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The Lie symmetry analysis and the basic similarity reductions are performed for the
Wu-Zhang equation, a 21 dimensional nonlinear dispersive wave equation.
Some new exact solutions generated from the similarity transformation are pro-
vided. They demonstrate some new three-dimensional features of a single solitary
wave and two interacting solitary waves. #04 American Institute of Physics.
[DOI: 10.1063/1.1629779

[. INTRODUCTION

The 2+1 dimensional nonlinear dispersive wave equation
Ui +uu,+ouy,+w,=0,

vyt Uvytovy+w,=0, (1)

Wit (UW) (W)t 5 (Uggut Ugyy+ UyxytUyyy) =0,

where (,v) is the horizontal projection of the surface velocity of a water partielés the total
water depth (w— 1 being the wave elevationis regarded as Wu—Zharg/Z) equation by Ref. 1.
The WZ equation is derived in Ref. 2 from the Euler equation with a perturbation scheme under
the assumption that the amplitude of wave elevation is small and the wave is long compared with
the water depth{scaled to be L The WZ equation can be used to model the three dimensional
behavior of solitary waves on a uniform layer of water, such as oblique interaction, oblique
reflection from a vertical wall and turning in a curved channel.

If the waves propagate in only one dimension, e.g., apegordinate, then the WZ equation
is reduced to the classical Boussinesq equation

vitvvy+wy=0,

Wi+ (vw)y+ %vynyO, (2
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which is known to be integrable and equivalent to Broer—KéBig) systeni* and a member of
Ablowitz—Kaup—Newell-SegufAKNS) system that has a tri-Hamiltonian structure. Its exact
bidirectionalN-soliton solution has been provided by Ref. 5.

Reference 1 provides the Painleamalysis of the WZ equation. It obtains some exact solu-
tions by using the standard Weiss—Tabor—Carnevale Paitrenveation expansion. However, the
Lie symmetry analysis of the WZ equation is not available yet.

Since the WZ equation is a physical extension of the classical Boussinesq equation, it allows
bidirectional soliton solution in any direction in th&,{) plane. It might have an exact solution
that can be used to describe obliquely interacting solitons. This paper is one of a series study
towards a good understanding of the WZ equation.

We perform the Lie symmetry analysis in Sec. Il, present thel1similarity reductions in
Sec. Il and provide a few new exact solutions of the WZ equation in Sec. IV. Finally we
summarize the paper in Sec. V.

Il. LIE POINT SYMMETRIES

In this section we perform Lie symmetry analysis for the P-dimensional systertl). Let us
consider a one-parameter Lie group of infinitesimal transformtion

X— X+ eX(X,y,t,u,v,W),
y—y+eY(Xy,t,u,u,w),
t—t+eT(X,y,t,u,v,wW),
u—u+eU(x,y,t,u,v,w),
v—v+eV(xy,tuv,w),
w—w+ eW(X,y,t,u,u,w) ©)

with a small parametes<<1. The vector field associated with the above group of transformations
can be written as

Xa Ya Ta U i Va Wa 4
=X—4+Y—+T—4+U—+V—+W—.
Y X ay ot au Jdv ow @

An invariance of systengl) under transformatio(3) leads to the expressions for the functions
X, Y, T, U, V,W of the form(throughout this paper we use symbolic packsigeLE to perform
all calculation

X=cCgXt+c,X+Ccgy+cCyt+cy,
Y=cgyt+Cyy—CgX+Cst+Co,
T=cgt?+2c,t+cs,
U= —(cgut+C7U—Cgu —CgX—Cy),
V= —(cgut+cyv+Ccgu—Cgy—Cs),
W= —(2cgwt+2c,w), (5)

wherec;, i=1,...,8 arearbitrary constants. The presence of these arbitrary constants leads to a
finite-dimensional Lie algebra of symmetries. A general element of this algebra is written as
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U=01C11t0,C+03C3+U4C4TUsCstveCet+U7C7 T UgCE, (6)

where

PR
Qszt@JF%,

o b

= ——X—_ —_— —_—

ve=Yox Yoy Yo TVau

AP N P

VX Y oy et Y Y T W aws
—t(9+ta+t2(9+ ta+ t(y 2t(9 7
vg =Xt Tyt Tt (y—ot) o=+ (x—ut) - —2wt—, (7

construct a basis of the vector space. The associated Lie algebra among these vector fields be-

comes

U1 U2 U3 Uy Us Us U7 Ug
U1 0 0 0 0 0 —U2 U1 Ug
U2 0 0 0 0 U1 U2 Us
U3 0 vy P 0 2v3 vy
Uy 0 —Us — Uy 0
Us 0 Ua —Us 0
Us 0 0
U7 0 2vg
Usg 0

where the entry irjth row andkth column represents the commutaftof ,v,], and{v,v;,v3},
{va,us), {u7,ve), {v1,02,04,U5,06) are some of the subalgebras.
We now consider a point transformation

G:(x,y,t,u,v,wW)—(&,9,{,P,Q,R). (8)

From the transformatiofi), we have the corresponding one-parameter group of symmetries of the
WZ equation
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G1:(xy,t,u,v,wW)—(X+e,y,t,u,v,w),
G,:(xy,t,u,v,W)—(X,y+€,t,u,v,w),
Gi: (X, y,t,u,v,W)—(X,y,t+€,uU,v,w),
Gs: (XY, t,u,v,W)—(X+te,y,t,ute,v,w),
9

Gs:(X,Y,t,u,v,W)—(X,y+te,t,u,v+e,w),
Gg:(X,Y,t,U,v,W)—(X CcOSe+Y Sine,— X Sine+Y COSe,t,U COSe+v Sine,—U Sine
+ v COS€, W),

G7:(X,y,t,u,v,W)—(xef, yes te?c,ue € ,ve €, we %),

X y

_ _ 12
1—t6'1—t6'1—te’u(1 te)+xe,v(l—te)+yew(l—te)|.

Gg:(x,y,t,u,0,W)—

We observe thaG; and G, are space translation§3 is a time translationsG, and Gg are
Galilean boostGg is a rotation,G5 is a scaling for all variables with different ratio&g is a
time-dependent scaling. The entire symmetry group is obtained by composing one-dimensional
subgroupss;, i=1,...,8. WherG is an element of this group, t(x,y,t), v(X,y,t), w(x,y,t) is

a solution of WZ equation, theR(¢,7,¢), Q(¢,7,0), R(&,7,{) is also a solution of WZ equa-

tion.

lll. 1+1 SIMILARITY REDUCTIONS

After determining the infinitesimal generators, the similarity variables can be found by solving
the characteristic equatidhs

dx dy dt du dv dw

X Y T U V W’ (10

It is easy to know that the generat®; has an invariance
&=y, n=t, P=u, Q=v, R=w.

Under this transformation, WZ equation is reduced to a system of PDE with two independent
variables¢ and » and three dependent variabl®s Q, and R. The reduced equation is WZ
equation but withu, v, andw independent ok, i.e., u,=v,=w,=0. In fact the set of two
equations o andw is identical to the systert2) and the other one is a linear equationwn

u+ou,=0, (11

which can be solved with a method of characteristic line. Therefore one can obtain a solution of
WZ equation(1) from a solution of the classical Boussinesq equat@n

For the generatoy,, we have a similar result except now the solution is independewnt of

For the generatoy;, WZ equation is reduced to its steady case.

For the generator of Galilean transformatiog= (d/Ju) +1t(d/9x), we have the following
similarity variables:

&=y, n=t, P=ut—-x, Q=v, R=w. (12)

The reduced PDE becomes
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P,+QP:=0,

Q,+QQ:+R=0,
R 1

One may notice that the second and third equations are very closely related to the classical
Boussinesq equatiof?) except the extra terrR/ 7.

The generatov s has a similar result as, .

For the rotation transformatiopg, the similarity variables are

E=x?+y?, p=t, P=—xv+yu, Q=yv+xu, R=w. (14
Then WZ equation is reduced to
P,+2QP.:=0,
£Q,+28°R,+2£QQ,— (P?+Q%) =0,

R, T 2QR:+2RQs+ §Qg+ §£Qs=0. (15

Of course one may choose another set of invariants to be the similarity variables and obtain a
different reduced system. For example, if we take

—Xv+yu yuv +Xu
—y2 2 — — — —
E=x+ys, p=t, P= xZryZ T Xy =W, (16)
then the reduced system reads
P,—2QP:£—-2QP=0,
Q,+Q%*+2QQ £~ P?+2R,=0, (17)

2RQ+2QRE+2RQEFR, + R Qu+ §Qu82+ ¥Qu£=0,

which is equivalent to the syste(i5).
For the scaling transformation generatedugy the similarity variables are

X

E=—, nzl, P=u\t, Q=uv\t, R=wt (19
Jt Vt
The WZ equation is reduced to a system with two independent variables but in a more complicated

form
(—2P)P,+(n—2Q)P,+P—2R,=0,
(§=2P)Qs+(7—2Q)Q,+Q—-2R,=0, (19
6R(Q,+Pe—1)—3(7—2Q)R,~3(£—2P)Ry+2(Pyge+ Py et Qi Q,ee) =0.

The similarity variables corresponding #@ are
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E=— ,7:% P=ut—¢&, Q=uvt—gyt, R=wt? (20)

The WZ equation is also reduced to its steady case.

We would like to point out that in this section we have only reported thel 1similarity
reduction generated by the single but different basic infinitesimal genergforé/fore 1+1
reduced systems can be obtained by considering a proper linear combination of different basic
generators. We may also implement the symmetry analysis and similarity reduction upon a 1
+1 reduced system and obtain a corresponding ODE system.

IV. SOME NEW EXACT SOLUTIONS

In this section, we present some new exact particular solutions of WZ sy4&beabtained
from the three kinds of reduction transformation studied in the last section.

A. Solutions from v; reduction

The system generated by is the steady WZ system. Here we are looking for a particular
steady solution with a similarity variable=k;x+k,y, where the two constants, andk, are
assumed to satisfk%+ k§=1 without a loss of generality. The velocity field,p) and the total
wave depthw are assumed to be functionsobnly. The WZ equation becomes a system of ODE

kuu'+koou' +kyw' =0, (22
kiuv' +kovo' +kow' =0, (22
(Kyu+ ko)W’ + (kyu' + koo )W+ 3(ku” +kov™”)=0. (23

Integrating the first two equations gives

kK 1

Ky
= [ 2_ 242
v klu+d1, w 2k%u kld1u+d2+k2dl.

Substituting into Eq(23) and integrating it twice yields a single equation for

3 k
u’? w32

:m k d1U3_3d2U2+d3U+d4,
1 1

where the four integration constards, i=1,2,3,4 are determined by the boundary condition at
infinity. For a set ofd;’s with four real parameters,;>\,>A3>N\,,

1 12 3 1
di=— > N, dp=—~ NiNi, dg=— ki > NiAhgha,
o L T TR VS WY

d4:%k§)\l)\2)\3)\4.

the ODE is written as
12 3
u :_4k2(u_kl)\l)(u_kl)\Z)(u_kl)\S)(u_kl)\4):
1

and the solution can be written in terms of a Jacobi elliptic function
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Apuhay AxA1p
U=ka| Agt Agy— Apzsri(s,m))’ or u=ka| Az* Agq—Ayysii(s,m) )’
K 4
0T k_lu 4k, 21 Mo 2
1 . s, |
W= e 4|<12 hu= 4ljzll<1 NN 16 '21 )\I) '

where

1 [A14A23
S:_\3A13A24(Z_Zo), m= 1 A”:)\,—)\J
4 Al?:A24

For a particular set of integration constants with one parameter
d;=0, dy=1+ 3\% d3=6k.\, ds=3Kk\*—3Kk2\2, (25)

the solution given by

2_
u:kl(x— 207-1) ) vzﬁu (26)

A +coshy3(\2—1)(z—zy)/ ky ™

n 2(N2—1)(1+\ coshy3(\°—1)(z—2p)) 27)
w=
(A +coshy3(A2—1)(z—z))? ,

describes a steady solitary wave on a uniform layer of water. For the same set of cons{abis as
we have another solution

A e Ba D (=2 K

3\ 2 -+ H _\2 —
W:1_2(1 A)(LE=NSInY3(1—\9)(z 20))1 28)

(N =siny3(1—A\9)(z—20))?

which has a singularity in a finite domain.
With some other choices of the constants, we have more steady solutions listed below.
Case 1:

d =—i(7\+,u,) d =—1()\2+4)\,LL+,LL2)
1= 2k, T2 4 ’

dy=— Fkihu(A+p),  dy=3kiN2u?,
29
e (29
N—pexp £—-(N—pu)(z2—20)
2 ky
) : U—k—lU—z—kz(?\+M),

U=k1

V3
1—ex;{ i?()\—,u)(z— Zy)

1 V3
w=—2(A=p)?esclf - (A = ) (2= 20),
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or

V3
ptN ex;< i;(K—M)(Z—Zo)> ,
) ) U:k—1U—2—k2(7\+,U,),

u=k1 ‘/3
1+ex;{ t?()\—,u)(z— Zg)

(30)
1 ) V3
w==(A—u)?sech—(\—u)(z—2p).
8 4
Case 2:
1 3
d1=—k—2()\+1), dy=—5NAF2),
d3=—3kA\2(\F3), d,=32KA3(AF4),
(31
—Ky| N E e Lo
VM) YT T Y
4(3(z—29)%+1)
Wzl—ﬁ.
(3(z—29)°—1)
Case 3:
A 3 3
dl——k—z, dz——i)\z, dz=— 3k N8, d4:Zk§>\4,
(32)
2 k, A -2
u= , u , W= .
! +\/?_a(z—zo) ki ko 3(z—20)°
Case 4:
d;=0, dy=3(\2—u?), d3=0, ds=— FKiN%u?,
N Ky 1., ., A2
U= ———, v=71-U, w=-(\2—pu?— (33

4 2(1—srf(s,m))’

J1—srf(s,m)’ ky

s= AT (220, Py
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Case 5:
dp=— dp= — - (6u2 422
1= A 2=~ 7 (BN,
ds=— Skaw(2p°+0?),  dy=3Kip’(u?+2?),
(34)
N A ke
U=Kj ,LL+.‘/§— y U—k—lu_k_z.
sinh—N\(z—zp)
2
RS L 2
W—_Z + . 3
smhz?)\(z—zo)
Case 6:
d;=0, dy=—F(\%+pu?), d3=0, d,=3kir?u?,
sn(s,m) K, 1., A2
U—kl)\cn(s—,m), U—k—lu, W—Z()\ — M )—m, (35)
3 2 N 2_ 2
s= ?,u(z—zo), m =1—;2 (A<pu).
Case 7:
N
di=5 - d2=—§(8N+Db%), dy=FkiN(A*+b?),  dy=gki(A2+b?)?,
2
T ERALR . T 36
u——E AF tanZ (z—2zp) |, v—k—lu+2—k2, (36)

1b2 1 nz‘/jb

= — — + J— — .

w 8 ta 7 (z—2zp)

These solutions are of mathematical interests, even though some of them are not physically
meaningful for the water wave because the total water depliher goes to zero at infinity or has

a singularity in a finite domain.

B. Solutions from v, reduction

The last two equations in the reduced systé®) from the generatos, are closely related to
the classical Boussinesq equation except the extra ®¥nm Their relation is very similar to that
of KdV and cKdV equations. In fact, with the following transformation

1
+dy, == - +ds,
2 n diﬂ 3

&+d;
dy7

(37
é+d;

P=d,P+ds, 6Z(Q_ )d177- R=Rdj7
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the system(13) is converted to

Q7+ QQ+Rg=0, (38)
Ry + QiR+ QR+ 3Qp=0,
where the last two equations are the classical Boussinesq equation. We can make use of the

property to construct new solutions of WZ equation. For example, starting with a single soliton
solution of the classical Boussinesqg equation

Q= 20D (39
A +coshV3N2—3(-\7))

— 2(A2=1)[1+\ cost3NZ=3(£-\ 7))] 1 0

© [N+coshBNZ=3(E-A 7)) ]? ’

we are able to obtain a particular solution of WZ equation
1 _
u= d_4t(d4x+ P—ds), (41
2(\%-1) y+d;
_ , 42
0 dit[\ +cosi3AZ—3 s)] T 42
2(N>—1)[1+Acosh{y3N?—3 5)] 1

w= + (43

[N +cosiy3NZ—3 s)2  dat?’
where the phase functianis given by

—  _ 1 A

andP is a solution of linear equation
P,+QP:=0

with Q given by (39) andd;, j=1,...,5 arearbitrary constants bui,d,#0. The solution de-
scribes a single solitary wave that is uniform alondirection and travels along direction. The
wave travels with a speed,(Ad;—d,). Sinced, andd; are two free parameters, the solitary
wave can be made still by choosidg=\ds. It is double-peaked whex>2 just like the solution
of the classical Boussinesq equation. Its amplitude of the total water depth for the dase aé
(2\—1)/(d;t)?, which is singular at timé=0 and decreases as time goes on from & to, and
its wavelength increases likayt. Fort>0, the mass loss under the solitary wave is due to the
sinks at infinity. One may notice that the velocily» + o asx— *o andv— *®© asy— * o,
The solitary wave solution of the WZ equation has a three-dimensional feature that has not been
presented before for other+2l dimensional nonlinear dispersive wave equations.

We r%ww start with the solution of two-soliton head-on collision of the classical Boussinesq
equatio
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2(N 1+ M) (N5—NG— K3 tanlf £,+ k3 tanlt £;)

Q: (kztanhgz_kltanhél)z_()\l_F)\z)z ’ (44)
ﬁ— 1 —7+ kztanhgz_kltanhfl_)\l_)\z
_‘/_gQ§ k, tanhé, — k; tanhé; + Ny + X,
N1+ No) (kg tanhé—N4) (K, tanhé, + N
% 1+2( 1 2)( 1 gl 1)( 2 52 2) , (45)
k, tanh&, —kq tanhé;+ N1+,
Vi Vi )
fi=5Ki(E- M), E=ka(E40om), k= WP-1, N>1, =12,
and construct a new solution of the WZ equation
1 — Q y+d; R
U—d—4t(d4X+P—d5), U—d—lt+ T W—@, (46)

whereP solvesP,+QP;=0, Q andR are given by(44) and (45) with

_ 1
= +d2, 7]=—E+d3.
1

The two phase functions are

1 A
$1=§—Np= d_lt[y_dl(Mds_dz)H‘dl"' d;

_ 1 X,
Sy=&EF A= d_lt[y_dl(_)\zdS_dZ)t—"dl_ d_]J

The two wave speeds are
C1=d;(Nd3—dy), Cp=d;(—Nd3—dy).

If we pick d,=—\,d3, thenc,;=d;ds(\;+\,) andc,=0, solitary wave 2 will stand still and
solitary wave 1 will pass through solitary wave 2. Like the single solitary wave solution, the
amplitude of the total water depth of both solitary waves decreases liélgt17( the wave length
increases likedt for t>0. The mass loss under the two solitary waves is due to the sinks at
infinity of both x andy directions.

Figure 1 shows the total water dep#i{y,t) from (46) for the interaction of two single-peak
solitary waves. The parameters are chosen to ensure that the solitary wave 2 with higher amplitude
stands still near the origin and solitary wave 1 with lower amplitude passes through the solitary
wave 2 as time goes on. After the elastic collision, each one experiences a backward phase shift.
The phase shift of solitary wave 2 is visible in Fig. 1 by comparing the lowerest dashed and solid
lines. Figure 2 shows the same solution with and \, larger than 2, so that the two solitary
waves are double peaked. The phase shift of solitary wave 2 is more visible because the two
solitary waves have larger amplitude.

Similarly we can obtain a new exact solution of the WZ equation by using the multisoliton
solution of the classical Boussinesq equafion.
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25

il

i

EF

o

FIG. 1. The interaction of two single-peak solitary waves=1.1, \,=1.2, d,=\\,, d3=10, d,= — \,d;. The dashed
lines are for the total water depti as a function of spacg for the time instances df= —0.4, —0.38, —0.36, — 0.34,
-0.32, -0.3, —0.28,—-0.26,—0.24,—0.22, and—0.2 bottom up. The solid lines are for the time instanceg of
=0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4 top down.

C. Solution from vy reduction

The system generated by is also the steady WZ system. With the steady solut@8) and
(27) and the similarity variable§0), we obtain a new solution of the WZ equation

x k 2(\%-1
u:f+Tl A ( k)x+k y—zgt |’ ki+tkz=1,
N +coshy3(\°—1) %
K 2(\%-1
v:X-i-f2 A— ( ) ,
t ot ———— Kix+kay—2zot
\+coshy3(\2—1) R
kiX+ Koy — zpt
L 20=1)[ 14\ coshy3B(\P~1) 1t2yo)
W= —
2 kyx+ Koy —zot | 2
t t?| A +coshy3(\?—1) 1t2)/o)

17.5
15
12.5

7.5

FIG. 2. The interaction of two double-peak solitary wavess 3, \,=4,d,= N d;=1,d,=—\,d;. The dashed lines
are for the total water deptl as a function of space for the time instances df= —0.7, — 0.6, and— 0.5 bottom up. The
solid lines are for the time instancestof 0.5, 0.6, and 0.7 top down.
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The solution describes a solitary wave with an amplitude of the total water depth decreasing like
142 and wavelength increasing like The wave speed of the solitary wavezjs which can be an
arbitrary number.

V. SUMMARY

We have performed Lie symmetry analysis for the Wu—-Zha&nN@) equation and found its
algebraic structure. The WZ equation is shown to have a finite dimension of Lie algebra, which
means that the equation is less integrable than other integrabledmensional system, such as
Kadomtsev—PetviashviliKP) equation, Davey—StewartsdiDS) equation, Nizhnik—Novikov—
Veselov(NNV) equation and 2 1 dimensional sine-GordesG) system’ *which have infinite
dimension of Lie algebra. The result agrees with that from Paird@adysis

We have also obtained some new exact solutions of WZ equation by using the similarity
transformation approach. They are of mathematical interest even though most of them are not
physically meaningful. The solution demonstrate that a solitary wave could travel with arbitrary
speed, its amplitude decreases and wave-length increases with time, and solitary waves with any
kind of amplitudes could take over each other. These new features are due to the velocity sinks at
infinity in both x andy directions. The three-dimensional feature of solitary waves seems to be a
new phenomenon to us.

Since the WZ equation has a rotation symmetry, it admits a solitary wave solution along any
direction in (x,y) plane. Two such solitary waves on two different directions could have an
oblique interaction. The WZ equation can be used to model the process, but the question remains
open whether the obliquely interacting solitary wave solution can be written in a closed-form. This
is left for further research.
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