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Abstract. It is known that a linear ordinary differential equation
of order n ≥ 3 can be transformed to the Laguerre–Forsyth form
y(n) =

∑n
i=3 an−i(x)y(n−i) by a point transformation of variables.

The classification of equations of this form in a neighborhood of a
regular point up to a contact transformation is given.

1. Introduction

This paper is devoted to the problem of local classification of n-
th order linear ordinary differential equations (ODE) up to a contact
transformation. For n ≤ 2, it is well known (for example, see [2])
that any n-th order linear ODE can be transformed locally to the form
y(n) = 0 by a point transformation. For n ≥ 3, this statement is
incorrect: there is infinite number of different equivalence classes of
linear ODEs.

First this problem was posed by classics of the XIX century E. La-
guerre, G.-H. Halphen and others. They obtained results concerning
classification of third and forth orders linear ODEs, see [7, 3]. Essen-
tially, this problem was forgotten after that.

Here, we solve the problem for n ≥ 3 in a neighborhood of a regular
point. We considered the case n = 3 in [12, 13]. Our approach to the
problem is as follows.

In their paper [8], F.M. Mahomed and P.G.L. Leach proved that
dimension of the algebra of point symmetries of an n−th order linear
ODE equals either n + 4 or n + 2, or n + 1. We prove (Theorem 3.2)
that dimension of the algebra of point symmetries of a linear ODE is an
invariant of contact transformations that take the set of linear ODEs
to itself.

It is well known (see [11, 4, 9]) that any linear ODE can be trans-
formed by a point transformation to the Laguerre–Forsyth form

(1) y(n) = an−3(x) y
(n−3) + an−4(x)y

(n−4) + · · · + a0(x)y.
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We prove (Theorem 3.3) that the Laguerre–Forsyth form of a linear
ODE with n+ 4-dimensional algebra of point symmetries is y(n) = 0.

For linear ODEs with n+ 2 and n+ 1-dimensional algebras of point
symmetries, we prove (Theorem 3.6) that a contact transformation that
takes one of these equation to the other one is a point transformation.
Further, for any two equations E1 and E2 of the form (1), we prove
(Theorem 3.7) that if there exists a point transformation that takes E1

to E2, then there exists a point transformation of the form

(2) f(x) =
αx+ β

γx+ δ
, f̂(x, y) = |f ′|(n−1)/2 · y, α, β, γ, δ ∈ R

that takes E1 to E2. Transformations (2) take the set of all ODEs of
the form (1) to itself. Thus, the problem of local classification of linear
ODEs with respect to contact transformation is reduced to classifica-
tion of ODEs (1) with respect to transformations (2).

A transformation (f, f̂) of the form (2) is generated by a projective

transformation f of R
1. The correspondence f �→ (f, f̂) is an isomor-

phism from the group G of projective transformations of R
1 to the

group of point transformations of form (2).
Further, we identify ODE (1) with the section

SE : x �→ (an−3(x), an−4(x), . . . , a0(x))

of the trivial bundle π : E = R
1 ×R

n−2 → R
1. The transformation law

of coefficients of ODEs (1) under transformations (2) defines the lifting
of every transformation f ∈ G of the base of π to a diffeomorphism f (0)

of the total space E of π. So, it is possible to consider the transfor-
mation law of coefficients of ODEs (1) under (2) as the transformation

law S �→ f(S)
def
= f (0) ◦S ◦ f−1 for sections of π under projective trans-

formations of the base R
1. Obviously, the transformation (f, f̂) takes

E1 of the form (1) to ODE E2 iff f(SE1) = SE2. Thus the problem of
local classification of linear ODEs reduces to the one of classification
of germs of sections of π w.r.t. the group G. Since this group is tran-
sitive, the last problem is reduces to classification of germs at 0 ∈ R

1

of sections of π w.r.t. the isotropy group G0 ⊂ G of 0 ∈ R
1. We obtain

this classification for regular germs in Theorem 4.8 and Corollary 4.9.
Finally, we calculate (Theorem 5.2) scalar differential invariants of

the action of the group G+ = { f ∈ G | f ′ > 0} on π. This gives a
solution to the equivalence problem for regular linear ODEs (Theorem
5.4) resulting in canonical forms for all nonequivalent regular linear
ODEs (Theorem 5.8 and its corollary).

All manifolds below and maps are assumed to be smooth; R
n denotes

the n-dimensional arithmetical space.
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2. Preliminaries

Let us recall necessary notation and results of the geometry of differ-
ential equations [5, 6] and some facts concerning linear ODEs [8, 11].

2.1. Jet bundles.

2.1.1. Cartan distribution. Let E and M be smooth manifolds of di-
mensions n+m and n respectively and π : E →M be a smooth bundle.
Denote by [S]kx the k-jet of a section S at x ∈ M . Let πk : Jkπ → M ,
πk : [S]kx �→ x, k = 0, 1, 2, . . . ,∞, be the bundle of k-jets of all sections
of π. Moreover, the projection πk,r : J

kπ → J rπ, k > r, is defined by
πk,r([S]kx) = [S]rx. Every section S of π generates the section jkS of πk
by the formula jkS : x �→ [S]kx. Denote by L(k)

S the image of the section
jkS.

Let Txk
(Jkπ) denote the tangent space to Jkπ at xk ∈ Jkπ, Txk

(L
(k)
S )

denote the tangent space to L
(k)
S at xk ∈ L(k)

S . Consider all L
(k)
S contain-

ing xk. The subspace Cxk
⊂ Txk

(Jkπ) spanning the union of Txk
(L

(k)
S )

is called the Cartan plane at xk. The distribution C : xk �→ Cxk
is called

the Cartan distribution on Jkπ.

2.1.2. Lie transformations. A (local) diffeomorphism of Jkπ that takes
the Cartan distribution to itself is called a Lie transformation. A Lie
transformation of J0π (that is an arbitrary diffeomorphism of J0π) is
called a point transformation. A Lie transformation of J1π is called a
contact transformation if m = 1.

Every Lie transformation f : U → U ′ of Jkπ can be lifted canoni-
cally to the Lie transformation f (r) : π−1

k+r,k(U) → π−1
k+r,k(U

′) of Jk+rπ,

r = 1, 2, . . . , such that πk+r,k+l ◦ f (r) = f (l) ◦ πk+r,k+l for r ≥ l. Indeed,
f (r) is defined in the following way. A point xk+1 = [S]k+1

x ∈ Jk+1π

is identified by Kxk+1
= Txk

(L
(k)
S ), where xk = πk+1,k(xk+1). The dif-

ferential f∗ maps Kxk+1
to the subspace f∗(Kxk+1

). If f∗(Kxk+1
) is

projected on M nondegenerately, then there is x′k+1 ∈ Jk+1π such that

Kx′k+1
= f∗(Kxk+1

) and we set f (1)(xk+1) = x′k+1. Obviously, f (1) is a

Lie transformation of Jk+1π defined almost everywhere in π−1
k+1,k(U).

Setting f (r+1) = (f (r))(1), we define the Lie transformation f (r) for all
r = 1, 2, . . . Clearly, f (r) is defined almost everywhere in π−1

k+r,k(U). We

shall say for brevity that f (r) is defined in π−1
k+r,k(U).

It is well known [5, 6]) that any Lie transformation is the lifting of
some point transformation if m > 1 and, if m = 1, any Lie transfor-
mation is the lifting of a contact transformation.

2.1.3. Lie fields. A vector field ξ on Jkπ is called a Lie field if its flow
is generated by Lie transformations. A vector field in J0π is said to
be a point vector field. A Lie field on J1π is called a contact vector
field if m = 1. Let ξ be a Lie field in Jkπ and let ft be its flow. Then
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the flow f (r)
t of Lie transformations defines the Lie field ξ(r) on Jk+rπ,

r = 1, 2, . . . such that (πk+r,k+l)∗ξ(r) = ξ(l), r ≥ l.

2.2. Ordinary differential equations.

2.2.1. Contact classification. Let π : R
1 ×R

1 → R
1 and x, y, p1, . . . , pk

be standard coordinates on Jkπ. Any k-th order ODE

F (x, y(x),
dy

dx
, . . . ,

dky

dxk
) = 0

is identified with the submanifold

E = { F (x, y, p1, . . . , pk) = 0 } ⊂ Jkπ.

A “usual” solution S(x) is identified with the submanifold L
(k)
S ⊂ E

corresponding to a section S : x �→ S(x) of π. Obviously, L
(k)
S is a

1-dimensional integral manifold of the Cartan distribution on Jkπ. A
“multivalued” solution of E is a 1-dimensional integral manifold L of
the Cartan distribution on Jkπ such that L ⊂ E. Locally, almost

everywhere, a “multivalued” solution has the form L(k)
S .

It is natural to classify k-th order ODEs up to a diffeomorphism of
Jkπ that takes the set of all solutions of ODEs to itself. Such diffeo-
morphisms are Lie transformations. Hence, they are liftings of contact
transformation. So, we come to the problem of ODE classification up
to a contact transformation.

Let E1,E2 ⊂ Jkπ be k-th order ODEs and f be a point (contact)
transformation. We say that f (locally) takes E1 to E2 if f (k) (f (k−1))
takes (locally) the submanifold E1 ⊂ Jkπ to the submanifold E2 ⊂ Jkπ.
We say that ODEs E1 and E2 are equivalent if there exists a point
(contact) transformation that takes (locally) E1 to E2.

2.2.2. Point and contact transformations. Any point transformation f
is defined in coordinates by the formulas

(3) X = X(x, y), Y = Y (x, y).

Obviously, the lifting f (k) is defined in standard coordinates by

(4) X = X(x, y), Y = Y (x, y), P1 =
DY

DX
, . . . , Pk =

DPk−1

DX
,

where

(5) D =
∂

∂x
+ p1

∂

∂y
+ p2

∂

∂p1
+ · · · + pk+1

∂

∂pk
+ · · ·

is the operator of the total derivative over x.
It is easy to show that a contact transformation is defined in standard

coordinates by the formulas

(6) X = X(x, y, p1), Y = Y (x, y, p1), P1 =
Yx + p1Yy
Xx + p1Xy

,
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where the functions X(x, y, p1), Y (x, y, p1) are connected by the rela-
tion

Yp1(Xx + p1Xy)−Xp1(Yx + p1Yy) = 0.

2.2.3. Point and contact vector fields. Let ξ be a contact vector field.
Then ξ can be represented in standard coordinates as

(7) ξ = ξϕ = −ϕp1
∂

∂x
+ (ϕ− p1ϕp1)

∂

∂y
+ (ϕx + p1ϕy)

∂

∂p1
,

where the function ϕ = ϕ(x, y, p1) is the generating function of ξ.
Let ζ be an arbitrary point vector field. It has the form

(8) ζ = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y

in standard coordinates. The lifting ζ(1) is a contact vector field. The
generating function of ζ(1) is

(9) b(x, y)− a(x, y) · p1.

Conversely, if the generating function of a contact vector field has the
form (9), then this vector field is the lifting of some point vector field.

Let us transform a contact vector field by contact transformation
(6). It is easy to verify that the generating functions Φ of the obtained
vector field and ϕ are connected by the formula

(10)
Xx + p1Xy

XxYy −XyYx
Φ(X, Y, P1) = ϕ(x, y, p1).

2.2.4. Classical symmetries. A point vector field ζ in J0π is called a
point symmetry of a differential equation E ⊂ Jnπ if ζ(n) is tangent to
E. By PntE we denote the set of all point symmetries of E. A contact
vector field ξ in J1π is called a contact symmetry of E ⊂ Jnπ if ξ(n−1)

is tangent to the submanifold E. Point and contact symmetries are
called classical symmetries. By SymE we denote the set of all classical
symmetries of E.

The space of generating functions of classical symmetries for an ODE
pn − F (x, y, p1, . . . , pn−1) = 0 coincide with the space of solutions ϕ =
ϕ(x, y, p1) of the linear PDE [5, 6]

(11) (D̄n − ∂F

∂pn−1
D̄n−1 − · · · − ∂F

∂p1
D̄1 − ∂F

∂y
)(ϕ) = 0,

where

D̄ =
∂

∂x
+ p1

∂

∂y
+ p2

∂

∂p1
+ · · · + pn−1

∂

∂pn−2
+ F

∂

∂pn−1
.

2.3. Linear ordinary differential equations.
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2.3.1. Point transformations of linear ODEs. Any linear ODE can re-
duced to the form

(12) Pn = An−2(X)Pn−2 +An−3(X)Pn−3 + · · · +A0(X)Y

by a point transformation. It is known [11] that an arbitrary equation
(12) of order n ≥ 3 is reduced to the Laguerre–Forsyth form (1)

pn = an−3(x)pn−3 + an−4(x)pn−4 + · · · + a0(x)y

by the point transformation

X = f(x), Y = |f ′|(n−1)/2y,

where f is a solution of the ODE

2f ′f ′′′ − 3(f ′′)2 − 24
(n − 2)!

(n + 1)!
(f ′)4An−2(f) = 0.

This transformation is called the Laguerre–Forsyth transformation of
(12). It follows from this result that the problem of local classification
of linear ODEs up to a contact transformation reduces to classification
of ODEs of the form (1). The following proposition holds [11]:

Proposition 2.1. Let E be an ODE of the form (1). Then a point
transformation X takes E to an ODE of the same form iff

(13) X =
α · x+ β

γ · x+ δ
, Y = C · |X ′|(n−1)/2 · y, α, β, γ, δ, C ∈ R .

2.3.2. Point symmetries of linear ODEs. Let E be an arbitrary ODE
(1)). In [8] it was proved that a point symmetry of E has the form

(ϕ(x)
∂

∂x
+
n− 1

2
ϕ′y

∂

∂y
) + Cy

∂

∂y
+ γ(x)

∂

∂y
,

where γ(x) is a solution of E, C ∈ R, and ϕ(x) is a solution of

(14)




ϕ′′′ = 0

3an−3ϕ′ + a′n−3ϕ = 0

(k − 1)(n − (k − 1))

2
an−k+1ϕ′′ + kan−kϕ′ + a′n−kϕ = 0,

k = 4, 5, . . . , n.

Dimension of the solution space of system (14) can be equal to either
3, 1, or 0. It follows that dimPntE can be equal to either n+4, n+2,
or n+1. Obviously, dimension of the algebra of point symmetries is an
invariant of point transformations. Below, we prove (Theorem 3.2) that
this dimension is an invariant of contact transformations that take the
set of ODEs of the form (1) to itself. Thus the set of all linear ODEs E of
the form (1) is divided into three nonintersecting families according to
dimPntE. These families are invariant w.r.t. contact transformations.
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3. Symmetries and transformations of linear ODEs

3.1. Classical symmetries. Let E be an n-th order linear ODE. In
[13], we proved for n = 3 the following results: dimSymE can be 10, 5,
or 4; if dimSymE = 10, then SymE is generated by three contact and
seven point symmetries; if dimSymE = 5 or 4, then SymE = PntE.

Proposition 3.1. If n > 3, then SymE = PntE.

Proof. We can assume without loss of generality that E has the form (1).
Let ϕ(x, y, y(1)) be the generating function of a classical symmetry.

The generating function of a point symmetry is α(x, y)y(1) + β(x, y).
Hence, we must check that ϕy(1)y(1) ≡ 0. To this end, let us consider
equation (11) for E:

(15) (D̄n − an−3D̄
n−3 − an−4D̄

n−4 − · · · − a1D̄
1 − a0)ϕ = 0.

Obviously,

D̄n(ϕ) = D̄n−2(ϕy(1)y
(3) + ϕy(1)y(1)(y

(2))2 + low degree terms) =

=

{
D̄(3ϕy(1)y(1)y

(2)y(3) + l.d.t.), n = 4

D̄n−3(ϕy(1)y
(4) + 3ϕy(1)y(1)y

(2)y(3) + l.d.t.), n > 4

=




3ϕy(1)y(1)(y
(3))2 + l.d.t., n = 4((

n− 3

n− 5

)
+ 3

(
n − 3

n − 4

)
+ 3

)
ϕy(1)y(1)y

(3)y(n−1) + l. d. t., n > 4

It now follows from (15) that ϕy(1)y(1) ≡ 0. �
Obviously, dimension of the algebra of classical symmetries is invari-

ant under contact transformations. From the above mentioned results
of [13] and this proposition, we get

Theorem 3.2. Dimension of the algebra of point symmetries of a lin-
ear ODE is invariant under contact transformations that preserve the
set of linear ODEs.

3.2. Linear ODEs with n+4-dimensional point symmetry alge-
bra. The following theorem gives local classification of all linear ODEs
with n+ 4-dimensional algebra of point symmetries.

Theorem 3.3. The Laguerre–Forsyth form of a linear ODE with n+4-
dimensional algebra of point symmetries is pn = 0.

Proof. Let E = { pn = an−3(x)pn−3 + an−4(x)pn−4 + · · · + a0(x)y } be
anODE of the form (1) with dimPntE = n+ 4. From the result of [8]
cited in Subsection 2.3.2, we get that PntE contains symmetries

ϕi(x)
∂

∂x
+
n − 1

2
ϕ′
iy
∂

∂y
,
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where ϕi, i = 1, 2, 3, are linear independent solutions of system (14).
From the second equation of the system, we have an−3 ≡ 0; from the
third equation, we have an−4 ≡ 0, etc. �

Corollary 3.4. Let E1 and E2 be n-the order linear ODEs with n+ 4-
dimensional algebras of point symmetries. Then there exists a point
transformation that takes (locally) one of them to the other.

Corollary 3.5. 1. The equation E = { pn = 0} is the only one in
the set of all ODEs of the form (1) that has n+ 4-dimensional
algebra of point symmetries.

2. The equation E = { pn = 0} is invariant w.r.t. all contact trans-
formations that preserve the equations (1).

3.3. Contact transformations of linear ODEs.

Theorem 3.6. Let E1, E2 be linear ODEs with n+ 2 or n+ 1-dimen-
sional algebras of point symmetries and f be a contact transformation
that takes E1 to E2. Then f is the lifting of a point transformation.

Proof. We can assume without loss of generality that E1 and E2 have
the form (1).

Assume dimPnt E1 = n + 2. The transformation f is defined in
standard coordinates by (6). Let Γ1(X), Γ2(X), Γ3(X) be linear inde-
pendent solutions of E1. We can consider these solutions as generating
functions of point symmetries of E1 (see Subsection 2.3.2). Eaech of
these functions is connected with the corresponding generating func-
tion of a point symmetry of E2 by (10). Taking into account the form
of generating functions of the n + 2-dimensional algebra PntE2 (see
Subsection 2.3.2), we obtain:

∆Γ1(X(x, y, y(1))) = K1(ϕ(x)y
(1) − n− 1

2
ϕ′y) + C1y + γ1(x)

∆Γ2(X(x, y, y(1))) = K2(ϕ(x)y
(1) − n− 1

2
ϕ′y) + C2y + γ2(x)

∆Γ3(X(x, y, y(1))) = K3(ϕ(x)y
(1) − n− 1

2
ϕ′y) + C3y + γ3(x)

where ∆ =
Xx + y(1)Xy

XxYy −XyYx
; Kj , Cj ∈ R, j = 1, 2, 3. If one of the

numbers K1, K2, K3 does not vanish, say K1 �= 0, then

∆(Γ2 −
K2

K1
Γ1) = (C2 −

K2

K1
C1)y + γ2 −

K2

K1
γ1

∆(Γ3 −
K3

K1
Γ1) = (C3 −

K3

K1
C1)y + γ3 −

K2

K1
γ1
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Then
K1Γ2 −K2Γ1

K1Γ3 −K3Γ1
is independent of y(1). Therefore

∂

∂y(1)

(
K1Γ2 −K2Γ1

K1Γ3 −K3Γ1

)
=
d

dX

(
K1Γ2 −K2Γ1

K1Γ3 −K3Γ1

)
Xy(1) = 0.

Suppose that Xy(1) �= 0. Then

K1Γ2 −K2Γ1 = K(K1Γ3 −K3Γ1),

where K ∈ R. This means that the solutions Γ1, Γ2, Γ3 are linear
dependent. From this contradiction, we have Xy(1) ≡ 0. Hence f is the
lifting of some point transformation.

Obviously, the proofs for K1 = K2 = K3 = 0 and dimPntE = n+ 1
are similar. �

From this result, Theorem 3.3, and Corollary 3.5, we have that clas-
sification problem for linear ODEs w.r.t. contact transformations re-
duces to that for equations of the form (1) w.r.t. point transformations.
Proposition 2.1 shows that the last problem reduced to classification
of equation of the form (1) w.r.t. transformations (13).

3.4. Reduction to the projective group. From (4), we have that
the lifting of transformation (13) to Lie transformation of Jnπ is defined
by

X =
α · x+ β

γ · x+ δ
, Y = C · |X ′|(n−1)/2 · y,

Pk = C · ∇k(|X ′|(n−1)/2 · y), k = 1, 2, . . . , n,

where ∇ =
1

DX
·D and D is operator (5). Consider two ODEs of the

form (1):

E1 = {Pn = An−3(X)Pn−3 +An−4(X)Pn−4 + · · · +A0(X)Y }
and

E2 = { pn = an−3(x)pn−3 + an−4(x)pn−4 + · · · + a0(x)y }.
Suppose, transformation (13) takes E1 to E2. This means that

C · ∇n(|X ′|(n−1)/2 · y) = C ·
n∑
i=3

An−i(X(x)) · ∇n−i(|X ′|(n−1)/2 · y).

Theorem 3.7. Let E1 and E2 be ODEs of the form (1). Then if there
exists a point transformation that takes E1 to E2, then there exist a
point transformation of the form (2)

f(x) =
αx+ β

γx+ δ
, f̂(x, y) = |f ′|(n−1)/2 · y, α, β, γ, δ ∈ R,

that takes E1 to E2.
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Thus the problem of local contact classification of linear ODEs re-
duces to that of local classification of ODEs of the form (1) w.r.t. point

transformations (2). From (2), we have that the map f �→ (f, f̂) is an
isomorphism from the group of projective transformations of R

1 to the
group of point transformations of the form (2).

4. Classification of linear ODEs

Here we reduce the classification problem for linear ODEs to that for
germs of sections of the bundle, related to an ODE, up to projective
transformations.

4.1. Bundles of linear ODEs.

4.1.1. The projective group. Denote by G the Lie group of all projective
transformations of R

1, i.e.,

G =

{
f(x) =

αx+ β

γ x+ δ

∣∣∣∣ α, β, γ, δ ∈ R and det

(
α β
δ γ

)
�= 0

}
.

It is easy to check that the set of nonconstant solutions of the equation

(16) 2f ′′′f ′ − 3(f ′′)2 = 0

coincides with G. Let

G+ = { f ∈ G | f ′ > 0 }, G− = { f ∈ G | f ′ < 0 }.
Obviously, G+ is the connected component of the unit in G, G =
G+ ∪ G−. Let µ ∈ G− be defined by µ(x) = −x, x ∈ R. Then
G− = µ ◦G+.

Denote by g the Lie algebra of G. It is easy to check that g as a
vector space over R is generated by the vector fields

(17) ξ0 =
∂

∂x
, ξ1 = x

∂

∂x
, ξ2 = x2 ∂

∂x
.

4.1.2. Bundles of linear ODEs of the Laguerre–Forsyth form. Let π : E =

R
1 ×R

n−2 → R
1 be the product bundle. Denote by x coordinates on

the base R
1 and by an−3, an−4, . . . , a0 coordinates on the fiber R

n−2.
We identify any linear ODE of the form (1)

E = { pn = an−3(x)pn−3 + an−4(x)pn−4 + · · · + a0(x)y }
with the section SE of π defined by the formula

SE : x �→ (x, an−3(x), an−4(x), . . . , a0(x)).

This identification E �→ SE is a bijection. We denote by ES the equation
corresponding to the section S under this identification.

Let

E2 = {Pn = An−3(X)Pn−3 +An−4(X)Pn−4 + · · · +A0(X)Y }
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be an ODE of form the (1). Subjecting E2 to an arbitrary transforma-

tion (f, f̂) of the form (2), we obtain linear ODE

E1 = { pn = an−3(x)pn−3 + an−4(x)pn−4 + · · · + a0(x)y }.
The coefficients of E1 are expressed in terms of the coefficients of E2

and the projective transformation f by equations of the following form

an−j = Fn−j(An−3, . . . , An−j ;
df

dx
, . . . ,

dj+1f

dxj+1
), j = 3, 4, . . . , n.

Obviously, the coefficients of E2 are expressed in terms of the coeffi-
cients of E1 and the projective transformation f−1 by the same equa-
tions

(18) An−j = Fn−j(an−3, . . . , an−j;
df−1

dX
, . . . ,

dj+1f−1

dXj+1
),

j = 3, 4, . . . , n. Equations (18) define the lifting of any projective
transformation f to a diffeomorphism f (0) of the bundle π such that
π ◦ f (0) = f ◦ π (in the domain of f (0)).

For any f ∈ G, we define the transformation of sections of π by the
formula

(19) S �→ f(S) = f (0) ◦ S ◦ f−1.

Now equations (18) can be represented as SE2 = f(SE1). Obviously,
the following statement holds.

Proposition 4.1. Let E1, E2 be equations of the form (1). Then a

transformation (f, f̂) of the form (2) takes E1 to E2 iff f(SE1) = SE2 .

Thus, the problem of local classification of linear ODEs of the form
(1) up to transformations of the form (2) reduces to classification of
germs of sections of π up to a projective transformation of R

1.
Since the action of G in R

1 is transitive, the last problem reduces
to classification of germs at 0 ∈ R

1 of sections of π w.r.t. the isotropy
group G0 = { f ∈ G | f(0) = 0 } ⊂ G of 0 ∈ R

1.

4.1.3. Jet bundles. Let x; an−3, . . . , a0; a′n−3, . . . , a
′
0; . . . ; a

(k)
n−3, . . . , a

(k)
0 be

standard coordinates on the jet bundle πk : J
kπ → R

1, k = 0, 1, 2, . . . ,∞.
Any diffeomorphism f (0) f ∈ G can be lifted to the Lie transformation
f (k) of Jkπ, k = 1, 2, . . . ,∞ by the formula

(20) f (k)([S]kp) = [f (0) ◦ S ◦ f−1]kf(p).

Obviously, for any l > m, one has πl,m ◦ f (l) = f (m) ◦ πl,m (in the
domains of f (l)). In particular, µ(k) is defined in standard coordinates
by the formula

(21) µ(k)((x, a(r)
n−j)) = (−x, (−1)j+ra(r)

n−j),

j = 3, 4, . . . , n, r = 0, 1, . . . , k.
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Let G(k) = {f (k) | f ∈ G }, k = 0, 1, 2, . . . ,∞, and

G
(k)
+ = { f (k) | f ∈ G+ }, G(k)

− = { f (k) | f ∈ G− }.

Obviously, G(k)
+ is the connected component of the unit of G(k) and

G(k) = G(k)
+ ∪ G(k)

− , G(k)
− = µ(k) ◦G(k)

+ .

The lifting of projective transformations of the base R
1 to diffeomor-

phisms of Jkπ generates the lifting of any vector field ξ ∈ g to the
vector field ξ(k) on Jkπ. By definition, ξ(k) is the vector field defined by

the flow f
(k)
t , where ft is the flow of ξ. Obviously (πl,m)∗(ξ(l)) = ξ(m)

for l > m.

Let ξ = ϕ(x)
∂

∂x
be an arbitrary element of g. The vector field ξ(∞)

is defined by the formula (see [5])

(22) ξ(∞) = ϕDx + �ψ,

where

Dx =
∂

∂x
+

∞∑
k=0

n∑
j=3

a
(k+1)
n−j

∂

∂a
(k)
n−j

is the operator of total derivative over x in J∞π,

�ψ =
∞∑
k=0

n∑
j=3

Dk
x(ψn−j)

∂

∂a
(k)
n−j

is the evolutionary derivation with ψ = (ψn−3, . . . , ψ0)t being its gen-
erating function. This function is defined in the following way. Let
x1 = [S]1x ∈ J1π, x = π1(x1); then

(23) ψ(x1) =


ψn−3(x1)
. . . . . . . .
ψ0(x1)


 =

d

dt
(f

(0)
t ◦ S ◦ f−1

t )
∣∣∣
t=0

(x)

Let S(x) = (x, an−3(x), . . . , a0(x)). Then, taking into account that
dft
dt

∣∣∣
t=0

= ϕ and ϕ′′′ = 0, we obtain

(24) ψ =




−3an−3ϕ′ − a(1)
n−3ϕ

−3(n−3)
2
an−3ϕ′′ − 4an−4ϕ′ − a(1)

n−4ϕ
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

− (k−1)(n−(k−1))
2

an−k+1ϕ′′ − kan−kϕ′ − a(1)
n−kϕ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−n−1
2

· 1 · a1ϕ′′ − na0ϕ′ − a(1)
0 ϕ




Now it follows from (22) and (24) that for any k = 0, 1, 2, . . . ,∞,

ξ
(k)
0 =

∂

∂x
,(25)
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ξ(k)1 = x
∂

∂x
−

k∑
r=0

n∑
j=3

(j + r)a(r)
n−j

∂

∂a(r)
n−j
,(26)

ξ(k)2 = x2 ∂

∂x
−

k∑
r=0

n∑
j=3

[
2x(j + r)a(r)

n−j
∂

∂a(r)
n−j

+ (j − 1)(n − (j − 1))a(r)
n−(j−1)

∂

∂a(r)
n−j

+ (2j + r − 1)ra(r−1)
n−j

∂

∂a(r)
n−j

]
,(27)

where a(r)
n−2 = 0.

4.2. Projective symmetries. Let S be a section of π and ξ be a
vector field from g. By ft we denote the flow of ξ. We say that ξ is a
projective symmetry of S if one of the following equivalent conditions
is fulfilled:

(1) the vector field ξ(0) is tangent to the image L(0)
S of S;

(2) ft(S)
def
= f (0)

t ◦ S ◦ f−1
t = S;

(3)
d

dt
(ft(S)

∣∣∣
t=0

= 0.

Denote by PrjS the Lie algebra of all projective symmetries of S.

Proposition 4.2. Consider the section S(x) = (x, an−3(x), . . . , a0(x))

and let ξ = ϕ(x)
∂

∂x
. Then:

1. ξ is a projective symmetry of S iff ϕ(x) is a solution of system
(14);

2. dimPrjS is equal to either 3 or 1, or 0;

3. ϕ(x)
∂

∂x
is a projective symmetry of S iff ϕ(x)

∂

∂x
+ n−1

2
ϕ′y

∂

∂y
is a point symmetry of the equation ES ;

4. dimPntES = dimPrjSE + n + 1.

Proof. The first statement follows from (23), (24), and (14). The sec-
ond one follows from (17) and (14). From Proposition 4.1, we obtain
the third statement. The last statement follows from the results of
[8]. �

4.3. Invariant subbundles. Let E i, i = n − 3, n − 4, . . . , 0,−1, be
the subspaces of the total space E of π defined by

Ei = { (x, an−3, an−4, . . . , a0) ∈ E | aj = 0 if j > i }.
Consider the subbundle π|Ei : Ei → R of the bundle π.

Proposition 4.3. Every subbundle Ei is G(0)-invariant.
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Proof. From (25)–(27), we have that the restrictions of the vector fields

ξ(0)
0 , ξ

(0)
1 , ξ

(0)
2 to Ei are defined by

ξ
(0)
0

∣∣∣
Ei

=
∂

∂x
,(28)

ξ
(0)
1

∣∣∣
Ei

= x
∂

∂x
− ((n− i)ai

∂

∂ai
+ · · · + na0

∂

∂a0
),(29)

ξ
(0)
2

∣∣∣
Ei

= x2 ∂

∂x
− 2x((n− i)ai

∂

∂ai
+ · · · + na0

∂

∂a0

)

− (i(n− i)ai
∂

∂ai−1
+ · · · + (n− 1)a1

∂

∂a0
).(30)

Clearly, ξ
(0)
0

∣∣∣
Ei

, ξ
(0)
1

∣∣∣
Ei

, ξ
(0)
2

∣∣∣
Ei

are tangent to Ei. Therefore every sub-

bundle Ei is G
(0)
+ -invariant. From (21), we have µ(0)(Ei) = Ei. �

Thus, we have the following sequence of the G(0)-invariant subbun-
dles: E = En−3 ⊃ En−4 ⊃ · · · ⊃ E0 ⊃ E−1. Let Ei, i = n − 3, n −
4, . . . , 0,−1, be the subsets of the total space E of π defined by

Ei = E
i \ Ei−1 if i ≥ 0 and E−1 = E−1.

Consider the subbundle πi = π|Ei : Ei → R of the bundle π.

Corollary 4.4. Every subbundle Ei is G(0)-invariant.

Thus, E is the union

(31) E = En−3 ∪ En−4 ∪ · · · ∪E0 ∪E−1

of nonintersecting G(0)-invariant subbundles.
The following proposition is needed for the sequel.

Proposition 4.5. The symmetric differential n− i-form ωi = ai dxn−i
on Ei is G(0)-invariant.

Proof. Let us calculate the Lie derivatives of ωi w.r.t. vector fields

ξ(0)
0 |Ei, ξ

(0)
1 |Ei, ξ

(0)
2 |Ei. From (28)–(30), we have

ξ(0)
0

∣∣∣
Ei

(ωi) = 0,

ξ
(0)
1

∣∣∣
Ei

(ωi) = ai(n− i) dxn−i − (n− i)ai dxn−i = 0,

ξ(0)
2

∣∣∣
Ei

(ωi) = ai(n− i)2x dxn−i − 2x(n− i)ai dxn−i = 0.

Hence ωi is G(0)
+ -invariant. It follows from (21) that (µ(0))∗(ωi) = ωi.

Thus ωi is G(0)-invariant. �
This result gives us the transformation law for the first nonzero com-

ponent:

Corollary 4.6. Let θ0 = (x, 0, . . . , 0, ai, . . . , a0) ∈ Ei, let f ∈ G, and
f (0)(θ0) = (f(x), 0, . . . , 0, Ai, . . . , A0) ∈ Ei. Then ai = (f ′(x))n−iAi.
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4.4. Classification of regular germs.

4.4.1. Regular germs. Let S be a section of π, p be a point in a domain
of S. Denote by {S}p the germ of S at p. Let {S1}p1 and {S2}p2 be
germs of sections S1 and S2 respectively. We say that {S1}p1 and {S2}p2
are G+(G)-equivalent if there exists f ∈ G+(G) with { f(S1) }f(p1) =
{S2}p2. A germ {S}p is regular of class i if there exist a neighborhood
V of p and subbundle Ei with ImS|V ⊂ Ei.

If {S}p is a regular germ of class i ≥ 0, then one has S(x) =
(x, 0, . . . , 0, ai(x), . . . , a0(x)) in a neighborhood of p. For this reason,
we will often denote {S}p by { ai, . . . , a0 }p. If {S}p is a regular germ,
then p is a regular point of S (regular point of ES).

Let F be the set of all regular germs at 0 ∈ R
1 of sections of π. Ob-

viously, dimension of the algebra of projective symmetries of a section
of πi is an invariant of transformations (19). Then F = F3 ∪ F1 ∪ F0,
where the subsets

Fr = { {S}0 | dimPrjS = r }, r = 3, 1, 0,

are nonintersecting G0-invariant subsets. Obviously, F3 consists of the
germ of the zero section only.

4.4.2. Classification. Here we classify regular germs from Fr, r = 0, 1,
w.r.t. G0. Recall that

G0 = { f ∈ G | f(0) = 0 } =

{
βx

γx+ 1
, β, γ ∈ R, β �= 0

}
.

By definition, put G0+ = G0 ∩ G+, G0− = G0 ∩ G−. Then G0 =
G0+ ∪G0− and G0− = µ ◦G0+.

Let Fr,i ⊂ Fr be the subset of all regular germs of class i. It follows
from Corollary 4.4 that Fr,i is G0-invariant. Thus Fr is the union
Fr = ∪n−3

i=0 Fr,i of nonintersecting invariant subsets.
Let R+ = { a ∈ R | a > 0} and let R− = { a ∈ R | a < 0}. Define

the map 2r,i : Fr,i → (R \{0})× R by the formula

{ ai, . . . , a0 }0 �→ (ai(0), a
′
i(0)).

Consider the action G0+ × Fr,i → Fr,i, (f, {S}0) �→ {f(S)}0, of the
group G0+ on Fr,i. This action divides Fr,i into nonintersecting orbits.
Let Θ be one of these orbits.

Proposition 4.7. The map 2r,i|Θ is a bijection from the orbit Θ either
to (R+)× R or to (R−)× R.

Proof. Let {S}0 = { ai, . . . , a0 }0 ∈ Θ, let f = βx
γx+1

be an element of

G0+, and let f({S}0) = {Ai, . . . , A0 }0. Then from Corollary 4.6 we
have ai(x) = (f ′(x))n−iAi(f(x)). Since β > 0, the points Ai(0) and
ai(0) belong either to R+ or to R−. This means that 2r,i(Θ) belongs
either to (R+)× R or to (R−)× R.
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Assume 2r,i(Θ) ⊂ (R+) × R and prove that the map 2r,i|Θ : Θ →
(R+) × R is an injection. Let {S1}0 = { ai, . . . , a0 }0 ∈ Θ and {S2}0 =
{Ai, . . . , A0 }0 ∈ Θ. Then there exist a transformation f(x) = d βx

γx+1
∈

G0+ that takes {S1}0 to {S2}0. This means that in some neighborhood
of 0, we have

ai(x) = (f ′(x))n−iAi(f(x)).

Differentiating both sides of this equation w.r.t. x, we obtain

a′i(x) = −2(n − i)(f ′(x))n−i−1f ′′(x)Ai(f(x))

+ (f ′(x))n−iA′
i(f(x))f

′(x).

Suppose ai(0) = Ai(0) and a′i(0) = A′
i(0). Then from the last two

equations we have{
Ai(0) = βn−iAi(0),

A′
i(0) = −2(n− i)βn−iγAi(0) + βn−i+1A′

i(0).

From this system, we obtain β = 1 and γ = 0. This means that f is
the identical transformation. It follows that {S1}0 = {S2}0. Therefore
2r,i|Θ is an injection.

Let us prove that 2r,i|Θ is a surjection. Let (a, a′) ∈ (R+) × R and
let {S1}0 = {Ai, . . . , A0}0 ∈ Θ. Obviously the equations{

a = βn−iAi(0),

a′ = −2(n− i)βn−iγAi(0) + βn−i+1A′
i(0).

define the transformation f(x) =
βx

γx+ 1
∈ G0+ uniquely. Clearly,

{S2}0 = {(f−1)(0) ◦ S1 ◦ f}0 ∈ Θ and 2r,i({S2}0) = (a, a′).
Obviously, the proof for the case 2r,i(Θ) ⊂ (R−)×R is the same. �

Let L+
r,i = 2

−1
r,i ((1, 0)) and let L−

r,i = 2
−1
r,i ((−1, 0)). Denote by Mr,i the

subset of L+
r,i ∪ L−

r,i defined in the following way:

(1) if i = 0 , then Mr,0 = L+
r,0 ∪ L−

r,0 ,
(2) if i > 0, then Mr,i consists of all germs { ai, ai−1, . . . , a0 }0 from

L+
r,i ∪ L−

r,i satisfying one of the following conditions:
(a) ai−j(0) = 0 for all odd numbers j with 1 ≤ j ≤ i,
(b) there exists an odd number r with 1 ≤ r ≤ i such that

ai−r(0) > 0 and if r > 1, then ai−j(0) = 0 for all odd
numbers j with 1 ≤ j < r.

Classification of regular germs from the family Fr,i is given by

Theorem 4.8. 1. The set L+
r,i∪L−

r,i is a family of all germs from
Fr,i nonequivalent w.r.t. G0+.

2. If n − i is odd, then L+
r,i is a family of all germs from Fr,i

nonequivalent w.r.t. G0.
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3. If n − i is even, then Mr,i is a family of all germs from Fr,i
nonequivalent w.r.t. G0.

Proof. From Proposition 4.7, we have the first statement. From (21),
we have µ(L−

r,i) = L+
r,i from where the second statement follows. The

third statement also follows immediately from (21). �

Corollary 4.9. Classification of regular germs of sections is as follows:

1. The family of germs of the form

{±1 + b(x)x2, ai−1(x), . . . , a0(x) }0

is a family of all regular germs of class i nonequivalent w.r.t.
G0+.

2. If n − i is odd, then the family of germs of the form
{ 1 + b(x)x2, ai−1(x), . . . , a0(x) }0

is a family of all regular germs of class i nonequivalent w.r.t.
G0.

3. If n − i is even, then the family of germs of the form
{±1 + b(x)x2, ai−1(x), . . . , a0(x) }0,

satisfying to one of the following conditions:
a) ai−j(0) = 0 for all odd numbers j with 1 ≤ j ≤ i,
b) there exist an odd number r with 1 ≤ r ≤ i such that
ai−r(0) > 0 and if r > 1, then ai−j(0) = 0 for all odd
numbers j with 1 ≤ j < r

is the family of all regular germs of class i nonequivalent w.r.t.
G0.

5. The equivalence problem

5.1. Scalar differential invariants of linear ODEs. Here we calcu-
late scalar differential invariants of linear ODEs. For a general theory
of scalar differential invariants refer to [1, 10].

It was proved in Subsection 4.3 that the bundle πi = π|Ei : Ei → R is
G(0)-invariant. It follows that the jet bundles Jkπi are G(k)-invariant,

k = 1, 2 . . . ,∞. Hence Jkπi are invariant w.r.t. the subgroup G
(k)
+ ⊂

G(k), k = 0, 1, 2 . . . ,∞.
A function I ∈ C∞(Jkπi) is called a scalar differential invariant of

G (G+) if

(f (k))∗I = I ∀f ∈ G (G+).

Let I be a scalar differential invariant of G (G+) and S be a section of
πi. By definition, put I(S) = (jkS)∗I . For any f ∈ G, we have

(32) I(f(S)) ◦ f = I(S).

Indeed,
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I(f(S)) = (jkf(S))
∗I = (jk(f

(0) ◦ S ◦ f−1))∗I

= (f (k) ◦ jkS ◦ f−1)∗I = (f−1)∗ ◦ (jkS)
∗ ◦ (f (k))∗I

= (f−1)∗ ◦ (jkS)
∗I = (f−1)∗I(S) = I(S) ◦ f−1.

Let S be a section of π admitting a 1-dimensional algebra of pro-
jective symmetries. Then I(S) is a constant for any scalar differential
invariant I . Indeed, let ξ be a projective symmetry of S and let ft be
its flow. Then

I(S) = I(ft(S)) = I(ft(S)) ◦ ft = I(S) ◦ ft.
It is not hard to prove that I ∈ C∞(Jkπi) is a scalar differential invari-
ant of G+ iff I is a solution of the system of linear PDEs

(33)



ξ̄(k)0 (I) = 0

ξ̄(k)1 (I) = 0

ξ̄
(k)
2 (I) = 0,

where ξ̄
(k)
0 , ξ̄

(k)
1 ξ̄

(k)
2 are the restrictions of ξ

(k)
0 , ξ

(k)
1 , ξ

(k)
2 to Jkπi. From

(25)–(27), we have

ξ̄(k)0 = ξ(k)0

∣∣∣
Jkπi

=
∂

∂x
,

(34)

ξ̄
(k)
1 = ξ

(k)
1

∣∣∣
Jkπi

= x
∂

∂x
−

k∑
r=0

0∑
j=i

(n− j + r)a(r)
j

∂

∂a
(r)
j

,

(35)

ξ̄
(k)
2 = ξ

(k)
2

∣∣∣
Jkπi

= x2 ∂

∂x
−

k∑
r=0

i∑
j=0

[
2x(n− j + r)a(r)

j

∂

∂a
(r)
j

+ (n− j − 1)(j + 1)a
(r)
j+1

∂

∂a
(r)
j

+ (2(n − j) + r − 1)ra
(r−1)
j

∂

∂a
(r)
j

]
.

(36)

Denote by Ak
i the algebra of scalar differential invariants of G+ on

Jkπi. We identify Aki with its image (πil,k)
∗(Ak

i ), l > k. As a result, we
have the following filtration

Ai = A
∞
i ⊃ · · · ⊃ Aki ⊃ · · · ⊃ A1

i ⊃ A0
i .

Let Dk
i be the distribution on Jkπi generated by vector fields ξ̄(k)0 ,

ξ̄(k)1 , ξ̄(k)2 . From (34)–(36), we have that dimDk
i = 2 if i = 0 and k = 0

otherwise dimDk
i = 3.

Denote by Nk
i the number of functionally independent scalar differ-

ential invariant in Aki . Clearly,

Nk
i = dim Jkπi − dimDk

i .
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It is easy to prove that

N0
0 = 0, N1

0 = 0, Nk
0 = k − 1, if k ≥ 2,(37)

N0
1 = 0, Nk

1 = 2k, if k ≥ 1,(38)

N0
i = i− 1, Nk

i = (k + 1)(i− 1) + 2k, if k ≥ 1.(39)

Consider the vector field on J∞πi

(40) ζi = |ai|−1/(n−i)D̄x,

where D̄x = Dx

∣∣
J∞πi = ∂/∂x+

∑∞
r=0

∑0
j=i a

(r+1)
j ∂/∂a(r)

j is the operator

of total derivative over x restricted to J∞πi.

Proposition 5.1. The vector field ζ i is invariant w.r.t. G
(∞)
+ .

Proof. By ξ̄
(∞)
r , r = 0, 1, 2, we denote the restriction of ξ

(∞)
r to J∞πi.

Let us check that [ζi, ξ̄
(∞)
r ] = 0 for all r. By (25), we have

[ζi, ξ̄
(∞)
0 ] =

[
|ai|−1/(n−i)D̄x,

∂

∂x

]
= 0.

Using (24), consider the vector fields ξ̄(∞)
1 and ξ̄(∞)

2 in the form (22):

ξ̄
(∞)
1 = xD̄x + �̄

((n−i)ai+xa
(1)
i )
,

ξ̄(∞)
2 = x2D̄x + �̄

((i+1)(n−i+1)ai+1+2(n−i)xai+x2a
(1)
i )
,

where �̄ψ is the restriction of �ψ on J∞πi. Now taking into account

that [D̄x, �̄ψ] = 0 for any ψ, we easily obtain that [ζi, ξ̄
(∞)
1 ] = 0 and

[ζi, ξ̄
(∞)
2 ] = 0. �

Obviously, for any I ∈ Ai, its Lie derivative ζi(I) ∈ Ai. Thus, ζi
and I generate the sequence I , ζi(I), . . . , ζki (I), . . . of scalar differential
invariants from Ai.

Theorem 5.2. The algebra Ai is generated by the following free gen-
erators

ζki (Ii−m), m = 0, 1, . . . , i, k = 0, 1, 2, . . . ,

where

Ii =

[
2aia

(2)
i − 2(n− i) + 1

n− i (a
(1)
i )2

]
· (ai)−2(n−i+1)/(n−i);(41)

Ii−1 =

[
ai−1 −

i

2
a(1)
i

]
· |ai|−(n−i+1)/(n−i);(42)

for 2 ≤ m ≤ i,

Ii−m =

[
ai−m +

(−1)m

m!

n−i+m−1∏
r=n−i+1

(n− r)r
(n− i)i (ai)

1−m(ai−1)
m
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+
n−i+m−1∑
l=n−i+1

(−1)n−i+m−l

(n− i+m− l)!

n−i+m−1∏
r=l

(n− r)r
(n− i)i (ai)

i−n+l−m ·

· (ai−1)
n−i+m−lan−l

]
· |ai|−(n−i+m)/(n−i).(43)

Proof. It is not hard to check that Ii, . . . , I0 are solutions of (33).
Let i = 0, then I0 ∈ A2

0. For any k = 0, 1, 2, . . . , the invariants I0,
ζ0(I0), ζ2

0 (I0), . . . , ζ
k
0 (I0) belong to Ak+2

0 and are functionally indepen-
dent. The number of them equals (k+2)−1. Now from (37) we obtain
that (k + 2)− 1 = Nk+2

0 . This concludes the proof for i = 0.
Suppose i ≥ 1. We have

ζi(Ii−1) = [− i
2
|ai|a(2)

i + . . . ] · (ai)−2(n−i+1)/(n−i)

The manifold J∞πi has two connected components defined by the in-
equalities ai > 0 and ai < 0. Comparing ζi(Ii−1) with Ii, we can define
the scalar differential invariant J ∈ A1

i by the formula

J =



Ii +

4

i
ζi(Ii−1), if ai > 0

Ii −
4

i
ζi(Ii−1), if ai < 0.

It is easy to see that

J =

[
4

i
aia

(1)
i−1 − 4(n− i+ 1)

i(n− i) a(1)
i ai−1

+
1

n− i(a
(1)
i )2

]
(ai)

−2(n−i+1)/(n−i).

Let i = 1. Then Ii−1, J ∈ A1
i and they are functionally independent.

The invariants

Ii−1, J, ζi(Ii−1), ζi(J), . . . , ζ
k
i (Ii−1), ζ

k
i (J)

belong to Ak+1
i , k = 0, 1, 2, . . . , they are functionally independent,

and the number of them equals 2(k + 1). Now from (38), we obtain
2(k + 1) = Nk+1

1 . This concludes the proof for i = 1.
Let i > 1. Then the invariants Ii−2, . . . , I0 are functionally inde-

pendent and they belong to A0
i . The invariants Ii−2, . . . , I0, Ii−1, J are

functionally independent and lie in A1
i . Finally, the invariants

Ii−2, . . . , I0, Ii−1, J, . . . , ζ
k
i (Ii−2), . . . , ζ

k
i (I0), ζ

k
i (Ii−1), ζ

k
i (J)

are functionally independent, they belong to Ak
i , k = 1, 2, . . . , and the

number of them is equal to (k + 1)(i − 1) + 2k. Now from (39), we
obtain (k + 1)(i− 1) + 2k = Nk

i . �

Remark 5.3. From (21), we obtain that

Ii =

[
2aia

(2)
i − 2(n− i) + 1

n− i (a
(1)
i )2

]
· (ai)−2(n−i+1)/(n−i)
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is an invariant of the group G.

5.2. The equivalence problem of linear ODEs. Let

S1 : x �→ (x, 0, . . . , 0, ai(x), . . . , a0(x))

and

S2 : X �→ (X, 0, . . . , 0, Ai(X), . . . , A0(X))

be sections of πi in neighborhoods of points p ∈ R and P ∈ R respec-
tively. The sections S1 and S2 are locally G+-equivalent at (p, P ) if
there exist f ∈ G+ and neighborhoods V of p and U of P such that

f(p) = P and f(S1|V )
def
= f (0) ◦ S1|V ◦ f−1 = S2|U . G-equivalence is

defined in the same way.

Theorem 5.4. Sections S1 and S2 of πi are locally G+-equivalent at
(p, P ) iff the following conditions hold :

1. ai(p) · Ai(P ) > 0,
2. the solution f of the Cauchy problem

(44)

{
f ′ = |ai(x)|1/(n−i) · |Ai(f(x))|−1/(n−i),

f(p) = P

satisfies to the equations

(45) Im(S2) ◦ f = Im(S1), m = i, i− 1, . . . , 0

in some neighborhood of p.

Proof. Suppose S1 and S2 are locally G+-equivalent at (p, P ). Then
there exist f ∈ G+ and neighborhoods V of p and U of P such that
f(p) = P and f(S1|V ) = S2|U . Consider the symmetric differential
n− i-form ωi on Ei (Proposition 4.5). We have

(46) f∗(S∗
2(ωi)) = S∗

1(ωi).

Indeed,

f∗(f(S1)
∗(ωi)) = f∗((f (0) ◦ S1 ◦ f−1)∗(ωi))

= S∗
1((f

(0))∗(ωi)) = S∗
1(ωi).

Equality (46) means that ai(x) = (f ′)n−iAi(f(x)). It also follows that
either ai(p), Ai(P ) > 0 or ai(p), Ai(P ) < 0 and that f is a solution of
Cauchy problem (44). Further, from (32), we have that equations (45)
hold.

Conversely, let ai(p) ·Ai(P ) > 0, f be a solution of Cauchy problem
(44), and f be a solution of equations (45). Let us show that f ∈ G+.
From (44), we can obtain f ′′ and f ′′′ in terms of ai, Ai and their 1-st
and 2-nd derivatives:

f ′′ =
1

r

[
|ai|

1−r
r |Ai|

−1
r sgn(ai)a

′
i − |ai|

2
r |Ai|

−r−2
r sgn(Ai)A

′
i

]
,(47)
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f ′′′ =
1

r

[
1 − r
r

|ai|
1−2r

r |Ai|
−1
r (a′i)

2 + |ai|
1−r

r |Ai|
−1
r sgn(ai)a

′′
i

− 3

r
|ai|

2−r
r |Ai|

−r−2
r a′iA

′
i +

2 + r

r
|ai|

3
r |Ai|

−2r−3
r (A′

i)
2

−|ai|
3
r |Ai|

−r−3
r sgn(Ai)A

′′
i

]
,(48)

where r = n − i. Substituting expressions (44), (47), and (48) for f ′,
f ′′, and f ′′′ in the left-hand side of equation (16), we obtain

2f ′′′f ′ − 3(f ′′)2 =
1

n− i |ai|
4/(n−i)|Ai|−2/(n−i)(Ii(S1)− Ii(S2) ◦ f) = 0.

Thus, f ∈ G+.
Let S3 = f(S1). Then

Im(S3) ◦ f = Im(f(S1)) ◦ f = Im(S1) = Im(S2) ◦ f,
m = i, i− 1, . . . , 0. Hence

Im(S3) = Im(S2) m = i, i− 1, . . . , 0.

Let S3 : X �→ (X, 0, . . . , 0, Bi, . . . , B0). Then one obviously has Bi =
(f ′)−(n−i)ai = Ai in some neighborhood of P . It now follows from
Ii−1(S3) = Ii−1(S2) that Bi−1 = Ai−1 in this neighborhood. From
Ii−2(S3) = Ii−2(S2), we have Bi−2 = Ai−2 in this neighborhood and so
on. Thus S3 = S2 in some neighborhood of P . �

Corollary 5.5. Sections S1, S2 of π
i are locally G-equivalent at (p, P )

iff S1 locally G+-equivalent either to S2 at (p, P ) or to µ(S2) at (p,−P ).

Corollary 5.6. Let the invariants Im(S1), Im(S2), m = i, i− 1, . . . , 0
be constants. Then S1, S2 are G+-locally equivalent at (p, P ) iff the
following conditions hold :

1. either ai(p) · Ai(P ) > 0,
2. Im(S1) = Im(S2), m = i, i− 1, . . . , 0.

Proposition 5.7. Let S be a section of πi. Then dimPrj S = 1 iff
Ii(S), Ii−1(S), . . . , I0(S) are constants.

Proof. The necessity was proved in the beginning of this subsection.
Prove the sufficiency. Let S(x) = (x, 0, . . . , 0, ai(x), . . . , a0(x)) and
invariants Ii(S), Ii−1(S), . . . , I0(S) be constants. From Proposition 4.2,
we have that a vector field ϕ(x)∂/∂x ∈ g is a projective symmetry of
section S iff ϕ(x) is a solution of system (14):

(49)



ϕ′′′ = 0

(n− i)aiϕ′ + a′iϕ = 0
(n− j − 1)(j + 1)

2
aj+1ϕ′′ + (n− j)ajϕ′ + a′jϕ = 0,
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j = i− 1, i− 2, . . . , 0. From the 2-nd equation of the system, we have
that ϕ = C|ai|−1/(n−i), C ∈ R.

From the identities dIm(S)/dx ≡ 0, m = i, i−1, . . . , 0, we can obtain
by direct calculations that |ai|−1/(n−i) is a solution of system (49). Thus,
the vector field |ai|−1/(n−i)∂/∂x is a symmetry of S. �

5.3. The canonical forms of linear ODEs. In this subsection, we
use the invariants Ii, Ii−1, . . . , I0 to obtain canonical form of all nonequiv-
alent regular germs at 0 of sections of π.

Denote by Y±
i the system of equations on unknown section S : x �→

(x, 0, . . . , 0, ai(x), . . . , a0(x)) of πi in a neighborhood of 0 ∈ R
1:


Ii(S)(x) = Ki(x), ai(0) = ±1 , a′i(0) = 0

Ii−1(S)(x) = Ki−1(x)

. . . . . . . . . . . . . . . . . . . .

I0(S)(x) = K0(x),

where Ki, Ki−1, . . . , K0 are smooth functions defined in neighborhoods
of 0 ∈ R.

There exists a unique solution of the system Y±
i . Indeed, it follows

from (41) that the first equation of the system is a Cauchy problem for
2-nd order ODE on unknown function ai(x). There exists a unique so-
lution, say ai(x,Ki), to this problem. From (42), (43), we have that all
other unknown functions ai−1, . . . , a0 are defined recursively, uniquely,
and in an explicit form from the next equations of the system. De-
note them by ai−1(x,Ki, Ki−1), . . . , a0(x,Ki, Ki−1, . . . , K0). Thus, the
section

S(Ki, . . . , K0) : x �→ (x, 0, . . . , 0, ai(x,Ki), . . . , a0(x,Ki, . . . , K0))

is a unique solution of system Y+
i (Y−

i ).
Below we denote by S+(Ki, . . . , K0) and S−(Ki, . . . , K0) the solu-

tions of Y+
i and Y−

i respectively. Now from Theorem 4.8, we obtain
canonical forms of nonequivalent linear ODEs:

Theorem 5.8. 1. The set {S±(Ki, . . . , K0) }0 is the family of all
regular germs of class i nonequivalent w.r.t. G0+.

2. If n − i is odd, then {S+(Ki, . . . , K0) }0 is the family of all
regular germs of class i nonequivalent w.r.t. G0.

3. If n − i is even, then {S±(Ki, . . . , K0) }0 satisfying one of the
conditions:
a) ai−j(0, Ki(0), . . . , Ki−j(0)) = 0 for all odd j, 1 ≤ j ≤ i,
b) there exist an odd number r with 1 ≤ r ≤ i such that

ai−r(0, Ki(0), . . . , Ki−r(0)) > 0

and if r > 1, then for all odd numbers j with 1 ≤ j < r,
ai−j(0, Ki(0), . . . , Ki−j(0)) = 0
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is a family of all regular germs of class i nonequivalent w.r.t.
G0.

Let {Ki, . . . , K0}0 be germ of the vector function (Ki, . . . , K0) at
0 ∈ R

1, M be the set of all these germs, and M1 be the subset of
M consisting of germs of constant vector functions. Then canonical
forms of nonequivalent linear ODEs with 1 and 0-dimensional algebras
of projective symmetries are given by

Corollary 5.9. 1. Suppose all vector functions (Ki, . . . , K0) are
constant in Theorem 5.8; then the theorem gives the family of
all regular germs of class i from F1 nonequivalent w.r.t. G

+
0 and

G0.
2. Suppose all vector functions (Ki, . . . , K0) in Theorem 5.8 satisfy
the condition (Ki, . . . , K0)0 ∈ M \ M1. Then the theorem gives
the family of all regular germs of class i from F0 nonequivalent
w.r.t. G0+ and G0.
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