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The Lie symmetry analysis and the basic similarity reductions are performed for the
Wu–Zhang equation, a 211 dimensional nonlinear dispersive wave equation.
Some new exact solutions generated from the similarity transformation are pro-
vided. They demonstrate some new three-dimensional features of a single solitary
wave and two interacting solitary waves. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1629779#

I. INTRODUCTION

The 211 dimensional nonlinear dispersive wave equation

ut1uux1vuy1wx50,

v t1uvx1vvy1wy50, ~1!

wt1~uw!x1~vw!y1 1
3 ~uxxx1uxyy1vxxy1vyyy!50,

where (u,v) is the horizontal projection of the surface velocity of a water particle,w is the total
water depth (w21 being the wave elevation!, is regarded as Wu–Zhang~WZ! equation by Ref. 1.
The WZ equation is derived in Ref. 2 from the Euler equation with a perturbation scheme
the assumption that the amplitude of wave elevation is small and the wave is long compare
the water depth~scaled to be 1!. The WZ equation can be used to model the three dimensi
behavior of solitary waves on a uniform layer of water, such as oblique interaction, ob
reflection from a vertical wall and turning in a curved channel.

If the waves propagate in only one dimension, e.g., alongy coordinate, then the WZ equatio
is reduced to the classical Boussinesq equation

v t1vvy1wy50,

wt1~vw!y1 1
3 vyyy50, ~2!

a!Author to whom correspondence should be addressed. Electronic mail: jinzhang@ust.hk
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which is known to be integrable and equivalent to Broer–Kaup~BK! system3,4 and a member of
Ablowitz–Kaup–Newell–Segur~AKNS! system5 that has a tri-Hamiltonian structure. Its exa
bidirectionalN-soliton solution has been provided by Ref. 5.

Reference 1 provides the Painleve´ analysis of the WZ equation. It obtains some exact so
tions by using the standard Weiss–Tabor–Carnevale Painleve´ truncation expansion. However, th
Lie symmetry analysis of the WZ equation is not available yet.

Since the WZ equation is a physical extension of the classical Boussinesq equation, it
bidirectional soliton solution in any direction in the (x,y) plane. It might have an exact solutio
that can be used to describe obliquely interacting solitons. This paper is one of a series
towards a good understanding of the WZ equation.

We perform the Lie symmetry analysis in Sec. II, present the 111 similarity reductions in
Sec. III and provide a few new exact solutions of the WZ equation in Sec. IV. Finally
summarize the paper in Sec. V.

II. LIE POINT SYMMETRIES

In this section we perform Lie symmetry analysis for the 211-dimensional system~1!. Let us
consider a one-parameter Lie group of infinitesimal transformation6

x→x1eX~x,y,t,u,v,w!,

y→y1eY~x,y,t,u,v,w!,

t→t1eT~x,y,t,u,v,w!,

u→u1eU~x,y,t,u,v,w!,

v→v1eV~x,y,t,u,v,w!,

w→w1eW~x,y,t,u,v,w! ~3!

with a small parametere!1. The vector field associated with the above group of transformat
can be written as

uI 5X
]

]x
1Y

]

]y
1T

]

]t
1U

]

]u
1V

]

]v
1W

]

]w
. ~4!

An invariance of system~1! under transformation~3! leads to the expressions for the functio
X, Y, T, U, V,W of the form~throughout this paper we use symbolic packageMAPLE to perform
all calculation!

X5c8xt1c7x1c6y1c4t1c1 ,

Y5c8yt1c7y2c6x1c5t1c2 ,

T5c8t212c7t1c3 ,

U52~c8ut1c7u2c6v2c8x2c4!,

V52~c8vt1c7v1c6u2c8y2c5!,

W52~2c8wt12c7w!, ~5!

whereci , i 51,...,8 arearbitrary constants. The presence of these arbitrary constants lead
finite-dimensional Lie algebra of symmetries. A general element of this algebra is written a
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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vI 5vI 1c11vI 2c21vI 3c31vI 4c41vI 5c51vI 6c61vI 7c71vI 8c8 , ~6!

where

vI 15
]

]x
,

vI 25
]

]y
,

vI 35
]

]t
,

vI 45
]

]u
1t

]

]x
,

vI 55t
]

]y
1

]

]v
,

vI 65y
]

]x
2x

]

]y
2u

]

]v
1v

]

]u
,

vI 75x
]

]x
1y

]

]y
12t

]

]t
2u

]

]u
2v

]

]v
22w

]

]w
,

vI 85xt
]

]x
1yt

]

]y
1t2

]

]t
1~y2vt !

]

]v
1~x2ut!

]

]u
22wt

]

]w
, ~7!

construct a basis of the vector space. The associated Lie algebra among these vector fi
comes

vI 1 vI 2 vI 3 vI 4 vI 5 vI 6 vI 7 vI 8

vI 1 0 0 0 0 0 2vI 2 vI 1 vI 4

vI 2 0 0 0 0 vI 1 vI 2 vI 5

vI 3 0 vI 1 vI 2 0 2vI 3 vI 7

vI 4 0 0 2vI 5 2vI 4 0

vI 5 0 vI 4 2vI 5 0

vI 6 0 0 0

vI 7 0 2vI 8

vI 8 0

where the entry inj th row andkth column represents the commutator@v j ,vk#, and$vI 1 ,vI 2 ,vI 3%,
$vI 4 ,vI 5%, $vI 7 ,vI 8%, $vI 1 ,vI 2 ,vI 4 ,vI 5 ,vI 6% are some of the subalgebras.

We now consider a point transformation

G:~x,y,t,u,v,w!°~j,h,z,P,Q,R!. ~8!

From the transformation~1!, we have the corresponding one-parameter group of symmetries o
WZ equation
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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G1 :~x,y,t,u,v,w!°~x1e,y,t,u,v,w!,

G2 :~x,y,t,u,v,w!°~x,y1e,t,u,v,w!,

G3 :~x,y,t,u,v,w!°~x,y,t1e,u,v,w!,

G4 :~x,y,t,u,v,w!°~x1te,y,t,u1e,v,w!,
~9!

G5 :~x,y,t,u,v,w!°~x,y1te,t,u,v1e,w!,

G6 :~x,y,t,u,v,w!°~x cose1y sine,2x sine1y cose,t,u cose1v sine,2u sine

1v cose,w!,

G7 :~x,y,t,u,v,w!°~xee,yee,te2e,ue2e,ve2e,we22e!,

G8 :~x,y,t,u,v,w!°S x

12te
,

y

12te
,

t

12te
,u~12te!1xe,v~12te!1ye,w~12te!2D .

We observe thatG1 and G2 are space translations,G3 is a time translations,G4 and G5 are
Galilean boost,G6 is a rotation,G7 is a scaling for all variables with different ratios.G8 is a
time-dependent scaling. The entire symmetry group is obtained by composing one-dimen
subgroupsGi , i 51,...,8. WhenG is an element of this group, ifu(x,y,t), v(x,y,t), w(x,y,t) is
a solution of WZ equation, thenP(j,h,z), Q(j,h,z), R(j,h,z) is also a solution of WZ equa
tion.

III. 1¿1 SIMILARITY REDUCTIONS

After determining the infinitesimal generators, the similarity variables can be found by so
the characteristic equations6

dx

X
5

dy

Y
5

dt

T
5

du

U
5

dv
V

5
dw

W
. ~10!

It is easy to know that the generatorvI 1 has an invariance

j5y, h5t, P5u, Q5v, R5w.

Under this transformation, WZ equation is reduced to a system of PDE with two indepe
variablesj and h and three dependent variablesP, Q, and R. The reduced equation is WZ
equation but withu, v, and w independent ofx, i.e., ux5vx5wx50. In fact the set of two
equations onv andw is identical to the system~2! and the other one is a linear equation onu

ut1vuy50, ~11!

which can be solved with a method of characteristic line. Therefore one can obtain a solut
WZ equation~1! from a solution of the classical Boussinesq equation~2!.

For the generatorvI 2 , we have a similar result except now the solution is independent oy.
For the generatorvI 3 , WZ equation is reduced to its steady case.
For the generator of Galilean transformationvI 45(]/]u) 1t (]/]x), we have the following

similarity variables:

j5y, h5t, P5ut2x, Q5v, R5w. ~12!

The reduced PDE becomes
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Ph1QPj50,

Qh1QQj1Rj50,

Rh1
R

h
1QjR1QRj1

1

3
Qjjj50. ~13!

One may notice that the second and third equations are very closely related to the cl
Boussinesq equation~2! except the extra termR/h.

The generatorvI 5 has a similar result asvI 4 .
For the rotation transformationvI 6 , the similarity variables are

j5x21y2, h5t, P52xv1yu, Q5yv1xu, R5w. ~14!

Then WZ equation is reduced to

Ph12QPj50,

jQh12j2Rj12jQQj2~P21Q2!50,

Rh12QRj12RQj1 8
3 Qjj1 8

3 jQjjj50. ~15!

Of course one may choose another set of invariants to be the similarity variables and ob
different reduced system. For example, if we take

j5x21y2, h5t, P5
2xv1yu

x21y2 , Q5
yv1xu

x21y2 , R5w, ~16!

then the reduced system reads

Ph22QPjj22QP50,

Qh1Q212QQjj2P212Rj50, ~17!

2RQ12QRjj12RQjj1Rh1 16
3 Qj1 8

3 Qjjjj
21 32

3 Qjjj50,

which is equivalent to the system~15!.
For the scaling transformation generated byvI 7 , the similarity variables are

j5
x

At
, h5

y

At
, P5uAt, Q5vAt, R5wt. ~18!

The WZ equation is reduced to a system with two independent variables but in a more comp
form

~j22P!Pj1~h22Q!Ph1P22Rj50,

~j22P!Qj1~h22Q!Qh1Q22Rh50, ~19!

6R~Qh1Pj21!23~h22Q!Rh23~j22P!Rj12~Pjjj1Phhj1Qhhh1Qhjj!50.

The similarity variables corresponding tovI 8 are
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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j5
x

t
, h5

y

t
, P5ut2jt, Q5vt2ht, R5wt2. ~20!

The WZ equation is also reduced to its steady case.
We would like to point out that in this section we have only reported the 111 similarity

reduction generated by the single but different basic infinitesimal generatorsvI j . More 111
reduced systems can be obtained by considering a proper linear combination of differen
generators. We may also implement the symmetry analysis and similarity reduction upo
11 reduced system and obtain a corresponding ODE system.

IV. SOME NEW EXACT SOLUTIONS

In this section, we present some new exact particular solutions of WZ system~1! obtained
from the three kinds of reduction transformation studied in the last section.

A. Solutions from v 3 reduction

The system generated byv3 is the steady WZ system. Here we are looking for a particu
steady solution with a similarity variablez5k1x1k2y, where the two constantsk1 and k2 are
assumed to satisfyk1

21k2
251 without a loss of generality. The velocity field (u,v) and the total

wave depthw are assumed to be functions ofz only. The WZ equation becomes a system of OD

k1uu81k2vu81k1w850, ~21!

k1uv81k2vv81k2w850, ~22!

~k1u1k2v !w81~k1u81k2v8!w1 1
3 ~k1u-1k2v-!50. ~23!

Integrating the first two equations gives

v5
k2

k1
u1d1 , w52

1

2k1
2 u22

k2

k1
d1u1d21k2

2d1
2 .

Substituting into Eq.~23! and integrating it twice yields a single equation foru,

u825
3

4k1
2 u413

k2

k1
d1u323d2u21d3u1d4 ,

where the four integration constantsdi , i 51,2,3,4 are determined by the boundary condition
infinity. For a set ofdi ’s with four real parameters,l1.l2.l3.l4 ,

d152
1

4k2
(
i 51

4

l i , d252
1

4 (
i , j 51,i , j

4

l il j , d352
3

4
k1(

j 51

4
1

l j
l1l2l3l4 ,

d45 3
4 k1

2l1l2l3l4 .

the ODE is written as

u825
3

4k1
2 ~u2k1l1!~u2k1l2!~u2k1l3!~u2k1l4!,

and the solution can be written in terms of a Jacobi elliptic function
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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u5k1S l41
D24D34

D242D23sn2~s,m! D , or u5k1S l21
D24D12

D242D14sn2~s,m! D ,

v5
k2

k1
u2

1

4k2
(
i 51

4

l i , ~24!

w52
1

2k1
2 u21

1

4k1
(
i 51

4

l iu2
1

4 (
i , j 51,i , j

4

l il j1
1

16S (i 51

4

l i D 2

,

where

s5
1

4
A3D13D24~z2z0!, m5AD14D23

D13D24
, D i j 5l i2l j .

For a particular set of integration constants with one parameterl,

d150, d2511 1
2 l2, d356k1l, d45 3

4 k1
2l423k1

2l2, ~25!

the solution given by

u5k1S l2
2~l221!

l1coshA3~l221!~z2z0!
D , v5

k2

k1
u, ~26!

w511
2~l221!~11l coshA3~l221!~z2z0!!

~l1coshA3~l221!~z2z0!!2
, ~27!

describes a steady solitary wave on a uniform layer of water. For the same set of constants~25!,
we have another solution

u5k1S l1
2~12l2!

l6sinA3~12l2!~z2z0!
D , v5

k2

k1
u,

w512
2~12l2!~16l sinA3~12l2!~z2z0!!

~l6sinA3~12l2!~z2z0!!2
, ~28!

which has a singularity in a finite domain.
With some other choices of the constants, we have more steady solutions listed below
Case 1:

d152
1

2k2
~l1m!, d252

1

4
~l214lm1m2!,

d352 3
2 k1lm~l1m!, d45 3

4 k1
2l2m2,

~29!

u5k1

l2m expS 6
)

2
~l2m!~z2z0! D

12expS 6
)

2
~l2m!~z2z0! D , v5

k2

k1
u2

1

2k2
~l1m!,

w52
1

8
~l2m!2 csch2

)

4
~l2m!~z2z0!,
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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or

u5k1

m1l expS 6
)

2
~l2m!~z2z0! D

11expS 6
)

2
~l2m!~z2z0! D , v5

k2

k1
u2

1

2k2
~l1m!,

~30!

w5
1

8
~l2m!2 sech2

)

4
~l2m!~z2z0!.

Case 2:

d152
1

k2
~l71!, d252

3

2
l~l72!,

d3523k1l2~l73!, d45 3
4 k1

2l3~l74!,
~31!

u5k1S l6
4

3~z2z0!221D , v5
k2

k1
u2

1

k2
~l71!,

w512
4~3~z2z0!211!

~3~z2z0!221!2 .

Case 3:

d152
l

k2
, d252

3

2
l2, d3523k1l3, d45

3

4
k1

2l4,

~32!

u5k1S l7
2

)~z2z0!
D , v5

k2

k1
u2

l

k2
, w5

22

3~z2z0!2 .

Case 4:

d150, d25 1
4 ~l22m2!, d350, d452 3

2 k1
2l2m2,

u5
k1l

A12sn2~s,m!
, v5

k2

k1
u, w5

1

4
~l22m2!2

l2

2~12sn2~s,m!!
, ~33!

s5 1
2A3~l21m2!~z2z0!, m25

m2

l21m2 .
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Case 5:

d152
1

k2
m, d252

1

4
~6m21l2!,

d352 3
2 k1m~2m21l2!, d45 3

4 k1
2m2~m21l2!,

~34!

u5k1S m7
l

sinh
)

2
l~z2z0!D , v5

k2

k1
u2

m

k2
,

w52
l2

4 S 11
2

sinh2
)

2
l~z2z0!D .

Case 6:

d150, d252 1
4 ~l21m2!, d350, d45 3

4 k1
2l2m2,

u5k1l
sn~s,m!

cn~s,m!
, v5

k2

k1
u, w5

1

4
~l22m2!2

l2

2 cn2~s,m!
, ~35!

s5
)

2
m~z2z0!, m2512

l2

m2 ~l2,m2!.

Case 7:

d15
l

2k2
, d252 1

8 ~3l21b2!, d35 3
8 k1l~l21b2!, d45 3

64 k1
2~l21b2!2,

u52
k1

2 S l7b tan
)

4
b~z2z0! D , v5

k2

k1
u1

l

2k2
, ~36!

w52
1

8
b2S 11tan2

)

4
b~z2z0! D .

These solutions are of mathematical interests, even though some of them are not phy
meaningful for the water wave because the total water depthw either goes to zero at infinity or ha
a singularity in a finite domain.

B. Solutions from v 4 reduction

The last two equations in the reduced system~13! from the generatorv4 are closely related to
the classical Boussinesq equation except the extra termR/h. Their relation is very similar to tha
of KdV and cKdV equations. In fact, with the following transformation

j̄5
j1d1

d1h
1d2 , h̄52

1

d1
2h

1d3 ,

~37!

P̄5d4P1d5 , Q̄5S Q2
j1d1

h Dd1h, R̄5Rd1
2h2
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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the system~13! is converted to

P̄h̄1Q̄P̄j̄50,

Q̄h̄1Q̄Q̄j̄1R̄j̄50, ~38!

R̄h̄1Q̄j̄R̄1Q̄R̄j̄1 1
3Q̄j̄ j̄ j̄50,

where the last two equations are the classical Boussinesq equation. We can make use
property to construct new solutions of WZ equation. For example, starting with a single s
solution of the classical Boussinesq equation

Q̄5
2 ~l221!

l1cosh~A3 l223 ~ j̄2lh̄!!
, ~39!

R̄5
2 ~l221!@11l cosh~A3 l223~ j̄2l h̄!!#

@l1cosh~A3 l223~ j̄2l h̄!!#2
11, ~40!

we are able to obtain a particular solution of WZ equation

u5
1

d4t
~d4x1 P̄2d5!, ~41!

v5
2~l221!

d1t@l1cosh~A3 l223 s!#
1

y1d1

t
, ~42!

w5
2~l221!@11l cosh~A3 l223 s!#

d1
2t2@l1cosh~A3 l223 s!#2

1
1

d1
2t2 , ~43!

where the phase functions is given by

s5 j̄2lh̄5
1

d1t Fy2d1~ld32d2!t1d11
l

d1
G

and P̄ is a solution of linear equation

P̄h̄1Q̄P̄j̄50

with Q̄ given by ~39! and dj , j 51,...,5 arearbitrary constants butd1d4Þ0. The solution de-
scribes a single solitary wave that is uniform alongx direction and travels alongy direction. The
wave travels with a speedd1(ld32d2). Sinced2 and d3 are two free parameters, the solita
wave can be made still by choosingd25ld3 . It is double-peaked whenl.2 just like the solution
of the classical Boussinesq equation. Its amplitude of the total water depth for the case ofl,2 is
(2l21)/(d1t)2, which is singular at timet50 and decreases as time goes on from 0 to1`, and
its wavelength increases liked1t. For t.0, the mass loss under the solitary wave is due to
sinks at infinity. One may notice that the velocityu→6` asx→6` andv→6` as y→6`.
The solitary wave solution of the WZ equation has a three-dimensional feature that has no
presented before for other 211 dimensional nonlinear dispersive wave equations.

We now start with the solution of two-soliton head-on collision of the classical Boussi
equation5
7 Jul 2009 to 194.225.238.135. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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Q̄5
2~l11l2!~l2

22l1
22k2

2 tanh2 j21k1
2 tanh2 j1!

~k2 tanhj22k1 tanhj1!22~l11l2!2 , ~44!

R̄5
1

)
Q̄j̄1

k2 tanhj22k1 tanhj12l12l2

k2 tanhj22k1 tanhj11l11l2

3F112
~l11l2!~k1 tanhj12l1!~k2 tanhj21l2!

k2 tanhj22k1 tanhj11l11l2
G , ~45!

j15
)

2
k1~ j̄2l1h̄ !, j25

)

2
k2~ j̄1l2h̄ !, ki5Al i

221, l i.1, i 51,2,

and construct a new solution of the WZ equation

u5
1

d4t
~d4x1 P̄2d5!, v5

Q̄

d1t
1

y1d1

t
, w5

R̄

d1
2t2 , ~46!

whereP̄ solvesP̄h̄1Q̄P̄j̄50, Q̄ and R̄ are given by~44! and ~45! with

j̄5
y1d1

d1t
1d2 , h̄52

1

d1
2t

1d3 .

The two phase functions are

s15 j̄2l1h̄5
1

d1t Fy2d1~l1d32d2!t1d11
l1

d1
G ,

s25 j̄1l2h̄5
1

d1t Fy2d1~2l2d32d2!t1d12
l2

d1
G .

The two wave speeds are

c15d1~l1d32d2!, c25d1~2l2d32d2!.

If we pick d252l2d3 , thenc15d1d3(l11l2) and c250, solitary wave 2 will stand still and
solitary wave 1 will pass through solitary wave 2. Like the single solitary wave solution,
amplitude of the total water depth of both solitary waves decreases like 1/(d1t)2, the wave length
increases liked1t for t.0. The mass loss under the two solitary waves is due to the sink
infinity of both x andy directions.

Figure 1 shows the total water depthw(y,t) from ~46! for the interaction of two single-pea
solitary waves. The parameters are chosen to ensure that the solitary wave 2 with higher am
stands still near the origin and solitary wave 1 with lower amplitude passes through the s
wave 2 as time goes on. After the elastic collision, each one experiences a backward phas
The phase shift of solitary wave 2 is visible in Fig. 1 by comparing the lowerest dashed and
lines. Figure 2 shows the same solution withl1 and l2 larger than 2, so that the two solitar
waves are double peaked. The phase shift of solitary wave 2 is more visible because t
solitary waves have larger amplitude.

Similarly we can obtain a new exact solution of the WZ equation by using the multiso
solution of the classical Boussinesq equation.5
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C. Solution from v 8 reduction

The system generated byv8 is also the steady WZ system. With the steady solution~26! and
~27! and the similarity variables~20!, we obtain a new solution of the WZ equation

u5
x

t
1

k1

t S l2
2~l221!

l1coshA3~l221!
k1x1k2y2z0t

t
D , k1

21k2
251,

v5
y

t
1

k2

t S l2
2~l221!

l1coshA3~l221!
k1x1k2y2z0t

t
D ,

w5
1

t2
1

2~l221!S 11l coshA3~l221!
k1x1k2y2z0t

t D
t2S l1coshA3~l221!

k1x1k2y2z0t

t D 2 .

FIG. 1. The interaction of two single-peak solitary waves,l151.1, l251.2, d15Al2, d3510, d252l2d3 . The dashed
lines are for the total water depthw as a function of spacey for the time instances oft520.4, 20.38,20.36,20.34,
20.32, 20.3, 20.28,20.26,20.24,20.22, and20.2 bottom up. The solid lines are for the time instances ot
50.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4 top down.

FIG. 2. The interaction of two double-peak solitary waves,l153, l254, d15Al2, d351, d252l2d3 . The dashed lines
are for the total water depthw as a function of spacey for the time instances oft520.7, 20.6, and20.5 bottom up. The
solid lines are for the time instances oft50.5, 0.6, and 0.7 top down.
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The solution describes a solitary wave with an amplitude of the total water depth decreasin
1/t2 and wavelength increasing liket. The wave speed of the solitary wave isz0 , which can be an
arbitrary number.

V. SUMMARY

We have performed Lie symmetry analysis for the Wu–Zhang~WZ! equation and found its
algebraic structure. The WZ equation is shown to have a finite dimension of Lie algebra,
means that the equation is less integrable than other integrable 211 dimensional system, such a
Kadomtsev–Petviashvili~KP! equation, Davey–Stewartson~DS! equation, Nizhnik–Novikov–
Veselov~NNV! equation and 211 dimensional sine-Gorden~sG! system,7–14 which have infinite
dimension of Lie algebra. The result agrees with that from Painleve´ analysis.1

We have also obtained some new exact solutions of WZ equation by using the sim
transformation approach. They are of mathematical interest even though most of them a
physically meaningful. The solution demonstrate that a solitary wave could travel with arb
speed, its amplitude decreases and wave-length increases with time, and solitary waves w
kind of amplitudes could take over each other. These new features are due to the velocity s
infinity in both x andy directions. The three-dimensional feature of solitary waves seems to
new phenomenon to us.

Since the WZ equation has a rotation symmetry, it admits a solitary wave solution alon
direction in (x,y) plane. Two such solitary waves on two different directions could have
oblique interaction. The WZ equation can be used to model the process, but the question r
open whether the obliquely interacting solitary wave solution can be written in a closed-form
is left for further research.
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