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Abstract 

An infinite hierarchy of nonlocal conservation laws for the derivative non- 
linear Schrodinger (DNLS-) equation is derived by means of the geometrical 
method introduced by Carnevale and Tenenblat. The two lowest order laws 
are related to conservation equations which have been found by other 
methods. 

1. Introduction 

The derivative nonlinear Schrodinger (DNLS-) equation 

41 + {14I2dx + iqxx = 0 (1.1) 
has been found relevant for the study of weakly nonlinear 
and dispersive Alfven waves [ 11, drifting filamentations 
formed in nonlinear electrostatic waves in magnetized plas- 
mas [2], and the evolution of light pulses in optical fibres [3]. 

The mathematical properties of eq. (1.1) can be sum- 
marized as follows: It is a completely integrable Hamiltonian 
system with an infinite hierarchy of conserved polynomial 
densities in involution with respect to a symplectic form. The 
transformation to action-angle variables is given by the 
inverse scattering transform (IST) 14, 51. Furthermore, eq. 
(1.1) possesses soliton solutions which have been classified in 

One readily finds that (1.1) itself is a conservation equation 
UOI.  

with conserved density 

Do = 4 (1.2) 
By inspecting the hierarchy of polynomial conserved densities 
one observes that (1.2) is not included in this hierarchy [4, 51. 
The same conclusion holds true for the nonlocal conserved 
density [6]: 

D-, = )i ( p q  - p*q*) 

p = s" q* dx 
-m 

which was found by means of Noether's theorem: The 
Lagrangian of the DNLS-equation (1.1) is invariant under 
the gauge transformation 

q + q exp (ie) 
The interpretation of D- , as waveaction density becomes 
apparent when expressing the corresponding conservation 
law in terms of the energy density l & 1 2  of the spectral com- 
ponent k [7]: 

p + p exp (ie) 

IBA2 1" D-, dx = -271 P S m  -dk. 
-m  -m k 

where P denotes the principal value and 

1 Bk = - jm q(x) exp (-ikx) dx 271 -m 

One can further show that Do and D-  , are conserved densities 
of the extended DNLS-equation [7] 

1 v(x') dx, H(V) = - P  1" - 
71 - a x - x x I  

where the additional term - o(qH((q12)), describes the effect 
of resonant particles on the Alfven wave modulations. In 
fact, the numerical scheme which has been applied to the 
initial value problem of (I  .4), implies corresponding discrete 
versions of Do dx = const. and i ym D-, dx = const. 

This serves as the motivation for the present study: The 
objective of this paper is to show that the densities Do and D- , 
are included in an infinite hierarchy of conserved densities of 
(1.1). All the densities in this hierarchy, except Do, are non- 
local. The conserved densities are derived by employing the 
geometrical approach introduced by Cavalcante and Tenen- 
blat [9]. Their method is based on the interpretation of soliton 
equations as descriptions of pseudospherical surfaces. 

The present paper is organized in the following way: In 
Section 2, a description of the Cavalcante-Tenenblat pro- 
cedure is presented. Section 3 contains the explicit derivation 
of the nonlocal conserved densities, while concluding 
remarks are given in Section 4. 

[81* 

2. The Cavalcante-Tenenblat procedure 

The goal of this section is to review a systematic procedure 
for constructing conservation laws 

92, t + %j, x = 0 (2.1) 
for differential equations describing pseudospherical surfaces 
(P.s.s.) worked out by Cavalcante and Tenenblat. (For details 
concerning the concept P.s.s., consult Flanders [l 11.) The 
original formulation of the concept equations describing 
P.S.S. presupposes real valued solutions to the equations. 
We extend the definition of this concept to complex valued 
functions: 

Let M be a 2-dimensional differentiable manifold with 
coordinates (x, t). A function q(x, t )  describes a P.S.S. if it is 
a necessary and sufficient condition for the existence of dif- 
ferentiablefunctionsJj, 1 < i < 3, 1 < j < 2dependingon 
q, q,, . . . such that the 1-forms 

mi = J l  dx + A2 dt (2.2) 
satisfy the structure equations of a PAS. [l 11, i.e., 

do ,  = oj A o, 

do, = o, A 0.1, (2.3) 
do, = 0, A o2 
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As a consequence, each solution of the differential equation 
provides a metric on M whose Gaussian curvature is con- 
stant, equal to - 1. 

By inserting (2.2) into (2.3) the evolution equations forf;i 

- f i 1 . 1  + f i 2 , x  = hIh2 - hIh2 
-h1,1 + f 2 2 , x  = f i l s 3 2  - f i 2 s 3 1  (2.4) 

--AI,, + = filh2 - fi2h1 
are derived. 

true: 
Then, according to theorem 2.1 in [9] the following holds 

(i) The system 

is completely integrable for 4. 

w = (Al  cos q5 - h1 sin 4) dx + (fiz cos 4 - h2 sin 4) dt 
(2.6) 

(ii) For any solution 4 of 2.5) 

is a closed 1-form i.e. d o  = 0. 
at zero, 

then the solutions 4(x, t, t;) of (2.5) and the 1-form w are 
analytical in 5 at zero, too. 

In order to state the main result in the Cavalcante-Tenen- 
blat procedure we need to fix our notation: 

We assume that thefli are analytic at 

(iii) I fx j  are analytic functions of a parameter 

= 0 i.e., 

Then the solution of (2.5) and the I-form w given by (2.6) can 
be expressed as 

m 

m 

w(x, t, e) = 2 d ( x ,  t) e' 
j = O  

We consider the following functions of for fixed x and t: 

Finally, we define the functions 

(2.10) 

where i, j ,  I are nonnegative integers such that j 2 i, I 2 2 
and k = 1, 2. 

As an immediate consequence of (i)-(iii), we get the 
following corollary (corollary 2.2 in [9]): 

Let Aj(x, t, c), 1 < i < 3, 1 < j < 2 be differentiable 
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functions of x and t, analytic at = 0, that satisfy (2.4). 
Then, with the above notation, the following statements hold: 

= 0; 4o is 
determined by 

(a) The solutions 4 of (2.5) are analytic at 

(2.1 1) 

and for j 2 1, q5j are recursively determined by the system 

(2.12) 

(b) For any such solution 4 and any integer j 2 0, 0' is 
given by 

j 1  
i = o  ( j  - i)! d'= 1- ( H f d x  + Hfd t )  (2.13) 

The closed 1-forms wJ provide a sequence of conservation 
laws (2.1) for the equation governing the evolution of q(x, t), 
with conserved densities gj  and corresponding fluxes Fi 
given by ( j  2 0) 

and 

respectively. 

3. The DNLS-equation 

(2.14) 

In this section we apply the formalism of the preceding 
section to construct nonlocal conservation equations on the 
form (2.1) for the DNLS-equation (1.1). The main results are 
given by eqs. (3.6)-(3.17). 

The equation (1.1) is the integrability condition for [4] 

vI,, = -i12vl + 5qv2 

~ 2 , ~  = CV, - AV, 

where 

A = 2ic4 + ilq12c2 

B = -2qc3 - (iqx + lq12q) 

C = -2q*c3 + (iq? - 1qI2q*) 

It is possible to rewrite (1.1) on the form 

A, = cw - q*B) 
B, + 2ic2B = c(qr - 2qA) 

C, - 2ic2C = &*t + 2q*A) 

by means of (3.2). 

w1 = ((4 + q*) dx + (C + B) dt 

w2 E -2ic2dx + 2Adt 

Now define the 1-forms wl , o2 and w 3  as 

w3 G [(q* - 4) dx + (C - B) dt 

(3.2) 

(3.3) 

(3.4) 
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A simple calculation shows that col, w2 and w3 are the appro- 
priate 1 -forms which formally satisfy the structure equations 
(2.3). Thus the DNLS-equation can be said to describe a P.S.S. 
The coefficient functions f;i of col, o2 and w3 are given by 

AI = (4  + 4*)C 

A2 = (iq,* - iq, - 1412(4 + 4*))C - 2(q + q*K3 

(3.5) 

h1 = (4* - 4)C 

h2 = (iq: + iq, + 1412(4 - q*NC + 2(q - 4*K3 
The next step consists of determining the sequence of func- 
tions 4j (eqs. (2.1 1)-(2.13)). It follows from (2.10) and (3.5) 
that 

and for j 2 4: 

1 dJ-4S 
( J  - 4)! d5J-4 

+ - 4i - (0) 

for the densities gj and the fluxes 6.. 
One immediately notices that QI can be expressed as 

91 (Do + DO*) COS 40 (3.16) 

Thus the conserved density Do is recovered from the first 
nontrivial density in our hierarchy. 

(3.7) By using (1.3), (3.7) and the assumption -+ 0 as 
x -, - 00 one finds that 

41 P - P* + (P + P*> sin 4 0  

Thus Q2 can be expressed as 

g2 = (- (q* + q ) ( p  - p* + ( p  + p * )  sin 40) + 2i) sin 4o 
(3.17) 

Moreover, it is easy to check that p*q is a conserved density 
of the DNLS-equation. Hence D- can be recovered from our 
hierarchy of conserved densities, too. 

4. Concluding remarks 

In the present paper we have shown a straightforward exten- 
sion of the Cavalcante-Tenenblat procedure for constructing 
nonlocal conservation laws of an evolution equation for a 
complex valued field, the DNLS-equation (1.1). Further- 
more, it has been pointed out that the two lowest order laws 
are related to conservation equations which have been 
derived by other methods. 

An alternative approach to the problem of deriving con- 
servation laws has been suggested by Sasaki [12]. One pro- 
ceeds as follows: 

4IJ = i(q,* + 4 x 1  + 1412(4 - 4*) 

4 2 , x  = (4 + 4*) 41 cos 4 0  - 2i cos 4 0  

4 2 J  = [iq,* - iq, - 1412(4 + 4*)141 cos 4 0  + 2ilq12 cos 4 0 9  

(3 4 
4 3 , x  = 2i41 sin 4 0  + $(4 + 4*>(242 COS 40 - 4: sin 4 0 )  

43,f = -2(q + q*) sin 4o - 2ilqI24, sin 4o 
+ +(iq,* - iq, - (qI2(q + q*))(242 cos 4o - 4: sin 40) 

+ - 4,) - 1412(4* + dl sin 4 0 9  = 

(3.9) 
For j 2 4 the 4j-equations are given by 

1 dJ-2C 
(q + q*) - (0) - 2i - - 1 

! dcj-2 ( O )  4.  = - 
( j  - l)! deJ-’ ( J  - 2) 

( j  - I)! 

+- ( I  - 2)! 2iM2 d5’-2 (0) 
1 

J s X  

1 &-IS 
0. = - (iq,* - iq, - 1412(4 + 4*)) -@T (0) 

dJ-2C 

1 dJ-3S +- 2(q + 4*) dr’-3 (0) ( j  - 3)! 
1 dJ-4C + - 4i - (0) 

( J  - 4)! d[J-4 (3.10) 

The conservation laws are easily deduced by using (2.14). One 
readily obtains 

9 0  = 0 
9 0  = 0,  

(3.1 1) 

Let R be the traceless 2 x 2-matrix of 1-forms defined by 

where wl , w2 and w3 are given by (3.4) and (3.5). We associate 
a pair of completely integrable Pfaffian equations 

with the nonlinear evolution equation under consideration. 
(In the DNLS-case these Pfaffians are equivalent with the eqs. 
(3.1)-(3.2)). The evolution equation is now equivalent to the 
integrability condition 

~ R - R A R  = 0 (4.2) 
also called the zero-curvature equation. Then, by employing 
the projective transformations r = v2/v1 and 0 = v 1 / v 2 ,  
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one readily obtains the Ricatti-equations 

d r  - c3 + 2r0, + r2a2 y1 = o 
d 0  - 0 2  - 2001 + 0 * 0 3  ~2 = 0 (4.3) 

where a, = 2u1, w1 - 0) = 20, and w1 + w3 = 20, (a1, 
w2 and w3 satisfy the structure equations (2.3)). 

By differentiating (4.3) and using (4.3) and (2.3) we get 

dYl = 2Yl A (01 + 
dy, = -2y2 A (0, - 00,) (4.3) 

which are necessary and sufficient conditions for the yi’s to be 
completely integrable (Frobenius theorem on complete inte- 
grability; see Flanders [l 11 for more details). 

The equations (4.3) show that the 1-forms 

El gI + r0, 
E2 01 - 003 
are closed 1-forms i.e., 

de, = 0 

ds2 = 0 

(4.4) 

(4.5) 

The equations (4.5) are the desired conservation laws. 
According to Sasaki [5] the infinite hierarchy of polynomial 
conserved densities are obtained by inserting expansions in 
inverse powers of c for ei into (4.5). On the other hand, the 
nonlocal conserved densities are derived by assuming expan- 
sions in power series of c in the Cavalcante-Tenenblat pro- 
cedure. We conjecture that our hierarchy of conservation 
laws can be derived by means of Sasakis method by assuming 
power series expansions in 5. 

Finally, we point out that the integrability of the system 
(1.1) follows from the existence of an infinite set of indepen- 
dent polynomial conservation laws which are in involution 
with respect to given weak symplectic form [4, 51. No a priori 
knowledge of the nonlocal laws is required to predict this 
property. Thus the polynomial laws form a complete set. This 
observation serves as a motivation for the following conjec- 
ture: We believe that the nonlocal laws presented in Section 
3 are expressible in terms of the local laws. The proof of this 
conjecture should be carried out by making the appropriate 
identifications of the nonlocal conserved densities in scatter- 
ing data space. 
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