as indicated in Fig. 12. Therefore, the free energy will be given by:

F =
3∑
i=1

FCS(Ni, gs)+log
{ ∑
R1,R2,R3

e−∑3
i=1 �i riWR1,R2(L1)WR2,R3(L2)WR3,R1(L3)

}
,

(6.4)
where �i is the number of boxes in the representation Ri , and FCS(Ni, gs) denotes the
free energy of Chern–Simons theory with gauge group U(Ni). These correspond to
the degenerate instantons that come from each of the three-spheres.

Of course, in order to compute (6.4) we need some extra information: we have
to know what are, topologically, the links Li , and also if there is some framing
induced by the geometry. It turns out that these questions can be easily answered
by looking at the geometry of the degeneracy locus. The key point is to note that in
this geometry the three-spheres represented by dashed lines between two degeneracy
loci have natural Heegard splittings into two tori, and the gluing instructions are
determined by the Sl(2,Z) transformation that maps the degenerating cycle at the end
of the corresponding three-sphere, to the degenerating cycle at the other end [3]. For
example, the three-sphere between the α and the β degenerating loci in Fig. 12 comes
from gluing two tori with an S−1 transformation, which maps the α cycle into the
β cycle. Following this procedure (see [3] for details) one finds that the Li are all
Hopf links (see Fig. 2), and that some of the components do actually have nontrivial
framing. If we denote the components of Li by Ki and K ′

i , i = 1, 2, 3, the framings
turn out to be the following: K1, K ′

1 and K3 have framing zero, while the remaining
knots have framing p = 1. This means that L1 is in the canonical framing, in L2
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both components are framed, while in L3 only one of the components, K ′
3, is framed.

This is depicted in Fig. 13.

0 0 01 1 1

K1 K ′
1 K2 K ′

2 K3 K ′
3

Figure 13. The figure shows the Hopf links Li , i = 1, 2, 3. The numbers indicate the
framing of each knot.

What happens now if we go through the geometric transition of Fig. 11? As in the
case originally studied by Gopakumar and Vafa, the string coupling constant gives the
Chern–Simons “effective” coupling constant gs = 2π/(ki + Ni) (which is the same
for the three theories, see (4.11)), while the ’t Hooft parameters ti = gsNi correspond
to the sizes of the three outward legs of the toric diagram on the right side of Fig. 11.
The free energy (6.4) is, due to the large N transition, the free energy of topological
closed strings propagating in that toric geometry. In order to recover just local P

2, we
have to take the ’t Hooft parameters to infinity, and “tune” the sizes of the annuli at
the same time. It turns out that one has to perform a double scaling limit, taking both
ti and ri to infinity in such a way that

r = r1 − t1 + t3

2
= r2 − t1 + t2

2
= r3 − t2 + t3

2
(6.5)

remains finite. Then, r can be identified with the complexified Kähler parameter of
local P

2. We refer again to [3] for details. The free energy has in this limit the structure:

F = log

{
1 +

∞∑
�=1

a�(q)e
−�r
}

=
∞∑
�=1

a
(c)
� (q)e−�r (6.6)

where q = eigs . The coefficients a�(q), a
(c)
� (q) can be easily obtained in terms of the

invariants of the Hopf link in arbitrary representations. One finds, for example [3],

a1(q) = − 3

(q− 1
2 − q

1
2 )2
,

a
(c)
2 (q) = 6

(q− 1
2 − q

1
2 )2

+ 1

2
a1(q

2). (6.7)
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If we compare to (2.28) and take into account the effects of multicovering, we find the
following values for the Gopakumar–Vafa invariants of O(−3) → P

2:

n0
1 = 3, n

g
1 = 0 for g > 0,

n0
2 = −6, n

g
2 = 0 for g > 0,

(6.8)

in agreement with the results listed in Table 2.4. In fact, one can go much further with
this method and compute the Gopakumar–Vafa invariants to high degree. The advan-
tage of this procedure is that, in contrast to both the A and the B model computations,
one gets the answer for all genera, see [3] for a complete listing of the invariants up
to degree 12.

Although we have focused here on local P
2, one can analyze in a similar way

other toric geometries, including local P
1 ×P

1 and other local del Pezzo surfaces (see
also [25, 46]). In fact, one can in principle recover all local toric geometries in this
way. We then see that large N transitions produce gauge theory duals of topological
strings propagating on various toric backgrounds. The gauge theory dual is given
in general by a product of Chern–Simons theories together with complex scalars in
bifundamental representations, and moreover the gauge theory data are nicely encoded
in the toric diagram. Other aspects of these dualities for toric manifolds can be found
in [3, 25, 46].

7 Conclusions

The remarkable connections between enumerative geometry and knot invariants that
have been reviewed in this paper certainly deserve further investigation. Some direc-
tions for further research are the following:

1) The correspondence between knot invariants and open Gromov–Witten invari-
ants has been tested only for the unknot. It would be very interesting to test nontrivial
knots and improve our understanding of the map relating knots and links in S

3 to
Lagrangian submanifolds in the resolved conifold. This will certainly open new per-
spectives in the study of Chern–Simons knot invariants.

2) Another direction to explore is the correspondence between coupled Chern–
Simons systems and closed string invariants that we explained in section 6. Extensions
to more general local toric geometries, and even to compact geometries, would give a
fascinating new point of view on the enumerative geometry of Calabi–Yau threefolds.

3) The “unreasonable effectiveness of physics in solving mathematical problems”
[87] has given again surprising results connecting two seemingly unrelated areas of
geometry, and we need a deeper mathematical understanding of these connections.
For example, the results of section 6 may be understood in terms of the localization
techniques introduced in [55], as suggested in [3].
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Introduction

In quantum field theory gerbes arise when one asks the question whether a given bundle
of quantum mechanical projective spaces is a projectivization of a Hilbert space bundle.
Nontrivial obstructions to the existence of the Hilbert bundle are generated by QFT
anomalies.

An anomaly in field theory is a breakdown of a group of (gauge) symmetries in the
quantization of a classical field theory model. A classical symmetry can be broken in
the quantization of massless fermions in a classical background field. The background
consists typically of a curved space-time metric or a Yang–Mills field. Because of the
breakdown of the symmetry, in the quantized theory one cannot identify gauge or
diffeomorphism equivalent Hilbert spaces. The quantized symmetry group acts only
projectively, through a central (or an abelian) extension; for this reason modding out



94 Jouko Mickelsson

by the symmetry group leads to a bundle of projective spaces parametrized by the
external field configurations.

The obstruction to replacing a projective bundle over X by a true vector bundle is
given by a cohomology class in H 3(X,Z), the Dixmier–Douady class. At the same
time, the Dixmier–Douady class describes a (stable) equivalence class of a gerbe over
X. For the general theory of gerbes, the reader is recommended to consult [Br]. Here
our discussion is closely related to a specialized form, the bundle gerbe, introduced in
[Mu], which is an abstraction of a quantum field theory problem involving massless
fermions, [Mi].

A gerbe over X can be viewed as a collection of local line bundles Lij over
intersections Uij = Ui ∩Uj of open subsets ofX. In addition, the gerbe data involves
a family of isomorphisms

Lij ⊗ Ljk = Lik

on the triple overlaps Uijk. Given a family of curvature forms ωij for the local line
bundles, satisfying the cocycle property ωij + ωjk = ωik, one can produce a closed
integral 3-form ω defined on X using a standard construction in a Cech–de Rham
double complex. The class [ω] ∈ H 3(X,Z) is de Rham form of the Dixmier–Douady
class of the gerbe. (This is not the whole story, because there are cases when the DD
class is pure torsion.)

The local line bundles Lij arise in a natural way when trying to deprojectivisize a
projective bundle over X. The transition functions on the overlaps Uij of a projective
bundle are given as functions gij taking values in a projective unitary group. The
unitary group U(H) is a central extension by the circle S1 of the projective unitary
group PU(H). Thus the possible unitaries ĝij (x) representing gij (x) ∈ PU(H) form
a circle over the point x ∈ Uij ; replacing the circle by C we obtain a complex line
Lij (x). The group product in U(H) gives a natural identification of Lij ⊗Ljk as Lik
in the common domain.

Sections 2 and 3 contain an introduction to the (twisted) K-theory aspects of gerbes,
from the quantum field theory point of view. K-theory arises naturally in (hamiltonian)
quantization. We have a family of Hamilton operators parametrized by points in X.
When the Hamilton operators are self-adjoint and have both positive and negative
essential spectrum, they give (by definition) an element of K1(X). It is known that
K1(X) is parametrized by the odd cohomology groups H 2k+1(X,Z). The Dixmier–
Douady class is then the projection to the 3-cohomology part. If we disregard torsion,
we can describe this by a de Rham form of degree 3. This is also the starting point
for constructing the twisted K-theory classes, [Ro]. In section 4 we give an explicit
example using the supersymmetric WZW model.

Of course, in this short presentation I have left out many interesting topics; for
recent discussions on the applications of gerbes and K-theory to strings and conformal
field theory see e.g. [GR], [Se].

I want to thank Jens Hoppe for pointing out the reference [Ko] and Edwin Lang-
mann for critical reading of the manuscript and telling me about [B-R]. This work
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was partially supported by the Erwin Schrödinger International Institute for Mathe-
matical Physics and by the Royal Swedish Academy of Sciences, which is gratefully
acknowledged.

1 Gerbes from canonical quantization

Let us first recall some basic facts about canonical anticommutation relations (CAR)
in infinite dimensions, for an extensive review see [Ar]. Let H be a complex Hilbert
space. To each vector u ∈ H one associates a pair of elements a(u) and a∗(u) which
are generators of a complex unital algebra, the CAR algebra based on H. The basic
relations are

a(u)a∗(v)+ a∗(v)a(u) = 〈u, v〉1
a(u)a(v)+ a(v)a(u) = 0 = a∗(u)a∗(v)+ a∗(v)a∗(u)

(1.1)

for all vectors u, v ∈ H.The map u → a∗(u) is linear whereas u → a(u) is antilinear.
Each polarization H = H+ ⊕ H− to a pair of infinite-dimensional subspaces

defines an irreducible representation of CAR in a Hilbert space (the Fock space)
F = F (H+ ⊕H−). The (equivalence class of the) representation is uniquely defined
by the requirement of existence of a vacuum vector ψ0 such that

a∗(u)ψ0 = 0 = a(v)ψ0 (1.2)

for all u ∈ H− and v ∈ H+.Any two representations defined by polarizationsH+, H ′+
are equivalent if and only if the projection operators P , P ′ to these subspaces differ
by a Hilbert–Schmidt operator.

A unitary operator S : H → H can be promoted to a unitary operator Ŝ : F → F
such that

Ŝa(u)Ŝ−1 = a(Su) ∀u ∈ H,
and similarly for the creation operators a∗(u), if and only if the off-diagonal blocks of
S (in the given polarization) are Hilbert–Schmidt operators. Let us denote the group
of unitaries S of this type as Ures = Ures(H+ ⊕H−), [PS]. Note that the operator Ŝ is
only defined up to a phase factor. The group of quantum operators Ŝ forms a central
extension Ûres of Ures,

1 → S1 → Ûres → Ures → 1.

Likewise, a bounded linear operatorX : H → H can be ‘second quantized’as a linear
operator X̂ in F such that

[X̂, a∗(u)] = a∗(Xu), [X̂, a(u)] = −a(X∗u) (1.3)

for all u ∈ H if and only if the off-diagonal blocks of X are Hilbert–Schmidt. In this
case the operator X̂ is uniquely defined modulo an additive constant. The operators X̂
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form a Lie algebra, a central extension of the Lie algebra of the complex groupGLres,

with commutation relations

[X̂, Ŷ ] = [̂X, Y ] + c(X, Y ),

where the complex valued 2-cocycle c depends on certain choices (physically, the
choice of normal ordering in the Fock space), but its cohomology class is represented
by, [Lu],

c(X, Y ) = 1

4
tr ε[ε,X][ε, Y ],

where ε = PH+ − PH− .
In quantum field theory problems the polarization arises as a splitting of the

1-particle Hilbert space into positive and negative energy subspaces with respect to a
(in general unbounded) self-adjoint Hamilton operator (e.g. a Dirac operator).

Consider next a case when we have a parametrized family of Hamilton operators.
Let X be some manifold and let for each x ∈ X a self-adjoint operatorDx (in a dense
domain of) H be given, such that Dx depends smoothly on the parameter x in some
appropriate topology. Tentatively, we would like to construct a family of Fock spaces
Fx defined by the polarizations H = H+(Dx) ⊕ H−(Dx) to positive and negative
spectral subspaces. However, in general this is not possible in a smooth way because
of the spectral flow: each time an eigenvalue λn(x) ofDx crosses the zero mode λ = 0
we have a discontinuity in the polarization and thus in the construction of the Fock
spaces.

The potential resolution to the above problem lies in the fact that one is really
interested only in the equivalence class of the CAR representation. Therefore one is
happy with a choice of a function x → Px, where Px is a projection operator which
differs from the projection operator onto H+(Dx) by a Hilbert–Schmidt operator.
However, there can be an obstruction to the existence of the functionPx which depends
on the K-theory class of the mapping x → Dx.

Recall the operator theoretic meaning of K1(X). Let Fred∗ be the space of self-
adjoint Fredholm operators in H with both negative and positive essential spectrum.
ThenK1(X) can be identified as the space of homotopy classes of mapsX → Fred∗ .
In particular, a familyDx of Dirac type operators defines an element inK1(X). Up to
torsion,K1(X) is parametrized by the odd de Rham cohomology classes inH ∗(X,Z).
It turns out that for the existence of the family Px only the 3-form part is relevant.

As a concrete example in quantum field theory consider the case of Dirac operators
coupled to vector potentials. Let A be the space of g valued 1-forms on a compact odd
dimensional spin manifoldM where g is the Lie algebra of a compact groupG. Each
A ∈ A defines a Dirac operator DA in the space H of square integrable spinor fields
twisted by a representation of G. The ‘free’ Dirac operator D0 defines a background
polarization H = H+ ⊕H−. Each potential A and a real number λ defines a spectral
subspace H+(A, λ) corresponding to eigenvalues of DA strictly bigger than λ.
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Let Grp(H+) be the Grassmann manifold consisting of all closed subspacesW ⊂
H such thatPW−PH+ is in the Schatten idealLp of operators T with |T |p a trace-class
operator. One can show that each H+(A, λ) belongs to Grp(H+) when p > dimM.

All the Grassmannians Grp for p ≥ 1 are homotopy equivalent and they are also
homotopy equivalent to the space Fred of all Fredholm operators inH. For this reason
Grp is a classifying space in K-theory. In particular, the connected components of Grp
are labelled by the Fredholm index of the projectionW → H+ and each component is
simply connected. The second integral cohomology (and second homotopy) of each
component is equal to Z. For this reason the complex line bundles are generated by a
single element DETp . In the case p ≤ 2 the curvature of the dual line bundle DET∗

p

is particularly simple; it is given as 2π times the normalized 2-form

ω = 1

16π
trPdPdP. (1.4)

We can cover A with the open sets Uλ = {A ∈ A|λ /∈ Spec(DA)}. On each
Uλ the map A → H+(A, λ) ∈ Grp is smooth. For this reason we may pull back
the line bundle DETp to a line bundle DETp,λ over Uλ. We shall not go into the
explicit construction of DETp here, [MR]. Instead, the difference bundles DETp,λλ′ =
DETp,λ⊗ DET∗

p,λ′ over Uλλ′ = Uλ ∩Uλ′ are easy to describe. The fiber of DETp,λλ′

is simply the top exterior power of the spectral subspace of DA for λ < DA < λ′. By
construction, we have a canonical identification

DETp,λλ′ ⊗ DETp,λ′λ′′ = DETp,λλ′′ (1.5)

on the triple overlaps, for λ < λ′ < λ′′. We set DETp,λλ′ = DET∗
p,λ′λ for λ > λ′. A

system of complex line bundles with the cocycle property (1.5) defines a gerbe. In
this case we have a trivial gerbe, it is generated by local line bundles DETp,λ over
the open sets Uλ. However, we may push things down to the space of gauge orbits
X = A/G, where G is the group of based gauge transformations, i.e., the group of
smooth maps f : M → G such that f (p) = 1 at a base point p ∈ M; here we assume
for simplicity that M is connected.

The gauge group acts covariantly on A and on the eigenvectors ofDA and therefore
we may mod out by the G action to manufacture complex line bundles over Vλλ′ =
Uλλ′/G. These line bundles (which we also denote by DETp,λλ′ ) satisfy the same
cocycle property (1.5) as the original bundles over Uλλ′ . Thus we obtain a gerbe over
X. Generically, this gerbe is nontrivial. In general, there is an obstruction to the
trivialization of the gerbe given as a Dixmier–Douady class in H 3(X,Z).

The Dixmier–Douady class can be computed as follows. Let ωλλ′ be the curvature
form of DETλλ′ . These satisfy

ωλλ′ + ωλ′λ′′ = ωλλ′′ (1.6)
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on the triple overlaps. Let {ρλ} be a partition of unity subordinate to the covering by
the open sets Vλ. The closed 3-forms

ωλ =
∑
λ′
dρλ′ωλλ′

satisfy ωλ = ωλ′ on Vλλ′ and therefore can be glued together to produce a global
closed 3-form ω. This is easily seen to be integral. The class [ω] ∈ H 3(X,Z) is the
DD class of the gerbe.

Let us again consider the case of the trivial gerbe over A. The trivialization by
the local line bundles DETp,λ resolves the problem of defining a continuous family
of CAR representations parametrized by A. Over each set Uλ we can define a CAR
algebra representation in F ′(A, λ) = F (A, λ)⊗DET∗

p,λ by the action a∗(u)⊗1 and
a(u)⊗1 on the fibers. The crux is that the spaces F ′(A, λ) are canonically isomorphic
for different values of λ, and hence we have a well-defined family of spaces F ′(A)
for all A ∈ A, [Mi]. In physics terminology, an isomorphism between F (A, λ) and
F (A, λ′) for λ < λ′ is obtained by ‘filling the Dirac sea’ from the vacuum level λ
up to the level λ′. The filling is canonically defined up to a unitary rotation of the
eigenvectors of DA in the spectral interval [λ, λ′]; a rotation of the basis by R leads
to a phase factor detR in the filling, which is exactly compensated by the inverse
phase factor in the isomorphism between the dual determinant lines DET∗

p,λ(A) and
DET∗

p,λ′(A).

2 K-theory aspects of canonical quantization

Let X be a parameter space for a family of self-adjoint operators with both positive
and negative essential spectrum, that is, we have a map X → Fred∗ or in other words
we have an element in K1(X).

As shown in [AS] the space Fred∗ is homotopy equivalent to the group of unitaries
g in the complex Hilbert spaceH such that g− 1 is compact. According to Palais this
group is homotopy equivalent to the group U(p) of unitaries g such that g − 1 ∈ Lp
for any p ≥ 1. The choice G = U(1) is the most convenient one since it allows to
write in a simple way the generators for H ∗(G,Z). The cohomology is generated by
the odd elements

c2k+1 = Nktr (dgg
−1)2k+1

for k = 0, 1, 2, . . . ; Nk = −(1/2πi)k+1 k!
(2k+1)! is a normalization constant.

The infinite-dimensional group Ures is of interest to us. Let H = L2(S1, H).

Then the group G of smooth based loops in G acts naturally in H . The space H
has a natural polarization H = H+ ⊕ H− to positive (resp. zero and negative)
Fourier modes. The G orbit of H+ lies in the Hilbert–Schmidt Grassmannian
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Gr2(H+).Thus we haveG ⊂ Ures(H+⊕H−).Actually, the inclusion is a homotopy
equivalence (a consequence of Bott periodicity), [CM1].

There is a universalG bundle P overG,with total space the set of smooth paths
f : [0, 1] → G starting from the unit element and such that f−1df is periodic at the
end points. Replacing G by Ures we obtain an universal Ures bundle over G. Thus
G is a classifying space for Ures bundles and we have:

Proposition. K1(X) is isomorphic to the group of equivalence classes ofUres bundles
over X.

The group structure inK1(X) comes from the representation of elements inK1(X)

as homotopy classes of maps g : X → G. The product is the pointwise multiplication
of maps.

In canonical quantization, it is the Ures bundle aspect of K1(X) which is seen
more directly. As we discussed earlier, the Fock representations of the CAR algebra
are determined by polarizations of the 1-particle space. A family Dx of self-adjoint
operators in Fred∗ defines a principal Ures bundle over X. The fiber of the bundle at x
is the set of unitaries g in H = H+ ⊕ H− such that the projection onto gH+ differs
from the spectral projection to the subspace Dx > 0 by a Hilbert–Schmidt operator.
Since Fred∗ 	 G this bundle is the pull-back of the universal bundle P overG by the
map x → Dx.

The second quantization may be viewed as a prolongation problem for a Ures
bundle PD overX.We want to construct a vector bundle F overX such that the fibers
are Fock spaces carrying representations of the CAR algebra. The Fock bundle is an
associated bundle, not to PD because Ures does not act in the Fock spaces, but to an
Ûres bundle P̂D which is a prolongation of PD by the center S1 of Ûres. The following
was proven in [CM1]:

Theorem 1. There is an obstruction for prolonging PD to P̂D given by the Dixmier–
Douady class which is in the 3-form part of the K-theory class [D] ∈ K1(X).

In many cases the DD class can be computed using index theory, see [CMM1,2],
[CM1,2], but here we shall discuss a bit more the calculation based on the homotopy
equivalence Fred∗ 	 G.

First, one can construct a homotopy equivalence from Fred∗ to the space of bounded
self-adjoint operators with essential spectrum at ±1, [AS]. For Dirac type operators
on a compact manifold we could take for example the map D → FD = D/(|D| +
exp(−D2)). This is the approximate sign operator of D. The next step is to map the
FD’s to unitary operators by FD → gD = − exp(iπFD). It is not difficult to see
that the difference gD − 1 is trace-class. Note that for Dirac operators on a compact
manifold of dimension n we could take FD = D/(|D| + 1), for simplicity, but then
we would have the weaker condition gD − 1 ∈ Lp for p > n.
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Formally, the pull-back of the universal DD class

c3 = 1

24π2 tr (dgg−1)3

with respect to the mapping F → g = − exp(iπF ) can be computed as ω = dθ with

θ = 1

8
tr dFh(adiπF )dF (2.1)

where h(x) = (sinh(x)−x)/x2 and adF (z) = [F, z].However, in general the expres-
sion after ‘tr’ is not trace-class (and for this reasonω is not exact). There are interesting
cases when the above formula makes sense. When D is a Dirac operator on a mani-
fold of dimension n then one can show using standard estimates on pseudodifferential
symbols that dF is in Lp for any p > n. It follows that the right-hand-side of (2.1)
is well-defined for a Dirac operator on a circle. The case of dimension n = 3 is a
limiting case. In three dimensions the trace is logarithmically divergent (when defined
as a conditional trace in a basis where F is diagonal) and subtracting the logarithmic
divergence one obtains a finite expression which can be used to define θ.

The case F 2 = 1 is also interesting; these points define a Grassmann manifold
since (F + 1)/2 is a projection onto an infinite-dimensional subspace. Again, in the
case of sign operators defined by Dirac operators one can show that F defines a point
in Grp for p > n.Assuming that the trace in (2.1) converges, one obtains a specially
simple formula for the form θ,

θ = 1

16π
trFdFdF for F 2 = 1 .

Not surprisingly, this is (mod a factor 2π ) the curvature formula for the determinant
bundle DET2 over Gr2 .

3 Twisted k-theory and QFT

There has been an extensive discussion of twisted K-theory in the recent string theory
literature, inspired by suggestions in [Wi]. I will not discuss any of the string theory
applications here. Instead, I want to point out that twistings in K-theory are related to
some very basic constructions in standard QFT.

Twisted K-theory was introduced in [Ro] as a generalization of algebraic K-theory
on C∗-algebras. Today there are several equivalent definitions of twisted K, see e.g.
[BCMMS]. For QFT problems I find it most convenient to use the topologist definition
of twisted K-theory groups.

Twisted K-theory elements arise from principal PU(H) bundles. Here PU(H) =
U(H)/S1 is the projective unitary group in a complex Hilbert space. Since U(H) is
contractible by Kuiper’s theorem, the homotopy type of PU(H) is simple: The only
nonzero homotopy group isπ2(PU(H)) = Z.For this reasonH 2(PU(H),Z) = Z.On
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the Lie algebra level, the basic central extension 1 → S1 → U(H) → PU(H) → 1
of PU(H) is given as follows. Let ψ0 ∈ H be a fixed vector of unit length and
g0 the subspace in the Lie algebra ĝ of U(H) consisting of operators x such that
(ψ0, xψ0) = 0. For each y in the Lie algebra g = ĝ/iR of PU(H) there is a unique
element ŷ ∈ g0 such that π(ŷ) = y, where π is the canonical projection. We can
write ĝ = g ⊕ iR and the commutation relations in ĝ can be written as

[(x, α), (y, β)] = ([x, y]g, c(x, y))
where the cocycle c is given by c(x, y) = [x̂, ŷ] − [̂x, y]g.

Given a principal PU(H) bundle P over X we can construct an associated Fred∗
bundle Q(P ) over X as P ×PU(H) Fred∗ where PU(H) acts on Fred∗ through con-
jugation. Again, using the homotopy equivalence Fred∗ 	 G we might consider G
bundles as well; but then it is important to keep in mind that these are not principalG
bundles. The twistedK1 ofX, to be denoted byK1(X, [P ]), is then defined as the set
of homotopy classes of sections of the bundle Q(P ).A similar definition is used for
the twisted K0 group, the space Fred∗ is then replaced by the space of all Fredholm
operators in H, or alternatively, we can use the model Ures 	 Fred .

Quantum field theory provides concrete examples of twisted bundlesQ(P ) and its
sections. As we have seen, a family of Dirac type hamiltonians parametrized by X is
an element ofK1(X) or equivalently, an equivalence class ofUres bundles overX.The
basic observation is that the group Ures can be viewed as a subgroup of PU(F ) where
F is a Fock space carrying a representation of the central extension Ûres.Therefore we
can extend the Ures bundle to a PU(F ) bundle P over X.A section of the associated
bundle Q(P ) becomes now a function f from P to the space of operators of type
Fred∗ in the Fock space F such that f (pg) = g−1f (p)g for all g ∈ PU(F ) and
p ∈ P. Since our PU(F ) reduces to a Ures bundle P0 we might as well construct a
section of Q(P ) from an equivariant function on P0 with values in Fred∗ .

Let Ui be a family of open sets covering X equipped with local trivializations of
the Ures bundle. Let gij : Ui ∩ Uj → Ures be the corresponding transition functions.
Then a section of Q(P ) can be given by a family of maps

ai : Ui → Fred∗(F )

such that

aj (x) = ĝij (x)
−1ai(x)ĝij (x) for x ∈ Uij .

Here ĝ is the quantum operator, acting in F , corresponding to the ‘1-particle opera-
tor’ g.

In general, twisted K1 is not easy to compute. Let us consider a simple example.

Example. Let X = S3 which can be identified as the group SU(2) of unitary 2 × 2
matrices of determinant = 1. A twisted PU(H) bundle P over S3 is constructed as
follows. First, the space of smooth vector potentials A on a circle with values in the
Lie algebra of SU(2) can be viewed as a principalSU(2) bundle over S3. The group
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of based loops SU(2) acts on the vector potentials through gauge transformations
A → g−1Ag + g−1dg. A vector potential modulo based gauge transformations is
parametrized by the holonomy around the circle, giving an element in S3 = SU(2).

The loop groupSU(2) acts in the spaceH of square-integrable C
2 valued func-

tions on the unit circle, giving an embedding SU(2) ⊂ Ures(H+ ⊕H−), the polar-
ization being given by the splitting to negative and nonnegative Fourier modes. Thus
we can extend the SU(2) bundle A over S3 to a principal Ures bundle P0. This
extends, as explained above, to a principal PU(F ) bundle over S3.

All principal PU(F ) bundles over S3 are classified by the homotopy classes of
transition functions S2 → PU(F ), that is, by the elements n ∈ π2(PU(F )) = Z.

The construction above gives the basic bundle with n = 1. The higher bundles are
obtained by taking tensor powers (and their duals) of the Fock space representations
of the central extension of the loop group SU(2). The K1-theory twist in this case
is fixed by a choice of the integer n.An element of the twistedK1(S3, n) is now given
by the homotopy class of pairs of functions h± : S3± → Fred∗ such that on the equator
S2 ∼ S3+ ∩ S3−

h+(x) = g−1(x)h−(x)g(x),

where g : S2 → PU(H) is can be given explicitly, using the embedding SU(2) ⊂
PU(F ) and the fact that π2SU(2) = Z, see [CMM2] for details.

All classes inK1(SU(2), n) can actually be given in a simpler way. We can use the
homotopy equivalence Fred∗ 	 U(1) = G. Choose then h+ : S3+ → G such that it is
equal to the unit element on the overlap S3+∩S3− and takeh− as the constant function on
S3− taking the value 1 ∈ G. Then clearly h± are intertwined by the transition function
g on the overlap. Since h+ is constant on the boundary of S3+, it can be viewed as
a map g+ : S3 → G. The winding number of this map in π3(G) = Z, modulo n,
determines the class in K1(S3, n) = Z/nZ.

The transition function in the present example, being a map from S2 toUres (which
is a classifying space for K0), can also be viewed as an element of K0(S2) = Z ⊕ Z.

This is an essential part of the computation ofK1(S3, n), based on the Mayer–Vietoris
theorem in K-theory, see [BCMMS] for details, or the original computation in [Ro].

4 An example: supersymmetric WZW model

Let Hb be a complex Hilbert space carrying an irreducible unitary highest weight
representation of the central extension L̂G of the loop group LG of level k; here
G is assumed to be compact and simple, dimG = N. The level satisfies 2k/θ2 =
0, 1, 2, . . . , where θ is the length of the longest root of G.
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LetHf be a fermionic Fock space for the CAR algebra generated by elements ψan
with n ∈ Z and a = 1, 2, . . . , N = dimG,

ψanψ
b
m + ψbmψ

a
n = 2δn,−mδa,b. (4.1)

The Fock vacuum is a subspace ofHf of dimension 2[N/2] (here [p] denotes the integral
part of a real number p). The vacuum subspace carries an irreducible representation
of the Clifford algebra generated by theψa0 ’s and in addition any vector in the vacuum
subspace is annihilated by all ψan ’s with n < 0.

The tensor product spaceH = Hf ⊗Hb carries a tensor product representation of
L̂G. The fermionic part of the representation is determined by the requirement

Tf (g)ψ(α)Tf (g)
−1 = ψ(g · α), (4.2)

where α is a C
N valued smooth function on the unit circle and ψ(α) = ∑

ψanα
a−n,

where the αan’s are the Fourier components of the vector valued function α. The action
of g ∈ LG on α is the point-wise adjoint action on the Lie algebra of the loop group.

The Lie algebra of L̂G acting in Hb is generated by the Fourier modes T an subject
to the commutation relations

[T an , T bm] = λabcT
c
n+m + knδn,−mδa,b, (4.3)

where the λabc’s are the structure constants of the Lie algebra g in a basis T a which
is orthonormal with respect to the Killing form 〈X, Y 〉 = −tr(adX · adY ). There is, up
to a phase factor, a unique normalized vector xλ ∈ Hb such that T an xλ = 0 for n < 0
and is a highest weight vector of weight λ for the finite-dimensional Lie algebra g.

We denote the loop algebra generators acting in the fermionic Fock space Hf by
Ka
n . They satisfy the commutation relations

[Ka
n ,K

b
m] = λabcK

c
n+m + 1

2
nδn,−mδa,b. (4.4)

Explicitly, the generators are given by

Ka
n = −1

4
λabc : ψbn+mψc−m : . (4.5)

The normal ordering : : is defined as the rule to write the operators with negative
momentum index to the right of those with positive index. Actually, since our λabc’s
are totally antisymmetric, the normal ordering in (4.5) is irrelevant.

We denote by San the generators of the tensor product representation in H =
Hb ⊗Hf . They satisfy the relations

[San, Sbm] = λabcS
c
n+m +

(
k + 1

2

)
nδabδn,−m. (4.6)

The free hamilton operator is

h = hb ⊗ 1 + 1 ⊗ (2k + 1)hf + N

24
(1 ⊗ 1)
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where

hb = − : T an T a−n : and hf = 1

4
: nψanψa−n : (4.7)

We use the conventions

(ψan )
∗ = ψa−n and (T an )

∗ = −T a−n. (4.8)

As seen by a direct computation, the superchargeQ satisfiesQ2 = h and is defined
by

Q = iψa−nT an − i

12
λabcψ

a
nψ

b
mψ

c−m−n. (4.9)

For a detailed description of the whole super current algebra, see [KT], or in somewhat
different language, [La]. Again, by antisymmetry of the structure constants, no normal
ordering is necessary in the last term on the right. The general structure of Q has
similarities with Kostant’s cubic Dirac operator, [Ko], (containing a cubic term in
the ‘gamma matrices’ ψan ); another variant of this operator has been discussed in
conformal field theory context in [B-R]. Restricting to zero momentum modes, the
operator Q in fact becomes Kostant’s operator

K = iγ aT a − i

12
λabcγ

aγ bγ c, (4.10)

where ψa0 = γ a are the Euclidean gamma matrices in dimension N. By the antisym-
metry of the structure constants the last term is totally antisymmetrized product of
gamma matrices.

The supercharge is a hermitean operator in a dense domain of the Fock space H,
including all the states which are finite linear combinations of eigenvectors of h.

There is a difference between the cases N = dimG is odd or even. In the even
case we can define a grading operator � which anticommutes with Q. It is given as
� = (−1)FψN+1

0 , where F is the fermion number operator, ψanF + Fψan = n
|n|ψ

a
n

for n �= 0, andψN+1
0 is the chirality operator on the even dimensional group manifold

G, with eigenvalues ±1.
We can couple the supercharge to an external g valued vector potential A on the

circle by setting, with k̃ = k + 1
2 ,

QA = Q+ k̃ψan iA
a−n (4.11)

where the Fourier components of the Lie algebra valued vector potential A satisfy
(Aan)

∗ = −Aa−n. By a direct computation,

[San,QA] = ik̃(nψan + λabcψ
b
mA

c
n−m). (4.12)

This implies that for a finite gauge transformation f ∈ LG
S(f )QAS(f )

−1 = QAf , (4.13)

where Af = f−1Af + f−1df.
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Theorem 2. The family QA of hermitean operators in H defines an element of the
twisted K-theory group K1(G, k′) where the twist is k′ = (2k + 1)/θ2 times the
generator of H 3(G,Z).

Proof. As pointed out in [BCMMS], twisted K-theory classes over G can be thought
of as equivariant maps f : P → Fred∗, where P is a principal PU(H) bundle overG
with a given Dixmier–Douady invariant ω ∈ H 3(G,Z). The equivariance condition
is f (pg) = g−1f (p)g for g ∈ PU(H). In the case at hand, the principal bundle P
is obtained by embedding of the loop group LG ⊂ PU(H) through the projective
representation ofLG of level k+ 1

2 .As we saw in (4.13), the familyQA is equivariant
with respect to the (projective) loop group action. Finally, the Dixmier–Douady class
determined by the level k+1/2 of the projective representation is k′ times the generator

1
24π2 tr(g−1dg)3 on G = A/G. ��

Note that in the even case the family QA gives necessarily a trivial element in
K1. This follows from the existence of the operator � which anticommutes with the
hermitean operatorsQA.Thus there is no net spectral flow for this family of operators,
which is an essential feature in odd K-theory.

However, in the even case we can define elements in K0 by the standard method
familiar from the theory of ordinary Dirac operators: We can split QA = Q+

A +Q−
A,

using the chiral projections 1
2 (� ± 1), where (Q+

A)
∗ = Q−

A is a pair of nonhermitean
operators with nontrivial index theory. Either of the familiesQ±

A can be used to define
an element of K0(G, k′). Again, we use the observation that elements in K0(G, k′)
can be viewed as equivariant maps from the total space P of a principal PU(H) bundle
over G to the set Fred of all Fredholm operators in H.

The operatorQ is also of interest in cyclic cohomology. It can be used to construct
the entire cyclic cocycle of Jaffe, Lesniewski, and Osterwalder [JLO] (they considered
the case of abelian Wess–Zumino model). The key fact is that the operator exp(−sQ2)

is a trace class operator for any real s > 0; in fact, there is an explicit formula for
the trace, it is equal to the product of Kac character formulas for two highest weight
representations of the loop group, one in the bosonic Fock space and the second in the
fermionic Fock space.

The second ingredient in cyclic cohomology is an associative algebra B acting in
the Hilbert space such that each [Q, a] is a bounded operator for a ∈ B. This is the
case for the elements S(f ) = f an S

a−n in the current algebra for each smooth function
f on the unit circle. However, the operators S(f ) are not bounded. This should not be
a serious problem since the norm of the restriction of S(f ) to a finite energy subspace
is growing polynomially in energy, whereas tre−sQ2

is decreasing exponentially in
energy. Recall that the even entire JLO cocycle is composed of terms

∫
si>0,

∑
si=1

tr�a0e
−s0Q2 [Q, a1]e−s1Q2

. . . [Q, an]e−snQ2
ds0 . . . dsn−1
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with ai ∈ B. This is finite for elements ai in the current algebra. The above formula
can be used also in the odd case by setting � = 1.

Since the twisted K-theory classes above are labelled by the irreducible highest
weight representations of an affine Kac–Moody algebra, it is natural to ask what is the
relation of the twisted K-theory onG to the Verlinde algebra ofG, on a given level k.
Actually, D. Freed, M. Hopkins and C. Teleman have announced that there is a product
inKG(G, k) (theG equivariant version ofK(G, k)) which makes it isomorphic to the
Verlinde algebra, [F], [FHT]. It would be interesting to understand the relation of their
geometric construction to the algebraic construction based on the supersymmetric
WZW model.
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Abstract. In this paper we study two types of groups of smooth maps from a non-compact
manifold M into a Lie group K which may be infinite-dimensional: the group C∞

c (M,K)

of compactly supported maps and for a compact manifold M and a closed subset S the group
C∞(M, S;K) of those maps which vanish on S, together with all their derivatives. We study
central extensions of these groups associated to Lie algebra cocycles of the form ω(ξ, η) =
[κ(ξ, dη)], where κ : k × k → Y is a symmetric invariant bilinear map on the Lie algebra k

of K and the values of ω lie in �1(M;Y )/dC∞(M;Y ). For such cocycles we show that a
corresponding central Lie group extension exists if and only if this is the case for M = S

1. If
K is finite-dimensional semisimple, this implies the existence of a universal central Lie group
extension of the identity component of the current groups.

2000 Mathematics Subject Classification: 22E65; 58D15, 57T20.

Introduction

If M is a compact manifold and K a Lie group (which may be infinite-dimensional),
then the so called current groups C∞(M;K), endowed with the group structure given
by pointwise multiplication, are interesting infinite-dimensional Lie groups arising
in many circumstances. If M is a non-compact manifold, the full group C∞(M;K)
seems to be far too large to carry a Lie group structure compatible with its natural
group topology, so that it is natural to study subgroups of maps f : M → K that either
vanish outside a compact subset or decay fast enough at infinity. In the present paper
we investigate the following two types of current groups on a non-compact manifold
M . The first class consists of the groups C∞

c (M;K) of compactly supported smooth
maps and the second class of the groupsC∞(M, S;K) of maps on a compact manifold
M for which all partial derivatives vanish on the closed subset S ⊆ M . The groups
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C∞(M, S;K) have the advantage that they are Fréchet–Lie groups ifK is a Fréchet–
Lie group, the Lie algebra is given by C∞(M, S; k). We consider them as groups of
smooth maps on the non-compact manifold M \ S vanishing at infinity. The groups
C∞
c (M;K) are modeled on the space C∞

c (M; k)which is not metrizable in its natural
direct limit topology, not even for K = R.

The goal of the present paper is to understand central extensions of current groups
G which are identity components of groups of the type C∞

c (M;K) or C∞(M, S;K).
For an infinite-dimensional Lie groupG not every Lie algebra cocycle ω : g × g → z
defines a central extension of g by z which can be integrated to a Lie group. In
[Ne02a] we show that there are two kinds of obstructions. The first one is an element
of Hom(π1(G),Lin(g, z)), and we will see in Theorem V.8 that it always vanishes for
current groups. The second obstruction is that the image of a certain “period map”
perω : π2(G) → z need not be discrete. To illuminate the obstructions for the class of
current groups, we need a good deal of information on the abelian group π2(G). This
information is obtained in Appendix A where we show that the computation of the
homotopy groups ofG can be reduced to the computation of those of groupsC(X;K)
of continuous maps, where X is a compact manifold with boundary.

The Lie algebra cocycles we are interested in are those of product type, i.e., cocycles
ω : g × g → z for which there exists a sequentially complete locally convex space Y
and an invariant continuous symmetric bilinear form κ : k×k → Y such thatω(ξ, η) =
[κ(ξ, dη)] defines a cocycle with values in z := zM,c(Y ) := �1

c(M;Y )/dC∞
c (M;Y )

for g = C∞
c (M; k), and z := z(M,S)(Y ) := �1(M, S;Y )/dC∞(M, S;Y ) for g =

C∞(M, S; k). We systematically use forms with values in an infinite-dimensional
vector space to incorporate in particular the universal invariant symmetric bilinear
form κ : k × k → V (k).

The main steps in our analysis of these cocycles and their period maps are as
follows. In Section IV we show that the image of the period map always lies in the
subspace of z coming from the closed 1-forms. Then the problem is to determine
the period group �ω := im(perω) ⊆ z and to see if it is discrete. For the case
g = Cc(M; k) it is quite hard to get information on the discreteness of a subgroup of
z = zM,c(Y ), resp., H 1

dR,c(M;Y ) because z is a direct limit of spaces on which the

topology is given by explicit seminorms. We address this problem by approximating
the non-compact manifold M by suitably chosen submanifolds Xn with boundary in
such a way that

H 1
dR,c(M;Y ) = lim−→ H 1

dR(Xn, ∂Xn;Y )

(Section III). From this relation we then derive the existence of a countable set B so
that

H 1
dR,c(M;Y ) ∼= Y (B),

is a locally convex direct sum, where the projections are given by integrals over singular
cycles or over piecewise smooth proper maps R → M . In Section IV this information
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permits us to see that �ω is discrete for each M if and only if this is the case for
the circle M = S

1. In the latter case π2(C
∞(S1,K)) ∼= π2(K)× π3(K), the period

map vanishes on π2(K), and zS1(Y ) ∼= Y , so that we arrive at a map π3(K) → Y

which depends only on the bilinear form κ . For finite-dimensional groups K we can
now use information from [MN02] to see that the period group is discrete if κ is the
universal invariant symmetric bilinear form. This is used in Section VI to construct for
a finite-dimensional reductive Lie group K with simply connected center a universal
central extension of the groups C∞

c (M;K)e and C∞(M, S;K)e. In both cases there
are many examples where the period group has infinite rank. A simple example with
M = S

2 and S a sequence with limit point is discussed in detail in Example II.12. All
the concrete examples of central extensions of infinite-dimensional Lie groups which
have been dealt with so far in the literature have finitely generated period groups. In
this sense we provide new and concrete examples, where this is not the case.

The class of current groups most extensively studied is the class of loop groups
(M = S

1 and K compact) which is completely covered by Pressley and Segal’s
monograph [PS86]. The main point of the present paper is to see which Lie algebra
cocycles of product type can be integrated to a central Lie group extension. These cen-
tral extensions occur naturally in mathematical physics, where the problem to integrate
projective representations of groups to representations of central extensions is at the
heart of quantum mechanics ([Mic87], [LMNS98], [Wu01]). The central extensions
of current groups are often constructed via representations by pulling back central
extensions of certain operator groups ([Mic89]). It is our philosophy that one should
try to understand the central extensions of a Lie groupG first, and then construct rep-
resentations of these central extensions. In this context certain discreteness conditions
for Lie algebra cocycles appear naturally because they ensure that the corresponding
central Lie algebra extension integrates to a central Lie group extension ([Ne02a]).
We think of these discreteness conditions as an abstract version of the discreteness
of quantum numbers in quantum physics. As an outcome of our analysis, we will
see that for our general results we do not have to impose any restriction on the group
K . It may be any infinite-dimensional Lie group. This permits in particular iterative
constructions based on relations like C∞(M × N;K) ∼= C∞(M,C∞(N;K)) for
compact manifolds M and N .

The content of the paper is as follows. In Section I we introduce the two kinds of
Lie groups we are dealing with: C∞

c (M;K) for M non-compact, and C∞(M, S;K)
for M compact and S ⊆ M closed.

The main result of Section II is that the group H 1
dR(M, S;�) of all de Rham

cohomology classes modulo S for which all integrals over singular cycles modulo S
are contained in a discrete subgroup � of Y is discrete (Theorem II.7). In Section V
this is used to prove the discreteness of period groups for cocycles of product type for
the groups C∞(M, S;K).

Our strategy to get a description of the spaces zM,c(Y ) andH 1
dR,c(M;Y ) for a non-

compact manifoldM is to describeM as a union of certain compact submanifolds with
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boundary (Xn)n∈N with Xn ⊆ X0
n+1. To get information on the space H 1

dR,c(M;Y ),
we will need detailed information on the natural maps

H 1
dR(Xn, ∂Xn;Y ) → H 1

dR(Xn+1, ∂Xn+1;Y )
which is obtained in Theorem III.6. This result is used in Theorem IV.7 to obtain the
isomorphism H 1

dR,c(M;Y ) ∼= Y (B) mentioned above. As a corollary, we show that if

� is discrete, then H 1
dR,c(M;�) is discrete.

In Section V we first explain the general setup for central extensions of Lie groups.
The main question arising in the integration of Lie algebra cocyclesω to central exten-
sions of Lie groups is whether the corresponding period group�ω is discrete. We then
show that for cocycles of product type for the groupsC∞

c (M;K)e andC∞(M, S;K)e
the period group�M,κ is discrete if and only if this is the case for�S1,κ . This reduces
the discreteness problem to the case of loop groups, which is known for K compact,
and therefore for all finite-dimensional Lie groups (cf. [PS86], [MN02]). We further
show that �M,κ = H 1

dR,c(M;�S1,κ ) for each non-compact manifold M and each κ .
In Section VI we finally turn to universal central extensions. For the special

class of finite-dimensional semisimple Lie groups K , each Lie algebra cocycle ω ∈
Z2
c (C

∞
c (M, k), z) is equivalent to a cocycle of product type ([Ma02], [Fe88]). This

observation permits us to construct a universal central extension of the Lie algebra
g := C∞

c (M; k), and we show that this construction can be globalized in our context,
providing a universal central extension of the connected Lie group C∞

c (M;K)e.
In Appendix A we deal with the topology of the groups C∞

c (M;K) and
C∞(M, S;K). For our purposes it is of particular importance to know their homotopy
groups. We write C0(M;K) for the group of continuous functions vanishing at infin-
ity, endowed with the topology of uniform convergence. Information on homotopy
groups is obtained by several approximation arguments showing that the inclusion
maps

C∞
c (M;K) ↪→ C0(M;K) and C∞(M, S;K) ↪→ C0(M \ S;K)

are weak homotopy equivalences, i.e., induce isomorphisms of all homotopy groups.
These results are motivated by the fact that it is usually much easier to deal with spaces
of continuous maps than with spaces of differentiable maps. We also note that if K
is a Banach-, resp., Fréchet–Lie group, then the same holds for the groups C0(M;K)
and C0(M \ S;K).

Appendix B contains several results on direct limits of locally convex spaces.
These are needed to deal with the spaces of compactly supported smooth functions
or differential forms on a non-compact manifold. The difficulties with these spaces
arise from the fact that they are not metrizable, which makes it harder to prove that a
subgroup is discrete.

This paper contributes in particular to the program dealing with Lie groups G
whose Lie algebras g are root graded in the sense that there exists a finite irreducible
root system � such that g has a �-grading g = g0 ⊕ ⊕

α∈� gα , it contains the split
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simple Lie algebra k corresponding to � as a graded subalgebra, and is generated,
topologically, by the root spaces gα , α ∈ �. All Lie groups of the typeC∞

c (M;K),K
simple complex, are of this type, and the same holds for their central extension. A dif-
ferent but related class of groups arising in this context are the Lie groups SLn(A) and
their central extensions, whereA is a continuous inverse algebra, i.e., a locally convex
unital associative algebra with open unit group and continuous inversion ([Gl01c],
[Ne03]).

In [Ne02b] we discuss the universal central extensions of the groups SLn(A),
which are Lie group versions of the Steinberg groups Stn(A). In [MN02, Rem. II.12]
we have shown that for K = SLn(A), A a commutative continuous inverse algebra,
the form κ : k × k → A, κ(x, y) = tr(xy) is universal, and that the image of the
corresponding period map is discrete for the corresponding product type cocycle on
the Lie algebra C∞(M; k) of the group C∞(M;K). For non-commutative algebras
the image of the period map is not always discrete ([Ne02b]).

Throughout this paper we will use the concept of an infinite-dimensional Lie
group described in detail in [Mil83] (see also [Gl01a] for arguments showing that the
completeness requirements made in [Mil83] are not necessary to define the concept).
This means that a Lie groupG is a smooth manifold modeled on a locally convex space
g for which the group multiplication and the inversion are smooth maps. We write
λg(x) = gx, resp., ρg(x) = xg for the left, resp., right multiplication onG. Let e ∈ G
be the identity element. Then each X ∈ Te(G) corresponds to a unique left invariant
vector field Xl with Xl(g) := dλg(1).X, g ∈ G. The space of left invariant vector
fields is closed under the Lie bracket of vector fields, hence inherits a Lie algebra
structure. In this sense we obtain on g := Te(G) a continuous Lie bracket which is
uniquely determined by [X, Y ]l = [Xl, Yl].

All finite-dimensional manifolds M are assumed to be σ -compact which for con-
nected manifolds is equivalent to requiring that M is paracompact or a second count-
able topological space. This excludes pathologies such as “long lines” which are
one-dimensional smooth manifolds constructed from sets of countable ordinal num-
bers ([SS78, p.72]).

All topological vector spaces in this paper are assumed to be Hausdorff.

Acknowledgement. I am grateful to H. Biller and H. Glöckner for many extremely
helpful suggestions to improve the exposition of this paper.

I Current groups on non-compact manifolds

In this section we introduce two classes of Lie groups of smooth maps: the group
C∞
c (M;K) of smooth maps with compact support on a non-compact manifold and

the groupC∞(M, S;K) of smooth maps on a compact manifoldM that together with
all higher partial derivatives vanish on the closed subset S.
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Compactly supported smooth maps

Definition I.1. For two topological spacesM and Y we writeC(M;Y )c for the space
C(M;Y ) of all continuous maps M → Y endowed with the compact open topology.
The topology on this space is generated by the sets

W(C,O) := {f ∈ C(M;Y ) : f (C) ⊆ O},
where C ⊆ M is compact and O ⊆ Y is open.

(a) If M is locally compact and K is a topological group, then C(M;K)c is a
topological group with respect to pointwise multiplication, and the topology coincides
with the topology of uniform convergence on compact subsets of M ([Sch75, Satz
II.4.5]). In particular the sets W(C,U), where C ⊆ M is compact and U ⊆ K is an
open identity neighborhood, form a basis of identity neighborhoods in C(M;K)c.

For a function f : M → K let supp(f ) := {x ∈ M : f (x) = e} denote its support.
Then for each compact subset X ⊆ M the subset

CX(M;K) := {f ∈ C(M;K) : supp(f ) ⊆ X}
is a closed subgroup of C(M;K)c on which the subspace topology coincides with the
topology of uniform convergence.

If M is a discrete set, then C(M;K)c ∼= KM as a topological group.
(b) If M is a locally compact space and Y is a locally convex space, then (a)

implies that C(M;Y )c is a locally convex space, where the topology is defined by the
seminorms

pX,q(f ) := sup
x∈X

q(f (x)),

where q is a continuous seminorm on Y and X ⊆ M a compact subset.
If Y is a Fréchet space and M is σ -compact, then the topology is defined by a

countable family of seminorms turning C(M;Y )c into a Fréchet space.
(c) If M is locally compact, X ⊆ M compact, and Y is a locally convex space,

then for each open 0-neighborhood U ⊆ Y the subset

{f ∈ CX(M;Y )c : f (M) ⊆ U} = W(X,U) ∩ CX(M;Y )
is open in CX(M;Y )c. ��

Definition I.2. Let M be a smooth finite-dimensional σ -compact manifold. If Y is a
locally convex space, then each smooth map f : M → Y defines a sequence of maps

dnf : T nM → Y, n ∈ N.

We endow C∞(M;Y ) with the topology obtained from the embedding

C∞(M;Y ) ↪→
∏
n∈N0

C(T nM, Y )c
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turning C∞(M;Y ) into a locally convex space. If X ⊆ M is a compact subset, we
consider on C∞

X (M;Y ) ⊆ C∞(M;Y ) the subspace topology.
(a) If K is a Lie group, then C∞

X (M;K) is a group with respect to pointwise
multiplication. It is shown in [Gl01b, 3.18] that it carries a Lie group structure which is
uniquely determined by the property that for each open identity neighborhoodU ⊆ K

and each chart φ : U → k with φ(e) = 0 there exists an open identity neighborhood
U0 ⊆ U such that the map

{f ∈ C∞
X (M;K) : f (M) ⊆ U0} → {h ∈ C∞

X (M; k) : h(M) ⊆ φ(U0)}, f �→ φ�f
is a diffeomorphism onto an open subset of the locally convex space C∞

X (M; k). The
Lie algebra of this group is the locally convex spaceC∞

X (M; k)with the pointwise Lie
bracket, where k is the Lie algebra of K ([Gl01b, 3.19]).

(b) For a locally convex space Y we endow the space

C∞
c (M;Y ) := {f ∈ C∞(M;Y ) : supp(f ) compact} =

⋃
X

C∞
X (M;Y ),

where X runs through all compact subsets of M , with the locally convex direct limit
topology. This means that a seminorm on C∞

c (M;Y ) is continuous if and only if its
restrictions to all the subspacesC∞

X (M;Y ) are continuous with respect to the topology
defined above.

In M there exists an increasing sequence (Xn)n∈N of compact subsets Xn with
Xn ⊆ X0

n+1 and M = ⋃
n Xn. Then each compact subset X ⊆ M is contained in

someXn, and each spaceC∞
Xn
(M;Y ) is a closed subspace ofC∞

Xn+1
(M;Y ). Therefore

C∞
c (M;Y ) = lim−→ C∞

Xn
(M;Y )

is a strict inductive limit of the locally convex spacesC∞
Xn
(M;Y ) in the sense of [He89,

Prop. 1.5.3]. In particular each bounded subset of C∞
c (M;Y ) is contained in one of

the subspaces C∞
Xn
(M;Y ). Moreover, C∞

c (M;Y ) is Hausdorff and the continuous
maps C∞

Xn
(M;Y ) ↪→ C∞

c (M;Y ) are embeddings, which in turn implies that all the
inclusions

C∞
X (M;Y ) ↪→ C∞

c (M;Y )
are embeddings (cf. [Kö69, p. 222]).

If Y is a Fréchet space, this topology turns C∞
c (M;Y ) into an LF-space ([Gl01b,

4.6]). It is shown in [Gl01b, 4.18] that for each Lie group K the group C∞
c (M;K)

carries a Lie group structure, hence in particular the structure of a Hausdorff topological
group. In the same way as for the groups C∞

X (M;K), the Lie group structure is
uniquely determined by the property that for each open identity neighborhoodU ⊆ K

and each chart φ : U → k with φ(e) = 0 there exists an open identity neighborhood
U0 ⊆ U such that the map

{f ∈ C∞
c (M;K) : f (M) ⊆ U0} → {h ∈ C∞

c (M; k) : h(M) ⊆ φ(U0)}, f �→ φ�f
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is a diffeomorphism onto an open subset of the locally convex space C∞
c (M; k). The

Lie algebra of this group is the locally convex spaceC∞
c (M; k)with the pointwise Lie

bracket.

Remark I.3. From the fact that C∞
c (M; k) is a strict inductive limit of spaces

C∞
X (M; k) and the description of the natural charts of the Lie groupC∞

c (M;K), we see
that for each compact subset X ⊆ M the inclusion map C∞

X (M;K) ↪→ C∞
c (M;K)

is a topological embedding. ��
Remark I.4. If K is a Lie group with Lie algebra k, then the tangent bundle of K
is a Lie group isomorphic to k � K , where K acts on k by the adjoint representation
(cf. [Ne01b]). Iterating this procedure, we obtain a Lie group structure on all iterated
higher tangent bundles T nK which are diffeomorphic to k2n−1 ×K .

It follows in particular that for each finite-dimensional manifold M and each n ∈
N0 we obtain topological groups C(T nM, T nK)c (Definition I.1(a)). Therefore the
canonical inclusion map

C∞(M;K) ↪→
∏
n∈N

C(T nM, T nK)c

leads to a natural topology on C∞(M;K) turning it into a topological group.
If M is compact, then it is not hard to see that this procedure leads to the same

topology as the Lie group structure defined in Definition I.2. A similar statement holds
for C∞

X (M;K) if X ⊆ M is a compact subset.
We cannot expect for a general non-compact manifold M that C∞(M;K) carries

a natural Lie group structure. In the example M = N the group C∞(N;K) =
C(N; K) ∼= KN is the topological direct product group. As the example K = T

already shows, the groupsKN need not be manifolds because they need not be locally
contractible.

If M is connected, then the situation seems to be much better, but this needs to be
investigated ([NW03]). One can show in particular that for each Banach–Lie group
K the group C∞(R,K) is a Fréchet–Lie group with respect to its natural topology
of uniform convergence of all derivatives on compact subsets of R. Likewise, for
each simply connected non-compact complex curve� and each complex Banach–Lie
group K the group Hol(�,K) of all holomorphic maps � → K is a Lie group. ��

Fréchet current groups defined by vanishing conditions

In this subsection M denotes a connected finite-dimensional manifold and S ⊆ M a
closed subset. Mostly we will assume that M is compact.

Remark I.5. Let U be an open subset of a locally convex space X and Y another
locally convex space. If for a smooth function f : U → Y its value together with
all derivatives up to order k vanish in a point p ∈ U , then the formula for the Taylor
expansion of compositions trivially implies that the same holds for all compositions
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f �φ in q, where φ : V → U is a Ck-map with φ(q) = p. It follows in particular that
for a smooth function on a manifold it makes sense to say that all partial derivatives
up to order k vanish in a point p. ��
Definition I.6. Let M be a manifold with boundary and S ⊆ M a closed subset. For
a Lie group K we write C∞(M, S;K) for the group of all those smooth maps for
which their value together with all derivatives vanish on S. It clearly suffices that for
each point s ∈ S there exists one chart in which all partial derivatives vanish in s.

If M is compact and K is a (Fréchet-)Lie group, then also C∞(M, S;K) is a
Fréchet–Lie group, where we use the same charts as for C∞(M;K) and observe that
they restrict to charts of the subgroup C∞(M, S;K). In particular C∞(M, S; R) is
a real Fréchet algebra. For non-compact M we consider C∞(M, S;K) only as a
topological subgroup of C∞(M;K) in the sense of Remark I.4. ��
Remark I.7. Let us consider the category P whose objects are pairs (M, S), where
M is a (finite-dimensional) manifold and S is a closed subset. A morphism (M, S) →
(M ′, S′) is a smooth mapφ : M → M ′ withφ(S) ⊆ S′. Remark I.5 implies that the as-
signment (M, S) �→ C∞(M, S;K) defines a contravariant functor from P to the cat-
egory of topological groups. Here we use that for a morphism φ : (M, S) → (M ′, S′)
the corresponding group homomorphism C∞(M ′, S′;K) → C∞(M, S;K), f �→
f � φ is continuous, which is an easy consequence of the definitions (cf. Lemma
A.1.6). ��
Lemma I.8. Let M be a finite-dimensional manifold, X ⊆ M be a smooth subman-
ifold with boundary, dimX = dimM , and Y a locally convex space. For a smooth
function f : X → Y the extension by f (M \ X) = {0} defines a smooth function
M → Y if and only if f and all its derivatives vanish on ∂X.

Proof. It clearly is a necessary condition that all derivatives of f vanish on ∂X.
Suppose, conversely, that this condition is satisfied and extend f by 0 on M \X to a
function fM : M → Y .

As the smoothness of fM is equivalent to its weak smoothness (for this result of
Grothendieck see [Wa72] or [KM97]), we may w.l.o.g. assume that Y = R. Moreover,
we may assume that M = R

n and that X = {x ∈ R
n : xn ≤ 0}. Then it is clear

that all partial derivatives of f extended by 0 on M \ X yield continuous functions.
Moreover, all partial derivatives of the extended function fM exist and coincide with
the extensions of the partial derivatives of f . This proves that fM is a C1-function.
Iterating the argument shows that fM is a Ck-function for each k, hence smooth. ��
Examples I.9. (a) Let X be a compact manifold with boundary and Xd the double
of X. This is, by definition, a compact manifold without boundary containing X and
a diffeomorphic copy X� of X such that X ∩ X� = ∂X = ∂X� and X ∪ X� = Xd .
Then Lemma I.8 implies that

C∞(X, ∂X;K) ∼= C∞
X (X

d;K)
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and

C∞(Xd, ∂X;K) ∼= C∞(X, ∂X;K)× C∞(X�, ∂X;K) ∼= C∞(X, ∂X;K)2.
(b) We think of C∞(M, S;K) as a group of smooth maps on the non-compact

manifold M \ S. For M = S
n and S = {p} have M \ S ∼= R

n, and hence a natural
Lie group of smooth maps R

n → K with a certain decay at infinity.
(c) Let M = S

1. Then M \ S is a countable union of intervals Ij , j ∈ J , and we
thus obtain an inclusion

C∞(M, S;K) ↪→
∏
j∈J

C∞(Ij , ∂Ij ;K) ∼= C∞(I, ∂I ;K)J ,

where the right hand side does not carry the product topology but the l∞-topology of
uniform convergence of all derivatives uniformly in all components. ��

II Relative de Rham cohomology

IfM is a compact manifold, S ⊆ M a compact subset, and Y a sequentially complete
locally convex space (an s.c.l.c. space), then we consider the spaceZ1

dR(M, S;Y ) of all
Y -valued closed smooth 1-forms that vanish, together with all their derivatives, on S.
Integration of 1-forms with this property over singular cycles in M modulo S lead to
the subgroupZ1

dR(M, S;�) of those closed 1-forms for which all integrals over cycles
have values in a subgroup � of Y . The main result of this section is Theorem II.7,
saying that the image H 1

dR(M, S;�) of Z1
dR(M, S;�) in H 1

dR(M, S;Y ) is a discrete
subgroup if � is discrete. In Examples II.11 and II.12 we see that these subgroups
may have infinite rank, even for Y = R.

We write I := [0, 1] and assume that S = ∅ and that M is connected. Further,
Y denotes an s.c.l.c. space, � is a subgroup of Y , and T� := Y/� the corresponding
quotient group. If � is discrete, then the quotient topology turns T� into a Lie group
with Lie algebra Y . For some statements we do not have to assume thatM is compact.
If we assume compactness, we will mention it explicitly.

We write �1(M;Y ) for the space of smooth 1-forms on M with values in Y
and endow this space with the natural topology corresponding in each chart to the
uniform convergence of all derivatives on compact subsets mapping into coordinate
charts (cf. [Gl01d]). For a subset X ⊆ M we write �1

X(M;Y ) for the closed sub-
space of �1(M;Y ) consisting of those forms supported in X. We endow the space
�1
c(M;Y ) with the locally convex direct limit topology with respect to the subspaces

�1
X(M;Y ), where X ⊆ M is a compact subset. For a closed subset S ⊆ M we write

�1(M, S;Y ) ⊆ �1(M;Y ) for the subspace of all forms vanishing with all their partial
derivatives on S.
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The Lie group C∞(M, S; T�)

Definition II.1. Let M be a smooth manifold and K a Lie group. For an element
f ∈ C∞(M;K) we write

δl(f )(m) := dλf (m)−1(f (m))df (m) : Tm(M) → k ∼= Te(K)

for the left logarithmic derivative of f . This derivative can be viewed as a k-valued
1-form on M which we also write simply as δl(f ) = f−1.df . We thus obtain a map

δl : C∞(M;K) → �1(M; k)

satisfying the cocycle condition

δl(f1f2) = Ad(f2)
−1.δl(f1)+ δl(f2).

We also have the right logarithmic derivative δr (f ) = df.f−1 satisfying

δr (f1f2) = δr (f1)+ Ad(f1).δ
r (f2).

(cf. [KM97, 38.1]). IfK is abelian, then the cocycle condition shows that δ := δl is a
group homomorphism whose kernel consists of the locally constant maps.

The logarithmic derivatives δl(f ), resp., δr (f ), can also be defined as the pullbacks
f ∗θ lK , resp., f ∗θrK or the left, resp., right Maurer–Cartan form, θ lK , resp., θrK on K .

��
In SectionV we will need the following continuity result for the logarithmic deriva-

tives.

Lemma II.2. For any Lie group K the maps δl, δr : C∞
c (M;K) → �1

c(M; k) are
smooth.

Proof. In view of the cocycle relations

δl(f1f2) = Ad(f2)
−1.δl(f1)+ δl(f2) and δr (f1f2) = δr (f1)+ Ad(f1).δ

r (f2),

it suffices to prove the smoothness of δl and δr in an open identity neighborhood U
of C∞

c (M;K). Here we use that addition is continuous in �1
c(M; k), and that the

continuity of the linear map Ad(f1) on �1
c(M; k) follows from its continuity on the

subspaces �1
X(M; k), X ⊆ M compact. According to the definition of the Lie group

structure on C∞
c (M;K), we may assume that

U = {f ∈ C∞
c (M;K) : f (M) ⊆ VK},

where VK ⊆ K is an open identity neighborhood for which there exists a diffeomor-
phism φ : Vk → VK , where Vk is an open subset of the locally convex space k. We
now have to show that the map

D : C∞
c (M;Vk) → �1

c(M; k), f �→ δl(φ � f )
is smooth.
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We think ofD as a map between spaces of sections of vector bundles overM . Then
the values of D(f ) in an open subset O ⊆ M only depend on f |O . This implies in
particular thatD is local in the sense of [Gl02, Def. 3.1]. Moreover, for each compact
subset X ⊆ M the map

DX := D |C∞
X (M;K) : C∞

X (M;K) → �1
X(M; k)

is smooth because the map

δl : C∞
X (M;K) → �1

X(M; k)

is obviously smooth. Therefore the Smoothness Theorem 3.2 in [Gl02] implies thatD
is a smooth map and hence that δl is smooth. The smoothness of δr is shown similarly.

��
Lemma II.3. If � is discrete, then

δ(C∞(M, S; T�)) =
{
β ∈ �1(M, S;Y ) : (∀α ∈ C∞((I, ∂I ), (M, S))

) ∫
α

β ∈ �
}
.

Proof. If β = δ(f ) for some f ∈ C∞(M, S; T�) and α ∈ C∞((I, ∂I ), (M, S)), then

f (α(1))− f (α(0)) =
∫
α

β + �

vanishes in T� = Y/�, so that
∫
α
β ∈ �.

Suppose, conversely, that β ∈ �1(M, S;Y ) satisfies∫
α

β ∈ � for all α ∈ C∞((I, ∂I ), (M, S)).

Pick s0 ∈ S. Then all integrals of β over smooth loops based in s0 are contained in
� (here we need that Y is sequentially complete to ensure the existence of Y -valued
Riemann integrals over curves), so that there exists a smooth function f : M → T�
with β = δ(f ) and f (s0) = 0 ([Ne02a, Prop. 3.9]). For each s ∈ S there exists a
smooth path α ∈ C∞((I, ∂I ), (M, S)) from s0 to s, and we obtain

f (s) = f (s)− f (s0) =
∫
α

β + � ∈ �.
This means that f |S = 0. As β = δ(f ), all higher derivatives of f vanish on S, so
that f ∈ C∞(M, S; T�). ��
Corollary II.4. For each s.c.l.c. space Y we have

dC∞(M, S;Y ) =
{
β ∈ �1(M, S;Y ) : (∀α ∈ C∞((I, ∂I ), (M, S))

) ∫
α

β = 0
}
.

In particular dC∞(M, S;Y ) is closed in �1(M, S;Y ). ��
Definition II.5. (a) In view of the closedness assertion in Corollary II.4, the quotient

z(M,S)(Y ) := �1(M, S;Y )/dC∞(M, S;Y )
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carries a natural (Hausdorff) locally convex topology. Moreover, the subspace
Z1

dR(M, S;Y ) of closed forms in �1(M, S;Y ) is closed, which implies that

H 1
dR(M, S;Y ) := Z1

dR(M, S;Y )/dC∞(M, S;Y )
is a closed subspace of z(M,S)(Y ). Let q : �1(M, S;Y ) → z(M,S)(Y ) denote the
quotient map.

We want to relateH 1
dR(M, S;Y ) to the singularY -valued cohomology ofMmodulo

S. The abelian group Z1(M, S) of singular 1-cycles modulo S is generated by those
given by continuous maps (I, ∂I ) → (M, S). Therefore H1(M, S) is generated by
the image of the set π1(M, S) := [(I, ∂I ), (M, S)] of homotopy classes of maps of
pairs (see [Br93, VII.4.10] for more details on Hurewicz maps from homotopy groups
to homology groups). Let β ∈ Z1

dR(M, S;Y ). Then we can define for each singular
1-chain α the integral

∫
α
β. According to Stoke’s formula, these integrals vanish on

boundaries and also on chains supported by S. We thus obtain a map

Z1
dR(M, S;Y ) → H 1(M, S;Y ) := Hom(H1(M, S);Y ),

where H1(M, S) denotes the singular homology group with coefficients in Z and
H 1(M, S;Y ) a relative singular cohomology group (cf. [Br93, V.7.2]).

The kernel of this map consists of all closed 1-forms β for which all the integrals
of cycles in Z1(M, S) vanish, which means that β = df for some f ∈ C∞(M, S;Y )
(Corollary II.4). Hence we obtain an embedding

η : H 1
dR(M, S;Y ) ↪→ H 1(M, S;Y ). (2.1)

As we will see in Example II.12 below, this map is not always surjective.
(b) For a subgroup � ⊆ Y we define

Z1
dR(M, S;�) :=

{
β ∈ Z1

dR(M, S;Y ) : (∀α ∈ C∞((I, ∂I ), (M, S)))
∫
α

β ∈ �
}
.

By Corollary II.4 we see that dC∞(M, S;Y ) is a closed subspace of Z1
dR(M, S;�),

so that

H 1
dR(M, S;�) := Z1

dR(M, S;�)/dC∞(M, S;Y )
carries a natural Hausdorff locally convex topology. We also define

Z1
dR(M;�) :=

{
β ∈ Z1

dR(M;Y ) : (∀α ∈ C∞(S1,M))

∫
α

β ∈ �
}

and H 1
dR(M;�) := Z1

dR(M;�)/dC∞(M;Y ). ��
Remark II.6. Let M be a connected manifold.

(a) Assume that � ⊆ Y is a discrete subgroup and let T� := Y/� denote the
corresponding quotient Lie group and q� : Y → T� the quotient map. We consider
the abelian topological group G := C∞(M; T�), the space g := C∞(M;Y ), and the
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exponential function

expG : g → G, ξ �→ q� � ξ.
The map

δ : G = C∞(M; T�) → Z1
dR(M;Y ), f �→ δ(f ) = f−1df

is a continuous group homomorphism whose kernel consists of the locally constant
functions onM . IfM is connected, then ker δ consists only of the constant functions.

According to [Ne02a, Prop. 3.9], a closed 1-form in Z1
dR(M;Y ) can be written

as δ(f ) for some f ∈ C∞(M; T�) if and only if all integrals over closed piecewise
smooth paths are contained in �. This means that

im(δ) = Z1
dR(M;�).

Using the decomposition G ∼= G∗ × T� with G∗ := {f ∈ G : f (xM) = 0}, where
xM ∈ M is a base point, it follows that

δ : G∗ → Z1
dR(M;�)

is an isomorphism of groups. Here the subgroup B1
dR(M;Y ) ⊆ Z1

dR(M;�) corre-
sponds to im(expG), so that

G/ expG(g) ∼= Z1
dR(M;�)/B1

dR(M;Y ) = H 1
dR(M;�).

If, in addition,M is compact, thenG is a Lie group with Lie algebra g, expG is the
universal covering map of Ge, and δ : G∗ → Z1

dR(M;�) is an isomorphism of Lie
groups. This leads to

π0(G) ∼= G/ expG(g) ∼= Z1
dR(M;�)/B1

dR(M;Y ) = H 1
dR(M;�).

(b) If M is compact and S ⊆ M a non-empty closed subset, then we obtain with
similar arguments as in (a) that the group G := C∞(M, S; TY ) is a Lie group and
that expG is the universal covering map of the identity component Ge of G. The
connectedness of M and S = ∅ imply ker expG = {0}. Therefore the exponential
function expG induces a diffeomorphism

expG : g = C∞(M, S;Y ) → Ge.

Moreover, δ is an injective homomorphism of Lie groups with δ(G) = Z1
dR(M, S;�)

(Lemma II.3), where Ge corresponds to the subspace dC∞(M, S;Y ), so that

π0(G) ∼= H 1
dR(M, S;�).

(c) The setM \S is an open subset ofM , hence a non-compact manifold. We have
inclusions

�1
c(M \ S;Y ) ↪→ �1(M, S;Y ) and Z1

dR,c(M \ S;Y ) ↪→ Z1
dR(M, S;Y ).
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Moreover,

dC∞
c (M \ S;Y ) ⊆ Z1

dR,c(M \ S;Y ) ∩ dC∞(M, S;Y )
and if, conversely, ζ = df ∈ �c(M \S;Y )with f ∈ C∞(M, S;Y ), then df vanishes
in a neighborhood of S, so that f−1(0) is an open neighborhood of S. IfM is compact,
then it follows that f has compact support, and therefore that

dC∞
c (M \ S;Y ) = Z1

dR,c(M \ S;Y ) ∩ dC∞(M, S;Y ).
This means that we also obtain an inclusion

φ : H 1
dR,c(M \ S;Y ) ↪→ H 1

dR(M, S;Y ).
If X is a compact manifold with boundary, M = X ∪ X� as in Example I.9, and

int(X) = M \ S, we claim that

H 1
dR,c(int(X);Y ) ∼= H 1

dR(X, ∂X;Y ) := H 1
dR(M,M \ int(X);Y ). (2.2)

In fact, if ζ ∈ Z1
dR(X, ∂X;Y ), then the restriction of ζ to ∂X vanishes. Moreover, there

exists a tubular neighborhood U of ∂X diffeomorphic to ∂X× I , so that the inclusion
∂X ↪→ U induces an isomorphism π1(∂X) → π1(U). We conclude that all periods
of ζ |U vanish, and hence that there exists a smooth function f ∈ C∞(U, ∂X;Y )with
df = ζ |U . Let χ ∈ C∞(X; R) be constant 1 in a neighborhood of ∂X and 0 on
X \ U . Then ζ − d(χf ) ∈ Z1

dR,c(int(X);Y ) has the same cohomology class as ζ .
This proves (2.2).

From [Br97, Prop. II.12.3, Th. III.1.1, Cor. III.4.12] applied to the paracompacti-
fying family � of closed subsets of X \ ∂X, we derive that for singular cohomology
we have

H 1(X, ∂X;Y ) ∼= H 1
c (int(X);Y ).

Further the general version of de Rham’s Theorem with values in sheaves ([Br97,
§III.3]) yields an isomorphism

H 1
c (int(X);Y ) ∼= H 1

dR,c(int(X);Y ).
Therefore

H 1
dR(X, ∂X;Y ) ∼= H 1

dR,c(int(X);Y ) ∼= H 1
c (int(X);Y )

∼= H 1(X, ∂X;Y ) ∼= Hom(H1(X, ∂X);Y ). ��
The following theorem on the discreteness of the groupH 1

dR(M, S;�) is the main
result of the present section.

Theorem II.7. Let S be a non-empty closed subset of the compact manifold M and
� ⊆ Y a discrete subgroup. Then the subgroup

H 1
dR(M, S;�) =

{
[β] ∈ z(M,S)(Y ) : (∀α ∈ C∞((I, ∂I ), (M, S)))

∫
α

β ∈ �
}
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of z(M,S)(Y ) is discrete.

Proof. Let Z1
dR(M;Y ) ⊆ �1(M;Y ) denote the closed subspace of closed 1-forms.

As π1(M) is finitely generated (cf. Proposition III.1 below) and � is discrete,

dC∞(M;Y ) =
{
β ∈ Z1

dR(M;Y ) : (∀[α] ∈ π1(M))

∫
α

β = 0
}

is an open subgroup of

Z1
dR(M;�) =

{
β ∈ Z1

dR(M;Y ) : (∀α ∈ C∞(S1,M))

∫
α

β ∈ �
}
.

That H 1
dR(M, S;�) is a discrete subgroup of the quotient space z(M,S)(Y ) is equiv-

alent to dC∞(M, S;Y ) being an open subgroup of Z1
dR(M, S;�). As a conse-

quence of what we have just seen, the group Z1
dR(M, S;�) ∩ dC∞(M;Y ) is open in

Z1
dR(M, S;�). Therefore it suffices to verify that dC∞(M, S;Y ) is an open subgroup

of Z1
dR(M, S;�) ∩ dC∞(M;Y ).

Fix a point xM ∈ S. We consider the map

� : Z1
dR(M, S;�) → C(M; T�), �(β)(x) :=

∫ x

xM

β + � ∈ T�.

Then

�(Z1
dR(M, S;�)) ⊆ C∞(M; T�), d

(
�(β)

) = β, �(β) |S = 0,

and� is continuous with respect to the topology of uniform convergence on compact
subsets of M . Hence

�−1(C(M; T�)e) = �−1(exp(C(M;Y ))) = dC∞(M, S;Y )
is an open subgroup ofZ1

dR(M, S;�) becauseC(M; T�) is a Lie group (Remark II.6).
��

Lemma II.8. Let I = [0, 1]. The integration maps

IR : �1
c(R;Y ) = Z1

dR,c(R;Y ) → Y, β �→
∫

R

β, (2.3)

II : �1(I, ∂I ;Y ) = Z1
dR(I, ∂I ;Y ) → Y, β �→

∫
I

β, (2.4)

and

IS1 : �1(S1;Y ) = Z1
dR(S

1;Y ) → Y, β �→
∫

S1
β (2.5)

induce topological isomorphisms

H 1
dR,c(R;Y ) → Y, H 1

dR(I, ∂I ;Y ) → Y and H 1
dR(S

1;Y ) → Y.
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Proof. We have a continuous map�1
c(R;Y ) → Y, β �→ ∫

R
β, and it is easy to see that

this map is surjective because there exists a smooth real-valued 1-form γ with compact
support and

∫
R
γ = 1. Since the map Y → �1

c(R;Y ), v �→ γ · v is continuous, the
integration map splits linearly. Further its kernel coincides with the space of exact
forms, which proves (2.3). The other two assertions follow by similar arguments. ��
Remark II.9. (a) For each smooth map α : (I, ∂I ) → (M, S) of pairs we obtain a
natural map

Iα : z(M,S)(Y ) → Y ∼= z(I,∂I )(Y )

which is given on the equivalence class of a Y -valued 1-form β by

Iα([β]) =
∫
α

β :=
∫
I

α∗β

(cf. Lemma II.8). The description of dC∞(M, S;Y ) in Lemma II.3 implies that the
maps Iα : z(M,S)(Y ) → Y separate points.

(b) For (M, S) = (I, ∂I ) the set π1(I, ∂I ) consists of 4 elements. In fact, if
f : I → I is a continuous function with f (∂I) ⊆ ∂I , then the convexity of I implies
that f is homotopy equivalent to the affine interpolation of the restriction f |∂I , and
there are precisely four different maps ∂I → ∂I . ��
Lemma II.10. The subspace H 1

dR(M, S;Y ) of z(M,S)(Y ) coincides with those ele-
ments [β] for which all the integrals Iα([β]) only depend on the homotopy class of
α ∈ C∞((I, ∂I ), (M, S)) in π1(M, S). In particular

(1) H 1
dR(M, S;Y ) is a closed subspace of z(M,S)(Y ), and

(2) if � is discrete, then

Z1
dR(M, S;�) =

{
β ∈ �1(M, S;Y ) : (∀α ∈ C∞((I, ∂I ), (M, S)))

∫
α

β ∈ �
}
.

Proof. Fix a point xM ∈ S. Then we have a natural inclusion C((I, ∂I ), (M, xM)) →
C((I, ∂I ), (M, S)) inducing the map π1(M, xM) → π1(M, S).

Letβ ∈ �1(M, S;Y ). Suppose first that forα ∈ C∞((I, ∂I ), (M, S)) the integrals∫
α
β only depend on the homotopy class. This implies in particular that the integrals

over loops in C∞((I, ∂I ), (M, xM)) ⊆ C∞∗ (S1,M) := {f ∈ C∞(S1,M) : f (1) =
xM} in xM only depend on the homotopy class. Here we use 1 ∈ S

1 ⊆ C as a base
point. Let qM : M̃ → M denote the universal covering manifold. That the integrals
of β over loops in xM only depend on the homotopy class implies that there exists a
smooth function f : M̃ → Y with df = q∗

Mβ, hence in particular that dβ = 0, and
therefore that [β] ∈ H 1

dR(M, S;Y ).
Suppose, conversely, that [β] ∈ H 1

dR(M, S;Y ), i.e., thatβ is closed. Then integrals
over continuous maps I → M are well-defined. Then q∗

Mβ is exact ([Ne02a, Th. 3.6]),
and there exists a smooth function f ∈ C∞(M̃;Y ) with df = q∗

Mβ. It follows in
particular that all integrals of β over contractible loops vanish. Let α : I × I → M be
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a continuous map such that the maps αt := α(t, ·) : I → M satisfy αt ({0, 1}) ⊆ S.
We have to show that

∫
α0
β = ∫

α1
β. We define

α̃ : I × [0, 3] → M, α̃(t, s) :=



α(st, 0) for 0 ≤ s ≤ 1

α(t, s − 1) for 1 ≤ s ≤ 2

α((3 − s)t, 1) for 2 ≤ s ≤ 3

and observe that α̃ is continuous and that the curves α̃t := α̃(t, ·) start in α0(0) and
end in α0(1), where s �→ α̃0(3s) is homotopic to α0. We conclude that for each t ∈ I
we have

0 =
∫
α̃t

β −
∫
α̃0

β =
∫
α̃t

β −
∫
α0

β =
∫ 2

1
α̃∗
t β −

∫
α0

β =
∫
αt

β −
∫
α0

β.

Here we use that the vanishing of β on S implies that the integrals
∫ 1

0 α̃
∗
t β and

∫ 3
2 α̃

∗
t β

vanish. For t = 1 we obtain
∫
α0
β = ∫

α1
β, and hence the homotopy characterization

of the subspace H 1
dR(M, S;Y ) of z(M,S)(Y ).

This implies in particular thatH 1
dR(M, S;Y ) is closed, because it is defined as the

intersection of the kernels of the continuous linear maps

[β] �→
∫
α1

β −
∫
α0

β, αi ∈ C∞((I, ∂I ), (M, S))

from above.
Assume now that � ⊆ Y is a discrete subgroup. Then the requirement

∫
α
β ∈ �

for each map α ∈ C∞((I, ∂I ), (M, S)) together with the continuous dependence of
the integral from α implies that

∫
α
β only depends on the homotopy class of α in

π1(M, S). If all these integrals are contained in the discrete subgroup �, it follows
from the first part of the proof that β is closed. ��
Example II.11. We consider the closed subset

S = {0} ∪ { 1
n
: n ∈ N

} ⊆ R.

We claim that

H 1
dR(R, S; R) ∼= E := {(λn)n∈N : (∀k ∈ N0) lim

n→∞ n
kλn = 0}

as Fréchet spaces, where the topology on E is given by the seminorms pk(λ) :=
supn∈N n

k|λn| for k ∈ N.
As dim R = 1, we have Z1

dR(M, S; R) = �1(R, S; R), and each element on this
space can be written as the differential of a unique function f ∈ C∞(R; R) with
f (0) = 0. We have to study the possible restrictions f |S because they give as the
values of [df ] on the relative 1-cycles in Z1(R, S).

First we derive necessary conditions. As f (k)(0) = 0 for each k ∈ N and

f (k)(0) = lim
x→0

k!f (x)
xk

= lim
n→∞ k!f

( 1
n

)
nk, (2.6)
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we obtain for each k ∈ N the condition limn→∞ f
( 1
n

)
nk = 0.

Let (λn)n∈N satisfy limn→∞ nkλn = 0 for each k ∈ N0. We are looking for a
smooth function f in C∞(R; R) with f ′ ∈ C∞(R, S; R) and f

( 1
n

) = λn for each n.
Let ψ ∈ C∞

c (R; R) be a function with supp(ψ) = [−1, 1], im(ψ) ⊆ [0, 1] and equal
to 1 on a neighborhood of 0. Then we obtain for each a ∈ R and ε > 0 a smooth
function ψa,ε(x) := ψ(ε−1(x − a)) supported by [a − ε, a + ε] which is constant 1
in a neighborhood of a. We define ψn := ψ 1

n
, 1

4n(n+1)
. Then ψn is a function constant

1 in a neighborhood of 1
n

with support contained in] 1
2

( 1
n

+ 1
n+1

)
, 1

2

( 1
n

+ 1
n−1

)[
.

In particular the supports of the functions ψn are pairwise disjoint. We claim that

f :=
∞∑
n=1

λnψn

defines a function in C∞(R; R) with f ′ ∈ C∞(R, S; R). This will be achieved by
showing that all derivatives of the sequence defining f are uniformly convergent. In
fact, for k ∈ N0 we have

‖ψ(k)n ‖∞ ≤ (
4n(n+ 1)

)k‖ψ(k)‖∞ ≤ ckn
2k

for some positive constant ck . Therefore∑
n

|λn|‖ψ(k)n ‖∞ ≤
∑
n

|λn|ckn2k ≤ ck
∑
n

|λn|n2k < ∞.

We conclude that the series f = ∑
n λnψn defines a smooth function. It follows

directly from the construction that f is constant λn in a neighborhood of 1
n+1 and that

all derivatives of f vanish in 0 because f vanishes on ] − ∞, 0[.
This proves that the map

� : Z1
dR(R, S; R) → E, h(t)dt �→

( ∫ 1
n

0
h(τ) dτ

)
n∈N

,

is surjective. Formula (2.6) easily implies that� is continuous, hence a quotient map
by the Open Mapping Theorem. This proves that the induced mapH 1

dR(R, S; R) → E

is a topological isomorphism. ��
In the next example we take a convergent sequence out of the sphere. This aims

at an example of a Fréchet–Lie group C∞(M, S;K) where the period group �(M,S)
(cf. Definition III.7) is discrete but not finitely generated (see Proposition VII.16).

Example II.12 (Removing a convergent sequence from the sphere). Let M := S
2 ⊆

R
3 and S = {xn : n ∈ N} ∪ {(0, 0, 1)}, where

xn =
(

1
n
, 0,

√
1 − 1

n2

)
.
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As π1(M) is trivial, there exists for each n ∈ N a path γn : [0, 1] → M from x0 :=
(0, 0, 1) to xn such that the group H1(M, S) is generated by the classes [γn], n ∈ N.

For each n ∈ N there exists a smooth function fn ∈ C∞(M, S; R) which is
constant 1 in a neighborhood of xn and vanishes in a neighborhood of S \ {xn}. Then
dfn ∈ �1(M, S; R) and we have∫

γm

dfn = fn(γm(1))− fn(γm(0)) = δmn.

It follows in particular that the classes [γn] are linearly independent over Z, so that we
obtain

H1(M, S) =
⊕
n∈N

Z[γn] ∼= Z
(N)

and therefore that the map

H 1(M, S; R) → R
N, f �→ (f ([γn]))n∈N

is bijective.
We want to determine the subgroup H 1

dR(M, S; R) in H 1(M, S; R). Let ζ ∈
Z1

dR(M, S; R). SinceH 1
dR(S

2; R) is trivial, there exists a smooth function f : S
2 → R

with f (x0) = 0 and df = ζ . Then∫
γn

ζ =
∫
γn

df = f (xn)− f (x0) = f (xn),

and the question is how to characterize those sequences in R
N which arise as (f (xn))n∈N

for such a function f . We obtain a natural chart around x0 via

φ : U := {x ∈ R
2 : ‖x‖2 < 1} → S

2, φ(x) =
(
x1, x2,

√
1 − x2

1 − x2
2

)
.

Each of the functions constructed in Example II.11 may be extended to a smooth
compactly supported function on a neighborhood of S in R

2 in such a way that it does
not depend on the second variable x2 in a neighborhood of S. Then we may use the
chart φ to obtain a function in C∞(M, S; R). We thus obtain

H 1
dR(M, S; R) ∼= {(λn)n∈N : (∀k ∈ N) λnn

k → 0} ⊆ H 1(M, S; R) ∼= R
N,

i.e., thatH 1
dR(M, S; R) corresponds to the space of rapidly decreasing sequences with

its usual topology.
A function f yields an element in the group H 1

dR(M, S; Z) if and only if all its
values in the xn are integral, so thatH 1

dR(M, S; Z) ∼= Z
(N) corresponds to the integer-

valued functions with finite support. In particularH 1
dR(M, S; Z) is a discrete subgroup

of H 1
dR(M, S; R) (cf. Theorem IV.7). ��

We conclude this section with some additional remarks on the relation between
the two spaces H 1

dR(M, S;Y ) and H 1
dR,c(M \ S;Y ).
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Remark II.13. We recall from Remark II.6 (c) the injection

φ : H 1
dR,c(M \ S;Y ) ↪→ H 1

dR(M, S;Y ).
(a) If S is a compact submanifold of M , then φ is surjective. In fact, if ζ ∈

Z1
dR(M, S;Y ), then ζ |S = 0. Let U be a tubular neighborhood of S diffeomorphic to
S×R. Then ζ |U is exact, and there exists f ∈ C∞(U ;Y )with df = ζ |U . Now there
exists a function f1 ∈ C∞(M;Y )which coincides with f on a neighborhood of S, and
then ζ−df vanishes in a neighborhood ofS. This proves that [ζ ] = [ζ−df1] ∈ im(φ).

(b) If H 1
dR,c(M \ S; R) is infinite-dimensional, then φ is not surjective. In fact,

then the spaceH 1
dR,c(M \S; R) is a countable direct limit of finite-dimensional spaces,

hence of countable dimension (cf. Theorem IV.16). On the other hand H 1
dR(M, S; R)

is a quotient of the Fréchet spaceZ1
dR(M, S; R) by a closed subspace, hence a Fréchet

space. As φ is injective, this space is infinite-dimensional, so that the Baire property
implies that it is not countably dimensional. Hence φ is not surjective.

(c) If H0(S) is finitely generated, i.e., S has only finitely many arc-components,
then the exact homology sequence of the pair (M, S) implies thatH1(M, S) is finitely
generated, which in turn implies that

H 1(M, S; R) ∼= Hom(H1(M, S),R)

is finite-dimensional. Therefore H 1
dR(M, S; R) is also finite-dimensional (cf. Defini-

tion II.5).
Conversely, every locally constant function S → Z can be extended to a smooth

function f : M → R (it suffices to consider functions S → {0, 1}) which is locally
constant in a neighborhood of the compact set S. Then df ∈ Z1

dR,c(M \ S; Z).

The class of [df ] in H 1
dR,c(M \ S; Z) is non-zero if f |S is not constant. Therefore

H 1
dR,c(M \S; Z) has infinite rank ifC(S,Z) has infinite rank. Note that this condition

is weaker than the requirement that S has only finitely many arc-components. ��

III Compact manifolds with boundary

Our strategy to get a better description of the spaces zM(Y ) and H 1
dR,c(M;Y ) for

a non-compact manifold is to describe M as a union of certain compact submani-
folds with boundary (Xn)n∈N with Xn ⊆ X0

n+1 (cf. Section IV). To get information
on the space H 1

dR,c(M;Y ), we will need detailed information on the natural maps

H 1
dR(Xn, ∂Xn;Y ) → H 1

dR(Xn+1, ∂Xn+1;Y ). To obtain this information is the main
goal of the present section (Theorem III.6). In this section we only deal with com-
pact manifolds with boundary, and in Section IV we describe the approximation of
non-compact manifolds.
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In the following we write for a topological spaceX simplyH∗(X) := Hsing,∗(X; Z)

for the singular homology groups with coefficients in Z. We likewise writeH∗(X,A)
for the singular homology groups for space pairs (X,A).

Proposition III.1. LetX be a compact manifold with boundary ∂X. Then the follow-
ing assertions hold:

(i) The singular homology groups H∗(X) are finitely generated.

(ii) All homotopy groups πk(X), k ∈ N0, are finitely generated.

(iii) For each commutative ring R the cohomology groupsH ∗(X,R) are finitely gen-
erated R-modules.

(iv) The relative homology groups H∗(X, ∂X) are finitely generated.

(v) The inclusion int(X) ↪→ X is a homotopy equivalence.

Proof. There exists a compact manifold Xd , the double of X, in which X embeds.
In particular Whitney’s Embedding Theorem implies that Xd and hence X embeds
smoothly into R

2d+1, where d = dimX. From the proof of Corollary E.5 in [Br93] we
derive that there exists a finite CW-complexK ⊆ R

2n+1 such thatK is a neighborhood
of X and there exists a retraction r : K → X. The inclusion j : X ↪→ K satisfies
r � j = idX.

(i) We immediately derive that the spaces H∗(X) are direct summands in H∗(K),
hence in particular finitely generated abelian groups.

(ii) We likewise see that for each k ∈ N0 we have πk(K) ∼= ker πk(r)�πk(X). As
πk(K) is finitely generated, the same holds for the group πk(X) ∼= πk(K)/ ker πk(r).

(iii) In view of [Fu70, Th. 52.2], we have for abelian groups A and Cj , j ∈ J :

Ext(⊕j∈JCj ,A) =
∏
j∈J

Ext(Cj , A).

As Ext(Z, A) ∼= 0 and Ext(Z/nZ, A) ∼= A/nA, we conclude that for every com-
mutative ring R and every finitely generated abelian group � the group Ext(�,R)
is a finitely generated R-module. Therefore the Universal Coefficient Theorem im-
plies that for every compact manifold with boundary the groupsH ∗(X,R) are finitely
generated R-modules.

(iv) In view of [Br93, Th. IV.6.15], we further have an exact sequence

H∗(∂X) → H∗(X) → H∗(X, ∂X) → H∗−1(∂X).

The fact that H∗−1(∂X) and H∗(X) are finitely generated groups implies that the
groups H∗(X, ∂X) are finitely generated.

(v) Using the collar construction for a compact manifold with boundary, we obtain
inclusions int(X) ↪→ X ↪→ int(X) ↪→ X, where the compositions of two succes-
sive ones are homotopic to the identity on int(X), resp., X. Therefore the inclusion
int(X) ↪→ X is a homotopy equivalence. ��
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Lemma III.2. For each compact manifoldXwith boundary the spaceH 1
dR(X, ∂X; R)

is finite-dimensional.

Proof. In Definition II.5 we have described an embedding

H 1
dR(X, ∂X; R) ↪→ H 1(X, ∂X; R).

Hence the assertion follows from Proposition III.1 which implies that H 1(X, ∂X; R)

is finite-dimensional. ��

We take a closer look at the embedding

H 1
dR(X, ∂X; R) ↪→ H 1(X, ∂X; R) ∼= Hom(H1(X, ∂X); R)

introduced in Definition II.5. The injectivity of this embedding implies that the inte-
gration maps

Iγ : H 1
dR(X, ∂X; R) → R, [ζ ] �→

∫
γ

ζ

for singular cycles γ ∈ Z1(X, ∂X) separate points. We are interested in a nice set
of such cycles for which the integration maps form a basis of the dual space of the
finite-dimensional vector space H 1

dR(X, ∂X; R).
We recall the part

H1(∂X) → H1(X)
ι−−→ H1(X, ∂X) → H0(∂X)

s−−→ H0(X)

of the long exact homology sequence of the pair (X, ∂X) ([Br93, Th. IV.6.15]). Let
ι : H1(X) → H1(X, ∂X) be the natural map and choose piecewise smooth loops
α1, . . . , αa in X for which the images ι([αi]) ∈ H1(X, ∂X) form a Z-basis of the
image ι(H1(X)) modulo torsion. Let b := rkH0(∂X) − 1 and choose a minimal
system of piecewise smooth arcs β1, . . . , βb in Z1(X, ∂X) connecting the boundary
components of ∂X. Since there are b+1 boundary components, b arcs suffice and less
would not be enough. Then the images of the classes [βi] in H0(∂X) form a Z-basis
of the kernel of the summation map s : H0(∂X) ∼= Z

b+1 → H0(X) ∼= Z.
Since the classes [βj ] form a basis of the image ofH1(X, ∂X) inH0(∂X), and the

classes ι([αi]) generate the kernel of the mapH1(X, ∂X) → H0(∂X)modulo torsion,
the classes ι([αi]) and [βj ] form a Z-basis of the abelian group H1(X, ∂X) modulo
torsion.

The bijectivity of the map η in the following proposition (see also (2.1)) can
alternatively be derived from the discussion in Remark II.6(c), which implies that the
real vector spacesH 1

dR(X, ∂X; R) and Hom(H1(X, ∂X); R) have the same dimension,
so that the injectivity of η implies that it is bijective. We will see that Proposition III.3
provides more concrete information which is needed later on.

Proposition III.3. The integration functionals Iαi , i = 1, . . . , a, and Iβj , j = 1, . . . , b,
form a basis of the dual space of H 1

dR(X, ∂X; R). In particular, the natural homo-
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morphism

η : H 1
dR(X, ∂X; R) → Hom(H1(X, ∂X); R), η([ζ ])([γ ]) =

∫
γ

ζ

from Definition II.5 (2.1) is bijective.

Proof. Since the classes ι([αi]) and [βj ] generate H1(X, ∂X) modulo torsion and η
is injective (Definition II.5), the integration maps Iαi and Iβj separate the points of
H 1

dR(X, ∂X; R), hence span its dual space.
Let χ0 : H1(X, ∂X) → R be a homomorphism and χ : H1(X) → R its pull-back

to H1(X). Then χ vanishes on the image of H1(∂X) in H1(X), so that there exists a
closed 1-form α on X with ∫

γ

α = χ(γ ), γ ∈ H1(X).

This can be proved as [Ne02a, Prop. 3.8]. The main idea is to associate to χ , viewed as
a homomorphism π1(X) → R, an affine R-bundle overX and then to use partitions of
unity to obtain a smooth global section s, whose differential can be taken as α. Since
χ vanishes on the image ofH1(∂X) inH1(X), we can think of it as a homomorphism
of the image ι(H1(X)) of H1(X) in H1(X, ∂X) to R.

Let C be a connected component of ∂X, I := [0, 1] and Ĉ be a neighborhood of
C in X diffeomorphic to I × C in such a way that {0} × C corresponds to C. Then
the homomorphism H1(C) → H1(∂X) → R induced by the 1-form α vanishes, so
that there exists a smooth function g0 : Ĉ → R with α |

Ĉ
= dg. If φ : I → R

is smooth with φ = 1 in a neighborhood of 0 and 0 in a neighborhood of 1, then
φ̂ : (t, x) �→ φ(t) yields a smooth function on X vanishing in a neighborhood of
X \ Ĉ and taking the value 1 on a neighborhood of C. Hence φ̂ · g can be viewed as
a smooth functionX → R whose differential coincides with dg in a neighborhood of
C. Now α− d(φ̂ · g0) defines the same homomorphism π1(X) → R but, in addition,
this 1-form vanishes in a neighborhood ofC. Repeating this construction for the other
connected components of ∂X yields a closed 1-form α′ ∈ �1(X, ∂X; R) vanishing
in a neighborhood of ∂X for which α′ represents χ on H1(X). We conclude that
χ0 − η([α′]) vanishes on ι(H1(X)) in H1(X, ∂X), so that it remains to see that each
homomorphisms χ : H1(X, ∂X) → R vanishing on the image of H1(X) is contained
in im(η). Let r : H1(X, ∂X) → H0(X) denote the boundary map. Then χ0 = χ ′ � r
for some χ ′ : H0(∂X) ∼= Z

b+1 → R.
Let C ⊆ ∂X be a connected component. Using the collar construction, we obtain

a smooth function fC : X → R which is 1 in a neighborhood of C and 0 in a neigh-
borhood of all other connected components of ∂X. Then dfC ∈ Z1

dR(X, ∂X; R) and
because the form dfC is exact, it vanishes on all cycles in ι(H1(X)). Moreover, the
function fC defines a homomorphism

FC : H0(∂X) → Z, C′ �→ fC(C
′) = δC,C′ ,
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and, as a homomorphismH1(X, ∂X) → R, the integration of dfC over cycles modulo
∂X is obtained by pulling FC back via the natural map H1(X, ∂X) → H0(∂X). As
the FC form a Z-basis of Hom(H0(∂X),R), we conclude that χ ′ lies in the span of
the η([dfC]), hence is contained in the image of η. This completes the proof of the
surjectivity of η. ��
Lemma III.4. For any s.c.l.c. space Y the exactness of a closed 1-form
ζ ∈ �1(X, ∂X;Y ) is equivalent to the vanishing of all integrals

∫
αi
ζ and

∫
βj
ζ .

Proof. If ζ ∈ �1(X, ∂X;Y ) is exact, then clearly all integrals
∫
γ
ζ vanish for γ ∈

Z1(X, ∂X). Suppose, conversely, that all integrals
∫
αi
ζ and

∫
βj
ζ vanish. For each

continuous linear functional λ ∈ Y ′ we then obtain∫
αi

λ � ζ = λ
( ∫

αi

ζ
)

= λ
( ∫

βj

ζ
)

=
∫
βj

λ � ζ = 0

for each i and j . Since Y ′ separates points of Y , all integrals of ζ on Z1(X, ∂X) are
trivial, and therefore ζ is exact. ��
Remark III.5. Let [α∗

i ], [β∗
i ] ∈ H 1

dR(X, ∂X; R) be a basis dual to the integrals Iαi
and Iβj from above. Then the map

�X : H 1
dR(X, ∂X;Y ) → Ya+b, �X([ζ ]) :=

( ∫
αi

ζ,

∫
βj

ζ
)
i=1,...,a;j=1,...,b

is continuous and injective (Lemma III.4). Moreover, it is surjective and its inverse is
given by

�−1
X (y1, . . . , ya+b) :=

a∑
i=1

[α∗
i · yi] +

b∑
j=1

[β∗
j · ya+j ].

It follows in particular that�−1
X is continuous, and therefore that�X is an isomorphism

of topological vector spaces. The extension of �X to a map

�̃X : z(X,∂X)(Y ) → Ya+b, �X([ζ ]) :=
( ∫

αi

ζ,

∫
βj

ζ
)
i=1,...,a;j=1,...,b

is continuous and surjective. Therefore its kernel is a closed complement to
H 1

dR(X, ∂X;Y ) and the corresponding projection onto H 1
dR(X, ∂X;Y ) is given by

pX : [ζ ] �→
a∑
i=1

[
α∗
i ·

∫
αi

ζ
]

+
b∑

j=1

[
β∗
j ·

∫
βj

ζ
]
. ��

Theorem III.6. Let Z be a compact connected manifold with boundary and X ⊆
int(Z) a compact connected equidimensional submanifold with boundary. We assume
that each connected component of Z \X intersects ∂Z. Then the following assertions
hold:
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(1) The inclusion Z1
dR(X, ∂X;Y ) ↪→ Z1

dR(Z, ∂Z;Y ) obtained by extension by 0 on
Z \X induces an injective map

H 1
dR(X, ∂X;Y ) ↪→ H 1

dR(Z, ∂Z;Y ).
(2) The continuous projection pX extends to a continuous projection pZ , so that we

obtain the commutative diagram

z(X,∂X)(Y )
pX−−→ H 1

dR(X, ∂X;Y )� �
z(Z,∂Z)(Y )

pZ−−→ H 1
dR(Z, ∂Z;Y ).

Proof. Let αi , i = 1, . . . , a and βj , j = 1, . . . , b be as in Proposition III.3. Then
the integration functionals Iα1 , . . . , Iαa , Iβ1 , . . . , Iβb form a basis of the dual space of
H 1

dR(X, ∂X; R).
(1) We claim that

dC∞(Z, ∂Z;Y ) ∩ Z1
dR(X, ∂X;Y ) = dC∞(X, ∂X;Y ).

The inclusion “⊇” is trivial. Conversely, let f ∈ C∞(Z, ∂Z;Y ) and suppose that
df ∈ Z1

dR(X, ∂X;Y ), i.e., that df vanishes on Z \ X. Then f is constant on all
connected components ofZ\X. By our initial assumptions, all connected components
of Z \X intersect ∂Z, which implies that f vanishes on all these components, hence
that f ∈ C∞(X, ∂X;Y ). This proves (1).

(2) Next we want to choose integration maps H 1
dR(Z, ∂Z;Y ) → Y in such a way

that those which are additional to the ones needed for X are supported by Z \ int(X),
hence vanish on Z1

dR(X, ∂X;Y ).
We have to modify the curves βi so that they represent elements on Z1(Z, ∂Z).

Since every connected component of Z \X meets ∂Z, we can extend every piecewise
smooth curve βi to a piecewise smooth curve β̃i connecting two boundary components
of Z. For this we may w.l.o.g. assume that we have parametrizations βj : [0, 1] → X

and β̃j : [−1, 2] → Z with β̃j |[0,1] = βj and [0, 1] = β̃−1
j (X). In particular we have

for each 1-form ζ supported by X the relation∫
βi

ζ =
∫
β̃i

ζ.

Next we choose piecewise smooth closed curves γ1, . . . , γc in Z \ X connecting
those connected components of ∂Z lying in the same connected component of Z \X.
We further need closed curves on δ1, . . . , δd in Z \ int(X) whose homology classes
generate H1(Z \ int(X); R) modulo the image of H1(∂Z; R). We will show below
that the classes of αi, β̃j , γk and δl generate H1(Z, ∂Z) modulo torsion by showing
that the corresponding integrals separate points on H 1

dR(Z, ∂Z; R).
Let ζ ∈ Z1

dR(Z, ∂Z;Y ) be such that all integrals over the αi, β̃j , γk and δl vanish.
We claim that ζ is exact. In particular all integrals coming fromH1(∂X) vanish, so that
there exists an open neighborhood U ∼= I × ∂X of ∂X on which ζ is exact. Let f ∈
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C∞(U ;Y )with df = ζ |U . Multiplying f with a smooth function χ onU of the form
(t, x) �→ φ(t), where φ ∈ C∞(I ; R) is 1 on a neighborhood of 0 and vanishes outside
some interval [−ε, ε], we obtain a smooth function f̃ := χ ·f ∈ C∞(Z, ∂Z;Y )with
df̃ = ζ in a neighborhood of ∂X. Replacing ζ by ζ − df̃ , we may assume that ζ
vanishes on a neighborhood of ∂X. Then ζ |X ∈ Z1

dR(X, ∂X;Y ) is exact because the
integrals over the αi vanish. Likewise ζ |Z\X is exact because all integrals over the
δi vanish. Let f1 ∈ C∞(X;Y ) with df1 = ζ |X and f2 ∈ C∞(Z \ int(X);Y ) with
df2 = ζ |Z\X. We normalize f2 by the condition that it vanishes on ∂Z. That this
is possible follows from the vanishing of all integrals of ζ over the γi . We further
normalize f1 such that on one boundary point x ∈ ∂X we have f1(x) = f2(x). In a
neighborhood of ∂X both functions f1 and f2 are locally constant, hence constant on
all connected components of ∂X. It remains to show that f1 |∂X = f2 |∂X, so that both
combine to a function f ∈ C∞(Z, ∂Z;Y ) with df = ζ .

Let βi be such that either its end or starting point lies in the same connected com-
ponent of ∂X as x. We recall the parametrizations βi : [0, 1] → X from above. We
further observe that f1(x) = f1(βi(0)) = f2(x) = f2(βi(0)) because f1 = f2 is
constant on the whole component of X containing x. We also recall the parameteri-
zation of β̃j on [−1, 2] from above and put y := βi(1) ∈ ∂X. Let p := β̃i (−1) and
q := β̃i (2). Then

f1(y)− f2(y) =
(
f1(x)+

∫
βi

ζ
)

+ f2(q)︸ ︷︷ ︸
=0

−f2(y) = f2(x)+
∫
βi

ζ + f2(q)− f2(y)

=
∫ 0

−1
β̃∗
i ζ +

∫ 1

0
β̃∗
i ζ +

∫ 2

1
β̃∗
i ζ =

∫
β̃i

ζ = 0.

This proves f1(y) = f2(y). Using the other paths β̃i , we conclude inductively that
f1 = f2 holds on all connected components of ∂X, and this completes the proof of
the exactness of ζ .

Hence the integration maps Iαi , Iβ̃j , Iγk and Iδl separate points onH 1
dR(Z, ∂Z; R).

Since the maps Iαi , i = 1, . . . , a, and Iβ̃j , j = 1, . . . , b, are linearly independent

on the subspace H 1
dR(X, ∂X; R), by omitting some of the γk and δl , we may w.l.o.g.

assume that the whole collection is linearly independent.
We recall the maps �X and pX from Remark III.5. Then we see that

�Z : H 1
dR(Z, ∂Z;Y ) → Ya+b+c+d ,

�Z([ζ ]) :=
( ∫

αi

ζ,

∫
βj

ζ,

∫
γk

ζ,

∫
δl

ζ
)
i=1,...,a;j=1,...,b;k=1,...,c;l=1,...,d

is a topological isomorphism. The corresponding projection

pZ : z(Z,∂Z)(Y ) → H 1
dR(Z, ∂Z;Y )
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is given by

pZ : [ζ ] �→
a∑
i=1

[
α∗
i ·

∫
αi

ζ
]

+
b∑

j=1

[
β∗
j ·

∫
β̃j

ζ
]

+
c∑
k=1

[
γ ∗
k ·

∫
γk

ζ
]

+
d∑
l=1

[
δ∗l ·

∫
δl

ζ
]
.

Since the integrals over the γk and δl vanish for ζ ∈ �1(X, ∂X;Y ), and the integrals
over βj and β̃j are the same for these 1-forms, we obtain pZ |z(X,∂X)(Y ) = pX. ��

Example III.7 (Oriented surfaces). Let X be an oriented compact connected surface
with boundary. All the boundary components are diffeomorphic to the circle. Col-
lapsing each boundary component to a point leads to an oriented compact surface �.
Let g := g(X) := g(�) denote the genus of � and p := p(X) be the number of
boundary components.

We recall the part

· · · → H2(X) → H2(X, ∂X) → H1(∂X)
α−−→ H1(X)

→ H1(X, ∂X) → H0(∂X) → H0(X)

of the long exact homology sequence of the pair (X, ∂X). ThenH0(∂X) ∼= H1(∂X) ∼=
Z
p. According to Proposition III.1(v), the inclusion int(X) ↪→ X is a homotopy

equivalence, so thatH1(X) ∼= H1(int(X)). On the other hand int(X) ∼= � \P , where
P is the image of ∂X in �.

Let P̂ be a disjoint union of open discs in � around each point of P . Then
� = int(X)∪P̂ is a union of two open subsets, and the exact Mayer–Vietoris Sequence
([Br93, Th. IV.18.1]) yields an exact sequence

· · · → H2(int(X))⊕H2(P̂ ) → H2(�) → H1(int(X) ∩ P̂ )
→ H1(int(X))⊕H1(P̂ )

→ H1(�) → H0(int(X) ∩ P̂ )
→ H0(int(X))⊕H0(P̂ ) → H0(�).

We have H0(P̂ ) ∼= Z
P , H1(P̂ ) = H2(P̂ ) = 0, H0(int(X)) ∼= Z, H0(int(X) ∩ P̂ ) ∼=

Z
P , H1(int(X) ∩ P̂ ) ∼= Z

P , and H2(int(X)) = 0 because int(X) is not compact.
Therefore we obtain an exact sequence

H2(�) ∼= Z ↪→ Z
P → H1(int(X)) → H1(�) ∼= Z

2g 0−−→Z
P ↪→ Z ⊕ Z

P → Z.

The vanishing of the homomorphism in the middle follows from the injectivity of the
map H0(int(X) ∩ P̂ ) → H0(P̂ ). This implies that the sequence

Z ↪→ Z
P → H1(int(X)) → Z

2g → 0

is exact. As π1(int(X)) is a free group [tD00, Satz II.8.8], the homology group
H1(int(X)) ∼= π1(int(X))/[π1(int(X)), π1(int(X))] is a free abelian group, which
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leads to

H1(X) ∼= H1(int(X)) ∼= Z
2g(X)+p(X)−1.

Now we obtain withH2(X) ∼= H2(int(X)) = 0 forH1(X, ∂X) the exact sequence

H2(X, ∂X) ↪→ H1(∂X) ∼= Z
p α−−→H1(X) ∼= Z

2g+p−1 → H1(X, ∂X) → Z
p → Z.

The image of α in H1(X) corresponds to the image of H1(int(X)∩ P̂ ) in H1(int(X))
in the exact Mayer–Vietoris Sequence, and is isomorphic to Z

p−1. The cokernel of α
is isomorphic to Z

2g . The mapH0(∂X) ∼= Z
p → H0(X) ∼= Z is the summation map,

so that its kernel is isomorphic to Z
p−1. We thus obtain a short exact sequence

coker(α) ∼= Z
2g ↪→ H1(X, ∂X) →→ Z

p−1,

and finally

H1(X, ∂X) ∼= Z
2g(X)+p(X)−1. ��

Example III.8 (Non-orientable surfaces). Let X be a non-orientable compact con-
nected surface with boundary and proceed as in Example III.7. Then � is non-
orientable. We define g(X) and p(X) as in Example III.8.

For the finite subsetP ⊆ �we now obtain with the exact Mayer–Vietoris sequence:

· · · → H2(�) = 0 → H1(int(X) ∩ P̂ ) ∼= Z
p → H1(int(X))⊕H1(P̂ )

→ H1(�) ∼= Z
g ⊕ Z2 → H0(int(X) ∩ P̂ ) ∼= Z

p

→ H0(int(X))⊕H0(P̂ ) ∼= Z
p+1 → H0(�) ∼= Z.

This leads to an exact sequence

Z
p ↪→ H1(int(X)) → H1(�) ∼= Z

g ⊕ Z2 → Z
p ↪→ Z

p+1,

and further to

Z
p ↪→ H1(int(X)) →→ Z

g ⊕ Z2.

As H1(int(X)) is a free abelian group, it follows that

H1(X) ∼= H1(int(X)) ∼= Z
g(X)+p(X).

Now we obtain with the long exact homology sequence of the pair (X, ∂X):

· · · → H2(X) → H2(X, ∂X) → H1(∂X)
α−−→ H1(X)

→ H1(X, ∂X) → H0(∂X) → H0(X)

and hence

Z
p α−−→ Z

g+p → H1(X, ∂X) → Z
p s−−→ Z.

The image of α inH1(X) corresponds to the image ofH1(int(X)∩P) inH1(int(X)),
hence is isomorphic to Z

p, and coker(α) ∼= Z
g . Here s : H0(∂X) ∼= Z

p → H0(X) ∼=
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Z is the summation map, so that its kernel is isomorphic to Z
p−1. We thus obtain a

short exact sequence

coker(α) ∼= Z
g ↪→ H1(X, ∂X) →→ Z

p−1 = ker s,

which leads to

H1(X, ∂X) ∼= Z
g(X)+p(X)−1. ��

IV Approximating non-compact manifolds by compact ones

In this section M denotes a connected σ -compact finite-dimensional manifold. We
call a submanifoldX ofM equidimensional if dimX = dimM . In this section we first
prove the existence of well behaved sequences (Xn)n∈N of equidimensional compact
submanifolds with boundary exhausting M (Lemma IV.4). The main result of this
section is Theorem IV.16 providing a topological isomorphism

�M : H 1
dR,c(M;Y ) → Y (B)

for a certain set B which might be infinite. The components of �M are given by
integration over singular cycles inM or over curves obtained from proper maps R →
M . Here we make heavy use of Theorem III.6 about the cohomology of compact
manifolds with boundary to construct the set B in such a way that �M becomes an
isomorphism. As a corollary, we show that if � is discrete, thenH 1

dR,c(M;�) ∼= �(B)

is discrete.

Saturated exhaustive sequences

Lemma IV.1. For each compact equidimensional submanifoldX ⊆ M with boundary
the number of connected components of M \X is finite.

Proof. As every connected component of M \ X contains some component of ∂X in
its closure, and the number of components of the compact manifold ∂X is finite, the
assertion follows. ��
Definition IV.2. Let X ⊆ M be an equidimensional compact submanifold with
boundary. We observe that each connected component of ∂X is contained in the
closure of exactly one connected component of M \ X. We write X̂ for the union of
X with all those components of M \X which are relatively compact. As the number
of these components is finite (Lemma IV.1), X̂ is compact, because for each compo-
nent C ⊆ M \ X the boundary ∂C is a union of connected components of ∂X. This
argument further shows that X̂ is a compact submanifold with boundary in M . ��
Lemma IV.3. For two equidimensional submanifolds with boundary X1, X2 ⊆ M

with X1 ⊆ X0
2 we have X̂1 ⊆ X̂0

2 .
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Proof. LetC ⊆ M \X1 be a relatively compact connected component. ThenC \X2 is
also relatively compact inM , hence contained in X̂2. Therefore X̂1 ⊆ X̂2. If p ∈ ∂X̂2
is a boundary point, then it is in particular a boundary point ofX2, hence not contained
in X1, and therefore not in ∂X1. If the connected component of M \ X0

2 containing
p is non-compact, then this is likewise true for the connected component of M \ X1
containing p, which shows that it is not contained in X̂1. This proves X̂1 ⊆ X̂0

2. ��

For the case of surfaces the following lemma can also be found in [tD00, Satz 7.3].

Lemma IV.4. There exists a sequenceXn of compact connected manifolds with bound-
ary in M such that

(E1)Xn ⊆ X0
n+1,

(E2)
⋃
n Xn = M ,

(E3) X̂n = Xn, i.e., each connected component of M \ Xn is not relatively compact
in M .

Proof. Let φ : M → R be a proper smooth function which is bounded from below.
Such a function can be obtained from an embedding ι : M ↪→ R

n as φ(x) := ‖x‖2
2.

Then Sard’s Theorem implies that there exists an increasing sequence (rn)n∈N of
regular values of φ with rn → ∞. Then each Yn := {x ∈ M : φ(x) ≤ rn} is a
compact equidimensional submanifold with boundary. Pick x0 ∈ Y1. We defineZn to
be the connected component of Yn containing x0 and Xn := Ẑn. From rn < rn+1 we
derive Yn ⊆ Y 0

n+1, so that Zn ⊆ Z0
n+1, and Lemma IV.3 implies (E1). From rn → ∞

we get
⋃
n Yn = M . Each x ∈ M can be connected to x0 by an arc, which lies in some

Yn, whence x ∈ Zn, and (E2) follows. Eventually (E3) follows from the definition
of Ẑn. ��

We call a sequence (Xn)n∈N as in Lemma IV.4 a saturated exhaustive sequence
of M .

Lemma IV.5. For each x ∈ M there exists a proper smooth map γ : R
+ := [0,∞[→

M with γ (0) = x. If X = X̂ is an equidimensional compact submanifold with
boundary and x ∈ ∂X, then there exists a γ as above with γ (]0,∞[) ⊆ M \X.

Proof. Pick a saturated exhaustive sequence (Xn)n∈N of M and choose points xn ∈
∂Xn such that xn+1 lies in the connected component of M \ Xn containing xn in its
boundary. Since this component is not relatively compact in M , it intersects ∂Xn+1.
Then there exists a smooth curve γ : R

+ → M with γ (0) = x, γ (n) = xn for all
n ∈ N, and γ ([n, n+ 1]) ⊆ Xn+1 \X0

n. The latter condition implies that γ is proper.
If x ∈ ∂X holds for an equidimensional compact submanifold with boundary X,

thenX ⊆ XN for N sufficiently large, and we can proceed as above by connecting
first x in XN \X1 to a point in the boundary of XN , then to a point in XN+1 etc. We
thus obtain γ with the required properties. ��
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Lemma IV.6. For x, y ∈ M there exists a proper smooth map γ : R → M with
γ (0) = x and γ (1) = y.

Proof. Using Lemma IV.5, we find a smooth map γ : R → M with γ (0) = x and
γ (1) = y such that the restrictions to [1,∞[ and ] − ∞, 0] are proper. This implies
that γ itself is proper. ��

The following lemma is obvious.

Lemma IV.7. Let M be a topological space and (Mj )j∈J a directed family of open
subsets ofM withM = ⋃

j Mj . ThenM = lim−→Mj holds in the category of topological

spaces, each compact subset of M is contained in some Mj , and for each xM ∈ M

and k ∈ N0 we have

πk(M, xM) ∼= lim−→ πk(Mj , xM),

where {j ∈ J : xM ∈ Mj } is cofinal in J . ��
Remark IV.8. The preceding lemma applies in particular to saturated exhaustions
(Xn)n∈N of a non-compact manifold M with Mn = X0

n. Then we obtain with Propo-
sition III.1(v):

πk(M) ∼= lim−→ πk(X
0
n)

∼= lim−→ πk(Xn) ��
Proposition IV.9. For each σ -compact connected finite-dimensional manifold M all
homotopy groups are countable.

Proof. This is a direct consequence of Lemma IV.7, Remark IV.8 and Proposi-
tion III.1 (ii). ��

De Rham cohomology with compact supports is a direct sum

If Y is a s.c.l.c. space and (Xn)n∈N is a saturated exhaustive sequence of M , then
�1
c(M;Y ) carries the locally convex direct limit topology of the spaces�1

Xn
(M;Y ) ⊆

�1(M;Y ) (cf. Section II). The differential d : C∞
c (M;Y ) → �1

c(M;Y ) is a continu-
ous linear map because C∞

c (M;Y ) carries the locally convex direct limit topology of
the subspaces C∞

Xn
(M;Y ) on which d is continuous.

Lemma IV.10. LetX = X̂ be an equidimensional compact submanifold with bound-
ary. Then �1

X(M;Y ) ∼= �1(X, ∂X;Y ) and

�1
X(M;Y ) ∩ dC∞

c (M;Y ) = dC∞
X (M;Y ).

Proof. (cf. Step 1 in the proof of Theorem III.6) It is clear that dC∞
X (M;Y ) is contained

in �1
X(M;Y ) ∩ dC∞

c (M;Y ). To prove the converse inclusion, let β ∈ �1
X(M;Y )
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and f ∈ C∞
c (M;Y ) with β = df . Then f is constant on all connected components

of M \ X. Since all these components are not relatively compact in M and f has
compact support, it follows that f (M \X) = {0}, and therefore f ∈ C∞

X (M;Y ). ��

From the isomorphisms

�1
X(M;Y ) ∼= �1(X, ∂X;Y ) and C∞

X (M;Y ) ∼= C∞(X, ∂X;Y )
obtained by extension on M \X by 0, we now derive

�1
X(M;Y )/(dC∞

c (M;Y ) ∩�1
X(M;Y ))

∼= �1(X, ∂X;Y )/dC∞(X, ∂X;Y ) = z(X,∂X)(Y ).

Lemma IV.11. For each s.c.l.c. spaceY the subspaceB1
dR,c(M;Y ) = dC∞

c (M;Y ) of

�1
c(M;Y ) is closed.

Proof. For each equidimensional compact submanifoldX = X̂with boundary, Lemma
IV.10 implies that �1

X(M;Y ) ∩ dC∞
c (M;Y ) = dC∞

X (M;Y ), which corresponds to
the subspace

dC∞(X, ∂X;Y ) ⊆ �1(X, ∂X;Y )
whose closedness follows from Corollary II.4 which also applies to the pair (X, ∂X),
as it has the same space of smooth functions as the pair (Xd,X�) (cf. Example I.9 (a)).

For each saturated exhaustive sequence (Xn)n∈N, the space�1
c(M;Y ) is the locally

convex direct limit of the subspaces�1
Xn
(M;Y ), so that the closedness of dC∞

c (M;Y )
follows from the closedness of the intersections with the spaces �1

Xn
(M;Y ) (Lemma

B.4 (ii)). ��
Definition IV.12. As a consequence of Lemma IV.11, the space

zM,c(Y ) := �1
c(M;Y )/dC∞

c (M;Y )
carries a natural (Hausdorff) locally convex topology. It is isomorphic to

lim−→ �1
Xn
(M;Y )/(�1

Xn
(M;Y ) ∩ dC∞

c (M;Y )) ∼= lim−→ �1
Xn
(M;Y )/dC∞

Xn
(M;Y )

= lim−→ z(Xn,∂Xn)(Y )

(Lemmas B.4 and IV.10). We write q : �1
c(M;Y ) → zM,c(Y ) for the quotient map.

The cohomology space

H 1
dR,c(M;Y ) := Z1

dR,c(M;Y )/dC∞
c (M;Y )

is a closed subspace of zM,c(Y ). For a compact subset X ⊆ M we define

H 1
dR,X(M;Y ) := Z1

dR,X(M;Y )/(Z1
dR,X(M;Y ) ∩ dC∞

c (M;Y ))
and observe that H 1

dR,c(M;Y ) is the union of the subspaces H 1
dR,Xn

(M;Y ). ��
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Remark IV.13. For each compact equidimensional submanifold X ⊆ M with X =
X̂, Lemma IV.10 implies that

H 1
dR,X(M;Y ) = Z1

dR,X(M;Y )/dC∞
X (M;Y ) ∼= Z1

dR(X, ∂X;Y )/dC∞(X, ∂X;Y )
= H 1

dR(X, ∂X;Y ).
Therefore Lemma III.2 implies that for dim Y < ∞ these spaces are finite-dimen-
sional1. ��
Lemma IV.14. LetM be a non-compact finite-dimensional manifold, (Xn)n∈N a sat-
urated exhaustion of M and Y a Fréchet space. Then the following assertions hold:

(i) �1
c(M; R) is a nuclear LF-space.

(ii) H 1
dR,c(M;Y ) is the locally convex direct limit of the subspacesH 1

dR(Xn, ∂Xn;Y ).

Proof. (i) �1
c(M; R) is the direct limit of the Fréchet spaces �1

Xn
(M; R). Each space

�1
Xn
(M; R) can be embedded into a product of finitely many spaces of the form

�1(U ; R), where U is an open subset of R
d , d = dimM . As the spaces �1(U ; R)

are nuclear, the spaces �1
Xn
(M; R) are nuclear, and the assertion follows ([Tr67,

Prop. 50.1]).
(ii) First we verify that the pairs Xn ⊆ Xn+1 satisfy the assumptions of Theo-

rem III.6. Let C be a connected component of Xn+1 \ Xn. If C does not intersect
∂Xn+1, then it also is a connected component of M \ Xn. Further it is contained in
the compact set Xn+1, so that Xn+1 = X̂n+1 leads to a contradiction. Therefore all
connected components ofXn+1 \Xn are non-compact, Theorem III.6 applies, and we
obtain inductively continuous projections

pn : zn := z(Xn,∂Xn)(Y ) → H 1
n := H 1

dR(Xn, ∂Xn;Y )
which are compatible in the sense that pn+1 | zn = pn. Since z(M,c) is the locally
convex direct limit of the subspaces zn (Definition IV.12), there exists a continuous
projection

p : z(M,c)(Y ) → H 1
dR,c(M;Y )

with p |zn = pn for each n ∈ N.
Now let fn : H 1

n → E be continuous linear functions into a locally convex space
E with

fn+1 |H 1
n

= fn, for n ∈ N.

Then the functionsfn�pn : zn → E are continuous linear maps withfn+1 � pn+1 |zn =
fn � pn, so that there exists a continuous linear map F : z(M,c)(Y ) → E with F |zn =

1There is some subtle point that one has to observe here. In general a closed subspace Y of an LF-space
X=lim−→ Xn does not have to carry the LF-space topology defined by the subspaces Y∩Xn (cf. [Tr67, Rem.

13.2]).
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fn �pn for each n ∈ N, and therefore the restriction f := F |H 1
dR,c(M;Y ) is continuous.

This proves the universal direct limit property of the locally convex spaceH 1
dR,c(M;Y ).

��
Lemma IV.15. If Y is a locally convex space and � ⊆ Y a discrete subgroup, then
the subgroup �(N) is discrete in the space Y (N) endowed with the locally convex direct
limit topology of the finite products Yn = Y {1,...,n}, n ∈ N.

Proof. Let U ⊆ Y be a convex 0-neighborhood with U ∩ � = {0}. Then U(N) is a
convex 0-neighborhood in Y (N) with U(N) ∩ �(N) = {0}. ��
Theorem IV.16. Let Y be a s.c.l.c. space and M a non-compact connected manifold
with a saturated exhaustion (Xn)n∈N. Then there exists a set B = ⋃

n Bn consisting
of piecewise smooth cycles and of piecewise smooth proper maps R → M such that:

(1) For each n ∈ N the subset Bn is finite, and the integration map

�Xn : H 1
dR(Xn, ∂Xn;Y ) → YBn, [ζ ] �→

( ∫
b

ζ
)
b∈Bn

is a topological isomorphism.

(2) The integration map

�M : H 1
dR,c(M;Y ) → Y (B) ∼= lim−→ YBn, [ζ ] �→

( ∫
b

ζ
)
b∈B

is a topological isomorphism.

Proof. Using the construction in the proof of Theorem III.6, we inductively obtain
finite sets Bn of piecewise smooth cycles in Xn modulo ∂Xn such that Bn ⊆ Bn+1
holds in the sense that those cycles in Bn which are not cycles inXn+1 are “extended”
to relative cycles modulo ∂Xn+1 in Xn+1, and the set Bn+1 \ Bn consists of cycles
supported in Xn+1 \ Xn. Moreover, for each n ∈ N the integration map �Xn is a
topological isomorphism (Remark III.5) which, in addition, satisfies

�Xn+1 |H 1
dR(Xn,∂Xn;Y ) = �Xn.

Therefore Lemma IV.14(ii) leads to a topological isomorphism

� : H 1
dR,c(M;Y ) → lim−→ YBn ∼= Y (B),

where B := ⋃
n Bn, and the space Y (B) = ⋃

n Y
Bn carries the locally convex direct

limit topology. ��

Discrete subgroups of de Rham cohomology

Remark IV.17. In the following we write C∞
p (N,M) for the set of proper smooth

maps from the manifold N to the manifold M .
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Every smooth loop in C∞(S1,M) is homotopic to a smooth loop α for which all
derivatives vanish in the base point 1 ∈ S

1, where we consider S
1 as a subset of C.

Then we can view it as a smooth map [0, 1] → M which extends to a proper smooth
map α̃ : R → M by using a smooth proper map γ : R

+ → M with γ (0) = α(1)
for which all derivatives vanish in 0 and then define α̃(t) := γ (t − 1) for t ≥ 1 and
α̃(t) := γ (−t) for t ≤ 0 (cf. Lemma IV.5). For each compactly supported 1-form β

we then have ∫
α

β =
∫
α̃

β −
∫
γ

β +
∫
γ

β =
∫
α̃

β. ��

Lemma IV.18. Let X = X̂ ⊆ M be an equidimensional compact submanifold with
boundary. Then the following assertions hold:

(i) For x, y ∈ ∂X there exists a smooth proper curve α : R → M with α(0) = x,
α(1) = y, and [0, 1] = α−1(X). For ζ ∈ �1(X, ∂X;Y ) we then have∫

α

ζ =
∫
α|[0,1]

ζ.

(ii) For ζ ∈ Z1
dR(X, ∂X;Y ) the subgroup of Y generated by the set of all integrals∫

α
ζ , α ∈ C∞

p (R,M), coincides with the set of all integrals over elements in
Z1(X, ∂X).

Proof. (i) This follows from Lemma IV.6 and its proof.
(ii) From (i), Remark IV.17 and Proposition III.3 it follows that each integral over

a cycle in Z1(X, ∂X) can also be written as a sum of integrals over proper smooth
maps R → M .

Suppose, conversely, that α : R → M is smooth and proper. Then α is smoothly
homotopic to a proper curve γ which is transversal to the compact submanifold ∂X of
M ([BJ73, Satz 14.7; p.158]). Therefore γ−1(X) is a finite union of compact intervals
I1, . . . , Im, because it is locally connected and compact. Then∫

α

ζ =
∫
γ

ζ =
∑
j

∫
γ |Ij

ζ,

and the restrictions γ |Ij can be interpreted as cycles in Z1(X, ∂X). ��

We conclude from Lemma IV.18 that for the sake of testing integrality conditions
of 1-forms supported by X, we could either work with 1-cycles in X modulo ∂X or
with proper smooth maps R → M . The latter approach has the advantage of being
independent of X.

Definition IV.19. For a subgroup � ⊆ Y let

Z1
dR,c(M;�) :=

{
β ∈ Z1

dR,c(M;Y ) : (∀α ∈ C∞
p (R,M))

∫
α

β ∈ �
}
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and observe that this equals
{
β ∈ �1

c(M;Y ) : (∀α ∈ C∞
p (R,M))

∫
α
β ∈ �

}
if � is

discrete (cf. Lemma II.10(2)). We also define

H 1
dR,c(M;�) := Z1

dR,c(M,�)/dC
∞
c (M;Y ). ��

Proposition IV.20. Let � ⊆ Y be a discrete subgroup and T� := Y/�. Then
δ(C∞

c (M; T�)) consists of those 1-forms whose integrals over all elements of
C∞
p (R,M) are contained in �. In particular,

H 1
dR,c(M;�) = δ(C∞

c (M; T�))/d(C∞
c (M;Y )).

Proof. For each closed 1-form δ(f ), f ∈ C∞
c (M; T�), the integrals over elements

of C∞
p (R,M) are obviously contained in �. If, conversely, ζ ∈ �1

c(M;Y ) has this

property, then we pick an equidimensional compact manifold X = X̂ with boundary
containing the support of ζ . Then Lemmas II.3 and IV.18 imply the existence of
f ∈ C∞(X, ∂X; T�) ⊆ C∞

c (M; T�)withβ = δ(f ). This proves that δ(C∞
c (M; T�))

consists of those 1-forms whose integrals over all elements ofC∞
p (R,M) are contained

in �. ��

For the following corollary we recall the set B from Theorem IV.16. For the case
where Y is finite-dimensional, the following discreteness result can also be obtained
from Proposition B.3, combined with Theorem II.7.

Corollary IV.21. We have �M
(
H 1

dR,c(M;�)) = �(B) and in particular

H 1
dR,c(M;�) ∼= �(B) ⊆ Y (B) ∼= H 1

dR,c(M;Y ).
Moreover, for H 1

dR,c(M; R) = {0} the group � is discrete if and only if H 1
dR,c(M;�)

is discrete.

Proof. In view of Lemma IV.18 (ii), we have

Z1
dR,c(M;�) =

⋃
n∈N

Z1
dR(Xn, ∂Xn;�),

and therefore �M(H 1
dR,c(M;�)) ⊆ �(B). On the other hand, we have for each n the

restriction isomorphism

�Xn = �M |H 1
dR(Xn,∂Xn;Y ) : H

1
dR(Xn, ∂Xn;Y ) → YBn ⊆ Y (B).

Let xM ∈ X1 be a base point. If �Xn([ζ ]) ∈ �Bn , then the construction of the
set Bn (cf. Theorem III.6) implies that all integrals of ζ over cycles in Z1(Xn, ∂Xn)

lie in �, and hence that all integrals over curves in C∞
p (R,M) lie in � (Lemma

IV.18 (ii)). Therefore ζ ∈ Z1
dR,c(M;�) and �M([ζ ]) = �Xn([ζ ]). We conclude that

�M(H
1
dR,c(M;�)) = �(B).

Now we use Lemma IV.15 to see that for a non-empty set B the subgroup �(B) of
the locally convex direct sum Y (B) is discrete if and only if � is discrete in Y . ��
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For the following, we observe that we have a natural continuous multiplication
map

�1(M; R)× Y → �1(M;Y ), (ζ, y) �→ ζ · y
which induces continuous bilinear maps

H 1
dR(M; R)× Y → H 1

dR(M;Y ) and H 1
dR,c(M; R)× Y → H 1

dR,c(M;Y ).
Corollary IV.22. For each subgroup� ofY we haveH 1

dR,c(M; Z)·� = H 1
dR,c(M;�).

Proof. The inclusion H 1
dR,c(M; Z) · � ⊆ H 1

dR,c(M;�) is trivial. For the converse,

let ζ ∈ Z1
dR(Xn, ∂Xn;�). Then �Xn([ζ ]) ∈ �Bn (Lemma IV.18). Suppose that

Bn = {b1, . . . , bm}. Let b∗
i ∈ Z1

dR(Xn, ∂Xn; R) be elements with Ibi b
∗
j = δij . Then∫

b
ζ = 0 for b ∈ B \ Bn implies that ζ − ∑m

i=1 b
∗
i · ∫

bi
ζ is exact, so that

[ζ ] =
n∑
j=1

[b∗
i ] ·

∫
bi

ζ ∈ H 1
dR,c(M; Z) · �

holds in H 1
dR,c(M;Y ). As Bn generates Z1(Xn, ∂Xn) modulo torsion, we get b∗

i ∈
H 1

dR,c(M; Z) (Lemma IV.18). ��

The following proposition will be helpful in understanding the assertion of Propo-
sition V.12 below.

Proposition IV.23. If S is a closed subset of the compact manifold M , then for each
discrete subgroup � ⊆ Y we have

H 1
dR(M, S; Z) · � = H 1

dR(M, S;�).

Proof. The inclusion “⊆” is clear. It remains to show the converse. So let ζ ∈
Z1

dR(M, S;�). First we show that the group 〈ζ,H1(M, S)〉 ⊆ � is finitely generated.
Since H1(M) is finitely generated, �0 := 〈ζ,H1(M)〉 is a finitely generated sub-

group of �. Let p : Y → Y/�0 denote the quotient map. Then all periods of the
1-form ζ0 := p � ζ are trivial, and there exists a smooth function f0 : M → Y/�0
with df0 = ζ1 and f0(S) ⊆ �/�0. Moreover, the function f0 lifts to a smooth func-
tion f1 : M̃ → Y , with f1(q

−1
M (S)) ⊆ �, where qM : M̃ → M is a universal covering

ofM . As � is discrete, the function f1 is locally constant on q−1
M (S), and therefore f0

is locally constant on S. Therefore f0(S) is finite. As 〈ζ,H1(M, S)〉/�0 ⊆ 〈f0(S)〉,
it follows that 〈ζ,H1(M, S)〉 is finitely generated.

Moreover, there exists a smooth function f2 : M → Y locally constant on a
neighborhood of S such that for each s ∈ S we have f2(s) + �0 = f0(s). Then
df2 ∈ H 1

dR(M, S;�) lies in the image of

H 1
dR,c(M \ S;�) ∼= H 1

dR,c(M \ S; Z) · �
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(Corollary IV.22). For ζ1 := ζ − df2 we now have

�0 = 〈ζ,H1(M)〉 = 〈ζ1, H1(M)〉 = 〈ζ1, H1(M, S)〉,
so that there exists some f3 ∈ C∞(M, S;Y/�0) with df3 = ζ1.

As �0 is finitely generated, it spans a finite-dimensional subspace Y0 ⊆ Y . Ex-
tending the identity map Y0 → Y0 to a continuous linear map Y → Y0 using the
Hahn–Banach Extension Theorem, we obtain a topological direct sum decomposition
Y ∼= Y0 ⊕ Y1, where Y1 is the kernel of the extension. Then Y/�0 ∼= (Y0/�0) × Y1
as Lie groups. Moreover, ζ1 = α1 + α2 with αj ∈ Z1

dR(M, S;Yj ), j = 1, 2, and
f3 = h1 + h2 with h1 ∈ C∞(M, S;Y0/�0), h2 ∈ C∞(M, S;Y1), δ(h1) = α1 and
dh2 = α2. This proves that [ζ1] = [α1]. As Y0/�0 is a finite-dimensional torus, we
can write it as R

d/Zd with Y0 ∼= R
d and Z

d ∼= �0. This means that h1 is a finite
product of the d component functions l1, . . . , ld ∈ C∞(M, S; T). If e1, . . . , ed denote
the canonical basis vectors in R

d , this leads to

[α1] =
d∑
j=1

[dlj ] · ei ∈ H 1
dR(M, S; Z) · �.

Summing up, we obtain

H 1
dR(M, S;�) ⊆ H 1

dR,c(M \ S;�)+H 1
dR(M, S; Z) · �

= H 1
dR,c(M \ S; Z) · � +H 1

dR(M, S; Z) · � ⊆ H 1
dR(M, S; Z) · �. ��

Example IV.24. Let M := R
2 \ P , where P is a subset without cluster points. We

want to get an explicit picture of H 1
dR,c(M; R).

(a) First we consider on R
2 \ {(0, 0)} in polar coordinates the 1-form

α(reiφ) := f (r)dr,

where f : ]0,∞[→ R has compact support and satisfies
∫ ∞

0 f (r) dr = 1. Then

dα = f ′(r)dr ∧ dr + ∂f

∂φ
dφ ∧ dr = 0,

and for each proper mapγ : R → R
2 with limt→−∞ γ (t) = (0, 0) and limt→∞ γ (t) =

∞ we have ∫
γ

α = 1.

(b) To calculate H 1
dR,c(M; R), we approximate M by compact submanifolds Xn

which are obtained from closed discs Dn with ∂Dn ∩ P = ∅ by removing open discs
around the finitely many points in Dn ∩ P . Note that the set P is countable, so that
there exist arbitrarily large discs Dn whose boundaries do not intersect P .

Assume thatD := Dn contains k elements of P and putX := Xn. Then π1(X) ∼=
π1(int(X)) is a free group of k generators. For each closed 1-form ζ with compact
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support inX0 the integrals over the loops inX are trivial (make them very small around
the points in P ). Hence every such 1-form is exact. Let ζ = df with f ∈ C∞(X; R).
As ζ has compact support, f is constant on the connected complement of D, so that
we may w.l.o.g. assume that f = 0 on the outer circle ∂D ⊆ ∂X. Then we connect
∂D by arcs γ1, . . . , γk to the other boundary components. If all integrals of ζ over the
γj vanish, then ζ ∈ dC∞(X, ∂X; R). If α1, . . . , αk ∈ Z1

dR(X, ∂X; R) are the 1-forms
supported close to the elements of P ∩ D as in (a), we see that

∫
γi
αj = δij for an

appropriate normalization, so that [ζ ] = ∑
j

∫
γj
ζ · [αj ]. Therefore

H 1
dR(X, ∂X; R) =

⊕
p∈P∩D

R[αp],

and further

H 1
dR,c(M; R) = lim−→ H 1

dR(Xn, ∂Xn; R) =
⊕
p∈P

R[αp] ∼= R
(P ).

The subgroupH 1
dR,c(M; Z) of integral elements inH 1

dR,c(M; R) consists of those
cohomology classes whose integrals over all paths between elements ofP are integers.
For p, q ∈ P we write γp,q for an arc from p to q. Then∫

γp,q

αr = δp,r − δq,r .

This means that
∑
r λrαr is integral if and only if all differences λr − λs are integral.

As only finitely many coefficients λr are non-zero, it follows that

H 1
dR,c(M; Z) =

∑
p

Z[αp] ∼= Z
(P ).

��

V Central extensions of Lie groups and period maps

In this section we first explain the general setup for central extensions of infinite-
dimensional Lie groups. The main question arising in the integration process of Lie
algebra cocycles ω to central extensions of Lie groups is whether the corresponding
period group �ω is discrete. In this section we show that for cocycles of product
type for the groups C∞

c (M;K)e and C∞(M, S;K)e the period group is discrete for
any M if and only if this is the case for M = S

1. This reduces the discreteness
problem to the case of loop groups, which is known forK compact, and therefore for
all finite-dimensional Lie groups K .
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Generalities on central Lie group extensions

Definition V.1. (a) Let z be a topological vector space and g a topological Lie algebra.
A continuous z-valued 2-cocycle is a continuous skew-symmetric functionω : g×g →
z with

ω([x, y], z)+ ω([y, z], x)+ ω([z, x], y) = 0.

It is called a coboundary if there exists a continuous linear map α ∈ Lin(g, z) with
ω(x, y) = α([x, y]) for all x, y ∈ g. We write Z2

c (g, z) for the space of continuous
z-valued 2-cocycles and B2

c (g, z) for the subspace of coboundaries. We define the
second continuous Lie algebra cohomology space

H 2
c (g, z) := Z2

c (g, z)/B
2
c (g, z).

(b) If ω is a continuous z-valued cocycle on g, then we write g ⊕ω z for the
topological Lie algebra whose underlying topological vector space is the product
space g × z, and the bracket is defined by

[(x, z), (x′, z′)] = ([x, x′], ω(x, x′)
)
.

Then q : g⊕ωz → g, (x, z) �→ x is a central extension andσ : g → g⊕ωz, x �→ (x, 0)
is a continuous linear section of q.

If, conversely, a central Lie algebra extension q : ĝ → g with kernel z has a
continuous linear section σ : g → ĝ, then it can be described by a continuous Lie
algebra cocycleω ∈ Z2

c (g, z) defined byω(x, y) := [σ(x), σ (y)]−σ([x, y]), because
the map

g ⊕ω z → ĝ, (x, z) �→ σ(x)+ z

is an isomorphism of topological Lie algebras. As two Lie algebra cocycles define
equivalent central extensions if and only if they differ by a coboundary, we obtain an
identification of the set of equivalence class of all central z-extensions of g (with a
continuous linear section) with the vector space H 2

c (g, z). ��
Definition V.2. (a) Central extensions of Lie groups are always assumed to have a
smooth local section. Let Z ↪→ Ĝ →→ G be a central extension of the connected Lie
groupG by the abelian Lie group Z. We assume that the identity component Ze of Z
can be written as Ze = z/π1(Z), where the Lie algebra z of Z is a s.c.l.c. space. The
group (z,+) can be identified in a natural way with the universal covering group ofZe,
andZe is a quotient of zmodulo a discrete subgroup which can be identified withπ1(Z).
Since the quotient map q : Ĝ → G has a smooth local section, the corresponding Lie
algebra homomorphism ĝ → g has a continuous linear section σ : g → ĝ, hence can
be described by a continuous Lie algebra cocycle (Definition V.1).

(b) If G is a group and Z an abelian group, then we define the group

Z2(G,Z) := {f : G×G → Z : (∀x, y, z ∈ G)
f (1, x) = f (x, 1) = 1, f (x, y)f (xy, z) = f (x, yz)f (y, z)}
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of Z-valued 2-cocycles and the subgroup

B2(G,Z) := {f : G×G → Z : (∃h : G → Z) h(1) = 1,

(∀x, y ∈ G)f (x, y) = h(xy)h(x)−1h(y)−1}
of Z-valued 2-coboundaries. In both cases the group structure is given by pointwise
multiplication.

IfG and Z are Lie groups, we write Z2
s (G,Z) for the subgroup of Z2(G,Z) con-

sisting of those cocyclesf which are smooth in a neighborhood of (e, e), andB2
s (G,Z)

for the subgroup of all functions of the form (g, g′) �→ h(gg′)h(g)−1h(g′)−1, where
h : G → Z is smooth in an identity neighborhood. We recall from [Ne02a, Prop. 4.2]
that central Lie group extensions as above can always be written as

Ĝ ∼= G×f Z with (g, z)(g′, z′) = (
gg′, zz′f (g, g′)

)
,

for some f ∈ Z2
s (G,Z). Two cocycles f1, f2 define equivalent Lie group extensions

if and only if f1 · f−1
2 ∈ B2

s (G,Z) (for f−1
2 (x, y) := f2(x, y)

−1), and the quotient
group H 2

s (G,Z) := Z2
s (G,Z)/B

2
s (G,Z) parametrizes the equivalence classes of

central Z-extensions of G with smooth local sections ([Ne02a, Remark 4.4]). There
is a natural map H 2

s (G,Z) → H 2
c (g, z) induced by the map

D : Z2
s (G,Z) → Z2

c (g, z),

D(f )(x, y) = d2f (e, e)((x, 0), (0, y))− d2f (e, e)((y, 0), (x, 0))
(5.1)

([Ne02a, Lemma 4.6]), where d2f (e, e) is well-defined because df (e, e) vanishes,
which follows from f (g, e) = f (e, g) = 1. For more details on central extensions of
Lie groups we refer to [Ne02a]. ��
Definition V.3. If z is a s.c.l.c. space, G a Lie group, and � ∈ �2(G, z) a closed
z-valued 2-form, then we obtain with [Ne02a, Lemma 5.7] a group homomorphism

per� : π2(G) → z

called the period map. It is given on smooth representatives σ : S
2 → G of classes in

π2(G) by the integral

per�([σ ]) =
∫

S2
σ ∗� =

∫
σ

�.

We recall that each homotopy class contains smooth representatives. Here we use
the sequential completeness of z to ensure that the integrals, which can be obtained
as limits of Riemann sums, do exist. If � is exact, then the period map is trivial by
Stoke’s Theorem. The image �� := per�(π2(G)) is called the period group of �.

��
Definition V.4. Let G be a connected Lie group with Lie algebra g and ω ∈ Z2

c (g, z)
a continuous Lie algebra cocycle with values in the s.c.l.c. space z. Let � ⊆ z be a
discrete subgroup and Z := z/� the corresponding quotient Lie group. Further let
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� be the corresponding left invariant closed z-valued 2-form on G. Then we define a
homomorphism

P : H 2
c (g, z) → Hom(π2(G), Z)× Hom(π1(G),Lin(g, z))

as follows. For the first component we take

P1([ω]) := qZ � perω,

where qZ : z → Z is the quotient map and perω := per� : π2(G) → z is the period
map of ω. To define the second component, for each X ∈ g we write Xr for the
corresponding right invariant vector field on G. Then iXr� is a closed z-valued 1-
form ([Ne02a, Lemma 3.11]) to which we associate a homomorphism π1(G) → z
via

P2([ω])([γ ])(X) :=
∫
γ

iXr�.

We refer to [Ne02a, Sect. 7] for arguments showing that P is well-defined, i.e., that
the right hand sides only depend on the Lie algebra cohomology class of ω. ��

The following theorem completely describes the obstructions for a Lie algebra
cocycle to integrate to a central Lie group extension. It is the main result of [Ne02a].

Theorem V.5. Let ω ∈ Z2
c (g, z) be a continuous Lie algebra cocycle. Then the

central Lie algebra extension z ↪→ ĝ := g⊕ω z →→ g integrates to a central Lie group
extension Z ↪→ Ĝ →→ G if and only if P([ω]) = 0.

Proof. [Ne02a, Th. 7.12]. ��

Applications to current groups

Now we turn to central extensions of the two classes of current Lie groups given as
the identity components of C∞

c (M;K) and C∞(M, S;K). The methods developed
in this paper are well suited for the study of Lie algebra cocycles of product type
introduced below. Here the main problem is to decide for a given cocycle if its period
group is discrete (cf. Theorem V.5).

Definition V.6. Let k be a locally convex topological Lie algebra, M a manifold
and g := C∞(M; k). We consider a continuous invariant symmetric bilinear map
κ : k × k → Y , where Y is a s.c.l.c. space. We then obtain a continuous zM(Y )-valued
cocycle on g by

ωM(ξ, η) := ωM,κ(ξ, η) := [κ(ξ, dη)] ∈ zM(Y ),

where we view κ(ξ, dη) as the element of �1(M;Y ) whose value in a tangent vector
v ∈ Tp(M) is given by κ(ξ(p), dη(p)(v)).
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(a) On C∞(M, S; k) we obtain by restriction a continuous z(M,S)(Y )-valued Lie
algebra cocycle ω(M,S). For a compact manifold M the group C∞(M, S;K) has a
natural Lie group structure (Definition I.6), so that we can define the period map

perω(M,S) : π2(C
∞(M, S;K)) → z(M,S)(Y )

corresponding to the left invariant 2-form �(M,S) on C∞(M, S;K) with �(M,S),e =
ω(M,S). We write �(M,S) for the corresponding period group.

(b) If ξ and η have compact support, then the same holds for κ(ξ, η), so that we
also obtain a Lie algebra cocycle

ωM ∈ Z2
c (C

∞
c (M; k), zM,c(Y )), zM,c(Y ) := �1

c(M;Y )/dC∞
c (M;Y ).

The continuity of this cocycle follows from the continuity of the map

C∞
c (M; k)×�1

c(M; k) → �1
c(M;Y ), (f, ξ) �→ κ(f, ξ),

which in turn follows from [Gl01d, Th. 4.7] because it can be interpreted as a map
on the level of compactly supported sections of vector bundles induced by the bundle
map determined by the continuous map

k × Lin(Tp(M); k) → Lin(Tp(M);Y ), (x, β) �→ κ(x, β(·))
on the fiber in p ∈ M .

(c) For any Lie group K we define V (k) as follows. We first endow k ⊗ k with the
projective tensor product topology and define V (k) as the completion of the quotient
of V (k) by the closure of the subspace spanned by all elements of the form

x ⊗ y − y ⊗ x and [x, y] ⊗ z+ y ⊗ [x, z], x, y, z ∈ k.

If [z] denotes the image of z ∈ k⊗ k in V (k), we obtain a continuous invariant bilinear
map

κ : k × k → V (k), κ(x, y) := [x ⊗ y]
which leads to the cocycle ω = ωS1,κ ∈ Z2

c (g, V (k)) on g := C∞(S1; k) given by
ω(ξ, η) := [κ(ξ, dη)]. As π2(C

∞(S1;K)) ∼= π3(K) (Corollary A.15), the period
map perω yields a homomorphism

perK : π3(K) → V (k). ��
Proposition V.7. Let g := C∞

c (M; k) and κ : k × k → Y be a continuous invariant
symmetric bilinear form. Then we obtain for the cocycle ω(ξ, η) := [κ(ξ, dη)] an
automorphic action of the group C∞(M,K) on ĝ := g ⊕ω zM(Y ) by

f.(ξ, z) := (Ad(f ).ξ, z− [κ(δl(f ), ξ)]). (5.2)

The corresponding derived action is given by

η.(ξ, z) = [(η, 0), (ξ, z)] = ([η, ξ ], ω(η, ξ)). (5.3)
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Proof. The arguments can be taken over from [MN02, Prop. III.3]. Here we only have
to add Lemma II.2 to see that δl is smooth. ��
Theorem V.8. Let K be a connected Lie group, M a connected manifold, G :=
C∞
c (M,K)e and ωM,κ ∈ Z2

c (g, zM(Y )) as above. Suppose that the period group
�M,κ ⊆ zM(Y ) is discrete. For Z := zM(Y )/�ωM,κ we then obtain a central Lie

group extension Z ↪→ Ĝ →→ G corresponding to the cocycle ωM,κ .

Proof. In view of Theorem V.5, we only have to see that P2([ωM,κ ]) = 0. According
to [Ne02a, Prop. 7.6], this is equivalent to the existence of a smooth linear action of
G on ĝ whose derived action is given by η.(ξ, z) = ([η, ξ ], ω(η, ξ)). Proposition V.7
implies that such a representation exists. ��

For the following theorem we recall that we can use the continuous bilinear form
κ : k × k → Y to define a wedge product

∧κ : �1(M; k)×�1(M; k) → �2(M;Y )
by

(α ∧κ β)(v,w) := κ(αp(v), βp(w))− κ(βp(v), αp(w)), v,w ∈ Tp(M).
The following theorem describes a situation where we have a global smooth group

cocycle associated to the cocycle obtained by composing a cocycle of product type with
the de Rham differential zM,c(Y ) → �2

c(M;Y ). The reason behind the existence of the
global cocycle lies in the fact that all periods of ωM,κ lie in the kernelH 1

dR,c(M;Y ) of
d (see [Ne02a, Section 8] for more details on the existence of global smooth cocycles).

Theorem V.9. Let G+ := C∞
c (M,K). Then the map

h : G+ ×G+ → �2
c(M;Y ), h(f, g) := δl(f ) ∧κ δr (g)

defines a smooth�2
c(M;Y )-valued group 2-cocycle onG+, so that we obtain a central

Lie group extension Ĝ+ := G+×h�
2
c(M;Y ). The corresponding Lie algebra cocycle

Dh from (5.1) is given by

Dh(ξ, η) = 2dξ ∧κ dη for ξ, η ∈ C∞
c (M; k).

The map γ : zM,c(Y ) → �2
c(M;Y ), [β] �→ 2dβ satisfies γ �ωM,κ = Dh and induces

a Lie algebra homomorphism

γg : ĝ = g ⊕ωM,κ zM,c(Y ) → ĝ+ := g ⊕Dh �
2
c(M;Y ), (X, [β]) �→ (X, 2dβ).

This homomorphism is G+-equivariant with respect to the action on ĝ+ induced by
the adjoint action of Ĝ+, which is given by

Adĝ+(g).(ξ, z) = (
Ad(g).ξ, z− d(κ(δl(g), ξ))

)
.
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Proof. This follows with the same arguments as in the proof of [MN02, Th. III.9]. For
non-compact manifolds we have to use Lemma II.2 for the smoothness of the maps
δl, δr : C∞

c (M,K) → �1
c(M; k). ��

Period maps for C∞(M, S; K)

Now we turn to the period groups�(M,S) for the Lie algebra cocyclesω(M,S) associated
to the Lie algebras C∞(M, S; k), where M is compact and S ⊆ M a closed subset.

Lemma V.10. For each α ∈ C∞((I, ∂I ), (M, S)) let

αK : C∞(M, S;K) → C∞(I, ∂I ;K)
denote the corresponding group homomorphism. Then

perω(I,∂I ) �π2(αK) = Iα � perω(M,S) .

Proof. First we recall from Lemma A.16 that the map αK is a Lie group homomor-
phism. Let G := C∞(M, S;K)e and �(M,S) ∈ �2(G, z(M,S)(Y )) denote the left
invariant 2-form corresponding to ω(M,S). Then Iα ��(M,S) is a Y -valued left invari-
ant 2-form onG whose value in 1 is Iα � ω(M,S). Further α∗

K�(I,∂I) is a left invariant
2-form on G whose value in 1 is given by

(ξ, η) �→ ω(I,∂I)(ξ � α, η � α) = [κ(ξ � α, d(η � α))]
= [κ(α∗ξ, α∗(dη))] =

∫
I

κ(α∗ξ, α∗(dη)) =
∫
α

κ(ξ, dη) = Iα
(
ω(M,S)(ξ, η)

)
.

This implies

α∗
K�(I,∂I) = Iα ��(M,S)

for each α ∈ C∞((I, ∂I ), (M, S)), and hence the assertion. ��
Lemma V.11. If we identify zS1(Y ), z(I,∂I )(Y ), and zR,c(Y ) with Y via the integration
maps from Lemma II.8, then

�S1 = �(I,∂I) = �R.

Proof. According to Corollary A.15, the natural inclusion

C∞((I, ∂I );K) ↪→ C∞∗ (S1;K)
induced from the canonical map α ∈ C∞((I, ∂I ), (S1, ∗)) is a weak homotopy equi-
valence. Therefore π2(αK) is an isomorphism, and Lemma V.10, applied to (M, S) =
(S1, 1), implies that

�(I,∂I) = Iα ��S1 ∼= �S1

because the map Iα : zS1(Y ) → Y is the integration isomorphism which we ignore by
identifying �S1 and �(I,∂I) as subsets of Y .
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To obtain�R = �(I,∂I), we first use TheoremA.13 and a diffeomorphismα : R →
I \ ∂I to see that the natural embedding

φK : C∞
c (R;K) → C∞

c (I \ ∂I ;K) ↪→ C∞(I, ∂I ;K)
is a weak homotopy equivalence. Moreover, L(φK)∗ω(I,∂I) =ωR, so thatφ∗

K�(I,∂I) =
�R, and by integration over R we obtain �(I,∂I) = �R. ��
Proposition V.12. For each κ the period group�(M,S) is contained inH 1

dR(M, S;Y ),
and we have

H 1
dR(M, S; Z) ·�S1 ⊆ �(M,S) ⊆ H 1

dR(M, S;�S1).

If �S1 is discrete, then

�(M,S) = H 1
dR(M, S;�S1) = H 1

dR(M, S; Z) ·�S1 .

Proof. In the situation of Lemma V.10, the homomorphism π2(αK) only depends
on the homotopy class of α (Lemma A.16). Therefore Lemma V.10 implies that the
restriction of Iα to�(M,S) depends only on the homotopy class of α, hence�(M,S) ⊆
H 1

dR(M, S;Y ) by Lemma II.10. From Lemmas V.10 and V.11 we further get

�(M,S) ⊆ H 1
dR(M, S;�(I,∂I)) = H 1

dR(M, S;�S1).

To prove the inclusion

H 1
dR(M, S; Z) ·�S1 ⊆ �(M,S),

let [ζ ] ∈ H 1
dR(M, S; Z). Then Lemma II.3 implies the existence of f ∈ C∞(M, S; T)

with δ(f ) = ζ . Let 0 ∈ T ∼= R/Z denote the identity element in T. The mapf induces
a smooth group homomorphism

fK : C∞(I, ∂I ;K) → C∞(M, S;K), φ �→ φ � f
(Lemma A.16). We now get from Lemma V.10 for each α ∈ C∞((I, ∂I ), (M, S)) the
relation

Iα � perω(M,S) �π2(fK) = perω(I,∂I ) �π2(αK) � π2(fK) = perω(I,∂I ) �π2((f � α)K),
where f � α is viewed as a map in C∞((I, ∂I ), (T, {0})). This map factors through a
smooth map I/∂I ∼= T → T, and π2((f �α)K) is the multiplication with the winding
number deg(f � α) of this map ([MN02, Lemma I.10]). For each

[σ ] ∈ π2(C
∞(T, {0};K)) ∼= π2(C

∞∗ (S1;K))
we then have

Iα(perω(M,S) (π2(fK)[σ ])) = deg(f � α) perω(I,∂I ) ([σ ]) = Iα(ζ ) · perω(I,∂I ) ([σ ]).
Since the Iα separate points on H 1

dR(M, S;Y ), it follows that

perω(M,S) (π2(fK)[σ ]) = [ζ ] · perω(I,∂I ) ([σ ]),
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and hence that

H 1
dR(M, S; Z) ·�S1 = H 1

dR(M, S; Z) ·�(I,∂I) ⊆ �(M,S).

If�S1 is discrete, then we apply Proposition IV.23 to obtain the asserted equalities.
��

Corollary V.13. If �S1 is discrete, then �(M,S) is discrete for each pair (M, S).

Proof. Proposition V.12 implies that �(M,S) ⊆ H 1
dR(M, S;�S1), and the latter group

is discrete by Theorem II.7. ��
Remark V.14. In view of the preceding corollary, everything reduces to the study of
the period map

perω
S1

: π3(K) ∼= π2(C
∞(S1;K)) → Y.

It is not necessary to know π2(G) explicitly. ��
Proposition V.15. Suppose that Y = R and � = Z, so that T� = T. We further
assume that k is compact and simple and that κ in normalized in such a way that
κ(iα̌, iα̌) = −2, where α̌ ∈ kC is a coroot corresponding to a long root. For G =
C∞(M, S;K)e we then have

�(M,S) = H 1
dR(M, S; Z).

Proof. We first recall from the calculations in Appendix IIa to Section II in [Ne01a]
that under the present assumptions we have �(I,∂I) = �S1 = Z (see also [MN02,
Th. II.9]). Therefore Proposition V.12 directly leads to

H 1
dR(M, S; Z) ·�S1 = Z ·H 1

dR(M, S; Z)

= H 1
dR(M, S; Z) ⊆ �(M,S)

⊆ H 1
dR(M, S;�S1) = H 1

dR(M, S; Z). ��

Applying Proposition V.15 to the group C∞(M, S;K) from Example II.12, we
obtain a cocycle on the Lie algebra of a Fréchet–Lie group for which the period group
�(M,S) is discrete but not finitely generated.

Period maps for C∞
c (M; K)

Let M be a connected non-compact manifold and Y a s.c.l.c. space. For a proper
smooth map α : R → M and ζ ∈ Z1

dR,c(M;Y ) the integral

Iα(ζ ) :=
∫
α

ζ :=
∫

R

α∗ζ
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is defined because α∗ζ has compact support. We thus obtain a linear map

Iα : Z1
dR,c(M;Y ) → Y

which is easily seen to be continuous.

Lemma V.16. For each α ∈ C∞
p (R,M) let

αK : C∞
c (M;K) → C∞

c (R;K), f �→ f � α
denote the corresponding Lie group homomorphism. Then

perωR
�π2(αK) = Iα � perωM . (5.4)

Proof. From Lemma A.12 we recall that αK is a Lie group homomorphism. The
remaining argument can be copied from Lemma V.10. ��
Proposition V.17. For each non-compact manifold M and each κ we have

�M = H 1
dR,c(M;�R).

Proof. In the situation of LemmaV.16, the homomorphismπ2(αK)only depends on the
homotopy class ofα (LemmaA.16). Therefore LemmaV.10 implies that the restriction
of Iα to�M depends only on the homotopy class of α, hence�M ⊆ H 1

dR,c(M;Y ) by

Lemma II.10. From Lemma V.16 we further get �M ⊆ H 1
dR,c(M;�R).

To prove the converse inclusionH 1
dR,c(M;�R) ⊆ �M,we first recall from Corol-

lary IV.22 that

H 1
dR,c(M,�R) = H 1

dR,c(M; Z) ·�R.

It therefore suffices to prove H 1
dR,c(M; Z) ·�R ⊆ �M . Let [ζ ] ∈ H 1

dR(M; Z). Then
Proposition IV.20 implies the existence of f ∈ C∞

c (M,T) with δ(f ) = ζ . Let
0 = Z ∈ T ∼= R/Z denote the identity element in T. The map f induces a smooth
group homomorphism

fK : C∞
c (T;K) → C∞

c (M;K), f �→ f � φ
(Lemma A.12). In view of Lemma V.16, we have for each α ∈ C∞

p (R,M)

Iα � perωM �π2(fK) = perωR
�π2(αK) � π2(fK) = perωR

�π2((f � α)K),
where f �α is viewed as a map in C∞

c (R,T). Viewing R as T \ {0}, this map extends
to a smooth map T → T, and π2((f � α)K) is the multiplication with the winding
number

deg(f � α) =
∫
α

ζ

of this map ([MN02, Lemma I.10]). For each [σ ] ∈ π2(C
∞
c (R;K)) we then have

Iα(perωM (π2(fK)[σ ])) = deg(f � α) perωR
([σ ]) = Iα(ζ ) perωR

([σ ]).
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Since the Iα separate points on H 1
dR,c(M;Y ) (here we need that M is non-compact),

it follows that

perωM (π2(fK)[σ ]) = [ζ ] · perωR
([σ ])

and hence that H 1
dR,c(M; Z) ·�R ⊆ �M. ��

Corollary V.18. If �R is discrete, then �M is discrete for each non-compact con-
nected manifold M . ��

For the following proposition we recall the space V (k) from Definition V.7.

Proposition V.19. If dimK < ∞, and κ : k × k → V (k) is the universal symmetric
invariant bilinear map, then there exists for Z := V (k)/�M,κ a central Lie group
extension

Z ↪→ Ĝ →→ G = C∞
c (M,K)e.

Proof. In view of [MN02, Th. II.9], the period group �S1,κ = �R,κ is discrete
(cf. Lemma V.11), and Corollary V.18 now shows that �M is discrete. Therefore
Theorem V.5 applies. ��
Remark V.20. The main idea behind our identification of the period group for current
groups is as follows. Let M be a compact manifold, xM ∈ M , and

G := C∞∗ (M;K) := {f ∈ C∞(M;K) : f (xM) = e}.
The evaluation map

ev : G×M → K, (f, p) �→ f (p)

induces maps

φk,l : πk(G)× πl(M) → πk+l (K)

as follows. We view πk(M) as the set of arc-components in the space

C((In, ∂In), (M, xM))

of continuous maps of pairs, where I is the unit interval. Then φk,l([f ], [h]) is the
class defined by the map

I k+l → K, (x, y) �→ f (x)(h(y)),

vanishing on the boundary

∂I k+l = (∂I k × I l) ∪ (I k × ∂I l).

In particular we obtain a map

φ2,1 : π2(G)× π1(M) → π3(K),
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and our analysis of the period map is based on the commutative diagram

π2(G) × π1(M) → π3(K)�perωM

�id

�per
S1

H 1
dR(M;Y ) × π1(M) → H 1

dR(S
1;Y ) ∼= Y

The effectiveness of this picture comes from the fact that the natural pairing

H 1
dR(M;Y )× π1(M) → Y

defined by integration over loops is non-degenerate in the sense that the integrals
separate points in H 1

dR(M;Y ).
The arguments for non-compact manifolds essentially follow the same line, where

we have to take smooth proper curves instead of loops. ��

VI Universal central extensions of current groups

For the special class of finite-dimensional semisimple Lie groupsK , each Lie algebra
cocycle ω ∈ Z2

c (C
∞
c (M, k), z) is equivalent to a cocycle of product type ([Ma02]).

This observation permits us to construct a universal central extension of the Lie al-
gebra g := C∞

c (M; k). In the present section we show that this construction can be
globalized in the sense that we construct a universal central extension of the connected
Lie group C∞

c (M;K)e.

First cyclic homology of function spaces

Definition VI.1. Let E, F and G be locally convex spaces over K ∈ {R,C}. Then
the projective topology on the tensor product E ⊗ F is defined by the seminorms

(p ⊗ q)(x) = inf
{ n∑
j=1

p(yj )q(zj ) : x =
∑
j

yj ⊗ zj

}
,

where p, resp., q is a continuous seminorm on E, resp., F (cf. [Tr67, Prop. 43.4]).
We write E⊗π F for the locally convex space obtained by endowing E⊗F with the
locally convex topology defined by this family of seminorms. It is called the projective
tensor product of E and F . It has the universal property that the continuous bilinear
mapsE × F → G are in one-to-one correspondence with the continuous linear maps
E ⊗π F → G (here we need that G is locally convex). We write E⊗̂πF for the
completion of the projective tensor product of E and F . ��
Definition VI.2. LetAbe a unital locally convex topological algebra over K ∈ {R,C}.

(a) We recall that the first Hochschild homology space HH1(A) is defined as

HH1(A) := Z1(A)/B1(A),
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where

Z1(A) := ker bA ⊆ A⊗ A, bA(a ⊗ b) = [a, b] = ab − ba

and

B1(A) := span{xy ⊗ z− x ⊗ yz+ zx ⊗ y : x, y, z ∈ A}.
Here we endow A⊗ A with the projective tensor product topology.

Suppose that A is commutative. Then Z1(A) = A ⊗ A. Let M be a continuous
A-module, i.e., M is a locally convex space with an A-module structure given by a
continuous bilinear map A × M → M . For a linear map D : A → M the bilinear
map

A⊗ A → M, x ⊗ y �→ x.Dy

annihilates B1(A) if and only if D is a derivation. Hence HH1(A) has the universal
property of the universal differential module �1(A) with respect to the differential

d : A → HH1(A), a �→ [1 ⊗ a].
This means that for each continuous derivation D : A → M there exists a unique
continuous linear map φ : HH1(A) → M with D = φ � d (cf. [Ma02]). Therefore
HH1(A) is isomorphic to the topological module �1(A) of Kähler differentials on A
([Lo98, Prop. 1.1.10]).

(b) The first cyclic homology space of A can be obtained as the quotient

HC1(A) := Zλ1 (A)/B
λ
1 (A),

where

Zλ1 := ker bA ⊆ �2(A), bA(a ∧ b) := [a, b],
and

Bλ1 (A) := span{xy ∧ z− x ∧ yz+ zx ∧ y : x, y, z ∈ A}
(cf. [Lo98, Th. 2.15]).

IfA is commutative, then a⊗b+b⊗a−1⊗ab ∈ B1(A) implies that the universal
differential d : A → HH1(A) satisfies

im(d) = [1 ⊗ A] ∼= 1 ⊗ A+ B1(A) = {a ⊗ b + b ⊗ a : a, b ∈ A} + B1(A).

Hence

HH1(A)/im d ∼= �2(A)/Bλ1 (A)
∼= HC1(A)

(cf. [Lo98, Prop. 2.1.14]). ��
Let M be a finite-dimensional manifold and A := C∞

c (M; K). According to
[Gl01c], the multiplication on C∞

c (M; K) is a continuous bilinear map, so that A
is a locally convex topological algebra. This is not obvious because the topology
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on C∞
c (M; K) is the locally convex direct limit topology which differs from the

direct limit topology with respect to the subspaces C∞
Xn
(M; K), where (Xn)n∈N is an

exhaustive sequence of compact submanifolds with boundary inM . Hence there is no
a priori reason for a bilinear map on C∞

c (M; K) to be continuous if all the restrictions
to the subspaces C∞

Xn
(M; K) are continuous.

Let A+ := K1 + A ⊆ C∞(M; K). In this section we will show that, as locally
convex spaces, we have

HH1(A) := HH1(A+) ∼= �1
c(M; K)

and

HC1(A) ∼= �1
c(M; K)/dA = zM,c(K).

Theorem VI.3 (Glöckner’s Theorem). �1
c(M; K) is a continuous module of

C∞
c (M; K).

Proof. This follows from [Gl01d, Th. 5.1] because the module structure is induced by
the bundle map given in a point p ∈ M by the scalar multiplication K × Tp(M)

∗ →
Tp(M)

∗. ��
Theorem VI.4. HH1(C

∞
c (M; K)) ∼= �1

c(M; K).

Proof (cf. [Ma02, Th. 11]). We will show that the continuous derivation d : A =
C∞
c (M K) → �1

c(M; K) has the universal property of the universal differential
module of A. From this the assertion follows, as HH1(A) can be viewed as the
universal differential module of A (Definition VI.2).

We consider the map

τ : C∞(M ×M; K) → �1(M; K), τ (F )(x)(v) := dF(x, x)(0, v).

Via the natural embedding

A+ ⊗ A+ → C∞(M ×M,K), (f, g) �→ ((x, y) �→ f (x)g(y)),

we view A+ ⊗A+ (the algebraic tensor product) as a subalgebra of C∞(M ×M,K).
This embedding is topological on the subspaces of the form

C∞
X (M; K)⊗π C

∞
X (M; K)

for compact subsets X ⊆ M ([Gr55, Ch. 2, p.81]). Let

I := {F ∈ A+ ⊗ A+ : (∀x ∈ M)F(x, x) = 0}.
This is an ideal ofA+⊗A+ which can also be viewed as the kernel of the multiplication
map µ : A+ ⊗A+ → A+. Note that τ(f ⊗ g) = f · dg ∈ �1

c(M; K) for f, g ∈ A+.
(1) Let (φj )j∈J be a locally finite partition of unity inA for which supp(φj ) is contained
in a coordinate neighborhood Uj ⊆ M with Uj diffeomorphic to R

d , d := dimM .
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With this partition of unity we write each α ∈ �1
c(M; K) as

α =
∑
j

φjα,

where the sum is finite because only finitely many of the supports of the functions
φj intersect the support of α. As Uj ∼= R

d and supp(φj ) is a compact subset of Uj ,

there exist functions yj1, . . . , y
j
d ∈ A such that on supp(φj ) the differentials dyji ,

i = 1, . . . , d, are linearly independent. Then we write

φjα =
d∑
i=1

α
j
i dy

j
i

with αji ∈ A.
(2) τ(A⊗ A) = τ(A+ ⊗ A+) = �1

c(M; K): This follows from

α =
∑
j

∑
i

α
j
i dy

j
i =

∑
j,i

τ (α
j
i ⊗ y

j
i ).

(3) As µ(A+ ⊗ 1) = A+ and τ(A+ ⊗ 1) = 0, we have τ(I ) = τ(A+ ⊗ A+) =
�1
c(M; K) by (2). Let N := ker(τ |I ). We claim that N = I 2. The inclusion I 2 ⊆ N

follows directly from

τ(FG) = Fτ(G)+ τ(F )G, (6.1)

which also shows that N is an ideal of A+ ⊗A+. As τ is continuous and I is closed,
we also obtain I 2 ⊆ N . Now let F ∈ N . Since F can be written as a finite sum

F =
∑
i,j

(φi ⊗ φj )F,

where each summand is contained in the idealN , it suffices to assume that supp(F ) ⊆
Ui × Uj ∼= R

2d for some pair (i, j) ∈ J 2. Then we have

F(x, y) =
d∑
l=1

(xl − yl)Fl(x, y)

with

Fl(x, y) := 1

2

∫ 1

0

∂F

∂xl
(tx + (1 − t)y, y)− ∂F

∂yl
(x, tx + (1 − t)y) dt,

and it is easy to see that the supports of the functions Fl are compact. From

τ(F )(x) = −
d∑
l=1

Fl(x, x)dxl
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we derive that the functions Fl vanish on the diagonal in R
d × R

d , so that Lemma 5
in [Ma02] implies that Fl ∈ C∞

c (M × M,K) is contained in the closure I of the
ideal I ⊆ A+ ⊗ A+. Let C ⊆ R

d be a compact subset such that C0 × C0 contains
the support of all the functions Fl . We replace the coordinate functions xj on R

d by
functions xj ∈ C∞

c (R
d; K) with supp(xj ) ⊆ C and obtain

F(x, y) =
d∑
l=1

(xl − yl)Fl(x, y) ∈ I · I ⊆ I 2,

where the closure is taken in

C∞
C×C(R2d ,K) ∼= C∞

C (R
d , C∞

C (R
d ,K)) ∼= C∞

C (R
d; K)⊗̂πC

∞
C (R

d ,K)

(cf. [Gr55, Ch. 2, p.81]).
(4) The derivation d : A → �1

c(M; K) has the universal property of the univer-
sal topological differential module �1(A): Let E be a topological A-module and
dE : A → E a continuous derivation. We will complete the proof by showing that
there exists a continuous linear map � : �1

c(M; K) → E with �(f dg) = f dE(g).

We have seen above that ker(τ |I ) = I 2 ∩ N = I 2 with respect to the relative
topology, so that τ |I leads to a continuous bijective linear map I/I 2 ∼= �1(A) →
�1
c(M; K). Therefore the natural map

A+ ⊗ A+ ⊇ I → E, f ⊗ g �→ f dE(g)

yields a linear map

� : �1
c(M; K) → E with �(f dg) = �(τ(f ⊗ g)) = f dE(g).

Hence it only remains to show that � is continuous when viewed as a linear map on
�1
c(M; K). As the topology on �1

c(M; K) is the locally convex direct limit topology
with respect to the subspaces �1

X(M; K), X ⊆ M compact, it suffices to verify that
the restrictions � |�1

X(M;K) are continuous.

The set JX := {j ∈ J : supp(φj ) ∩X = ∅} is finite, and for each α ∈ �1
X(M; K)

we have

α =
∑
j∈JX

φjα =
∑
j∈JX

∑
i

α
j
i dy

j
i .

Now

�(α) =
∑
j∈JX

�(φjα) =
∑
j∈JX

∑
i

α
j
i dE(y

j
i )

because the sum is finite. The functions yji do not depend on α, and the multiplication
with φj is a continuous endomorphism of �1

c(M; K). Therefore the maps

�1
c(M; K) → A, α �→ α

j
i
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are continuous. Now the continuity of the module structure on E implies that � is
continuous. ��
Corollary VI.5. For A = C∞

c (M; K) and K ∈ {R,C} we have

HC1(A) ∼= HH1(A)/dA ∼= �1
c(M; K)/dC∞

c (M; K). ��

Universal central extensions

In this subsection we turn to the question whether for a finite-dimensional semisimple
Lie groupK the central extension of C∞

c (M,K)e from Proposition V.19 is universal.
This question will be answered affirmatively if k is finite-dimensional and semisimple.
First we recall some concepts and a result from [Ne01c] on weakly universal central
extensions of Lie groups and Lie algebras.

Definition VI.6 (cf. [Ne01c]). Let g be a topological Lie algebra over K ∈ {R,C}
and a be a topological vector space considered as a trivial g-module. We call a central
extension q : ĝ = g ⊕ω z → g with z = ker q (or simply the Lie algebra ĝ) weakly
universal for a if the corresponding map δa : Lin(z, a) → H 2

c (g, a), γ �→ [γ � ω] is
bijective.

We call q : ĝ → g universal for a if for every central extension q1 : ĝ1 → g of g
by a with a continuous linear section there exists a unique homomorphism φ : ĝ → ĝ1
with q1 �φ = q. Note that this universal property immediately implies that two central
extensions ĝ1 and ĝ2 of g by a1 and a2 such that both ĝ1 and ĝ2 are universal for a1
and a2 are isomorphic. A central extension is said to be (weakly) universal if it is
(weakly) universal for all locally convex spaces a. ��
Definition VI.7. We call a central extension Ĝ = G×f Z of the connected Lie group
G by the abelian Lie groupZ given by f ∈ Z2

s (G,Z)weakly universal for the abelian
Lie group A if the map

δA : Hom(Z,A) → H 2
s (G,A), γ �→ [γ � f ]

is bijective. It is called universal for the abelian Lie group A if for every central
extension

q1 : G×φ A → G, φ ∈ Z2
s (G,A),

there exists a unique Lie group homomorphismψ : G×f Z → G×φAwith q1�ψ = q

(cf. Definition V.1). A central extensional is said to be (weakly) universal if it is
(weakly) universal for all Lie groups A with Ae ∼= a/π1(A) and a s.c.l.c. ��
Definition VI.8. If g is a locally convex Lie algebra, then we write H1(g) for the
completion of the quotient space g/[g, g]. If g is a Fréchet space, then g/[g, g] is also
Fréchet, and no completion is necessary.

If G is a connected Lie group with Lie algebra g and G̃ its universal covering
group, then we have a natural homomorphism dG : G̃ → H1(g). Its kernel is denoted
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by (G̃, G̃). If G is finite-dimensional, then (G̃, G̃) is the commutator group of G̃.
��

Theorem VI.9. (Recognition Theorem) Assume that q : Ĝ → G is a central Z-
extension of Lie groups over K ∈ {R,C} for which

(1) the corresponding Lie algebra extension ĝ → g is weakly K-universal,

(2) Ĝ is simply connected, and

(3) π1(G) ⊆ (G̃, G̃).

If ĝ is weakly universal for a s.c.l.c. space a, then Ĝ is weakly universal for each
abelian Lie group A with Ae ∼= a/π1(A).

Proof. The original statement of this theorem in [Ne01c, Th. IV.13] is formulated only
for Fréchet–Lie groups, but one easily verifies that the proof yields the more general
result stated above. ��
Theorem VI.10. Let K be a finite-dimensional semisimple Lie group and G :=
C∞
c (M,K)e. Further let z := zM,c(V (k)) and ω = ωM,κ ∈ Z2

c (g, z) be a cocy-
cle of product type given by ω(η, ξ) = [κ(η, dξ)]. Then the corresponding central
Lie algebra extension ĝ := g ⊕ω z is universal, and there exists a corresponding
central Lie group extension Z ↪→ Ĝ →→ G with Z ∼= π1(G) × (z/�M) which is
universal for all Lie groups A with Ae ∼= a/�, where a is a s.c.l.c. space and � ⊆ a
a discrete subgroup.

Proof. First we show that ĝ is perfect. In fact, for x, y ∈ k and f, g ∈ C∞(M; K) we
have in ĝ the relation

[f ⊗ x, g ⊗ y] − [g ⊗ x, f ⊗ y] = (
fg ⊗ [x, y] − gf ⊗ [x, y], 2[f dg] · κ(x, y))

= (
0, 2[f dg] · κ(x, y)).

Since V (k) is spanned by im(κ), the fact that zM,c(K) is spanned by elements of the
form [f · dg] implies that ĝ is perfect.

Since ĝ is perfect, for each locally convex space a the natural map

δ : Lin(z, a) → H 2
c (g, a), γ �→ [γ � ω]

is injective ([Ne01c, Rem. I.6]). It has been shown in [Ma02, Thm. 16] that δ is also
surjective, so that ĝ is weakly universal for all locally convex spaces a. Since ĝ is
perfect, it even is a universal central extension of g ([Ne01c, Lemma I.12]).

Furthermore, the period map perω : π2(G) → z has discrete image �ω (Propo-
sition V.19). In view of Theorem V.8, Theorem V.5 now implies the existence of a
central Lie group extensionZ ↪→ Ĝ →→ GwithZ ∼= (z/�ω)×π1(G) corresponding
to the Lie algebra extension z ↪→ ĝ → g and such that the connecting homomorphism
π1(G) → π0(Z) is an isomorphism.

To prove the universality of Ĝ, we use the Recognition Theorem VI.9. For that we
have to verify that
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(1) ĝ is weakly universal,

(2) π1(Ĝ) = 1,

(3) π1(G) ⊆ (G̃, G̃).

Condition (1) has been verified above. Further (3) follows from the perfectness of
g, which implies (G̃, G̃) = G̃. It therefore remains to verify (2). For that we consider
a part of the long exact homotopy sequence of the Z-principal bundle q : Ĝ → G:

π2(G)
δ−−→ π1(Z) → π1(Ĝ) → π1(G) → π0(Z). (6.2)

According to [Ne02a, Prop. 5.11], we have δ = − perω, so that π1(Z) = �ω (as
subsets of z) implies that δ is surjective. Moreover, the natural homomorphism
π1(G) → π0(Z) is an isomorphism by the construction of Ĝ, so that the exactness of
(6.2) implies that Ĝ is simply connected. ��
Remark VI.11. If K is finite-dimensional and reductive, then K̃ ∼= z(k) × (K̃, K̃).
Therefore π1(K) is contained in (K̃, K̃) if and only if K ∼= z(k) × (K,K). In this
case we have

C∞(M,K) ∼= C∞(M, z(k))× C∞(M, (K,K))

and hence we have for G = C∞(M,K)e the direct product decomposition

G = GD ×GZ with GD := C∞(M, (K,K))e and GZ := C∞(M, z(k)).

In this case the Lie algebra g = C∞(M; k) has the direct decomposition g =
g′ ⊕ z(g) with g′ = C∞(M; k′) and z(g) = C∞(M; z(k)), where k′, resp., g′ denote
the commutator algebra. It is easy to see that every Lie algebra cocycle ω ∈ Z2

c (g;Y )
vanishes on g′ × z(g) ⊆ g× g because g′ is perfect. From that one further derives that
a weakly universal central extension of g can be obtained with

z := zM(V (k
′))⊕�2(z(g)),

where for a locally convex space E the space �2(E) is defined as the quotient of
E ⊗π E modulo the closure of the subspace spanned by the elements e ⊗ e, e ∈ E.
To describe the corresponding cocycle, we write ξ ∈ g as ξ = (ξ ′, ξz) with ξ ′ ∈ g′
and ξz ∈ z(g). Then a weakly universal cocycle is given by

ω(ξ, η) = ([κk′(ξ ′, dη′)], ξz ∧ ηz).

Let ĜD be the universal central extension of GD from Theorem VI.10 and define
Ĝ := ĜD × ĜZ, where ĜZ is the 2-step nilpotent Lie algebra

z(g)×ωZ �
2(z(g)) with ωZ(ξ, η) = ξ ∧ η,

viewed as a Lie group with the multiplication x ∗ y := x + y + 1
2 [x, y]. Using

Theorem VI.9, we see that ĜZ is a weakly universal central extension of GZ ∼= gZ .
Theorems VI.9 and VI.10 now imply that Ĝ is a weakly universal central extension
of G. ��
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Appendix A. Homotopy groups of smooth current groups

In this section we show that the homotopy groups of the Lie groups of smooth maps
C∞
c (M;K), resp., C∞(M, S;K) introduced in Section I coincide with the homo-

topy groups of the corresponding groups of continuous maps C0(M;K), resp.,
C0(M \ S;K). The latter groups are usually better accessible by means of topo-
logical methods.

More specifically, for the group C∞
c (M;K) of compactly supported smooth func-

tions on a manifold M with values in a Lie group K the main result will be that the
inclusion C∞

c (M;K) ↪→ C0(M;K) is a weak homotopy equivalence. For the group
C∞(M, S;K) of smooth maps on a compact manifold M vanishing with all deriva-
tives on a closed subset S we show that the inclusionC∞(M, S;K) ↪→ C0(M \S;K)
is a weak homotopy equivalence.

In the present paper the results of this section are mainly needed to get information
on the second homotopy group which is important for period maps associated to
Lie algebra cocycles (cf. Section V). Moreover, the results of this appendix are of
independent interest in many other contexts, where they provide valuable information
on the topology of current groups.

Groups of compactly supported functions

Lemma A.1. For each compact subsetE ofC∞
c (M;K) there exists a compact subset

X ⊆ M with E ⊆ C∞
X (M;K).

Proof. Let k := L(K) be the Lie algebra of K , U ⊆ k be an open 0-neighborhood,
and φ : U → φ(U) a chart with φ(0) = e. Then there exists an open 0-neighborhood
U0 ⊆ U such that we obtain a local chart for G := C∞

c (M;K) by φG(f ) := φ � f
(Definition I.2(b)). Let V := {f ∈ C∞

c (M; k) : f (M) ⊆ U0} and observe that

φG : V → φG(V ) = {f ∈ C∞
c (M;K) : f (M) ⊆ φ(U0)}.

Then for each f ∈ G the set f φG(V ) is an open neighborhood, and the map

φf : V → f φG(V ), ξ �→ f φG(ξ)

is a diffeomorphism. Let W ⊆ V be a closed 0-neighborhood with φG(W)φG(W) ⊆
φG(V ). Since φG(W) is the intersection of all sets φG(W)N , where N is an identity
neighborhood in C∞

c (M;K), φG(W) ⊆ φG(V ), so that the closedness of W implies
that φG(W) is closed.

Since the compact set E is covered by the open sets f φG(W 0), f ∈ E, there exist
f1, . . . , fn ∈ E with

E ⊆ f1φG(W
0) ∪ . . . ∪ fnφG(W 0).
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The closedness of φG(W) implies that each set E ∩ fjφG(W) is compact, so that for
each j the closed set

φ−1
fj
(E ∩ fjφG(W)) = W ∩ φ−1

fj
(E) ⊆ C∞

c (M; k) = lim−→ C∞
X (M; k)

is compact, so that there exists a compact subsetXj ⊆ M with φ−1
fj
(E∩fjφG(W)) ⊆

C∞
Xj
(M; k) ([He89, Prop. 1.5.3]). Let

X := X1 ∪ . . . ∪Xn ∪ supp(f1) ∪ . . . ∪ supp(fn).

Then X is compact and E ⊆ C∞
X (M;K). ��

Lemma A.2. Let E be a compact space and f : E → C∞
c (M;K) a continuous

map. Then there exists a compact subset X ⊆ M and a continuous map fX : E →
C∞
X (M;K) such that f = ηX � fX holds for the inclusion map ηX : C∞

X (M;K) →
C∞
c (M;K).

Proof. SinceC∞
c (M;K) is Hausdorff, the setf (E) is compact. In view of LemmaA.1,

there exists a compact subset X ⊆ M with f (E) ⊆ C∞
X (M;K). Let fX : E →

C∞
X (M;K) denote the corestriction of f to C∞

X (M;K). Since ηX is a topological
embedding (Remark I.3), the mapfX is continuous. It obviously satisfiesf = ηX�fX.

��
Proposition A.3. Let Xn ⊆ M be compact with Xn ⊆ X0

n+1 and M = ⋃
n Xn. Then

the map

lim−→ C∞
Xn
(M;K) → C∞

c (M;K)
is a weak homotopy equivalence. In particularπm(C∞

c (M;K))∼= lim−→πm(C
∞
Xn
(M;K))

for each m ∈ N0.

Proof. Lemma A.2 first implies that each continuous map f : S
m → C∞

c (M;K)
factors through some inclusion C∞

Xn
(M;K) → C∞

c (M;K). If two such maps f1, f2
are homotopic, then each homotopyh : S

m×[0, 1] → C∞
c (M;K) also factors through

some group C∞
Xk
(M;K). This implies that the natural map

lim−→ πm(C
∞
Xn
(M;K)) ∼= πm(lim−→ C∞

Xn
(M;K)) → πm(C

∞
c (M;K))

is bijective, i.e., that the continuous map lim−→ C∞
Xn
(M;K) → C∞

c (M;K) is a weak

homotopy equivalence. ��
Remark A.4. A similar argument as the one leading to Proposition A.3 shows that
the map

lim−→ CXn(M;K) → Cc(M;K)
is a weak homotopy equivalence. ��
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If M and N are topological spaces, we write [M,N ] for the set of homotopy
classes of continuous maps f : M → N . If, in addition, xM ∈ M and xN ∈ N are
base points, then C∗(M,N) := {f ∈ C(M,N) : f (xM) = xN } denotes the set of
base point preserving continuous maps and [M,N ]∗ denotes the corresponding set
of homotopy classes. We recall that if M is locally compact, then homotopy classes
correspond to arc components in the compact open topology.

Eventually we want to show that the map

C∞
c (M;K) → Cc(M;K)

is a weak homotopy equivalence, so that the homotopy groups of C∞
c (M;K) are the

limits of the corresponding homotopy groups of CX(M;K). These groups are more
approachable since they are isomorphic to C∗(X/∂X;K), where X/∂X is a compact
space, with the image of ∂X as the base point.

If M is a compact manifold with boundary, then the homotopy groups
πm(C∗(M/∂M;K)) might be well accessible. Note that if ∂M is empty, then
C∗(M/∂M;K) should be read as the group C(M;K).
Lemma A.5. LetX1, X2 ⊆ M be compact subsets withX1 ⊆X0

2 andf ∈CX1(M;K).
Then every neighborhood of f contains a map f ′ in C∞

X2
(M;K). The image of the

homomorphism

η : π0(C
∞
X2
(M;K)) → π0(CX2(M;K))

contains the image of π0(CX1(M;K)). Moreover, if f is contained in CX1(M;K)e,
then we may choose f ′ ∈ C∞

X2
(M;K)e.

Proof. The first assertion follows from [Ne02a, Th.A.3.7]. Since the groupsCX(M;K)
and C∞

X (M;K) are Lie groups, their connected components are open, so that every
connected component ofCX2(M;K)meetingCX1(M;K) contains a smooth element.

If the map f ∈ CX1(M;K) is sufficiently close to e in the sense that f (M) ⊆ V

for some chart e-neighborhood V ⊆ K diffeomorphic to an open convex set, we find
f1 ∈ C∞

X2
(M;K)with f1(M) ⊆ V . Now any two smooth maps f1, f2 ∈ C∞

X2
(M;K)

with fj (M) ⊆ V are smoothly homotopic, hence contained in the same connected
component of C∞

X2
(M;K).

If f ∈ CX1(M;K) is contained in the identity component, then there exists a
continuous curve γ : [0, 1] → CX1(M;K) with γ (0) = e and γ (1) = f . For a
sufficiently fine subdivision 0 = t0 < t1 < . . . < tN = 1 we now find smooth maps
fj ∈ C∞

X2
(M;K) close to γ (tj ) in the sense that (f−1

j · γ (ti))(M) ⊆ V , where for
j < N the maps fj and fj+1 are smoothly homotopic. Hence fN is contained in the
identity component of C∞

X2
(M;K). ��

Lemma A.6. The map ι : C∞
c (M;K) → Cc(M;K) induces an isomorphism

π0(ι) : π0(C
∞
c (M;K)) → π0(Cc(M;K)).
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Proof. The surjectivity of π0(ι) follows directly from Lemma A.5. If f ∈ C∞
c (M;K)

satisfies [f ] ∈ ker π0(ι), then there exists a compact subset X ⊆ M and a continuous
map γ : [0, 1] → CX(M;K)with γ (0) = e and γ (1) = f (Lemma A.2). Let Y ⊆ M

be a compact subset withX ⊆ Y 0. Then Lemma A.5 implies that we can approximate
f by smooth functions f ′ in the identity component of C∞

Y (M;K). It follows in
particular that f is contained in the identity component of C∞

Y (M;K), hence also in
the identity component of C∞

c (M;K). This shows that π0(ι) is injective. ��
In M we fix a base point xM and in any group we consider the unit element e as

the base point. We write C∞∗ (M;K) ⊆ C∞(M;K) for the subgroup of base point
preserving maps and observe that

C∞(M;K) ∼= C∞∗ (M;K)�K

as Lie groups, where we identifyK with the subgroup of constant maps. This relation
already leads to

πk(C
∞(M;K)) ∼= πk(C

∞∗ (M;K))× πk(K), k ∈ N0. (A.1)

In particular we have

π0(C
∞(M;K)) ∼= π0(C

∞∗ (M;K))
if K is connected.

On the other hand, we have for each topological group G and each k ∈ N the
relation

πk(G) ∼= π0(C∗(Sk,G)) = π0(C∗(Sk,Ge)) = π0(C(S
k,Ge)), (A.2)

where Ge denotes the arc-component of the identity in G.
The following theorem is one of the two main results of this section. It provides a

valuable tool to determine the homotopy groups of groups of smooth maps in terms
of the corresponding groups of continuous maps.

Theorem A.7. If M is a connected σ -compact finite-dimensional manifold and K a
Lie group, then the inclusion C∞

c (M;K) → Cc(M;K) is a weak homotopy equiva-
lence. If M is compact and xM ∈ M is a base point, then the inclusion

C∞∗ (M;K) → C∗(M;K) := {f ∈ C(M;K) : f (xM) = e} (A.3)

is a weak homotopy equivalence.

Proof. We have to show that the inclusion induces for each k ∈ N0 an isomorphism

πk(C
∞
c (M;K)) → πk(Cc(M;K)).

For k = 0 this is Lemma A.6. If M is compact, then

π0(C
∞
c (M;K)) = π0(C

∞(M;K)) ∼= π0(C
∞∗ (M;K))× π0(K)
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and

π0(Cc(M;K)) = π0(C(M;K)) ∼= π0(C∗(M;K))× π0(K),

so that (A.3) follows from Lemma A.6. We only observe that if ft is a homotopy
between f0 and f1 in C∞

c (M;K) and xM ∈ M is a base point, then ft (x)ft (xM)−1

is a homotopy between f0 and f1 in C∞∗ (M;K).
Next we assume that k ≥ 1 and observe that the inclusions

C∗(Sk, C∞
c (M;K)) = C∗(Sk, C∞

c (M;K)e)
↪→ C(Sk, C∞

c (M;K)e)
↪→ C(Sk, Cc(M;K)e)
↪→ C(Sk, Cc(M;K))
∼= Cc(S

k ×M;K)
are continuous homomorphisms of Lie groups, where

C(Sk, Cc(M;K)e) ↪→ C(Sk, Cc(M;K))
is an open embedding. For the group of connected components, we obtain for k ≥ 1
with (A.2) the homomorphisms

πk(C
∞
c (M;K)) ∼= π0

(
C∗(Sk, C∞

c (M;K))) ∼= π0
(
C(Sk, C∞

c (M;K)e)
)

→ π0
(
C(Sk, Cc(M;K)e)

) ∼= πk
(
Cc(M;K)).

If f : S
k×M → K is a continuous map with compact support corresponding to an

element ofC∗(Sk;Cc(M;K)e), then LemmaA.5 first implies that every neighborhood
of f contains a smooth map with compact support. So every connected component of
Cc(S

k×M;K) contains an element ofC(Sk, C∞
c (M;K))e by the openness argument

from above. This means that the homomorphism πk(C
∞
c (M;K)) → πk(Cc(M;K))

is surjective. To see that it is injective, suppose that σ ∈ C(
S
k, C∞

c (M;K)e
)

satisfies
σ ∈ C(

S
k, Cc(M;K)e

)
e

∼= Cc(S
k ×M;K)e. From Lemma A.6 we obtain

C∞
c (S

k ×M;K) ∩ Cc(Sk ×M;K)e ⊆ C∞
c (S

k ×M;K)e,
so that approximating σ by elements inC∞

c (S
k×M;K) (Lemma A.5), we see that we

may even approximate it by elements inC∞
c (S

k×M;K)e, which implies that σ lies in
the identity component of C

(
S
k, C∞

c (M;K)e
)
. This proves that the homomorphisms

πk(C
∞
c (M;K)) → πk(Cc(M;K)), k ∈ N0, are isomorphisms. ��

Theorem A.7 can also be extended to non-connected manifoldsM as follows. Let
M = ⋃

j∈J Mj be the decomposition ofM into connected componentsMj . Here one
can use

Cc(M;K) =
⊕
j∈J

Cc(Mj ;K),
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and for each compact subset X ⊆ M we have the finite sum decomposition

CX(M;K) =
⊕

X∩Mj =∅
CX∩Mj (Mj ;K).

If M has only finitely many connected components, then there is no problem, but if
M has infinitely many connected components, then one has to take the direct sum
topology on Cc(M; k) into account and the corresponding Lie group topology on
Cc(M;K).

Lemma A.8 and Proposition A.9 provide additional information on the homotopy
type of the topological current groups.

Lemma A.8. If M is a locally compact space, then the inclusion η : Cc(M;K) →
C0(M;K) induces an isomorphism π0(Cc(M;K)) → π0(C0(M;K)).

Proof. Let f ∈ C0(M;K). Then there exists a compact subset X ⊆ M such that
f (M \ X) is contained in an identity neighborhood of K which is diffeomorphic to
a convex 0-neighborhood U in k, where 0 corresponds to e ∈ K . Using a continuous
function h ∈ Cc(M; R) which is 1 on X and satisfies h(M) ⊆ [0, 1], we define a
function f̃ ∈ Cc(M;K) by f̃ = f on X and f̃ = hf on M \ X, where we consider
f |M\X as a function with values in U . Then

F : M × [0, 1] → K, F(x, t) :=
{
f (x) for x ∈ X
(t + (1 − t)h(x))f (x) for x ∈ M \X

is a homotopy between f and f̃ , and we see that π0(η) is surjective.
A similar argument shows that for f, g ∈ Cc(M;K) any path joining f and g

in C0(M;K) can be deformed to a path lying completely inside of CX(M;K) for a
compact subset X of M . Therefore π0(η) is injective. ��
Proposition A.9. IfM is a locally compact space, then the inclusion η : Cc(M;K) →
C0(M;K) is a weak homotopy equivalence.

Proof. Let M∞ = M ∪ {∞} denote the one-point compactification of M . For every
compact space X we have an embedding of topological groups

C(X,C0(M;K)) ∼= C(X,C∗(M∞;K)) ↪→ C(X,C(M∞;K)) ∼= C(X ×M∞;K),
which easily leads to the isomorphism

C(X,C0(M;K)) ∼= C0(X ×M;K).
In view of Lemma A.8, there exists for each f ∈ C0(X ×M;K) some compact

subset Y ⊆ M and a continuous map fY ∈ C(X,CY (M;K)) ⊆ C(X × Y ;K)
homotopic to f . The same argument applies to [0, 1] × X instead of X, so that we
see that the inclusionCc(M;K) → C0(M;K) induces a bijection [X,Cc(M;K)] →
[X,C0(M;K)] on the level of homotopy classes.
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Applying this to X := S
k , k ∈ N, we obtain with Lemma A.8 that the natural map

πk(Cc(M;K)) ∼= [Sk, Cc(M;K)]∗ ∼= [Sk, Cc(M;K)e] → [Sk, C0(M;K)e]
∼= [Sk, C0(M;K)]∗ ∼= πk(C0(M;K))

is bijective, hence an isomorphism of groups. ��
Theorem A.10. For each σ -compact connected finite-dimensional manifold M and
each Lie group K the inclusion map

C∞
c (M;K) → C0(M;K) ∼= C∗(M∞;K)

is a weak homotopy equivalence.

Proof. We only have to combine Proposition A.9 with Theorem A.7. ��
Example A.11. For M = R

n we obtain with Theorem A.10 for each k ∈ N0:

πk(C
∞
c (R

n;K)) ∼= πk(C∗(Rn∞;K)) ∼= πk(C∗(Sn;K)) ∼= πk+n(K). ��
Lemma A.12. Let φ : N → M be a smooth proper map.

(i) The map

φK : C∞
c (M;K) → C∞

c (N;K), f �→ f � φ
is a morphism of Lie groups.

(ii) Let φ∞ : M∞ → N∞ denote the continuous extension of φ to the one-point
compactifications. Then for each k ∈ N0 the map

πk(φK) : πk(C∞
c (M;K)) → πk(C

∞
c (N;K))

only depends on the homotopy class of φ∞ in the set [M∞, N∞]∗ of pointed
homotopy classes.

Proof. (i) It is clear that φK maps C∞
c (N;K) into C∞

c (M;K) and that it is a group
homomorphism. It therefore suffices to show smoothness in some identity neighbor-
hood.

LetU ⊆ K be an open identity neighborhood andψ : U → W a chart ofK where
W ⊆ k is an open subset and ψ(e) = 0. Then there exists an open 0-neighborhood
V ⊆ W such that

C∞
c (N,W) := {f ∈ C∞

c (N;K) : f (N) ⊆ ψ−1(V )}
is an open subset of C∞

c (N;K) ([Gl01b]). Now it suffices to see that the map

C∞
c (M, V ) → C∞

c (N, V ), f �→ f � φ
is smooth. As this map is the restriction of a linear map, we only have to show that it
is continuous.



174 Karl-Hermann Neeb

For each compact subset X ⊆ M we have

C∞
X (M;K) � φ ⊆ C∞

φ−1(X)
(M;K),

so that the assertion follows from the observation that for each n ∈ N the map dn(f �φ)
depends continuously on f , when considered as an element of C(T n(N), k)c (cf.
Definition I.2).
(ii) Let ηM : C∞

c (M;K) → C∗(M∞;K) denote the natural inclusion. Then ηN �
φK = φ̃K � ηM holds with

φ̃K : C∗(M∞;K) → C∗(N∞;K), f �→ f � φ.
We know from Theorem A.10 that the maps ηM and ηN are weak homotopy

equivalences. Therefore it suffices to show that the maps πk(φ̃K) only depend on the
homotopy class of φ. If φ,ψ : M → N are proper and smooth such that φ∞ and ψ∞
are homotopic, then it is easy to see that the maps φ̃K and ψ̃K are homotopic, hence
induce the same homomorphisms on homotopy groups. ��

Homotopy groups of groups defined by vanishing conditions

In this subsection we discuss the other major class of groups of smooth maps
C∞(M, S;K). Theorem A.13 is a variant of Theorem A.7 for this context.

Theorem A.13. Let M be a compact manifold, S ⊆ M a closed subset, and let
C∞(M, S;K) be the subgroup ofC∞(M;K) consisting of all smooth maps vanishing
together with all their partial derivatives on S. Then the inclusion

η : C∞
c (M \ S;K) → C∞(M, S;K)

is a weak homotopy equivalence.

Proof. As M is compact, the group C∞(M, S;K), when considered as a group of
maps M \ S → K , is contained in C0(M \ S;K). The inclusion C∞

c (M \ S;K) →
C0(M \S;K) is a weak homotopy equivalence by Theorem A.10, so that all the maps
πk(η), k ∈ N0, are injective. It therefore remains to show that they are also surjective.

So let

σ ∈ C∗(Sk, C∞(M, S;K)) ⊆ C∗(Sk, C0(M \ S;K)) ⊆ C0(S
k × (M \ S);K).

Then there exists a compact subset X ⊆ M \ S such that σ(Sk × (M \ X0)) is
contained in an identity neighborhood of K which is diffeomorphic to a convex 0-
neighborhood U in k, where 0 corresponds to e ∈ K . Let φ : U → φ(U) ⊆ K denote
the corresponding chart and h ∈ C∞

c (M \ S; R) with h(X) = {1} and h(M) ⊆ [0, 1].
We now define

σ̃ : S
k ×M → K, σ̃ (t, x) :=

{
σ(t, x) for x ∈ X
φ
(
h(x)φ−1(σ (t, x))

)
for x ∈ X.
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As σ(Sk×(M \X0)) is a compact subset of φ(U), it easily follows that σ̃ is continuous
and that t �→ σ̃ (t, ·) yields a continuous map S

k → C∞
c (M\S;K). In fact, the support

of each map σ̃ (t, ·) is contained in the support of h. Moreover,

F : [0, 1] × S
k ×M → K,

F(s, t, x) :=
{
σ(t, x) for x ∈ X
φ
([sh(x)+ (1 − s)] · φ−1(σ (t, x))

)
for x ∈ X

is a homotopy between σ and σ̃ preserving base points. This implies that the map
πk(η) is surjective. ��

Observe that Theorem A.13 does not imply that C∞
c (M \ S;K) is dense in

C∞(M, S;K). This will be shown in Theorem A.18 below.

Corollary A.14. Let M be a compact manifold and ∅ = S ⊆ M a closed subset.
Then the inclusion

ζ : C∞(M, S;K) → C0(M \ S;K) ∼= C∗(M/S;K)
is a weak homotopy equivalence.

Proof. According to Theorem A.10, the inclusion C∞
c (M \S;K) → C0(M \S;K) is

a weak homotopy equivalence, and this map is the composition of ζ and the inclusion
map η from Theorem A.10. This implies that ζ also is a weak homotopy equivalence.

��
Corollary A.15. For a compact manifold M and k ∈ N0 we have

πk(C
∞(M, S;K)) ∼= πk(C∗(M/S;K))

and in particular

πk(C
∞(I, ∂I ;K)) ∼= πk(C∗(S1;K)) ∼= πk+1(K).

Proof. For M = I and S = ∂I we have M/S ∼= S
1 and therefore

πk(C
∞(I, ∂I ;K)) ∼= πk(C∗(S1;K)) ∼= πk+1(K). ��

Lemma A.16. For each α ∈ C∞((M ′, S′), (M, S)) let

αK : C∞(M, S;K) → C∞(M ′, S′;K), f �→ f � α.
Then αK is a homomorphism of Lie groups and the homomorphisms πk(αK) only
depend on the homotopy class of α in the space C((M ′, S′), (M, S)).

Proof. First we observe that the chain rule for Taylor expansions implies that αK does
indeed map C∞(M, S;K) into C∞(M ′, S′;K). That αK is a homomorphism of Lie
groups follows by similar arguments as in the proof of Lemma A.12 (i).
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Viewing α as a continuous map (M ′, S′) → (M, S) of space pairs, we see that it
induces a continuous map

α∗ : C∗(M/S;K) → C∗(M ′/S′;K), f �→ f � α.
Since the inclusion C∞(M, S;K) → C∗(M/S;K) is a weak homotopy equivalence
(Corollary A.14), the maps πk(αK) are conjugate to the maps πk(α∗). It is easy to see
that πk(α∗) only depends on the homotopy class of α because for each continuous map
σ : S

k → C∗(M ′/S′;K) the map α∗ � σ : S
k → C∗(M/S;K) depends continuously

on α. ��
Lemma A.17. For each locally convex space Y the space C∞(M, S;Y ) is a closed
subspace of C∞(M;Y ) invariant under multiplication with elements of C∞(M; R).

Proof. This follows directly from the Leibniz formula for the higher partial derivatives
of a product of two functions. ��
Theorem A.18 (Approximation Theorem). If M is compact, then C∞

c (M \ S;K) is
dense in the Lie group C∞(M, S;K).

Proof. First we reduce the problem to the assertion that for the Lie algebra k of K the
subspace C∞

c (M \ S; k) is dense in C∞(M, S; k).
Let U ⊆ K be an open identity neighborhhod and φ : V → U a chart of K with

V ⊆ k an open convex subset and φ(0) = e. Then {f ∈ C∞(M, S;K) : f (M) ⊆ U}
is an open subset of C∞(M, S;K) because it is already open in the compact open
topology. We choose an open convex 0-neighborhood V1 ⊆ V with φ(V1)

−1φ(V1) ⊆
φ(V ).

Let f ∈ C∞(M, S;K). As f vanishes on S, the set f−1(φ(V1)) is an open subset
ofM containing S. Therefore its complementX is a compact subset ofM \S. Arguing
as in the proof of Lemma A.8, we find a function f̃ ∈ C∞

c (M \S;K)with f̃ |X = f |X
and f̃ (M \ X) ⊆ φ(V1). Now it suffices to show that h := f−1f̃ , whose values are
contained in φ(V1)

−1φ(V1) ⊆ φ(V ), is contained in the closure of C∞
c (M \ S;K).

As φ−1 � h : M → k is a well-defined smooth map, we see that it suffices to prove the
theorem for k instead of K . In this setting we have to show that if V ⊆ k is an open
convex 0-neighborhood with f (M) ⊆ V , then f can be approximated by functions
in C∞

c (M; k) whose values lie in V .
Let f ∈ C∞(M, S; k). Using Lemma A.17 and a smooth partition of unity on

M , we may assume that the support of f lies in a coordinate neighborhood which we
may identify with R

n. We are therefore led to the following situation. We consider a
smooth function f ∈ C∞

c (R
n; k) all of whose derivatives vanish on the closed subset

S ⊆ R
n, and we are looking for a sequence of functions with compact support in

R
n \ S converging to f in C∞(Rn; k) whose supports are uniformly contained in a

compact set. The existence of such a sequence is proved in Proposition A.22 below.
��
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An Approximation Lemma

Let ∅ = S ⊆ R
d be a closed subset, Y a Banach space, and f ∈ C∞

X (R
d;Y ) for a

compact subset X ⊆ R
d such that f and all its partial derivatives vanish on S ∩ X.

We want to see that f is contained in the closure of the subspace C∞
c (R

d \ S;Y ) ∩
C∞
X (R

d;Y ). In the following d(S, x) denotes the euclidean distance of the set S and
x. We write ‖ · ‖ for the euclidean norm on R

d .

Lemma A.19. For each k ∈ N and each f ∈ C∞
c (R

d , S;Y ) there exists a constant
Ck > 0 with

‖f (x)‖ ≤ Ckd(S, x)
k.

Proof. We prove the assertion by induction over k. For k = 0 it follows from the
compactness of the support of f .

Now we assume that the assertion holds for k ∈ N0. Let h ∈ C∞
c (R

d , S;Y ). Then
the induction hypothesis applies to dh ∈ C∞

c (R
d , S; Lin(Rd;Y )), and we obtain a

constant Dk with ‖dh(x)‖ ≤ Dkd(S, x)
k for all x ∈ R

d . For x ∈ R
d we find an

x0 ∈ S with ‖x − x0‖ ≤ 2d(S, x). Then

h(x) = h(x0)+
∫ 1

0
dh(x0+t (x−x0))(x−x0) dt =

∫ 1

0
dh(x0+t (x−x0))(x−x0) dt

leads to

‖h(x)‖ ≤ ‖x − x0‖ sup
0≤t≤1

‖dh(x0 + t (x − x0))‖

≤ 2d(S, x)Dk sup
0≤t≤1

d(S, x0 + t (x − x0))
k

≤ 2Dkd(S, x)2
kd(S, x)k = 2k+1Dkd(S, x)

k+1.

This completes the induction, and hence the proof of the lemma. ��

Now let δ be a smooth function supported in the closed unit ball B1(0) in R
d with∫

Rd
δ(x) dx = 1 and im(δ) ⊆ [0, 1]. We define

δn(x) := ndδ(nx)

and observe that these functions form a smooth Dirac sequence. For each multiindex
J = (j1, . . . , jd) ∈ N

d
0 we have

‖∂J δn‖∞ = nd+|J |‖∂J δ‖∞.

Let Sn := {
x ∈ R

d : d(S, x) ≤ 2
n

}
and

χSn(x) :=
{

1 for x ∈ Sn
0 for x ∈ Sn
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the characteristic function of Sn. Then we define

φn(x) := 1 − (δn ∗ χSn)(x) = 1 −
∫
x−Sn

δn(y) dy ∈ [0, 1].

Then each function φn is smooth with φn(x) = 1 for d(S, x) ≥ 3
n

and φn(x) = 0 for
d(S, x) ≤ 1

n
.

Lemma A.20. For each multiindex J there exists a constant DJ such that

‖∂J φn(x)‖ ≤ DJd(S, x)
−|J |, x ∈ R

d , n ∈ N.

Proof. For |J | = 0 the assertion follows from im(φn) ⊆ [0, 1].
Suppose that |J | > 0 and that d(S, x) ∈ [ 1

n
, 3
n

]
. Otherwise ∂J φn(x) vanishes

anyway. Then we have

‖∂J φn(x)‖ = ‖((∂J δn) ∗ χSn
)
(x)‖ ≤ vol(B 1

n
(0))‖∂J δn‖∞

≤ Cn−dnd+|J |‖∂J δ‖∞ = Cn|J |‖∂J δ‖∞ ≤ C3|J |d(S, x)−|J |‖∂J δ‖∞.

��
Lemma A.21. For all multiindices J with |J | > 0 we have uniformly ∂J φn · f → 0.

Proof. Combining Lemma A.19 and A.20, we get for each k ∈ N a constant Ck with

‖(∂J φn(x))f (x)‖ ≤ Ckd(S, x)
−|J |d(S, x)|J |+k = Ckd(S, x)

k.

As ∂J φn(x) = 0 for d(S, x) ≥ 3
n

(here we need |J | > 0), this leads to

‖(∂J φn(x))f (x)‖ ≤ Ck3
kn−k

for all x ∈ R
d , and this implies the assertion. ��

Proposition A.22. For each locally convex space Y and f ∈ C∞
c (R

d , S;Y ) we have
φnf → f in C∞(Rd;Y ).

Proof. As every locally convex space can be embedded into a product of Banach
spaces, it suffices to assume that Y is a Banach space. Since the supports of the
functions φnf and f are contained in one compact subset of R

d , we have to show
‖∂J (φnf − f )‖∞ → 0 for all multiindices J .

For |J | = 0 this follows easily from the support properties of φn and ‖f (x)‖ ≤
Cd(S, x).

Next we note that for each multiindex J the function ∂J f also has the prop-
erty that all its partial derivatives vanish on S. Therefore Lemma A.21 implies that
∂J

′
φn · ∂J f → 0 uniformly whenever |J ′| > 0. In view of the Leibniz rule, the

problem reduces to showing that φn∂J f converges uniformly to ∂J f , but this follows
from the case |J | = 0, applied to ∂J f instead of f . ��
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Appendix B. Locally convex direct limit spaces

In this section we discuss the discreteness of certain subgroups of direct limits of locally
convex spaces. In this paper we only use Lemma B.4. Nevertheless Proposition B.3
provides a much more direct way to prove the discreteness of the groupsHk(M;Y, �)
if Y is finite-dimensional and � ⊆ Y is a discrete subgroup (cf. Corollary IV.21).

Lemma B.1. If X is a locally convex space, Y ⊆ X a closed subspace and F ⊆ X a
finite-dimensional subspace complementing Y , thenX ∼= Y ⊕F as topological vector
spaces.

Proof. The quotient map q : X → X/Y induces an isomorphism q |F : F → X/Y .
Hence q has a continuous linear section σ : X/Y → Xwhose range isF , and therefore
the addition map a : Y × F → X is a topological isomorphism because a−1(x) =(
x − σ(q(x)), σ (q(x))

)
is continuous. ��

Lemma B.2. Let X be a locally convex space which is the locally convex direct limit
of the subspaces Xn, n ∈ N, where each Xn is a closed subspace of Xn+1. Further
let F ⊆ X be a subspace such that for each n ∈ N the intersection Fn := F ∩ Xn is
finite-dimensional. Then the following assertions hold:

(i) There exists a continuous linear projection p : X → F with p(Xn) = Fn for
each n ∈ N. In particular we have X ∼= ker p ⊕ F .

(ii) F is closed.

(iii) F is the topological direct limit of the subspaces Fn, n ∈ N, which means that F
carries the finest locally convex topology.

Proof. (i) We argue by induction. As F1 is finite-dimensional, the Hahn–Banach
Theorem yields a continuous extension p1 : X1 → F1 of the identity map idF1 . Then
p1 can be viewed as a continuous projection of X1 to F1.

Now let n ∈ N and assume that pn : Xn → Fn is a continuous projection. Then we
choose a complement En+1 of Fn in Fn+1. As Xn is a closed subspace of the locally
convex spaceXn+Fn+1 = Xn⊕En+1, it follows from Lemma B.1 thatXn+Fn+1 ∼=
Xn ⊕ En+1 as topological vector spaces. The linear map qn := pn ⊕ idEn+1 is a
continuous projection of Xn + Fn+1 onto Fn+1. We use the Hahn–Banach Theorem
again to extend qn to a continuous linear map pn+1 : Xn+1 → Fn+1 which then also
is a continuous projection. We thus obtain a sequence (pn)n∈N of continuous linear
maps pn : Xn → F with pn+1 |Xn = pn. Now the universal property of X yields the
existence of a continuous linear map p : X → F with p |Xn = pn for each n ∈ N. As
p |F = idF , we are done.

(ii) follows from (i).
(iii) Let Z be a locally convex space and f : F → Z be a linear map. We claim

that f is continuous. To this end, we consider the map h := f � p : X → Z. Then
h |Xn = (f |Fn) � pn, and pn is continuous, as well as the map f |Fn on the finite-
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dimensional vector space Fn. Therefore all the restrictions h |Xn are continuous, and
we conclude that h is continuous, which in turn implies that f is continuous. The
fact that all linear maps from F to locally convex spaces are continuous shows that F
carries the finest locally convex topology. Furthermore, F is countably dimensional
because all the spaces Fn are finite-dimensional. Using [KK63], we now conclude
that the topology on F coincides with the finite open topology, i.e., the direct limit
topology with respect to the directed system of all finite-dimensional subspaces. As
the sequence (Fn)n∈N is cofinal, this topology coincides with the direct limit topology
with respect to the sequence (Fn)n∈N. ��
Proposition B.3. Let X be a locally convex space which is the locally convex direct
limit of the subspaces Xn, n ∈ N, with Xn ⊆ Xn+1, where Xn is closed in Xn+1. Let
further � ⊆ X be a subgroup such that for each n ∈ N the group � ∩ Xn is discrete
and finitely generated. Then � is a discrete subgroup of X.

Proof. For each n ∈ N we consider the finite-dimensional subspace Fn := span�n
for the discrete finitely generated subgroup �n := � ∩Xn of Xn. Let F := ⋃

n Fn =
span�. We claim that Fn = F ∩ Xn holds for each n ∈ N. Fix n,m ∈ N with
n < m. As �n is discrete in the finite-dimensional space Fn, there exists a basis Bn
of Fn with �n = spanZ Bn. Further �n = � ∩ Xn = �m ∩ Xn is a pure subgroup of
�m, so that �m/�n is a free abelian group. Hence we find a subset Cm ⊆ �m such
that the image of Cm is a basis in (Fm + Xn)/Xn ∼= Fm/Fm ∩ Xn generating the
subgroup (�m + Xn)/Xn ∼= �m/�n. Now Bm := Bn ∪ Cm is a basis of Fm with
�m = spanZ Bm. In particular, it follows that Fm ∩Xn = spanR Bn = Fn. As m was
arbitrary, we conclude that F ∩Xn = Fn.

Next Lemma B.2 applies to the subspace F ⊆ X and shows that F is closed and
carries the finite open topology. LetO := (F \�)∪{0}. For each n ∈ N we then have
O∩Fn = (Fn \�n)∪{0}, which is an open set because�n is discrete in Fn. Therefore
O is an open subset of F (Lemma B.2(iii)), and since F carries the subspace topology
of X, there exists an open subset OX ⊆ X with OX ∩ F = O. Now OX is an open
0-neighborhood in X with OX ∩ � = {0}. This shows that � is discrete. ��
Lemma B.4. Let X = lim−→ Xj be a locally convex direct limit of the spaces Xj .

(i) If F ⊆ X is a closed subspace, then X/F ∼= lim−→ Xj/(F ∩Xj).
(ii) A subspace F ⊆ X is closed if and only if all intersections F ∩Xj are closed.

Proof. (i) (cf. [Kö79, p.42]) Since F is closed, all the spaces Fj := F ∩Xj are closed.
Let Z := lim−→ Xj/Fj denote the locally convex direct limit of the spacesXj/Fj . Then

we have natural continuous maps φj : Xj/Fj → X/F which define a continuous
linear map φ : Z → X/F . On the other hand the continuous linear maps Xj → Z

combine to a continuous linear map X → Z which then factors through a continuous
linear map ψ : X/F → Z. Now φ � ψ = idX/F and ψ � φ = idZ imply (i).
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(ii) If F is closed, then the subspaces F ∩ Xj are trivially closed in Xj . If,
conversely, this condition is satisfied, then we can form the locally convex direct limit
space Z := lim−→ Xj/(F ∩ Xj). The natural maps Xj → Z are continuous, hence

combine to a continuous map X → Z whose kernel F is a closed subspace. ��

Problem B.1. Does Proposition B.3 also hold without the assumption that the groups
� ∩Xn are finitely generated? If this is true, then the proof of the discreteness of the
groups H 1

dR,c(M;�) in Section IV would be much easier because we would not need
the complicated approximation procedure from Section III. ��
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Abstract. We construct Chern–Weil classes on infinite dimensional vector bundles with struc-
ture group Cl∗0(M,E), the group of zeroth order invertible classical pseudo-differential op-
erators acting on a finite rank vector bundle E over a closed manifold M . Cl∗0(M,E) is the
structure group of geometric bundles naturally associated to loop spaces of Riemannian man-
ifolds. Mimicking the finite dimensional Chern–Weil construction, we replace the ordinary
trace on matrices by different linear functionals on the Lie algebra of Cl∗0(M,E). We use (i)
traces built from the leading symbol, and (ii) a linear map which considers all terms in the
asymptotic expansion of a heat kernel regularized trace. For a specific bundle on loop spaces,
the first approach yields non-vanishing Chern classes in all degrees. The second approach pro-
duces connection independent cohomology classes under stringent conditions. For the tangent
bundle to a loop group, the first method gives a vanishing first Chern class, while the second
method recovers the first Chern class investigated by Freed, and explains why this class is not
connection independent.

2000 Mathematics Subject Classification: 53C05; 58J40.

1 Introduction

Infinite dimensional vector bundles with connections are frequently encountered in
mathematical physics; basic examples include the tangent bundle of loop spaces [6] and
infinite rank vector bundles associated to families of Dirac operators [4]. In this paper,
we construct Chern forms and Chern classes for a class of vector bundles including
the tangent bundle T LM to a loop spaceLM , and produce examples of non-vanishing
classes. In light of Freed’s curious example [6] of a connection dependent first Chern

∗Partially supported by the NSF and the CNRS.
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form on loop groups, an impossibility in finite dimensions, it seems worthwhile to
examine extensions of Chern–Weil theory to infinite dimensions.

In contrast to finite dimensions, on infinite dimensional bundles one first has to
choose the topology on the fiber and determine a structure group. One obvious choice,
modeling the fiber on a Hilbert space H and the structure group on GL(H), leads to
a trivial theory by Kuiper’s theorem [10]. Since a direct topological approach to
characteristic classes seems difficult, we follow the geometric approach of Chern–
Weil theory, which both historically preceded topological approaches and is perhaps
more elementary. In our approach, we assume that our infinite dimensional bundle
E has (i) fibers modeled on the space of sections of a finite rank bundle E over a
closed manifold M , in either a Sobolev or C∞ topology, and (ii) a connection whose
connection one-form takes values in Cl≤0 = Cl≤0(M,E), the space of classical
pseudo-differential operators (�DOs) of nonpositive order acting on the fibers. As in
finite dimensions, Cl≤0 should be the Lie algebra of the structure group. In our case,
the structure group is therefore Cl∗0, the space of zeroth order invertible (and hence
elliptic) �DOs on sections of E. This framework includes the case of T LM [13].

Chern–Weil theory produces characteristic classes from invariant polynomials on
the Lie algebra Cl≤0.Avoiding the difficult question of determining all such invariants,
we focus on those polynomials which produce the Chern classes in finite dimensions,
namely Tr(�kA), the trace of exterior powers of a matrix. However, powers of the
curvature need not be trace class for our structure group. One main topic of the paper
is the investigation in §3 of alternative traces on Cl≤0.One of these traces, the leading
symbol trace, produces nonvanishing Chern classes.

In general, the leading symbol trace picks out the leading term in the asymptotic
expansion Tr(�e−εQ), where � is the curvature of the connection and Q is a gener-
alized Laplacian on the fibre, while the weighted traces of e.g. [17] pick out the finite
term. As a second main topic, in §4 we show that certain asymptotic coefficients are
closed, and that the corresponding cohomology classes are independent of the con-
nection under more stringent conditions. Thus, in contrast to finite dimensions, it is
qualitatively harder to show that characteristic forms are connection independent. In
fact, Freed’s example occurs as an asymptotic coefficient which is closed but does not
satisfy the stringent conditions. Thus both the leading symbol traces of §3 and the
results of §4 give extensions of Chern–Weil theory that improve the weighted trace
approach of [5, 14, 17].

In more detail, in §2 we review classical Chern–Weil theory, with an emphasis on
traces as morphisms λ : Ad P → C from the adjoint bundle of a principal bundle P to
the trivial C bundle. Here the structure group and the base may be infinite dimensional,
and we are thinking of P as the principal bundle associated to E . These morphisms λ
produce characteristic forms and classes as in finite dimensions (Theorem 2.2).

In §3, we introduce two types of traces in infinite dimensions, each of which can
be interpreted as generalizations of the ordinary trace on matrices. The first example
is the Wodzicki residue, the unique trace on the space of classical �DOs. However,
we show in §3.1 that the associated Chern forms vanish on loop groups, confirming
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results in [14]. We produce more interesting examples by noting that the Lie algebra of
the structure group Cl∗0 admits a family of “symbol traces” of the form A → �(σA0 ),
where σA0 is the leading symbol of A and � is a distribution on the cosphere bundle
of M . In the main section §3.2, we show that the associated Chern classes are non-
zero in general for the structure group of loop spaces (Theorem 3.3). We also present
evidence that, despite appearances, these classes are not given by integration over the
fiber of Chern classes of a finite dimensional bundle.

In §3.3, we relate the symbol traces to regularization techniques familiar in sta-
tistical mechanics. In particular, in certain cases the symbol trace �Q(σA0 ) equals
the leading term in the asymptotic expansion tr(Ae−εQ), where �Q is a distribution
associated to a generalized LaplacianQ (Propostion 3.4). This applies to loop spaces:
Q = D∗D at the loop γ , with D covariant differentiation in the direction γ̇ along γ .
We also build characteristic classes from symbol traces on the smaller algebra Cl≤p
of�DOs of order at most p for p < 0, and discuss their dependence on the choice of
connection (Theorem 3.6). This is relevant to the loop group case, as the Levi-Civita
connection one-form takes values in such an algebra.

In §4, we extend the discussion of §3.3 to relate symbol traces to other terms
in the asymptotics of tr(Ae−εQ), and in particular to the finite part. This finite part
regularization of tr(A) is well known in the physics literature, but the corresponding
Chern–Weil construction (i.e. replacing A by powers of the curvature form �) does
not produce closed forms in general because of the Q dependence.

To analyze this difficulty, we consider the entire asymptotic series
trQε (�k) := tr(�ke−εQ) as a 2k-form with values in the sum of (i) a formal Laurent

series in ε
1
q (for some q ∈ N) and (ii) log ε times a power series in ε.We modify the

given connection ∇ on E to a connection ∇Q
ε with connection one-form taking values in

the power series ring Cl≤0[[ε]]. We use ∇Q
ε to determine which coefficients of trQε (�k)

are closed (Theorem 4.4), and when their cohomology classes are independent of the
connection (Theorem 4.6). Roughly speaking, the number of coefficients which are
closed grows linearly in −d := −ord([∇,Q]). Thus, the more (covariantly) constant
Q is, the greater the number of closed forms. For example, when d < ord(Q) as
for loop groups, the coefficient of the most divergent term is closed; for k = 1, this
coefficient is precisely the first Chern form considered by Freed. The number of
coefficients whose cohomology class is constant for a family of connections ∇t also
depends linearly on −d, provided the order of d

dt
∇t is sufficiently smaller than d.

From these theorems, we can see precisely why Freed’s first Chern class is connection
dependent.

The second author would like to thank Université Blaise Pascal for its hospitality
during the preparation of this article. Conversations with Simon Scott on this subject
are also gratefully acknowledged. We also thank the editor and a referee for helpful
comments, and in particular for the referee’s simplified proof of (4.4).
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2 Chern–Weil calculus

In this section, we review finite dimensional Chern–Weil calculus as in e.g. [3] and
check its extension to the infinite dimensional setting. We emphasize the role of linear
functionals on the Lie algebra of the structure group, as the choice for functionals is
the main topic of §3.

Let B be a finite dimensional manifold, G a Lie group and P → B a smooth
principal G-bundle. A smooth representation ρ : G → GL(W) of G on a finite
dimensional vector spaceW induces an associated smooth vector bundle W := P ×ρ

W → B. In particular, the adjoint representation ρ : G → Aut(Lie(G)) determines
a bundle Ad P .

This framework extends to Kriegl and Michor’s “convenient setting” for global
analysis [11], which includes principal bundles for regular Fréchet Lie groupsG over
Fréchet manifolds. We will work with the space Cl∗0 of invertible zeroth order �DOs
acting on smooth sections of a vector bundle over a closed manifold M . The Fréchet
topology on Cl∗0 is induced from the standard Fréchet topology on the coefficients of
the homogeneous symbols σi of a�DO T and the Ck topology on the smoothing part
T − ∑

i σi . (The σi and the smoothing part depend on the choice of a partition of
unity onM and a cutoff function in the cotangent variables, which we make once and
for all.) This puts a regular Fréchet Lie group structure on Cl∗0.

We briefly recall the geometric constructions we need in the Banach and Fréchet
setting, referring the reader to [11] for details. The finite dimensional constructions
must be modified, as a representation G → GL(W) fails to be continuous in any
reasonable sense once G and W are infinite dimensional. Indeed, GL(W) cannot be
equipped with an appropriate Lie group structure in general; that is, if G is Banach
and W is either Banach or Fréchet, one does not expect GL(W) to be a Lie group for
the topology in which the representation is expected to be continuous. Even worse, if
W is Frechet, GL(W) is never even a topological group unless W is a Banach space,
in which case it is a Banach Lie group in the operator norm topology [15].

To circumvent these difficulties, one works with the group action associated to a
representation [11, §49.1]. In more detail, let G be a regular Fréchet, resp. Banach
Lie group with Lie algebra A, and let P → B be a smooth principal bundle equipped
with a connection given by a Lie algebra valued connection one-form ω ∈ �1(P,A).
Let W be a Fréchet, resp. Banach vector space (and therefore a regular space in the
sense of [11]). A representation ρ′ of G on W which induces a jointly smooth map
ρ : G × W → W , ρ(g,w) = ρ′(g)(w), determines an associated vector bundle
W := P ×ρ G → B [11, §37.12]. Note that the associated bundle is constructed
just as in finite dimensions, but the smoothness requirement of the representation has
been restated. The space �(B,W) of W -valued forms on B can be identified via
a canonical isomorphism with the space (�(P ) ⊗ W)b of basic forms on P with
values in the trivial bundle P × W [11, §37.31]. Recall that a form is basic if it is
G-invariant and horizontal. Moreover, the connection one-formω onP with curvature
form �P ∈ �2(P,A) induces a covariant derivative ∇ on smooth sections of W [11,



Traces and characteristic classes on loop spaces 189

§37.26], and its curvature �W ∈ �2(B,Hom(W)) is related to �P via the canonical
isomorphism above [11, §37.32].

Let W = A be the Fréchet, resp. Hilbert Lie algebra of G. Recall that the
adjoint representation Ad : G → Aut(A) is the differential of conjugation in G:
Adg a := (DeCg)a, where Cg : G → G is Cg(h) = ghg−1. The differential of Ad,
ad = DAd : A → End(A), is given by adb(a) = [b, a]. It is immediate that the
adjoint representation satisfies the joint smoothness condition above. In particular, a
connection one-form θ ∈ �1(P,A) yields a connection ∇ad on Ad P , with ∇ad =
d + [θ, ·]. (For this reason, our Ad P is often denoted ad P.)

A linear form on A:

λ : A → C

such that Ad∗ λ := λ � Ad = λ induces a bundle morphism

λ : Ad P → B × C

defined as follows. Given a local trivialization (U,�), where U ⊂ B is open and
� : Ad P |U → U × A is an isomorphism, and a local section σ ∈ �(Ad P |U), we
set

λ(σ) := λ(�(σ)).

This definition is independent of the local trivialization. Indeed, given another local
trivialization (V ,�), at b ∈ U ∩ V we have

λ(�(σ)) = λ(Adg �(σ)) = λ(�(σ)), for some g = gb ∈ G.
The connection ∇ad on Ad P induced by a connection θ on P induces in turn a

connection ∇∗ on the dual bundle Ad P ∗ (i.e. (Ad P)∗), which is locally described
by ∇ad∗ = d + ad∗

θ . Since Ad∗ λ = λ implies ad∗λ = 0, we have ∇ad∗
λ = dλ = 0,

since λ is locally constant. Summarizing, we have:

Lemma 2.1. Let λ : Ad P → B × C be the linear morphism induced by a linear
form λ : A → C with Ad∗ λ = λ. Let ∇ad = d + [θ, ·] = d + adθ be a connection
on Ad P induced by a connection θ on P . Then

d � λ = λ � ∇ad. (2.1)

Proof. Since dλ = 0, we have d � λ = λ � d locally. However, ad∗λ = 0 implies
λ � d = λ � (d + adθ ) = λ � ∇ad, so d � λ = λ � ∇ad globally. ��

Abusing notation, we will sometimes denote ∇adα by [∇, α], forα an Ad P -valued
form, in analogy to the local description ∇ad = d+[θ, ·], with the understanding that
[∇, α] is a superbracket with respect to the Z2-grading on differential forms.

The lemma leads to the main result of this section. To set the notation, let E → B

be a vector bundle with structure group a Fréchet or Banach Lie group G and with
fiber modeled on a vector space V . The associated principal G-bundle P E is given
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by gluing copies of G over B via the transition maps of E . Strictly speaking, if
{Uα} is an open cover of B which trivializes E and with transition maps gαβ(x) ∈ G,
x ∈ Uα∩Uβ , gαβ(x) : V → V , thenP E = ∐

α(Uα×G)/(x, g) ∼ (x, gαβ(x)g)with
the quotient topology. As an example applicable to loop spaces, let M,X be smooth
finite dimensional manifolds, E → X a finite rank vector bundle, B := C∞(M,X),
and let E → B have fiber Eb = C∞(M, b∗E). Let {Vβ} be the path components of B,
and pick bβ ∈ Vβ.Then the structure group of E |Vβ isG = Gβ = C∞(M,Aut(b∗

βE)),

and the associatedG-bundle has fiberP E |b = C∞(M,Aut(b∗E)) = C∞(M, b∗PE),
where PE is the frame bundle of E. In particular, if E = TX is the tangent bundle to
a paralellizable n-manifold such as a Lie group, then P E |b 	 C∞(M,GLn(C)).

A G-connection on E induces a connection one-form on P E , just as a connection
induces a connection one-form on theG-frame bundle in finite dimensions. In partic-
ular, a connection ∇ on E induces a connection ∇ad on Ad P E , and the curvature �
of ∇ lies in �2(B,Ad P E ).

Theorem 2.2. Let P = P E be the principal bundle associated to a vector bundle with
connection (E ,∇) → B with structure group G. Let � be the curvature of ∇. Let λ
be as in Lemma 2.1. Then for any analytic function f : C → C, the form λ(f (�)) is
closed, and its de Rham cohomology class in H ∗(B; C) is independent of the choice
of ∇.

As usual, we mean that the degree k piece of λ(f (�)) is a closed 2k-form, for all
k ∈ N.

Proof. The usual finite dimensional proof (see e.g. [3]) runs through, with ordinary
traces replaced by λ.

In more detail, λ(f (�)) is closed because λ(�k) is closed for any k ∈ N, which
we check in a local trivialization of Ad P . We have

d λ(�k) = λ(∇ad�k) = λ
( k∑
j=1

�j−1(∇ad�)�k−j
)

= 0,

where we have used the Bianchi identity ∇ad� = 0 in the last identity.
To check that the corresponding de Rham class is independent of the choice of con-

nection, we consider a differentiable one-parameter family of connections {∇t , t ∈ R}
on E . More precisely, connections are elements of the smooth one-forms �1(Ad P),
i.e. smooth bundle maps α : TM → Ad P in the Fréchet topologies. Differentiable
families of connections are defined similarly. ∇t induces a family of connections ∇ad

t

on Ad P. Then

d

dt
λ(�kt )= λ

( k∑
j=1

�
k−j
t

(
∇̇t∇t + ∇t ∇̇t

)
�
j−1
t

)
= λ

( k∑
j=1

�
k−j
t (∇ad

t ∇̇t )�j−1
t

)

= λ
(
∇ad
t

k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
= dλ

( k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
.

(2.2)
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In the first equality, we use ∇2
t = �t , in the second we have extended the bracket

connection to forms, and in the third we have used the Bianchi identity. (2.2) shows
that the dependence on the connection is measured by an exact form and hence vanishes
in cohomology. ��

This yields the usual Chern–Weil classes:

Corollary 2.3. Let G ⊂ GL(n,C) be a finite dimensional Lie group, and let E → B

be a vector bundle with structure groupG. Let ∇ be a connection on E with curvature
�. For any analytic function f , the forms tr(f (�)) ∈ �∗(B,C) are closed and their
de Rham cohomology classes are independent of the choice of ∇.

This follows from Theorem 2.2 by passing from E to P E and using λ = tr, the
ordinary trace on matrices.

Remark. For GL(n,C) and U(n), all characteristic classes are generated by tr(�k),
k ∈ N. However, we do not capture the Euler class for SO(n,R) by this procedure, as
this class is generated by the non-linear, but Ad-invariant function

√
det.We can treat

this case either by using the identity det(1 +A) = ∑
k tr(�kA), or by noting that the

proof of Theorem 2.2 does not use the linearity of λ.

Notation. Throughout the paper, “�DOs” means classical pseudo-differential op-
erators, and Cl (M,E) denotes the space of all classical �DOs acting on smooth
sections of the finite dimensional Hermitian bundleE over a closed Riemannian man-
ifold M . Clk(M,E) denotes the subspace of �DOs of order k ∈ R. Cl≤k(M,E),
resp. Cl<k(M,E) denotes the space of �DOs of order at most k, resp. less than k.
Cl∗k(M,E) denotes the set of invertible operators in Clk(M,E). E ll+(M,E) de-
notes the space of positive order, elliptic operators in Cl (M,E) with positive definite
leading symbol.

A bundle E with fiber modeled onC∞(M,E) or onHs(M,E) is a�DO bundle if
the transition maps lie in the regular Fréchet Lie group Cl∗0(M,E). Here C∞(M,E),
Hs(M,E) are the spaces of smooth and s-Sobolev class sections of E, respectively.
Ad P E is a bundle of algebras locally modeled on Cl≤0(M,E), and will be denoted
Cl≤0(E). Note that Ad P E equals the bundle E ×Cl∗0(M,E) Cl≤0(M,E) associated
to the adjoint representation. In §4, we also consider the larger bundle Cl(E) =
E ×Cl∗0(M,E) Cl (M,E), associated to the adjoint representation of Cl∗0(M,E) on the
algebra Cl (M,E); here Cl (M,E) is given the inductive limit topology of the usual
Fréchet topology on Cl≤k(M,E).

A connection on a�DO bundle E is a�DO connection if its connection one-form
takes values in Cl (M,E) in any local trivialization.

Remark. If θ is the locally defined connection one-form of a �DO connection on
a bundle E modeled on C∞(M,E), then under a gauge change g, θ transforms to
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g−1θg+ g−1dg. Since g−1dg is zeroth order if g is nonconstant, the connection one-
form is usually of non-negative order. (For left-invariant connections on loop groups,
g−1dg vanishes, and θ can be of any order.) When θ is of non-positive order, it is
a bounded operator and hence extends to a connection on the extension of E to an
Hs(M,E)-bundle. We call a connection with connection one-form taking values in
Cl≤0(M,E) a Cl≤0-connection. The curvature of such a connection is a Cl≤0-valued
two-form on the base.

3 Examples of traces and corresponding Chern classes in
infinite dimensions

In this section we examine two examples of Theorem 2.2. The trace is furnished by
the Wodzicki residue in the first example, and by various traces applied to the leading
order symbol of a zeroth order �DO in the second. We also consider various traces
applied to the leading order symbol of�DOs of negative order, for which an extension
of Theorem 2.2 is needed.

In each case, we begin with a Fréchet or Hilbert vector bundle E over a base spaceB,
with fiber modeled on C∞(M,E) orHs(M,E), with structure group given by Cl∗0 =
Cl∗0(M,E). We will consider a connection on B with values in the corresponding
Lie algebra Cl≤0 = Cl≤0(M,E). In the language of §2, we pass from E to the
corresponding principal bundle P = P E with fiber modeled on Cl∗0. Then Ad P has
fiber modeled on Cl≤0, and we can apply the Chern–Weil machinery of §2, using
either the Wodzicki residue or the leading symbol traces for the functional λ.

Note that in this section, we are treating the structure group Cl∗0 as a generalization
of GL(n,C).As in finite dimensions, we focus only on invariant polynomials on the
Lie algebras given by traces. We do not discuss the interesting question of whether
all such polynomials on Cl≤0 are generated by these traces.

Exactly how these examples generalize the finite dimensional situation is open to
interpretation. When the manifold is reduced to a point, the leading symbol of an
endomorphism in the fiber, a “zeroth order �DO,” is just the endomorphism itself,
and the only trace, up to normalization, is the ordinary trace on a vector space. In
contrast, in finite dimensions the Wodzicki residue vanishes. So in this interpretation,
the Wodzicki residue is a purely infinite dimensional phenomenon, while the symbol
trace generalizes the finite dimensional theory.

On the other hand, both the Wodzicki residue and the symbol trace appear in the
most divergent term in asymptotic expansions: the Wodzicki residue of an operator A
is the residue of the pole of the zeta function regularization Tr(AQ−s) at s = 0 (for any
positive elliptic operator Q), and the symbol trace is related to the coefficient of the
most divergent term in the heat operator regularization Tr(Ae−εQ) as ε → 0. (The last
statement is proved in Proposition 3.4.) Since the two corresponding “regularizations”
in finite dimensions using a positive definite matrixQ simply reduce to Tr(A), we can
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alternatively view both examples as proper generalizations of the finite dimensional
Chern–Weil theory.

Similarly, on the smaller algebra Cl≤p(M,E) for p < 0, there are leading symbol
traces that are also related to the coefficient of the leading term (usually the “most
divergent" term) in the heat operator regularization. Because this is a proper subalgebra
of the Lie algebra Cl≤0(M,E) of the structure group, we cannot expect a full Chern–
Weil theory for Cl≤p(M,E)-connections. Nevertheless, in §3.3, we produce closed
characteristic forms for these connections and show that the characteristic classes
obtained this way are independent of the choice of connection, provided the two
connections differ by a Cl≤p(M,E)-valued one-form. In §4, we improve this result
and the results in [17] by formally keeping track of all terms in the relevant asymptotic
expansions.

In summary, there seems to be no canonical generalization or regularization of
finite dimensional Chern–Weil theory free from drawbacks: using the operator trace
on trace class operators is too restrictive for zeroth order operators, the better adapted
leading symbol traces vanish on trace class operators and operators of negative order,
and the weighted traces of §4 are not true traces. Moreover, there is no canonical
interpretation of whether a specific method is indeed a proper generalization, as the
Wodzicki residue can be interpreted either as an extension of the finite dimensional
theory or as a purely infinite dimensional pheonomenon. The particular choice of
regularization depends on a combination of physical motivation, computability and
nontriviality results.

3.1 The Wodzicki residue

Recall that the Wodzicki residue reswA of a �DO A acting on sections of a bundle E
over a closed manifoldM is defined to be the residue of the pole term of Tr(AQ−s) at
s = 0, for an elliptic operatorQwith certain technical conditions. Alternatively, reswA

is proportional to the coefficient of log ε in the asymptotic expansion of Tr(Ae−εQ)
as ε → 0, forQ ∈ E ll+(M,E). The strengths of the Wodzicki residue are (i) its local
nature:

reswA = 1

(2π)n

∫
S∗M

tr σA−n(x, ξ) dξ dx,

where n = dim(M), S∗M is the unit cosphere bundle of M , and σA−n is the (−n)th
homogeneous piece of the symbol of A; and (ii) the fact that it is the unique trace on
Cl = Cl (M,E), up to normalization. Its drawback is its vanishing on all differential
and multiplication operators, all trace class operators (and so all �DOs of order less
than −n) and all operators of non-integral order.

Given an infinite dimensional bundle E over a base B with fibers modeled either
on Hs(M,E) (with s � 0) or on C∞(M,E), and a connection on E with curvature
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� ∈ �2(B,Cl ), we can form the kth Wodzicki–Chern form by setting

cw
k (�) = resw�

k ∈ �2k(B).

By Theorem 2.2, cw
k (�) is closed and independent of the connection.

As an example, we show that the Wodzicki–Chern forms vanish for current groups
C = Hs+1(M,G), the space of Hs+1-maps from a closed Riemannian manifold M
to a Lie groupG. (The same vanishing holds for Fréchet current groups.) The tangent
space at any map f is the space of sections Hs(M, f ∗TG). Since TG is canonically
trivial, so is TC. For the trivial connection, we certainly have the vanishing of the
Wodzicki–Chern forms. It follows that the Wodzicki–Chern classes vanish for any
�DO connection.

We now check that the Levi-Civita connection on a current group is a�DO connec-
tion for a semi-simple Lie group G of compact type. (These assumptions ensure that
the Killing form is nondegenerate and that the adjoint representation is antisymmetric
for this form.) C is a Hilbert Lie group with Lie algebra Hs(M,A), the space of Hs

sections of the trivial bundle M × A, where A = Lie(G). Thus the tangent bundle
TC is a �DO bundle with fibers modeled on Hs(M,A). For � the Laplacian on
functions onM , we setQ0 := �⊗1A, a second order elliptic operator acting densely
on Hs(M,A). Q0 is non-negative for the scalar product 〈·, ·〉0 := ∫

M
dvol(x)(·, ·),

where (·, ·) is minus the Killing form. TC has a left-invariant weightQγ = LγQ0L
−1
γ

(i.e. a family of elliptic operators on the fibers), where Lγ is left translation by γ ∈ C.
C has a left-invariant Sobolev s-metric defined by

〈·, ·〉s := 〈Q0
s
2 ·,Q0

s
2 ·〉0,

where Q0 is really Q0 + P , for P the orthogonal projection of Q0 onto its kernel.
The corresponding left-invariant Levi-Civita connection has the global expression
∇s = d + θs , with θs a left-invariant End(TC)-valued one-form on C induced by the
End(Hs(M,A))-valued one-form on Hs(M,A)

θs0(U) = 1

2

(
adU +Q0

−sadU Q0
s −Q0

−sadQ0
sU

)
, (3.1)

for U ∈ Hs(M,A) [6, (1.9)]. By inspection, θs takes values in Cl≤0(M,M × A).

The fact that Wodzicki–Chern classes vanish on current groups is not surprising,
since the same argument works on any parallelizable manifold. It is more surprising
that these classes vanish on any loop space, even when the target manifold is not
parallelizable [14]. Thus the Wodzicki residue, the natural first choice for a trace
functional, yields a Chern–Weil theory that is currently vacuous. As a result we look
for other functionals with nontrivial Chern–Weil theory.

3.2 Leading symbol traces

The uniqueness of the trace on Cl defined by the Wodzicki residue does not rule out
the existence of other traces on subalgebras of Cl . Indeed, the ordinary operator trace
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on Cl≤−n is an example. In this subsection, we will introduce a family of traces on
Cl≤0 and show that they produce non-vanishing Chern classes on the universal bundle
associated to the gauge group for E = T LM , the tangent bundle to the free loop
space of a Riemannian manifold M . To our knowledge, this is the first example of
non-vanishing Chern classes of infinite dimensional bundles above c1.

We first produce a “trace” on Cl≤p for fixed p ≤ 0 with values in S∗M , and an
associated family of true traces. A description of all traces on e.g. Cl≤p for fixed
p ≤ 0 is an interesting question; we have preliminary results with J.-M. Lescure. Let
D ′(X) denote the space of complex valued distributions on a compact manifold X.

Lemma 3.1. For p ≤ 0, the map Trp : Cl≤p(M,E) → C∞(S∗M) defined by
Trp(A) = trx(σAp (x, ξ)) has Trp(A+B) = Trp(A)+ Trp(B), Trp(λA) = λTrp(A),
and Trp(AB) = Trp(BA). For any � ∈ D ′(S∗M), the map Tr�p : Cl≤p → C given

by Tr�p (A) = �(Trp(A)) is a trace.

Proof. Certainly taking the pth order symbol is linear. When p = 0, since the leading
order symbol is multiplicative, we have

trx σ
AB
0 = trx(σ

A
0 · σB0 ) = trx(σ

B
0 · σA0 ) = trx σ

BA
0 .

When p < 0, for A,B ∈ Cl≤p(M,E), the products AB and BA lie in Cl≤2p(M,E)

so that we have

trx σ
AB
p = 0 = trx σ

BA
p .

The proof of the second statement is immediate. ��
In this subsection, we focus on the case p = 0, leaving the case p < 0 for the next

subsection. For convenience we set Tr := Tr0, Tr� := Tr�0 . When the distribution is
given by �(φ) = ∫

S∗M f (x, ξ)φ(x, ξ) for all φ ∈ C∞(S∗M), we simply write Trf .

Remarks. (i) When p < 0, for r ∈ [2p, p], TrrA = trx(σAr (x, ξ)) is also a trace,
as Trr (AB) trivially vanishes for r > 2p. The proof of the lemma covers the case
r = 2p.

(ii) Let Q ∈ E ll+(M,E) have scalar leading symbol σQL (x, ξ) = f (x, ξ)Id.
Define f̃ ∈ C∞(S∗M) by

f̃ =
(n− 1)!�

(
n
q

)
dim(E)

q(2π)n
f (x, ξ)

− n
q ,

where n = dim(M), q = ord(Q). Then Trf̃ (A) is the leading term in the asymptotics
of Tr(Ae−εQ) if ord(A) = 0 (see Proposition 3.4).

Recall that the ring of characteristic classes for e.g. U(n) bundles is generated by
the Chern classes ck = [Tr(�k�)], or equivalently by the components νk = [Tr(�k)]
of the Chern character. Note we are momentarily distinguishing between Tr(�kA)
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and Tr(Ak) for a matrix A. We will concentrate on Chern forms, and abuse notation
by writing ck = [Tr(�k)].

Definition. Let E be a �DO-bundle over B modeled on Hs(M,E) or C∞(M,E),
and let ∇ be a �DO-connection on E . The kth Chern class of ∇ with respect to
� ∈ D ′(S∗M) is defined to be the de Rham cohomology class

[c�k (�)] = [�(trxσ�k0 (x, ξ))] ∈ H 2k(B; C). (3.2)

As before, when �(φ) = ∫
S∗M f (x, ξ)φ(x, ξ) we set cfk = c�k .

Remarks. (1) As an example, if f = 1 ∈ C∞(S∗M) is the constant map with value
1 on S∗M , then

c
f
k (�) =

∫
S∗M

trx σ
�k

0 (x, ξ).

At another extreme, if � = δ(x0,ξ0) is a delta function, then

c�k (�) = trx0 σ
�k

0 (x0, ξ0).

(2)As in the previous remark, we can define Chern classes c�r,k for connections with
curvature forms taking values in Cl≤p for any r ∈ [2p, p]. Note that for r < p and
e.g.�(φ) = ∫

S∗M φ(x, ξ), these classes are defined only after a choice of coordinates
on M,E and a partition of unity on M , since integrals of non-leading order symbols
depend on such choices.

The following result justifies this definition:

Theorem 3.2. Let ∇ be a Cl≤0-connection on a�DO bundle E . Then the differential
forms c�k (�) are closed, and their cohomology classes are independent of the choice
of Cl≤0-connection.

Proof. By Lemma 3.1, Tr� is a trace on Cl≤0(M,E), so we can apply Lemma 2.1 to
the principal bundle P = P E built from E to get the relation d � Tr� = Tr� � ∇ad.
We then apply Theorem 2.2 to get the corresponding Chern classes [c�k (�)]. ��
Remark. For the linear functionals Tr�p , the proof that the Chern forms are closed
goes through. However, the proof of their independence of choice of connection
breaks down, since the class of connections with curvature forms lying in Cl≤p is not
connected. In the next subsection, we nevertheless show that the independence holds
on a restricted class of connections.

When the structure group reduces to a gauge group, we can construct an example of
non-zero Chern classes [cfk (�)]. Fix n > k and consider the Grassmannian BU(n) =
Gr(n,∞) with its universal vector bundle En. We consider the pullback bundle E =
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π∗En over S1 × BU(n), with π the projection onto BU(n).We now “loopify” to form
B = L(S1 × BU(n)), the free loop space of S1 × BU(n), with bundle E whose fiber
over a loop γ is the space of smooth sections of γ ∗E over S1. (Eγ is the space of
loops in E lying over γ , suitably interpreted at self-intersection points of γ , so we
will write E = Lπ∗En.) Since γ ∗E is (non-canonically) isomorphic to the trivial
bundle S1 × C

n over S1, it is easily checked that the structure group for E is the
gauge group G of this trivial bundle. Indeed, as in the example before Theorem 2.2
with M = S1, X = S1 × BU(n), the structure group of E is C∞(S1,Aut(γ ∗E)) 	
C∞(S1,GLn(C)).

Take a hermitian connection ∇ on En (e.g. the universal connection PdP , where
Px is the projection of C

∞ onto the n-plane x) and its pullback connection π∗∇ on
S1 × BU(n).As in the case of the tangent bundle to a loop space, we can take an L2

or pointwise connection ∇0 on E by setting

∇0
XY(γ )(θ) = (π∗∇)X(θ)Y (θ),

forX a vector field along γ (i.e. a tangent vector in B at γ ) and Y a local section of E .
The curvature �0 acts pointwise and hence is a multiplication operator: (�0

γ u)(θ) =
(π∗�)γ (θ)u(θ),where� is the curvature of ∇. In particular, its symbol is independent
of ξ .

Pick the distribution δ = (1,+) on C∞(S∗S1) = C∞(S1 × {±∂θ }): i.e.

δ(f (θ, ∂θ ), g(θ,−∂θ )) = 1

2π

∫
S1
f (θ, ∂θ ) dθ.

We claim that [cδk(�0)] is nonzero in H 2k(B; C). To see this, let a = a2k ∈
H2k(BU(n),C) be such that 〈ck(En), a〉 = 1. Define c ∈ H 2k(B) to be c = β∗a,
where β : BU(n) → L(S1 × BU(n)) is given by β(x)(θ) = (θ, x). Now

〈[cδk(�0)], c〉 = 〈[cδk(�0)], β∗a〉 = 〈[β∗cδk(�0)], a〉. (3.3)

For γ ∈ L(S1 × BU(n)), we have

cδk(�
0)(γ ) = 1

2π

∫
S1

tr
(
σ
(�0)k

0 (γ (θ), ∂γ (θ))
)
dθ = 1

2π

∫
S1

tr
(
π∗�kγ (θ)

)
dθ. (3.4)

For a tangent vector X ∈ Tx BU(n), it is immediate that β∗(X) ∈ Tβ(x)B has
β∗(X)(θ, x) = (0, X). Thus by (3.4),

β∗cδk(�0)(X1, . . . , X2k) = 1

2π

∫
S1

tr(π∗�k)((0, X1), . . . , (0, X2k))

= tr(�k)(X1, . . . , X2k).

(3.5)

Combining (3.3) and (3.5), we get

〈[cδk(�0)], c〉 = 〈[tr(�k)], a〉 = 1.

In particular, the class [cδk(�s)] must be non-zero.
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Theorem 3.3. The cohomology classes [cδk(�)] are non-zero in general. In particular,
the corresponding classes for the universal bundleEG are nonzero in the cohomology
of the classifying space BG, where G is the gauge group of the trivial bundle S1 × C

n

over S1.

We have shown the first statement. To explain the second statement, note that
although the structure group ofLπ∗γn is the gauge group of the trivial bundle S1 ×C

n

over S1, the curvature of the connection will take values in Cl≤0(S
1, S1 × C

n) of this
bundle. As a result, the classifying space is really BCl∗0. It can be shown [18] that the
principal symbol map is the time one map of a deformation retraction of Cl∗0 onto the
gauge group of the trivial bundle over S∗S1, which is just two copies of G. Thus BCl∗0
is homotopy equivalent toBG

∐
BG, and each [c(1,±)k ] is non-zero in one copy ofBG.

The proof of the second statement depends on the existence of a universal connection
on EG over BG [18].

In fact, BG equals L0 BU(n), the space of contractible loops on BU(n) [2]. It is
known that H ∗(BG,C) is a super-polynomial (i.e. super-commutative) algebra with
one generator in each degree k ∈ {1, . . . , 2n}. In analogy with finite dimensions, we
conjecture that [cδk] is a nonzero multiple of the generator in degree 2k. For k = 1,
this is clear.

We now outline a conjectured construction of geometric representatives of the odd
generators in H ∗(BG). The tangent bundle T LM of any loop space has a canonical
vector field, namely γ̇ ∈ TγLM . Note that for any connection on a bundle over LM ,
for any � ∈ D ′(S∗S1) we have

diγ̇ c
�
k (�) = diγ̇ c

�
k (�)+ iγ̇ dc

�
k (�) = Lγ̇ c

�
k (�), (3.6)

where i is interior product and L is Lie derivative. We state without (the elementary)
proof that (3.6) implies

diγ̇ c
�
k (�) = c∂�k (�), (3.7)

where ∂� is the derivative of � as a distribution on S∗S1. In particular, we see that
iγ̇ c

(1,±)
k (�) are closed forms. It remains to be seen if

[iγ̇ c(1,±)k (�)] ∈ H 2k−1(BG
∐
BG

)
are non-zero.

We can also use (3.7) to understand the dependence of [c�k (�)] on �. Since � is
a zero current on S∗S1 and hence is trivially closed, and since exact zero currents ∂�
produce vanishing Chern classes by (3.7), we see that the space of classes

{[c�k (�)] : f ∈ D ′(S∗S1)} ∈ H 2k(BG)

is isomorphic to the zeroth cohomology group of complex currents on S∗S1. (Here
we are extending the usual confusion of functions f and one-forms f dθ on S1 to
a confusion of zero- and one-currents.) This cohomology group is isomorphic to
H0(S

∗S1), and is spanned by (1,±). (The reader may wish to check directly from
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(3.7) that all δ-function currents on one copy of S1 produce the same cohomology
class. A more interesting exercise is to show that these delta functions produce the
same cohomology class as one of (1,±) using Fourier series.)

Remarks. (i) The general case, where the gauge group is associated to the bundle E
over a closed manifoldM , is more complicated. The cohomology ofBG is known, and
in general has odd dimensional cohomology [2]. We do not know at present which
part of H ∗(BG) is spanned by [c�k (�EG)], where we use the universal connection
mentioned above. We also do not know how to produce geometric representatives of
odd dimensional classes in H ∗(BG), nor do we know how the Chern classes depend
on the distribution.

(ii) In the loop group case, Freed showed [6] that the curvature�s of theHs Levi-
Civita connection is a �DO of order −1 for s > 1/2. For this connection, the Chern
forms built from σ0 trivially vanish. In the next subsection, we discuss the k-th Chern
forms one can build using the symbol of order −k. For loop groups, the first Chern
form requires the additional analysis in §4, while higher powers of the curvature are
trace class operators, requiring no regularization.

(iii) For the distribution � given by integration over S∗M , the symbol trace looks
like an integration over the fiber. Nevertheless, to the best of our knowledge, our
Chern classes are not given by an integration of characteristic classes of an associated
finite dimensional bundle.

In more detail, let E be a bundle over B with structure group Cl∗0 and with a�DO
connection ∇. Let G be the gauge group of π∗E over S∗M.As in [18], E reduces to a
G-bundle F ′ with connection ∇′, where the connection one-form of ∇′ is the zeroth
order symbol of the connection one-form of ∇. The curvature of ∇′ equals the zeroth
order symbol of the curvature of ∇. The fiber of F ′ is still C∞(M,E), and we can
form a G-bundle F over B with fiber C∞(S∗M,π∗E) using the same gluing maps as
for F ′. (While G acts on fibers of F ′ as zeroth order �DOs, it acts on fibers of F as
multiplication operators.) The connection one-form for ∇′ still transforms correctly
on F , and so defines a connection on F , also denoted ∇′. The curvatures of the ∇′
connections are equal.

F induces a finite dimensional bundle F over B×S∗M , with fiber π∗E|(x,ξ) over
(b, x, ξ). However, ∇′ induces a connection ∇F on F only after we specify how to
differentiate in S∗M directions. Assume that we can specify these differentiations so
that the curvature �F is flat in S∗M directions. �F will still agree with �F in B
directions, and

[c�k (�E )] = [c�k (�F ′
)] = [c�k (�F )] =

[∫
S∗M

tr((�F )k)

]

=
∫
S∗M

[tr((�F )k)] =
∫
S∗M

ck(F ),

where
∫
S∗M outside the braces is the pushforward map fromH ∗(B×S∗M) toH ∗(B).
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Thus under the assumption, the cohomology class c�k (E) will indeed be the in-
tegration over the fiber of the Chern class of a finite dimensional bundle. However,
the assumption is unreasonable: even if E is trivial, as for loop spaces, there is no
canonical identification of the fibers of E withHs(M,E), so the trivial connection on
E does not glue up to a connection on F which is trivial in S∗M directions.

3.3 Leading terms in heat-kernel asymptotic expansions

In this section, we consider traces Tr�p for p ≤ 0. Theorem 2.2 no longer applies, as
it did for p = 0, since Tr�p defines a trace only on the subalgebra Cl≤p of the Lie
algebra Cl≤0. We cannot expect these traces to produce a full Chern–Weil theory on
�DO bundles. However, they do yield characteristic classes which are independent
of the choice of the connection in some restricted class of connections.

We first relate leading symbol traces to leading terms in heat-kernel asymptotic
expansions. We then use Tr�p to prove that the leading term in the asymptotic expansion
of tr(�e−εQ) is closed, where Q is a generalized Laplacian and � the curvature on a
�DO bundle. In fact, we show that if Q has positive leading symbol σL(Q)(x, ξ) =
f (x, ξ)Id and if � has integer order a > −dim(M), then this leading term is given
by the leading symbol trace Trfa (�).

The following folklore result follows from the analysis developed in [7], while the
analysis in the following proof is hidden in the local nature of the Wodzicki residue.

Proposition 3.4. LetA ∈ Cl≤0(M,E)have integral ordera > −n = −dim(M), and
letQ be an elliptic�DO of order q with positive scalar leading symbolσL(Q)(x, ξ) =
f (x, ξ)Id. Let c = c(n, a, q) be

c = �(n+a
q
)dim(E)(n− 1)!
q(2π)n

.

Then as ε → 0,

tr(Ae−εQ) = c

∫
S∗M

tr (σa(A)(x, ξ)) (f (x, ξ))
− n+a

q · ε− n+a
q + o

(
ε
− n+a

q
)
.

In particular, if σL(Q)(x, ξ) = ||ξ ||k for some k, then

tr(Ae−εQ) = c

∫
S∗M

tr (σa(A)) · ε− n+a
q + o

(
ε
− n+a

q
)
.

Proof. We want to compute the coefficient a0(A,Q) in the known asymptotic expan-
sion

tr(Ae−εQ) =
a+n∑
j=0

aj (A,Q)ε
j−a−n
q + b0(A,Q) log ε + O(1), (3.8)
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for general A ∈ Cl (M,E) of order a, and with aj (A,Q), b0(A,Q) ∈ C. The
coefficient b0(A,Q) satisfies b0(A,Q) = − 1

q
resw(A).

A Mellin transform yields

a0(A,Q) = Resz= n+a
q
�

(
n+ a

q

)
tr(AQ−z),

(the case A = 1 considered in [10, (12)] easily extends to a general �DO A). Thus,
for A as in the hypothesis,

a0(A,Q) = �(n+a
q
)

q�(n+ a)
a0
(
A,Q

1
q
)
.

Thus it suffices to prove the formula forQ1 of order one. Since ord(AQ−(n+a)
1 ) = −n,

(3.8) becomes

tr
(
AQ

−(n+a)
1 e−εQ1

) = −resw
(
AQ

−(n+a)
1

)
log ε + O(1).

Differentiating this expansion n+ a times (recall that n+ a is a positive integer) with
respect to ε, we get

tr(Ae−εQ1) ∼ (n+ a − 1)! resw
(
AQ

−(n+a)
1

)
ε−(n+a).

The local formula for the Wodzicki residue yields:

resw(AQ
−(n+a)
1 ) = 1

(2π)n

∫
S∗M

tr
(
σ−n(AQ−(n+a)

1 )
)

= 1

(2π)n

∫
S∗M

tr
(
σa(A)σ−(n+a)(Q−(n+a)

1 )
)

= dim(E)

(2π)n

∫
S∗M

tr(σa(A))f (x, ξ)
−(n+a).

Hence our original Q has

a0(A,Q) = �(n+a
q
)

q�(n+ a)
a0(A,Q

1
q ) = c

∫
S∗M

tr (σa(A)) (f (x, ξ))
−(n+a)/q . ��

Lemma 3.5. Let E → B be a�DO bundle with a�DO connection ∇ whose connec-
tion one-form θ takes values in Cl≤0(M,E). Let A ∈ �k(B,Cl (E)) be a Cl≤a(E)-
valued form whose order a is independent of b ∈ B.

(i) For any distribution � ∈ D ′(S∗M), dTr�a (A) = Tr�a ([∇, A]). In particular, if
[∇, A] = 0, then Tr�a (A) ∈ �k(B,C) is closed.

(ii) Let Q = {Qb} ∈ � (Cl (E)) be a smooth family of elliptic operators of con-
stant order q and with positive scalar leading symbol independent of b ∈ B. Define
a0(A,Q), b0(A,Q) ∈ �k(B,C) as in (3.8). If [∇, A] = 0, then b0(A,Q) is closed,
and a0(A,Q) is closed if a ∈ Z, a > −dim(M).
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Note that the condition on the leading symbol is independent of trivialization of E .

Proof. (i) We have

dTr�a (A) = � [dtrx(σa(A))] = � [trx (σa(dA))]

= � [trx (σa(dA+ [θ,A])] = � [trx (σa([∇, A]))] .
Here we use the fact that θ has non-positive order, so that

trx (σa([θ,A])) = trx ([σ0(θ), σa(A)]) = 0,

if [θ,A] has expected order a. Finally, σa([θ,A]) = 0 trivially if the order of [θ,A]
is less than a.

(ii) a0(A,Q) is the leading term in the asymptotic expansion (3.8) and hence
proportional to a leading symbol trace by the above proposition. It is therefore closed
by (i). Since b0(A,Q) = − 1

q
resw(A), it is closed by §3.1. ��

As a consequence, we can build “Chern–Weil type” closed forms from leading
symbol traces Tr�p .

Theorem 3.6. Let E → B be a �DO bundle with a �DO connection ∇ whose
connection one-form θ takes values in Cl≤0(E), and whose curvature two-form (which
takes values in Cl≤0(E)) has constant order a. LetQ ∈ � (Cl (E)) be a smooth family
of elliptic operators of constant order q and with positive scalar leading symbol
independent of b ∈ B. In the notation of (3.8), the following elements of �2k(B,C)

are closed:

(i) Tr�ka(�
k), for any � ∈ D ′(S∗M);

(ii) a0(�
k,Q), for ka ∈ Z, a > −n

k
, where n = dim(M);

(iii) b0(�
k,Q). Moreover, the cohomology class of b0(�

k,Q) is independent of
the choice of connection ∇.

Let {∇t : t ∈ [0, 1]} be a smooth family of Cl≤0(E) connections such that
∇̇t ∈ �1(B,Cl≤a(E)) and �t ∈ �2(B,Cl≤a(E)). The following de Rham cohomol-
ogy classes are independent of t:

(iv)
[
Tr�ka(�

k
t )
]
;

(v)
[
a0(�

k
t ,Q)

]
for ka ∈ Z, a > −n

k
, where n = dim(M).

Note that when a = 0, this gives back the results of Theorem 3.2.

Proof. (i)–(iii) follow from Lemma 3.5. The fact that [b0(�
k,Q)] is independent of

the choice of connection follows from the results of §3.1, since b0(�
k,Q) is pro-

portional to resw(�
k). For (iv), we repeat (2.2), with λ replaced by Tr�ka. Note that

we have to use Lemma 3.5 to swap the (covariant) differentiation and Tr�ka in this
argument. Finally, since a0(�

k
t ,Q) is a leading order symbol by Proposition 3.4, we

get (v). ��
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Remark. Theorem 3.6 does not apply to Freed’s conditional first Chern form on loop
groups. Even though, as we will see in §4, this Chern form corresponds to the finite
part a0(�,Q0), the curvature of the Levi-Civita connection for the H 1/2 metric on
LG has order a = −1 = −dim(S1), the borderline case for Theorem 3.6. Showing
that Freed’s conditional first Chern form on loop groups is closed [6] requires the more
refined analysis of §4.

4 Characteristic classes and formal power series

In this section, we use heat kernel regularized traces to produce an asymptotic series
of characteristic forms, provided the regularizing family of operators {Qb} is “fairly
covariantly constant.” This improves the weighted trace approach of [17], and is based
on regularization techniques common in quantum field theory.

We begin with some calculations leading to Lemma 4.1, which measures the effect
of trying to push a connection ∇ on a bundle E past a heat operator or a weighted
trace. For {A0, A1, . . . , An} ⊂ Cl (M,E) and (σ0, . . . , σn) ∈ (R+)n+1, the operator
A0e

−σ0QA1e
−σ1Q . . . Ane

−σnQ is smoothing and hence trace class. We define trace
forms

〈A0, A1, . . . , An〉ε,n,Q :=
∫
�n

tr
(
A0e

−εσ0QA1e
−εσ1Q . . . Ane

−εσnQ
)
, (4.1)

where �n is the standard n-simplex, in agreement with [9] (although there the Ai are
bounded). In particular, we call the Q-weighted trace of A (with ε-cut-off) the linear
functional 〈A0〉ε,0,Q = trQε (A0).

The concept of trace form and hence of weighted trace extends to sections of a�DO
bundle. Recall that a�DO bundle E with structure group Cl∗0(M,E) has an associated
bundle of algebras Cl≤0(E) = Ad P E with fibers modeled on Cl≤0(M,E).A weight
is a section Q ∈ �(Cl(E)) with Q elliptic with positive definite leading symbol and
of constant order. These conditions are independent of local chart, since the transition
maps are�DOs. In particular, if {gb} is the transition map between two trivializations
of E over b, thenQb transforms into g−1

b Qbgb; the same holds for sections of Cl(E).

For A ∈ �(Cl(E)), trQε (A) is well-defined, since

trg
−1Qg
ε (g−1Ag) = Tr(g−1Age−εg−1Qg) = Tr(g−1Agg−1e−εQg) = trQε (A). (4.2)

In the same way, for {A0, . . . , An} ⊂ �(Cl(E)), the trace form 〈A0, . . . , An〉ε,n,Q is
well-defined .

We set trQ(A) to be the finite part of trQε (A) as ε → 0. In other words, trQ(A) is
the coefficient of ε0 in the asymptotic expansion (3.8). This is equivalent to taking the
zeta function regularization Tr(AQ−z)|z=0, providedQ is invertible and (3.8) contains
no log terms.
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If Q = Q0 + Q1, with Q0 elliptic of order q0 > 0 and Q1 of order q1 < q0,
the Volterra formula [1, 3, 8] (the first and third references treat the Banach algebra
setting) states

e−ε(Q0+Q1) =
∞∑
k=0

(−ε)k
∫
�k
e−σ0εQ0Q1e

−σ1εQ0Q1 . . .Q1e
−σkεQ0dσ0dσ1 . . . dσk.

The convergence holds in the trace operator norm topology, and so

tr
(
e−ε(Q0+Q1)

)
=

∞∑
k=0

(−ε)k〈1,Q1, . . . ,Q1〉ε,k,Q0 .

For the moment, let E be a trivial vector bundle over B modeled on C∞(M,E) or
Hs(M,E), with structure group Cl∗0 = Cl∗0(M,E), and with the trivial connection
d . Let Q be a weight on E . For h ∈ Tb0B, writing Qb = Qb0 + dQ(b0) · h + o(h)
and substituting Q0 = Qb0 ,Q1 = dQ(b0) · h+ o(h) in (4.1) yields

e−εQb − e−εQb0 = −ε
∫ 1

0
e−εtQb0 (dQ(b0) · h) e(1−t)εQb0 dt + o(h)

in the trace operator norm topology. From this we derive Duhamel’s formula:

de−εQ = −ε
∫ 1

0
e−εtQdQe−(1−t)εQdt = −ε

∫ 1

0
e−(1−t)εQdQe−εtQdt. (4.3)

Remark. In this derivation we implicitly restrict attention to a compact subset K
of B, so that the o(h) term is uniform on K (see [3]). This applies throughout this
section. In particular, we check that a form ω is closed on B by evaluating dω over
every closed cycle in B. Since the image of a cycle is compact, dω is well defined,
and formulas like (4.3) are valid. Moreover, we can use Duhamel’s formula to justify
differentiating asymptotic expansions of the form Tr(Abe−tQb ) term by term, provided
the asymptotic expansions contain ε±k/q terms (possibly with zero coefficients) with
the k ranging over a subset of Z independent of b. This is certainly the case if the
order of A is constant in b.

For A,Q = Qb0 as above, we also have

[e−εQ,A] = −ε
∫ 1

0
e−(1−t)εQ[Q,A]e−εtQdt. (4.4)

Indeed, differentiating the map t → [e−tQ, A] (which is differentiable as a bounded
linear map from Ha+q(E) to H 0(E) for a = ord(A), q = ord(Q)), we get(
d
dt

+Q
) [e−tQ, A] = [A,Q]e−tQ. Solving this equation by (the other) Duhamel’s

formula for first order inhomogeneous linear differential equations gives [e−εQ,A] =∫ 1
0 e

−sQ[Q,A]e−(ε−s)Qdt , and substituting t = εs yields (4.4). This identity, which
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holds a priori in the space of bounded linear maps from Ha+q(E) to H 0(E), persists
as long as both sides of the equation make sense.

Replacing A by [A,Q] and Q by σQ in (4.4) yields

e−(1−σ)εQ[Q,A]e−εσQ

= e−εQ[Q,A] + εσ

∫ 1

0
e(−(1−σ1)σ−(1−σ))εQ [Q, [Q,A]] e−εσσ1Qdσ1

= e−εQ[Q,A] + εσ

∫ 1

0
e−(1−σ1σ)εQ [Q, [Q,A]] e−εσσ1Qdσ1

= e−εQ[Q,A] + ε

∫ σ

0
e−(1−σ1)εQ [Q, [Q,A]] e−εσ1Qdσ1,

and so

[e−εQ,A] = −εe−εQ[Q,A]−ε2
∫
�2

e−(1−σ1)εQ [Q, [Q,A]] e−σ1εQdσ1dσ0. (4.5)

For a �DO A, define [A]jQ, j ∈ N ∪ {0}, by

[A]0
Q = A, [A]j+1

Q = [Q, [A]jQ] = (ad Q)j+1(A).

We now make the important assumption thatQ have scalar symbol. Iterating (4.5)
gives

[
e−εQ,A

] = −
N−1∑
j=1

εj

j ! [A]jQe−εQ + RA,N(ε), (4.6)

for N ∈ N, with

RA,N(ε) = εN
∫
�N

e−ε(1−σ1)Q[A]NQe−σ1εQdσ1 . . . dσN .

One can check that for k > 0, RA,N(ε) = O(εk) for N = N(k) � 0 (cf. [12, Lemma
4.2]). In particular, we have

trQε ([A,B]) = tr(e−εQ[A,B]) = tr([e−εQ,A]B)

=
N−1∑
j=1

εj

j ! trQε
(
A[B]jQ

)+ O(εk)
(4.7)

for N � 0. Letting Q = Qb vary again, and using (4.3), (4.6), we obtain

d e−εQ = −
N∑
j=1

εj

j ! [d Q]j−1
Q e−εQ + R̃dQ,N+1,
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where R̃dQ,N+1(ε) := −ε ∫ 1
0 σ

N+1e−εQRdQ,N+1(εσ )dσ . Taking traces yields

tr
(
(de−εQ)A

) = −
N∑
j=1

εj

j ! trQε
([d Q]j−1

Q A
)+ O(εk). (4.8)

We now pass to the general setting by dropping the assumption that E is trivial.
We assume that E has a �DO connection ∇ .

Lemma 4.1. (i) For ε > 0,

[∇, e−εQ] = −
N∑
j=1

εj

j ! [[∇,Q]]j−1
Q e−εQ + R̃[∇,Q],N+1(ε)

where R̃[∇,Q],N+1(ε) = −ε ∫ 1
0 σ

N+1e−εQR[∇,Q],N+1(εσ )dσ .

(ii) For α ∈ �∗(B,Cl (E)) and k > 0, there exists N � 0 such that

[∇, trQε ](α) := (∇ trQε − trQε ∇)(α) = −
N∑
j=1

εj

j ! trQε
(

[[∇,Q]]j−1
Q α

)+ O(εk).

Proof. Locally, we have ∇ = d + θ where θ is a local Cl (M,E)-valued one-form on
B. We can apply (4.6), (4.8) to obtain

[∇, e−εQ] = d e−εQ + [θ, e−εQ]

= −
N∑
j=1

εj

j ! [d Q]j−1
Q e−εQ + e−εQ

N∑
j=1

εj

j ! [[Q, θ ]]j−1
Q + R̃[∇,Q],N+1(ε)

= −e−εQ
N∑
j=1

(−ε)j
j ! [[∇,Q]]j−1

Q + R̃[∇,Q],N+1(ε),

where R̃[∇,Q],N+1(ε) := R̃dQ,N+1(ε) + R̃[θ,Q],N+1(ε). For α a Cl (M,E)-valued
form on B, we get by (4.7)

[∇, trQε ](α) = d tr(e−εQα)− tr
(
e−εQ[∇, α])

= tr
(
(de−εQ)α

)− tr(e−εQ[θ, α])

= −
N∑
j=1

εj

j ! trQε
(

[[∇,Q]]j−1
Q α

)+ O(εk)

provided N is chosen so large that trQε (αR̃[∇,Q],N+1(ε)) = O(ε). ��

We now extend a familiar construction for ordinary algebras [8, 16] to bundles of
algebras by considering Cl (E)[[ε]], the space of formal power series in the variable
ε with coefficients in Cl = Cl (E). Thus an element A(ε) of Cl [[ε]] has the form
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A(ε) = ∑∞
j=0 Ajε

j , Aj ∈ �(Cl ). The reader unhappy with these formal sums can
just work with finite sums with error estimates, as in Theorems 4.4, 4.6 below.

Recall that the algebra Cl (M,E) of classical (polyhomogeneous) �DOs is given
by finite sums

∑n
i=1Ai , where each Ai is polyhomogeneous in the sense that the

symbol of Ai has an asymptotic expansion σ(Ai) ∼ ∑∞
j=0 σoi−j , oi = ord(Ai) with

σoi−j having the standard homogeneity and growth conditions for the symbol class
Soi−j [7]. The order of A is then the maximum of the oi . It is standard that each Ai ,
has an asymptotic expansion as ε → 0 of the form

trQε (Ai) ∼
∞∑
j=0

aj (Ai,Q)ε
j−oi−n

q +
∞∑
k=0

bk(Ai,Q)(log ε)εk+
∞∑
�=0

c�(Ai,Q)ε
�, (4.9)

where aj (A,Q), bk(A,Q), c�(A,Q) ∈ C and n = dim(M). Thus A has a similar
asymptotic expansion. We set

(
trQε (Ai)

)
asy :=

∞∑
j=0

aj (Ai,Q)ε
j−oi−n

q +
∞∑
k=0

bk(Ai,Q)(log ε)εk

+
∞∑
�=0

c�(Ai,Q)ε
� ∈ C[log ε][ε− 1

q , ε
1
q ]],

and define
(
trQε (A)

)
asy by linearity. Given a weight Q ∈ �(Cl(E)) as above, the

C-linear morphism trQε defined for fixed ε partially extends to a C[[ε]]-morphism

trQε : � (C�(E)[[ε]]) → C[log ε][ε− 1
q , ε

1
q ]], A =

∞∑
k=0

Akε
k →

∞∑
k=0

(
trQε (Ak)

)
asyε

k.

(4.10)
In the last term in (4.10), we formally rearrange the sum to produce an element of

C[log ε][ε− 1
q , ε

1
q ]], provided the number of terms contributing to each ε� and (log ε)ε�

is finite.
It is not hard to give conditions that guarantee that trQε

(∑∞
k=0 Akε

k
)

exists in this
formally rearranged sense:

Lemma 4.2. If the ai := ord(Ai) satisfy limi→∞ qi−ai = ∞, then trQε
(∑∞

i=0 Aiε
i
)

exists as a rearranged sum.

Proof. We may assume that eachAi is classical polyhomogeneous, as replacingAi by a
finite sum of such operators does not affect the proof. For fixed i, j , the term aj (Ai,Q)

in (4.9) appears in trQε
(∑∞

i=0 Aiε
i
)

as a coefficient of ε
j−ai−n+qi

q . The hypothesis
guarantees that only a finite number of i, j can contribute to the coefficient of a fixed
ek0 . Similar arguments apply to bk(Ai,Q), c�(Ai,Q). ��
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Motivated by Lemma 4.1, we introduce a C�(E)[[ε]]-valued connection ∇Q
ε de-

fined in terms of the connection∇Cl (E) = [∇, ·] = ∇Ad P E
onCl (E) and the weightQ:

∇Q
ε α := ∇Cl (E)α −

∞∑
j=1

εj

j ! [[∇,Q]]j−1
Q α, α ∈ �∗(B,Cl (E)). (4.11)

We now show that ∇Q
ε has the key property of commuting with the weighted trace

trQε :
Lemma 4.3. Let ∇ be a Cl≤0-connection on E , and let Q be a weight on E with
scalar leading symbol. For α ∈ �∗(B,C�(E)), we have

d � trQε α = trQε � ∇Q
ε α.

Proof. By Lemma 4.1, we have

d � trQε α − trQε � ∇Q
ε α = [∇Q

ε , trQε ](α)

= [∇, trQε ](α)−
∞∑
j=1

(−ε)j
j ! trQε

(
[[∇,Q]]j−1

Q α
) = 0,

provided we show that trQε can be applied to ∇Q
ε α. In fact, if d := ord[∇,Q] ≤ q,

then the order of [[∇,Q]]j−1
Q is aj ≤ d + (j − 1)(q − 1), since Q has scalar leading

symbol. Thus the hypothesis of Lemma 4.2 is satisfied. ��
Remarks. (i) The preceding proof assumes that Lemma 4.1 extends to formal power
series of operators. This justification, while not difficult, is somewhat lengthy and is
omitted.

(ii) If ∇Q
ε were induced from a connection on E , Lemma 4.3 would guarantee a

Chern–Weil theory for the curvature �Qε : each coefficient in trQε (�
Q
ε ) would be a

closed from independent of the connection. However, we will see in Corollary 4.7
that for loop groups, the leading order coefficient is the Kähler form TrQ(�) for the
H 1/2 Levi-Civita connection. The corresponding non-zero Kähler class is certainly
not independent of connection, since T LG is trivial. Theorem 4.6 gives a more refined
analysis of this example.

Despite the last remark, we can use Lemma 4.3 to produce a Chern–Weil theory
under additional hypotheses.

Theorem 4.4. Let ∇ be a Cl≤0-connection andQ a weight on E of order q and with
scalar leading symbol. Let d be the order of the Cl (E)-valued form [∇,Q], and set
r := q − d.

(i) For α ∈ �∗(B,Cl (E)) of constant order a, we have

dtrQε (α) = trQε (∇Cl (E)α)+ o
(
ε

−a−n+r−η
q

)
,
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for all η > 0.

(ii) Let�, the curvature of ∇, have constant order a. Then the coefficient of ε
γ
q in

the asymptotic expansion of trQε (�k) is closed, for all γ < −ka−n+ r . In particular,

if r > 0, the coefficient of the leading order term ε
−ka−n
q is closed. The coefficients of

log ε · ε� are closed for all � < −ka−n+r
q

.

(iii) Let� have constant order a. The coefficient of log ε in the asymptotic expan-
sion of trQε (�k) is closed.

Note that part (ii) of the theorem only applies if r > 0, which occurs e.g. if the
leading order symbol of Q is independent of b ∈ B. We need r > ka + n to obtain
information about the log ε · ε� terms with � > 0.

Proof. (i) By Lemma 4.3, we have

dtrQε (α) = trQε (∇Q
ε α) = trQε (∇Cl (E)α)−

∞∑
j=1

εj

j ! trQε
([[∇,Q]]j−1

Q α
)
.

We want to show that for η > 0,

lim
ε→0

ε
n+a−r+η

q

( ∞∑
j=1

εj

j ! trQε
([[∇,Q]]j−1

Q α
)) = 0.

Since the infinite sum is a rearrangeable formal power series, we mean that each
exponent k0 of the rearranged series satisfies n+a−r+η

q
+ k0 > 0. Since the leading

asymptotic term aj εγj of trQε
([[∇,Q]]j−1

Q α
)

contributes the exponent j+γj , it suffices
to show that

n+ a − r + η

q
+ j + γj > 0, (4.12)

for all j ∈ N. (A similar argument treats the case where the leading asymptotic term
contains log ε.) As in Lemma 4.3, dj := ord([[∇,Q]]j−1

Q ) satisfies dj ≤ d + (j −
1)(q − 1) for d := ord[∇,Q]. Thus

γj ≥ −dj − a − n

q
≥ r + j − 1 − a − n− jq

q
,

which implies (4.12).
(ii) Since ∇Cl (E)�k = 0 and ord(�k) = ka, it follows from (i) that

dtrQε
(
�k
) = −

∞∑
j=1

εj

j ! trQε
([[∇,Q]]j−1

Q �k
) = o

(
ε

−ka−n+r−η
q

)
, (4.13)

for all η > 0. Thus all coefficients of powers εγ with γ < −ka− n+ r are closed. A
similar argument handles the log ε terms.
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Finally, since the coefficient of the log ε term is proportional to the Wodzicki
residue resw(�), (iii) follows from the discussion in §3.1. ��

This clarifies the non-closed weighted traces of [17].

Corollary 4.5. Let ∇ be a Cl≤0 connection, Q a weight on E with scalar lead-
ing symbol, � = ∇2 the curvature of ∇, and trQ(�k) its Q-weighted trace, i.e.
trQ(�k) is the finite part of trQε (�k) as ε → 0. Then dtrQ(�k) is an explicit finite
linear combination of coefficients in the asymptotic expansion of trQε

([[∇,Q]]j−1
Q �k

)
,

j ∈ N.

Proof. This follows from (4.13) and the fact that
∑∞
j=1

εj

j ! trQε
([[∇,Q]]j−1

Q �k
)

is re-

arrangeable. In particular, the coefficient of ε0 is constructed as stated. ��
We now discuss the independence of the closed forms in Theorem 4.4 on the choice

of connection. Note that the hypotheses are more stringent than in Theorem 4.4.

Theorem 4.6. (i) LetQ be a weight on E with scalar leading symbol, and let {∇t : t ∈
[0, 1]} be a smooth family of Cl≤0(E) connections such that ∇̇t ∈ �1(B,Cl≤−s(E)),
for some s ≥ 0, for all t . Then

d

dt
trQε (�

k
t ) = dtrQε

( k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
+ o

(
ε

−n+s−(k−1)a−η
q

)
,

for all k ∈ N and for all η > 0.

(ii) Let a = ord(�t ) be independent of t . Let q = ord(Q), and set r := q − d,
where we assume that d := ord([∇t ,Q]) is independent of t . If s > r − a, then the

cohomology class of the coefficient of ε
γ
q in the asymptotic expansion of trQε (�kt ) is

independent of t for all γ < −ka − n+ r. The cohomology class of the coefficient of
log ε · ε� is independent of t for all 0 < � < −ka−n+r

q
.

(iii) Let a = ord(�t ) be independent of t . The cohomology class of the coefficient
of log ε in the asymptotic expansion of trQε (�kt ) is independent of t .

As with Theorem 4.4, this theorem is only meaningful if s > 0.

Proof. Mimicking the finite dimensional proof, we have

d

dt
trQε (�

k
t ) = trQε

( k∑
j=1

�
k−j
t [∇t , ∇̇t ]�j−1

t

)

= trQε
( k∑
j=1

�
k−j
t (∇Cl (E)

t ∇̇t )�j−1
t

)

= trQε
(
∇Cl (E)
t

k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
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= trQε
(
∇Q
ε,t

k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
+

∞∑
j=1

εj

j ! trQε
(
[[∇t ,Q]]j−1

Q

k∑
j=1

�
k−j
t ∇̇�j−1

t

)

= dtrQε
( k∑
j=1

�
k−j
t ∇̇t�j−1

t

)
+

∞∑
j=1

εj

j ! trQε
(
[[∇t ,Q]]j−1

Q

k∑
j=1

�
k−j
t ∇̇�j−1

t

)
.

The leading term in the asymptotics of ε
j

j ! trQε
(
[[∇t ,Q]]j−1

Q

∑k
j=1�

k−j
t ∇̇�j−1

t

)
is of

the form aj ε
γj , with

γj >
−n+ jq − d − (j − 1)(q − 1)+ s − (k − 1)a

q
≥ −n+ s − (k − 1)a

q
.

This proves (i). For (ii), we note that this last fraction will be greater than (−n −
ka + r)/q provided s > r − a.As in the previous theorem, the proof of (iii) follows
from properties of the Wodzicki–Chern class of §3.1. ��

With the previous two theorems, we have developed a theory of characteristic
forms that explains why Freed’s conditional first Chern form is closed and why its
cohomology class cannot be connection independent.

Corollary 4.7. Let � = �(
1
2 ) be the curvature of the Levi-Civita connection for the

H
1
2 metric on the loop groupLG. Then Freed’s conditional first Chern form coincides

with the weighted first Chern form trQ(�) for any left invariant scalar weight Q on
LG, and hence is closed.

Proof. The conditional trace of the Levi-Civita curvature in [6] is tr(trLie(�)), where
trLie denotes the trace with respect to the Killing form in the Lie algebra ofG, and the
outer trace is the ordinary operator trace. In particular, trLie(�) is a trace class �DO
on the trivial C bundle over S1. As in [5], for any left invariant scalar weight Q we
have

tr (trLie(�)) = lim
ε→0

tr
(
trLie(�)e

−εQ) = lim
ε→0

trQε
(
�
) = trQ(�),

so Freed’s conditional first Chern form is the weighted trace trQ(�). Recall that
the curvature two-form is a �DO of order a = −1. Since Q is left invariant and
scalar, [∇,Q] = dQ+ [θ,Q] = [θ,Q] has order r = q − 1 = 1. Theorem 4.4 with
n = 1, q = 2, r = 1, a = −1 shows that the constant term a0(�,Q) in the asymptotic
expansion of trQε (�) is closed. Since this constant term equals limε→0 trQε (�) =
trQ(�), it follows that trQ(�) is closed for loop groups. ��

Remark. Theorem 4.6 does not apply to Freed’s conditional first Chern form. In
particular, if we shrink the connection one-form θ to zero using the family tθ , we
cannot apply Theorem 4.6, since for this family we have s = 0.
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Abstract. Quantum fluctuations of some systems vanish not only in the limit h̄ → 0, but also
as some other parameters (such as 1

N
, the inverse of the number of ‘colors’ of a Yang–Mills

theory) vanish. These lead to new classical limits that are often much better approximations
to the quantum theory. We describe two examples: the familiar Hartree–Fock–Thomas–Fermi
methods of atomic physics as well as the limit of large spatial dimension. Then we present
an approach of the Hecke operators on modular forms inspired by these ideas of quantum
mechanics. It explains in a simple way why the spectra of these operators tend to the spectrum
of random matrices for large weight for the modular forms.
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1 Introduction

It is well-known that a classical mechanical system has many possible quantizations.
The classical theory is the limiting case as h̄ → 0 , so it is not surprising that there
would be many quantum theories that in this limit reduce to the same classical theory.
In this, largely expository, paper I will discuss the opposite phenomenon: how the same
quantum theory can be obtained by quantizing radically different classical systems.
Viewed another way, a quantum theory could depend on two parameters, say h̄, λ and
the quantum fluctuations of some class of observables are of order h̄λ. Then both the
limits h̄ → 0 and λ → 0 are classical theories. These classical theories could be
entirely different. In an example from atomic physics, the conventional classical limit
has a finite number of degrees of freedom, while the new one has an infinite number.
We will refer to the new limits (obtained by taking parameters other than h̄ to zero) as
‘neo-classical limits’.

This phenomenon is physically interesting because one of the new classical limits
may be a better approximation to the quantum theory than the naive classical limit.
These ideas came into the high energy physics literature from the work of ’t Hooft
and Witten on the large N limit of gauge theories. Witten [1] in particular worked
out several simpler cases to popularize the notion that even case N = 3 may be well
approximated by the large N limit. But historically, the various mean field theories of
condensed matter physics [2] (the spherical model for example) and even the theory
of Nuclear Magnetic Resonance can be thought of as precursors of these ideas.

For example, in atomic physics, in the usual classical limit h̄ → 0 there is no ground
state: the hamiltonian is not bounded from below. However, the neo-classical limit (in
this case a version of the Hartree–Fock approximation) has a ground state. Moreover, it
gives an excellent first approximation to the ground state energy of the atom. The neo-
semiclassical expansion gives a systematic way of calculating corrections to arbitrary
accuracy, although the complexity grows rapidly with the desired accuracy.

Another important example, discussed below, is also from atomic physics: the
quantum fluctuations in electron distances become small in the limit as the dimension
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of space becomes large. We will derive a simple effective potential that explains the
stability of the atom. For another approach to this see the work of Hershbach [3].

Some important corners of mathematics are also illuminated by this phenomenon.
The theory of modular forms can be viewed as the quantization of a classical mechan-
ical system whose phase space is the upper half plane. The limit as the weight of
the modular form goes to infinity corresponds to a classical limit. But there is also
another classical limit corresponding to letting the level (the area of the fundamental
domain ) go to infinity. These limits lead to interesting new approaches to the problem
of determining the spectrum of the Hecke operators on modular forms.

The mathematical formulation of a classical dynamical system has expanded
steadily in generality throughout history: as new physical theories are discovered
we are led to enlarge the formalism to incorporate the new developments. In the
progression from ordinary differential equations to Hamilton–Jacobi theory, symplec-
tic geometry and the currently fashionable Poisson algebra formulation, we learn to
deal with increasingly sophisticated systems and symmetries. Neo-classical limits
produce classical systems of even greater generality, often with non-local action prin-
ciples and no simple hamiltonian description [4]. We have described some examples
of this before. There are classical limits of quantum field theories that retain asymp-
totically freedom and require a renormalization [5]. The challenge of finding the right
mathematical description of these new kinds of classical systems remains.

Much of the story told in this paper is, of course, well-known. I hope that organizing
them in this way will help to understand common themes in apparently distant subjects.

2 Hartree–Fock theory of atoms

2.1 The classical limit of the atom

We start with a basic problem of quantum mechanics that cannot be solved exactly:
an atom (or ion) with more than one electron. We usually start with the classical
hamiltonian

H =
m∑
i=1

p2
i

2µ
−

m∑
i=1

Ze2

|ri | +
∑

1≤i<j≤m

e2

|ri − rj | . (1)

As usual, Z is the atomic number of the nucleus, e the charge of the electron and µ
its mass. For each 1 ≤ i ≤ m, the position ri and momentum pi of the electron
are vectors in the Euclidean space R3. Then we pass to the quantum theory whose
hamiltonian is

Ĥ = −h̄2
m∑
i=1

∇2
i

2µ
−

m∑
i=1

Ze2

|ri | +
∑

1≤i<j≤m

e2

|ri − rj | . (2)
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This is an operator on the complex Hilbert space of anti-symmetric wavefunctions
F m = �m (H). The anti-symmetry incorporates the Pauli exclusion principle. The
space of single particle wavefunctions is H = L2(R3, C2); the wavefunction of each
electron takes values in C2, since it can exist in two spin states 1.

The limit h̄ → 0 is the usual classical limit of the atom. It is well-known that
this is a spectacularly bad approximation to the quantum theory of the atom. The
quantum hamiltonian is self-adjoint and bounded below and hence has a well-defined
ground state. Indeed the central problem of atomic physics is the determination of
this ground state wavefunction and the corresponding eigenvalue. The hamiltonian of
the classical limit on the other hand, has no ground state: we can let position of an
electron approach the nucleus, ra → 0, thus decreasing the energy down to −∞.

What is missing here is the uncertainty principle: in the quantum theory it is not
possible to make the position of the electron close to the nucleus without making its
kinetic energy large. This might suggest that there is no way to produce a classical
approximation to the atom with a stable ground state.

We will now produce a completely different classical system (with an infinite num-
ber of degrees of freedom in fact) whose quantization yields exactly the above quantum
theory of the atom. Moreover, it has a ground state which is even a good approxi-
mation to the quantum ground state. What we will describe is just a reformulation
of the standard Hartree–Fock approximation in atomic physics. This reformulation
allows a generalization to relativistic many-fermion systems which we have described
elsewhere [6].

2.2 The neo-classical theory of the atom

There are many standard texts that discuss the material in this section, although often
without the geometric interpretation in terms of the Grassmannian. See for example
[7]. Let H = L2(R3, C2) be the familiar complex Hilbert space. We define the
Grassmannian Grm (H) to be the space of linear self-adjoint trace-class2 projection
operators of rank m:

Grm (H) = {ρ : H → H |ρ† = ρ; ρ2 = ρ; tr ρ = m}. (3)

It is clear that an eigenvalue of ρ is equal either to zero or to one. Corresponding to
each such projection operator there is a subspace of H of dimensionm: the eigenspace
of ρ with eigenvalue one. Conversely, each such m-dimensional subspace V defines
an orthogonal decomposition H = V ⊕ V ⊥; then we can construct ρ as the her-
mitean projection operator to V . Thus we can see that Grm (H) is really the set of
all m-dimensional subspaces of H . Thus we have an infinite dimensional (but finite
rank) generalization of the usual definition of the Grassmannian [8]. Grm (H) is an

1We will, for simplicity, ignore relativistic and spin-dependent terms in the hamiltonian.
2If a projection operator is trace class, its trace must be an integer, the dimension of the vector space it

projects.
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infinite dimensional manifold, whose tangent space is the space of rankm self-adjoint
operators on H .

A classical dynamical system is specified by (i) a manifold which will be its phase
space, (ii) a symplectic form on this phase space which will determine the Poisson
brackets, and (iii) a real function on the phase space which is its hamiltonian.

In our theory, Grm (H) is the phase space. The symplectic form on it generalizes
the standard symplectic form on finite-dimensional Grassmannians. The Poisson
brackets that it implies for a pair of functions is:

{f, g} = tr ρ[df, dg]. (4)

Here df is the infinitesimal variation of f which can be thought of as a linear operator
on H . If we represent the operator ρ by its integral kernel ρab (x, y) (where a = 1, 2
labels spin) we can write this Poisson bracket as

{ρab (x, y), ρcd(z, u)} = δcbδ(y, z)ρ
a
d (x, u)− δad δ(x, u)ρ

c
b(z, y). (5)

The last piece of information is the hamiltonian, which we postulate to be

H1 =
∫
p2

2µ
ρ̃(x, p)d3x

d3p

(2πh̄)3
−
∫
Ze2

|x| ρ
a
a (x, x) d

3x

+1

2

∫
e2

|x − y|
[
ρaa (x, x)ρ

b
b (y, y)− ρab (x, y)ρ

b
a (y, x)

]
d3xd3y.

Here, ρ̃ is the symbol of the operator ρ:

ρ̃ab (x, p) =
∫
ρab

(
x + u

2
, x − u

2

)
e
− i
h̄
p·u
d3u,

ρab (x, y) =
∫
ρ̃ab

(
x + y

2
, p

)
e
i
h̄
p·(x−y) d3p

(2πh̄)3
.

(6)

Clearly, ρaa (x, x) = ∫
ρ̃aa (x, p)

d3p

(2πh̄)3
.

So far it is clear that this system depends on the parametersµ, e, Z,m of the of the
atom. Although the dynamical variables are operators, and h̄ appears in the formula
for the hamiltonian, it is a bona fide classical dynamical system.

We will show that a quantization of this system is exactly the quantum theory of
the atom. The physical meaning of the operator ρ is that it is the ‘density matrix’ of
the electrons. Indeed ρaa (x, x) is the number density of the electrons at the point x;
tr ρ = ∫

ρaa (x, x)d
3x = m is the total number of electrons. More generally, ρ̃aa (x, p)

is the density of electrons of momentump and positionx. The Pauli exclusion principle
which allows for at most one electron per single particle state, becomes the condition
that this density matrix be a projection operator, so that its eigenvalues can only be
zero or one. Thus this classical dynamical system realizes many of the facts we usually
associate with quantum theory.

The first term represents the kinetic energy and the second term the potential energy
due to the nucleus. We can combine these ‘single-particle’ terms in the hamiltonian



218 S. G. Rajeev

into the form

tr ρK, K = − h̄2

2µ
∇2 − Ze2

|x| . (7)

Now, K is bounded below by E1 = − 1
2µ

Z2e4

h̄2 , as we know from the elementary
theory of an ion with one electron. Since ρ is positive and tr ρ = m, we see that
tr ρK ≥ mE1. (A stricter bound can be obtained using the fact that ρ is a projection.

But we don’t need it.) This way, the system avoids the catastrophe of the conventional
classical limit.3

The interaction of the electrons induces two kinds of terms. The first is obvious,
the Coulomb energy of a charge cloud of density eρaa (x, x). The last term is not so
obvious–it is the ‘exchange energy’. It is needed to get back the correct quantum
theory (see below). By a version of the Schwarz inequality it should be possible to
see that ∫ [

ρaa (x, x)ρ
b
b (y, y)− ρab (x, y)ρ

b
a (y, x)

] e2

|x − y| d
3xd3y ≥ 0. (8)

This expresses the physical fact that the electron-electron interaction is repulsive. Thus
the total hamiltonian is bounded below by at least mE1.

To actually find the ground state of this classical system, we must vary the hamil-
tonian subject to the constraints on ρ. Such a variation of ρ is always of the form
δρ = −i[ρ, u] for some hermitean operator u. The condition for an extremum is then

[ρ, dH1] = 0. (9)

Here dH1 = ∂H1
∂ρ

is a linear operator

dH1 = K + U + W . (10)

Here, K is as defined above and U is the multiplication by the ‘mean field’

Ua
b(x) = δab

∫
Ze2

|x − y|ρ
a
a (y, y) d

3y. (11)

The ‘exchange energy’ contributes an operator W whose integral kernel is

Wa
b (x, y) = − Ze2

|x − y|ρ
a
b (x, y). (12)

3Strictly speaking H1 exists only on some dense domain of Grm (H). This domain should be some
class of pseudo-differential operators, and is the true phase space of the system. The correct statement is
that the hamiltonian is bounded below within this domain. This is a technical project that I am unable to
complete. It would be interesting to produce a functional analytic realization of the physical ideas that are
described here.
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Thus we can find the extremum by solving a non-linear eigenvalue problem self-
consistently. We have,

ρ =
m∑
a=1

ψa ⊗ ψ†
a (13)

where each of the vectors ψa ∈ H is an eigenstate of dH1.
This is exactly the Hartree–Fock approximation to the atomic ground state. We

find the wave-functions that are eigenstates of some single particle hamiltonian; the
potential in this hamiltonian is self-consistently determined by postulating that m of
these are occupied by electrons. Our description avoids the usual Slater determinants
for the wavefunction-the hamiltonian only depends on the density matrix of the elec-
trons and not the wavefunction itself. We have shown that this way of formulating
the Hartree–Fock theory allows for generalization to systems containing an infinite
number of fermions such as relativistic theories [6, 5].

Our point in this paper is that this theory can be thought of as minimizing the
hamiltonian of a classical system on Grm (H). This extends to the time evolution as
well: the Hamilton equations of our system are the usual equations of time-dependent
Hartree–Fock theory.

2.3 Back to the quantum theory

How do we quantize a system whose phase space is a Grassmannian? It is not possible
to cover the Grassmannian by a single co-ordinate system, so it is inconvenient to look
for canonical variables. However, the Grassmannian is a Kähler manifold, and we
can apply the ideas of geometric (or Berezin–Toeplitz) quantization [9]. In an earlier
paper (the appendix of [6]) we used the representation theory of the unitary group to
quantize this theory.

Recall the situation in the case of finite dimensional Grassmannians: let V be a
finite dimensional vector space, and Grm (V) the set of its m-dimensional subspaces.
Grm (V) is a compact Kähler manifold. Its canonical line bundle L admits a her-
mitean metric and a connection whose curvature is just the symplectic form. (A line
bundle that admits such a metric and connection is said to be quantizable [9].) The
holomorphic sections of the dual of this line bundle, Hol(L∗) form a finite dimen-
sional vector space isomorphic to �m (V). This space of holomorphic sections is a
subspace of the Hilbert space of square-integrable sections with a projection operator
� : L2(L) → Hol(L∗). These geometric facts can be used to construct a quantization
[9] of the dynamical system whose phase space is Grm (V).

From any functionf : Grm (V) → Rwe will construct an operator f̂ : Hol(L∗) →
Hol(L∗) by the formula

f̂ = �f. (14)
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That is, we multiply a holomorphic section by the function to get a section of L∗
that may not be holomorphic; then we simply project out the holomorphic part. The
operator we construct this way is self-adjoint (it is just a finite dimensional hermitean
matrix in fact).

In what sense is it a quantization of the dynamical system on Grm (V)? How will
we recover the classical limit? The idea [9] is that it is merely a special case of a
one-parameter family of quantum theories where L above is replaced by LN . As
long as N is a positive integer the above ideas go through: there is still a projection
�N : L2(LN) → Hol(L∗N) to a finite dimensional space of holomorphic sections.
4 Also in the limit N → ∞ the operator algebra tends to the Poisson algebra of
functions in the sense that

||�Nf �Ng −�N(fg)|| = O

(
1

N

)
, (15)

and moreover

||iN [�Nf, �Ng] −�N({f, g})|| = O

(
1

N

)
. (16)

Also the operator norm of TNf approaches the sup norm of the function f .
These ideas also extend to Grm (H)when V is replaced by the infinite dimensional

vector space H . The technical aspects are simpler than in [10, 11], since we need
only finite rank projections. We give only a very brief outline here. Any subspace of
dimensionm can be brought to some standard subspace whose orthogonal complement
is H⊥; hence Grm (H) is a coset space 5 Grm (H) = U0(H)/U(H⊥)×U(m). Using
the trivial representation of U(H⊥) and the determinant representation of U(m), we
can construct a line bundle

L = (U0(H)× C) /U(H⊥)× U(m). (17)

The holomorphic sections of this bundle can now be constructed and shown to form
�m(H). It is thus clear that �m(H) is the Hilbert space of at least one way of
quantizing our system on Grm (H). Indeed, the hamiltonian of the system when
worked out in this way is exactly the quantum hamiltonian of the atom we had earlier.

This quantum hamiltonian is the special case as N = 1 of a one-parameter family
of theories. For N > 1 these describe fermions that carry a ‘color’ quantum number,
except that only observables that are invariant under U(N) are realized in the Hilbert
space Hol(L∗N). The Hartree–Fock method thus approximates the theory for N = 1
by the neoclassical limit as N → ∞. In effect 1

N
measures the size of the quantum

corrections.

4The space Hol(L∗N) carries a representation of the unitary group U(V) given by theYoung diagram of
height n and width N , generalizing the completely anti-symmetric tensor representation of the case N = 1
above.

5U0(H) is the group of unitary transformations that mixes the standard m-dimensional subspace with
its orthogonal complement only by a finite rank operator. It is analogous to the ‘restricted Grassmannian’
of Sato [12] except that it is modelled on finite rank operators rather than compact ones.
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A relativistic generalization of this theory is described in [6]. There I developed an
approach to two-dimensional QCD where the largeN limit was realized as a classical
theory. The story above appears in the appendix to that paper. Later I found that many
other problems in physics and mathematics can be thought of in a unifying way as
different classical limits of the same quantum theory.

3 The Thomas–Fermi approximation

The problem of minimizing the energy on the Grassmannian is still a hard problem.
Further approximations are needed. It turns out that there is a way to consider the limit6

h̄ → 0 (a kind of semi-classical approximation) which yields a simpler theory. The
ideas go back to the Thomas-Fermi approximation of early atomic physics [13] and
have seen several revivals. There seems to be a connection with the density functional
[14] method as well. Our point of view is based on symbol calculus and was in part
inspired by the work of Lieb, Thirring [15] and others on the stability of matter. We
will work out explicitly the leading terms but indicate how higher order terms can be
calculated systematically if needed.

It is possible to develop the theory in a more general context than in the last section
without much additional work7. We therefore consider a system of m fermions with
the hamiltonian

H =
m∑
i=1

[T (−i∂i)+ U(ri)] +
∑
i<j

G(ri, rj ). (18)

The configuration space of each fermion is Rn. We will allow the fermions to carry
a ‘spin’ quantum number σ = 1, . . . , Nf . The above hamiltonian is assumed to
be independent of this quantum number. (We will usually suppress the spin index).
Here, T (p) is the ‘dispersion relation’; i.e., the dependence of kinetic energy on
momentum. T (p) is usually spherically symmetric. U(x) is the external potential that
all the fermions are subject to and G(x, y) = G(y, x) is the two body potential.

In the last section we had the following special case: the dimension of space n = 3,

the spin takes two values, Nf = 2, the kinetic energy is T (p) = p2

2µ and the inter-

electron potential is the Coulomb potential G(x, y) = e2

|x−y| . The cases n = 1, 2, 3

for the dimension of space are also of interest in other contexts.

6It is important to take h̄ → 0, after the theory has been formulated on the Grassmannian as above; if
we took h̄ → 0 we would get a theory without a ground state, as explained above.

7In fact I worked this theory in this way (in 1992) to find a relativistic generalization of the Thomas-Fermi
method. It remains unpublished.
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We have then the Hartree–Fock energy

H1(ρ) = Tr(T + U)ρ

+ 1

2

∫
dxdy G(x, y)[ tr ρ(x, x) tr ρ(y, y)− tr ρ(x, y)ρ(y, x)]

to be minimized over all operators satisfying ρ† = ρ, ρ2 = ρ, Trρ = m. We denote
by tr the trace over flavor while Tr includes the integral over position as well. As
before, the first term represents the single-particle kinetic energy and potential energy,
the second term the direct interaction and the last term the exchange interaction.

The minimization problem above leads to the variational equations

[ρ, dH1] = 0 (19)

where the Hartree–Fock self consistent hamiltonian itself depends on ρ. A self-
consistent solution is clearly8 ρ = �(EF − H1) where the ‘Fermi energy’ EF is
determined by the condition Trρ = m. It is often too hard to solve this problem, so
yet another approximation is needed. We could minimize over some smaller set of
operators ρ thereby obtaining a variational bound that is simpler to calculate. Or we
could calculate the function H1(ρ) in a semi-classical approximation.

The essence of the Thomas–Fermi approximation (a modern version is the density
functional method [14]) is a combination of these two ideas:

1. use the variational ansatz ρ = �(−h) where h = t (−i∂)+ v(x) is a separable
hamiltonian (i.e., a function of p alone plus a function of x alone);

2. expand the energy function

H1(�(−t − v)) (20)

semiclassically;

3. minimize the leading term in this expansion HTF (t, v) with respect to the
variational parameters t and v. (In many treatments, however, t is chosen to be the
same as T (p) and only v(x) is varied.)

The semiclassical expansion will amount to an expansion in powers of the deriva-
tives of v. The above ansatz for h is motivated by the form of the Hartree–Fock
hamiltonian. If the two body potentialG is absent, the first step is automatic, sinceH1
is already in this form. Even for interacting fermions, the direct interaction is already
of the separable form. The indirect energy may not be separable in general, but as
long as it is a monotonic function of momentum, the projection operator�(EF −H1)

will agree with that of some separable hamiltonian. Thus one expects this separable
ansatz to be a good approximation.

8The theta-function of a self-adjoint operator �(A) is defined to be the projection operator to the
subspace on which A is positive.
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The projection operator�(h−E) can be expressed in terms the resolvent operator,
1

h−E , since

�(−x) =
∫
D

dE

2πi

1

x − E
(21)

where D is a contour that surrounds the negative real axis in a counterclockwise
direction. There is a semi-classical expansion for the resolvent which can be used to
derive one for the projection operator �(h− E).

3.1 The semiclassical expansion of the resolvent

To do the semiclassical expansion, it is convenient to restate the problem in terms of
(matrix-valued) functions on the phase space Rn ⊕ Rn rather than operators on the
Hilbert space L2(Rn, CNf ). There is a systematic theory of this procedure (symbol
calculus) described in detail in, for example, [16]. The main idea is to use Weyl
ordering to set up a one-one correspondence between functions on the phase space
and operators on the Hilbert space. From a function Ã(x, p)we construct the operator
A whose kernel is

A(x, y) =
∫
Ã

(
x + y

2
, p

)
e
i
h̄
p·(x−y)[dp]. (22)

We use the abbreviation [dp] = dp
(2πh̄)n . If we apply this to simple functions such

as polynomials we can check that this definition corresponds to Weyl ordering. For
example, the function xp becomes the operator −ih̄∂x + x(−ih̄∂).

Conversely, given an operator, we define its symbol to be the function

Ã(x, p) =
∫
A
(
x + z

2
, x − z

2

)
e
− i
h̄
p·z
dz. (23)

The idea is that p is the momentum conjugate to the relative coordinate of the operator
kernel. The operator multiplication can now be translated into the multiplication of
symbols. The result can be expressed in closed form:

Ã � B̃(x, p) =
{
e

−ih̄
2 ( ∂

∂xi
∂

∂p
′
i

− ∂
∂pi

∂

∂xi
′ )
Ã(x, p)B̃(x′, p′)

}
x=x′;p=p′

. (24)

The trace of operators becomes an integral in phase space

TrA = tr
∫
A(x, x)dx = tr

∫
dx[dp]Ã(x, p). (25)

We emphasize that the algebra of symbols under the multiplication law is exactly the
same (isomorphic) to the algebra of operators on a Hilbert space;i.e., no approximation
is involved in replacing an operator by its symbol.
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We see that to the leading order the above multiplication law is just the pointwise
multiplication of the classical theory. In the next order there is a correction proportional
to the Poisson bracket. If we expand the exponential,

Ã � B̃(x, p) =
∞∑
n=0

(−ih̄
2

)n 1

n! {Ã, B̃}(n). (26)

Here we see a sequence of generalized Poisson brackets

{Ã, B̃}(n) =
n∑
r=0

(−1)r Ãj1...jr
i1...in−r B̃

i1...in−r
j1...jr

(27)

where Ãi = ∂Ã
∂pi

and Ãi = ∂Ã
∂xi

etc. n = 1 corresponds to the usual Poisson bracket.

If Ã and B̃ commute as matrices on spin, the odd brackets are antisymmetric and the
even ones are symmetric. Otherwise, there is no particular symmetry property.

Consider now the resolvent operator of a hamiltonian h,

r(E) = 1

h− E
. (28)

We will now derive a semiclassical expansion for the symbol r̃(E) of this operator.
The resolvent symbol satisfies

r̃(E) � (h̃− E) = 1. (29)

Expand r(E) in power series in h̄ and put into the expansion of the above equation to
get,

r̃(E) =
∞∑
k=0

r̃(k)(E)h̄
k, (30)

∞∑
n=0

∞∑
k=0

(−ih̄
2

)n 1

n! h̄
k{r̃(k)(E), h̃− E}(n) = 1. (31)

Equating the powers of h̄ on both sides of this equation, we get a set of recursion
relations

r̃(0)(E) = (h̃− E)−1, (32)

r̃(m)(E) = −
m∑
n=1

(−i
2

)n 1

n! {r̃(n−m)(E), h̃}(n)(h̃− E)−1. (33)

If h̃ is diagonal in flavor space, the odd terms r̃(2m+1) vanish. The above expansion
can be used to derive the usual WKB quantization conditions as well as higher order
corrections to it.
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Of particular interest to us is the case where h is a separable operator:

h̃(x, p) = t (p)+ v(x). (34)

In this case the mixed derivatives in the generalized Poisson brackets vanish and we
get

{r̃(k), h̃}(n) = r̃(k)i1...in t
i1...in + (−1)nr̃ i1...in(k) vi1...in . (35)

If9 t (p) = pipi as in nonrelativistic quantum mechanics, there is only one term
for n > 2,

{r̃(k), h̃}(n) = (−1)nr̃ i1...in(k) vi1...in (36)

while

{r̃(k), h̃}(1) = 2pi r̃(k)i − r̃ i(k)vi (37)

and

{r̃(k), h̃}(2) = 2r̃(k)ii + r̃
ij

(k)vij . (38)

If moreover, v is diagonal in flavor space, r̃(1) = 0 and

r̃(2)(E) = 1

2(h̃− E)2

[
vivi

h̃− E
+ 2(pivi)

2 − vii

]
. (39)

3.2 Derivative expansion of energy function

Now we can rewrite the Hartree–Fock energy in terms of the symbol ρ̃(x, p) of the
projection operator ρ.

H1(ρ̃) = tr
∫
ρ̃(x, p)T (p) dx[dp] + tr

∫
U(x)ρ(x) dx

+ 1

2

∫
G(x, y) tr ρ(x) tr ρ(y) dxdy (40)

− 1

8

∫
dx

∫
[dp][dp′]G̃(x, p − p′) tr ρ̃(x, p)ρ̃(x, p′)

Here,

ρ(x) = ρ(x, x) =
∫

[dp]ρ̃(x, p). (41)

We must minimize this subject to the constraints

ρ̃ � ρ̃(x, p) = ρ̃(x, p); tr
∫
ρ̃(x, p) dx[dp] = m. (42)

9We use units here such that 2µ = 1, to simplify the formulas.
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We reiterate that although the problem has been formulated on the classical phase
space, no approximation has been made yet. All the complications are in the multi-
plication law of the functions (hence in the quadratic constraint on ρ̃).

Now we put in the separable ansatz (which satisfies the constraint automatically)
and expand in powers of h̄. We will have

ρ̃(x, p) =
∞∑
k=0

ρ̃(k)(x, p)h̄
k (43)

Using the integral representation in terms of the resolvent symbol,

ρ̃ =
∫
D

dE

2πi
r̃(E) (44)

we get

ρ̃(k) =
∫
D

dE

2πi
r̃(k)(E). (45)

These terms in the expansion of ρ̃ are distributions on the phase space involving the
delta function and its derivatives, although the r̃(k) are ordinary functions. In the same
way, we have expansions for the number density,

ρ(x) =
∞∑
k=0

ρ̃(k)(x)h̄
k, (46)

ρ̃(k)(x) =
∫
D

dE

2πi

∫
[dp]r̃(k)(E, x, p) (47)

and the kinetic energy K = tr
∫
T (p)ρ̃(x, p) dx[dp],

K =
∞∑
k=0

K(k)h̄
k. (48)

Also,

q̃(k) =
∫
D

dE

2πi
tr
∫
dx[dp]r̃(k)(E, x, p)T (p). (49)

The direct energy can be written in terms of the density function ρ(x). The exchange
integral is more complicated, being quadratic in ρ̃; however, in most cases it is quite
small and explicit calculation in higher orders is not necessary.

It is now straightforward to calculate the Thomas–Fermi energy to lowest order in
the case of nonrelativistic quantum mechanics with a potential v that is diagonal in
flavor space. We get upon evaluating the integrals, (it is convenient to introduce a new
variable by v(x) = −φ2(x)),

ρ(0)(x) =
∫

[dp]�(−p2 + φ(x)) = ω′
n

φn(x)

n
,



New classical limits of quantum theories 227

K(0) = tr
∫
ω′
n

φn+2(x)

n+ 2
dx. (50)

Here

ω′
n = ωn

(2π)n
= 2

[
1

4π

] n
2 1

�(n2 )
(51)

is the area of a sphere of unit radius in momentum space. The exchange integral is,to
lowest order,

I(0) = 1

2

∫
[dpdp′]�(φ2(x)− p2)�(φ2(x)− p′2)G̃(p − p′). (52)

With G̃(p) = e2

p2 as for the Coulomb interaction, we can evaluate this more explicitly
by introducing spherical polar coordinates in momentum space. We get

I(0) = 1

2
α
ω′
nωn−1

(2π)n
Cn

∫
φ2n−2(x) dx (53)

where

Cn =
∫ 1

0
dy

∫ 1

0
dy′(yy′)(n−1)

∫ π

0
dθ

sinn−2 θ

y2 + y′2 − 2yy′ cos θ
. (54)

This leads to

ETF (φ) = tr
∫ [

ω′
n

φn+2

n+ 2
(x)− e2

2

ω′
nωn−1

(2π)n
Cnφ

2n−2(x)+ ω′
nU(x)

φn(x)

n

]
dx

+ 1

2

ω′2
n

n2

∫
G(x, y) tr φ(x)n tr φn(y) dxdy. (55)

In our expansion the exchange term appears in the lowest order. However, in atomic
physics it is as small as the terms involving derivatives of φ, so it is often ignored in
the lowest order treatments. Also, in many discussions, the energy is expressed as a
function of the density ρ(x), but one can make the change of variable from the Fermi
momentum φ(x) to ρ(x) easily.

Now we can vary this w.r.t. to φ to get an integral equation that determines the
ground state in this approximation. Actually a more convenient variable to use is the
mean field induced by this electron density: in terms of it we get a differential equation
instead. If the distribution is spherically symmetric, as for an atom, this becomes a
second order non-linear ordinary differential equation, the celebrated Thomas-Fermi
differential equation [13].

Thus it is indeed possible to take the limit as h̄ → 0 on systems such as the
atom and get a sensible approximation to the ground state. However, this leads to a
density function in the classical phase space and not conventional classical mechanics.
Moreover, it has to be derived through an intermediary that is a bona-fide classical
mechanical system but of infinite dimensions.
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4 Atoms in the limit of large dimension

As another example of a neoclassical limit, again in atomic physics, we consider the
limit of large spatial dimension. This idea originates in an observation of Witten that
in this limit the quantum fluctuations in the rotation invariant quantities will become
small. Let rai for a = 1, . . . , m and i = 1, . . . , n be the positions of m electrons
in an atom (or ion) of atomic number Z. Although the physically interesting case is
n = 3 we can, as a mathematical device, extend the system to n spatial dimensions.
The problem of determining the ground state becomes that of minimizing∫ [

h̄2

2µ

∂ψ∗

∂rai

∂ψ

∂rai
+
(

−
∑
a

Ze2

|ra| +
∑

1≤a<b≤m

e2

|ra − rb|
)

|ψ(r)|2
]∏
ai

drai (56)

subject to the condition that ∫
|ψ(r)|2

∏
ai

drai = 1. (57)

Here ψ ∈ �m (L2(Rn, CNf )
)
.

Now, the hamiltonian is invariant under the rotation group O(n)×U(Nf ). We now
take the limit as n and Nf tend to infinity, and recover a classical theory. When Nf is
large, we can assume that the wavefunction is completely anti-symmetric in the ‘spin’
indices; the position dependent part of the wavefunction is then symmetric. Indeed we
can assume that this part is rotation invariant, 10 so that it depends only the invariant
quantities qab = 1

n
rairbi .

These inner products form a positivem×mmatrix. A complete set of O(n) invari-

ants are given by the remaining bilinears L̂ba = 1
2n [raj , h̄i ∂

∂raj
]+, P̂ ab = − h̄2

n
∂2

∂rai∂rbi
.

They form a representation of the symplectic Lie algebra Sp(2n):

[qab, qcd ] = 0 = [
P̂ ab, P̂ cd

]
[L̂ab, L̂cd ] = ih̄

n

(
δcbL̂

a
d − δad L̂

c
b

)
[L̂ab, P̂ cd ] = ih̄

n

(
δcbP̂

ad + δdb P̂
ac
)

[L̂ab, qcd ] = − ih̄
n

(
δac qbd + δadqbc

)
.

(58)

These commutators are proportional to h̄
n

. Hence, there are two limits where the
quantum fluctuations vanish: the conventional classical limit where we let h̄ → 0
keeping n fixed (at the value 3 for example), or the neo-classical limit where we let
n → ∞ keeping h̄ fixed. In this neo-classical limit, the quantum observables tend to

10In the real world, the ground state wavefunction is invariant under O(n) at least for the noble gases: all
the shells are filled.
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classical ones satisfying the Poisson brackets of the symplectic Lie algebra:

{qab, qcd} = 0 = {Pab, P cd}
{Lab, Lcd} = h̄

(
δcbL

a
d − δadL

c
b

)
{Lab, P cd} = h̄

(
δcbP

ad + δdbP
ac
)

{Lab, qcd} = −h̄(δac qbd + δadqbc
)
.

(59)

These Poisson brackets will determine the neo-classical equations of motion, once the
hamiltonian is determined.

There are some subtleties in determining the hamiltonian of this neo-classical
theory: there is a new term in the potential arising from the change of the measure of
integration. (It is possible to interpret this as a kind of ‘Fischer information’ while the
measure determines a kind of ‘entropy’ [17]. But we don’t need this idea here.). Once
the correct hamiltonian has been determined, this classical theory gives a relatively
simple minimization problem for the ground state energy. Here we will consider only
the static limit (time independent solution) that determines the ground state of theory.

4.1 The change of variables

Let us return to the variational problem of determining the ground state. This will
reduce to the minimization of an effective potential that depends only on qab. First of
all, we need to determine the measure of integration µ(q)

∏
c≤d dqcd := µ(q)dq de-

termined by the change of variables qab = 1
n
rairbi on the Lebesgue measure

∏
ai drai .

This can be done by evaluating the following integral in two different ways:

Z(J ) =
∫
q≥0

e−qabJ abµ(q)
∏
c≤d

dqcd =
∫
e−

1
n
rai rbiJ

ab∏
cj

drcj . (60)

(Here, J is a positive matrix.) On the r.h.s. we have a standard Gaussian integral
yielding ∫

q≥0
e−qabJ abµ(q)

∏
c≤d

dqcd = k(n,m) (det J )−
n
2 (61)

where k(n,m) = (πn)− nm
2 is independent of J .

Thus Z(J ) depends on J only through its determinant. It follows11 that µ(q) can
only depend on q through det q, prompting the ansatzµ(q) = k̃[det q]ν . To determine
ν we note that under the transformation q → SqST , the measure of integration

11The space of positive matrices is a homogenous space of the general linear group, since any such
matrix can be mapped to the identity by the transformation q �→ SqST with J transforming dually. The
transformation law of Z(J ) under this transformation completely determines that of µ(q) as well.
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transforms as dq �→ [det S]m+1dq. Thus

Z(J ) =
∫
q≥0

e− tr q(ST JS)[det q]ν[det S]2ν+m+1 dq = Z(ST JS)[det S]2ν+m+1

(62)
which determines ν = n−m−1

2 .
Thus we have

||ψ ||2 = k̃

∫
q≥0

|ψ(q)|2[det q] n−m−1
2 dq. (63)

It is thus tempting to define a new wavefunction absorbing the determinant of q:

χ(q) = √[µ(q)]ψ(q), ||ψ ||2 =
∫
q≥0

|χ(q)|2 dq. (64)

This χ(q) is a kind of ‘radial wavefunction’.

4.2 The effective potential

Now we must express the hamiltonian in terms of this χ . The only calculation we
need is for the gradient of the wavefunction:

∫
h̄2

2µn2

∂ψ∗

∂rai

∂ψ

∂rai

∏
bj

drbj =
∫
h̄2

2µ
gab cdµ− 1

2
∂(µ

1
2χ∗)

∂qab
µ− 1

2
∂(µ

1
2χ)

∂qcd
dq

=
∫
h̄2

2µ
gab cd

[
∂χ∗

∂qab
+ n−m− 1

4

∂ log det q

∂qab
χ∗(q)

]
[
∂χ

∂qcd
+ n−m− 1

4

∂ log det q

∂qcd
χ(q)

]
dq (65)

where

gab cd = n2 ∂q
ab

∂rej

∂qcd

∂rej
= δacqbd + δadqbc + δbcqad + δbdqac (66)

is an induced metric on the new configuration space. Moreover we know from ele-
mentary matrix theory that

∂ log det q

∂qab
= q−1

ab . (67)

The terms proportional toχ∗χ become a correction to the potential; the terms involving
one derivative of the wavefunction combine to give a total derivative that can be
dropped. Those that involve the square of the derivative of χ become a new kinetic
energy term.
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Thus the variational problem is now to minimize∫
q≥0

[
h̄2

2µn2 g
abcd ∂χ

∗

∂qab

∂χ

∂qcd
+ (
Veff (q)+ V (q)

) |χ(q)|2] dq (68)

subject to the constraint ∫
q≥0

|χ(q)|2dq = 1. (69)

Here,

Veff = h̄2

2µ

(n−m− 1)2

4n2 tr q−1. (70)

Also, U(q) is the potential energy of the electron expressed in terms of the new
variables:

U(q) = −
m∑
a=1

Zα√[qaa] +
∑

1≤a<b≤n

α√[qaa + qbb − 2qab] (71)

where α = e2√
n

.

We are now ready to take the limit asn → ∞, holding e2√
n

= α (not e2 itself!) fixed.
As expected, in the new variables, the kinetic energy of the ground state wavefunction
will be of order 1

n2 . It is very important that there is now a new term in the potential
energy (arising from the kinetic energy of the old picture) which makes it bounded
below:

V (q) = h̄2

8µ
tr q−1 + U(q). (72)

In the end the correction to the potential is quite simple!
The ground state energy in our neoclassical approximation is the minimum of this

function over all positive q. The condition for this is an algebraic equation for q.
The case of a hydrogenic ion is of course simplest: whenm = 1, q is just a positive

number and there is no repulsive Coulomb interaction:

V (q) = h̄2

8µ
q−1 − Zα√

q
. (73)

The minimum is

−2µ
Z2α2

h̄2 = −2

n
µ
Z2e4

h̄2 . (74)

This is to be compared with the exact answer (for n = 3) of − 1
2µ

Z2e4

h̄2 . Thus we

get roughly the correct answer: the relative error is about 1
n

. It should be possible to
improve on this by semi-classical methods.
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More generally, it is reasonable to expect (but not guaranteed) that the minimum
will respect the permutation symmetry of the problem. Then we can put the ansatz
that all the diagonal elements are equal (say, qaa = ρ2,∀a) and that all the off-
diagonal elements are also equal, (put qab = ρ2u,∀a = b). Then |u| ≤ 1 by Schwarz
inequality. The potential becomes in these new variables, (it is convenient to choose
a kind of atomic units during such explicit calculations, 2µ = h̄ = α = 1):

V (ρ, u) = 1

4ρ2 f (u)− 1

ρ
g(u). (75)

Here,

g(u) = mZ − m(m− 1)

2

1√[2(1 − u)] . (76)

Moreover,

f (u) = tr q̃−1, q̃ = (1 − u)+ uC (77)

andC is them×mmatrix all of whose matrix elements are equal to one. The spectrum
of C is quite simple: it has an eigenvalue equal to zero with degeneracy m − 1 and
the remaining eigenvalue is just m. Thus we can determine the spectra of q̃ and q̃−1

and hence its trace:

f (u) = m− 1

1 − u
+ 1

1 + (m− 1)u
. (78)

It is simple to minimize in ρ to reduce the problem to minimizing in u of − g2(u)
f (u)

.

If we change variables yet again to

v = 1√[2(1 − u)] ,
1

2
≤ v, (79)

our approximation of the ground state energy becomes the minimum of the rational
function

Ṽ (v) = −
[
mZ − m(m− 1)

2
v

]2 2mv2 − (m− 1)

2mv2
[
2(m− 1)v2 − (m− 2)

] . (80)

This minimum can in fact be found in closed form as an algebraic function of
m and Z. But the formula (obtained by an algebraic computation program such as
Mathematica) is quite complicated. But this formula is fit very well12 in the case of a
neutral atom (i.e., m = Z) by the polynomial

E(Z) = −[0.00152507 + 0.0871987Z − 0.920957Z + 1.83211Z2]2µe4

nh̄2

We have restored the original units to make comparison with other methods easier.

12The fit is good to a relative error of 0.01% over the range 1 ≤ Z ≤ 100
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The point of this method is that it gives an exactly solvable and reasonably accurate
picture for the ground state of the atom without having to deal with complicated non-
linear differential equations. The answers are reasonable considering the simplicity
of the calculations.

5 A physicist’s view of modular forms

Next we will consider an example from mathematics: the theory of modular forms. I
don’t claim to have solved any deep problem in this area (of which there are many).
But perhaps the point of view described will suggest new methods.

5.1 The modular group and its subgroups

We will give only a foretaste of the theory of modular forms. See reference [18] for
most of the proofs and precise statements of the results. Also see reference [19] for
relations to other areas of mathematics and physics.

The group of two by two matrices with integer entries and determinant one is
called SL2(Z); its quotient by the center, �(1) = SL2(Z)/Z2, is the modular group.

It is conventional to denote elements of �(1) as matrices

(
a b

c d

)
, their pre-images in

SL2(Z).
�(1) acts on the upper half of the complex plane U through the fractional linear

transformations

z �→ az+ b

cz+ d
. (81)

A fundamental region for this action is,

D =
{
z||z| > 1, |Re z| < 1

2

}
. (82)

This region is a spherical triangle with vertices at i∞,± 1
2 +

√
3

2 i. The point is that
translations can be used to bring any point inside the strip |Re z| < 1

2 ; and under
inversion any point is equivalent to one outside the unit circle.

The modular group is generated by S : z �→ − 1
z

and P : z �→ − 1
z+1 . It is obvious

that S2 = 1, P 3 = 1. Indeed it can be shown that �(1) = Z2 ∗ Z3 is the free product
generated by these two elements-there are no other relations among these generators.

Many interesting groups appear as subgroups of the modular group. For example,
the commutator subgroup of �(1) is the free group on two generators; it is a normal
subgroup of index13 6. Thus the modular group is both non-abelian and infinite in an
essential way: free groups are the ultimate examples of such groups.
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The principal congruence subgroup�(n) of level n consists of all elements that are
equal to the identity matrix modulo n. Now we see why the modular group is called

�(1); its elements are of the form

(
a b

c d

)
with a = d = 1 mod n, c = b = 0 mod n.

Any subgroup � in between, �(n) ⊂ � ⊂ �(1), is called a congruence subgroup
of level n. The congruence subgroups are all of finite index. It is possible to show
by a counting argument [18] that [�(1) : �(n)] = n3∏

p|n[1 − p−3]. Of particular

importance 14 is the subgroup �0(n) =
{(
a b

c d

)
∈ �(1), c = 0 mod n

}
. The index

can be shown to be [18] [�(1) : �0(n)] = n
∏
p|n[1 + p−1].

5.2 Modular forms

A entire modular form of integer weight k associated to a subgroup � ⊆ �(1) is a
holomorphic function on the upper half plane (including the point at 15 i∞) satisfying

(cz+ d)−kf
(
az+ b

cz+ d

)
= f (z), for

(
a b

c d

)
∈ �. (83)

It is called a cusp form if f (i∞) = 0.
If the weight is even, we can think of a modular form as a covariant tensor of order

k/2 (‘form’) onU/�: the condition above is the statement that f (z) [dz]
k
2 is invariant

under �.
The holomorphic sections of the canonical line bundle on U (in this case the

cotangent bundle) L are entire functions f (z) on U such that f (z)dz is invariant

under �. Thus the modular forms of weight k are simply holomorphic sections of L
k
2 .

If k is odd these correspond to some ‘spinors’ on U/�.
An example of a modular form16 of weight 2k is the Eisenstein series

G2k(z) =
∑

(m,n) =(0,0)

1

(m+ nz)2k
. (84)

It does not vanish at i∞: G2k(i∞) = 2ζ(2k).
The most famous cusp form is

�(z) = (2π)12eiπz
∞∏
n=1

[1 − e2πinz]12. (85)

13The index [G : H ] of a subgroup H of a group G is the number of elements in the coset G/H ;
alternatively, it is the number of copies of the fundamental region ofG that is needed to form a fundamental
region of H .

14It is the modular forms of weight two with respect to this subgroup that appear in the Shimura–Taniyama
conjecture.

15A function f is holomorphic at i∞ if it has a convergent Fourier expansion f (z) = ∑∞
0 fne

2πinz.
Moreover, f (i∞) = f0.

16If we don’t specify �, we will be speaking of the modular group itself.
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It is of weight 12. It is nonzero everywhere except for a simple zero at i∞. It appears
in Ramanujan’s theory of partitions of numbers. If we expand the product of the
twelfth root of � (which is called the Dedekind η-function) we can see that it is a
generating function for partitions. The partitions of large numbers is given by the
asymptotic behavior as Im z → 0; this is an essential singularity of the function so
at first this looks hopeless. However, the modular invariance relates the value of � at
z to its value at − 1

z
; thus the behavior at i∞ (which is trivial to determine) gives the

behavior as Im z → 0. Hardy and Ramanujan turned this rough stone of an idea into
an exquisite jewel (further polished by Rademacher), deriving an asymptotic formula
for partitions of large numbers.

Any modular form is a periodic function hence can be expanded in a Fourier
series. These Fourier coefficients are of great interest. An example is the Ramanujan
τ -function, which are the Fourier coefficients of the modular form above,

�(z) =
∞∑
1

τ(n)e2πinz. (86)

A deep conjecture of Ramanujan (proved eventually by Deligne following ideas of
Grothendieck) was that

|τ(p)| ≤ 2p
11
2 . (87)

In the theory of partitions, this inequality gives a bound on the error term to the
Hardy-Ramanujan asymptotic formula for partitions of large numbers. These error
terms seem to oscillate erratically yet a bound on their magnitude follows from the
above inequality.

These erratic oscillations are related to yet another interesting phenomenon: if

we define 2p
11
2 cos θ(p) = τ(p), the angles θ(p) seem to be distributed randomly

according to the circular ensemble of random matrix theory. Indeed spectra of random
matrices appear in many places in the theory of modular forms and related Dirichlet
series (see the recent books [19]). We will seek a clarification of this phenomenon
using ideas from quantum mechanics in the theory of Hecke operators.

LetMk be the vector space of entire modular forms of weight k and Sk that of cusp
forms. It is clear that MkMl ⊂ Mk+l . For k ≥ 12, multiplication by � gives a linear
mapMk−12 → Sk . Moreover, dim Sk = dimMk − 1 since there is just one condition
on the Fourier coefficients of a cusp form: that the zeroth one vanishes. It is possible
to reduce the determination of the dimension of Mk to small values of k using these
facts; see [18] for details.

With our definition of weight, there are no entire modular forms of odd weight. For
k = 0 there is just one entire modular form, the constant. There are none for k = 2.
For k = 4, 6, 8, 10 the only entire modular forms are multiples of the Eisenstein series.
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For k ≥ 12 and even,

dim Sk =


[
k

12

]
if k = 2 mod 12[

k
12

]− 1 if k = 2 mod 12.
(88)

Thus for large k, the dimension grows linearly with weight. A way of understanding

this is that the elements of Sk are holomorphic sections of the line bundle L
k
2 ; as

k grows this line bundle has greater Chern character allowing for more sections: it
approaches a kind of classical limit.

5.3 Modular forms as wavefunctions

To a physicist, the above theory of modular forms is very reminiscent of quantum
mechanics.

We can regard the upper half plane as the phase space of some classical mechanical
system. The symplectic form is the Poincarè form:

ω = dx ∧ dy
y2 , z = x + iy. (89)

The modular group (or one of its finite index subgroups) can be thought of a discrete
gauge group, so that points related by such a transformation represent the same classical
state. A wavefunction would be a holomorphic function on the upper half plane; more

precisely it would be a holomorphic section of a line bundle L
k
2 on U/�. Thus k

2 is
analogous to the parameter N in our earlier discussion of compact Kähler manifolds.
The base U/� is not usually a compact manifold because of the cusps (points at
infinity and points where the stability group is finite). Nevertheless U/� has finite
area hence most of the theory ought to generalize.

What is the dynamical system whose phase space is U/�(1)? We can imagine
it as a model of quantum gravity in two dimensions. There are many such models
that illustrate various aspects of gravity. Here, we think of space-time as a torus. Our
model of gravity is conformally invariant (not crazy since two is the critical dimension
for gravity). Thus the set of metrics modulo diffeomorphisms and conformal (Weyl)
transformations is the phase space of gravity. Using a diffeomorphism that is connected
to the identity and a Weyl transformation we can bring any metric to the form ds2 =
|dθ1 +zdθ2|2, where 0 ≤ θ1, θ2 ≤ 2π are standard co-ordinates on the torus. Also we
can choose Imz > 0. Now if we also allow for diffeomorphisms that are not connected
to the identity, which are(

θ1
θ2

)
�→

(
a b

c d

)(
θ1
θ2

)
,

(
a b

c d

)
∈ SL2(Z) (90)

then the true phase space would be U/�(1): the action of �(1) on z is exactly the
above fractional linear transformation.
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What would be the meaning of a gauge group that is only a subgroup of �(1)? We
might have some additional geometric object on the torus that has to be invariant as
well (like a spin structure) that would reduce the size of the gauge group.

What would be the hamiltonian of our theory? A closed cosmology like a torus
would at first not seem to have any meaningful time evolution. An asymptotically
flat space-time would have a time at infinity with respect to which we can evolve its
wavefunction. In closed universes in four dimensions, the Wheeler–DeWitt equation
gives a ‘time evolution’ where the conformal factor of the metric itself is a kind of
time variable. But we have given this up by postulating that continuous rescalings are
part of the gauge group, so that the wavefunction is invariant under them.

However we can still regard time evolution as a discrete rescaling (‘expansion’)
of the universe. While rescalings connected to the identity are part of the confor-
mal group, there are certain discrete rescalings that for example double the size of
the fundamental region. There are many different ways of rescaling such a region
(e.g., double just one leg of the fundamental parallelogram) which individually vio-
late modular invariance. Only by averaging over all of them would we recover modular
invariance.

What we describe above is an interpretation of the Hecke operators on modular
forms: they are rescalings averaged over the modular group. Because the evolution
is discrete we cannot find a generator for infinitesimal transformations. The closest
we get to are the prime rescalings, which cannot be decomposed as compositions of
others. They yield a family of commuting hermitean operators which together play
the role of the hamiltonian. In the next section we give a more detailed description of
Hecke operators.

The central problem of the Hecke theory of modular forms, that of determining
the simultaneous eigenvectors of the Hecke operators, is just like the central problem
in quantum mechanics: finding the eigenfunctions of the hamiltonian. Quantum
mechanics suggests some strategies to attack this Hecke problem. The limits of large
weight or large level are like neo-classical and classical limits. For example, the
number of linearly independent modular forms is O(νk) in the limit of either large
index ν or large weight k. The number of independent states of a quantum mechanical
system with a two-dimensional phase space is of order of the area of the phase space
divided by h̄. The fundamental regionD of the modular group is not compact but still
has finite area with respect to the Poincaré metric:

A(D) =
∫ 1

2

− 1
2

dx

∫ ∞
√[1−x2]

dy

y2 = π

3
. (91)

The fundamental region of a subgroup of index ν is then just νA(D). Since the number
of linearly independent modular forms is k

6 for large k, we see that the analogue of
h̄ in our theory is essentially 6A(D)/k = 2π

k
. For example for the subgroup �0(p)

which has index ∼ p (for prime p) there should be, according to this interpretation,
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∼ pk linearly independent modular forms. This is indeed known in the traditional
theory of modular forms.

Thus we get simpler classical analogues of the theory of modular forms in these
limits; we can then hope to understand the general case by asymptotic expansions in
inverse powers of k or n. In the limit of large n, the subgroup

�0(n) =
{(
a b

c d

) ∣∣∣c = 0 mod n; ad − bc = 1; a, b, c, d ∈ Z
}

(92)

becomes essentially the group of translations(
1 b
0 1

)
; b ∈ Z, z �→ z+ b. (93)

This is a huge simplification: the invariance group becomes more ‘abelian’as n → ∞.
In ordinary gauge theories (such as Yang–Mills theories) the limit as the theory be-
comes abelian and the limit of small quantum corrections are intimately related. (Per-
turbation theory is essentially the same as the loop expansion.) Thus one elementary
strategy to understand modular forms is to study first this easy limiting case where
modular forms reduce to periodic functions on the upper half plane. We will see then
that this ‘perturbative’ limit is also a ‘semi-classical limit’ of large k.

The theory of modular forms should be viewed as a gauge theory with a non-abelian
and non-compact gauge group- the modular group. It has all the essential features of
the gauge theories of physics but in a much simpler mathematical setting: the group
is only countably infinite instead of being an infinite dimensional Lie group. Thus
there is no need for renormalization. By studying modular forms we are studying the
gauge principle in its purest form without contamination by the other complications
of quantum field theories. The number theory of the last century bears witness to the
claim that even this simplest of all non-abelian gauge theories is very deep: some of
the deepest problems of number theory could be solved if we understood the spectrum
of the Hecke operators.

In this paper we develop only the analogue of lowest order perturbation theory
(‘abelian approximation’). Our other ideas on non-abelian gauge theories (‘summing
planar diagrams’) also should have analogues here and should lead to deep results in
the future. I hope an enterprising reader will take up this challenge.

5.4 Hecke operators

We now return to the exposition of the classic theory of modular forms due to Hecke.
Hecke was motivated by the work of Mordell who in turn was trying to understand
the Ramanujan conjecture on the τ -function.

A lattice on the complex plane is a set of points

w ∼ w + rω1 + sω2, r, s ∈ Z; (94)
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the fundamental region is a parallelogram with side z. A linear change of basis with
integer coefficients and determinant one17 ad − bc = 1,(

ω1
ω2

)
�→

(
a b

c d

)(
ω1
ω2

)
(95)

does not change the lattice. By identifying the opposite sides of this parallelogram
we get a torus. By a rotating our co-ordinate system and choosing an appropriate unit
of length we can choose ω2 = 1. Also, we can reflect around this axis if needed to
make ω1 lie in the upper half plane. Thus only the ratio z = ω1

ω2
is needed to specify a

lattice. A modular transformation

z �→ az+ b

cz+ d
, ad − bc = 1 (96)

is just the effect of a change of basis on this ratio. We call this lattice Lz.
A fractional linear transformation

z �→ az+ b

cz+ d
(97)

with integer coefficients will map Lz to a sublattice of index18 n = ad − bc. Each
sublattice of index n corresponds to an orbit of �(1) on the set

�n =
{(
a b

c d

) ∣∣∣ a, b, c, d ∈ Z, ad − bc = n

}
(98)

since an action by �(1) would not have changed the original lattice Lz. (For n = 1,
�n is not a group; �m�n ⊂ �mn).

We now define the action of the Hecke operator T (n) on a modular form f as a
sum over all the sublattices of index19 n:

[T (n)f ](z) = n
k
2 −1

∑
h∈�n/�

f (h(z))

[
dh(z)

dz

]k/2
. (99)

Using the fact an action by �(1)merely permutes the terms of this sum (the left action
of �(1) on the coset �n/�(1)) we can show that T (n)f is also a modular form of
weight k.

By a right action of �(1) we can bring any element of �n to the upper triangular

form ; actually we can enumerate the elements of the coset �n/�(1) by

(
a b

0 d

)
with

ad = n, b = 0, 1, . . . , d − 1 . For proofs see [18]. A more explicit formula for the

17If the determinant is not one we change the area of the fundamental domain. See below.
18This means that there are n fundamental domains of Lz in one fundamental domain of the sublattice.

19We denote h(z) = az+b
cz+d for h =

(
a b

c d

)
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Hecke operator is thus,

[T (n)f ](z) = 1

n

∑
ad=n

ak
d−1∑
b=0

f

(
az+ b

d

)
. (100)

In particular, for prime p,

[T (p)f ](z) = pk−1f (pz)+ 1

p

p−1∑
b=0

f

(
z+ b

p

)
. (101)

In terms of Fourier coefficients:

f (z) =
∞∑
0

fme
2πimz, [T (n)f ](z) =

∞∑
0

γn(m)e
2πimz, (102)

where,

γn(m) =
∑
d|(n,m)

dk−1fmn
d2
. (103)

In particular20,

[T (p)f ]m = fpm + δ(p|m)pk−1fm
p

(104)

It follows then that T (mn) = T (m)T (n) if m and n are coprime. More generally
we can show

T (m)T (n) =
∑
d|(m,n)

dk−1T
(mn
d2

)
. (105)

In particular, the Hecke operators commute with each other. It is also useful that for
prime powers we have a recursion relation,

T (pr+1) = T (p)T (pr)− pk−1T (pr−1) (106)

which can be solved in terms of Tchebycheff polynomials21:

T (pr) = p
r(k−1)

2 Ur

(
1

2
p
k−1

2 T (p)

)
. (108)

Thus the T (p) for prime p determine all the T (n).

20δ(p|m) = 1 if p divides m and zero otherwise. We use
∑p−1
b=0 e

2πimb
p = pδ(p|m) to derive this

formula.
21The Tchebycheff polynomials are defined by

U0(x) = 1, U1(x) = 2x, Ur+1(x) = 2xUr (x)− Ur−1(x). (107)
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It is not difficult to establish an inner product on Sk with respect to which T (n)
are hermitean:

〈f1, f2〉 >=
∫
D

f ∗
1 (z)f2(z)[Im z]k−2 d2z, (109)

where,

D =
{
z = x + iy| − 1

2
≤ x ≤ 1

2
, x2 + y2 ≥ 1

}
. (110)

The point here is that ykf ∗
1 (z)f2(z) is a modular invariant function, so that it can

be integrated after multiplying by the modular invariant volume form dx∧dy
y2 to get a

modular invariant quantity. Of course since each tile contributes the same amount we
must restrict the integral to one fundamental domain.

Thus we have a set of commuting hermitean matrices, there is an orthogonal basis
of simultaneous eigenvectors, with real eigenvalues: the Hecke forms.

Suppose we have as simultaneous eigenvector a cuspform satisfying,

T (n)f (z) = λnf (z), ∀n. (111)

The convention is to normalize an eigenvector by setting the first Fourier coefficient
f1 = 1. Taking Fourier coefficients of both sides, we get fn = λn: the Fourier
coefficients of a simultaneous eigenvector of the Hecke operators are the eigenvalues.
It follows that these coefficients satisfy a multiplicative identity

fmfn =
∑
d|(n,m)

dk−1fmn
d2
. (112)

There is a Dirichlet series associated to any modular form

f (z) = f0 +
∞∑
1

fne
2πinz, φ(s) =

∞∑
1

fn

ns
(113)

or,

φ(s) = (2π)s

�(s)

∫ ∞

0
ys−1[f (iy)− f0]dy. (114)

The modularity of f implies a functional equation22 for φ:

(2π)−s�(s)φ(s) = (−1)
k
2 (2π)s−k�(k − s)φ(k − s) (116)

22To see this, just take the Mellin transform of the condition for invariance under inversion:

f

(
− 1

z

)
zk = f (z). (115)
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and conversely. The multiplicative property of the coefficients of the Hecke eigenforms
yields a product formula:

φ(s) =
∏
p

1

1 − fpp−s + pk−1p−2s . (117)

This is reminiscent of the Riemann zeta function ζ(s). Indeed the theta function, of
which ζ(s) is the Mellin transform, is a modular form of a congruence subgroup of
level 2.

It is of much interest to understand the behavior of the eigenvalues of the Hecke
operators. They have been related to the zeros of the zeta function of algebraic varieties
over finite fields (Eichler, Sato, Deligne). There are many deep conjectures about the
behavior of the eigenvalues λ(n) for large n. The simplest case is when the dimension
of the space of cusp forms is one: when k = 12 the only cusp form is the function
�(z) we introduced earlier. In this case the Hecke operators are 1 × 1 matrices: just
numbers. From the above it is clear that these numbers are just the Fourier coefficients
of the function�(z). In other words, for the case k = 12, the Hecke operators reduce
to the Ramanujan τ -function: T (n) = τ(n). In fact Hecke discovered these operators
by generalizing some ideas of Mordell on the modular form�(z) to the case of higher
weight.

From our earlier discussion, we are led to consider the limit of large level where the
invariance group becomes abelian. We now present a simple analogue of the Hecke
problem for this case of periodic functions.

5.5 Hecke operators on periodic functions

Any modular form is periodic so we can expand it in a Fourier series f (z) =∑
n=1 fnen(z). Thus it is tempting to think of the space of modular forms as a sub-

space of the space of periodic functions V . To make this idea precise, we would like
to have a norm on V .

The inner product on modular forms given above can be written as

〈f, f̃ 〉 =
∫ 1

2

− 1
2

dx

∫
x2+y2≥1

dyyk−2f ∗(z)f̃ (z) =
∞∑

m,n=1

f ∗
n f̃mgnm (118)

where

gnm = 〈en, em〉 =
∫ 1

2

− 1
2

dxe2πi(m−n)x
∫ ∞

0
yk−2e−2π(m+n)yθ

(
y ≤ √

(1 − x2)
)
dy

(119)
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is a positive sesquilinear form. We can extend the integral to the fundamental region
of the translation group to get an inner product on V :

(ψ, ψ̃) =
∫ 1

2

− 1
2

dx

∫ ∞

0
yk−2ψ∗ψ̃dy =

∞∑
n,m=1

ψ∗
n ψ̃mhnm. (120)

In terms of the basis em, we have hnm as a diagonal sesquilinear form

hnm = (en, em) = (k − 2)![4πn]1−kδn,m. (121)

The Hecke operators are given by quite simple formulae in terms of the Fourier
components. We can work out easily their dual action on the basis em(z):

T (p)em(z) = pk−1emp(z)+ δ(p|m)em
p
(z) (122)

for prime p. This can then be used extend to them as operators on V . The spectral
problem for T (p) in the infinite dimensional space V is much simpler than its coun-
terpart in Sk . We will solve this simpler problem and see that it has close connections
to the theory of random matrices.

How will we recover the Hecke operators on modular forms? We could try thinking
of modular forms as a subspace of the space of periodic functions. But under the above
inner product on V they will not be square integrable. The reason is precisely modular
invariance: each fundamental region contributes an equal amount to the integral, and
the region − 1

2 ≤ x ≤ 1
2 contains an infinite number of such regions. Thus, the

expansion of a modular form in the basis em(z) is not convergent in the above norm
(. , ). On the other hand, the integral for 〈. , .〉 corresponding to the sesquilinear form
gnm also can be extended to an inner product on V . It is convergent on modular forms
but is a degenerate sesquilinear form in V : the integral is restricted to the region
x2 + y2 ≥ 1. We can quotient V by the null space of gnm to get a finite dimensional
space S̃k that is a ‘gauge fixed’ version of Sk . That is, instead of thinking of modular
forms as a subspace of V , we think of them as a quotient of V by the null space of
gnm. The ‘gauge fixing’ amounts to the choice of one particular fundamental region
among the infinite number as the domain of the integral. Thus the spectral problem
of the Hecke operators on modular forms can be replaced by that on the space S̃k .

As k grows the dimension of Sk grows linearly with k. We will see that in a certain
sense the two inner products gnm and hnm approach each other. Thus the discrete
eigenvalues of T (p) are so close together as k → ∞ that they merge to form the
continuous spectrum of T (p) on V .

5.6 Toeplitz operators

We now solve the spectral problem for the Hecke operators on periodic functions. It
will be more transparent to transform to the orthonormal basis

|m >= [
(4πm)1−k(k − 2)!]− 1

2 em.
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We then have

T (p)|m >= p
k−1

2

[
|mp > +δ(p|m)|m

p
>
]
. (123)

There is then a simple description in terms of Toeplitz operators. The operators

A†(p)|m >= |pm >,A(p)|m >= δ(p|m)|m
p
> (124)

are adjoints of each other and satisfy

A(p)A†(p) = 1, A(p)A(p′) = A(p)A(p′), A(p)A†(p′) = A†(p′)A(p) (125)

for p = p′. That is, they form a commuting set of Toeplitz operators labelled by the
prime numbers. Being isometries |A| = |A†| = 1. It follows easily that T (p) are
hermitean and that

|T (p)| ≤ 2p
k−1

2 . (126)

The analogue of this inequality on the space of modular invariant functions (rather
than periodic functions) is a much deeper statement.

5.7 Connection to random matrices

The simultaneous eigenfunctions of the T (p) can now be obtained in terms of Tcheby-
chev polynomials. The spectrum is connected with the Wigner distribution for random
matrices.

It is enough to study each T (p) separately: the theory ‘localizes’ completely. To
see this, represent each number m in terms of its prime decomposition:

m =
∏
p

pνp . (127)

The product is over the set of all primes; νp = 0, 1, . . . with only a finite number of
them being non-zero. Then

A†(p)|ν2, ν3, · · · >= |ν2, . . . , νp + 1, · · · >, (128)

A(p)|ν2, ν3, · · · >= δ(νp = 0)|ν2, . . . , νp − 1, · · · > . (129)

Thus A(p),A†(p) act only on the p-th entry.
The Toeplitz algebra is the associative algebra generated by a pair of elements

satisfying the relation

AA† = 1. (130)

The standard representation in terms of an orthonormal basis |ν >, ν = 0, 1 . . . is

A†|ν >= |ν + 1 >, A|ν >= δ(ν = 0)|ν − 1 > . (131)
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This is precisely the representation that we have.
Voiculescu [20] has found a remarkable connection between the theory of random

matrices and the Toeplitz algebra. Given any polynomial f : R → R, define

〈f 〉N =
∫

tr f (X)e− 1
2 tr X2

dX∫
e− tr X2

dX
(132)

the integral being over all hermitean N × N matrices. Thus X is a hermitean matrix
whose matrix elements are independent random variables. Then, Voiculescu shows
that

lim
N→∞〈f 〉N = 〈0|f (A+ A†)|0〉. (133)

There is a probability distribution on R, the Wigner semi-circle distribution, such that

lim
N→∞〈f 〉N =

∫
R

f (x)ρ(x) dx. (134)

Explicitly,

ρ(x) = θ(|x| < 2)
1

2π

√[4 − x2]. (135)

Thus we see that the Hecke operators T (p) on periodic functions are hermitean

operators whose spectrum is the interval
[− 2p

k−1
2 , 2p

k−2
2
]
. The (generalized) eigen-

functions are given by Tchebycheff polynomials. The Wigner distribution gives the
spectral density. Thus each T (p) behaves like a hermitean random matrix; the differ-
ent Hecke operators for different prime p commute with each other, so they are not
‘free’ in the sense of Voiculescu; instead they are statistically independent in the more
conventional sense.

5.8 The limit of large weight

Recall that the main difference between the exactly solvable model above and the
theory of modular forms is that we replaced the sesquilinear form gnm by the simpler
one hnm. We now show that in the limit of large weight k this is a small correction so
that what we obtained above is the asymptotic behavior as k → ∞.

Note that we can split

hnm = gnm + qnm (136)

where k is the integral over the complimentary region

qnm =
∫ 1

2

− 1
2

dxe2πi(m−n)x
∫ √

(1−x2)

0
yk−2e−2π(m+n)y dy. (137)
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If we rewrite this in the orthonormal basis of hnm, we will get

δnm = g̃nm + q̃nm (138)

where q̃nm = qnm√
(hnnhmm)

etc . We will show that |q̃nm| tends to zero as k → ∞.
Now,evaluating the y-integral,

q̃nm =
[

m+n
2√
(mn)

]1−k

∫ 1
2

− 1
2

dxe2πi(m−n)x 1

(k − 2)!�
(
k − 1, 2π(m+ n)

√
(1 − x2)

)
where the incomplete Gamma function is defined by

�(s, u) =
∫ u

0
t s−1e−t dt. (139)

We will study this limit as k → ∞ keeping m, n fixed23. Now recall that as
s − 1 > u, the maximum value of the integrand is attained at its upper limit in this
case, so that �(s, u) < use−u. Then

|q̃nm| ≤
[

m+n
2√
(mn)

]1−k ∫ 1
2

− 1
2

1

(k − 2)![
2π(m+ n)

√
(1 − x2)

]k−1
e−2π(m+n)√(1−x2) dx. (140)

Again, replacing the integrand by its largest value (which is attained at x = 0), we get

|q̃nm| ≤
[
4π

√
(mn)

]k−1

(k − 2)! . (141)

The growth of the factorial beats the exponential growth for fixed m and n.
Thus we can see why the distribution of eigenvalues of Hecke operators resemble

those of random matrices by our semi-classical approximation method. Moreover we

see why the spectrum of T (p) is in the interval
[− 2p

k−1
2 , 2p

k−1
2
]
.

5.9 The Poisson algebra of modular invariant functions

We should expect that in the limit of large weight, the theory of modular forms is
well-approximated by a classical theory. More precisely the algebra of matrices on
Sk should tend to the Poisson algebra of functions onU/�(1). In particular there will
be functions on the upper half plane which are classical approximations to the Hecke
operators. These Hecke functions will have vanishing Poisson brackets relative to
each other. Their range will give a classical approximation to the Hecke eigenvalue

23We should really be estimating the operator norm of q̃. I hope that the arguments here will motivate a
more rigorous analysis.



New classical limits of quantum theories 247

problem. This is another, (manifestly gauge invariant) of studying the limit of large
weight.

The upper half plane is a symplectic manifold with symplectic form

ω = dx ∧ dy
y2 . (142)

This means that x and 1
y

are canonical conjugates:

{y−1, x} = 1. (143)

The set of functions on the upper halfplane form a Poisson algebra with the bracket

{u, v} = y2
(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
. (144)

The modular transformations

x �→ x + 1, y �→ y (145)

and

x �→ − x

x2 + y2 , y �→ y

x2 + y2 (146)

are canonical transformations. Thus the space of modular invariant functions is a sub-
Poisson algebra. The quotient of this by its center is the algebra of ‘gauge invariant
observables’ if we regard the modular group as a ‘gauge group’. We can construct
such observables from smooth functions of the upper half plane (vanishing sufficiently
fast at infinity) by averaging over orbits. The Maas forms provide nice examples of
such ‘observables’.

In the limit of large k, the Hecke operators should tend to certain modular invariant
functions (which are not holomorphic) that have zero Poisson brackets relative to each
other. The range of these functions is the large k-limit of the Hecke spectrum. We
should also be able to derive a systematic semi-classical expansion in powers of 1

k
.

But this paper is getting long already; I hope to return to these questions in a later
publication.
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