FINITE TYPE INTEGRABLE GEOMETRIC
STRUCTURES

V. A. YUMAGUZHIN

ABSTRACT. In this paper, we consider the finite type geometric
structures of arbitrary order. The aim of this paper is to solve
the integrability problem for these structures. This problem is
equivalent to the integrability problem for the corresponding G-
structures. The latter problem is solved by constructing the struc-
ture functions for G-structures of order > 1. These functions co-
incide with the well-known ones, see [1], for the first order G-
structures, although their constructions are different.

We prove that a finite type G-structure is integrable iff the struc-
ture functions of the corresponding number of its first prolonga-
tions are equal to zero.

Applications of this result to second and third-order ordinary
differential equations are noted.

Introduction. This paper is devoted to the integrability problem of
finite type geometric structures of arbitrary orders, that is, the prob-
lem of local equivalence between these structures and the flat ones is
investigated.

Following the paper [4], we interpret an arbitrary geometric structure
on a smooth manifold M as a map Q : Py(M) — RY, where P.(M) is
the bundle of k-frames of M and R is the N-dimensional arithmetic
space. We suppose that the differential group of order k acts on RY
and assume that this action is compatible with the natural action of
the group on Py (M), see Sec. 1.4.

Let ¢ € ImQ. The inverse image B = Q271(q) is a G-structure of
order k. Let Q) be the differential prolongation of order r for the
structure €2 and let ¢, be its value that projects naturally to q. Then
BM = (QM)~1(q,) is a G"-structure of order k+r. This B is called
the prolongation of order r for the G-structure B.

Obviously, the integrability problem for geometric structures is equ-
ivalent to the integrability problem for their G-structures.

In order to solve the latter problem, we follow the well-known ap-
proach to the equivalence problem for the first-order G-structures (see,
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e.g., [1]). We construct the structure functions of G-structures of ar-
bitrary orders. These structure functions are defined on G-structures
and their values are the Spencer d-cohomologies. For structures of or-
der 1, these functions coincide with the well-known structure functions
of G-structures of order 1, see [1], although their constructions are
different.

In Theorem 3.2 we prove that a finite type G-structure is integrable
iff the structure functions of the corresponding number of its first pro-
longations are equal to zero.

In the last section, we consider the applications of this theorem.
We note that the known point transformations linearizability condition
for second-order ordinary differential equations and a condition for a
third-order ordinary differential equation to be reducible to the form
y" = 0 by contact transformations are the integrability conditions for
the correspondence finite type G-structures.

Throughout this paper, all manifolds and maps are supposed to be
smooth. By [f]¥ we denote the k-jet of a map f at a point p, by R we
denote the field of real numbers, and by R” we denote the n-dimensional
arithmetic space.

1. PRELIMINARIES

In this section, we recall all necessary preliminary facts from the
papers [2]-[6].

1.1. Formal vector fields. By W, we denote the set of oo-jets at
0 € R” of all vector fields defined in neighborhoods of 0 in the space
R™. The operations
A X = [A- X,
[(X]o" + [Y]g" = [X + Y5,
XTSI ] = [1X,Y]16°

define the Lie algebra structure on W,,.
By Ly, k=-1,0,1,2,..., we denote the subalgebra in W,, defined
by
L ={[X]|XeW,|[X]f=0}, k>0, L. =W,
By definition, put
Obviously, V' =2 R". We have the filtration
Wn:LleLUDLID...DLkDLk+1D....

The formula
[LzaL]_Lerja ZZ_L]ZO
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makes possible to define the bracket operations on the quotient spaces:
[-, -] Wo/L x W, /L, - W, /L1, (1)
[-,]:V X Lg/Lgy1 — L1/ Ly . (2)
The last formula leads to the canonical isomorphism
L)Ly 2V @ SHV) .

Let gx C Lg_1/Lg. Then the subspace g,(f) C Lg 14i/ Lk is defined
by

gl(ci) ={X €Ly 11i/Lrsil
IYor,...,0,€ Vv, [, X]...] €}y

and is called the i-th prolongation of gx.
Suppose that the sequence of subspaces

g1, 925 -+ Giy ---
where g; C L; 1/L;, for i =1,2,3,..., satisfies the condition

1
git1 C 92( ),

Then for every g; there exists the complex

i— i—2,2

8 . Oio1, . 0
0_>gi—,0>gi—1®v %gi_2®/\2v —

02,i—2 O01,i—1

S g ATV L VATV, (3)

where the operator Oy, : g ® A'V* — gr_1 @ AF1V* is defined in the
following way: an element £ € g ® A'V* can be considered as the
external form on V' with values in g, then

I+1

(ak,l(f) )(Ula .- -,Uz+1) = Z(—l)iﬂ[vi, f(“h ey Oy -,Uz+1)]-

i=1
The cohomologies of this complex in the term g, ® AlV* are denoted
by H*!. These are the Spencer §-cohomologies.

1.2. Differential groups. Let D be the set of all diffeomorphisms
d defined in neighborhoods of 0 € R™ and satisfying the condition
D(0) = 0. By definition, put

Dy={[dy|deD}.

The operation [d,]f - [dy]k = [d1 o do]k defines the Lie group structure
on Dy. Obviously,

([df)~' = [d7']F and [id])} is the unity of the group D,.
The Lie group Dy is called the differential group of order k.

Obviously, the Lie algebra of Dy is identified with the Lie algebra
Ly/ L.
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By D,’j’l we denote the subgroup of Dy defined by
Dyt ={[dls € Dy | [ds" = [id]s "}
Its Lie algebra is identified with Ly_;/Ly.

1.3. Frame bundles. Let M be an n-dimensional smooth manifold.
Consider all diffeomorphisms of neighborhoods of 0 € R" to M. By
Py(M) we denote the set of k-jets at 0 of all these diffeomorphisms.
The following natural projection holds:

Tt Po(M) — M, m : [s]k = s(0).

A local chart ( (x! x”)) in M generates the local chart in
P.(M) (7, (U), (xl, x%, ..., 2% 5 )). In this chart, the coordinates of
a point [3]0 € 7' (U) are calculated by the formula

7 (@ o 5)
) k\

l‘jl...jr([s]o) = o0 op
ity gr=1,...,n, 7=0,1,...,k,

where t',...,t" are the standard coordinates on R*. Now we see that
P.(M) is a smooth manifold.

It is easy to prove that my : Py(M) — M is a smooth locally trivial
bundle. The group D, acts freely and transitively on the fibers of this
bundle:

[s]6 - [d]g = [sodlg V[s]g € Pu(M), V[d]§ € Dy.
Thus, P.(M) is a principal bundle over M with the structure group
Dy. P.(M) is called the bundle of k-frames of M.
The natural projection 7, : P(M) — P, (M), | > m, is defined
by mum([514) = [s]5-
Let 0, € P,(M), let p = m(0)), and let Tp, P.(M) be the tangent
space to Pi(M) at the point 6.

Proposition 1.1. Let 04 € W];il’k(gk). Then:

(1) 01 defines the isomorphism of vector spaces

We will denote this isomorphism by 0y1 too.

(2) The reduction of the inverse isomorphism (041)~ to Lo/ Ly, is
the canonical isomorphism of the Lie algebra of the structure
group Dy, to the space Ty, (7, (p)) tangent to the fiber of my
over the point p.

Proof. Let [s];™" = 611 and s(0) = p. By T#(M) we denote the space
of k-jets at p of all vector fields in M passing through p. Obviously,
the map

a:Ti(M)—)Tngk(M), a:[X]k i([@tos]o)toa
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where ¢, is the flow of X, is an isomorphism of vector spaces. Also,
the map
d
5 THM) 5 TR, B2 (XJs o 2[5 ogrosh)]
is an isomorphism of vector spaces. The isomorphism 6, is defined
now by the formula
Or1=Loa ",
The canonical isomorphism Ly/Ly — Tp, (7, ' (p)) is defined by the
formula
d/dt([d])|,_, — d/dt([s o d]g)|,_,-
This formula can be rewritten in the following way:

d/dt(s to(sodios H)os —

o
d/dt([(sod,os™)os|k )‘t:O'
This completes the proof. 0]

The diffeomorphism st

chart (z*, x¢ xt ) in Py(M) as stated above. Obviously, within

is a local chart in M. It generates the local

YTy ey Ty
this chart, the isomorlghism 011 is defined by
7 0 7 0 7
Op1 0 X axz X Ik Pl » (X, Xy ]k-) (4)
Lji...jk

Let 641, §k+1 € (Tg+1,6) *(0k). Then there exists a unique element
[dlg*" = (67,0,...,0,d}, . ) € Df,,y such that 1 = Oy - [d]gH. Tt
is easy to prove the following statement.

Proposition 1.2. Let £ € Ty, P,(M) and
Ori1(§) = (XZ lel Jk— 1’XJZ1 ]k)

Then y .
Op1(6) = (X ..., X! X o+ d

Jredk—17 “T g1k Ji-- JkTXr)‘
Let f be an arbitrary diffeomorphism of M to itself. Then the dif-
feomorphism f*) : P,(M) — P,(M) is defined by

FE([sls) =[fosls.
The diffeomorphism f*) is called the lift of f to the bundle Py(M).

1.4. Geometric structures. Recall that a geometric structure on M
is defined by the following three conditions:

(1) a collection of functions ¢(z) = (¢'(z),...,q¢" (x)) is defined for
every local coordinate system x = (x!',...,2") in M. These
functions are called the components of the geometric structure
in the coordinate system z;

(2) some action F': Dy x RY — RY of the group Dy, is defined on
RV
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(3) suppose ¢(x) and §(y) are the collections of components of the
structure in a coordinate systems x and y respectively, suppose
y = y(z) is the transformation of these coordinates; then the
collections ¢(z) and ¢(y) are related in the following way:
~ 8yi akyi
Q(y):F(@aamaq(x)) (5)
The number £ is called the order of this structure and F' is called the
transformation law of the components of the structure.

The following equivalent definition of a geometric structure for the
first time was given by V. V. Vagner in his paper [4]. This definition
is more convenient for us. Let F': D, x RY — RY be an action of Dj,
on RY. Then a map

Q: P, (M) — RV,
is called a geometric structure of order k on M if
Q(dek) :F(dlgl, Q(Hk)) Y 0, Epk(M), Vdi, € Dy

Any local coordinate system (U, h = (z',...,2")) in M generates the
section of P, (M) by the formula

_ 11k
U—m ' (U), p=[(h=nh(p)) '], (6)

The reduction of €2 to the image of this section is the collection of the

components ¢'(z),...,¢" (z) of Q in the coordinates z',. .., z".

A geometric structure €2 is called homogeneous if Im (2 is an orbit of
the action F' of the group Dj.

Suppose ; and €2, are geometric structures with the same trans-
formation law of their components. We say that these structures are
equivalent if there exists a diffeomorphism f of M such that

Q=00 f0).
1.5. Prolongations of structures. Suppose () is a geometric struc-

ture and the transformation law of its components is defined by (5).
Then its first prolongation

QW : Py (M) — RN

is defined in the following way. Suppose ¢'(z),...,¢" () are the com-
ponents of 2 in the coordinates z!,...,2". Then

0 .
q“(z), @(qo‘(x)), a=1,...,N,j=1,...,n,

are the components of Q) in the coordinates z',...,z". Obviously,
the transformation law of components of QW) is defined by
q“ = Fo‘(d;-l,...,d;lmjk, q,....q"V),
. OF“ oF* OF* (7)
-To I (A i R [ Yt 9. 8
K" dy = aa i+t g i T g5 00
Ji

JieJk
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The i-th prolongation of €2 is defined by induction on ::
QD = ()M =12 ...

1.6. G-structures. Let G C Dy be a closed Lie subgroup and let
B C Py(M) be a reduction of Py(M) to G. Then B is called a G-
structure of order k over M.

Let Q : P,(M) — RY be an arbitrary homogeneous geometric struc-
ture, ¢p € Im ), and G C Dj be the isotropy group of go. Then the
inverse image B = Q7 '(q9) C P,(M) is a G-structure of order k over
M.

Suppose By and B; are G-structures over M. They are equivalent if
there exists a diffeomorphism f of M such that

fP(B1) = B,.
It is easy to prove the following statement.

Theorem 1.3. Suppose 2y and €2y are homogeneous geometric struc-
tures with the same transformation law of the components, suppose that
Im 2y =ImQy, and suppose ¢ € Im Q. Then Q; and Qs are equivalent
iff the G-structures ;' (q) and Q5 (q) are equivalent.

Let B be a G-structure of order &k over M and let 8 C Loy/Ly, be the
Lie algebra of G. By definition, put

g =8N (Lg_1/Ly) .
(4) (0)

By g,’, ¢ =0,1,... denote the i-th prolongation of g;, where g, = gy.
By definition, B is a finite type G-structure if there exists a nonneg-
ative integer r such that g,(;) = {0}. Obviously, g,(;) = {0} if i > r. By

r(B) we denote the least nonnegative integer r such that g,(c’") = {0}.

1.7. Flat structures. Let F : D, x RY — R" be an arbitrary action
of Dy on RV let ¢ € RY, and let G C Dy, be the isotropy group of q.

The standard coordinate system on R™ generates the section Py (R™)
by formula (6). Subjecting image of this section to the action of G,
we obtain the G-structure B over R”. It is called flat. Obviously, the
G-structure B, ¢, and the transformation law F' define the geometric
structure Q : Py(R") — RY uniquely. This geometric structure is called
a flat structure too.

A geometric structure (G-structure) on M is called a locally-flat or
integrable if it is locally equivalent to a flat structure (G-structure).

Obviously, a G-structure B on M is integrable iff there exists a local
chart of M such that the section of P,(M) generated by this chart is a
section of B. In other words, a geometric structure on M is integrable
iff there exists a local chart in M such that the components of this
structure are constants in this chart.

In the sequel, we use the following
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Theorem 1.4. Let Q2 be an arbitrary geometric structure and let q be
some value of Q. Then Q is integrable iff the G-structure B = Q7' (q)
18 1ntegrable.

2. STRUCTURE FUNCTIONS

2.1.  Consider a homogeneous geometric structure Q: P (M) — RY.
Transformation law (5) of its components can be interpreted as the
system of partial differential equations w.r.t. unknown functions y*(z",
o x™),i=1,2,...,n. We treat this PDE system as the submanifold
€ in the bundle of k-jets J*7 of sections of the trivial bundle

7:R" xR" - R".
In this paper, we suppose that € satisfies the condition
Tep (&) =T 7, (8)

where 7;,, : J'r — J™7, | > m, is the natural projection that takes a
[-jet to its m-jet.

Let ¢ € RY be some value of Q. Consider the G-structure B =
7 '(go). Then condition (8) means that

Tkk—1( B ) = Py (M). 9)
For the group G, condition (8) means that
Prj-1(G ) =Djy_y. (10)
For the Lie algebra g of the group G, the last condition means that
Pri-1(9)=Lo/L_ . (11)

2.2. Let 6y € B and let 0, = mx_1(0). Then 6 defines the linear
isomorphism 6y : Ty, Py_1(M) — W, /L, as it was shown above.
By Hj_; we denote the subspace in W, /Lj_; which is generated by
the vectors of the form ( X?0,...,0). Obviously, the quotient space
W, /L_1 is decomposable to the direct sum

Wh/Lk—1 = Hi_1 ® Lo/Li_ .
Consider the subspace Hy, _, C Ty, _, Pr—1(M) which is defined by
Hy, , = (k)" (Hy1)- (12)

We say that H C Ty, P, (M), i = 1,2,...,00 is horizontal if it is
n-dimensional and is naturally projected onto the space tangent to M
without degeneration.

Clearly, subspace (12) is horizontal.

Let 9k+1 S Pk-l—l(M) and let 7Tk+1,k:(9k+1) = 0, € B. Then the
isomorphism 6y : Tp, P.(M) — W, /Lj defines the injective linear
map

gk"‘l‘Tng : Ty, B — W, /Ly,



INTEGRABLE STRUCTURES 9
such that the following diagram is commutative:

Ok+1 Ty, B
Tng EE— Wn/Lk

(Wk,k—l)*l J{pk—,k—l

T9kf1pk*1(M) 0—> Wn/kal .
k

Let us choose a horizontal subspace Hy, C Tjy, B such that

(T k—1)+(Ho,) = Ho,_, . (13)
Then _ .
VX € Hy.,, 0u(X)=(X'0,...,0,X

Jrdk
The pair ( Hy,, 041 ) defines the linear map

f(Hf’k’ Opy1) - V — kal/Lk
by the formula

f(HGk, 9k+1) : XZ = (X]ll]k.) = ( ;1...jk,TXr ) "

Suppose Hy, , f[gk C Ty, B are horizontal subspaces satisfying Eq. (13).
Then, obviously,

(f(Hek,9k+1)_f(ﬁgk,0k+1)):V_>gk7 (14)

where g, = gN (Lk,l/Lk).N
Let 0, € B and 0k+1,0“1 € (7rk+’1,k)_1(9k). Then there exists a
unique element [d]5+! = (05,0,...,0,d5 _;..,) € D}, such that O =
kt1
O - [dlg" . _
Let f(Hek’0k+1) = ( ;1---]'k,7“) and f(Hgk,ékH) = ( ;1...jk,r ). Then from
Proposition 1.2 it follows that

Suppose X,Y € Hy,. Consider the bracket [6;11(X), Op+1(Y)], see
Eq. (1). We have

(0441 (X), Ok (V)] = (XY, =YX )
= (XTYS( ]Z'l...jk._lr,s - ;1...jk_1s,r)) . (16)

By definition, put

C( Hﬂka 9k+1) = ( ;1...jk_1r,s - ;1...jk_1s,r) .

From (15) it follows that ¢( Hy,, 01 ) is independent of the choice of
the point 0y, over ), € B. Therefore we will write ¢( Hy, ) instead of
C( Heka 0k+1 )

Consider the Spencer complex

o o o
0— gl(cl) ﬂ) gk & v L) Lk,Q/L]gfl & /\ZV* & . (17)
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Obviously,
C( Hgk ) € Lk_g/Lk_l X /\2V* .
From (14) it follows that if H,, and Hj, are horizontal subspaces in
Ty, B and satisfy (13), then
C( Hgk ) - C( I:ng ) € Im 8k,1

This means that the class ¢( Hp, ) mod (Im0j,1) is independent of the
choice of the horizontal subspace Hy, over Hy, . We denote this class
by ¢(0y). It is easy to check that

c(Hy, ) € ker Og_12.
Consequently, ¢(f) is a Spencer d-cohomology class, that is,
c(fy) € HF 12,
We say that the map
c:B— H" 2 c: 0, c(by)
is the structure function of the G-structure B.

Proposition 2.1. Structure functions of flat G-structures are trivial.

Proof. Let B be a flat G-structure of order k¥ on R" and let (h = (z',
.., ™)) be the standard chart in R”. An arbitrary element g € G
defines the diffeomorphism ¢ of R” to itself by the formula
gz',... 2" = ﬁg;xj +...+ Eg;'l-.-jkle e
where (g%,...,9;, ;) =g ' Bys?, r=0,1,..., we denote the section
of P,(R") that is generated by the chart (goh = (y',...,y")) on R".
Then sf is a section of B. Indeed, let e be the unit of G, then s is a
section of Py (R™) generated by the standard chart in R™. This section
is a section of B. It is clear that

si(p) = si(p)-g VpeR".
Let 6, = s}(p) and let 641 = s ,(p). Then it is obvious that
Hy, = (s1)(T,R™) is a horizontal subspace in Ty, B and

k
Or1: X = (X10,...,0) VX € H,,.

It is clear now that the structure function of the G-structure B is
equal to zero for any point of Im s{. Taking into account that images
of sections Im s}, ¢g € G, cover B completely, we conclude that the
structure function is equal to zero at each point of B. O

In general, the structure functions give only necessary conditions to
solve the local equivalence problem for G-structures.

Theorem 2.2. Suppose B and B are G-structures on M, c and ¢ are
their structure functions, respectively, and let f be a diffeomorphism of
M to itself such that f*®)(B) = B. Then (f*)*(¢) = c.
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Proof. Let [s]f = 0, € B and let X € Ty, B. Then for any point
9k+1 S ﬂ-kj—l}l,k(gk) we have
O (X) = FE D (O0r) (FP)(X)).

Indeed, from the construction of the isomorphism 6y, see the proof
of proposition 1.1, it follows that there exists a vector field £ with the
flow ¢, in M such that X = d/dt([p; 0 s]’é)‘tzo and

Oe1(X) = d/dt([s™" oy o s]f) ‘t:()'
It follows that

FED @) ((fP)u(X))
d

= (o) o (fopo o (fos))|
d
= (s oo s =t (X).
It is obvious now that the cohomology classes c(6;) and c( f*)(6;))
coincide. O

3. INTEGRABILITY OF THE FINITE TYPE STRUCTURES

Let Q be an arbitrary geometric structure on M, F' be its compo-
nents’ transformation law, and ¢y € RY be some value of Q. Consider
a G-structure B = Q7'(qy). Let 8 C Ly/L; be the Lie algebra of
G and let g, = 9NLy_1/Lg. Suppose that the structure function of
B is equal to zero. Let 6y € B and let 0y 1 € (mpy1x) " (6k). Con-
sider an arbitrary horizontal subspace Hy, C Tj, B satisfying (13). Let
f(Hy,, Ops1) = ([} ;) From the Spencer complex in Eq. (17) and
the equation ¢( Hp,, 0x11) = 0 mod (Imdy ), it follows that there
exists (g% ; ) € g ® V* such that

( ]1';1...jk_1r,s - ;1...jk_1s,r) = akyl( (g;ljkys ) ) .

Therefore,
i 1
redis — Jiiegis

where (d;l___jks) € g,(cl). By lflgk we denote a horizontal subspace in

Ty, B such that f( Hy,, Ops1) = (di ). Let G4y = Opy - d, where

i J1e--JkS
d=(=dj ;) €GN DF*Y. Then it is clear that

+d

J1.-JkS?

VX € Hy, Or1(X)=(X%0,...,0). (18)

By BM we denote the set of all §k+1, which are obtained in this way.
Obviously,

ﬂ'kJrLk(B(l)) =B.



12 V. A. YUMAGUZHIN

Proposition 3.1. We have
BY = (W)™ ((4,0)),

i.e., BY is a G -structure. Here G is the isotropy group of the
point (gy,0) € RN+

Proof. Let [s]k*! = 6., € BM. The local chart s7' = (y',...,y")
generates the local chart in Py(M). From (5) it follows that the G-
structure B is defined within this chart by the equations

W) =F (Y Yy ©)- (19)
Let Hy, C Tp, B be a horizontal subspace that satisfies (13) and (18).
Then a vector X € Hy, is

0 0
oy ayj 8yj1 Jk

within this chart. From (19) we deduce that X satisfies the equation
8jq°‘(0) . Xj = 0 .

.40

This means that
0;¢“(0)=0 Va=1,2,...,N,j=1,2,...,n.
whence,
QN (0r11) = (00,0).
Thus we obtain
BY c () (g0,0).
From (7) it follows that G(V-structure (QM)~"( g, 0) is defined by the

equations

da(y) = Fa(dz'la s Jd‘ljljk » 4o ) )

. QFe OF«
%G (y) - ds = =15 i+ Y -
J ayﬁ J1il 8y]1]k J1---Jk]

Therefore,
BY Aml (80 = (@) (q0,0) Nl 4 (6) V0, € B
Now it is clear that
BY = (W) "}(4,0).

In the same way as above, we construct the structure function
D BM 5 gk?
of the GM-structure BM. If ¢(V) = 0, then, in the same way as above,

we can construct G@-structure B® = (Q®)7((g,0,0)) and its
structure function 0(2), and so on.
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Theorem 3.2. Let B be a finite type G-structure and let ¢ be its struc-
ture function. Then B is integrable iff c=0, ¢V =0,...,"B) = .

Proof. First, we consider the case r(B) = 0. Let Q be a geometric
structure of order k such that B = Q7 '(¢qo) and let y = (y',...,y") be
a local chart of M. This chart generates the local chart of Py (M). In
terms of this chart, the submanifold B is defined by the equations

q~(y) :F(yﬁa"'ayﬁl...jkv QO)- (20)
We interpret these equations as a system of partial differential equa-
tions & w.r.t. the unknown functions y'(z',... z"),...,y"(z',..., ")

that define the coordinate transformation x — y. If there exists a so-
lution of this PDE system, then x = (!,...,2") is a local chart of M
and the components of €2 in this chart are constant, i.e., {2 is integrable.

The condition g, = {0} means that the symbol of the PDEs system
is equal to zero. Thence, the natural projection my4q : BM - Bis
surjective. This means that the natural projection &Y — &, where €1
is the first prolongation of &, is surjective too. Thus the system & of
partial differential equations is completely integrable, see [7], therefore
it has a solution. This completes the proof for the case r(B) = 0.

The proof for the case r(B) > 0 is obvious now. O

4. APPLICATIONS TO ORDINARY EQUATIONS

4.1. Second order equations. Consider an ordinary differential eq-
uations of the form

y'=as(z,y) () + ax(z,9) () + aa(z,9) Y +ao(z,y) . (21)

It is well-known that an arbitrary point transformation takes equation
(21) to the equation of the same form. This means that equation
(21) defines the second-order geometric structure on R? such that the
coefficients of the equation are the components of this structure in the
standard coordinates in R?. We denote this structure by Q. Thus,

Q: PR - R

This structure is a finite type structure such that r(B) = 1.

Consider the G-structure B = Q7'(0). TIts structure function c is
equal to zero. It can be proved that equation (21) can be reduced to
linear form by a point transformation iff the structure function ¢(!) of
its first prolongation B(") is equal to zero (see [8], [9]).

4.2. Third order equations. Consider ordinary differential equations
of the form

y/// = as (y//)3 + ay (y//)2 + ay y// 4 ao (22)
where a3, as, a1, ag are functions of z, y, y'. It is easy to prove that an
arbitrary contact transformation takes equation (22) to the equation
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of the same form. This means that equation (22) defines the geomet-
ric structure of third order on the space R? such that the coefficients
of the equation are the components of this structure in the standard
coordinates in space R®*. We denote this structure by €. Thus,

Q: R - R

This structure is an infinite type structure.

Let Q) be the infinite prolongation of the structure Q and let B =
Too3((20)71(0)). Then it can be proved that B is a finite type G-
structure such that r(B) = 1. Its structure function c is equal to zero.
It can be proved that equation (22) can be reduced to the form y"” =0
by a contact transformation iff the structure function ¢! of its first
prolongation B(") is equal to zero (see [10]).
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