
ar
X

iv
:1

01
0.

53
13

v2
  [

m
at

h-
ph

] 
 2

8 
Fe

b 
20

11

Differential Invariants and Hidden Symmetry

Irina YEHORCHENKO

Institute of Mathematics of NAS Ukraine, 3 Tereshchenkivs’ka Str.,

01601 Kyiv-4, Ukraine
E-mail: iyegorch@imath.kiev.ua

Abstract

We show an algorithm for description of classes of equations having specific conditional or hidden
symmetry, and/or reducible with a specific ansatz. We consider reductions that are due to Lie,
conditional and Type II hidden symmetry. We also discuss relations between the concepts of hidden
and conditional symmetry. As examples, we describe general classes equations having hidden and
conditional symmetry under rotations and boosts in the Lorentz and Euclid groups.

1 Background Concepts

One of the key problems within the field of symmetry analysis of differ-

ential equations is description of equations with particular pre-determined
symmetry properties. Choosing equations with particular symmetry prop-

erties may mean that we have equations with solutions of some particular
structure.

It was proved in [1] that reduction of PDE (direct ansatz approach) is
equivalent to the non-classical (conditional) symmetry. Thus, the condi-
tional invariance of a differential equation under an involutive family of

first-order differential operators Qa is equivalent to possibility of reduction
of this equation by means of the ansatz corresponding to this family of

operators.
So, description of all equations from some class having a particular

conditional symmetry (we will deal, speaking more rigourously, with Q-
conditional symmetry, as defined in [2]) will give all equations from this

class that can be reduced by means of the specific ansatz corresponding to
conditional symmetry operators being considered.
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Definition 1. The equation F (x, u, u
1
, . . . , u

l
) = 0, where u

k
is the set of all

kth-order partial derivatives of the function u = (u1, u2, . . . , um), is called
Q-conditionally invariant [2] under the operator

Q = ξi(x, u)∂xi
+ ηr(x, u)∂ur

if there is an additional condition

Qu = 0, (1)

such that the system of two equations F = 0, Qu = O is invariant under

the operator Q. All differential consequences of the condition Qu = 0 shall
be taken into account up to the order l − 1.

Note that we will need such definition of conditional symmetry if we
specifically want to describe equations reducible with some form of ansatz;

however, we can use a more general definition of conditional symmetry and
describe classes of equations having such symmetry.
Definition 2. The equation F (x, u, u

1
, . . . , u

l
) = 0, where u

k
is the set

of all kth-order partial derivatives of the function u = (u1, u2, . . . , um),

is called conditionally invariant [2], if there is an additional condition
G(x, u, u

1
, . . . , u

l1
) = 0 such that the system of two equations F = 0, G = 0

is invariant under some operator

Q = ξi(x, u)∂xi
+ ηr(x, u)∂ur

that is not a Lie invariance operator of the equation F = 0. All differential

consequences of the condition G = 0 shall be taken into account up to the
order l − l1.
In this paper we give an outlook of description of partial differential

equations possessing certain conditional and hidden symmetries.
Group classification for classes of differential equations is aimed at iden-

tification of equations having wider symmetries than the equations of the
class in general. For an overview of the group classification problems and

the extensive list of related references see [3]. Usually two types of such
problems are considered – finding the equations within a general class that
are invariant under specific symmetry group, and description of all sym-

metries (up to appropriately chosen equivalence) of equations that belong
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to the specific class. On the basis of the known algorithms for group clas-

sification of differential equations in the Lie’s sense we develop approaches
for a systematic description of classes of nonlinear PDEs that display con-

ditional and hidden symmetry.
The definition of conditional differential invariants presented below refers

to the Definition of the conditional symmetry.

Definition 3. A class of equations can be regarded as general if any lo-
cal transformations of dependent and independent variables transform the

equations into an equation within the same class, e.g. the class of all kth-
order PDEs F = F (x, u, u

1
, . . . , u

k
) = 0 with x, u being respectively n- and

m-dimensional independent and dependent variables, u
r
being the set of all

r-th-order partial derivatives of the function u =
(
u1, u2, . . . , um

)
.

Group classification even with respect to the Lie symmetry for the gen-

eral classes is usually an overwhelming task, and, to our knowledge, such
problem was completely solved only for single ordinary differential equa-
tions by S. Lie [4]. A restricted, but practically important problem for the

general classes of equations would be description of all equations within
the class invariant under some specified symmetry group that can be done

by describing all differential invariants for such group. Similarly, descrip-
tion of equations having specified Lie symmetry and specified conditional

symmetry may be done by means of conditional differential invariants, as
shown in [5].
For a more specific class, it may be possible to perform a full group

classification of the system that consists of the original equation together
with the reduction conditions of the type Qa[u] = 0 (with appropriate

prolongations of the conditions).
Definition 4. [5] A function F (x, u, u

1
, . . . , u

k
) is a conditional differential

invariant of the operator Q, if under the conditions G(x, u, u
1
, . . . , u

r
) = 0

the relations Q[F ] = 0, Q[G] = 0 are satisfied. We take prolongations of

the operators of the order max(k, r).
A set of invariants of the order r ≤ k of the operator Q with the condi-

tions G = 0 is called a generating set of the kth-order conditional differ-

ential invariants of the algebra Q if all other invariants can be represented
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as functions of invariants in this set.

Invariants in such generating set may be both absolute invariants of Q
and G-conditional of the form G(l) × R(l), where G(l) are derivatives of G

of the order l ≤ k − r and R(l) are arbitrary functions determined on the
manifold G(k) = 0 for all values of k.
The number of functionally independent Q-absolute invariants in the

generating set of conditional differential invariants can be calculated sim-
ilarly to the number of invariants in a functional basis of absolute differ-

ential invariants, as s − 1, where s is the number of variables in the set
x, u, u

1
, . . . , u

k
. Number of independent purely G-conditional invariants is

equal to the number of independent conditions of the type G(l) = 0 and
their differential consequences.

In some cases we would be able to construct a functional basis of condi-
tional invariants, i.e. the maximal set of functionally independent condi-
tional invariants. That is possible e.g. in the case when we put a require-

ment that our conditional invariants should be also absolute invariants of
some Lie algebra L, and additional conditions G = 0 in the Definition 3

and their relevant differential consequences are not invariant under L.

2 Relation of Hidden Symmetry and Conditional Symmetry

Further we will treat Type II hidden symmetry as a partial case of con-

ditional symmetry, and discuss a systematic approach to description of
equations with some specific hidden symmetry, or equations that may have
such symmetries, within the lines of such conditional symmetry approach.

A very close relation of the hidden symmetry (for some initial papers on
the subject see [6]) to conditional symmetry (for definitions and examples

see e.g. [7]) is well-known. The concept of “hidden symmetry” has quite
a few different meanings in various contexts, and it is usually a symmetry

not obtainable by some standard and straightforward procedure applicable
to the models in this context. This term shares the usage of other related

terms like “conditional symmetry”, “approximate symmetry”, and “sym-
metry” or “invariance” when the same words may denote rather different
concepts.
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Here we will consider hidden symmetry of partial differential equations

similarly to Type II hidden symmetry of ordinary differential equations
generally within the context of [6]. With respect to ODE such symmetry

arises as symmetry of equations with reduced order that is not a symmetry
of the original equations. In the same way, for a PDE it is symmetry of
the reduced equation (with reduced number of independent variables) not

present in the original equation. However, we would like to point out that
we will consider all possible reductions to find hidden symmetries, not only

symmetry reductions.
Definition 5. A differential equation is said to have hidden symmetry

under an operator X if after the process of reduction of the number of
independent variables the resulting reduced equation is invariant under the
operator X1 (being the projection of the operator X in new variables) while

the original equation is not invariant under the operator X.
Such symmetry may be ”classical” in the sense that full hidden sym-

metry of either ODE or PDE may be found by consecutive symmetry re-
duction of the original equation and investigation of Lie symmetries of the

reduced equations, as provided by L. Ovsyannikov’s Submodels programme
[8]. “Symmetry” or “Lie symmetry” is determined in accordance to the

procedures that may be found e.g. in [9, 10].
An interesting discussion of the origin and nature of the Type II hidden

symmetry was presented in [11]. To see clearly the origin of hidden sym-

metries, it is necessary always to keep in mind the additional conditions
(representing Lie or non-classical symmetries) that resulted in reduction

to the new equations having new symmetries that are hidden symmetries
for an original equation.

The additional symmetry under the operator X1 of the reduced equation
(hidden symmetry under the operator X for the original equation) turns

out to be a conditional symmetry of the original equation under conditions
Qa[u] = 0 (Qa[u] designate characteristics of the vector field Qa) with all
appropriate differential consequences. Note that X1 is a Lie symmetry of

the reduced equation, and we do not add the condition X[u] = 0 to the
set of conditions, so such operator will not present a proper Q-conditional

symmetry in the sense of [2].
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Q-conditional symmetry can also be hidden – that is being a new Q-

conditional symmetry of the reduced equation. For examples of such sym-
metries see e.g. [13].

When we look for equations with fully defined hidden symmetries, we
can describe such equations by means of conditional differential invariants
- both reduction conditions and hidden symmetry operators should be used

as conditions for such invariants.
An algorithm for group classification with respect to hidden symmetry

in the situation when hidden symmetries are not known from the start:
Step 1. Obtain reduced equations for the class of initial PDE, using

possible Lie and conditional symmetries - this step requires a standard
group classification with respect to Lie and conditional symmetries.
Step 2. Perform group classification of the reduced equations. This is

the step when new symmetries of the reduced equations may be found
(and may be not - in this case the class of equations will have no hidden

symmetries). This step involves finding of equivalence group of the class
and of subclasses.

Step 3. Multiply inequivalent invariant reduced equations by means of
transformations from the equivalence group of this class (or subclasses).

Step 4. Go back to the original class of equations: find equations from
the initial class of PDE corresponding to the multiplied reduced equations.
Step 5. Find all inequivalent equations with respect to transformations

from the equivalence group of the initial class of PDE.
A nontrivial hidden symmetry for partial differential equations stems

from the reduced equations having wider equivalence group than the orig-
inal equations (see [14]). So group classification of the classes of equations

with respect to hidden symmetry involves study of equivalence groups of
such classes, in the similar way as it is done for classification with respect

to the Lie symmetry.
“Simple” hidden symmetries (Lie symmetries of reduced equations) for

a particular class of equations can be found by means of consecutive Lie

reductions and consecutive finding Lie symmetries of the reduced equa-
tions. Group classification of such class with respect to hidden symmetries

of reduced equations will involve description of all possible reductions and
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group classification of the respective classes of reduced equations.

In [12] we considered a rather simple example of the nonlinear wave
equation in two spatial dimensions

�u = f(t, x, y, u) (2)

Here we use the usual notations for partial derivatives and the d’Alembert
operator.

Group classification of equation (2) with respect to hidden symmetries
for reduction by means of the operator ∂y was presented. Such reduction

leads to the two-dimensional wave equation utt − uxx = f(t, x, u). The
next step is the usual group classification of the reduced equation. It was

given in [9] (fuu = 0) and in [15] (fuu 6= 0). Such group classification
was performed up to transformations from the equivalence group of the

equation.
Let us note that conditional symmetry of equation (2) was studied in

[16]. ”Extension” of dimensions of the found equations with nontrivial

conditional symmetries in this class will produce new multidimensional
equations with hidden symmetries.

3 Example of a General Class: Hidden Symmetry with Respect

to Translations

For simplicity we use an example of a general class of all second-order PDE

for a scalar function u and three independent variables t, x, y. This class
includes many physically interesting evolution and wave equations. The
ideas presented can be easily extended to equations with larger number of

dimensions.
Such class includes all equations of the form

F = F (t, x, y, u, u
1
, u
2
) = 0. (3)

We will start with a straightforward example - description of all such
equations having Lie symmetry with respect to the operator ∂x and hidden
symmetry with respect to the operator ∂y after reduction by means of the

operator ∂x. The condition of such Lie and hidden symmetry, according
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to Definition 1, is invariance of the equation (3) under the operator ∂y on
condition that ux = 0:

∂xF
∣∣
F=0

= 0, ∂yF
∣∣
F=0, ux=0

= 0. (4)

The general solution of the condition (4) will be a function of all invari-

ants of the operators ∂x and ∂y, that is t, u, ut, ux, uy(being an absolute
invariant of ∂x), and of the conditional invariants

q1 = uxR
1(t, y, u, u

1
, u
2
), (5)

q2 = uxtR
2(t, y, u, u

1
, u
2
),

q3 = uxxR
3(t, y, u, u

1
, u
2
),

q4 = uxyR
4(t, y, u, u

1
, u
2
), (6)

where Rk are arbitrary functions that is reasonably determined on the
relevant manifolds ux = 0, uxt = 0, uxx = 0, uxy = 0:

F (qk, t, u, u
1
, u
2
) = 0, (7)

F has to be a function of the invariants of the hidden symmetry operator
on the manifold determined by the reduction condition, and have arbitrary

form elsewhere. Note that the functions qk in (7) are not entirely arbitrary:
we cannot take e.g.

q1 = R1(y, t, u, u
1
, u
2
) = ux

R̃1

ux

as such R1 = R̃1

ux
will be in the general case undetermined on the manifold

ux = 0.

Equation (7) is reduced by means of the operator ∂x to the equation

F1(t, u, ut, uy, utt, uty, uyy) = 0

that is invariant with respect to ∂y. If R
k
y 6= 0 in at least one expression for

qk in (7), then this equation is not invariant with respect to the operator
∂y, and the relevant hidden symmetry is a proper hidden symmetry.
This example is easily generalised for larger order or equations or number

of reduction operators.
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More specific examples of equations with hidden translational symmetry

are listed below:

ut + uxK1(t, y, u) + uyK2(t, u) + uxx + uyy = 0;

utt − (K1(t, y, u)ux)x − (K2(t, u)uy)y = 0.

These equations can be reduced by means of the operator ∂x to new
equations invariant under ∂y - so they have hidden symmetry with respect

to the operator ∂y.

4 Equations Reducible using Radial Variables

As it was shown e.g. in [13] and then in [17], reduction using radial vari-
ables often results in the reduced equation with new symmetries as com-

pared to the initial equation, thus contributing to description of its hidden
symmetries.

In this section we will describe all equations of the type (3) that can be
reduced by means of radial variables

r = x2 + y2 (8)

ρ = t2 − x2 − y2. (9)

Reduction of equation (3) by means of the new variable (8) is equivalent

to its conditional invariance under the rotation operator

J = x∂y − y∂x. (10)

Conditional differential invariants with the condition

xuy − yux = 0. (11)

may be chosen as follows:

t, u, ut, utt, r = x2 + y2, xux + yuy, u
2
x + u2

y, uxx + uyy, (12)

u2
xuxx + 2uxuyuxy + u2

yuyy, xuxuxx + (xuy + yux)uxy + yuyuyy,

u2
xt + u2

yt, xuxt + yuyt,
uk

xk

,
ukt

xk

,
ukl

xkxl

− ǫkl
uk

x3
k

(13)
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We used notations x1 = x, x2 = y, u1 = ux, u2 = uy etc.; ǫkl = 1 if k = l

or ǫkl = 0 if k 6= l.
Invariants (12) represent a functional basis of absolute differential in-

variants for the operator (10) (see e.g. [18]), and invariants (13) are proper
conditional differential invariants under condition (11). It is easy to check
directly that they are really differential invariants under such condition.

The listed proper conditional differential invariants do not actually repre-
sent a functional basis: e.g. from (11) ux

x
=

uy

y
, but we adduced all such

invariants just to show their general structure.
The general form of the equation (3) reducible with the ansatz

u = φ(t, r), (14)

will be

F (IA,
uk

xk

,
ukt

xk

,
ukl

xkxl

− ǫkl
uk

x3
k

) = 0, (15)

where IA is the functional basis of absolute differential invariants (12), and

the remaining variables are represented by proper conditional differential
invariants.
It is easy to check that equation (15) can be reduced by means of the

ansatz (14) to the form

f(t, r, φ, φt, φr, φtt, φtr, φrr) = 0, (16)

and the class (16) may be studied to find equations having new symmetries.
Equations with hidden symmetries then will be described by conditional

differential invariants under (11) and these new symmetries.
Reduction of equation (3) by means of the new variable (9) is equivalent

to its conditional invariance under the operators of Lorentz algebra

J01 = t∂x + x∂t, J02 = t∂y + y∂t, J = x∂y − y∂x. (17)

Conditional differential invariants with the conditions

tux + xut = 0, tuy + yut = 0, xuy − yux = 0. (18)

may be chosen as follows:
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u, xµxµ, xµuµ, uµuµ,�u, uµuµνuν, uµuµνuναuα, (19)

uµνuναuµα, xµuµνuν, xµuµνuναuα,
uµ

xµ

,
uµν

xµxν

− gµν
uµ

x3
µ

. (20)

Here µ, ν, α take values from 0 to 2, and we used notations x0 = t, x1 =

x, x2 = y, u0 = ut, u1 = ux, u2 = uy etc.; gµν = (1,−1,−1).
Invariants (19) represent a functional basis of absolute differential in-

variants for the operator (17), and invariants (20) are proper conditional
differential invariants under condition (18). It is easy to check directly

that they are really differential invariants under such condition. The listed
proper conditional differential invariants do not actually represent a func-

tional basis: e.g. from (18) ux

x
=

uy

y
, but we adduced such invariants just

to show their general structure.
The general form of the equation (3) reducible with the ansatz

u = φ(ρ), (21)

will be

F (IA,
uµ

xµ

,
uµν

xµxν

− gµν
uµ

x3
µ

) = 0, (22)

where IA is the functional basis of absolute differential invariants (19), and

the remaining variables are represented by proper conditional differential
invariants.

It is easy to check that equation (22) can be reduced by means of the
ansatz (21) to the form

f(ρ, φ, φ′, φ′′) = 0, (23)

and the class (23) may be studied to find equations having new symmetries.

Equations with hidden symmetries then will be described by conditional
differential invariants under (18) and these new symmetries.
The presented results can be naturally extended to arbitrary number of

space dimensions.
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An example of a nonlinear wave equation having conditional symmetry

with respect to the Lorentz group of the type (17) with n space dimensions
was given in [19]:

�u =
λ0u

2
0

x2
0

+
λ1u

2
1

x2
1

+ · · ·+
λnu

2
n

x2
n

.

It is easy to see that this equation is actually constructed with first-order
conditional differential invariants of the type

uµ

xµ
.

5 Conclusions

We presented examples related to description of equations with some spec-
ified conditional and hidden symmetry, as well as algorithms for group

classification of classes of equations with respect to conditional and hidden
symmetry and possible reductions.
Further research in this direction shall involve classification with respect

to Lie and conditional symmetry of the remarkable classes of reduced equa-
tions.
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