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EQUIVALENCE PROBLEMS 

IN PROJECTIVE DIFFERENTIAL GEOMETRY 


BY 


KICHOON YANG 


ABSTRACT.Equivalence problems for abstract, and induced, projective structures are 
investigated. (i) The notion of induced projective structures on submanifolds of a 
projective space is rigorously defined. (ii) Equivalence problems for such structures 
are discussed; in particular, it is shown that nonplanar surfaces in R p 3  are all 
projectively equivalent to each other. (iii) The imbedding problem of abstract 
projective structures is studied; in particular, we show that every abstract projective 
structure on a 2-manifold arises as an induced structure on an arbitrary nonplanar 
surface in R  P 3 ;  this result should be contrasted to that of Chern (see [6]). 

Introduction. In [6] Chern showed that any projective connection (a Cartan 
connection) on an n-manifold can be imbedded in RPN,  with N = n(n + 1)/2 + 
[n/2], in that the given projective connection is realized as a restriction of the 
Maurer-Cartan form of PGL(N + 1; R), the group of projective transformations. 
Consequently, any (abstract) projective structure on an n-manifold arises as an 
induced projective structure on a submanifold of R P N .  We observe that the 
dimension N is larger than the one obtained for Remannian geometry by Schlafli, 
Cartan and Janet. 

Our purpose is to lay a rigorous foundation for the theory of induced projective 
structures and (extrinsic) equivalence problems arising from it. In particular, we 
show that the minimal dimensions required to imbed abstract projective structures 
are considerably smaller than those required to imbed projective connections. 

This paper is organized as follows: 
51 defines the notions of abstract projective structures and their equivalences and 

introduces local expressions and notation. 
52 contains a brief exposition on constructing higher order moving frames. In 

particular, we give a characterization of second order type surfaces in R p 3  (Theorem 
2.11). 

In 553 and 4 we give a rigorous definition of induced projective structures and 
prove some theorems on extrinsic equivalences. In particular, we show that generic 
hypersurfaces in R P n  are all extrinsically equivalent to each other (in the sense of 
Theorem 4.14) if and only if n G 3. 

In 55 we study the problem of imbedding a given abstract projective structure. We 
prove, in particular, that any abstract structure on a 2-manifold can be imbedded 
into R p3(Theorem 5.2). 
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We shall work within the category of smooth maps and objects, except in $84 and 
5 ,  where we apply Cartan-Kahler theory, in which case we must assume real 
analyticity. (Such assumptions will be explicitly made.) 

The following index convention will be used throughout: 
1 G a,P,y,.. .  G n ;  

1 G I ,  j ,  k ,. . . G p ;  

p + l G a , b , c  , . . .  G n .  

The author would like to express deep gratitude to Gary Jensen, under whose 
direction this paper was prepared, for his constant support during the preparation of 
this paper. 

1. Abstract projective structures. In this section, following the expositions of 
Ehresmann, Kobayashi and Nagano, we explain the notions of abstract projective 
structures and their equivalences (see [Ill). Though there are other approaches (e.g., 
covariant differentiations in projective tangent bundles), this one provides a unifying 
language which enables us to consider equivalence problems in general. 

R P" is the real projective space of dimension n which we realize as Rnf '"/R*, 
where Wf  ' *  is the set of all nonzero vectors in R"+' and R* is the group of nonzero 
real numbers. For a vector in R"+'*, we denote its equivalence class in R P "  by [ 1. 
Let En, t ' ,. . .,E n  be the homogeneous coordinate system in R P ". Then x" = ("/En, 
a = 1,2,. ..,n, defines the inhomogeneous coordinate system around '[1,0,. . . ,0] 
which we call ,the origin of R P". 

PGL(n + 1;R), the group of projective transformations, is GL(n + 1;R) modulo 
its center. Once again we use [ ] to denote the equivalence classes. Let %, be R",and 
:!,* its dual; so an element of L9R, will be a column vector and an element of L%,* a 
row vector. Then the Lie algebra 0 g l(n + 1; R) of PGL(n + 1; R) is the vector 
space direct sum 0 g l(n + 1; R) = ?R, @ g I(n; R) CE bX,*with the bracket opera- 
tion: 

[ w , z]  = [w*, z*] = 0, [w*, W] = w*W, [W,II.]= ww, 

[W, z ]  = wz- ZW, [w,w*] = ww* + w*wI1,, 

where w, z E a,,w*, z* E %,*,and W, Z E gl(n; R). If 

( x ~ A  ) O s A . B G n  E GL(n + 1;R) 

with X: # 0, then set a"  = X,"/X;, a; = x ; / x : ,  and up = xj/xff, where 1 G a, 

/3 < n. We shall take (a", a;, a,) as a local coordinate system in the neighborhood 
of the identity of 	 PGL(n + 1; R) defined by x: # 0. Let (Q", Q.2;;, a,) be the 
Maurer-Cartan form of PGL(n + 1; R). It is b?K, CE gl(n; R) @ L%,*-valued and 
components are the left invariant 1-forms on PGL(n + 1; R) which coincide with 
duo, da;, dap at the identity. We record the structure equations: 

(1.1) 	 dQ" = -a; A QY, 

dQ," = -Q; A QJ - $2" A Q, + 6,*aYr\ Qy, 

dQ, = -Qy A QJ. 

The standard action of GL(n + 1;R) on R" ' induces the action of PGL(n + 1;R)+ 

on RP".  If (a", a;, a,) E PGL(n -C 1;R), then the action is given, in terms of the 
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inhomogeneous coordinate system, by the following linear fractional transformation: 

( I.2] (x") H ( a a  + ay"xy)/ ( I  + a y x y ) .  

The action is transitive and the isotropy subgroup at the origin is 

i.e., (a") - 0. If we let 6; = a; - aaaB, then (1.2) can be written as 

(1.3) (x") H a" + BixB - 4(6;ay + B;aB)xBxy+ higher order terms. 

Let Q(RPn)  denote the principal bundle of quadratic frames over R P "  (i.e., the 
bundle of 2-jets of local diffeomorphisms (Rn, 0) - R P n ) .  Let (dm, d;, d;,) be the 
natural local coordinate system in Q(RPn)  arising from the inhomogeneous coordi- 
nate system in RP" .  Restricting to (6") -- 0, we obtain the coordinate system on the 
structure group (denoted ~ ~ ( n ) ) ,  The right action of which we write as (&, @,). 
G2(n)  is given by 

(cia, ci;, dl;,)(&, G;,) = (d", d,"b;", qi;, + &,",t;;6;). 

Similarly, we introduce a coordinate system (do, cip") in L (RPn) ,  the bundle of linear 
frames, so that the natural projection Q(RPn)  - L ( R P n )  is given by 

(d", dpa, dpa,) - (d", dl;). 

If we let E, and E! be the basis for a(n; R) - Rn CE g l(n; R), given by E, = a/ada 
and E! = a/acil;, then the cannonical form of Q(RPn),  0,has the local expression 

where 

= (2- ') ;  diii - (d-');"fia(d-')f 8 ' .  

It follows that dB" = -8," A BY. 
Observe that the above description is general in that one can replace R P n  and the 

inhomogeneous coordinate system by an n-dimensional manifold M and a local 
coordinate system in it. For details of the properties of Q(M)  and 0,we refer to [lo, 
Chapter VI, 551. 

We now recall (1.3) and write the local expression for the obvious bundle 
imbedding I:PGL(n + 1; R) - Q(RPn):  

(1.4) (a".  a;, up) H (a",  ci;, - (ci;ay f- &;ap)). 

Note that at the structure group level 4; = a;, and restricting to (a") - 0, we obtain 
a faithful representation of Go into G2(n). From now on we use (a", Bp", up) as the 
standard coordinates on PGL(n + 1 ;  R), and by abusing notation, we drop the . 

6; 
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We remark that the crucial difference between Riemannian geometry and projective 
geometry is due to the fact that the Euclidian group E(n) is naturally a subbundle of 
L(R"), whereas PGL(n + 1; R) is a subbundle of Q(RPn).  

Let M be a manifold of dimension n. Then an (abstract) projective structure P 
over M is defined to be a Go-principal subbundle of Q(M)  with the group 
imbedding coming from (1.4). 

DEFINITION1.5. Let P and P b e  projective structures over M. We say that P and P 
are equivalent to each other if there exists a fibre-preserving diffeomorphism J :  
P - Psuch that 

(i) J*O b = O I p ,  and 
(ii) J induces identity on M. 
The above definition can be slightly generalized. Suppose we have projective 

structures P over M and P over M,another manifold of dimension n. Then we say 

phism J :  P - P such that J*O b
that P and P a r e  equivalent to each other if there exists a fibre-preserving diffeomor- 

Let j be the diffeomorphism M - M 1,. O= 

induced by J .  Then replacing M by j ( M )  we obtain Definition 1.5. 

2. Moving frames on submanifolds of RP".  In this section we construct (higher 
order) moving frames on submanifolds of R P "  following Cartan (see [I  and 21). For 
a description of the general theory dealing with the problems of higher order 
contacts and frames of submanifolds of homogeneous spaces, we refer to [S]. 

Let f :  SP R P "  be a p-dimensional submanifold given locally as a graph-+ 

(x ' )  H (XI,f '(x)), where x = (x') ,  1 < i < p,  and p + 1 G a G n. Let h = .rr 0 I :  
PGL(n + 1; R) -, Q(RPn)  - L(RPn) ,  i.e., h(aa, a;, ap)  = (aa ,  a;) - (aa ,  ea). 

Let Lo = f -'PGL(n + 1; R) be the pull-back bundle over S :  

Lo - PGL(n + 1; R) 

.1 .1 
f 


S R P "-+ 

Lo is a Go-principal bundle, and a section a called a zeroth order moving frame field 
along f. Suppose we have a zeroth order moving frame field u: S - Lo. This gives a 
local representation of the derivative map 

Consider u,: S Lo given by -+ 
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Then 

Hence u, normalizes df in the sense that 

where (+I = u,*8')is a cofranie field on S.  (We obtained so-called "first order 
normal form".) 

Suppose we have another zeroth order moving frame field u: S - Lo. Then 
u = uo . g, where g: S -+ Go is some smooth map. Consider the group action of Go 
on vRo= R" defined by the equation u*(nti)= ( u ,  . g)*(Q0).Using the fact that 

we compute: if g = (a;, u p )  = ( A ,  aB)  E Go, and u E Rn, then the action is given 

by 

(2.5) v H A V .  
The isotropy group for this action is 

( a ; )  E G L ( p ;  R) ,  

: ' (a , )  E R p ,  ' (7 , )  t RnPp,.  

( " & )  E Rpx(npp), ( b i )  E G u n  - P; R)  

DEFINITION2.6. The bundle of first order moving frames of f  is L ,  = { u ,  . GI) ,  
where u, is given by (2.2).Any section u: S - L ,  is called a first order moving frame 
field along f .  We emphasize that any first order moving frame field normalizes df in 
the sense defined by (2.3). 

On L,,  Qu = 0 for p + 1 G a G n.  Differentiating both sides of the equation and 
using the structure equation, we obtain 

np A Q' = 0.  

By Cartan's lemma it follows that 

where A,", = A;, are functions on L , .  
Though the technique in what follows is quite general, we restrict ourselves to the 

case of surfaces in RP3 from now on to ease computational difficulties and to 
simplify exposition. Then (2.7)becomes 

8:  = A I l Q 1+ A,,L?~ and 8:  = A,,O' + A2,G2. 

Let 



Then we have a vector space direct sum decomposition y ,, = 0,a -?7c ,, where q,  

and g , are Lie algebras of Go and GI ,  respectively, and ":Ti,= span{E,, E,). We 
write (3:) = 3: 8 E, a 3; 8 E, = L%,-component of 9 .  

Fix a first order moving frame field fi: S - L, .  Write ti*9: = i,,tfi*9h for some 
functions 2,, on S.  Suppose u: S - L ,  is given by u = li . g for a smooth map g: 
S - G,.  Let x,, be functions so that u*Q,? = xJku*Qh.We will compute the action of 
G ,  on (.?,, ). Observe that 

(2.8) u * ( p a )  B (q))= ( o  g ) * ( ( a a )a (a;)) 

Some matrix multiplications show that 

(2.9) x = g ( x )  = b - l t ~ i ~ .  

where 

There are four orbits of this action represented by 

' 0  1O O I O '  01 and o /i o  0 i 7  l o  0 1 '  l o  I 

Assuming f is of constant orbit type, we call the first orbit type degenerate type, and 
the rest are called parabolic type, elliptic type and hyperbolic type, respectively. 

Supposef is of degenerate type. Then the isotropy subgroup G, of the action (2.9) 
is G,  itself, and L ,  is the bundle of Frenet frames. On L, ,  3' = 9: = 9: = 0. 
Consider the involutive left-invariant distribution on PGL(4; R) defined by the 
exterior differential system {a3= 3; = 3: = 0). The analytic subgroup of PGL(4; R) 
corresponding to this distribution is 

Hencef(s) H/G, n H - R p 2  
We characterize the remaining (constant) type surfaces by the following theorem. 

THEOREM2.11. Let (x', x2, f(x)) be a surface in R p 3 ,  and let 

A,(.> = a2f (~>/ax lax l .  

Then : 
(i) f E parabolic type if and only if rank(f,,) - 1; 

(ii)f E elliptic type if and only ifrank(f,,) - 2 and det(J;,) > 0: and 
(iii) f E hjyerbolic type if and only if rank( f , ,  ) -- 2 and det( J;,) < 0. 
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PROOF.Let 

wherei(x) = af ( x ) / a x f .Then 

where h , ( x )  = f ,(x)xk - f ( x ) .  We compute the following: 

(2.12) ui3 '  = (u,'du,); = dx ' ,  

so ~ $ 2 :  ==fJkuZ;Qh.Comparing this expression with that immediately preceding 
(2.8),the rest follows. 

Some obvious examples of parabolic, elliptic and hyperbolic type surfaces are 
given by f ( x l ,  x 2 )  = ( x ' ) ~ ,f ( x l ,  x 2 )  = ( x ' ) ~+ ( x ~ ) ~ ,and f ( x l ,  x 2 )  = XI)^ -
( x ~ ) ~ ,respectively. To obtain Frenet frames we need to construct fourth order 
moving frames in general. However, for the rest of this paper what we have so far is 
sufficient. 

3. Induced projective structures. In contrast to kemannian geometry, given a 
submanifold in RPn there are, in general, not one but many distinct induced 
projective structures on it. Roughly spealung, a choice of normal framing determines 
an induced structure. In this section we describe the totality of such structures. 

Let f :  SP + R P" be a p-dimensional submanifold given locally as a graph as in 92. 
Recall that the bundle of first order moving frames of f is L ,  = { u ,  + G I )  (see 
Definition 2.6): 

Let 

be a subgroup of G I  and 
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be a normal subgroup of G I .  Then G I  = H . N ,  a semidirect product, and we 
identify G , / N  with H. Observe that H is isomorphic to the projective isotropy 
group. 

Consider the quotient space L l / N .  Because N is a normal subgroup of G I ,  it 
follows from the general theory of principal bundles that L , / N  - S is a principal 
G , / N  = H bundle. Furthermore, since H is isomorphic to the projective isotropy 
group of RPP, this bundle L , / N  - S is a candidate for defining a projective 
structure on S ,  provided there is some natural way to imbed the bundle L , / N  - S 
into Q ( S )  - S .  As a first step in this process we construct a natural imbedding of 
L , / N  - S into L ,  - S such that the map L l / N  + L,  is a section of the principal 
N-bundle L ,  - L , / N .  Each such imbedding will be constructed from a "normal 
frame field". 

As a local coordinate system in L , / N  we use the restriction of the coordinates 
(a" ,  a;, a p )on PGL(n + 1; R) and we call them (b ' ,  by, b,). Then the right action of 
H is given locally by 

( b ' ,  bj, b J ) ( h ; ,h,) = ( a i .  b;h;,  h, + b k h f ) .  

where ( h i ,  h,) E H .  
We fix the following sections: 

(3.3) yo: S - L l / N ,  where y o ( x )  = ( X I .  6;. 0);  

Observe that 10 q, = u,. 
The following two lemmas are straightforward. 

LEMMA3.4. Any section i: L l / N  - L ,  is given by i = 1. i j  for some map i j :  
L , / N  + N .  

PROOF.The structure group of L ,  - L , / N  is N. 

LEMMA3.5. Any map 11: S + N determines a map i j :  L l / N  - N such that 

i j  90 = 11. 

PROOF.Put i j  0 q o ( x )= ~ ( x )for every x E S.  This defines fj at one point of each 
fibre of L , / N  + S.  To extend i j  along the fibre through q,(x),  put i j (qo(x ). h )  = 
h-' . q ( x )  . h for h E H. 

We now have the following proposition. 

PROPOSITION3.6. Any map 7 :  S -,N determines a bundle map section i,: L , / N  -
L ,  by 1 ,  = 1 . 7j . i j ,  where i j  is given by Lemma 3.5. 
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PROOF.i , (q) = $ q )  . jj(q), for q E L l / N ,  defines a map L l / N  - L, .  Clearly this 
is a section. For q E L , / N  choose x E S and h o  E H so that q = q,(x)  . h,. Then 

i , ( q e  h )  = i ^ (q .h )  . fj ( q 0 ( x ). h o  . h )  

= [ ( q )  . h . ( h ,  . h ) - '  . q ( x )  . ( h ,  . h )  

= L(q) . hi '  . q ( x )  . hO. h = i ( q )  . j j  . ( q 0 ( x )  h O ). h = i , ( q )  . h .  

Thus i ,  is a bundle map, where the group map is given by the inclusion. 
The following lemma is technically important. 

LEMMA3.7. Any first order moving frame field u: S + L ,  can be written as 
u = i ,  0 q for some q:  S -,N and q: S + L l / N .  

PROOF.We can write u = u ,  . g, where g: S - G I  a smooth map. Now, G I  = 
H . N ,  and N is normal in G I .Thus there exist smooth maps h:  S + H and q:  S - N 
so that q . h = g. Let q = q, . h.  Then 

We now write some explicit local expressions for the case p = 2 and n = 3, i.e., 
surfaces in Rp3 .  Let q:  S - N be given by 

Then i,: L , / N  + L ,  is given by 

(3.8) ( X I ,  hi, b,) r ( a a 0i, ,o; 0 i , ,aB 0 i , ) ,  

where 

a z o i , = f k q k + b ,  a , o i , = b ,  and a , ~ i , = qo 

In terms of matrices, 

Observe that i,( L , / N )  c L , .  We also have the following computations: 

i,*q = (b-l);b,dxk + ( b - I ) ;  db,! - (q ' /b)(b- ' ) ;b ,kdfk+~,'b,(b-I):d x k ,  

i,*Qj = b-lb!dfl. 

Observe that in the above expressions q0 does not appear. 
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Going back to the general case, we let f - ' Q ( R P " )  be the pull-back bundle. Then 
there is a natural imbedding L ,  - f - ' Q ( R P n ) :  

Given i,: L , / N  - L , ,  define I,: L , / N  - f - ' Q ( R P " )  by the following commutative 
diagram: 

We then have the following propositions. 

PROPOSITION3.10. (i) 

'TO1b - l Q ( R p r . ~= i ; (Q1,9)l L , 
where O' = ( 8 ' ,  8,') = RP @ y l ( p ;  R)-component ofthe canonical form O of Q ( R P U ) ,  
and 

(ii) 

I ~ @ O ~ - I Q ( R P , , )0 forp + 1 G a G n .= 

PROPOSITION Q ( S )3.1 1. There is a naturally defined bundle imbedding 0,: L l / N  -
with the group map H - G 2 ( P )  given by ( h i ,  h,) H (h:,  -(h:h, + h',hJ))  so that 

@;OQ(S)= I;@' b - ~ ~ ( ~ ~ , j )9 

where OQ(s,  is the canonical form of Q ( S ) .  If p = 2 and n = 3, 0, is given explicitly 
by 

% ( x i ,  b;, b,) = ( x i .  hi,- (byb, + bib,) + (q'/b)l;,l,,b;'b"j. 

We end this section with the definition. 
DEFINITION3.12. An induced projective structure on f is a pair ( L , / N ,  I,). 

4. Equivalence problems for submanifolds in RP" .  In this section we derive 
exterior differential systems for extrinsic equivalences. We give the result for some 
special cases; the detailed computations dealing with general cases will appear in a 
forthcoming paper. 

Let f ,  f:SP + R P "  be two submanifolds and T J ,i j :  S - N maps as before. 

DEFINITION
4.1. f and f are (projectively) equivalent to each other with respect to 

the pair ( T J ,q ) if the projective structures ( L l / N ,  I,) and (L , /N ,I,-)are equivalent 
as in Definition 1.5. 

Suppose f and f are projectively equivalent w.r.t. ( 7 ,  17). Then given any section q: 
S - L , / N ,  there exists a corresponding section q: S - L,/N defined by q: J 0 q, 
and we have, by Proposition 3.10 and the fact that J gives a bundle equivalence, 
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where i, is given by Proposition 3.6: 

The following lemma is technically important. 

LEMMA4.3, f and f are equivalent to each other w.r.t. (TJ,i j )  if and only if there 
exists a smooth map h: S - H such that 

where go is the zero section so that u, = f 0  q, (see (3.3)). 

PROOF.Necessity follows from (4.2). To prove the converse, let a '  = i;3' I L 1 ,  
a; = i:Q; I L 1  and similarly for barred quantities. We then assume there is a map h: 
S - H such that 

(4.5) q;(ai, a;) = (qO. h)* (z1 ,z;). 

Define a fibre-preserving diffeomorphism J :  L l / N  + L,/N so that J go = qo . h. 
(This can always be done locally since L l / N  and L,/N are isomorphic bundles.) 
Since (a')and (G') vanish on vertical vectors and J is fibre-preserving, it follows 
that J*(Sji) - ( a ' )  also vanish on vertical vectors. That is, J*(G1)- ( a ' )  are linear 
combinations of (ai) .  Then by (4.5) they must in fact be 0 since q,*(al) form a 
coframe field on S. Differentiate both sides of the equations J*(G1)- ( a ' )  = 0 and 
obtain 

By Cartan's lemma (of - J*G;) must be linear combinations of (a ' ) .  But 

and observing once again that q,*(al) form a coframe field on S, the proof is 
complete. 

We now characterize the so-called normal projective connection as a preserved 
quantity under equivalence. We do thls for the case where p = 2 and n = 3, the 
general case being similar. Let f ,  f :S + R p3be surfaces. We then have 

LEMMA4.7. Let i,: L l / N  -,L ,  be any bundle map section defined by Proposition 
3.6. Then 

i:Q,4 I L E span(i:al I,, i;Q2 I , , ] ,  
where 0 < A  < 3. 

PROOF.The structure groups for L, /N and L ,  are H and G = H . N, respectively. 
We observe that the map i, restricted to the group H i s  the identity, and i,(q . h) -
i,(q) . h for every q E L, /N and h E H. The rest is easy. 



330 KICHOON YANG 

THEOREM4.8 (NORMALPROJECTIVE CONNECTION).Let ( L , / N ,  I,) be an lnduced 
projective structure on f.Also let ( Z , / N ,4)be any ~ndutedprojective structure on f 
equivalent to ( L, / N ,  I,). Then ( a ' ,  wJ) and (GI,G;) (notatron from (4.5)) can be 
unlquely enlarged to Cartan connections ( a ' ,  wj, GJ) and (GI,GJ,g J )  such that-* -I -' L 
q ( w  , w,, (35) = q*(wl,w;, GI)for every ( q ,  q )  as rn (4.2). 

PROOF.From (4.2) it follows that the exterior differential system {a '  = GI, 
w! = G!, i. j = 1:2 )  on L , / N  X E , / N  has solutions of the form ( q ,  q):  S - L , / N

J - J 

X L , / N .  Using the previous lemma, we let i,*($2; A $2;) I,, = -K,'ol A w2 and 
similarly for barred quantities, where K: and EJ are functions on L , / N  and Z , / N ,  
respectively. We close the system and write the quadratic equations modulo the 
system. 

(4 .9)  w1 A ( a 2- G 2 )- ( K ;  - K;)wl  A ' J 2  = 0 ,  

w2 A ( ' d l  - G I )- ( K ?  - K ; ) w l  A w2 = 0 ,  

where w, = i,*QJI L , ,  etc. 
We have two unknowns, w ,  - G I  and w2 - G2, and four equations. Hence the 

system is not in involution. We let 

and similarly for barred quantities. 
Then (4.9) becomes 

By Cartan's lemma it follows that we must prolong the system by adding equations 
- 6, = 0, j = 1,2. That is to say, q*(GJ)= y*(6,) for every solution ( q ,  q):  

S - L , / N  X Z, /N  of the system. 
Observe that (4.10) gives the explicit expression for the normal projective connec-

tion induced by q. The following remark is crucial. 
REMARK4.12. The %,*-component of the normal projective connection associated 

to an induced projective structure does not, in general, arise as a restriction of the 
Maurer-Cartan form. 

Recall that i f f :  S - R P 3  is of degenerate type (i.e., planar type), then df,  = 0.  
From (3.9) it follows that i,*(Q1,$2;) I,, are independent of the choices of normal 
vector fields. The following theorem is immediate. 

THEOREM4.13. Iff:S -+ R P 3  is planar, then the only induced projective structure 
one obtains is the flat projective structure. Furthermore, the normal projective connec-
tion is given by i^*(Q1,QJ ,Q,) 

We will now show that all nondegenerate surfaces are projectively equivalent to 
each other in the sense that, up to equivalence, the totality of induced structures does 
not depend on the particular imbedding of S into R P ~ .  
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THEOREM4.14 (EXTRINSICEQUIVALENCE).  Let f ,  f: S - R p 3  be nonplanar real 
analytic surfaces and q: S - N a normal vector field on f. Then there always exists 
i j (q ) :  S N ,  a normal vector field on f so that f and f are projectioely equioalent to 
each other w.r.t. ( q ,  7 ) .  

PROOF.Let u, = i, o q,,: S -,L , ,  and u,*(Qa,Q i ,  Q p )I L ,  = (+", +;. qbp). Then +3 = 
0 ,  and +I ,  +2 form a coframe field on S.  We let (a;,) and ( a p k )be functions on S 
such that +; = and Qp = alck+k.Let ( a " ,  a;, a p )If, = (aa ,o;, uB)and recall 
from (2.7) that o: = xu'  + yo2 and o; = y o 1  + zo2 ,  where x, y ,  z are functions on -
L 1. 

Consider the exterior differential system on S X El ,  

with specified independent variables +' and (p2.  We close the system and obtain 
(writing equations modulo Z), 

(4.16) +' A ( + Z  - 0 2 )+ 9: A 9; - o\ A wi -- 0 ,  

A - ' d l )  + +; A +; - '4: A 0: -- 0 ,+ ( 

2 4  A (+ ,  - o , )+ +2 A (+2  - 02)+ +\ A+: - 0: A - -0 ,  

+' A ( + ,  - w , )  + 2+2A (+2 - 02)++;A+;  - oW:A(3: - -0 ,  

i.e., the quadratic equations are 

@' A a;+ w\ A (y+' + ~ $ 2 )-- ( a 2 2+ a!,,ai2 - a!,,a;,)@' A +2, 

+2 A ol  + W: A (x+' +~ 9 ~ )=(-a , ,  + a:,a;, - ai2a:,)+' A +2, 

We compute the reduced polar matrix w.r.t. unknowns o, ,02,w: and w:. 

The determinant, a symmetric 4-tensor, is 

Hence, the reduced polar matrix has rank 4, which is the same as the number of 
independent quadratic equations. By Cartan's involutivity criteria, it follows that the 
system Z is in involution. That is to say, there exists E: S -,El such that 

i * ( o i ,Q J )li, = u,*(Q1,Q;)  I L , .  
From Lemma 3.7 there exist maps i j :  S + N and q: S -.L,/N so that E = i ,  0 q. By 
Lemma 4.3 this means f and f are projectively equivalent to each other w.r.t. ( q ,7). 
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We now consider hypersurfaces in RP". Let f ,  f :  Sup '- RP" be hypersurfaces 
in RP" locally given as graphs (x ' )  H (x' ,  x2 , .  . . ,x"- '  , f(x)> and (x ' )  H 
(XI, x ,...,x17I ,  f(x)), where x = (x ' ,  x2 , .  . . ,XI'- ') .  Note that our index conven- 
tion becomes i G i, j ,  k , . . . < p = n - 1, and 1 < a,  p, y ,  . . . G n. We also let L ,  
and Z, be bundles of first order moving frames o f f  and f , respectively. We have 
u,, = i ,  0 go: S + L, ,  where go is the zero section of L , /N - S ,  and 7: S - N is a 
smooth map defining a normal vector field. Also let u,*(Qa, Q1;, Q8) I L l  = (Ga,+;, GP). 
Then +" = 0 and G', +*, . . . ,+"-I form a coframe field on S. Note that (+;, @ )  E 
span{+', G ~ , .. . ,+"-'). Write ( aa ,  Qz, Qg) ILl = (aa ,  wi, %), and recall that a/' = 
~ ~ ~ ( 3 'for 1 <j < n - 1. From now on we will assume rank(A,,) is maximal. 

We consider the exterior system 

on S X El with designated independent variables + I ,  @2,.. . ,+"-'. Note that a 
solution (id, G): S - S X El gives a map 77: S + N by a decomposition G = i, 0 q, 
where q: S - Z,/N, a section, and f and f are projectively equivalent to each other 
w.r.t. (7, fj). 

We close the system Z and, writing the quadratic equations modulo the system 
and the terms (+' A + I ) ,  obtain 

(4.20) d P :  {w; Aw;' + w' A w, - 6;wk A wk -0 ,  1 c i. j r n  - I }  

Observe that we have (n - equations and 2(n - 1) unknowns (w:,) and (w,). 
The system is in normal form, i.e., equation in d Z  contain no quadratic terms in 

unknowns. (Of course, the advantages of such a system are that the variety of 
admissible integral elements is irreducible and the question of involutivity reduces to 
that of linear algebra.) 

Cartan's involutivity criterion says that the system is in involution if and only if 

where s;, .. . ,st:-, are reduced characters. 

and V,-, is the variety of admissible (n - 1)-dimensional integral elements in 
GI,-,(S X E l ) ,  the Grassmann bundle of (n - 1)-planes over S X El. 

We compute the above numbers for n = 3 and 4. 
(i) n = 3. In thls case we already know the equality in (4.21) must hold (Theorem 

4.14). Indeed, computations show s;  = 4, a, = 2, and dim V2 = 8, giving s ;  + 2 9  = 

8 = dim V2. 
(ii) n = 4. Computations reveal s ;  = 6, s; = 0, a, = 2 and dim V3 G 9, so s;  + 2s; 

+ 30, = 12 > dim V3. Hence the system (4.19) is not involutive in this case. 
The above discussion indicates that the problem of extrinsic projective equivalence 

in general is complicated. More specifically, in contrast to the dim S = 2 case, the 
collection of equivalence classes of induced projective structures on a hypersurface 
of dimension greater than two depends both on the imbedding and the choice of a 
normal vector field. 
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5. Imbeddings of abstract projective structures. In this section we consider the 
problem of imbedding a given abstract projective structure. To be more precise, 
given an abstract projective structure P over a p-dimensional manifold S, we ask if 
there is an integer 17 2 p and f :  S - R P n  so that P is equivalent to an induced 
projective structure (L,/N. 77) for some 77: S -.N. 

Let P be an abstract projective structure over an (abstract) manifold S of 
dimension p.  Let (O', 8;) = O I,he the cannonical form of Q(S) restricted to P. We 
also let s: S - P be a section and write s*(dl, 8,') = (@I,@;). Consider the exterior 
system 

on S X PGL(n + 1: R) (recall D = (Q", Dp",Q p )  is the Maurer-Cartan form of 
PGL(n + 1; R)) with specified independent variables @', G ~ , .. . , @ P .  Suppose we have 
a solution of the form (s, u): S - P X PGL(n + 1: R). Define f :  S -.R P "  by 
f = 7 0 21. Then we observe that u is actually a first order moving frame field along f 
since u*(DU) = 0 by hypothesis. As before, we can decompose u = i, 0 q: S - L , / N  

L, .  Now it is easy to see that P is realized as (i.e., equivalent to) (L,/N, 77): 

The system (5.1) should be compared with that obtained in [6].Suffice it to say 
that we have a smaller number of equations, and the minimal dimension n ( p )  
required to imbed abstract projective structures over a p-dimensional manifold is 
considerably smaller than that obtained by Chern. This is to be expected as 
projective connections are more "rigid" than projective structures. (Here, the author 
is thankful to the referee for pointing out the analogous situation in conformal 
geometry.) 

We prove the following special case. 

THEOREM5.2. Let f:  S -.R P ~be any real analytic nonplanar surface and P any 
abstract projective structure over S. Then there exists 77: S -.N so that P is equivalent 

to (L, /N,  77). 

PROOF.Let ( @ I ,  @;) be as in the above discussion, i.e., (@I, @;) = s*(O1. 13,'): 
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Also let w' = w' 1,) and (3; = Q; 1,). We consider the exterior system 

on S X L, with independent variables +' and $j2. This system has the same polar 
matrix as (4.15), hence it is in involution. The rest follows easily. 
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