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1. Geometry of Jet Spaces.

1.1. Spaces of Contact Elements (Grassmann Bundle). The notion of contact man-
ifolds originates from the following space J(M,n) of contact elements: Let M be a (real
or complex) manifold of dimension m + n. Fixing the number n, we consider the space
of n-dimensional contact elements to M , i.e., the Grassmannian bundle over M
consisting of all n-dimensional contact elements to M ;

J(M,n) =
⋃

x∈M

Jx
π−→ M,

where Jx = Gr(Tx(M), n) is the Grassmann manifold of all n-dimensional subspaces of
the tangent space Tx(M) to M at x. Each element u ∈ J(M,n) is a linear subspace of
Tx(M) of codimension m, where x = π(u). Hence we have a differential system C of
codimension m on J(M,n) by putting:

C(u) = π−1
∗ (u) ⊂ Tu(J(M,n))

π∗−→ Tx(M).

for each u ∈ J(M,n). C is called the Canonical System on J(M,n). We can introduce
the inhomogeneous Grassmann coordinate of J(M,n) around uo ∈ J(M,n) as folllows;
Take a coordinate system U ′; (x1, · · · , xn, z

1, · · · , zm) of M around xo = π(uo) such that
dx1∧· · ·∧dxn |uo 6= 0. Then we have the coordinate system (x1, · · · , xn, z

1, · · · , zm, p1
1, · · · , pm

n )
on the neighborhood

U = {u ∈ π−1(U ′) | π(u) = x ∈ U ′ and dx1 ∧ · · · ∧ dxn |u 6= 0};
of uo by defining functions pα

i (u) on U as follows;

dzα |u=
n∑

i=1

pα
i (u) dxi |u .

On a canonical coordinate system(x1, · · · , xn, z
1, · · · , zm, p1

1, · · · , pm
n ), C is clearly de-

fined by;
C = {$1 = · · · = $m = 0 },

where

$α = dzα −
n∑

i=1

pα
i dxi, (α = 1, · · · ,m).

(J(M,n), C) is the (geometric) 1-jet space and especially, in case m = 1, is the so-called

contact manifold. Let M , M̂ be manifolds (of dimension m + n) and ϕ : M → M̂ be a
diffeomorphism between them. Then ϕ induces the isomorphism ϕ∗ : (J(M,n), C) →
(J(M̂, n), Ĉ), i.e., the differential map ϕ∗ : J(M,n) → J(M̂, n) is a diffeomorphism
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sending C onto Ĉ. The reason why the case m = 1 is special is explained by the following
theorem of Bäcklund (cf. Theorem 1.4 [Y3]).

Theorem 1.1 (Bäcklund). Let M and M̂ be manifolds of dimension m + n. Assume

m = 2. Then, for an isomorphism Φ : (J(M,n), C) → (J(M̂, n), Ĉ), there exists a

diffeomorphism ϕ : M → M̂ such that Φ = ϕ∗.

We will give a proof of this theorem in §2.4. as an application of the notion of the
symbol algebra of (J(M,n), C), which will be introdued in §2.1.

1.2. Contact Manifolds. Let J be a manifold and C be a (linear) differential system
on J of codimension 1. Namely C is a subundle of T (J) of codimension 1. Thus, locally
at each point u of J , there exists a 1-form $ defined around u ∈ J such that

C = {$ = 0}.

Then (J,C) is called a contact manifold if $ ∧ (d$)n forms a volume element of J .
This condition is equivalent to the following conditions (1) or (2);

(1) The restriction d$ |C of d$ to C(u) is non-degenerate at each point u ∈ J .

(2) There exists a coframe {$,ω1, . . . , ωn, π1, . . . , πn} defined around u ∈ J such that
the following holds;

d$ ≡ ω1 ∧ π1 + · · · + ωn ∧ πn (mod $)

A contact manifold (J,C) of dimension 2n+1 can be regarded locally as a space of 1-jets
for one unknown function by the following theorem of Darboux.

Theorem 1.2 (Darboux). At each point of a contact manifold J , there exists a
canonical coordinate system (x1, . . . , xn, z, p1, . . . , pn) such that

C = {dz −
n∑

i=1

pi dxi = 0}

We will give a proof of this theorem in §1.4.

Starting from a contact manifold (J,C), we can construct the geometric second order
jet space (L(J), E) as follows: We consider the Lagrange-Grassmann bundle L(J)
over J consisting of all n-dimensional integral elements of (J,C);

L(J) =
⋃
u∈J

Lu,

where Lu is the Grassmann manifolds of all lagrangian (or legendrian) subspaces of the
symplectic vector space (C(u), d$). Here $ is a local contact form on J . Let π be the
projection of L(J) onto J . Then the canonical system E on L(J) is defined by

E(v) = π−1
∗ (v) ⊂ Tv(L(J))

π∗−→ Tu(J), for v ∈ L(J).

Let us fix a point vo ∈ L(J). Starting from a canonical coordinate system (x1, · · · , xn, z, p1, · · · , pn)
defined on a neiborhood U ′ of the contact manifold (J,C) around uo = π(vo) such that
dx1∧· · ·∧dxn |vo 6= 0, we can introduce a coordinate system (xi, z, pi, pij) (1 5 i 5 j 5 n)
on

U = {v ∈ π−1(U ′) | π(v) = u ∈ U ′ and dx1 ∧ · · · ∧ dxn |v 6= 0} ⊂ L(J)
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by defining functions pij(v) on U as follows;

dpi |v=
n∑

i−!

pij(v)dxj |v .

Then, since v ∈ C(u), we have dz |v=
∑n

i−1 pi(u)dx |v and , since d$ |v= 0, we get
pij = pji from

d$ |v=
n∑

i=1

dxi |v ∧dpi |v=
n∑

i,j=1

pij(v)dxi |v ∧dxj |v= 0.

Thus E is defined on this canonical coordinate system by

E = {$ = $1 = · · · = $n = 0},

where

$ = dz −
n∑

i=1

pi dxi, and $i = dpi −
n∑

j=1

pij dxj for i = 1, · · · , n.

Let (J,C), (Ĵ , Ĉ) be contact manifolds of dimension 2n + 1 and ϕ : (J,C) → (Ĵ , Ĉ) be a
contact diffeomorphism between them. Then ϕ induces an isomorphism ϕ∗ : (L(J), E) →
(L(Ĵ), Ê). Conversely we have (cf. Theorem 3.2 [Y1])

Theorem 1.3. Let (J,C) and (Ĵ , Ĉ) be contact manifolds of dimension 2n + 1. Then,

for an isomorphism Φ : (L(J), E) → (L(Ĵ), Ê),there exists a contact diffeomorphism

ϕ : (J,C) → (Ĵ , Ĉ) such that Φ = ϕ∗.

Our first aim is to formulate the submanifold theory for (L(J), E), which will be given
in §3.

1.3. Derived Sytems and Cauchy Characteristic Systems. Now we prepare basic
notions for linear differential systems (or Pfaffian systems). By a (linear) differential
system (M,D), we mean a subbundle D of the tangent bundle T (M) of a manifold M of
dimension d. Locally D is defined by 1-forms ω1, . . . , ωd−r such that ω1 ∧ · · · ∧ ωd−r 6= 0
at each point, where r is the rank of D;

D = {ω1 = · · · = ωd−r = 0 }.

For two differential systems (M,D) and (M̂, D̂), a diffeomorphism ϕ of M onto M̂ is

called an isomorphism of (M,D) onto (M̂, D̂) if the differential map ϕ∗ of ϕ sends D

onto D̂.
By the Frobenius Theorem, we know that D is completely integrable if and only if

dωi ≡ 0 (mod ω1, . . . , ωs) for i = 1, . . . , s,

or equivalently, if and only if

[D,D] ⊂ D.

where s = d − r and D = Γ(D) denotes the space of sections of D.
Thus, for a non-integrable differential system D, we are led to consider the Derived

System ∂D of D, which is defined, in terms of sections, by

∂D = D + [D,D].
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Furthermore the Cauchy Characteristic System Ch (D) of (M,D) is defined at each
point x ∈ M by

Ch (D)(x) = {X ∈ D(x) | Xcdωi ≡ 0 (mod ω1, . . . , ωs) for i = 1,. . . ,s },
where c denotes the interior multiplication, i.e., Xcdω(Y ) = dω(X.Y ). When Ch (D) is a
differential system (i.e., has constant rank), it is always completely integrable (see §1.4.).

Moreover Higher Derived Systems ∂kD are usually defined successively (cf. [BCG3])
by

∂kD = ∂(∂k−1D),

where we put ∂0D = D for convention.
On the other hand we define the k-th Weak Derived System ∂(k)D of D inductively

by

∂(k)D = ∂(k−1)D + [D, ∂(k−1)D],

where ∂(0)D = D and ∂(k)D denotes the space of sections of ∂(k)D. This notion is one of
the key point in the Tanaka Theory ([T1]).

1.4. Proof of the Darboux Theorem. First of all, we will show that, for a differntial
system (M,D), the Cachy characteristic system Ch (D) is completely integrable if Ch (D)
is of constant rank, i.e., if Ch (D) is a subbundle of T (M), where we assume D is locally
defined by

D = {ω1 = · · · = ωs = 0 }.
We will show that [X,Y ] ∈ Γ(Ch (D)) = Ch (D) for X,Y ∈ Ch (D). From

dωα(X,Y ) = X(ωα(Y )) − Y (ωα(X)) − ωα([X,Y ]),

it follows that

ωα([X,Y ]) = −dωα(X,Y ) = −(Xcdωα)(Y ) = 0

for X,Y ∈ Ch (D)). Hence [X,Y ] ∈ D. Moreover, from [LX , iY ] = i[X,Y ], where iY
denotes the interior multiplication by Y , we calculate

[X,Y ]cdωα = [LX , iY ](dωα) = LXiY dωα − iY LXdωα = LX(Y cdωα) − Y cd(LXωα)

The first term of the last equality vanishes because

LXωβ = d(iXωβ) + iXdωβ = Xcdωβ ≡ 0 (mod ω1, . . . , ωs).

for X ∈ Ch (D). As for the second term, writing LXωα =
∑

Aα
βωβ, we get

Y cd(LXωα) =
∑

dAα
β(Y ) ωβ +

∑
Aα

β (Y cdωβ) ≡ 0 (mod ω1, . . . , ωs)

from d(LXωα) =
∑

dAα
β ∧ ωβ +

∑
Aα

βdωβ. Thus we obtain [X,Y ]cdωα ≡ 0 (mod
ω1, . . . , ωs). This implies [X,Y ] ∈ Ch (D).

Now let (J,C) be a contact manifold of dimension 2n + 1. Let us fix a point uo of J .
Then there exists a coframe {$,ω1, . . . , ωn, π1, . . . , πn} defined around uo ∈ J such that
the following holds;

d$ ≡ ω1 ∧ π1 + · · · + ωn ∧ πn (mod $)

Then, from the definition of Ch (C) , it follows

Ch (C) = {$ = ω1 = · · · = ωn = π1 = · · · = πn = 0 } = {0}.
In fact, (J,C) is a contact manifold if and only if Ch (C) is trivial.
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Let us take a function x1 defined aroud uo such that $∧dx1∧ω2∧· · ·∧ωn∧π1∧· · ·∧πn 6= 0
around uo and consider the differential system C1 defined by

C1 = {$ = dx1 = 0 }.
We can write

ω1 ≡
n∑

i=2

aiωi +
n∑

i=1

biπi (mod $, dx1)

Then we calculate

d$ ≡ (
n∑

i=2

aiωi +
n∑

i=1

biπi) ∧ π1 + ω2 ∧ π2 + · · · + ωn ∧ πn (mod $, dx1)

= (
n∑

i=2

biπi) ∧ π1 + ω2 ∧ (π2 + a2π1) + · · · + ωn ∧ (πn + anπ1)

= (ω2 − b2π1) ∧ (π2 + a2π1) + · · · + (ωn − bnπ1) ∧ (πn + anπ1)

Thus, putting ω̂i = ωi − biπ1 , π̂i = πi + aiπ1 for 2 5 i 5 n, we get

d$ ≡ ω̂2 ∧ π̂2 + · · · + ω̂n ∧ π̂n (mod $, dx1)

Hence we obtain

Ch (C1) = {X ∈ C1(u) | Xcd$ ≡ 0 (mod $, dx1)}
= {$ = dx1 = ω̂2 = · · · = ω̂n = π̂2 = · · · = π̂n = 0}

Moreover we have
{0} = Ch (C) ⊂ Ch (C1) ⊂ C1 ⊂ C.

Now let us take a first integral x2 of Ch (C1) such that $ ∧ dx1 ∧ dx2 ∧ ω̂3 ∧ · · · ∧ ω̂n ∧
π̂2 ∧ · · · ∧ π̂n 6= 0 around uo and consider the differential system C2 defined by

C2 = {$ = dx1 = dx2 = 0 }.
Thus

Ch (C1) = {$ = dx1 = dx2 = ω̂3 = · · · = ω̂n = π̂2 = · · · = π̂n = 0},
so that we can write

ω̂2 ≡
n∑

i=3

âiω̂i +
n∑

i=2

b̂iπ̂i (mod $, dx1, dx2).

Then, as in the above calculation, we get

d$ ≡ ω̃3 ∧ π̃3 + · · · + ω̃n ∧ π̃n (mod $, dx1, dx2)

where we put ω̃i = ω̂i − b̂iπ̂2 , π̃i = π̂i + âiπ̂2 for 3 5 i 5 n. Thus we obtain

Ch (C2) = {X ∈ C2(u) | Xcd$ ≡ 0 (mod $, dx1, dx2)}
= {$ = dx1 = dx2 = ω̃3 = · · · = ω̃n = π̃3 = · · · = π̃n = 0}

Moreover we have

{0} = Ch (C) ⊂ Ch (C1) ⊂ Ch (C2) ⊂ C2 ⊂ C1 ⊂ C.

If we repeat this procedure n times, we obtain first integrals xi of Ch (Ci−1) defined around
uo for i = 2, . . . , n such that $ ∧ dx1 ∧ · · · ∧ dxn 6= 0 around uo, and that

Ci = {$ = dx1 = · · · = dxi} for i = 1, . . . , n.

Moreover we have
d$ ≡ 0 (mod $, dx1, . . . , dxn),
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i.e., Cn = Ch (Cn) is completely integrable.
Finally let us take a first integral z of Cn such that dz ∧ dx1 ∧ · · · ∧ dxn 6= 0 around uo.

Then we have

Cn = { dz = dx1 = · · · = dxn },
so that

$ = a(dz −
n∑

i=1

pidxi),

for some functions a, p1, . . . , pn defined around uo such that a(uo) 6= 0. Hence we obtain

C = { dz −
n∑

i=1

pidxi = 0 }.

Then, from Xcd$̂ =
∑n

i=1(dxi(X)dpi − dpi(X)dxi) for $̂ = dz −
∑n

i=1 pidxi, we get

{$̂ = dx1 = · · · = dxn = dp1 = · · · = dpn = 0}
= { dz = dx1 = · · · = dxn = dp1 = · · · = dpn = 0} ⊂ Ch (C) = {0}

which implies that dz∧ dx1 ∧ · · · ∧ dxn ∧ dp1 ∧ · · · ∧ dpn 6= 0 aroud uo ∈ J . This completes
the proof of the Darboux Theorem.

2. Tanaka Theory of Linear Differential Sytems.

2.1. Symbol algebras of (M,D). A differential system (M,D) is called regular, if
D−(k+1) = ∂(k)D are subbundles of T (M) for every integer k = 1. For a regular differential
system (M,D), we have ( [T2], Proposition 1.1)

(S1) There exists a unique integer µ > 0 such that, for all k = µ,

D−k = · · · = D−µ % D−µ+1 % · · · % D−2 % D−1 = D,

(S2) [Dp,Dq] ⊂ Dp+q for all p, q < 0.

where Dp denotes the space of sections of Dp. (S2) can be checked easily by induction
on q. Thus D−µ is the smallest completely integrable differential system, which contains
D = D−1.

Let (M,D) be a regular differential system such that T (M) = D−µ. As a first invariant
for non-integrable differential systems, we now define the symbol algebra m(x) asso-
ciated with a differential system (M,D) at x ∈ M , which was introduced by N. Tanaka
[T2].

We put g−1(x) = D−1(x), gp(x) = Dp(x)/Dp+1(x) (p < −1) and

m(x) =

−µ⊕
p=−1

gp(x).

Let $p be the projection of Dp(x) onto gp(x). Then, for X ∈ gp(x) and Y ∈ gq(x), the
bracket product [X,Y ] ∈ gp+q(x) is defined by

[X,Y ] = $p+q([X̃, Ỹ ]x),

where X̃ and Ỹ are any element of Dp and Dq respectively such that $p(X̃x) = X and

$q(Ỹx) = Y .
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Endowed with this bracket operation, by (S2) above, m(x) becomes a nilpotent graded
Lie algebra such that dim m(x) = dim M and satisfies

gp(x) = [gp+1(x), g−1(x)] for p < −1.

We call m(x) the symbol algebra of (M,D) at x ∈ M for short.
Furthermore, let m be a FGLA (fundamental graded Lie algebra) of µ-th kind, that is,

m =

−µ⊕
p=−1

gp

is a nilpotent graded Lie algebra such that

gp = [gp+1, g−1] for p < −1.

Then (M,D) is called of type m if the symbol algebra m(x) is isomorphic with m at each
x ∈ M .

2.2. Standard Differential System (M(m), Dm) of Type m. Conversely, given a
FGLA m =

⊕−µ
p=−1 gp, we can construct a model differential system of type m as fol-

lows: Let M(m) be the simply connected Lie group with Lie algebra m. Identifying m
with the Lie algebra of left invariant vector fields on M(m), g−1 defines a left invari-
ant subbundle Dm of T (M(m)). By definition of symbol algebras, it is easy to see that
(M(m), Dm) is a regular differential system of type m. (M(m), Dm) is called the standard
differential system of type m. The Lie algebra g(m) of all infinitesimal automorphisms of
(M(m), Dm) can be calculated algebraically as the prolongation of m ([T1], cf. [Y5]). We
will discuss in §4 the question of when g(m) becomes finite dimensional and simple ?

As an example to calculate symbol algebras, let us show that (L(J), E) is a regular
differential system of type c2(n):

c2(n) = c−3 ⊕ c−2 ⊕ c−1,

where c−3 = R, c−2 = V ∗ and c−1 = V ⊕S2(V ∗). Here V is a vector space of dimension n
and the bracket product of c2(n) is defined accordingly through the pairing between V and
V ∗ such that V and S2(V ∗) are both abelian subspaces of c−1. This fact can be checked
as follows: Let us take a canonical coordinate system U ; (xi, z, pi, pij) (1 5 i 5 j 5 n) of
(L(J), E). Then we have a coframe {$,$i, dxi, dpij} (1 5 i 5 j 5 n) at each point in U ,
where $ = dz −

∑n
i=1 pi dxi, $i = dpi −

∑n
j=1 pij dxj (i = 1, · · · , n). Now take the dual

frame { ∂
∂z

, ∂
∂pi

, d
dxi

, ∂
∂pij

}, of this coframe, where

d

dxi

=
∂

∂xi

+ pi
∂

∂z
+

n∑
j=1

pij
∂

∂pj

is the classical notation. Notice that { d
dxi

, ∂
∂pij

} (i = 1, · · · , n) forms a free basis of Γ(E).

Then an easy calculation shows the above fact. Moreover we see that the derived system
∂E of E satisfies the following :

∂E = {$ = 0} = π−1
∗ C, Ch (∂E) = Ker π∗.

These facts provide the proof of Theorem 1.3 (cf. Theorem 3.2 [Y1]).

Similarly we see that (J(M,n), C) is a regular differential system of type c1(n,m):

c1(n,m) = c−2 ⊕ c−1,
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where c−2 = W and c−1 = V ⊕ W ⊗ V ∗ for vector spaces V and W of dimension n and
m respectively, and the bracket product of c1(n,m) is defined accordingly through the
pairing between V and V ∗ such that V and W ⊗ V ∗ are both abelian subspaces of c−1.

2.3. Prolongation g(m) of Symbol Algebras m. Let m =
⊕

p<0 gp be a fundamental
graded Lie algebra of µ-th kind defined over a field K. Here K denotes the field of real
numbers R or that of complex numbers C. We put

g(m) =
⊕
p∈Z

gp(m),

where gp(m) = gp for p < 0, g0(m) is the Lie algebra of all (gradation preserving) deriva-
tions of graded Lie algebra m and gk(m) is defined inductively by the following for k = 1;

gk(m) = {u ∈
⊕
p<0

gp+k ⊗ g∗
p | u([Y, Z]) = [u(Y ), Z] − [u(Z), Y ] }.

Thus, as a vector space over K, gk(m) is a linear subspace of End (m,mk) = mk ⊗ m∗,
where mk = m⊕ g0(m)⊕· · ·⊕ gk−1(m). The bracket operation of g(m) is given as follows:
First, since g0(m) is the (gradation preserving) derivation algebra of graded Lie algebra
m, we see that

⊕
p50 gp(m) becomes a graded Lie algebra by putting

[u, X] = −[X, u] = u(X) for u ∈ g0(m) and X ∈ m.

Similarly, for u ∈ gk(m) ⊂ mk ⊗m∗ (k > 0) and X ∈ m, we put [u,X] = −[X, u] = u(X).
Now, for u ∈ gk(m) and v ∈ g`(m) (k, ` = 0), by induction on the integer k + ` = 0, we
define [u, v] ∈ mk+` ⊗ m∗ by

[u, v](X) = [[u,X], v] + [u, [v,X]] for X ∈ m.

Here we note that, as the first case k = ` = 0, this definition begins with that of the
bracket product in g0(m). It follows easily that [u, v] ∈ gk+`(m). With this bracket
product, g(m) becomes a graded Lie algebra. In fact the Jacobi identity

[[u, v], w] + [[v, w], u] + [[w, u], v] = 0,

for u ∈ gp(m), v ∈ gq(m) and w ∈ gr(m), follows by definition when one of p, q or r is
negative, and can be shown by induction on the integer p + q + r = 0, when all of p, q
and r are non-negative. The structure of the Lie algebra A(M(m), Dm) of all infinitesimal
automorphisms of (M(m), Dm) can be described by g(m). Especially A(M(m), Dm) is
isomorphic with g(m), when g(m) is finite dimensional ([T1], cf. [Y5]).

Let g0 be a subalgebra of g0(m). We define a subspace gk of gk(m) for k = 1 inductively
by

gk = {u ∈ gk(m) | [u, g−1] ⊂ gk−1 }.
Then, putting

g(m, g0) = m ⊕
⊕
k=0

gk,

we see, with the generating condition of m, that g(m, g0) is a graded subalgebra of g(m).
g(m, g0) is called the prolongation of (m, g0).

Remark 2.1 The notion of the prolongation of m or (m, g0) plays quite an important
role in the equivalence problems for the geometric structures subordinate to regular dif-
ferential systems of type m, e.g., CR-structures, pseudo-product structures or Lie contact

8



structures. We could not touch upon the more important geometric aspect of the prolon-
gation theory of these structures. On these subjects, we refer the reader to foundational
papers [T2], [T3], [T4] of N.Tanaka.

2.4. Proof of the Bäcklund Theorem (Theorem 1.4 [Y3]). Let J(M,n) be the
space of n-dimensional contact elements to M and C be the canonical system on J(M,n).
Recall that (J(M,n), C) is a regular differential system of type c1(n, m) = c1(V,W ):

c1(V,W ) = c−2 ⊕ c−1,

where c−2 = W and c−1 = V ⊕ W ⊗ V ∗ for vector spaces V and W of dimension n and
m respectively. Put f = W ⊗ V ∗. First we will characterize the abelian subspace f of c−1.
Namely we first claim : If dim W = 2, then

f = 〈{X ∈ c−1 | rank ad (X) 5 1 } 〉,
i.e., f is the span of elements X ∈ c−1 such that rank ad (X) = 1. In fact, let X = vX +fX

be any element of c−1(V,W ), where vX ∈ V and fX ∈ f = W ⊗ V ∗. Then we have

ad (X)(v) = [X, v] = fX(v) for v ∈ V,

ad (X)(f) = [X, f ] = −f(vX) for f ∈ W ⊗ V ∗.

Thus we see that rank ad (X) = dim W if vX 6= 0 and rank ad (X) = rank fX if vX = 0.
On the other hand it is clear that f = W ⊗ V ∗ is spanned by elements of rank 1. Put
E = 〈{X ∈ c−1 | rank ad (X) 5 1 } 〉. Then it follows that E = c−1(V,W ) if dim W = 1
and E = f otherwise.

To prove Theorem 1.1, assume that m = dim W = 2 and let u be any point of J(M,n).

Let c(u)(resp. ĉ(Φ(u))) be the symbol algebra of (J(M,n), C)) (resp. (J(M̂, n), Ĉ)) at u
(resp. Φ(u)). Then there exist graded Lie algebra isomorphisms ν : c1(V,W ) → c(u) and
ν̂ : c1(V,W ) → ĉ(Φ(u)) such that ν(f) = Ker π∗ and ν̂(f) = Ker π̂∗. Then, by the above

claim, we get Φ∗(Ker π∗) = Ker π̂∗. Since each fibre of J(M,n) and J(M̂, n) is connected,
we see that Φ is fibre-preserving. Hence Φ induces a unique diffeomorphism ϕ of M onto
M̂ such that π̂ ·Φ = ϕ ·π. Finally Φ = ϕ∗ easily follows from Φ∗(C) = Ĉ and the definiton
of the canonical system on J(M,n).

3. PD-manifolds of Second Order.

We will here formulate the submanifold theory for (L(J), E) as the geometry of PD-
manifolds ([Y1]).

3.1. Submanifolds in L(J). Let R be a submanifold of L(J) satisfying the following
condition:

(R.0) p : R → J ; submersion,

where p = π |R and π : L(J) → J is the projection. There are two differential systems
C1 = ∂E and C2 = E on L(J). We denote by D1 and D2 those differential systems on R
obtained by restricting these differential systems to R. Moreover we denote by the same
symbols those 1-forms obtained by restricting the defining 1-forms {$,$1, · · · , $n} of the
canonical system E to R. Then it follows from (R.0) that these 1-forms are independent
at each point on R and that

D1 = {$ = 0}, D2 = {$ = $1 = · · · = $n = 0}.
In fact (R; D1, D2) further satisfies the following conditions:
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(R.1) D1 and D2 are differential systems of codimension 1 and n + 1 respectively.

(R.2) ∂D2 ⊂ D1.

(R.3) Ch (D1) is a subbundle of D2 of codimension n.

(R.4) Ch (D1)(v) ∩ Ch (D2)(v) = {0} at each v ∈ R.

The last condition follows easily from the Realization Lemma below.

3.2. Realization Lemma. Conversely these four conditions characterize submanifolds
in L(J) satisfying (R.0). To see this , we first recall the following Realization Lemma,
which characterize a submanifold of (J(M,n), D).

Realization Lemma. Let R and M be manifolds. Assume that the quadruple (R,D, p,M)
satisfies the following conditions :

(1) p is a map of R into M of constant rank.

(2) D is a differential system on R such that F = Ker p∗ is a subbundle of D of
codimension n.

Then there exists a unique map ψ of R into J(M,n) satisfying p = π ·ψ and D = ψ−1
∗ (C),

where C is the canonical differential system on J(M,n) and π : J(M,n) → M is the
projection. Furthermore, let v be any point of R. Then ψ is in fact defined by

ψ(v) = p∗(D(v)) as a point of Gr (Tp(v)(M)),

and satisfies

Ker (ψ∗)v = F (v) ∩ Ch (D)(v).

where Ch (D) is the Cauchy Characteristic System of D.

For the proof, see Lemma 1.5 [Y1].

In view of this Lemma, we call the triplet (R; D1, D2) of a manifold and two differential
systems on it a PD-manifold if these satisfy the above four conditions (R.1) to (R.4).
We have the (local) Realization Theorem for PD-manifolds as follows: From conditions
(R.1) and (R.3), it follows that the codimension of the foliation defined by the completely
integrable system Ch (D1) is 2n+1. Assume that R is regular with respect to Ch (D1), i.e.,
the space J = R/Ch (D1) of leaves of this foliation is a manifold of dimension 2n+1. Then
D1 drops down to J . Namely there exists a differential system C on J of codimension 1
such that D1 = p−1

∗ (C), where p : R → J = R/Ch (D1) is the projection. Obviously (J,C)
becomes a contact manifold of dimension 2n + 1. Conditions (R.1) and (R.2) guarantees
that the image of the following map ι is a legendrian subspace of (J,C):

ι(v) = p∗(D
2(v)) ⊂ C(u), u = p(v).

Finally the condition (R.4) shows that ι : R → L(J) is an immersion by Realization
Lemma for (R,D2, p, J). Furthermore we have (Corollary 5.4 [Y1])

Theorem 3.1. Let (R; D1, D2) and (R̂; D̂1, D̂2) be PD-manifolds. Assume that R and

R̂ are regular with respect to Ch (D1) and Ch (D̂1) respectively. Let (J,C) and (Ĵ , Ĉ) be

the associated contact manifolds. Then an isomorphism Φ : (R; D1, D2) → (R̂; D̂1, D̂2)

induces a contact diffeomorphism ϕ : (J,C) → (Ĵ , Ĉ) such that the following commutes;
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R
ι−−−→ L(J)

Φ

y yϕ∗

R̂
ι̂−−−→ L(Ĵ).

By this theorem, the submanifold theory for (L(J), E) is reformulated as the geometry
of PD-manifolds.

3.3. Reduction Theorem. When D1 = ∂D2 holds for a PD-manifold (R; D1, D2), the
geometry of (R; D1, D2) reduces to that of (R,D2) and the Tanaka theory is directly
applicable to this case (cf. [YY2]). Concerning about this situation, the following theorem
is known under the compatibility condition (C) below:

(C) p(1) : R(1) → R is onto.

where R(1) is the first prolongation of (R; D1, D2),i.e.,

R(1) = {n-dim. integral elements of (R,D2), transversal to F = Ker p∗} ⊂ J(R, n),

(cf. Proposition 5.11 [Y1]).

Theorem 3.2. Let (R; D1, D2) be a PD-manifold satisfying the condition (C) above.
Then the following equality holds at each point v of R:

dim D1(v) − dim ∂D2(v) = dimCh (D2)(v).

In particular D1 = ∂D2 holds if and only if Ch (D2) = {0}.
When PD-manifold (R; D1, D2) admits a non-trivial Cauchy characteristics, i.e.,when

rank Ch (D2) > 0, the geometry of (R; D1, D2) is further reducible to the geometry of
a single differential system. Here we will be concerned with the local equivalence of
(R; D1, D2), hence we may assume that R is regular with respect to Ch (D2), i.e., the leaf
space X = R/Ch (D2) is a manifold such that the projection ρ : R → X is a submersion
and there exists a differential system D on X satisfying D2 = ρ−1

∗ (D). Then the local
equivalence of (R; D1, D2) is further reducible to that of (X,D) as in the following

Theorem 3.3. Let (R,D1, D2) and (R̂; D̂1, D̂2) be PD-manifolds satisfying the condition

(C) such that Ch (D2) and Ch (D̂2) are subbundles of rank r (0 < r < n). Assume that

R and R̂ are regular with respect to Ch (D2) and Ch (D̂2) respectively. Let (X,D) and

(X̂, D̂) be the leaf spaces, where X = R/Ch (D2) and X̂ = R̂/Ch (D̂2). Let us fix points

vo ∈ R and v̂o ∈ R̂ and put xo = ρ(vo) and x̂o = ρ̂(v̂o). Then a local isomorphism

ψ : (R; D1, D2) → (R̂; D̂1, D̂2) such that ψ(vo) = v̂o induces a local isomorphism ϕ :

(X,D) → (X̂, D̂) such that ϕ(xo) = x̂o and ϕ∗(κ(xo)) = κ̂(x̂o), and vice versa.

3.4. Higher Order Jet Spaces. The essential part of the Bäcklund’s Theorem is to
show that F = Ker π∗ is the covariant system of (J(M,n), C) for m ≥ 2. Namely an

isomorphism Φ sends F onto F̂ = Ker π̂∗ for m ≥ 2.
In case m = 1, it is a well known fact that the group of isomorphisms of (J(M,n), C),

i.e., the group of contact transformations, is larger than the group of diffeomorphisms of
M . Therefore, when we consider the geometric 2-jet spaces, the situation differs according
to whether the number m of dependent variables is 1 or greater.

(1) Case m = 1. We should start from a contact manifold (J,C) of dimension 2n + 1,
which is locally a space of 1-jet for one dependent variable by Darboux’s theorem. Then we
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can construct the geometric second order jet space (L(J), E) as the Lagrange- Grassmann
bundle L(J) over J consisting of all n-dimensional integral elements of (J,C), while E is
the restriction to L(J) of the canonical system on J(L(J), n).

Now we put

(J2(M,n), C2) = (L(J(M,n)), E),

where M is a manifold of dimension n + 1.

(2) Case m ≥ 2. Since F = Ker π∗ is a covariant system of (J(M,n), C), we define
J2(M,n) ⊂ J(J(M,n), n) by

J2(M,n) = {n-dim. integral elements of (J(M,n), C), transversal to F},

C2 is defined as the restriction to J2(M,n) of the canonical system on J(J(M,n), n).

Now the higher order (geometric) jet spaces (Jk+1(M,n), Ck+1) for k ≥ 2 are defined
(simultaneously for all m) by induction on k. Namely, for k ≥ 2, we define Jk+1(M,n) ⊂
J(Jk(M,n), n) and Ck+1 inductively as follows:

Jk+1(M,n) = {n-dim. integral elements of (Jk(M,n), Ck), transversal to Ker (πk
k−1)∗ },

where πk
k−1 : Jk(M,n) → Jk−1(M,n) is the projection. Here we have

Ker (πk
k−1)∗ = Ch (∂Ck),

and Ck+1 is defined as the restriction to Jk+1(M,n) of the canonical system on J(Jk(M,n), n).
Then we have ([Y1],[Y3])

Ck ⊂· · ·⊂ ∂k−2Ck ⊂∂k−1Ck⊂ ∂kCk = T (Jk(M,n))

∪ ∪ ∪

{0} = Ch (Ck)⊂Ch (∂Ck)⊂· · ·⊂Ch (∂k−1Ck)⊂ F

where Ch (∂i+1Ck) is a subbundle of ∂iCk of codimension n for i = 0, . . . , k−2 and, when
m ≥ 2, F is a subbundle of ∂k−1Ck of codimension n. The transversality conditions are
expressed as

Ck ∩ F = Ch (∂Ck) for m = 2, Ck ∩ Ch (∂k−1Ck) = Ch (∂Ck) for m = 1

By the above diagram together with the rank condition, Jet spaces (Jk(M,n), Ck) can be
characterized as higher order contact manifolds as in [Y1]and [Y3].

Here we observe that, if we drop the transversality condition in our definition of
Jk(M,n) and collect all n-dimensional integral elements, we may have some singularities
in Jk(M,n) in general. However, since every 2-form vanishes on 1-dimensional subspaces,
in case n = 1, the integrability condition for v ∈ J(Jk−1(M, 1), 1) reduces to v ⊂ Ck−1(u)
for u = πk

k−1(v). Hence, in this case, we can safely drop the transversality condition in
the above construction as in the following “Rank 1 Prolongation” , which constitutes the
key construction for the Drapeau theorem for m-flags (see [SY]).

We say that (R,D) is an m-flag of length k, if ∂iD is a subbundle of T (R) for any i
and has a derived length k, i.e., ∂kD = T (R);

D ⊂ ∂D ⊂ · · · ⊂ ∂k−2D ⊂ ∂k−1D ⊂ ∂kD = T (R),

such that rank D = m+1 and rank ∂iD = rank ∂i−1D +m for i = 1, . . . , k. In particular
dim R = (k + 1)m + 1.
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Moreover, for a differential system (R,D), the Rank 1 Prolongation (P (R), D̂) is
defined as follows;

P (R) =
⋃
x∈R

Px ⊂ J(R, 1),

where

Px = {1-dim. integral elements of (R,D)} = {u ⊂ D(x) | 1-dim. subspaces} ∼= Pm.

We define the canonical system D̂ on P (R) as the restriction to P (R) of the canonical
system on J(R, 1). It can be shown that the Rank 1 Prolongation of an m-flag of length
k becomes a m-flag of length k + 1.

Especially (R,D) is called a Goursat flag (un drapeau de Goursat) of length k when
m = 1. Historically, by Engel, Goursat and Cartan, it is known that a Goursat flag (R,D)
of length k is locally isomorphic, at a generic point, to the canonical system (Jk(M, 1), Ck)
on the k-jet spaces of 1 independent and 1 dependent variable. The characterization of
the canonical (contact) systems on jet spaces was given by R. Bryant in [B] for the first
order systems and in [Y1] and [Y3] for higher order systems for n independent and m
dependent variables. However, it was first explicitly exhibited by A.Giaro, A. Kumpera
and C. Ruiz in [GKR] that a Goursat flag of length 3 has singuralities and the research
of singularities of Goursat flags of length k (k ≥ 3) began as in [M]. To this situation,
R. Montgomery and M. Zhitomirskii constructed the “Monster Goursat manifold” by
successive applications of the “Cartan prolongation of rank 2 distributions [BH]” to a
surface and showed that every germ of a Goursat flag (R,D) of length k appears in this
“Monster Goursat manifold” in [MZ] , by first exhibitting the following Sandwich Lemma
for (R,D);

D ⊂ ∂D ⊂· · ·⊂ ∂k−2D ⊂∂k−1D⊂ ∂kD = T (R)

∪ ∪ ∪

Ch (D)⊂Ch (∂D)⊂Ch (∂2D)⊂· · ·⊂Ch (∂k−1D)

where Ch (∂iD) is the Cauchy characteristic system of ∂iD and Ch (∂iD) is a subbundle
of ∂i−1D of corank 1 for i = 1, . . . , k − 1. Moreover, after [MZ], P.Mormul defined the
notion of a special m- flag of length k for m ≥ 2 to characterize those m-flags which are
obtained by successive applications of the Rank 1 Prolongations to the space of 1-jets of
1 independent and m dependent variables.

To be precise, starting from a manifold M of dimension m + 1, we put, for k = 2,

(P k(M), Ck) = (P (P k−1(M)), Ĉk−1)

where (P 1(M), C1) = (J(M, 1), C). When m = 1, (P k(M), Ck) are called “Monster
Goursat Manifolds” in [MZ].

Then we have ( Corollary 5.8. [SY])

Theorem 3.4. An m-flag (R,D) of length k for m ≥ 3 is locally isomorphic to (P k(M), Ck)
if and only if ∂k−1D is of Cartan rank 1, and, moreover for m ≥ 4, if and only if ∂k−1D
is of Engel rank 1.

Here, the Cartan rank of (R,C) is the smallest integer ρ such that there exist 1-forms
{π1, . . . , πρ}, which are independent modulo {ω1, . . . , ωs} and satisfy

dα ∧ π1 ∧ · · · ∧ πρ ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥ = Γ(C⊥),
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where C = {ω1 = · · · = ωs = 0 }. Furthermore the Engel (half) rank of (R,C) is the
smallest integer ρ such that

(dα)ρ+1 ≡ 0 (mod ω1, . . . , ωs) for ∀α ∈ C⊥,

Moreover we have for an m-flag of length k for m ≥ 2 (Corollary 6.3. [SY]) ,

Theorem 3.5. An m-flag (R,D) of length k is locally isomorphic to (P k(M), Ck) if and
only if there exists a completely integrable subbundle F of ∂k−1D of corank 1.

4. Differential Sytems associated with Simple Graded Lie Algebras.

4.1. Gradation of g in terms of Root Space Decomposition. Let g be a finite
dimensional simple Lie algebra over C. Let us fix a Cartan subalgebra h of g and choose
a simple root system ∆ = {α1, . . . , α`} of the root system Φ of g relative to h. Then every
α ∈ Φ is an (all non-negative or all non-positive) integer coefficient linear combination of
elements of ∆ and we have the root space decomposition of g;

g =
⊕
α∈Φ+

gα ⊕ h ⊕
⊕
α∈Φ+

g−α,

where gα = {X ∈ g | [h,X] = α(h)X for h ∈ h} is (1-dimensional) root space (corre-
sponding to α ∈ Φ) and Φ+ denotes the set of positive roots.

Now let us take a nonempty subset ∆1 of ∆. Then ∆1 defines the partition of Φ+ as
in the following and induces the gradation of g =

⊕
p∈Z gp as follows:

Φ+ = ∪p=0Φ
+
p , Φ+

p = {α =
∑̀
i=1

niαi |
∑

αi∈∆1

ni = p},

gp =
⊕
α∈Φ+

p

gα, g0 =
⊕
α∈Φ+

0

gα ⊕ h ⊕
⊕
α∈Φ+

0

g−α, g−p =
⊕
α∈Φ+

p

g−α,

[gp, gq] ⊂ gp+q for p, q ∈ Z.

Moreover the negative part m =
⊕

p<0 gp satisfies the following generating condition :

gp = [gp+1, g−1] for p < −1

We denote the SGLA (simple graded Lie algebra) g =
⊕µ

p=−µ gp obtained from ∆1 in this

manner by (X`, ∆1), when g is a simple Lie algebra of type X`. Here X` stands for the
Dynkin diagram of g representing ∆ and ∆1 is a subset of vertices of X`. Moreover we
have

µ =
∑

αi∈∆1

ni(θ),

where θ =
∑`

i=1 ni(θ) αi is the highest root of Φ+.
Conversely we have (Theorem 3.12 [Y5])

Theorem 4.1. Let g =
⊕

p∈Z gp be a simple graded Lie algebra over C satisfying the

generating condition. Let X` be the Dynkin diagram of g. Then g =
⊕

p∈Z gp is iso-

morphic with a graded Lie algebra (X`, ∆1) for some ∆1 ⊂ ∆. Moreover (X`, ∆1) and
(X`, ∆

′
1) are isomorphic if and only if there exists a diagram automorphism φ of X` such

that φ(∆1) = ∆′
1.
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In the real case, we can utilize the Satake diagram of g to describe gradations of g
(Theorem 3.12 [Y5]).

4.2. Gradation of g in terms of Matrix Representations. Let g be a simple Lie
algebra over C of the classical type. We shall describe gradations of g in terms of matrices.
Here we reproduce the matrices description of the root space decomposition of g from §7
of [Tk] (cf. [K-A], [V, Chapter 4.4]), which gives us explicit pictures of Mg.

(1) A` type (` = 1). g = sl(` + 1, C). We take a Cartan subalgebra h consisting of
all diagonal elements of sl(` + 1, C), whose member we denote by diag (a1, . . . , a`+1). Let
λ1, . . . , λ`+1 be the linear form on h defined by λi diag (a1, . . . , a`+1) 7→ ai. We write
Eij (1 5 i, j 5 ` + 1) for the matrix whose (i, j)-component is 1 and all of whose other
components are 0. Then we have

[H,Eij] = (λi − λj)(H) Eij for H ∈ h.

Hence Φ = {λi − λj ∈ h∗ (1 5 i, j 5 ` + 1, i 6= j)} and Eij spans the root subspace for
λi − λj ∈ Φ. Let us choose a simple root system ∆ = {α1, . . . , α`} by putting

αi = λi − λi+1.

We have λi −λj = αi + · · ·+ αj−1 when i < j. Hence θ = α1 + · · ·+ α`. Then we see that
the gradation of (A`, {αi}) is given by sl(` + 1, C) = g−1 ⊕ g0 ⊕ g1;

g−1 =

{(
0 0
C 0

) ∣∣∣∣ C ∈ M(j, i)

}
, g1 =

{(
0 D
0 0

) ∣∣∣∣ D ∈ M(i, j)

}
,

g0 =

{(
A 0
0 B

) ∣∣∣∣ A ∈ M(i, i), B ∈ M(j, j) and trA + trB = 0

}
,

where j = `− i + 1 and M(p, q) denotes the set of p × q matrices. This decomposition
can be described schematically by the following diagram;

i j

i 0 1

j −1 0

where the vertical (resp. horizontal) line stands for the i-th vertical (resp. horizontal) in-
termediate line of a matrix in sl(`+1, C). Then, for example, the diagram of (A`, {αi, αj})
(i < j) is obtained by superposing the diagrams of (A`, {αi}) and (A`, {αj});

0 1

−1 0

0 1

−1 0

⇒

0 1 2

−1 0 1

−2 −1 0

In general the diagram of (A`, {αi1 , . . . , αik}) is obtained by superposing the k diagrams
of (A`, {αi1}), . . . , (A`, {αik}). Namely the gradation of (A`, {αi1 , . . . , αik}) is obtained
by subdividing matrices by both vertical and horizontal k lines. Here i-th intermediate
line corresponds to the simple root αi.

By this description of gradations, we see that the model space Mg of (A`, {αi}) is
the complex Grassmann manifold Gr(i, V ) consisting of all i-dimensional subspaces of
V = C`+1. Furthermore the model space Mg of (A`, {αi1 , . . . , αik}) (1 5 i1 < · · · < ik 5 `)
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is the flag manifold F (i1, . . . , ik; V ) consisting of all flags {V1 ⊂ · · · ⊂ Vk} in V such that
dim Vj = ij for j = 1, . . . , k (cf. [Tt]).

(2) C` type (` = 2). Let (V, 〈 , 〉) be a symplectic vector space over C of dimension
2`, that is, 〈 , 〉 is a non-degenerate skew symmetric bilinear form on V . Then g = sp(V ).
Let us take a symlectic basis {e1, . . . , e`, f1, . . . , f`} of V such that 〈ei, ej〉 = 〈fi, fj〉 = 0
and 〈fi, e`+1−j〉 = δij for i, j = 1, . . . , `. Thus we have a matrix representation

g = {X ∈ gl(2`, C) | tXJ + JX = 0 }, where J =

(
0 K

−K 0

)
,

and K is the ` × ` matrix whose (i, j)-component is δi,`+1−j. We put A′ = KAK for
A ∈ gl(`, C). Namely A′ is the “transposed” matrix of A with respect to the anti-diagonal
line. Each X ∈ g is expressed as a matrix of the following form;

X =

(
A B
C −A′

)
,

where A, B, C are `× ` matrices such that B and C satisfy B = B′ and C = C ′. Namely
both B and C are symmetric with respect to the anti-diagonal line. Thus we see that X
is determined by its upper anti-diagonal part. In the following we write X = (A,B,C) in
short.

We take a Cartan subalgebra h consisting of all diagonal elements of the form H =
(diag (a1, . . . , a`), 0, 0). Let λ1, . . . , λ` be the linear form on h defined by λi H 7→ ai. We
put Fij = Eij + E ′

ij, where E ′
ij = E`+1−j,`+1−i. Then we have

[H, (Eij, 0, 0)] = (λi − λj)(H)(Eij, 0, 0),

[H, (0, Fij, 0)] = (λi + λ`+1−j)(H)(0, Fij, 0),

[H, (0, 0, Fij)] = −(λ`+1−i + λj)(H)(0, 0, Fij).

Hence Φ = {λi − λj (i 6= j), ±(λi + λj) (1 5 i 5 j 5 `)} and (Eij, 0, 0), (0, Fi,`+1−j, 0),
(0, 0, F`+1−i,j) are root vectors for λi − λj, λi + λj, −(λi + λj) ∈ Φ respectively. Let us
choose a simple root system ∆ = {α1, . . . , α`} by putting{

αi = λi − λi+1 for i = 1, . . . , ` − 1,

α` = 2 λ`.

We have {
λi − λj = αi + · · · + αj−1 (1 5 i < j 5 `),

λi + λj = (αi + · · · + α`−1) + (αj + · · · + α`) (1 5 i 5 j 5 `).

Hence θ = 2 α1 + · · · + 2 α`−1 + α`. Then we see that the gradation of (C`, {αi}) is given
by the following diagram;

i i

i 0 1 2

−1 0 1

i −2 −1 0

(1 5 i < `)

0 1

−1 0

(i = `)
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Then the diagram of (C`, {αi1 , . . . , αik}) is obtained by superposing the k diagrams of
(C`, {αi1}), . . . , (C`, {αik}). Here two intermediate lines (i-th and (2` − i)-th lines) cor-
respond to the simple root {αi} for i = 1, . . . , ` − 1 and the center line corresponds to
{α`}.

By this description of gradation, we see that the model space Mg of (C`, {αi}) is the
Grassmann manifold Sp-Gr(i, V ) consisting of all i-dimensional isotropic subspaces of
(V, 〈 , 〉). Furthermore the model space Mg of (C`, {αi1 , . . . , αik}) (1 5 i1 < · · · < ik 5 `)
is the flag manifold Sp-F (i1, . . . , ik; V ) consisting of all flags {V1 ⊂ · · · ⊂ Vk} in V such
that Vj is an ij dimensional isotropic subspace of (V, 〈 , 〉) (cf. [Tt]).

(3) B` (` = 3), D` (` = 4) type. Let (V, ( | )) be an inner product space over C
of dimension 2` or 2` + 1, that is, ( | ) is a non-degenerate symmetric bilinear form on
V . Then g = o(V ). Let us take a basis {e1, . . . , e`, e`+1, f1, . . . , f`} of V such that
(ei|ej) = (e`+1|ei) = (e`+1|fi) = (fi|fj) = 0, (e`+1|e`+1) = 1 and (ei|f`+1−j) = δij for
i, j = 1, . . . , `. Here we neglect e`+1, when dim V = 2`. Then we have a matrices
representation

g = {X ∈ gl(n, C) | tXS + SX = 0 }, where S =

 0 0 K
0 1 0
K 0 0


and n = 2` or 2` + 1. Each X ∈ g is expressed as a matrix of the form

X =

A a B
ξ 0 −a′

C −ξ′ −A′


where A, B, C are `×` matrices such that B = −B′, C = −C ′ and a, ξ are column and row
`-vector respectively such that a′ and ξ′ are given by a′ = (a`, . . . , a1), ξ′ = t(ξ`, . . . , ξ1) for
a = t(a1, . . . , a`), ξ = (ξ1, . . . , ξ`) respectively. Here the center column and the center row
of X should be deleted when dim V = 2`. Both B and C are skew symmetric with respect
to the anti-diagonal line. In particular all the anti-diagonal components xi,n+1−i of X are
0. Thus X is determined by its upper anti-diagonal part. We write X = (A,B,C, a, ξ),
in short.

We take a Cartan subalgebra h consisting of all diagonal elements of the form H =
(diag (a1, . . . , a`), 0, 0, 0, 0). Let λ1, . . . , λ` be the linear form on h defined by λi H 7→ ai.
We put Gij = Eij − E ′

ij and Ei = (δ1i, . . . , δ`i) ∈ C`. Then we have

[H, (Eij, 0, 0, 0, 0)] = (λi − λj)(H)(Eij, 0, 0, 0, 0),

[H, (0, Gij, 0, 0, 0)] = (λi + λ`+1−j)(H)(0, Gij, 0, 0, 0),

[H, (0, 0, Gij, 0, 0)] = −(λ`+1−i + λj)(H)(0, 0, Gij, 0, 0),

[H, (0, 0, 0, Ei, 0)] = λi(H)(0, 0, 0, Ei, 0),

[H, (0, 0, 0, 0, Ei)] = −λi(H)(0, 0, 0, 0, Ei).

Hence we have

Φ =


{λi − λj (i 6= j), ±(λi + λj) (1 5 i < j 5 `)} if n = 2`,

{±λi (1 5 i 5 `), λi − λj (i 6= j),

±(λi + λj) (1 5 i < j 5 `)} if n = 2` + 1.
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(Eij, 0, 0, 0, 0), (0, Gi,`+1−j, 0, 0, 0), (0, 0, G`+1−i,j, 0, 0), (0, 0, 0, Ei, 0)
and (0, 0, 0, 0, Ei) are root vectors for λi − λj, λi + λj, −(λi + λj), λi and −λi ∈ Φ
respectively. Let us choose a simple root system ∆ = {α1, . . . , α`} by putting

(i) B` type

{
αi = λi − λi+1 for i = 1, . . . , ` − 1,

α` = λ`.

(ii) D` type

{
αi = λi − λi+1 for i = 1, . . . , ` − 1,

α` = λ`−1 + λ`.

Then we have

(i) B` type
λi − λj = αi + · · · + αj−1 (1 5 i < j 5 `),

λi = αi + · · · + α` (1 5 i 5 `),

λi + λj = αi + · · · + αj−1 + 2 αj + · · · + 2 α` (1 5 i < j 5 `).

Hence θ = α1 + 2 α2 + · · · + 2 α`.

(ii) D` type

λi − λj = αi + · · · + αj−1 (1 5 i < j 5 `),

λi + λ` = αi + · · · + α`−2 + α` (1 5 i 5 ` − 2),

λ`−1 + λ` = α`

λi + λ`−1 = αi + · · · + α`−1 + α` (1 5 i 5 ` − 2),

λi + λj = αi + · · · + αj−1 + 2 αj + · · · + 2 α`−2 + α`−1 + α`

(1 5 i < j 5 ` − 2).

Hence θ = α1 + 2 α2 + · · · + 2 α`−2 + α`−1 + α`.

Then we see that the gradation of (B`, {αi}) is given by the following diagram;

1 n − 2 1

0 1 ∗

−1 0 1

∗ −1 0

(i = 1)

i n−2i i

0 1 2

−1 0 1

−2 −1 0

(1 < i 5 `)

The gradation of (D`, {αi}) is given by the same diagram as above for i = 1, . . . , `− 2
and the above diagram with i = ` − 1 is that of (D`, {α`−1, α`}). Moreover the diagrams
of (D`, {α`−1}) and (D`, {α`}) are given as follows

` − 1 0 1 0 1

1 −1 0 ∗ 0

1 0 ∗ 0 1

` − 1 −1 0 −1 0

(i = ` − 1)

` 0 1

` −1 0

(i = `)
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Clearly, by interchanging e` and f1, matrices representations of (D`, {α`−1}) and (D`, {α`})
transforms each other, i.e., (D`, {α`−1}) and (D`, {α`}) are conjugate. The other grada-
tions of B` or D` type can be obtained by the principle of superposition as in the previous
cases. Here two intermediate lines (i-th and (n − i)-th lines) correspond to the simple
root {αi} for i = 1, . . . , ` in case of type B` and for i = 1, . . . , ` − 2 in case of type D`.
Moreover in case of type D`, (` − 1)-th and (` + 1)-th intermediate lines correspond to
the pair {α`−1, α`} and the center line corresponds to {α`}.

By this description of gradations, we see that the Grassmann manifold O-Gr(i, V )
consisting of all i-dimensional isotropic subspaces of (V, ( | )) is the model space Mg of
(B`, {αi}) or (D`, {αi}) according as dim V = 2` + 1 or 2`, except for the case when
i = ` − 1 and dim V = 2`. In the latter case O-Gr(` − 1, V ) is the model space Mg of
(D`, {α`−1, α`}), where dim V = 2`. Thus, for D` type, we make a following convention
for a subset ∆1 of ∆: If α`−1 ∈ ∆1 and α` /∈ ∆1, we replace α`−1 by α` (the conjugacy
class of (D`, ∆1) does not change by this replacement), and if both α`−1 and α` ∈ ∆1,
we write α∗

`−1 = {α`−1, α`}. Under this convention, we see that the model space Mg of
(B`, {αi1 , . . . , αik}) or (D`, {αi1 , . . . , αik}) (1 5 i1 < · · · < ik 5 `) is the flag manifold
O-F (i1, . . . , ik; V ) consisting of all flags {V1 ⊂ · · · ⊂ Vk} in V such that Vj is an ij-
dimensional isotropic subspace of (V, ( | )), according as dim V = 2` + 1 or 2` (cf. [Tt]).

4.3. Theorem on Prolongations. By Theorem 4.1, the classification of gradations
g =

⊕
p∈Z gp of simple Lie algebras g satisfying the generating condition coincides with

that of parabolic subalgebras g′ =
⊕

p=0 gp of g. Accordingly, to each SGLA (X`, ∆1),

there corresponds a unique R-space Mg = G/G′ (compact simply connected homogeneous
complex manifold). Furthermore, when µ = 2, there exists the G-invariant differential
system Dg on Mg, which is induced from g−1, and (M(m), Dm) (Standard differential
system of type m) becomes an open submanifold of (Mg, Dg). For the Lie algebras of
all infinitesimal automorphisms of (Mg, Dg), hence of (M(m), Dm), we have the following
theorem (Theorem 5.2 [Y5]).

Theorem 4.2. Let g =
⊕

p∈Z gp be a simple graded Lie algebra over C satisfying the

generating condition. Then g =
⊕

p∈Z gp is the prolongation of m =
⊕

p<0 gp except for
the following three cases.

(1) g = g−1 ⊕ g0 ⊕ g1 is of depth 1 (i.e., µ = 1).

(2) g =
⊕2

p=−2 gp is a (complex) contact gradation.

(3) g =
⊕

p∈Z gp is isomorphic with (A`, {α1, αi}) (1 < i < `) or (C`, {α1, α`}).

Here R-spaces corresponding to the above exceptions (1), (2) and (3) are as follows:
(1) correspond to compact irreducible hermitian symmetric spaces. (2) correspond to
contact manifolds of Boothby type (Standard contact manifolds), which exist uniquely
for each simple Lie algebra other than sl(2, C)(see §5.1 below). In case of (3), (J(P`, i), C)
corresponds to (A`, {α1, αi}) and (L(P2`−1), E) corresponds to (C`, {α1, α`}) (1 < i < `),
where P` denotes the `-dimensional complex projective space and P2`−1 is the Standard
contact manifold of type C`. Here we note that R-spaces corresponding to (2) and (3) are
all Jet spaces of the first or second order.

For the real version of this theorem, we refer the reader to Theorem 5.3 [Y5].
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4.4. Standard Contact Manifolds. Each simple Lie algebra g over C has the highest
root θ. Let ∆θ denote the subset of ∆ consisting of all vertices which are connected to −θ
in the Extended Dynkin diagram of X` (` = 2). This subset ∆θ of ∆, by the construction
in §4, defines a gradation (or a partition of Φ+), which distinguishes the highest root θ.
Then, this gradation (X`, ∆θ) turns out to be a contact gradation, which is unique up to
conjugacy.

Moreover we have the adjoint (or equivalently coadjoint) representation, which has θ
as the highest weight. The R-space Jg corresponding to (X`, ∆θ) can be obtained as the
projectiviation of the (co-)adjoint orbit of G passing through the root vector of θ. By
this construction, Jg has the natural contact structure Cg induced from the symplectic
structure as the coadjoint orbit, which corresponds to the contact gradation (X`, ∆θ) (cf.
[Y5, §4]). Standard contact manifolds (Jg, Cg) were first found by Boothby ([Bo]) as
compact simply connected homogeneous complex contact manifolds.

Extended Dynkin Diagrams with the coefficient of Highest Root (cf. [Bu])

A` (` > 1)

◦ ◦ ....... ◦ ◦©©©©◦HHHH1 1 1 1

−θ

α1 α2 α`−1 α`

B` (` > 2)

◦HH
◦©©◦ ....... ◦=⇒◦1

2 2 2

−θ

α1

α2 α`−1 α`

C` (` > 1)

◦=⇒◦ ....... ◦⇐=◦2 2 1

−θ α1 α`−1 α`

D` (` > 3)

◦HH
◦©©◦ ....... ◦©©◦

HH◦1
2 2

1

1

−θ

α1

α2 α`−2

α`−1

α`

E6

◦ ◦ ◦ ◦ ◦
◦
◦

1 2 3 2 1

2

−θ

α1 α3 α4 α5 α6

α2

F4

◦ ◦ ◦=⇒◦ ◦2 3 4 2

−θ α1 α2 α3 α4

E7

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

2 3 4 3 2 1

2
−θ α1 α3 α4 α5 α6 α7

α2 G2

◦⇐=◦ ◦3 2

−θα1 α2

E8

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

2 4 6 5 4 3 2

2
−θα1 α3 α4 α5 α6 α7 α8

α2

5. G2-Geometry of Overdetermined Systems.

This topic has its origin in the following paper of E. Cartan.

[C1] Les systèmes de Pfaff à cinq variables et les équations aux derivèes partielles du
second ordre, Ann. Ec. Normale, 27 (1910), 109-192

In this paper, following the tradition of geometric theory of partial differential equa-
tions of 19th century, E.Cartan dealt with the equivalence problem of two classes of
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second order partial differential equations in two independent variables under “contact
transformations”. One class consists of overdetermined systems, which are involutive,
and the other class consists of single equations of Goursat type, i.e., single equations of
parabolic type whose Monge characteristic systems are completely integrable. Especially
in the course of the investigation, he found out the following facts: the symmetry algebras
(i.e., the Lie algebra of infinitesimal contact transformations) of the following overdeter-
mined system (involutive system) (A) and the single Goursat type equation (B) are both
isomorphic with the 14-dimensional exceptional simple Lie algebra G2.

∂2z

∂x2
=

1

3

(
∂2z

∂y2

)3

,
∂2z

∂x∂y
=

1

2

(
∂2z

∂y2

)2

.(A)

9r2 + 12t2(rt − s2) + 32s3 − 36rst = 0,(B)

where

r =
∂2z

∂x2
, s =

∂2z

∂x∂y
, t =

∂2z

∂y2

are the classical terminology.

5.1. Gradation of G2. The Dynkin diagram of G2 is given by

}
α1

W }
α2

and the set Φ+ of positive roots consists of six elements (cf. [Bu]):

Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}.

Here θ = 3α1+2α2 and we have three choices for ∆1 ⊂ ∆ = {α1, α2}. Namely ∆1 = {α1},
{α2} or {α1, α2}. Then the structure of each (G2, ∆1) is described as follows.

(1) (G2, {α1}). We have µ = 3 and Φ+ decomposes as follows;

Φ+
3 = {3α1 + α2, 3α1 + 2α2}, Φ+

2 = {2α1 + α2},
Φ+

1 = {α1, α1 + α2}, Φ+
0 = {α2}.

Thus dim g−3 = dim g−1 = 2, dim g−2 = 1 and dim g0 = 4. In the following section §5.2,
we will see how the regular differential system of this type showed up historically.

(2) (G2, {α2}). We have µ = 2 and Φ+ decomposes as follows;

Φ+
2 = {3α1 + 2α2}, Φ+

0 = {α1},
Φ+

1 = {α2, α1 + α2, 2α1 + α2, 3α1 + α2}.

Thus dim g−2 = 1 and dim g−1 = dim g0 = 4. Hence this is a contact gradation (cf. §4.4).

(3) (G2, {α1, α2}). We have µ = 5 and Φ+ decomposes as follows;

Φ+
5 = {3α1 + 2α2}, Φ+

4 = {3α1 + α2}, Φ+
3 = {2α1 + α2},

Φ+
2 = {α1 + α2}, Φ+

1 = {α1, α2}, Φ+
0 = ∅.

Namely (G2, {α1, α2}) is a gradation according to the height of roots and g′ =
⊕

p=0 gp is a

Borel subalgebra. This case shows up in connection with the Hilbert-Cartan equation([Y5,
§1.3]).
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5.2. Classification of Symbol Algebras m of Lower Dimension. In this paragraph,
following a short passage from Cartan’s paper [C1], let us classify FGLAs m =

⊕−µ
p=−1 gp

such that dim m 5 5, which gives us the first invariants towards the classification of
regular differential system (M,D) such that dim M 5 5.

In the case dim m = 1 or 2, m = g−1 should be abelian. To discuss the case dim m = 3,
we further assume that g−1 is nondegenerate, i.e., [X, g−1] = 0 implies X = 0 for X ∈ g−1.
This condition is equivalent to say Ch (D) = {0} for regular differential system (M,D)
of type m. When g−1 is degenerate, Ch (D) is non-trivial, hence at least locally, (M,D)
induces a regular differential system (X,D∗) on the lower dimensional space X, where
X = M/Ch (D) is the leaf space of the foliation on M defined by Ch (D) and D∗ is the
differential system on X such that D = p−1

∗ (D∗). Here p : M → X = M/Ch (D) is the
projection. Moreover, for the following discussion, we first observe that the dimension of
g−2 does not exceed

(
m
2

)
, where m = dim g−1.

In the case dim m = 3, we have µ 5 2. When µ = 2, m = g−2 ⊕ g−1 is the contact
gradation, i.e., dim g−2 = 1 and g−1 is nondegenerate. In the case dim m = 4, we see
that g−1 is degenerate when µ 5 2. When µ = 3, we have dim g−3 = dim g−2 = 1 and
dim g−1 = 2. Moreover it follows that m is isomorphic with c2(1) in this case. In the case
dim m = 5, we have dim g−1 = 4, 3 or 2. When dim g−1 = 4, m = g−2 ⊕ g−1 is the contact
gradation. When dim g−1 = 3, g−1 is degenerate if dim g−2 = 1, which implies that µ = 2
and dim g−2 = 2 in this case. Moreover, when µ = 2, it follows that m is isomorphic
with c1(1, 2). When dim g−1 = 2, we have dim g−2 = 1 and µ = 3 or 4. Moreover, when
µ = 4, it follows that m is isomorphic with c3(1), where c3(1) is the symbol algebra of the
canonical system on the third order jet spaces for 1 unknown function (cf. §3 [Y1]).

Summarizing the above discussion, we obtain the following classification of the FGLAs
m =

⊕−µ
p=−1 gp such that dim m 5 5 and g−1 is nondegenerate.

(1) dim m = 3 =⇒ µ = 2

m = g−2 ⊕ g−1
∼= c1(1) : contact gradation

(2) dim m = 4 =⇒ µ = 3

m = g−3 ⊕ g−2 ⊕ g−1
∼= c2(1)

(3) dim m = 5, then µ 5 4

(a) µ = 4 m = g−4 ⊕ g−3 ⊕ g−2 ⊕ g−1
∼= c3(1)

(b) µ = 3 m = g−3 ⊕ g−2 ⊕ g−1

such that dim g−3 = dim g−1 = 2 and dim g−2 = 1

(c) µ = 2 m = g−2 ⊕ g−1
∼= c1(1, 2)

(d) µ = 2 m = g−2 ⊕ g−1
∼= c1(2) : contact gradation

A notable and rather misleading fact is that, once the dimensions of gp are fixed, the

Lie algebra structure of m =
⊕−µ

p=−1 gp is unique in the above classification list. Moreover,

except for the cases (b) and (c), every regular differential system (M,D) of type m in the
above list is isomorphic with the standard differential system (M(m), Dm) of type m by
Darboux’s theorem (cf. Corollary 6.6 [Y1]). The first non-trivial situation that cannot
be analyzed on the basis of Darboux’s theorem occurs in the cases (b) and (c) (see [C1],
[St]). Regular differential systems of type (b) and (c) are mutually closely related to each
other (cf. [Y6, §6.3] and [C1]). We encountered with the type (b) fundamental graded Lie

22



algebra as the case (1) of §5.1. in connection with the root space decomposition of the
exceptional simple Lie algebra G2.

As for the diferential system of type (b) above, the following differential system (X,E)
on X = R5 was constructed by E. Cartan [C1];

E = {ω1 = ω2 = ω3 = 0 },
where 

ω1 = dx1 + (x3 + 1
2
x4x5) dx4,

ω2 = dx2 + (x3 − 1
2
x4x5) dx5,

ω3 = dx3 + 1
2
(x4 dx5 − x5 dx4),

and (x1, x2, x3, x4, x5) is a coordinate system of X = R5. We have

(5.1)


dω1 = ω3 ∧ ω4,

dω2 = ω3 ∧ ω5,

dω3 = ω4 ∧ ω5,

where ω4 = dx4 and ω5 = dx5. In this case we may calculate symbol algebras of (X,E)
as follows. We take a dual basis {X1, . . . , X5} of vector fields on X to a basis of 1-forms
{ω1, . . . , ω5} given above;

X1 =
∂

∂x1

, X2 =
∂

∂x2

, X3 =
∂

∂x3

,

X4 =
∂

∂x4

+
1

2
x5

∂

∂x3

− (x3 +
1

2
x4x5)

∂

∂x1

,

X5 =
∂

∂x5

− 1

2
x4

∂

∂x3

− (x3 −
1

2
x4x5)

∂

∂x2

.

Then we calculate, or from (5.1),

[X5, X4] = X3, [X5, X3] = X2, [X4, X3] = X1,

and [Xi, Xj] = 0 otherwise. This implies that E−2 = {ω1 = ω2 = 0 }, E−3 = T (X) and
that (X,E) is isomorphic with the standard differential system of type m5, where

m5 = g−3 ⊕ g−2 ⊕ g−1

is the fundamental graded algebra of third kind, whose Maurer-Cartan equation is given
by (5.1). Here we note that the Lie algebra structure of m5 is uniquely determined by
the requirement that m is fundamental, dim g−3 = dim g−1 = 2 and dim g−2 = 1 (cf.
[C1], [T2]). In fact m5 is the universal fundamental graded algebra of third kind with
dim g−1 = 2 (see [T2, §3]).

5.3. G2-Geometry. Let (Jg, Cg) be the Standard contact manifold of type G2, i.e.,
R-space corresponding to (G2, {α2}). If we lift the action of the exceptional group G2 to
L(Jg), then we have the following orbit decomposition:

L(Jg) = O ∪ R1 ∪ R2,

where O is the open orbit and Ri is the orbit of codimension i. Here R1 and R2 can
be considered as the global model of (B) and (A) respectively. Moreover R2 is compact
and is a R-space corresponding to (G2, {α1, α2}). From this fact, it becomes possible
to describe the PD-manifold (R; D1, D2) corresponding to (A) in terms of the R-space
corresponding to (G2, {α1, α2}). In fact R2 has double fibrations onto Jg (corresponding

to (G2, {α2})) and onto X̃ (corresponding to (G2, {α1})).
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Now, utilizing the Reduction Theorem (Theorem 3.3), we will construct the model
equation (A) from the standard differential system (X,E) in §5.2, which is the local model
corresponding to (G2, {α1}). In fact (R; D1, D2) is constructed as follows; R = R(X) is
the collection of hyperplanes v in each tangent space Tx(X) at x ∈ X which contains the
fibre ∂E(x) of the derived system ∂E of E.

R(X) =
⋃
x∈X

Rx ⊂ J(X, 4),

Rx = {v ∈ Gr(Tx(X), 4) | v ⊃ ∂E(x)} ∼= P1,

Moreover D1 is the canonical system obtained by the Grassmaniann construction and D2

is the lift of E. Precisely, D1 and D2 are given by

D1(v) = ν−1
∗ (v) ⊃ D2(v) = ν−1

∗ (E(x)),

for each v ∈ R(X) and x = ν(v), where ν : R(X) → X is the projection.
We introduce a fibre coordinate λ by $ = ω1 + λω2, where

D1 = {$ = 0 } and ∂E = {ω1 = ω2 = 0}.

Here (x1, . . . , x5, λ) constitutes a coordinate system on R(X). Then we have

d$ = ω3 ∧ (ω4 + λω5) + dλ ∧ ω2,

Ch (D1) = { $ = ω2 = ω3 = ω4 + λω5 = dλ = 0 },
D2 = { $ = ω2 = ω3 = 0 } and ∂D2 = { $ = ω2 = 0 }.

Hence (R(X); D1, D2) is a PD-manifold of second order. Now we calculate

$ = ω1 + λω2

= dx1 + λ dx2 + (x3 +
1

2
x4x5)dx4 + λ (x3 −

1

2
x4x5)dx5

= d(x1 + λx2) − x2dλ + (x3 +
1

2
x4x5)(dx4 + λ dx5) − λx4x5dx5

= d(x1 + λx2) − {x2 + x5(x3 +
1

2
x4x5)}dλ + (x3 +

1

2
x4x5)d(x4 + λx5) − λx4x5dx5.

Moreover we have

λx4x5dx5 =
1

2
λx4dx2

5 =
1

2
{d(λx4x

2
5) − x4x

2
5dλ − λx2

5dx4 }

=
1

2
{d(λx4x

2
5) − x4x

2
5dλ − λx2

5d(x4 + λx5) + λx2
5d(λx5) }

=
1

2
{d(λx4x

2
5) + (λx3

5 − x4x
2
5)dλ − λx2

5d(x4 + λx5) + λ2 x2
5dx5 }

=
1

2
{d(λx4x

2
5 +

1

3
λ2x3

5) − (
2

3
λx3

5 − λ x3
5 + x4x

2
5)dλ − λx2

5d(x4 + λ x5) }.

Thus we obtain

$ = d(x1+λ x2−
1

2
λx4x

2
5−

1

6
λ2 x3

5)−(x2+x3x5+
1

6
λx3

5)dλ+(x3+
1

2
x4x5+

1

2
λx2

5)d(x4+λx5).
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We put 

z = x1 + λx2 −
1

2
λx4x

2
5 −

1

6
λ2 x3

5,

x = λ,

y = x4 + λx5,

p = x2 + x3x5 +
1

6
λx3

5,

q = −(x3 +
1

2
x4x5 +

1

2
λx2

5).

Then

D1 = { dz − p dx − q dy = 0 },
and (x, y, z, p, q) constitutes a canonical coordinate system on J = R(X)/Ch (D1). Putting
x5 = a, we solve

x4 = y − xa,

x3 = −q − 1

2
(y − xa)a − 1

2
xa2 = −q − 1

2
ya,

x2 = p + qa +
1

2
ya2 − 1

6
xa3,

x1 = z − x(p + qa +
1

2
ya2 − 1

6
xa3) +

1

2
x(y − xa)a2 +

1

6
x2a3,

= z − xp − xqa − 1

6
x2a3.

Then, from x4x5 = ya − xa2,

x3 −
1

2
x4x5 = −q − 1

2
ya − 1

2
(y − xa)a = −q − ya +

1

2
xa2,

we calculate

ω3 = −d(q + ya − 1

2
xa2) + (y − xa)da = −dq +

1

2
a2dx − ady,

ω2 = d(p + qa +
1

2
ya2 − 1

6
xa3) − (q + ya − 1

2
xa2)da = dp + adq +

1

2
a2dy − 1

6
a3dx

= a(dq − 1

2
a2dx + ady) + dp +

1

3
a3dx − 1

2
a2dy

= dp +
1

3
a3dx − 1

2
a2dy − aω3.

Putting a = −t, we obtain

D2 = {$ = ω̂2 = ω̂3 = 0},
where

$ = dz − pdx − qdy, ω̂2 = dp − 1

3
t3dx − 1

2
t2dy, ω̂3 = dq − 1

2
t2dx − tdy.

This implies

R(X) = { r =
1

3
t3, s =

1

2
t2 } ⊂ L(J),

in terms of the canonical coordinate (x, y, z, p, q, r, s, t) of L(J).
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ordre, Ann. Ec. Normale 27 (1910), 109–192.
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