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ABsTRACT. A local classification of regular 3-order linear ordinary differential equa-
tions with respect to contact transformations is given.

0. INTRODUCTION

It is well known that any two 2—order linear ordinary differential equations
(ODEs) are locally equivalent. The similar statement for 3-order linear ODEs
is not, correct. The point is that a necessary condition for one differential equation
to be locally equivalent to another one is that dimensions of the classical symmetry
algebras of these equations are the same; but dimension of the classical symmetry
algebra of an arbitrary 3—order linear ODE can be equal to one of the numbers 10,
5, or 4 (see the corollary of Theorem 2.1).

The aim of this paper is to obtain a local classification of 3—order linear ODEs
at a regular point with respect to contact transformations.

Our approach to this problem is the following.
It is easy to prove that any 3-order linear ODE can be transformed to the form

"

y" =wv(z) ¥ +w()-y. (0.1)

Therefore our problem is reduced to the classification of equations (0.1).

We identify every ODE (0.1) with the geometric structure v on R! with com-
ponents v(z) and w(z) in the coordinate system z on R!'. Now our problem is
reduced to a local classification of those geometric structures with respect to dif-
feomorphisms of R!.

To this end we calculate differential invariants of these structures. The invariant
differential form w and the scalar differential invariant I obtained here make possible
to solve the problem completely.

As a result we obtain the following local classification of 3—order linear ODEs at
a regular point with respect to contact transformations. Let £ be an ODE of form
(0.1) and let Sym € be its classical symmetriy algebra; then

(1) If dimSym & = 10, then & is locally equivalent to the equation
y"" = 0. (0.2)

(2) If dimSym & = 5, then £ is locally equivalent to one of the following equa-
tions
' =K-y +y, KecR. (0.3)
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2 CONTACT CLASSIFICATION OF 3-ORDER LINEAR ODES

(3) If dim Sym & = 4, then £ is locally equivalent to one of the following equa-
tions

(=2 (2) 4 (£)) -] 0

where functions u are nowhere vanishing smooth functions of x and any two
of them don’t have equal germs.

Note, that this complete list (0.1) — (0.3) of "simplest” locally nonequivalent
3—order linear ODEs with respect to contact transformations concides with the
complete list of ”simplest” locally nonequivalent 3—order linear ODEs with respect
to point transformations, obtaned in [8].

Recall that the general method to investigate local equivalence problem based
on the theory of differential invariants was originated by classics of the end of
XIX century S.Lie, A.Tresse, G.-H.Halphen, E.Laguerre, R.Liouville and others.
In particular, first the above-mentioned invariant differential form w was used by
E.Laguerre in [4] to solve the local equivalence problem of 3—order linear ODEs
with respect to point transformations of the form

In [3], G.—H.Halphen used scalar differential invariants to obtain a criterion for a 3—
order linear ODE to be locally equivalent to a linear ODE with constant coefficients
with respect to those transformations.

This paper is organized as follows. In section 1 we recall preliminary definitions
and facts. In section 2 we calculate the classical symmetry algebra for ODEs of the
form (0.1), for ODEs admitting a 5 or 4 — dimensional classical symmetry algebra we
reduce the problem of local classification with respect to contact transformations to
the problem of local classification with respect to point transformations. In section
3 we solve the local equivalence problem for ODEs of the form (0.1). In section 4
we calculate differential invariants and give the local classification of 3—order linear
ODEs with respect to contact transformations.

Below everything is supposed to be smooth.
By R” denote the n — dimensional arithmetical space, by [f]¥ denote the k—jet
oF A
of a map f at the point z, and by definition, put A;, ., = —F5—.
0x1...0xy

1. PRELIMINARIES

In this section we recall necessary notations and results of the geometry of dif-
ferential equations (see [6]) and the theory of geometric structures and differential
invariants (see [1],[2]).
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1.1. Lie transformations. Let A : £ — M be a smooth bundle, let dim M = n,
and let dim E =n+m. By J¥A k=0,1,2,..., denote the bundle of k—jets [s]* of
all cross-sections s of A. Let Ay : J¥A — M be the projection that takes each [s]¥
to m and let Ag . : JEA — J"A, k > r, be the projection that takes each k-jet [s]¥,
to the r-jet [s]]..

Every cross-section s : U — E, U C M, of )\ generates the cross-section
jxs : U — JRX of the jet bundle A; by the formula jis : z + [s]k. By L denote
the image of the cross-section js.

By Ty, (J*)\) denote the tangent space to J*X at xy, € J¥X, by Ty, (Lgk)) denote
the tangent space to Lgk) at zp € Lgk).

The Cartan plane Cy, C T}, (JEX) at o3, € JEX is the subspace spanned on the
union of all T}, (L(sk)) such that z, € L.

The Cartan distribution C on J*X is the distribution defined by the formula

C:ap— Cp,.

A (local) diffeomorphism of J¥) conserving the Cartan distribution is called a
Lie transformation.

Every Lie transformation f : U — U’ of J*¥ can be lifted canonically up to the
Lie transformation f{) : )\,;j_r,k(U) — )\,;j_r,k(U’) of JEtTX, r=1,2,..., such that
the diagram

_ Fo
)‘k—il-T,k(U) )‘k—il-T,k(U/)
)\k—{—r,kl l)\kw,k
U — U’

f

is commutative.

Recall that f() is defined in the following way. A point x4, = [s]¥+ € JF+H1A
is identified with K, ,, = Tu, (L), where o, = Apy1x(gs1). The differential
f« maps K, onto the subspace f.(Kg,, ). If fu(Ky, ) is projected on M

without a degeneration, then there is z}_, € J**1X such that Ky = f(Key)

and we set f()(zpy1) = @), It is obvious that f() is a Lie transformation
of JF+1) defined almost everywhere in )‘1;41-1,k(U)- Setting fr*tD) = ()M we
define the Lie transformation f(") for all » = 1,2,.... Clearly, that f() is defined
almost everywhere in )\,;j_r,k(U ). (We shall say for brevity that f() is defined in

A Lie transformation of J'\ is called a contact transformation if m = 1.

A Lie transformation of J°X (that is an arbitrary diffeomorphism of JO)) is
called a point transformation.

It is well known (see [6]) that if m = 1, then every Lie transformation of J¥A,
where £ > 1, is the lifting of some contact transformation.

A vector field ¢ in J*) is called a Lie field if flow of ¢ is generated by Lie
transformations.

Obviously, the lifting of Lie transformations defines the lifting of every Lie field
¢ 1in J¥X up to the Lie field £ in J¥t" A for all r =1,2,. ...
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Let A : R! x R! — R! be the product bundle and let z, y, p1, ... ,pr be the
standard coordinates on J¥\. Then it is easily shown that a contact transformation
is defined in the standard coordinates by the formulas

X :X(Zﬁ,y,pl),
Y =Y(z,y,p1), (1.1)
P — Yy +p1Yy,

Xe+p1X,’

where the functions X (z,y,p1) and Y (z,y,p1) are connected by the relation
1/pl (XJU —f-ple) - Xpl (Yw —f-ple) =0.

Obviously, a point transformation is defined in the standard coordinates z, y of

J°X by the formulas
X = X(z,y),

Y =Y(x,y). (12)

1.2. Geometric structures. Let G}, k=1,2,..., be the group of k-jets at the
point 0 € R" of all diffeomorphisms R™ — R™ conserving the point 0.

Let M be a smooth mn — dimensional manifold and let
Si(M) be the manifold of k-jets at 0 € R™ of all diffeomorphisms s : R" — M.
The projection py, : Sp(M) — M is defined by px([s]k) = s(0). The right action
Sip(M) x G — Sk (M) of the group G} on Si(M) is defined by

([s]6, [916) — [sogls  VIsl§ € Su(M), VIgls € GF.

It is easy to verify that ( Si(M), pr, M, G} ) is a principal bundle with structural
group G7.

Let (Q be a smooth N — dimensional manifold and let p : G} x Q@ — @ be a
left action of the group G} on Q. We often will write gy - ¢ instead p( gk, q)
gr € Gy, ¢ € Q.

Let p, : E — M be the @ — associated bundle of the principal bundle Sy (M)
generated by pu.

We recall the definition of this bundle. The actions G} on Si(M) and on Q
generate the equivalence relation on Si(M) x @ by the formula

(Sks gk -q) ~ (Sk-9K, q) Vor € Gy, Y (sk, q) € Sp(M) x Q.

By [sk, q] denote the equivalence class of the element (sg, ¢), by E denote the ma-
nifold of all those equivalence classes, and the projection p, : E — M is defined by
the formula p,([sk, ¢]) = pr(sk)-

A cross-section v of p, is called a geometric structure of type p on the manifold
M. The bundle p, is called a bundle of geometric structures of type p too.

Every coordinate system (local chart) (U,h = (z!,...,2")) of M generates
the local trivialisation hg : p;'(U) = U x @ of the bundle p, in the following
way. The coordinate system (U ,h = (x!,...,2™)) generates the cross-section

hi : U — Si(M) by the formula

hk(m) = [h_l o th(m)]lg,
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where ¢, () is the translation of R™ defined by tp,(m)(x) = x+h(m). Let e € p;1(U)
and m = p,(e); then there is g € G} such that

1

e = [sk, ¢ = [he(m) - gi, ] = [hx(m), g, - q.

By definition, put
hg :ew— (m, gk_l-q).

Let v be a geometric structure of type pon M, let pro : U X Q) — @ be the projec-

tion on the second factor; then for every coordinate system
(U h = (x',...,2™)) of M the map v, = proohgo(y|U): U — Q is called the
expression of v in the coordinate system (U,h = (x',... 2")).

Let (U h= (z',...,2")) and (U’,h' = (y},...,y™)) be coordinate systems of
M such that UNU’ # 0 and let (y(zt, ..., 2"),...,y"(z!,...,2")) be the trans-
formation of these coordinate systems. Then it follows easily that the expressions
of v in these coordinate systems are connected by the following formula.

3yi akyz

(@(m)), yu(z(m)), (1.3)

ayz’ 3kyi
where m € UNU’ and —(x(m)),..., —————(x(m)) € G}. Relation (1.3
. (.3:63(( ) 0;6]1._.3331,“'(( )) € G (1.3)
is called the transformation law of coordinate expressions.
Obviously, every geometric structure is defined completely by the collection of
all its coordinate expressions and the transformation law of these expressions.

Example. A function, an arbitrary tensor field, and a linear connection are exam-
ples of geometric structures of different types.

1.3. Differential invariants. Every diffeomorphism f of the manifold M gener-
ates the Lie transformation fg of E by the formula

fe 1816, a1 — [1f o 8150y, 4]- (1.4)

Obviously, the following diagram is commutative

Therefore every diffeomorphism f of M generates the transformation of geometric
structures by the formula

y— fgoyo f. (1.5)

Let (y! = fi(zt, ..., 2"),... ,y" = f*(x',... ,2™) be the expression of diffeomor-
phism f in coordinate systems (U,h = (z',...,2™)) and (U, 1/ = (y',...,y™))
of M and let 4/ = fg oyo f~!; then it follows easily that

o) = L (1))

... OxIk

(f7Hm)), w(f7H(m))).
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Let (py)r : J"pu — M be the r—jet bundle of p,, r=0,1,2,.... By fg) denote
the lifting of fg up to the Lie transformation of J"p,,.

Obviously, this lifting defines the lifting of every vector field £ on M up to the
Lie vector field §g) onJ"p,, r=20,1,2,....

A diffeomorphism f of M is called a symmetry of the geometric structure ~ if
v=frovyof

A vector field € on M is called an infinitesimal symmetry of the geometric struc-
ture v if the flow of ¢ consists of symmetries for .

It is obvious that a vector field £ is an infinitesimal symmetry for v iff the vector
field £ tangents to LSO).

A geometric structure on the manifold J"FE is called a differential invariant of
order r if it is invariant with respect to all diffeomorphisms of the form fg ) A
differential invariant is called a scalar differential invariant if it is a function.

Let I" be the Lie pseudogroup of all diffeomorphisms from M to itself. The Lie
pseudogroup Fg) = { fg) | f €T } acts on the J"E. As a result J"FE is divided
into orbits. It is clear that a function I on J"FE is a scalar differential invariant iff
I is constant on each orbit.

The coordinate definition of a scalar differential invariant is the following. Let

q',...,¢N be a coordinate system on the manifold Q; then for every geomet-
ric structure v we have v, = (v},...,7Y). A smooth function I of variables
945545 4, =12, N, g =1,2...,n,is said to be a scalar dif-

ferential invariant of order r if for every geometrical structure 7 of type p and for
every transformation of coordinate systems y = y(z), the following condition holds

I (@) 37 @ g g @)
o 35,0[ 31";)701
=I1(7*(y(z)), 3—yﬂ(y($))’ .. 7m(y($)) ),
where ¥ are the components of the expression of v in the coordinates z!,...z"

and ¥ are the components of the expression of v in the transformed coordinates
n

yl, . oym

Let I be a differential invariant of order r and let v be a geometric structure of
type p on M; then by I() denote the restriction I | L7, of I on image of j,y. One
can assume that I(v) is defined on M because the restriction (p,), | L, : LT, — M
is a diffeomorphism. I(7y) is said to be the value of I on the geometric structure .

Let £ be infinitesimal symmetry of a geometric structure v and let I be a scalar

differential invariant. Then it is easy to prove that I(vy) is an integral of the vector
field €.

1.4. Equivalence problem for ODEs. Let 7 : R! x R! — R! be the product
bundle.
We identify every ODE of order k

dy dky

,%,...,w)zo

F(z, y(z)
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with the submanifold & C J*¥7r defined by the equation

F('Ta Y, P1,y. .- apk) =0.

Let £ and £’ be ODEs of order k. We say that £ and &£’ are locally equivalent if
there exist a local contact transformation f: U — U’, U,U’ C J'x, transforming
£ to & that is fE-1(EN W,C_}(U)) =£&'nN 7rk_j(U’); in this case for every point
rp €EN W,C_i(U) we say that the equation & is locally equivalent to the equation &’
at Tg. ,

The local equivalence problem for ODEs consists in obtaining of a criterion for
local equivalence of two equations.

1.5. Classical symmetries of ODEs. A Lie field on J'7 is called a contact
vector field. 1t is easily shown that a contact vector field £ can be represented in
the standard coordinates x, y, p; by the formula

0 0 0
=&, = —SOpla + (‘P—Pﬂppl)a—y + (S% +p190y)8—pl7

where the function ¢ = ¢p(z,y, p1) is called the generating function of . Obviously,
the generating function defines the contact vector field completely.

Subjecting a contact vector field to an arbitrary contact transformation (1.4), we
get a contact vector field. It is easy to verify that the generating functions ® of the
obtained vector field and the generating function ¢ of the initial one are connected
by the formula

XY, — X, Y,
Xac +p1Xy 4

O( X(2,y,p1), Y(z,y,p1), Pr(z,y,p1) ) = (z,y,p1) - (1.6)

An arbitrary vector field ¢ in JOr is called a point vector field. In the standard
coordinates ( is of the form

0 0

= —+b —. 1.7

¢ =a(z,y) 5 +b(z.y) 9y (1.7)

The lifting ¢V of ¢ is a contact vector field. It is easy to verify that the generating
function of ¢ has the form

—a(z,y) - p1+ b(z,y). (1.8)

Conversely, if the generating function of a contact vector field has form (1.8), then
this contact vector field is the lifting of some point vector field.

We shall say that function (1.8) is the generating function of point vector field
(1.7).

A contact transformation f : U — U’ in J!7 is called a symmetry of a differential
equation £ C JFr if £N W,;}(U’) = f=b(en W,Q%(U) ).

A contact vector field &, in J'm is called a classical symmetry of a differential
equation & C JFr if the lifting g&,’“‘” is tangent to the submanifold £.

Let Sym &€ be the set of all classical symmetries of a differential equation £. It is
easy to verify that Sym & is a Lie algebra over R! with respect to the Lie bracket.
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It follows from the general theory of symmetries of differential equations ( see
[6] ) that the space of generating functions of classical symmetries for the equation
Pr — F(SU, Y, P1y--- 7pk:—1) =0.

coincides with the space of solutions of the form ¢ = ¢(x,y,p1) for the following
linear PDE

oF oF oF
D - pk-l_ D =0, 1.9
e 5o 0= 5 )) (19)
0 0 0 0 0
where D = — +p91— 4+ 09— + ...+ D1 + F ;
oz b dy b2 dp1 br lapk—z Opr—1

2. CLASSICAL SYMMETRIES OF 3-ORDER LINEAR ODEs

2.1. Let & be an ODE of the form ps = v(z) - p1 + w(x) - y.
Theorem 2.1. Suppose coefficients v and v of £ are defined in a domain U and
&, € Sym&; then the following statements hold:
(1) The generating function ¢ is of the form
= a(2)pi + (b(z) = 2a59)p1 + (205, — va(w))y® + (K — by)y + c(z)
with K € R and a(z), b(z), c(z) are solutions of € iff vy — 2w =0 in U.
(2) The generating function ¢ is of the form
0 =K' (v, — 2w) " Y3py + [K? — K ((vy — 20) " Y3),)y + c()
with K', K? € R and c(x) is a solution of £ iff (vy — 2w)(z) # 0 al-
most everywhere in U and (v, — 2w)™ Y3 is a solution of the equation

p3=v-p1+ (1/2) vz - y.
(3) The generating function ¢ is of the form

v =Ky +c()
with K € R and c(x) is a solution of € iff (ve — 2w)(x) # 0 almost every-
where in U and (v, — 2w)~ '3 is not a solution of equation

ps=v-p1+(1/2) v, y.

Proof. Equation (1.9) corresponding to an equation ps = v(z) - p1 + w(z) - y is the
following one

(D? —v(z)- D —w(z))(p) =0, (2.1)

) ) ) )
here D = — — — - )
where ot 3y + po o + (v(z) -p1 +w(z) - y) s

Taking into account that ¢ depends on x, y, p1, we see that the left hand side
of (2.1) is a polynomial of degree 3 on py. Therefore (2.1) holds iff coefficients of
this polynomial are equal to zero. Therefore equation (2.1) is equivalent to the
following system of four PDEs

Opipipr =0,
Papipy T P1Pypipy T Pypy =0,
(vep1+w ) pip, + Pay + P1oyy
+ Paapy + 2P10ayp, + PTPyyp, =0,  (2.4)
(Vg * P14+ Ws - Y)pp, — w(p — p1py,)
—v(pz +p1py) + (V- p1+w - Y) (BPap, + 3p1Pyp, + @y)
+ ooz + 3P1Pacy + 30T Payy + Pioyyy =0.  (2.5)
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From equation (2.2) we get ¢(z,y,p1) = a(z,y)p? + b*(z,y)p1 + ' (z,y).

Substituting this expression for ¢ in equation (2.3), we get the equation
daypr + 2a, + bzll = 0. Taking into account that the functions a, b depend on
x, y, we see that this equation is equivalent to the following system of PDEs

ay =0,  2a,+b, =0

. From this system we get ¢(z,y,p1) = a(z)p? + (b(x) — 2a,y)p1 + ¢ (x,y).
In the same way, substituting the obtained expression for ¢ in equation (2.4),
we get the following system

Czl/y + 2va — 4a,, = 0, C;y + 2way - 2ammmy + b:vac = 0.

From the first equation we get ¢! (z, y) = (2a4, —va)y®+ctt(z)y+c(x). Substituting
this expression for ¢ in the second equation, we get the following system

by + it =0 (2.6)

Upgz — VA — wa — (v — 2w)a =0
From equation (2.6) we obtain c¢!! = K — b,, where K € R'. Therefore we have

p(,y,p1) = a(@)pi + (b(z) — 2a:y)p1 + (2000 —va)y® + (K — by )y + c(z). (2.8)

Substituting the obtained expression for ¢ in equation (2.5), we see that left
hand side of the obtained equation is a polynomial of degree 2 on p;. Therefore this
equation is equivalent to a system of three equations. The first one corresponding
to the coefficient of p? is the following equation

7(agge — vay —wa) — 4(vy — 2w)a = 0. (2.9)
Comparing equations (2.7) and (2.9), we get
(vy — 2w)a = 0. (2.10)

Let v, —2w =01in U.
Then it follows from (2.7) or (2.9) that a is a solution of £. Now substituting
expression (2.8) for ¢ in equation (2.5), we get

[_5(awmw — Vg — wa)wy + 2(bwmw - Ub:c - wb) ]pl
- (a’wmw — Vag — wa)mwyz + (bmwm - me - wb)xy

— (Cgze — Ve —we) = 0.

From this equation we see that b and ¢ are solutions of £. This completes the proof
of the first statement of Theorem 2.1.

Now let (v, — 2w)(z) # 0 almost everywhere in U.

Then it follows from (2.10) that a =0 in U. Now from (2.8) we see that

o(z,y,p1) = b(z)p1 + (K — by)y + c(z).
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Substituting this expression for ¢ in equation (2.5), we get the following system

1
byze — Vb — E’Umb =0 (2.11)
1
2(bgge — vby — vab)w — 3(vg — 2w)by — (vy — 2w) b =10 (2.12)
Cogp — VCyp — wC = 0. (2.13)

Equation (2.13) means that ¢ is a solution of £. From equations (2.11) and (2.12)
we obtain 3(v, — 2w)b, + (v, — 2w),b = 0. From this equation we see that
b= K' (v, — 2w)~ /3, where K' € R'.

Now we see that if b = (v, — 2w)~'/3 is a solution of equation (2.11), then from
(2.8) we have ¢ = K'(v, — 2w)~Y3p; + [K? — K'((vy — 2w)~Y3) ]y + c(z) else
b =0 and from (2.8) we have p = Ky + c(z). |

Corollary. dimSym¢& s equal to one of the numbers 10, 5, 4, moreover
(1) dimSymé& =10 iff v, —2w =0 in U.

(2) dimSymé& = 5 iff (v, — 2w)(x) # 0 almost everywhere in U and (v, —
1
2w)_1/3 s a solution of the equation ps = v - p1 + §vm - .
(3) dimSymé& = 4 iff (v, — 2w)(x) # 0 almost everywhere in U and (v, —

2w)_1/3 1s not a solution of the equation ps = v - py + va - .
Proof. Let v,—2w = 0in U and let { a'(x), a®(z), a3(x) }, { bl (x), V*(z), b3(x) },

{ cl(x), c*(x), 3(x) } be three collections of linear independent (over R!) solutions
of £. Then it follows from Theorem 2.1 that the collection of the following functions

A" = ' (2)p? — 2agypy + (24, — va'(2))y?, i=1,2,3;
B =V (x)pr — by, §=1,2,3;

ch =ck(x), k=1,2,3;

D=y

is a basis for the space (over R!) of all generating functions of classical symmetries
for £. Therefore the collection of corresponding classical symmetries € 41, €42, 43,
¢, €2, €3, o1y Ec2, Ee3, Ep is a basis for Sym&. It follows that dim Sym & =
10.

A proof of statements (2) and (3) are analogous. |

2.2.

Theorem 2.2. Let £ and E' be ODEs of the form p3 = v(x)-p1+w(zx)-y and let both
dim Sym & and dim Sym &’ be equal to 4 or 5; then if f is a contact transformation
transforming € to E', then f is the lifting of some point transformation.

Proof. Suppose £ is the equation P = V(X) - P, + W(X)-Y, £ is the equation
ps = v(z) - p1 +w(x) -y, fis defined by (1.1), and f transforms £ to £’. Suppose
dimSym& = 5, then obviously, dimSymé& = 5 . Let the collection
®(X), ©o(X), P5(X) be a fundamental system of solutions for £. It follows from
Theorem 2.1 that they are generating functions for some classical symmetries of £.
Therefore transformation (1.1) connects each of these functions with a generating
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function of some classical symmetry of £’ by formula (1.6). Taking into account the
form of last generating functions (see Theorem 2.1), we obtain from formula (1.6):

O (X (,y,p1) = F - { Ki (v — 20)"p1 + [KF — Ki((vs — 20) ")y +e1 },
@2 (X (2,y,p1) = F - { K3 (ve — 20)"p1 + [KF — K3 (v — 20) ") Jy + ¢z },
®3(X (,y,p1) = F - { K3 (v — 20)"p1 + [KF — K3((vs — 20)73) y +¢3 },

X,Y, - X,Y,
Xw + ple
1,2, j = 1,2,3. If one of the numbers K{, K1, K3 is not equal to zero, say

K1 # 0, then the following relations hold

where F =

and ¢y, cg, cg are some solutions of £ and K} € R', i =

K, Ky K,

2 2
Py — —Kll ;= F-{[K2— K%Kl]ijcz(x) - —Kllcl(:n) 1
Kj o K5 ..o Ks
@3 — ﬁ@l = f{ [K3 — K—%Kl]y‘f‘c,‘g(iﬂ) — K—%Cl(iﬂ) }

Ki®;, - Ki®,

It foll that
ollows tha K1y — K1,

does not depend on p;. Therefore

G, <K11<I>2—K21<I>1> d <K11<I>2—K21<I>1>
X, =0.

Op1 \K1®s — Ki®;, ) dX \ K1®; — K1,
If X, # 0 in some neighborhood, then
K{®y — Ky®, = K( K{®3 — K3®, ),

where K € R!, in this neighborhood. But it is impossible, because the collection
®q, ®y, P3 is the fundamental system of solutions. Hence X,,, = 0. This means
that f is the lifting of some point transformation.

The above-mentioned arguments are valid if all numbers K{, K31, K3} are equal
to zero.

Obviously, a proof for the case dim Sym & = 4 is analogous. [

Below we prove that for any 3—order linear ODE £ with dim Sym & = 10 there is
a point transformation transforming £ to the equation ¢y’ = 0. Taking into account
this fact and the last theorem, we obtain that the problem of local classification of 3-
order linear ODEs with respect to contact transformations is reduced to the problem
of local classification of these equations with respect to point transformations.

3. THE EQUIVALENCE PROBLEM FOR 3—ORDER LINEAR ODESs

3.1. Let &£ be the equation P3 = V(X)- P + W(X)-Y, let £ be the equation
ps = v(x) - p1 + w(x) -y, and let f be an arbitrary point transformation defined
by (1.2). It is not hard to prove that the transformation f transforms £ to the

following equation

ps =u' - (p2)® +u” - po + 0,



12 CONTACT CLASSIFICATION OF 3-ORDER LINEAR ODES

where the coefficients u!, 42, u® are defined by the formulas
1 Xy + ple

YT XY, - VX,

[XyZpl — (Xg +p1Xy)Zp1p1 ],

2 _ X:v +p1Xy
XY, — Vo X,
- 2(Z:cp1 +p1Zyp1)(Xm +p1Xy)
— Zy(Xe +p1Xy) + (Ze + p17y) Xy |,

u

[Zpl (Xaz + 2p1 Xgy + (p1)2ny)

3 Xy +p1Xy

B Xme—Ywa[( +2p1 Xy + (p1)" Xy ) (Ze + 12,)
~ (Zoz + 20170y + (01)* Zyy) (Xo + p1 X))
+(VZ+WY) (X, +p1X,)%],
Y:c +p1Yy
where 7 = ————,
X:c +p1Xy

It is clear that f transforms & to &£ iff the collection of functions X (z,y), Y (z,y)
defining f is a solution of the following system of PDEs

XyZy, — (X +p1Xy)Zp1p1 =0, (3.1)

Zp1 (Xm:c + 2p1me + (pl)szy)
= 2(Zap, +P1Zyp, ) (Xo + p1Xy)

— Zy(Xg + 01 Xy)+ (Zs + 1 Zy) X, =0, (3.2)
X:v +p1Xy 2
Xoz +2p1 X, X Ly Z
Xme_Yme[( + P1 y+(p1) yy)( +p1 y)
- (Zac:v + 2plzacy + (pl)zzyy)(Xm +p1Xy)

+ (VZ+WY)( Xy + p1Xy)?] = vp1 + wy. (3.3)

Therefore the local equivalence problem for £ and £ with respect to point trans-
formations consists in obtaining of an existence criterion of a point transformation
(X(z,y), Y(z,y)) satisfying to system (3.1) — (3.3).

Let us find this criterion. To this end we consider equation (3.1). Solving this
equation  with  respect to Z, ~ and taking into account that

(X(z,y), Y(z,y)) define a point transformation, we get
Zp, = A(z,y) - (Xz +p1Xy) and A(z,y) #0 everywhere.

It follows that,
1
Z = EAXyp% + AX,p1 + B(x,y).

Y:c + ple

Taking into account that Z =
& X:c + ple

, we get the following equation

1 1
5A(Xy)%oi + 5AXwXﬂﬁ +(AX2+ BX, - Y,)p1 + BX, - Y, = 0.
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The functions X, Y, A, B do not depend on p;. Therefore the last equation is
equivalent to the following system of PDEs

A(X,)? =0, AX,X,=0, AX2+BX,-Y,=0, BX,-Y,=0.
From this system we easily get the following results:

X =X(z), Z=A(x,y)Xep1+ Blz,y), Yo,y Alz,y)#0, (3.4)
Y, = BX,, Y,=AX2,
By = 24X, + As X,

Now substituting obtained expressions for X and Z in equation (3.2), we get
3A,X2p1 + (AXye + 24, X, + B,) X, = 0.
Obviously, this equation is equivalent to the following system of PDEs
Ay =0, AX,;; +2A4,X,+b,=0.
It follows from the first equation of this system that A = A(x). Comparing the

second equation of this system with equation (3.6), we get AX,, + A, X, = 0.
Whence

K
A=_— KeR'/{0).

Substituting this expression for A in the second equation of (3.5), we get Y, = K X,.
Whence Y = KX,y + C(z). Thus we have
X=X(z), Y=KX,y+C(z), KecR" {0} (3.7)

Now substituting the obtained expressions for X and Y in equation (3.3), we get

X X..\?2
_9 T TT Xz .
(&)z+(&) X2V

+{—< >+ < >+XmeV+XSW—w]y

Y4

X, X, \ X,
1 Cw Cx Xxw 2 _
x| (%), 7 (£), 52 e rxiwe] <o

Obviously, this equation is equivalent to the following system of PDEs

X X, \2
_9 xrT T X2 B _ ‘
<x¢>;+<xm>*-wV v =0, (3.8)
X X, /(X
B rxr T rxr Xmme Xg B _ ‘
<Xm>m+Xm <Xm>m+ V+XW—-—w=0, (3.9)

X X Xac:v
— <C ) + <C—> < T XV + X2WC = 0. (3.10)
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Now it is clear that if there exist a point transformation satisfying system (3.1)
— (3.3), then it is defined by formulas (3.7), where X (z) satisfies to system (3.8)
— (3.9) and C(x) is a solution of the ODE obtained by substitution the solution
X (z) in (3.10). Therefore our local equivalence problem for £ and £’ is reduced
to obtaining of an existence criterion of a local diffeomorphism X (z) satisfying to
system (3.8) — (3.9).

Let us obtain this criterion. To this end we differentiate equation (3.8) with
respect to x and subtract the obtained equation from doubled equation (3.9). As
a result we get the following equation

(Vx —2W) X2 — (v, — 2w) = 0. (3.11)

It is clear that system of ODEs (3.8) — (3.9) is equivalent to system of ODEs (3.8),
(3.11).

Suppose both dim Sym £ and dim Sym &’ are equal to 10. Then it follows from
Theorem 2.1 that Vx — 2W = 0 and v, — 2w = 0. Therefore system (3.8), (3.11) is
reduced to ODE (3.8). Obviously, there is local diffeomorphisms satisfying to this
equation.

Thus in particular we obtain the following statements:

Theorem 3.1. Let £ and £' be 3-order linear ODEs admitting a 10-dimensional
algebras of classical symmetries; then there exist a point transformation transform-
ing £ to &'.

Corollary. (The local contact classification of 3—order linear ODFEs admitting a
10-dimensional classical symmetry algebra.)

Let £ be a 3—order linear ODE with dimSym & = 10; then the equation £ is
locally equivalent to the equation ps = 0 at every point x3 € €.

Now let dimSym & # 10 and dim Sym &” # 10. Then it follows from Theorem
2.1 that (Vx — 2W)(X) # 0 and (v, — 2w)(z) # 0 almost everywhere. Therefore
every solution X (z) of (3.11) is a local diffeomorphism.

Ve — 2W
Vx —2W
for X, in (3.8), we obtain the following relation

2((Vx—2W)x) 1 (x=2W)x\" |
3\ Vx—2W ), 9\ Vx-—2W

2 ((vy — 2w), 1 [ (vy —2w)z \ >
=zl |l V5] +v
3 Ve —2w ). 9 Vp — 2W
Thus we obtain the following statement

Theorem 3.2. Let £ be the equation P3 = V(X) - Py + W(X) Y, let £ be the
equation ps = v(x) - p1 + w(x) -y, and let both dim Sym & and dim Sym &’ be equal
to 5 or 4. Then & and &' are locally equivalent iff there is a solution of (3.11)
satisfying to equation (3.12).

1/3
It follows from (3.11) that X, = < > . Substituting this expression

(Vx —2W) (X (2)) =
(3.12)

(vy — 2w)~23(x).

The following statement follows from above-mentioned arguments.
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Theorem 3.3. If the equations Ps = V(X )-Pi+W(X)-Y andps = v(x)-p1+w(z)-y
are locally equivalent, then a transformation transforming the first equation to the
second one can be chosen in the form

X =X, 3.13
Y =X, -v. (3.13)

Thus we have reduced the problem of local classification of 3—order linear ODEs
with respect to contact transformation to the problem of local classification of

equations ps = v(x) - p1 + w(z) - y with respect to transformations of the form
(3.13).

4. DIFFERENTIAL INVARIANTS OF 3-ORDER LINEAR ODESs

4.1. Geometric structures of equations pg = v(x) - p; + w(x) - y. Let & be
an arbitrary equation P3 = V(X) - P, + W(X) - Y. It is easy to verify that every
transformation (3.13) transforms this equation to the equation p3 = v(z)-p1+w(z)-y
of the same form. The coefficients v and w of the last equation are expressed through
the coefficients V and W of the initial equation by the formulas

X X, \2
v (x)ﬁ(x)* 2y, (4.1)
X X X
= — T T T X,oXa X3W. 4.2
w (Xw>m+Xw<Xw>m+ V+ X2W. (4.2)

Note that these formulas are the same as (3.8), (3.9).

Obviously, the family of all transformation of the form (3.13) is a Lie pseu-
dogroup. It follows that formulas (4.1), (4.2) define the action
p:Gix RE =R, p: (Xe, Xz Xowss Xozzz) X (VW) — (v, w).

Therefore the collections V(X), W (X) and v(x), w(z) are the expressions of some
geometric structure of type 1 on R! in the coordinate systems X and x respectively.
We denote this structure by ~e.

Obviously, £ is identified with ~¢.

We see that the bundle of geometric structures of type p in our case is the
product bundle p,, : R? x R! — R!. We denote by z; ul,u?; ui,u?;... ;u,lc,u%C the
standard coordinates in J kpu.

Let Sym ¢ be algebra of all infinitesimal symmetries for ~g.

Proposition 4.1.
(1) if dimSym & = 10, then dim Symyg = 3;
(2) if dimSym¢& =5, then dimSym g = 1;
(3) if dimSym & =4, then dim Sym g = 0;

Proof. Tt is obvious that a transformation (3.13) is a symmetry for £ iff the diffeo-
morphism x — X (z) is a symmetry for v¢.

Let ¢ be a vector field on J°7r and let the flow of ¢ be generated by transforma-
tions (3.13). Then ( is expressed in the standard coordinates =, y on J°7 by the
following formula

0 0
¢= a($)£ +aw'y8_y-
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0
It is obvious that ( is a classical symmetry for £ iff the vector field a(x)a— is an
x
infinitesimal symmetry for ~g.

Generating function of ( is

—a(z) -p1+agz -y (4.3)

Let ¢ be the generating function of an arbitrary classical symmetry for £.

It follows from Theorem 2.1 that if dim Sym € = 10, then ¢ is of the form (4.3)
iff ¢ =b(x)-p1 — by -y, where b is a solution of £. Taking into account that there
are three linear independent solutions for £, we see that dim Sym g = 3.

In just the same way, if dimSymé& = 5, then ¢ is of the form (4.3) iff
o = K- ( (ve —2w)" Y% py +( (vp —2w)~Y3 ) .y ), where K € R'. This
means that dim Symyg = 1.

If dim Sym £ = 4, then there is no ¢ of the form (4.3). Therefore dim Sym g = 0.
[

4.2. Differential invariants of equations ps = v(x) - p1 + w(x) - y. Let geo-
metric  structure e of type p on R! be defined by components
ul = V(X), u? = W(X) in the coordinate system X on R!. We subject e
to an arbitrary diffeomorphism x +— X (x). Suppose that obtained geometric struc-
ture g/ is defined by components u! = v(z), u? = w(x); then components of these
structures are connected by formulas (4.1), (4.2).

We differentiate equation (4.1) with respect to z and subtract the obtained equa-
tion from doubled equation (4.2). As a result we get the relation

(Vx —2W)(X4)? — (vy — 2w) = 0. Therefore,
X, - (Vx = 2W)Y3 = (v, — 2w)/3. (4.4)
This means that the differential form
w=(ul—2-u2)Y3dy

on J'p, is a differential invariant for geometric structures of type p.

We say that w is a differential invariant for ODEs of the form
ps =v(z) - p1+w(z)-y.

We denote by w(€) the value w( g ) of differential invariant w on the geometric
structure yg (see subsection 1.3). Thus if £ is the equation ps = v(z) - p1 +w(z) - y;
then

w(E) = (v, —2-w)3dx.
Obviously, the following proposition is valid.

Proposition 4.2. Let £ be the equation p3 = v(x) - p1 + w(x) - y; then

(1) dimSymé& = 10 iff w(E) = 0;
(2) if w(€E) =0, then the equation £ is locally equivalent to the equation p3 =0
at every point r3 € £.
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Now let w(&) # 0.

(vy — 2w)/?
(Vx —2W)1/3°
expression for X, in (4.1), we obtain relation (3.12). This relation means that the
function I defined on J?p, by formula (4.5) is a scalar differential invariant for
geometric structures of type p.

I [zD (Rld_2)y 1 (Do 2y,

3 ul — 2u? 9\ ul—2u?

Taking into account (4.4), we have X, = Substituting this

(ug —2u?)7%%, (4.5)

N R I
here D = ; %—kul%—kuz o
with respect to x.
We say that [ is a scalar differential invariant for ODEs of the form
ps =v(z) -p1+w(z)-y.
By definition, put I(£) = I(vg ). Thus if £ is the equation p3 = v(x)-p1+w(x)-y;
then

1) (@) = [; (te=2e) <ﬂ) oy

. Ful

— +... is full derivative operator
duy,_q

(vy — 2w)~2/3(z). (4.6)

Vg — 2W Vg — 2W

Now Theorem 3.2 can be rewritten in the following way.

Proposition 4.3. Let £ be the equation P3s =V (X)- P+ W(X)-Y, let £ be the
equation pg = v(z) - p1 +w(x) -y, and let w(E) # 0 and w(E") #0. Then € and &’
are locally equivalent iff there is a solution of (3.11) satisfying to the equation

I(€)(X(z)) = I(&) (). (4.7)

4.3. Equations with 5—dimensional algebra of classical symmetries.

Proposition 4.4. Let £ be the equation ps = v(x)-p1+w(x)-y; then dimSym & =5
iff 1(€) is a constant.

Proof. Suppose dimSym & = 5. It follows from Proposition 4.1 that y¢ admits a
1-dimensional algebra of infinitesimal symmetries. Hence I(£) is an integral for
any & € Sym~g. It follows that I(£) is a constant.

Conversely, suppose I(€) is a constant. By definition, put u = (v, — 2w)
where v, w are components of expression of 7¢ in the coordinate system xz on R!.
Then I(€) can be rewritten in the form I(€) = —2ug,u + (uyz)? + vu?. Therefore
dI(€)

dx

is everywhere dense, we obtain that the condition

~1/3
?

1
= —2U(Upgy — VUgy — vau) Taking into account that the set {x | u(z) # 0}
dI(€)
x
condition of corollary of Theorem 2.1 guaranteeing that dim Sym & = 5. |

Proposition 4.5. Suppose £ is the equation P3 =V (X)-Pi+W(X)-Y, & is the
equation pg = v(z) - p1 + w(z) -y, and I(E) and I1(E') are constants; then € and &’
are locally equivalent iff 1(E) = I1(E').

Proof. This statement is an obvious consequence of Proposition 4.3. [

= 0 is equivalent to the

It follows from (4.6) that for every equation £ of the form ps = K - p; + v,
K € R!, we have I(£) =27%/3. K.
Now the following theorem is obvious.



18 CONTACT CLASSIFICATION OF 3-ORDER LINEAR ODES

Theorem 4.6. (The local contact classification of 3—order linear ODEs admitting
a 5-dimensional classical symmetry algebra.)

(1) Let € be a 3-order linear ODE with dim Sym & = 5; then & is locally equiv-
alent to the equation ps = 2%/3 . I(E) - p1 +y at almost every point x3 € £

(2) If numbers K and K' are not equal, then the equations ps3 = K - p1 +y and
p3 = K' - p1 +y are not local equivalent.

(3) The complete list of "simplest” locally nonequivalent reqular 3-order lin-
ear ODEs with 5—dimensional algebra of classical symmetries consists of
equations ps = K -p1 +y, K € Rl

4.4. Equations with 4—-dimensional algebra of classical symmetries. Let
€ be the equation p3 = v(x) - p1 + w(x) - y with dimSym & = 4. Then I(£) is not
a constant function in domain of definition of the coefficients v and w. Therefore
I(€) can be considered as new independent variable in some neighborhood of point

dl
x such that %(m) # 0.
Subjecting £ to the point transformation
X = 1(&)(=),
v — dI(E) .
dx

we obtain the equation P3 = V(X)- P+ W(X)-Y, where the coefficients V and W
considering as a functions of I are scalar differential invariants. We say that this
equation is the nvariant form of £.

Let £ be the equation ps = v(z)-p1 +w(x) - y; then this equation is the invariant
form of &£ iff the following identity holds

I(&)(z) = . (4.8)

Proposition 4.7. Suppose & and & are equations of the form
ps = v(z)-p1 + w(z) -y and dimSymE = dimSym &’ = 4; then £ and &' are
locally equivalent iff the invariant forms for £ and £ are the same.

Proof. Let P3 = V(X) - P, + W(X) Y be the invariant form of £ and let
p3 = v(x) - p1 + w(z) - y be the invariant form of £’.
Suppose £ and &’ are locally equivalent. Then equality (4.7) for these equations
is X = z. Hence it follows from formulas (4.1) and (4.2) that V = v and W = w.
The converse statement is obvious. |

Let the equation ps = v(z)-p1 +w(x)-y be the invariant form of some equation €.
By definition, put u = (v, — 2w)/3. Then it follows from (4.6) that the coefficients
v and w are represented as the functions of u in the following way:

e (3) + (5)
v (2, (57, -]
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Consider an arbitrary ODE of the form
o= =2 (%) ()]
w3 [(m-2 (), (2)), -]

where u is an arbitrary nowhere vanishing smooth function of z.
Proposition 4.8. FEquation (4.9), is an invariant form.
Proof. The proof is by direct verification of identity (4.8). [ |

Theorem 4.9. (The local contact classification of 3-order linear ODFEs admitting
a 4—dimensional classical symmetry algebra.)

(1) Let € be a 3-order linear ODE with dim Sym & = 4; then & is locally equiv-
alent to some equation (4.9) at almost every point x3 € .

(2) If functions u and u' are not equal one to another in some neighborhood and
they are nowhere vanishing, then the corresponding equations of the form
(4.9) are not locally equivalent.

(3) The complete list of "simplest” locally nonequivalent reqular 3-order lin-
ear ODEs with j—dimensional algebra of classical symmetries consists of
equations (4.9), where functions u are not equal one to another in some
neighborhood and they are nowhere vanishing.

Proof. (2) Assume the converse. Then the invariant forms of these equations are
the same. Therefore u = /.
Statements (1) and (3) are obvious . |
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