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Abstract. The classification of ODEs y(n) =
n∑

i=2
an−i(x)y(n−i),

n ≥ 3, in a neighborhood of a regular point up to a contact trans-
formation is given.

1. Introduction

This paper is devoted to the local classification of linear ODEs of
order n ≥ 3 in neighborhoods of regular points up to a contact trans-
formation.

In [2], E.Cartan proved that for n ≤ 2, any n-order linear ODE can
be transformed to the form y(n) = 0 by a point transformation. For
n ≥ 3, it is incorrect. In this case, there are infinite number of different
equivalence classes of n-order linear ODEs.

First the problem of local classification of linear ordinary differential
equation (ODE) up to a transformation of variables was set up by
classics of XIX century E. Laguerre, G.-H. Halphen and others. They
obtained first results concerning the classification of linear ODEs of 3-
rd and 4-th orders, see [7], [3]. Essentially, this problem was forgotten
after them.

It is well known that any linear ODE can be transformed by a point
transformation to the form

y(n) = an−2(x) y
(n−2) + an−3(x) y

(n−3) + . . .+ a0(x) y . (1.1)

In this paper, we classify linear ODEs of this form. The case n = 3,
we considered in [13], [14].

In his book [12], E.J.Wilczynski proved that any linear ODE of order
n ≥ 3 can be transformed by a point transformation to the form

y(n) = an−3(x) y
(n−3) + an−4(x) y

(n−4) + . . .+ a0(x) y (1.2)
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(see also, [10],[4]). In [15], [16], we obtained the local classification of
linear ODEs of form (1.2).

Our approach to the problem is the following.
In their paper [8], F. M. Mahomed and P. G. L. Leach proved that

dimension of the algebra of point symmetries of a n-order linear ODE
is equal to either n+ 4 or n+ 2, or n+ 1.

We prove (theorem 2.2) that dimension of algebra of point symme-
tries of a linear ODE is an invariant of contact transformations that
take the set of linear ODEs to itself.

Further, we prove (theorem 4.1) that any linear ODE with n+ 4-di-
mensional algebra of point symmetries is reduced by a point transfor-
mation to the form y(n) = 0. For linear ODEs with n + 2 and n + 1-
dimensional algebras of point symmetries, we prove (theorem 2.3) that
a contact transformation that takes one of these equation to another
one is a point transformation. These results reduce the problem of lo-
cal classification of linear ODEs w.r.t. contact transformations to the
classification w.r.t. point transformations.

Further, we reduce (theorem 2.5) the problem to the classification
w.r.t. point transformations of the form

X = f(x), Y = | f ′(x) |(n−1)/2y (1.3)

In his thesis [9], F. M. Mahomed proved that any linear ODE with
n+2-dimensional algebra of point symmetries can be transformed to a
linear ODE with constant coefficients by a point transformation of form
(1.3). We find invariants of transformations of linear ODEs with con-
stant coefficients and n+ 2-dimensional algebras of point symmetries.
These invariants solve the equivalence problem for these equations (the-
orem 4.8). Finally, we classify linear ODEs with constant coefficients
up to equivalence (theorem 4.11).

Further, we calculate (theorem 4.17) the algebra of scalar differential
invariants of linear ODEs. We use these invariants to classify linear
ODEs with n + 1-dimensional algebras of point symmetries. Let E
be an arbitrary linear ODE with n + 1-dimensional algebra of point
symmetries and let I(x) be its nonconstant scalar differential invariant.
The transformation of form (1.3) X = I(x), Y = | I ′(x) |(n−1)/2y takes
E to the equation E′. We say that E′ is a canonical form of E. We prove
(theorem 4.23) that equivalent equations have the same canonical form.
It leads to the classification (theorem 4.24) of linear ODEs with n+1-
dimensional algebras of point symmetries in a neighborhood of regular
point up to equivalence.

Below, all manifolds and maps are supposed to be smooth. By R
n

denote the n-dimensional arithmetical space.
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2. Preliminaries

In this section, we recall necessary notations and results of the geom-
etry of differential equations ([5], [6]) and linear ODEs ([8],[12]). We
prove some necessary results concerning symmetries and transforma-
tions of linear ODEs too.

2.1. Jet bundles.

2.1.1. Cartan distribution. Let E and M be a smooth manifolds of
dimensions n +m and n respectively and let π : E → M be a smooth
bundle. By [S]kx denote the k–jet of a section S of π at the point x ∈M .
By

πk : Jkπ →M , πk : [S]kx �→ x , k = 0, 1, 2, . . . ,∞ ,

denote the bundle of k–jets of all sections of π.
The projection πk,r : Jkπ → J rπ , k > r, is defined by πk,r( [S]kx ) =

[S]rx.
Every section S of π generates the section jkS of the bundle πk by

the formula jkS : x �→ [S]kx. By L(k)
S denote the image of the section

jkS.
By Txk

(Jkπ) denote the tangent space to Jkπ at xk ∈ Jkπ, by

Txk
(L(k)

S ) denote the tangent space to L(k)
S at xk ∈ L(k)

S .

Let xk ∈ Jkπ. Consider all submanifolds L(k)
S passing trough xk and

consider their tangent spaces Txk
(L(k)

S ) at xk. The subspace Cxk
⊂

Txk
(Jkπ) spanned on the union of these tangent spaces is called the

Cartan plane at xk. The distribution C : xk �→ Cxk
is called the

Cartan distribution on Jkπ.

2.1.2. Lie transformations. A (local) diffeomorphism of Jkπ that takes
the Cartan distribution to itself is called a Lie transformation. A Lie
transformation of J0π (that is an arbitrary diffeomorphism of J0π) is
called a point transformation. A Lie transformation of J1π is called a
contact transformation if m = 1.

Every Lie transformation f : U → U ′ of Jkπ can be lifted canonically
to the Lie transformation f (r) : π−1

k+r,k(U) → π−1
k+r,k(U

′) of Jk+rπ, r =
1, 2, . . ., such that, for r ≥ l, the diagram

π−1
k+r,k(U)

f (r)

−−−→ π−1
k+r,k(U

′)

πk+r,k+l

� �πk+r,k+l

π−1
k+l,k(U) −−−→

f (l)
π−1
k+l,k(U

′)

is commutative. Indeed, f (r) is defined in the following way. A point

xk+1 = [S]k+1
x ∈ Jk+1π is identified with Kxk+1

= Txk
(L

(k)
S ), where

xk = πk+1,k(xk+1). The differential f∗ maps Kxk+1
onto the subspace

f∗(Kxk+1
). If f∗(Kxk+1

) is projected on M without a degeneration,
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then there is x′k+1 ∈ Jk+1π such that Kx′k+1
= f∗(Kxk+1

) and we

set f (1)(xk+1) = x′k+1. It is obvious that f (1) is a Lie transformation

of Jk+1π defined almost everywhere in π−1
k+1,k(U). Setting f (r+1) =

(f (r))(1), we define the Lie transformation f (r) for all r = 1, 2, . . ..
Clearly, that f (r) is defined almost everywhere in π−1

k+r,k(U).
It is well known (see [5], [6]) that any Lie transformation is the

lifting of some point transformation if m > 1 and if m = 1, then any
Lie transformation is the lifting of some contact transformation.

2.1.3. Lie fields. A vector field ξ in Jkπ is called a Lie field if its flow
is generated by Lie transformations. A vector field in J0π is said to be
a point vector field. A Lie field in J1π is called a contact vector field if
m = 1.

The canonical lifting of Lie transformations generates the lifting of
Lie fields. Indeed, let ξ be a Lie field in Jkπ and let ft be its flow.

Then the flow f
(r)
t of the Lie transformations defines the Lie field ξ(r)

in Jk+rπ , r = 1, 2, . . . such that

(πk+r,k+l)∗ξ
(r) = ξ(l) , r ≥ l .

2.2. Ordinary differential equations.

2.2.1. Contact classification. Let π : R
1 ×R

1 → R
1 and let x, y, p1, . . . , pk

be the standard coordinates on Jkπ.
Any k-order ODE

F (x, y(x), dy/dx, . . . , dky/dxk) = 0

is identified with the submanifold

E = { F (x, y, p1, . . . , pk) = 0 } ⊂ Jkπ .

An ”usual” solution S(x) of the initial ODE is identified with the

submanifold L
(k)
S ⊂ E generated by the section S : x �→ S(x) of π.

Obviously, L
(k)
S is a 1-dimensional integral manifold of the Cartan dis-

tribution on Jkπ. A ”many-valued” solution of E is a 1-dimensional
integral manifold L of the Cartan distribution on Jkπ such that L ⊂ E.
It is easy to prove that locally, almost everywhere, a ”many-valued”

solution has the form L(k)
S .

It is natural to classify k-order ODEs up to a diffeomorphism of Jkπ
that takes the set of all solutions of ODEs to itself. Obviously, this
diffeomorphism is a Lie transformation. Hence, it is generated by a
contact transformation. So, we come to the problem of classification of
ODEs up to a contact transformation.

Let E1 , E2 ⊂ Jkπ be k-order ODEs and f be a point (contact)
transformation. We say that f takes (locally) E1 to E2 if f (k) (f (k−1))
takes (locally) the submanifold E1 ⊂ Jkπ to the submanifold E2 ⊂ Jkπ.
We say that ODEs E1 and E2 are equivalent if there exists a point
(contact) transformation that takes (locally) E1 to E2.
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2.2.2. Point and contact transformations. Any point transformation f
is defined in the standard coordinates by the formulae

X = X(x, y) , Y = Y (x, y) . (2.1)

Obviously, the lifting f (k) is defined in the standard coordinates by the
formulae

X = X(x, y) , Y = Y (x, y) , P1 =
DY

DX
, . . . , Pk =

DPk−1

DX
, (2.2)

where

D =
∂

∂x
+ p1

∂

∂y
+ p2

∂

∂p1
+ . . .+ pk+1

∂

∂pk
+ . . . (2.3)

is the operator of total derivation w.r.t. x.
It is easy to show that a contact transformation is defined in the

standard coordinates by the formulae

X = X(x, y, p1) , Y = Y (x, y, p1) , P1 =
Yx + p1Yy
Xx + p1Xy

, (2.4)

where functions X(x, y, p1), Y (x, y, p1) are connected by the relation

Yp1(Xx + p1Xy)−Xp1(Yx + p1Yy) = 0 .

2.2.3. Point and contact vector fields. Let ξ be a contact vector field.
It is easy to prove that ξ can be represented in the standard coordinates
as

ξ = ξϕ = −ϕp1
∂

∂x
+ (ϕ− p1ϕp1)

∂

∂y
+ (ϕx + p1ϕy)

∂

∂p1
, (2.5)

where the function ϕ = ϕ(x, y, p1) is called the generating function of
ξ.

Let ζ be an arbitrary point vector field. It has the form

ζ = a(x, y)
∂

∂x
+ b(x, y)

∂

∂y
(2.6)

in the standard coordinates. The lifting ζ(1) is a contact vector field.
It is easy to verify that the generating function of ζ(1) is

b(x, y)− a(x, y) · p1 . (2.7)

Conversely, if the generating function of a contact vector field has form
(2.7), then this vector field is the lifting of some point vector field. We
shall say that function (2.7) is the generating function of point vector
field (2.6).

Let us transform a contact vector field by an arbitrary contact trans-
formation (2.4). As a result, we obtain a new contact vector field. It
is easy to verify that the generating functions Φ of the obtained vector
field and the generating function ϕ of the initial one are connected by
the formula

Xx + p1Xy

XxYy −XyYx
Φ( X, Y, P1 ) = ϕ(x, y, p1) . (2.8)
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2.2.4. Classical symmetries. A point vector field ζ in J0π is called a
point symmetry of a differential equation E ⊂ Jnπ if ζ(n) is tangent to
the submanifold E. By PntE we denote the set of all point symmetries
of E.

A contact vector field ξ in J1π is called a contact symmetry of a
differential equation E ⊂ Jnπ if ξ(n−1) is tangent to the submanifold E
and there is no a point vector field ζ with ξ = ζ(1).

The point and contact symmetries are called classical symmetries.
By SymE we denote the set of all classical symmetries of E.

The space of generating functions of classical symmetries of an ODE

pn − F (x, y, p1, . . . , pn−1) = 0

coincide with the space of solutions of the form ϕ = ϕ(x, y, p1) of the
linear PDE (see [5], [6])

( D̄n− ∂F

∂pn−1
D̄n−1 − ∂F

∂pn−2
D̄n−2 − . . .− ∂F

∂p1
D̄1 − ∂F

∂y
)(ϕ) = 0 , (2.9)

where D̄ = ∂/∂x+ p1∂/∂y+ p2∂/∂p1 + . . .+ pn−1∂/∂pn−2 +F∂/∂pn−1.

2.3. Linear ordinary differential equations.

2.3.1. Classical symmetries. Let E be an arbitrary n-order linear ODE.
In [13],[14], we proved for n = 3 the following results: dimSymE

can be equal to either 10 or 5, or 4; if dimSymE = 10, then SymE is
generated by three contact and seven point symmetries; if dimSymE =
5 or 4, then SymE = PntE.

Proposition 2.1. If n > 3, then SymE = PntE.

Proof. We can assume without loss of generality that E has form (1.1).
Let ϕ(x, y, p1) be the generating function of an arbitrary classical

symmetry of E. The generating function of a point symmetry has the
form α(x, y)p1 + β(x, y). Hence we should be check that ϕy(1)y(1) ≡ 0
to prove the theorem. To this end, let us consider equation (2.9) for E:

( D̄n − an−2D̄
n−2 − an−3D̄

n−3 − . . .− a1D̄
1 − a0 )ϕ = 0 . (2.10)

Obviously,

D̄n(ϕ) = D̄n−2( ϕp1p3 + ϕp1p1(p2)
2 + low degree terms ) =

=

{
D̄( 3ϕp1p1p2p3 + l. d. t. ), if n = 4

D̄n−3( ϕp1p4 + 3ϕp1p1p2p3 + l. d. t. ), if n > 4

=

{
3ϕp1p1(p3)

2 + l. d. t., if n = 4

(
(
n−3
n−5

)
+ 3

(
n−3
n−4

)
+ 3)ϕp1p1p3pn−1 + l. d. t., if n > 4

It now follows from (2.10) that ϕp1p1 ≡ 0. �
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Obviously, dimension of an algebra of classical symmetries is an in-
variant of contact transformations of ODEs. From above mentioned
results of [13], [14] and this proposition, we get

Theorem 2.2. Dimension of the algebra of point symmetries of a lin-
ear ODE is an invariant of contact transformations that take the set
of all linear ODEs to itself.

2.3.2. Point symmetries. Let E be an arbitrary ODE (1.1). In their
paper [8], F. M. Mahomed and P. G. L. Leach proved that a point
symmetry of E has the form

( ϕ(x)
∂

∂x
+
n− 1

2
ϕ′ y

∂

∂y
) + C y

∂

∂y
+ γ(x)

∂

∂y
,

where γ(x) is a solution of E , C ∈ R , and ϕ(x) is a solution of the
system of ODEs


R3
nϕ

(3) − 2an−2ϕ
(1) − a

(1)
n−2ϕ = 0

Rk+1
n ϕ(k+1) −

k−3∑
s=0

Rk−1−s
n−2−san−2−sϕ

(k−1−s)

− kan−kϕ
(1) − a

(1)
n−kϕ = 0 , k = 3, 4 . . . , n ,

(2.11)

where Rq
p =

(
p
q−1

)
(n− 1)/2 −

(
p
q

)
. Dimension of the space of solutions

of system (2.11) can be equal to either 3 or 1, or 0. It follows that
dimPntE can be equal to either n+ 4 or n+ 2, or n+ 1.

Thus the set of all linear ODEs E is divided into the three nonin-
tersecting families according to dimPntE. From theorem 2.2, we have
that these families are invariant w.r.t. contact transformations.

2.3.3. Contact transformations. Linear ODEs of order n ≥ 3 with n+4-
dimensional algebras of point symmetries have contact symmetries if
n = 3 ( [13], [14] ). It follows that there exist contact transformations of
3-order linear ODEs with 7-dimensional algebras of point symmetries.
For n = 3, the following theorem is proved in [14].

Theorem 2.3. Let E1, E2 be linear ODEs with n+2 or n+1 – dimen-
sional algebras of point symmetries and let f be a contact transformation
that takes E1 to E2. Then f is the lifting of a point transformation.

Proof. We can assume without loss of generality that E1 and E2 have
form (1.1).

Suppose dimPntE1 = n + 2. The contact transformation f is de-
fined in the standard coordinates by (2.4). Let Γ1(X), Γ2(X), Γ3(X)
be linear independent solutions of E1. We can consider these solutions
as generating functions of point symmetry of E1 (see subsection 2.3.2).
Every that function is connected with the correspondence generating
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function of point symmetries of E2 by formula (2.8). Taking into ac-
count the form of generating functions of the n+2 – dimensional algebra
PntE2 (see subsection 2.3.2), we obtain:

∆Γ1(X(x, y, p1)) = K1( ϕ(x)p1 −
n− 1

2
ϕ′y ) + C1y + γ1(x)

∆Γ2(X(x, y, p1)) = K2( ϕ(x)p1 −
n− 1

2
ϕ′y ) + C2y + γ2(x)

∆Γ3(X(x, y, p1)) = K3( ϕ(x)p1 −
n− 1

2
ϕ′y ) + C3y + γ3(x)

where ∆ = (Xx + p1Xy )/(XxYy −XyYx ); Kj , Cj ∈ R, j = 1, 2, 3. If
one of the numbers K1, K2, K3 is not equal to zero, say K1 �= 0, then

∆( Γ2 −
K2

K1

Γ1 ) = ( C2 −
K2

K1

C1 )y + γ2 −
K2

K1

γ1

∆( Γ3 −
K3

K1

Γ1 ) = ( C3 −
K3

K1

C1 )y + γ3 −
K2

K1

γ1

It follows that (K1Γ2 −K2Γ1 )/(K1Γ3 −K3Γ1 ) is independent on p1.
Therefore

∂

∂p1

(
K1Γ2 −K2Γ1

K1Γ3 −K3Γ1

)
=

d

dX

(
K1Γ2 −K2Γ1

K1Γ3 −K3Γ1

)
Xp1 = 0 .

Suppose that Xp1 �= 0, then

K1Γ2 −K2Γ1 = K( K1Γ3 −K3Γ1 ),

where K ∈ R. This means that the solutions Γ1, Γ2, Γ3 of E1 are
linear dependent. From this contradiction, we have Xp1 ≡ 0. Hence f
is the lifting of some point transformation.

Obviously, the proofs for the case K1 = K2 = K3 = 0 and for the
case dimPntE = n+ 1 are analogous. �

2.3.4. Reduction to transformations (1.3). It is well known that any
linear ODE can be reduced to the form (1.1) by a point transformation.

The following proposition holds ([12]).

Proposition 2.4. Let E be an ODE of form (1.1). Then a point trans-
formation takes E to an ODE of the same form iff this transformation
has the form

X = X(x), Y = C · |X ′(x) |(n−1)/2 · y + β(x), C ∈ R . (2.12)

It is follows from (2.2) that the lifting of point transformation (2.12)
to the Lie transformation of Jnπ is defined by

X = X(x) , Y = C |X ′|(n−1)/2y + β(x) ,

Pk = C∇k( |X ′|(n−1)/2y ) +∇k(β) , k = 1, 2, . . . , n ,

where ∇ = D/DX and D is operator (2.3).
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Let E1 = {Pn = An−2(X)Pn−2 + An−3(X)Pn−3 + . . . + A0(X)Y }
and E2 = { pn = an−2(x) pn−2 + an−3(x) pn−3 + . . .+ a0(x) y }. Suppose
transformation (2.12) takes E1 to E2. This means

C∇n( |X ′|(n−1)/2y ) +∇n(β(x) ) =

=
n∑
i=2

[
C An−i(X(x))∇n−i( |X ′|(n−1)/2y ) +An−i(X(x))∇n−i(β(x) )

]
.

It follows:

(1) the function β(x) is a solution of the homogeneous linear ODE

∇n(β(x)) =
n∑
i=2

An−i(X(x))∇n−i(β(x)).

(2) Transformation (2.12) takes E1 to E2 for an arbitrary nonzero
constant C ∈ R.

As a result, we obtain the following statement.

Theorem 2.5. Let E1 and E2 be ODEs of form (1.1). Then if there
exist a point transformation that takes E1 to E2, then there exist a point
transformation of the form (1.3) that takes E1 to E2.

From proposition (2.4), we have that transformations of form (1.3)
take the set of all ODEs of form (1.1) to itself.

2.3.5. Laguerre-Forsyth transformations. The following proposition holds
([12], [10], [4]).

Proposition 2.6. Let E = {Pn = An−2(X)Pn−2 + An−3(X)Pn−3 +
. . .+A0(X)Y } be an ODE of form (1.1). A point transformation

X = f(x), Y = | f ′ |(n−1)/2y ,

where f is a solution of the ODE

2f ′′′f ′ − 3(f ′′)2 − 24( (n + 1)n(n − 1) )−1 (f ′)4An−2(f) = 0 ,

takes E to an equation E′ of form (1.2).

This transformation is called a Laguerre-Forsyth transformation of
the equation E. The equation E′ is called a Laguerre-Forsyth form of
the equation E.

It follows from this proposition that the problem of local classification
of linear ODEs is reduced to classification of ODEs of form (1.2).

2.3.6. Reduction to transformations (2.13). The following proposition
holds (see [12]).

Proposition 2.7. Let E be an ODE of form (1.2). Then a point trans-
formation takes E to an ODE of the same form iff this transformation
has the form

X =
α · x+ β

γ · x+ δ
, Y = C · |X ′ |(n−1)/2 · y , α, β, γ, δ, C ∈ R .
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Taking into account proposition 2.7, we can prove the following state-
ment by the same way as theorem 2.5.

Theorem 2.8. Let E1 and E2 be ODEs of form (1.2). Then if there
exist a point transformation that takes E1 to E2, then there exist a point
transformation of the form

f(x) =
αx+ β

γ x+ δ
, f̂ (x, y) = | f ′ |(n−1)/2 · y , α, β, γ, δ ∈ R , (2.13)

that takes E1 to E2.

From proposition (2.7), we have that transformations of form (2.13)
take the set of all ODEs of form (1.2) to itself.

3. Bundles of linear ODEs

3.1. Bundle of linear ODEs of form (1.1).

3.1.1. Here, we reduce the problem of local classification of linear
ODEs of form (1.1) to the classification of germs of section of the
bundle of these ODEs.

Let π : E = R
1 ×R

n−1 → R
1 be a product bundle. By x denote the

standard coordinate on the base R
1, by an−2, an−4, . . . , a0 denote the

standard coordinates on the fiber R
n−1.

We identify any section

S : x �→ ( x, an−2(x), an−3(x), . . . , a0(x) )

of π with the linear ODE

ES = { pn = an−2(x) pn−2 + an−3(x) pn−3 + . . .+ a0(x) y } .
Clearly, this identification is a bijection from the set of all sections of
π to the set of all linear ODEs of form (1.1). By SE we denote the
section of π corresponding to the equation E under this identification.

By Γ we denote the Lie pseudogroup of all local diffeomorphisms of

R
1. By Φ we denote the Lie pseudogroup of all point transformations

of form (1.3). Formula (1.3) defines the isomorphism

Γ → Φ , f �→ ( f, f̂ ) , (3.1)

where f̂(x, y) = | f ′(x) |(n−1)/2y.
Let

E2 = {Pn = An−2(X)Pn−2 +An−3(X)Pn−3 + . . .+A0(X)Y }
be an arbitrary ODE of form (1.1). Subjecting E2 to an arbitrary

transformation ( f , f̂ ) of form (2.13), we obtain linear ODE

E1 = { pn = an−2(x) pn−2 + an−3(x) pn−3 + . . .+ a0(x) y } .
The coefficients of E1 are expressed in terms of the coefficients of E2

and the transformation f by equations of the following form
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an−j = Fn−j(An−2, . . . , An−j ;
d f

dx
, . . . ,

dj+1f

dxj+1
) , j = 2, 3, . . . , n .

Obviously, the coefficients of E2 are expressed in terms of the coeffi-
cients of E1 and the transformation f−1 by the same equations

An−j = Fn−j( an−2, . . . , an−j ;
d f−1

dX
, . . . ,

dj+1f−1

dXj+1
) (3.2)

j = 2, 3, . . . , n .

Equations (3.2) define the lifting of any f ∈ Γ to the diffeomorphism
f (0) of the bundle π such that the diagram

E
f (0)

−−−→ E

π

� �π
R −−−→

f
R

is commutative (in the domain of f (0)).
For any f ∈ Γ, we define the transformation of sections of π by the

formula
S �→ f(S ) = f (0) ◦ S ◦ f−1 . (3.3)

Now equations (3.2) can be represented as

SE2 = f(SE1 ) .

Obviously, the following statement holds.

Proposition 3.1. Let E1 , E2 be equations of form (1.1). Then a

transformation ( f , f̂ ) ∈ Φ takes E1 to E2 iff SE2 = f(SE1 ).

Let S be a section of π and let p be a point from the domain of S.
By {S}p we denote the germ of S at the point p. We say that germs
{S1}p1 and {S2}p2 are equivalent if there exist f ∈ Γ with

f( {S1}p1 )
def
= {f(S1)}f(p1) = {S2}p2 .

3.1.2. Symmetries of sections. Let S be a section of π and let ξ be a
vector field in the base R

1 of π. By ft we denote the flow of ξ. We say
that ξ is a symmetry of S if one of the following equivalent conditions
is fulfilled:

(1) the vector field ξ(0) is tangent to the image L(0)
S of S ;

(2) ∀t ft(S ) = S ;
(3) dft(S )/dt = 0 .

By SymS we denote the Lie algebra of all symmetries of the section S.

Proposition 3.2. Let S : x → (x, an−2(x), . . . , a0(x) ) be a section of
π and let ξ = ϕ(x)∂/∂x. Then:

(1) ξ is a symmetry of S iff ϕ(x) is a solution of system (2.11) ;
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(2) ϕ(x)∂/∂x is a symmetry of S iff ϕ(x)∂/∂x+((n−1)/2 )ϕ′ y ∂/∂y
is a point symmetry of the equation ES ;

(3) dimSymS is equal to either 3 or 1, or 0 ;
(4) dimPntES = dimSymSE + n+ 1 .

Proof. All statements of the proposition follows immediately from propo-
sition 3.1 and the results of work [8] of F. M. Mahomed and P. G. L. Leach
mentioned in section 2.3.2. �

The following statement is needed for sequel

Proposition 3.3. Let ξ be a symmetry of a section S of π and let
f ∈ Γ. Then f∗(ξ) is a symmetry of the section f(S).

Proof. Let ft be the flow of ξ. Then f ◦ ft ◦ f−1 is the flow of f∗ξ and
(f ◦ ft ◦ f−1)( f(S) ) = (f ◦ ft)(S) = f(S). �

3.2. Laguerre-Forsyth bundles. Let E n−3 be the subspace of the
total space E of π defined by

E n−3 = { (x, an−2, an−3, . . . , a0 ) ∈ E | an−2 = 0 } .

Then τ = π|E n−3 : E n−3 → R is a subbundle of the bundle π. Obvi-
ously, the set of sections of τ is identified with the set of linear ODEs
of form (1.2).

By G denote the Lie group of all projective transformations of R
1,

that is

G = { f(x) =
α x+ β

γ x+ δ
| α, β, γ, δ ∈ R and det

(
α β
δ γ

)
�= 0} .

It is easy to check that the set of nonconstant solutions of the equation

2 f ′′′ f ′ − 3 (f ′′)2 = 0 (3.4)

coincides with G.
From proposition (2.7), theorem (2.7), and proposition (3.1), we have

that, for any f ∈ G, the diffeomorphism f (0) takes the bundle τ to itself.
By g we denote the Lie algebra of G. It can easily be checked that

g as a vector space over R is generated by the vector fields

ξ0 =
∂

∂x
, ξ1 = x

∂

∂x
, ξ2 = x2 ∂

∂x
. (3.5)

It now is obvious that any symmetry of a section of τ is an element
of g.

Let S be a section of π and let f ∈ Γ. We say that a transforma-
tion f is a Lagguere-Forsyth transformation for S if the transformation
(f, f̂) ∈ Φ is a Lagguere-Forsyth transformation for the ODE ES .
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4. Classification of linear ODEs

4.1. Classification of linear ODEs with n + 4 – dimensional
algebra of point symmetries.

Theorem 4.1. Let S be a section of π with dimSymS = 3 and let 0
be the zero section of π. Then for any p from the domain of S, the
germs {S}p and {0}0 are equivalent.

Proof. Let S be a section of π with dimSymS = 3 and let p be a point
from the domain of S.

Let us choose a Laguerre-Forsyth transformation f ∈ Γ for S such
that f(p) = 0 ( proposition 2.6 ). Let S ′ = f(S) : x→ (x, an−3(x), . . . , a0(x) ).
From dimSymS = 3, we have dimSymS′ = 3. From proposition 3.2,
we have that SymS ′ as a vector space over R is generated by linear
independent vector fields ϕi(x)∂/∂x , i = 1, 2, 3, where functions ϕi
are solutions of the system (2.11). In the considered case, this system
has the form



ϕ′′′ = 0

3an−3ϕ
′ + a′n−3ϕ = 0

(k − 1)(n − (k − 1))

2
an−k+1ϕ

′′ + kan−kϕ
′ + a′n−kϕ = 0 ,

k = 4, 5, . . . , n .

(4.1)

From the second equation of this system, we have an−3 ≡ 0; from the
third equation, we have an−4 ≡ 0 and so on; from the last equation, we
obtain a0 ≡ 0. �

Corollary 4.2.

(1) Let S1 and S2 be sections of π with 3-dimensional algebras of
symmetries. Then any their germs {S1}p1 and {S2}p2 are equiv-
alent.

(2) The zero section of the bundle τ is a unique section of τ that
has 3-dimensional algebra of symmetries.

(3) The zero section of τ is invariant w.r.t. the group G.

4.2. Reductions of the classification problem. From theorem 2.3,
proposition 3.1, and theorem 4.1, we have that the problem of local
classification of linear ODEs w.r.t. contact transformations is reduced
to the problem of classification of section germs of the bundle π w.r.t.
the pseudogroup Γ.

Taking into account that Γ is a transitive pseudogroup, we obtain
that the last problem is reduced to the classification of germs at 0 ∈ R

1

of sections of π up to a diffeomorphism from the isotropy group Γ0 =
{ f ∈ Γ | f(0) = 0 } ⊂ Γ of the point 0 ∈ R

1.
From proposition 2.6 and theorem 2.8, we now have that the problem

of classification of section germs of the bundle π w.r.t. the pseudogroup
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Γ can be reduced to the problem of classification of section germs of
the bundle τ w.r.t. the group G. A solution of the last problem is
given in [15], [16].

4.3. Classification of linear ODEs with n + 2 – dimensional
algebra of point symmetries.

4.3.1. Linear ODEs with constant coefficients. Let S be a section of
the bundle π with dimSymS = 1. The algebra SymS as a vector
space over R is spanned on the vector field ϕ(x)∂/∂x, where ϕ(x) is a
unique solution of (2.11).

Let p be a point from the domain of S. We say that p is a regular
point of S (ES ) if ϕ(p) �= 0. We say that a germ of S at a regular
point is a regular germ.

Theorem 4.3. Let S be a section of π with dimSymS = 1 and let
{S}p be a regular germ. Then there exist a constant section S′ of π
such that {S}p and {S ′}0 are equivalent.

Proof. In some neighborhood of p, there exist a diffeomorphism f of

R
1 straightening the vector field ϕ(x)∂/∂x (that is the diffeomorphism

f : x �→ X takes ϕ(x)∂/∂x to ∂/∂X) and f(p) = 0. It follows that
the section f(S) has the symmetry ∂/∂X. Hence, f(S) is a constant
section in a neighborhood of 0 ∈ R

1. By S ′ we denote the constant
section of π coinciding with f(S) in some neighborhood of 0 ∈ R

1. �

Corollary 4.4. Let E be a linear ODE of form (1.1) with dimPntE =
n+2 and p is a regular point for E. Then, in some neighborhood of p,
E is equivalent to an ODE of form (1.1) with constant coefficients.

Note, that apparently first this statement was proved by F.M.Mahomed
in [9].

From theorem 4.3, we have that the problem of classification of sec-
tions of π with 1-dimensional algebras of point symmetries in a neigh-
borhood of a regular points is reduced to the classification of constant
sections of π up to equivalence.

Note that any constant section S of π has the symmetry of the form
∂

∂x
. It follows that dimSymS is equal to either 1 or 3.

The following proposition makes possible to separate all constant
sections with 3 – dimensional algebras of symmetries.

Proposition 4.5. Let S : x → (x, an−2, . . . , a0 ) be a constant sec-
tion of π. Then dimSymS = 3 iff the components an−k satisfy to the
following conditions:

(1) if k is odd, then an−k = 0,



Contact classification of linear odes. II 15

(2) if k is even, then the coefficients an−k are expressed in terms of
an−2 by the recurrence formula

an−2m =
1

2m
( R2m−1

n λ2m −
2m−4∑
s=0

R2m−1−2s
n−2−2s an−2−2sλ

2m−2−2s ) ,

where Rq
p =

(
p
q−1

)
(n− 1)/2 −

(
p
q

)
, λ2 =

2

R3
n

an−2 , m = 2, 4, . . .

In particular, if an−2 = 0, then all coefficients are equal to 0.

Proof. Let S : x → (x, an−2, . . . , a0 ) be a constant section of π. Then
dimSymS = 3 iff system (2.11) for S has three linear independent
solutions. This system has the following form in this case:



R3
nϕ

(3) − 2an−2ϕ
(1) = 0

Rk+1
n ϕ(k+1) −

k−3∑
s=0

Rk−1−s
n−2−san−2−sϕ

(k−1−s) − kan−kϕ
(1) = 0 ,

k = 3, 4, . . . , n .

From the first equation, we obtain that the system has three linear
independent solutions: 1, eλx, e−λx, where λ2 = (2/R3

n)an−2. It now is
clear that the system has three linear independent solutions iff

an−k =
1

k
( Rk+1

n λk −
k−3∑
s=0

Rk−1−s
n−2−san−2−sλ

k−2−s ) , k = 3, 4, . . . , n

λ2 =
2

R3
n

an−2

and these identities are fulfilled for ±λ. This completes the proof. �

4.3.2. Classification of constant sections with 1-dimensional algebras of
symmetries.

Proposition 4.6. Let S be a constant section of π with 1-dimensional
algebra of symmetries and let f be a diffeomorphism of R

1. Then f(S)
is a constant section iff f(x) = λx+ ν , λ, ν ∈ R , λ �= 0.

Proof. The section S has the symmetry ∂/∂x . It follows that f∗ takes
this symmetry to the symmetry f ′( f−1(X) )∂/∂X of the section f(S).
It now is obvious that f(S) is a constant iff f ′ = λ ∈ R , λ �= 0. The
last is equivalent to f(x) = λx + ν , ν ∈ R. �

It now is clear that the problem of classification of sections of π
with 1-dimensional algebras of symmetries in a neighborhood of reg-
ular point is reduced to the classification of constant sections with
1-dimensional algebras of symmetries w.r.t. the group of all linear
transformations x �→ λx , λ �= 0, of R

1.
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Proposition 4.7. Let S1 : x → (x, an−2, an−3, . . . , a0 ) and S2 : X →
(X,
An−2, An−3, . . . , A0 ) be constant sections of π with 1-dimensional al-
gebras of symmetries. Then S1 and S2 are equivalent iff there exist
λ ∈ R , λ �= 0, such that

an−2 = λ2An−2, an−3 = λ3An−3, . . . , a0 = λnA0. (4.2)

Proof. Suppose S1 and S2 are equivalent. This means that there exist
a linear transformation f(x) = λx that takes S1 to S2. The point

transformation ( f, f̂ ) of form (1.3) generated by f is defined by X =

λx , Y = |λ|(n−1)/2y. From (2.2), we have that the lifting ( f, f̂ )(n) is
defined by

X = λx , Y = |λ|(n−1)/2y , P1 = |λ|(n−1)/2λ−1p1 , . . . , Pn = |λ|(n−1)/2λ−npn .

It follows that pn = λ2An−2pn−2 + λ3An−3pn−3 + . . . + λnA0y is the

equation ES1 obtained from ES2 by point transformation ( f, f̂ ). The
statement of the proposition now is obvious. �

Let I ⊂ { 2, 3, . . . , n } , n ≥ 3, be a nonempty subset. If I contains
odd numbers, then by m we denote the minimal odd number of I. If
I consists of even numbers, then by m we denote the minimal number
of I.

By SI we denote a constant section with 1-dimensional algebra of
symmetries S : x → (x, an−2, an−3, . . . , a0 ) that satisfies an−i �= 0 if
i ∈ I and an−i = 0 otherwise. Put by definition

Ik(S
I) =

{
an−k/a

k/m
n−m , k ∈ I , whenever I contains odd numbers

an−k/|an−m|k/m , k ∈ I , whenever I consists of even numbers .

Theorem 4.8.

(1) If I1 �= I2, then any sections S
I1 , SI2 are not equivalent.

(2) Sections SI1 , S
I
2 are equivalent iff

∀k ∈ I Ik(S
I
1) = Ik(S

I
2). (4.3)

Proof. 1) The first statement follows from relations (4.2).
2) Suppose the sections SI1 , S

I
2 are equivalent. Then, it follows from

relations (4.2) that λ = a1/m
n−m/A

1/m
n−m whenever I contains odd numbers

and λ = |an−m|1/m/|An−m|1/m whenever I consists of even numbers.
Substituting this expression for λ ( respectively for λ2 ) in (4.2), we
obtain equalities (4.3).

Conversely, suppose equalities (4.3) hold. Suppose I contains odd

numbers. Then we define λ by formula λ = a1/m
n−m/A

1/m
n−m. It follows that

(an−m)1/m = λ(An−m)1/m. Substituting this expression for (an−m)1/m

in (4.3), we obtain relations (4.2). If I consists of even numbers, then
setting λ = |an−m|1/m/|An−m|1/m, we obtain (4.2) by analogue argu-
ments. �
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Corollary 4.9. The collection of numbers Ik(SI), k ∈ I, is a complete
collection of invariants to solve the equivalence problem for sections of
the form SI.

Below, by I1 we denote nonempty subsets of { 2, 3, . . . , n } , n ≥ 3,
consisting odd numbers; by I2 we denote nonempty subsets of { 2, 3, . . . , n },
n ≥ 3, consisting of even numbers.

By SI1+1 we denote a section of the form SI1 with an−m = 1, by SI2+1

we denote a section of the form SI2 with an−m = 1, and at last by SI2−1

we denote a section of the form SI2 with an−m = −1.
By F we denote the family of all sections of the forms: SI1+1, S

I2
+1, and

SI2−1 for all I1 , I2.
From stated above, we have the following two theorems.

Theorem 4.10. (Classification constant sections of π with 1-dimensional
algebras of symmetries up to equivalence.)

(1) Any two sections from F are not equivalent.
(2) Any constant section of π with 1-dimensional algebra of sym-

metries is equivalent to some section from F.

Theorem 4.11. (Classification of linear ODEs order n ≥ 3 with n+2-
dimensional algebras of point symmetries in a neighborhood of a regular
point up to equivalence.)

(1) Let S1, S2 ∈ F and S1 �= S2. Then any their germs {S1}p1 , {S2}p2
are not equivalent.

(2) Let S be a section of π with 1-dimensional algebra of symme-
tries and let p be a regular point of its domain. Then {S}p is
equivalent to a germ of some section from F.

Thus F is a complete family of nonequivalent sections with 1-dimensional
algebras of symmetries.

As examples, consider F for n = 3, 4.
Let n = 3. Then I1 = {1, 0}, {0} and I2 = {1}. From (4.5), we have

dimSymSI2 = 3. Thus the family F consists of the following sections:

p3 = a1p1 + y , a1 ∈ R \{0} ,
p3 = y .

Let n = 4. Then I1 = {2, 1, 0}, {2, 1}, {1, 0}, {1} and I2 = {2, 0}, {0}.
From (4.5), we have that the sections S : x �→ ( x, ± p2, 0, (1/20) y )
of the form SI2 have 3-dimensional algebras of symmetries. All others
sections of this form have 1-dimensional algebras of point symmetries.
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Thus the family F consists of the following sections:

p4 = a2p2 + p1 + a0y , a2, a0 ∈ R \{0} ,
p4 = b2p2 + p1 , b2 ∈ R \{0} ,
p4 = ±p2 + c0y , c0 ∈ R \{0} , c0 �= 1/20 ,

p4 = p1 + d0y , d0 ∈ R \{0} ,
p4 = p1 ,

p4 = ±y .

4.4. Differential invariants of linear ODEs of form (1.2). In this
subsection, we calculate the algebra of scalar differential invariants of
linear ODEs of form (1.2) and we solve the euivalence problem for these
equations.

4.4.1. Jet bundles. The standard coordinates x, an−i, i = 3, 4, . . . , n ,
on the bundle τ define in the obvious way the standard coordinates

x, a
(r)
n−j, j = 3, 4, . . . , n , r = 0, 1, 2, . . . , k , on the jet bundle τk : Jkτ →

R , k = 0, 1, 2, . . . ,∞.
Any diffeomorphism f (0) , f ∈ G , can be lifted to the Lie transfor-

mations f (k) of the jet bundles Jkτ , k = 1, 2, . . . ,∞, by the formula

f (k)( [S]kp ) = [ f (0) ◦ S ◦ f−1 ]kf(p) . (4.4)

Obviously, for any l > m, the diagram

J lτ
f (l)

−−−→ J lτ

τl,m

� �τl,m
Jmτ −−−→

f (m)
Jmτ

is commutative (in the domains of f (l)).
Let

G(k) = { f (k) | f ∈ G } , k = 0, 1, 2, . . . ,∞ .

Let

G+ = { f ∈ G | f ′ > 0 } , G− = { f ∈ G | f ′ < 0 } .
Obviously, G+ is the connected component of the unit of G.

By µ we denote the element of G− defined by

µ(x) = −x ∀x ∈ R
1 .

Obviously, we have

G = G+ ∪G− , G− = µ ◦ G+ ,

The lifting µ(k) is defined by

µ(k)( (x, a(r)
n−j ) ) = (−x, (−1)j+ra(r)

n−j ) , (4.5)

j = 3, 4, . . . , n , r = 0, 1, . . . , k.
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Let

G
(k)
+ = { f (k) | f ∈ G+ } , G

(k)
− = { f (k) | f ∈ G− } .

Obviously, G
(k)
+ is the connected component of the unit of G(k) and

G(k) = G
(k)
+ ∪G(k)

− , G
(k)
− = µ(k) ◦G(k)

+ .

The lifting of projective transformations of the base R
1 to diffeo-

morphisms of Jkτ generates the lifting of any vector field ξ ∈ g to the
vector field ξ(k) on Jkτ . By definition, ξ(k) is the vector field defined

by the flow f (k)
t , where ft is the flow of ξ. Obviously

( τl,m )∗( ξ
(l) ) = ξ(m) , l > m .

Let ξ = ϕ(x)∂/∂x be an arbitrary element of g. The vector field
ξ(∞) is defined by the formula (see [5])1

ξ(∞) = ϕDx + �ψ , (4.6)

where Dx = ∂/∂x+
∑∞

k=0

∑n
j=3 a

(k+1)
n−j ∂/∂a

(k)
n−j is the operator of total

derivation w.r.t. x; �ψ =
∑∞

k=0

∑n
j=3D

k
x(ψn−j )∂/∂a

(k)
n−j is the opera-

tor of evolution differentiation with generating functionψ = (ψn−3, . . . , ψ0 )t .
This function is defined in the following way. Let x1 = [S]1x ∈ J1τ , x =
τ1(x1); then

ψ(x1) =


ψn−3(x1)

· · ·
ψ0(x1)


 =

d

dt
( f (0)

t ◦ S ◦ f−1
t )(x)

∣∣∣
t=0

(4.7)

Let S(x) = (x, an−3(x), . . . , a0(x) ). Then, taking into account that
dft/dt|t=0 = ϕ and ϕ′′′ = 0, we can calculate that

ψ =




−3an−3ϕ′ − a
(1)
n−3ϕ

−3(n−3)
2

an−3ϕ′′ − 4an−4ϕ′ − a
(1)
n−4ϕ

. . .

− (k−1)(n−(k−1))
2

an−k+1ϕ′′ − k an−kϕ′ − a
(1)
n−kϕ

. . .

−n−1
2

· 1 · a1ϕ′′ − na0ϕ′ − a
(1)
0 ϕ




(4.8)

1 Here we use the Cyrillic letter �, which is pronounced like “e” in “ten”.
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It now follows from (4.6) and (4.8) that for any k = 0, 1, 2, . . . ,∞,

ξ(k)
0 =

∂

∂x
. (4.9)

ξ
(k)
1 = x

∂

∂x
−

k∑
r=0

n∑
j=3

(j + r)a(r)
n−j

∂

∂a(r)
n−j

. (4.10)

ξ(k)
2 = x2 ∂

∂x
−

k∑
r=0

n∑
j=3

[
2x(j + r)a(r)

n−j
∂

∂a(r)
n−j

+ (j − 1)(n − (j − 1))a(r)
n−(j−1)

∂

∂a(r)
n−j

+ (2j + r − 1)ra
(r−1)
n−j

∂

∂a(r)
n−j

]
, (4.11)

where a(r)
n−2 = 0.

4.4.2. Invariant subbundles. Let E i , i = n − 3, n − 4, . . . , 0,−1 , be
the subspaces of the total space E of τ defined by

E i = { (x, an−3, an−4, . . . , a0 ) ∈ E | aj = 0 if j > i } .
Consider the subbundle τ |E i : E i → R of the bundle τ .

Proposition 4.12. Every subbundle E i is invariant w.r.t. G(0).

Proof. From (4.9) – (4.11), we have that the restrictions of the vector

fields ξ
(0)
0 , ξ

(0)
1 , ξ

(0)
2 on E i are defined by

ξ
(0)
0 |E i =

∂

∂x
, (4.12)

ξ(0)
1 |E i = x

∂

∂x
− ( (n − i)ai

∂

∂ai
+ · · · + na0

∂

∂a0

) , (4.13)

ξ(0)
2 |E i = x2 ∂

∂x
− 2x( (n− i)ai

∂

∂ai
+ · · · + na0

∂

∂a0
)

− ( i(n− i)ai
∂

∂ai−1
+ · · · + (n− 1)a1

∂

∂a0
) . (4.14)

It now is clear that ξ(0)
0 |E i, ξ(0)

1 |E i , ξ(0)
2 |E i are vector fields tangent to

E i. Therefore every subbundle E i is invariant w.r.t. G(0)
+ . From (4.5),

we have µ(0)(Ei ) = Ei. This concludes the proof. �
Thus, we have the following sequence of the subbundles invariant

w.r.t. G(0).
E = E n−3 ⊃ E n−4 ⊃ . . . ⊃ E 0 ⊃ E−1 .

Let E i , i = n− 3, n− 4, . . . , 0,−1 , be the subsets of the total space
E of τ defined by

E i = E i \ E i−1 if i ≥ 0 and E−1 = E−1 .
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Consider the subbundle

τ i = τ |E i : E i → R

of the bundle τ .

Corollary 4.13. Every subbundle E i is invariant w.r.t. G(0).

Thus, E is the union

E = En−3 ∪En−4 ∪ . . . ∪ E 0 ∪ E−1 (4.15)

of nonintersecting subbundles invariant w.r.t. G(0).

The following proposition is needed for the sequel.

Proposition 4.14. The symmetric differential (n−i)-form ωi = aidxn−i|E i

on E i is invariant w.r.t. G(0).

Proof. Let us calculate the Lie derivatives of ωi w.r.t. vector fields

ξ(0)
0 |E i,

ξ(0)
1 |E i, ξ

(0)
2 |E i. From (4.12) – (4.14), we have

ξ
(0)
0 |E i(ωi ) = 0 ,

ξ(0)
1 |E i(ωi ) = ai (n− i) dxn−i − (n− i) aidx

n−i = 0 ,

ξ
(0)
2 |E i(ωi ) = ai (n− i) 2x dxn−i − 2x (n− i) aidx

n−i = 0 .

Hence ωi is invariant w.r.t. G
(0)
+ .

It follows from (4.5) that (µ(0))∗(ωi) = ωi. Thus ωi is invariant w.r.t.
G(0). �

Corollary 4.15. (The transformation law of the first nonzero compo-
nent.)
Let θ0 = (x, 0, . . . , 0, ai, . . . , a0 ) ∈ Ei , let f ∈ G , and let f (0)( θ0 ) =

( f(x), 0, . . . , 0, Ai, . . . , A0 ) ∈ Ei . Then

ai = ( f ′(x) )n−iAi .

4.4.3. Scalar differential invariants of linear ODEs. In this subsection,
we calculate scalar differential invariants of linear ODEs. For a general
theory of scalar differential invariants refer to [1], [11].

It was proved in subsection 4.4.2 that the bundle τ i = τ |E i : E i → R

is invariant w.r.t. G(0). It follows that the jet bundle Jkτ i are invariant
w.r.t. G(k) , k = 1, 2 . . . ,∞ . Hence Jkτ i are invariant w.r.t. the

subgroup G
(k)
+ ⊂ G(k) , k = 0, 1, 2 . . . ,∞ .

A function I ∈ C∞(Jkτ i) is called a scalar differential invariant of
G (G+ ) if

(f (k))∗I = I ∀f ∈ G (G+ ) .

Let I be a scalar differential invariant of G (G+ ) and let S be a
section of τ i. By definition, put

I(S) = ( jkS )∗I (4.16)
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For any f ∈ G, we have

I( f(S) ) ◦ f = I(S) . (4.17)

Indeed,

I( f(S) ) = ( jkf(S) )∗I = ( jk(f
(0) ◦ S ◦ f−1) )∗I = ( f (k) ◦ jkS ◦ f−1 )∗I =

( f−1 )∗ ◦ ( jkS )∗ ◦ ( f (k) )∗I = ( f−1 )∗ ◦ ( jkS )∗I = ( f−1 )∗I(S) =

I(S) ◦ f−1 .

Let S be a section of τ admitting a 1-dimensional algebra of pro-
jective symmetries. Then I(S) is a constant for any scalar differential
invariant I . Indeed, let ξ be a projective symmetry of S and let ft be
its flow. Then

I(S) = I( ft(S) ) = I( ft(S) ) ◦ ft = I(S) ◦ ft .
It is not hard to prove that I ∈ C∞(Jkτ i) is a scalar differential

invariant of G+ iff I is a solution of the system of linear PDEs

ξ̄
(k)
0 (I) = 0

ξ̄(k)
1 (I) = 0

ξ̄
(k)
2 (I) = 0 ,

(4.18)

where ξ̄(k)
0 , ξ̄(k)

1 , ξ̄(k)
2 are the restrictions of ξ(k)

0 , ξ(k)
1 , ξ(k)

2 to Jkτ i .
From (4.9) – (4.11), we have

ξ̄
(k)
0 = ξ

(k)
0

∣∣∣
Jkτ i

=
∂

∂x
, (4.19)

ξ̄(k)
1 = ξ(k)

1

∣∣∣
Jkτ i

= x
∂

∂x
−

k∑
r=0

0∑
j=i

(n − j + r)a(r)
j

∂

∂a(r)
j

, (4.20)

ξ̄(k)
2 = ξ(k)

2

∣∣∣
Jkπi

= x2 ∂

∂x
−

k∑
r=0

i∑
j=0

[
2x(n − j + r)a(r)

j

∂

∂a(r)
j

+ (n− j − 1)(j + 1)a(r)
j+1

∂

∂a(r)
j

+ (2(n − j) + r − 1 )ra(r−1)
j

∂

∂a(r)
j

]
. (4.21)

By Ak
i we denote the algebra of scalar differential invariants of G+

on Jkτ i. We identify Ak
i with its image (τ il,k)

∗(Ak
i ) , l > k . As a result

we have the following filtration

Ai = A∞
i ⊃ . . . ⊃ Ak

i ⊃ . . . ⊃ A1
i ⊃ A0

i .

By Dk
i we denote the distribution on Jkτ i generated by vector fields

ξ̄(k)
0 , ξ̄(k)

1 , ξ̄(k)
2 . From (4.19) – (4.21), we have that dimDk

i = 2 if i = 0
and k = 0, otherwise dimDk

i = 3.
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By Nk
i we denote the number of functionally independent scalar

differential invariant in Ak
i . Clearly,

Nk
i = dim Jkπi − dimDk

i

It is easy to prove that

N0
0 = 0 , N1

0 = 0 , Nk
0 = k − 1 if k ≥ 2 , (4.22)

N0
1 = 0 , Nk

1 = 2k if k ≥ 1 , (4.23)

N0
i = i− 1 , Nk

i = (k + 1)(i− 1) + 2k if k ≥ 1 . (4.24)

Consider the vector field on J∞τ i

ζ i = |ai|−1/(n−i)D̄x , (4.25)

where D̄x = Dx|J∞τ i = ∂/∂x +
∞∑
r=0

0∑
j=i

a(r+1)
j ∂/∂a(r)

j is the operator of

total derivation w.r.t. x restricted on J∞τ i .

Proposition 4.16. The vector field ζ i is invariant w.r.t. G
(∞)
+ .

Proof. By ξ̄(∞)
r , r = 0, 1, 2 , we denote the restriction of ξ(∞)

r to J∞τ i.

Let us check that [ ζ i, ξ̄
(∞)
r ] = 0 for all r.

Taking into account (4.9), we have

[ ζ i, ξ̄
(∞)
0 ] =

[
|ai|−1/(n−i)D̄x,

∂

∂x

]
= 0 .

Taking into account (4.8), we consider the vector fields ξ̄(∞)
1 and ξ̄(∞)

2

in the form (4.6):

ξ̄
(∞)
1 = xD̄x + �̄

( (n−i)ai+xa
(1)
i )

,

ξ̄
(∞)
2 = x2D̄x + �̄

( (i+1)(n−i+1)ai+1+2(n−i)xai+x2a
(1)
i )

,

where �̄ψ is the restriction of �ψ on J∞τ i. Now taking into account

that [ D̄x , �̄ψ ] = 0 for any ψ, we easily obtain that [ ζ i, ξ̄
(∞)
1 ] = 0 and

[ ζ i, ξ̄
(∞)
2 ] = 0 . �

Obviously, for any I ∈ Ai, its Lie derivative ζi(I) ∈ Ai. Thus, ζ i and
I generate the sequence I , ζi(I) , . . . , ζki (I) , . . . of scalar differential
invariants from Ai.

Theorem 4.17. The algebra Ai is generated by the following free gen-
erators

ζki (I i−m), m = 0, 1, . . . , i , k = 0, 1, 2, . . . ,
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where

I i =

[
2ai a

(2)
i − 2(n − i) + 1

n− i
(a

(1)
i )2

]
· (ai)−2(n−i+1)/(n−i) ; (4.26)

I i−1 =

[
ai−1 −

i

2
a

(1)
i

]
· |ai|−(n−i+1)/(n−i) ; (4.27)

for 2 ≤ m ≤ i ,

I i−m =

[
ai−m +

(−1)m

m!

n−i+m−1∏
r=n−i+1

(n− r)r

(n− i)i
(ai)

1−m (ai−1)
m +

+
n−i+m−1∑
l=n−i+1

(−1)n−i+m−l

(n− i+m− l)!

n−i+m−1∏
r=l

(n − r)r

(n− i)i
(ai)

i−n+l−m ·

(ai−1)
n−i+m−l an−l

]
· |ai|−(n−i+m)/(n−i) . (4.28)

Proof. It is not hard to check that Ii, . . . , I0 are solutions of system
(4.18).

Let i = 0. We have that I0 ∈ A2
0. For any k = 0, 1, 2, . . ., the invari-

ants I0, ζ 0(I0), ζ2
0(I0), . . . , ζ

k
0(I0) belong to Ak+2

0 and they are function-
ally independent. The number of them is equal to (k + 2) − 1. Now
from (4.22), we obtain that (k + 2) − 1 = Nk+2

0 . This concludes the
proof for i = 0.

Suppose i ≥ 1. We have

ζ i(I i−1) = [− i

2
|ai| a(2)

i + . . . ] · (ai)−2(n−i+1)/(n−i)

The manifold J∞τ i has two connected components defined by the in-
equalities ai > 0 and ai < 0 respectively. Comparing ζ i(I i−1) with Ii,
we can define the scalar differential invariant J ∈ A1

i by the formula

J =




I i +
4

i
ζ i(I i−1) if ai > 0

I i −
4

i
ζ i(I i−1) if ai < 0 .

It is easy to calculate that

J =

[
4

i
ai a

(1)
i−1 −

4(n − i+ 1)

i(n− i)
a

(1)
i ai−1+

1

n− i
(a

(1)
i )2

]
·(ai)−2(n−i+1)/(n−i) .

Let i = 1. Then Ii−1, J ∈ A1
i and they are functionally independent.

The invariants

Ii−1, J, ζ i(Ii−1), ζ i(J), . . . ζ
k
i (Ii−1), ζ

k
i (J)

belong to Ak+1
i , k = 0, 1, 2, . . . , they are functionally independent, and

the number of them is equal to 2(k + 1). Now from (4.23), we obtain
2(k + 1) = Nk+1

1 . This concludes the proof for i = 1.
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Let i > 1. Then the invariants Ii−2, . . . , I0 are functionally inde-
pendent and they belong to A0

i . The invariants Ii−2, . . . , I0, Ii−1, J are
functionally independent and they belong to A1

i . At last, the invariants

Ii−2, . . . , I0, Ii−1, J, . . . , ζ
k
i (Ii−2), . . . , ζ

k
i (I0), ζ

k
i (Ii−1), ζ

k
i (J)

are functionally independent, they belong to Ak
i , k = 1, 2, . . ., and the

number of them is equal to (k + 1)(i − 2) + 2k. Now from (4.24), we
obtain that (k + 1)(i − 1) + 2k = Nk

i . This concludes the proof for
i > 1. �

From (4.5), we obtain

Remark 4.18. The invariant

I i =

[
2ai a

(2)
i − 2(n− i) + 1

n− i
(a(1)
i )2

]
· (ai)−2(n−i+1)/(n−i)

is an invariant of the group G.

4.4.4. The equivalence problem of linear ODEs. Let

S1(x) = ( 0, . . . , 0, ai(x), . . . , a0(x) )

and
S2(X) = ( 0, . . . , 0, Ai(X), . . . , A0(X) )

be sections of τ i in neighborhoods of points p ∈ R and P ∈ R respec-
tively.

Sections S1 and S2 are locally equivalent at ( p, P ) w.r.t. G+ (G ) if
there exist f ∈ G+ (G ) and neighborhoods V of p and U of P that

f(p) = P and f(S1|V )
def
= f (0) ◦ S1|V ◦ f−1 = S2|U .

Theorem 4.19. Sections S1 and S2 of τ i are locally equivalent at
( p, P ) w.r.t. G+ iff the following conditions hold:

(1) ai(p) · Ai(P ) > 0 ,
(2) the solution f of the Cauchy problem

f ′ = |ai(x)|1/(n−i) · |Ai(f(x))|−1/(n−i) , f(p) = P (4.29)

satisfies to the equations

Im(S2) ◦ f = Im(S1) , m = i, i− 1, . . . , 0 (4.30)

in some neighborhood of p.

Proof. Suppose S1 and S2 are locally equivalent at ( p, P ) w.r.t. G+.
Then there exist f ∈ G+ and neighborhoods V of p and U of P that
f(p) = P and f(S1|V ) = S2|U . Consider the symmetric differential
(n− i)-form ωi on Ei (see proposition 4.14). We have

f∗(S∗
2(ωi) ) = S∗

1(ωi) . (4.31)

Indeed,

f∗( f(S1)
∗(ωi) ) = f∗( (f (0)◦S1◦f−1)∗(ωi) ) = S∗

1( (f
(0))∗(ωi) ) = S∗

1(ωi) .
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Equality (4.31) means that

ai(x) = (f ′)n−iAi(f(x)) .

It follows both that ai(p) ·Ai(P ) > 0 and that f is a solution of Cauchy
problem (4.29). Further, from (4.17), we have that equations (4.30)
hold.

Conversely, let ai(p) · Ai(P ) > 0, let f be a solution of Cauchy
problem (4.29), and let f be a solution of equations (4.30).

Let us show that f ∈ G+. From (4.29), we can obtain f ′′ and f ′′′ in
terms of ai , Ai and their 1-st and 2-nd derivatives:

f ′′ =
1

r

[
|ai|

1−r
r |Ai|

−1
r sgn(ai)a

′
i − |ai|

2
r |Ai|

−r−2
r sgn(Ai)A

′
i

]
, (4.32)

f ′′′ =
1

r

[
1 − r

r
|ai|

1−2r
r |Ai|

−1
r (a′i)

2 + |ai|
1−r

r |Ai|
−1
r sgn(ai)a

′′
i

− 3

r
|ai|

2−r
r |Ai|

−r−2
r a′iA

′
i +

2 + r

r
|ai|

3
r |Ai|

−2r−3
r (A′

i)
2

−|ai|
3
r |Ai|

−r−3
r sgn(Ai)A

′′
i

]
, (4.33)

where r = n− i. Substituting expressions (4.29),(4.32), and (4.33) for
f ′ , f ′′ , and f ′′′ in the left side of equation (3.4), we obtain

2 f ′′′ f ′ − 3 (f ′′)2 =
1

n− i
|ai|4/(n−i)|Ai|−2/(n−i)( Ii(S1)−Ii(S2)◦f ) = 0 .

Thus, f ∈ G+.
Let S3 = f(S1). Then Im(S3) ◦ f = Im( f(S1) ) ◦ f = Im(S1) =

Im(S2) ◦ f , m = i, i− 1, . . . , 0. Hence

Im(S3) = Im(S2) , m = i, i− 1, . . . , 0 .

Let S3 = (0, . . . , 0, Bi, . . . , B0 ). Then obviously, Bi = (f ′)−(n−i)ai =
Ai in some neighborhood of P . It now follows from Ii−1(S3) = Ii−1(S2)
that Bi−1 = Ai−1 in this neighborhood. From Ii−2(S3) = Ii−2(S2), we
have Bi−2 = Ai−2 in this neighborhood and so on. Thus S3 = S2 in
some neighborhood of P . �

Corollary 4.20. Sections S1 , S2 of τ i are locally equivalent at the
( p, P ) w.r.t. G iff S1 local equivalent w.r.t. G+ either to S2 at ( p, P )
or to µ(S2) at ( p,−P ).

Corollary 4.21. Let the invariants Im(S1), Im(S2) , m = i, i−1, . . . , 0
be constants. Then S1 , S2 are locally equivalent at ( p, P ) w.r.t. G+ iff
the following conditions hold:

(1) ai(p) · Ai(P ) > 0 ,
(2) Im(S1) = Im(S2) , m = i, i− 1, . . . , 0 .
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Proposition 4.22. Let S be a section of τ i; then dimPrjS = 1 iff
Ii(S), Ii−1(S), . . . , I0(S) are constants.

Proof. The necessary is proved in the beginning of this subsection.
Prove the sufficiency. Let S(x) = (x, 0, . . . , 0, ai(x), . . . , a0(x) ) and
invariants Ii(S), Ii−1(S), . . . , I0(S) are constants.

From proposition 3.2, we have that a vector field ϕ(x)∂/∂x ∈ g is a
symmetry of section S iff ϕ(x) is a solution of system (2.11). In our
case, this system has the following form:



ϕ′′′ = 0

(n− i)aiϕ
′ + a′iϕ = 0

(n− j − 1)(j + 1)

2
aj+1ϕ

′′ + (n− j)ajϕ
′ + a′jϕ = 0 ,

j = i− 1, i− 2, . . . , 0 .

(4.34)

It follows from the second equation of this system that ϕ = C|ai|−1/(n−i),
C ∈ R.

From the identities d Im(S)/dx ≡ 0 , m = i, i − 1, . . . , 0, we can
obtain by direct calculations that |ai|−1/(n−i) is a solution of system
(4.34). Thus, the vector field |ai|−1/(n−i)∂/∂x is a symmetry of the
section S. �

4.5. Classification of linear ODEs with n + 1 – dimensional
algebra of point symmetries. In this subsection, we use the scalar
differential invariants obtained in the previous subsection to classify
linear ODEs (1.1) with n+1 – dimensional algebra of point symmetries
in a neighborhood of a regular point up to a transformation (1.3).

4.5.1. Regular germs. Let S be a section of π, let p be an arbitrary
point of the domain of S, and let f be a Lagguere-Forsyth transforma-
tion of S defined in a neighborhood of p. We say that p is a point of
class i for S (for the ODE ES) if there exist a neighborhood U ′ of f(p)
and subbundle E i of τ (see section 4.4.2) with Im f(S)|U ′ ⊂ E i. It is
easy to prove that a point of class i is well defined.

We say that S is a section of class i if every point of the domain of
S is a point of class i.

Clearly, if p is a point of class i for S then, for some neighborhood
U of p , S|U is a section of class i.

Let S be a section of class i with dimSymS = 0, let f be a Laguerre-
Forsyth transformation of S, let S′ = f(S), and let Ii, Ii−1, . . . , I0 be the
generators of the algebra of scalar differential invariants Ai defined in
theorem 4.17. Consider the smooth functions Ii(S ′), Ii−1(S ′), . . . , I0(S ′)
in R

1 (see formula (4.16)). From dimSymS = 0 we have dimSymS′ =
0. It follows from proposition 4.22 that there exist integer j , i ≤ j ≤ 0,
such that Ij(S

′) is not constant. We say that a point p of domain of S
is regular point of S (of the ODE ES) if dIj(S ′)|f(p) �= 0.
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Obviously, the set of all regular points of a section of class i is an
everywhere dense subset of the domain of this section.

We say that the germ {S}p with dimSymS = 0 is a regular germ of
class i if p is both a point of class i for S and a regular point for S.

By F̃i , i = n− 3, n− 4, . . . , 0 we denote the set of all regular germs
{S}0 of class i.

It is easy to prove that F̃i is invariant w.r.t. diffeomorphisms from
Γ0.

4.5.2. Classification of regular germs. Let {S}0 ∈ F̃i, let f be a Laguerre-
Forsyth transformation of S, let S′ = f(S), and let p0 = f(0). By
definition put

m = max{ j ∈ {i, i− 1, . . . , 0} | dIj(S ′)|p0 �= 0}
From (4.17), we have that the number m is an invariant of the action
of Γ.

It follows from dIm(S ′)|p0 �= 0 that there exists a neighborhood U of

p0 such that we can consider Im(S ′)|U as an element of Γ. Let

f̃ = Im(S ′)|U − Im(S ′)(p0) .

Obviously, f̃ ∈ Γ. Below, it will be useful to represent the function f̃
in the form

f̃ = RIm(S′)(p0) ◦ Im(S ′)|U ,

where the function Ra is defined by Ra : x �→ x− a.
We say that the germ { f̃(S ′) }0 ∈ F̃i is the canonical form of the

germ {S}0 . It follows from the next theorem that the canonical form
of {S}0 is well defined.

Theorem 4.23. Let {S1}0, {S2}0 ∈ F̃i. Then {S1}0 and {S2}0 are
equivalent iff their canonical forms are the same.

Proof. Let {S1}0 and {S2}0 are equivalent. It follows that there exist
g ∈ Γ0 with {g(S1)}0 = {S2}0. Let f1 and f2 be Laguerre-Forsyth
transformations in neigborhood of 0 ∈ R

1 for S1 and S2 respectively.
Let S ′

1 = f1(S1) , S ′
2 = f2(S2) and let p1 = f1(0) , p2 = f2(0). Then in

some neighborhood of p2, we have

f̃2 = Im(S ′
2)− Im(S ′

2)(p2)

= Im( (f2 ◦ g ◦ f−1
1 )(S ′

1) ) − Im( (f2 ◦ g ◦ f−1
1 )(S ′

1) )(p2)

= Im(S ′
1) ◦ (f1 ◦ g−1 ◦ f−1

2 )− Im(S ′
1)(p1)

= RIm(S′
1)(p1) ◦ Im(S ′

1) ◦ (f1 ◦ g−1 ◦ f−1
2 ) .

Hence in the correspondence neighborhood of 0 ∈ R
1, we have

f̃2(S
′
2) = RIm(S′

1)(p1) ◦ Im(S ′
1) ◦ (f1 ◦ g−1 ◦ f−1

2 )( (f2 ◦ g ◦ f−1
1 )(S ′

1) )

= (RIm(S′
1)(p1) ◦ ( Im(S ′

1) )(S
′
1) = f̃1(S

′
1)
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The sufficiency is obvious. �

Let Fi be the set of canonical forms of all germs containing in F̃i and

let F =
n−3⋃
i=0

Fi. Obviously, we get the following theorem.

Theorem 4.24. (Classification of linear ODEs with n+1–dimensional
algebras of point symmetries in neighborhoods of regular points up to
equivalence.)

(1) Any two germs from F are not equivalent.
(2) Any regular germ of section of π is equivalent to some germ

from F.

References

[1] D.V.Alekseevskiy, V.V.Lychagin, A.M.Vinogradov, Fundamental ideas and
conceptions of differential geometry, Sovremennye problemy matematiki. Fun-
damental’nye napravleniy, Vol. 28 (Itogi nauki i techniki, VINITI, AN SSSR,
Moscow, 1988 (Russian)) [English transl.: Encyclopedia of Math. Sciences,
Vol.28 (Springer, Berlin, 1991)]

[2] E. Catran, Sur les varietes a connexion projective, Bull. Soc. Math. France 52
(1924), 205 – 241.

[3] G.-H.Halphen, Memoires sur la reduction des equations differentielles lineaires
aux formes integrables, Memoires presentes par duvers savants a l’Acad. des
sci. de l’inst. math. de France, Vol. 28, No. 1, pp. 1-301, 1884.

[4] N.H.Ibragimov (ed), New trends in theoretical developments and computational
methods, CRC Handbook of Lie Group Analysis of Differential Equations, Vol.
3, CRC Press, Boca Raton, Fl., 1996.

[5] I.S.Krasil’shchik, V.V.Lychagin, A.M.Vinogradov,Geometry of Jet Spaces and
Nonlinear Partial Differential Equations, Gordon and Breach, New York, 1986.

[6] I.S.Krasil’shchik, A.M.Vinogradov, Editors, Symmetries and conservation laws
for differential equations of mathematical Physics, Translations of Mathemat-
ical Monographs. Vol.182, Providence RI: American Mathematical Society,
1999.

[7] E.Laguerre, Sur les equations differentielles lineaires du troisieme ordre
Comptes Rendus. Acad. Sci. Paris, Vol. 88, pp. 116–119, 1879.

[8] F. M. Mahomed, P. G. L. Leach, Symmetry Lie algebras of nth order ordinary
differential equations, J. Math. Analysis and Appl., 151, 80-107, 1990.

[9] F. M. Mahomed, Symmetry Lie algebras of nth order ordinary differential
equations, Ph.D thesis, Faculty of science, University of the Witwatersrand,
Johannesburg, 1989.

[10] F.Neuman, Global properties of linear ordinary differential equations, Kluwer
Academic Publishers, Dordrecht, 1991.

[11] A.M.Vinogradov, Scalar differential invariants, diffieties and characteristic
classes, in: Mechanics, Analysis and Geometry: 200 Years after Lagrange,
ed. M.Francaviglia (North-Holland), pp.379–414, 1991.

[12] E. J. Wilczynski, Projective differential geometry of curves and ruled surfaces,
B. G. Teubner, Leipzig, 1906.

[13] V.A.Yumaguzhin, Point transformations and classification of 3-order linear
ODEs, Russian Journal of Mathematical Physics, Vol. 4, No. 3, pp. 403-410,
1996.



30 V.A. YUMAGUZHIN

[14] V. A. Yumaguzhin Classification of 3-rd order linear ODEs up to equivalence,
Journal of Differential Geometry and its Applications Vol. 6, No. 4, pp. 343-
350, 1996.

[15] V. A. Yumaguzhin Local classification of linear ordinary differential equations,
Doklady Mathematics, Vol. 377, No. 5, pp. 1-3, 2001.

[16] V. A. Yumaguzhin Contact classification of linear ordinary differential equa-
tions. I., Acta Applicandae Mathematicae, to appear.

Program Systems Institute, m. Botik, Pereslavl-Zalessky, 152020,

Russia

E-mail address: yuma@diffiety.botik.ru


	Introduction
	Preliminaries
	Jet bundles
	Cartan distribution
	Lie transformations
	Lie fields

	Ordinary differential equations
	Contact classification
	Point and contact transformations
	Point and contact vector fields
	Classical symmetries

	Linear ordinary differential equations
	Classical symmetries
	Point symmetries
	Contact transformations
	Reduction to transformations textup {hbox {mathsurround z @ normalfont (ignorespaces T @ref {sptr}unskip @@italiccorr )}}
	Laguerre-Forsyth transformations
	Reduction to transformations textup {hbox {mathsurround z @ normalfont (ignorespaces T @ref {PntTr_Prj}unskip @@italiccorr )}}


	Bundles of linear ODEs
	Bundle of linear ODEs of form textup {hbox {mathsurround z @ normalfont (ignorespaces T @ref {eq}unskip @@italiccorr )}}
	
	Symmetries of sections

	Laguerre-Forsyth bundles

	Classification of linear ODEs
	Classification of linear ODEs with $n+4$ -- dimensional algebra of point symmetries
	Reductions of the classification problem
	Classification of linear ODEs with $n+2$ -- dimensional algebra of point symmetries
	Linear ODEs with constant coefficients
	Classification of constant sections with $1$-dimensional algebras of symmetries

	Differential invariants of linear ODEs of form textup {hbox {mathsurround z @ normalfont (ignorespaces T @ref {eqq}unskip @@italiccorr )}}
	Jet bundles
	Invariant subbundles
	Scalar differential invariants of linear ODEs.
	The equivalence problem of linear ODEs

	Classification of linear ODEs with $n+1$ -- dimensional algebra of point symmetries
	Regular germs
	Classification of regular germs





